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Abstract
Linear dynamical systems (LDS) are mathematical models widely used in engineer-

ing and science to describe systems that evolve over time. In this thesis, we study
algorithms for various decision problems of discrete-time linear dynamical systems.
Our main focus is the Model-Checking Problem, which is to decide, given a linear
dynamical system and an ω-regular specification, whether the trajectory of the LDS
satisfies the specification. Using tools from various mathematical disciplines, most
notably algebraic number theory, Diophantine approximation, automata theory, and
combinatorics on words, we prove decidability of the Model-Checking Problem for
large classes of linear dynamical systems and ω-regular properties. We further exploit
deep connections between linear dynamical systems and contemporary number theory
to show that improving any of our decidability results would amount to major mathe-
matical breakthroughs. Our results delineate the boundaries of decision problems of
linear dynamical systems that, at the present time, can be solved algorithmically.
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Zusammenfassung
Lineare dynamische Systeme (LdS) sind mathematische Modelle, die in den In-

genieurwissenschaften und in den Naturwissenschaften bei der Beschreibung von
zeitabhängigen Beobachtungen weit verbreitet sind. In dieser Arbeit untersuchen wir
Algorithmen für verschiedene Entscheidungsprobleme diskreter linearer dynamischer
Systeme. Unser Hauptaugenmerk liegt auf dem Model-Checking Problem: Gegeben
ein lineares dynamisches System und eine ω-reguläre Spezifikation, entscheiden, ob die
Trajektorie des LdS die Spezifikation erfüllt. Durch Anwendung von Konzepten aus
verschiedenen mathematischen Disziplinen, insbesondere algebraischer Zahlentheorie,
diophantischer Approximation, Automatentheorie und Kombinatorik auf Wörtern,
beweisen wir die Entscheidbarkeit des Model-Checking Problems für große Klassen
linearer dynamischer Systeme und ω-regulärer Eigenschaften. Zusätzlich nutzen wir
tiefe Verbindungen zwischen dem Model-Checking Problem und der modernen Zahlen-
theorie, um nachzuweisen, dass jede Erweiterung unserer Entscheidbarkeitsergebnisse
wesentliche mathematische Durchbrüche bedeuten würde. Unsere Ergebnisse umreißen
die Grenzen der Entscheidungsprobleme linearer dynamischer Systeme, die derzeit
algorithmisch gelöst werden können.
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Introduction

A discrete-time linear dynamical system (LDS) is given by an update matrixM ∈ Qd×d

and a starting point s ∈ Qd. Such a system evolves according to the dynamics x 7→ Mx.
The orbit (also known as the trajectory) of (M, s) is the sequence O(M, s) := (Mns)n∈N.
In this thesis we study decision problems of linear dynamical systems and their orbits.

Linear dynamical systems are interesting both from the practical perspective, as
they arise in many branches of engineering and science, and the theoretical standpoint,
as their decidability problems straddle what is known (i.e. resolved) and what is
believed to be out of reach at the moment. We illustrate the former by an example
from program verification. A linear loop is a program fragment of the form

initialise x

while ¬P(x) do x = M · x

where x = (x1, . . . , xd) is a tuple of d rational variables, M ∈ Qd×d, and P is
a condition specified using the variables x1, . . . , xd, constants from Q, arithmetic
operations, inequalities, and logical connectives. The figure below depicts a concrete
loop over two variables, where P is a conjunction of four linear inequalities.

x1 = 1
x2 = 0
while ¬P(x1, x2) :(

x1

x2

)
= 0.22 ·

(
4x1 + 3x2

−3x1 + 4x2

)

T

s

Ms
M2s

Figure 1: A linear loop and its geometric representation. The region T corresponds to
the predicate P.
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This loop can be modelled using the linear dynamical system given by

M = 0.22 ·
[

4 3
−3 4

]
, s =

[
1
0

]
.

With this definition, after n iterations of the loop body, the value of the variables
(x1, x2) is equal to Mns. Hence our loop terminates if and only if the orbit O(M, s)
ever reaches the set T = {(x1, x2) : P(x1, x2)}, depicted as the pink region in Figure 1.
We see that the orbit, in fact, does reach T at time n = 4, and the loop terminates
after 4 iterations. Generalising the example above, the termination problem for linear
loops is Turing-equivalent to the following classical (and open) decidability problem
about linear dynamical systems.

Reachability Problem. Given M ∈ Qd×d, s ∈ Qd, and a semialgebraic target set
T ⊆ Rd, decide whether the orbit O(M, s) reaches T , i.e. whether there exists n ∈ N
such that Mns ∈ T .

A subset of Rd is semialgebraic if it can be defined by a Boolean combination of
polynomial inequalities with rational coefficients in variables x1, . . . , xd. Semialgebraic
sets include, among others, hyperplanes, halfspaces, bounded and unbounded polytopes,
as well as algebraic varieties defined by polynomials over Q. The class of semialgebraic
targets corresponds exactly to the class of loop guards constructed from logical and
arithmetic operations that we gave when defining linear loops.

From the perspective of formal verification, once a real-world system is modelled
as a linear dynamical system, we can ask many different questions besides whether a
configuration satisfying a certain condition is ever reached. For example, given (M, s)
and semialgebraic sets T, T1, T2, we might want to decide whether, for example,

(a) Mns ∈ T for infinitely many n ∈ N,

(b) for all n, if Mns ∈ T1 then there exists k ≥ 0 such that Mn+ks ∈ T2, or

(c) Mns ∈ T1 for all even n.

This leads us to consider the problem of deciding, given an LDS (M, s) and a specifi-
cation φ, whether the orbit O(M, s) satisfies the specification.

But how can we represent the desired specification, and what kinds of specifications
should we consider? Writing Σ = 2T , observe that determining whether the orbit
O(M, s) satisfies a specification φ over a family of semialgebraic sets T = {T1, . . . , Tℓ}

2



s

T1

T2

T3

Figure 2: The orbit of (M, s) and the collection {T1, T2, T3} of target sets.

amounts to model checking the infinite characteristic word α ∈ Σω of (M, s) with
respect to T , defined by

Ti ∈ α(n) ⇔ Mns ∈ Ti

for all 1 ≤ i ≤ ℓ and n ∈ N. That is, the nth letter of α is the set of all semialgebraic
targets from T which contain Mns. Figure 2 depicts the orbit of (M, s) above as well
as the collection of semialgebraic sets T = {T1, T2, T3}, where T1 = {(x, y) : x, y ≥ 0},
T2 = {(x, y) : x2 + y2 < 1.2}, and T3 = {(x, y) : y = −a(x − b)2} for a ≈ 1.23 and
b ≈ 0.35. Note that the sets in T need not be disjoint, nor do they need to cover the
entirety of the ambient space Rd. We can read off from Figure 2 the characteristic
word of (M, s) with respect to T as

α = {T1, T2} {T1, T2} {T1, T2} {T2} {T2} ∅ {T3} ∅ {T3} ∅ {T1} · · · .

Given a specification φ over T and a system (M, s), once we construct the characteristic
word α of (M, s) with respect to T , we can drop the original LDS and ask: Does
the word α satisfy the property φ? Therefore, a natural way to represent φ is by a
tuple (T ,A), where T is a family of semialgebraic sets and A is an automaton over
the alphabet Σ = 2T that captures the property φ, in the sense that a word β ∈ Σω

satisfies φ if and only if it is accepted by A. In this thesis, we work exclusively with
deterministic Muller automata, which, just like non-deterministic Büchi automata,
capture exactly all ω-regular specifications [11, Chapter 4]. In particular, ω-regular
properties subsume reachability as well as the properties (a-c) above. We thus arrive
at the following general verification problem for linear dynamical systems.
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Model-Checking Problem (MCP). Given M ∈ Qd×d, s ∈ Qd, a family T of
semialgebraic subsets of Rd, and a deterministic Muller automaton A, decide whether A
accepts the characteristic word α of (M, s) with respect to T .

A large part of this thesis is dedicated to the study of the Model-Checking Problem
from the perspective of decidability and complexity. Our main results in this direction
can be summarised as follows.

(A) We give a novel framework in which decidability of various non-trivial classes of
the Model-Checking Problem can be shown. Previously, decidability was only
known for restricted classes of specifications (e.g. reachability [9] or infinite reach-
ability [68]), or in the trivial cases where the characteristic word α is ultimately
periodic (e.g. if M only has real eigenvalues, see Chapter 5).

(B) We show that any significant generalisation of the decidability results obtained
through our framework would amount to major mathematical breakthroughs,
therefore delineating the subclasses of the Model-Checking Problem for which
decidability can be proven using contemporary mathematical tools.

In order to expound (A) and the “mathematical hardness” results alluded in (B),
we need to introduce linear recurrence sequences (LRS), a fundamental class of
sequences intimately related to linear dynamical systems. A sequence (un)n∈N is a
linear recurrence sequence over Q if there exist d > 0 and constants a0, . . . , ad−1 ∈ Q
such that u0, . . . , ud−1 ∈ Q and

un+d = a0un + . . .+ ad−1un+d−1

for all n ∈ N. Equivalently, a sequence (un)n∈N is an LRS over Q if and only
if there exist d > 0, M ∈ Qd×d and c, s ∈ Qd such that un = c⊤Mns. Linear
recurrence sequences will be discussed in detail in Chapter 2, but already from the
latter characterisation of rational LRS a connection between LDS and LRS is immediate.
Consider the Reachability Problem with (rational) hyperplane targets: given and LDS
(M, s) and c ∈ Qd, decide whether the orbit of (M, s) ever reaches the hyperplane
H = {x | c⊤x = 0}. Since Mns ∈ H if and only if un := c⊤Mns = 0, this problem is
Turing-equivalent to the following.

Skolem Problem (for LRS over Q). Given a rational LRS (un)n∈N, decide whether
there exists n such that un = 0.

4



The Skolem Problem, despite having received significant attention since the 1980s,
famously remains open. Decidability is currently known for sequences of order at
most 4 (i.e. sequences that can be defined by a matrix M ∈ Qd×d for d ≤ 4) by the
result [61] of Mignotte, Shorey and Tijdeman proven in 1984. At order 5, the Skolem
Problem remains open, although a recent result of Bilu et al. [16] shows decidability
assuming certain well-known number-theoretic conjectures. In Section 8.3 we will
show that the Skolem Problem for LRS of order 5 can, in fact, be reduced to the
Reachability Problem for LDS in ambient space R4. The fact that the Skolem Problem
is open at order 5, therefore, attests to the hardness of the Reachability Problem as
well as the full Model-Checking Problem already in dimension d = 4.

Evidence of intractability of the Model-Checking Problem, however, goes much
beyond reductions from the Skolem Problem. The following is another famous open
problem about linear recurrence sequences subsumed by the Reachability Problem.

Positivity Problem (for LRS over Q). Given a rational LRS (un)n∈N, decide
whether un ≥ 0 for all n.

Observe that for un = c⊤Mns, deciding whether un ≥ 0 for all n is equivalent to
deciding whether there exists n such that un < 0. Hence the Positivity Problem is
Turing-equivalent to deciding whether O(M, s) reaches a halfspace H = {x | c⊤x < 0}
where c ∈ Qd. Although not immediate at a first glance, the Skolem Problem is Turing-
reducible to the Positivity Problem (Section 2.5). Independently from the Skolem
Problem, the Positivity Problem is also hard with respect to certain open problems
in Diophantine approximation: a decision procedure for the Positivity Problem for
sequences of order 6 or more would entail algorithms for approximating Lagrange
constants of a large class of transcendental numbers (Section 8.1), a result currently
believed to be out of reach. Complementing this Diophantine hardness, [66, 67]
show decidability of the Positivity Problem for sequences of order at most 5 and
for diagonalisable sequences (i.e. sequences that can be defined by a diagonalisable
matrix M) of order at most 9.

Linear recurrence sequences, however, do not only serve to formally prove the
hardness of the Model-Checking Problem: They also form the backbone of every
decidability result about the MCP. As an example, consider a semialgebraic target
set T ⊆ Rd defined by a single inequality p(x1, . . . , xd) ∆ 0, where p is a polynomial
with rational coefficients. The orbit O(M, s) visits T at time n ∈ N if and only if
p(Mns) ∆ 0 holds. Since the sequence un = p(Mns) is a linear recurrence sequence
over Q (see Chapter 2), understanding the time steps at which O(M, s) visits T

5



amounts to understanding the sign pattern σ ∈ {+, 0,−}ω of the sequence (un)n∈N.
A similar conclusion holds for a general semialgebraic target T defined by a Boolean
combination of polynomial inequalities. In this case each inequality defining T gives
rise to a separate sign pattern, and these sign patterns collectively determine the time
steps at which O(M, s) visits T . We are now in a position to describe the results of
this thesis pertaining to the Model-Checking Problem in more detail.

(✠) We introduce the class of tame semialgebraic sets, and show that the Model-
Checking Problem is decidable if we assume all semialgebraic target sets in T
are tame. A semialgebraic set is tame if it can be obtained, through standard
set operations, from semialgebraic sets that either have dimension at most one,
or are contained in a three-dimensional subspace. The sets of the former kind
consist of finitely many components homeomorphic to a point or a line.

(⋆) We prove that the Model-Checking Problem is decidable if we restrict the matrixM
to be diagonalisable and the automaton A to be prefix-independent. In this case, T
is allowed to contain arbitrary semialgebraic sets. Intuitively, a prefix-independent
automaton is such that whether a word α is accepted or not does not depend on
any finite prefix of α. Prefix-independent properties constitute a strict subset
of liveness properties. Importantly, infinite reachability properties are prefix-
independent, but reachability properties are not. Somewhat surprisingly, we
are also able to show that the full MCP for diagonalisable systems (i.e. without
any restrictions on the set of targets T and the automaton A) is decidable
if we assume decidability of the Positivity Problem for diagonalisable linear
recurrence sequences over Q. Combining this result with the formulation of the
Positivity Problem as an instance of the Reachability Problem described above,
we conclude that for diagonalisable systems, the full Model-Checking Problem is
Turing-reducible to the Reachability Problem.

To prove (✠) and (⋆), we use the framework of toric words. A toric word over an
alphabet Σ is the coding of the trajectory ⟨x, f(x), f(f(x)), . . .⟩ of a compact dynamical
system (Td, f), where Td denotes the d-dimensional torus and f is a rotation, with
respect to a collection S of open1 subsets of Td with |S| = |Σ|. The nth letter of
α is determined by the unique open set in S that contains fn(x). Variants of toric
words have been extensively studied in symbolic dynamics and dynamical systems
theory [69]. To capture characteristic words of linear dynamical systems, we introduce

1In the formal definition given in Chapter 4 we will also require each S ∈ S to have finitely many
connected components, in order to avoid the situation where every word is toric.
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the classes of eventually toric words and eventually toric words with semialgebraic
parameters. As suggested by their names, the former class encloses the latter. We
prove the following.

(a) The characteristic word of any linear dynamical system (M, s) with respect to a
family T of tame sets is eventually toric with semialgebraic parameters. These
parameters can be effectively computed given M, s, T .

(b) The characteristic word of (M, s) for diagonalisable M with respect to any set T
of semialgebraic targets is eventually toric with semialgebraic parameters. At
the moment, we only know how to effectively determine only a subset of these
parameters given M, s, T .

The difference in the effectiveness of semialgebraic parameters (which arises because
we use a deep but not fully constructive result when proving (b)) is ultimately the
reason why for diagonalisable systems, in order to obtain decidability, we additionally
impose the restriction that A be prefix-independent. In comparison, the proof of
effectiveness of (a) involves solving the Skolem Problem for two new classes of linear
recurrence sequences that can have arbitrarily large order (Section 2.7). We mention
that the statement of (a) does not generalise beyond tame targets. In Chapter 8 we
will give an example of (M, s) ∈ Q4×4 ×Q4 and two-dimensional semialgebraic T such
that the characteristic word of (M, s) with respect to T = {T} is not eventually toric.

Once we show that the characteristic words of linear dynamical systems we consider
are eventually toric (with semialgebraic parameters), the punchline of our decidability
results (✠) and (⋆) is that eventually toric words are almost-periodic, a notion due to
Semënov [75]. An infinite word α ∈ Σω is almost-periodic if every finite word u ∈ Σ∗

either (i) occurs finitely often in α, or (ii) occurs infinitely often with bounded gaps.
The word α is effectively almost-periodic if, given u, we can decide whether (i) or (ii)
holds; Additionally, in case (i), we can determine all occurrences of u in α, and in
case (ii) we can compute an upper bound on the gaps between consecutive occurrences
of u in α. We will prove that eventually toric words with semialgebraic parameters are,
in fact, effectively almost-periodic. The importance of effective almost periodicity lies
in the result of Semënov [75, 64] to the effect that if α is effectively almost-periodic,
then the following problem is decidable.

Acceptance Problem for the infinite word α. Given a deterministic Muller
automaton A, decide whether A accepts α.

7



Compare the statement of the Acceptance Problem to that of the Model-Checking
Problem. The most important difference is that, in the former, the word α is fixed, and
only the automaton A is given as the input. In the statement of the MCP, however,
both the word α (represented by the triple M, s, T ) and the automaton A are part
of the input. Despite this difference, we are able to utilise the concrete algorithm
of Muchnik, Semënov and Ushakov ([64], see also Section 3.1) for the Acceptance
Problem to show decidability of the MCP with tame targets. With few adaptations,
the same algorithm can also be used to model check diagonalisable linear dynamical
systems against prefix-independent properties. However, the aforementioned difference
between the formulations of the Model-Checking Problem and the Acceptance Problem
still results in the following discrepancy: The Acceptance Problem is decidable for
characteristic words of diagonalisable LDS with respect to any set T of semialgebraic
targets (Chapter 7), but the full MCP for diagonalisable systems (i.e. without the
prefix-independence restriction on A) is currently open and provably hard (Chapter 8).

The Acceptance Problem for certain combinatorial families of words (e.g. morphic
words, the characteristic words of {f(n) : n ∈ N} for various functions including
f(n) = 2n, f(n) = n2, f(n) = n!) has been studied in [34, 23, 70] in the light
of its connection to the following fundamental problem in logic. For which unary
predicates P1, . . . , Pm : N → {0, 1} is the monadic second-order (MSO) theory of the
structure ⟨N;<,P1, . . . , Pm⟩ decidable? We discuss the Monadic-Second Order logic
in Section 1.9. Define the characteristic word of a predicate P : N → {0, 1} to
be the word α ∈ {0, 1}ω whose nth letter is equal to P (n) for all n ∈ N. By the
reduction of Büchi in [21], where he showed decidability of the MSO theory of ⟨N;<⟩
is decidable, the problem of determining whether a given MSO formula Φ is true in
⟨N;<,P1, . . . , Pm⟩ is Turing-equivalent to the Acceptance Problem for the product
word α = α1 × · · · × αm ∈ {0, 1}m. This equivalence has the following consequences.

(1) Suppose we are given an LDS (M, s) and a collection of semialgebraic sets T =
{T1, . . . , Tℓ}. For 1 ≤ i ≤ ℓ, let Pi : N → {0, 1} be the predicate defined by
Pi(n) = 1 ⇔ Mns ∈ Ti, and denote the characteristic word of Pi by αi. Given a
deterministic automaton A, we can construct a formula Φ in a suitable monadic
second-order language that holds in the structure ⟨N;<,P1, . . . , Pℓ⟩ if and only
if A accepts β := α1 × · · · × αℓ. Observe that β, up to a renaming of letters, is
the same as the characteristic word α of (M, s) with respect to T . Therefore, we
can express the Model-Checking Problem in the parlance of monadic second-order
logic.

8



(2) In Section 4.2 we will show that eventually toric words with semialgebraic pa-
rameters are closed under products. Consequently, if the characteristic word αi

of each Pi is toric with semialgebraic parameters, then the MSO theory of the
structure ⟨N;<,P1, . . . , Pm⟩ is decidable. In contrast, for all other well-known
families of predicates, decidability is generally known only in case m = 1. For
example, if P1, P2 are predicates whose characteristic words are morphic, then the
MSO theories of both ⟨N;<,P1⟩ and ⟨N;<,P2⟩ are decidable, whereas decidability
of the MSO theory of ⟨N;<,P1, P2⟩ is, in general, unknown. See [15] for a survey
of the state of the art regarding extensions of ⟨N;<⟩ with decidable MSO theories.

Prior to discovering Semënov’s work, in [48] and [7] we gave decidable subclasses of
the Model-Checking Problem without using almost periodicity. Our methods were, in
a sense, highly specialised versions of the algorithm of Muchnik et al. [64] for deciding
whether an automaton accepts an effectively almost-periodic word. Remarkably,
the theory of almost-periodic words not only unifies all decidability results to date
pertaining to the Model-Checking Problem, but does so without deteriorating the
complexity bounds on decision procedures compared to the ad hoc methods. The
strong connection between Semënov’s theory of almost-periodic words and decidability
of the MCP will be further discussed in Chapter 3 and throughout this thesis.

By way of hardness, in Chapter 8 we will show that substantially improving
any of our decidability results requires major mathematical breakthroughs. For
example, we will prove that the Reachability Problem for (M, s) ∈ Q4×4 × Q4 and
semialgebraic targets T ⊂ R4 of dimension 2 (which is also trivially contained in a
linear subspace of dimension 4) is Diophantine-hard just like the Positivity Problem.
Informally speaking, our hardness results show that tame targets essentially capture
the class of semialgebraic sets for which the Reachability Problem can be shown to
be decidable (without any restrictions on the system (M, s) or the automaton A)
using “conventional” number-theoretic methods. The fact that we can decide the
full Model-Checking Problem for tame targets then suggests the following conjecture:
If for a class of semialgebraic targets we can decide the Reachability Problem, then
we can also decide the full Model-Checking Problem for the same class. Although
this is not much more than a speculation, especially given that decidability of both
the Reachability Problem and the Model-Checking Problem remain largely open, we
are able to show in Chapter 7 that for LDS with a diagonalisable update matrix, the
Model-Checking Problem is in fact Turing-reducible to the Reachability Problem.
That is, for diagonalisable systems, deciding reachability is the only “difficult part” of
model checking.
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The final chapter of this thesis is markedly different from the others. There
we consider the following verification problems of LDS that incorporate a notion
of robustness to the Reachability Problem, and are more aligned with the classical,
topological perspective on dynamical systems.

Topological Reachability Problem (TRP). Given an LDS (M, s) and a semialge-
braic target T , decide if in every (open) neighbourhood of s there exists ŝ such that
the orbit O(M, ŝ) reaches T .

Pseudo-Reachability Problem (PRP). Given an LDS (M, s) in ambient space Rd

and a semialgebraic target T ⊆ Rd, decide if for every ϵ > 0, there exists a sequence
(un)n∈N of control inputs over Rd with the following properties.

(a) ∥un∥2 < ϵ for all n ∈ N, and

(b) the trajectory (xn)n∈N, defined by x0 = s and xn+1 = Mxn + un, reaches T .

We show full decidability of the TRP and decidability of the PRP in case M is
diagonalisable. Our results are based on a novel method of constructing a continuous
abstraction A(t) of the orbit O(M, s). Here t ranges over [0,∞) and Mns ∈ A(n) for
all n ∈ N. The continuous abstraction A(t) has many helpful properties not shared
by the infinite discrete set O(M, s). Most importantly, A(t) can be computed from t

using only arithmetic and real exponentiation, a result that allows us to deploy the
powerful concept of o-minimality from model theory. In our context, o-minimality
refers to the fact that every subset of Rd definable in first-order logic using arithmetic
and exponentiation has finitely many connected components. One consequence of
o-minimality is that when solving the TRP and the PRP, we can essentially pass from
the orbit O(M, s) to the abstraction A(t). This cannot be done for the Reachability
Problem due to the “exact” nature of the latter.

The abstraction-based technique unifies topological and pseudo-reachability with
inductive invariants of linear dynamical systems. A set S is an inductive invariant of
(M, s) if s ∈ S and MS ⊆ S, which implies that Mns ∈ S for all n. Such invariants
can be used to demonstrate non-reachability: given (M, s) and a target set T , if
we can find S for which we can prove s ∈ S, MS ⊆ S, and S ∩ T = ∅, then S

certifies that O(M, s) does not reach T . The Semialgebraic Invariant Problem, shown
decidable in [6], asks: Given (M, s) and semialgebraic T , decide whether there exists
a semialgebraic inductive invariant of (M, s) that is disjoint from T . We show that
decidability of the Semialgebraic Invariant Problem as well as the TRP and the PRP
can be proven using the same approach. We are also able to show that if (M, s) does
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not topologically reach T , then (M, s) has a semialgebraic invariant disjoint from T .
Intuitively, for (M, s) such that O(M, s) does not reach T , whether an inductive
invariant S disjoint from T exists and whether T is (not) topologically reachable
depend on how well O(M, s) is separated from T .

The structure of this thesis. In Chapter 1 we provide necessary definitions and
mathematical background, and develop algorithms for operating on algebraic numbers
that will be required by our decision procedures. We dedicate significant attention to
first-order theories of real and complex numbers as they offer us a common framework
for algorithms operating on various types of mathematical objects. In Chapter 2 we
study linear recurrence sequences in detail, recalling their classical theory as well as
proving decidability of the Skolem Problem for certain novel families of sequences that
arise from reachability problems of tame targets. In Chapter 3 we discuss effectively
almost-periodic words. We give a detailed account of the algorithm of Muchnik et al.
that decides whether a given automaton accepts a given effectively almost-periodic
word, and modify it slightly to obtain a decision procedure for prefix-independent
automata and certain kinds of almost-periodic words. Chapter 4 is dedicated to the
study of toric words, which have significant overlap with the class of characteristic
words of linear dynamical systems with respect to semialgebraic targets. We prove
effective almost periodicity and various closure properties of toric words.

In Chapter 5 we apply the theory of toric and effectively almost-periodic words to
show decidability of the Model-Checking Problem in ambient dimension at most three.
This chapter is based on the work [48], presented at MFCS 2020. In Chapter 6 we
extend decidability of the MCP to linear dynamical systems of arbitrary dimension and
tame semialgebraic targets. The results of this chapter appeared in [47] (POPL 2022)
and [46]. Chapter 7 studies the Model-Checking Problem for linear dynamical systems
with a diagonalisable update matrix, proving decidability for prefix-independent
properties ([7], POPL 2021) and full decidability assuming a Positivity oracle for
diagonalisable linear recurrence sequences ([45], LICS 2022). In Chapter 8, by way of
Diophantine and Skolem-hardness we show that none of our decidability results can
be significantly improved without major mathematical breakthroughs.

Finally, in Chapter 9 we present our common solution based on continuous abstrac-
tions to the Semialgebraic Invariant Problem, the Topological Reachability Problem,
and the Pseudo-Reachability Problem. These results appeared in the works [31]
and [32], presented at MFCS 2021 and MFCS 2022, respectively. Chapter 9 can be
read independently from the rest of this thesis with the exception of Chapter 1.
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Chapter 1

Mathematical tools

Throughout this thesis, we will analyse algorithms that operate on linear dynamical
systems, algebraic numbers, semialgebraic sets, automata and various other types of
mathematical objects. In this chapter we describe how these objects will be represented
(e.g. in computer memory), recall their basic properties, and analyse complexity of
operations on them. A large part of our focus will be on the theory of algebraic
numbers. In particular, we will use quantifier elimination and decision procedures from
first-order logic to develop concrete algorithms with complexity bounds for performing
various operations on a given set of algebraic numbers.

1.1 Notation and conventions

We write N,Z,Q,R,Q,C for the sets of natural, integer, rational, real, algebraic and
complex numbers, respectively. We denote by T the unit circle {z ∈ C : |z| = 1}. For
a ring R, R× is the group of units in R. For example, C× = C \ {0}. We write i for
the imaginary number, log : R>0 → R for the natural logarithm, and Log : C× → C
for the principal branch of complex logarithm. For x ∈ R>0, Log x = log x.

We denote by 0 the vector or matrix of all zeros, whose dimensions will be clear
from the context. The kth standard basis vector of Rd, where d depends on the
context, will be denoted by ek. Given vectors v1, . . . , vm, where vi ∈ Cdi , we write
(v1, . . . , vm) for the vector in Cd1+...+dm obtained by concatenating v1, . . . , vm in the
given order. For matrices X1, . . . , Xm, where Xi ∈ Cai×bi , we define

diag(X1, . . . , Xm) =


X1

. . .
Xm

 ∈ C(a1+...+am)×(b1+...+bm).
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For a vector v = (v1, . . . , vd) ∈ Cd and p > 0, we define ∥v∥p = p

√
|v1|p + . . .+ |vd|p.

We further let ∥v∥∞ = max {|vi| : 1 ≤ i ≤ d}. We denote by B(z, ϵ) the open ball

{z ∈ R : ∥x− z∥2 < ϵ}

where R (usually either Rd or Cd) will be understood from the context. Given a
function f : Rd → Rl and X ⊂ Rd, we write f(X) for {f(x) | x ∈ Rd}. For X, Y ⊆ Rd,
c ∈ R, and an arithmetic operation ◦, we write X ◦Y for the set {x◦y | x ∈ X, y ∈ Y }
and cX for {cx | x ∈ X}.

When the topological space is clear from the context, we write Cl(X), Int(x), and
∂X for the closure, interior, and the boundary of X, respectively. In this thesis we
will only work with the classical Euclidean and Zariski topologies, as well as the subset
topologies they induce.

The function sign : R → {+, 0,−} maps R>0,R<0 and {0} to +,− and 0, respec-
tively. For an integer x, we write ∥x∥ for the number of bits required to represent
x in computer memory. More generally, for any object X we write ∥X∥ for the
description length of X, where the representation scheme will be clear from the type
of the object. For example, since we represent semialgebraic sets by quantifier-free
first-order formulas, ∥X∥ for such a set is the bit length of the quantifier-free formula
φ representing X. When we say that a class of objects {Xi | i ∈ I} is effectively
computable, we mean that there exists an algorithm that computes a representation
of Xi given i ∈ I.

We write Poly for an absolute polynomial, i.e. a polynomial that does not depend
on any other quantity. Every occurrence of Poly in this work can be (constructively)
replaced by a concrete polynomial with integer coefficients, which we do not do in
order to avoid notational clutter. For a function f , we denote by fn(x) the result of
iteratively applying f to x a total of n times.

Finally, we mention that we will represent multivariate polynomials with rational
coefficients by flat first-order terms, discussed in Section 1.3. Intuitively, the term
(x+ 1)(y + 1) is not flat, whereas the equivalent term xy + x+ y + 1 is.

1.2 Polynomials in one variable

We next recall some basic definitions and facts about univariate polynomials that will
be useful throughout this work. Let p(x) = ∑d

i=0 aix
i be a polynomial in C[x] with

roots α1, . . . , αd. We write deg(p) for the degree of p. The height of p, written H(p),
is defined as max0≤i≤d |ai|. The Mahler measure of p, denoted by M(p), is defined as
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|ad|∏d
k=1 max{1, |αi|}. We will use Mahler measure in a self-contained manner in this

chapter, but refer the reader to [80, Section 3.3] for more details.
Consider an integral polynomial p(x) = ∑deg(p)

i=0 aix
i, i.e. p ∈ Z[x]. We represent

p as a list of coefficients of length deg(p) + 1. Hence deg(p) < ∥p∥, H(α) < 2∥p∥,
and ∥p∥ = O(deg(p) · logH(p)). In addition, if p is not the zero polynomial then
M(p) ≥ |ad| ≥ 1. We say that p is primitive if gcd(a0, . . . , ad) = 1. Using the
algorithm of Lenstra, Lenstra and Lovász, an integral polynomial can be factored in
polynomial time.

Theorem 1.2.1 (Main result of [53]). Let p ∈ Z[x]. In time polynomial in ∥p∥ we
can compute a factorisation p = cp1 . . . pm, where c = gcd(a0, . . . , ad) and for all
1 ≤ i ≤ m, pi ∈ Z[x] is primitive and irreducible over Q.

Next, we give a root separation bound for univariate polynomials due to Mignotte
[62, Corollary of Theorem 5].

Theorem 1.2.2. For square-free p ∈ Z[x] with distinct roots α and β,

|α− β| >
√

3
(d+ 1)d+1Hd−1

where d = deg(p) and H = H(p).

Corollary 1.2.3. For p(x) ∈ Q[x] with distinct complex roots α and β,

|α− β| > 2−Poly(∥p∥).

Proof. Let k ∈ N with k < 2∥p∥ be such that q(x) := kp(x) ∈ Z[x]. Observing that ∥q∥
is at most polynomial in ∥p∥, factorise q(x) = cq1(x) · · · qm(x) applying Theorem 1.2.1.
It is classical that an irreducible polynomial in Q[x] is square-free. Moreover, two such
polynomials either have identical roots, or do not share a common root. If α, β are
roots of some qi, then write h = qi. Otherwise, let i ̸= j be such that qi(α) = 0 and
qj(β) = 0, and write h = qiqj. It remains to apply Theorem 1.2.2 to the square-free
integral polynomial h.

The following result of Cauchy, on the other hand, gives an upper on the magnitude
of the roots of a polynomial.

Theorem 1.2.4. Let p(x) = ∑d
i=0 aix

i ∈ C[x] with ad ̸= 0. If p(α) = 0, then

|α| ≤ 1 + max
0≤i≤d

|ai|
|ad|

≤ 1 +H(p).

We can also bound |p(x)| from below for |x| sufficiently large.

14



Lemma 1.2.5. Let p(x) = ∑d
i=0 aix

i ∈ C[x] be a polynomial with degree d, ad ̸= 0,
and height H. For all x ∈ C with |x| ≥ d·H+1

ad
it holds that

|p(x)| > min {1, |a0|/2}.

Proof. If d = 0, then |p(x)| = |a0| > |a0|/2 for all x. Suppose d > 0. Since |ai| ≤ H

for all 0 ≤ i ≤ d, |∑d−1
i=0 ait

i| < dHtd−1 for all t > 1. Hence if t ≥ dH+1
ad

, which implies
that t > 1, then

|p(t)| > |ad|td − dHtd−1 = td−1(|ad|t− dH) ≥ 1.

1.3 First-order logic

We next establish most of the tools of the first-order logic that we will need. We refer
the reader to [58, Chapters 2 and 3] for a comprehensive introduction to the concepts
of this section.

A first-order language L is specified by a set F of function symbols, a set R of
relation symbols, and a set C of constant symbols. We also assume an infinite set of
variable symbols. A term in the language L is a well-formed expression built from the
variable symbols and the symbols in F and C. Atomic formulas in L are of the form
r(t1, . . . , tk), where r ∈ R is a relation symbol with arity k, and t1, . . . tk are terms.
The (well-formed) formulas in L are constructed from atomic formulas, quantifiers
and logical connectives in the usual way. Finally, a sentence is a formula that does
not contain free variables.

The (first-order) language of rings, denoted by Lr, is given by the set of function
symbols Fr := {+,−, ·}, the set of relation symbols Rr := {=, ̸=}, and the set of
constant symbols Cr := Q. The (first-order) language of ordered rings, denoted by Lor,
is given by the triple For = Fr, Ror := {>,≥,=, ̸=,≤, <}, and Cor = Cr = Q. For
example, φ(x, y) := 5x2y + 3xz > 0, which is a shorthand for 5 · x · x · y + 3 · x · z > 0,
is an atomic formula in Lor. With the exception of Chapter 9, we will be only working
with the languages Lr and Lor. Note that the terms of the two languages are identical.
Hence we often do not specify whether a given first-order term belongs to Lr or Lor.

Terms are purely syntactic objects. When working with Lor and Lr, however,
we will allow ourselves to substitute complex numbers in place of free variables in
terms and formulas: for a term t with free variables v1, . . . , vm and complex numbers
α1, . . . , αm, we denote by t(α1, . . . , αm) the complex number obtained by performing
the arithmetic operations specified in t on α1, . . . , αm. We have therefore identified
the term t with a polynomial function of type Cm → C.
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Let R0 and C0 denote the structures of real and complex numbers, respectively,
equipped with the standard arithmetic operations and binary relations. The set R is
the universe of the structure R0, and C is the universe of C0. We will be interpreting
formulas of Lor and Lr in the structures R0 and C0, respectively.

Let M be a structure with universe M whose functions, relations and constants
respectively match the function, relation and constant symbols of a language L. We
say that an L-formula φ with free variables x1, . . . , xn defines X ⊆ Mn if for all
a := (a1, . . . , an) ∈ Mn, a ∈ X if and only if φ(a1, . . . , an) holds in the structure M.
By the (first-order) theory of M, denoted by Th(M), we mean the set of L-sentences
φ such that φ is true in M, written M |= φ. The theories Th(R0) and Th(C0) are
known as the first-order theory of real closed fields and the the first-order theory
of algebraically closed fields of characteristic zero, respectively. The theory Th(M)
admits quantifier elimination if for every φ(x1, . . . , xn) ∈ L there exists quantifier-free
ψ(x1, . . . , xn) ∈ L such that for all a1, . . . , an ∈ M , M |= φ(a1, . . . , an) if and only
if M |= ψ(a1, . . . , an). We say that the formula ψ is equivalent to ϕ modulo M.
The theory Th(M) is decidable if, given an L-sentence φ, it is decidable whether
φ ∈ Th(M).

It is well-known that both Th(R0) and Th(C0) admit quantifier elimination. This
immediately implies decidability of both theories: given a sentence Φ in Lor or Lr, we
can first compute an equivalent quantifier-free sentence Ψ, which will be a Boolean
combination of atomic formulas without free variables containing constant symbols
from Q, arithmetic symbols, and relation symbols. Whether a sentence of this form is
true in R0 and C0 can be easily verified. We next discuss the complexity of quantifier
elimination and the decision problem for both theories.

1.3.1 Quantifier elimination in Th(R0)

The first quantifier elimination algorithm for Th(R0) was given by Tarski in the 1940s.
The running time of Tarski’s algorithm is non-elementary, but the complexity of
quantifier-elimination has since been refined to 2EXP. We refer the interested reader
to [72, Section 1] for a detailed historical account. On the other hand, since the
work of Fischer and Rabin [38] it is known that any quantifier elimination algorithm
for Th(R0) must have at least doubly exponential complexity. In [30], for example,
Davenport and Heintz construct an explicit class of formulas in Lor for which any
equivalent quantifier-free formula has size at least doubly exponential in the length
of the original formula. We will be using the quantifier elimination algorithm due to
Renegar that has optimal complexity in the light of the lower bound above.
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We refer to a term t as flat if it is of the form∑
i∈I

ci

∏
j∈J

vi,j

where ci ∈ Q is a constant symbol, and vi,j is a variable symbol for all i, j, and for
any distinct a, b ∈ I, the products ∏j∈J va,j and ∏j∈J vb,j are distinct when viewed as
monomials. Examples of non-flat terms include (y1 + 1) · · · (yn + 1) and xy2 + xy2.
Flat terms correspond directly to multivariate polynomials with rational coefficients.
As mentioned earlier, throughout this thesis we assume that polynomials with
rational coefficients are represented by flat terms. In particular, for such p,
deg(p) is bounded above by the description length of p.

We say that a formula φ in Lor is flat if all the terms appearing in φ are flat.
In case of φ ∈ Lor, this means that all the atomic formulas appearing in φ are of
the form t(x1, . . . , xk) ∆ 0 for a flat term t and a relation symbol ∆. Below is a
summary of the quantifier elimination algorithm of Renegar that takes as an input a
flat formula in prenex form (i.e. the formula consists of a block of quantifiers followed
by a quantifier-free part) that has only integer constants.

Theorem 1.3.1 (Theorem 1.2 in [72]). Let

Φ(y) := (Q1x1 ∈ Rn1) · · · (Qωxω ∈ Rnω) : φ(y,x)

be a formula in Lor such that

(a) Q1, . . . , Qω ∈ {∃, ∀},

(b) x = (x1, . . . ,xω), and y = (y1, . . . , yl) are the free variables,

(c) φ(y,x) is flat and quantifier-free, and

(d) all constants appearing in φ(y,x) are integers.

Let n = ∑ω
k=1 nk, and denote by ∥Φ∥ the bit length of Φ. Using

∥Φ∥2O(ω)(n+l+1)
∏ω

k=1 nk

sequential bit operations, one can compute a flat quantifier-free formula of the form
I∨

i=1

Ji∧
j=1

hi,j(y1, . . . , yl) ∆i,j 0

equivalent to Φ modulo R0, where each hi,j is a polynomial with integer coefficients
and ∆i,j ∈ Ror is a relation symbol.
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Note that in the formulation above, each xi stands for a collection xi,1, . . . , xi,ni
of

ni bound variables, and Qixi ∈ Rni is a “syntactic sugar” for the block Qixi,1 . . . Qixi,ni

of quantified variables. If Qi ̸= Qi+1 for all i, then ω is the quantifier alternation depth
of the formula Φ. Next, we give a well-known result about the existential fragment of
the first-order theory of the reals.

Theorem 1.3.2 (Theorem 1.1 in [72]). Let

Φ := ∃x1, . . . , xn : φ(x1, . . . , xn)

be a sentence where φ(x1, . . . , xn) is flat, quantifier-free, and has only integer constants.
Whether Φ holds in R0 can be decided in space polynomial in ∥Φ∥.

In order to be able to eliminate quantifiers from arbitrary formulas, we will
need an algorithm to transform a given formula into the restricted form specified in
Theorems 1.3.1 and 1.3.2. Any formula can be transformed into an equivalent formula
in prenex form in polynomial time. Hence it remains to understand the complexity of
“flattening” a formula and clearing out the denominators to replace rational constants
with integer ones. We begin by analysing the process of performing an arithmetic
operation on two multivariate polynomials.

Lemma 1.3.3. Let p1, p2 ∈ Z[x1, . . . , xn], N1, N2 ∈ Z, and qi = 1
Ni
pi ∈ Q[x1, . . . , xn]

for i ∈ {1, 2}. Further let N3 = N1N2 and q3 = q1 ◦ q2, where ◦ ∈ {+,−, ·}.

(a) q3 = 1
N3
p3 where p3 = p1p2 if ◦ is multiplication and p3 = N2p1 +N1p2 otherwise.

(b) The number of distinct monomials appearing in pi is at most (1 + deg(pi))n for
all i ∈ {1, 2, 3}.

(c) deg(p3) ≤ deg(p1) + deg(p2).

(d) H(p3) ≤ (N1 +N2)H(p1)H(p2)(1 + deg(pi))n for i ∈ {1, 2}.

(e) (N3, p3) can be computed from (N1, p1) and (N2, p2) in time at most

Poly(logN1, logN2, ∥p1∥, ∥p2∥) · (1 + deg(p1) + deg(p2))n.

Proof. Statements (a-c) can be verified directly. To prove (d), for i ∈ {1, 2}, denote
by mi the number of distinct monomials with a non-zero coefficient appearing in pi,
and let m = min {m1,m2}. If ◦ is multiplication, then each coefficient of a monomial
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of p3 is a sum of at most m integers with magnitude at most H(p1)H(p2). Otherwise,
H(p3) is bounded by N2H(p1) +N1H(p2), and (d) follows.

Statement (e) follows from observing that there are at most (1+deg(p1)+deg(p2))n

distinct monomials with non-zero coefficients in p3. Since both multiplication and
addition of integers can be performed in polynomial time, the coefficients of the
monomials of p3 (as well as the value N3) each can be computed in time at most
Poly(logN1, logN2, ∥p1∥, ∥p2∥).

We next lift the lemma above to flattening terms and formulas of Lor and Lr. We
say that terms t1(x1, . . . , xn) and t2(x1, . . . , xn) are equivalent if for all a1, . . . , an ∈ C,
t1(a1, . . . , an) = t2(a1, . . . , an).

Lemma 1.3.4 (Flattening Lemma). Let T be a term and n ≥ 1 be an upper bound
on the number of distinct variable symbols appearing in T . Further let φ ∈ L be a
formula of L ∈ {Lor,Lr}. Write M = R0 if L = Lor and M = C0 otherwise.

(a) In time ∥T∥O(n) we can compute a polynomial p with integer constants and
deg(p) ≤ ∥T∥, as well as N ∈ Z, such that 1

N
p is equivalent to T .

(b) In time ∥T∥O(n) we can compute a flat formula ψ ∈ L with only integer constants
that is equivalent to φ modulo M.

Proof. We first give the algorithm for flattening a term t, i.e. constructing a polyno-
mial pt and integer Nt such that t is equivalent to 1

N
pt. If t is a rational constant a/b,

then pt = a and Nt = b. If t is a variable symbol, then pt = t and Nt = 1. Finally,
if t = t1 ◦ t2 for ◦ ∈ {+,−, ·}, then first recursively compute pt1 , Nt1 and pt2 , Nt2

such that each 1
Nti
pi is equivalent to ti. Thereafter, Nt and pt can be computed from

pt1 , Nt1 , pt2 , Nt2 as described in Lemma 1.3.3.
Recall that for a, b ∈ Z, a ̸= 0, the height H(a/b) of a/b is equal to max {|a|, |b|}.

Let C = max{H(c) | c appears in t as a constant}. To analyse the complexity of our
flattening algorithm applied to T , we will show by induction that for all intermediate
sub-terms t of T ,

(i) deg(pt) ≤ ∥t∥,

(ii) Nt ≤ C∥t∥,

(iii) H(pt) ≤ 2∥t∥(C(1 + ∥t∥))n∥t∥2 .
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In the base case, t is a constant or a variable symbol. All (i-iii) are immediate. In the
inductive step, consider t = t1 ◦ t2. Suppose we have already computed pt1 , pt2 , Nt1 , Nt2 .
Observe that ∥t1∥ + ∥t2∥ < ∥t∥, whence (i) follows. From Nt = Nt1Nt2 we deduce that
Nt ≤ C∥t1∥C∥t2∥ ≤ C∥t∥. Finally, (iii) follows from Lemma 1.3.3 (d) and the inductive
hypothesis.

We now prove (a). The output of the flattening algorithm is p = pT and N = NT .
From (i) we conclude that deg(pT ) ≤ ∥T∥. Next, from (iii) we deduce that for every
intermediate term t (including T itself), log(H(pt)) < Poly(∥t∥). Since the number of
distinct monomials in pt is at most (1 + deg(pt))n, we have ∥pt∥ < ∥t∥O(n). Applying
Lemma 1.3.3 (e) to every step that flattens a sub-term t of T (of which there are at
most ∥T∥), we conclude that the running time of the algorithm is at most ∥T∥O(n).

To prove (b), let t(x1, . . . , xn) ∆ 0 be an atomic formula in φ. Using (a), compute
in time ∥φ∥O(n) a polynomial pt ∈ Z[x1, . . . , xn] and integer Nt such that t is equivalent
to 1

Nt
pt. Replacing t(x1, . . . , xn) ∆ 0 in φ with pt(x1, . . . , xn) ∆ 0 we obtain a formula

that is equivalent to t(x1, . . . , xn) ∆ 0 modulo M. It remains to apply this to every
distinct atomic formula of φ, the number of which is at most ∥φ∥.

By the lemma above, if the total number of distinct variables in φ is fixed, then φ
can be flattened in polynomial time. Such a result does not hold for arbitrary formulas,
as illustrated by the family of formulas φn(y1, . . . , yn) := (y1 + 1) · · · (yn + 1) > 0 for
n ∈ N. We are now ready to give the quantifier elimination result for general formulas.
We say that a formula has quantifier alternation at most k if, once all instances of
negation are pushed into the atomic predicates, each path in the syntax tree of the
formula contains at most k alternating blocks of quantifiers.

Theorem 1.3.5. Let Φ ∈ Lor be a formula with N distinct (bound or free) variables.

(a) A quantifier-free formula Ψ ∈ Lor equivalent to Φ modulo R0 can be constructed
in time polynomial in ∥Φ∥2Poly(N).

(b) If Φ has quantifier alternation bounded by an absolute constant k, then quantifier
elimination can be performed in time polynomial in ∥Φ∥Poly(N).

(c) If Φ is a sentence, then whether Φ holds in R0 can be decided in time polynomial
in ∥Φ∥2Poly(N).

(d) If Φ is a flat sentence containing only existential quantifiers and no occurrences
of the negation operator, then whether Φ holds in R0 can be decided in space
polynomial in ∥Φ∥.
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In cases (a) and (b), the formula Ψ is in disjunctive normal form, flat, and contains
only integer constants.

Proof. In all cases, first compute (in polynomial time) a formula Φ1 in prenex form
that is equivalent to Φ. The formula Φ1 has the same number of variables and the
same quantifier alternation as Φ. Next, construct an equivalent flat formula Φ2 as
described in Lemma 1.3.4. This requires time at most ∥Φ∥Poly(N), and the resulting
formula Φ2 has only integer constants, same number of total variables as Φ, and is in
prenex form. Statements (a-c), as well as the last statement about the shape of Ψ,
follow from applying Theorem 1.3.1 to Φ2. To prove (d), observe that in this case the
formula Φ1 is also flat, contains only existential quantifiers, and no instance of the
negation operator. Hence we can clear out the denominators in polynomial time (in
∥Φ1∥ and hence ∥Φ∥) and apply Theorem 1.3.2 to the resulting formula.

1.3.2 Quantifier elimination in Th(C0)

Quantifier elimination in Th(C0) has many parallels to its real counterpart described
above. In particular, quantifier elimination algorithms for C0 also require at least
doubly exponential space. See, for example, [42, Section 1]. Moreover, for both
theories, quantifier elimination methods with optimal complexity are based on the
same family of multivariate resultants. Lack of order relation on C0, however, makes
the quantifier elimination and decision problems easier for certain special classes of
Lr-formulas. In this work we will only need the following quantifier elimination result
about Th(C0), which is derived from the work [43] by Ierardi.

Theorem 1.3.6. Let Φ ∈ Lr be a formula with only existential quantifiers in which
the negation operator does not occur. A flat quantifier-formula Ψ in disjunctive normal
form and equivalent to Φ modulo C0 can be constructed in time ∥Φ∥Poly(N), where N
is the total number of distinct (free and bound) variables in Φ.

Proof. Similarly to the proof of Theorem 1.3.5, first construct, in time ∥Φ∥O(N) a
formula Φ2 that is flat, in prenex form, and equivalent to Φ. The formula Φ2 will also
contain only existential quantifiers, N distinct variables, and no occurrence of the
negation operator. By [43, Corollary 16], a flat quantifier-free formula Ψ in disjunctive
normal form that is equivalent to Φ2 can be constructed in time ∥Φ2∥O(N). Hence the
total running time of quantifier elimination is bounded by ∥Φ∥Poly(N).
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1.4 Semialgebraic sets in Rd and Cd

Recall that a formula φ ∈ Lor with free variables x1, . . . , xd defines S ⊆ Rd if for all
x ∈ Rd, φ(x) holds if and only if x ∈ S. Subsets of Rd definable by a formula in Lor

are called semialgebraic. By quantifier elimination, every semialgebraic set can in fact
be defined by a flat quantifier-free formula of the form

∨
i∈I

∧
j∈J

pi,j(x) ∆i,j 0. (1.1)

Throughout this thesis we assume that each semialgebraic set S is presented by
a (not necessarily flat) quantifier-free formula φ defining S. Operations on
semialgebraic sets like checking the emptiness or taking a projection will be realised
using quantifier elimination. If we were to represent semialgebraic sets with formulas
of the form 1.1, which is more restrictive but common in the literature, then then
complexity bounds we obtain for our algorithms would remain the same.

A semialgebraic set S ⊆ Rd is algebraic if it has a definition of the form 1.1 with
the restriction that every ∆i,j is the equality. Observe that

(a) ∧j∈J pi,j(x) = 0 is equivalent to qi(x) = 0 where qi = ∑
j∈J p

2
i,j, and

(b) ∨i∈I qi(x) = 0 is equivalent to q(x) = 0 for q = ∏
i∈I qi.

Hence every algebraic subset of Rd can be defined by a single polynomial equality.
Using cell decomposition (see [12, Chapter 5]), a semialgebraic set S ⊆ Rd can be

written as a finite union of semialgebraic sets S1, . . . , Sm where each Si is homeomorphic
to (0, 1)ki for some ki ≤ d. The dimension of S is equal to max1≤i≤m ki, which is
independent of the decomposition S = ⋃

1≤i≤m Si.
Analyses of linear dynamical systems, as well as our chosen representation for

algebraic numbers, will often lead us to situations where we need to apply results
pertaining to semialgebraic sets to sets of complex numbers. To formalise this, we say
that S ⊆ Cd is semialgebraic if

S̃ := {(x1, y1, . . . , xd, yd) : (x1 + y1i, . . . , xd + ydi) ∈ S}

is a semialgebraic subset of R2d. Intuitively, we identify Cd with R2d by taking real
and imaginary parts of each coordinate of z ∈ Cd. We represent S by a quantifier-free
formula with 2d free variables that defines S̃. We will revisit semialgebraic subsets
of Cd in Lemma 1.5.5
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1.5 Algebraic number theory

A number α ∈ C is algebraic if there exists p ∈ Q[x] such that p(α) = 0. Algebraic
numbers form a subfield of C denoted by Q. The minimal polynomial of α ∈ Q is
the (unique) monic polynomial p ∈ Q[x] of the smallest degree such that p(α) = 0.
An algebraic integer is an algebraic number whose minimal polynomial has integer
coefficients. Algebraic integers form a subring of C denoted by O. The ring O is
integrally closed, meaning that every root of a monic polynomial whose coefficients
are algebraic integers is itself an algebraic integer.

The degree of α, denoted by deg(α), is the degree of the minimal polynomial
of α. For each α ∈ Q there exists unique Pα(x) = ∑d

i=0 aix
i ∈ Z[x] with d = deg(α),

called the defining polynomial of α, such that Pα(α) = 0 and gcd(a0, . . . , ad) = 1.
The polynomial Pα and the minimal polynomial of α have identical roots and are
square-free, meaning that all of their roots appear with multiplicity one. The (naive)
height of α, denoted by H(α), is equal to H(Pα) = max0≤i≤d |ai|. Write Pα(x) =
ad(x−α1) · · · (x−αd). The algebraic numbers α1, . . . , αd (including α itself) are called
the (Galois) conjugates of α.

A canonical representation of an algebraic number α is given by the polynomial Pα

and an approximation ξ ∈ Q[i], represented as a pair of rational numbers, with the
property that |α−ξ| < |β−ξ| for every root β ̸= α of Pα. That is, α is the nearest root
of Pα to ξ. We represent algebraic numbers by their canonical representations. Other
representations, e.g. based on the Primitive Element Theorem, are possible; see [28] for
a detailed account. For α ∈ Q given by (Pα, u+ vi), we write ∥α∥ = ∥u∥ + ∥v∥ + ∥Pα∥
for the bit length of the particular canonical representation of α. Note that ∥α∥ is not
a function of just α as it also depends on the choice of the representation. Throughout
this thesis, when we make a statement about ∥α∥ without explicitly stating the
representation, we mean that the statement holds for any canonical representation
of α. The following lemma, for example, gives a lower bound on the distance between
α and β in terms of bit lengths of any canonical representations thereof.

Lemma 1.5.1. For every distinct α, β ∈ Q, |α− β| > 2−Poly(∥α∥+∥β∥).

Proof. Apply Mignotte’s bound (Corollary 1.2.3) to p = PαPβ ∈ Z[x].
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1.5.1 The Weil height

In addition to the previously defined naive height H(·), we will make an extensive use
of the (absolute logarithmic) Weil height of α ∈ Q, defined as

h(α) := 1
d

log(M(Pα)) = 1
d

(
log |ad| +

d∑
i=1

log max{1, |αi|}
)

where d = deg(α), α1, . . . , αd are the Galois conjugates of α, and M(Pα) denotes the
Mahler measure of α (see Section 1.2). Writing Pα(x) = ∑d

i=0 aix
i, observe that the

Weil height of α ̸= 0 is zero if and only if ad = 1 (i.e. α is an algebraic integer) and all
Galois conjugates of α have modulus at most 1. By a classical theorem of Kronecker,
such numbers are exactly the roots of unity. It follows that h(α) = 0 if and only if
α = 0 or α is a root of unity. On the other hand, if h(α) ̸= 0, then

h(α) ≥ 1
d

log
(

1 + 1
52d log 6d

)
≥ 1
d+ 52d2 log 6d

by a theorem of Blanksby and Montgomery [17]. In fact, Lehmer’s famously open
conjecture states that if h(α) ̸= 0, then h(α) > c/d for an absolute constant c > 0.
Finally, for α = x/y ∈ Q with gcd(x, y) = 1, h(α) = max{log |x|, log |y|}.

The main utility of the Weil height for our purposes is that, compared to the naive
height, it is easier to keep track of Weil heights of algebraic numbers obtained through
arithmetic (and other) operations. Let n ∈ Z and α, α1, α2 ∈ Q. The following bounds
(and a detailed discussion of the Weil height) can be found in [80, Section 3].

(1) h(α1 + α2) ≤ h(α1) + h(α2) + log 2.

(2) h(α1 · α2) ≤ h(α1) + h(α2).

(3) h(αn) = |n|h(α).

By the second equality, h(−α) = h(α) for all α ∈ Q. The last equality implies that
h(1/α) = h(α) for all α ̸= 0. Observing that Pα = Pα and hence h(α) = h(α),

(4) h(Re(α)) = h((α + α)/2) ≤ 2(h(α) + log 2),

(5) h(Im(α))) = h(i(α− α)/2) ≤ 2(h(α) + log 2),

(6) h(|α|) = h(
√
αα ) = h(αα)/2 ≤ h(α).
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The Weil height is related to the naive height as follows [80, Lemma 3.11]. For all
α ∈ Q with deg(α) = d and H(α) = H,

1
d

logH − log 2 ≤ h(α) ≤ 1
d

logH + 1
2d log(d+ 1).

Hence for all α ̸= 0, h(α) ≤ ∥Pα∥ < ∥α∥. We can use the Weil height to solve the
following problem about power of algebraic numbers.

Lemma 1.5.2. Let α, β ∈ Q, where α is non-zero and not a root of unity. There
exists effectively computable N < Poly(∥α∥, ∥β∥) such that for all n ≥ N , αn ̸= β.

Proof. Since h(α) > 0 by the assumptions on α, and

αn = β ⇒ h(αn) = h(β) ⇔ nh(α) = h(β),

we can choose N := ⌈h(β)/h(α)⌉. Let d = max {deg(α), deg(β)}, and observe that

h(β)
h(α) ≤

1
d

logH(β) + 1
2d

log(d+ 1)
1/(d+ 52d2 log 6d) ≤ Poly(∥α∥, ∥β∥).

Note that the bound Poly(∥α∥ + ∥β∥) above is on the magnitude of N . The bit
length of N is poly-logarithmic in the input size ∥α∥ + ∥β∥. Nevertheless, the time
required to compute N is linear in ∥α∥ + ∥β∥ as we need to look at every bit of the
input.

1.5.2 Fields and rings of algebraic numbers

A number field is K is a subfield of C the form Q(α1, . . . , αm) where each αi is an
algebraic number. Our main reference for number fields is [57, Chapter 2]. Let K
be a number field and denote by D := [K : Q] the degree of the field extension K/Q,
defined as the dimension of K as a vector space over Q. The degree D is always finite
and by the Tower Law for field extensions, bounded above by ∏m

i=1 deg(αi). Moreover,
the field K has exactly D distinct embeddings σ1, . . . , σD into Q. If K/Q is a Galois
extension, meaning that there exists p ∈ Q[x] whose set of all roots {α1, . . . , αd}
satisfies K = Q(β1, . . . , βd), then each σi is, in fact, a field automorphism of K. These
automorphisms constitute the Galois group of K/Q, denoted by Gal(K/Q).

The norm of α ∈ K in the number field K is defined as

NK(α) := σ1(α) · · · σD(α).
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The norm NK(α) is zero if and only if α = 0, and NK(αβ) = NK(α)NK(β) for all
α, β ∈ K. Denote by Nabs(α) the product of all Galois conjugates of α ∈ Q. It is
related to the field norm as follows [57, Theorem 4].

NK(α) = Nabs(α)D/ deg(α).

Let α ̸= 0 and Pα = ∑d
i=0 aix

i be the defining polynomial of α. Observe that
Nabs(α) = a0

ad
is always rational and has magnitude at most H(α). Hence NK(α) is

also rational and satisfies |NK(α)| ≤ H(α)D.
Recall that O denotes the ring of algebraic integers. For a number field K, we

write OK := O ∩ K for the ring of algebraic integers of K. By the Kummer-Dedekind
theorem [57, Theorem 16], the ideals of OK have unique factorisation in terms of prime
ideals of OK.1 Let p be a prime ideal of OK and a be an ideal with prime factorisation
a = pk1

1 · · · pkn
n , where p1, . . . , pn are distinct prime ideals and k1, . . . , kn are positive

integers. Define the ideal counting function

vp(a) :=

ni if p = pi

0 otherwise.

The function vp is analogous to the usual p-adic valuation defined on rationals, where p
is an integer prime number.2 For an algebraic integer β ∈ K, denote by (β) the ideal
in OK generated by β. For a prime ideal p and β ∈ OK, we define vp(β) = vp((β)).
Note that vp(β) ∈ N for β ∈ OK. We can then extend vp to the whole of K as follows.
Let α ∈ K with the defining polynomial Pα = ∑d

i=0 aix
i. We will argue that β = ad ·α

is an algebraic integer. Observe that ∑d
i=0 aia

d−1
d αi = 0. Hence β is a root of

p(x) :=
d∑

i=0
ad−i−1

d · aix
i.

Since ad−i−1
d · ai = 1 for i = d, we conclude that β is an algebraic integer. Recalling

that α = β/ad, we define vp(α) = vp(β) − vp(ad). Observe that vp(β) takes integer
values. For α, α1, α2 ∈ K, α non-zero, vp(·) has the following properties.

(a) vp(α1α2) = vp(α1) + vp(α2).

(b) vp(α + β) ≥ min {vp(α), vp(β)}.

(c) vp(1/α) = −vp(α).
1The factorisation of the whole ring OK is the empty product.
2We recommend the lecture notes [63] by James Milne for a detailed introduction to the ideal

counting function and the p-adic norms.
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We now move onto norms of ideals. Let a be a non-zero ideal of OK. The norm N(a)
of a is defined as the cardinality |OK/a| of the quotient ring OK/a, which is always
finite. By convention, the norm of the zero ideal is zero. The norm is multiplicative:
For any two non-zero ideals a, b, it holds that

N(ab) = N(a)N(b).

By [57, Theorem 22 (c)], for a principal ideal (β) where β ∈ OK, it holds that

N((β)) = |NK(β)|.

Recall that |NK(α)| = Nabs(α)D/ deg(α) ≤ H(α)D for all α ∈ K, where D = [K : Q].
Hence N((β)) ≤ H(β)D for all β ∈ OK. For non-zero x ∈ Z we have that N((x)) = xD.

Let p be a prime ideal of OK. The ideal p contains a unique rational prime p, and
N(p) = pfp for some fp ∈ N. We say that p lies above p, and call fp the ramification
degree of p. Since p ∈ p, (p) ⊆ p. That is, p divides (p). The value ep := vp((p)) is
called the ramification index of p. Both fp and ep are positive integers. Since pep

divides (p), the latter is contained in pep . Hence N(pep) ≤ N((p)). We therefore have

N(pep) = N(p)ep = pfpep ≤ N((p)) = pD.

It follows that fpep ≤ D and 1 ≤ ep, fp ≤ D.
Let p be a prime ideal of OK and λ ∈ K be such that vp(λ) > 0. We next give

bounds on N(p), the unique rational prime p ∈ N contained in p, as well as |vp(α)|
for α ∈ K in terms of ∥α∥, ∥λ∥ and D. These bounds will apply to all prime ideals p

satisfying vp(λ) > 0. Since p divides (λ),

N(p) ≤ N((λ)) ≤ H(λ)D.

From N(p) = pfp and 1 ≤ fp ≤ D we conclude that p ≤ H(λ)D. Next, consider
α ∈ K. Write α = β/m, where β ∈ OK and m ∈ Z. As discussed earlier, we can
take m to be the leading coefficient of Pα, the defining polynomial of α. Hence we can
assume description lengths of β and m are at most polynomial in ∥α∥. By definition,
vp(α) = vp(β) − vp(m). Since pvp(β) divides (β),

(N(p))vp(β) ≤ N((β)) ≤ H(β)D.

Similarly, (N(p))vp(m) ≤ H(m)D. Since the ideal p satisfies p ⊂ OK, its norm N(p) =
|OK/p| is at least two.3 Therefore, vp(β) ≤ D log2(H(β)) and vp(m) ≤ D log2(H(m)).
It follows that

|vp(α)| = |vp(β) − vp(m)| < Poly(D, ∥α∥).
3Recall that the whole of OK is not considered prime.
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Finally, we show that for every α ∈ K \ OK, there exists a prime ideal p such such
that vp(α) ̸= 0. Write α = β/m as above for β ∈ OK and m ∈ Z. We need to show
existence of p such that vp(β) ̸= vp(m), which, by the unique factorisation theorem, is
equivalent to (β) ̸= (m). Recall that two principal ideals are equal if and only if their
generators are associates. Hence (β) = (m) if and only if β/m is a unit of OK. Since
α = β/m and α does not belong OK by assumption, (β) ̸= (m) and the conclusion
follows.

1.5.3 Defining algebraic numbers by first-order formulas

Rather than working with canonical representations directly (e.g. using resultants
and root approximation algorithms), it will often be convenient to represent algebraic
numbers by first-order formulas and perform operations thereon using quantifier
elimination (Theorem 1.3.5) and flattening (Lemma 1.3.4). Recall from Section 1.4
that a formula φ(x, y) ∈ Lor defines S ⊂ Q if

{(x, y) ∈ R2 : φ(x, y)} = {(Re(α), Im(α)) : α ∈ S)}.

We say that φ(x, y) defines α ∈ Q if it defines {α}. Similarly, φ(x) defines α ∈ R ∩ Q
if {x ∈ R : φ(x)} = {α}. We next discuss how to extract a formula defining α given
its canonical representation.

Let p(z) = ∑d
j=0 ajz

j be a polynomial with rational coefficients. We first show how
to compute, in time polynomial in ∥p∥, p1, p2 ∈ Q[x, y] such that for all x, y ∈ R,

p(x+ yi) = p1(x, y) + p2(x, y)i.

Flatten the term ∑d
j=0 aj(x+ yI)j, where I is a variable symbol that stands for the

complex number i. By Lemma 1.3.4, this requires time Poly(∥p∥). In the resulting
flat term, replace each occurrence of Ik, where k ∈ N, respectively with 1, I,−1,−I
depending on whether k is equal to 0, 1, 2 or 3 modulo 4. The resulting term will be
flat and of the form t1(x, y) + t2(x, y)I, where t1, t2 are flat terms themselves. We can
then choose pi as the polynomial corresponding to ti for i ∈ {1, 2}. Observe that the
formula

Φp(x, y) := t1(x, y) = 0 ∧ t2(x, y) = 0

defines the set of all roots of p. Let Ψp(x, y, u, v) be the quantifier-free formula
equivalent to

Φp(x, y) ∧ ∀(x1, y1) ̸= (x, y) : Φp(x1, y1) ⇒ (x1 −u)2 + (y1 − v)2 > (x−u)2 + (y− v)2
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computed in time polynomial in ∥p∥ using Theorem 1.3.5. Observe that Ψp(x, y, u, v)
holds if and only if x+ yi is the root of p that is closest to u+ vi. We therefore have
the following.

Lemma 1.5.3. Given a canonical representation (p, ξ) of α ∈ Q, a quantifier-free
formula φ(x, y) ∈ Lor defining α can be constructed in polynomial time.

Proof. Recall that Re(ξ), Im(ξ) ∈ Q. The quantifier-free formula Ψp(x, y,Re(ξ), Im(ξ)),
which is obtained by substituting Re(ξ), Im(ξ) respectively for variable symbols u, v in
Ψp(x, y, u, v), defines α. It remains to recall that Ψp is computed from p in polynomial
time.

Corollary 1.5.4. Given canonical representations of α, β ∈ Q, we can decide whether
α = β in polynomial time.

Proof. Let φ(x, y), ψ(x, y) be two formulas defining α and β. The sentence

∃x, y : φ(x, y) ∧ ψ(x, y)

holds in R0 if and only if α = β. The former can be checked in polynomial time by
Theorem 1.3.5.

Having shown how to define algebraic numbers using first-order formulas, we now
give our main tool for computing representations of semialgebraic subsets of Cd (see
Section 1.4) that we will encounter.

Lemma 1.5.5. Let f ∈ C(z1, . . . , zk) be a rational function given by

f(z1, . . . , zk) =
A∑

j=1
hj(λ1, . . . , λm)zσj,1

1 · · · zσj,k

k

where λi ∈ Q, hj ∈ Q[x1, . . . , xm], and σj,l ∈ Z for all i, j, l. Define

I =
A∑

j=1
∥hj∥ +

m∑
i=1

∥λi∥ +
A∑

j=1

k∑
l=1

|σj,l|.

Let D ⊆ Ck denote the set of all points on which f is well-defined. In time IPoly(m+k)

we can construct semialgebraic S>, S=, S< ⊆ D such that

Re(f(z)) ∆ 0 ⇔ z ∈ S∆

for all z ∈ D and ∆ ∈ {>,=, <}.
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Proof. Write θ1, θ2 and θ3, respectively, for the collections of variables a1, b1, . . . , am, bm,
x1, y1, . . . , xk, yk, and u1, v1, . . . , uk, vk. The variables ai, bi, xl, yl, ul, vl respectively
stand for

Re(λi), Im(λi),Re(zl), Im(zl),Re(z−1
l ), Im(z−1

l ).

We also use a variable I that stands for the complex number i. For 1 ≤ j ≤ A and
1 ≤ l ≤ k, let tj,l(θ2, θ3) denote the term (xl + ylI)σj,l if σj,l ≥ 0 and (ul + vlI)−σj,l

otherwise. For α ∈ Q, write θα for (Re(α), Im(α)). With this notation, for all
z = (z1, . . . , zk) ∈ D, 1 ≤ j ≤ A, and 1 ≤ l ≤ k,

tj,l(θz1 , . . . , θzk
, θ1/z1 , . . . , θ1/zk

) = z
σj,l

j .

Next, consider the term

t(I, θ1, θ2, θ3) :=
A∑

j=1
hj(a1 + b1I, . . . , am + bmI)tj,1(θ2, θ3) · · · tj,k(θ2, θ3).

For all z1, . . . , zk ∈ D,

f(z1, . . . , zk) = t(i, θλ1 , . . . , θλm , θz1 , . . . , θzk
, θ1/z1 , . . . , θ1/zk

).

Flatten the term t in time IO(k+l) using Lemma 1.3.4 to obtain an equivalent flat term
t1(I, θ1, θ2, θ3) of the form

t1(I, θ1, θ2, θ3) =
B∑

j=0
qj(θ1, θ2, θ3)Ij

where each qj has rational coefficients. Recall that ij1 = ij2 if j1 ≡ j2 mod 4. Moreover,
each summand qj(θ1, θ2, θ3)Ij represents either a real or purely imaginary number,
depending only on the value of j. Hence we define

p(θ1, θ2, θ3) :=
∑

j≡0 mod 4
qj(θ1, θ2, θ3) −

∑
j≡2 mod 4

qj(θ1, θ2, θ3).

For any µ1 ∈ R2m and µ2, µ3 ∈ R2k it holds that

Re(t(i, µ1, µ2, µ3)) = p(µ1, µ2, µ3).

We are now ready to construct S∆ for ∆ ∈ {>,=, <}.
For 1 ≤ i ≤ m, let φi be a quantifier-free formula defining λi. By Lemma 1.5.3,

we can assume ∥φi∥ < Poly(I) for all i. Let L = {1 ≤ l ≤ k | ∃j : σj,l < 0} and
δ(θ2) := ∧

l∈L(xl ̸= 0 ∨ yl ̸= 0), which defines D. Finally, recall that

(x+ yi)(u+ vi) = xu− yv + (yu+ xv)i
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for all x, y, u, v ∈ R. The formula

Φ(θ2) := δ(θ2) ∧ ∃θ1, θ3 :
m∧

i=1
φi(ai, bi)

∧
k∧

l=1
(xlul − ylvl = 1 ∧ ylul + xlvl = 0)

∧ p(θ1, θ2, θ3) ∆ 0

defines S∆. It remains to invoke Theorem 1.3.5 (b) to eliminate quantifiers from Φ in
time IPoly(m+k).

Conversely to the two lemmas above, we can extract canonical representations of
algebraic numbers from a formula that defines them. The idea is as follows. Given
φ(x, y) defining a finite set S = {α1, . . . , αm} ⊂ C, we first compute the projections
Sx, Sy of S onto the two coordinates. By factorising polynomials appearing in the
definitions of Sx and Sy, we identify defining polynomials of Re(αk) and Im(αk) for
all 1 ≤ k ≤ m. We combine these polynomials using resultants to obtain the defining
polynomial of each αk. This, in particular, shows that every αk is algebraic. It remains
to compute numerical approximations to each αk. To do this, we first compute a
bounded box B around zero in C that is guaranteed to enclose S. The root separation
bound (Corollary 1.2.3) tells us how close two distinct points in S can be. Hence
we can partition B into a collection of small squares each of which can contain at
most one α ∈ S. Finally, we use binary search to sieve through square subsets of B
efficiently and locate all α ∈ S.

Lemma 1.5.6. Let φ(x, y) ∈ Lor be a quantifier-free formula defining a finite set
S = {α1, . . . , αm} ⊂ C. Every αk is algebraic, and in time Poly(∥φ∥) we can compute
a canonical representation (fk, ξk) of each αk ∈ S, with the additional property that
∥ξk∥ < ∥fk∥C for an absolute constant C.

Proof. Apply Theorem 1.3.5 to formulas ∃y : φ(x, y) and ∃x : φ(x, y), respectively, to
compute, in polynomial time, equivalent flat quantifier-free formulas

φ1(x) :=
∨
i∈I

∧
j∈J

pi,j(x) ∆i,j 0,

φ2(y) :=
∨
i∈A

∧
j∈B

qi,j(y) ∆i,j 0.

Here each pi,j and qi,j is a polynomial with integer coefficients. The formulas φ1, φ2

define {Re(αk) | 1 ≤ k ≤ m} and {Im(αk) | 1 ≤ k ≤ m}, respectively. Since these
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are two finite semialgebraic subsets of R, they contain only real algebraic points. It
follows that αk ∈ Q for all 1 ≤ k ≤ m.

We argue that Re(αk) for each αk ∈ S must be a root of some pi,j Observe that
pi,j(x) ≥ 0 can be written as pi,j(x) > 0 ∨ pi,j(x) = 0, and pi,j(x) ≤ 0 can be expressed
similarly. Hence there exists a formula ∨n∈N

∧
l∈L hn,l(x) ∆n,l 0, equivalent to φ1(x)

such that ∆n,l ∈ {>,=, <} and each hn,l is either pi,j or −pi,j for some i, j. Each
conjunct ∧l∈L hn,l(x) ∆n,l 0 that defines a non-empty set must contain an equality,
as otherwise φ1 would define infinitely many points. Hence every x ∈ R satisfying∧

l∈L hn,l(x) ∆n,l 0 must satisfy pi,j(x) = 0 for some i, j. By the same argument, each
Im(αk) is a root of some qi,j.

We next factor each pi,j in polynomial time using Theorem 1.2.1, and collect all
irreducible and primitive polynomials we obtain into the set Y1. Similarly, we collect
all such factors of polynomials appearing in φ2 into Y2. Observe that for all αk ∈ S,
the defining polynomials of Re(αk) and Im(αk) belong to Y1 and Y2, respectively.

We will next compute from Y1 and Y2 a set of polynomials Y that the contains
the defining polynomials of α1, . . . , αm. Our main tool is the resultant. The resultant
Resx(q(x, y), h(x, y)) of two polynomials in Z[x, y] is a polynomial r ∈ Z[y] with the
property that for all y ∈ R, r(y) = 0 if and only if there exists x ∈ R such that
q(x, y) = h(x, y) = 0. Given polynomials q and h (represented by flat terms), we
can compute r (also represented by a flat term) in polynomial time [12, Chapter 4.2].
Moreover, if α is a root of q and β is a root of h, then by [84, Chapter 9.4]

(a) βi is a root of Resy(t2y2 + 1, h(y)) ∈ Z[t], and

(b) α + bi is a root of fq,h(z) := Rest(q(z − t),Resy(t2y2 + 1, h(y))) ∈ Z[z].

By Lemma 1.3.4, we can flatten q(z − t) in polynomial time. Hence fq,h can be
computed from q, h in polynomial time. The set Y is then the set of all integral and
primitive polynomials that divide fq,h for some q ∈ Y1 and h ∈ Y2. Since factorisation
of integral polynomials and computation of resultants are both done in polynomial
time, Y can be computed in time polynomial in ∥Y1∥ + ∥Y2∥ and hence ∥φ∥.

It remains to identify the defining polynomials of α1, . . . , αm in Y and construct
numerical approximations from Q[i] to form the canonical representations. We iterate
over all f ∈ Y . Fix such f and let H := H(f), d := deg(f) and

δ := 1
2(d+ 1)d+1Hd−1 .

By Theorem 1.2.4, the roots of f are contained in the box B := [−1 − H, 1 + H]2.
Since f is irreducible by construction, it is square-free and by Theorem 1.2.2, the

32



distance between any two of its roots is at most
√

3
(d+1)d+1Hd−1 . Hence any square subset

of B of side length δ can contain at most one root of f . We will look for approximations
to the roots of f in the grid

G := B ∩ {δ(n+mi) : n,m ∈ Z}.

Observe that there are (1 + 4(1 + H)(d + 1)d+1Hd−1)2 points in G, all which have
description length at most Poly(logH, d) < Poly(∥φ∥). Our algorithm for locating
the roots of f is binary search on rectangular subsets of B of the form

R(z1, z2) := {z ∈ C : Re(z1) ≤ Re(z) ≤ Re(z2) ∧ Im(z1) ≤ Im(z) ≤ Im(z2)}

where z1, z2 ∈ G satisfy Re(z1) ̸= Re(z2) and Im(z1) ̸= Im(z2). Intuitively, z1, z2

respectively specify the top-left and bottom-right corners of a rectangle that is not
allowed to be a line or a point. The starting rectangle is the whole of B. At each
step it is checked whether the current rectangle R is a square of length δ. If yes, then
R must contain a root and we output any corner z ∈ G of R as an approximation
to a root of f . Observe that the distance from the root α of f inside R to any of
the corners is at most

√
2δ, which is less than half of the root separation bound of

Corollary 1.2.3. Hence α is the closest root of f to z.
If R is not a square of side length δ, then the algorithm checks whether the current

rectangle R(z1, z2) contains a root of f . This is done by verifying, in time polynomial
in ∥f∥, the sentence

∃x, y : Re(z1) ≤ x ≤ Re(z2) ∧ Im(z1) ≤ y ≤ Im(z2) ∧ Φf (x, y)

where Φf (x, y) is the formula defining the set of all roots of f given on page 28. If the
current rectangle does not contain a root, it is discarded. Otherwise, the algorithm
divides the current rectangle into two (overlapping) sub-rectangles of (approximately)
the same size along the grid G. The side lengths of the resulting rectangles remains a
multiple of δ. The algorithm is then recursively applied to the two sub-rectangles.

The entire root-finding algorithm runs in time polynomial in ∥f∥ and produces
ξ1, . . . , ξn ∈ G with the guarantee that for each 1 ≤ i ≤ n, there exists a root β
of f satisfying |β − ξi| <

√
2δ. Hence each (f, ξi) is a canonical representation of

some root of f . If f has a root β for which Re(β) or Im(β) belongs to G, then it is
possible for β to have more than one (at most 4) canonical representations among
(f, ξ1), . . . , (f, ξn). Let φi be a formula defining the number represented by (f, ξi) as
described in Lemma 1.5.3. Using Corollary 1.5.4 repeatedly, we can select d = deg(f)
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distinct canonical representations (f, ξσ(1)), . . . , (f, ξσ(d)) of all roots of f . This step
also requires time polynomial in ∥f∥. Since the magnitude of denominators and
numerators of Re(ξi), Im(ξi) is at most (1 +H)/δ for all 1 ≤ i ≤ n, ∥ξi∥ < (∥f∥)C for
an absolute constant C.

Finally, we have to determine which, if any, of the roots of f for which we computed
canonical representations actually belong to S. This can be done by verifying the
formula

∃x, y : φσ(i)(x, y) ∧ φ(x, y)

for 1 ≤ i ≤ d in polynomial time (Theorem 1.3.5 (c), note that the number of variables
N = 2 is fixed). The total running time of our algorithm is at most polynomial
in ∥φ∥.

This result can be used to perform operations on algebraic numbers as follows.
Suppose we are given canonical representations of α1, . . . , αm, and want to compute a
canonical representation for β := f(α1, . . . , αm) for a “reasonable” function f . First
compute for each 1 ≤ i ≤ m, a formula φi that defines αi. Next, write a formula ψ
constructed from φ1, . . . , φm defining β. Eliminate quantifiers from ψ to obtain an
equivalent quantifier-free formula φ, and apply Lemma 1.5.6 to construct a canonical
representation of β.

1.5.4 Algorithms for operating on algebraic numbers

We next discuss how to perform various operations on algebraic numbers effectively and
the complexity of resulting algorithms. First, a lemma about computing a canonical
representation of f(α1, . . . , αm) where f is constructed from field operations in a
certain restricted way.

Lemma 1.5.7. Let X = {α1, . . . , αm} be a set of algebraic numbers in canonical form,
h = max1≤i≤m h(αi), K = Q(α1, . . . , αm), and D = [K : Q]. Suppose we are given n

specifications of the form
αm+i := ασ(i) ◦i αµ(i)

where σ(i) < m+ i, µ(i) ≤ m, αµ(i) ̸= 0 and ◦i is a field operation for all 1 ≤ i ≤ n.

(a) For all m < i ≤ m+ n, h(αi) ≤ i(h+ log 2), and

(b) canonical representations of αm+1, . . . , αm+n can be computed in time at most
Poly(∥X∥, n,D).
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Proof. Since h(αµ(i)) ≤ h for all 1 ≤ i ≤ n, (a) follows from the results of Section 1.5.1
that for any x, y ∈ Q,

h(x+ y), h(x · y), h(x− y) ≤ h(x) + h(y) + log 2

and h(1/y) = h(y) assuming y ≠ 0. Since αi ∈ K for all i, deg(αi) ≤ D. As described
in Section 1.5.1, logH(αi) ≤ deg(αi)(h(αi) + log 2) for all αi. Hence the defining
polynomial pi of αi satisfies ∥pi∥ < Poly(∥X∥, n,D) for all i.

Our algorithm for computing αm+1, . . . , αm+n is as follows. For 1 ≤ i ≤ m, let
(pi, ξ̃i), denote the canonical representation of αi given as part of the input, and
compute a quantifier-free formula φi(x, y) defining αi using Lemma 1.5.3. Next, apply
Lemma 1.5.6 to obtain a new canonical representation (pi, ξi) of αi for 1 ≤ i ≤ m

that satisfies ∥ξi∥ < (∥pi∥)C , where C is the absolute constant of Lemma 1.5.6. For
j = m+1, . . . ,m+n, we perform the following steps. Let k = σ(j) and l = µ(j). From
canonical representations (pk, ξk) and (pl, ξl) of αk and αl, compute quantifier-free
formulas φk and φl defining αk and αl, respectively. Next, construct a formula φj(x, y)
defining αk ◦j αl as follows.

(a) If ◦j is addition or subtraction, then φj(x, y) is

∃x1, y1, x2, y2 : x1 ◦i x2 = x ∧ y1 ◦i y2 = y ∧ φk(x1, y1) ∧ φl(x2, y2).

(b) If ◦j is multiplication, then φj(x, y) is

∃x1, y1, x2, y2 : x1x2 − y1y2 = x ∧ x1y2 + x2y1 = y ∧ φk(x1, y1) ∧ φl(x2, y2).

(c) If ◦j is division, then φj(x, y) is

∃x1, y1, x2, y2 : xx2 − yy2 = x1 ∧ xy2 + x2y = y1 ∧ φk(x1, y1) ∧ φl(x2, y2).

Next, eliminate quantifiers in polynomial time by Theorem 1.3.5 (observe that the
total number of variables in φj(x, y) is always exactly 6), and compute a canonical
representation (pj, ξj) of αj using Lemma 1.5.6. This way we maintain the invariant

∥ξj∥ < (∥pj∥)C

for all j. The step of computing the canonical representation of αj requires time at
most Poly(∥pk∥, ∥ξk∥, ∥pl∥, ∥ξl∥). We argued above that ∥pi∥ < Poly(∥X∥, i, D) for
all 1 ≤ i ≤ m+n. Combining this with ∥ξi∥ < Poly(∥pi∥) we conclude that the total
time required to compute αm+1, . . . , αm+n is bounded by Poly(∥X∥, n,D).
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Observe that in the lemma above we only allow sequences of (binary) operations
whose syntax tree is right-deep. That is, in the syntax tree the left child of every node
is a leaf. We can handle more general sequences of operations by invoking Lemma 1.5.7
more than once, illustrated below.

Corollary 1.5.8. Let p ∈ Q[x1, . . . , xm], α1, . . . , αm ∈ Q, K = Q(α1, . . . , αm), and D
be the degree of the extension K/Q. We can compute a canonical representation of
p(α1, . . . , αm) in time at most Poly(D, ∥p∥,∑m

i=1 ∥αi∥).

Proof. For each monomial f(x1, . . . , xm) := cxk1
1 . . . xkm

m appearing in the definition
of p, by Lemma 1.5.7 we can compute in time Poly(D, ∥p∥,∑m

i=1 ∥αi∥) a canonical
representation of βf := f(α1, . . . , αm). Writing M for the set of all monomials
appearing in p, it remains to apply Lemma 1.5.7 once again with X = {βf : f ∈ M}
to compute ∑f∈M βf .

We can use our results about algebraic numbers to give an algorithm for factorising
a given polynomial with algebraic coefficients.

Lemma 1.5.9. Let p(x) = ∑d
j=0 hj(λ1, . . . , λm)xj where each λi is algebraic and

hj ∈ Q[x1, . . . , xm]. Write

I =
d∑

j=1
∥hj∥ +

m∑
i=1

∥λi∥.

In time IPoly(m) we can compute N ≤ d and β0, . . . , βN ∈ Q such that

p(x) = β0

N∏
i=1

(x− βi).

Proof. Let K = Q(λ1, . . . , λm) and D = [K : Q]. By the Tower Law, D < IPoly(m).
By Corollary 1.5.8 we compute and compare against zero each δj := hj(λ1, . . . , λm)
in time Poly(I, D) < IPoly(m). Assume p is not identically zero, as otherwise the
factorisation is trivial. The value of N is equal to the largest integer j such that
δj ̸= 0, and β0 is equal to δN .

Next, applying Lemma 1.5.5 with k = 1 construct a quantifier-free formula defining
S = {x ∈ C : p(x) = 0} in time IPoly(m). The set S is finite by the assumption that
deg(p) > 0. By Lemma 1.5.6 in time IPoly(m) we can compute representations of
all distinct algebraic numbers in S, which are the distinct roots of p. It remains to
determine the multiplicities of the roots, which can be done by taking the derivatives
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p(1)(x), . . . , p(N)(x) and computing the distinct roots of p(l)(x) for all 1 ≤ l ≤ N . To
prove the complexity claim, observe that

p(l)(x) =
N−l∑
j=0

(j + l) · · · (j + 1)hj(λ1, . . . , λm)xj

and hence the total description length of each p(l) above, viewed as a non-flat term, is
at most polynomial in I.

One final operation we will frequently perform is computing the modulus of an
algebraic number, which is algebraic itself.

Lemma 1.5.10. Given α ∈ Q, we can compute |α| in polynomial time.

Proof. Let φ be a formula defining α, constructed from the given canonical represen-
tation of α in polynomial time using Lemma 1.5.3. Observe that |α| is defined by the
formula

ψ(x) := ∃x1, y1 : φ(x1, y1) ∧ x2
1 + y2

1 = x2.

It remains to eliminate quantifiers from ψ and apply Lemma 1.5.6 to the resulting
formula.

1.6 Algebraic geometry

The n-dimensional affine space over C, denoted by An, is the set of all tuples
(x1, . . . , xn) where xi ∈ C for all 1 ≤ i ≤ n. A set V ⊆ An is an affine (algebraic)
variety if there exist polynomials p1, . . . , pm ∈ C[x1, . . . , xn] such that

V = {x ∈ An | p1(x) = . . . = pm(x) = 0}.

Finite unions and arbitrary intersections of affine varieties are themselves affine
varieties. We can therefore endow An with the Zariski topology where closed sets are
precisely the affine varieties. The Zariski closure of X ⊆ An is the smallest closed
subset of An containing X. We endow subsets of An with the induced subset topology.
A set X ⊆ An is

(a) irreducible if, viewed as a topological space, it is not a union of two disjoint
closed sets,

(b) Zariski-dense if its closure is An, and

(c) a quasi-affine variety if it is an open subset of an affine variety.
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Every affine variety is a finite union of irreducible affine varieties. All open subsets of
An are Zariski-dense. Finally, the quasi-affine varieties we will encounter are all the
form {x ∈ An | p(x) ̸= 0} where p ∈ C[x1, . . . , xn].

The (complex) dimension dim(V ) of an affine variety V is the largest integer k
such that there exist irreducible affine varieties V0, . . . , Vk such that

V0 ⊂ . . . ⊂ Vk ⊆ V.

The affine space An has dimension n. The dimension dim(X) of arbitrary X ⊆ An is
defined as the dimension of its Zariski closure. Hence X ⊆ Y ⇒ dim(X) ≤ dim(Y ).
Dimension of any X ⊆ An is at most n.

We have so far discussed the objects in our setting, namely the quasi-affine varieties.
A morphism φ from a quasi-affine variety V ⊆ An to A, also called a regular function,
is a function such that for every x ∈ V , there exist an open subset O of V containing x,
and polynomials f, g ∈ C[x1, . . . , xn] such that

1. g is non-zero on O, and

2. φ(z) = f(z)/g(z) for all z ∈ O.

A morphism between quasi-affine varieties V ⊆ An and W ⊆ Am, also called a regular
map, is a map φ : V → W given by x 7→ (φ1(x), . . . , φm(x)), where each φi is a regular
function. Polynomial maps are examples of morphisms. The morphisms of quasi-affine
maps are continuous with respect to the Zariski topology.

We will not need to work with dimensions of varieties directly. The main result
we will need is the following theorem (analogous to the rank-nullity theorem from
linear algebra) that describes how dimension of a quasi-affine variety behaves under
the application of a morphism.4

Theorem 1.6.1 ([41, Thereom 11.12]). Let V be an irreducible quasi-affine variety,
φ : V → Am be a morphism of quasi-affine varieties, and W be the Zariski closure
of φ(V ). For x ∈ V , write µ(x) = dim(φ−1(φ(x))). It holds that

dim(V ) = dim(W ) + min
x∈V

µ(x).

We will only encounter injective morphisms, for which the situation is simpler.
4In fact, this result holds for morphisms of quasi-projective varieties, which are more general than

quasi-affine varieties.
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Corollary 1.6.2. Let φ : V → U be an injective morphism of quasi-affine varieties.
It holds that

dim(V ) = dim(φ(V )) ≤ dim(U).

Proof. Let V1, . . . , Vm be irreducible components of V . Denote by W the Zariski
closure of φ(V ) and by Wi the Zariski closure of Vi for 1 ≤ i ≤ m. Observe that
W = ∪m

i=1Wi. By injectivity, dim(φ−1(φ(x))) = 0 for all x ∈ V . By Theorem 1.6.1,
dim(Vi) = dim(Wi) for all i. Hence

dim(V ) = max
1≤i≤m

dim(Vi) = max
1≤i≤m

dim(Wi) = dim(W ) = dim(φ(V )).

That dim(φ(V )) ≤ dim(U) follows from φ(V ) ⊆ U .

1.7 Jordan normal form

A Jordan block is a matrix of the form λI +N , where λ ∈ C and N is the nilpotent
matrix defined by

Ni,j =

1, if j = i+ 1
0, otherwise.

A real Jordan block is of the form


Λ I

. . . . . .
Λ I

Λ

 where either Λ ∈ R1×1, or

Λ =
[
a −b
b a

]
for a, b ∈ R, b ̸= 0. In the latter case, the matrix has precisely two

eigenvalues a + bi and a − bi, both non-real. A matrix J is in (real) Jordan form
if J = diag(B1, . . . , Bm), where each Bk is a (real) Jordan block. It is classical that
every square matrix M is similar to a matrix J in Jordan form. If M has rational
entries, then J can in fact be computed in polynomial time.

Theorem 1.7.1 (Jin-Yi Cai, [22]). Given M ∈ Qd×d, in polynomial time one can
compute the following.

(a) Matrices S, J, P with algebraic entries such that J is in Jordan form, S = P−1,
and M = SJP ;

(b) For each entry α of S, J or P , an eigenvalue λ of M and a polynomial p ∈ Q[x]
such that α = p(λ).

39



Throughout this paper, unless stated otherwise, we make the following assumptions
on the structure of S, J, P , permitted by Cai’s algorithm. In particular, we assume
that the first 2l1 blocks of J have two non-real eigenvalues, and the following l2 blocks
have a single real eigenvalue.

(1) J = diag(B1, . . . , B2l1+l2), where l1, l2 ≥ 0 and Bk = λkI +N ∈ Qdk×dk for all k.

(2) P is of the form
[
C1 · · · C2l1+l2

]
and S⊤ is of the form

[
A1 · · · A2l1+l2

]
,

where Ck, Ak ∈ Qd×dk for all 1 ≤ k ≤ 2l1 + l2.

(3) For 1 ≤ k ≤ l1, λk is non-real, and A2k, B2k, C2k are the entrywise complex
conjugates of A2k−1, B2k−1, C2k−1, respectively.

(4) For l1 < k ≤ l2, Ak, Bk, Ck have real entries.

(5) There exists 1 ≤ j ≤ 2l1 + l2 such that λk ̸= 0 for all k ≤ j and λj = 0 for all
k > j. That is, J = diag(J1, J2) where J1 is invertible and J2 is nilpotent.

Real Jordan Form. Given M ∈ Qd×d, in polynomial time we can also compute
Sr, Jr, Pr ∈ (R ∩ Q)d×d such that Jr is in real Jordan form, Sr = (Pr)−1, and

M = SrJrPr.

The construction follows the standard proof of existence of real Jordan forms. Assume
we have already computed S, J, P and the blocks Ak, Bk, Ck for 1 ≤ k ≤ 2l1 + l2 as
above. For 1 ≤ k ≤ l1, let

Ãk = 1
2
[
A2k−1 + A2k i(A2k − A2k−1)

]
,

C̃k = 1
2
[
C2k−1 + C2k i(C2k − C2k−1)

]
,

and B̃k denote the real Jordan block belonging to (R ∩ Q)2dk×2dk with eigenvalues
λk, λk. We can then choose

S⊤
r =

[
Ã1 · · · Ãl1 A2l1+1 · · · A2l1+l2

]
Pr =

[
C̃1 · · · C̃l1 C2l1+1 · · · C2l1+l2

]
and Jr = diag(B̃1, . . . , B̃l1 , B2l1+1, . . . , B2l1+l2). Finally, let J ′

r be in real Jordan form
and obtained from Jr through permutation of blocks. In polynomial time, we can
compute S ′

r, P
′
r (that are obtained by permuting of rows and columns of Sr and Pr,

respectively) such that S ′
r = (P ′

r)−1 and M = S ′
rJ

′
rP

′
r.
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Raising a matrix to an integer power. For k ≥ 0, let

qk(x) = 1
k!x(x− 1) · · · (x− k + 1).

It is well-known that for a Jordan block B = λI +N ∈ Qd×d with λ ̸= 0,

(Bn)i,j =

λi−jλnqj−i(n) if i ≤ j,
0 otherwise.

(1.2)

Hence the entries of Mn for M invertible can be expressed in terms of n and the
powers of the eigenvalues.

Lemma 1.7.2. Let M ∈ Qd×d be invertible with distinct non-zero eigenvalues
λ1, . . . , λm. For all 1 ≤ i, k ≤ d, (Mn)i,k is of the form ∑A

j=1 pj(n)λn
j where each pj

has algebraic coefficients and ∑A
j=1(deg(pj) + 1) ≤ d.

Proof. Factorise M = P−1JP where J = diag(B1, . . . , Bl) is in Jordan form and
each Ba for 1 ≤ a ≤ l is a Jordan block from Qda×da with the non-zero eigenvalue λa.
The entries of Bn

a are of the form p(n)λn
a where p has algebraic coefficients and degree

at most da − 1. It remains to recall ∑l
i=1 da = d.

We now discuss the complexity of constructing the polynomials p1, . . . , pA in
Lemma 1.7.2, and what to do in case M is not invertible. As shown in Equation (1.2),
the entries of Bn, where B = λI +N ∈ Qd×d with λ ̸= 0, are of the form t(n, λ−1, λn)
for 0 ≤ k < d and the non-flat term t(x1, x2, x3) := xk

2x3qk(x1). Let ∑deg(λ)
i=0 aix

i be the
minimal polynomial of λ with a0, adeg(λ) ̸= 0. Observe that λ−1 = 1

a0

∑deg(λ)
i=1 aiλ

i−1.
That is, λ−1 can be expressed as a rational linear combination of powers of λ. It
follows that the entries of Bn can in fact be written as s(n, λ, λn), where s is again a
non-flat term. On the other hand, if C ∈ Qd×d is nilpotent, then Cn = 0 for all n ≥ d.
We therefore arrive at the following.

Theorem 1.7.3. Let M ∈ Qd×d. Write N = d if the Jordan form of M contains a
non-diagonalisable nilpotent block and N = 0 otherwise. In time polynomial in ∥M∥
we can compute the distinct non-zero eigenvalues λ1, . . . , λm of M as well as (non-flat)
terms ti,j for 1 ≤ i, j ≤ d with the following property. For all i, j and n ≥ N ,

(a) (Mn)i,j = ti,j(λ1, . . . , λm, λ
n
1 , . . . , λ

n
m) if M is diagonalisable, and

(b) (Mn)i,j = ti,j(λ1, . . . , λm, n, λ
n
1 , . . . , λ

n
m) otherwise.
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Proof. First compute S = P−1, J, P in polynomial time as in Theorem 1.7.1 (a). Apply
Theorem 1.7.1 (b) to express entries of P−1 and P in the form p(λ) where p ∈ Q[x]
and λ is an eigenvalue of M . The distinct non-zero eigenvalues of M can be read off
from the diagonal J using Corollary 1.5.4.

Suppose M is diagonalisable. Then N = 0 and for all 1 ≤ i, j ≤ d, (Jn)i,j is either
identically zero or equal to λn

k for some k. It remains to compute each ti,j from the
equality (Mn)i,j = eiP

−1JnPe⊤
j .

Next, suppose M is non-diagonalisable. Choose 1 ≤ i, j ≤ d. As discussed above,
for n ≥ N , (Jn)i,j is either always zero, or can be expressed as hi,j(n, λk, λ

n
k) for

integer 1 ≤ k ≤ m and non-flat term hi,j that can be computed in polynomial time.
It remains to once again compute ti,j from (Mn)i,j = eiP

−1JnPe⊤
j .

Note that the terms ti,j computed above are non-flat. If we want to turn them
into bona fide polynomials using the Flattening Lemma, we incur the cost of ∥M∥O(d),
which is not polynomial in ∥M∥.

1.8 Words and automata

We will work with finite and infinite words over a finite alphabet Σ. As usual, we
write Σ∗ for ∪l∈NΣl, and Σω for the set of all infinite sequences over Σ. We denote the
length of a finite word u by |u|. For a word u and k ≥ 0, we write u(k) for the kth
letter of u. Hence for u with |u| = l,

u = u(0) · · ·u(l − 1).

For 0 ≤ k ≤ j we define

(a) u[k, j] = u(k) · · ·u(j),

(b) u[k, j) = u(k) · · ·u(j − 1), and

(c) for an infinite word u, u[k,∞) = u(k)u(k + 1) · · · .

A finite word u occurs at a position k in (finite or infinite) α if the latter can be
factorised as α = wuβ where |w| = k. A factor u of a word α is a finite word that
occurs at some position in α. Let αi be an infinite word over Σi for 0 ≤ i < L.
The product of α0, . . . , αL−1, written α0 × · · · × αL−1, is the word α over the product
alphabet Σ0 × · · · × ΣL−1 defined by α(n) = (α0(n), . . . , αL−1(n)) for all n ∈ N. The
merge, also known as shuffling or interleaving of α0, . . . , αL−1, is the word α over the
alphabet Σ0 ∪ · · · ∪ ΣL−1 defined by α(qL+ r) = αr(q) for all 0 ≤ r < L and q ∈ N.
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A property or a language is a subset of Σω. Recall that a property is ω-regular if
it is precisely the set of all words accepted by a non-deterministic Büchi automaton.
By McNaughton’s theorem [60], every ω-regular property is the set of words accepted
by a deterministic Muller automaton, which is a tuple ⟨Q, q0, δ, F ⟩ comprising the
following.

(i) Finite set of states Q;

(ii) Unique initial state q0 ∈ Q;

(iii) Transition function δ : Q× Σ → Q;

(iv) F ⊆ P(Q), called the acceptance condition.

Each word α ∈ Σω has a unique run A(α) ∈ Qω in a deterministic (Muller) automa-
ton A, which is the set of states visited when A reads α. The automaton A accepts α,
written A |= α, if the set of states that appear infinitely often in A(α) is present in F .
The property recognised by A is the set of all words accepted by A. In this thesis we
will assume that all ω-regular properties, which will serve as specifications for linear
dynamical systems, are presented by a deterministic Muller automaton.

A property L ⊆ Σω is prefix-independent if for all infinite words α, β that can be
obtained from one another through finitely many insertions and deletions, it holds
that

α ∈ L ⇔ β ∈ L.

Intuitively, a prefix-independent property is a set of words that share common asymp-
totic behaviour: It is not possible to change membership of a word in a prefix-
independent language through finitely many modifications. Prefix-independent prop-
erties (excluding L = ∅) are special cases of liveness properties.

1.9 Monadic second-order logic

The monadic second-order logic is an extension of the first-order logic that allows
quantification over subsets of the universe. Such subsets can be viewed as unary (that
is, monadic) predicates. We will only be interpreting MSO formulas over extensions
of the structure ⟨N;<⟩. For a general perspective on MSO, see [18].

Let S := ⟨N;<,P1, . . . , Pm⟩ be a structure where each Pi : N → {0, 1} is a unary
predicate. We associate a language LS of terms and formulas with S as follows. The
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terms of LS are the elements 0, 1, 2, . . . of N, lowercase variable symbols that stand
for elements of N, and uppercase variable symbols that denote subsets of N. The
formulas of LS are the well-formed statements obtained from the built-in equality (=)
and membership (∈) symbols, logical connectives, quantification over elements of N
(written Qx for a quantifier Q), and quantification over subsets (written QX for a
quantifier Q). The MSO theory of the structure S is the set of all sentences belonging
to LS that are true in S. The MSO theory of S is decidable if there exists an algorithm
that, given a sentence φ ∈ LS, decides if φ belongs to the MSO theory of S. We give
an example below.

Let S = ⟨N;<,P ⟩, where P is the primes predicate: for all n ∈ N, P (n) = 1 if and
only if n is prime. Consider definitions

φ(X) := 1 ∈ X ∧ 0, 2 /∈ X ∧ ∀x. x ∈ X ⇔ s(s(s(x))) ∈ X

ψ := ∃X : φ(X) ∧ ∀y.∃z > y : z ∈ X ∧ P (z)

where s(·) is the successor function defined by s(x) = y if and only if

x < y ∧ ∀z. x < z ⇒ y ≤ z.

That is, s(x) = x+ 1. The formula φ defines the subset {n : n ≡ 1(mod 3)} of N, and
ψ is the sentence “there are infinitely many primes congruent to 1 modulo 3”, which is
the case. Another example of a number-theoretic statement expressible in our setting
would be the Twin Primes Conjecture, which is given by the first-order sentence

∀x.∃y > x : P (y) ∧ P (s(s(y))).

Unsurprisingly, the MSO theory of the structure ⟨N;<,P ⟩, where P is the primes
predicate, is not known to be decidable. However, it is not known to be undecidable
either. We discuss extensions of ⟨N;<⟩ with decidable MSO theories in Chapter 3.
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Chapter 2

Linear recurrence sequences

In this chapter we recall the classical theory of linear recurrence sequences and describe
the state of the art regarding their decision problems. We discuss tools for locating the
zeros of LRS and estimating their growth rates, most notably the Skolem-Mahler-Lech
theorem and Baker’s theorem. Applying these techniques, in Section 2.7 we give
a novel effective Skolem-Mahler-Lech theorem (and hence a decision procedure for
the Skolem Problem) for certain families of sequences that arise when analysing the
Model-Checking Problem with tame targets (Chapter 6).

A sequence (un)n∈N over a ring R ⊆ C is a linear recurrence sequence (alternatively,
a constant-recursive, c-recursive, or c-finite sequence) over R if there exists a positive
integer d and a recurrence relation (a0, . . . , ad−1) ∈ Rd such that

un+d =
d−1∑
i=0

aiun+i

for all n ∈ N. The order of (un)n∈N is the smallest d > 0 such that (un)n∈N satisfies a
recurrence relation in Rd. In this thesis we will work with linear recurrence sequences
over the fields Q, Q, and R ∩ Q. Examples of rational LRS (i.e. LRS over Q) include
the Fibonacci sequence, un = p(n) for p ∈ Q[x], as well as un = cos(nθ) for θ ∈
{arg(λ) | λ ∈ Q(i)}. We refer the reader to the books by Everest et al. [35] and
Kauers and Paule [49], which are the main references for this chapter, for a detailed
discussion of linear recurrence sequences.

An LRS is non-trivial if it is not eventually identically zero. Let (un)n∈N be a
non-trivial LRS satisfying a recurrence relation a = (a0, . . . , ad−1). If a0 = 0, then
d > 1 by non-triviality, and b = (a1, . . . , ad−1) is a shorter recurrence relation satisfied
by (un)n∈N. Hence we can assume that non-trivial sequences are always given by a
recurrence relation whose first coefficient is non-zero.
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In Section 2.2 we will show that each non-trivial LRS over Q can be written
uniquely in the exponential polynomial form

un =
A∑

j=1
pj(n)λn

j

where A > 0, each pj is a non-zero polynomial with algebraic coefficients and λ1, . . . , λA,
called the eigenvalues or roots of (un)n∈N, are non-zero and pairwise distinct algebraic
numbers. An eigenvalue λ is dominant if for every eigenvalue λ′, |λ′| ≤ |λ|. We say
that a non-trivial linear recurrence sequence is

(a) simple (also called diagonalisable) if each pj is constant, and

(b) non-degenerate if λi/λj is not a root of unity for all i ̸= j and all real eigenvalues
of (un)n∈N are positive.1

Linear recurrence sequences over a field R are closed under multiplication by constants
from R, ring operations [49, Theorem 4.2], taking subsequences of the form vn = unL+r

for L > 0 and r ∈ Z, and taking suffixes of the form vn = un+k for k ≥ 0. Moreover,
if the input sequences to all of these operations are diagonalisable, then so is the
resulting sequence. Finally, by the Fatou Lemma [14, Chapters 6.1 and 7.2], if R is an
integral domain, K is a field enclosing R, and (un)n∈N is a sequence over R that is an
LRS over K, then (un)n∈N is also an LRS over R.2

By [35, Theorem 1.2], for every LRS (un)n∈N of order k there exists L = 2O(k
√

log k)

such that the sequences (unL+r)n∈N for 0 ≤ r < L are all either identically zero or
non-degenerate. Hence by taking L subsequences we can reduce many problems of
general LRS to problems about non-degenerate sequences.

2.1 Matrix representation of linear recurrence se-
quences

Linear recurrence sequences play a vital role in the analysis of linear dynamical systems.
A link between LRS and LDS is immediate from the matrix representation of LRS.
Let (un)n∈N be an LRS over R satisfying a recurrence relation a = (a0, . . . , ad−1) ∈ Rd.

1The classical definition of non-degeneracy only includes the first condition.
2In combination with closure of LRS over a field R under ring operations, the Fatou lemma implies

that LRS over an arbitrary integral domain are closed under ring operations.
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The matrix

C :=


0 1 · · · 0
... ... . . . ...
0 0 · · · 1
a0 a1 · · · ad−1

 ∈ Rd×d

is called the companion matrix of the recurrence relation a. Writing s = (u0, . . . , ud−1),
we have that

Cns = (un, . . . , un−d+1)

and un = e1C
ns for all n ∈ N, where ei denotes the ith standard basis vector. Hence

we can present any LRS (un)n∈N over R in the form un = c⊤Mns where M ∈ Rd×d and
c, s ∈ Rd. Observe that C is invertible if a0 ̸= 0, which we can assume for non-trivial
sequences as discussed above. Conversely, any sequence vn = c⊤Mns, where M ∈ Rd×d

and c, s ∈ Rd, is an LRS over R. To see this, let p(x) := det(xI −M) = ∑d
i=0 bix

i be
the characteristic polynomial of M , which has the property that bd = 1 and bi ∈ R for
all i. By the Cayley-Hamilton theorem, p(M) = 0. That is,

Md = −
d−1∑
i=0

biM
i

and hence for all n ∈ N,

c⊤Mn+ds = −
d−1∑
i=0

bic
⊤Mn+is.

That is, vn+d = b0vn + · · · + bd−1vn+d−1 for all n. Therefore, (vn)n∈N is an LRS over R
satisfying the recurrence relation (−b0, . . . ,−bd−1).

Using the matrix representation of LRS, decision problems about linear recurrence
sequences can be formulated in a more geometric way in terms of linear dynamical
systems. We say that a hyperplane or a halfspace is rational if it can be defined in
the form {x ∈ Rd | c⊤x ∆ 0} where ∆ ∈ {≥, >,=} and c ∈ Qd.

(a) Recall that the Skolem Problem over Q is to decide, given a rational LRS
(un)n∈N, whether un = 0 for some n. Writing un = c⊤Mns, un = 0 for some n if
and only if the orbit of (M, s) reaches the rational hyperplane H = {x | c⊤x = 0}.
Conversely, the orbit of (M, s) reaches a rational hyperplane H with normal vector
c ∈ Qd if and only if the LRS un = c⊤Mns has a zero. Therefore, the Skolem
Problem is Turing-equivalent to the Reachability Problem with rational hyperplane
targets: given (M, s) ∈ Qd×d × Qd and a rational hyperplane H ⊂ Rd, decide
whether the orbit of (M, s) reaches H.
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(b) The Positivity Problem over Q is to decide, given a rational LRS (un)n∈N,
whether un ≥ 0 for all n. By the same argument as in (a), it is equivalent
to deciding, given a linear dynamical system (M, s) and a rational halfspace
H = {x | c⊤x ≥ 0}, whether the orbit of (M, s) always remains in H.

(c) The Ultimate Positivity Problem over Q is to decide, given a rational LRS
(un)n∈N, whether un ≥ 0 for all sufficiently large n. In terms of LDS, it is equivalent
to deciding whether the orbit of given (M, s) is eventually trapped in a rational
halfspace H = {x | c⊤x ≥ 0}.

We will discuss the decidability status of these problems in Sections 2.3 and 2.5. We
mention the work [78] by Vahanwala, which shows that the Skolem and Positivity
problems are in fact Turing-equivalent to, respectively, hyperplane and halfspace
reachability problems for linear dynamical system that are ergodic Markov chains.

2.2 Exponential polynomial representation of lin-
ear recurrence sequences

The Fibonacci sequence can be written in the form un = 1
2φ

n + 1
2Φn, where φ,Φ ∈ Q

are the roots of the characteristic polynomial p(x) = x2 − x− 1 associated with the
recurrence relation un+2 = un+1 + un. More generally, every non-trivial LRS (un)n∈N

over Q can be written in the form

un =
A∑

j=1
pj(n)λn

j (2.1)

where A > 0, λ1, . . . , λA ∈ Q are non-zero and pairwise distinct, and each pj is
a non-zero polynomial with algebraic coefficients. Moreover, if (un)n∈N satisfies a
recurrence relation a = (a0, . . . , ad−1) ∈ Qd, then ∑A

j=1(deg(pj) + 1) ≤ d. To prove
these statements, let C be the companion matrix of the recurrence relation a and
s = (u0, . . . , ud−1). Recall that un = e1C

ns. As discussed above, by non-triviality of
(un)n∈N we can assume that C is invertible. It remains to express C = P−1JP , where
J is in Jordan form, and invoke Lemma 1.7.2. In the end, λ1, . . . , λA form a subset of
the eigenvalues of J . Moreover, if J is diagonalisable then pj ∈ Q for all j.

The right-hand side of Equation (2.1), with the restrictions that λ1, . . . , λA are non-
zero and pairwise distinct, and each pj is not identically zero, is called an exponential
polynomial. The exponential polynomial representation of an LRS is unique. This is a
folklore result for which we provide a proof below in Theorem 2.2.2. The first step is
to show that an exponential polynomial with A > 0 cannot be identically zero.
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Lemma 2.2.1. Let un = ∑A
j=1 pj(n)λn

j , where the right-hand side is an exponential
polynomial with A > 0. The sequence (un)n∈N is not identically zero. Specifically,
there exists 0 ≤ n < d, where d = ∑A

j=1(deg(pj) + 1), such that un ̸= 0.

Proof. Let v(0)
n = un and m = ∑A

j=1 deg(pj) = d − A. We will inductively construct
sequences (v(0)

n )n∈N, . . . , (v(m)
n )n∈N such that for all 0 ≤ k ≤ m the following hold.

(a) v(k)
n is of the form ∑A

j=1 q
(k)
j (n)λn

j , where each q(k)
j is a non-zero polynomial with

algebraic coefficients;

(b) ∑A
j=1 deg(q(k)

j ) = d− k;

(c) For all n ∈ N, if v(k)
n ̸= 0 then at least one of v(k)

n , v
(k)
n+1 is non-zero.

Suppose we have already constructed (v(k)
n )n∈N for some 0 ≤ k < m. By (b),∑A

j=1 deg(q(k)
j ) = d − k > d − m = A and hence there exists 1 ≤ b ≤ A such

that deg(q(k)
b ) ≥ 1. Consider the sequence

v(k+1)
n = v

(k)
n+1 − λbv

(k)
n .

Recall that for any polynomial q ∈ C[x] and c ∈ C , the degree of h(x) := q(x+1)−cq(x)
is equal to deg(q) − 1 if c = 1 and deg(q) otherwise.3 Hence

v(k+1)
n =

A∑
j=1

λj

(
q

(k)
j (n+ 1) − λb

λj

q
(k)
j (n)

)
︸ ︷︷ ︸

q
(k+1)
j (n)

λn
j

where deg(q(k+1)
b ) = deg(q(k)

b ) − 1 and deg(q(k+1)
j ) = deg(q(k)

j ) for j ̸= b. In particular,
q

(k+1)
j is not the zero polynomial for all j. Since v(k+1)

n = v
(k)
n+1 − λbv

(k)
n , if v(k+1)

n is
non-zero, then either v(k)

n or v(k)
n+1 is non-zero.

At the end of the inductive construction we will obtain (v(m)
n )n∈N of the form

v(m)
n =

A∑
j=1

cjλ
n
j

where each cj is a non-zero algebraic number, with the property that if v(m)
n is non-zero,

then at least one of un, . . . , un+m is non-zero. It remains to find a non-zero term
of v(m)

n . Consider the following system of equations
A∑

j=1
xiλ

n
j = 0 for 0 ≤ n < A

3By convention, the degree of the zero polynomial is −1.
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in unknowns x1, . . . , xA. We can write it in the form Mx = 0 where x = (x1, . . . , xA)
and M is a Vandermonde matrix with det(M) = ∏

j1 ̸=j2(λj1 − λj2). Since λ1, . . . , λA

are distinct by assumption, M is invertible and Mx = 0 if and only if x = 0. Since
c ̸= 0, Mc ≠ 0. That is, c is not a solution to the system. Hence there exists
0 ≤ k < A such that v(m)

k = ∑A
j=1 cjλ

k
j is non-zero. By construction of (v(m)

n )n∈N, there
exists

n ≤ k +m < A+m = d

such that un ̸= 0.

Uniqueness of the exponential polynomial representation of a non-trivial linear
recurrence sequence can now be proven.

Theorem 2.2.2. Let f(n) = ∑
i∈I pi(n)λn

i and g(n) = ∑
j∈J qj(n)γn

j be two exponential
polynomials satisfying f(n) = g(n) for all n ∈ N. Then |I| = |J | and for each i ∈ I,
there exists j ∈ J satisfying pi = qj and λi = γj.

Proof. By Lemma 2.2.1, if I is empty, then f(n) is identically zero, and hence J must
also be empty. Suppose therefore |I|, |J | > 0. Define

h(n) := f(n) − g(n) =
∑
i∈I

pi(n)λn
i −

∑
j∈J

qj(n)γn
j .

Since h(n) = 0 for all n, by Lemma 2.2.1 the right-hand side cannot be an exponential
polynomial. Since pi, qj is non-zero for all i, j, and {λi | i ∈ I} as well as {γj | j ∈ J}
are non-zero and pairwise distinct, the only possibility is that there exist k ∈ I and
m ∈ J such that λk = γm. Let I1 = I \ {k}, J1 = J \ {m}, f̃(n) = ∑

i∈I1 pi(n)γn
i , and

g̃(n) = ∑
j∈J1 qj(n)γn

j . Observe that both f̃(n) and g̃(n) are defined by exponential
polynomials.

Our proof is by induction on |I| + |J |. In the base case, suppose |I| = 1 or |J | = 1.
W.l.o.g. assume the former. Since h(n) = f(n) − g(n) and λk = γm,

h(n) = pk(n)λn
k − (qm(n)γn

m + g̃(n)) = (pk(n) − qm(n))λn
k − g̃(n).

If pk(n) − qm(n) is not the zero polynomial, then (pk(n) − qm(n))λn
k − g̃(n) is an

exponential polynomial that contradicts Lemma 2.2.1. Hence pk(n) = qm(n) for all n.
Since h(n) vanishes by the assumption that f(n) = g(n) for all n, it must be the case
that g̃(n) is also identically zero. From Lemma 2.2.1 it follows that J1 must be empty.
Hence f(n) and g(n) are in fact exactly the same.

In the inductive step, suppose |I|, |J | > 1. If pk(n) − qm(n) is identically zero, then
apply the inductive hypothesis to exponential polynomials f ′(n) := f̃(n) and g̃(n),
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observing that f ′(n) = g̃(n) for all n ∈ N. Otherwise, apply the inductive hypothesis
to the exponential polynomials f ′(n) := (pk(n)−qm(n))λn

k + f̃(n) and g̃(n) that satisfy
f ′(n) = g̃(n) for all n. Observe that the total number summands across f ′(n) and g̃(n)
is either 1 or 2 less than the total number of summands across f(n) and g(n).

We can use the uniqueness of the exponential polynomial representation to charac-
terise the exponential polynomial representations of LRS over R.

Lemma 2.2.3. A sequence un = ∑A
j=1 pj(n)λn

j , where the right-hand side is an
exponential polynomial, satisfies un ∈ R for all n ∈ N if and only if for every
1 ≤ i ≤ A there exists k such that λk = λi and pk(n) = pi(n) for all n ∈ N.

Proof. The ⇒ direction is immediate. To prove the ⇐ direction, suppose un is
real-valued and write γj = λj for all j. Since un = un,

A∑
j=1

pj(n)λn
j =

A∑
j=1

pj(n) γn
j .

By uniqueness, the two exponential polynomials must be the same.

When working with linear dynamical systems and semialgebraic targets, we will
frequently encounter sequences of the form un = p(Mns), where p is a polynomial
with rational coefficients. Recall that u(i)

n = eiM
ns is an LRS for all 1 ≤ i ≤ d. Since

rational LRS are closed under addition and multiplication, un = p(u(1)
n , . . . , u(d)

n ) is
a rational LRS. In the remainder of this section we study exponential polynomial
representations of such sequences. Let M ∈ Qd×d, s ∈ Qd, p ∈ Q[x1, . . . , xd] and
un = p(Mns). Write

I = ∥M∥ + ∥s∥ + ∥p∥.

Lemma 2.2.4. In time IPoly(d) we can compute

(i) the non-zero eigenvalues λ1, . . . , λm of M ,

(ii) integers A ≥ 0 and dj ≥ 0 for 1 ≤ j ≤ A,

(iii) non-zero and pairwise distinct Λ1, . . . ,ΛA ∈ Q,

(iv) polynomials h1, . . . , hA ∈ Q[x1, . . . , xm, y] such that hj(λ1, . . . , λm, n) is not zero
for all n, and

(v) algebraic numbers αj,k for 1 ≤ j ≤ A, 0 ≤ k ≤ dj with αj,dj
̸= 0 for all j
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such that

un =
A∑

j=1
h(λ1, . . . , λm, n)Λn

j =
A∑

j=1

dj∑
k=0

αj,kn
kΛn

j

for all n ≥ d.

The reason that the formula for un is guaranteed to hold for n ≥ d only is that M
can have zero as a repeated eigenvalue. For n ≥ d, however, all zero eigenvalues of Mn

have multiplicity one. If (un)n∈N is trivial, then our algorithm will produce A = 0.

Proof. First, in polynomial time compute J, P, P−1 such that J is in Jordan form and
M = P−1JP . We can then choose λ1, . . . , λm as the non-zero diagonal entries of J . By
Theorem 1.7.3, for n ≥ d the entries of Mn are of the form t(λ1, . . . , λm, n, λ

n
1 , . . . , λ

n
m),

where t is a (non-flat) first-order term of size Poly(∥M∥). Hence

un = T (λ1, . . . , λm, n, λ
n
1 , . . . , λ

n
m)

for n ≥ d where T (z1, . . . , z2m+1) is a (non-flat) term of size Poly(I). Applying
Lemma 1.3.4, in time IPoly(d) we can construct a polynomial with rational coefficients

q(z1, . . . , z2m+1) =
B∑

i=1
ciz

σ(i,1)
1 · · · zσ(i,2m+1)

2m+1

equivalent to T , where σ(i, k) ∈ N for all i, k.
Let K = Q(λ1, . . . , λm) and Λi = λ

σ(i,m+1)
1 · · ·λσ(i,2m+1)

d for 1 ≤ i ≤ B. By the
Tower Law, D = [K : Q] < IPoly(d), and hence by Corollary 1.5.8, each Λi can be
computed in time IPoly(d). So far we have

un =
B∑

i=1
ciλ

σ(i,1)
1 · · ·λσ(i,m)

m nσ(i,m+1)Λn
i

for n ≥ d. Collecting summands together, rewrite the right-hand side in the form∑
i∈I

∑
0≤k≤ξ(i)

qi,k(λ1, . . . , λm)nkΛn
i

where I ⊆ {1, . . . , B}, each qi,k is a polynomial with rational coefficients, {Λi | i ∈ I}
are non-zero and pairwise distinct, and ξ(i) ∈ N for all i. For each i, k, we can compute
the algebraic number qi,k(λ1, . . . , λm) (and check whether it is zero) in time IPoly(d)

using Corollary 1.5.8. Hence we can express

un =
∑
i∈J

di∑
k=0

αi,kn
kΛn

i

=
∑
i∈J

hi(λ1, . . . , λm, n)Λn
i
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where J ⊆ I, {Λi | i ∈ J} are non-zero and pairwise distinct, and for all i, di ≥ 0,
αi,di

̸= 0, and hi(λ1, . . . , λm, n) is not the zero polynomial in n. It remains to take
A = |J | and rename the indices i ∈ J to j ∈ {1, . . . , A}.

If M is diagonalisable, then we can give a specialised version of Lemma 2.2.4.

Lemma 2.2.5. If M is diagonalisable, then in time IPoly(d) we can compute the non-
zero eigenvalues λ1, . . . , λm of M , an integer A ≥ 0, non-zero and pairwise distinct
Λ1, . . . ,ΛA ∈ Q, polynomials h1, . . . , hA ∈ Q[x1, . . . , xm] and non-zero c1, . . . , cA ∈ Q
such that

(a) cj = hj(λ1, . . . , λm) for all j, and

(b) un = ∑A
j=1 cjΛn

j for all n.

Proof. Computing the Jordan form of M and the non-zero eigenvalues λ1, . . . , λm,
and invoking Theorem 1.7.3, we have that for all n ∈ N,

un = T (λ1, . . . , λm, λ
n
1 , . . . , λ

n
m)

where T (z1, . . . , z2m) is a (non-flat) term computed in polynomial time. Proceeding
similarly to the proof of Lemma 2.2.4, in time IPoly(d) we can write

un =
∑
i∈I

hi(λ1, . . . , λm)Λn
i

where each hi ∈ Q[x1, . . . , xm] and {Λi | i ∈ I} are non-zero and pairwise distinct.
Let ci = hi(λ1, . . . , λm), which can be computed and compared against zero using
Corollary 1.5.8. After discarding zero summands and renaming variables, we obtain
un = ∑A

j=1 cjΛn
j as required.

2.3 Zeros of linear recurrence sequences

We now discuss zero terms of linear recurrence sequences and the related Skolem
Problem in detail. The most fundamental result about the distribution of zeros in
a linear recurrence sequence is the Skolem-Mahler-Lech theorem, proven by Skolem
[76] and and generalised by Mahler [56] and Lech [52]. The version we need (due to
Mahler, see [40] for an elementary proof) states that for any LRS (un)n∈N over Q, the
set Z = {n : un = 0} is of the form

F ∪ (a1 + b1N) ∪ . . . ∪ (am + bmN) (2.2)
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where F ⊂ N is a finite set and ai, bi ∈ N with 0 ≤ ai < bi for all 1 ≤ i ≤ m. That
is, Z is a union of a finite set and finitely many arithmetic progressions. Berstel and
Mignotte have shown in [13] that if (un)n∈N is non-degenerate, then Z is in fact finite.
All known proofs of the Skolem-Mahler-Lech theorem rely on p-adic analysis and are
not fully effective: From the proofs we can extract an algorithm to compute m and
ai, bi for 1 ≤ i ≤ m, but no algorithm is known for computing all elements of F or
even determining if it is empty. Hence in contrast to checking whether a given LRS
has a zero (which is exactly the Skolem Problem), whether it has infinitely many zeros
can be easily determined by computing m and comparing it to zero.

The Skolem Problem for LRS over R ⊆ Q is equivalent to the problem of deter-
mining all zeros of a given LRS over R. To see this, suppose we have access to a
Skolem oracle that, given such an LRS, decides whether it has a zero. Let (un)n∈N

be an LRS over R and suppose we have already computed ai, bi for 1 ≤ i ≤ m as
in 2.2. To determine all zeros of (un)n∈N, it remains to compute all elements of F .
By taking sub-progressions of a1 + b1N, . . . , am + bmN if necessary, we can assume
that b1 = . . . = bm. Take b := b1 subsequences of (un)n∈N to obtain the sequences
u(r)

n = ur+bn for 0 ≤ r < b. It suffices to determine all zeros of each (u(r)
n )n∈N. Recall

that 0 ≤ ai < bi for all 1 ≤ i ≤ m.

(a) If r = ai for some i, then u(r)
n = 0 for all n.

(b) If r ̸= ai for all i, then u(r)
n has only finitely many zeros. To determine all zeros

of (u(r)
n )n∈N, first invoke the Skolem oracle to establish if (u(r)

n )n∈N has a zero
at all. If no, then terminate. If yes, then by checking sufficiently many initial
terms of (u(r)

n )n∈N find the smallest k such that u(r)
k = 0. Construct the sequence

(un+k+1)n∈N and apply the steps above until termination.

Therefore, proving decidability of the Skolem Problem amounts to giving a
fully effective version of the Skolem-Mahler-Lech theorem.

We can apply the Skolem-Mahler-Lech theorem to the Reachability Problem where
the target T ⊆ Rd is algebraic, i.e. defined by a Boolean combination of polynomial
equalities with rational coefficients. Recall from Section 1.4 that by the squaring trick,
such T can be defined by a single equation p(x1, . . . , xd) = 0 where p ∈ Q[x1, . . . , xd].
For such T , Mns ∈ T if and only p(Mns) = 0. Since un = p(Mns) is an LRS, the
reachability set {n : Mns ∈ T} is of the form 2.2. Therefore, the characteristic word
α ∈

(
2T
)ω

of (M, s) with respect to a family of algebraic sets T is of the form uvω

(i.e. ultimately periodic), with the caveat that we do not known how to effectively
compute u due to the ineffectiveness of the Skolem-Mahler-Lech theorem. It is not
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difficult to see that with an oracle for the Skolem Problem, we can compute u effectively
and decide the full Model-Checking Problem for algebraic targets; see [54] for a proof.

We now give an overview of what is known about the Skolem Problem. Somewhat
surprisingly, the Skolem Problem for LRS over Q can be reduced to the Skolem
Problem for LRS over Q. Given an LRS un = ∑A

j=1 pj(n)λn
j over Q, let K be a number

field of finite degree enclosing λ1, . . . , λA such that K/Q is a Galois extension and
pj ∈ K[x] for all j. Recall that for any α ∈ K, the field norm is defined as

NK(α) =
∏

σ∈Gal(K/Q)
σ(α)

where Gal(K/Q) denotes the Galois group of the extension K/Q. The field norm has
the properties that, for all α ∈ K, NK(α) ∈ Q and NK(α) = 0 ⇔ α = 0. We consider
the sequence

vn = NK(un) =
∏

σ∈Gal(K/Q)

A∑
j=1

qσ,j(n)σ(λj)n

where qσ,j ∈ K[x] is the polynomial satisfying qσ,j(n) = σ(qj(n)) for all n. By closure
of linear recurrence sequences over Q under multiplication, (vn)n∈N is an LRS over Q.
Since vn ∈ Q for all n, (vn)n∈N is also an LRS over Q.4 Moreover, vn = 0 if and only
if NK(un) = 0, which is equivalent to un = 0. Hence (un)n∈N has a zero if and only if
(vn)n∈N has a zero.

Known decidable subclasses of the Skolem Problem are due to Mignotte, Shorey,
Tijdeman [61] and, independently, Vereschagin [79]. They showed the Skolem Problem
is decidable

(A) for sequences over Q with at most 3 dominant roots, and

(B) for sequences over R ∩ Q of order at most 4.

By (A), the Skolem Problem is decidable for LRS over Q of order at most 3. For LRS
over Q (and hence over R ∩ Q as well), the Skolem Problem is open for sequences
of order 5 or more. However, there have been recent breakthroughs in the form of
conditional decidability results, which we discuss next.

As shown in [65], the only open case of the Skolem Problem over Q at order 5
comprises diagonalisable sequences (un)n∈N with 4 non-real dominant roots. That
is, un = aλn + a λn + bγn + b γn + cρn where c, ρ ∈ R and |λ| = |γ| > |ρ|. Recently,
Bilu et al. [16] proved decidability of the Skolem Problem for diagonalisable LRS
assuming the Exponential Local-Global Principle and the p-adic version of Schanuel’s

4This is a consequence of the Fatou Lemma; see the introduction to this chapter.
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conjecture, two well-known conjectures in number theory. Their algorithm relies on the
two conjectures only for termination: it can be proven unconditionally that whenever
the algorithm terminates, it either produces n such that un = 0, or a verifiable
certificate attesting that un ̸= 0 for all n ∈ N. In the latter case, the certificate
consists of

(i) a partition of the input LRS (un)n∈N into non-degenerate sequences u(r)
n = unL+r

for 0 ≤ r < L, and

(ii) for each r, integers m, k > 0 such that vn = knu(r)
n is an LRS over Z that is

non-zero modulo m.

The algorithm of Bilu et al. has been implemented [1], and the Skolem Problem for
diagonalisable LRS as well as LRS of order at most 5 is considered by some to be
“solved in practice”.

On the quantitative side, Chonev et al. [26, Theorem C.1] gave the following
bounds on the largest zero of a non-degenerate sequence.

Theorem 2.3.1. Let un+d = ∑d−1
i=0 aiun+i be a non-degenerate LRS over Q with d ≤ 4.

Write I = ∑d−1
i=0 ∥ai∥ + ∥ui∥. If d ≤ 3, or ai, ui ∈ R ∩ Q for 0 ≤ i < d, then there

exists effectively computable N < 2Poly(I) such that un ̸= 0 for all n ≥ N .

This result can be seen as an effective Skolem-Mahler-Lech theorem for a class of
low-order linear recurrence sequences. In Section 2.7 we will give new, effective bounds
on the largest zero of LRS of the form un = p(λn

1 , λ
n
2 ) and un = p(n, λn), where p is a

polynomial. Note that these classes of sequences lie beyond (A) and (B) as neither
their order nor the number of dominant roots is bounded by an absolute constant.

2.4 Bounds on rates of growth

Lower and upper bounds on the growth rate of |un| for a linear recurrence sequence
(un)n∈N form the foundation of many decision procedures of LRS as well as LDS. We
first discuss the (exponential) upper bounds, which are easy to obtain.
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Lemma 2.4.1. Let (un)n∈N be given by

un =
A∑

j=1
pj(n)λn

j

where λj is non-zero and algebraic and pj(x) = ∑deg(pj)
i=0 αj,ix

i ∈ Q[x] for all j. Write
d = max1≤j≤A deg(pj), ρ = max1≤j≤A |λj|, and

I =
A∑

j=1

(
∥λj∥ +

deg(pj)∑
i=0

∥αj,i∥
)
.

In time Poly(I) we compute an integer K such that for all n ≥ 1, |un| < Kρnnd.

Proof. For 1 ≤ j ≤ A, let rj = maxi |αj,i| if αj,i ̸= 0 for some i, and rj = 0 otherwise.
By Lemma 1.5.10, we can compute rj for 1 ≤ j ≤ A in time polynomial in I. We have
|pj(n)λn

j | ≤ (d+ 1)rjn
dρn for all j and n ≥ 1. It remains to compute Kj = (d+ 1)rj

for 1 ≤ j ≤ A and K = K1 + . . . + KA + 1. Applying the triangle inequality,
|un| ≤ ∑A

j=1

∣∣∣pj(n)λn
j

∣∣∣ < Kρnnd.

Establishing lower bounds on the growth of linear recurrence sequences, in com-
parison, is much harder. The following theorem, alongside the Skolem-Mahler-Lech
theorem, is one of the most fundamental results about LRS. It is derived from Evertse’s
lower bound [36] on the sums of S-units; see [45, Theorem 11] for a proof.

Theorem 2.4.2. Let (un)n∈N be a non-degenerate LRS given by un = ∑A
j=1 pj(n)λn

j ,
where A > 0, p1, . . . , pA ∈ Q[x] are not identically zero, and λ1, . . . , λA ∈ Q are
non-zero and pairwise distinct. Further let ρ = max1≤i≤m |λi|. For every 0 < r < ρ

there exists N such that for all n ≥ N , |un| > rn.

The value N above is not known to be effectively computable given the description
of (un)n∈N. One consequence of this is that the Ultimate Positivity Problem is known
to be decidable [67] for diagonalisable sequences, whereas the Positivity Problem is
open for diagonalisable sequences of order 10 or more [67]. In the following section,
we will discuss both problems in more detail.

We next give two straightforward results about growth rates that we will use
extensively. First a bound on how long it takes for an exponential to overtake a
polynomial.

Lemma 2.4.3. Let f(t) = C1/t
k and g(t) = C2ρ

t where ρ ∈ (0, 1) ∩ Q, k ∈ N, and
C1, C2 are positive rationals. There exists a positive integer

N < Poly(k, logC1, logC2, 1/(1 − ρ))
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computable in time Poly(∥k∥, ∥C1∥, ∥C2∥, ∥ρ∥) such that f(t) > g(t) holds for all
t ∈ [N,∞).

Proof. For all t > 0, log t <
√
t for t > 0 and hence

C1/t
k > C2ρ

t ⇔ log C1

C2
> k log t+ t log ρ

⇐ log C1

C2
> k

√
t+ t log ρ.

We view the latter as a quadratic inequality in
√
t which is satisfied for sufficiently

large t as log ρ < 0. Let D = k2 +4 log ρ log C1
C2

. If D ≤ 0, then the quadratic inequality
is satisfied for all t > 0 and we can choose N = 0. Otherwise, by the quadratic formula
we can choose N to be any integer at least

−k −
√
D

2 log ρ = k +
√
D

2 log 1/ρ <
k + 1 +D

2 log 1/ρ = 1 + k + k2

2 log 1/ρ − 2 log C2

C1
.

Since log 1/ρ ≥ 1 − ρ for all ρ > 0, it suffices to choose N to be any integer at least

1 + k + k2

2(1 − ρ) − 2 logC2 + 2 logC1.

It remains to show how to compute N within the required time bound. By Corol-
lary 1.5.8, we can compute the real algebraic number α := 1+k+k2

2(1−ρ) > 0 in time
Poly(∥ρ∥, ∥k∥). Thereafter, an upper bound on α can be computed in time Poly(∥α∥)
using Theorem 1.2.4. Finally, upper and lower bounds on logCi for i ∈ {1, 2} can be
computed in polynomial time in ∥Ci∥ as follows. First compute bounds on log2 Ci

using the binary representation of Ci. Then estimate logCi as log 2 · log2 Ci.

For linear recurrence sequences (un)n∈N with only real eigenvalues, the asymptotic
behaviour as well as the sign pattern are completely well-understood. Intuitively, for
such sequences, for sufficiently large n, the nth powers of the dominant eigenvalues
(of which there is at most two) completely determine the sign of un. Hence the sign
pattern of (un)n∈N is ultimately periodic with period either one or two. Possible sign
patterns of such LRS are illustrated by the LRS un = −3n + 2n, vn = (−3)n + 2n, and
wn = 3n + (−3)n − 2n. The next result is about sign patterns of sequences with only
positive eigenvalues, stated in continuous terms with a view towards later chapters.

Lemma 2.4.4. Let r1, . . . , rA ∈ R ∩ Q be positive and pairwise distinct, and for
1 ≤ j ≤ A, let pj(x) = ∑deg(pj)

i=0 αj,ix
i ∈ (R ∩ Q)[x] be non-zero. Write

I =
A∑

j=1

(
∥rj∥ +

deg(pj)∑
i=0

∥αj,i∥
)
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and consider
f(t) :=

A∑
j=1

pj(t)rt
j.

In time Poly(I), we can compute an integer N < 2Poly(I) and ∆ ∈ {>,=, <} such
that f(t) ∆ 0 for all t ∈ [N,∞).

Proof. If A = 0, then the sequence is identically zero. Suppose therefore A > 0. By
Lemma 1.5.10, we can compute |r1|, . . . , |rA| in polynomial time. Since r1, . . . , rA are
positive and pairwise distinct, w.l.o.g. we can assume that r1 > . . . > rA. Consider

g(t) :=
A∑

j=2
pj(t)rt

j.

By Lemma 1.2.5, in time Poly(I) we can compute integers K1, N1 < 2Poly(I) such
that

|p1(t)| > 1/K1

for all t ∈ [N1,∞). Next, let d = max2≤j≤A deg(pj). Repeating the arguments of
Lemma 2.4.1, in time Poly(I) we can compute K2 ∈ N such that |g(t)| < K2t

drt
2 for

all t ≥ 1. By Lemma 1.5.7, we can compute r2/r1 ∈ R∩Q in time Poly(I). Applying
Lemma 2.4.3, in time Poly(I) we can compute N < 2Poly(I) such that for t ≥ N ,
1 > K1K2t

d(r2/r1)t and hence |p1(t)rt
1| > |g(t)|. Therefore, for t ≥ N it holds that

sign(f(t)) = sign(p1(t)rt
1).

2.5 Positivity and related problems

Having discussed the Skolem Problem and zero terms of linear recurrence sequences,
we move on to decision problems about the full sign pattern σ ∈ {+, 0,−}ω of LRS.
Recall that the Positivity Problem for LRS over Q is to decide, given such (un)n∈N,
whether un ≥ 0 for all n ∈ N. It is trivially equivalent to deciding whether un < 0
for some n, which is an instance of the Reachability Problem with halfspace targets
as discussed in Section 2.1. Similarly, the Ultimate Positivity Problem, which is to
decide if un ≥ 0 for all sufficiently large values of n, is equivalent to deciding whether
un < 0 for infinitely many n. Note that since un < 0 ⇔ −un > 0, we can choose either
of the strict inequality symbols.

We can reduce the Skolem Problem for sequences over Q to the Positivity Problem
for LRS over Q. Given an LRS (un)n∈N over Q, let (vn)n∈N be the LRS over Q
constructed in Section 2.3 such that for all n, un = 0 ⇔ vn = 0. Write vn = c⊤Mns,
and let r ∈ N>0 be such that wn := rnvn ∈ Z for all n. We have un = 0 ⇔ wn = 0.
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Hence (un)n∈N does not have a zero term if and only if the integer LRS zn = w2
n − 1

satisfies zn ≥ 0 for all n ∈ N.
More surprisingly, Positivity Problem for LRS over R ∩ Q can be reduced to

the Positivity Problem for rational sequences; see [45] for a proof. The reduction
additionally preserves diagonalisability.

The Positivity Problem and the Ultimate Positivity Problem are known to be
decidable for linear recurrence sequences over Q of order at most 5, whereas at order 6,
both problems become hard with respect to certain open problems in Diophantine
approximation [66]. We will discuss the issues surrounding Diophantine hardness in
Chapter 8. For diagonalisable sequences, the Ultimate Positivity Problem is known to
be decidable [68], whereas the Positivity Problem is known to be decidable only for
sequences of order 9 or less [67]. As described in [67], at order 10 the open cases of the
latter problem comprise the sequences (un)n∈N with the following properties. We say
that α, β are multiplicatively independent if for all k,m ∈ Z, αkβm = 1 ⇒ k,m = 0.

(a) un = aµn +bρn +∑4
i=1 ciλ

n
i +ci λn

i with µ, ρ ∈ R and |ρ| = |λ1| = · · · = |λ4| > |µ|.

(b) There exist multiplicatively independent α, β ∈ C such that for every λi, there
exist k,m ∈ Z such that λi = αkβm.

That is, at order 10 all hard cases of the Positivity Problem for diagonalisable
sequences have 9 dominant roots, exactly one of which (i.e. ρ) is real, and the group
of multiplicative relations of the dominant non-real eigenvalues λ1, λ1, . . . , λ4, λ4 has
rank exactly 2.

We conclude this section by showing how to decide the Ultimate Positivity Problem
for diagonalisable and non-degenerate linear recurrence sequences over R ∩ Q.5 Let
(un)n∈N be such an LRS with the exponential polynomial representation un = ∑A

j=1 cjλ
n
j .

We have to determine whether un ≥ 0 for all sufficiently large n. The algorithm
relies on the lower bound of Theorem 2.4.2. Let ρ = maxj |λj|, D = {j : |λj| = ρ},
dn = ∑

j∈D cjλ
n
j , and rn = ∑

j /∈D cjλ
n
j . Observe that un = dn + rn, and (dn)n∈N itself is

a non-degenerate LRS. Due to the presence of conjugates in D, (dn)n∈N is real-valued.
Recall from Section 2.3 that a non-degenerate LRS has only finitely many zeros. Hence
there exists N1 such that for all n ≥ N1, dn ̸= 0. By Theorem 2.4.2, therefore,
there exists N2 ≥ N1 such that |dn| > |rn| for all n ≥ N2. Hence it suffices to check
whether dn ≥ 0 for sufficiently large n. Consider wn = dn/ρ

n = ∑|D|
i=1 ciγ

n
i , where

each γi is equal to λj/ρ for some j ∈ D. The sign of wn is the same as the sign
5For diagonalisable but degenerate sequences, the Ultimate Positivity Problem can be decided by

taking non-degenerate subsequences and applying our decision procedure to each subsequence.

60



of dn for all n. Using Kronecker’s theorem in Diophantine approximation, we will
show in Section 4.1 that the closure TΓ of {(γn

1 , . . . , γ
n
d ) | n ∈ N} is semialgebraic and

effectively computable. Moreover, ((γn
1 , . . . , γ

n
d ))n∈N visits every open subset of TΓ

infinitely often. Therefore,

wn ≥ 0 for sufficiently large n ⇔ wn ≥ 0 for all n

⇔
d∑

i=1
cizi ≥ 0 for all (z1, . . . , zd) ∈ TΓ.

The last condition can be verified using tools from semialgebraic geometry and first-
order logic (Section 1.3.1).

2.6 Baker’s theorem and its applications

A linear form in logarithms is an expression of the form Λ = b1 Logα1 +. . .+bm Logαm

where bi ∈ Z and αi ∈ Q is non-zero for all 1 ≤ i ≤ m. The celebrated theorem of
Baker places a lower bound on |Λ| in case Λ ̸= 0. Baker’s theorem and its p-adic
analogue play a critical role in the proofs of decidability of the Skolem Problem [61, 79]
and the Positivity Problem [66, 67] for low-order linear recurrence sequences. They
will also be our main tool in Section 2.7. The version of Baker’s theorem given below
is a special case of the main theorem in [82]. Recall from Section 1.5 that H(α) and
h(α) respectively denote the naive height and the absolute logarithmic Weil height of
an algebraic number α.

Theorem 2.6.1. Let Λ = b1 Logα1 + . . .+ bm Logαm be a linear form in logarithms,
D = [Q(α1, . . . , αm) : Q], and suppose A,B ≥ 3 are such that A ≥ H(αi) and B ≥ |bi|
for all 1 ≤ i ≤ m. If Λ ̸= 0, then

log |Λ| > −(16mD)2(m+2)(logA)m logB.

A direct consequence of Baker’s theorem is the following [67, Corollary 8].

Lemma 2.6.2. Let α ∈ T ∩ Q and β ∈ Q. For all n ≥ 2, if αn ̸= β then

|αn − β| > n−Poly(∥α∥+∥β∥).

This result already suffices for proving decidability of the Skolem Problem for real
algebraic LRS of order at most three [26]. We can also place a bound on |αn − β| that
applies to all integers n.

61



Lemma 2.6.3. Let α ∈ T ∩ Q and β ∈ Q. For all n ∈ Z, if αn ̸= β then

|αn − β| > (max{2, |n|})−Poly(∥α∥+∥β∥).

Proof. Recall from Section 1.5.4 that, given α, we can compute a canonical represen-
tation of δ := 1/α satisfying ∥δ∥ < Poly(∥α∥). Hence by Lemma 2.6.2, for n ≥ 2,
|αn − β|, |α−n − β| < n−Poly(∥α∥+∥β∥). On the other hand, applying Lemma 1.5.1,
|α− β|, |1 − β|, |1/α− β| > 2−Poly(∥α∥+∥β∥).

Next, we show how to use Baker’s theorem to place a lower bound on |un| for
un = p(γn), where γ ∈ T ∩ Q and p ∈ Q[x]. The idea is to factorise p(γn) and apply
Lemma 2.6.2 to each linear factor.

Lemma 2.6.4. Let γ ∈ T ∩ Q, λ1, . . . , λm ∈ Q, and

p(x) =
B∑

j=0
hj(λ1, . . . , λm)xj ∈ Q[x]

where hj ∈ Q[x1, . . . , xm] for all j. Suppose γ is not a root of unity and p is not
the zero polynomial. Write I := ∥γ∥ + ∑B

j=0 ∥hj∥ + ∑m
i=1 ∥λi∥. There exist integers

N,C < IPoly(m) computable in time IPoly(m) such that for all n ≥ N , |p(γn)| > n−C.

Proof. Applying Lemma 1.5.9, in time IPoly(m) we can factorise

p(x) = β0(x− β1) · · · (x− βk)

where β0, . . . , βk are algebraic and β0 ̸= 0 by the assumption that p is not identically
zero. Since γ is not a root of unity, by Lemma 1.5.2 there exists an integer N < IPoly(m)

computable in polynomial time from γ, β1, . . . , βk such that for all n ≥ N and 1 ≤ i ≤ k,
γn − βi ̸= 0. By Lemma 2.6.2, for all n ≥ N and 1 ≤ i ≤ k, |γn − βi| > n−IPoly(m) .
Since |β0| > 2−IPoly(m) (e.g. by Lemma 1.5.1), for all n ≥ N

|p(γn)| = |β0|
k∏

i=1
|γn − βi| > n−IPoly(m) = n−C .

It remains to observe that C can be computed in time IPoly(m).

The following is the p-adic analogue of Baker’s theorem due to Yu [83]. Alongside
Theorem 2.6.1, it is crucial to the proof of decidability of the Skolem Problem for
linear recurrence sequences over Q of order 4. See Section 1.5.2 for relevant definitions.
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Theorem 2.6.5. Let α1, . . . , αm be non-zero algebraic numbers, b1, . . . , bm ∈ Z, and
Ξ := αb1

1 · · ·αbm
m − 1. Further let K = Q(α1, . . . , αm), D = [K : Q], p be a prime ideal

of OK lying over a rational prime p ∈ N, B ≥ 3 be an upper bound on b1, . . . , bm, and
h = max{h(α1), . . . , h(αm), log p}. If Ξ ̸= 1, then

vp(Ξ) < 19(20
√
m+ 1D)2(m+1)em−1

p · N(p)
(fp Log p)2 · hm log(e5

pmD) logB.

To see that Theorem 2.6.5 is really analogous to Baker’s theorem, recall that the
latter establishes a lower bound on |Λ| for Λ = b1 Logα1 + . . .+ bm Logαm of the form
e−f(m,D,A,B) when Λ ̸= 0. Consider eΛ = αb1

1 · · ·αbm
m . We have that |eΛ| = |αβ1

1 · · ·αbm
m |

is bounded below by ee−f(m,D,A,B) , which itself is greater than 1. Hence we can view
Theorem 2.6.1 as stating a lower bound on the Euclidean norm |αb1

1 · · ·αbm
m − 1|. On

the other hand, Theorem 2.6.5 can be equivalently stated as a lower bound on the
p-adic norm |αb1

1 · · ·αbm
m − 1|p. We will use the p-adic version of Baker’s theorem in

the next section through the following lemma.

Lemma 2.6.6. Let K be a number field, D = [K : Q], λ, α ∈ K be non-zero, and p be
a prime ideal of OK. Write I = ∥α∥ + ∥λ∥. For n ∈ N, if αλn ̸= 0 then

vp(αλn − 1) < IPoly(D) log n.

Proof. We invoke Theorem 2.6.5 with m = 2, α1 = α, α2 = λ, b1 = 1 and b2 = n.
It remains to recall that h(α) ≤ ∥α∥, h(λ) ≤ ∥λ∥ (Section 1.5.1), and fp, ep ≤ D,
N(p) ≤ ∥λ∥D (Section 1.5.2).

2.7 Effective Skolem-Mahler-Lech theorems

We now show how to compute, for non-degenerate linear recurrence sequences of the
form un = p(λn

1 , λ
n
2 ) and un = p(n, λn), effective bounds on the finitely many zero

terms. Such sequences arise when we analyse semialgebraic targets of dimension one
in Chapter 6. As they can have arbitrarily high order and number of dominant roots,
they lie outside the scope of decidability results of [61, 79] discussed in Section 2.3.
Our main tools are Baker’s theorem, its p-adic analogue, and the Weil height.

For p ∈ Q[z1, z2] of the form ∑
(i,j)∈X ci,jz

i
1z

j
2 given by the set X and the canonical

representations of the algebraic coefficients {ci,j | (i, j) ∈ X}, define

∥p∥ = deg(p) +
∑

(i,j)∈X

∥ci,j∥.
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Theorem 2.7.1. Let λ1, λ2 ∈ Q be non-zero and multiplicatively independent, and
p ∈ Q[z1, z2] be given by

p(z1, z2) =
∑

(i,j)∈X

ci,jz
i
1z

j
2

where |X| > 0 and ci,j ̸= 0 for all (i, j) ∈ X. Consider the sequence un = p(λn
1 , λ

n
2 ).

Writing I = ∥p∥ + ∥λ1∥ + ∥λ2∥, there exists effectively computable

N < exp4(Poly(I))

such that un ̸= 0 for all n ≥ N .

Proof. We write d = deg(p) > 0. Recall that multiplicative independence means that
for any (m1,m2) ∈ Z2, if λm1

1 λm2
2 = 1 then m1 = m2 = 0. As a consequence, both λ1

and λ2 are not a root of unity, and λi1
1 λ

i1
2 ≠ λi2

1 λ
j2
2 for any distinct (i1, j1), (i2, j2) ∈ X.

Let K be the smallest number field containing, λ1, λ2, |λ1|, |λ2| as well as ci,j for all
(i, j) ∈ X, such that K/Q is a Galois extension. By the Tower Law, D := [K : Q] is
bounded above by IPoly(d).

We can replace λi with 1/λi in polynomial time if needed. For example, to replace λ1

with 1/λ1, let q(z1, z2) = ∑
(i,j)∈X ci,jz

d−i
1 zj

2. Then q((1/λ1)n, λn
2 ) = λ−nd

1 p(λn
1 , λ

n
2 ) and

hence p(λn
1 , λ

n
2 ) = 0 ⇔ q((1/λ1)n, λn

2 ) = 0. Observe that 1/λ1 and λ2 are also
multiplicatively independent. We now move on to the proof.

Case 1. Suppose |λi| ̸= 1. W.l.o.g. we can take i = 1. By replacing λ1 with
1/λ1 if necessary, we can assume |λ1| > 1. Define L = max{|λi

1λ
j
2| : (i, j) ∈ X},

D = {(i, j) : |λi
1λ

j
2| = L}, and R = {(i, j) : |λi

1λ
j
2| < L}. Write

p(λn
1 , λ

n
2 ) =

∑
(i,j)∈D

ci,j(λi
1λ

j
2)n

︸ ︷︷ ︸
vn

+
∑

(i,j)∈R
ci,j(λi

1λ
j
2)n

︸ ︷︷ ︸
rn

where (vn)n∈N is the dominant part of (un)n∈N. By Lemma 2.2.1, and the assumption
of multiplicative independence, vn is not identically zero.

We will first show that vn can be written in the form Lnαn∑d
k=0 bkγ

kn, where
α, γ ∈ T ∩ Q and bk ∈ Q. If vn = ci,j(λi

1λ
j
2)n for some i, j, then we can simply choose

α = λi
1λ

j
2/L, γ = 1, b0 = ci,j, and b1, . . . , bd = 0. Therefore, suppose vn has at least

two summands. Consider the free abelian group

G = {(m1,m2) ∈ Z2 : |λ1|m1|λ2|m2 = 1}.

By the assumption that vn has at least two summands, |λ1| and λ2| are multiplicatively
dependent and hence G contains an element other than (0, 0). On the other hand,
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since |λ1| ≠ 1, G ̸= Z2. It follows that G has rank exactly 1. That is, there exists
(m1,m2) ∈ G satisfying gcd(m1,m2) = 1 such that every element of G is an integer
multiple of (m1,m2). Let γ = λm1

1 λm2
2 and Λi,j = λi

1λ
j
2 for (i, j) ∈ D. As every

element of G is an integer multiple of (m1,m2), for all (i1, j1), (i2, j2) ∈ D it holds
that Λi2,j2/Λi1,j1 = λi2−i1

1 λj2−j1
2 is of the form (λm1

1 λm2
2 )k = γk for some k. Since

0 ≤ i1, i2, j1, j2 ≤ d, we conclude that |k|, |m1|, |m2| ≤ d. Hence there exists (r, s) ∈ D
such that for any (i, j) ∈ D, Λi,j = Λr,sγ

ki,j for some 0 ≤ ki,j ≤ d. Writing Λ := Λr,s

and α = Λ/L, we obtain that

Λn
i,j = Λn

(
γki,j

)n
= Lnαn

(
γki,j

)n

for all (i, j) ∈ D. Therefore,

vn =
∑

(i,j)∈D
ci,jΛn

i,j = Lnαn
d∑

k=0
bkγ

kn

where each bk is either zero or equal to ci,j for some i, j.
We now bound the description lengths of the algebraic numbers computed above.

Since ci,j is part of the input for all i, j, ∥bk∥ < I for all k. Next, recall that α = Λi,j/L

and L = |λi
1λ

j
2| for some (i, j) ∈ D. Applying Corollary 1.5.8 and Lemma 1.5.10,

∥L∥, ∥α∥ < Poly(I, D). To bound ∥γ∥, suppose vn has at least two summands,
as otherwise γ = 1. Recall that γ = λm1

1 λm2
2 . As discussed above, |m1|, |m2| ≤ d.

Therefore, by Corollary 1.5.8, ∥γ∥ < Poly(I, D).
Applying Lemma 2.6.4 with m = d to the non-zero polynomial q(x) = ∑d

k=0 bkx
k

and γ, which satisfy vn = Lnαnq(γn) for all n, we conclude that there exist effectively
computable N1, K1 < 2Poly(I,D) such that for n ≥ N1, |vn| > Ln/nK1 . We will
compare this to the growth rate of |rn|. Let L1 = max(i,j)∈R |λi

1λ
j
2|, which can be

computed in time Poly(I, D) by Corollary 1.5.8 and lemma 1.5.10. By Lemma 2.4.1
there exists K2 < 2Poly(I,D) such that for n ≥ 1, |rn| < K2L

n
1 . By Lemma 1.5.1,

L − L1 > 2−Poly(I,D) and hence L/(L − L1) < 2Poly(I,D). Applying Lemma 2.4.3 to
f(n) := 1/nK1 and g(n) := K2(L1/L)n yields effectively computable

N < 2Poly(I,D) < exp2(Poly(I))

such that for all n ≥ N , |vn| > |rn| and therefore un ̸= 0.
Case 2. Suppose |λ1| = |λ2| = 1 and λi is an algebraic integer; w.l.o.g. we can take

i = 1. By a theorem of Kronecker (Section 1.5.2), an algebraic integer of modulus 1
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that is not a root of unity has a Galois conjugate of modulus greater than 1. Hence
there exists an automorphism σ : K → K such that |σ(λ1)| > 1. Consider

q(z1, z2) =
∑

(i,j)∈X

σ(ci,j)σ(λ1)iσ(λ2)j.

Since σ maps each element of K to one of its Galois conjugates, ∥σ(ci,j)∥ for all
i, j, as well as ∥σ(λ1)∥ and ∥σ(λ2)∥ are bounded by a polynomial in I.6 Moreover,
p(λn

1 , λ
n
2 ) = 0 if and only if q(σ(λ1)n, σ(λ2)n) = 0. Hence Case 1 applies.

Case 3. Finally, suppose λi is not an algebraic integer for some i. W.l.o.g. take
i = 1. Recall that we can replace λ1, λ2, respectively, with 1/λ1, 1/λ2 if necessary.
For m := (m1,m2) ∈ {−1, 1}2, let pm ∈ Q[z1, z2] be a non-zero polynomial such that
∥pm∥ < Poly(I) and for all n ∈ N,

p(λn
1 , λ

n
2 ) = 0 ⇔ pm((λm1

1 )n, (λm2
2 )n) = 0.

If some pm belongs to Q[z1], then un = pm(λn
1 , λ

n
2 ) is of the form ∑

i∈Y ci(λm1
1 )in.

Applying Lemma 2.6.4, there exists N < 2Poly(I) such that un ̸= 0 for all n ≥ N .
Suppose therefore no pm for m ∈ {−1, 1}2 belongs to Q[z1]. By dividing each pm

through a power of z1 if necessary, we can assume that

pm(z1, z2) = z1qm(z1, z2) + hm(z2)

for qm ∈ Q[z1, z2] and non-zero hm ∈ Q[z1]. The latter is of the form ∑dm
i=0 aiz

i
1,

where each ai is equal to one of the coefficients of p given as part of the input and
dm = deg(hm) > 0.

Applying Lemma 1.5.9, in time IPoly(|X|) we can factorise each hm and compute
Am, β

(m)
1 , . . . , β

(m)
dm

∈ Q such that hm(z) = Am
∏dm

i=1(z − β
(m)
i ). Let L be the smallest

extension of K containing β(m)
i for all m and 1 ≤ i ≤ dm. By the Tower Law and the

fact that dm ≤ d for all m,

D1 := [L : Q] = [L : K] · [K : Q] ≤ D ·
∏
i,m

deg(β(m)
i ) < 22Poly(I)

.

As discussed in Section 1.5.2, there exists a prime ideal p of the ring OL of algebraic
integers of L such that vp(λ1) ̸= 0. Recalling that vp(λ−1

i ) = −vp(λi), choose m =
(m1,m2) ∈ {−1, 1}2 such that vp(λm1

1 ) > 0 and vp(λm2
2 ) ≥ 0. Define γi := λmi

i for
6We can compute canonical representations of all Galois conjugates of a given algebraic number

in polynomial time using Lemma 1.5.6.
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i ∈ {1, 2}, βi := β
(m)
i for all 1 ≤ i ≤ dm, P := pm, q := qm, h := hm, and A := Am. In

the end, we obtain that un = 0 if and only if

P (γn
1 , γ

n
2 ) = γn

1 q(γn
1 , γ

n
2 ) + h(γn

2 ) = 0

where vp(γ1) > 0 and vp(γ2) ≥ 0. The polynomials P (z1, z2) and q(z1, z2) are of the
form ∑

(i,j)∈Y bi,jz
i
1z

j
2 and ∑

(i,j)∈Z ai,jz
i
1z

j
2, respectively, where each bi,j and ai,j is a

coefficient of the original polynomial p. Hence both ∥P∥ and ∥q∥ are bounded by
Poly(I).

Since P (γn
1 , γ

n
2 ) = 0 is equivalent to γn

1 q(γn
1 , γ

n
2 ) = −h(γn

2 ), our approach will be
to compare vp(γn

1 q(γn
1 , γ

n
2 )) to vp(−h(γn

2 )). Recall from Section 1.5.2 that vp(·) is
integer-valued, and for any α ∈ L and a prime ideal p of OL,

|vp(α)| < Poly(D1, ∥α∥).

Case 3.1. Suppose vp(γ2) = 0. Recall from Section 1.5.2 that vp(αβ) = vp(α) + vp(β)
and vp(α + β) ≥ min {vp(α), vp(β)} for all α, β ∈ L. Therefore,

vp(γn
1 q(γn

1 , γ
n
2 )) = nvp(γ1) + vp(q(γn

1 , γ
n
2 ))

for all n ∈ N. Since vp(γ1) > 0 and vp(γ2) = 0,

vp(q(γn
1 , γ

n
2 )) ≥ min

i,j
vp(ai,jγ

in
1 γ

jn
2 )

≥ min
i,j

vp(ai,j).

Since ∥ai,j∥ < I, we conclude that there exists a constant C1 with |C1| < Poly(I, D1)
such that vp(q(γn

1 , γ
n
2 )) ≥ C1. Therefore, vp(γn

1 q(γn
1 , γ

n
2 )) ≥ n+ C1 for all n ∈ N. On

the other hand,

vp(−h(γn
2 )) = vp(−A) +

dm∑
i=0

vp(γn
2 − βi).

Let N1 < IPoly(D1) be such that for n ≥ N1, γn
2 ̸= βi for all i, as in Lemma 1.5.2. If

βi = 0, then vp(γn
2 ) = nvp(γ2) = 0. Otherwise, by Lemma 2.6.6 for all n ≥ N1,

vp(γn
2 − βi) = vp(βi(β−1

i γn
2 − 1)) = vp(βi) + vp(β−1

i γn
2 − 1) ≤ IPoly(D1) log n.

Hence there exists a constant 0 < C2 < IPoly(D1) such that vp(−h(γn
2 )) < C2 log n for

all n ≥ N1. By Lemma 2.4.3, there exists N = Poly(C1, C2) < exp3(Poly(I)) such
that for all n ≥ N , 3n+C1 > nC2 . It follows that for n ≥ N , n + C1 > C2 log n and
hence vp(q(γn

1 , γ
n
2 )) > vp(−h(γn

2 )), which implies that un ̸= 0.
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Case 3.2. Finally, suppose vp(γi) > 0 for both γ1 and γ2. Let L = vp(γ1)·vp(γ2) ∈ N.
Since vp(γi) < Poly(I, D) (Section 1.5.2), L ≤ Poly(D, I). Consider the sequences

v(r)
n = P (γnL+r

1 , γnL+r
2 )

for 0 ≤ r < L. It suffices to show that for each r there exists computable Nr such
that for n ≥ Nr, v(r) ̸= 0. We can then choose N = Lmax0≤r<L Nr.

Let Λ1 = γ
vp(γ2)
1 and Λ2 = γ

vp(γ1)
2 , noting that vp(Λ1) = vp(Λ2) = L > 0 and

γnL
i = (Λn

i )vp(γi)

for i ∈ {1, 2}. Recall that P (z1, z2) ∈ Q[z1, z2] is of the form ∑
(i,j)∈Y bi,jz

i
1z

j
2 with

∥P∥ < Poly(I). Writing ai,j = γir
1 γ

jr
2 bi,j, it holds that

v(r)
n = P (γnL+r

1 , γnL+r
2 )

=
∑

(i,j)∈Y

ai,jγ
niL
1 γnjL

2

=
∑

(i,j)∈Y

ai,jΛnivp(γ1)
1 Λnjvp(γ2)

2

=
∑

(i,j)∈Y

ai,jΛn(ivp(γ1)+jvp(γ2))
1 (Λ2/Λ1)njvp(γ2).

Hence for
S(z1, z2) :=

∑
(i,j)∈Y

ai,jz
ivp(γ1)+jvp(γ2)
1 z

jvp(γ2)
2

it holds that for all n ∈ N,

un = 0 ⇔ P (γnL+r
1 , γnL+r

2 ) = 0 ⇔ S(Λn
1 , (Λ2/Λ1)n) = 0.

Observe that vp(Λ1/Λ2) = vp(Λ1) − vp(Λ2) = 0 and vp(Λ1) > 0. Moreover, Λ1

and Λ2/Λ1 are multiplicatively independent. To see this, let a, b ∈ Z be such that
Λa

1 = (Λ2/Λ1)b. That is,
γ

(a+b)vp(γ2)
1 = γ

bvp(γ1)
2 .

Since γ1 γ2 are multiplicatively independent, (a + b)vp(γ2) = 0 and bvp(γ1) = 0.
From vp(γ1), vp(γ2) > 0 it follows that a = b = 0. Therefore, we can use our
analysis in Case 3.1 to bound the zeros of S(Λn

1 , (Λ2/Λ1)n). It remains to observe
that ∥S∥, ∥Λ1∥, ∥Λ1/Λ2∥ < 2Poly(I), whence the required bound N < exp4(Poly(I))
follows.
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Note that Cases 1-2 and 3 overlap in the proof above. In Case 3 we use the
assumption that λ1 is not an algebraic integer when asserting existence of a prime
ideal p for which vp(λ1) ̸= 0. If neither λi is an algebraic integer, then it is possible
that vp(λ1) = vp(λ2) = 0 for every prime ideal p. This happens, for example, if λ1, λ2

are both units of OK, which need not be roots of unity.
Lifting the restriction that λ1, λ2 be multiplicatively independent in the statement

of Theorem 2.7.1 does not make the analysis of zeros of un more difficult. However, it
becomes possible that un = 0 for infinitely many n. As an example, suppose λ1, λ2

are multiplicatively dependent with λa
1λ

b
2 = 1 where (a, b) ̸= (0, 0). Let L = ab and

consider the sequences u(r)
n = unL+r for 0 ≤ r < L. Each u(r)

n can be written in the
form q((λa

1)n), where q ∈ Q[x]. If λa
1 is a root of unity, then we can determine all zeros

of (u(r)
n )n∈N by inspection. Otherwise, we can employ Lemma 2.6.4.

Theorem 2.7.1 also solves the Skolem Problem for LRS over R ∩ Q of the form
un = aλn + aλ

n + bγn + bγn satisfying |λ| = |γ|. By scaling, un if necessary, we can
assume that |λ| = |γ| = 1. Since λ = 1/λ and γ = 1/γ, un = 0 if and only if

aλ2nγn + aγn + bγ2nλn + bλn = 0

which can be expressed as p(λn, γn) = 0 for a polynomial p with algebraic coefficients.
The case of the Skolem Problem described above is exactly the one that requires the
p-adic version of Baker’s theorem. The remaining cases at order 4 can be solved using
only the classical version of Baker’s theorem.

We will next consider sequences of the form un = p(n, λn). First, a small lemma.

Lemma 2.7.2. For all t ≥ 0 and integers k > 0, log t < kt
1
k .

Proof. For 0 < t < 1, this is immediate. Let f(t) := kt
1
k − log t. It holds that

f ′(t) = 1
k
√
tk−1

− 1
t

= 1
t
( k
√
t− 1).

It remains to observe that f ′(t) > 0 for all t > 1 and f(1) > 0.

Theorem 2.7.3. Let λ ∈ Q be non-zero and p(z1, z2) ∈ Q[z1, z2] be given by

p(z1, z2) =
∑

(i,j)∈X

ci,jz
i
1z

j
2

where |X| > 0 and ci,j ̸= 0 for all (i, j) ∈ X. Suppose λ is not a root of unity. Write
I = ∥λ∥+∥p∥ and consider the LRS un = p(n, λn). There exists effectively computable
N < 2Poly(I) such that for all n ≥ N , un ̸= 0.
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Proof. If p ∈ Q[z1], then by Theorem 1.2.4 there exists N < 2Poly(I) such that un ̸= 0
for n ≥ N . Similarly, if p ∈ Q[z2], then we can invoke Lemma 2.6.4 to construct
N < 2Poly(I) with the desired property. Hence assume p /∈ Q[z1],Q[z2] and write

p(n, λn) =
K∑

i=0
λinqi(n)

where k ≤ deg(p), each qi ∈ Q[z] and qK is not identically zero. By Theorem 1.2.4,
there exists N1 < 2Poly(I) such that for all n ≥ N1, qK(n) ̸= 0 and hence hn(z) :=
p(n, z) is not identically zero. For n ≥ N1, let

Zn = {z : p(n, z) = 0}

which is a finite set of algebraic numbers. We will argue that the largest value of
log(H(α)) for a point α ∈ Zn grows poly-logarithmically in n, whereas log(H(λn))
grows linearly in n. Therefore, for sufficiently large values of n, λn cannot possibly
belong to Zn.

Applying Lemma 1.5.9, there exists an absolute constant C < Poly(I) such that
we can compute all elements of Zn for n ≥ 1 in time (I + log n)C . Hence there exists
B < Poly(I) such that for all n ≥ 2,

logH(α) < (I log n)B = IB(log n)B

for every α ∈ Zn. On the other hand, as discussed in Section 1.5.1, for all n ∈ N,

logH(λn) ≥ dh(λn) − log(d+ 1)
2 = dnh(λ) − log(d+ 1)

2
where d = deg(λ), h(λ) is the absolute logarithmic Weil height of λ, and the last
equality follows from h(λn) = nh(λ). Recall from Section 1.5.1 that

h(λ) ≥ 1
d+ 52d2 log 6d.

Hence there exist positive integers A,N2 < Poly(I) such that

log(H(λn)) > n

A

for all n ≥ N2. It remains to compare IB(log n)B to n/A. Applying Lemma 2.7.2
with k = 2B, we obtain that (log n)B < (2B)B

√
n for n ≥ 1. Let N3 = (I · 2B)2BA2,

which is at most 2Poly(I). We have that for all n ≥ N3,

IB(log n)B <
n

A
.

It remains to take N = max {N1, N2, N3}.
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Chapter 3

Almost-periodic words

In his seminal work [21], Büchi showed decidability of the monadic second-order theory
(see Section 1.9) of the structure ⟨N;<⟩ by establishing a correspondence between
MSO formulas and non-deterministic Büchi automata. Shortly thereafter, Elgot and
Rabin [34] asked: Which unary predicates P1, . . . , Pm can be added to ⟨N;<⟩ while
maintaining decidability of the MSO theory? It turns out that using Büchi’s method,
this question can also be cast into automata-theoretic terms. Recall the following
problem from the Introduction.

Acceptance Problem for the infinite word α. Given a deterministic Muller
automaton A, decide whether A accepts α.

For a predicate Pi : N → {0, 1}, denote by αi ∈ {0, 1}ω its characteristic word
defined by αi(n) = Pi(n) for all n ∈ N. By [21] and the fact that deterministic Muller
automata are equivalent to non-deterministic Büchi automata, the MSO theory of
⟨N;<,P1, . . . , Pm⟩ is decidable if and only if the Acceptance Problem for the product
word α := α1 × · · · ×αm is decidable. This characterisation has allowed decidability of
the MSO theory of ⟨N;<,P1, . . . , Pm⟩ to be studied through combinatorial properties
of the word α. In contrast, it was known even before Büchi’s decidability result that
augmenting ⟨N;<⟩ with addition or even the doubling function results in a structure
with undecidable MSO theory [73, 77].

We now give an overview of predicates (resp. characteristic words) for which
decidability of the MSO theory (resp. the Acceptance Problem) is known. In [34],
Elgot and Rabin used a contraction method to show decidability of the MSO theory
of ⟨N;<,P ⟩ for the following predicates P , where m is an arbitrary positive integer.
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(a) P (n) = 1 ⇔ n = k! for some k;

(b) P (n) = 1 ⇔ n = km for some k;

(c) P (n) = 1 ⇔ n = mk for some k.

More recently, Carton and Thomas [23] showed via a semigroup approach that the
Acceptance Problem is decidable for morphic words. Morphic words include character-
istic words of the predicates (b-c) above, as well a large number other words like the
Thue-Morse sequence (viewed as an infinite word over {0, 1}) and the characteristic
word α ∈ {0, 1}ω of the Fibonacci sequence defined by

α(n) = 1 ⇔ n is a term of the Fibonacci sequence.

The most interesting (for our purposes) class of words with decidable MSO properties,
however, is due to Semënov. He showed in [75] that the Acceptance Problem is
decidable for effectively almost-periodic words. We refer to this result as Semënov’s
theorem. A word α ∈ Σω is almost-periodic if for every finite word u ∈ Σ∗ there
exists ku ∈ N such that either

(a) u does not occur in α[ku,∞), or

(b) u occurs infinitely often in α and within every contiguous subword (i.e. factor)
of length ku.

An almost-periodic word α is effectively almost-periodic if there exist

(⋆) a program P1 that computes α(n) given n ∈ N, and

(⋆⋆) a program P2 that, given a finite word u, computes an integer ku with the
property above.

We dedicate the rest of this chapter to almost-periodic words and Semënov’s theorem.
Recall that the Model-Checking Problem is to decide, given a linear dynamical

system (M, s), a family of semialgebraic targets T , and a deterministic automaton A,
whether A accepts the characteristic word α of (M, s) with respect to T . Let K be
a class of triples ⟨M, s, T ⟩. Suppose we have an algorithm for computing, on input
⟨M, s, T ⟩ ∈ K, the programs P1 and P2 described above for the characteristic word α of
(M, s) with respect to T .1 In particular, we have proven that each characteristic word

1Given M, s, T , constructing P1 is trivial: on input n, compute Mns and check which polynomial
inequalities defining T are satisfied.
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α associated with ⟨M, s, T ⟩ ∈ K is effectively almost-periodic. Invoking Semënov’s
theorem, it follows that the Model-Checking Problem is decidable for the family of
instances

{⟨M, s, T ,A⟩ : ⟨M, s, T ⟩ ∈ K}.

That the programs P1,P2 are computable from ⟨M, s, T ⟩ is important. In Chapter 7 we
will see that for the class KD = {⟨M, s, T ⟩ : M is diagonalisable}, every characteristic
word α associated with ⟨M, s, T ⟩ ∈ KD is provably effectively almost-periodic. In
particular, for such α there exists some program P2 that computes ku on u. But we do
not have a way of determining P2 given M, s, T . Consequently, we are unable to prove
decidability of the full Model-Checking Problem for diagonalisable linear dynamical
systems.

The approach described in the previous paragraph is the one we take throughout
this thesis. That is, we prove decidability results for the Model-Checking Problem
by showing, for various classes K of triples ⟨M, s, T ⟩, effective almost periodicity of
the characteristic word α associated with every ⟨M, s, T ⟩ ∈ K and how to construct
the programs P1 and P2 for α given M, s, T . The relationship between Semënov’s
theorem and decidability of the Model-Checking Problem, however, is much deeper.
Firstly, every non-trivial decidability result about the MCP known to the author
can be explained by an argument based on almost periodicity. In particular, the
approach to the Model-Checking Problem based on Semënov’s theorem captures all
decidability results for the MCP that we have given to date [7, 47, 48]; We explicitly
used Semënov’s theorem only in [47]. Moreover, relying on effective almost periodicity
and Semënov’s theorem as opposed to ad hoc approaches does not seem to deteriorate
the complexity of the resulting decision procedures. For example, in [48] we proved,
using specialised methods, that given an LDS (M, s) in ambient space R3, a family of
semialgebraic sets T , and a formula φ in the language of Linear Temporal Logic, it is
decidable whether the characteristic word α of (M, s) with respect to T satisfies φ.
The complexity upper bound that we could prove for our algorithm was EXPSPACE.
In Chapter 5, we will show that the full Model-Checking Problem for three-dimensional
systems is decidable with the same complexity bound.

In Section 3.1, we prove Semënov’s theorem and quantitatively analyse the resulting
decision procedure, The latter has not been done so far but is required for bounding
complexity of our algorithms. Our starting point is the ingenious proof of Muchnik,
Semënov and Ushakov [64] that, given a deterministic automaton A and an effectively
almost-periodic word α (represented by the programs P1 and P2), it is decidable
whether A accepts α. Apart from obtaining complexity bounds, another benefit of
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giving a detailed account of the proof of [64] is that we can use the intermediate
steps to give an algorithm that, under some assumptions, decides whether a given
prefix-independent automaton A accepts a word α that has a an almost-periodic
suffix (Section 3.2). This is the specific result we use to show decidability of the
Model-Checking Problem restricted to diagonalisable systems and prefix-independent
properties (Chapter 7), which we originally proved in [7] using specialised arguments.

We mention that almost-periodic words generalise uniformly recurrent words that
are well-known in symbolic dynamics and combinatorics on words. A word α is
uniformly recurrent if for every finite word u appearing in α, there exists ku ∈ N
such that u appears in every factor of α of length ku. In particular, each finite word
u either does not occur in a uniformly recurrent word α, or occurs infinitely often.
Muchnik et al. [64] refer to uniformly recurrent words as strongly almost-periodic.

3.1 Model checking effectively almost-periodic words

In this section we prove Semënov’s theorem. The main step of the proof is to show
that if α is effectively almost-periodic, then so is the sequence of states A(α) obtained
when a deterministic automaton A reads α. Once we know that A(α) is effectively
almost-periodic, we can determine the set of states that are visited infinitely often as
follows. For a state q of A, let k be such that either q does not occur in A[k,∞), or it
occurs in every subword of A(α) of length k. The state q occurs infinitely often in
A(α) if and only if it occurs in A[k, 2k), which can be checked effectively.

For an effectively almost-periodic word α and a finite word u, let Wα(u) denote the
smallest m ∈ N satisfying the following property: either u does not appear in α[m,∞),
or it appears at least twice in every contiguous substring of α of lengthm.2 The quantity
Wα(u) is slightly different (but ultimately more convenient) than the quantity ku that
we gave when defining almost-periodic words. In particular, ku ≤ Wα(u) ≤ 2ku for
every u. For l ∈ N, we define

Wα(l) = max
u∈Σl

Wα(u).

We will write W(u) and W(l) when α is clear from the context. We denote by Wn

the nth functional power of W , defined inductively as W0 = id and Wn+1 = W ◦ Wn

for n ≥ 0. Observe that W is monotonic by definition and hence Wn(l) ≥ Wm(l) for
n ≥ m. Moreover, W(l) ≥ l + 1 for all l ∈ N. Finally, we say that W̃ : N → N is

2We take W(ε) = 1, where ε is the empty word. The exact definition of W(ε) is immaterial to
our results.

74



a window function for an effectively almost-periodic word α if W̃(u) ≥ Wα(u) and
W̃(l) ≥ Wα(l) for all u ∈ Σ∗ and l ∈ N. For an effectively almost-periodic word α, as
discussed above, we have the window function W̃(u) = 2ku. Conversely, to prove that
a computable word α is effectively almost-periodic it suffices to construct an explicit
window function for α.

We begin our analysis of the sequence of states A(α) for α effectively almost-
periodic. The following lemma states that in an almost-periodic word, if a finite word
occurs sufficiently far to the right, then it must have an earlier occurrence. Its proof
follows directly from the definition of almost periodicity.

Lemma 3.1.1. Let α be an almost-periodic word, and α[i, j] be a subword of length l.
If i ≥ W(l), then there exist i′ < i and j′ < j such that |α[i′, j]| ≤ W(l) and
α[i′, j′] = α[i, j].

The next lemma can be seen as lifting the statement of Lemma 3.1.1 from α

to A(α). Recall that |u| denotes the length of u.

Lemma 3.1.2. Let α be almost periodic, A be a deterministic automaton with the
set of states Q, and u ∈ Q∗ be a finite sequence of states with |u| = l > 0. If u occurs
in A(α) at a position i ≥ 2W |Q|+1(l), then it has another occurrence in A(α) at a
position i′ < i with |A(α)[i′, j]| ≤ W |Q|(l).

Proof. Let i1 := i and j1 := i1 + l − 1 denote the endpoints of u in A(α), i.e.
A(α)[i1, j1] = u. The proof relies on constructing a finite sequence of pairs of indices

(i1, j1), . . . , (i|Q|+1, j|Q|+1)

with the following properties. Write vk = α[ik, j1], lk = |vk| and qk = A(α)(ik) for
k ≥ 1. For all k ≥ 1 and m < k,

(1) ik ≤ jk, ik < im, and lm > lk,

(2) vm is a prefix of vk,

(3) lk ≤ Wk−1(l), and

(4) ik > W(lk).

Properties 1 and 2 follow from α[ik, jk] being a “retraction” (i.e. an earlier occurrence)
of α[ik−1, j1] = vk−1 in α. Property 4 will allow us to repeatedly apply Lemma 3.1.1 to
α[ik, j1]. Fig. 3.1 depicts construction of (i1, j1), (i2, j2), (i3, j3) and Properties 1 and 2.

75



α · · ·

A(α) · · ·

N j1i1i2 j2i3 j3

q1q2q3

Figure 3.1: Constructing (i2, j2) and (i3, j3) from u := α[i1, j1]. , , ,
represent the finite words u, v1, v2, v3, respectively. Observe that v1 is a prefix of v2,
which itself is a prefix of v3.

Once we have constructed (i1, j1), . . . , (i|Q|+1, j|Q|+1) with the desired properties,
the statement of the lemma follows. By the pigeonhole principle, there must exist
1 ≤ m < k ≤ |Q| + 1 such that qk = qm. Since vm is a prefix of vk and A is
deterministic, reading vk from the state qk and reading vm from the state qm will
produce the same sequence of lm = |vm| states. Formally,

A(α)[ik, ik + lm − 1] = A(α)[im, j1].

Since A(α)[i1, j1] = u and im ≤ i1, A(α)[im, j1] ends in u. Hence A(α)[ik, ik + lm − 1]
also ends in u. That is,

A(α)[ik + lm − l, ik + lm − 1] = u.

Since ik + lm − 1 < ik + lk − 1, this occurrence of u in A(α) is different from
A(α)[i1, j1] = u. We can therefore choose i′ = ik + lm − l1. That |A(α)[i′, j]| ≤ W |Q|(l)
follows from i|Q|+1 ≤ i′ and

|A(α)[i|Q|+1, j]| = l|Q|+1 ≤ W |Q|(l)

where the inequality follows from Property 3.
We now proceed with our (inductive) construction. Observe that all properties are

satisfied for k = 1, i.e. for the finite sequence (i1, j1). Now suppose we have constructed
(i1, j1), . . . , (ik, jk) satisfying Properties 1-4 for some k ≤ |Q|. To construct (ik+1, jk+1),
consider the finite word vk = α[ik, j1]. Since α is almost-periodic and ik > W(lk)
by the inductive hypothesis, invoking Lemma 3.1.1 there exist ik+1, jk+1 such that
ik+1 < ik and

|α[ik+1, j1]| ≤ W(lk).
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Let vk+1 = α[ik+1, jk+1] and lk+1 = |vk+1| = j1 − ik+1 + 1. By the inductive hypothesis,

lk+1 ≤ W(lk) ≤ W(Wk−1(l)) = Wk(l).

So far we have shown Properties 1 and 3. For all m < k, by the inductive hypothesis,
vm is a prefix of vk. Since vk itself is a prefix of vk+1 by construction, we conclude
that vm is a prefix of vk+1 for all m < k + 1 (Property 2).

To show that ik+1 > W(lk+1) as in Property 4, observe that by construction,
ik+1 = j1 − lk+1 +1 > i1 − lk+1. Since i1 ≥ 2W |Q|+1(l) by assumption and lk+1 ≤ Wk(l)
as argued above,

ik+1 > 2W |Q|+1(l) − Wk(l) = W |Q|+1(l) + (W |Q|+1(l) − Wk(l)).

Since k ≤ |Q| and W(l) ≥ l + 1 for all l ∈ N,

W |Q|+1(l) = W(W |Q|(l)) > Wk(l)

Therefore,
ik+1 > W |Q|+1(l).

On the other hand, since lk+1 ≤ Wk(l) and k + 1 ≤ |Q| + 1,

W(lk+1) ≤ Wk+1(l) ≤ W |Q|+1(l) < ik+1.

We are now ready to state and prove the main result of this section. Recall that to
prove that an almost-periodic word α is effectively almost-periodic, it suffices to give
two algorithms: one that computes α(n) given n, and another one that computes an
upper bound on W(l) given l.

Theorem 3.1.3. Let α be almost-periodic, A be a deterministic automaton with set of
states Q, and W̃ : N → N be an effectively computable function satisfying W̃(l) ≥ Wα(l)
for all l ∈ N. Define N(l) := 2W̃ |Q|+1(l) + l and H(l) := 2W̃ |Q|+1(N(l)).

(a) A word u ∈ Ql occurs infinitely often in A(α) if and only if it occurs at least
once in every (contiguous) substring of A(α) of length N(l).

(b) A word u ∈ Ql does not occur infinitely often in A(α) if and only if it does not
occur in A(α)[H(l),∞).

(c) The word A(α) is almost-periodic with WA(α)(l) ≤ 2H(l) for all l ∈ N. Moreover,
if α is effectively almost-periodic, then so is A(α).
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Proof. We will need the following observation to relate W̃k(·) to Wk
α(·) for k ∈ N.

Let g, f : N → N be such that f is monotonic and g(n) ≥ f(n) for all n. Then for
all k, x ∈ N, gk(x) ≥ fk(x). To prove this by induction, first observe that for k = 0,
gk(x) = fk(x) = x. For k ≥ 1,

gk(x) = g(gk−1(x)) ≥ f(gk−1(x)) ≥ f(fk−1(x)) = fk(x).

In particular, W̃k(l) ≥ Wk
α(l) for all k, l ∈ N.

Let u be a word of length l. We first prove (a). Suppose u occurs infinitely often
in A(α). Let 0 ≤ k1 < k2 < · · · denote all the indices at which u occurs in A(α), and
k0 = 0. By Lemma 3.1.2, for all n ∈ N,

kn+1 − kn < 2W |Q|+1
α (l) ≤ 2W̃ |Q|+1(l).

It follows that u occurs in every subword of A(α) of length

2W̃ |Q|+1(l) + l = N(l).

To prove (b), suppose u does not occur infinitely often in A(α). Let v be a word
of length N(l) appearing infinitely often in A(α) in which u does not occur. By
Lemma 3.1.2, the earliest occurrence of v in A(α) is at a position k satisfying

k ≤ 2W |Q|+1
α (|v|) ≤ 2W̃ |Q|+1(N(l)) = H(l).

Let β = α[k,∞), w = A(α)[k,∞) and B be the automaton with start state A(α)(k)
that is identical to A otherwise. Observe that w = B(β). Applying Lemma 3.1.2 to β
and B, if u occurs in w then it must occur at a position m with

m < 2W |Q|+1
β (l) ≤ 2W̃ |Q|+1(l) ≤ N(l).

Here we used the fact that since β is a suffix of α, Wβ(l) is bounded above by Wα(l).
In particular, W̃ is a window function for β as well. Since v is a prefix of β of length
N(l) and u does not appear in v by construction, we conclude that u does not appear
in A(α)[k,∞). It remains to recall that k ≤ H(l).

Finally, to prove (c), first of all observe that if α is effectively almost-periodic, its
letters can be effectively determined. Hence A(α)(n) can be effectively computed for
all n ∈ N by simply simulating A on α. Next, consider u ∈ Q∗ of length l. If u appears
infinitely often in A(α), then by (a) it appears at least twice in any substring of A(α)
of length 2N(l). Since W̃(l) ≥ Wα(l) ≥ l for all l ∈ N, we have N(l) ≤ H(l) and hence
2N(l) ≤ 2H(l). It follows that u occurs at least twice in every substring of A(α) of
length at least 2H(l). If, on the other hand, u does not occur infinitely often in A(α),
then by (b) it does not occur in A(α)[H(l),∞) and hence in A(α)[2H(l),∞)
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Corollary 3.1.4. Let α be effectively almost-periodic with the window function W̃,
and A be a deterministic automaton. Suppose H(1) is computed from W̃ as in the
statement of Theorem 3.1.3. A state q occurs infinitely often in A(α) if and only if it
occurs in A(α)[H(1), 2H(1)).

Proof. Immediate from Theorem 3.1.3 (a-b) and that N(l) ≤ H(l) for all l ∈ N.

We therefore have the following conceptually simple algorithm for deciding whether
a given deterministic automaton A accepts a word α that is effectively almost-periodic.
Let W̃ be a computable function such that for all l ∈ N, W̃(l) ≥ Wα(l), which exists
by effective almost periodicity. First compute the value of m = W̃ |Q|+1(1) and

H(1) = 2W̃ |Q|+1(2m+ 1).

The set S of states appearing in A(α)[H(1), 2H(1)) comprises exactly the states
visited infinitely often when A reads α. It remains to check S against the acceptance
condition of the automaton. Observe that because H(1) depends non-elementarily on
the number of states in A, the running time of this algorithm can be elementary only if
W̃(l) is “small” in terms of l. We are able to ensure this in our proof of the decidability
of the Model-Checking Problem with tame targets (Chapter 6) by constructing W̃(l)
that is polynomial in l.

3.2 Words with an almost-periodic suffix

Recall from Section 1.8 that a prefix-independent automaton has the property that
whether a word α is accepted or not does not change if we perform finitely many
insertions and deletions on α. Suppose we want to decide whether a given deterministic
and prefix-independent Muller automaton A with state set Q accepts a word α with
the following properties.

(a) The word α has an almost-periodic suffix β.

(b) We have access to a window function W̃ for β, but cannot necessarily compute
β(n) given n. In other words, we do not know the starting index of β in α.

(c) We have access to an oracle that, given l ∈ N, returns a word u of length l that
occurs infinitely often in β and hence also in α.

79



That is, the input is the automaton A and the oracles described (b-c). This setting,
however esoteric it may sound, is encountered in Chapter 7 when analysing character-
istic words of diagonalisable linear dynamical systems with respect to semialgebraic
targets. We can decide whether A accepts α as follows.

As the first step, compute N = 2W̃ |Q|+1(1) + 1 and H = 2W̃ |Q|+1(N). In the
notation of the previous section, H = H(1). Next, using the oracle from (c), determine
a word w of length 2H that occurs infinitely often in β. Thereafter, simulate A on w,
recording the set S of states in A(w)[H, 2H). The algorithm returns “yes” if and only
S ∈ F , where F is the acceptance condition of A (Section 1.8). To prove correctness
of this procedure, consider factorisations α = uβ and β = vwγ, where u, v, w are finite
words and γ is infinite. Since wγ is a suffix of β, the word wγ is almost-periodic and
W̃ is a window function for wγ as well. Applying Theorem 3.1.3 (a-b) to wγ, we
conclude that a set q appears infinitely often in A(wγ) if and only if it appears in
A(w)[H, 2H). That is, S is exactly the set of states that appear infinitely often in
A(wγ). Hence our algorithm returns “yes” if and only if A accepts wγ. Because A is
prefix-independent, it accepts wγ if and only if it accepts α.
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Chapter 4

Toric words

In this chapter we study toric words, a class of almost-periodic words generated by a
compact dynamical system on a torus. Toric words will play a prominent role in our
analysis of linear dynamical systems. Recall that we denote by T the one-dimensional
torus {z ∈ C : |z| = 1}, viewed as an abelian group under multiplication. We equip Cd

with the Euclidean topology and Td with the induced subset topology for every d > 0.
A word α ∈ Σω is toric if there exist an integer d > 0, Γ = (γ1, . . . , γd) ∈ Td, and a
family S = {Sσ : σ ∈ Σ} of pairwise disjoint open subsets of Td such that each Sσ has
finitely many connected components, and for all n ∈ N and σ ∈ Σ,

α(n) = σ ⇔ Γn ∈ Sσ. (4.1)

The definition implies that the sequence (Γn)n∈N is contained in the open subset⋃
σ∈Σ Sσ of Td. We say that α is the toric word generated by (Γ,S). To determine

the nth letter of a toric word α, it suffices to determine the unique σ ∈ Σ such that
Γn = (γn

1 , . . . , γ
n
d ) “falls into” (i.e. belongs to) Sσ. In the dynamical systems literature,

the toric word α generated by (Γ,S) is referred to as the coding of the orbit (Γn)n∈N

with respect to S.
We refer to a word α ∈ Σ as eventually toric with parameters (Γ, N,S), where

N ∈ N, Γ ∈ Td and S consists of open semialgebraic sets with finitely many connected
components, if Equation (4.1) holds for all n ≥ N and σ ∈ Σ. We say that a triple
(Γ, N,S) is semialgebraic if Γ ∈ (T∩Q)d for some d > 0 and S consists of semialgebraic
subsets of Td. Eventually toric words with semialgebraic parameters will be crucial
to our decidability proofs for various subclasses of the Model-Checking Problem. In
particular, all characteristic words of linear dynamical systems for which we will
prove eventual toricity will be eventually toric with semialgebraic parameters. In
Section 4.3 we will show that the eventually toric words are effectively almost-periodic.
For arbitrary toric words, in comparison, we are able to only show almost periodicity.
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S0

S1

γ

Figure 4.1: Target sets for the Fibonacci and Tribonacci words. On the right, the
embeddings of S1, S2, S3 ⊂ T2 into [0, 1)2 ⊂ R2 are depicted. Pink, green, and blue
sets correspond to S1, S2, S3, respectively.

The toric word α generated by (Γ,S) is eventually toric with parameters (Γ, 0,S).
In fact, eventually toric words are the same as words with a toric suffix. To see this, let
α be eventually toric with parameters (Γ, N,S). Then β := α[N,∞) is the toric word
generated by (Γ, {Γ−NSσ : σ ∈ Σ}). Conversely, if α[N,∞) is the toric word generated
by (Γ,S), then α is eventually toric with parameters (Γ, N, {ΓNSσ : σ ∈ Σ}).

In addition to their relevance to linear dynamical systems, (eventually) toric words
appear frequently in the study of combinatorics on words. We next give a few examples.

(a) Recall that sign pattern α of a real-valued sequence (un)n∈N is the infinite word over
Σ = {+, 0,−} such that α(n) corresponds to sign(un) for all n. Let γ = eiθ ∈ T
be not a root of unity and consider the linear recurrence sequence

un = γn + γn = 2 cos(nθ).

By the assumption on γ, for all n, un ̸= 0. Moreover, un > 0 if and only if
Log(γn) ∈ (−π/2, π/2). Hence the sign pattern α ∈ Σω of (un)n∈N is the toric
word generated by (γ, {S+, S0, S−}) where S+ = {z ∈ T : | Log(z)| < π/2}, S0 = ∅,
and S− = {z ∈ T : | Log(z)| > π/2}.

(b) Let Σ = {0, 1} and consider the morphism τ : Σ∗ → Σ∗ given by τ(0) = 01 and
τ(1) = 0. Suppose we start with w0 = 0 and iteratively apply the morphism τ

to generate the sequence wn+1 = τ(wn). In particular, w1 = τ(w0) = 01, w2 =
τ(w1) = 010, w3 = τ(w2) = 01001, and so on. We have that wn = τn(u), and
for all k, n ∈ N, wn is a prefix wn+k. The limit word αF = 01001010010 · · · that
has every wn as a prefix is the famous Fibonacci word. It has many equivalent
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definitions, one of them as a toric word. Denote by φ ≈ 1.618 the golden ratio
and by Φ = φ − 1 its multiplicative inverse, and let γ = ei2π/φ. The long-run
ratio of zeros to ones in αF is equal to 1/Φ, and αF is the toric word generated by
(γ, {S0, S1}) where S0, S1 are open interval subsets of T with lengths 2π/φ and
2πΦ/φ, respectively. See Figure 4.1.

(c) The Tribonacci word αT = 121312112131 · · · is generated by iteratively applying
the morphism 1→ 12, 2 → 13, 3 → 1 to the starting letter 1. Let β ≈ 1.839 be
the real root of x3 − x2 − x− 1 and Γ = (ei2π/β, ei2π/β2) ∈ T2. Rauzy [71] showed
that the word αT is, in fact, the toric word generated by (Γ, {S1, S2, S3}) where
S1, S2, S3 have fractal boundaries. Figure 4.1 depicts the images of S1, S2, S3 (pink,
green, and blue sets, respectively) under the isomorphism f : T2 → [0, 1)2 given by
f(z1, z2) = (g(z1), g(z2)) where g(z) = Log(z)

i2π
+ 1

2 . The Fibonacci and Tribonacci
words are examples of morphic words. Understanding which morphic words are
also toric is one of the central problems in symbolic dynamics [15, 2].

Using the morphic and toric characterisations above, we can prove that the
Tribonacci word is effectively almost-periodic. However, for toric words generated
by (Γ,S), where, for example, S has complicated (e.g. fractal) geometry, there is
no general way to decide occurrence of a finite pattern, let alone prove effective
almost periodicity. We will see that almost periodicity of arbitrary toric words,
on the other hand, can be proven using topological arguments.

(d) A word α over the binary alphabet Σ = {0, 1} is Sturmian if for every n ∈ N, the
number of distinct factors of α of length n is exactly n+ 1. It is known that if a
word has n or fewer distinct factors of length n for at least one value of n, then
it must be ultimately periodic. Hence Sturmian words have the lowest possible
factor complexity among words that are not ultimately periodic. We refer the
reader to [4, Chapter 10.5] for a detailed introduction to Sturmian words. Each
Sturmian word can be represented by two parameters γ, ξ ∈ T, where γ is not
a root of unity, as follows. For z1, z2 ∈ T, denote by J(z1, z2) the open interval
subset of T obtained by starting at z1 and rotating counter-clockwise until z2 is
reached. The Sturmian word α with parameters (γ, ξ) has the property that for
all n, α(n) = 1 if and only if γn ∈ {ξ} ∪ J(ξ, ξγ).1 In other words, a Sturmian
word is the coding of (γn)n∈N, where γ is not a root of unity, with respect to two
semi-open interval subsets I0, I1 of T such that I0 ∪ I1 = T and the length of I1

1Since γn ∈ {ξ} ∪ J(ξ, ξγ) if and only if γn ∈ J(ξγ, ξ) ∪ {ξ}, we do not need to consider
bothopen-closed and closed-open intervals separately when defining Sturmian words.
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is exactly | Log(γ)|. Since γ is not a root of unity, γn = ξ holds for at most one
value of n. Therefore, writing S0 = J(ξγ, ξ) and S1 = J(ξ, ξγ), there exists N ∈ N
such that for all n ≥ N , α(n) = 1 if and only if γn ∈ S1 and α(n) = 0 if and
only if γn ∈ S0. That is, the Sturmian word α is eventually toric with parameters
(γ,N, {S0, S1}).

Recall that the Model-Checking Problem is to decide, given a linear dynamical system
(M, s), a collection of semialgebraic sets T , and a deterministic Muller automaton A,
whether A accepts the characteristic word α of (M, s) with respect to T . Throughout
this thesis, our main way of showing that the Model-Checking Problem is decidable for a
particular class of instances ⟨M, s, T ,A⟩ is to show, using number-theoretic arguments,
that the characteristic word α of (M, s) with respect to T is a merge (also known as an
interleaving, see Section 1.8) of eventually toric words with semialgebraic parameters.
In the remainder of this chapter we lay the foundations of this approach by showing
that (eventually) toric words have strong closure and almost periodicity properties.
This will allow us to apply algorithms for model checking effectively almost-periodic
words based on Semënov’s theorem (Chapter 3) to model checking toric characteristic
words of linear dynamical systems. Our main results are summarised below.

(A) In Section 4.2 we will prove that a merge of eventually toric words (with semi-
algebraic parameters) is itself eventually toric (with semialgebraic parameters).
This is in contrast to the more general class of almost-periodic words, which
is not closed under merges [64]. We mention that closure under merges and
effective almost periodicity imply decidability of the MSO theory of the structure
⟨N;<,P1, . . . , Pm⟩, where each Pi : N → {0, 1} is a predicate whose characteristic
word is eventually toric with semialgebraic parameters. We discuss this result in
Section 4.3.

(B) Let α be eventually toric with parameters (Γ, N,S). By a simple topological argu-
ment it can be shown that α is almost-periodic (Theorem 4.3.1 and corollary 4.3.2).
If Γ has algebraic entries and each Sσ ∈ S is semialgebraic, then the same proof
shows effective almost periodicity of α. The topological approach, however, is not
fully constructive in the sense that it does not give us any a priori bounds on the
gaps between occurrences of a finite word u in α. In Section 4.3 we use a quantita-
tive version of Kronecker’s theorem to give a bound on the window function Wα(l)
for α that is eventually toric with semialgebraic parameters (Γ, N,S) in terms of
l, N and (the description lengths) of Γ,S. Such a result is necessary to produce
upper bounds on the complexity of our model-checking algorithms.
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(C) In Section 4.4 using Baker’s theorem we give specialised bounds on Wα(l) for α
that is eventually toric with parameters (Γ, N,S) where Γ ∈ T. Eventually toric
words of this kind arise in the low-dimensional instances of the Model-Checking
Problem considered in Chapters 5 and 6.

(D) In Chapter 7 we will prove that the characteristic word α of a diagonalisable LDS
with respect to a collection T of semialgebraic targets is eventually toric with
semialgebraic parameters (N,Γ,S), where Γ and S can be computed effectively
given M, s, T , but the value of N is ineffective. In Section 4.3 we will show that
even though we do not have access to the value of N , we can still establish an
upper bound on Wβ(l) for all l ∈ N, where β = α[N,∞). This result plays a
vital role in the algorithm of Chapter 7 for model checking characteristic words of
diagonalisable LDS against prefix-independent properties.

4.1 Orbits in Td

Toric words arise from discrete-time dynamical systems on the torus Td whose dynamics
is given by z → Γz for Γ ∈ Td. In order to understand patterns occurring in toric
words, we have to understand the time steps at which the orbit O(Γ) := (Γn)n∈N

visits a given subset of Td. In this section we will show unlike the discrete orbit O(Γ),
its Euclidean closure TΓ := Cl(O(Γ)) is semialgebraic and effectively computable.
Moreover, O(Γ) visits every open subset of TΓ infinitely often.

The key to proving the aforementioned results is the notion of a multiplicative
relation. We say that (a1, . . . , ad) ∈ Zd is multiplicative relation of (z1, . . . , zd) ∈ (C×)d

if za1
1 · · · zad

d = 1. Given z = (z1, . . . , zd) ∈ (C×)d,

G(z) := {(a1, . . . , ad) ∈ Zd | za1
1 · · · zad

d = 1}

is called the group of multiplicative relations of z. For all z, G(z) is a free abelian
group under addition with a basis containing at most d vectors from Zd. If the entries
of z are all algebraic, then such a basis can be effectively computed using the following
theorem due to Masser [59].

Theorem 4.1.1. Let K be an algebraic number field of (finite) degree D, and γ1, . . . , γd

be non-zero elements of K of absolute logarithmic Weil height at most h. There exists
an absolute constant c such that G((γ1, . . . , γd)) has a basis v1, . . . , vm ∈ Zd satisfying
m ≤ d and for all 1 ≤ i ≤ m,

∥vi∥∞ < (cdh)d−1Dd−1 (log(D + 2))3d−3

(log log(D + 2))3d−4 .
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We write M(d, h,D) for the right-hand side of Masser’s bound. Observe that the
bound is on the magnitude of the entries in the basis as opposed to their bit length.

Corollary 4.1.2. Given Γ = (γ1, . . . , γd) ∈ (T∩Q)d, a basis of G(Γ) can be computed
in polynomial space.

Proof. Let K = Q(γ1, . . . , γd), D = [K : Q] and h = maxi h(γi). Since h(γi) ≤ ∥γi∥
for all 1 ≤ i ≤ d (see Section 1.5.1) and D ≤ ∏d

i=1 deg(γi) ≤ ∥Γ∥d by the Tower Law
(Section 1.5.2), we have that M(d, h,D) < ∥Γ∥Poly(d).

The algorithm starts with B = ∅ and constructs increasingly larger linearly
independent (over Z) subsets of G(Γ). It enumerates all v ∈ Zd such that

∥v∥∞ < M(d, h,D).

The total description length of such v is at most Poly(∥Γ∥). For each v = (v1, . . . , vd),
the algorithm first determines whether γv1

1 · · · γvd
d = 1, i.e. whether v ∈ G(Γ). Using

iterative squaring2 we can write a first-order sentence

φ := ∃x ∈ Rl : ψ(x)

in the language Lor, where l is some positive integer, such that ∥φ∥ is polynomial
in ∥Γ∥, the formula ψ is quantifier-free, and φ holds if and only if γv1

1 · · · γvd
d = 1;

see Section 1.5 for how to encode statements about arithmetic on algebraic numbers
as first-order formulas. By Theorem 1.3.5, we can decide the truth of φ in space
polynomial in ∥Γ∥. If v ∈ G(Γ), it remains to check whether {v} ∪ B is linearly
independent and add v to B if this is the case. This can be done in polynomial time
using, for example, the Hermite normal form [28, Section 2.4]. Once all candidate
v ∈ Zd have been enumerated, B is a basis of G(Γ).

In order to compute a representation of TΓ, we will use multiplicative relations
in combination with Kronecker’s theorem. For x, y ∈ R, denote by [[x]]y the distance
from x to a nearest integer multiple of y. Further write [[x]] for [[x]]1. The following
is a classical version of Kronecker’s theorem (see, for example, [39]) in simultaneous
Diophantine approximation.

2Iterative squaring refers to the following. Suppose we want to express x12 = 1 in first-order logic.
We can do so using the formula ∃x2, x4, x8 : x2 = x · x ∧ x4 = x2 · x2 ∧ x8 = x4 · x4 ∧ x8 · x4 = 1.
This way xn = 1 can be expressed by a formula of size Θ(logn), whereas x · . . . · x︸ ︷︷ ︸

12 times

= 1 has size Θ(n).
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Theorem 4.1.3. Let x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , yd) ∈ Rd be such that for
all b ∈ Zd,

b · x ∈ Z ⇒ b · y ∈ Z.

For every ε > 0 there exist infinitely many values n ∈ N satisfying
d∑

j=1
[[nxj − yj]] < ε.

Writing X = (ei2πx1 , . . . , ei2πxd) and Y = (ei2πy1 , . . . , ei2πyd), the condition that
for all b ∈ Zd, b · x ∈ Z ⇒ b · y ∈ Z is equivalent to G(X) ⊆ G(Y ). That is, “every
multiplicative relation of X is also a multiplicative relation of Y ”. We can now prove
the main result of this section.

Theorem 4.1.4. Let Γ ∈ (T ∩ Q)d.

(a) If z ∈ Td is such that G(Γ) ⊆ G(z), then for every open subset O of Td

containing z there exist infinitely many values n ∈ N such that Γn ∈ O.

(b) The set TΓ is equal to {z ∈ Td : G(Γ) ⊆ G(z)}, semialgebraic, and computable
in polynomial space given Γ.

Proof. Let z = (z1, . . . , zd) be such that G(Γ) ⊆ G(z). Define xj = Log(γj)
i2π

and
yj = Log(zj)

i2π
for 1 ≤ j ≤ d, noting that xj, yj ∈ (−1/2, 1/2]. For all n ∈ N,

∥Γn − z∥1 =
d∑

j=1
|γn

j − zj|

≤
d∑

j=1
| Log(γn

j /zj)|

=
d∑

j=1
[[nLog(γj)/i − Log(zj)/i]]2π

= 2π
d∑

j=1
[[nxj − yj]]

where the last equality follows from the fact that [[x]]2π = 2π[[x/(2π)]] for all x ∈ R.
Applying Kronecker’s theorem, for each ε > 0 there exist infinitely many values n
such that ∥Γn − z∥1 < ε. This proves (a).

To prove (b), let B = {v1, . . . , vm} be a basis of G(Γ) where 1 ≤ m ≤ d. As
discussed earlier, such basis can be computed in polynomial space given Γ. For
1 ≤ k ≤ m, write vk = (vk,1, . . . , vk,d). Since for all z = (z1, . . . , zd)

G(Γ) ⊆ G(z) ⇔
m∧

k=1
z

vk,1
1 · · · zvk,d

d = 1,
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the set {z ∈ Td : G(Γ) ⊆ G(z)} is closed and semialgebraic. It moreover contains the
orbit O(Γ) as G(Γ) ⊆ G(Γn) for all n ∈ N. Finally, by (a) the orbit O(Γ) is dense in
{z ∈ Td : G(Γ) ⊆ G(z)}. Hence the latter must be exactly the closure of O(Γ).

4.2 Closure properties of eventually toric words

Let αr ∈ Σω
r for 0 ≤ r < L. Recall that the product word α = α0 × · · · × αL−1 is

defined by α(n) = (α0(n), . . . , αL−1(n)). We next show that eventually toric words
(with semialgebraic parameters) are closed under products.

Lemma 4.2.1. Let αr ∈ Σω
r for 0 ≤ r < L be eventually toric with parameters

(Γr, Nr,Sr), and α = α0 × · · · × αL−1 ∈ Σω, where Σ = Σ0 × · · · × ΣL−1.

(a) The word α is eventually toric.

(b) If each (Γr, Nr,Sr) is semialgebraic, then α is also eventually toric with semial-
gebraic parameters.

Proof. Suppose for all 0 ≤ r < L, Γr ∈ Tdr and Sr is of the form {S(r)
σ : σ ∈ Σr}, and

let d = d0 + . . .+dL−1. Define Γ = (Γ0, . . . ,ΓL−1) ∈ Td. The word α is eventually toric
with parameters (Γ, N, {Sσ : σ ∈ Σ}) where N = maxr Nr and Sσ = ∏L−1

r=0 S
(r)
xr

for all
σ = (x0, . . . , xL−1). This proves (a). To prove (b), observe that if Γr ∈ (T∩Q)dr and S
contains only semialgebraic sets for all 0 ≤ r < L, then (Γ, N,S) is semialgebraic.

Observe that if Nr = 0 for all r above, i.e. every αr is toric, then N = 0 and α is
also toric. We next show that eventually toric words are closed under renamings of
letters, a straightforward property that will later be useful.

Lemma 4.2.2. Let Σ,Π be alphabets, α ∈ Σω be eventually toric with parameters
(Γ, N, {Sσ : σ ∈ Σ}), and f : Σ → Π. Consider β ∈ Πω defined by β(n) = f(α(n)) for
all n ∈ N.

(a) The word β is eventually toric with parameters (Γ, N, {Kπ : π ∈ Π}), where

Kπ =
⋃

σ : f(σ)=π

Sσ.

(b) If (Γ, N,S) is semialgebraic, then so is (Γ, N, {Kπ : π ∈ Π}).
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Recall that the merge (i.e. the interleaving) of α0, . . . , αL−1 is defined by

α(qL+ r) := αr(q)

for all q, r ∈ N with 0 ≤ r < L. In the remainder of this section we show that a merge
of eventually toric words is eventually toric.

Theorem 4.2.3. Let L > 0, and for 0 ≤ r < L, αr ∈ Σω
r be an eventually toric

word with parameters (Γr, Nr,Sr), where Γr ∈ Tdr . Write d = d0 + . . . + dL−1 and
N = Lmax0≤r<L Nr. Let α be the merge of α0, . . . , αL−1.

(a) There exist Γ ∈ Td+1 and S such that the word α is eventually toric with
parameters (Γ, N,S).

(b) Suppose (Γr, Nr,Sr) is semialgebraic for every 0 ≤ r < L. Write

I =
L−1∑
r=0

(
∥Γr∥ + ∥Sr∥

)
.

The word α is is eventually toric with semialgebraic parameters (Γ, N,S), where
∥S∥ < IPoly(d) and Γ ∈ (T ∩ Q)d+1 with ∥Γ∥ < Poly(I).

Observe that if α0, . . . , αL−1 are all toric (i.e. N0 = . . . = NL−1 = 0), then N = 0
and hence α is also toric. To prove Theorem 4.2.3 we will need the following lemma.

Lemma 4.2.4. Let Γ = (γ1, . . . , γd) ∈ (T ∩ Q)d, S ⊆ Td be semialgebraic, and k ∈ Z.
We can compute a quantifier-free formula defining ΓkS in time (|k|+∥Γ∥+∥S∥)Poly(d).

Proof. We define ΓkS via the characterisation

x ∈ ΓkS ⇔ Γ−kx ∈ S.

For 1 ≤ j ≤ d, compute ξj = γ−k
j . By Lemma 1.5.7, ∥ξj∥ < Poly(∥γj∥, |k|). Let Φ be

the quantifier-free formula (given as part of the input) defining S, and for 1 ≤ j ≤ d,
let φj be a quantifier-free formula of size at most Poly(∥ξj∥) defining ξj (Lemma 1.5.3).
Write u and v for the collections of variables u1, . . . , ud and v1, . . . , vd, respectively.
The variables uj, vj stand for Re(ξj) and Im(ξj), respectively. Let rj := xjuj −yjzj and
cj := xjvj + yjuj for 1 ≤ j ≤ d, where rj, cj are terms with free variables xj, yj, uj, vj.
These represent respectively the real and imaginary parts of (xj + yji)(uj + vji). The
set ΓkS = {x : Γ−kx ∈ S} is defined by the formula

∃u,v :
d∧

i=1
φj(uj, vj) ∧ Φ(r1, c1, . . . , rd, cd)
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with free variables x1, y1, . . . , xd, yd. Since the formula contains only existential quan-
tifiers and 2d distinct variables in total, and is of size at most Poly(|k|, ∥Γ∥, ∥S∥), an
equivalent quantifier-free formula can be computed in time (|k| + ∥Γ∥ + ∥S∥)Poly(d) by
Theorem 1.3.5.

We can now prove Theorem 4.2.3. Let Σ = Σ0 ∪ · · · ∪ ΣL−1. For 0 ≤ r < L, write
Sr = {S(r)

σ : σ ∈ Σr}. That is, the open set in Sr corresponding to the letter σ ∈ Σr

is S(r)
σ . Further let S(r)

σ = ∅ for all 0 ≤ r < L and σ ∈ Σ \ Σr, and Λ ∈ Td be the
concatenation of Γ0, . . . ,ΓL−1 For all 0 ≤ r < L and σ ∈ Σ, define

S̃(r)
σ :=

r−1∏
j=0

Tdj × S(r)
σ ×

L−1∏
j=r+1

Tdj

and S̃r = {S̃(r)
σ : σ ∈ Σ}. Each αr, viewed as a word over the larger alphabet Σ, is

eventually toric with parameters (Λ, Nr, S̃r). In particular, α0, . . . , αL−1 ∈ Σω are all
codings of the same rotation Λ.

Recall that N = Lmax0≤r<L Nr. For n ∈ N, define q(n) = ⌊n/L⌋ and r(n) =
n− q(n)L. By construction of α,

α(n) = σ ⇔ αr(n)(q(n)) = σ

for all σ ∈ Σ and n ≥ N . To express α as an eventually toric word, our strategy will
be to “slow down Λ by a factor of L” and “add a counter that counts modulo L”. Let ω
be a primitive Lth root of unity, and B0, . . . , BL−1 ⊂ C be disjoint semialgebraic open
balls around 1, ω, . . . , ωL−1, respectively. Write Λ = (γ1, . . . , γd) and let ξj = eLog(γj)/L

for 1 ≤ j ≤ d. Let X = (ξ1, . . . , ξd), noting that for all n ∈ N, Xn = Λq(n)Xr(n). We
can now define Γ = (ω, ξ1, . . . , ξL) and S := {Sσ : σ ∈ Σ}, where, for all σ ∈ Σ,

Sσ =
⋃

0≤r<L

Br ×XrS̃(r)
σ .

For all σ ∈ Σ and n ≥ N ,

Γn ∈ Sσ ⇔ ∃r ∈ {0, . . . , L− 1} : ωn ∈ Br ∧ Xn ∈ XrS̃(r)
σ

⇔ Λq(n) ∈ S̃(r(n))
σ

⇔ αr(n)(q(n)) = σ

⇔ α(n) = σ.

Therefore, the word α is eventually toric with parameters (Γ, N,S). This proves (a).
To prove (b), observe that under the assumptions that each (Γr, Nr,Sr) is semial-

gebraic, (Γ, N,S) constructed above is semialgebraic. It remains to bound description
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lengths of Γ and S. For algebraic γ ̸= 0, and L > 0, invoking Lemma 1.5.5 with
m = 0 and k = 1, in time Poly(∥γ∥, L) < Poly(I) we can compute a quantifier-free
formula φ defining the finite set of all Lth roots of γ. Applying Lemma 1.5.6, entries
of Γ can be computed in time Poly(∥Λ∥, L) < Poly(I). By the same argument,
canonical representations of ω0, . . . , ωL−1 can be computed in time Poly(I). We can
then define Br, also in polynomial time, as the open ball of radius 1/L around ωr for
0 ≤ r < L. Finally, applying Lemma 4.2.4, for each 0 ≤ r < L and σ ∈ Σ we can
compute XrS̃(r)

σ in time at most (L + ∥X∥ + ∥Sr∥)Poly(d). It follows that S can be
computed in time IPoly(d).

4.3 Almost periodicity of toric words

Muchnik et al. [64] gave a topological proof that, under some assumptions, the coding
of the trajectory of a compact dynamical system with respect to open sets is almost-
periodic. We adapt their arguments to show almost periodicity of (eventually) toric
words.

Theorem 4.3.1. Let α ∈ Σω be the toric word generated by (Γ,S), where Γ ∈ Td.

(a) The word α is strongly almost-periodic.

(b) If Γ ∈ (T ∩ Q)d and S consists of semialgebraic sets, then α is strongly and
effectively almost-periodic.

Proof. Let u ∈ Σl be a word of length l. It occurs at the position n of α if and only if

l−1∧
k=0

α(n+ k) = u(k) ⇔
l−1∧
k=0

Γn+k ∈ Su(k)

⇔
l−1∧
k=0

Γn ∈ Γ−kSu(k)

⇔ Γn ∈
l−1⋂
k=0

Γ−kSu(k).

Recall that TΓ ⊆ Td denotes the closure of (Γn)n∈N, and let

Su = TΓ ∩
l−1⋂
k=0

Γ−kSu(k).

Observe that Su is an open subset of TΓ. If Su is empty, then u does not occur in
α. Suppose therefore that Su is non-empty. By Theorem 4.1.4, there exist infinitely
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many n ∈ N such that Γn ∈ S. Hence u occurs infinitely often in α. We will show
that the gaps between consecutive occurrences of u in α are bounded.

Consider f : Td → Td, f(z) = Γ−1z. We will prove that {fk(Su) : k ∈ N} is an open
cover of TΓ. Let z ∈ TΓ. We need to show existence of k ∈ N such that z ∈ fk(Su),
i.e. Γkz ∈ Su. Choose a point y ∈ Su, and let ε be such that

B(y, 2ε) ∩ TΓ ⊂ TΓ

where B(y, 2ε) denotes the ℓ2-ball of radius 2ε around y in Cd. By Theorem 4.1.4 (a),
there exist n1, n2 ∈ N such that n1 < n2, ∥Γn1 − z∥2 < ε and ∥Γn2 − y∥2 < ε.
Observe that ∥Γn1 − z∥2 = ∥Γn2 − Γn2−n1z∥2. Applying the triangle inequality,
∥Γn2−n1z − y∥2 < 2ε, i.e. Γkz ∈ Su where k = n2 − n1.

By compactness of TΓ, there exists finite K such that ⋃K
k=0 f

k(Su) covers TΓ. It
follows that for every m ∈ N, there exists n ∈ {m, . . . ,m + K} such that Γn ∈ Su.
Since u occurs at position n in α if and only if Γn ∈ Su, we conclude that u occurs in
every contiguous subword of α of length at least K + l. This proves (a).

It remains to prove that α is effectively almost-periodic assuming every S ∈ S is
semialgebraic. Recall the programs P1 and P2 described in the definition of effective
almost periodicity given on page 72.

(a) Given n ∈ N, α(n) can be computed effectively by first computing the algebraic
number Γn and then determining the unique semialgebraic S ∈ S containing Γn.
This gives us P1.

(b) Given u ∈ Σl, the program P2 first computes (e.g. using tools of first-order
logic) a formula defining Su and checks the emptiness of the latter. If Su = ∅,
then it outputs ku = 0, as the word u does not appear in α. Otherwise, the
program computes a formula defining the semialgebraic set TΓ (Theorem 4.1.4).
Thereafter, it checks for increasing values of K whether ⋃K

k=0 f
k(Su) covers TΓ.

Since every fk(Su) is semialgebraic, this step can also be implemented using first-
order formulas. Once the value of K is found, the program outputs ku = K + l:
The word u occurs in every factor of α of length at least K + l.

It follows that eventually toric words are almost-periodic. Note, however, that
unlike toric words, eventually toric words need not be strongly almost periodic. For
example, a finite word u can occur only once in an eventually toric word α but outside
the toric suffix α[N,∞), i.e. at a position n ∈ {0, . . . , N − 1}.
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Corollary 4.3.2. Let α be eventually toric with parameters (Γ, N,S).

(a) The word α is almost-periodic.

(b) If (Γ, N,S) is semialgebraic, then α is effectively almost-periodic.

Proof. Recall that β = α[N,∞) is the toric word generated by (Γ, {Γ−NSσ : σ ∈ Σ}).
By Theorem 4.3.1 (a), the word β is almost-periodic. Since β is a suffix of α, the
latter is also almost-periodic.

Now suppose Γ ∈ (T ∩ Q)d and S is a collection of semialgebraic sets. By
Theorem 4.3.1 (a), the word β is effectively almost-periodic. To prove effective almost
periodicity of α, we have to give the two programs P1 and P2 that compute α(n) on
n ∈ N and ku on u ∈ Σ∗, respectively.

(i) The program P1 simply stores the values of α(0), . . . , α(N − 1), and on input
n ≥ N , returns the value of β(n−N) using the respective program for β.

(b) On input u ∈ Σl, the program P2 first computes, using the respective program
for β, a value k such that either u does not occur in β[k,∞), or it occurs in
every factor of β of length k. Thereafter, P2 simply outputs ku = N + k.

The three facts that eventually toric words with semialgebraic parameters are
effectively almost-periodic, closed under merges, and closed under products will play a
critical role throughout this thesis in our decidability results for the Model-Checking
Problem. Before that, let us briefly revisit decidability of the MSO theory (see
Section 1.9) of the structure ⟨N;<,P1, . . . , Pm⟩, where each Pi : N → {0, 1} is a unary
predicate.

Theorem 4.3.3. For 1 ≤ i < m, let αi be eventually toric with semialgebraic
parameters. Denote by β and γ the merge and the product of α1, . . . , αm, respectively.

(A) The Acceptance Problem is decidable for all of β, γ, α1, . . . , αm.

(B) For 1 ≤ r ≤ m, let Pi : N → {0, 1} be defined by Pi(n) = αi(n). The MSO theory
of the structure ⟨N;<,P1, . . . , Pm⟩ is decidable.

Proof. By Theorem 4.2.3 and lemma 4.2.1, the words β and γ are eventually toric
with semialgebraic parameters. By Corollary 4.3.2, the words β, γ, α1, . . . , αm are
effectively almost-periodic. To prove (A), recall that by Semënov’s theorem, the
Acceptance Problem is decidable for effectively almost-periodic words. To prove (B),
recall from the Introduction that by Büchi’s construction in [21], the MSO theory of
⟨N;<,P1, . . . , Pm⟩ is decidable if and only if the Acceptance Problem is decidable for
the word γ.

93



Let α be eventually toric with parameters (Γ, N,S), where Γ ∈ (T ∩ Q)d and S
consists of semialgebraic sets. As mentioned earlier, the topological proofs of Theo-
rem 4.3.1 and corollary 4.3.2 have the drawback that they not give us any a priori
bounds on the gaps between consecutive occurrences of a finite word of length l in α

in terms of l, N, ∥Γ∥ and ∥S∥. We address this issue next.
In the proof of Theorem 4.1.4, we gave a trial-and-error procedure that computes

a value K such that
K⋃

k=0
fk(Su) ⊇ TΓ,

where Su is the semialgebraic set associated with the finite word u. That is, the
procedure finds K such that for all z ∈ TΓ, there exists 0 ≤ n ≤ K such that Γnz ∈ Su.
We will show how to bound K in terms of the description length of Su and ∥Γ∥, which
will then be used to prove the following. Recall that for an almost-periodic word α

and l ∈ N, Wα(l) is the smallest integer m with the property that every u ∈ Σl either
does not occur in α[m,∞), or occurs at least twice in every contiguous subword of α
of length m.

Theorem 4.3.4. Let α ∈ Σω be eventually toric with semialgebraic parameters
(Γ, N,S), where Γ ∈ (T∩Q)d. Further let β := α[N,∞). Both α and β are effectively
almost-periodic with

Wβ(l) < 2(l+∥Γ∥+∥S∥)Poly(d)

and Wα(l) ≤ N + Wβ(l) for all l ∈ N.

We prove Theorem 4.3.4 in the remainder of this section. Once we establish almost
periodicity of β and the bound on Wβ(l), almost periodicity of α and the bound on
Wα(l) follow immediately. Hence we analyse β first. For S ⊆ Td and Γ ∈ Td, define

R(Γ, S) = sup {m ∈ N | ∃n ∈ N. ∀k ∈ {n, . . . , n+m− 1} : Γk /∈ S}.

Intuitively, R(Γ, S) is the largest number of steps it takes for a term of the sequence
(Γn)n∈N to reach S when we repeatedly apply the transformation z → Γz. We refer
to R(Γ, S) as the return time of (Γn)n∈N in S. Proving Theorem 4.3.4 amounts to
proving a bound on R(Γ, S) for semialgebraic S and Γ with algebraic entries in terms
of ∥Γ∥ and ∥S∥. We will do this in two steps. First we will analyse the case where S
is an open ball. Thereafter we will show how to construct, given open semialgebraic S,
an open ε-ball B contained in S. Since S ⊇ B implies R(Γ, S) ≤ R(Γ, B), to bound
R(Γ, S) it suffices to bound R(Γ, B).
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Step 1. Bounding the return time in an ε-ball. Our main tool is the following
quantitative version of Kronecker’s theorem due to Chen [24, Special case of Theorem 1].
Recall that [[x]] denotes the distance from x to a nearest integer.

Theorem 4.3.5. Let x := (x1, . . . , xd), y := (y1, . . . , yd) ∈ (−1, 1)d be such that x ̸= 0
and for all b ∈ Zd, if b · x ∈ Z then b · y ∈ Z. Further let L,M ≥ 2 be integers. In any
interval I ⊆ R>0 of length L there exists a natural number n such that

d∑
j=1

[[nxj − yj]]2 <
d

4 sin2
(

π

2(M + 1)

)
+ dMd

8Λ(M)L

where Λ(M) = min {[[b · x]] : b ∈ Zd, ∥b∥∞ < M, b · x /∈ Z}.

See [39, Theorem 5.1] for a discussion of this theorem. Note that as x ̸= 0 and
M ≥ 2, the quantity Λ(M) is always finite. Writing X = (ei2πx1 , . . . , ei2πxd) and
Y = (ei2πy1 , . . . , ei2πyd), Chen’s theorem tells us that Y is an ω-limit point of (Xn)n∈N

assuming Y satisfies all multiplicative relations of X. We can use Chen’s theorem
as follows to construct n ∈ N such that the distance between Xn and Y is less than
some ε > 0. First choose M such that d

4 sin2
(

π
2(M+1)

)
≪ ε. Then compute Λ(M) and

choose L such that dMd

8Λ(M)L ≪ ε. Chen’s theorem guarantees that for every k ∈ N,
there exists n ∈ {k, k + 1, . . . , k + L − 1} such that Xn is ε-close to Y . The next
lemma formalises this argument. We write B(z, ε) for the open ℓ2-ball of radius ε
around z ∈ Cd.

Lemma 4.3.6. Let Γ ∈ (T ∩ Q)d and ε ∈ Q ∩ (0, 1). There exists an effectively
computable integer L(ε,Γ) < (2/ε)Poly(∥Γ∥)d with the following property. For every
z ∈ TΓ and k ∈ N, there exists k ≤ n < k + L(ε,Γ) such that Γn ∈ B(z, ε).

Proof. Write Γ = (γ1, . . . , γd) and z = (z1, . . . , zd). If γj = 1 for all j, then TΓ consists
of a single point and the result is immediate. Otherwise, for 1 ≤ j ≤ d, let xj = Log(γj)

i2π

and yj = Log(zj)
i2π

for 1 ≤ j ≤ d. Observe that xj, yj ∈ (−1/2, 1/2] for all j, and
(x1, . . . , xd) ̸= 0. Similarly to the proof of Theorem 4.1.4,

∥Γn − z∥2
2 =

d∑
j=1

|γn
j − zj|2

≤
d∑

j=1
(Log(γn

j /zj))2

=
d∑

j=1
[[nLog(γj)/i − Log(zj)/i]]22π

= 4π2
d∑

j=1
[[nxj − yj]]2
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for all n ∈ N. By Chen’s theorem, if we choose M,L such that

d

4 sin2
(

π

2(M + 1)

)
+ dMd

8Λ(M)L <
ε2

4π2

then in every interval subset of R>0 of length L there exists n such that Γn ∈ B(z, ε).
Since sin2 x ≤ x for non-negative x, it suffices to choose M,L such that both dπ

8(M+1)

and dMd

8Λ(M)L are less than ε2

8π2 . Therefore, applying Chen’s theorem with

M =
⌈
π3d

ε2

⌉
, L =

⌈
dπ2Md

Λ(M)ε2

⌉

we have that any interval subset of R>0 of length L contains n ∈ N such that
Γn ∈ B(z, ε). It remains to compute an upper bound L(ε,Γ) on L in terms of ∥Γ∥
and ε. To do this, we have to bound Λ(M) from below.

Write y = (y1, . . . , yd). Since |b ·x| < Md for every b ∈ Zd with ∥b∥∞ < M , it holds
that Λ(M) = |c · x − v| for some c ∈ Zd and v ∈ Z satisfying ∥c∥∞ < M , |v| ≤ Md,
and c · x ̸= v. Writing c = (c1, . . . , cd),

|c · x− v| = |c1x1 + . . .+ cdxd − v|

=
∣∣∣∣∣c1 Log(γ1)

2πi + . . .+ cd Log(γd)
2πi − v

∣∣∣∣∣
= 1

2π |c1 Log(γ1) + . . .+ cd Log(γd) − 2v Log(−1)|.

Let D < ∥Γ∥d be the degree of the number field Q(γ1, . . . , γd). Applying Baker’s
theorem (Section 2.6) with the bounds on |v| and |ci| above,

|Λ(M)| = |c · y − x| > e(− log M)·Poly(D, ∥Γ∥)d = M−Poly(D, ∥Γ∥)d

.

Since ε < 1, from the choice of M,L it follows that exists effectively computable
L(ε,Γ) < (2/ε)Poly(∥Γ∥)d such that L < L(ε,Γ).

Step 2. Constructing an open ball inside an open semialgebraic set. Let
Γ ∈ (T ∩ Q)d, Φ1 ∈ Lor be a quantifier-free formula defining TΓ, and S be an open
semialgebraic subset of TΓ defined by a quantifier-free formula Φ2 ∈ Lor. Consider

R = {ε > 0 | ∃z ∈ S : B(z, ε) ∩ TΓ ⊂ S}

and define ρ = supR. The value 2ρ is the “diameter” of S inside TΓ. Intuitively,
the larger this value, the more frequently (Γn)n∈N visits S. We next argue that ρ is
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algebraic and compute bounds on its magnitude. Write θ1 and θ2 for the collections
of variables x1, y1, . . . , xd, yd and u1, v1, . . . , ud, vd, respectively. The formula

Ψ1(e) := e > 0 ∧

∃θ1 : Φ2(θ1) ∧

∀θ2 : Φ1(θ2) ∧
d∑

i=1
(ui − xi)2 + (vi − yi)2 < e2 ⇒ Φ2(θ2)

defines the set R. Hence ρ can be defined by the formula

Ψ2(r) := ∀e > 0, e ̸= r : Ψ1(e) ⇔ e < r.

By Theorem 4.1.4, ∥Φ1∥ < Poly(∥Γ∥). Hence Ψ2 has size Poly(∥Γ∥, ∥S∥), con-
tains O(d) distinct variables, and has bounded quantifier elimination. Invoking
Theorem 1.3.5 an equivalent quantifier-free formula can be constructed in time
(∥Γ∥ + ∥S∥)Poly(d). By Lemma 1.5.6, ∥ρ∥ < (∥Γ∥ + ∥S∥)Poly(d). Finally, from
Lemma 1.5.1 we conclude that ρ > 2−(∥Γ∥+∥S∥)Poly(d) .

Proof of Theorem 4.3.4. We can now combine Steps 1 and 2 to finalise the proof.
Write Γ = (γ1, . . . , γd) and S = {Sσ : σ ∈ Σ}. A finite word u of length l occurs at a
position n ≥ N in α if and only if

l−1∧
k=0

α(n+ i) = u(k) ⇔
l−1∧
k=0

Γn+k ∈ Su(k)

⇔ Γn ∈
l−1⋂
k=0

Γ−kSu(k).

Let Su = TΓ ∩ ⋂l−1
k=0 Γ−kSu(k). By Theorem 4.1.4 and Lemma 4.2.4,

∥Su∥ < (l + ∥Γ∥ + ∥S∥)Poly(d).

If Su is empty, then u does not appear in β, and hence Wβ(u) = 0. Suppose therefore
that Su is not empty. As discussed above, there exist r > 2−(l+∥Γ∥+∥S∥)Poly(d) and z ∈ TΓ

such that B(z, r) ∩ TΓ ⊆ Su. By Lemma 4.3.6,

R(Γ,B(z, r)) < 2(l+∥Γ∥+∥S∥)Poly(d)
.

This bound applies to R(Γ, Su) as well since R(Γ,B(z, ε)) ≤ R(Γ, Su). By the
definition of the return time R(·, ·), for every n ≥ N there exists 0 ≤ k ≤ R(Γ, Su)
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such that Γn+k ∈ Su, i.e. the word u occurs in β at the position n+ k. Hence u occurs
at least twice in every subword of β of length at least 2R(Γ, Su) + 2l. Therefore,

Wβ(u) ≤ 2R(Γ, Su) + 2l < 2(l+∥Γ∥+∥S∥)Poly(d)
.

Recalling that Wβ(l) = maxu∈Σl Wβ(u), we have proven the desired bound on Wβ(l).
As mentioned earlier, the bound on Wα(l) follows from the bound on Wβ(l) and the
definition of effective almost periodicity.

Model-checking eventually toric words with semialgebraic parameters.
Recall from Corollary 3.1.4 that in order to decide whether a deterministic automaton A
with the set of states Q accepts an effectively almost-periodic word α with a window
function W̃ , we need to compute up to 2H first letters of A(α), where

H = 2W̃ |Q|+1(2m+ 1),

m = W̃ |Q|+1(1) and A(α) is the sequence of states obtained when A reads α. Suppose α
is eventually toric with semialgebraic parameters (Γ, N,S). With our bound on Wα(l)
from Theorem 4.3.4, the quantity H is non-elementary in terms of ∥A∥+∥Γ∥+∥S∥+N ,
even if we fix the dimension d of Γ. As a result, the best complexity bound we can
prove for deciding whether a given automaton accepts a given eventually toric word
with semialgebraic parameters is TOWER. In the next section we will show that if
we fix d = 1 (which, as it turns out, suffices for many of our purposes) then we can
prove much better bounds on Wα(l) compared to Theorem 4.3.4 using a specialised
application of Baker’s theorem.

4.4 Toric words generated by a one-dimensional
rotation

When working with low-dimensional instances of the Model-Checking Problem, we will
encounter a very specific scenario: we will need to decide whether a given deterministic
automaton A accepts the merge α of eventually toric words α0, . . . , αL−1 all generated
by the same one-dimensional rotation γ ∈ T ∩ Q. That is, we have a single
algebraic number γ of modulus one such that for all 0 ≤ r < L and sufficiently
large values of n, αr(n) is the coding of γn with respect to some family of open
semialgebraic subsets of T. In this section, we will prove specialised bounds on Wα(l)
for eventually toric words of this kind. This will give us decision procedures with
elementary complexity in the following two chapters. The key idea is that to analyse
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(γn)n∈N for γ ∈ T ∩ Q, we can employ Baker’s theorem instead of Chen’s quantitative
version Kronecker’s theorem, which produces much stronger bounds on the return
time of (γn)n∈N in semialgebraic S ⊂ T.

By an interval subset of T we mean a set of the form {eiz | z ∈ I} where I ⊂ R
is an interval. By an interval component of S ⊆ T we mean an interval S1 ⊆ S such
that for any interval S2 ⊆ T, if S2 ⊇ S1 then S2 = S1. We next discuss how Baker’s
theorem can be used to bound return times of (γn)n∈N in an interval subset of T.
Compare the following result to Lemma 4.3.6.

Lemma 4.4.1. Let γ ∈ T ∩ Q be not a root of unity and J be an interval subset of T
of length |J | > 0 For every N ∈ N there exists n satisfying

N ≤ n < N +
(

4π
|J |

)Poly(∥γ∥)

such that γn ∈ J .

Recall that Poly(·) stands for an absolute polynomial. Hence the exponent
Poly(∥γ∥) appearing above does not depend on J or N .

Proof. It suffices to prove the claim in case J is open. Let l =
⌊

2π
|J |

⌋
and consider the

intervals {J, . . . , γlJ} on T. Since (l+ 1)|J | > 2π, there exist 0 ≤ m < s ≤ l such that
γmJ intersects γsJ . Let k = s − m and θ = | Log(γk)|. It holds that 0 ≤ k ≤ l and
θ < |J |. Since γ is not a root of unity, γm ̸= γs and hence θ > 0. We next compute a
lower bound on θ. Observe that θ > |γk − 1|. Applying Lemma 2.6.3,

θ > |γk − 1| > (max{2, k})−Poly(∥γ∥).

Since k ≤ l < 4π/|J | and 2 ≤ 4π/|J |, we conclude that

θ > (4π/|J |)−Poly(∥γ∥).

Let L = ⌈2π/θ⌉. By the lower bound on θ above, L < (4π/|J |)Poly(∥γ∥).
Consider the sequence (zn)n∈N of points on T given by zn = γN+kn. It holds that

zn+1 = γkzn and hence |zn+1 − zn| < |J | for all n. Moreover, the finite sequence
⟨z0, . . . , zL⟩ winds around T at least once. Hence there exists

0 ≤ r < L

such that zr ∈ J . That is, γn ∈ J for n = N + kr. It remains to observe that
N ≤ N + kr < N + kL, and recall the bounds on k and L.
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We are now ready to prove the main result of this section. Compare the bound of
the following theorem on Wα with that of Theorem 4.3.4.

Theorem 4.4.2. Let γ ∈ T ∩ Q and for 0 ≤ r < L, αr ∈ Σω
r be eventually toric

with semialgebraic parameters (γ,Nr,Sr). Define I = ∥γ∥ + ∑L−1
r=0 ∥Sr∥ and N =

max0≤r<L Nr. The merge α of α0, . . . , αL−1 is effectively almost-periodic with

Wα(l) ≤ NL+ lPoly(I)

for l > 1.

Proof. Write Sr = {S(r)
σ : σ ∈ Σr}. That is, the open set in Sr corresponding to the

letter σ is S(r)
σ . For n ∈ N, let q(n) = ⌊n/L⌋ and r(n) = n− q(n)L. A letter σ appears

at a position n ≥ NL of α if and only if

αr(n)(q(n)) = σ. (4.2)

Since q(n) ≥ Nr, Equation (4.2) holds if and only if γq(n) ∈ Sr(n)
σ . Note that if γ is a

root of unity of order k, then TΓ = {1, . . . , γk−1}. Otherwise, TΓ = T.
Let u be a finite word of length l > 1. We have to show that Wα(u) < NL+lPoly(I).

The word u appears at a position n ≥ NL in α if and only if

l−1∧
j=0

αr(n+j)(q(n+ j)) = u(j) ⇔
l−1∧
j=0

γq(n+j) ∈ S
(r(n+j))
u(j)

⇔ γq(n) ∈
l−1⋂
j=0

γq(n)−q(n+j)S
(r(n+j))
u(j) .

For n ∈ N, let On = ⋂l−1
j=0 γ

q(n)−q(n+j)S
(r(n+j))
u(j) , which is an open and semialgebraic

subset of T. For all j ∈ N and n1, n2 ∈ N such that n1 ≡ n2 (mod L), we have the
equalities q(n1) − q(n1 + j) = q(n2) − q(n2 + j) and r(n1 + j) = r(n2 + j). Therefore,
On1 = On2 for such n1, n2. It follows that u appears at a position n ≥ N of α if and
only if γq(n) ∈ Or(n). Hence it suffices to only consider O0, . . . , OL−1.

If Or ∩ TΓ is empty for all 0 ≤ r < L, then w does not appear in α[NL,∞).
Otherwise, suppose 0 ≤ r < L is such that O := Or ∩ TΓ is non-empty. First consider
the case where γ is a root of unity of order k ≥ 1. There must exist 0 ≤ m < k such
that γm ∈ Or. Therefore, u occurs in α at the position (nk +m)L+ r for all n ∈ N.
It is classical that the degree of kth primitive root of unity is exactly Φ(k) ≥

√
k/2,

where Φ denotes Euler’s totient function. Hence k ≤ 2 deg(γ)2 ≤ 2∥γ∥2, and the
required bounds on Wα(u) and Wα(l) follow.
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Next, suppose γ is not a root of unity. If O = T, then w occurs in α at all positions
n ≡ r(mod L), and the bound on Wα(u) follows. Suppose therefore O ≠ T. Since O
is open and semialgebraic, it consists of finitely many disjoint open interval subsets
of T. Moreover, by construction, every boundary point of O is of the form γ−kz where
0 ≤ k < l and z is a boundary point of some S(r)

σ . We will next compute a lower
bound on the length of an interval component of O.

Let φ(r)
σ be the quantifier-free formula defining S(r)

σ , given as part of the input. For
0 ≤ r < L and σ ∈ Σr, let E(r)

σ := ∂S(r)
σ be the finite set of boundary points of S(r)

σ

in T. The set E(r)
σ can be defined by the following formula with free variables x, y.

∀ε. ∃x1, x2, y1, y2 : (x− x1)2 + (y − y1)2 < ε

∧ (x− x2)2 + (y − y2)2 < ε

∧ φ(r)
σ (x1, y1)

∧ ¬φ(r)
σ (x2, y2).

Eliminating quantifiers using Theorem 1.3.5, we obtain a representation of E(r)
σ with

∥E(r)
σ ∥ < Poly(I). By Lemma 1.5.6, every α ∈ E(r)

σ is algebraic with ∥α∥ < Poly(I).
Define

E =
⋃

0≤r<L
σ∈Σr

E(r)
σ .

Recall that the endpoints of any interval component of O are of the form γ−kz for
some z ∈ E and 0 ≤ k < l. Let γ−k1z1, γ

−k2z2 ∈ E be two distinct endpoints of an
interval component I ⊂ T of O. W.l.o.g. we can assume k2 ≥ k1. Consider

δ := |γk1z1 − γk2z2| = |z1/z2 − γk2−k1|.

By Lemma 1.5.7, ∥z1/z2∥ < Poly(I). Since k2 − k1 < l, applying Lemma 2.6.3 yields

δ > (max{2, l})−Poly(∥γ∥).

By assumption, l > 1. Hence δ > l−Poly(∥γ∥). We have thus proven that every
interval component of O has length at least l−Poly(∥γ∥). Applying Lemma 4.4.1, for
every n ≥ NL there exists 0 ≤ k < lPoly(I) such that γn+k ∈ O. It follows that
Wα[NL,∞)(u) < lPoly(I) and Wα(u) < NL+ lPoly(I).

101



Chapter 5

The Model-Checking Problem in
dimension at most three

We will now use the theory of toric and effectively almost-periodic words that we
have developed so far to prove decidability of the Model-Checking Problem for linear
dynamical systems in ambient space Rd for d ≤ 3. Our approach will be to show that
the characteristic word α of such (M, s) with respect to any family of semialgebraic
sets T is an interleaving of eventually toric words with semialgebraic parameters,
all generated by the same γ ∈ T ∩ Q. From the results of Section 4.2 it follows
that α itself is eventually toric with semialgebraic parameters and hence effectively
almost-periodic. Effective almost periodicity of α critically depends on restriction
that d ≤ 3: In Chapter 8 we will construct M ∈ Q4×4, s ∈ Q4, and a collection T of
semialgebraic sets such that the characteristic word of (M, s) with respect to T is not
almost-periodic, which implies that it is not eventually toric either.

We can increase the dimension of an LDS freely by adding coordinates that are
always zero. Suppose therefore that we are given (M, s) ∈ Q3×3×Q3 and a collection T
of semialgebraic subsets of R3. Denote by α the characteristic word of (M, s) with
respect to T . To prove eventual toricity of α, we will show that the sign pattern of the
linear recurrence sequence un = p(Mns), where p ∈ Q[x1, x2, x3], is an interleaving of
eventually toric words and hence eventually toric. Such sequences can have arbitrarily
large order and number of dominant roots, and therefore lie beyond the well-known
classes of LRS for which the Skolem Problem (Section 2.3) and the Positivity Problem
(Section 2.5) are known to be decidable. Nevertheless, we are able to apply Baker’s
theorem to analyse the sign pattern of (un)n∈N, exploiting the fact that eigenvalues of
(un)n∈N are multiplicatively generated by {γ, r1, . . . , rm} for some m, where γ ∈ Q∩T
and each ri is real algebraic.
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Once we have established the aforementioned properties of α, we can utilise
the generic model-checking algorithm for eventually toric words with semialgebraic
parameters (page 98) to verify properties of α. The result is the following conceptually
simple algorithm. Given be M ∈ Q3×3, s ∈ Q3, a set of semialgebraic targets T , and
a deterministic automaton A.

1. From M, s, T,A, compute a large integer H.

2. Simulate A on α for the first 2H letters, and record the set S of states that
occur in A(α)[H, 2H).

3. The set of states appearing infinitely often in the run of A on α is exactly S.
Check S against the acceptance condition of A to determine whether A |= α.

Write I = ∥M∥ + ∥s∥ + ∥T ∥ + ∥A∥ for the total input length. The integer H above
can be computed as 22R(I) for an absolute polynomial R ∈ Z[x] that can be extracted
from our proofs. That is, to compute H we only need to look at the input size.
In Section 5.4 we will discuss two decision procedures with EXPSPACE complexity
for the Model-Checking Problem in dimension at most three, one of them comprising
exactly the steps (1-3) above.

We say that a linear dynamical system (M, s) is non-degenerate if all real eigenvalues
of M are non-negative, and for any two distinct eigenvalues λ1, λ2, the ratio λ1/λ2 is not
a root of unity. Compare this to the definition of non-degeneracy for linear recurrence
sequences (page 46). We will first analyse (eventual) toricity of characteristic words of
non-degenerate systems. In Sections 5.1 and 5.2 we prove the following.

Theorem 5.0.1. Let (M, s) ∈ Q3×3 × Q3 be non-degenerate. There exists γ ∈ Q ∩ T
that only depends on M with the following properties.

(a) A representation of γ can be computed in polynomial time given M .

(b) Let T be a set of semialgebraic targets, α be the characteristic word of (M, s)
with respect to T , and I = ∥M∥ + ∥s∥ + ∥T ∥. Given M, s, T , in time Poly(I)
we can compute an integer N and a collection S of semialgebraic subsets of T
such that α is eventually toric with semialgebraic parameters (γ,N,S).

In Sections 5.3 and 5.4 we will show how to handle general matrices and give the
model-checking procedure. The results of this chapter illustrate all important aspects
of how we prove decidability of various subclasses of the Model-Checking Problem
throughout this thesis.

103



5.1 Non-degenerate M with a non-real eigenvalue

In this section we prove Theorem 5.0.1 for non-degenerate M ∈ Q3 with a non-real
eigenvalue. We begin by analysing sequences of the form un := p(Mns) where p is a
polynomial with rational coefficients. The lemma below shows that if this sequence
is not identically zero, then for sufficiently large values of n, the sign of un can be
determined from γn, where γ = λ/|λ| for an eigenvalue λ of M .

Lemma 5.1.1. Let M ∈ Q3×3 be non-degenerate with non-real eigenvalues λ, λ and
real eigenvalue ρ > 0. Further let s ∈ Q3 and p ∈ Q[x1, x2, x3]. Write γ = λ/|λ| and
I for the total input size ∥M∥ + ∥s∥ + ∥p∥. Either p(Mns) = 0 for all n ∈ N, or there
exist open semialgebraic S ⊆ T and N ∈ N, both computable in time Poly(I), with
the following properties.

(a) For all n ≥ N , p(Mns) ̸= 0.

(b) For all n ≥ N , p(Mns) > 0 ⇔ γn ∈ S.

Proof. Since M is non-degenerate, (λ/λ)k = γk ̸= 1 for all non-zero k ∈ Z. Hence γ is
not a root of unity. Let K = Q(λ, λ, ρ, |λ|) and D = [K : Q]. Since deg(λ), deg(ρ) ≤ 3
and deg(|λ|) < Poly(deg(λ)), the degree D is bounded above by an absolute constant
that does not depend on M . All algebraic numbers we will need are elements of K.

Let un = p(Mns). Since M is diagonalisable, we can apply Lemma 2.2.5 with
d = 3 to compute in time polynomial in I the representation

un =
A∑

j=1
hj(λ, λ, ρ)Λn

j (5.1)

where Λ1, . . . ,ΛA are non-zero and pairwise distinct, hj ∈ Q[x1, x2, x3], and hj(λ, λ, ρ)
is non-zero for all j. If A = 0, then p(Mns) is identically zero, and we are done.
Suppose therefore A ≥ 1. Observe that λ = |λ|γ and λ = |λ|γ−1. Since each entry of
Mn is linear in λn, λn, ρn, for all 1 ≤ j ≤ A,

Λj = λkj,1λ
kj,2ρkj,3

where kj,1, kj,2, kj,3 ∈ N and kj,1 + kj,2 + kj,3 ≤ deg(p). Hence Λj = rjγ
kj where

kj = kj,1 − kj,2 with |kj| ≤ deg(p) and rj = ρkj,3|λ|kj,1+kj,2 > 0 is real algebraic.
Applying Corollary 1.5.8 and Lemma 1.5.10, every rj can be computed in time
polynomial in I. We have thus shown that un is of form q(γn, γ−n, rn

1 , . . . , r
n
A) for a

polynomial q with algebraic coefficients.
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Let R = max1≤j≤A rj, D = {j : rj = R} and R = {j : rj < R}. Consider the
sequence vn := p(Mns)/Rn. Clearly, (vn)n∈N and (un)n∈N have identical sign patterns.
Moreover,

vn =
∑
j∈D

hj(λ, λ, ρ)γkjn

︸ ︷︷ ︸
dn

+
∑
j∈R

hj(λ, λ, ρ)γkjn
(
rj

R

)n

︸ ︷︷ ︸
rn

. (5.2)

Here dn is the dominant part of vn, since all eigenvalues of (dn)n∈N have modulus
exactly one, whereas the eigenvalues of (rn)n∈N, if any, have modulus less than one.
Our approach will be to show existence of N such that for n ≥ N , |dn| is much larger
than |rn| and hence the sign of p(Mns) can be recovered from the sign of dn.

Consider wn := γn deg(p)dn. Observe that |wn| = |dn| for all n. Since |kj| ≤ deg(p)
for all j ∈ D, we have that wn = q(γn) for a non-zero polynomial q ∈ Q[x] of degree at
most 2 deg(p) whose non-zero coefficients are of the form hj(λ, λ, ρ) for some 1 ≤ j ≤ A.
Applying Lemma 2.6.4 with m = 3, there exist N1, C < Poly(I) computable in time
Poly(I) such that for all n ≥ N1,

|wn| = |dn| > n−C .

Let us next consider
rn =

∑
j∈R

hj(λ, λ, ρ)γkjn
(
rj

R

)n

.

By Lemma 1.5.7 and corollary 1.5.8 we can compute canonical representations of alge-
braic numbers hj(λ, λ, ρ), rj/R and |rj/R| in time Poly(I). Let R1 = maxj∈R |rj/R|.
Applying Lemma 2.4.1, there exists K < 2Poly(I) computable in time Poly(I) such
that

|rn| < KRn
1

for all n. It remains to compare this to the lower bound on |dn| above. Since
∥rj/R∥ < Poly(I) for all j, by Lemma 1.5.1

1 −R1 > 2−Poly(I).

Applying Lemma 2.4.3, in time Poly(I) we can compute an integer N ≥ N1 such
that for all n ≥ N ,

|dn| > n−C > KRn
1 > |rn|.

Recall from Lemma 2.2.3 that since un is a real-valued LRS, the summands of the
exponential polynomial in Equation (5.1) are closed under conjugation. Since the
magnitudes of z and z are equal for all z ∈ C, the summands of both dn and rn in
Equation (5.2) are also closed under conjugation. Hence both (dn)n∈N and (un)n∈N

105



are real-valued LRS, although unlike (un)n∈N, they need not to take values in Q. It
follows that for n ≥ N , vn ̸= 0 and sign(vn) = sign(dn).

So far we have constructed integer N such that for n ≥ N , p(Mns) ̸= 0 and
p(Mns) > 0 ⇔ f(γn) > 0, where

f(z) =
∑
j∈D

hj(λ, λ, ρ)zkjn ∈ R.

We can therefore define S = {z ∈ C : f(z) > 0} ∩ T. Applying Lemma 1.5.5 with
m = 3 and k = 1, a representation of S can be computed in time polynomial in I.

Let (M, s) be as in the statement of Lemma 5.1.1, and T be a set of semialgebraic
subsets of R3. We can already prove that the characteristic word of (M, s) with
respect to T is eventually toric with semialgebraic parameters, which is essentially
the statement of Theorem 5.4.2, using the closure properties of such words studied in
Chapter 4. Let p1, . . . , pK ∈ Q[x1, x2, x3] be polynomials defining T , and for 1 ≤ i ≤ K,
let αi ∈ {+, 0,−}ω be the sign pattern of the LRS p(Mns). By Lemma 5.1.1, each αi

is eventually toric with semialgebraic parameters (γ,Ni,Si) for some Ni and Si. The
characteristic word α of (M, s) with respect to T is the result of applying a renaming
f : {+, 0,−}K → 2T to the product word α1 × · · · × αK . Applying Lemmas 4.2.1
and 4.2.2, and noting that every αi is the coding of the same rotation γ, we conclude
that α is eventually toric with semialgebraic parameters (γ,N,S) for some N and S.

In order to accurately keep track of complexity bounds, we will prove Theorem 5.4.2
for (M, s) with a non-real eigenvalue directly, rather than following the argument
given in the preceding paragraph. First we lift the statement of Lemma 5.1.1 to
semialgebraic sets defined by more than one polynomial inequality.

Lemma 5.1.2. Let M, s, λ be as in the statement of Lemma 5.1.1, γ = λ/|λ|, and
T ⊆ R3 be semialgebraic. Denote by I the total input size ∥M∥ + ∥s∥ + ∥T∥. In time
Poly(I) we can compute N(T ) ∈ N and open semialgebraic S(T ) ⊆ T such that for
all n ≥ N(T ), Mns ∈ T if and only if γn ∈ S(T ).

Proof. Let ψ(x1, x2, x3) be the quantifier-free input formula defining T . Applying
Theorem 1.3.5, in polynomial time we can compute

φ(x1, x2, x3) :=
∧
i∈I

∨
j∈J

pi,j(x1, x2, x3) ∆i,j 0
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equivalent to ψ(x1, x2, x3), where each pi,j is a polynomial with rational coefficients.1

By multiplying the inequalities through −1 when necessary, we can assume that
∆i,j ∈ {≥, >,=} for all i, j. For every i, j, perform the following.

(1) Using Lemmas 2.2.1 and 2.2.5 check in polynomial time whether pi,j(Mns) is
identically zero (as a function of n).

(2) If pi,j(Mns) is identically zero, define Ni,j = 0 and

Si,j =

T in case ∆i,j ∈ {≥,=},
∅ otherwise.

(3) If pi,j(Mns) is not identically zero, apply Lemma 5.1.1 to compute in time
Poly(I) open semialgebraic Si,j ⊆ T and a time bound Ni,j such that for all
n ≥ Ni,j, pj(Mns) ̸= 0 and

pi,j(Mns) > 0 ⇔ γn ∈ Si,j.

We have that for all i, j and n ≥ Ni,j, the inequality pi,j(x1, x2, x3) ∆i,j 0 holds if and
only if γn ∈ Si,j. Moreover, each Si,j is an open subset fo T. It remains to define
N(T ) := maxi,j Ni,j and

S(T ) :=
⋂
i∈I

⋃
j∈J

Si,j

which can be computed in time Poly(I).

We can now prove Theorem 5.0.1 in case M has non-real eigenvalues λ, λ and a
real eigenvalue ρ. Let γ = λ/|λ|, which can be computed in polynomial time given M
using the results of Section 1.5.4. Write T = {T1, . . . , Tℓ}. For each letter σ ∈ 2T ,
define Xσ = ⋂ℓ

i=1 Yi, where

Yi =

Ti if Ti ∈ Σ,
R3 \ Ti otherwise.

Observe that each Xσ is semialgebraic and computable in polynomial time. Moreover,
for all n ∈ N, α(n) = σ if and only if Mns ∈ Xσ. Apply Lemma 5.1.2 to each Xσ

to compute in polynomial time integer Nσ and semialgebraic Sσ ⊂ T such that for
all n ≥ N , Mns ∈ Xσ if and only if γn ∈ Sσ. Taking N = maxσ∈Σ Nσ, the word α is
eventually toric with parameters (γ,N, {Sσ : σ ∈ Σ}).

1Here we used the quantifier elimination algorithm to transform ψ, which was already quantifier-
free, into the desired shape in conjunctive normal form.

107



5.2 Non-degenerate M with only real eigenvalues

In this section let M ∈ Q3×3 be non-degenerate with real eigenvalues ρ1, ρ2, ρ3, and
s ∈ Q3 be a starting point. Recall from the definition of non-degeneracy (page 103)
that each ρi must be non-negative. We will show that the characteristic word α of the
orbit (Mns)n∈N with respect to any collection T of semialgebraic sets is ultimately
constant.

Lemma 5.2.1. Let T be a semialgebraic set and I = ∥M∥ + ∥s∥ + ∥T ∥. In time
Poly(I) we can compute integer N such that either Mns ∈ T for all n ≥ N , or
Mns /∈ T for all n ≥ N .

Proof. Let φ(x1, x2, x3) be the input quantifier-free formula defining T . Apply Theo-
rem 1.3.5 to compute in polynomial time equivalent formula

∨
i∈I

∧
k∈K

qi,k(x1, x2, x3) ∆i,k 0

in the disjunctive normal form. Fix i ∈ I and k ∈ K. By Lemma 2.2.4, in time
Poly(∥M∥ + ∥s∥ + ∥p∥) < Poly(I) we can compute the exponential polynomial

f(n) :=
A∑

j=1
pj(n)rn

j

such that f(n) = qi,k(Mns) for n ≥ 3. Recall that r1, . . . , rA are non-zero and pairwise
distinct, and each pj is a non-zero polynomial. Each pj will, in fact, have real algebraic
coefficients. This can be seen by writing Mn = P−1JnP , where J is in real Jordan
form, and invoking uniqueness of the exponential polynomial solution (Theorem 2.2.2).
Since each rj is of the form ρa

1ρ
b
2ρ

c
3 for a, b, c ∈ N, rj ≥ 0. Applying Lemma 2.4.4

to f(n), in time Poly(I) we can compute an integer Ni,k and ∆ ∈ {>,=, <} such that
for all n ≥ Ni,k, qi,k(Mns) ∆ 0. It remains to apply this to every qi,k for i ∈ I, k ∈ K,
and take N = maxi,k Ni,k.

To prove Theorem 5.0.1 for M with only real eigenvalues, first recall from page 107
that for each letter σ ∈ Σ in polynomial time we can compute semialgebraic Xσ such
that α(n) = σ ⇔ Mns ∈ Xσ for all n. Applying the lemma above, for each Xσ there
exists Nσ, computable in polynomial time, such that either Mns ∈ Xσ for all n ≥ Nσ,
or Mns /∈ Xσ for all n ≥ Nσ. Writing N = maxσ∈Σ Nσ, therefore, α[N,∞) = aω for
a letter a ∈ Σ. Equivalently, α is eventually toric with parameters (γ,N,S) where
Sa = T, Sσ = ∅ for all σ ̸= a, and γ can be taken to be 1 (or any other z ∈ T ∩ Q).
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5.3 Handling degenerate instances

Recall that M is non-degenerate if

(a) all real eigenvalues of M are non-negative, and

(b) for any distinct eigenvalues λ1, λ2 of M , the ratio λ1/λ2 is not a root of unity.

We can eliminate degeneracy by raising the matrix M to a sufficiently large power.
First, a lemma about roots of unity. For a root of unity z, write ord(z) for the smallest
positive integer k such that zk = 1.

Lemma 5.3.1. Let K be a number field of degree D. Every root of unity in K has
order at most 2D2.

Proof. Let z ∈ K be a root of unity with ord(z) = k. It is classical that

deg(z) = Φ(k) ≥
√
k/2

where Φ denotes Euler’s totient function. Hence

k ≤ 2 deg(z)2 ≤ 2D2.

The main result of this section is the following.

Lemma 5.3.2. For every M ∈ Qd×d, there exists L < 2Poly(d) such that ML is
non-degenerate.

Proof. Let λ1, . . . , λd be the eigenvalues of M , K = Q(λ1, . . . , λd), and D = [K : Q].
By the Tower Law,

D ≤
∏

1≤i≤d

deg(λi) ≤ dd.

Let ωi,j = λi/λj for 1 ≤ i, j ≤ d, and define

ki,j =

ord(ωi,j) if ωi,j is a root of unity,
1 otherwise.

We can then take
L = 2

∏
1≤i,j≤d

ki,j.

Suppose λL
i /λ

L
j is a root of unity for some 1 ≤ i, j ≤ d. Then λi/λj is also a root

of unity, which, by construction of L, implies that λL
i = λL

j . Since the eigenvalues
of ML are exactly λL

1 , . . . , λ
L
d , and L is even, ML is non-degenerate. It remains to

bound the magnitude of L. By Lemma 5.3.1, ki,j ≤ 2D2 for all i, j. Therefore,
L ≤ 2(2D2)d(d−1)/2 ≤ 2Poly(d).
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Given (M, s), constructing non-degenerate LDS (ML,M rs) for 0 ≤ r < L is a
recurring theme in analysis of linear linear dynamical systems. Observe that the orbit
(Mns)n∈N of (M, s) is the merge of the orbits of (ML, s), . . . , (ML,ML−1s). Hence,
for example, if we could decide the Reachability Problem for non-degenerate LDS,
then we could also decide the full Reachability Problem by reducing it to L instances
involving non-degenerate LDS.

5.4 The model-checking algorithm

We are now ready to prove eventual toricity of the characteristic word and give the
model-checking algorithm for three-dimensional linear dynamical systems. First, we
will need a subroutine that, given (M, s), a collection of semialgebraic sets T , and
n ∈ N, computes α(n), i.e. the set of targets T ∈ T such that Mns ∈ T .

Lemma 5.4.1. Given M and s with rational entries, n ∈ N, and semialgebraic T ,
whether Mns ∈ T can be determined in Poly(∥M∥, ∥s∥, ∥T∥, log n) space.

Proof. Denote by φ the quantifier-free formula defining T given as part of the
input. Using iterative squaring,2 we can write a sentence ψ ∈ Lor of the form
∃x1, . . . , xm : µ(x1, . . . , xm), where m = O(log n) and µ is quantifier-free, such that
∥ψ∥ < Poly(∥M∥, ∥s∥, ∥T∥, log n) and ψ holds if and only if Mns ∈ T . It remains to
apply Theorem 1.3.5 to verify ψ.

Our main result is as follows.

Theorem 5.4.2. Let d ≤ 3, M ∈ Qd×d, s ∈ Qd, T = {T1, . . . , Tℓ} be a set of
semialgebraic targets, Σ = 2T , and A be a deterministic automaton over Σ.

(✠) The characteristic word α of (M, s) with respect to T is eventually toric with
semialgebraic parameters.

(⋆) It is decidable whether A accepts α, with complexity in EXPSPACE.

Proof. If d < 3, then we can make the problem instance three-dimensional by adding
one or two new coordinates. Suppose therefore d = 3, and write I := ∥M∥ + ∥s∥ +
∥T ∥ + ∥A∥. As discussed in Section 5.3, there exists L < 2Poly(d) < Poly(I) such
that ML is non-degenerate. We consider the family of non-degenerate systems

(ML, s), (ML,Ms), . . . , (ML,ML−1s).
2See the footnote on page 86.
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Denote the characteristic word of (ML,M rs) with respect to T by αr, and observe
that ∥ML∥, ∥M rs∥ = Poly(I). Applying Theorem 5.0.1 to (ML,M rs) for 0 ≤ r < L,
in time Poly(I) we can compute γ ∈ T ∩ Q, integers N0, . . . , NL−1, and collections
S0, . . . ,SL−1 of semialgebraic subsets of T such that each αr is eventually toric with
semialgebraic parameters (γ,Nr,Sr). From Theorem 4.2.3 it follows that α is also
eventually toric with semialgebraic parameters, proving (✠).

Let N = Lmax0≤r<L Nr, observing that N < 2Poly(I). By Theorem 4.4.2, there
exists an absolute polynomial P such that the word β := α[N,∞) is effectively
almost-periodic with

Wβ(l) < l2
P (I)

for l ≥ 2. Since Wβ(1) ≤ Wβ(2),

W̃(l) =

22P (I)
, if l = 1,

l2
P (I)

, otherwise

is an over-approximation of Wβ(l), i.e. a window function for β. We mention that
since β = α[N,∞) and N < 2Poly(I), there exists an absolute polynomial Q ∈ Z[x]
such that α is effectively almost-periodic with Wα(l) < l2

Q(I) for all l ≥ 2.
Let q be the state of A after reading the first N letters of α, which can be determined

in polynomial space by Lemma 5.4.1. Further let B be the deterministic automaton
that has q as the start state and is identical to A otherwise. By construction, A
accepts α if and only if B accepts β. Let

H = 2W̃ |Q|+1(2W̃ |Q|+1(1) + 1) < 22Poly(I)
. (5.3)

By Theorem 3.1.3 and Corollary 3.1.4, the set of states that appear infinitely often in β
is exactly the set of letters that appear in w := B(β)[H, 2H). Applying Lemma 5.4.1,
the set of states appearing in w can be determined in space 2Poly(I), proving (⋆).

The algorithm of Theorem 5.4.2 computes L, representations of eventually toric
words αr for 0 ≤ r < L, and so on. These are the steps that an efficient real-world
implementation of the model-checking procedure would take. As mentioned in the
introduction to this chapter, we can also give a simple alternative algorithm with the
same worst-case complexity bound.3 Let d ≤ 3, M ∈ Qd×d, s ∈ Qd, T be a set of
semialgebraic subsets of Rd, and A be a deterministic automaton. We showed in the

3The alternative algorithm we present is slightly more involved than the generic model-checking
algorithm for toric words given on page 98, as the complexity bound for the latter on our problem
instances is worse than EXPSPACE.
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proof of Theorem 5.4.2 that there exists an absolute polynomial Q ∈ Z[x] such that
the characteristic word α of (M, s) with respect to T is effectively almost-periodic
with Wα(l) < l2

Q(I) for all l ≥ 2. Define

f(l) =

22Q(I)
, if l = 1,

l2
Q(I)

, otherwise

similarly to the proof of Theorem 5.4.2, and let R ∈ Z[x] be a polynomial such that

2fn (2fn (1) + 1) < 22R(n)

for all n ≥ 1, where fn(x) denotes f(f(· · · (f(x))))︸ ︷︷ ︸
n times

.4 Observe that R is fully effective

in the sense that it can be extracted from our results. Corollary 3.1.4 guarantees that
a state of A appears infinitely often in A(α) if and only if it appears in A(α)[H, 2H),
where H = 22R(I) and I = ∥M∥ + ∥s∥ + ∥T ∥ + ∥A∥. Hence in order to decide whether
A accepts α, we can compute H, simulate A on α for 2H steps, record the set S
of states appearing in A(α)[H, 2H), and finally compare S against the acceptance
condition of A.

4Compare this with Equation (5.3), noting that for all inputs M, s, T ,A, |Q| + 1 < I where Q is
the number of states in A.
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Chapter 6

The Model-Checking Problem with
tame targets

In this chapter we consider instances of the Model-Checking Problem where the
semialgebraic target sets belonging to T have relatively simple geometry. We say that
a semialgebraic set T ⊆ Rd is

(A) low-dimensional if it has semialgebraic dimension (see Section 1.4) at most one,
or is contained in a three-dimensional subspace of Rd, and

(B) tame if it can be obtained from a set of low-dimensional sets through finitely
many intersections, unions, and complements.

We will show that the Model-Checking Problem is decidable for arbitrary (M, s)
assuming all targets in T are tame.

It will be more convenient to work with low-dimensional targets directly rather
than with tame targets. Let (M, s) be a linear dynamical system, T1 be a set of tame
targets and A1 be a deterministic automaton over Σ1 := 2T1 . In Section 6.4 we will
give an algorithm for computing a set T2 of low-dimensional targets from which every
T ∈ T1 can be generated using the standard set operations. Let Σ2 := 2T2 , and denote
by α1, α2 the characteristic words of (M, s) with respect to T1 and T2, respectively.
We can construct a deterministic automaton A2 that accepts α2 if and only if A1

accepts α1. To do this, observe that there exists a renaming f : Σ2 → Σ1 (that can
be computed from the sequence of set operations on T2 that generate T1) such that
for all n ∈ N, f(α2(n)) = α1(n). The automaton A2 has the same set of states as A1.
Let p, q be two states, and σ1, . . . , σk be all distinct labels of transitions from p to q
in A1. In A2, the set of all labels of all transitions from p to q is f−1({σ1, . . . , σk}).
We have thus reduced the MCP with tame targets to the MCP with low-dimensional
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targets. Until Section 6.4 we will assume that we are given a set T of low-dimensional
sets as part of the input when considering the MCP.

In the preceding chapter we saw that, for a three-dimensional linear dynamical
system (M, s) and a set T = {T1, . . . , Tℓ} of semialgebraic predicates, by understanding
sufficiently well the time steps at which the orbit (Mns)n∈N visits every Ti (e.g. using
toricity), we can model check the orbit of (M, s) against ω-regular properties over T .
We next illustrate how the low-dimensionality assumption on targets helps us obtain
decidability results for arbitrary LDS in a similar way. For simplicity, let us restrict
our attention to diagonalisable systems. For (M, s) ∈ Q3×3 ×Q3, whether Mns ∈ T is
determined by polynomial inequalities of the form p(λn

1 , λ
n
2 , λ

n
3 ) ∆ 0, where λ1, λ2, λ3

are the eigenvalues of M . In other words, to understand reachability in T we have to
understand sign patterns of linear recurrence sequences of the form un = p(λn

1 , λ
n
2 , λ

n
3 ),

with the restriction that Λ := {λ1, λ2, λ3} is closed under Galois conjugation. LRS of
this form are at the boundary of what we can handle: For example, deciding whether
un = p(λn

1 , λ
n
2 , λ

n
3 ) is ever zero without assuming closure of Λ under Galois conjugation

is equivalent to the Skolem Problem at order 5, which is currently open.1

Now suppose M ∈ Qd×d is diagonalisable, and let s ∈ Qd, T be a one-dimensional
semialgebraic target, and V be a three-dimensional subspace of Rd. Since every
semialgebraic set of dimension at most one is contained in a semialgebraic set of
dimension exactly 1 (assuming d > 0), the sets T and V are prototypical “container”
sets for low-dimensional targets. We can find d − 1 “independent” polynomials
p1, . . . , pd−1 ∈ Q[x1, . . . , xd] such that x ∈ T if and only if pi(x) = 0 for all i. In terms
of the eigenvalues λ1, . . . , λd of M , for all n ∈ N,

Mns ∈ T ⇔
d−1∧
i=1

hi(λn
1 , . . . , λ

n
d) = 0

where each hi has algebraic coefficients and satisfies hi(λn
1 , . . . , λ

n
d) = pi(Mns). Assum-

ing h1, . . . , hd−1 are also sufficiently “independent”, for each 1 ≤ j < k ≤ d using vari-
able elimination a polynomial q can be computed such that Mns ∈ T ⇒ q(λn

j , λ
n
k) = 0.

Hence we have to understand the zero terms of linear recurrence sequences of the form
un = q(λn

j , λ
n
k). This brings us back to the realm of LRS of low complexity that we

can handle: Recall that we gave effective Skolem-Mahler-Lech theorems for sequences
of the form un = p(αn, βn) and un = p(n, αn), where p ∈ Q[x1, x2], in Section 2.7.

1The only open case of the Skolem Problem at order 5 is un = aλn + aλn + bγn + b γn + ρn,
where w.l.o.g. we can assume |λ| = |γ| = 1 and |ρ| < 1; see Section 2.3. Since λ = λ−1 and γ = γ−1,
vn = λnγnun is of the form p(λn, γn, ρn) for p ∈ Q[x1, x2, x3]. Note that un = 0 ⇔ vn = 0.
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Bounds on the zeros of sequences of the latter type will be used when we perform the
aforementioned variable elimination on non-diagonalisable systems.

Similarly, for the target V , for all n ∈ N,

Mns ∈ V ⇔
d−3∧
i=1

fi(λn
1 , . . . , λ

n
d) = 0

where each fi is a linear polynomial with algebraic coefficients. Eliminating variables
carefully (i.e. eliminating conjugate pairs together), we can compute un = ∑4

i=1 ciλ
n
i

such that (un)n∈N is a real-valued linear recurrence sequence, and Mns ∈ T ⇒ un = 0
for all n ∈ N, Since the Skolem Problem is known to be decidable for real algebraic
LRS of order at most 4, zeros of (un)n∈N can all be effectively determined.

In this chapter we will carry out the variable elimination described above to show
that the characteristic word α of (M, s) with respect to a set T of tame predicates is
eventually toric with semialgebraic parameters and hence effectively almost-periodic.
We will move from Rd to Cd by taking the complexification of the semialgebraic
target T , which is the smallest affine algebraic variety containing T . Thereafter we will
use tools from first-order logic (see Section 1.3.2) to implement necessary procedures
from algebraic geometry, most notable projections. In the end, we will have shown
that characteristic words of LDS with respect to tame targets are not too different
from characteristic words of three-dimensional systems, in the sense that α is again
an interleaving of eventually toric words all generated by the same γ ∈ T ∩ Q. In
Chapter 8 we will prove that the decidability results of this section are tight: For
example, it will be shown that reachability problems for targets that have semialgebraic
dimension two, or, for that matter, are contained in a four-dimensional subspace,
subsume open cases of the Skolem and Positivity problems.

Just like in Chapter 5, our results in this chapter imply an algorithm of the
following shape for deciding the Model-Checking Problem restricted to tame targets.

1. Given M, s, T,A, compute a large integer H.

2. Denote by α the characteristic word of (M, s) with respect to T . Simulate
A on α for the first 2H letters, and record the set S of states that occur in
A(α)[H, 2H).

3. The set of states appearing infinitely often in the run of A on α is exactly S.
Check S against the acceptance condition of A.
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In Section 6.4, we will give a more interpretable algorithm that behaves efficiently in
various special cases.

Our plan for this chapter is as follows. In Section 6.1 we will discuss how to
transform given (M, s) into a family of full-dimensional systems before deploying
algebraic and semialgebraic geometry to carry out the variable elimination described
above. This pre-processing step is necessary to deal with systems like

M =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , s =

1
0
0


whose “true dimension” (in this case 2, as the last coordinate is always zero) is less
than their syntactic dimension. In sections 6.2 and 6.3 we show that the characteristic
word of a full-dimensional and non-degenerate system with respect to a single low-
dimensional target is eventually toric. Finally, in Section 6.4 we bring everything
together and give the model-checking algorithm.

6.1 Full-dimensional systems

We next define the notion of a full-dimensional linear dynamical system and show
how to translate a given instance of the Model-Checking Problem to one involving
only full-dimensional systems. Full-dimensional systems are free from various kinds of
degenerate behaviour exhibited by general LDS.

6.1.1 The inherent linear dimension of an orbit

In this section let (M, s) ∈ Qd×d × Qd and J = PMP−1 be in Jordan form with
J = diag(J1, J2), where Ji ∈ Qdi×di for i ∈ {1, 2}, J1 is invertible, and J2 is nilpotent.
Write s̃ := Ps = (s̃1, s̃2) where each s̃i ∈ Qdi .

We define
dim(A, x) := dimR(spanR({x,Ax,A2x, . . .}))

for any matrix A and vector x, both with complex entries. That is, dim(A, x) is the
dimension of the smallest real vector space enclosing (Anx)n∈N. We say that (A, x)
has stable dimension if there exists µ such that for all n ∈ N, dim(A,Anx) = µ. Such
a system is full-dimensional if µ is as large as possible, i.e. A ∈ Cµ×µ. Observe that if
the matrix A is invertible, then (A, x) has stable dimension.

As the dimension of a vector space is preserved under invertible linear maps,

dim(M,Mks) = dim(PM,PMks) = dim(J, Jks̃)
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for all k ∈ N. Since J1 is invertible Jn
2 = 0 for n ≥ d, both (J, Jds̃) and (M,Mds)

have stable dimension. That is, once we discard the first d terms of the orbit of (M, s),
we obtain a new orbit that has stable dimension. The next lemma describes what
happens when we combine discarding the prefix with taking subsequences.

Lemma 6.1.1. Let L > 0. There exists µ ≤ d such for all 0 ≤ r < L, (ML,Md+rs)
has stable dimension and dim(ML,Md+rs) = µ.

Proof. By the observations above,

dim(ML,Md+rs) = dim(JL, Jd+rs̃) = dim(JL
1 , J

d+r
1 s̃)

for all 0 ≤ r < L. Because JL
1 is invertible, (JL

1 , J
d+r
1 s̃) has stable dimension.

Since Jr
1 is invertible, dim(JL

1 , J
d+r
1 s̃) = dim(JL

1 , J
d
1 s̃) = dim(ML,Mds). Writing

µ = dim(ML,Mds), we have

dim(ML,Md+rs) = µ

for all 0 ≤ r < L.

Given an LDS (M1, s1) with stable dimension and a set T1 of low-dimensional
predicates, through a change of basis one can construct full-dimensional (M2, s2) and a
new set of low-dimensional predicates T2 such that the characteristic word of (M1, s1)
with respect to T1 is, up to a renaming of letters, the same as the characteristic word
of (M2, s2) with respect to T2. Lemma 6.1.2 and corollary 6.1.3 show that when this
is done simultaneously on L sub-orbits of (M, s), we can choose all L full-dimensional
systems to be the same. Recall that ek stands for the kth standard basis vector.

Lemma 6.1.2. Let L > 0, 0 ≤ r < L, and T ⊆ Rd be low-dimensional. Write

un = MnL+r+ds =
(
ML

)n
Md+rs.

In time Poly(I), where I = ∥M∥+∥s∥+∥T∥+L, we can compute µ ≤ d, R ∈ Qµ×µ,
t ∈ Qµ, and a low-dimensional semialgebraic set T̃ ⊆ Rµ with the following properties.

(a) (R, t) only depends on M,L, s, and is full-dimensional.

(b) The eigenvalues of R form a subset of the eigenvalues of ML.

(c) For all n ∈ N,
un ∈ T ⇔ Rnt ∈ T̃ .
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Proof. Applying Lemma 6.1.1, in time Poly(I) we can compute m ≤ d such that
both (ML,Mds) and (ML,Md+rs) have stable dimension with

dim(ML,Md+rs) = dim(ML,Mds) = m. (6.1)

If m = 0, then choose µ = 1, R = [1], t = 1, and T̃ = {1} if 0 ∈ T and T̃ = ∅
otherwise. Suppose m > 0, and let µ = m. Since dim(ML,Md+rs) = µ and M, s

have rational entries, there exist c0, . . . , cµ−1 ∈ Q such that uµ = ∑µ−1
i=0 ciui. We will

need to understand rational linear dependence between consecutive terms of (un)n∈N.
Define

vn = MnLMds.

It holds that un = M rvn for all n. Let k ≥ 0 and b0, . . . , bk ∈ Q. Since J1 is invertible
and J l

2 = 0 for l ≥ d, for all n ∈ N,

k∑
i=0

biun+i = 0 ⇔
k∑

i=0
biJ

(n+i)L+r+d s̃ = 0

⇔
k∑

i=0
biJ

(n+i)L+r+d
1 s̃1 = 0

⇔
k∑

i=0
biJ

iL+d
1 s̃1 = 0

⇔
k∑

i=0
biJ

iL+d s̃ = 0

⇔
k∑

i=0
bivi = 0.

In particular, for all b0, . . . , bk and n,m ∈ N,

k∑
i=0

biun+i = 0 ⇔
k∑

i=0
bium+i = 0.

Since dim(ML,Md+rs) = dimR {un : n ∈ N} = µ, we conclude that {u0, . . . , uµ−1} is
a basis of U := spanR{un : n ∈ N}, and {v0, . . . , vµ−1} is a basis of spanR{vn : n ∈ N}.
We next show how to compute the unique recurrence relation2 a = (a0, . . . , aµ) ∈ Qµ+1

such that aµ = 1 and ∑µ
i=0 aiui = 0. We will then use recurrence relation a to perform

a change of basis and compute (R, t). The particular choice of a will be crucial to
proving property (b). We make the following definitions.

2Sequences (un)n∈N and (vn)n∈N are not linear recurrence sequences according to our definition:
Recall that the terms of an LRS and the coefficients of a defining recurrence relation must belong to
the same ring R.
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(i) R1 := ⋃
k∈N {(b0, . . . , bk) ∈ Qk+1 | ∑k

i=0 bi

(
ML

)i
= 0}.

(ii) R2 := ⋃
k∈N {(b0, . . . , bk) ∈ Qk+1 | ∑k

i=0 biui = 0}.

(iii) R3 := ⋃
k∈N {(b0, . . . , bk) ∈ Qk+1 | ∑k

i=0 bivi = 0}.

Recall that ∑k
i=0 biui = 0 ⇔ ∑k

i=0 bivi = 0. Hence R2 = R3, and we write R := R3.
Observe that R1 ⊆ R. We will show that both R and R1 are generated by a single
recurrence relation.

Define φ : ∪k≥1 Qk → Q[x] to be the bijection (b0, . . . , bk−1) 7→ ∑k−1
i=0 bix

i. Let
K = φ(R) and K1 = φ(R1). It can be verified directly that both K and K1 are ideals
of Q[x]. Since every ideal of Q[x] is principal, there exist unique monic polynomials
p, p1 ∈ Q[x] such that K and K1 are the principal ideals generated by p and p1,
respectively. The polynomial p1 is the minimal polynomial of the matrix ML, which
is a factor of the characteristic polynomial of ML. Since K1 ⊆ K, the polynomial p
must divide p1 in Q[x]. This will be the critical property for proving (b).

We are now ready to compute the polynomial p generating the ideal K and hence
the desired recurrence relation a ∈ Qµ+1. Since L < I, we can compute ML and
v0, . . . , vµ in time Poly(I). Thereafter, in time polynomial in I, using Gaussian
elimination we can compute a = (a0, . . . , aµ) ∈ Qd such that aµ = 1 and ∑µ

i=0 aivi = 0.
In particular, a ∈ R. Since {v0, . . . , vµ−1} is a basis of spanR{vn : n ∈ N}, the lowest
degree of a polynomial in the ideal K is µ. Hence there exists a unique monic
polynomial p ∈ K with deg(p) = µ. The polynomial p, moreover, generates K.
Observe that φ(a) is a monic polynomial of degree µ in K. Therefore, φ(a) = p. That
is, p(x) = ∑µ

i=0 aix
i generates K.

By the earlier argument, ∑µ
i=0 aivi = 0 implies that ∑µ

i=0 aivn+i = 0 and hence
vn+µ = ∑µ−1

i=0 −aivn+i for all n ∈ N. Since R2 = R3,

un+µ =
µ−1∑
i=0

−aiun+i.

Writing wa = (−a0, . . . ,−aµ−1) ∈ Qd, we are thus led to defining t = e1 and

R = [e2 · · · eµ wa] ∈ Qµ×µ.

Observe that R⊤ is the companion matrix of the recurrence relation (−a0, . . . ,−aµ−1)
defined in Section 2.1, and the characteristic polynomial of R is exactly p. Since p
divides p1, the eigenvalues of R form a subset of the eigenvalues of M . This proves (b).
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Recall that U = spanR{un : n ∈ N} has u0, . . . , uµ−1 as a basis. Construct in
time Poly(I) change-of-basis matrices Π: U → Rµ×µ and Y : Rµ×µ → U such that
Π(uk) = ek for 0 ≤ k < µ. For all n ∈ N,

Π · un = Rnt

for all n. It follows that for every 0 ≤ r < L and n ∈ N,

un ∈ T ⇔ Rnt ∈ Π · (T ∩ U).

Hence we can choose T̃ := Π · (T ∩ U), which is a low-dimensional semialgebraic set
under the low-dimensionality assumption on T . This proves (c). To prove (a), first
recall that t = e1 and observe that R was constructed from (vn)n∈N, which neither
depends on the value of r nor on T . Full-dimensionality of (R, t) follows from the fact
that R is invertible and

dimR{Rnt | n ∈ N} = dimR{un | n ∈ N} = µ.

It remains to show how to compute a representation of T̃ in polynomial time.
Let φ be the quantifier-free formula defining T given as part of the input. It holds
that T̃ = {x ∈ Rµ×µ | Y x ∈ T}. Write bk ∈ Qµ for the kth row of Y for 1 ≤ k ≤ µ.
The formula

ψ(x) := φ(b1 · x, . . . , bµ · x),

where x = (x1, . . . , xµ), defines T̃ .

Corollary 6.1.3. Let M ∈ Qd×d, s ∈ Qd and T = {T1, . . . , Tℓ} be a collection of
semialgebraic sets in Rd. Write

I = ∥M∥ + ∥s∥ + ∥T∥.

In time 2Poly(I) we can compute L < 2Poly(I), µ ≤ d, a non-degenerate and full-
dimensional linear dynamical system (R, t) ∈ Qµ×µ × Qµ, and low-dimensional semi-
algebraic sets T (r)

i ⊆ Rµ×µ for 0 ≤ r < L and 1 ≤ i ≤ ℓ such that for every n ≥ 0,
1 ≤ i ≤ ℓ and 0 ≤ r < L,

MnL+r+ds ∈ Ti ⇔ Rnt ∈ T
(r)
i .

Proof. Let L < 2Poly(I) be such that ML is non-degenerate (Lemma 5.3.2). Apply
Lemma 6.1.2 to M,L, r, Ti for every 0 ≤ r < L and Ti ∈ T . Observe that (R, t) is
non-degenerate since every eigenvalue of R is also an eigenvalue of ML.
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Consider (M, s) ∈ Qd×d×Qd and a set of semialgebraic predicates T = {T1, . . . , Tℓ}.
Denote by α the characteristic word of (M, s) with respect to T , and apply Corol-
lary 6.1.3 to compute L,R, t, as well as the low-dimensional semialgebraic sets T (r)

i for
0 ≤ r < L and 1 ≤ i ≤ ℓ. Let β := α[d,∞) and βr for 0 ≤ r < L be such that β is the
merge of β0, . . . , βL−1. Corollary 6.1.3 tells us that each βr, up to a renaming of letters,
is the characteristic word of (R, t) with respect to the collection {T (r)

1 , . . . , T
(r)
ℓ } of

low-dimensional targets. We will show in Sections 6.2 and 6.3 that each βr is, in fact,
eventually toric. Thereafter we will use the results of Chapter 4 to model check the
words β and α.

Next we will show that for a full-dimensional system (M, s) im ambient space Rd

with non-zero eigenvalues λ1, . . . , λm, we can define a well-behaved map F such that
Mns = F (n, λn

1 , . . . , λ
n
m) for all n ≥ d. This will allow us to translate the condition

Mns ∈ T for a semialgebraic target T into a system of inequalities in n, λn
1 , . . . , λ

n
m,

which we will solve for n.

6.1.2 Expressing Mns as a function of n, λn1 , . . . , λnm
Let (M, s) ∈ Qd×d × Qd be full-dimensional and J = PMP−1 be in Jordan form,
computed by some fixed algorithm.3 Write J = diag(B1, . . . , Bm) as in Section 1.7,
where each Bk ∈ Qdk×dk is a Jordan block with the (only) eigenvalue λk. Recall that
m = 2l1 + l2, the first 2l1 blocks of J all have a non-real eigenvalue, the remaining l2
blocks have a real eigenvalue, and B2k is the entrywise complex conjugate of B2k−1 for
1 ≤ k ≤ l1. Write s̃ := Ps in the form (s̃1, . . . , s̃m), where s̃k ∈ Qdk for all k. Finally,
write s̃k = (x(k)

1 , . . . , x
(k)
dk

) for 1 ≤ k ≤ m. Our goal is to construct injective entrywise
polynomial functions fM,s, FM,s such that for all n ∈ N,

Mns =

fM,s(λn
1 , . . . , λ

n
m) if M is diagonalisable,

FM,s(n, λn
1 , . . . , λ

n
m) otherwise.

(6.2)

Since (M, s) is full-dimensional, we have the following.

Lemma 6.1.4. The matrix M is invertible. Moreover, for all 1 ≤ k ≤ m, x(k)
dk

̸= 0.
That is, the last coordinate of each s̃k is non-zero.

Proof. Recall that M is invertible if and only if λ1, . . . , λm ≠ 0. We give a proof by
contradiction. First suppose x(k)

dk
= 0 or λk = 0 for some k > 2l1. Then eKJ

ns̃ for
3We need the assumption that the algorithm be fixed to ensure that the functions fM,s and FM,s,

which depend on the particular choice of J in Jordan form, are uniquely defined.
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K = ∑k
i=1 di (i.e. the Kth coordinate of Jns̃) is identically zero. Hence dim(J, s̃) < d,

which contradicts full-dimensionality of (M, s) since dim(M, s) = dim(J, s̃).
Suppose x

(k)
dk

= 0 or λk = 0 for some k ≤ 2l1. Since B2j is the entrywise
complex conjugate of B2j−1, and s̃2j is the entrywise complex conjugate of s̃2j−1 for
all 1 ≤ j ≤ l1, w.l.o.g. we can assume k is even. By the aforementioned conjugacy
relations, if x(k)

dk
= 0 then x

(k−1)
dk−1

= 0. Otherwise, λk−1 = 0. Therefore, eKJ
ns̃ and

eMJ
ns̃, where K = ∑k

i=1 di and M = ∑k−1
i=1 di, are both identically zero.

For all 1 ≤ j ≤ l1 and n ∈ N, Bn
2j s̃2j is the entrywise conjugate of Bn

2j−1s̃2j−1. Let
T ∈ {i,−1,−i, 1}d×d be such that for all y1, z1 ∈ Qd1 , . . . , yl1 , zl1 ∈ Qdl1 and w ∈ Rl2 ,

T · (y1, z1, . . . , yl, zl, w) = 1
2(y1 + z1, i(z1 − y1), . . . , yl1 + zl1 , i(zl1 − yl1), w).

The matrix T is invertible and satisfies TJns̃ ∈ Rd for all n ∈ N. Writing δ for the
dimension of spanR((TJns̃)n∈N) as a subspace of Rd, we have that dim(M, s) = δ. On
the other hand, since eKJ

ns̃ and eMJ
ns̃ are identically zero, by construction of T

the sequences eKTJ
ns̃ and eMTJ

ns̃ are also identically zero. Therefore, δ < d. This
contradicts full-dimensionality of (M, s).

We are now ready to give the main construction on this section. Keep in mind
that all of λ1, . . . , λm are non-zero. For z ∈ C and k ∈ N, write(

z

k

)
:= z(z − 1) · · · (z − k + 1)

k! .

For λ ∈ Q not zero, r a positive integer, and u, v ∈ C, define

Jλ
r (u, v) = v


1 uλ−1 · · ·

(
u

r−1

)
λ−r+1

1 · · ·
(

u
r−2

)
λ−r+2

. . . ...
1

 ∈ Cr×r.

The (i, j)th entry of Jλ
r (u, v) for j ≥ i is

(
u

j−i

)
λi−jv. With this definition, Jλ

r (n, λn) is
exactly the nth power of Jordan block of dimension r × r with the eigenvalue λ. Note
that if M is diagonalisable, then m = d. Mirroring J = diag(B1, . . . , Bm), define

(a) gM,s : (C×)m → Cd×d,

gM,s(z1, . . . , zm) := diag(z1, . . . , zm)

if M is diagonalisable, and
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(b) GM,s : C × (C×)m → Cd×d,

GM,s(z0, . . . , zm) := diag(Jλ1
d1 (z0, z1), . . . , Jλm

dm
(z0, zm))

if M is non-diagonalisable.

In case (a), Jn = gM,s(λn
1 , . . . , λ

n
m), and in case (b), Jn = GM,s(n, λn

1 , . . . , λ
n
m) for all

n ∈ N. Finally, we define

fM,s(z1, . . . , zm) := P−1gM,s(z1, . . . , zm)Ps

in case M is diagonalisable, and

FM,s(z0, . . . , zm) := P−1GM,s(z0, . . . , zm)Ps

otherwise. With the definitions, Equation (6.2) holds for all n ∈ N.
We view fM,s andMM,s as (entrywise polynomial) functions with types (C×)m → Cd

and C × (C×)m → Cd, respectively. Recall from Section 1.7 that each entry of P
and P−1 is of the form p(λ), where λ ∈ {λ1, . . . , λm} and p is a polynomial with rational
coefficients that, alongside canonical representations of algebraic entries of P, P−1, J ,
can be computed in polynomial time given M . Moreover, if q(x) = ∑deg(λ)

i=0 aix
i is the

minimal polynomial of λ, then a0 ̸= 0 (as λ ̸= 0), −a0 = ∑deg(λ)
i=1 aiλ

i, and hence

λ−1 =
deg(λ)∑

i=1
(−ai/a0)λi−1.

That is, λ−1 can be expressed in the form h(λ) for a polynomial p with rational
coefficients. Consequently, we have the following.

(a) Suppose M is diagonalisable. Given M, s, using the definition of fM,s above
in time Poly(∥M∥, ∥s∥) we can compute (non-flat) terms f1, . . . , fd ∈ Lr such
that

eiM
ns = fi(λ1, . . . , λm, λ

n
1 , . . . , λ

n
m)

for all 1 ≤ i ≤ d and n ∈ N.

(b) Similarly, if M is non-diagonalisable, then again in time Poly(∥M∥, ∥s∥) we
can compute non-flat terms F1, . . . , Fd ∈ Lr such that

eiM
ns = Fi(λ1, . . . , λm, n, λ

n
1 , . . . , λ

n
m)

for all i and n.
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Finally, we show that the functions fM,s and FM,s map injectively from their respective
domains (where the powers of the eigenvalues and the value n live) into Cd, where the
points of the orbit (Mns)n∈N live.4

Lemma 6.1.5. If M is diagonalisable, then fM,s is injective. If M is non-diagonalisable,
then FM,s is injective.

Proof. Suppose M is diagonalisable. Let z = (z1, . . . , zm), y = (y1, . . . , ym) ∈ (C×)m

and suppose fM,s(z) = fM,s(y). Then gM,s(z)s̃ = gM,s(y)s̃ and hence gM,s(z − y)s̃ = 0.
Since all entries of s̃ are non-zero by Lemma 6.1.4, and

gM,s(z − y) = diag(z1 − y1, . . . , zm − ym),

we conclude that z − y = 0.
Suppose M is non-diagonalisable. It suffices to prove that for each 1 ≤ k ≤ m, the

function (u, v) 7→ Jλk
dk

(u, v)s̃k is injective on C × C×. Suppose

Jλk
dk

(u1, v1)s̃k = Jλk
dk

(u2, v2)s̃k

for u1, v1 ∈ C and u2, v2 ∈ C×. By equating the values of the last (i.e. the dkth)
coordinate we obtain v1x

(k)
dk

= v2x
(k)
dk

. From Lemma 6.1.4 it follows that v1 = v2. If
dk = 1, then we are done. Otherwise, equating the values of the (dk − 1)th coordinate
we obtain

v1x
(k)
dk−1 + u1λ

−1
k v1x

(k)
dk

= v2x
(k)
dk−1 + u2λ

−1
k v2x

(k)
dk

which implies that u1λ
−1
k v1x

(k)
dk

= u2λ
−1
k v2x

(k)
dk

. Since v1 = v2 as shown above and v1, v2

are non-zero by assumption, we conclude that u1 = u2.

6.2 Semialgebraic targets contained in a three-
dimensional subspace

Let (M, s) ∈ Qd×d × Qd be full-dimensional and non-degenerate, and T be a set
contained in a subspace V of Rd of dimension k < d. Suppose V is defined by equations
c⊤

1 · x = · · · = c⊤
d−k · x = 0 for c1, . . . , cd−k ∈ (R ∩ Q)d. Let Vi = {x | c⊤

i x = 0}. For all
n ∈ N and 1 ≤ i ≤ d− k, Mns ∈ Vi if and only if c⊤

i M
ns = 0. By full-dimensionality,

the orbit (Mns)n∈N cannot be contained in any Vi. Hence for all i, the sequence
u(i)

n = c⊤
i M

ns is not identically zero. The eigenvalues of each LRS (u(i)
n )n∈N will be

4Terms of (Mns)n∈N live in Rd, but it will be more convenient to apply algebraic geometry if we
move to the algebraically closed field C.
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a subset of the eigenvalues of M . Since M is non-degenerate by assumption, every
(u(i)

n )n∈N is non-degenerate. Recall from Chapter 2 that a non-degenerate5 LRS has
only finitely many zero terms. It follows that the orbit of (M, s) visits each Vi and
hence T only finitely many times. This example demonstrates that understanding the
(finitely many) time steps at which the orbit of a full-dimensional and non-degenerate
system visits a target set of lower linear dimension ought to be easy, provided that we
can effectively solve the system of linear equations c⊤

1 M
ns = · · · = c⊤

d−kM
ns = 0 in

n ∈ N. The latter is an instance of the Skolem Problem.6 We will now show how to
determine all elements of {n | Mn ∈ T} effectively in case k = 3. Our (only) result in
this section is the following.

Theorem 6.2.1. Let (M, s) ∈ Qd×d ×Qd be non-degenerate and full-dimensional with
d > 3, and T ⊂ Rd be a semialgebraic set contained in a three-dimensional subspace.
There exists an absolute absolute polynomial P ∈ Z[x] such that for every n ≥ 22P (I),
where I = ∥M∥ + ∥s∥ + ∥T ∥, it holds that Mns /∈ T .

We mention that the polynomial P is fully constructive and can be extracted from
the proof below. Once we have Theorem 6.2.1, given T and full-dimensional and
non-degenerate (M, s), we can determine all n such that Mns ∈ T by simply checking
the first N = 22P (I) terms of the orbit (Mns)n∈N.

Proof. Our strategy is to show existence of a non-degenerate linear recurrence sequence
(un)n∈N over R ∩ Q of order at most 4 such that for all n, Mns ∈ T only if un = 0.
Such LRS have finitely many zeros that can be effectively determined (Theorem 2.3.1).

Write M = P−1JPs, where J is in real Jordan form. By permuting the blocks
of J if necessary, we can assume that J is of the form diag(J1, J2) where J1, J2 are in
real Jordan form, all blocks of J1 are in R(2k+1)×(2k+1) for some k ∈ N, and all blocks
of J2 are in R2k×2k for some k ∈ N. Writing s̃ = Ps and T̃ = PT , for all n ∈ N it
holds that

Mns ∈ T ⇔ Jns̃ ∈ T̃ .

Next, write

J =
[
X Y
0 Z

]
so that Z ∈ R4×4. Observe that Z is in real Jordan form. Define Π: Rd → R4 by

Π(x1, . . . , xd) = (xd−3, . . . , xd),
5By definition, a non-degenerate sequence must be not identically zero.
6Using the squaring trick we can construct (vn)n∈N such that for all n ∈ N, vn = 0 if and only if

c⊤
1 M

ns = · · · = c⊤
d−kM

ns = 0.
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and let V ⊂ R4 be a three-dimensional subspace enclosing Π(T̃ ) with a normal vector
c ∈ (R ∩ Q)4. It holds that

Mns ∈ T ⇔ Jns̃ ∈ T̃ ⇒ ZnΠ(s̃) ∈ V.

Observe that (Z,Π(s̃)) is itself non-degenerate and full-dimensional. Next, consider
the linear recurrence sequence un = c⊤ZnΠ(s̃) over R ∩ Q, satisfying

un = 0 ⇔ ZnΠ(s̃) ∈ V.

As Z is non-degenerate and the eigenvalues of (un)n∈N form a subset of the eigenvalues
of Z, the sequence (un)n∈N is either identically zero or non-degenerate. Because
(Z,Π(s̃)) is full-dimensional, (ZnΠ(s̃))n∈N cannot be contained in the hyperplane V .
It follows that (un)n∈N is not identically zero and hence is non-degenerate. As
Z ∈ (R ∩ Q)4×4, (un)n∈N is an LRS over R ∩ Q of order at most 4. Therefore, by
Theorem 2.3.1 there exists effectively computable N such that for all n ≥ N , un ̸= 0
and ZnΠ(s̃) /∈ V . We conclude that Mns /∈ T for n ≥ N . It remains to bound N in
terms of I.

We first bound the description lengths of T̃ and s̃. Let Φ be a quantifier-free formula
defining T , and for 1 ≤ i, j ≤ d, let φi,j(ui,j) be a quantifier-free formula defining the
real algebraic number P−1

i,j . Since algebraic entries of P−1, J, P can be computed in
polynomial time given M , invoking Lemma 1.5.3 we can assume ∥φi,j∥ < Poly(I).
Write x and u for the collections of variables x1, . . . , xd−4 and ui,j for 1 ≤ i, j ≤ d,
respectively, For all y ∈ R4,

y ∈ Π(T̃ ) ⇔ ∃w ∈ Rd−4 : P−1 · (w, y) ∈ T.

We can therefore define Π(T̃ ) by the formula

∃x,u :
∧
i,j

φi,j(ui,j) ∧ Φ
 d∑

j=1
xju1,j, . . . ,

d∑
j=1

xjud,j


with free variables xd−3, . . . , xd. Eliminating quantifiers using Theorem 1.3.5, we
conclude that there exists a quantifier-free formula Φ1 with ∥Φ1∥ < IPoly(d) that
defines Π(T̃ ). By a similar argument, algebraic entries of Π(s̃) each can be defined by
a quantifier-free formula of size at most IPoly(d).

Next, consider the set

W = {(b1, . . . , b4) ∈ R4 | ∀x1, . . . , x4 : Φ1(x1, . . . , x4) ⇒ b1x1 + . . .+ b4x4 = 0}
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of all vectors orthogonal to Π(T̃ ). Since Π(T̃ ) is contained in a three-dimensional
subspace, W is non-empty. Since W is defined using 8 bound and free variables in
total, invoking Theorem 1.3.5, there exists a quantifier-free formula Φ2 of bit length
at most Poly(∥Π(T̃ )∥) < IPoly(d) that defines W . We will shortly show that W
must contain c ∈ (R ∩ Q)4 with total description length at most IPoly(d). Assuming
existence of such c, consider the sequence un = c⊤ZnΠ(s̃), which is an LRS over
R∩Q of order at most 4. Applying Corollary 1.5.8, algebraic numbers u0, . . . , u3 have
canonical representations of size at most IPoly(d). To apply Theorem 2.3.1, it remains
to bound the description length of a recurrence relation satisfied by (un)n∈N. Let

p(x) = a0 + a1x+ a2x
2 + a3x

3 + x4 ∈ Q[x]

be the characteristic polynomial of Z. As Z ∈ (R ∩ Q)4×4 and ∥Z∥ < Poly(I),
by Corollary 1.5.8 each ai has a canonical representation of size at most Poly(I).
Applying the Cayley-Hamilton theorem, un+4 = a0un + . . . + a3un+3 for all n ∈ N.
Finally, invoking Theorem 2.3.1, there exists N < 2IPoly(d)

< 22P (I) , where P ∈ Z[x] is
an absolute polynomial, such that un ̸= 0 for all n ≥ N . It follows that un ̸= 0 and
hence Mns /∈ T for all n ≥ 22P (I) .

It remains to prove the claim about the description length of c = (c1, . . . , c4) ∈ W .
We will give an inductive algorithm that constructs such c. First, consider non-empty
and semialgebraic X ⊆ R defined by a quantifier-free formula φ. We can sample
x ∈ (R ∩ Q) ∩X as follows. If X = R, which can be checked in polynomial time by
Theorem 1.3.5, then we can select x = 0. Otherwise, compute in time polynomial
in ∥X∥ a quantifier-free formula ψ equivalent to

φ(x) ∧ ∀ϵ > 0. ∃y : (x− y)2 < ϵ ∧ ¬φ(y)

which defines the finite set ∂X of boundary points of X. We can then use Lemma 1.5.6
to compute in polynomial time canonical representations of all numbers belonging
to ∂X. Hence X contains x ∈ R ∩ Q with ∥x∥ < Poly(∥X∥).

Let Φ be a quantifier-free formula defining W . To sample c1, let φ be a quantifier-
free formula equivalent to ∃x2, x3, x4 : Φ(x1, . . . , x4), which can be computed in poly-
nomial time. Write X = {x ∈ R | φ(x)}. Applying the argument above to X,
we can construct c1 in time polynomial in ∥Φ∥. In particular, c1 ∈ R ∩ Q with
∥c1∥ < Poly(I).

Next, suppose for some k < 4 we have computed c1, . . . , ck ∈ R ∩ Q each with
description length at most Poly(I). Let φi be a quantifier-free formula of size at
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most Poly(I) defining ci for 1 ≤ i ≤ k, computed using Lemma 1.5.3. Consider
X ⊆ R defined by

∃x1, . . . , xk, xk+2, . . . , x4 :
k∧

i=1
φ(xi) ∧ Φ(x1, . . . , x4)

which has a single free variable xk+1. A quantifier-free formula φ defining X can
be computed in polynomial time, and applying the argument above, there exists
ck+1 ∈ (R ∩ Q) ∩X with ∥ck+1∥ < Poly(I).

6.3 Semialgebraic targets of dimension one

In this section we will analyse the reachability set {n ∈ N : Mns ∈ T} for a non-
degenerate and full-dimensional system (M, s) and a one-dimensional semialgebraic
target T . We will show that this set is either finite of co-finite, unless the system
(M, s) is of Type 1, which is a very strong restriction.

Definition 6.3.1. A linear dynamical system (M, s) is of Type 1 if M is diagonalisable,
all eigenvalues of M have modulus 1, and every pair λi, λj of eigenvalues of M is
multiplicatively dependent. It is of Type 2 otherwise.

Type 1 systems generalise two-dimensional linear dynamical systems whose update
matrix is a rotation. For such systems it is not difficult to construct T for which the
reachability set is neither finite nor co-finite. Take

M =
[
cos θ − sin θ
sin θ cos θ

]
∈ Q2×2,

s = (1, 0) and T = {(x, y) ∈ R2
>0 | x2 + y2 = 1} for example. However, in this case

the reachability set is well-structured in a different way:

Mns ∈ T ⇔ γn ∈ J

where γ = eiθ and J = {z ∈ T | Re(z), Im(z) > 0}. In other words, the characteristic
word αT defined by

α(n) = 1 ⇔ Mns ∈ T

is toric. The next lemma generalises this observation.

Lemma 6.3.2. Let (M, s) ∈ Qd×d × Qd be non-degenerate and of Type 1. Write
I = ∥M∥ + ∥s∥. There exist effectively computable L ∈ N and γ ∈ T ∩ Q not a root
of unity with the following properties.
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(a) ∥γ∥ < Poly(I), L < 2Poly(I), and γ only depends on M .

(b) Let T be semialgebraic. Writing IT = I + ∥T∥, there exist open semialgebraic
S0, . . . , SL−1 ⊆ T with description lengths at most 2Poly(IT ) and N < 2Poly(IT )

such that for all 0 ≤ r < L and n ≥ N ,

MnL+rs ∈ T ⇔ γn ∈ Sr.

Proof. Denote the (possibly non-distinct) eigenvalues of M by λ1, . . . , λd, and let
K = Q(λ1, . . . , λd). By the Tower Law, D := [K : Q] < IPoly(d).

Since M is non-degenerate by assumption, λi is not a root of unity for all i.
We will choose γ = λ1. For 1 ≤ i ≤ d, let li, ki be non-zero integers such that
λli

1 = λki
i . By Masser’s bound (Theorem 4.1.1), we can take ki, li to have absolute

value at most polynomial in ∥λ1∥ + ∥λi∥. Let L = lcm(k1, . . . , kd) < IPoly(d). We will
consider the family of linear dynamical systems (ML,M rs) for 0 ≤ r < L. Note that
∥ML∥, ∥M rs∥ < IPoly(d).

From the input quantifier-free formula defining T , using Lemma 1.3.4 compute an
equivalent flat quantifier-formula

φ(x1, . . . , xd) :=
∧

a∈A

∨
b∈B

pa,b(x1, . . . , xd) ∆a,b 0

with ∥φ∥ < ∥T∥O(d). W.l.o.g. we can assume ∆a,b∈ {≥, >,=} for all a ∈ A and b ∈ B.
Fix 0 ≤ r < L. We will show how to construct Sr. For a ∈ A, b ∈ B define

ua,b
n = pa,b(MnL+rs).

Observe that for all n ∈ N, MnL+rs ∈ T if and only if∧
a∈A

∨
b∈B

ua,b
n ∆a,b 0.

We will show that the sign pattern of each (ua,b
n )n∈N is eventually toric and generated

by γ. Applying Lemma 2.2.5 to p,ML and M rs, for all a, b we can write

ua,b
n =

K∑
j=1

fj(λL
1 , . . . , λ

L
d )(λnL

1 )ej,1 · · · (λnL
d )ej,d

where K < IPoly(d)
T and fj ∈ Q[x1, . . . , xd] with ∥fj∥ < IPoly(d)

T for all j. Recall that
for 1 ≤ i ≤ d, λki

i = λli
1 and hence λL

i = γliL/ki . Therefore,

ua,b
n =

K∑
j=1

fj(λL
1 , . . . , λ

L
d )γnhj (6.3)
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where for all 1 ≤ j ≤ K,

hj = L
d∑

i=1

ej,i li
ki

< IPoly(d)
T .

By Corollary 1.5.8, there exists a canonical representation of ξi = λL
i satisfying

∥ξi∥ < IPoly(d) for 1 ≤ i ≤ d. If ua,b
n is identically zero, i.e. fj(λL

1 , . . . , λ
L
d ) = 0 for

all j, let Na,b = 0, and Sa,b = T in case ∆a,b is ≥ and Sa,b = ∅ otherwise. If ua,b
n is not

identically zero, let Na,b < IPoly(d)
T be such that ua,b

n ̸= 0 for n ≥ Na,b (Lemma 2.6.4),
and applying Lemma 1.5.5 to Equation (6.3), compute open semialgebraic Sa,b ⊆ T
with ∥Sa,b∥ < IPoly(d)

T such that for all n ∈ N,

ua,b
n > 0 ⇔ γn ∈ Sa,b.

Writing N = max(a,b)∈A×B Na,b, for all n ≥ N and (a, b) ∈ A × B the (in)equality
ua,b

n ∆a,b 0 holds if and only if γn ∈ Sa,b. Therefore, we can define

Sr :=
∧

a∈A

∨
b∈B

Sa,b

with the property that MnL+rs ∈ T if and only if γn ∈ Sr. Observe that Sr is open,
semialgebraic, and has bit length at most IPoly(d)

T .

The lemma above shows that the characteristic word α of a non-degenerate Type 1
system (M, s) with respect to a set T of semialgebraic targets of dimension 1 is an
interleaving of L eventually toric words with semialgebraic parameters, all generated
by the same rotation γ ∈ T ∩ Q. From Theorem 4.2.3 it follows that α itself is
eventually toric with semialgebraic parameters.

To analyse Type 2 systems next, we will need the notion of the complexification of
semialgebraic T ⊆ Rd. The complexification of semialgebraic T , written C(T ), is the
smallest affine variety enclosing T . Note that C(T ) ⊆ Cd. The complex dimension
of C(T ) (i.e. its dimension over C as a variety, see Section 1.6) is the same as the
semialgebraic dimension of T [74, Section 1].

Lemma 6.3.3 (Roy and Vorobjov, [74], Theorem 3). Let T ⊆ Rd be a semialgebraic
set and C(T ) be its complexification. For each irreducible component W of C(T )
there exist k ≤ d, p1, . . . , pk ∈ Q[y, z1, . . . , zd] and α1, . . . , αk ∈ R ∩ Q such that
∥pi∥, ∥αi∥ < ∥T∥Poly(d) for all 1 ≤ i ≤ k, and for all z = (z1, . . . , zd) ∈ Cd,

z ∈ W ⇔
∧

1≤i≤k

pi(αk, z1, . . . , zd) = 0.
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We will not actually need to compute the complexification of a given semialgebraic
set. Rather, we need the bounds above on the description length of the complexification
and its irreducible components. In the next lemma we carry out the variable elimination
described in the introduction of this chapter to show that the set of time steps at
which a full-dimensional, non-degenerate LDS of Type 2 visits a semialgebraic target
of dimension at most one is either finite or co-finite.

Lemma 6.3.4. Let (M, s) ∈ Qd×d × Qd be non-degenerate, full-dimensional and of
Type 2, and T ⊆ Rd be a semialgebraic set of dimension at most 1. There exists
effectively computable N < exp5(Poly(I)), where I = ∥M∥ + ∥s∥ + ∥T∥, such that
Mns ∈ T either holds for all n ≥ N , or does not hold for any n ≥ N .

We prove Lemma 6.3.4 in the remainder of this section. Recall from Lemma 6.1.4
that full-dimensionality of (M, s) implies M is invertible, i.e. every eigenvalue of M
is non-zero. Let λ1, . . . , λm denote the eigenvalues of M , which are non-zero by full-
dimensionality, and J = P−1MP be in Jordan normal form. Write λ for the collection
of numbers λ1, . . . , λm. We will carry out a case analysis based on the eigenvalues
of M . In Cases 1 and 2 we will show that for each irreducible component W of
the complexification C(T ) there exists N < exp5(Poly(I)) such that for all n ≥ N ,
Mns /∈ W . Since the bound applies to all irreducible components of C(T ), we can
conclude that for n ≥ N , Mns /∈ C(T ) and hence Mns /∈ T . Case 3 is simpler and
does not involve the complexification.

Case 1. Suppose M is diagonalisable and has two multiplicatively independent
eigenvalues. W.l.o.g. assume λ1, λ2 are multiplicatively independent. Let W be
an irreducible component of C(T ), and let polynomials p1, . . . , pk and real algebraic
α1, . . . , αk define W as described in Lemma 6.3.3. As mentioned earlier, the complex
dimension of C(T ) is at most 1. Hence the complex dimension of W is also at most 1.
We will argue that Mns ∈ W forces a polynomial relation between λn

1 and λn
2 , after

which we can construct the desired N using Theorem 2.7.1.
As in Section 6.1.2, let f1, . . . , fd be first-order terms7 with rational coefficients

and 2m free variables such that for 1 ≤ i ≤ d,

fi(λ, λn
1 , . . . , λ

n
m) = eiM

ns.

7Recall from Section 1.3 that we identified first-order terms with polynomial functions. We can
determine the polynomial equivalent (as a function) to a given first-order term through flattening
(Lemma 1.3.4).
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Write z for the collection of variables z1, . . . , zm. Since (M, s) is full-dimensional and
M is diagonalisable by assumption, by Lemma 6.1.5 the function f : Cm → Cd,

f(z) = (f1(λ, z), . . . , fd(λ, z))

is injective on (C×)m. Let V := f−1(W ) ∩ (C×)m and X ⊆ C2 be the projection of V
onto the first two coordinates. It holds that

Mns ∈ W ⇔ (λn
1 , . . . , λ

n
m) ∈ V ⇒ (λn

1 , λ
n
2 ) ∈ X.

Observe that f−1(W ) is an affine variety, and

V = f−1(W ) \ {(z1, . . . , zm) ∈ Cm | zi = 0 for some 1 ≤ i ≤ m}

is quasi-affine. Hence the restriction f̃ : V → W of f to V is an injective morphism of
quasi-affine varieties. Invoking Corollary 1.6.2, dim(V ) ≤ dim(f(V )) ≤ dim(W ) ≤ 1.
As X is a projection of W , dim(X) ≤ dim(V ) ≤ 1. We are almost done: Let Y ⊇ X

be a hypersurface in C2 defined as the locus of a non-zero polynomial q ∈ Q[z1, z2].
It holds that (λn

1 , λ
n
2 ) ∈ X ⇒ q(λn

1 , λ
n
2 ) = 0, and we can invoke Theorem 2.7.1 to

construct the required N . We next show how to compute such polynomial q and
establish bounds on the magnitude of N .

Write l and a for the collections of variables l1, . . . , lm and a1, . . . , ak, respectively,
and α for the collection of numbers α1, . . . , αk. The variables li, aj stand for λi and αj ,
respectively. Let

Φ(a, l, z) :=
k∧

j=1
pj(ai, f1(l, z), . . . , fd(l, z)) = 0,

Ψ(a, l, z1, z2) := ∃z3, . . . , zd : Φ(a, l, z).

Observe that (z1, z2) ∈ X if and only if Ψ(α,λ, z1, z2) holds. Recall from Section 6.1.2
that ∥fi∥ < Poly(∥M∥) for all i, and by Lemma 6.3.3, ∥pj∥, ∥αj∥ < 2Poly(∥T ∥) for
all j. Hence ∥Ψ∥ < 2Poly(I). Viewing Ψ as a formula in Lr (i.e. the language of ordered
rings) and eliminating quantifiers using Theorem 1.3.6, we obtain that (z1, z2) ∈ X if
and only if ∨

1≤i≤I

∧
1≤j≤Ji

hi,j(α,λ, z1, z2) ∼i,j 0 (6.4)

where hi,j is a polynomial (i.e. a flat term) with rational coefficients, ∥hi,j∥ < 2Poly(I),
and ∼i,j ∈ {=, ̸=} for all i, j. Let

qi,j(z1, z2) = hi,j(α,λ, z1, z2) ∈ Q[z1, z2]
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for all i, j. The coefficients of qi,j are obtained through arithmetic operations in
K = Q(α,λ). By the Tower Lemma, D := [K : Q] < 2Poly(I). Invoking Lemma 1.5.7,
the total description length of the coefficients of qi,j is bounded by 2Poly(I).

If qi,j is identically zero for some i, j, then hi,j(α,λ, z1, z2) ∼i,j 0 holds either
everywhere or nowhere on C2, depending on ∼i,j ∈ {=, ̸=}. By removing all such i, j

from Equation (6.4), we can w.l.o.g. assume that qi,j is not identically zero for all
i, j. It follows that I cannot be zero, as this would imply that X = C2, contradicting
dim(X) ≤ 1. Next, fix a value 1 ≤ i ≤ I and let

q(z1, z2) = qi,1(z1, z2) · · · qi,Ji
(z1, z2).

We will show that there exists j such that ∼i,j is the equality. Suppose ∼i,j is
the inequality sign for all 1 ≤ j ≤ Ji. Then X ⊇ {(z1, z2) : q(z1, z2) ̸= 0} := Y ,
where Y is non-empty and open. Since non-empty open sets are Zariski-dense,
dim(X) ≥ dim(Y ) = 2, again contradicting dim(X) ≤ 1.

We have proven that each disjunct in Equation (6.4) contains at least one equality.
That means there exist non-zero polynomials q1, . . . , qI ∈ Q[z1, z2] such that

(z1, z2) ∈ X ⇒
I∨

i=1
qi(z1, z2) = 0.

Hence for all n ∈ N, Mns ∈ W ⇒ qi(λn
1 , λ

n
2 ) = 0 for some 1 ≤ i ≤ I. Applying

Theorem 2.7.1 to each 1 ≤ i ≤ I, there exists N < exp5(Poly(I)) such that for all
n ≥ N , qi(λn

1 , λ
n
2 ) ̸= 0 for all 1 ≤ i ≤ I, which implies Mns /∈ T .

Case 2. Suppose M is non-diagonalisable with an eigenvalue λ ̸= 1. W.l.o.g.
assume λ1 ̸= 1. We proceed similarly to Case 1, this time with the end goal of
applying Theorem 2.7.3. Let W , p1, . . . , pk and α be as in Case 1. As in Section 6.1.2,
let F1, . . . , Fd be first-order terms with rational coefficients and 2m+ 1 free variables
such that for all 1 ≤ i ≤ d,

Fi(λ, n, λn
1 , . . . , λ

n
m) = eiM

ns.

Writing z for the collection of variables z0, . . . , zm, recall that F : Cm+1 → Cd,

F (z) = (F1(λ, z), . . . , Fd(λ, z))

is injective on C × (C×)m, Consider

V := F−1(W ) ∩
(
C × (C×)m

)
,
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and let X be the projection of V onto the first two coordinates. It holds that

Mns ∈ W ⇔ (n, λn
1 , . . . , λ

n
m) ∈ V ⇒ (n, λn

1 ) ∈ X.

We again need to show that dim(V ) ≤ 1, which implies dim(X) ≤ 1. To this end,
consider the restriction F̃ : V → W of F to V . Observe that F is an entrywise
polynomial map, and since W is an affine variety, so is F−1(W ). Therefore,

V = F−1(W ) \ {(z0, . . . , zm) ∈ Cm+1 | zi = 0 for some 1 ≤ i ≤ m}

is a quasi-affine variety, and F̃ is a morphism of quasi-affine varieties. Applying
Corollary 1.6.2 yields that dim(V ) ≤ dim(W ) ≤ 1.

The rest of the argument is essentially the same as in Case 1. Because dim(X) ≤ 1,
there exist polynomials q1, . . . , qI ∈ Q[z1, z2], with ∥qi∥ < 2Poly(I) for all 1 ≤ i ≤ I,
such that for all n ∈ N,

(n, λn
1 ) ∈ X ⇒

I∨
i=1

qi(n, λn
1 ) = 0.

Since λ1 ̸= 1 by assumption, invoking Theorem 2.7.3 we conclude that there exists
N < exp2(Poly(I)) such that for all n ≥ N , qi(n, λn

1 ) ̸= 0 for all 1 ≤ i ≤ I, and
hence (n, λn

1 ) /∈ X. The latter implies Mns /∈ T .
Case 3. SupposeM only has real eigenvalues. Let p ∈ Q[x1, . . . , xd] be a polynomial

appearing in the definition of T . By Lemma 2.2.4, in time IPoly(d) we can compute
the exponential-polynomial representation p(Mns) = ∑A

j=1 qj(n)Λn
j , where each Λj is

real algebraic and qj has real algebraic coefficients.8 Applying Lemma 2.4.4, there
exists N < exp2(Poly(I)) such that the sign of p(Mns) is stable for n ≥ N . Since
the bound N applies to all polynomials appearing in the definition of T , it follows
that either Mns ∈ T for all n ≥ N , or Mns /∈ T for all n ≥ N .

Together Cases 1-3 cover all the possibilities. If M is not diagonalisable, then
either Case 2 or Case 3 applies. Suppose M is diagonalisable. If M has two multiplica-
tively independent eigenvalues, then Case 1 applies. Suppose therefore that any two
eigenvalues of M are multiplicatively dependent. Since M is of Type 2 by assumption,
this means M has an eigenvalue ρ with |ρ| ̸= 1. Since for all z /∈ T, z and z are
not multiplicatively dependent, and we assumed that every two eigenvalues of M are
multiplicatively dependent, it follows that ρ is real. By the same argument, M cannot
have non-real eigenvalues λ, λ with |λ| = 1. Suppose µ is an eigenvalue of M with

8The latter can be seen by expressing Mn = P−1JnP , where J is in real Jordan form and P−1, P
have real algebraic entries.
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|µ| = 1. Since µ is not a root of unity by the assumption that M is non-degenerate,
µ is multiplicatively dependent with ρ if and only if µ = 1. Hence M cannot have a
non-real eigenvalue, and Case 3 applies.

6.4 Decidability of the model-checking problem

We can now combine the results we have developed in this chapter to show how
to model check linear dynamical systems against ω-regular specifications over low-
dimensional, and by extension, tame targets. We first focus on low-dimensional targets.
Our main result is the following.

Theorem 6.4.1. Let M ∈ Qd×d, s ∈ Qd, T = {T1, . . . , Tℓ} be a set of low-dimensional
predicates, Σ = 2T , and A be a deterministic automaton over Σ.

(✠) The characteristic word α of (M, s) with respect to T is eventually toric with
semialgebraic parameters.

(⋆) It is decidable whether A accepts α, with complexity in 5EXPSPACE.

Proof. Denote by I = ∥M∥ + ∥s∥ + ∥T ∥ + ∥A∥ the total input size. Let q be the
state of A after reading the first d letters of α, and B be the automaton over Σ
with the start state q that is identical to A otherwise. The automaton B can be
constructed in polynomial time, and A accepts α if and only if B accepts β := α[d,∞).
Moreover, the word β is eventually toric with semialgebraic parameters if and only if
α is eventually toric with semialgebraic parameters. Writing w := Mds, note that β is
the characteristic word of (M,w) with respect to T .

Apply Corollary 6.1.3 to M, s, T to compute in time 2Poly(I) positive integers
L < 2Poly(I), µ ≤ d, a non-degenerate and full-dimensional linear dynamical system
(R, t) ∈ Qµ×µ × Qµ, as well as low-dimensional semialgebraic T (r)

i for 0 ≤ r < L,
1 ≤ i ≤ ℓ with the following property. For all n ∈ N and 0 ≤ r < L,

MnL+rw ∈ Ti ⇔ Rnt ∈ T
(r)
i .

Let Tr = {T (r)
1 , . . . , T

(r)
ℓ }, and β0, . . . , βL−1 be the L words whose merge is β. We

have that each βr, up to a renaming of letters, is the characteristic word of (R, t) with
respect to Tr. Note that ∥R∥, ∥t∥, ∥Tr∥ < 2Poly(I).

Case 1. Suppose µ ≤ 3. In this case our analysis of three-dimensional linear
dynamical systems from chapter 5 applies. By Theorem 5.0.1, there exists γ ∈ T ∩ Q
satisfying ∥γ∥ < 2Poly(I) and the following property. For each 0 ≤ r < L, there exist
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Nr < exp2(Poly(I)) and a collection Sr of open subsets of T with ∥Sr∥ < 2Poly(I)

such that each βr is eventually toric with semialgebraic parameters (γ,Nr,Sr). Note
that we were able to choose the same γ for every 0 ≤ r < L because the words
β0, . . . , βL−1 are all generated by the same LDS (R, t). By Theorem 4.2.3, the word β
is eventually toric with semialgebraic parameters. To prove (✠), recall that eventually
toric words are the same as words with an eventually toric suffix (Chapter 4).

Applying Theorem 4.4.2, the word β is effectively almost-periodic with

Wβ(l) < l2
Poly(I)

for l ≥ 2. By Corollary 3.1.4, there exists effectively computable H < exp2(Poly(I))
such that a state q appears infinitely often in B(β) if and only if it appears in
B(β)[H, 2H). Finally, recall from Lemma 5.4.1 that using iterative squaring, whether
Rnt ∈ T for semialgebraic T can be decided in time Poly(∥R∥, ∥t∥, ∥T∥, log n).
Therefore, the set of states occurring in B(β)[H, 2H) and hence whether B accepts β
can be determined in EXPSPACE. This proves (⋆).

Case 2. Suppose µ > 3 and M is of Type 1. Apply Lemma 6.3.2 to (R, t) to
construct K ∈ N and λ ∈ Q ∩ T satisfying ∥λ∥ < 2Poly(I), K < exp2(Poly(I)), and
the following property. For each semialgebraic T and 0 ≤ m < K, there exists open
semialgebraic S(m,T ) ⊆ T and positive integer N(m,T ) with

N(m,T ), ∥S(m,T )∥ < 2Poly(∥R∥+∥t∥+∥T ∥)

such that for all n ≥ N(m,T ),

RnK+mt ∈ T ⇔ λn ∈ S(m,T ).

Recall that each βr is the characteristic word of (R, t) with respect to Tr. Intuitively,
each βr itself is the merge of K eventually toric words with semialgebraic parameters.
It follows that β is the merge of L · K eventually toric words with semialgebraic
parameters all generated by λ, and Theorem 4.4.2 applies. We next prove these
statements formally.

For 0 ≤ r < L, let βr,0, . . . , βr,K−1 be the K words whose merge is βr. Hence β is
the merge of

β0,0, β1,0, . . . , βK−1,0, β0,1, . . . , βL−1,K−1.

We will show that each βr,m is an eventually toric word with semialgebraic parameters.
Fix r,m. Recall that all n ∈ N and Ti ∈ T ,

Ti ∈ βr(n) ⇔ Rnt ∈ T
(r)
i .
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Hence for all 1 ≤ i ≤ ℓ and n ∈ N,

Ti ∈ βr,m(n) ⇔ RnK+mt ∈ T
(r)
i .

For σ ∈ Σ, define
Xσ =

⋂
Ti∈σ

T
(r)
i ∩

⋂
Ti /∈σ

Rd \ T (r)
i .

We have that each Xσ is open and semialgebraic with ∥Xσ∥ < 2Poly(I), and for all n,

βr,m(n) = σ ⇔ RnK+m ∈ Xσ.

Let Nr,m = maxσ N(m,Xσ) and S(r,m)
σ = S(m,Xσ) for all σ ∈ Σ. Observe that

each S(r,m)
σ is open and semialgebraic with bit length at most exp2(Poly(I)), and

Nr,m < exp2(Poly(I)). Moreover, for n ≥ N , βr,m(n) = σ if and only of λn ∈ S(r,m)
σ .

Therefore, each βr,m is eventually toric with semialgebraic parameters (λ,Nr,m,Sr,m)
where Sr,m = {S(r,m)

σ : σ ∈ 2T }. To prove (✠) it remains to apply Theorem 4.2.3.
Applying Theorem 4.4.2, we conclude that β is effectively almost-periodic with

Wβ(l) < lexp2(Poly(I))

for l ≥ 2. By Corollary 3.1.4, there exists effectively computable H < exp3(Poly(I))
such that a state q appears infinitely often in B(β) if and only if it appears in
B(β)[H, 2H). Therefore, using Lemma 5.4.1 whether B accepts β can be decided in
2EXPSPACE.

Case 3. Finally, suppose µ > 3 and M is of Type 2. We will show that each βr is
ultimately constant and hence β is ultimately periodic with period L. Fix 0 ≤ r < L,
and consider T (r)

i ∈ Tr. If T (r)
i is contained in a three-dimensional subspace of Rd,

then by Theorem 6.2.1 there exists

N
(r)
i < exp2

(
Poly(∥R∥ + ∥t∥ + ∥T (r)

i ∥)
)
< exp3(Poly(I))

such that either Rnt ∈ T
(r)
i or Rnt /∈ T

(r)
i holds for all n ≥ N

(r)
i . On the other hand,

if T (r)
i is not contained in a three-dimensional subspace, because it is low-dimensional,

it must be of semialgebraic dimension at most 1. By Lemma 6.3.4, there exists

N
(r)
i < exp5

(
Poly(∥R∥ + ∥t∥ + ∥T (r)

i ∥)
)
< exp6(Poly(I))

with the same property as above. We conclude that there exists Nr < exp6(Poly(I))
such that βr[Nr,∞) is constant. Therefore, for

N = L max
0≤r≤L

Nr < exp6(Poly(I))
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it holds that β is of the form uvω for u ∈ ΣN and v ∈ ΣL. It follows that β is eventually
toric with semialgebraic parameters (γ,N,S) where γ is an Lth root of unity. Hence α
is eventually toric with semialgebraic parameters (γ,N + d, {γdSσ : Sσ ∈ S}).

To prove (⋆), let h be the state of B after reading u, and C be the deterministic
automaton with the start state h that is otherwise identical to B. Using Lemma 5.4.1,
the automaton C and the word w can be constructed in exp5(Poly(I)) space. It holds
that β is accepted by B if and only if vω is accepted by C, which can be determined in
space in Poly(∥C∥, ∥v∥). Hence the problem of deciding whether B accepts β is in
5EXPSPACE.

To extend the decidability result above to the class of tame predicates, as discussed
in the introduction to this chapter, it suffices to give an algorithm that, given a set T
of tame targets, constructs a set of low-dimensional sets that generate T . We start by
giving a characterisation of tame sets.

Lemma 6.4.2. A set T ⊆ Rd is tame if and only if either T or Rd \ T is a union of
low-dimensional sets.

Proof. The ‘’if” direction follows from the definition of tame targets. To prove the
other direction, suppose T is tame. Recall that A \ (B ∪ C) = (A \ B) ∩ (A \ B),
A \ (B ∩ C) = (A \B) ∩ (A \B), and A \ (A \B) = A ∩B. Hence we can express T
in the form ⋃

i∈I

⋂
j∈J

Wi,j (6.5)

where each Wi,j is either low-dimensional or a complement of a low-dimensional set.
Define Vi,j := Rd \Wi,j for all i, j. Observe that the intersection of a low-dimensional
set with any semialgebraic set is low-dimensional. Fix i ∈ I. If Wi,j is low-dimensional
for some j ∈ J then ∩j∈JWi,j is also low-dimensional. The other possibility is that
for every j ∈ J , Wi,j is a complement of a low-dimensional set. That is, Vi,j is
low-dimensional for all j ∈ J . In this case we can write

⋂
j∈J

Wi,j = Rd \
⋃
j∈J

Vi,j.

Note that ⋃j∈J Vi,j is a union of low-dimensional sets. We have so far shown that for
every conjunct Ui := ∩j∈JWi,j in Equation (6.5), either (a) Ui is low-dimensional, or
(b) the complement of Ui is low-dimensional. Write I1 for the set of all i ∈ I such that
Ui is of Type (a), and I2 = I \ I1.
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Suppose a, b ∈ I2, i.e. Va,j, Vb,j are low-dimensional for all j ∈ J . We have

Ua ∪ Ub = Rd \
(⋃

j∈J

Va,j ∩
⋃
j∈J

Vb,j

)
= Rd \

⋃
k,l∈J

(Va,k ∩ Vb,l).

Since Va,k ∩ Vb,l itself is low-dimensional, the complement of Ua ∪ Ub is a union of
low-dimensional sets. We therefore conclude that T is a union of X = ⋃

i∈I1 Ui and
Y = ⋃

i∈I2 Ui where X and the complement of Y are unions of low-dimensional sets.
If X = ∅ or Y = ∅, then the statement of the lemma follows. Suppose X, Y

are both non-empty. Write Y = Rd \ ⋃
k∈K Ak and Z = ⋃

k∈K Ak, where each Ak s
low-dimensional. Observe that

Y ∪X = Rd \ (Z \ X)

= Rd \
⋃

k∈K

(Ak \
⋃

i∈I1

Ui)

= Rd \
⋃

k∈K

⋂
i∈I1

Ak \ Ui

Since each Ak \ Ui is low-dimensional, by closure under intersections ⋂i∈I1 Ak \ Ui is
low-dimensional for every k. That is, the complement of T = Y ∪ X is a union of
low-dimensional sets. This concludes the proof.

Therefore, to decide whether a given semialgebraic target T is tame, we have to
check whether T or its complement can be written as a union of low-dimensional sets.

Lemma 6.4.3. Given semialgebraic T ⊆ Rd, we can decide whether it can be written
as a union of low-dimensional sets. If T can be written in this way, then we can
effectively compute low-dimensional S1, . . . , Sm such that T = ⋃m

i=1 Si.

Proof. Using cell decomposition (Section 1.4), decompose T into disjoint semialgebraic
C1, . . . , Cl such that each Ci is homeomorphic to (0, 1)mi for some mi ∈ N. It suffices
to check if each cell can be written as a union of low-dimensional sets and compute
such a union when possible.

Suppose Ci can be written as a union ⋃j∈J Bj of low-dimensional sets. Then Ci

is contained in ⋃
j∈J Cl(Bj), where Cl(Bj) is the Euclidean closure of Bj. Since Ci

is irreducible, it is contained in Cl(Bj) for some j. Since Cl(Bj) is low-dimensional,
so is Ci. Therefore, Ci can be written as a union of low-dimensional sets if and only
if it is low-dimensional itself. We therefore have the following algorithm. Given T ,
compute C1, . . . , Cl. Each Ci is low-dimensional if and only if mi ≤ 1, or the subspace
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{x ∈ Rd | ∀y ∈ Ci : x · y = 0} has dimension at least d − 3. If every Ci is low-
dimensional, output m = l and Si = Ci for 1 ≤ i ≤ m. Otherwise, conclude that T
cannot be written as a union of low-dimensional sets.

Corollary 6.4.4. Given set T ⊆ Rd, we can decide if it is tame. If yes, we can
effectively compute low-dimensional sets S1, . . . , Sm such that either T = ⋃m

i=1 Si, or
T = Rd \ ⋃m

i=1 Si.

Proof. Apply Lemma 6.4.3 to both T and Rd \ T .

We can now extend Theorem 5.4.2 to tame targets.

Theorem 6.4.5. Let M ∈ Qd×d, s ∈ Qd, T = {T1, . . . , Tℓ} be a set of tame predicates,
Σ = 2T , and A be a deterministic automaton over Σ.

(✠) The characteristic word α of (M, s) with respect to T is eventually toric with
semialgebraic parameters.

(⋆) It is decidable whether A accepts α.

Proof. First compute, using Corollary 6.4.4, a set T1 of low-dimensional predicates
such that for each T ∈ T , either T or Rd \ T is a union of sets from T1. Let Σ1 = 2T1 ,
α1 be the characteristic word of (M, s) with respect to T1, and f : Σ1 → Σ be a
renaming of letters such that α(n) = f(α1(n)) for all n ∈ N. We will construct an
automaton A1 that accepts α1 if and only if A accepts α, as described on page 113.
The set of states, the initial state, and the acceptance condition of both A and A1 are
identical. Let p, q be two states and L ⊆ Σ be the set of all letters that, when read in
A in state p, lead to state q. In A1, the set of all labels of all transitions from p to q
is f−1(L).

Applying Theorem 6.4.1, α1 is eventually toric with semialgebraic parameters
(Γ, N, {Sσ : σ ∈ Σ1}). The word α is then eventually toric with semialgebraic param-
eters (Γ, N, {⋃f(µ)=σ Sµ : σ ∈ Σ}) by Lemma 4.2.2. This proves (✠). To prove (⋆),
observe that A accepts α if and only if A1 accepts α1, and invoke Theorem 6.4.1.
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Chapter 7

Diagonalisable systems and
prefix-independent properties

In this chapter we study the Model-Checking Problem for diagonalisable linear dy-
namical systems, i.e. systems (M, s) where the matrix M is diagonalisable. Our main
results are as follows. First, we show that the characteristic word α of such (M, s)
with respect any set T of semialgebraic targets is eventually toric with semialgebraic
parameters. We then use this result to give a procedure for deciding, in arbitrary
ambient dimension, whether a given diagonalisable linear dynamical system satisfies a
given prefix-independent property. Recall from Section 1.8 that these are the properties
that do not depend on any finite prefix, i.e. whether an infinite word w satisfies a
prefix-independent property φ does not change if we perform finitely many insertions
and deletions on w. Finally, we show that the full Model-Checking Problem for
diagonalisable systems (i.e. without the restriction to prefix-independent properties) is
decidable if we assume decidability of the Positivity Problem for diagonalisable linear
recurrence sequences over Q.

Let (M, s) be a diagonalisable LDS, T be a collection of semialgebraic sets, and
denote by α the characteristic word of (M, s) with respect to T . The arguments
we use to prove eventual toricity of α are quite different from the arguments of the
preceding chapter showing eventual toricity of characteristic words of LDS with respect
to tame targets. In particular, our main tool in this section is the fundamental lower
bound of Theorem 2.4.2 on the growth rate of linear recurrence sequences. Due to
the non-constructive nature of Theorem 2.4.2, our result has the following caveat.
Given (M, s) and T as above, we show how to construct d > 0,Γ ∈ (T ∩ Q)d, and
a collection S of semialgebraic subsets of Td such that α is eventually toric with
semialgebraic parameters (Γ, N,S) for some integer N . In particular, we do not have
an algorithm for determining a value for N given (M, s) and T . Nevertheless, we are
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able to prove decidability of the Model-Checking Problem restricted to diagonalisable
systems and prefix-independent properties using the application of Semënov’s theorem
described in Section 3.2.1 Our final model-checking algorithm is of the following
form. Given be a diagonalisable LDS (M, s), a set of semialgebraic targets T , and a
prefix-independent automaton A. Denote by α the characteristic word of (M, s) with
respect to T .

1. From M, s, T and A compute a large integer H.

2. Compute a word w of length 2H that occurs infinitely often in α.

3. Simulate A on w and record the set S of states that occur in A(w)[H, 2H).
These are precisely the states that are visited infinitely often when A reads α.

4. Check S against the acceptance condition of A.

As mentioned earlier, we will also show that for diagonalisable systems, the full
Model-Checking Problem can be reduced to the Positivity Problem for diagonalisable
linear recurrence sequences over Q. Stated in geometric terms, if we can decide
the Reachability Problem restricted to diagonalisable LDS and halfspace targets of
the form {x ∈ Rd | c⊤x ≥ 0} where c ∈ Qd, then we can decide the full MCP for
diagonalisable systems.2 A distinct step in our reduction is the non-trivial result of [45]
that the Positivity Problem for LRS over R ∩ Q reduces to the Positivity Problem for
LRS over Q. We mention that for non-diagonalisable systems, it is not known whether
the MCP can be reduced to the Reachability Problem.

The starting point of our proofs is the result of Ouaknine and Worrell [68] that,
in stark contrast to the Positivity Problem, the Ultimate Positivity Problem is
decidable for diagonalisable linear recurrence sequences (see Section 2.5). Recall
the following geometric characterisation of the Ultimate Positivity Problem from
Section 2.1. The LRS un = c⊤Mns, where c, s ∈ Qd and M ∈ Qd×d, satisfies un ≥ 0
for all sufficiently large n if and only if the the orbit (Mns)n∈N of the LDS (M, s) is
eventually trapped in the halfspace H = {x | c⊤x ≥ 0}. The latter, in turn, is a
prefix-independent (and a liveness) property of the orbit of (M, s). In this chapter,
we generalise the decidability result of Ouaknine and Worrell from the property of
being eventually trapped in a halfspace to the class of prefix-independent properties
over semialgebraic sets. Liveness properties turn out to be too general to be tractable,

1See [7] for our original proof that used specialised arguments instead of Semënov’s theorem.
2See Section 2.1 for the equivalence between the Positivity and halfspace reachability problems.
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as these already include reachability properties. Recall from Section 2.1 that the
Reachability Problem for diagonalisable LDS subsumes the Skolem and Positivity
problems for diagonalisable LRS, both of which are currently open.

We move onto proving the three main results of this chapter. Our first step will be
to understand sign patterns of linear recurrence sequences of the form un = p(Mns),
where M is diagonalisable and p is a polynomial.

Lemma 7.0.1. Let λ1, . . . , λm ∈ Q be non-zero, K = Q(λ1, . . . , λm), D = [K : Q],
L = (2D2)!, and Γ = (γ1, . . . , γm) where γi = λi/|λi| for all 1 ≤ i ≤ m. Consider a
real-valued sequence un = p((λL

1 )n, . . . , (λL
m)n) that is not identically zero, where p is a

polynomial with algebraic coefficients.

(a) There exist N and effectively computable open semialgebraic sets O>, O< ⊆ Tm

such that for all n ≥ N , un ̸= 0 and

un ∆ 0 ⇔ Γn ∈ O∆

for ∆ ∈ {>,<}.

(b) Assuming decidability of the Positivity Problem for diagonalisable LRS over Q,
a value N as above can be effectively computed.

Note that according to the statement (a) above, we can effectively compute represen-
tations of Γ, O> and O<, whereas nothing is promised about the effectiveness of N .
The value of L is chosen to guarantee non-degeneracy of (un)n∈N.

Proof. Write un = ∑A
j=1 cjΛn

j where Λ1, . . . ,ΛA pairwise distinct and cj,Λj are non-
zero algebraic numbers for all j. As discussed in Section 2.2, A = 0 if and only if un

is identically zero. Since un is not identically zero by assumption, A > 0. Since un is
real-valued, by Lemma 2.2.3 for each j there exists i such that cj = ci and Λj = Λi.

We can express each Λj in the form

Λj = rj

(
γ

k1,j

1 · · · γkm,j
m

)L

where k1,j, . . . , km,j are non-negative and rj = |Λj| > 0 is real algebraic. Define
R = max1≤j≤A rj, D = {j : rj = R} and R = {j : rj < R}, and write

un =
∑
j∈D

cjΛn
j︸ ︷︷ ︸

dn

+
∑
j∈R

cjΛn
j︸ ︷︷ ︸

rn

.
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Here dn is the dominant part of vn. Since D is non-empty, dn is not identically zero.
Since (un)n∈N is real-valued and Λj has the same magnitude as Λj, all conjugates are
present in the expression for dn, and (dn)n∈N is also real-valued (see Lemma 2.2.3).
Define R1 to be 0 if R is empty and maxj∈R Rj otherwise. We next argue that (dn)n∈N

is non-degenerate and hence by the result of Berstel and Mignotte (Section 2.7), dn ̸= 0
for sufficiently large n.

Let j1, j2 ∈ D. Observe that Λj1/Λj2 is of the form γL where γ = γk1
1 · · · γkm

m for
some k1, . . . , km ∈ Z. Moreover, Λj1/Λj2 is a root of unity if and only if γ is a root of
unity. Since γ belongs to K, by Lemma 5.3.1, if it is a root of unity then its order is
at most 2D2 and hence divides L. Therefore, γ is a root of unity if and only if γL = 1,
i.e. Λj1 = Λj2 . Moreover, since L is even, for al j ∈ D, if Λj ∈ R then Λj > 0. We
conclude that dn is not identically zero and non-degenerate.

Let M = (R + R1)/2. Applying Theorem 2.4.2 to (dn)n∈N, there exists N1 such
that for all n ≥ N1, |dn| > Mn. Since M > R1 ≥ 0, there exists N ≥ N1 such that for
all n ≥ N , Mn > |rn| and hence |dn| > |rn|. Since the sequence (dn)n∈N is real-valued,
it follows that for n ≥ N , both dn and un are non-zero and sign dn = sign un.

It remains to express sign dn in terms of Γn for n ≥ N . For j ∈ D, let

fj(z1, . . . , zm) := cj

(
z

k1,j

1 · · · zkm,j
m

)L
.

With this definition, for all n ∈ N,

dn = Rn
∑
j∈D

cjfj(γn
1 , . . . , γ

n
m).

We can therefore define

O∆ = {(z1, . . . , zm) ∈ T |
∑
i∈D

cifi(z1, . . . , zm) ∆ 0}

for ∆ ∈ {>,<}. Observe that each O∆ is open and semialgebraic. In particular, an
effective representation of O∆ can be computed using Lemma 1.5.5. This completes
the proof of (a).

We now prove (b). As mentioned earlier, [45] shows that the Positivity Problem
for sequences over R ∩ Q reduces to the Positivity Problem for sequences over Q.
Hence we assume an oracle for the former problem. Let M = (R + R1)/2 as above.
By the choice of M , we can effectively compute N1 ∈ N such that for all n ≥ N1,
Mn > |rn|. On the other hand, by Theorem 2.4.2, there exists N2 such that for
all n ≥ N2, |dn| > Mn. Such N2 can be determined using a Positivity oracle for
diagonalisable LRS over R ∩ Q as follows. Let wn = d2

n − M2n and w(k)
n = wn+k for
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k ≥ 0. Since dn ∈ R ∩ Q for all n and M ∈ R ∩ Q, (wn)n∈N is an LRS over R ∩ Q. As
discussed in Chapter 2, for all k the sequence (w(k)

n )n∈N is diagonalisable. Finally, by
construction, wn ≥ 0 for sufficiently large n. Hence the smallest possible value for N2

can be determined by asking the Positivity oracle whether w(k)
n ≥ 0 for all n ∈ N for

increasing values of k, starting with k = 0. Finally, we select N = max{N1, N2}.

We next lift the previous lemma to show that characteristic words of diagonalisable
systems with respect to sets of semialgebraic targets are eventually toric.

Lemma 7.0.2. The characteristic word α of diagonalisable (M, s) ∈ Qd×d × Qd with
respect to any family T of semialgebraic targets is eventually toric with semialgebraic
parameters (N,Γ,S), where

(a) representations of Γ,S can be effectively computed, and

(b) N can be effectively computed using an oracle for the Positivity Problem for
diagonalisable linear recurrence sequences over Q.

Proof. Denote by λ1, . . . , λm the non-zero eigenvalues of M and write T = {T1, . . . , Tℓ}.
Let K = Q(λ1, . . . , λm), D = [K : Q], L = (2D2)!, and

Γ = (λ1/|λ1|, . . . , λm/|λm|).

We will consider the L sequences α0, . . . , αL−1, defined by αr(q) = α(qL + r) for
0 ≤ r < L and q ∈ N. Note that the merge of α0, . . . , αL−1 is α.

Write T = {T1, . . . , Tℓ}. By flattening each Ti using Lemma 1.3.4, we can construct
polynomials p1, . . . , pK ∈ Q[x1, . . . , xd] that define T . Fix 0 ≤ r < L. For 1 ≤ i ≤ K,
let u(i)

n = pi(MnL+rs), and denote by βi ∈ {+, 0,−}ω the sign pattern of (u(i)
n )n∈N. We

can compute the exponential polynomial representation of each u(i)
n using Lemma 2.2.5

and check whether u(i)
n is identically zero using Lemma 2.2.1.

Since each u(i)
n is of the form hi(λnL

1 , . . . , λnL
m ) for a polynomial hi with alge-

braic coefficients, by Lemma 7.0.1 (a) each βi is eventually toric with parameters
(Γ, Ni,Si), where Si = {S(i)

+ , S
(i)
0 , S

(i)
− } consists of open semialgebraic subsets of Tm.3

By Lemma 7.0.1 (b), the value Ni can be effectively computed using a decision proce-
dure for the Positivity Problem for diagonalisable LRS over Q. Since T is defined by
inequalities involving p1, . . . , pK , there exists

f : {+, 0,−}K → 2T

3If (pi(Mns))n∈N is identically zero, then Ni = 0 and S
(i)
+ = S

(i)
− = ∅ and S

(i)
0 = T.
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such that for all n ∈ N,

f(β1(n), . . . , βK(n)) = αr(n).

Applying Lemmas 4.2.1 and 4.2.2, we conclude that αr is eventually toric with
semialgebraic parameters (Γ, N,S) where S can be effectively computed and N can be
effectively computed assuming decidability of the Positivity Problem for diagonalisable
sequences. It remains to invoke Theorem 4.2.3 to conclude that α is also eventually
toric with semialgebraic parameters.

Interestingly, the lemma above implies that the word α is effectively almost-periodic.
That is, there exists some program P2 that, given a finite word u, decides whether
u occurs in α and computes a bound on the gaps between consecutive occurrences
of u in α (see page 72). As a result, there exists some algorithm that decides the
Acceptance Problem4 for α.

Theorem 7.0.3. Let α be the characteristic word of diagonalisable (M, s) with respect
to a collection T of semialgebraic targets.

(a) The word α is effectively almost-periodic.

(b) The Acceptance Problem for α is decidable.

Proof. Lemma 7.0.2 shows that α is eventually toric with semialgebraic parameters.
To prove (a), recall that eventually toric words with semialgebraic parameters are
effectively almost-periodic (Theorem 4.3.1). Statement (b) follows from (a) and
Semënov’s theorem (Chapter 3).

The statements (a-b) of Theorem 7.0.3 also hold for any α that is the characteristic
word of an arbitrary LDS (M, s) with respect to a collection T of tame targets; Such α
was shown to be eventually toric with semialgebraic parameters in the preceding
chapter. However, in this case, the word α is eventually toric with parameters
(Γ, N,S) all of which can be effectively computed given M, s, T . Hence the Model-
Checking Problem for tame targets and the Acceptance Problem for any characteristic
word of an LDS with respect to a set of tame targets are both decidable.

We now state and prove conditional decidability of the Model-Checking Problem
for diagonalisable systems and unconditional decidability of the MCP restricted to
diagonalisable systems and prefix-independent properties.

4Recall from the Introduction that the Acceptance Problem for α is to decide whether a given
automaton A accepts α.
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Theorem 7.0.4.

(✠) Given a diagonalisable linear dynamical system (M, s), a set T of semialgebraic
predicates, and a prefix-independent automaton A, it is decidable whether A
accepts the characteristic word α of (M, s) with respect to T .

(⋆) If we assume the Positivity Problem is decidable for diagonalisable linear recur-
rence sequences over Q, then the full Model-Checking Problem is decidable for
diagonalisable systems.

Proof. We first prove (⋆). Let α be the characteristic word of diagonalisable (M, s)
with respect to a collection of semialgebraic sets T . By Lemma 7.0.2, α is eventually
toric with semialgebraic parameters (Γ, N,S), where S = {Sσ | σ ∈ Σ} and Σ = 2T .
Under the assumption that the Positivity Problem is decidable for diagonalisable LRS
over Q, the value of N can be effectively computed. Thereafter, using Theorem 4.3.4
we can compute (e.g. as a formula) a window function W̃ for α satisfying W̃(l) ≥ W(l)
for all l ∈ N. We can then use the algorithm of Corollary 3.1.4 to decide whether A
accepts α.

It remains to show how to unconditionally determine whether a prefix-independent
automaton accepts α above that is eventually toric with parameters (Γ, N,S). Recall
from Lemma 7.0.2 that we can effectively compute representations of Γ and S. By
Theorem 4.3.4, the word β := α[N,∞) is almost-periodic with the window function

W̃(l) = 2(l+||Γ||+||S||)Poly(d)

for all l ∈ N. That is, even though we do not where β begins in α, we can effectively
compute an upper bound on Wβ(l) for all l.

We gave the following algorithm in Section 3.2 for deciding whether a prefix-
independent automaton A with the set of states Q accepts α.

1. Compute
H = 2W̃ |Q|+1(2W̃ |Q|+1(1) + 1).

2. Compute a word w of length 2H that occurs infinitely often in α.

3. Simulate A on w and record the set S of states that occur in A(w)[H, 2H). The
set S is exactly the set of states that are visited infinitely often when A reads α.

4. Check S against the acceptance condition of A.
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It remains to show how to implement Step 2. For this, it suffices to give a procedure
that determines whether a given finite word u of length 2H occurs infinitely often in β.
By definition of eventually toricity, u occurs at a position n ≥ N in α if and only if

2H−1∧
k=0

α(n+ k) = u(k) ⇔
2H−1∧
k=0

Γn+k ∈ Su(k)

⇔
2H−1∧
k=0

Γn ∈ Γ−kSu(k)

⇔ Γn ∈
2H−1⋂
k=0

Γ−kSu(k).

Let Su = TΓ ∩ ⋂2H−1
k=0 Γ−kSu(k), where TΓ, as in Theorem 4.1.4, is the Euclidean

closure of (Γn)n∈N Observe that Su is semialgebraic and an open subset of TΓ. By
Theorem 4.1.4, Γn ∈ Su for infinitely many values of n if and only if Su ̸= ∅. Hence
determining whether u occurs infinitely often in β is equivalent to checking whether
the semialgebraic set Su is non-empty.

The complexity bound we can prove for (⋆) is TOWER, i.e. non-elementary.
The main reason for this is that the window function W̃(l) for β guaranteed by
Theorem 4.3.4 is not polynomial in l.5 This makes the quantity W̃ |Q|+1(1) non-
elementary in the input size. As long as we use the framework of almost periodicity
and Semënov’s theorem, an algorithm with elementary complexity seems unlikely. In
fact, the original ad hoc (i.e. not directly based on almost periodicity) model-checking
algorithm that we gave in [7] also has non-elementary complexity.

As discussed in Chapter 2, we currently do not know how to decide the Positivity
Problem for diagonalisable sequences, or whether this is at all possible. For non-
diagonalisable systems almost none of the methods we used in this section are applicable.
For example, consider un = p(Mns) not identically zero, where M is non-diagonalisable.
Scaling un by the magnitude of the largest eigenvalue and applying Theorem 2.4.2,
we can conclude that there exists N such that for all n ≥ N , the sign of un is the
same as the sign of dn = ∑A

j=1 pj(n)γn
j where γj ∈ T ∩ Q and pj ∈ Q[x] for all j. We

will show in the following chapter that the sign pattern of (dn)n∈N can in fact be not
toric and not almost-periodic. Hence the statement of Lemma 7.0.2 does not hold for
non-diagonalisable systems.

5This is in contrast to the window functions for toric words generated by a single rotation Γ ∈ T,
which appeared in Chapters 5 and 6.
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Chapter 8

Hard instances of the
Model-Checking Problem

Recall that the Model-Checking Problem in its full generality is to decide, given a
linear dynamical system (M, s), a set T of semialgebraic targets, and a deterministic
automaton A, whether A accepts the characteristic word α of (M, s) with respect
to T . We have shown decidability of the MCP in the following two cases.

(A) All semialgebraic targets in T are low-dimensional, i.e. every T ∈ T is either of
semialgebraic dimension at most 1 or contained in a linear subspace of dimension
at most 3.1

(B) M is diagonalisable and A is prefix-independent.

In this chapter we will show that substantially improving either (A) or (B) would lead
to major mathematical breakthroughs. Specifically, we will use Diophantine hardness
(Section 8.1) and reductions from open cases of the Skolem and Positivity problems as
evidence of intractability. Below is a summary of our results.

(1) Already in the ambient space R4, both reachability and infinite reachability
problems of the class of semialgebraic sets of dimension 2 are Diophantine-hard.
Note that infinite reachability is a prefix-independent property. Since every subset
of R4 is trivially contained in a four-dimensional subspace, it follows that the
reachability and infinite reachability problems of the class of semialgebraic sets
contained in a four-dimensional subspace are also Diophantine-hard. Therefore,
the MCP for both aforementioned generalisations of low-dimensional targets is
intractable, even if we restrict A to be prefix-independent.

1Recall from Chapter 6 that we also showed decidability for tame targets by reducing the MCP
with tame targets to the MCP with low-dimensional targets.
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(2) The Reachability Problem for diagonalisable systems subsumes the Skolem and
Positivity problems for diagonalisable sequences. In ambient dimension 4, the
Reachability Problem is at least as hard as the Skolem Problem for sequences of
order 5. Recall that reachability properties are not prefix-independent. Therefore,
in (B) above, if we drop (only) the prefix-independence restriction, then the
resulting model-checking problem subsumes the Skolem and Positivity problems,
becoming intractable already in ambient dimension 4. If we drop the diagonalis-
ability restriction in (B), then we obtain a Diophantine-hard problem already in
ambient dimension 4 as discussed in (1).

We will also show that the characteristic word of a linear dynamical system (M, s) with
respect to a single target of semialgebraic dimension 2 or a single target contained in
a four-dimensional space can be not be almost-periodic and hence not eventually toric.
This makes all approaches based on Semënov’s theorem and the theory of toric words
inapplicable to model checking problems involving such targets, further substantiating
hardness of generalising (A).

8.1 Overview of Diophantine hardness

Let x ∈ R. The Lagrange constant (or the homogenous Diophantine approximation
constant) of x is defined as

L∞(x) = inf
{
c ∈ R :

∣∣∣∣x− m

n

∣∣∣∣ < c

n2 for infinitely many m,n ∈ Z
}
.

Writing [[y]] for the distance from y ∈ R to a nearest integer, L∞(x) < b means that for
infinitely many integers n > 0, there exists m ∈ N such that |nx−m| < b/n, which is
equivalent to [[nx]] < b/n. Hence we can equivalently define

L∞(x) = lim inf
n→∞

n[[nx]].

The Lagrange constant, alongside the irrationality measure, is actively studied in
Diophantine approximation. Nevertheless, we only know how to compute L∞(x) to
arbitrary precision only for a very restricted class of real numbers x.

Dirichlet proved, using the Pigeonhole Principle, that for every x ∈ R there exist
infinitely many integers n,m such that |x − m/n| ≤ 1/n2. That is, L∞(x) ≤ 1 for
all x. Hurwitz showed that for every irrational x ∈ R, L∞(x) ≤ 1/

√
5, which is

the best possible as the Lagrange constant of the golden ratio is exactly 1/
√

5. The
Lagrange constant of x is usually studied through its continued fraction expansion.
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For algebraic numbers of degree at most 2, as well as certain special transcendental
numbers (e.g. Euler’s constant), the continued fraction expansion can be described in a
finitary manner and hence the Lagrange constant can be computed exactly. For other
numbers, no general method is known that, given x and a threshold c, compares L∞(x)
against c. We do know, however, that the Lagrange spectrum {L∞(x) | x ∈ R \ Q}
contains countably many numbers in the interval (1/3, 1/

√
5) called Lagrange numbers,

as well as the whole interval (0, 1/F ] where F ≈ 4.52783 is Freiman’s constant. We
refer the reader to the wonderful book [19] by Borwein et al. for an introduction to
Diophantine approximation and the theory of continued fractions.

We next define the (homogenous Diophantine approximation) type of x as

L(x) = inf
{
c ∈ R :

∣∣∣∣x− m

n

∣∣∣∣ < c

n2 for some m,n ∈ Z
}
.

Observe that L(x) ≤ L∞(x) for all x. In fact, if un = pn/qn is the sequence of
convergents of x (i.e. rational approximations of x of increasing quality satisfying
limn→∞

pn

qn
= x) obtained from the continued fraction expansion of x, then

L∞(x) = lim sup
n≥0

(qn|qnx− pn|)−1

and
L(x) = sup

n≥0
(qn|qnx− pn|)−1.

See [51] for a discussion of L∞(x) and L(x), as well as their relationship to various
other quantities from Diophantine approximation. For our purposes, we will only
need the fact it is only known how to compute or even estimate L(x) or L∞(x) for
very specific values of x. Hence finding an algorithm to compute L(x) or L∞(x) to
arbitrary precision for a large class of numbers would amount to a major mathematical
breakthrough. The Positivity Problem and the Ultimate Positivity Problem are two
well-known examples of decision problems that are Diophantine-hard in this sense,
discussed below. Recall that we denote by T the unit circle in C, and let

G = {p+ qi | p, q ∈ Q} ∩ T,

L = {Log(α)/(i2π) : α ∈ G}.

The set L is dense in (−1/2, 1/2], and contains transcendental numbers with the only
exceptions −1/4, 0, 1/4, 1/2. Consider linear recurrence sequences of the form

uλ,r
n = −n1n + 1

2(n− ri)λn + 1
2(n+ ri)λn

= r Im(λn) − n(1 − Re(λn)).
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where r ∈ Q and λ ∈ T ∩ Q(i). Each (uλ,r
n )n∈N is an LRS over Q of order at most 6.

The following are established in [66].

Theorem 8.1.1 (Diophantine hardness of Positivity). Suppose it is decidable, given
λ ∈ G and r ∈ R, whether uλ,r

n ≥ 0 for all n. Then L(x) can be computed to arbitrary
precision for any x ∈ L.

Theorem 8.1.2 (Diophantine hardness of Ultimate Positivity). Suppose it is decidable,
given λ ∈ G and r ∈ R, whether there exists N such that uλ,r

n ≥ 0 for all n ≥ N . Then
for any x ∈ L, L∞(x) can be computed to arbitrary precision.

In the following section we will prove Diophantine hardness by showing that solving
various special cases of the Model-Checking Problem (that lie just outside the scope
of our decidability results) would give us means to estimate L(x) or L∞(x) for the
class L above.

8.2 Targets that are not low-dimensional

For target sets of semialgebraic dimension 2, already in ambient dimension 4 every
approach we have used so far to decide the Model-Checking Problem is shattered, and
we are faced with Diophantine hardness. Let

H := {T ⊆ R4 | T is semialgebraic with dimension 2}

and recall the definition of L above. We will prove the following.

Theorem 8.2.1 (Diophantine hardness of reachability). Suppose it is decidable, given
(M, s) ∈ Q4×4 ×Q4 and T ∈ H, whether there exists n ∈ N such that Mns ∈ T . Then
L(x) can be approximated to arbitrary precision for every x ∈ L.

Theorem 8.2.2 (Diophantine hardness of infinite reachability). Suppose it is decidable,
given (M, s) ∈ Q4×4 × Q4 and T ∈ H, whether there exist infinitely many values n
such that Mns ∈ T . Then L∞(x) can be approximated to arbitrary precision for every
x ∈ L.

We will also give an example of T ∈ H and (M, s) ∈ Q4×4 × Q4 such that the
characteristic word of (M, s) with respect to T = {T} is not almost-periodic and
hence not eventually toric either. Observe that every T ∈ H is trivially contained in a
four-dimensional subspace. Hence for the class

Ĥ :=
⋃

k∈N
{T ⊆ Rk | T is contained in a subspace of Rk of dimension at most 4}
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it also holds that if reachability (resp. infinite reachability) were decidable, then L(x)
(resp. L∞(x)) can be approximated to arbitrary precision for every x ∈ L. Note that
“the orbit (Mns)n∈N visits T infinitely often” is a prefix-independent property. Hence
both reachability and prefix-independent model-checking are Diophantine-hard for
the classes H and Ĥ of targets.

For r ∈ R and λ ∈ G, where G = Q(i) ∩ T as above, define

vλ,r
n = uλ,r

n · (Im(λn))2 = r (Im(λn))3 − n (Im(λn))2 (1 − Re(λn)).

Assuming λ is not a root of unity, Im(λn) ̸= 0 and hence sign(uλ,r
n ) = sign(vλ,r

n ) for all
n ≥ 1. It will be more convenient to work with (vλ,r

n )n∈N. For λ ∈ G, let

Rλ =
[
Re(λ) − Im(λ)
Im(λ) Re(λ)

]

and
Mλ =

[
Rλ I

Rλ

]
.

Further let s = (0, 0, 0, 1), and for λ ∈ G and n ∈ N write

z(λ, n) := (− Im(λn),Re(λn)).

It holds that

Mn
λ s = (−n Im(λn−1), nRe(λn−1),− Im(λn),Re(λn)) = (nR−1

λ · z(λ, n), z(λ, n)).

In particular, for every (x1, x2, x3, x4) = Mn
λ s for some n, (x3, x4) lies on the unit

circle and
(x1, x2) = nR−1

λ (x3, x4). (8.1)

Writing pλ(x1, x2, x3, x4) := Re(λ)x1 − Im(λ)x2 we have that

pλ(Mn
λ s) = −n Im(λn). (8.2)

Intuitively, pλ multiplies (x1, x2) by the rotation matrix Rλ and then extracts x1.
Writing qλ,r(x1, x2, x3, x4) := −rx3

3 + pλ(x1, x2, x3, x4)x3(1 − x4), we obtain

vn(λ, r) = qλ,r(Mn
λ s).

If we choose T to be {x ∈ R4 : qλ,r(x) < 0}, then for all n, uλ,r
n < 0 (and hence vλ,r

n < 0)
for some n if and only if Mn

λ s ∈ T . We have thus related the condition vn ≥ 0 to
non-reachability in T . Observe that T need not be two-dimensional. To remedy this,
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we will construct, for every λ ∈ G, a semialgebraic set Sλ ⊂ R4 of dimension 2 that
contains the orbit of (Mλ, s). We can then consider reachability in T ∩ Sλ and Sλ \ T ,
both of which have semialgebraic dimension at most 2.

Let x(t) = (1−t2

1+t2 ,
2t

1+t2 ) and recall that the unit circle in R2 can be expressed in the
parametric form as {(−1, 0)} ∪ {x(t) : t ∈ R}. We make the following definitions.

fλ(s, t) = (sR−1
λ · x(t), x(t))

Aλ = {f(s, t) : s, t ∈ R}

Bλ = {(sR−1
λ (−1, 0),−1, 0) : s ∈ R}

Sλ = Aλ ∪Bλ.

Recall (from Equation (8.1)) that for every λ ∈ G and (x1, x2, x3, x4) = Mn
λ s occurring

in the orbit of (Mλ, s), (x3, x4) lies on the unit circle and

(x1, x2) = nR−1
λ (x3, x4).

Hence Mn
λ s ∈ Sλ for all λ and n. Since Sλ is rationally parametrised using two

parameters, it has dimension at most (in fact exactly) 2. Another way to see this is to
observe that fλ maps R2 onto Aλ homeomorphically. Similarly, Bλ is homeomorphic
to R. Since dimension of semialgebraic sets is preserved under homeomorphisms,
dim(Aλ) = 2, dim(Bλ) = 1, and dim(Sλ) = max {dim(Aλ), dim(Bλ)} = 2.

Proof of Theorem 8.2.1. Suppose the Reachability Problem is decidable in ambient
dimension 4 for the class of targets H. By Theorem 8.1.1, it suffices to show that
given r ∈ R and λ ∈ G, we can decide whether uλ,r

n ≥ 0 for all n ∈ N. First suppose λ
is a root of unity. Since λ ∈ Q(i), it must be one of 1, i,−1, i, in which case whether
uλ,r

n ≥ 0 holds for all n can be verified directly. Suppose therefore λ is not a root
of unity. As mentioned earlier, sign(vλ,r

n ) = sign(uλ,r
n ) for n ≥ 1; Moreover, vλ,r

0 = 0.
If uλ,r

0 < 0, then we are done. Suppose uλ,r
0 ≥ 0. It remains to determine whether

vλ,r
n ≥ 0 for all n ∈ N. Let M = Mλ, s = (0, 0, 0, 1), and

T = Sλ ∩ {x ∈ R4 : qλ,r(x) < 0}.

The set T is semialgebraic and has dimension at most 2 as dim(Sλ) = 2. Hence T ∈ H.
Since Mns ∈ Sλ for all n,

Mns ∈ T ⇔ qλ,r(Mns) < 0. (8.3)

Recall that qλ,r(Mns) = vλ,r
n . Hence vλ,r

n ≥ 0 for all n if and only if the orbit of (M, s)
does not reach T , i.e. there does not exist n such that Mns ∈ T .
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Proof of Theorem 8.2.2. Similar to the above. First assume that its is decidable
whether the orbit of a given LDS visits a given target from H infinitely often. By
Theorem 8.1.2, it suffices to show that given r ∈ R and λ ∈ G, we can decide whether
there exists N such that uλ,r

n ≥ 0 for all n ≥ N . Assume λ is not a root of unity, as
otherwise the problem is trivial. Observe that uλ,r

n ≥ 0 for sufficiently large n if and
only if vλ,r

n ≥ 0 for sufficiently large n. That is, we have to decide whether (vλ,r
n )n∈N has

only finitely many negative terms. Let M, s, qλ,r, T be as in the proof of Theorem 8.2.1.
Recalling that vλ,r

n = qλ,r(Mns) and applying Equation (8.3), vλ,r
n < 0 holds only for

finitely many n if and only if the orbit of (M, s) does not visit T infinitely often.
These two theorems tell us that we cannot extend our result that the MCP is

decidable for arbitrary LDS and low-dimensional targets to neither the class H of
targets of semialgebraic dimension 2, nor to the class Ĥ of targets contained in a
four-dimensional subspace. In fact, by Theorem 8.2.2 even the restriction to prefix-
independent properties does not help.As promised, we conclude this section by showing
that the characteristic word of a four-dimensional system (M, s) with respect to a set
of targets T ⊂ H need not be almost-periodic.

Let λ ∈ G be not a root of unity, e.g. λ = 0.6 + 0.8i, and consider the LRS

un = 8 − (n Im(λn))2.

We will show that the sign pattern of (un)n∈N is not almost-periodic and at the same
time, up to a renaming of letters, the characteristic word of an LDS with respect
to {T} for T ∈ H defined below. Let s = (0, 0, 0, 1) and Mλ, pλ be as above. By
Equation (8.2),

un = 8 − pλ(Mn
λ s)2.

If we define
T = {(x1, x2, x3, x4) : pλ(x1, x2, x3, x4)2 < 8}

then Mn
λ s ∈ T if and only if un > 0.

Theorem 8.2.3. The characteristic word of (Mλ, s) with respect to T = {T} is not
almost-periodic.

Proof. First let us show that T is visited infinitely often by the orbit of (Mλ, s). Let

x = Log(λ)
i2π

and observe that since λ is not a root of unity, x is irrational and lies in (−1/2, 1/2].
For all n ∈ N it holds that

| Log(λn)/i| = [[2πnx]]2π = 2π[[nx]].
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By Hurwitz’s theorem (see Section 8.1), there exist infinitely many positive integers n
such that

[[nx]] < 1√
5n
.

We conclude that
|Log(λn)/i| < 2π√

5n
(8.4)

holds for infinitely many integers 0 < n1 < n2 < · · · . Recall that for z ∈ T,
| Log(z)/i| ∈ [0, π] is the length of the (smallest) arc of the unit circle extended by
the complex numbers 1 and z. Observe that for z ∈ T with Log(z)/i ∈ [−π/2, π/2],

| Log(z)/i| ≥ | Im(z)|.

Moreover, for all ni ≥ 2 it holds that 2π√
5ni

≤ π/2. Applying Equation (8.4), for al
ni ≥ 2,

| Im(λni)| < 2π√
5ni

which is equivalent to (Im(λni))2 < 4π2

5n2 . We conclude that

(n Im(λn))2 <
4π2

5 < 8

and hence un > 0 for infinitely many values of n.
We next show that for every k, there exists m such that for all m < n ≤ m+ k,

Mn
λ s /∈ T . That is, the gaps between consecutive visits of (Mns)n∈N to T can be

arbitrarily large. Equivalently, the characteristic word α of (Mλ, s) with respect to
T = {T} contains arbitrarily large blocks of the letter ∅. From the fact that the
letter {T} occurs infinitely often in α it will then follow that α is not almost-periodic.

For z ∈ T and ε > 0 we write B(z, ε) = {y ∈ T : |z − y| < ε}. For n ∈ N, let

Tn = {z ∈ C : | Im(z)| < 8/n}.

Observe that Mn
λ ∈ T if and only if λn ∈ Tn. Moreover, the sequence (Tn)n∈N of sets

shrinks uniformly to the finite set {−1, 1}. Intuitively, due to the shrinkage it takes
longer and longer for (λn)n∈N to fall into Tn as n → ∞. Given k, we construct m
described above as follows. Since λ is not a root of unity, λn ̸= 1,−1 for all n > 1.
Let ε > 0 be such that

λ, . . . , λk /∈ B(1, 2ε) ∪ B(−1, 2ε).

Then for all z ∈ B(1, ε) ∩ T,

λz, . . . , λkz /∈ B(1, ε) ∪ B(−1, ε).
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Let N be such that for all n ≥ N , Tn ⊆ B(1, ε) ∪ B(−1, ε), and m ≥ N be such that
λm ∈ B(1, ε). Such m exists by the density of (λn)n∈N in T (Theorem 4.1.4). By
construction, λm+1, . . . , λm+k /∈ B(1, ε) ∪ B(−1, ε), which encloses Tn for all n ≥ m.
Hence for all m < n ≤ m+ k, λn /∈ Tn and Mn

λ s /∈ T .

8.3 Hardness results for diagonalisable systems

We now look at possible extensions of our result that the Model-Checking Problem
is decidable for diagonalisable (M, s) and prefix-independent properties. First of all,
recall from Theorem 8.2.2 that it is Diophantine-hard to decide whether the orbit of
a given LDS (M, s) ∈ Q4×4 × Q4 visits a given semialgebraic set T infinitely often.
Noting that “T ∈ α(n) for infinitely many n” is a prefix-independent property of the
characteristic word α, we conclude that the Model-Checking Problem with prefix-
independent properties (without the diagonalisability assumption) is Diophantine-hard
already in ambient dimension 4.

Now let us look at what happens if we only remove the restriction to prefix-
independent properties. That is, we consider the full Model-Checking Problem for
diagonalisable LDS (M, s), without any restrictions on the target sets T or the automa-
ton A. By the correspondence between halfspace (resp. hyperplane) reachability and
the Positivity (resp. Skolem) Problem given in Section 2.1, the MCP for diagonalisable
systems immediately subsumes the Skolem and Positivity problems for diagonalisable
sequences, both open at the moment. We will next show that already in dimension 4,
the Reachability Problem with affine subspace targets is at least as hard as the Skolem
Problem at order 5.

Theorem 8.3.1. The Skolem Problem for rational linear recurrence sequences of
order 5 reduces to the following problem. Given diagonalisable M ∈ Q4×4 and c ∈ Q4,
decide if the orbit of (M, s) reaches the affine plane T = {x | c⊤x = 1}.

Proof. Recall from Section 2.3 that at order 5 the Skolem Problem for LRS over Q is
open only for sequences of the form

un = b⊤P nt = αλn + αλn + βγn + β γn + δρn

where b, t ∈ Q5, P ∈ Q5×5, λ and γ are non-real and distinct, δ and ρ are positive,
and

|λ| = |γ| > |ρ|.
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Moreover, λ, λ, γ, γ, ρ are exactly the roots of the characteristic polynomial p ∈ Q[x]
of P . Let K = Q(λ, λ, γ, γ, ρ) and D = [K : Q]. Note that K/Q is a Galois extension,
and α, β, δ ∈ K.

We will next argue that ρ must be rational, i.e. the polynomial p is reducible with a
linear factor. Let σ1, . . . , σD denote all distinct automorphisms of the number field K.
Recall that as K is the splitting field of p, each σi acts bijectively on the roots of p.
Observe that λλ = γγ and hence

σi(λ)σi(λ) = σi(γ)σi(γ)

for all 1 ≤ i ≤ D. Since σi permutes the roots and |ρ| < |λ|, |γ|, the equation above
can only hold if σi permutes {λ, λ, γ, γ}. We conclude that every automorphism σi

of K fixes ρ, which implies that ρ is rational.
We consider δ next. Since un ∈ Q for all n, σi(un) = un for all i and n. By the

uniqueness of the exponential polynomial representation (Section 2.2),

σi(un) = σi(α)(σi(λ))n + . . .+ σi(δ)(σi(ρ))n

must be syntactically the same exponential polynomial as αλn +αλn +βγn +β γn +δρn.
Since ρ ∈ Q, σi(ρ) = ρ hence σi(δ) = δ for all 1 ≤ i ≤ D. It follows that δ ∈ Q.

Let vn = αλn +αλn +βγn +β γn, and h(x) = a0 + a1x+ . . .+ a4x
4 ∈ Q[x], a4 ̸= 0

be a factor of p whose roots are exactly Z := {λ, λ, γ, γ}. For each z ∈ Z and n ∈ N,

zn+4 =
3∑

i=0

ai

a4
zn+i.

Therefore,

vn =
3∑

i=0

ai

a4
vn+i

That is, (vn)n∈N is an LRS over Q of order 4. Let a, s ∈ Q4 and R ∈ Q4×4 be such
that vn = a⊤Rns for all n. We have that un = 0 if and only if −a⊤Rns = δρn, which
is equivalent to

−(a/δ)⊤(R/ρ)ns = 1

Taking M = (R/ρ) ∈ Q4×4, c = −a/δ ∈ Q4, and T = {x ∈ R4 | c⊤x = 1}, we obtain
that un = 0 if and only if Mns ∈ T . This completes the reduction.

We claimed in Section 2.3 that the Skolem Problem for sequences of order 5
has been “solved in practice” due to the conditional decidability result [16] of Bilu
et al. This is far from the case when it comes to the Model-Checking Problem

158



for diagonalisable systems. Intuitively, this is because for a four-dimensional liner
dynamical system (M, s) and a polynomial p, the LRS un = p(Mns) can have high
order (that depends on the degree of p) and many dominant and non-dominant roots.
In fact, a significant open subclass of the Positivity Problem for diagonalisable linear
recurrence sequences of order 10 (see Section 2.5) can be reduced to the Reachability
Problem for diagonalisable systems of dimension 4. We give an example.

Let λ = 1 + 2i, γ = 2 + 3i, and consider the sequence

un = (λnγn + λn γn + 2λnγn + 2λnγn)2 − 2n.

It has been verified that un ≥ 0 for all 0 ≤ n ≤ 106, but, to the best of our knowledge,
no proof is known that un ≥ 0 for all n ∈ N.2 Let vn = u2n and wn = u2n+1. We
will reduce the problem of deciding whether vn ≥ 0 for all n to an instance of the
Reachability Problem in dimension 4 with a diagonalisable LDS. Whether wn ≥ 0 for
all n can be reduced to an instance of the Reachability Problem similarly. Note that
un ≥ 0 for all n if and only if vn, wn ≥ 0 for all n.

Write α = λ2/2 = −(3 + 4i)/2 and β = γ2/2 = −(5 + 12i)/2. Both α and β are
quadratic irrationals belonging to Q(i). It holds that

vn

4n
= (αnβn + αn βn + 2αnβn + 2αnβn)2 − 1.

Let s = (0, 1, 0, 1), R(z) =
[
Re(z) − Im(z)
Im(z) Re(z)

]
for z ∈ C, and

M =
[
R(α)

R(β)

]
∈ Q4×4

which has eigenvalues α, α, β, β. For every n ∈ N,

Mn =
[
R(αn)

R(βn)

]
.

Hence there exists p ∈ Q[x1, . . . , x4] such that p(Mns) = vn/4n for all n. Writing
T = {x ∈ R4 : p(x) < 0}, vn ≥ 0 for all n if and only if (Mns)n∈N does not reach T .

2Personal communication with Joël Ouaknine.
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Chapter 9

Abstraction-based verification of
linear dynamical systems

In the preceding chapters we mainly focussed on the Model-Checking Problem for
linear dynamical systems. Our approach was to translate various instances of the MCP
to problems about sign patterns of linear recurrence sequences. To reason about these
sign patterns we used bounds from algebraic number theory as well as tools from
Diophantine approximation. When going back from sign patterns of LRS to the orbit
of (M, s), we applied the theory of toric words, whose origins lie in symbolic dynamics.
Finally, Semënov’s algorithm for model-checking effectively almost-periodic words was
the punchline of our proofs that various classes of the Model-Checking Problem are
decidable. The classical perspective on dynamical systems, on the other hand, often
involves the study of various topological properties of dynamical systems as well as
their asymptotic behaviour. In this chapter we shift gears and study three problems
in computer science that arise from the latter view of (linear) dynamical systems. It
turns out that these problems, despite looking fairly different, can all be solved using
the same technique: constructing a continuous abstraction of the orbit of (M, s).

Pseudo-Reachability Problem (PRP). A fundamental notion in the theory
of dynamical systems is that of pseudo-orbits. A sequence (xn)n∈N over Rd is an
ε-pseudo-orbit of (M, s) if x0 = s and ∥xn+1 −Mxn∥2 < ε for all n ∈ N. The study
of pseudo-orbits dates back to the works Anosov [10], Bowen [20] and Conley [29]. We
will consider the Pseudo-Reachability Problem:1 given M ∈ (R ∩ Q)d×d, s ∈ (R ∩ Q)d,
and a semialgebraic target T , decide if for every ε > 0 there exist an ε-pseudo-orbit
(xn)n∈N of (M, s) that reaches T , i.e. xn ∈ T for some n ∈ N. We write PRP for the
set of all ⟨M, s, T ⟩ that are positive instances of this problem. In Section 9.7 we will

1Note that here we allow M ,s to have real algebraic entries, which is different from the preceding
chapters. This is to make intermediate steps involving real Jordan form more convenient.
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use the aforementioned continuous abstraction technique to show that the PRP is
decidable for diagonalisable M .

We can also view the PRP through the lens of control theory. Let (M, s) be as
above, and U ⊂ Rd be a set of accessible control inputs. Consider the dynamics x0 = s

and xn+1 = Mxn + un for n ∈ N, where un ∈ U for all n. The Reachability Problem
for Linear Time-Invariant Systems [37] is to decide, given M, s, U as above and a
target set T , whether there exists a sequence (un)n∈N of control inputs from U such
that the sequence (xn)n∈N reaches T . We can therefore interpret ⟨M, s, T ⟩ ∈ PRP as
“For any set U of control inputs containing a ball of positive radius around the origin,
⟨M, s, U, T ⟩ is a positive instance of the Reachability Problem for LTI systems”.

Previously, we have studied decidability of the PRP in two papers. In the earlier
work [31] we showed that the PRP is decidable for all LDS assuming the target T is
either a hyperplane, a halfspace, or a bounded semialgebraic set. We will comment
on these results in Section 9.7, but do not focus on them in this thesis as they are
based on a specialised (but relatively straightforward) technique. Instead, we will
show decidability of the PRP for diagonalisable linear dynamical systems and arbitrary
semialgebraic targets using the continuous abstraction technique we developed in the
later work [32].

Topological Reachability Problem (TRP). This is the problem of deciding, given
(M, s) and T as above, whether in every neighbourhood of s there exists a point ŝ such
that the orbit of (M, ŝ) reaches T . Observe that in comparison to the PRP, here we are
allowed a single control input that is applied before the first multiplication by M . We
write TRP for the set of all positive instances ⟨M, s, T ⟩ of the Topological Reachability
Problem. Unless s ∈ ∂T \ T , that is, s lies at the boundary of T but is not in T , if
⟨M, s, T ⟩ ∈ TRP then ⟨M, s, T ⟩ ∈ PRP. To see why the qualification s /∈ ∂T \ T is
necessary, suppose T is open, s lies at the boundary of T , and ⟨M, s, T ⟩ /∈ PRP. In
this case, due to the way we defined topological reachability, ⟨M, s, T ⟩ ∈ TRP. On the
other hand, suppose s /∈ ∂T \ T and ⟨M, s, T ⟩ ∈ TRP. If s ∈ T , then ⟨M, s, T ⟩ ∈ PRP.
Suppose s /∈ T . Then for every open O containing s, there exist ŝ and n ≥ 1 such
that Mnŝ ∈ T . It follows that for every ε > 0, there exists an ε-pseudo-orbit of (M, s)
of the form x1 = Ms + u0 and xn+1 = Mxn for n ≥ 1 that reaches T . Finally, we
mention that ⟨M, s, T ⟩ ∈ PRP in general does not imply ⟨M, s, T ⟩ ∈ TRP. This is
illustrated by M that is a 2 × 2 rotation matrix, any starting point s and closed
semialgebraic T that does not intersect {x ∈ R2 : |x| = |s|}.

The (equivalent) dual problem of the TRP, sometimes referred to as the Robust
Avoidance Problem, is to decide, given (M, s) and T as above, whether there exists
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an open neighbourhood O containing s such that the sequence (MnO)n∈N avoids T .
Robust avoidance is a relatively strong form of non-reachability that rules out instances
where the orbit of (M, s), in some sense, comes arbitrarily close to the target T without
ever reaching it.

Decidability of the TRP for hyperplane and halfspace targets was first shown by
Akshay et al. in [3]. We illustrate their idea for hyperplane targets; halfspace targets
are handled in the same way. Given a hyperplane T = {x : c⊤x = 0} and (M, s), the
linear recurrence sequence un = c⊤Mns has the property that for all n, Mns ∈ T if
and only if un = 0. Suppose (un)n∈N has order k and satisfies a recurrence relation
a = (a0, . . . , ak−1) ∈ Rk. That is, un+k = a0un + . . . + ad−1un+k−1 for all n ∈ N. If
we change s to a close point ŝ, we obtain a new sequence vn = c⊤Mnŝ that has
order at most k and also satisfies the recurrence relation a. That is, moving from s

to t corresponds to slightly modifying the starting values of (un)n∈N. Therefore, for
hyperplane targets, the TRP is equivalent to the following problem about LRS: Given
(un)n∈N satisfying a recurrence relation a ∈ Rk, decide whether for every ε > 0 it is
possible to perturb the initial values u0, . . . , uk−1 by at most ε to obtain a sequence
(vn)n∈N such that vn = 0 for some n. The latter problem, in turn, can be solved using
the classical theory of linear recurrence sequences. The approach of [3] is specific to
targets defined by a single linear (in)equality. In Section 9.6 we will use a different,
geometric approach to prove decidability of the TRP in full generality.

Semialgebraic Invariant Problem (SIP). Somewhat surprisingly, we will show
that the two reachability problems given above are related to inductive invariants
of linear dynamical systems. An inductive invariant of (M, s) is a set S such that
MS ⊆ S and s ∈ S. Two trivial inductive invariants of S are the whole ambient
space Rd and the orbit of (M, s) itself. Given a semialgebraic target T , if we can
synthesise a semialgebraic inductive invariant S of (M, s) that is disjoint from T then
we have a certificate that the orbit of (M, s) does not reach T . This makes inductive
invariants a crucial tool for proving non-reachability, especially in the light of the
following result of [6].

Theorem 9.0.1. Given M ∈ (R ∩ Q)d×d, s ∈ (R ∩ Q)d and semialgebraic T ⊆ Rd, it
is decidable whether there exists a semialgebraic inductive invariant of (M, s) that is
disjoint from T . In case such an invariant exists, it can be computed effectively.

We refer to the decision problem of determining whether a semialgebraic invariant
disjoint from T exists as the Semialgebraic Invariant Problem (SIP) and write SIP
for the set of all positive instances ⟨M, s, T ⟩ thereof. To prove Theorem 9.0.1, the
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authors first show that ⟨M, s, T ⟩ ∈ SIP if and only there exists an inductive invariant S
that is disjoint from T and can be defined using arithmetic operations as well as
real exponentiation. Note that this class invariants is strictly larger than the class
of semialgebraic invariants. Existence of a desired invariant in the larger class was
already shown to be decidable in [5] using o-minimality of the structure of real numbers
equipped with arithmetic operations and exponentiation, which we will discuss shortly.

We mention that non-reachability cannot always be proven using invariants. As
an example, let M be a 2 × 2 rotation matrix, s = (1, 0), T be a semialgebraic subset
of the unit circle containing finitely many points, and suppose the orbit of (M, s)
is dense in the unit circle but avoids T . Any inductive invariant of (M, s) that has
finitely many connected components must contain the whole unit circle. Hence no
such invariant can be disjoint from T . Nevertheless, we will show in Section 9.8 that
TRP ⊂ SIP. That is, if the orbit of M, s is sufficiently well-separated from T (i.e. there
exists a neighbourhood O of s such that (MnO)n∈N avoids T ), then we can always
prove non-reachability by synthesising a semialgebraic invariant.

Recall that exact verification problems of linear dynamical systems like the Skolem
Problem,2 the Positivity Problem, and the Model-Checking Problem are known to be
decidable in low dimension and are open or provably “mathematically intractable” in
higher dimensions. The results of this chapter, in comparison, are applicable in all
dimensions. However, in Section 9.9 we will show that the if we try to generalise our
decidability results for the TRP and the PRP from reachability properties to arbitrary
ω-regular properties, the resulting problems are at least as hard as the Positivity
Problem for linear recurrence sequences. We mention that, another comparison to the
problems of LDS considered in preceding chapters is that in this chapter we use “soft”
tools like o-minimality as opposed “hard” tools like Baker’s theorem.

We next introduce o-minimality and model-theoretic properties of real numbers
with exponentiation. These are of vital importance to us as the continuous abstraction,
which is our common tool for attacking the TRP, the PRP and the SIP, is defined
using not only polynomials but also the exponential function.

9.1 Model theory of real exponentiation

Recall that Lor denotes the language of ordered rings, and formulas φ ∈ Lor with d

free variables define precisely the semialgebraic subsets of Rd. We write Le for the
2See Section 2.1 for the formulation of the Skolem and Positivity problems in terms of linear

dynamical systems.
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first-order language given by the set of function symbols Fe := {+,−, ·, exp}, the set
of relation symbols Re := {>,≥,=, ̸=,≤, <}, and the set of constant symbols Ce := Q.
We denote by Rexp the structure of real numbers equipped with the usual arithmetic
operations and the exponentiation function x 7→ ex. We will be interpreting formulas
of Le in Rexp. Observe that in the structure Rexp, for every positive r ∈ (R ∩ Q) we
can define the function y = rx = ex log r by the Le-formula

φ(x, y) := ∃z : exp(z) = r ∧ y = exp(x · z).

The structure Rexp has been studied intensively over decades. Already in 1948,
having proved decidability of Th(R0), Tarski asked: is Th(Rexp) decidable? Here
Th(Rexp) denotes the set of all Le-sentences that are true in Rexp. In 1996, Macintyre
and Wilkie [55] gave a positive answer to Tarski’s question subject to Schanuel’s
famous conjecture in transcendental number theory.

Schanuel’s conjecture. For λ1, . . . , λm ∈ C that are linearly independent over Q,
the transcendence degree of the field extension Q(λ1, . . . , λm, e

λ1 , . . . , eλm)/Q is at
least m.

Schanuel’s conjecture has wide implications in transcendence theory, but is currently
believed to be out of reach. We refer the reader to [80] for a detailed introduction.
The aforementioned proof of Macintyre and Wilkie requires Schanuel’s conjecture only
for λ1, . . . , λm ∈ R. For λ1, . . . , λm ∈ Q, Schanuel’s conjecture has been proven as the
Lindemann-Weierstrass theorem.

We say that S ⊆ Rd is definable in Rexp with parameters from X ⊆ R if there exist
k ≥ 0, a formula φ ∈ Le with k + d free variables, and c1, . . . , ck ∈ X such that for all
x ∈ Rd,

x ∈ S ⇔ φ(c1, . . . , ck,x).

We say that S is definable in Rexp if it is definable in Rexp with parameters from R,
and Le-definable if it is definable in Rexp with parameters from X = ∅. Semialgebraic
sets, for example, are Le-definable. Wilkie has shown [81] that the structure Rexp is

(a) o-minimal, meaning that every set S definable in Rexp has finitely many connected
components in the Euclidean topology, and

(b) model-complete, meaning that every Le-formula is equivalent to an existential
formula modulo Th(Rexp).
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Both results are independent of Schanuel’s conjecture. That Rexp is o-minimal is
the cornerstone of our decidability results in this chapter.

The Le-definable sets, just like the more special class of semialgebraic sets, admit
cell decomposition [33, Chapter 3]. In this chapter by a cell we mean an Le-definable set
that is homeomorphic to (0, 1)m for some m. Let S be Le-definable, and A1, . . . , Al be
a collection of disjoint cells such that S = ⋃

1≤i≤l Ai. Suppose each Ai is homeomorphic
to (0, 1)mi . We define the dimension of S, written dim(S), to be max1≤i≤l mi. The
dimension of S is independent of its decomposition into cells.

We conclude this section by applying o-minimality to give a convergence theorem
for families of Le-definable sets. In the following, B(x, ε) denotes the open ℓ2-ball of
radius ε around x ∈ Rd.

Lemma 9.1.1. Let (St)t≥0 be a family of sets contained in a compact set C ⊂ Rd

given by a formula φ(y, x1, . . . , xd) ∈ Le such that for all x ∈ Rd and t ≥ 0, x ∈ St

if and only if φ(t,x) holds. If St ̸= ∅ for all sufficiently large t, then there exists
non-empty and closed L ⊆ C, called the limit shape of (St)t≥0, with the following
properties.

(a) For every ε > 0, there exists N such that for all t ≥ N , St ⊆ L+ B(0, ε).

(b) For all x ∈ L and ε > 0, B(x, ε) intersects St for all sufficiently large t.

Proof. The limit shape is

L := {x ∈ C : lim inf
t→∞

d(x, St) = 0}

where d(x, St) denotes the shortest Euclidean distance from x to a point in St. By an
elementary argument, L is closed. As the sequence (Sn)n∈N is eventually non-empty
and C is compact, by the Bolzano-Weierstrass theorem L is non-empty.

We prove (a) by contradiction. Suppose there exist ε > 0, an increasing and
unbounded sequence (tn)n∈N of time steps over R≥0, and a sequence (xn)n∈N over C
such that xn ∈ Stn but xn /∈ L+ B(0, ε) for all n. Let x be an accumulation point of
(xn)n∈N. Since xn /∈ L+ B(0, ε) for all n, x /∈ L. However, since xn ∈ Stn for all n,

lim inf
t→∞

d(x, St) = 0.

This implies that x ∈ L, a contradiction. To prove (b), fix x ∈ L as well as ε > 0, and
consider

Z := {t ≥ 0: x+B(0, ε) intersects St}.

Since Z is definable in Rexp with parameters from R, by o-minimality, it consists of
finitely many intervals. Since x ∈ L, the set Z is unbounded. Hence it must contain an
interval of the form [N,∞), i.e. x+ B(0, ε) intersects St for all sufficiently large t.
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9.2 The main idea through an example

Our objective in this section is to give an intuitive explanation of the idea behind
the continuous abstraction that we will use to solve the TRP, the PRP, and the SIP.

Consider M =
[
Λ

ρ2

]
∈ (R ∩ Q)3×3 where Λ = ρ1Γ,

Γ =
[
Re(γ) − Im(γ)
Im(γ) Re(γ)

]
,

ρ1, ρ2 ∈ R ∩ Q with ρ1, ρ2 > 1, and γ ∈ T ∩ Q. Let s = (1, 0, 1) be the starting point
and T ⊆ R3 be a semialgebraic target. We will show how to solve our three problems
for such ⟨M, s, T ⟩, illustrating the main ideas of our decidability proofs. It will be
convenient to first reformulate the TRP and the PRP in terms of linear dynamical
systems equipped with control inputs.

Lemma 9.2.1. Let B be a bounded open set containing 0.

(a) The TRP is equivalent to the following problem. Given M ∈ (R ∩ Q)d×d, a
starting point s ∈ (R ∩ Q)d and semialgebraic T , decide if for every ε > 0 there
exists n ∈ N such that Mns+ εMnB intersects T .

(b) The PRP is equivalent to the following problem. Given (M, s) and T as above,
decide if for every ε > 0 there exists n ∈ N such that

Mns+ ε
n−1∑
i=0

M iB

intersects T .

Proof. We first prove (a). Observe that Mns + εMnB = Mn({s} + εB). Suppose
⟨M, s, T ⟩ ∈ TRP. Then there exist n ∈ N and ŝ in the neighbourhood O := {s} + εB

of s such that Mnŝ ∈ T , which implies that Mns+ εMnB intersects T . Conversely,
suppose ⟨M, s, T ⟩ /∈ TRP, i.e. there exists an open set O containing s such that MnO

does not intersect T for all n. Let ε > 0 be such that s + εB ⊆ O. It holds that
Mn({s} + εB) ⊆ MnO does not intersect T for all n.

To prove (b), denote by B the unit ℓ2-ball and let k1, k2 be such that k1B ⊆ B ⊆ k2B.
For all ε > 0 and n ∈ N it holds that

Mns+ k1ε
n−1∑
i=0

MnB ⊆ Mns+ ε
n−1∑
i=0

MnB ⊆ Mns+ k2ε
n−1∑
i=0

MnB.

It remains to observe that the set of points that are reachable at exactly time n by an
ε-pseudo-orbit is Mns+ ε

∑n−1
i=0 M

iB.
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Next, we construct a continuous abstraction of the orbit of (M, s). Factorise
M = CD where C = diag(ρ1, ρ1, ρ2), D = diag(Γ, 1), C has only real eigenvalues, and
all eigenvalues of D lie on the unit circle. We have thus decomposed the linear map
given by M into a scaling and a rotation. Observe that for all n ∈ N,

Mn = CnDn.

Applying Kronecker’s theorem (see Section 4.1) and identifying R3×3 with R9, we can
compute compact semialgebraic D ⊂ R3×3 such that

(a) (Dn)n∈N is dense in D, and

(b) for each Z ∈ D and ε > 0, there exist infinitely many values n ∈ N such that
∥Dn − Z∥2 < ε.

In our case if γ is not a root of unity, then D = {(x, y, 1) | x2 + y2 = 1}. Otherwise,
D is finite.

By an abstraction of (Mns)n∈N we mean a function A that, give t ≥ 0, computes a
subset of R3 with the property that for all n ∈ N, Mns ∈ A(n). The abstraction we
will need is

A(t) = CtDs

where Ct = diag(ρt
1, ρ

t
1, ρ

t
2) for all t ≥ 0. We refer to

R(Z) := {CtZs | t ≥ 0}

as the trajectory ray of Z. Figure 9.1 illustrates the situation.

Topological Reachability Problem. Recall that by Lemma 9.2.1 we have to
decide whether

∀ε > 0. ∃n : (Mns+ εMnB) ∩ T ̸= ∅

where we are free to choose any open, bounded B containing a neighbourhood around 0.
The best choice for our purposes is

B := B((0, 0), 1) × (−1, 1).

With this definition, Mns+εMnB = Mns+εCnB. Because C only has real eigenvalues,
the set CnB is significantly simpler than MnB. We still, however, need one more
trick. Recall that Mns ∈ A(n) for all n ∈ N. We will study, for each ε > 0, the set

V (ε) := {t ≥ 0 | A(t) + εCtB ∩ T ̸= ∅}.
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Figure 9.1: The orbit of (M, s), its abstraction, and three trajectory rays.

Note that every n ∈ N for which Mns+ εMnB intersects T belongs to V (ε). Since
for each ε ≥ 0, V (ε) is definable in Rexp with parameters from R, by o-minimality it
consists of finitely many intervals. That is, either V (ε) is bounded, or it contains an
interval of the form [N,∞). Moreover, if V (ε) is bounded by N ∈ N then so is V (e)
for e < ε. Hence there are two possibilities.

(A) For every ε > 0, V (ε) is unbounded. In particular, A(n) + εCnB intersects T
for infinitely many n ∈ N.

(B) There exists ε and N such that for all e ≤ ε, V (ε) is bounded by N . That is, for
all n > N and e ≤ ε, A(n) + eCnB and hence Mns+ eCnB do not intersect T .

We will show in Section 9.6 how to decide which case holds. If (A) holds, then we
will show that, in fact, ⟨M, s, T ⟩ ∈ TRP. Otherwise, we will show how to effectively
compute a value N as in (B). It remains to decide whether

∀ε > 0. ∃n ≤ N : (Mns+ εCnB) ∩ T ̸= ∅

which is equivalent to ∃n ∈ {0, . . . , N} : Mns ∈ Cl(T ). The latter is verified directly.

Pseudo-Reachability Problem. Recall that the PRP is to decide whether

∀ε > 0. ∃n : (Mns+ ε
n−1∑
i=0

M iB) ∩ T ̸= ∅.
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Again, by Lemma 9.2.1, we are free to choose B, which we take to be exactly as above.
Let r1(t) = ρt

1−1
ρ1−1 and r2(t) = ρt

2−1
ρ2−1 for t ≥ 0, and

B(t) := B((0, 0), r1(t)) × (−r2(t), r2(t)).

Since M iB = CiB for all i ∈ N,
n−1∑
i=0

M iB =
n∑

i=0
B((0, 0), ρi

1) × (−ρi
2, ρ

i
2) = B(n).

Proceeding similarly to our analysis of the TRP, we define

V (ε) := {t ≥ 0 | A(t) + εB(n) ∩ T ̸= ∅}.

The dichotomy (A-B) remains true. We will show in Section 9.7 that in case (A),
⟨M, s, T ⟩ ∈ PRP. Otherwise, we will once again reduce the problem to checking a
finite prefix ⟨s, . . . ,MNs⟩ of the orbit.

Semialgebraic Invariant Problem. Let us now discuss possible invariants of
(M, s), and whether we can find one that is disjoint from a given semialgebraic
target T . By a result of [6], (M, s) has a semialgebraic invariant disjoint from T if
and only if it has an Le-definable invariant with the same property. Hence it suffices
to restrict our attention to the latter, broader class of invariants.

Since MA(t) = A(t+ 1) and s ∈ A(0), the bowl-shaped set S0 := ∪t≥0A(t) is an
Le-definable invariant of (M, s). We can construct stronger (i.e. smaller) Le-definable
invariants of (M, s) by taking τ > 0 and

Sτ := {s, . . . ,M ⌊τ⌋s} ∪
⋃
t≥τ

A(t).

We will show in Section 9.8 that any Le-definable invariant of (M, s), in fact, must
contain SN for some N ∈ N. Hence the SIP can be decided as follows. First check if
A(t) is disjoint from T for sufficiently large t. If not, then the required invariant does
not exist. Otherwise, compute τ such that A(t) ∩ T = ∅ for all t ≥ τ . It remains to
check whether s, . . . ,M ⌊τ⌋s /∈ T , in which case Sτ is the desired Le-definable invariant.

9.3 Constructing the abstraction

In this section, let M ∈ (R ∩ Q)d×d be in real Jordan form and s ∈ (R ∩ Q)d. We will
factorise M = CD into a scaling and a rotation component as we did in our example
in the previous section, and then construct an abstraction A for the orbit of (M, s)
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with the property that Mns ∈ A(n) for all n ∈ N. Write M = diag(J1, . . . , Jl), where
each Ji is a real Jordan block.

We start by factorising a single block Ji. If Ji is not invertible (i.e. its only
eigenvalue is zero), we simple take Ji = CiDi with Ci = Ji and Di = I. Next, consider
invertible Ji. We write

Ji =


Λi I

. . . . . .
Λi I

Λi

 =


Γi

. . .
Γi

Γi

 · ρi


I Λ−1

i
. . . . . .

I Λ−1
i

I

 := Di · Ci

where D = diag(Γi, . . . ,Γi). Here Λi,Γi, I are all either 2 × 2 or 1 × 1 matrices, ρi > 0
is the spectral radius of Λi, and Λi = ρiΓi. If Ji has two non-real eigenvalues, then
Γi is a rotation matrix. Otherwise, Γi = [1] and Di is the identity matrix. Note that
the eigenvalues of Di (which are exactly the eigenvalues of Γi) lie on the unit circle,
whereas the single eigenvalue of Ci is ρi ∈ R. It remains to define C = diag(C1, . . . , Cl)
and D = diag(D1, . . . , Dl), which yields

Mn = CnDn = diag(Cn
1D

n
1 , . . . , C

n
l D

n
l )

for all n ∈ N.
We are now in a position to define the continuous abstraction of the orbit of (M, s).

Let r1, . . . , rm denote the distinct non-zero eigenvalues of C. We write D for the
Euclidean closure of {Dn : n ∈ N}, which is analogous to the closure TΓ of (Γn)n∈N

for Γ ∈ (T ∩ Q)d that we considered in Section 4.1.

Lemma 9.3.1. The set D is semialgebraic and can be effectively computed. Moreover,
for each Z ∈ D and ε > 0, there exist infinitely many values n ∈ N such that
∥Dn − Z∥2 < ε. Finally, (D−n)n∈N is also dense in D.

Proof. We can diagonalise D to obtain D = P−1GP , where

G = diag(γ1, . . . , γd)

is a diagonal matrix whose eigenvalues all lie on T. Applying Theorem 4.1.4, we can
compute the semialgebraic closure TG ⊆ Td of the sequence (Gn)n∈N with the property
that for every z ∈ TG and ε > 0 there exist infinitely many values n ∈ N such that
∥Gn − z∥2 < ε. It remains to observe that D = P−1TGP .

It remains to prove the last statement. Observe that D−1 = P−1G−1P where
G = diag(γ−1

1 , . . . , γ−1
d ). Since (γ1, . . . , γd) and (γ−1

1 , . . . , γ−1
d ) satisfy exactly the same

multiplicative relations, the closure of (G−n)n∈N is also equal to TG. Hence the closure
of (D−n)n∈N is P−1TGP = D.
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For n ∈ N, we can now define the abstraction A(n) := CnDs, which contains Mns

as intended. To apply o-minimality of Rexp, however, we need to make the abstraction
depend on its argument continuously. To this end, we first define C(t) for t ≥ 0 to
abstract (Cn)n∈N. Recall that C = diag(C1, . . . , Cl). For invertible Ci ∈ Rµiσi×µiσi ,
where µi ∈ {1, 2} is such that Λi ∈ Rµi×µi and σi is the multiplicity of Ci,

Cn
i = ρn

i


I nΛ−1

i . . .
(

n
σi−1

)
Λ1−σi

i

. . . . . . ...
I nΛ−1

i

I


where the µi × µi block at the position (a, b) is

(
n

b−a

)
Λa−b for b ≥ a. Let

pk(x) = x(x− 1) · · · (x− k + 1)
k!

for k ∈ N and x ∈ R. We define Ci(t) as the matrix consisting of µi × µi blocks that,
for 1 ≤ a, b ≤ d, has at the (a, b)th position pb−a(t)Λa−b if b ≥ a and 0 otherwise. On
the other hand, if Ji is nilpotent, then we set Ci(t) = Ct

i for t ∈ {0, . . . , d − 1} and
Ci(t) = 0 for all other values of t. It remains to define C(t) = diag(C1(t), . . . , Cl(t))
for all t ≥ 0, with the property that C(n) = Cn for all n ∈ N. Observe for each
1 ≤ a, b ≤ there exists a formula φ such that for all t ≥ 0 and x ∈ R, (C(t))a,b = x if
and only if φ(x, t, rt

1, . . . , r
t
m) holds.

We can now define the continuous abstraction as A(t) = C(t)Ds for t ≥ 0. We
refer to

A(t, Z) := C(t)Ds

for Z ∈ D as the specialisation of A(t) at the point Z. By construction, for all n ∈ N,

Mns = A(n,Dn) ∈ A(n).

We have the following further properties.

Lemma 9.3.2. There exists a formula φ ∈ Lor such that for all t ≥ 0 and x ∈ Rd,
x ∈ A(t) if and only if φ(x, t, rt

1, . . . , r
t
m) holds.

Proof. As mentioned above, for each 1 ≤ a, b ≤ d there exists φa,b ∈ Lor such
that x = (C(t))a,b ⇔ φa,b(x, t, rt

1, . . . , r
t
m) for all x and t ≥ 0. Recalling that D is

semialgebraic, we can construct the desired φ from {φa,b | 1 ≤ a, b ≤ d} via the
definition A(t) = C(t)Ds.
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Lemma 9.3.3. For all Z ∈ D and t ≥ 0,

(a) MA(t, Z) = A(t+ 1, DZ), and

(b) MA(t) = A(t+ 1).

Proof. It can be directly verified that CC(t) = C(t+ 1) for all t ≥ 0. Hence

A(t+ 1, DZ) = C(t+ 1)DZs = CD · C(t)Zs = M · C(t)Zs = MA(t, Z).

To prove (b), first deduce from Lemma 9.3.1 that DD = D. We have

A(t+ 1) = C(t+ 1)Ds = CC(t) ·DDs = CD · C(t)Ds = MA(t).

Lemma 9.3.3 will be used to show that bowl-shaped sets of the form ⋃
t≥τ A(t),

where τ ≥ 0, are inductive invariants of (M, s).

9.4 Choosing the control set

We saw already through the example given in Section 9.2 by choosing the set B
carefully, we can obtain simple closed-form expressions for MnB and ∑n−1

i=0 M
iB. In

this section let M = diag(J1, . . . , Jl) ∈ (R∩Q)d×d be in real Jordan form where each Ji

is a real Jordan block. Compute the factorisation M = CD, C = diag(C1, . . . , Cl) and
D = diag(D1, . . . , Dl) as prescribed in Section 9.3. If Ji has two non-real eigenvalues
and Ji ∈ R2σi×2σi , let

Bi :=
σi∏

k=1
B((0, 0), 1) ⊂ R2σi .

Otherwise, let σi be such that Ji ∈ Rσi×σi and choose

Bi :=
σi∏

k=1
B(0, 1) = (−1, 1)σi ⊂ Rσi .

The suitable generalisation of the construction in Section 9.2 is

B :=
l∏

i=1
Bi.

This choice of the control set affords us the following important property

Lemma 9.4.1. Let r1, . . . , rm ∈ R be the non-zero eigenvalues of C. There exist
φ1, φ2 ∈ Lor with the following properties.

(a) For all n ∈ N,
x ∈ JnB ⇔ φ1(x, n, rn

1 , . . . , r
n
m).
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(b) If M is diagonalisable, then for all n ∈ N,

x ∈
n−1∑
i=0

J iB ⇔ φ2(x, n, rn
1 , . . . , r

n
m).

Proof. Since a 2 × 2 rotation matrix fixes the ℓ2-ball B((0, 0), 1) ⊂ R2 and the identity
matrix in R1×1 fixes the interval (−1, 1), we have that DiBi = Bi for all 1 ≤ i ≤ l and
hence DnB = B for all n. Therefore,

JnB = CnDnB = CnB =
l∏

i=1
Cn

i Bi

for all n. To prove (a), recall from the previous section that for each 1 ≤ a, b ≤ d

there exists a formula φa,b such that x = (Cn)a,b ⇔ φa,b(x, n, rn
1 , . . . , r

n
m) for all x ∈ R

and n ∈ N. The required formula φ1 constructs B as a semialgebraic set, (Cn)a,b for
all 1 ≤ a, b ≤ d, and defines JnB as CnB.

We move on to (b). For all n,

n−1∑
k=0

JkB =
n−1∑
k=0

CkB =
n−1∑
k=0

l∏
i=1

Ck
i Bi =

l∏
i=1

n−1∑
k=0

Ck
i Bi.

Since M is assumed to be diagonalisable, σi = 1 for all 1 ≤ i ≤ l and each Bi is either
the one-dimensional or the two-dimensional unit ℓ2-ball. Writing Pi(n) := ∑n−1

k=0 C
k
i Bi,

it suffices to construct a formula ψi for 1 ≤ i ≤ l such that

x ∈ Pi(n) ⇔ ψi(x, n, rn
1 , . . . , r

n
m)

for all n. If Ci is nilpotent, then by diagonalisability Ci = [0] and hence Pi(n) = {0}
for all n. Otherwise, Ci = ρI, where ρ is the positive real eigenvalue of Ci and I is
either the 2 × 2 or 1 × 1 identity matrix. Therefore, Ck

i Bi = ρkBi = B(0, ρk) for all
k ≥ 0 and

Pi(n) = r(n)Bi = B(0, r(n))

where r(n) = n if ρ = 1 and r(n) = ρn−1
ρ−1 otherwise. It remains to observe that

there exists ψ ∈ Lor such that for all n ∈ N and y ∈ R, ψ(n, y) holds if and only if
y = r(n).

We will also need the following properties of B, which, intuitively, behaves like an
ordinary ball.
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Lemma 9.4.2. For every a, b > 0, (a+ b)B = aB + bB.

Proof. Recall that B is a product of (two or one-dimensional) ℓ2-balls B1, . . . , Bl. For
any ℓ2-ball A and a, b > 0, aA+ bA = (a+ b)A. Hence

aB + bB =
l∏

i=1
(aBi + bBi) =

l∏
i=1

(a+ b)Bi = (a+ b)
l∑

i=1
Bi.

Lemma 9.4.3. For every ε1 ≥ ε2 > 0 and n ∈ N,

(a) ε1J
nB ⊇ ε2J

nB, and

(b) ε1
∑n−1

k=0 J
kB ⊇ ε2

∑n−1
k=0 J

kB.

Proof. The claim (b) follows from (a), which itself is immediate from ε1B ⊇ ε2B.

9.5 A general decidability result

In this section we prove a general decidability result that abstracts our method from
Section 9.2 and will be used in the following chapters to prove decidability results for
the TRP and the PRP. First, a technical lemma showing that in the setting where we
will apply o-minimality, we can do so effectively.

Lemma 9.5.1. Let r1, . . . , rm be positive and real algebraic, and φ ∈ Lor be a formula
with m+ k + 2 free variables.

(a) For each ε > 0 and x ∈ Rk, either there exists T such that φ(ε,x, t, rt
1, . . . , r

t
m)

holds for all t ≥ T , or there exists T such that φ(ε,x, t, rt
1, . . . , r

t
m) does not hold

for all t ≥ T

(b) We can compute a formula ψ ∈ Lor such that for all ε > 0 and x ∈ Rk, ψ(ε,x)
holds if and only if φ(ε,x, t, rt

1, . . . , r
t
m) holds for all sufficiently large t.

(c) If k = 0, then given ε ∈ Q, we an effectively compute N ∈ N such that either
(i) φ(ε, t, rt

1, . . . , r
t
m) holds for all t ≥ N , or (ii) it does not hold for all t ≥ N .

Whether case (i) or case (ii) holds can also be determined effectively.

Proof. Sice φ ∈ Lor, after flattening (Lemma 1.3.4) it can be written as a Boolean
combination ∧

i∈I

∨
j∈J

pi,j(ε,x, t, rt
1, . . . , r

t
m) ∆i,j 0

174



of polynomial inequalities. We can further write each pi,j in the form

pi,j(ε,x, t, rt
1, . . . , r

t
m) =

∑
1≤l≤L

ql(ε,x)hl(t)Rt

where R1 > . . . > RL are positive and real algebraic, and ql and hl are non-zero
polynomials with rational coefficients for all l. If L = 0, then the inequality defined
by pi,j either holds for all ε,x, t, or does not hold for all ε,x, t. Suppose therefore
L > 0. Since ql(ε,x)hl(t) = −ql(ε,x) · −hl(t), w.l.o.g. we can also assume that for
all l, hl(t) > 0 for sufficiently large t. For ε > 0 and x ∈ Rk, denote by σ(ε,x) the
largest integer y ≤ L such that ql(ε,x) is identically zero for all l < y. Observe that
once we fix ε and x, for sufficiently large values of t the sign of pi,j(ε,x, t, rt

1, . . . , r
t
k)

is stable and equal to the sign of qσ(ε,x)(ε,x). Applying this argument to every i, j

proves (a).
Having proven (a), to prove (b) it suffices to construct, for every i, j, a for-

mula ψi,j ∈ Lor such that for all ε > 0 and x ∈ Rk, ψi,j(ε,x) holds if and only if
pi,j(ε,x, t, rt

1, . . . , r
t
m) ∆i,j 0 holds for all sufficiently large values of t. If L = 0, then

ψi,j(ε,x) is either a formula that is vacuously true or a formula that is vacuously false.
Suppose L > 0. Construct formulas ψ1, . . . , ψL ∈ Lor such that for all ε ∈ R,x ∈ Rd

and 1 ≤ l ≤ L, ψl(ε,x) holds if and only if σ(ε,x) = l. We can then define ψi,j(ε,x)
using the formulas ψ1, . . . , ψL and a finite case analysis.

Finally, suppose k = 0. Each pi,j(ε, t, rt
1, . . . , r

t
m) is of the form

∑
1≤l≤L

ql(ε)hl(t)Rt.

Given rational ε > 0, we can apply Lemma 2.4.4 to compute Ni,j ∈ N such that the
sign of this expression is constant over [Ni,j,∞). To prove (c), it remains to apply
this argument to each pi,j and take N = maxi,j Ni,j.

We are now ready to state and prove the main result of this section.

Lemma 9.5.2. Let s ∈ (R ∩ Q)d, J ∈ (R ∩ Q)d×d be in real Jordan form with non-
zero eigenvalues λ1, . . . , λm, ri = |λi| for 1 ≤ i ≤ m, T be a semialgebraic set, and
(P (n))n∈N be a sequence of sets in Rd given by a formula φ ∈ Lor such that for all
x ∈ Rd and n ∈ N,

x ∈ P (n) ⇔ φ(x, n, rn
1 , . . . , r

n
m).

Let C,D,D,A be constructed from (J, s) as described in Section 9.3, and assume the
following hold.
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(A) For all n ∈ N and ε1, ε2 > 0,

ε1 ≥ ε2 ⇒ ε1P (n) ⊇ ε2P (n).

(B) There exists N ∈ N with the following property. For every ε1 > 0 there exist
δ, ε2 > 0 such that for all n ≥ N and X, Y ∈ D,

∥X − Y ∥2 < δ ⇒ A(n,X) + ε1P (n) ⊇ A(n, Y ) + ε2P (n).

It is decidable whether for all ε > 0 there exists n ∈ N such that Jns + εP (n)
intersects T .

To understand (B) intuitively, assume for a moment that N is always zero and
ε2 = ε1/2. When trying to prove that Jns+ ε1P (n) = A(n,Dn) + ε1P (n) intersects T ,
from (B) we know that it is sufficient to prove that {A(n,X) : ∥X−Dn∥2 < δ}+ε2P (n)
intersects T . In the latter case, we can work with the sequence (B(Dn, δ) ∩ D)n∈N

of open subsets of D, which is more amenable to topological arguments than the
sequence (Dn)n∈N of points in D.

Proof. Recall that r1, . . . , rm are exactly the non-zero eigenvalues of C, all eigenvalues
of D lie on the unit circle, and D is the Euclidean closure of (Dn)n∈N that is semialge-
braic. Using quantifier elimination (Theorem 1.3.5), construct A,B and polynomials
pa,b with rational coefficients for a ∈ A, b ∈ B such that

x ∈ P (n) ⇔
∧

a∈A

∨
b∈B

pa,b(x, n, rn
1 , . . . , r

n
m) ∆a,b 0.

for all n. For t ≥ 0, let P (t) denote the set of all x ∈ Rd satisfying∧
a∈A

∨
b∈B

pa,b(x, t, rt
1, . . . , r

t
m) ∆a,b 0.

We have thus embedded the sequence (P (n))n∈N into the family of sets (P (t))t≥0. For
ε > 0 and t ≥ 0, define

Z
(ε)
t := {Z ∈ D | (A(t, Z) + εP (t)) ∩ T ̸= ∅}.

Observe that Z(ε)
t = ∅ if and only if A(t) + εP (t) does not intersect T . Invoking

Lemma 9.3.2, we can construct a formula Φ such that for all ε > 0, t ≥ 0 and x,
Φ(ε,x, t, rt

1, . . . , r
t
m) holds if and only if x ∈ Z

(ε)
t . Hence we can further construct φ

such that φ(ε, t, rt
1, . . . , r

t
m) holds if and only if Z(ε)

t = ∅. Applying Lemma 9.5.1 (a)
with k = 0, we conclude that for every ε > 0, Z(ε)

t is either empty for sufficiently large
t or non-empty for sufficiently large t. Hence either
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(1) for all ε > 0, Z(ε)
t is non-empty for sufficiently large t, or

(2) there exists e > 0 and N such that Z(e)
t is empty for all t ≥ N .

We can decide which case holds as follows. Invoking Lemma 9.5.1 (b), let ψ be a
formula such that for all ε > 0, ψ(ε) holds if and only if Z(ε)

t is non-empty for all
sufficiently large t. Case 1 holds if and only if the Lor-sentence ∀ε > 0: ψ(ε) is true,
which can be verified using a decision procedure for the first-order theory of reals
numbers (Theorem 1.3.5). If the sentence ∀ε > 0: ψ(ε) is false, then by trial-and-error
we can first compute rational e > 0 for which ψ(e) does not hold. We can then use
Lemma 9.5.1 (c) to compute N such that for all t ≥ N , Z(e)

t = ∅.
Suppose Case 2 holds. Since Z(e)

t = ∅ implies that (Mns + eP (n)) ∩ T = ∅, we
have that that ⟨M, s, T ⟩ ∈ TRP if and only if for all ε > 0, there exists n < N such
that Mns+ εP (n) intersects T . This can be expressed as a first-order Lor-sentence
and verified using Theorem 1.3.5.

Suppose Case 1 holds. We will show that for each ε1 > 0 there exists n such that
Mns + ε1P (n) intersects T . Fix ε1 > 0 and let δ, ε2 be as in (B). By reducing the
value fo ε2 if necessary, w.l.o.g. we can assume that ε2 is rational. Consider the family
of sets (Z(ε2)

t )t≥0, defined by

x ∈ Z
(ε2)
t ⇔ Φ(ε2,x, t, rt

1, . . . , r
t
m).

Since Z(ε2)
t ≠ ∅ for all sufficiently large t ≥ 0 by the assumption that Case 1 holds, by

Lemma 9.1.1 the sequence (Z(ε2)
t )t≥0 has a non-empty limit shape L ⊆ D. Choose any

point X ∈ L, and invoking Lemma 9.3.1, let n ≥ N be such that ∥X −Dn∥2 < δ/2.
Applying Lemma 9.1.1 (b), let Y ∈ D be such that

(a) ∥X − Y ∥2 < δ/2, and

(b) Y ∈ Z(ε2)
n , i.e. A(n, Y ) + ε2P (n) intersects T .

We have ∥Y −D(n)∥2 < δ by the triangle inequality. Applying (B),

Mns+ ε1P (n) = A(n,Dn) + ε1P (n) ⊇ A(n, Y ) + ε2P (n).

Since the latter intersects T by construction, we conclude that Mns + ε1P (n) also
intersects T .

In the following two sections we will apply Lemma 9.5.2 to prove decidability
results for the TRP and the PRP. The next corollary will be used to show that
TRP ⊆ SIP.
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Corollary 9.5.3. Let J, s, T, (P (n))n∈N be as above, and suppose 0 ∈ P (n) for all n.
If there exists ε > 0 such that Mns+ εP (n) does not intersect T for all n ∈ N, then
there exists effectively computable N ∈ N such that

(a) A(t) does not intersect T for all t ≥ N , and

(b) Mns /∈ T for 0 ≤ n ≤ N .

Proof. Under the assumption that for all sufficiently small ε > 0, Mns+ εP (n) does
not intersect T for all n ∈ N, Case 1 cannot hold in the proof of Lemma 9.5.2. Hence
Case 2 holds, and as discussed in the proof, there exist effectively computable N ∈ N
and ε ∈ Q>0 such that A(t)+εP (n) does not intersect T for all t ≥ N . From 0 ∈ P (n)
it follows that A(t) does not intersect T for t ≥ N . To prove (b), observe that by
0 ∈ P (n), Mns /∈ T for all n ∈ N.

9.6 Topological Reachability Problem

Using the results we have developed so far we can now prove the following.

Theorem 9.6.1. The Topological Reachability Problem is decidable.

Proof. Suppose we are given M ∈ (R ∩ Q)d×d, s̃ ∈ (R ∩ Q)d, and a semialgebraic
target T̃ . Write M = P−1JP , where J = diag(J1, . . . , Jl) is in real Jordan form and
each Ji is a real Jordan block. Further let s = P s̃, T = PT̃ , B = ∏l

i=1 Bi be the
control set we gave for J in Section 9.4, and define A = P−1B. Observe that A is a
bounded open set containing 0 and hence by Lemma 9.2.1, ⟨M, s, T̃ ⟩ ∈ TRP if and
only if for all ε > 0 there exists n ∈ N such that Mns̃+ εMnA intersects T̃ . The latter
is equivalent to

∀ε > 0. ∃n ∈ N : Jns+ JnB intersects T (9.1)

since MnA = P−1JnPA = P−1JnB. Factorise J = CD, C = diag(C1, . . . , Cl) as in
Section 9.3, recalling that all eigenvalues of C are real and all eigenvalues of D lie on
the unit circle. Let D be the Euclidean closure of (Dn)n∈N and A(t) be the abstraction
of the orbit of (J, s) described in Section 9.3. Finally, define P (n) = JnB for all n ∈ N.
We will use Lemma 9.5.2 to prove that whether 9.1 holds is decidable.

By Lemma 9.4.1 (a), there exists φ ∈ Lor such that

x ∈ P (n) ⇔ φ(x, n, rn
1 , . . . , r

n
m)
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Condition (A) of Lemma 9.5.2 is satisfied by Lemma 9.4.3 (a). We next show that
condition (B) is met with N = 0. Given ε1 > 0, let ε2 = ε1/2 and δ be such that for
all 1 ≤ i ≤ l,

B(0, δ) ⊆ ε1

2 Bi.

Such δ exists because every Bi contains an open set around the origin. Recall that
D ⊂ Rd×d, and let X, Y ∈ D be such that ∥X−Y ∥2 < δ. Write X = diag(X1, . . . , Xl)
and Y = diag(Y1, . . . , Yl), so that the dimensions of each Xi, Yi matches those of Ci.
That is, CnX = diag(Cn

1X1, . . . , C
n
l Xl) and CnY = diag(Cn

1 Y1, . . . , C
n
l Yl) for all

n ∈ N. We need to prove that for all n ∈ N,

A(n,X) + ε1C
nB ⊇ A(n, Y ) + ε1

2 C
nB

which is equivalent to
l∏

i=1
Cn

i (Xi − Yi) + ε1

l∏
i=1

Cn
i Bi ⊇ ε1

2

l∏
i=1

Cn
i Bi

since CnB = ∏l
i=1 C

n
i Bi and A(n, Z) = CnZ for all Z ∈ D. As

l∏
i=1

Cn
i (Xi − Yi) + ε1

l∏
i=1

Cn
i Bi =

l∏
i=1

(
Cn

i (Xi − Yi) + ε1C
n
i Bi

)
it suffices to prove that for all 1 ≤ i ≤ l,

Cn
i (Xi − Yi) + ε1C

n
i Bi ⊇ ε1

2 C
n
i Bi.

Observe that ∥Xi − Yi∥2 < δ since ∥X − Y ∥2 < δ. Moreover, by construction of δ, it
holds that 0 ∈ Xi − Yi + ε1

2 Bi. Hence

Cn
i (Xi − Yi) + ε1

2 C
n
i Bi = Cn

i (Xi − Yi + ε1

2 Bi) ∋ 0

for all n ∈ N. Recalling from Lemma 9.4.2 that Bi = 1
2Bi + 1

2Bi, we conclude that for
all n ∈ N,

Cn
i (Xi − Yi) + ε1C

n
i Bi = Cn

i (Xi − Yi) + ε1

2 C
n
i Bi + ε1

2 C
n
i Bi

⊇ ε1

2 C
n
i Bi

as required.

Applying Corollary 9.5.3 to (P (n))n∈N defined above we obtain the following.

Lemma 9.6.2. If ⟨M, s, T ⟩ /∈ TRP, then there exists effectively computable N ∈ N
such that

(a) A(t) does not intersect T for all t ≥ N , and

(b) Mns /∈ T for 0 ≤ n ≤ N .
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9.7 Pseudo-Reachability Problem

Analysis of pseudo-reachability is more nuanced than that of topological reachability.
In [31], we studied the Pseudo-Reachability Problem for targets T that are either
a point, a hyperplane, or a halfspace. Writing O(M, s) for {Mns : n ∈ N} and
Õ(M, s) for the set of points that are pseudo-reachable (i.e. x ∈ Õ(M, s) if and only
if ⟨M, s, {x}⟩ ∈ PRP), we gave the following characterisation .

Theorem 9.7.1. Õ(M, s) = O(M, s) ∪ ∆ for a semialgebraic set ∆ that can be
effectively determined.

Recall that by the result [44] of Kannan and Lipton, it is decidable whether a
given point x belongs to the orbit O(M, s). Hence decidability of the PRP with point
targets follows immediately from our characterisation. We also used theory of linear
recurrence sequences to show decidability of the PRP with hyperplane and halfspace
targets by analysing the expression c⊤Mns+εc⊤∑n−1

k=0 M
kB for arbitrarily small values

of ε > 0, where c ∈ Qd and B is a conveniently shaped ball. Note that this result
does not place any restrictions on (M, s). Unfortunately, the methods of [31] do not
generalise to any significantly larger class of target sets. We can, however, use our
abstraction-based approach to prove the following.

Theorem 9.7.2. The Pseudo-Reachability Problem is decidable for diagonalisable M .

Proof. We follow the same strategy as the proof of Theorem 9.6.1. Suppose we are
given the instance ⟨M, s̃, T̃ ⟩. Write M = P−1JP , where J = diag(J1, . . . , Jl) is in
real Jordan form and Ji is a real Jordan block for all i. Let s = P s̃, T = PT̃ ,
B = ∏l

i=1 Bi be the control set corresponding to J as described in Section 9.4, and
define A = P−1B. Since A is bounded and contains a neighbourhood around 0, by
Lemma 9.2.1 ⟨M, s̃, T̃ ⟩ ∈ PRP if and only if for all ε > 0 there exists n ∈ N such that
Mns̃+∑n−1

k=0 M
kA intersects T̃ . Since MnA = P−1JnPA, the latter is equivalent to

∀ε > 0. ∃n ∈ N : (Jns+
n−1∑
k=0

JkB) ∩ T ̸= ∅. (9.2)

As described in Section 9.3, factorise J = CD, where C = diag(C1, . . . , Cl). Construct
the semialgebraic D, which is the Euclidean closure of (Dn)n∈N, and the abstraction
A(t) of the orbit of (J, s). Finally, define P (n) = ∑n−1

k=0 J
kB for all n ∈ N. We will

prove that the statement 9.2 is decidable using Lemma 9.5.2.
By Lemma 9.4.1 (b), there exists φ ∈ Lor such that

x ∈ P (n) ⇔ φ(x, n, rn
1 , . . . , r

n
m)
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Condition (A) of Lemma 9.5.2 is satisfied by Lemma 9.4.3 (b). It remains to prove
that condition (B) is met. We choose N = 1. Given ε1 > 0, let ε2 = ε1/2 and δ be
such that for all 1 ≤ i ≤ l,

Ci · B(0, δ) ⊆ ε1

2 Bi.

Such δ exists because every Bi contains an open set around the origin. Let X, Y ∈ D
be such that ∥X − Y ∥2 < δ. Write X = diag(X1, . . . , Xl) and Y = diag(Y1, . . . , Yl)
in a way that the dimension of each Xi, Yi matches those of Ci. That is, CnX =
(Cn

1X1, . . . , C
n
l Xl) and CnY = (C1Y

n
1 , . . . , C

n
l Y

n
l ) for all n ∈ N. We need to prove

that for all n ≥ 1,

A(n,X) + ε1

n−1∑
k=0

CkB ⊇ A(n, Y ) + ε1

2

n−1∑
k=0

CkB

which is equivalent to
l∏

i=1
Cn

i (Xi − Yi) + ε1

l∏
i=1

n−1∑
k=0

Cn
i Bi ⊇ ε1

2

l∏
i=1

n−1∑
k=0

Cn
i Bi

since A(n, Z) = CnZ for all Z ∈ D. It suffices to prove that for all 1 ≤ i ≤ l and
n ≥ 1,

Cn
i (Xi − Yi) + ε1

n−1∑
k=0

Ck
i Bi ⊇ ε1

2

n−1∑
k=0

Ck
i Bi.

Since ∥X − Y ∥2 < δ, ∥Xi − Yi∥2 < δ. By construction of δ, it therefore holds that
Ci(Xi − Yi) ∈ ε1

2 Bi. Hence

Cn
i (Xi − Yi) + ε1

2 C
n−1
i Bi = Cn−1

i (Ci(Xi − Yi) + ε1

2 Bi) ∋ 0

for all n ≥ 1 by the construction of δ. As shown in Lemma 9.4.2, Bi = 1
2Bi + 1

2Bi.
Therefore, for n ≥ 1,

Cn
i (Xi − Yi) + ε1

n−1∑
k=0

Ck
i Bi = Cn

i (Xi − Yi) + ε2

n−1∑
k=0

Ck
i Bi + ε2

n−1∑
k=0

Ck
i Bi

⊇ Cn
i (Xi − Yi) + ε2C

n−1
i Bi + ε2

n−1∑
k=0

Ck
i Bi

⊇ ε2

n−1∑
k=0

Ck
i Bi

as required.

For non-diagonalisable systems, the PRP remains open. An immediate obstacle to
applying the abstraction-based method is the following. Let J be in real JNF and B be
the bounded open set constructed for in Section 9.4. We showed in Lemma 9.4.1 that
JnB is semialgebraic in n, rn

1 , . . . , r
n
m, where r1, . . . , rm are real algebraic. However, we

are unable to prove the same for P (n) := ∑n−1
k=0 J

kB, which is required by Lemma 9.5.2.
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9.8 Semialgebraic Invariant Problem

In this section our objective is to prove that TRP ⊆ SIP. That is, if there exists a
neighbourhood O of s such that (MnO)n∈N avoids a semialgebraic set T , then (M, s)
has a semialgebraic invariant S disjoint from T . As a side effect, we will also have
produced a proof based on the continuous abstraction that that it is decidable, given
⟨M, s, T ⟩, whether there exists an Le-definable invariant S of (M, s) that is disjoint
from T . This result is the first step of the proof of [6] that the SIP is decidable. The
second step is the following.

Theorem 9.8.1 (Lemma 5.2 of [6]). ⟨M, s, T ⟩ ∈ SIP if and only if there exists an
inductive invariant S of (M, s) that is definable in Rexp and disjoint from T .

In order to link topological reachability with semialgebraic invariants we will need
to reprove, in terms of the continuos abstraction, certain results of [5] pertaining to
Le-definable invariants of linear dynamical systems. Our goal is the following.

Theorem 9.8.2. Let J ∈ (R ∩ Q)d×d be in real Jordan form, s ∈ (R ∩ Q)d, and T be
a semialgebraic target. Denote by A be the abstraction of the orbit of (J, s) defined in
Section 9.3. For any inductive, Le-definable invariant S of (J, s) there exists N ∈ N
such that A(t) ⊆ S for all t ≥ N .

Since Jns ∈ S for 0 ≤ n ≤ N by the definition of an invariant, the statement of
Theorem 9.8.2 implies that any Le-definable invariant of (J, s) must contain the prefix
s, . . . ,MNs of the orbit and the bowl-shaped set ⋃t≥N A(t) for some N ≥ 0. On the
other hand, since JA(t) = A(t+ 1) by Lemma 9.3.3, for every N the set

SN := {s, . . . ,MNs} ∪
⋃

t≥N

A(t)

is an inductive invariant of (J, s). Therefore, when searching for an Le-definable
invariant of (J, s) disjoint from a target set T , it will suffice to only consider the family
{SN : N ∈ N} of invariants.

To prove Theorem 9.8.2, we will need the following lemmas. We say that a function
f : Rd → R is Le-definable if its graph {(x, y) : f(x) = y} is an Le-definable subset
of Rd+1.

Lemma 9.8.3 (Lemma 10 in [5]). If X, Y are Le-definable and dense subsets of
Le-definable D, then X ∩ Y is non-empty.
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Lemma 9.8.4. Let D ⊆ Rd be Le-definable and f : D → R be an Le-definable function.
Then f is bounded on some open subset O of D.

Proof. Let Γ = {(x, f(x)) | x ∈ Rd} be the graph of f and m = dim(Γ). Decompose Γ
into cells A1, . . . , Ak, where each Ai is homeomorphic to (0, 1)mi . Denoting by Π :
Rd+1 → Rd the projection map onto the first d coordinates, let Bi = Π(Ai) for all
1 ≤ i ≤ k. Since each Ai is a cell, f is continuous on every Bi, and hence Bi is also
homeomorphic to (0, 1)mi . Moreover, {B1, . . . , Bk} is a cell decomposition of D and
hence dim(D) = dim(Γ). Let m = max1≤i≤k mi and l be such that m = ml.

Since D is closed and Le-definable, by [33, Chapter 4, 1.12] the cell decomposition
{B1, . . . , Bk} is a stratification. That is, the boundary points of each Bi in D are
contained in a union of cells of dimension less than mi. In particular, Bl does not
contain any of its boundary points in D. Hence Bl is open in D.

If m = 0, then D is finite and we can take O = D. Suppose m > 0. Since Bl is
homeomorphic to (0, 1)m, we can construct O ⊂ C ⊂ Bl such that O is an open subset
of both Bl and D, and C is a closed subset of Bl and D. By compactness, f attains
its maximum and minimum over C and hence is bounded over O.

Proof of Theorem 9.8.2. Let S be an Le-definable invariant of (J, s). Factorise
J = CD and define the abstraction A(t) of the orbit of (J, s) as specified in Section 9.3.
Recall that D is the topological closure of (Dn)n∈N, A(t, Z) = C(t)Zs for all Z ∈ D and
t ≥ 0, and A(t) = C(t)Ds. We will consider trajectory rays of the form (A(t, Z))t≥0.
For each Z ∈ D, the set

V (Z) := {t ≥ 0: A(t, Z) ∈ S}

is definable in Rexp with parameters from R. By o-minimality, each V (Z) is a finite
union of intervals. That is, A(t, Z) either belongs to S for all sufficiently large t, or is
outside S for all sufficiently large t. We write

(a) R1 := {Z ∈ D | V (Z) is bounded}, and

(b) R2 := {Z ∈ D | V (Z) is unbounded}.

Both sets are definable in Rexp with parameters from R. For Z ∈ D, further define

f(Z) := inf {τ ≥ 0 | t ∈ V (Z) for all t ≥ τ , or t /∈ V (Z) for all t ≥ τ}

to be the earliest time from which onwards the ray A(t, Z) does not enter or leave S.
We first show that R1 = ∅ and R2 = D. An intermediate step is the following lemma.
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Lemma 9.8.5. Either R1 = ∅ or R2 = ∅.

Proof. Suppose R1, R2 ≠ ∅, and consider Z ∈ R1. Consider Zn := D−nZ for n ∈ N,
and recall from Lemma 9.3.3 that MA(t, Z) = A(t+ 1, DZ). If A(t, Zn) ∈ S, then,
because S satisfies MS ⊆ S,

MnA(t, Zn) = A(t+ n,DnZn) = A(t+ n, Z)

must also belong to S.Hence Zn ∈ R2 implies Z ∈ R2 for all n ∈ N. Since Z ∈ R1 by
assumption, we conclude that Zn ∈ R1 for all n ∈ N.

As shown in Lemma 9.3.1, (D−n)n∈N is dense in D. Recall from Section 9.3 that
by construction, every Z ∈ D is a block-diagonal matrix whose blocks are either 2 × 2
rotation matrices or identity matrices. Therefore, x 7→ xZ is an isometry of D. It
follows that (Zn)n∈N and hence R1 are dense in D.

Now consider Y ∈ R2. Let τ ≥ 0 be such that A(t, Y ) ∈ S for all t ≥ τ . From
MS ⊆ S we conclude that MA(t, Y ) = A(t + 1, DY ) ∈ S for all t ≥ τ and hence
Yn := DnY ∈ R2 for all n ∈ N. Since (Yn)n∈N is dense in D, R2 is also dense in D.

Since R1 and R2 are definable in Rexp (with parameters from R) and dense in D
as shown above, by Lemma 9.8.3 they must have non-empty intersection. This is a
contradiction as, R1, R2 are disjoint by construction. We conclude that at least one of
R1, R2 must be empty.

Suppose R1 = D and R2 = ∅. That is, for all Z ∈ D, A(t, Z) /∈ S for sufficiently
large t. Recall that MS ⊆ S. In particular, if A(t, Z) ∈ S then

MA(t, Z) = A(t+ 1, DZ) ∈ S.

Hence for all Z ∈ D,

f(Z) ≤ max{0, f(DZ) − 1} ≤ f(DZ).

By Lemma 9.8.4, there exist an open subset O of D and b ∈ N such that f(Z) ≤ b for
all Z ∈ O. Consider (D−nO)n∈N, By density of (D−n)n∈N in D,

⋃
n∈N

D−nO

is an open cover of D. By compactness, there exists K such that ⋃K
n=0 D

−nO = D.
That is, for every Z ∈ D there exists 0 ≤ n ≤ K such that DnZ ∈ O. Hence

f(Z) ≤ f(DZ) ≤ . . . ≤ f(DnZ) ≤ b.
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Therefore, f(Z) ≤ b for all Z ∈ D. But this cannot be the case: let n > b and
consider Mns = A(n,Dn). Together R1 = D and f(Dn) ≤ b imply that Dn ∈ R1

and A(n,Dn) /∈ S. However, Mns = A(n,Dn) ∈ S since S is an invariant of (M, s).
Arriving at a contradiction, we conclude that it is not the case that R1 = D and
R2 = ∅. From Lemma 9.8.5 it follows that R1 = ∅ and R2 = D.

It remains establish existence of N such that A(t) ⊆ S for all t ≥ N . That is,
we have to establish an upper bound N on f(Z) for Z ∈ D. Applying Lemma 9.8.4,
there exist an open subset O of D and b ∈ N such that f(Z) ≤ b for all Z ∈ O. This
time consider ⋃n∈ND

nO, which is an open cover of D by density of (Dn)n∈N in D. By
compactness, there exists K such that

D =
K⋃

n=0
DnO.

Recall that for all Z ∈ D, if A(t, Z) ∈ S then A(t + 1, DZ) ∈ S. Hence f(DZ) ≤
f(Z) + 1 for all Z. Fix Z ∈ D, and let 0 ≤ n ≤ K be such that Z ∈ DnO. We have

f(Z) ≤ f(D−1Z) + 1 ≤ · · · ≤ f(D−nZ) + n.

Since D−nZ ∈ O, we conclude that f(Z) ≤ b+ n. Hence for all Z ∈ D, f(Z) ≤ b+K.
Since the choice of Z was arbitrary, we can take N = b+K. This concludes the proof
of Theorem 9.8.2.

Using Theorem 9.8.2, if we are given ⟨M, s, T ⟩, we can decide whether (M, s) has
an Le-definable invariant S disjoint from T as follows. Write M = P−1JP , where J
is in Jordan form. We have MS ⊆ S ⇔ J(PS) ⊆ (PS). Moreover, S ∩ T = ∅ if and
only if PS ∩ PT = ∅. Hence it suffices to decide whether (J, s) has an Le-definable
invariant disjoint from PT . Consider the formula

Φ(t) := A(t) ∩ PT = ∅

which, by Lemma 9.3.2, can be written in the form φ(t, rt
1, . . . , r

t
m) for φ ∈ Lor and

positive r1, . . . , rm ∈ R ∩ Q. Applying Lemma 9.5.1 (c), we can effectively compute
integer N such that either Φ(t) holds for all t ≥ N , or it does not hold for all t ≥ N .
By Theorem 9.8.2, the desired Le-definable invariant exists if and only if the first case
holds and Mns /∈ PT for all 0 ≤ n ≤ N .

We are finally in a position to prove TRP ⊆ SIP.

Theorem 9.8.6. If ⟨M, s, T ⟩ /∈ TRP, then there exists a semialgebraic inductive
invariant S of (M, s) that is disjoint from T .
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Proof. Write M = P−1JP where J is in real Jordan form, and let A be the abstraction
of the orbit of (J, Ps). As discussed in Section 9.6, ⟨M, s, T ⟩ /∈ TRP is equivalent
to ⟨J, Ps, PT ⟩ /∈ TRP. Applying Lemma 9.6.2, there exists effectively computable
integer N such that

(a) JnPs /∈ PT for all 0 ≤ n ≤ N , and

(b) A(t) does not intersect PT for all t ≥ N .

By Theorem 9.8.2, there exists an Le-definable invariant S of (J, Ps) disjoint from T .
By Theorem 9.8.1, ⟨J, Ps, PT ⟩ ∈ SIP, which implies ⟨M, s, T ⟩ ∈ SIP.

The converse inclusion, however, does not hold. Writing

R(θ) :=
[
cos θ − sin θ
sin θ cos θ

]
,

consider M = 2R(π/2), which is already in real Jordan form. Let s = (1, 0) and
T = {(x, 1) | x ≥ 1}. Clearly, T is not reached by the orbit of (M, s). Moreover,

A(t) = 2t{(1, 0), (0, 1), (−1, 0), (−1, 1)}

which is disjoint from T for all t ≥ 0. Hence

S =
⋃
t≥0

A(t) = {(0, y) : |y| ≥ 1} ∪ {(x, 0) : |x| ≥ 1}

is an inductive invariant of (M, s) certifying non-reachability in T .
However, T is topologically reachable. For n ≥ 1, let xn be the point in T such

that |xn| = 2n. We can define Rn := R(θn) with θn → 0 as n → ∞ such that
xn = 2nRns for all n. Given an open set O around s, first choose θ > 0 such that for
all 0 ≤ θ′ < θ, (cos(θ′), sin(θ′)) ∈ O. Then find n divisible by 4 such that θn < θ, and
let ŝ := (cos θn, sin θn) = Rns ∈ O. As 4 divides n, Mntŝ = 2nŝt, which is equal to xn

by construction. Note that xn ∈ T . We conclude that in every neighbourhood of s
there exists ŝ whose orbit under M reaches T .

9.9 Hardness results

We now discuss hardness results for various problems conceptually related to the TRP
and the PRP. One of the most salient patterns appearing in the preceding chapters
was that for various classes of LDS and semialgebraic targets, a good understanding
of reachability properties suffices for being able to decide the full Model-Checking
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Problem. In Chapter 7 we even formally showed that for diagonalisable systems,
the Model-Checking Problem is Turing-reducible to the Reachability Problem. The
situation for pseudo-orbits, however, is markedly different.

Theorem 9.9.1. Let (M, s) ∈ Qd×d × Qd and H ⊂ Rd be a halfspace defined by
x ∈ H ⇔ c⊤x ≥ 0 for c ∈ Qd. The following problems are at least as hard as the
Positivity Problem for LRS over Q.

(A) Decide whether for every ε > 0, there exists ŝ ∈ B(s, ε) such that the orbit of
(M, ŝ) remains in H.

(B) Decide whether for every ε > 0, there exists an ε-pseudo-orbit of (M, s) that
remains in H.

Proof. Let (un)n∈N be an LRS over Q with companion matrix M ∈ Qd×d. As discussed
in Section 2.1, un = e⊤

1 M
ns, where s = (u0, . . . , ud−1). Observe that un ≥ 0 for all

n ∈ N if and only if the orbit (Mns)n∈N remains in H. Given (un)n∈N, our many-one
reduction to Problem (A) is to return ⟨M, s,H⟩. To prove the correctness of this
reduction, suppose un ≥ 0 for all n ∈ N. Let ŝ = s. Clearly, the orbit of (M, ŝ)
remains in H. Next, suppose there exists k ∈ N such that uk < 0. It holds that
Mks /∈ H. Since H is closed, there exists ε1 > 0 such that Mks+ ε1M

kB(0, 1) does
not intersect H. Hence for ε1, there does not exist x ∈ B(s, ε1) such that O(M,x)
remains in H.

Given (un)n∈N, our many-one reduction to Problem (B) also returns ⟨M, s,H⟩. If
un ≥ 0 for all n ∈ N, then for all ε > 0 we can choose (Mns)n∈N itself as the ε-pseudo-
orbit that remains in H. If uk < 0 for some k ∈ N, let ε > 0 be sufficiently small such
that Mks+ ε

∑k−1
i=0 B(0, 1) does not intersect T . We have that all ε-pseudo-orbits of

(M, s) leave H at time k.

Let φ denote the LTL formula □H, meaning “H holds at all times”. Problem (A)
is to decide whether in every neighbourhood of s there exists a point ŝ such that
the orbit O(M, ŝ) satisfies φ. Problem (B), on the other hand, is to decide whether
for every ε > 0, the LDS (M, s) has an ε-pseudo-orbit that satisfies φ. The theorem
above shows that the generalisation of either the TRP or the PRP from reachability
properties to ω-regular properties (while maintaining the existential quantification
over starting points and pseudo-orbits, respectively) immediately runs into the open
Positivity Problem for linear recurrence sequences.

Another way to modify the TRP would be to remove the universal quantification
over ε > 0, which amounts to making the set of all possible starting points part of the
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input. If we also stay within the realm of semialgebraic sets, the result is the following
problem.

Semialgebraic Orbit Problem. Given M ∈ Qd×d and semialgebraic B, T ⊆ Rd,
decide if there exist s ∈ B and n ∈ N such that Mns ∈ T .

This problem is decidable [9] for d ≤ 3 and Diophantine-hard at order d = 4 if
we restrict B to contain a single point and T to be a polytope [25]. Requiring the
starting set B set to have non-zero measure does not help: In [3] it is shown that if we
restrict B to balls of positive radius and H to hyperplanes, the Semialgebraic Orbit
Problem remains Diophantine-hard. Further restricting B to be open or closed does
not make a difference either.

We can also modify the PRP in the same way as above by making the set of
allowed perturbations at each step a part of the input. The result is the following
well-known problem in control theory.

Reachability Problem for Linear Time-Invariant Systems. Given M ∈ Qd×d,
a starting point s ∈ Qd, and semialgebraic sets B, T , decide if there exists a sequence
(un)n∈N of control inputs from B such that the trajectory defined by x0 = s and
xn+1 = Mxn + un for n ∈ N reaches T .

In [37] it is shown that the Reachability Problem for linear time-invariant systems
is undecidable for B that is a finite union of affine subspaces of Rd, and Positivity-hard
if we restrict B to be a bounded polytope.
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Discussion

In this thesis we presented various decidable fragments of the Model-Checking Problem
for discrete-time linear dynamical systems, and showed that significantly extending
any of our decidability results requires solving open cases of at least one of the
Skolem, Positivity and Ultimate Positivity problems.3 Among these problems of
linear recurrence sequences, the Skolem Problem appears to be the most tractable. In
particular, for diagonalisable LRS over Q, the Skolem Problem is arguably “solved in
practice”: As discussed in Section 2.3, an algorithm is given in [16] that

(a) always terminates assuming the Skolem Conjecture (also called the Exponential
Local-Global Principle) and the p-adic Schanuel Conjecture, and

(b) upon termination, is (unconditionally) guaranteed to produce either a zero of the
input LRS, or a certificate showing that no zero exists.

The Positivity and Ultimate Positivity problems, on the other hand, have not seen
much progress since the works [66, 67, 68] of Ouaknine and Worrell, which prove
decidability of both problems at low orders and full decidability of Ultimate Positivity
for diagonalisable sequences. We mention the recent the work [50] by Kenison et al.
that shows decidability of the Positivity Problem for the special class of reversible
sequences of order at most 11.

Speaking hypothetically, if we assume that the Skolem Problem is decidable for
LRS over Q, then the Model-Checking Problem becomes decidable for arbitrary
linear dynamical systems (M, s) and T containing only algebraic targets; see [54] and
Section 2.3. This is not surprising as for each algebraic set T and LDS (M, s), there
exists an LRS (un)n∈N over Q such that for all n ∈ N, un = 0 if and only if Mns ∈ T .

Recall from Chapter 7 that if we assume decidability of the Positivity Problem for
diagonalisable LRS over Q, then the full Model-Checking Problem for diagonalisable
systems becomes decidable. Non-diagonalisable LDS, in comparison, are much more

3Recall that the Diophantine-hard instances of the MCP that we gave in Chapter 8 are subsumed
by the Positivity Problem.
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intricate. For example, if we assume full decidability of both the Positivity and Ultimate
Positivity problems, then it is not clear that we can prove full decidability of the
MCP, or, for that matter, decidability of the MCP with prefix-independent properties.
The main culprit behind this is the loss of (eventual) toricity and almost-periodicity:
Recall that in Section 8.2 we constructed non-diagonalisable (M, s) ∈ Q4×4 × Q4 and
a polynomial p with rational coefficients such that the sign pattern of un = p(Mns) is
not almost-periodic and hence not eventually toric either. As a result, we have the
following obstacles to proving decidability of the MCP in dimension 4 or higher.

(1) Since the sign pattern αu of (p(Mns))n∈N is not necessarily almost-periodic, if we
have means to decide whether a finite pattern u ∈ {+, 0,−}∗ occurs in αu, we still
would not know how to decide if a given deterministic automaton accepts αu.

(2) Let q be another polynomial with rational coefficients, vn = q(Mns), and αv be
the sign pattern of (vn)n∈N. Suppose we want to model check the characteristic
word α of (M, s) with respect to a semialgebraic target T defined by inequalities
involving polynomials p and q. Even if we know “everything” individually about
αu and αv, without toricity we do not how how to deduce properties of α from
the properties of the two sign patterns. In Chapters 5 to 7 we relied on the
argument that if the sign patterns of p1(Mns), . . . , pk(Mns) are eventually toric,
where p1, . . . , pk are the polynomials defining a collection T of semialgebraic sets,
then the characteristic word of (M, s) with respect to T is also eventually toric.

At the time of writing, it is possible (and conceivable) that both the Positivity and
Ultimate Positivity problems are decidable, whereas the full Model-Checking Problem
for linear dynamical systems is undecidable.

To the best of our knowledge, no undecidability result is known for natural model-
checking problems of linear dynamical systems that only involve the single orbit
(Mns)n∈N. However, [46] shows that the following multi-path problem about LDS is
undecidable. Given an update matrix M , a semialgebraic starting set S, a positive
integer k, and a target hyperplane H, decide if there exists s ∈ S such that the orbit
(Mns)n∈N reaches H at least k times. The undecidability proof is based on a reduction
from Hilbert’s 10th problem, and involves only matrices of the form I +N , where N
is nilpotent.

Recently, model-checking problems have been studied for continuous-time linear
dynamical systems. Such a system, just like a discrete-time LDS, is given by a pair
(M, s) ∈ Qd×d × Qd, but its trajectory is described by x(0) = s and x(t) = eMtx(0)
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for t ∈ R>0. All problems considered in this thesis have analogous, continuous-
time formulations, The Skolem Problem for continuous-time LDS, for example, is
to decide, given (M, s) and a target hyperplane H, whether there exists t ≥ 0 such
that x(t) ∈ H. This problem is known to be decidable in dimension d ≤ 9 assuming
Schanuel’s conjecture. Overall, the mathematical tools used across the two settings to
obtain decidability results for exact verification problems are fairly different [27]. In
contrast, the “inexact” (alternatively, robust) verification problems that we considered
in Chapter 9 are solved in the discrete and the continuous settings in the same
way; see [8, 32]. This correspondence is completely unsurprising since we used a
continuous abstraction technique (Chapter 9) to solve the Topological Reachability,
Pseudo-Reachability, and Semialgebraic Invariant problems for discrete-time LDS.

All decidability results of this thesis also apply to orbits (Mns)n∈N where M, s have
real algebraic entries. Our complexity analyses, however, become invalid, primarily
because the degrees of the eigenvalues of M ∈ (R∩Q)d×d need not be bound by d. If we
assume Schanuel’s conjecture, the decidability results of Chapter 9 can be generalised
from semialgebraic targets to Le-definable sets, i.e. targets that can be defined using
real exponentiation as well as arithmetic and logical operations. Schanuel’s conjecture
is needed to decide whether, given (M, s), positive integer n, and Le-definable target T ,
whether Mns ∈ T .
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[6] Shaull Almagor, Dmitry Chistikov, Joël Ouaknine, and James Worrell. O-Minimal
Invariants for Discrete-Time Dynamical Systems. ACM Trans. Comput. Logic,
23(2), Jan 2022.

[7] Shaull Almagor, Toghrul Karimov, Edon Kelmendi, Joël Ouaknine, and James
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