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1 Zusammenfassung 
In diesem Manuskript wird eine neue Methode, basierend auf der Raman Spektroskopie, 

zur Diagnostik von Hirntumoren vorgestellt. Bei der Raman Spektroskopie werden die zu 

untersuchenden Gewebe mit einem Laser bestrahlt und das eingehende Licht wird dann 

zu einem kleinen Teil in einer veränderten Wellenlänge reflektiert. Dies wird als 

Ramaneffekt bezeichnet und ermöglicht einen genauen Rückschluss auf die biochemische 

Gewebeentität. Durch dieses spektroskopische Verfahren entsteht die Möglichkeit eine 

neue gewebserhaltende Untersuchungsmethode für den Neurochirurgen/Neuropathologen 

verifizieren zu können. Mithilfe von maschinellem Lernen soll ein SVM-Klassifier (Support 

vector machine Klassifier) trainiert werden, um möglichst schnell und unkompliziert 

verschiedene Gewebetypen unterscheiden zu können. Ein besonderes Merkmal wurde 

hierbei auf die Analyse und Differenzierung von fixiertem Gewebe gelegt. Es werden native 

Gewebeproben direkt nach der Entnahme aus dem Operationssitus verwendet und mit 

Hilfe eines speziellen Raman Spektroskops analysiert. Dabei wird immer ein visible light 

image (VLI) der Probe sowie der gesetzten Messpunkte festgehalten, was eine 

retrospektive Zuordnung jedes einzelnen Spektrums zu einem bestimmten Punkt erlaubt. 

Anschließend wird die Gewebeprobe von einem Neuropathologen interpretiert. Für die 

Fixierungsanalysen werden die Proben einmal im nativen Zustand gemessen und dann 

durch Trockeneis kryofixiert und/oder durch eine 4%-ige Formalin-Mischung haltbar 

gemacht. Auch diese Proben werden wiederrum von einem Neuropathologen untersucht. 

Für die Fixierung wurde in dieser Arbeit zunächst festgehalten, dass die Kryofixierung mit 

Trockeneis die Raman-Spektra nicht wesentlich beeinflusst. Daraus folgt die Möglichkeit 

Klassifier, die auf native Daten trainiert wurden, zur Analyse von kryofixierten 

Gewebeproben zu nutzen. Somit könnte die Raman Spektroskopie verwendet werden, um 

bereits bestehende Tumor-Banken zu explorieren ohne die wertvollen Proben zu zerstören. 

Auf der anderen Seite bringt die Formalin-Fixierung größere Änderungen auf 

biochemischer Ebene mit sich. Das macht die Handhabung Formalin-fixierter Proben 

schwieriger. Die Klassifier-Ergebnisse konnten durch Differenzbildung zwischen dem 

reinen Formalin-Spektrum und dem Spektrum der Formalin-fixierten Daten verbessert 

werden.  

Ein zweiter Punkt dieser Studie basiert auf der Differenzierung von Dura mater und 

Meningeomen. Dieser wird zuerst in der Unterscheidung der verschiedenen Raman-

Spektren und anhand der klar differenzierbaren TSNE-Plots (T-distributed Stochastic 

Neighbor Embedding Plots) festgestellt. Nach einigen weiteren Analysen kann dann 

festgestellt werden, dass diese Abweichung zu einem gewissen Anteil durch den 

ungleichen Kollagengehalt sowie die variierende Lipid-Zusammensetzung dieser beiden 



 9 

Gewebstypen zustande kommt. Zuletzt wird ein SVM-Klassifier mit den vorliegenden Daten 

trainiert. Mit diesen Ergebnissen kann eine virtuelle Einfärbung (heat map) des 

Probenbildes realisiert werden. Dabei wird eine Art Filter über das Bild gelegt, welcher 

Meningeom-enthaltende sowie Nicht-Meningeom-enthaltende Bereiche in 

unterschiedlichen Farben kennzeichnet. Dies könnte dem Neurochirurgen erlauben, 

Rückschlüsse auf den Gewebeursprung mit einer Sensitivität von 93,0% und einer 

Spezifität von 89,7% zu ziehen. Die Resultate konnten auf histologischer Ebene verifiziert 

werden.  

Zusammenfassend kann festgehalten werden, dass sich diese neue gewebserhaltende 

und schnelle Methode für die intraoperative Gewebe-Diagnostik sowie die retrospektive 

Analyse von bereits fixierten Proben eignet. Die Raman-Spektroskopie könnte den 

klinischen Alltag als schnell durchführbares und einfaches diagnostisches Verfahren 

bereichern. Weitere und tiefgreifende Studien an weiteren Gewebeentitäten sollten mit der 

Raman Spektroskopie vorgenommen werden, um einen noch besseren Einblick in das 

mögliche Potential der Raman Spektroskopie zu erhalten. Die Ergebnisse der Fixierungs-

Analyse, also die Möglichkeit einen auf native Daten trainierten Klassifier auf kryofixierten 

Daten anzuwenden, eröffnet die Möglichkeit zur Exploration von Tumor-Banken. Hierbei 

könnten auf schnelle Art und Weise sehr viele Daten, auch Daten bezüglich seltener 

Tumoren gesammelt werden, was wiederrum die Präzision und Genauigkeit der trainierten 

Klassifier erhöhen könnte. Ausblickend könnte außerdem ein sogenannter Omniclass-

Klassifier trainiert werden, ein Klassifier der zwischen allen möglichen Gewebearten 

unterscheiden könnte. An der Weiterentwicklung dieses Verfahrens wird gearbeitet, 

zusätzliche Tumorentitäten werden untersucht und Ziel ist es, das Verfahren in das 

Operationsmikroskop des Neurochirurgen zu integrieren. Dies könnte bereits intraoperativ 

ein direktes Feedback über das eventuell zu resezierende Gewebe geben. 
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Summary 
 

This manuscript introduces a new method, based on Raman spectroscopy, for the 

diagnosis of brain tumors. In the field of Raman spectroscopy, the tissues are irradiated 

with a laser and the incoming light is afterwards reflected to a small extent in a modified 

wavelength. This is called the Raman effect and allows accurate conclusion of the 

biochemical tissue entity. This spectroscopic technique creates the possibility of verifying a 

new, potentially powerful, and tissue-preserving examination method for the 

neurosurgeons/neuropathologists. With the help of machine learning, a SVM classifier 

(Support vector machine classifier) is trained to distinguish different tissue types as quickly 

and easily as possible.  

Special emphasis is put on the analysis and differentiation of fixed tissue. Native tissue 

samples are used directly after removal from the surgical site and analysed using a special 

Raman spectroscope. A visible light image (VLI) of the sample as well as of the bevor set 

measuring points is always recorded, which allows a retrospective assignment of each 

individual spectrum to a specific measuring point. Afterwards, the tissue sample is 

interpreted by a neuropathologist. For fixation analyses, samples are measured once in the 

native state and then cryofixed by dry ice and/or preserved by a 4% formalin mixture. These 

samples are again analysed by a neuropathologist.  

For fixation, it is first noted that cryofixation with dry ice does not significantly affect the 

Raman spectra. From this follows the possibility of using classifiers trained on native data 

to analyse cryofixed tissue samples. Therefore, Raman spectroscopy could be used to 

explore pre-existing tumor-banks without destroying the valuable samples. Formalin fixation 

implicates major biochemical changes. This makes the handling of formalin-fixed samples 

more difficult. The classifier results could be improved by difference formation between the 

pure formalin spectrum and the spectrum of the formalin-fixed data.  

A second point of this study is based on the differentiation of dura mater and meningioma. 

This is first established in the differentiation of the various Raman spectra and in the clearly 

differentiable TSNE plots (T-distributed Stochastic Neighbor Embedding plots). After some 

further analyses, it can then be concluded that this discrepancy is to some extent due to 

the unequal collagen content as well as the varying lipid composition of these two tissue 

types. Last, a support vector machine classifier is trained with the available data. With these 

results, a virtual colouring of the sample image can be realized. Thereby, a kind of filter 

(heat map) is superimposed on the image, which marks meningioma-containing as well as 

non-meningioma-containing areas in different colours. This could allow the neurosurgeon 
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to draw conclusions about the tissue origin with a sensitivity of 93.0% and a specificity of 

89.7%. The results could be verified at a histological level.  

In conclusion, this new tissue-preserving and fast method is suitable for intraoperative 

tissue diagnostics as well as retrospective analysis of already fixed samples. Raman 

spectroscopy could enrich the clinical routine as a fast performable and thus simple 

diagnostic method. Further and in-depth studies on additional tissue entities should be 

performed with Raman spectroscopy to gain even more insight into its promising potential. 

The results of the fixation analysis, i.e., the ability to apply a classifier trained on native data 

to cryofixed data, opens the possibility for the exploration of tumor-banks. A large amount 

of data, including data on rare tumors, could be collected in a fast way, which in turn could 

increase the precision and accuracy of the trained classifier. In the future, a so-called 

omniclass classifier could be trained, a classifier that could distinguish between all possible 

tissue types. Further development of this method is underway, additional tumor entities are 

being investigated, and the goal is to integrate this method into the neurosurgeon's 

operating microscope. This could provide direct intraoperative feedback about the tissue 

that may needs to be removed.   
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2 Introduction 
2.1 Braintumors 
 
2.1.1 Classification 

 
Tumors of the human central nervous system (CNS) are categorised by the WHO 

classification. Originally, the researchers wanted to establish an easy usable and 

reproducible classification system mostly based on the commonly used H&E staining 

distinction of the tumors. The first edition was published in 1979 by Zülch et al..1 Over the 

years, and with the fast-improving research technologies (especially in the field of molecular 

biology and personalized medicine), the need for a more precise classification system 

raised. Within the last years the WHO classification is concentrating more and more on 

specific genetic and epigenetic markers (DNA, methylation grade etc.) to precisely identify 

the tumor. This has also led to a reorganisation of the well-known and established 

classification system. The most recent 2021th WHO classification of CNS tumors handles 

this topic. The fifth edition of the WHO Classification of Tumors of the central nervous 

system replaces the fourth edition released in 2016.2 In the 2021th edition, tumors are 

classified more and more alongside the molecular and epigenetic markers like IDH-

mutation, MAPK pathway etc.3 

In the next chapters the main tumor entities will be described with a special focus on their 

diagnostics, therapy and outcome. Because of the large amount of different CNS tumor 

entities, only the ones used in the further analyses of this project will be described in detail 

in the following sections. Since the here used tumor samples are mostly scanned before 

2021, we will rely in our experimental setup mainly on the 2016th WHO-classification. 

Supplement1 summarizes the subdivision of the WHO-classification of 2016 and 2021.
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2.1.1.1 Meningiomas 

 
Meningiomas are some of the most common intracranial and intraspinal tumors. They are 

more frequent in female patients.2 Claus et al. described in 2013 a positive correlation 

between the incidence of meningioma and a high body-mass-index, smoking and 

exogeneous hormones respectively.4 Meningiomas origin from the arachnoid cap cells and 

do mostly not tend to infiltrative growth. In the 2016 published WHO classification, 

meningiomas are classified in three grades. Grade I corresponds to the histological 

appearance of lymphoplasmacyte-rich, meningothelial, transitional, psammomatous, 

fibrous, angiomatous, mistocystic and secretory meningioma. Metaplastic, chordoid, clear 

cell as well as atypical meningioma form grade II. The last grade includes papillary, 

rhabdoid and anaplastic meningiomas. The WHO grading is based on the probability of 

recurrence as well as the aggressivity of the tumor. As a conclusion, the WHO classification 

relies on the expected survival rate: a higher grade corresponds to a lower survival rate. 

Furthermore, numerous studies show a positive correlation between the proliferation index 

Ki67 and the risk for recurrences.5,6 

In the 2021th edition meningiomas are seen as a single type with 15 subtypes. Molecular 

biomarkers are used for a more detailed classification. For example BAP1, breastcancer1- 

associated protein-1 tumor suppressor gene, is used for grading the rhabdoid and papillary 

subtypes.3 The other molecular biomarkers are: KLF4, AKT1, TRAF7, SMARCE1, SMO, 

PIK3CA, H3K27me3, TERT promoter, NF2, and CDKN2A/B.3 

Since meningiomas are slowly growing tumors the first symptoms, which appear often only 

lately, are frequently caused by their compressing nature. Depending on the location, 

symptoms may vary. They range from unspecific headaches, cranial nerve deficits, vision 

loss over to seizures.7 

After the appearance of clinical symptoms, meningiomas are mostly diagnosed by 

computer tomography (CT) and/or magnet resonance imaging (MRI). CT shows a 

homogeneous, slightly hyperdense mass, not infiltrating the brain, which has a strong 

uptake of intravenous contrast. A homogeneous contrast uptake can also be observed in 

the diagnostic by MRI. Here meningiomas appear iso- to hypointense in the T1 sequence 

and hyperintense in the T2 sequence.7 Since meningiomas are originating from the dura 

mater, a ‘tail sign’ can often be observed.8 In special cases, an angiography can be used 

preoperatively to localize and visualize the vascular blood supply of the tumor, which can 

be important for minimization of blood loss during surgery. The therapy consists of a 

surgical resection of the tumor. The completer and more radical the surgery is, the lower is 
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the risk for tumor recurrence. To classify the grade of resection, the completeness, the 

Simpson grading has been introduced in 1957.8 

The Simpson grading is split into five stages. Stage one corresponds to a complete excision 

and stage five is no excision at all, only a small tumor fragment, a biopsy has been taken 

for neuropathological analysis. 

If the symptoms are of minor importance, not restricting the daily life of the patient or if the 

patient is of fragile health, a watchful waiting strategy can be applied. Furthermore, a 

therapy by stereotactic irradiation could be used. 

Since the recurrence rate is directly proportional to the remaining tumor cells after surgical 

resection, an intraoperative method for resection control, like Raman spectroscopy, would 

be of great importance for direct tumor-border identification. This would allow a more 

precise tumor resection, meaning that the surgeon could remove more tumor tissue without 

the risk of removing too much healthy tissue. 
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2.1.1.2 Gliomas 

 
In the group of gliomas, astrocytomas and oligodendrogliomas are combined. They 

represent tumors with a glial origin. 

In the WHO classification from 2016 four different grades can be differentiated. A slowly 

growing pilocytic astrocytoma, mostly prominent in children, with the possibility of a curative 

resection is determined as WHO grade I. Grade II and III include the diffuse, as well as the 

anaplastic astrocytoma and at last, grade IV with the most dangerous one, the glioblastoma. 

Gliomas are mostly infiltrating tumors. 

The group of oligodendrogliomas is divided into WHO grade II and III. The latter one is also 

known as anaplastic oligodendroglioma. 

At a WHO grade higher than I, a curative resection is not possible. Therapy consists of 

resection as radically as possible, and radiochemotherapy. In the next paragraphs we will 

have a closer look at glioblastomas. 

Glioblastomas are known to be among of the most frequent (15% of all intracranial 

neoplasms) and deadliest brain tumors.2 Glioblastomas are fast growing and highly 

invasive. They are composed of a variety of different cellular components (central necrosis, 

hypercellularity, endothelial proliferation etc.), and different genetic backgrounds. The most 

common molecular/epigenetic markers are for example the isocitratdehydrogenase (IDH)-

status and the methylguanine-DNA-methyltransferase (MGMT)-promotor-status. The 

MGMT-promotor-status is important, for example, because in its inactive form, the tumor 

tissue will be accessible for a chemotherapy by Temozolomide.9 

In the latest WHO classification (2021) gliomas are newly divided into six different families: 

circumscribed astrocytic gliomas, adult-type diffuse gliomas (here included are the 

glioblastomas), paediatric-type diffuse low-grade gliomas, paediatric-type diffuse high-

grade gliomas, glioneuronal and neuronal tumors and ependymomas. 3 

The symptoms vary depending on the location, ranging from seizures over headaches and 

paralysis. Symptoms may appear rapidly and worsen as the tumor grows quickly. Some 

symptoms are also provoked by the oedema surrounding the tumor, which compresses the 

healthy cells. This phenomenon is reflected in the rapid improvement of symptoms when 

these patients receive corticosteroids, which diminish the oedema and thus reduce the 

symptoms.10 Glioblastomas appear in the CT and MRI hypodense and infiltrative with a 

necrotic centre. Intravenous contrast forms characteristic rings around the tumor. On MRI 

analyses, glioblastomas appear hypodense in T1 and hyperdense in T2. FLAIR-MRI is 

particularly good at identifying glioblastomas. Surgical removal is the main component of 

therapy, involving radiation and chemotherapy (mostly Temozolomide). The malignant 
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glioblastoma therapy is summarized in the widely used Stupp protocol.11,12 In surgery, the 

tumor can be visualized by fluorescence, by the preoperative oral application of 5-

aminolevulinic acid.13,14 A most recent conservative treatment method is the use of 

electromagnetic fields, established by an ‘electrode-helmet’ that the patient must wear 

around the clock. This therapy has been shown to be very successful, even in Phase III 

studies.15,16 Nevertheless,  glioblastomas have a bad outcome with a median survival rate 

of approximately 15-18 month after diagnosis.2 Therapy can prolong the survival time by 

some months up to some years, cure is nearly impossible. 

Again, radical tumor removal is the most important for good patient outcome. The prognosis 

correlates strongly with the extend of resection. This is particularly difficult because of the 

widely infiltrating growth of the malignant cells. Complete neurosurgical tumor removal is 

currently nearly impossible because it would involve extensive tissue removal that could 

result in neurological deficits for the patient. Therefore, we need a new, non-destructive 

technology to identify these scattered malignant cells.  

 

2.1.1.3 Lymphomas 

 
Lymphomas are divided into primary lymphoma, which are lymphomas that fist appear in 

the CNS, and secondary lymphoma, which are lymphomas that are first diagnosed in a 

different region than the CNS with secondary infiltration of it. Since it is difficult to correctly 

identify a lymphoma by its clinical appearance or by CT/MRI (FLAIR) imaging, a biopsy is 

currently unavoidable. Therapy consists of aggressive treatment with chemotherapy and 

glucocorticosteroids, which induces a significant downsizing of the tumor.17,18 Second-line 

therapy consists of radiotherapy. RS would potentially allow a direct intraoperative 

confirmation of the sample’s entity, reducing the need for an expensive and time-consuming 

biopsy. Furthermore, RS would allow to identify the biochemical composition of the tumor.
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2.1.1.4 Metastases 

 
Tumor diseases are often associated with the appearance of metastases. The increasing 

appearance of metastases is potentially due to the better and more effective oncological 

therapies of the primary tumors which allow a longer patient survival. A formation of 

malignant cells originating from the primary tumor is formed in another part of the body, 

often in the brain or bones.19,20 The most common cancers that metastasizes into the brain 

are bronchial carcinoma, breast cancer, melanoma and renal cell carcinoma.21 Metastases 

are no random formation of cell deposits, but dependent on certain influencing factors. The 

primary tumor must have a strong vascularization (angiogenesis), which allows the 

malignant cells to enter the blood storm and migrate to another part of the body. During the 

migration process, the metastatic cells must bond onto other cells/proteins. And finally, they 

need to invade and replicate in the new location.19 

In an ensuing CT, a hypodense lesion (hyperdense if haemorrhages are present) with a 

perifocal oedema can be observed. Intravenous contrast can accumulate and multiple brain 

lesions can often be observed.22 Furthermore, an MRI/FLAIR can be used as a diagnostic 

tool. Once a metastasis is suspected, a biopsy for confirmation as well as a full body 

examination must follow to find the primary carcinoma. In addition to treatment of the 

primary tumor, the metastasis is surgically removed or irradiated (radiosurgery) when 

possible. Recent studies have identified specific molecular pathways in metastases, which 

could revolutionize the therapy toward individualized adapted medicine.23,24,25 RS would 

allow rapid identification of the tumor origin of the analysed metastasis, which is essential 

for a rapid tumor detection and immediate initiation of the appropriate therapy. Furthermore, 

an intraoperative resection control of the metastasis could be achieved by RS. Since RS 

could give a good insight in the biological background of the metastases it could be a 

helping tool for the identification of the before mentioned multiple molecular pathways. 

 

2.1.1.5 Further CNS tumors 

 
A list of other CNS tumor types, not yet described in the previous sections can be found in 

supplement1. Supplement1 gives an overview of the tumor differentiation according to the 

WHO classification of 2016 and 2021. These tumor types are not within the focus of this 

thesis mostly because they are rare tumors and would not be of great relevance in this 

particular study. 
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2.2 Raman-Spectroscopy 
 

2.2.1 Historical background 

 
Raman spectroscopy was discovered in 1928 by the Indian professor Raman and his 

students, especially K.S. Krishnan and K.R. Ramanathan. Its theoretical predication was 

already made in 1923 by the scientist A. Smekal. Professor Raman had a special interest 

in the deeper understanding of the scattering of light. In April 1923 one of his students, K. 

R. Ramanathan, noticed that if sunlight passes through a violet glass containing a liquid, 

the emerging rays are not the same as the ones from the incident beam. In 1925, another 

one of his students, K. S. Krishnan observed the same phenomenon when analysing light 

scattering trough different purified liquids.  At this point, Raman claimed that there must be 

a new form of light scattering and took further experiments in exploring it. He putted a beam 

of sunlight onto a blue-violet filter which was succeeded by a container including different 

liquids. A scattering of light has been demonstrated for nearly 80 different liquids. He 

published his results in “Nature” on the 19th of February 1928 under the name “A new Type 

of Secondary Radiation”. After further studies, he published again on the 28th of February 

1928 a historical paper, by describing the fundaments of RS.  For his discovery, Prof. 

Raman won the Nobel prize in physics in 1930.  

The discovery of the Raman-effect opened the door for multiple further studies in chemistry 

and physics.  Or as described by Prof. Raman in his paper ‘A new radiation’ published in 

1928 in the Indian J. Physics “We are obviously only at the fringe of a fascinating new region 

of experimental research which promises to throw light on diverse problems relating to 

radiation and wave-theory, X-ray optics, atomic and molecular spectra, fluorescence and 

scattering, thermodynamics and chemistry.” 26,27
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2.2.2 Physical background 

 
When a laser source emits an incident light beam onto a sample, more precisely a molecule, 

a part of the light is scattered. When the incident photon hits an electron, the electron gains 

energy and assumes a virtual energy state for a very short time. Then the electron falls 

down and emits the photon again. When this scattered light has the same energy as the 

energy gained by the incident laser beam, from its photon, it is called Rayleigh scattering. 

Since the amount of energy is the same, this is a phenomenon of elastic light scattering. A 

small fraction of electrons, approximately every 107th will be of a different energy level, 

higher (stokes) or lower (anti-stokes). This phenomenon is called Raman scattering, 

inelastic light scattering. These energy changes are expressed by the physical value of 

wavelength/Raman shift (cm-1). The different wavelengths that apply to different molecular 

bonds can be viewed as the molecular footprint of the sample. In this way, specific 

molecules can be qualitatively identified by emitting a non-destructive laser beam onto a 

sample and measuring the scattered Raman waves.28,29,30 Each obtained Raman peak, a 

specific wavelength, corresponds to an individual chemical bond, such as C-C or a group 

of bonds, like benzene. In addition, we can make quantitative observations using the 

Raman effect. The value of a Raman line determines the concentration of a molecule in the 

analysed sample.
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Figure1: Physical principles of the Raman effect. The red arrow represents the photon excited by the incident 
light of the laser source. The green arrow represents the Rayleigh scattering, the wavelength from the scattered 

light is the same as for the incident light. The blue arrow represents the stokes Raman scattering where the 

scattered light is of higher frequency then of the incident light, gain of energy. The yellow arrow represents the 
anti-stokes Raman scattering, where the scattered light is of lower frequency then of the incident light, loss of 

energy. Figure source: own production. Figure produced with PowerPointÒ. 

 

 
Figure2: Polystyrene spectrum. Each peak is annotated by its corresponding chemical bond. Upper right: 

Chemical structure of polystyrene. Figure source: own production. Figure produced with SolaisTM and Matlabâ. 



 
 

21 

 

2.2.3 Raman variants 
Over 25 different techniques of RS variants are known.31 Here only some of the most 

important ones are highlighted.  

 

2.2.3.1 Spontaneous Raman spectroscopy 
 
The transition from the excited state (virtual state of energy) to the end state can happen at 

any time, so spontaneously. Since only a small part of the incident light is scattered here, it 

leads to a weak Raman effect.31 The physical principle is the same as mentioned above 

(2.2.2.). The term of normal Raman spectroscopy is often used synonymously for 

Spontaneous Raman spectroscopy.  

 

2.2.3.2 Enhanced Raman spectroscopy 
 
In the domain of the enhanced Raman spectroscopy, we differ between surface-enhanced 

Raman spectroscopy (SERS) and tip-enhanced Raman spectroscopy (TERS). 

To increase the normally weak Raman signal nanoparticles of, for example, gold or silver 

can be added to the sample. When these nanoparticles are excited by the laser beam, a 

surrounding electric field is built up. And since Raman intensities are proportional to the 

strength of an electric field, the Raman signal of their direct environment is improved. This 

effect is made useful in the surface-enhanced Raman spectroscopy (SERS). SERS is a 

really potent Raman form, able to detect even single molecules which makes it a perfect fit 

for, for example, early cancer detection in serum samples.32 

The tip-enhanced Raman spectroscopy (TERS) is based on the same idea as the SERS 

but instead of nanoparticles, silver- and/or gold-coated peaks are used.33,31 

 
2.2.3.3 Non-linear Raman spectroscopy/coherent Raman-spectroscopy 
 
Non-linear Raman spectroscopy includes, amongst others, the stimulated Raman 

spectroscopy (SRS) and the Coherent anti-stokes Raman spectroscopy (CARS). 

In the case of the SRS, two different laser sources are used to obtain a stronger Raman 

signal. When two photons of two different frequencies (f1 and f2) interact simultaneously 

with the same molecule, this molecule will vibrate with a frequency of f3 = f1-f2. A higher 

sensibility is accomplished with this method but a much more complex instrumentation is 

needed. It is often used in material composition analyses and microscopic analyses.34 

For the realization of a coherent anti-stokes Raman spectroscopy (CARS), three different 

lasers are needed: a pulsed pump beam (f1), a pulsed stokes beam at a lower, variable 
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frequency (f2) and a probe beam at a higher, fixed frequency (f3). Light at the anti-stoke 

frequency is produced at the interaction of these three beams (f3+f1-f2).33,31 It is widely 

used in Raman microscopy since it is sensible for nuclear vibrations of chemical bonds.
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2.2.4 Current applications 

 
RS is used in a wide variety of fields, from medicine to physics, chemistry and even civil 

engineering. In the medical field, Raman spectroscopy is already established for cancer 

detection, especially in dermatology, skin cancer diagnostics and gynaecology, cervical 

cancer diagnostics.35,36 The already established cancer diagnostic by RS is mostly limited 

to easily accessible tissue samples. Direct measurements in situ are still in a clinical, an 

experimental phase. Huang et al. describe the utilization of a Raman spectroscope 

integrated into an endoscope to characterize body, corpus and antrum in the upper 

gastrointestinal tract.37 In forensic medicine, RS is commonly used to identify various body 

fluids, gunshot residues, and culprit identification.38 In the pharmaceutical field, each 

process step must to be controlled (concentrations, growth of cell cultures, biochemical 

factors in a specific cell culture etc.). The absence of contamination of the probes under 

investigation is critical, which urges the need for a direct measuring method, devoid of 

taking a probe and analysing it in a different containment. André et al. describe a RS 

process for direct prediction of antibody titter in a vaccine production by immersing a Raman 

spectroscope directly in the solution.39 

One more special example of the extra-clinical Raman utilization is the study of Cho et al. 

in which they demonstrate the possibility to identify toxic chemical substances in building 

walls using Raman spectroscopy.40 Because toxic substances can be truly harmful to the 

health of building occupants, it is critical to identify them as quickly as possible. Raman 

spectroscopy with its non-destructive properties, is the ideal method for rapid identification 

without the need to destroy the walls.  

In this study we use spontaneous Raman spectroscopy to analyse biological tissue and to 

investigate the influence of different fixation methods on the RS signals.
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2.3 Fixation-methods in neuropathology 
 
For successful specimen analysis in pathology, it is essential to preserve the sample for an 

extended period of time without altering its histological appearance. There are already well 

established and widely used methods ranging from chemical (formalin-fixation) to physical 

(cryopreservation) fixation to more complex fixation methods such as paraffin-embedding, 

all classical methods in pathology. Part of the here presented study focuses on the 

possibility to use Raman spectroscopy to identify fixed samples, such as samples from 

tumor banks, for inclusion in RS analyses. RS is important not only for intraoperative 

diagnostics but also for postoperative analyses (influence of radiation/chemo-therapy on 

the tumors), so it is imperative to further investigate the influence of stored samples on RS. 

 

2.3.1 Formalin fixation 
 
The nowadays used 4% formaldehyde solution was created by Blum (1892) after the 

discovery of formaldehyde by Butlerov in 1859.41  

Formaldehyde is a trigonal planar structure composed of 2 hydrogen, one carbon and one 

oxygen atom (CH2O) which is naturally in a gaseous form, but turns into a liquid solution by 

condensation and the formation of polymers (figure3). It is a highly reactive substance which 

interacts easily with other components. Formalin forms with primary amines Schiff bases, 

with amides hydroxymethyl groups, which in turn react with a second amide to methyl 

diamides. With alcoholic hydroxyl it forms acetals and with sulfhydro groups sulfhydral 

acetal. 

In pathology the property of cross-linking with different functional groups makes 

formaldehyde a tempting solution for sample fixation.42,43,41 The widely used formaldehyde 

solutions are mostly mixed with methanol for a first alcohol fixation (dehydration causing a 

hardening of the membranes and tissues) and only afterwards a formalin-fixation by cross-

linking. Formaldehyde hydrates and forms methylene glycol, which implements molecules 

to react between each other by forming polymers. This methylene-glycol will dehydrate into 

carbonyl formaldehyde. The actual tissue fixation is accomplished by the hydrated and the 

non-hydrated form of formaldehyde. Furthermore, it is important to notice that the initial 

penetration of the formalin into the molecule, takes around 24h to 48h but the stable, 

irreversible, crosslinking comes only after about 30 days. Since different studies already 

tried RS on formalin-fixed samples it is possible to find literature describing the new 

appearance of RS peaks for formalin-fixation at multiple locations. Here some examples: 

907cm-1, 1041cm-1, 1254cm-1, 1490cm-1, 1492cm-1.44,45 
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Figure3: Chemical structure of formaldehyde. Figure source: own production. Figure produced with 

PowerPointÒ. 

 

2.3.2 Cryofixation 
 
The technic of cryofixation is based on a quick down-cooling of samples to very low 

temperatures in order to avoid any tissue destruction often caused by a slow, step-by-step 

heat dissipation. Two main methods of cryofixation can be distinguished. First, liquid 

nitrogen (-170 degrees Celsius) offers the possibility to continuously cooling a sample at 

very low temperatures (figure4). Since the “normal” air contains 78,08% of nitrogen, it is 

possible to isolate liquid nitrogen from liquid air (cooled down air) by different air separation 

techniques. It is a colourless, odourless and non-flammable gas. Since liquid nitrogen is 

extremely cold, it can provoke burns if not handled with care. Nevertheless, liquid nitrogen 

is commonly used for sample storage, such as in tumor banks, spermatocyte and egg 

conservation.46 Also in medicine, liquid nitrogen is used on a daily basis for cryotherapy of 

warts and skin lesions.47 Liquid nitrogen is known for its ability to rapidly cooling down a 

sample, avoiding mostly the formation of ice crystals. 

Second, dry ice (-80 degrees), the solid form of carbon dioxide (CO2) is often used for 

cryofixation, for example in embryology (spermatocytes and oocytes), tumor-sample 

storage and even in the alimentary industry (figure5).48,49,50 The chemical formula of dry-ice 

is composed of two oxygen atoms bound by double bonds to one carbon atom. Like liquid 

nitrogen, it is a colourless and non-flammable gas. The sublimation of gaseous CO2 into 

the solid CO2, without passing by its liquid phase, is accomplished at a temperature of -78,5 

degrees and an atmospheric pressure of 5,13 atm. A limitation of the cryofixation is the 

unavoidable induced tissue destruction by the formation of ice crystals/freezing artefacts 

and the need for a constant temperature maintenance at very low levels since any thawing 

could irreversibly harm the sample.51,52 According to literature the freezing of samples 
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induces OH-stretching bonds at the spectral region over 3000cm-1 as well as some peaks 

at lower frequencies (205cm-1, 215cm-1, 601cm-1).53,54,55 

                                                
Figure4: Chemical structure of liquid nitrogen             Figure5: Chemical structure of dry-ice (carbon dioxide). 
Figure source: own production.                                    Figure source: own production. 

Figure produced with PowerPointÒ.                             Figure produced with PowerPointÒ. 

 

2.3.3 Paraffin embedding 

 
For a correct neuropathological examination, the samples have to be embedded in paraffin 

which allows to cut the prepared sample afterwards in thin slices, essential for sample 

storage and precise sample analysis under the microscope. Paraffin wax is derived from 

petroleum and consists of a soft, colourless texture. At room temperature it is solid and 

liquifies with heating. Since it is insoluble in water and relatively resistant towards a 

multitude of chemical substances, it is often used in the standard pathological workflow.56,57  

The sample preparation, consisting of formalin-fixation, dehydration, paraffin-embedding, 

microtomy, eventually staining and dewaxing as well as the interpretation of a 

neuropathologist, is a time-consuming, complex work.  

Some studies have had a closer look onto the Raman spectroscopic changes induced by 

paraffin embedding, mostly when working with pathologically fixed samples, to see if 

paraffin-embedding would influence the results. It has been demonstrated that paraffin-

embedding induces significant spectral changes at 1063cm-1,1133cm-1, 1296cm-1, 1441cm-

1, 1032cm-1,1203cm-1, 1490cm-1 in RS.45,44
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3 Questioning and objective of the study 
 
RS is a new, quick, easy-usable and non-destructive diagnostic tool which could change 

the handling of samples, in this case, neurosurgical samples. If successful, RS could reduce 

the need for complex and costly diagnostic procedures such as biopsies and specific 

neuropathological analyses. In addition, it could significantly improve patient outcome 

during surgical tumor resection by allowing a more precise and instantaneous detection of 

malignant cells. It could complement commonly used resection monitoring tools such as 

intraoperative quick-sections, ultrasound and MRI. This would significantly reduce the risk 

of tumor recurrence as well as the risk of removing healthy brain tissue during radical tumor 

removal. Therefore, we are interested in exploring the potential of RS. Is it possible to 

correctly identify a tumor entity? Can malignant and healthy cells be accurately 

distinguished by RS? Can we train a classifier based on these data? What are the strengths 

and what are the limitations of RS? Is it a usable tool for ubiquitous clinical use? In addition, 

we will take a closer look at the ability of RS to identify fixed, cryofixed and formalin-fixed 

samples. Is it possible to correctly identify the effect of formalin-fixation and cryofixation on 

the RS spectrum? What causes these spectral changes? And will it be possible to use these 

fixed samples for further RS analyses? This would open up the possibility of using already 

fixed samples for RS analyses, increasing the number of samples in a short amount of time 

and as a conclusion rapidly improve machine learning. This information could help to 

develop an omni-class classifier in the future. RS could be used to analyse existing tumor-

banks and provide us important information on the biochemical impact of different fixation 

methods. This could complement the work of the neuropathologist and perhaps even 

expand the information gain. To analyse all these here enumerated questions and 

objectives, we are newly introducing machine learning into the RS data analysis procedure, 

which could facilitate and generalize the handling of the often complex RS data. This could 

enable the introduction of RS into the clinical routine. 
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4 Material and methods 
We tried to answer the before mentioned study objectives by including formalin-fixed and 

cryofixed specimens to analyse the influence of fixation on RS. Furthermore, dura mater 

and meningioma samples were used to explore the potential of RS to differentiate between 

diverse tissue types and to correctly identify the infiltration zone. On the machine learning 

side, TSNE and SVM classifiers are used. In the following sections, a detailed overview of 

the used methods is given. 

 
4.1 Patient-data acquisition and handling 
 
The study is performed at the neurosurgical department of the Centre Hospitalier du 

Luxemburg (CHL). Only people assigned to the study-group and working in the CHL have 

directly handled patient data. Neuropathological sample analysis is done at the Laboratoire 

National de Santé Luxembourg (LNS). All samples are collected during routine 

neurosurgical interventions (mostly patients with brain tumors) and no supplement samples 

are extracted for the study. Patients all signed informed consent bevor participating and 

they are, at any point of the study, exposed to any additional risks. A copy of the informed 

consent formular is attached at the end of this manuscript (supplemet2). The Comité 

National d’Ethique de Recherche (CNER) approved the study on the 13.07.2018 under the 

number 201804/08. The study is handled according to the WMA Declaration of Helsinki-

Ethical principles for medical research involving human subjects as well as to the law ‘EU 

General Data Protection Regulation GDPR’ of 01.08.2018.58,59 During the follow-up of the 

data analysis, all patient data are pseudonymized by a numeric code, no retracement from 

a diagnose/sample to the original patient can be done by a person outside of the study 

group. The results of the study are not, at any moment, influencing the treatment or the 

outcome of the patient. 
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4.2 Solais 
 

 
 
Figure6: (A) Fully robotized Raman-spectroscopic system (Solais™, Synaptive®, Toronto, Canada) equipped 

by a movable stage and a VLI-camera. (B) Zoom-in on a machine-screen showing a Raman spectrum and a 

VLI of a cryopreserved sample. (C) Zoom-in on the movable stage containing an aluminium-cup with a tissue 
sample as well as a VLI of the cryopreserved sample. Figure source: own production. 

 
A fully robotized RS-machine (Solais™, Synaptive®, Toronto, Canada) is used, see figure6. 

The machine is equipped with a movable stage, a visible-light imaging camera (VLI-

camera), a 785nm laser source as well as an optical coherence tomography (OCT). Every 

RS measurement is linked to a visible light image which allows a retrospective retracement 

of the exact position of the engraved measuring points. This allows us to review every single 

point, every single Raman spectrum to the original macroscopic sample area. Each 

spectrum is composed of 1602 single values, spread on a wavenumber scale from 314cm-

1 to 2994cm-1. The final spectrum, the spectral curve, is formed by an internal computerized 

system. 

First, all samples were scanned on plastic cups, but since plastic has a very high Raman 

spectrum on its own, it interfered so strongly with the sample spectrum that the actual 

sample spectrum could no longer be interpreted. Since aluminium has a negligent Raman 

spectrum we decided to use this as the basis for the scans.60,61 An aluminium spectrum is 
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represented in figure7. The scans are done with 6-30 acquisitions and with an accumulation 

time between 800ms to 2000ms for each measuring point. 

 

 

 
Figure7: Raman spectrum of pure aluminium. Y-axis represents the Raman intensities and the X-axis 

represents the Raman shift (cm-1). Figure source: own production. Figure produced with Solaisä 
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Figure8: Schematic representation of the inside of the SolaisTM, the spectrum synthesis. Figure source: own 

production. Figure produced with PowerPointÒ. 

 

A laser source enters the chamber where it is deflected by a splitter/mirror in order to reach 

the sample (figure8). The incident light is scattered in different wave lengths from the 

sample. The light first transverses a lens where it is focused, then it passes a filter, often 

band-stop or low-pass filter. Here the Rayleigh signal is divided from the Raman scattered 

light in order to obtain a stronger Raman signal. After passing through the filter, the 

scattered light arrives at the spectrometer. With the help of a mirror the light is shined onto 

a grating where it is decomposed into its different wavelengths. These are again transmitted 

on a CCD (charged-coupled device) detector which forms the final spectrum.62,63,64 

 

Furthermore, the SolaisTM is able to perform an optical coherent tomography (OCT), see 

figure9. This could give further information on the sample composition, its thickness by the 

different reflection of light waves. It is standardly used in ophthalmology to examine the 

different layers of the retina.65,66 Since this study focuses on RS, the OCT data will not be 

further displayed in this thesis. 
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Figure9: Photo of the screen of the SolaisTM. (A) Raman spectrum; (B) VLI of the scanned sample on a plastic 
dish with the engraved measuring points; (C) zoomed-in VLI, same as in (B); (D) OCT-scans. Figure source: 

own production. 
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4.3 Samples 
 
All used tissue materials are samples from human participants, collected during routine 

neurosurgical interventions from 2018 to 2021. No additional samples or probes are 

extracted during the surgery for the purpose of this study. We only use tissue of the 

removed tumors and/or tissue that has to be detached during the surgery either way in 

order to access to the point of interest, for example the tumor. Since it is an experimental 

setup and since we want to have ‘real-life’ conditions, the samples are scanned as they are 

without additional treatment. This leads to a more heterogenous sample surface, form and 

appearance. In order to guaranty a correct retrospective retrace of the pathological 

description and the measuring points, big samples are divided into smaller pieces of +/- 

2mm to 5mm. Every sample is analysed individually by a specialist in neuropathology. 

After a brief overview of the used RS-machine and the sample acquisition, we will take a 

closer look at each step of the scanning process, the workflow (figure10). 

The native samples are only treated with some physiological water (NaCl). Physiological 

water is also used during the surgery, so that we can say that our samples are scanned 

natively. 

For the fixation-study, some samples are fixed for different time laps (going from some 

minutes to multiple weeks) in a 4% formaldehyde solution and scanned afterwards again. 

For the cryopreservation we use dry ice instead of liquid nitrogen, for practical reasons 

since liquid nitrogen would evaporate during the scanning procedure without ensuring a 

constant freezing of the tissue. Dry-ice is placed under the aluminium cup to allow complete 

and constant sample freezing without having direct contact with the sample. 

 

 
Figure10: Workflow (A) Intraoperative native sample acquisition (B) Native or formalin-fixed Raman scan (VLI) 
(C) Cryopreserved scanned sample (VLI) (D) Sample storage in a formalin solution (E) Neuropathology analysis 

(F) Machine learning. Figure source: own production. 

 
All patients gave their informed consent to participate in the study. Directly after surgical 

removal the samples are taken to the RS-machine, situated directly besides the operation 

room. Here they are placed on an aluminium cup and humidified with some drops of 



 34 

physiological water in order to avoid any tissue dehydration and, as a consequence to avoid 

any tissue destruction during the scanning procedure. The aluminium cup containing the 

sample is placed onto the movable stage. The door is closed. The user interface of the 

Solais™ allows to indicate some essential information which will be linked to the sample 

afterwards: subject ID (pseudonymized Patient ID), subject name (abbreviations to describe 

the underlying sample, see supplement3), date of birth (only the year of birth of the patient 

is indicated), gender (male, feminine, other) and the sample excision date and time. 

Afterwards, the sample is focused and the measuring points, up to 25 measuring points per 

measurement, can be distributed all over the sample. The last step before proceeding to 

the actual scanning process, is the indication of the acquisitions (how often one measuring 

point is scanned: 6-30x) and of the accumulation time (how long the scanning for every 

measuring point is: 800ms to 2000ms). Different parameters can have different influences 

on the afterwards obtained spectrum. For more information see discussion.  Increasing the 

parameters will resolve in a clearer spectrum but since the duration of the scanning process 

itself will also significantly increase, this could lead to sample dehydration. Once the 

scanning procedure finished, the tissue sample is extracted from the RS-machine and put 

into a 4% formaldehyde solution. The samples are all precisely annotated and sent to the 

neuropathology (LNS). Here the tissues are, in a blinded manner, fixed and analysed by a 

specialist in neuropathology. Once the pathological report present (one separate report for 

each sample with a precise description for every single measuring point), we add the 

precise sample description to the corresponding measuring point.  

If a sample fixation is wished, the native samples are, before being sent to neuropathology, 

fixed either by formalin or by dry-ice.  

 

One sample containing meningioma and dura mater was specially prepared in 

neuropathology in order to do a histological verification of the results of the trained dualclass 

classifier (see section 5.2.). The native sample is first marked with three incisions which will 

allow at any time a perfect reorientation of the sample. Then it is put onto an aluminium cup 

and scanned with the SolaisTM with approximately 110 measuring points, all done with the 

parameters of 2 seconds and 30 averages. The sample’s surface is covered with a 

maximum of measuring points so that a precise sample overview can be achieved. 

Afterwards, the sample is put into the waxing cassette, containing a formalin solution. Once 

in pathology, the sample is embedded in paraffin and sectioned into 21 slices. This is to 

ensure that for each measurement, the corresponding area on the surface is 

histopathologically assessed, and no tissue underneath the surface that may have been 

different from the one analysed by spectroscopy, is investigated. A H&E (haematoxylin and 

eosin) staining is performed on each slide. The 21 slides are stack one upon the other with 
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respect to the three marker incisions. This allows to have an H&E image comparable to the 

VLI. A frame is traced around the margins of the VLI which is also fitting to the histological 

image. This frame is used as reference for the marking of the measuring points on the 

histological sample. Finally, each measuring point is checked for correct classification (i.e., 

the classifier’s predicted identity was compared to the histopathological finding at the very 

same spot). 



 

 
 

36 

 

4.4 RS-data acquisition and handling 
 
4.4.1 Machine learning 

 
Machine learning (ML) is becoming increasingly important and consists of training an 

algorithm that can perform the task in a next step without any further programming. We 

need to distinguish two main types of machine learning. On the one hand, supervised 

learning, where the algorithm is trained to distinguish categories based on specific 

recognition features. On the other hand, unsupervised machine learning consists of 

repeated trainings in which the algorithm learns to find the best possible way to differentiate 

the desired categories.67 Unsupervised machine learning does not require any prior 

labelling of the training data.68 

4.4.1.1 K-means-clustering and visualization techniques 
 
K-means-clustering is an unsupervised machine learning algorithm, which can be used to 

visualize different clusters within a dataset. In K-means clustering, K is the number of 

wished clusters. The system tries to see which data (in this specific case the mean of data) 

are closest to the defined clusters. Once found, it will attribute all data to one of these 

specific clusters which results in a clear data split. Calculating the variance within these 

clusters, the assignment of the data points to the distinct clusters will be re-evaluated and 

might lead to the reassignment of data points to better fitting clusters. By repeating this until 

there is no reassignment necessary the data is sorted into clusters.69,70 The similarities 

between the spectra are visualized in figure11 by a colour code, a correlation matrix, red 

represents high similarity and blue less similarity. This provides information on potential 

biochemical clustering between different spectra. In a designed pseudo-colour image, 

repeating random colour sequences can be observed (figure12). In our example yellow 

indicates a high spectral intensity and blue a low spectral intensity. Furthermore, we used 

a heat map to overlay the before mentioned special sample containing meningioma and 

dura mater to have a visual representation of the analysed tissue entity. A heat map is a 

visual representation of data quantity (see figure36).71 
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Figure11: Correlation matrix of a K-means-clustering over different samples (for example glioblastoma, 

hypophyses tumor, pieces from the base of the skull). In red, high correlation between the compared 

substances, in blue, low correlation. X-axis corresponds to an enumeration of the different samples. Y-axis is 

the same enumeration as on the X-axis in order to compare the samples one by one. Figure source: own 

production. Figure produced with MatlabÒ. 
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Figure12: Pseudo-colour image of different samples (meningioma, dura mater). In yellow, high spectral 

intensity. In blue, low spectral intensity. Red circle, one single yellow bare in the middle of blue bares, possible 
outlier, cosmic ray artifact. X-axis corresponds to the different wavenumbers and the Y-axis represents the here 

analysed samples. Figure source: own production. Figure produced with MatlabÒ. 

 

4.4.1.2 RamanLabeler 
 
In figure13, a screenshot of the inhouse-designed RamanLabeler is represented. It is a user 

interface for data visualization usable with Matlab®. By selecting one patient after the other 

(left side under Patient ID), it is possible to display on one side the visible light image with 

the engraved measuring points (right side) and on the other side the corresponding Raman 

spectra (left side). This allows to have an easy look on the macroscopic image, as well as 

simultaneously the Raman spectrum. This is essential for correct outlier sorting, cosmic ray 

removal and the fundamental understanding of the spectra. A concrete example would be 

the following: when an unexpected spectrum is observed, the VLI can show that the 

measuring point is directly on a blood vessel, bone fragment or other substance/location, 

which can explain the outstanding spectrum. In general, the RamanLabeler is used for 

visual analysis (comparison) of the included native and fixed samples, their macroscopic 

as well as their spectral appearance. 
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Figure13: RamanLabeler, a user interface for data visualization. Picture on the right side, visible light image of 
a scanned tumor piece. Picture on the left side, corresponding Raman spectra. The green circle indicates a 

cosmic ray artifact. The black-boxes are covering the confidential patient data. Figure source: own production. 

 
4.4.1.3 T-distributed stochastic Neighbor Embedding 
 
The t-distributed stochastic Neighbor Embedding (TSNE), figure14, is a visualization cluster 

with the objective to nonlinearly reduce a more-dimensional space (high dimensional data) 

into a two- or three-dimensional space.72,73 Similar data will be modelled and clustered by 

proximate points, non-similar data will be clustered by broad points. The t-distribution, also 

called Student’s t-distribution, is a statistical test used for analyses on a small amount of 

data with a population of unknown variance. It is an approximation of the normal 

distribution.74 
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Figure14: A TSNE-Cluster of different samples: fat (Fat), glioblastoma (GBM), lymphoma (LYM), metastasis of 

the CNS (METCNS), metastasis of a melanoma (METMel), meningothelial meningioma (MGMmen), Dura mater 
(Dura), muscle (Mus), oligodendroglioma (OGD), pilocytic astrocytoma (PA), subcutaneous fat tissue (SCFT), 

white and grey matter (WM GM) (A), TSNE-Cluster of the entire Raman spectrum of the chosen entities (B) 

TSNE cluster over the high-wavenumber region (HWNR), interval 2800cm−1 to 3000cm−1. No clear cluster 

formation can be observed here. Figure source: own production. Figure produced with Matlabâ. 

4.4.1.4 Support vector machine classifier 
 
A support vector machine (SVM) classifier is an algorithm that is able to learn, by analysing 

a huge amount of different data to classify newly introduced data to the correct category in 

the future.76,77 It is a linear two-class classifier and since it needs a training set it is also a 

supervised learning algorithm, figure15. SVM tries to draw a hyperplane between the 

different categories, multiple choices are possible. The hyperplane with the maximal 

distance towards the different categories will be chosen (margins), see figure16. Here a 

precise, simplified example: We feed the SVM with 100 spectra of pathologically diagnosed 

meningiomas. It is trained to recognize that these specific spectral characteristics are 

assigned to a meningioma sample. If we give now a spectrum of unknown origin to the 

classifier it will be able to see if it is a meningioma or not. This can be repeated for multiple 

sample entities, which makes the SVM classifier more and more performant. 
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Figure15: SVM over the entire spectrum of meningioma subtypes and dura mater. The classifier is able to 
differentiate between the two classes. Top: manual labelling of different meningioma samples versus dura mater 

samples. Bottom: applied SVM on unseen, not yet used for ML, data. A differentiation between dura mater and 

meningioma subtypes is observable in the displayed clusters. Figure source: own production. Figure produced 

with MatlabÒ. 

 



 42 

 
 
Figure16: Schematic and simplified representation of the different hyperplanes. In this case ‘b’ would be the 

hyperplane of choice since it forms maximal margins towards the two categories (towards the orange dots on 

the one side and towards the blue dots on the other side). Figure source: own production. Figure produced with 

PowerPointÒ. 

 

Based on the SVM training set, the affiliation probability is calculated. We visualized it by a 

blue to yellow colour code, which forms the basis of a colour mapping. This colour map, 

figure36 in the result section, can be handled as an overlay to put on a visible light image. 

This forms the basis for one of the main objectives of this study, the possibility to implement 

a Raman spectroscope into the microscope of the neurosurgeon, allowing him to have a 

prompt and correct visual entity representation of the underlying tissue sample. 
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4.4.2 Pre-processing and filtering of the data 

The data is pre-processed by the Raman spectroscope itself, using a background removal 

and a Savitzky-Golay filter, which are similar to the pre-processing of other commercial 

spectrometers.39,78,79 Furthermore, an outlier sorting, spectra normalization and cosmic ray 

removal are performed as described in the following chapter. 

Cosmic ray artifacts are present in all photo-electric systems, especially if there is, like in 

the case of Raman spectroscopy, a CCD (charged-coupled device) included.80 The spectral 

waves are split into different pixels on the CCD. Some arrive at non-orthogonal angels, 

provoking a mislead of the signal. For each measuring point, two measurements are done. 

One with the laser on and one just before, with turned-off laser (dark frame acquisition). If 

a cosmic ray artifact is happening during the ‘laser-on’ phase, the derived signal will be of 

positive intensity. Since we have in this phase multiple raw-individuals (these are the 

individual data corresponding to each wavenumber), a cosmic ray correction can be 

achieved by deleting this unique deriving raw individual and continuing the data processing 

with the remaining raw individuals. In the second case, in the dark frame acquisition, only 

one measurement is taken. If a cosmic ray artifact happens in this precise moment, the 

derived signal is of negative intensity. It is not possible to simply remove the misleading 

point, a replacement with a value of a corresponding scanning serie has to be done. These 

cosmic ray artifacts can also be called outliers. Furthermore, this precise cosmic-ray 

removal is integrated into the basic script for pre-processing of the data. See figure13 for 

outlier demonstration.  

A second type of outliers must be differentiated. By the ‘real’ outliers, we understand the 

spectral spikes where something other than the desired sample is scanned. This can 

happen once due to the translucent spectra of aluminium or because the sample moves 

during the scanning procedure. This can result in the originally defined measuring point no 

longer being on the sample. The correction of this type of outliers is achieved by the simple 

use of the standard deviations. If a value deviates significantly from the others, it is identified 

and deleted. 

In a next step we have to focus on the ‘background removal’. The background is composed 

of fluorescence as well as foreign (non-laser) light beam influencing the Raman spectrum. 

We are scanning inside of a ‘black box’ or ‘dark chamber’, because once the door of the 

Solaisä closed a dark chamber is formed. We will have nearly no interferences of the non-

laser beams. The autofluorescence is composed of inevitable, mostly conjugated double 
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bounds of substances which are in every sample, like NADH (nicotinamide adenine 

dinucleotide bonded to an hydrogen atom) and heme (precursor of haemoglobin).81,82 Since 

the fluorescence spectrum is more prominent and strong than the Raman spectrum it is 

important to differentiate between the two spectra, to deal with the fluorescence.83,84,85 Here 

we use a Savitzky-Golay filter, a filter for spectral data smoothing. By the help of a 

polynomial, fitted on the raw data, a numerical derivative is calculated giving an 

approximative spectrum, easier to handle in further analyses. This polynomial is 

recalculated for every point of the raw spectrum resulting in an overall data smoothing.  

Figure17 shows the data smoothing by the use of a Savitzky-Golay filter.86 The ‘intensity’ 

of fluorescence is changing over time but since we are subtracting the fluorescence this 

should not interfere with our results. 

Figure17: Schematic representation of data smoothing by the use of a Savitzky-Golay filter. The RS spectrum 
is displayed in blue, the smoothen spectrum accomplished by a Savitzky-Golay filter in red. Figure source: own 

production. Figure produced with PowerPointÒ. 

The signal-to-noise ratio describes a relation between the desired signal and the signal of 

the background noise.87 The background noise is a ‘swoosh’, no real signal but an 

oscillation of the spectra if its own intensity is weak. It is important to minimize the signal-

to-noise ratio, for example by working with more averages (see discussion).  
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The spectra are normalized on the y-axis to allow better comparison. If a spectrum is of low 

intensities, it will be raised and vice-versa, if a spectrum is of high intensities, it will be 

lowered. This is an important step to be able to correctly compare and analyse different 

spectra. We can distinguish two different methods to accomplish the normalization. We can 

take one specific peak which is constant in every sample, like the nitrogen peak at 2330cm-

1.88 See figure18. Nitrogen is an important component of air and since ‘the amount of air’ or 

‘the amount of nitrogen in the air’ will not change, we can take this peak as constant. If, for 

example, in one spectrum the nitrogen peak is extremely high after normalization we know 

that we have increased peaks composed mostly of noise, so no real signal. These spectra 

can be handled again as outliers. The second possibility for normalization is to define that, 

for one class of analysed spectra, the area under the spectrum (area under the curve) 

should be of same dimension. This allows to suggest that all presented peaks are in the 

same range of intensities and can be compared one against the other. 

 

Figure18: Summary of different spectral analyses: (a) shows different (meningothelial meningioma, dura mater, 

glioblastoma, oligodendroglioma and bone) cryofixed samples (b) shows different (meningothelial meningioma, 
dura mater, glioblastoma, oligodendroglioma and bone) native samples. The red circle shows every time the 

prominent peak of nitrogen at 2330cm-1. The X-axis represents the Raman shift (cm-1) and the Y-axis the relative 

intensities. Figure source: own production. Figure produced with Solais™.
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4.4.3 Different wavenumber regions 
 
A Raman spectrum has to be divided in different regions, depending on the wavenumber, 

(low wavenumber region, fingerprint region, silent region and high wavenumber region) 

for correct interpretation as well as right handling of the data (figure19). In general, one 

can say that low Raman shifts are formed by weak bonds and large atoms and that high 

Raman shifts are formed by strong bonds and small atoms.89,90  

The low wavenumber region, between 10cm-1 and 400cm-1, is often omitted because of its 

susceptibility to have great interference with background noise and low informative content 

when working with human tissues.89 It represents mostly very heavy atoms, like in crystallin 

arrangements. It is more used in the pharmaceutical field.89  

The fingerprint region, ranging from 400cm-1 to 2000cm-1 includes the wavenumbers, where 

most of the organic substances have their Raman peaks. It is a region rich in information 

that is usually, or better has usually been, used for RS studies. However, this region is 

susceptible for interfering signal background generated, for example, form the fibre optic 

itself. This urges the need to use strong filters and retrospective spectrum corrections. 

Furthermore, the spectrum intensities in this wavenumber region have low intensities 

involving the need for long measuring times to get a clear and usable spectrum. This is 

complicated in the daily clinical use because of potential sample dehydration and 

complicated use for the real-time scanning utilization.91  

The so-called silent region is between 2000cm-1 and 2800cm-1, no essential information, no 

peaks from biological material, can be found here.92 Some studies found that alkyne has a 

major peak in the silent region which can be used in specific analyses with Raman 

microscopy as a tagging substance to target special molecules.92 

The high wavenumber region (HWNR) is often used in literature for its prominent 

differences between molecular groups. The region between 2800cm-1 and 3000cm-1 is 

known for its identification of aromatic and aliphatic hydrogens in carbohydrates 

(differences in fatty acids and sugar) which is important for better knowledge of cell density 

as well as the relation between cell membrane towards cytoplasm. Some literatures 

describe this region already from 2400cm-1 on and going to 3800cm-1
. 

91,93 The HWNR 

includes enough information for correct tissue recognition and is, because of its stability, 
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easier usable in the practical clinical routine. This can be observed in the frequent use of 

the HWNR in divers recent studies.94,95,96 

Since we are here testing the use of RS in a new, experimental clinical setting we are 

considering the fingerprint region, the silent region as well as the high wavenumber region. 

Furthermore, we omit the region below 400cm-1 in our analysis, not only because of its low 

information input but also because of the interference with the aluminium spectrum. Metallic 

aluminium has a negligent spectrum but the oxide form has a small spectrum in the 

wavenumber region below 900cm-1 (figure7). 61,97 

 

Figure19: Raman spectrum of polystyrene divided into the different spectral regions. (A) Low wavenumber 
region (10cm-1- 400cm-1), (B) Fingerprint region (400cm-1- 2000cm-1), (C) Silent region (2000cm-1- 2800cm-1), 

(D) High wavenumber region (2800cm-1- 3000cm-1). The X-axis represents the Raman shift (cm-1) and the Y-

axis the Raman intensity. Figure source: own production. Figure produced with Solais™.
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4.4.4 Statistical tests 
 
The here enclosed figure20, extracted from analyses regarding the meningioma and dura 

mater differentiation by RS (see results) shows a graphical interpretation of the used 

significance calculation by a Wilcoxon-Mann-Whitney-U test and a Bonferroni-corrected p-

value.  

 

 
 

Figure20: (a) Average spectra with the individual standard deviations of meningioma and dura mater 

measurements. A spectral difference can be observed; (b) Subtraction of the mean dura mater spectrum from 

the mean meningioma spectrum; (c) Significance at each single Raman shift (0=null hypothesis, 1=alternative 
hypothesis) calculated using Wilcoxon-Mann-Whitney-U test, p-value is Bonferroni-corrected, resulting in 

p≤6x10-6. Multiple significant differences can be observed. Figure source: Jelke, Mirizzi et al. 2021; Scientific-

reports 2021, “Reproduced with permission from Springer Nature” 75 
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To better illustrate the possible distinction between the two samples, in this case 

meningioma and dura mater, the mean spectra with their corresponding standard deviation 

are used. A difference spectrum is then created by subtracting one sample from the other, 

in this case again subtracting the dura mater spectrum from the meningioma spectrum. 

Significance is calculated for each Raman shift to determine if one spectrum (for example 

the spectrum of dura mater) is significantly different from the other spectrum (for example 

the spectrum of meningioma). It is calculated using a Wilcoxon-Mann-Whitney-U test. This 

test is similar to the independent t-test but is performed for ordinal, ranked data.98 It is used 

to find differences between two independent groups. We map the H-values oscillating 

between 0 and 1. In this case 0 stands for no significant difference between the tumor and 

the dura mater peaks and 1 represents the alternative hypothesis, dura mater and 

meningioma peaks are significantly different.  

The p-value is Bonferroni-corrected with an underlying number of 1603 compared pairs 

(corresponding to the device-inherent measurement number per spectrum). The standardly 

used p-value of 0,01 is divided by 1603 resulting in a new p-value of 6x10-6, which allows 

better statistical analysis. The Bonferroni correction is applied when multiple statistical 

analyses are performed on the same data set to avoid type I errors (wrong rejection of a 

correct 0 hypothesis) to occur.99  

 

For a more accurate statistical evaluation, as well as machine learning stability, the data 

are split throughout the study into a training and a validation set. The splitting is performed 

on patient level meaning that all Raman scans from one patient are present in only one of 

the two groups. The division is performed using a random split. The training set is used to 

form the TSNE. The accuracy is validated by a five-fold-cross validation and an external 

validation data set. A five-fold-cross validation and an external validation data set are used 

to validate the accuracy of the statistical tests as well as the machine learning results. A 5-

fold cross validation can be described as followed (Jelke, Mirizzi et al. 2021): “For the 5-

fold cross validation, a test set containing 1/5
th of the randomized spectra was split from the 

data, and the classifier was trained on the remaining 4/5th of the data. The classifier 

performance was then evaluated on the held-out unseen test set. This procedure was 

repeated 5 times until all data was used once for testing.”.75 An external validation data set 

is a collection of data which are not used for training of the classifier.
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4.4.5 Sample evaluation 
 
At the beginning of the study, a close look was put on the diverse wavenumbers trying to 

find prominent differentiations in the Raman spectrum, appearance or disappearance of 

peaks. Since we know what we are scanning (retrospective analysis with the detailed 

pathological diagnosis), we try to find unique peaks for each sample. We look into the 

already existing literature, regarding the biochemical attribution to specific wavelengths.100 

We make our own Raman library by including the references of the already existing 

literature as well as our own findings. This allows to manually retrace the biochemical 

background of a specific sample and as a conclusion to show which wavenumber regions, 

which peaks are characteristic for a certain tissue. In the course of the study this knowledge 

is essential for knowing on what kind of peaks, peak differences or changings in signal, the 

classifier should be trained on. Having an exact idea of the biochemical composition of the, 

in this case, analysed CNS tissue samples, opens the door for a precise use of RS.  

A specific example is the differentiation between dura mater and meningioma by their 

dissimilar amount of collagen content and lipids. Literature describes a higher collagen 

content for dura mater than for meningioma.101,102 Collagen is made of protein chains which 

are constituted out of different amino acids like glycine, proline and hydroxyproline, 

represented by the specific peaks at 815cm-1, 855cm-1, 876cm-1, 938cm-1, 1003cm-1, 

1033cm-1, 1250cm-1, 1319cm-1, 1450cm-1, 1663cm-1.103,104 

The peaks at 815cm-1, 885cm-1, 876cm-1 and 938cm-1 can be assigned to collagen type I 

and IV and represent (hydroxy-) proline which is an important composition of collagen.100 

1003cm-1 and 1033cm-1 are assigned to phenylalanine and 1250cm-1 represents amide III, 

both amino acids of collagen. The CH2CH3 deformation described in literature as a collagen 

assignment, is visible at the peaks of 1319cm-1 and 1450cm-1. At last, 1663cm-1 stands for 

proteins, including collagen type I.  
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Figure21: Comparative spectrum of collagen type I and IV. X-axis corresponds to the wavenumbers (cm-1) and 

the Y-axis corresponds to the Raman intensity. Figure source: Nguyen et al. 2013, “Characterization of type i 

and IV collagens by Raman microspectroscopy: Identification of spectral markers of the dermo-epidermal 
junction”. 104   

 

In order to verify this hypothesis (collagen is a differentiating factor for dura mater and 

meningioma), a collagenase experiment is performed. See section 5.2.. We try to remove 

the before found collagen peaks from the dura mater spectrum by putting a piece of dura 

mater in a solution containing a collagenase (figure34). We measure the sample natively, 

after 15h of collagenase exposure and after 19h of collagenase exposure.  

 

A similar experiment as for collagen is repeated for the lipid contribution. We base our 

specific peaks on multiple literature researches (figure35). For the general lipid peaks 

1260cm-1, 1300cm-1, 1440cm-1 , 1656cm-1, 1734cm-1  are used.103 For sphingomyelin we 

use 1437cm-1, 1654cm-1, 1670cm-1, 2847cm-1, 2880cm-1, 2959cm-1  and 760cm-1; 1442cm-

1, 1657cm-1, 1737cm-1, 2847cm-1, 2882cm-1, 2920cm-1, 2959cm-1, 3007cm-1 for 

phosphatidylethanolamine.105 For cholesterol we take 418cm-1, 421cm-1, 457cm-1, 549cm-

1, 608cm-1, 700cm-1, 702cm-1, 703cm-1, 746cm-1, 759cm-1, 853cm-1, 881cm-1, 957cm-1, 

962cm-1, 1132cm-1, 1179cm-1, 1300cm-1, 1440cm-1, 1441cm-1, 1444cm-1, 1659cm-1, 

1661cm-1, 1670cm-1, 1674cm-1, 2970cm-1 and for cholesterol ester 428cm-1, 538cm-1, 

614cm-1, 702cm-1, 1065cm-1, 1131cm-1, 1296cm-1, 1441cm-1, 1669cm-1, 1670cm-1, 1739cm-

1, 2970cm-1.106,107 
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Figure22: Spectra of different lipids: Sphingomyelin, phosphatidylethanolamine, cholesterol and cholesterol 

ester. Figure source: by Krafft et al.2005, “Near infrared Raman spectra of human brain lipids” .107 

 

Furthermore, the working group started to produce an own Raman peak library of basic 

components like glucose (figure23). These spectra were also used for spectral comparison.  

 

 
Figure23: Raman spectrum of glucose (Glu, blue line) and glutamine (Gln, orange line). Figure source: Project 

of B.M. and F.K. X-axis represents the Raman shift (cm-1) and the Y-axis represents the Raman intensity.
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5 Results 
5.1 Fixation Study 
 
For quickly improving RS based machine learning and to build an eventual omni-class 

classifier in the future, more and more tissue/tumor samples as well as rare tumor entities 

should be included. In order to incorporate all these samples, it is mandatory to have a 

closer look on the induced changes, the influences of common fixation techniques. In this 

study we choose to analyse formalin fixation as well as cryofixation by dry ice.  

 
5.1.1 Statistics 
 
Table1 gives an overview of all included samples, a total of 40 patients and 1165 measuring 

points. Not all samples are integrated in the here following analyses.  We principally use 

metastasis of ovarian cancer, CNS metastasis of unknown primary, dura mater, 

glioblastoma, ganglioma, meningothelial meningioma, necrosis, modified CNS tissue and 

oligodendroglioma. The patients were between 18 and 87 years old. 
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Diagnosis Fixation-State 

 NAT_FOR FOR NAT_FRO FRO 

Glioblastoma 108MP 55MP 27MP 34MP 

Muscle 6MP 9MP 0MP 0MP 

Necrosis 7MP 5MP 0MP 0MP 

Modified CNS  63MP 96MP 9MP 21MP 

Oligodendroglioma 51MP 63MP 23MP 24MP 

Diffuse astrocytoma 11MP 16MP 0MP 0MP 

Pilocytic astrocytoma 9MP 14MP 0MP 0MP 

Ganglioma 13MP 13MP 0MP 0MP 

Metastasis-Total 29MP 12MP 18MP 19MP 

Metastasis of pulmonary cancer 14MP 3MP 0MP 0MP 

Metastasis of ovarian cancer 15MP 9MP 0MP 0MP 

CNS Metastasis of unknown primary 0MP 0MP 18MP 19MP 

Meningioma-Total 114MP 131MP 21MP 43MP 

Meningothelial meningioma 29MP 33MP 21MP 43MP 

Transitional meningioma 70MP 80MP 0MP 0MP 

Atypical meningioma 6MP 4MP 0MP 0MP 

Fibrous meningioma 9MP 14MP 0MP 0MP 

Dura mater 25MP 48MP 15MP 13MP 

TOTAL 436MP 462MP 113MP 154MP 

 
Table1: Data overview of the included patients and measuring points split by sample entity and fixation state. NAT_FOR 

corresponds to the native data which are afterwards formalin-fixed; FOR corresponds to the formalin-fixed data; NAT_FRO 

corresponds to the native data which are afterwards cryofixed; FRO corresponds to the cryofixed data. MP corresponds to 

‘measuring point’.  

 

 
5.1.2 Fixation-study results 
 

We compare the mean spectra of specific samples in different fixation states. 

First, native versus formalin-fixed samples (metastasis of ovarian cancer, dura mater, 

glioblastoma, ganglioma, meningothelial meningioma and necrosis) are analysed. Figure24 

A-F.  
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Figure24: Top of each subfigure: Mean spectra of native versus formalin-fixed metastasis of ovarian cancer 

(A), dura mater (B), glioblastoma (C), ganglioma (D), meningothelial meningioma (E) and necrosis (F). X-axis 
represents the Raman shift (cm-1) and the Y-axis represents the Raman intensity. Bottom of each subfigure: 

Significance calculation of differences between the native and the formalin-fixed mean spectra. The black lines 

indicate the significant difference. X-axis represents the Raman shift (cm-1) and the Y-axis represents the p-
value (significance 0/1, Bonferroni-corrected). Multiple alternating spectral differences can be observed. Figure 

source: own production. Figure produced with Solaisä and Matlabâ. 
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Formalin-fixation induces different changes depending on the sample’s entity and its 

molecular composition. This means that the spectra of the different tissue entities are 

altered in an individual manner. In (A), the significant differences (represented by the black 

lines) are at around 950cm-1, 1350cm-1, 1400cm-1, 1550cm-1, 1600cm-1, 2800cm-1 - 3000cm-

1. In (B) they are at mostly located between 900cm-1 and 1700cm-1. 900cm-1 – 1600cm-1 

with one supplement peak at 2300cm-1 represent the spectral differences in (C) and 800cm-

1,1000cm-1, 1300cm-1- 1450cm-1 with one supplement peak at 2750cm-1 in (D). In (E) the 

peaks are prominently located from 1000cm-1 to 1700cm-1 and from 2700cm-1 to 3000cm-1. 

At last, some few peaks at 500cm-1, 1300cm-1, 1450cm-1 with a higher intensity of peaks 

from ca. 2800cm-1 to 3000cm-1 in (F) are again different wavenumbers where the significant 

difference lines are represented. Formalin-fixation is introducing changes in each sample 

and individual for each entity. 

 

Second, we compare native and cryopreserved samples (figure25). Here we use the 

differentiation of dura mater, glioblastoma, CNS metastasis of unknown primary, 

meningothelial meningioma, modified CNS tissue and oligodendroglioma. 
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Figure25: Top of each subfigure: Mean spectra of native versus cryofixed dura mater (A), glioblastoma (B), 
CNS metastasis of unknown primary (C), meningothelial meningioma (D), modified CNS tissue (E) and 

oligodendroglioma (F). X-axis represents the Raman shift (cm-1) and the Y-axis represents the Raman intensity. 

Bottom of each subfigure: Significance calculation of differences between the native and the cryofixed mean 
spectra. The black lines indicate a significant difference. X-axis represents the Raman shift (cm-1) and the Y-

axis represents the p-value (significance 0/1, Bonferroni-corrected). No spectral differences can be overserved.   

Figure source: own production. Figure produced with Solaisä and Matlabâ. 

 
No significant changes between the compared mean spectra can be observed.  

 

For verification of the before mentioned results, an already trained dualclass (meningioma 

and dura mater)-classifier (see section 5.2.) will be applied on fixed meningioma and dura 

mater samples (figure26). 
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Figure26: SVM-classifier results. (A) Trained MGM-dura mater classifier applied on native MGM and dura 

mater samples corresponding to (C). Sensitivity of 100% and a specificity of 87,5% (B) Trained MGM-dura 
mater classifier applied on native MGM and dura mater samples corresponding to (D). Sensitivity of 100% and 

a specificity of 92,0% (C) Trained MGM-dura mater classifier applied on cryofixed MGM and dura mater 

samples. Sensitivity of 100% and a specificity of 75%.  (D) Trained MGM-dura mater classifier applied on 
formalin-fixed MGM and dura mater samples. Sensitivity of 100% and a specificity of 41,9%. Figure source: 

own production. Figure produced with Matlabâ. 

 

In figure26 a classifier performance with a sensitivity of 100% and a specificity of 75% on 

the cryofixed samples can be observed. The classifier performance diminishes when 

applied on formalin data (sensitivity of 100% and a specificity of 41,9%). Figure27 

represents a subtraction spectrum. The pure formalin spectrum is subtracted from the 

analysed formalin-fixed tissue spectrum. A significant improvement of the classifier 

performance (specificity of 62,8% and of sensitivity 100%) can be observed. Nevertheless, 

the classifier results are underneath the ones from the native data. A new classifier based 

on the ‘difference spectrum data’, meaning the formalin-fixed meningioma and dura mater 

data which are subtracted by the pure formalin spectrum is trained. A slight classifier 

improvement can be observed (specificity of 66,7% and sensitivity of 100%). 
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Figure27: Classifier results when a natively trained classifier is applied on formalin-fixed data with the use of a 
correction-factor. (A) Mean spectra of formalin-fixed dura mater (blue), formalin-fixed meningioma (red) and 

pure formalin (orange). (B) Difference spectra once between formalin-fixed dura mater and pure formalin 

(purple) and once between formalin-fixed meningioma and pure formalin (green). (C) Results of the natively 
trained classifier used on spectra where the pure formalin spectrum was subtracted. Specificity of 62,8% and 

of sensitivity 100%. (D) Results of a newly trained classifier based on the spectra where the pure formalin 

spectrum was subtracted. Specificity of 66,7% and sensitivity of 100%. Figure source: own production. Figure 

produced with Matlabâ. 
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5.1.3 Paper submission 
 
We will submit these results to an adequate journal under the potential title of “Detection 

and analysis of cryopreserved and formalin-fixed neurosurgical samples by Raman 

spectroscopy”. The figures and diagrams as well as the here described results will be partly 

identical to the ones in the paper. 
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5.2 Meningioma-Study 
 
The behaviour of RS in distinguishing meningioma and dura mater tissue is analysed in 

order to verify the possibility of successful identification of different tissue types by RS. 

Could RS be a good tool to detect the infiltration zone between healthy and malignant tissue 

cells? Distinguishing factors are represented at the biochemical level (different content of 

collagen and lipids) as well as by the training of a SVM classifier.  

 
5.2.1 Statistics 

 
In total 59 patients and 1268 measuring points are included in the meningioma study. In 

the enclosed table (table2) a precise enumeration of the here used number of patients as 

well as measuring points split by diagnosis is shown. 

It is important to notice in table2, that no one-by-one addition of the patient number is 

possible since some of the dura mater patients are already included in the numbers of the 

meningioma subtypes. The dura mater samples have been extracted mostly during these 

tumor-operations.
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Table2: Data overview of the included patients and measuring points split by sample entity. Since the samples 

of the ’infiltration zone’ class are partly already introduced in the other subclasses, a simple adding on of each 

subclass to for the ’total’ is not possible. Furthermore, some of the dura mater patients are already included in 
the numbers of the meningioma subtypes since the dura mater samples have been extracted mostly during 

these tumor-operations.  All samples are measured natively.

Sample entity Patients (n) Measuring points 

(n) 

Transitional meningioma 13 229 

Meningothelial meningioma 19 251 

Atypical meningioma 4 62  

Fibrous meningioma 6 69  

Meningioma, not otherwise specified 2 20 

Secretory meningioma 1 14  

Healthy dura mater 22 162 

Tumor infiltration zone Included in 
numbers above 

460 

Verification sample 1 108 
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5.2.2 Meningioma-study results 
 
To analyse if a differentiation between dura mater and meningioma would be possible, the 

differences between the mean spectra of both entities are analysed. The meningiomas are 

furthermore divided into their subgroups. In figure28 the differences of the entire spectrum 

can be observed. Below, certain zoomed-in intervals, which we consider as particularly 

important, are shown. The mean spectrum of dura mater is represented in red; the 

meningioma subtypes are multi-coloured. Furthermore, it is difficult to see a differentiation 

between the meningioma subtypes, which can and will be considered as one entity 

(meningioma) in the future.  

 
Figure28: (a) Mean spectrum underlaid by the standard deviation of dura mater and the different meningioma 

subtypes. (b) to (d): Zoomed-in intervals on the spectral differences between dura mater and meningioma 

subtypes. (b) Subintervals from 830 cm−1 to 1020cm−1, (c) Subintervals from 1200 cm−1 to 1750cm−1, (d) 

Subintervals from 2820 cm−1 to 2960cm−1. The arrows in (a) to (d) represent the distinctive peaks which relay 
on common collagen peaks. X-axis corresponds to the Raman shift (cm-1) and the Y-axis corresponds to the 

Raman intensities. Figure source: Jelke, Mirizzi et al. 2021; Scientific-reports 2021, “Reproduced with 
permission from Springer Nature” 75 
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Afterwards a TSNE (figure29) is performed on these data. In figure29, two well separable 

clusters can be discerned (red dots correspond to dura mater, the coloured ones to 

meningioma samples). For a more precise analysis we considered the entire spectrum as 

well as a clustering over the HWNR. In figure30, we perform the same analysis as in 

figure29 but this time patient-based to avoid any intra-patient confounders. Every dot-colour 

represents a different patient. 

 

 

Figure29: (A) TSNE over the entire spectrum. (B) TSNE over the HWNR spectrum between dura mater (red 

dots) and meningioma subtypes (multi-coloured dots). A clear cluster-formation can be observed in (A) and (B). 

Figure source: Jelke, Mirizzi et al. 2021; Scientific-reports 2021, “Reproduced with permission from Springer 

Nature” 75 
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Figure30: (A) TSNE over the entire spectrum. (B) TSNE over the HWNR spectrum, patient-based. Every dot-

colour represents a different patient. A clear cluster-formation can be observed in (A) and (B). The mixture of 
coloured dots excludes a cluster formation by patient. Figure source: Jelke, Mirizzi et al. 2021; Scientific-reports 

2021, “Reproduced with permission from Springer Nature” 75 

Figure31 represents by arrows the before mentioned collagen peaks, higher in dura mater 

than in meningioma tissue.  

 

 
 
Figure31: Mean spectra of dura mater (red spectrum) and different meningioma subtypes (fibrous, 
meningothelial and transitional) with annotation of the before mentioned collagen peaks. A differentiation based 

on the annotated collagen-peaks can be observed between the spectrum of dura mater and meningioma 

subtypes. X-axis corresponds to the wavenumbers (cm-1) and the Y-axis corresponds to the Raman intensity. 

Figure source: own production. Figure produced with Solaisä and Matlabâ. 

 

 

We apply a TSNE (figure32 and figure33) on the used meningioma and dura mater samples 

to see if collagen alone would still make a difference. A clear clustering between the two 

classes can be identified.  
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Figure32: TSNE over the collagen peak spectrum between dura mater (red dots) and meningioma subtypes 

(coloured dots). Collagen peaks at 815cm-1, 855cm-1, 876cm-1, 938cm-1, 1003cm-1, 1033cm-1, 1250cm-1, 
1267cm-1, 1319cm-1, 1450cm-1, 1663cm-1. A clear cluster formation can be observed. Figure source: Jelke, 

Mirizzi et al. 2021; Scientific-reports 2021, “Reproduced with permission from Springer Nature” 75 
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Figure33: Same TSNE as in figure32 but patient-based to avoid any intra-patient biases. Every dot-colour 

represents a different patient. A clear cluster-formation can be observed. The mixture of coloured dots excludes 

a cluster formation by patient. Figure source: Jelke, Mirizzi et al. 2021; Scientific-reports 2021, “Reproduced 

with permission from Springer Nature” 75 

As a last control we perform here the before mentioned collagenase-experiment (figure34). 

Again, the characteristic peaks for collagen are indicated by arrows.  
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Figure34: Collagenase experiment. In blue, native spectrum of dura mater. In orange, spectrum of the dura 

mater after 15h of collagenase exposure. In red, spectrum of the dura mater after 19h of collagenase exposure. 

A diminishing of the collagen peaks can be observed with a longer exposure time towards the collagenase. X-
axis corresponds to the wavenumbers (cm-1) and the Y-axis corresponds to the Raman intensity. Figure source: 

own production. Figure produced with Solaisä and Matlabâ. 

 

We can see that the collagen peaks diminish over extending collagenase-exposure time. 

No total disappearance of the collagen peaks can be observed.  
 

In a next step we perform the same analyses as for the collagen experiment but this time 

focusing on different lipids. Is a differentiation between meningioma and dura mater 

possible by different lipid contributions? In figure35 no clear cluster formation in the TSNEs, 

based on different lipids, can be observed. The TSNE is at first run over the mean spectra 

of the included meningioma and dura mater samples and afterwards only over the general 

lipid peaks (over peaks of sphingomyelin, of phosphatidylethanolamine, of cholesterol and 

of cholesterol ester). The TSNE is based on specific peaks, characteristic for each analysed 

lipid subgroup. No clear cluster formation between dura mater (red dots) and meningioma 

(blue dots) can be observed.  
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Figure35: TSNE cluster visualization with focus on the lipid peaks for differentiation of dura mater (red dots) 

and meningioma (blue dots). No clear cluster formation can be observed in these plots. Figure source: Jelke, 

Mirizzi et al. 2021; Scientific-reports 2021, “Reproduced with permission from Springer Nature” 75 

In a next step a SVM classifier is trained. A special regard is put on its verification. 

As already mentioned in the material and methods section, a SVM classifier is trained and 

a colour map, usable as an overlay on the VLI, is designed.  

We validate the classification once by using a fivefold-cross-validation and then with an 

external test set. With the fivefold-cross-validation we achieve a sensitivity of 96.06 ± 0.03% 

and a specificity of 95.44 ± 0.02%. Furthermore, a good performance with the external test 

set can be demonstrated, 100% sensitivity and 93.97% specificity. 
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For classifier verification, we chose one specific sample, containing dura mater and 

meningioma and it is overlaid by a multitude of measuring points (figure36). A point-by-

point verification of the classifier with a pathological verification can be achieved this way. 

A sensitivity of 93,0% and a specificity of 89,7% can be accomplished by the classifier, 

resulting in a correct identification of tumor and dura mater tissue. The overlaid heat map 

in (B) of figure36 shows in yellow the ‘meningioma’ tissue and in blue the ‘non-meningioma 

tissue’.  

 

Figure36: Verification of the trained classifier. Dura mater-meningioma-classifier, verified on histological level. 

(A) VLI with the imprinted measuring points and the newly traced frame. (B) Classifier heat map superimposing 

the VLI. Blue corresponds to ‘non-meningioma tissue’ and yellow to ‘meningioma’ tissue. (C) Superposition of 
21 H&E stained slices. The zoomed-in interval corresponds to a tumor infiltration zone. Here blue and yellow 

dots are mixed and on the histological verification an infiltration of malign cells was described. Figure source: 

Jelke, Mirizzi et al. 2021; Scientific-reports 2021, “Reproduced with permission from Springer Nature” 75  
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5.2.3 Publication 

These results have been published on the 8th of December 2021 in “Scientific Reports”. The 

published paper is attached in the supplements (supplement4). Some of the here 

represented figures are extracted from the paper.  They are indicated by : ‘Figure source: 

Jelke, Mirizzi et al. 2021; Scientific-reports 2021, “Reproduced with permission from 

Springer Nature” 75’.
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6 Outlooks 
As we already demonstrated in this study, RS is a multifunctional and easy usable 

diagnostic tool whose potential can and should be extended to other applications than those 

already mentioned. 

In this study the potential of RS to correctly differentiate between fixation states as well as 

between different tissue entities is demonstrated. This could be extended to more and more 

tissue groups, such as the heterogenous group of metastases originating from different 

origins, or to rare brain tumors like ependymomas. It would be conceivable to develop a 

small RS device that could be introduced directly into the microscope of the neurosurgeon, 

linked to neuronavigation to provide direct feedback on the underlying tissue unit during 

surgery. 5-aminolevulinic acid (5-ALA) is commonly used in neurosurgery for better 

visualization of glioblastomas by accumulating in the tumorous tissue. The augmented 

fluorescence can help the neurosurgeon to correctly remove the malignant tissue.108 This 

whole costly and time consuming procedure could be minimized by the use of RS. 

Furthermore, 5-ALA is only accumulating in the infiltration zone of high-grade malignant 

gliomas. RS could be used in any grade of glioma and in the entire sample. However, the 

use of RS should not be limited to brain tumors, but should also be used to diagnose tumors 

of various origin as already started in dermatology and gynaecology. Not only the diagnosis 

of ‘compact’ tumors might be possible in the future with the use of RS, one could also think 

of the analysis of blood samples for a potential early tumor diagnostic. 109 

The augmented research interest in RS opens the door for the construction of an omniclass 

classifier. If we would be able to analyse all different kinds of tissue samples and find 

specific spectral changes, it would be possible to build a complete spectral library. This 

library could be complete enough to easily identify all different types of tumor tissue, which 

would revolutionize the diagnostic field of medicine.
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7 Discussion 
7.1 General discussion and limitations of the study  
 

The incidence of tumors in human beings is increasing over time.110,111 Whether this 

increase is due to better diagnostic tools, an aging population, an unhealthy lifestyle or a 

noxious environment is not really known. Unquestionably, there is an urge need for a quick, 

easy and omnipresent diagnostic tool to identify malignant cells, enabling a precise 

identification of the tumor and proposing the best possible therapy to the patient. 

RS, which is known for being a non-destructive, rapid and easy-usable tool would be a good 

method to fulfilling these needs. First, this involves being able to correctly use RS, to 

understand the biochemistry of different tissues and their impact on the Raman spectrum. 

Second, we have to include a multitude of different samples, both native and fixed, and use 

machine learning algorithms to develop classifiers that can automatically identify the entity 

as well as the margins of a potentially malignant tissue collection.  

By knowing the tumor entity as well as the tumor borders, a more radical tumor excision 

can be achieved, which would significantly reduce the risk of recurrences and consequently 

be associated with a better patient outcome.112  

Raman spectroscopy is already widely used and described in literature. Section 2.2.4 lists 

different utilizations, especially non-clinical utilizations of RS. Furthermore, the review study 

of DePaoli et al. has to be mentioned, representing a compact overview once of RS itself 

and once of the already existing findings.68 Here we focus on the use of RS in different 

subcategories of the medical field, more precisely in neurosurgery and neuropathology. 

Zhou et al. describe the possibility to distinguish ex-vivo between metastases originating 

from five different organs (lung, breast, kidney, rectum and orbita) with a specificity of 75% 

and a sensitivity of 100% using resonant Raman spectroscopy.113 Bergner et al. have 

developed a Raman microscopy-based method to identify metastases, necrosis and normal 

brain tissue on snap-frozen and then sliced tissue preparations with an accuracy of ca. 

99%.114 A similar analysis, as well as similarly good results, are obtained by Koljenovic et 

al.115 They distinguish vital glioblastoma tissue from necrosis by building coloured maps of 

the cryofixed sample slices. Lakomkin et al. have analysed the possibility of using RS for a 

more precise 5-ALA detection in glioblastoma surgery with great results.116 

 

The majority of the studies are performed ex-vivo and even on pre-processed, 

pathologically fixed samples by the use of Raman microscopy. Raman microscopy is more 
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precise than the macroscopic method because it is easy to retrace exactly the measuring 

point back to a precise pathological diagnose. Furthermore, the sample, fixed and prepared 

specially for microscopic analysis, is less susceptible to environmental influences. Since 

we are handling native samples directly after surgical extraction, it is important to have a 

closer look on these macroscopic samples and ensure that the trained classifier is robust 

to all external influencing factors. This technique will reduce the need for costly and time-

consuming intra- and/or peri-operative imaging, like CT or MRI.117 Furthermore, the need 

for a time-delayed neuropathological sample interpretation could be minimized by using 

RS. It could be used whenever time or personnel are not available for rapid tissue analysis. 

 

It is important to take a closer look at possible influencing factors. They could deform the 

actual spectrum and thus lead to incorrect results. The limitations of the study need to be 

discussed in detail to allow a better understanding of RS as well as a precise handling of 

the data in future studies.  

First, the native samples are placed on an aluminium cup and embedded with some 

physiological water. Afterwards, this sample preparation is placed on a movable stage. 

Since the VLI is taken before the stage moves, we must expect minimal sample movement. 

This is due to the fact that it is not possible to fix the sample completely on the aluminium 

cup without destroying it, and some drops of water must be sprayed on the sample to avoid 

dehydration. This could provoke some measuring points to lay outside the sample. This 

should be considered if some spectra, mostly spectra from measuring points located near 

the edges of the sample, are significantly different from the other spectra of this sample. In 

addition, the samples extracted directly during the neurosurgical operation, are not of the 

same size and, more importantly, are not completely plane. The inhomogeneity of the 

sample surface, ups and downs, could influence the spectrum to some extent. Water drops, 

especially ice crystals formed during the cryofixation process could derive the spectrum 

onto another part of the sample or even to a measuring point outside the sample. While this 

is likely to be true for only a minimal portion of the spectra, it should still be considered as 

a possible explanation if a spectrum drops off completely. Since we want to establish an in 

vivo usable diagnostic tool, it is important that we learn how to deal with these inevitable 

incidents. As mentioned before, different parameters (6-30 averages and an acquisition 

time between 800ms to 2000ms for each measuring point) are used to scan the samples. 

The rang of parameters is due to the experimental setup of this study as well as the 

heterogenous sample dataset. 

The longer the acquisition time is, the higher the intensity will be. In figure37, this 

phenomenon can be observed, the intensities (Y-axis) are increasing with higher acquisition 

time. An explanation could be that the higher number of photons scanned by the longer 
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acquisition time, will have a higher impact on the spectral intensity. Pelletier et al. describe 

that if more averages are used, the signal-to-noise ratio will be higher.118 In figure38, we 

were interested in reproducing these findings. 

 

 
Figure37: A piece of muscle scanned firstly with an acquisition time of 1500ms (first picture), then with 2000ms 

(middle picture) and afterwards with 2500ms (last picture). An increase in intensities on the y-axis can be 

observed with longer acquisition times. Figure source: own production. Figure produced with Solais™. 

 

 
Figure38:  A piece of meningioma scanned firstly with 1.0 averages (left picture), then with 1.5 (right picture). 
No clear or significant changes can be observed regarding the signal-to-noise-ratio when increasing the 

averages. Figure source: own production. Figure produced with Solais™. 

 

In all the analyses, special attention was paid to have an equilibrated data set regarding the 

parameters to minimize its potential effect on the results. Furthermore, the scanning itself 

is, inevitably, taking some amount of time which could already induce sample 

decomposition. All the samples are scanned within 20 minutes after excision.  
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All these influencing factors could interfere with the classifier performance, but since we 

want to train an in-vivo classifier it is mandatory that the classifier can handle ‘natural’ 

variances. As seen in the different presented results, which all have a high sensitivity and 

specificity, our classifier is able to successfully deal with these variances. 

 

As already mentioned in the text, the choice of container-material (plastic or aluminium cup) 

is of great importance. When performing the RS scan, it is mandatory to use an easily 

accessible material, such as aluminium. It has been proven that some materials, like plastic, 

have a great Raman spectrum that would interfere with the spectrum of the actual tissue 

being scanned. Not only would the tissue spectrum become nearly useless, but also if the 

classifier would have been trained on these plastic-interfered spectra, the performance of 

the classifier would be affected if used on samples which are not measured on plastic. It is 

important for further studies to use a correct and fitting sample background. As already 

mentioned, metallic aluminium with its negligent Raman spectrum would be a good choice. 

It has to be noticed that the oxidized form of aluminium shows a spectrum in the 

wavenumber region below 900cm-1. This region has to be handled with care since this could 

have an influence in smaller samples.61 Calcium fluoride (CaF2) has one single Raman peak 

at 322cm-1 which would make it an even better choice for the background material. Since 

aluminium is better available, especially in the operating room, we opted for aluminium. 

Calcium fluoride would, because of its translucent property, be a perfect choice for Raman 

microscopy.119  

  

All the used methods for data pre-processing (background removal, Savitzky Golay filter, 

outlier sorting, removal of cosmic ray artefacts etc.) are widely used in the spectral- and 

Raman spectroscopic field. Without them, Raman spectra are difficult or impossible to use 

for comparative studies. For the future, and especially for the introduction of RS in the 

clinical routine, it would be essential to have a standardized pre-processing procedure 

usable without any deeper ML knowledge.  Our data pre-processing is simple and similar 

to methods used in literature. It could be easily integrated into any ML-code.
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We chose a SVM classifier because it is widely used in the ML field and has performed well 

in our analyses. But we could also have used other classifiers. We believe that the choice 

of classifier algorithm should not be critical for the classifier outcome. Table3 shows that 

other methods would work equally well. Different classifiers produced with the Matlab® 

Classification Learner app are used on the meningioma and dura mater data for comparison 

with our own SVM classifier. The results do not change significantly, demonstrating the 

robustness of the trained classifier.  

 
Classifier Accuracy 

Fine Tree 92.4% 

Medium Tree 92.4% 

Coarse Tree 93.0% 

Fine KNN 83.6% 

Medium KNN 83.2% 

Coarse KNN 88.6% 

Cosine KNN 92.6% 

Cubic KNN 77.6% 

Weighted KNN 80.6% 

Linear Discriminant 95.2% 

Linear SVM 96.4% 

Gaussian Naïve Bayes 75.6% 

Kernel Naïve Bayes 89.4% 

Narrow Neural Network 97.0% 

Medium Neural Network 97.8% 

Wide Neural Network 97.6% 

Bilayered Neural Network 96.6% 

Trilayered Neural Network 95.2% 

 
Table3: Results of different classifiers produced with the Matlab® Classification Learner app. 

 

Nevertheless, SVM classifiers have their limitations, which should be kept in mind. SVM is 

known for good separation when the analysed groups (here analysed sample entities) have 

clear margins and good performance in high dimensional spaces. But SVM is less 

performant when the different classes overlap (for example in the infiltration zone). It is 

sometimes difficult to retrace the exact classification because SVM attributes points above 
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or below the hyperplane.76,77 In summary, SVM is a good choice distinguishing meningioma 

and dura mater but should be handled with caution when analysing the infiltration zone. 

 

A TSNE can be used for non-linear data separation and is known to preserve the global 

data structure well. This means that data points which are close to each other in a 

multidimensional setting will also be plotted side by side when dimensionality reduction is 

performed by TSNE. However, TSNE will not reproduce exactly the same figure (the same 

cluster-arrangement) every time, even when performed on the same data set, a slight 

rotation is possible.73 This has no influence on the actual result, only on the visual 

representation. To minimize the effect of overfitting the machine learning tool, meaning that 

the classifier is only usable on the specific data it was trained on, a five-fold-cross validation 

is performed. The trained classifier, in this case the dual-class-classifier for meningioma 

and dura mater, could be used as it is to analyse different meningioma and dura mater 

samples. 

 

One important limiting factor of this study is the limited number of patients and the difficulty 

in obtaining access to healthy brain samples. We are working with native tissue samples 

collected during neurosurgical procedures and are therefore limited to these samples. 

Furthermore, because the patient should not be exposed to any additional risk at any point 

of the study, small samples or biopsies often cannot be introduced into the RS study. The 

potential risk of sample destruction or dehydration, which would urge an additional biopsy 

for the patient, must be considered. This would not be tolerable and will therefore be 

avoided. Small samples are fixed directly in a formalin solution and sent to neuropathology 

without Raman spectroscopic examination. This precaution also limits our access to more 

rare tumor entities. The same is true for healthy brain tissue: it is intolerable to remove 

healthy tissue without a medical reason. The only ‘healthy’ samples we are analysing are 

tissue pieces that must be removed to get to the actual tumor. This technique is also used 

in most previously published studies to distinguish healthy from malignant human tissue 

samples. 120,121,122 One could also think of using samples from body-donors, but here the 

need for direct Raman scanning to avoid any post-mortem biochemical sample alterations 

is a limiting factor.  

 

When analysing the Raman spectrum, the different wavenumber regions must be 

considered, as described before. In literature, the used wavenumber regions vary widely. 

Kalkanis et al. and Wills et al. use a spectral range that tends to be in the lower variety 

(600cm-1-1800cm-1).122,123 The high-wavenumber region is also often used because it is less 

influenced by background noise and contains sufficient information for successful sample 
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differentiation.124,91 Ultimately, it is important to understand and consider the advantages 

respectively the disadvantages of each region, and depending on the main goal of the 

study, the spectral range has to be adjusted. To minimize any ‘deformation’, the whole or a 

at least a major part of the spectrum should be considered.  

 

Jermyn et al. already describe the design of a “handheld contact Raman spectroscopy 

probe technique for live, local detection of cancer cells in the human brain”.125 They claim 

a differentiation of healthy brain tissue and cancer tissue with a sensitivity of 93% and a 

specificity of 91% by using their RS device. They focus on the identification of glioblastoma 

cells. The device provides immediate intraoperative feedback about the underlying tissue 

by projecting the Raman spectrum onto a nearby computer. Furthermore, they describe the 

differentiation between healthy brain and tumor tissue by different lipid bands for cancer 

cells (700cm-1 and 1142cm-1), higher bands from 1540cm-1 to 1645cm-1, a higher number 

of nucleic acids for malignant tissue. Machine learning is performed with a boosted trees 

method. They found a very good way to include RS into the neurosurgical workflow. 

Desroches et al. found similar results by also using a hand-held probe to differentiate 

normal brain tissue and glioblastoma (specificity of 89%; sensitivity of 84%).126 In another 

study, Jermyn et al. are interested in the possibility to detect malignant cells that penetrated 

deeper into the healthy brain tissue than imaging (MRI) would suggest by using their 

designed handheld RS probe,.127 They perform multiple in-vivo RS measurements in the 

resection cavity, track the location of the measurement using infrared signals from the probe 

back to pre-operative imaging, and take biopsies from the measurement locations. 

Afterwards, the biopsies are analysed by a neuropathologist. According to all these results, 

a retracement of the fugitive malignant cells can be achieved with an accuracy between 

3,7cm and 2,4cm beyond the imaging margins. 

In the future, we would want to incorporate a Raman spectroscope directly into the surgical 

microscope, which would allow an even more precise tissue analysis without switching 

between the microscope and the handheld probe. Furthermore, it would be of great benefit 

to create a coloured heat map that could also be integrated into the surgical microscope, 

giving the neurosurgeon easy feedback on the underlying tissue composition. We would 

also like to extend the tumor classification beyond glioblastomas towards an omniclass-

classifier. An omniclass-classifier could omit the need to take biopsies and provide direct 

and precise diagnosis of the sample directly intraoperatively. Please note here that these 

are still experimental setups and further studies on this topic have to be done.  
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7.2 Fixation study 
 
In order to increase the number of samples, the amount of possible data, and to improve 

machine learning as well as the understanding of RS, it is important to recur to already 

existing tumor-banks. Since these samples are fixed chemically by formalin or physically 

by cryopreservation (often dry-ice), the specific changes in the Raman spectrum of certain 

samples are investigated in this study. Yu et al. describe the importance of tumor-banks 

preserving and the need for correct sample storage, especially the maintenance of 

constant, very low temperatures.46 The quality of this procedure needs to be verified by a 

pathologist, analysing for example the amount of tumor cells in the stored sample and 

comparing it to the amount of the beginning. Estrada et al. have done a similar work on 

long-term-storage of monkey brain samples stored at -80 degree Celsius in a 15% glycerol 

solution.128 After defreezing the samples for analysis, they demonstrate a strong stability of  

sample quality over time. RS would be an easier, quicker and most importantly, non-

destructive way to resolve this task. It might be possible to analyse samples without thawing 

them.  Biochemical changes induced by cryofixation and/or formalin-fixation have already 

widely been discussed in literature. Thavarajah et al. and Jones et al. describe detailed 

reactions induced by formalin-fixation on the biochemical composition of a sample.42,129 

Several authors and study groups already have had precise insight not only into the quality 

of long-stored samples and the biochemical changes induced by dry-ice and formalin-

fixation, but also into the potential of RS as a helpful tool in these domains. Here we 

combine these two ideas, first the identification of biochemical changes induced by dry-ice 

and formalin-fixation and second the potential of recurring to tumor-banks to improve the 

samples available for RS analysis.  

 

No significant difference is observed in the spectral analyses between the native and frozen 

samples. Cryopreservation does not lead to major biochemical changes within the tissue 

composition, which is in line with the before described literatures claiming good sample 

quality even after long-term cryopreservation. When our previously trained dualclass-

classifier (trained on native meningioma and dura mater samples) is applied on cryofixed 

data, a sensitivity of 100% and a specificity of 75% can be observed.  

To summarize these results, cryofixation does not cause major changes in the biochemistry 

of the sample, which allows to analyse cryofixed samples with a natively trained classifier. 

This opens the door for the non-destructive use of RS to analyse tumor-banks. Furthermore, 

an already trained classifier could easily be used to retrospectively explore the tissue entity 

of stored samples. No need for a special training of a cryofixed classifier. Similar results 

have been found by Wills et al. who investigated whether inclusion of thawed samples, 
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more precisely neuropediatric tumors, would be possible to increase RS data.123 They found 

that Raman microscopy can recognize the correct tissue entity in a cryopreserved section. 

These results suggest that RS is able to correctly identify a sample entity even when the 

sample has been cryopreserved and that the biochemical changes induced by dry-ice are 

not so pronounced that they would change the overall spectral appearance of the sample. 

The potential formation of ice-crystals mentioned previously was discussed by Kalkanis et 

al.51 They found a diminished accuracy of 77,5% in frozen H&E stained sections by Raman 

microscopy when the samples contain these freezing artefacts, as opposed to an accuracy 

of 97,8% when there are no ice-crystals in the sample. Nevertheless, both accuracies are 

still good and satisfying. These results can be relocated in our findings. First, at a spectral 

level, where no significant differences can be found between native and cryofixed samples, 

meaning that cryofixation does not have a strong effect on the biochemistry of the sample. 

And second, through our natively trained classifier, which can still recognize the tissue origin 

even in a cryofixed sample. The ice-peaks described in literature are mostly located in the 

wavenumber region above 3000cm-1 while our wavenumber-scale only ranges from 314cm-

1 to 2994cm-1. Some important data induced by cryofixation may thus be overlooked. But 

since these Raman bands are mainly OH-stretching, this should not influence to great 

extend our results since we are focusing on the intra-tissue induced modifications. 

Furthermore, the low wavenumber region, between 10cm-1 and 400cm-1, representing 

mostly very heavy atoms, could be of great interest for the analysis of ice crystals. But as 

mentioned above, this region was omitted from the analyses because of the interference of 

aluminium. 

 

However, formalin-fixation induces new or altered peaks specific for the different entities. 

Formalin-fixation infiltrates the sample. When the previously trained dualclass-classifier is 

applied on formalin-fixed data, a deterioration of the results can be observed (specificity of 

41,9% and sensitivity of 100%). In a next step, we are interested whether a simple 

subtraction of the pure-formalin spectrum would improve the classifier results of the 

formalin-fixed data. We were able to obtain a slight improvement (specificity of 62,8% and 

sensitivity of 100%). Special training of a new classifier based only on these difference-

spectra improved the results even further (specificity of 66,7% and sensitivity of 100%).  

Formalin-fixation induces further changes and has to be handled with caution. As 

mentioned before, literature already suggests that formalin-fixation in itself is introducing 

major alterations in the biochemical structure of a sample, which is consistent with our 

results. It is not possible to use a natively trained classifier on formalin-fixed data. In future 

studies, a special classifier for formalin-fixation should be developed. We performed first 

steps in this direction by improving our results by subtracting the pure formalin spectrum 
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from the spectrum of formalin-fixed data. The formalin data are stored for different time laps 

in the formalin solution, which could have an influence on peak differentiation. 

 

Due to the limited number of samples and/or measuring points in this part of the study, 

further experiments should be done by including more samples and more tumor entities. 

This could lower the discrepancy and strengthen our results. Nevertheless, this study gives 

a first and important insight into the potential of RS in handling fixed data. In summary, we 

demonstrated here the possibility to include tumor-banks (cryofixed samples) into the RS 

analyses, which would allow a quick increase in the number of samples. This would be a 

perfect source to improve ML and include rare tumors. In addition, RS could complement 

the work of the neuropathologist, particularly when working with cryofixed samples.
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7.3 Meningioma study 
 

Tumor recurrences after surgical tissue removal are common and are associated with bad 

survival outcome. The recurrence rate is directly related to the left-over malignant cells at 

primary surgical tumor removal (Simpson grading). Therefore, there is an urgent need for 

a powerful and easy-usable diagnostic tool directly inside of the operating room to 

differentiate between tumor and non-tumor tissue, which would allow a more complete 

tumor resection and thus reduce the risk of tumor recurrence. RS could compete commonly 

used intraoperative resection control tools like intraoperative ultrasound, MRI or 

intraoperative smear preparations because of its quick and precise use.130,131,132,133 All these 

techniques are expensive, time consuming, and must be performed by trained staff. We 

start this study by analysing meningioma and dura mater because they are relatively 

common (important for adequate data collection) and good accessibility during surgery. 

This topic has been previously addressed in literature by several study groups. Krafft et al. 

analysed glioma, meningioma and schwannoma samples using Raman microscopy.134 

They do the analysis once with RS and once with infrared spectroscopy. They create so-

called Raman-maps on which they can successfully identify, beyond others, the 

meningioma tissue based on different shades of grey. Furthermore, they identify and use 

the differences in lipid and collagen composition to distinguish meningioma and dura mater 

as a comparative tool. A sensitivity of 90,9% and a specificity of 100% for discrimination 

between malignant and healthy meningeal tissue is claimed by Zhou et al. by looking at the 

different Raman bands as well as by using a SVM classifier.135 Similar results are also 

provided by Aguiar et al. who have looked more closely at the biochemistry of meningeal 

tumor composition.136 One particular study has to be mentioned here, the study of 

Koljenovic et al.103 They address the problem of tumor recurrence by residual malignant 

meningioma cells with the aim of introducing RS into the neurosurgical routine. They find a 

main difference between meningioma and dura mater by the content of collagen. With the 

design of coloured Raman maps on cryofixed sections, they are able to differentiate 

meningioma and dura mater with an accuracy of 100%. All these studies already 

demonstrate the great potential of RS for successful differentiation of meningioma and dura 

mater. It should be noted that in all these examples, the samples were cryopreserved and/or 

fixed by a different method, no native tissue pieces were used. We are interested in the 

native samples that are collected directly during neurosurgical resection and are not treated 

with any other substances. This makes them more heterogeneous, but better reflects the 

reality one would have if RS would directly be installed in the microscope of the 

neurosurgeon. 
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In a first step, we focused on the spectral differences. Meningioma and dura mater are well 

separable, but the differentiation between the meningioma subtypes seems to be more 

difficult. The same results are reproduced by applying a TSNE to these data. A special 

patient-based TSNE excludes any intra-patient biases. Once successful differentiation is 

observed, we move on to the next step. The different biochemical composition of the two 

sample entities and the possibility to differentiate them based on biochemical Raman peaks 

is analysed. According to the before mentioned literature and the here included table4, we 

start with collagen. At a spectral level, the collagen specific peaks are more prominent in 

dura mater than in meningioma. A TSNE based only on collagen peaks confirms these 

results.  

 
 Peaks (cm-1) Assignments Literature 
Collagen 855 (Hydroxy-) Proline 

  
Huang et al. 2003137 
  

Collagen 876 (Hydroxy-) proline 
P 

Huang et al. 2003137 
Frank et al. 1995121 

Collagen 938 (Hydroxy-) Proline 
  

Cheng et al. 2005138 

Collagen 1003 Phenylalanine 
  

Chan et al. 2006139 

Collagen 1033 Phenylalanine 
  

Chan et al. 2006139 
  

Collagen 1245 Amide III Shetty et al. 2006140 
Collagen 1250 Amide III 

  
Cheng et al. 2005138 
  

Collagen 1267 Amide III 
  

Malini et al. 2006141 
  

Collagen 1271 Amide III band in proteins Sigurdsson et al. 2004142 
Collagen 1319 CH2CH3 deformation 

  
Frank et al. 1995121 
  

Collagen 1447 CH2 bending mode of proteins & lipids Faolain et al. 200544 
Collagen 1450 CH2CH3 deformation 

  
Shafer-Peltier et al. 2002143 
  
  

Collagen 1637 Amid I Faolain et al. 200544 
Collagen 1661 Amide I band Naumann et al. 1998144 
Collagen 1663 Proteins, collagen type I 

  
Binoy et al. 2004145 
  

Collagen 2940 C-H vibrations in lipids & proteins 

 

Sigurdsson et al. 2004142 

Table4: Main collagen peaks with the biochemical background as well as the literature source where the 

information is extracted from. Table source: Jelke, Mirizzi et al. 2021; Scientific-reports 2021, “Reproduced with 

permission from Springer Nature” 75 

At a last verification of the results, we apply a collagenase solution to a piece of dura mater. 

A diminishing of the specific collagen peaks can be observed. The collagenase experiment 

is only a supplementary verification of our collagen-hypotheses using a single sample. 

Votteler et al. also performed a collagenase experiment by exposing leaflets of porcine 

aortic valves, which are mostly composed of collagen, to a collagenase.146 They found 

similar results, an overall decrease but no complete disappearance of the collagen peaks 
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over the exposure time. A longer exposure time to the collagenase could eventually lead to 

total disappearance of these peaks. 

Afterwards, the differentiation of meningioma and dura mater based on lipid content is 

considered in more detail. A differentiation between meningioma and dura mater can be 

achieved, but again no clear clustering in the TSNE for the meningioma subtypes. Aguiar 

et al. claim that the lipid content is higher in tumours tissue than in healthy dura mater.147 

These results can be reproduced to some extend by our findings, but the discrimination is 

of poorer nature than when based on collagen. When it comes to the meningioma subtypes, 

further studies have to be done. In clinical practice, the knowledge of the exact subtype is 

not crucial since it would not affect the surgical removal procedure. The potential 

differentiation of dura mater and meningioma by their different collagen and lipid 

contribution is of great importance. 

The applied SVM classifier shows successful results in differentiating the two sample 

entities: a sensitivity of 96.06 ± 0.03% and a specificity of 95.44 ± 0.02% for an internal 

fivefold cross validation and a sensitivity of 100% and a specificity of 93.97% if validated 

with an external test set. This demonstrates that the trained classifier is able to handle 

heterogeneous native tissue samples, which is essential for direct use in the surgical field. 

It provides direct feedback without the need for pathological sample preparation and a 

specialist in neuropathology. The classifier results are consistent with the before mentioned 

literature results. 

A last verification of our results is performed by taking one sample containing dura mater 

and meningioma and scanning it in detail using multiple measuring points. This sample is 

afterwards precisely analysed by a specialist in neuropathology so that we can review each 

measuring point for its histological description. The trained classifier and a heat map are 

overlayed on the sample, differentiating dura mater and meningioma with a sensitivity of 

93,0% and a specificity of 89,7%. These results show that our classifier is robust even at a 

precise histological verification level. The here designed heat map would be a great 

visualization tool, a simple product design, for later introduction of RS within the surgical 

microscope. The main question for the neurosurgeon is the exact identification of the 

infiltration zone. In our ‘special sample’ we are already able to successfully distinguish the 

tumorous cell clusters that are spreading in the healthy meningeal tissue. For a more 

precise insight, the number of measuring points as well as their proximity has to be 

increased. Since the neurosurgeon is equipped with neuronavigation, a microscope and, of 

course, his/her own experience and optical interpretation, he or she can decide where the 

potential infiltration zone is proximately and lay more measuring points on this precise area. 

In summary, RS would be a helpful non-destructive diagnostic tool to correctly identify 
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meningioma tissue intraoperatively, even in the infiltration zone. These findings could 

significantly reduce the risk of tumor recurrences. 
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8 Conclusion 
 
We have demonstrated that RS is a strong, quick and easy usable new diagnostic tool that 

has the potential to revolutionize the diagnostic field of medicine.  

We present here a successful identification of fixed samples by a constant Raman spectrum 

for cryofixation and the appearance of new, sample-specific peaks for formalin-fixation. As 

seen in the result section, no significant statistical difference can be observed between 

native and cryofixed data. Furthermore, we demonstrate that it is possible to use a natively 

trained classifier on cryofixed data. As a conclusion, on the one hand, it is not necessary to 

train a special classifier on cryofixed data since we can use the natively trained one. On the 

other hand, formalin-fixation is inducing specific peaks that are different for each analysed 

sample entity. This underlines the hypothesis that formalin induces specific biochemical 

changes in each specific sample/molecule. By subtracting the pure formalin spectrum from 

the mean spectrum of formalin-fixed data, we can ameliorate the classifier performance. 

Since the results are not as good as the cryofixed data, it is important to notice that this 

provides a quick overview of the underlying sample entity, but it is still mandatory to finalize 

the sample differentiation with further analyses. 

A profound knowledge of the biochemical changes introduced by different fixation methods, 

in this case, cryofixation and formalin-fixation, will allow the use of already existing tumor-

banks. This would rapidly increase the number of scannable tissue samples, and also 

augment the number of rare tumor probes, allowing for a strong improvement in machine 

learning. This could open the door for an omniclass-classifier. This classifier could be 

applied not only to native but also to fixed data. This would be a helpful tool to complement 

the work of the neuropathologist, which requires a high level of expertise as well as 

specialised tools. This could make RS a ubiquitously usable diagnostic tool that 

complements the work of the neuropathologist and can be used in an omnipresent 

environment where time-consuming and costly analyses are not whished or technically not 

feasible.  

Furthermore, the successful differentiation between dura mater and meningioma is shown. 

These are fundamental results for a better understanding of the functioning of RS, the 

required background analyses and the handling of the specific spectra.  

Tumor recurrences are often caused by residual malignant cells left over from the initial 

surgery, as it is nearly impossible to remove all tumour cells without the risk of removing 

healthy brain tissue as well. RS would provide the opportunity to obtain immediate, 

instantaneous feedback on the tissue entity of the underlying cell formation. Consequently, 
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RS could help the neurosurgeon with the fundamental question of whether or not to remove 

this tissue. RS, as a new and sophisticated tool, that does not require preanalytical sample 

processing, could easily fulfil these needs. It has the potential to be introduced into the daily 

neurosurgical routine, minimizing the risk of recurrences, the need for biopsies and time-

consuming neuropathological sample preparations. Of course, we are still in the beginning 

of understanding and exploring the vast potential of RS. To assure optimal patient care, RS 

should still be reviewed and accompanied by the trained eye of a neuropathologist and 

postoperative imaging (CT or MRI) to verify Simpson grade I resection at the beginning of 

its introduction into routine clinical practice. Afterwards, these precautions could be easily 

omitted. The colour overlay heat map designed based on the SVM classifier results could 

be integrated into the neurosurgeon's microscope in the near future.  

In summary, we present here a rapid, easy usable and accurate spectroscopic device for 

insitu sample diagnostic. Furthermore, the newly obtained results on the fundamental 

biochemical differences between tissues types as well as between fixation methods are 

explored. The potential of RS remains to be analysed in further studies, but already shows 

its enriching contribution to simpler and non-destructive tissue handling. This study shows 

the great potential of RS to be introduced into the clinical routine of the operating room in 

the coming years.
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12 Supplements 
 
12.1 Supplement1: WHO-Classification of CNS tumors 2016 and 2021 
 
This table is based on the table of content of the 2016th and the 2021th WHO-
Classification for tumors of the human CNS and should give an overview on the different 
tumor-classifications between 2016 and 2021. 
 

Tumortype 2016th WHO-Classification2 Tumortype 2021th WHO-Classification3 
Diffuse astrocytic and oligodendroglial tumours  Gliomas, glioneuronal tumors, and neuronal tumors 
Diffuse astrocytoma, IDH-mutant 

Gemistocytic astrocytoma, IDH-mutant  
Diffuse astrocytoma, IDH-wildtype  
Diffuse astrocytoma, NOS 
Anaplastic astrocytoma, IDH-mutant  
Anaplastic astrocytoma, IDH-wildtype  
Anaplastic astrocytoma, NOS  
Glioblastoma, IDH-wildtype  

Giant cell glioblastoma 
Gliosarcoma  
Epithelioid glioblastoma 

Glioblastoma, IDH-mutant  
Glioblastoma, NOS 
Diffuse midline glioma, H3 K27M-mutant  
Oligodendroglioma, IDH-mutant and 1p/19q-codeleted 
Oligodendroglioma, NOS  
Anaplastic oligodendroglioma, IDH-mutant and 1p/19q-
codeleted 
Anaplastic oligodendroglioma, NOS  
Oligoastrocytoma, NOS 
Anaplastic oligoastrocytoma, NOS 

Adult-type diffuse gliomas  
Astrocytoma, IDH-mutant 
Oligodendroglioma, IDH-mutant, and 1p/19q-
codeleted             
Glioblastoma, IDH-wildtype 

Pediatric-type diffuse low-grade gliomas 
Diffuse astrocytoma, MYB- or MYBL1-altered        
Angiocentric glioma  
Polymorphous low-grade neuroepithelial tumor 
of the young  
Diffuse low-grade glioma, MAPK pathway-
altered 

Pediatric-type diffuse high-grade gliomas  
Diffuse midline glioma, H3 K27-altered  
Diffuse hemispheric glioma, H3 G34-mutant  
Diffuse pediatric-type high-grade glioma, H3-
wildtype and IDH-wildtype  
Infant-type hemispheric glioma  

Circumscribed astrocytic gliomas  
Pilocytic astrocytoma 
High-grade astrocytoma with piloid features  
Pleomorphic xanthoastrocytoma  
Subependymal giant cell astrocytoma  
Chordoid glioma  
Astroblastoma, MN1-altered  

Glioneuronal and neuronal tumors  
Ganglioglioma 
Desmoplastic infantile ganglioglioma / 
desmoplastic infantile astrocytoma 
Dysembryoplastic neuroepithelial tumor  
Diffuse glioneuronal tumor with 
oligodendroglioma-like features and nuclear 
clusters  
Papillary glioneuronal tumor  
Rosette-forming glioneuronal tumor  
Myxoid glioneuronal tumor  
Diffuse leptomeningeal glioneuronal tumor  
Gangliocytoma 
Multinodular and vacuolating neuronal tumor  
Dysplastic cerebellar gangliocytoma (Lhermitte-
Duclos disease)  
Central neurocytoma  
Extraventricular neurocytoma  
Cerebellar liponeurocytoma 

Other astrocytic tumours  
Pilocytic astrocytoma 

Pilomyxoid astrocytoma 
Subependymal giant cell astrocytoma  
Pleomorphic xanthoastrocytoma 
Anaplastic pleomorphic xanthoastrocytoma 

 

Ependymal tumours Ependymal tumors 
Subependymoma 
Myxopapillary ependymoma  
Ependymoma 

Papillary ependymoma  
Clear cell ependymoma  
Tanycytic ependymoma 

Supratentorial ependymoma  
Supratentorial ependymoma, ZFTA fusion-positive 
Supratentorial ependymoma, YAP1 fusion-positive  
Posterior fossa ependymoma  
Posterior fossa ependymoma, group PFA  
Posterior fossa ependymoma, group PFB  
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Ependymoma, RELA fusion-positive  
Anaplastic ependymoma 

Spinal ependymoma  
Spinal ependymoma, MYCN-amplified  
Myxopapillary ependymoma  
Subependymoma 

Other gliomas  
Chordoid glioma of the third ventricle  
Angiocentric glioma  
Astroblastoma 

 

Choroid plexus tumours  Choroid plexus tumors 
Choroid plexus papilloma 
Atypical choroid plexus papilloma  
Choroid plexus carcinoma 

Choroid plexus papilloma  
Atypical choroid plexus papilloma  
Choroid plexus carcinoma 

Neuronal and mixed neuronal-glial tumours   
Dysembryoplastic neuroepithelial tumour 
Gangliocytoma  
Ganglioglioma 
Anaplastic ganglioglioma 
Dysplastic cerebellar gangliocytoma (Lhermitte-Duclos 
disease) 
Desmoplastic infantile astrocytoma and ganglioglioma  
Papillary glioneuronal tumour 
Rosette-forming glioneuronal tumour 
Diffuse leptomeningeal glioneuronal tumour  
Central neurocytoma 
Extraventricular neurocytoma  
Cerebellar liponeurocytoma  
Paraganglioma 

 

Tumours of the pineal region Pineal tumors 
Pineocytoma 
Pineal parenchymal tumour of intermediate differentiation 
Pineoblastoma 
Papillary tumour of the pineal region 

Pineocytoma  
Pineal parenchymal tumor of intermediate differentiation 
Pineoblastoma  
Papillary tumor of the pineal region  
Desmoplastic myxoid tumor of the pineal region, 
SMARCB1-mutant 

Embryonal tumours Embryonal tumors 
Medulloblastoma 
Medulloblastoma, NOS 
Medulloblastomas, genetically defined 

Medulloblastoma, WNT-activated 
Medulloblastoma, SHH-activated and TP53-
mutant 
Medulloblastoma, SHH-activated and TP53-
wildtype Medulloblastoma, non-WNT/non-SHH 

Medulloblastomas, histologically defined 
Medulloblastoma, classic 
Desmoplastic/nodular medulloblastoma 
Medulloblastoma with extensive nodularity 
Large cell / anaplastic medulloblastoma  

Embryonal tumour with multilayered rosettes, C19MC-
altered 
Embryonal tumour with multilayered rosettes, NOS 
Other CNS embryonal tumours 

Medulloepithelioma 
CNS neuroblastoma 
CNS ganglioneuroblastoma 
CNS embryonal tumour, NOS 

Atypical teratoid/rhabdoid tumour 
CNS embryonal tumour with rhabdoid features 

Medulloblastoma 
Medulloblastomas, molecularly defined  
Medulloblastoma, WNT-activated  
Medulloblastoma, SHH-activated and TP53-
wildtype Medulloblastoma, SHH-activated and 
TP53-mutant  
Medulloblastoma, non-WNT/non-SHH  
Medulloblastomas, histologically defined 

Other CNS embryonal tumors 
Atypical teratoid/rhabdoid tumor  
Cribriform neuroepithelial tumor  
Embryonal tumor with multilayered rosettes  
CNS neuroblastoma, FOXR2-activated  
CNS tumor with BCOR internal tandem 
duplication  
CNS embryonal tumor 

Tumours of the cranial and paraspinal nerves  Cranial and paraspinal nerve tumors 
Schwannoma 

Cellular schwannoma  
Plexiform schwannoma 

Melanotic schwannoma  
Neurofibroma 

Atypical neurofibroma  
Plexiform neurofibroma 

Perineurioma  
Hybrid nerve sheath tumours 
Malignant peripheral nerve sheath tumour (MPNST)  

MPNST with divergent differentiation  
Epithelioid MPNST 
MPNST with perineurial differentiation 

Schwannoma  
Neurofibroma  
Perineurioma 
Hybrid nerve sheath tumor 
Malignant melanotic nerve sheath tumor  
Malignant peripheral nerve sheath tumor  
Paraganglioma 

Meningiomas Meningiomas 
Meningioma Meningioma 
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Meningioma variants 
Meningothelial meningioma  
Fibrous meningioma 
Transitional meningioma 
Psammomatous meningioma  
Angiomatous meningioma  
Microcystic meningioma  
Secretory meningioma 
Lymphoplasmacyte-rich meningioma  
Metaplastic meningioma  
Chordoid meningioma  
Clear cell meningioma  
Atypical meningioma Papillary meningioma  
Rhabdoid meningioma 
Anaplastic (malignant) meningioma 

Mesenchymal, non-meningothelial tumours Mesenchymal, non-meningothelial tumors 
Solitary fibrous tumour / haemangiopericytoma 
Haemangioblastoma  
Haemangioma 
Epithelioid haemangioendothelioma  
Angiosarcoma  
Kaposi sarcoma 
Ewing sarcoma / peripheral primitive neuroectodermal 
tumour 
Lipoma 
Angiolipoma  
Hibernoma 
Liposarcoma 
Desmoid-type fibromatosis  
Myofibroblastoma 
Inflammatory myofibroblastic tumour  
Benign fibrous histiocytoma 
Fibrosarcoma 
Undifferentiated pleomorphic sarcoma / malignant fibrous 
histiocytoma 
Leiomyoma 
Leiomyosarcoma  
Rhabdomyoma 
Rhabdomyosarcoma  
Chondroma 
Chondrosarcoma  
Osteoma 
Osteochondroma  
Osteosarcoma 

Soft tissue tumors  
Fibroblastic and myofibroblastic tumors  

Solitary fibrous tumor  
Vascular tumors 

Hemangiomas and vascular 
malformations  
Hemangioblastoma 

Skeletal muscle tumors  
Rhabdomyosarcoma 

Uncertain differentiation  
Intracranial mesenchymal tumor, FET-
CREB fusion-positive CIC-rearranged 
sarcoma  
Primary intracranial sarcoma, 
DICER1-mutant  
Ewing sarcoma 

Chondro-osseous tumors 
Chondrogenic tumors  

Mesenchymal chondrosarcoma  
Chondrosarcoma 

Notochordal tumors  
Chordoma (including poorly 
differentiated chordoma) 

 

Melanocytic tumours  Melanocytic tumors 
Meningeal melanocytosis 
Meningeal melanomatosis  
Meningeal melanocytoma  
Meningeal melanoma 

Diffuse meningeal melanocytic neoplasms  
Meningeal melanocytosis and meningeal 
melanomatosis  

Circumscribed meningeal melanocytic neoplasms  
Meningeal melanocytoma and meningeal 
melanoma 

Lymphomas Hematolymphoid tumors 
Diffuse large B-cell lymphoma of the CNS  

Corticoid-mitigated lymphoma 
Sentinel lesions 

Immunodeficiency-associated CNS lymphomas  
AIDS-related diffuse large B-cell lymphoma  
EBV+ diffuse large B-cell lymphoma, NOS  
Lymphomatoid granulomatosis 

Intravascular large B-cell lymphoma 
Miscellaneous rare lymphomas in the CNS  

Low-grade B-cell lymphomas  
T-cell and NK/T-cell lymphomas 
Anaplastic large cell lymphoma (ALK+/ALK-)  

MALT lymphoma of the dura 

Lymphomas  
CNS lymphomas  

Primary diffuse large B-cell lymphoma 
of the CNS  
Immunodeficiency-associated CNS 
lymphoma  
Lymphomatoid granulomatosis  
Intravascular large B-cell lymphoma  

Miscellaneous rare lymphomas in the CNS  
MALT lymphoma of the dura  
Other low-grade  
B-cell lymphomas of the CNS  
Anaplastic large cell lymphoma 
(ALK+/ALK−)  
T-cell and NK/T-cell lymphomas  

Histiocytic tumours Histiocytic tumors 
Langerhans cell histiocytosis  
Erdheim-Chester disease  
Rosai-Dorfman disease 
Juvenile xanthogranuloma  
Histiocytic sarcoma 

Erdheim-Chester disease  
Rosai-Dorfman disease 
Juvenile xanthogranuloma  
Langerhans cell histiocytosis  
Histiocytic sarcoma 

Germ cell tumours Germ cell tumors 
Germinoma Mature teratoma  
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Embryonal carcinoma  
Yolk sac tumour  
Choriocarcinoma  
Teratoma 

Mature teratoma  
Immature teratoma 

Teratoma with malignant transformation  
Mixed germ cell tumour 

Immature teratoma  
Teratoma with somatic-type malignancy  
Germinoma 
Embryonal carcinoma  
Yolk sac tumor  
Choriocarcinoma  
Mixed germ cell tumor 

Familial tumour syndromes Neurofibromatosis  
Neurofibromatosis type 1 
Neurofibromatosis type 2  
Schwannomatosis 
Von Hippel-Lindau disease  
Tuberous sclerosis 
Li-Fraumeni syndrome  
Cowden syndrome  
Turcot syndrome 

Mismatch repair cancer syndrome  
Familial adenomatous polyposis 

Naevoid basal cell carcinoma syndrome  
Rhabdoid tumour predisposition syndrome 

 

Tumours of the sellar region Tumors of the sellar region 
Craniopharyngioma 

Adamantinomatous craniopharyngioma  
Papillary craniopharyngioma 

Granular cell tumour of the sellar region  
Pituicytoma 
Spindle cell oncocytoma 

Adamantinomatous craniopharyngioma  
Papillary craniopharyngioma 
Pituicytoma, granular cell tumor of the sellar region, and 
spindle cell oncocytoma  
Pituitary adenoma/PitNET  
Pituitary blastoma 

Metastatic tumours Metastases to the CNS 
 Metastases to the brain and spinal cord parenchyma  

Metastases to the meninges 
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12.2 Supplement2: Informed Consent 
 

 
Page1 of the informed consent
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Page2 of the informed consent
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Page3 of the informed consent
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12.3 Supplement3: List of used abbreviations 
 
Healthy Tissue 

Tag Long version 
Fat Fat 

CNS CNS tissue 
GM Grey Matter 
WM White Matter 

Arach Arachnoid mater 
Dura Dura mater 
CSF Cerebrospinal fluid 

(Liquor 
cerebrospinalis) 

B Bone 
Cart Cartilage 

Sk Skin 
SCFT Subcutaneous fat 

tissue 
Dis Discus vertebralis 

Fibr Fibrous connective 
tissue 

VesVLI Vessel, identified in 
visible light image 
(VLI) 

Blood Blood 
Mus Skeletal muscle 

B_mar Bone marrow 
H Hair 

Modified Tissue 
Tag Long version 

modCNS Modified CNS 
tissue 

modVes Malignantly altered 
blood vessel 

Coag Coagulated blood 
InfZo Infiltration zone 

N Necrosis 
Inflamm Inflammation 

 
Diffuse astrcytic and 
oligodendroglial tumors 

Tag Long Version 
GBM Glioblastoma 

DA Diffuse 
astrocytoma 

AA Anaplastic 
astrocytoma 

PA Pilocytic 
astrocytoma 

SEGA Subependymal 
giant cell 
astrocytoma 

DMG Diffuse midline 
glioma 

ODG Oligodendroglioma 
ODG_ana 

III 
Anaplastic 
oligodendroglioma 

 
Ependymal tumors 

Tag Lon version 
EDY Ependymal tumor 

 
Choroid plexus tumors 

Tag Long Version 
CPT Choroid plexus tumor 

 
Neuronal & mixed neuronal-glial 
tumors 

Tag Long version 
NT Neuronal tumor 

DNET Dysembryoplastic 
neuroepithelial tumor 

GLGL Ganglioglioma 
 
Embryonal tumors 

Tag Long Version 
MDB Medulloblastoma 

 
Nerve sheath tumors 

Tag Long version 
Sch Schwannoma 
NF Neurofibroma 

 
Meningiomas 

Tag Long version 
MGM_NOS Meningioma not 

otherwise 
specified 

MGM_men Meningothlelial 
meningioma 

MGM_fibr Fibrous 
meningioma 

MGM_tra Transitional 
meningioma 

MGM_aty Atypical 
meningioma 

MGM_sec secretory 
meningioma 

 
Mesenchymal, non-
meningothelial tumors 

Tag Long version 
MES Mesenchymal, non-

meningothelial tumor 
(super group) 

Sarc Sarcoma 
HAP Hemangiopericytoma 
HAB Hemangioblastoma 
VMF Vessel malformation 
LMF Lipidic malformation 

(lipoma, liposarcoma, 
...) 

OMF Osseous malformation 
(osteosarcoma, ...) 

CMF Cartilagenous 
malformation 
(chordoma, ...) 

FMF Fibrous malformation 
MMF Muscular malformation 

 
Lymphomas 

Tag Long version 
LYM Lymphoma 

DLBCL Diffuse large B-cell 
lymphoma 

 
Germ-cell tumors 

Tag Long version 
GCL Germ-cell tumor (super 

group) 
Terat Teratoma 
Derm Dermoid cyst 

 
Tumors of the pituitary gland 

Tag Long version 
PIT Tumors of the pituitary 

gland 
 
Metastatic tumors 

Tag Long version 
MET Metastasis 

 

Primary of metastasis 
Tag Long version 

MET_Pul Lung cancer 
MET_NSCL

C 
Non-small-cell 
lung carcinoma 

MET_Br Breast cancer 
MET_GIT Gastro 

intestinal tumor 
MET_Mel Melanoma 

MET_RCC Renal cell 
carcinoma 

MET_UT Urologic tumor 
MET_CUP Cancer of 

unknown 
primary 

MET_CNS CNS carcinoma 
MET_PCa Prostate 

carcinoma 
MET_LMSar

c 
Leiomyosarcom
a 

Properties 
Tag Long version 

ALA+ Gliolan® (5-ALA) 
positive 

ALA- Gliolan® (5-ALA) 
negative 

Con+ Contrast 
enhancement in MRI 

Con- Non-contrastive in 
MRI 

NAT Native, unfixed 
FOR Fixed in formalin 
CRU Crushed 
FRO Frozen 

Coag Coagulated tissue 
CUSA Cavitron ultrasonic 

surgical aspirator® 
SteBio Stereotactic biopsy 

  
Rec Tumor recurrence 

Background 
Tag Long version 
Alu Aluminum 
Pla Plastic 

 
 

 



 

 
 

115 

 
 

12.4 Supplement4: Published meningioma paper 
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13 Curriculum vitae 
 

Aus datenschutzrechtlichen Gründen wird der Lebenslauf in der elektronischen Fassung 

der Dissertation nicht veröffentlicht. 
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