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Abstract: The Gárdos channel (KCNN4) and Piezo1 are the best-known ion channels in the red blood
cell (RBC) membrane. Nevertheless, the quantitative electrophysiological behavior of RBCs and its
heterogeneity are still not completely understood. Here, we use state-of-the-art biochemical methods
to probe for the abundance of the channels in RBCs. Furthermore, we utilize automated patch clamp,
based on planar chips, to compare the activity of the two channels in reticulocytes and mature RBCs.
In addition to this characterization, we performed membrane potential measurements to demonstrate
the effect of channel activity and interplay on the RBC properties. Both the Gárdos channel and
Piezo1, albeit their average copy number of activatable channels per cell is in the single-digit range,
can be detected through transcriptome analysis of reticulocytes. Proteomics analysis of reticulocytes
and mature RBCs could only detect Piezo1 but not the Gárdos channel. Furthermore, they can be
reliably measured in the whole-cell configuration of the patch clamp method. While for the Gárdos
channel, the activity in terms of ion currents is higher in reticulocytes compared to mature RBCs,
for Piezo1, the tendency is the opposite. While the interplay between Piezo1 and Gárdos channel
cannot be followed using the patch clamp measurements, it could be proved based on membrane
potential measurements in populations of intact RBCs. We discuss the Gárdos channel and Piezo1
abundance, interdependencies and interactions in the context of their proposed physiological and
pathophysiological functions, which are the passing of small constrictions, e.g., in the spleen, and
their active participation in blood clot formation and thrombosis.

Keywords: erythrocytes; reticulocytes; patch clamp; membrane potential; NS309; Yoda1; TRAM34;
calcium
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1. Introduction

For a long time, it has been unclear if ion channels in red blood cells (RBCs) have
a physiological function or are just relics [1,2]. This may be attributed to the low copy
number of ion channels in the RBC membrane, along with functional ion channel mea-
surements without knowing the ion channels’ molecular identity [3,4] and the abundance
of channels at or even below the detection limit of classical biochemical methods [5,6].
Further, a persistent rumor for channels simply being relics from cellular development
remains, despite accumulating evidence about the contribution of ion channels to RBC flow
properties, especially passing constrictions and their active contribution to thrombus and
clot formation [7,8].

Here, we present a further investigation of the Gárdos channel and Piezo1 because
these are the best-known channels in RBCs in the sense that they are increasingly described
to be involved in biophysical–biochemical coupled processes in RBC physiology and
pathophysiology [9–11]. This, however, does not mean that we already know all their
regulation and interplay properties in RBCs, which can be distinctly different from the ones
in other cell types [12].

The Gárdos channel was the first channel discovered in (human) RBCs, taking ad-
vantage of the patch clamp method [13,14]. These measurements were based on previous
reports of Ca2+-induced K+ loss in RBC suspensions [15,16]. Numerous reports of single-
channel recordings followed the initial description of the channel [17–24]. Finally, the
Gárdos channel was identified at the molecular level as KCNN4 (hSK4, KCa3.1, IK1) [25].
However, in the RBC community, the KCNN4 channel is still referred to as the Gárdos
channel [4,26]. In recent years, with the advent of next-generation sequencing, mutations in
the Gárdos channel were discovered and associated with Hereditary Xerocytosis (HX) and,
more recently, more specific Gárdos Channelopathy, e.g., [11,27–33]. The copy number of
Gárdos channels per cell is believed to be rather low (25% of the cells contain 11–55 copies
and 75% of the cells 1–5 channels according to Grygorczyk et al. [18] and, on average,
2.6 channels per cell according to Wolff et al. [34]). On the other hand, the Gárdos channel
provides a significant and measurable effect (Ca2+-induced K+ loss). Regularly, the K+ loss
is accompanied by Cl− loss through Cl− channels for the sake of electroneutrality. As a
consequence, Gárdos channel activity is mostly accompanied by water loss and, hence, RBC
dehydration. However, this process depends critically on the mode of the initial Ca2+ entry.
If the Ca2+ entry is caused by the activity of a non-selective cation channel, the Ca2+ entry
is accompanied by a Na+ entry. This Na+ uptake may counteract or even overcompensate
for the K+-induced dehydration.

The natural history of Piezo1 in RBCs was distinctly different compared to the Gárdos
channel. Piezo1 and Piezo2 were identified as the molecular components of mechanosen-
sitive ion channels in general [35,36]. Next, the identification of mutations of Piezo1 in
patients suffering from HX proved the abundance of Piezo1 in RBCs [37–39], because the
HX patients presented a hematological phenotype with altered membrane permeability
and Ca2+ signaling. There was further functional/pharmacological (mainly based on the
application of the agonist Yoda1 [40]) and molecular evidence for the abundance of Piezo1
in RBCs [41–45]. Interestingly (similar to the Gárdos channel), it became evident that Piezo1
was recorded in RBCs even before its molecular identity was discovered [46,47].

Furthermore, transgenic animal models and microfluidic assays increased our un-
derstanding of the contribution of the interplay between the Gárdos channel and the
mechanosensitive channel Piezo1 in the volume adaptation required for RBCs to pass
constrictions within the circulation [48–50].

Within the circulation, healthy RBCs show a very high morphological similarity [51],
whereas functional aspects can appear very heterogeneous [52,53]. However, in terms
of populations, we only discriminate between reticulocytes (very young RBCs defined
either by the presence of intracellular mRNA or the abundance of the transferrin receptor
on the membrane) and mature RBCs (erythrocytes). A certain exception is the so-called
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neocytes, which are less well-defined and seem, in terms of classification, to be of limited
physiological relevance [54,55].

In this context, we aimed to investigate the function and abundance of both the Gárdos
channel and Piezo1, in mature RBCs in comparison to reticulocytes and discuss their
interaction and physiological function.

2. Results
2.1. Biochemical Analysis

We performed a transcriptome analysis based on RNA isolated from reticulocytes.
Figure 1A shows the outcome for the Gárdos channel and Piezo1 compared to VDAC2 [56]
as a positive control. Please note the logarithmic scale in Figure 1A.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW  3  of  24 
 

 

mechanosensitive  channel Piezo1  in  the volume adaptation  required  for RBCs  to pass 

constrictions within the circulation [48–50]. 

Within the circulation, healthy RBCs show a very high morphological similarity [51], 

whereas functional aspects can appear very heterogeneous [52,53]. However, in terms of 

populations, we only discriminate between reticulocytes (very young RBCs defined either 

by the presence of intracellular mRNA or the abundance of the transferrin receptor on the 

membrane) and mature RBCs (erythrocytes). A certain exception is the so-called neocytes, 

which  are  less  well-defined  and  seem,  in  terms  of  classification,  to  be  of  limited 

physiological relevance [54,55]. 

In  this  context, we  aimed  to  investigate  the  function  and  abundance  of  both  the 

Gárdos channel and Piezo1, in mature RBCs in comparison to reticulocytes and discuss 

their interaction and physiological function. 

2. Results 

2.1. Biochemical Analysis 

We performed a transcriptome analysis based on RNA isolated from reticulocytes. 

Figure 1A shows the outcome for the Gárdos channel and Piezo1 compared to VDAC2 

[56] as a positive control. Please note the logarithmic scale in Figure 1A. 

 

Figure 1. Transcriptome and protein analysis. Panel (A) shows the transcriptomic analysis for the 

Gárdos  channel  (KCNN4),  Piezo1  and  VDAC2  based  on  RNA  isolated  from  circulating 

reticulocytes. The columns present  the mean values  from 4 donors with the error bars being  the 

standard error of mean (SEM). Gárdos channel (KCNN4) is slightly lower in the reads compared to 

Piezo1 but  the difference  is not  significant whereas both of  them  are  significantly  smaller  than 

VDAC2. Comparisons of the means were tested depicting a p > 0.05 for not significant (ns), * for p < 

0.05 and ** for p < 0.01. Panel (B) shows the result of the proteomic analysis performed on highly 

Figure 1. Transcriptome and protein analysis. Panel (A) shows the transcriptomic analysis for the
Gárdos channel (KCNN4), Piezo1 and VDAC2 based on RNA isolated from circulating reticulocytes.
The columns present the mean values from 4 donors with the error bars being the standard error
of mean (SEM). Gárdos channel (KCNN4) is slightly lower in the reads compared to Piezo1 but the
difference is not significant whereas both of them are significantly smaller than VDAC2. Comparisons
of the means were tested depicting a p > 0.05 for not significant (ns), * for p < 0.05 and ** for p < 0.01.
Panel (B) shows the result of the proteomic analysis performed on highly enriched reticulocyte (retics)
and reticulocyte-depleted mature RBCs (erys) lysates from 4 different donors with the error bars
being SEM. In reticulocytes, the transferrin receptor, Piezo1 and VDAC2 could be detected, whereas
the Gárdos channel was below the detection limit. In mature RBCs only Piezo1 could be detected.
Comparisons of the means were tested depicting a p > 0.05 for not significant (ns). Panel (Ca) shows a
dot plot of Gárdos channel antibody (KCNN4, FITC) vs. transferrin receptor (CD71, pacific blue) for
proerythroblasts presenting a ‘positive control’ for the isotype vs. antibody stains. Panel (Cb) shows
the same measurements (but different gain settings) for RBCs presenting the reticulocytes in sectors
Q2 and Q3.
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We also performed a proteomic analysis of RBCs. Figure 1B shows the mass spectrome-
try values in arbitrary intensity values for reticulocytes and mature RBCs. The data present
the average of four donors. Reticulocytes were enriched based on a CD71 (transferrin
receptor) microbead preparation, leading to 72 ± 5% of the enriched cells being classified
as reticulocytes by the reticulocyte marker thiazol-orange in flow cytometry. For the mature
RBC population, 99.4 ± 0.3% could be classified as thiazol-orange negative. Mass spectrom-
etry revealed the detection of 1461 proteins for the enriched reticulocytes and 845 proteins
for the reticulocyte-depleted mature RBCs. In Figure 1B, we show an additional quality con-
trol of the transferrin receptor, which is highly abundant in reticulocytes but not detectable
in mature RBCs. The Gárdos channel (KCNN4) is detectable in neither reticulocytes nor
in mature RBCs. Piezo1 can be reliably detected in both preparations of reticulocytes and
mature RBCs. Surprisingly, the detection intensity is higher in mature RBCs compared to
reticulocytes, although this difference is not statistically significant (p = 0.2). In analogy
to the transcriptomic data, VDAC2 is plotted in Figure 1B. Although the RNA reads of
VDAC2 in reticulocytes are several orders of magnitude higher than for Piezo1 (Figure 1A),
the proteomic intensity of VDAC2 is of comparable intensity as for Piezo1 (p = 0.2). In
mature RBCs, VDAC2 was below the detection limit. Of note, other preparation methods of
RBCs, e.g., preparations of RBC ghosts likely show altered results in the protein detection.
This dependence of the detection results on the cell preparation mode is a challenge in
the proteomic analysis, and it highlights a general challenge in RBC-related ion channel
research [3].

To further illustrate this aspect, in the next step, we assessed cells with fluorescently
labelled antibodies against the Gárdos channel and analyzed them in a flow cytometer.
Figure 1C shows dot plots of staining for the transferrin receptor (CD71, pacific blue) vs. the
Gárdos channel (KCNN4, FITC) for proerythroblasts (Figure 1(Ca)) and peripheral RBCs
(Figure 1(Cb)). The comparison with the isotype reveals that the number of KCNN4 positive
cells (Q3 + Q4)antibody − (Q3 + Q4)isotype is with approximately 5% for proerythroblasts,
and 1% for erythrocytes rather low. In summary, the abundance of the Gárdos channel is
paltry, and the method does not allow for a reasonable quantification.

2.2. Patch Clamp Analysis

The patch clamp technique is the most direct approach to decypher ion channel
functions as it directly measures the electrical current carried by ions passing the pore of the
channel of interest. To ensure specificity in the measured current (channel) (or it could be
said also to differentiate the current of interest), internal and external solutions of specific
composition, particular voltage protocols and additional chemical or physical stimulation
were applied.

We based our measurements on previously reported protocols used for Piezo1 and the
Gárdos channel [30,45], with slight modifications. The nature of the Gárdos channel and
Piezo1 is vastly different and, therefore, necessitated different voltage protocols, which are
outlined in Figure 2.

A “voltage-step” protocol was used to measure the Gárdos channel and a “ramp”
protocol to measure Piezo1. Ramps have the advantage of generating current–voltage
relations directly and very rapidly and are especially suitable for studying rapidly activating
currents. Step protocols measure the steady-state current at a given voltage and, depending
on the duration of the step, allow to analyze the kinetics of the current at each voltage and
phenomena, such as inactivation and desensitization. Due to the small number and single
channel conductance of the Gárdos channels in RBCs [18,34], additional to its evaluation
by considering the mean current at a certain voltage, an equally accurate assessment of the
channel is given by analysis of the kinetics of the current [30]. A macroscopic whole-cell
current, being the result of the summation of many smaller unit currents flowing through
single ion channels, exhibits fluctuations about its mean level, and those fluctuations are
especially obvious when the Gárdos channel is activated by NS309. Thus, a “voltage-step”
protocol was considered for recording Gárdos channel currents (Figure 2A), in contrast
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to Piezo1, which is a fast inactivating channel (although less fast when activated with
Yoda1) [40,57], a “ramp protocol” was the more appropriate choice (Figure 2B).
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 EGTA 3, CaCl2 0.61,
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NaCl 140, KCl 2, MgCl2 1,CaCl2 2,  

glucose 5, HEPES 10, pH=7.4

A B

5 s break between each sweep

indicates a 5 s pause within the current recording

Figure 2. Patch clamp measurement voltage protocols—a conceptual approach. Panel (A) shows
the “voltage-step protocol” as applied for the Gárdos channel measurements. In panel (B) the “ramp
protocol” as used for Piezo1 recordings is shown. The inserts in both panels depict the contents of the
internal and external solutions used for the measurements. The orange line symbolizes the cell and
the grey line the planar chip.

Figure 3 shows Gárdos channel currents elicited by the “voltage-step” protocol, as
outlined in Figure 2A, for reticulocytes and mature RBCs. The pharmacological approach
involved measuring the background current before applying a compound (Figure 3A, left
traces), stimulating the Gárdos channel by application of NS309 (Figure 3A, middle traces)
and, as a last step, blocking the Gárdos channel by application of its inhibitor TRAM34
(Figure 3A, right traces). As a Gárdos channel current is considered to be the difference in
currents before and after application of NS309, i.e., the current before application of NS309
being subtracted from the current after application of NS309, and resulting current–voltage
curves are given in Figure 3B. Although it is known that the Gárdos channel does not have
a linear conductance, in the measured voltage range between −110 mV and +30 mV, a
linear regression gives a good approximation of the whole-cell conductance of the channel,
and the conductance (slopes in the diagram) was significantly different (p = 0.01) between
reticulocytes (G = 122 pS) and mature RBCs (G = 55 pS). The percentage of responding
cells is provided in the pie charts (Figure 3C), revealing a slightly higher percentage of
responding cells in the reticulocyte population compared to the one of mature RBCs.

Figure 4 shows Piezo1 measurements applying the “voltage ramp protocol”, as out-
lined in Figure 2B. The pharmacological concept was to measure the background current
before applying a compound (Figure 4A, light green and orange traces for reticulocytes and
mature RBCs, respectively). This was followed by stimulation of Piezo1 by application of
Yoda1 (Figure 4A, green and red traces for reticulocytes and mature RBCs, respectively) and
finally blocking Piezo1 (and putative other non-selective cation channels) by application of
the unspecific inhibitor GdCl3 (Figure 4A, dark green and dark red traces for reticulocytes
and mature RBCs, respectively). Since the activation of Piezo1 results in Ca2+-influx, this
Ca2+ could activate the Gárdos channel; so, the recordings presented in Figure 4A could be
the superposition of Piezo1 and Gárdos channel currents. To this end, and to exclude the
participation of the Gárdos channel currents, the same experiments were repeated in the
presence of the Gárdos channel inhibitor TRAM34 while stimulating the cells with Yoda1
(Figure 4B, same color code as Figure 4A).
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Figure 3. Gárdos channel measurements. Panel (A) shows representative raw current traces. The
first 100 ms of each trace, the voltage is clamped to −30 mV, followed by half a second clamped to
−110 mV and then another 100 ms at −30 mV (compare Figure 2A). Green traces refer to reticulocytes
and red traces to mature erythrocytes. The left traces are recordings before NS309 application,
the middle traces depict channel activity after stimulation with 100 µM NS309, a specific Gárdos
channel activator and finally the right traces show the response after application of the Gárdos
channel blocker TRAM34 (1 µM). Panel (B) provides the current-voltage diagram for reticulocytes
(n = 13 from 3 donors) and mature erythrocytes (n = 10 from 3 donors). Plotted are values of the
difference in the mean current with and without NS309 as a read-out of the Gárdos current with
error bars representing the standard error of the mean (SEM). Although the Gárdos channel is an
inward rectifying channel, in the probed voltage range between −110 mV and 30 mV a linear fit well
represents the whole-cell conductance which is 122 pS and 55 pS for reticulocytes and erythrocytes,
respectively. The test of significant differences refers to the difference in the slope (conductance).
** indicates a p-value below 0.01. Panel (C) depicts pie charts indicating the percentage of responding
and non-responding cells for reticulocytes (green) and mature RBCs (red).

Statistical analysis of the current ramps for the voltage of +80 mV is provided in a
column diagram (Figure 4C). Although mature RBCs have a smaller surface area compared
to reticulocytes, the induced current is bigger for mature RBCs compared to reticulocytes
in both experimental conditions (although not significant). The corresponding percentage
of responding cells is also given in a column diagram (Figure 4D). The percentage of
responding mature RBCs is, on average, below 10% and approximately one-third compared
to reticulocytes.
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Figure 4. Piezo1 measurements. Panel (A) shows representative current traces. The first 50 ms
of each trace, the voltage is clamped to −30 mV, followed by a 400 ms ramp from −100 mV to
80 mV and then another 50 ms at −30 mV (compare Figure 3B). Green traces refer to cultured
reticulocytes and red traces to mature erythrocytes. The recordings show traces before and after
stimulation with 10 µM Yoda1, a specific Piezo1 activator and after blockage with 30 µM GdCl3. Panel
(B) shows representative current traces in similarity to panel (A), but the stimulation with 10 µM
Yoda1 is accompanied by simultaneous inhibition of the Gárdos channel with 2.5 µM TRAM34. Panel
(C) provides the bar graphs of the Yoda1-induced current for reticulocytes (n = 21) from 3 donors and
mature erythrocytes (n = 20) from 2 donors. Plotted are mean values with error bars representing
the standard error of mean (SEM). For explanations of virtually absent contributions of the Gárdos
channel response after Piezo1 simulation please refer to the Discussion Section 3.2. The differences in
channel activity between reticulocytes and mature RBCs are considered in the Discussion Section 3.3.
Panel (D) depicts the percentage of responding cells per experiment for reticulocytes (green) from
3 donors and mature RBCs (red) from 2 donors. The test of significance was performed with an
ordinary one-way ANOVA with Tukey’s multiple comparisons test. ** refer to a p-value below 0.01.



Int. J. Mol. Sci. 2024, 25, 1416 8 of 24

2.3. Membrane Potential Measurements

The electrophysiological characterization of ion channels, as presented in
Figures 3 and 4, is, in fact, rather a description of the biophysical properties of the channels,
which could be related to function under physiological conditions. To this end, we present
drug-induced membrane potential changes (Figure 5), which may successfully indicate
channel interactions (in contrast to patch clamp measurements) for intact RBCs.
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Figure 5. Effect of Gárdos channel and Piezo1 activation on the membrane potential. Panel (A) rep-
resents RBCs, where first the Cl− conductance is blocked with NS3623 and then a K+ conductance is
induced by the addition of valinomycin. The hyperpolarization can therefore be regarded as fully
based on the K+ conductance. The experimental solution contained 146 mM NaCl and 9.9 mM KCl.
Panel (B) shows the hyperpolarization of the cells upon the addition of the Gárdos channel activator
NS309. Please note that NS309 only increases the Ca2+-sensitivity of the Gárdos channel and hence
its open probability, i.e., not all Gárdos channels are open and neither are all RBCs hyperpolarized.
The experimental solution was an ordinary Ringer solution (154 mM NaCl and 2 mM KCl). Panel
(C) shows the hyperpolarization of the RBCs caused by an increase in intracellular Ca2+ concen-
tration by the addition of the Ca2+ ionophore 4-bromo-A23187 (A23187) inducing the activation of
the Gárdos channel. Panel (D) shows the hyperpolarization of the cells after activation of Piezo1
by Yoda1, which results in Ca2+ entry and hence Gárdos channel activation. All experiments are
performed in ordinary Ringer solution, i.e., are nominal Ca2+-free, but due to impurities containing
an estimated Ca2+ concentration of at least 4 µM [58] plus up to 8 µM Ca2+ from residual blood
plasma (although RBCs were washed). All panels show representative curves of at least duplicate
measurements of at least 3 healthy donors.
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To interpret the pharmacological stimulations, Figure 5 presents a step-by-step argu-
mentation chain: Figure 5A shows the effect of an increase in the RBC K+ permeability. The
resting membrane potential of RBCs is approximately −12 mV. The addition of NS3623
blocks the RBC Cl− conductance (which determines the resting potential), which results in
a shift in the membrane potential towards 0 mV (equilibrium). Valinomycine acts as a K+

pore and, therefore, the membrane potential after the addition of valinomycine could be
calculated based on the K+ distribution using the Nernst equation:

V = −RT
zF

× ln
[K+]in
[K+]out

(1)

where R is the universal gas constant, T is the temperature (in Kelvin, here 310 K), z is the
ionic charge number (z = 1 for K+) and F is the Faraday constant, amounting to a constant
of 26.7 mV for the first term. [K+]in can be taken from the literature [59] to be 102 mM
and [K+]out from the experimental conditions (cp. legend of Figure 5A) as 9.9 mM. Thus,
the membrane potential is calculated as −62.3 mV. This is in good agreement with the
−64.2 mV hyperpolarization reached in the measurements. The addition of TritonX-100 is
a calibration procedure for a membrane potential of 0 mV.

In contrast to Figure 5A, which provides a proof of principle for the agreement of theory
and experiment, further measurements are designed to show the (more physiological)
activity of endogenous channels (mainly Gárdos channel, partly Piezo1). Therefore, in
the frame of the experimental requirements, the conditions were set as physiological as
possible, i.e., without the addition of the Cl− conductance blocker NS3523.

In Figure 5B, it was tested if cellular hyperpolarization was also reached by activation
of the Gárdos channel (Ca2+-activated K+ channel) by NS309. This is indeed the case;
however, the polarization is a bit less pronounced for three reasons: (i) the K+ concen-
tration in the external solution is slightly different than in the experiments presented in
Figure 5A (compare figure legend); (ii) to assess the physiological effect of the Gárdos
channel activation, no additional NS3623 to block the Cl−-conductance was applied; and
(iii) we measured the average response of all cells, and possibly not all RBCs responded
to the NS309 stimulation. Furthermore, inhibiting the Gárdos channel with TRAM34 re-
sulted in a significant depolarization, proving the involvement of the Gárdos channel in
the membrane potential jump. For TritonX-100, please refer to Figure 5A. In Figure 5C,
we show that a similar Gárdos channel-mediated hyperpolarization can be induced by
increasing the intracellular Ca2+ concentration, with an application of the Ca2+ ionophore
A23187, i.e., Ca2+ enters the cell and acts as the natural agonist of the Gárdos channel.
Again, depolarization upon the addition of TRAM34 proves the contribution of the Gárdos
channel. Finally, in Figure 5D, we activate Piezo1, which allows Ca2+ entry and, thus, the
activation of the Gárdos channel, demonstrating the interplay between Piezo1 and the
Gárdos channel. Once more, the addition of TRAM34 induces depolarization.

While in Figure 5A,B, the level of hyperpolarization after its initial induction is stable
(constant over time), in Figure 5C,D, it declines over time (more pronounced in Figure 5D).
Figure 5C,D rely on Ca2+ entry into the RBCs. The Ca2+ handling of RBCs is, in general,
a complex process [60], and even after stimulation with the ionophore A23187, the Ca2+

concentration does not stay constant [61]. In addition, we have to consider that the external
Ca2+ concentration is very low (well below 15 µM, compare legend of Figure 5). Therefore,
we need to consider that a number of RBCs manage to reduce their intracellular Ca2+-
content below the opening threshold of the Gárdos channel. Since we measured the
average membrane potential of the RBCs in suspension, slow depolarization becomes
detectable. For the activation of Piezo1, the Ca2+ entry is more transient compared to
the ionophore A23187 and, therefore, less Ca2+ enters the RBC, consecutive Ca2+ removal
is faster and, hence, more cells depolarize. This means that the detected depolarization
(Figure 5D) is faster and more pronounced than in Figure 5C.

Furthermore, after application of TRAM34 and the blockage of the Gárdos channel, the
membrane potential does not return to the initial resting membrane potential (Figure 5B–D).
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The value of repolarization achieved is strictly dependent on the (new) equilibrium for
Cl− (and, to a lesser extent, Na+). The permeabilities for these two ions will determine
the new membrane potential. If we consider, in the three panels of Figure 5B–D, a final
membrane potential, post TRAM34, of −27 mV and assuming that the conductance of the
Gárdos channel (PK+ ) is zero, the Na+ conductance (PNa+ ) is negligible compared with Cl−

conductance (PCl− ), and the Goldman–Hodgkin–Katz equation (Equation (2), see below) for
these three ions is simplified to the Nernst equation (Equation (1), see above) for anions. So,
based on an extracellular concentration of 156 mM for Cl−, a membrane potential change
to −27 mV would represent a decrease in the intracellular anion concentration from around
100 mM to 55 mM. Such a decrease is entirely compatible with the anion flux associated
with the activation of the Gárdos channel for electroneutrality reasons.

3. Discussion
3.1. The Copy Number of Ion Channels in Red Blood Cells—Context and Consequences

For the most prominent ion channels in the RBC membrane, the Gárdos channel and
Piezo1, we could show that they are still at or, for some approaches, below the detection
limit using state-of-the-art biochemical detection methods (transcriptomics, proteomics and
antibody-based flow cytometry). The principal proof is in line with patient investigations,
showing an explicit hematological phenotype when carrying pathological variants of
the Gárdos channel or Piezo1 [11,27,30–33,37–39,45]. The same holds true for transgenic
approaches in animal models [42,48,50,62,63]. Of note, there are other ion channels in RBCs
with strong functional evidence for their existence, but controversial biochemical detection
and electrophysiological measurements are impossible or difficult to realize such as for
CaV2.1 [11,64–66] or TRPC6 [6,66–68].

In all of the examples above, it is the low copy number in the ion channel in the RBC
membrane that is the major obstruction, mainly because RBCs lack protein translation [69].
Thus, there is a necessity to discriminate between the physical presence of a protein, which
may still be recognized by an antibody, while the function of the protein might be lost at
some point in the, on average, 120-day lifetime of an RBC in the circulation [54], or vice
versa, when proteins might not be physically detected while functional evidence for their
presence is at hand, like in our study, showing below-limit mass spectrometry values for
the Gárdos channel.

Considering all these circumstances, it is not surprising that most of the patch- clamp-
based reports on RBCs represent cherry-picking results, hiding the success rate and/or
yield of measured channels, with very few exceptions, e.g., [18,70]. Particularly, for the
Gárdos channel, the majority of published recordings are performed as “inside-out patches”
(single channel recordings) and only very few as “whole-cell recordings”, e.g., [30,71], based
mostly on patients suffering from hereditary anemias with an, on average, younger RBC
population. In this respect, we consider the data presented here as a “round up” of previous
reports. Based on the patch clamp measurements presented in this report, we estimated
the channel numbers for the Gárdos channel based on the whole-cell conductance (122 pS
for reticulocytes and 55 pS for mature RBCs; Figure 3B) and a single channel conductance
of 18 pS [13,14], being 6.8 and 3.1 in reticulocytes and mature RBCs, respectively, for cells
classified as responders. Considering the proportion of non-responders (33.3% for reticu-
locytes and 40% for mature RBCs; Figure 3C), the average number of NS309-activatable
number of Gárdos channels per cell drops to 4.5 and 1.8 in reticulocytes and mature RBCs,
respectively. This is in rough agreement with previous reports [18,34], as outlined in the
Introduction. For Piezo1, we have statistical data only for particular voltages such as 80 mV
(Figure 4C). Based on a Piezo1 single channel conductance of 29 pS [72], the current of a
single channel at 80 mV corresponds to 2.3 pA. This, in turn, results in a Yoda1-activatable
number of fully activated channels of 35 and approximately 65 for reticulocytes and ma-
ture RBCs, respectively (for a discussion of why mature RBCs show higher activity, see
below). Considering the proportion of non-responders (72.5% for reticulocytes and 81% for
mature RBCs; Figure 4D), the average of the Yoda1 (in the presence of TRAM34) activatable
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number of Piezo1 channels per cell drops to 9.5 and 5.8 in reticulocytes and mature RBCs,
respectively. Thus, the number of activatable Piezo1 channels is considerably higher than
that of activatable Gárdos channels but still within the same order of magnitude. Please
note, the number of activatable channels measured using patch clamp may not represent
the physical number of channel copies. We believe the main cause for the high number
of non-responding RBCs is the loss of the composition of the intracellular cytoplasm in
combination with the low copy number of channels and the stochastic opening behavior of
the channels.

The estimated channel number from the patch clamp recordings is in agreement with
the proteomic approach (Figure 1B), which compares reticulocytes and mature RBCs as
well as the Gárdos channel and Piezo1. Patch clamp indicates a smaller copy number for
the Gárdos channel compared to Piezo1; for the proteomics approach, Piezo1 is detectable,
whereas the Gárdos channel is below the detection limit for both reticulocytes and mature
RBCs. Even more interesting is the comparison of Piezo1 between reticulocytes and mature
RBCs, which is discussed in further detail in Section 3.3, below.

The activity of the Gárdos channel clearly results in cellular hyperpolarization
(Figure 5B–D), i.e., “switching on” the Gárdos channel hyperpolarizes the RBCs and
“switching it off” depolarizes the RBC again. While Ca2+ entry triggers a synchronized
opening of the Gárdos channel and, hence, hyperpolarization (Figure 5C,D), a physiologi-
cal process for a synchronized simultaneous closing of the Gárdos channel is not known.
Interestingly, the low copy number of activatable channels enables membrane potential
jumps, hyperpolarization and also depolarization [73]. The reason is the combination of
the low copy number of the Gárdos channels with the stochastic nature of the channel
openings. Figure A1 shows patch clamp recordings of currents that cause such membrane
potential jumps, i.e., the recordings although “whole-cell” in the experimental operation,
show single channel (or low channel number) activity. In analogy to action potentials but
considering the non-excitable nature of RBCs, we call this phenomenon ‘pseudo action
potentials’ (PAPs). In turn, PAPs enable the activation of voltage-gated channels [11,74].

3.2. Ion Channel Interactions in Red Blood Cells

As mentioned above, the activity of the Gárdos channel may drive voltage-activated
channels, which, in turn, can be suppressed by Piezo1 activity [11,74] (compare opaque
elements in Figure 6A). However, next, we will focus the discussion on the dualism between
the Gárdos channel and Piezo1 (Figure 6).

The hypothesis that Piezo1 activity, which leads to a Ca2+ entry, is followed by Gárdos
channel activation (Figure 6A) is, in the meantime, an established concept [9,42,48–50,75].
Can this also be recognized in patch clamp measurements? In inside-out patches, where
only a membrane patch covers the pipette tip, the volume in the bath is so much higher than
in the cell, and without diffusion barriers, the dilution of the Ca2+ entering through Piezo1
is immediate; hence, no activation of the Gárdos channel is possible. Regarding whole-cell
measurements, although the inner RBC volume is connected to—again—the very large
volume of the patch pipette (or the equivalent in the planar chip), activation of the Gárdos
channel must be considered, and, therefore, all our Piezo1 measurements were performed
in the absence and presence of the Gárdos channel inhibitor TRAM34 (Figure 4). While for
the reticulocytes, we saw a small insignificant current decrease in the presence of TRAM34,
which might be caused by hindering the immediate Ca2+ dilution by diffusion barriers
(internal structures, e.g., mitochondria), such a decrease was absent in the organelle-free
mature RBCs (Figure 4C). However, the lack of Gárdos channel activation following Piezo1
activation in patch clamp measurements was shown before [45] and can be attributed as a
patch clamp measurement limitation. In contrast, the MBE measurements in intact cells
clearly demonstrate the Gárdos channel opening after Piezo1 activation (Figure 5D). As a
side note, Figure 5C,D nicely demonstrate that in the nominal absence of Ca2+, the Ca2+

“contamination” of solutions, even when using analytical-grade chemicals, we estimate
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that at least 4 µM plus up to 8 µM from residual blood plasma is sufficient to activate the
Gárdos channel [58].
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extent the Piezo1) on the voltage-activated calcium channel CaV2.1 [11,64–66]. Panel (B) indicates the
putative effect of Gárdos channel openings on Piezo1. For further details see main text.

Vice versa, we noticed an increase in current after TRAM34 application, which was
also previously reported [45]. Although we do not have a comprehensive explanation for
this effect, here, we point to another problem, which arises from the small copy number
in the ion channels in RBCs, that is, the abundance of pharmacological side effects. Most
drugs cause such side effects, and if the number of channels is very small, the side effects
could (in contrast to overexpressing systems, where drugs are usually tested) overwhelm
the intended effect of a particular drug, as shown for TRPC6 inhibitors on RBCs [66].

In addition to the effect of Piezo1 on the Gárdos channel (Figures 5D and 6A), there
is also an influence of the Gárdos channel on Piezo1, which originates from the hyperpo-
larization caused by the Gárdos channel (Figures 4C and 5B) and which is visualized in
Figure 6B. The electrochemical gradient is the driving force for a particular ion to cross the
membrane. It is the sum of the chemical potential, caused by the unequal distribution of
the ion on both sides of the membrane, which can be calculated by the Nernst equation (see
Equation (1), above) and the electrical driving force, which is caused by the distribution
of all ions and their membrane permeability. The electrical driving force was measured in
the experiments shown in Figure 5 and can be calculated by the Goldman–Hodgkin–Katz
equation (Equation (2), see below). The potentials acting on particular ions are summarized
in Table 1 and given for the resting membrane potential (approximately −12 mV) and for
the membrane potential after Gárdos channel activation (hyperpolarization, approximately
−70 mV)—compare with Figure 5.
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Table 1. Driving forces for particular cations for the measured resting membrane potential (−12 mV)
and after opening of the Gárdos channel (−70 mV).

Ion Ca2+ Na+ K+

extracellular concentration 1.2 mM [76] 140 mM [77] 4 mM [78]

intracellular concentration 60 nM [79] 7.35 mM [80] 102 mM [59]

chemical potential * −132 mV −79 mV 86 mV

electrochemical potential at resting membrane potential −144 mV −91 mV 74 mV

electrochemical potential when Gárdos channel is open −202 mV −149 mV 16 mV

* The chemical potential was calculated using the Nernst equation (Equation (1)). A negative potential in the table
means the cations enter the cell and a positive potential means the cations exit the cell.

However, are the potentials given in Table 1 applicable for ion transport through
Piezo1? The situation is a bit more complex, because in the moment that Piezo1 is open,
the membrane potential is also influenced by the permeability changes caused by Piezo1.
Therefore, the electrochemical potentials given in Table 1 denote the boundaries within the
membrane that the potential may adjust. The actual membrane potential is defined by the
Goldman–Hodgkin–Katz equation:
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i PM+
i

[
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i
]
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[
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]
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where M+ is monovalent cations and A− is monovalent anions, with P being the permeabil-
ity of the indexed ion. For illustrative purposes, Equation (2), just considering Na+, K+ and
Cl− ions, would read:
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[
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]
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[
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]
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[
Cl−

]
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In these equations, the permeability P is crucial, i.e., the distinct number of available
functional Piezo1 and Gárdos channels determines the cell permeability and, hence, the
membrane potential.

To better judge the situation, we include one more aspect in the discussion, which is
the opening time (interval) of the channels. As mentioned before, Piezo1 has a transient
opening behavior. In intact RBCs, this transient opening is obviously sufficient to have
enough Ca2+ to enter the cell for an activation of the Gárdos channel. The dominating
K+-loss leads to volume adaptations in particular cell shrinkage, e.g., to allow RBCs to pass
small capillaries or the sinusoidal slits in the spleen following mechanical stress [48–50,81].
Although Piezo1 and TRPV2 share a number of properties [82], such as being nonselective
cation channels and having the same magnitude of the single channel conductance, the
activation of the two channels has different consequences. The activation of TRPV2, e.g.,
by ∆9-tetrahydrocannabinol [83], results in longer opening times, and although Ca2+ is
expected to enter the RBC and activate the Gárdos channel, due to different driving forces
(compare Table 1), the Na+ entry trough TRPV2 dominates the K+ exit through the Gárdos
channel with the result that RBCs swell [84,85]. This shows that (patho)physiological effects
can be tuned in opposite directions by a single biophysical property of a channel, such as
the transient nature of the opening.

3.3. Ion Channel Differences between Reticulocytes and Mature Red Blood Cells

We do see differences in ion channel function between reticulocytes and mature RBCs
for both channels, the Gárdos channel and Piezo1, but opposite trends.

For the Gárdos channel, even when considering that reticulocytes have, on average,
a 20% bigger surface area than mature RBCs [80], still, the current density is double the
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size in reticulocytes compared to mature RBCs. In accordance with this, the number of
responding cells drops from 67% to 60%. This decrease in activity is somehow expected
because of the lack of protein translation and protein “aging” [69]. It is also in line with
data in the literature, showing age-dependent changes in RBC composition, metabolism
and transport [86–88].

Surprisingly, the trend of the current density differences between reticulocytes and
mature RBCs for Piezo1 is opposite to the Gárdos channel, i.e., increasing in mature RBCs,
albeit the mature RBCs contain 20% less membrane [80]. Interestingly, the proteomic
approach mirrors the patch clamp experiments with a lower intensity for Piezo1 in reticu-
locytes compared to mature RBCs (Figure 1B). Because both of these differences are not
statistically significant, one should be careful with an “over interpretation”. However, the
fact that both conceptually different investigations point in the same direction is remarkable.

A plausible explanation arises from the 20% loss of membrane when reticulocytes
mature, which could lead to a rather relative increase. This would mean that Piezo1 is (in
contrast to the transferrin receptor and presumably VDAC2; Figure 1B) excluded from the
shed membrane during the reticulocyte maturation process. In consequence, this could be
a strong argument for the active conservation of Piezo1 in RBCs and explicitly not being a
remnant from earlier erythroblast stages [89]. A further interpretation arises from the fact
that Piezo1 activity is modulated by the lipid composition of the membrane the channel is
embedded in [90–92]. There is severe lipid remodeling associated with the ageing process,
all the way from reticulocytes to senescent RBCs [93]. This remodeling process may, at
least partly, explain the cellular heterogeneity indicated by the fairly large error bars in
Figure 4C. The protein ageing process used as an argument when describing the Gárdos
channel would also apply to Piezo1 and is, indeed, reflected in the number of responding
cells, which drops from 35 ± 5% (reticulocytes) to 8 ± 2% (mature RBCs) p = 0.002.

3.4. Physiological Function of Ion Channels in Red Blood Cells

The physiological function of the Gárdos channel and Piezo1 was not investigated in
this study. However, one of the reviewers encouraged us to include this discussion. In vivo
investigations of single RBC properties are rather sparse and mostly limited to animal
models [49,94]. Therefore, this subsection is, to some extent, speculative in nature.

One of the putative physiological functions of the Piezo1–Gárdos channel interplay is
a volume adaptation, when RBCs need to pass small constrictions like the sinoidal slits in
the spleen, which was proposed by several groups [48–50]. Indeed, there are a number of
facts that support this concept: (i) mechanical stress, like RBCs experience when passing
small constrictions, activate Piezo1 [95,96]; (ii) the large gradient of Ca2+ across the RBC
membrane in the order of 20,000 (cp. Table 1) activation of Piezo1 in RBCs results in an
increase in intracellular Ca2+ [60]; (iii) an increase in intracellular Ca2+ activates the Gárdos
channel [73]; and (iv) activation of the Gárdos channel results in dehydration [97]. However,
the latter point needs to be a bit relativized because Piezo1 is a non-selective cation channel,
and its activation also leads to Na+ entry, which slightly counteracts the dehydration caused
by the K+ loss through the Gárdos channel as discussed above. However, since Piezo1 has,
in contrast to the Gárdos channel, a fast inactivation, there is a net loss in intracellular water
(dehydration). On the other hand, theoretical and experimental investigations showed
that RBCs are able to mechanically pass constrictions like the sinoidal slits without the
help of molecular signaling and volume adaptations [98]. Also, old RBCs that are likely to
have fewer functional ion channels are able to pass the spleen. Without doubt, RBCs are
sophisticated well-tuned cells that fulfill (in addition to gas transport) numerous functions.
Therefore, we believe a small volume reduction by the Piezo1–Gárdos channel interplay
speeds up the RBC passage of the spleen. Vice versa, a delayed passage of old RBCs without
volume adaptation allows for easier access of the macrophages to the RBCs, which is vital
for the cleavage of old RBCs.

The other physiological function of the Piezo1 and Gárdos channels is linked to the
active contribution of RBCs to clot formation and the formation of red thrombus [7,8].
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The argumentation chain is very similar to the previous one: RBCs, when caught in the
clot/thrombus, experience mechanical stress, which results in RBC dehydration and, in
turn, supports clot formation. In addition, Ca2+ plays a more dominant role: Ca2+ entry is
also activated by substances released from activated platelets like lysophosphatidic acid [66]
and prostaglandin E2 [99]. This substantially increased intracellular Ca2+ concentration
also triggers other processes, like scramblase activation and cleavage of calpain, which are
in support of the clot/thrombus formation [60].

4. Materials and Methods
4.1. Blood Collection

Blood collection was performed following the Declaration of Helsinki and was ap-
proved by the ethics committee of “Ärztekammer des Saarlandes”, permit number 51/18.
Blood was collected from healthy donors into heparin tubes by venipuncture, washed
and resuspended. The rationale for using heparin as an anticoagulant was that the sur-
rounding Ca2+ concentration can be roughly maintained. It seems important to maintain
this condition as long as possible since the removal of external Ca2+ likely influences ion
homeostasis [100]. Washing the full blood samples was carried out at 1800× g for 6 min
prior to the procedures described below.

4.2. Transcriptome Analysis

To purify human RBCs, we followed the method originally developed by Beut-
ler et al. [101]. Blood samples were centrifuged at 1000× g for 20 min. Plasma was
aspirated and mixed with phosphate-buffered saline (PBS) (1:10). RBCs were washed
3 times (1000× g, 5 min) and mixed with PBS (1:1). Filter paper (Whatman No. 4 GE Health-
care, Buckinghamshire, UK) was pressed in a 10 mL syringe (Omnifix Solo Lure, Braun,
Germany), and a mixture of 180 mg Sigma- and 180 mg Alpha-Cellulose (Sigma-Aldrich,
Saint Louis, MO, USA) suspended in 10 mL PBS was added. After the PBS drained, the
syringe was primed with 10 mL of the diluted plasma. Thus, 1 mL of RBCs was added
and eluted with 10 mL PBS. Filtered RBCs were, again, washed 3 times in PBS. For the
following RNA isolation, RBCs were used immediately.

To evaluate the purification of the RBCs, we used the gelatin zymography tech-
nique [102]. This method allows for the detection of contaminations with polymorphonu-
clear neutrophils (PMNs), a type of leucocytes that cannot be eliminated by washing the
blood sample. PMNs are the only type of blood cells that express the matrix metallopro-
teinase 9 (MMP-9), whose catalytic activity against gelatin can be used as a specific marker.

Briefly, 10 µL of diluted RBC samples (PBS, 1:10) was lysed by adding Zymogram Tris-
Glycine SDS Sample Buffer (1:1) (Thermo Fisher Scientific, Waltham, MA, USA), followed
by protein separation in 10% Gelatin Protein Gels (Thermo Fisher Scientific, USA) using
a nonreducing SDS-PAGE. After separation (2 h, 125 V), gels were incubated for 1 h
in Zymogram Renaturing Buffer (Thermo Fisher Scientific, Waltham, MA, USA) under
continuous shaking and washed three times in Aqua dest. For activation of the catalytic
activity of MMP-9, the gels were incubated for up to 40 h in a digestion buffer containing
(in mM) 50 Tris-HCl pH 7.6, 150 NaCl and 10 CaCl2. Degradation of gelatin in the gel could
be visualized after Coomassie blue staining as white spots.

For leucocyte depletion, we used antibody-coupled magnetic beads. To reduce the
number of CD45+ cells that needed to be eliminated, we first performed the Ficoll-Paque
separation of the blood sample. Blood was diluted with PBS and layered on top of the
Ficoll-Paque solution (GE Healthcare, Chicago, IL, USA). After centrifugation (800× g,
25 min), plasma and a layer of leucocytes were removed, and RBCs were washed three
times in isolation buffer (PBS with 0.1% BSA and 2 mM EGTA). Cells were incubated
overnight at 4 ◦C with the following antibodies: IgG rabbit anti human CD45 (GeneTex
Inc., Irvine, CA, USA) [1:40] and IgG rabbit anti human CD15 (Biorbyt, Cambridge, UK)
[1:50]. Magnetic beads (Dynabeads sheep anti-rabbit, Thermo Fisher Scientific, Waltham,
MA, USA) were washed once in isolation buffer using a DynaMag Holder (Thermo Fisher
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Scientific, Waltham, MA, USA) and then added to the RBCs (1:1) for a further 120 min. To
remove the bead-bound cells, the RBC-Bead-Mix was washed twice in PBS again using the
DynaMag Holder. For RNA isolation, we used the RiboPure RNA Purification Kit (Thermo
Fisher Scientific, Waltham, MA, USA) and 500 µL of human blood samples, prepared
as described before. Subsequently, the alpha and beta globin mRNA, which have the
highest expression in reticulocytes, was removed from the total RNA preparations by using
the GLOBINclear Kit (Thermo Fisher Scientific, Waltham, MA, USA), according to the
manufacturer’s protocol. Transcriptome analysis was performed by Expression Analysis
Inc. (Durham, NC, USA) using next-generation sequencing.

4.3. Proteomic Analysis

Leucodepleted RBCs were prepared by spinning 10 mL of peripheral blood at 1380× g
for 5 min. The supernatant and the first layer of RBCs were removed, and the pellet was
washed 3 times in PBS. The obtained packed RBCs were washed twice in MACS buffer (0.5%
HAS, 10% TNC in PBS) and incubated with CD71 microbeads (Miltenyi Biotec, Bergisch
Gladbach, Germany) for 20 min at 4 ◦C. Stained cells were washed once, suspended in
MACS buffer and subjected to MACS magnetic selection. The reticulocyte enrichment was
measured by staining cells with thiazole orange (Sigma-Aldrich, Saint Louis, MO, USA)
and counting based on flow cytometry. Thus, 2.5 million cells derived from CD71+ selection
and CD71− selection were washed 5 times in PBS and subjected to mass spectrometry.

Cell pellets were lysed in 1% sodium deoxycholate (SDC, BioWORLD, London, UK),
10 mM Tris-(2-carboxyethyl)fosfine (Thermo-Fisher Scientific, Waltham, MA, USA), 40 mM
Chloroacetamide (Sigma-Aldrich, Saint Louis, MO, USA), 100 mM Tris pH 8, (Life Technolo-
gies, Carlsbad, CA, USA) and heated for 5 min at 95 ◦C. After cooling to room temperature,
the samples were sonicated in a sonication waterbath (Branson Ultrasonics, Brookfield, CT,
USA) for 10 min. Total protein was measured using a Bradford assay (Biorad, Hercules,
CA, USA). Then, 10 µg of protein was diluted in 50 mM Tris pH 8 and digested for 18 h
at 25 ◦C with trypsin/LysC (Thermo-Fisher Scientific, USA) in a 1:20 enzyme-to-protein
ratio. After adding trifluoroacetic acid (Thermo-Fisher Scientific, Waltham, MA, USA) to
a final concentration of 1%, samples were centrifuged for 5 min at 10,000× g to pellet the
precipitated SDC. Supernatant was transferred to a new vial, and 500 ng of peptides was
loaded on Evotip pure, according to manufacturer’s instructions.

Peptides were separated on an Evosep one (Evosep, Odense, Denmark) with the
preset 30 samples-per-day method on a 15 cm Evosep Performance Column (EV-1137,
150 µm I.D., 1.5 µm particle size). Acquisition was performed on a timsToF-HT (Bruker
Daltonics, Billerica, MA, USA) mass spectrometer operated in DIA-PASEF mode. Ion
mobility accumulation and ramp time were set to 100 ms. Further, 16 DIA windows were
set per cycle, ranging from 0.7–1.5 1/k0 to 421–1594 m/z, and the size of DIA windows
was set based on precursor density. Collision energy was set as a linear function of the ion
mobility (0.6 1/k0 = 20 eV, 1.60 1/k0 = 59 eV). Raw files were processed in DIA-NN 1.8.1.;
proteins and peptides were detected by querying the filtered human Swissprot database
(release 2021.22.04). Standard settings were used, using a generated library-based spectra
search. Maximum number of variable modifications was set to 2. Protein Interference
used was “Protein names (from FASTA)” and quantification strategy “Robust LC (high
precision)”. Data were analyzed using R 4.3.0/Rstudio (2023.12.0). Detected proteins were
filtered for proteotypic and ≥2 unique peptides per protein, and proteins were quantified
in 100% of samples in at least one condition.

4.4. PBMC Isolation and Culture

Peripheral blood (~25 mL) was collected in Li-heparin tubes (Sarstedt, Nümbrecht,
Germany). PBMCs were isolated using Ficoll Histopaque (density = 1.077 g/mL, 20 ◦C; GE
Healthcare, Chicago, IL, USA) following the manufacturer’s protocol. Remaining RBCs in
the cell isolate were lysed (lysis buffer = 155 mM NH4Cl, 12 mM KHCO3, 0.1 mM EDTA;
10 min at room temperature). PBMCs were cultured as previously described [103]. In
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short, a two-phase culture system was employed for in vitro erythropoiesis: in the expan-
sion phase, PBMCs (day 0 expansion) were cultured in CellQuin medium supplemented
with EPO (2 IU/mL; Prospec, Atlanta, GA, USA), dexamethasone (1 µM; Sigma-Aldrich,
Saint Louis, MO, USA) and human stem cell factor (hSCF; 100 ng/mL, ITK diagnostics,
Uithoorn, The Netherlands). The differentiation phase was started at day 13 expansion by
washing the cells once with PBS and reseeding them in CellQuin supplemented with hu-
man plasma (5% v/v; Octapharma GmbH, Langefeld, Germany), EPO (10 IU/mL), heparin
(5 IU/mL; MP Biomedicals™, Santa Ana, CA, USA) and additional holotransferrin (final
concentration of 1000 µg/mL; Sanquin, Amsterdam, The Netherlands). All cultures were
kept in humidified incubators (at 37 ◦C, air plus 5% carbon dioxide). Cell concentration
was regularly determined using a CASY cell counter (CASY Model TCC, OLS OMNI Life
Science, Bremen, Germany). In case cells were shipped, they were suspended in MOD6
buffer (Sanquin, The Netherlands).

4.5. Flow Cytometry

Cultured cells or isolated RBCs were washed with PBS (5 min, 600× g), stained with
primary antibody or reagents (20 min, room temperature), washed and resuspended in flow
cytometry buffer (5 min, 600× g) and measured in a FACS Canto™II flow cytometer (BD
Biosciences, San Jose, CA, USA). Antibodies used were CD71-PB (1:100 dilution; Miltenyi
Biotec, Germany) and KCa3.1 (SK4) (1:100 dilution; Abgent, San Diego, CA, USA). Gating
was performed against specific isotype controls: anti-mouse isotype control IgG1k-pacific
blue (1:200; Biolegend, San Diego, CA, USA) and anti-mouse isotype control IgG1-PE,
(1:200; R&D Systems, Minneapolis, MN, USA). The obtained data were analyzed with
Flowjo™ (BD Biosciences, San Jose, CA, USA).

4.6. Patch Clamp Measurements

Patch clamp measurements were performed with automated systems based on pla-
nar chips, the Patchliner for the Gárdos channel assay and the SyncroPatch 384 for the
Piezo1 measurements (both: Nanion Technologies, Munich, Germany). Recordings were
performed at room temperature using planar borosilicate glass patch clamp chips for the
respective devices with resistances of 5–8 MΩ (Patchliner) and 9–12 MΩ (SyncroPatch
384). The internal and external solutions used to measure the Gárdos channel were as
follows (in mM): KCl 70, KF 70, HEPES 30, EGTA 3, CaCl2 0.61, pH = 7.2 adjusted with
KOH (internal) and KCl 140, MgCl2 5, CaCl2 6, D-glucose 2.5, HEPES 10, pH = 7.3 adjusted
with KOH (external). The internal and external solutions used to measure Piezo1 were as
follows (in mM): KCl 10, KF 110, NaCl 10, EGTA 10 and HEPES 10, pH = 7.2 adjusted with
KOH (internal) and NaCl 140, KCl 4, CaCl2 2, MgCl2 1, Glucose 5 and HEPES 10, pH = 7.3
adjusted with KOH (external).

Gigaseal formation was facilitated by the use of a seal-enhancing solution, as recom-
mended by the Patchliner manufacturer and containing (in mM) NaCl 80, KCl 3, MgCl2
10, CaCl2 35, HEPES 10, pH = 7.3 adjusted with NaOH. The seal-enhancing solution was
only used to help obtain the very high gigaohmic contact between the cell and the chip
and, in the whole-cell configuration, was replaced by the external solution. Whole-cell
configuration was achieved by negative pressure suction pulses between −45 mbar and
−150 mbar, and its formation was judged by the appearance of sharp capacitive transients.
Whole-cell patch clamp recordings of the Gárdos channel were conducted using voltage
steps from −110 mV to 30 mV for 500 ms in 20 mV increments at 5 s intervals, the holding
potential being set at −30 mV. Gárdos current differences between erythrocytes and reticu-
locytes were evaluated with the use of NS-309 (100 µM), a specific activator of the channel.
Whole-cell currents of Piezo1 were elicited using a voltage ramp protocol (−100 mV to
80 mV, 450 ms, every 5 s, holding potential −30 mV). After recording a stable baseline
current in external solution, cells were exposed to 10 µM Yoda1 (Tocris, Bristol, UK) for
~4 min to investigate the activity of Piezo1 channels, followed by application of 30 µM
GdCl3 (Sigma-Aldrich, Saint Louis, MO, USA), a non-selective inhibitor of Piezo1. Where
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indicated, the selective Gárdos channel inhibitor TRAM-34 (2.5 µM, Tocris, Bristol, UK)
was employed in combination with Yoda1. Only cells with seal resistance > 0.5 GΩ were
used for analysis. The compound-induced current was obtained by subtracting the average
of the last 3 sweeps obtained from the compound addition period and the average of the
last 10 sweeps obtained from the reference addition period at 80 mV. If the mean current
amplitude elicited upon compound addition exceeded 3σ of the mean current amplitude at
baseline conditions, a cell was considered as a responder.

4.7. The Macey–Bennekou–Egée (MBE) Method

The membrane potential measurements of an RBC population were performed accord-
ing to a method initially described by Macey et al. [104], further developed and applied
by Poul Bennekou, e.g., Braunbæk and Bennekou [58], and kept alive by the laboratory of
Stéphane Egée [31]. Therefore, we refer to it as the MBE method.

For each experiment, 1 mL of the Ringer solution (154 mM NaCl, 2 mM KCl) was
poured into a 2 mL Eppendorf tube, and a magnetic stir bar (cylindrical of 8 mm length
and a diameter of 3 mm, VWR, Radnor, PA, USA) was added. Then, the protonophore
carbonyl cyanide m-chlorophenyl hydrazone (CCCP, Sigma-Aldrich, Saint Louis, MO,
USA) was added to reach a final concentration of 27 µM. The Eppendorf tube was placed
in a 36 ◦C water bath, and a rotating magnet (990 rpm) was used to stir the sample. Then,
the calibrated pH meter (SevenCompact S210, Mettler-Toledo, Giessen, Germany) was
immersed in the liquid (In Lab Solids pro-ISM, Mettler-Toledo, Giessen, Germany) to
allow for continuous measurements. The pH meter was connected to a personal computer,
and the values were measured every second and recorded via self-designed software.
One minute after the start of the recording, 150 µL of washed RBCs were pipetted into
the Ringer’s solution containing CCCP and, after two minutes, drugs according to the
particular protocol were added. At the end of each experiment, TritonX-100 (Sigma-Aldrich,
Saint Louis, MO, USA) was added to reach a final concentration of 0.9% to lyse the RBCs in
order to calibrate the system for a membrane potential of 0 mV.

The stored data were transferred to Excel (Microsoft, Redmond, WA, USA), and the
recorded pH values were translated into membrane potential using the following formula:

V(mV) = −61.5 × (pH out − pHin) (4)

where pHout is the measured pH value during the experiment, and pHin is the last measured
calibration pH value at the end of the recording after cell lysis.

Finally, the membrane potentials were plotted against time in Prism 9 software (Graph
Pad, San Diego, CA, USA).

5. Summary and Conclusions

Although both channels, the Gárdos channel and Piezo1, are more less at the detection
limit of biochemical methods (Figure 1), they can be functionally studied using both the
patch clamp technique (Figures 2–4) and the MBE method (Figure 5). With the patch clamp
technique, differences between reticulocytes and mature RBCs could be detected for both
channels (Figures 3 and 4). The activation of Piezo1 results in Ca2+-mediated opening of
the Gárdos channel but, vice versa, Gárdos channel activity provides changes in the driving
force for ions passing Piezo1 (Figure 6).

Channel properties are extensively discussed to better understand their physiological
function, which is volume adaptation when passing small constrictions, such as small
capillaries or sinusoidal slits of the spleen [49,105,106], as well as the signaling that leads to
the active participation of RBCs in clot and thrombus formation [7,8,107,108].

After more than 40 years of patch clamp investigations on human RBCs [13], the
current paper clarifies the most basic principles of RBC electrophysiology, comparing
reticulocytes with mature RBCs, the activity of the Gárdos channel (KCNN4, Figure 3), the
activity of Piezo1 (Figure 4) and their interaction (Figures 5 and 6), namely the activation of
the Gárdos channel triggered by the Ca2+ entry mediated by Piezo1. However, the activity
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of the Gárdos channel also has a feedback mechanism to Piezo1 through the change in
membrane potential.
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