
Analyzing Pre-trained and Fine-tuned

Language Models

Marius Mosbach

A dissertation submitted towards the degree

Doctor of Engineering (Dr.-Ing.)

of the Faculty of Mathematics and Computer Science

of Saarland University

Saarbrücken, 2023

Marius Mosbach: Analyzing Pre-trained and Fine-tuned Language Models, © 2023

day of colloquium:

18.01.2024

dean of the faculty:

Prof. Dr. Jürgen Steimle

examination board:

Chair – Prof. Dr. Vera Demberg

Reviewer – Prof. Dr. Dietrich Klakow

Reviewer – Prof. Dr. Jonathan Berant

Academic Assistant – Dr. Mareike Hartmann

Abstract

The field of natural language processing (NLP) has recently undergone a paradigm

shift. Since the introduction of transformer-based language models in 2018, the

current generation of natural language processing models continues to demon-

strate impressive capabilities on a variety of academic benchmarks and real-world

applications. This paradigm shift is based on a simple but general pipeline which

consists of pre-training neural language models on large quantities of text, followed

by an adaptation step that fine-tunes the pre-trained model to perform a specific

NLP task of interest.

Despite the impressive progress on academic benchmarks and the widespread

deployment of pre-trained and fine-tuned language models in industry, these models

do not come without shortcomings which often have immediate consequences

for the robustness and generalization of fine-tuned language models. Moreover,

these shortcomings demonstrate that we still lack a fundamental understanding

of how and why pre-trained and fine-tuned language models work as well as the

individual steps of the pipeline that produce them.

This thesis makes several contributions towards improving our understanding of

pre-trained and fine-tuned language models by carrying out a detailed analysis of

various parts of the modern NLP pipeline. Our contributions range from analyzing

the linguistic knowledge of pre-trained language models and how it is affected by

fine-tuning, to a rigorous analysis of the fine-tuning process itself and how the

choice of adaptation technique affects the generalization of models. Overall, we

provide new insights about previously unexplained phenomena and the capabilities

of pre-trained and fine-tuned language models.

iii

Zusammenfassung

Im Bereich der Verarbeitung natürlicher Sprache (NLP) hat sich ein Paradigmen-

wechsel vollzogen. Seit der Einführung von transformer-basierten Sprachmodellen

im Jahr 2018 zeigt die aktuelle Generation neuronaler Sprachverarbeitungsmodelle

beeindruckende Fähigkeiten bei einer Vielzahl von akademischen Benchmarks und

realen Anwendungen. Dieser Paradigmenwechsel basiert auf einer einfachen, aber

allgemeinen Pipeline, die aus dem Vortrainieren von neuronalen Sprachmodellen

auf großen Textmengen besteht, gefolgt von einem Anpassungsschritt, der das

vortrainierte Modell modifiziert, um eine bestimmte NLP-Aufgabe durchzuführen.

Trotz des beeindruckenden Fortschritts bei akademischen Benchmarks und des

weit verbreiteten Einsatzes von vortrainierten und angepassten Sprachmodellen

in der Industrie sind diese Modelle nicht ohne Mängel, und oft haben diese

Mängel unmittelbare Auswirkungen auf die Robustheit und Generalisierung der

Sprachmodelle. Darüber hinaus zeigen sie, dass uns einerseits noch immer ein

grundlegendes Verständnis dafür fehlt, wie und warum vortrainierte und angepasste

Sprachmodelle funktionieren, andererseits fehlt ein grundlegendes Verständnis der

einzelnen Schritte der Pipeline.

Diese Arbeit leistet mehrere Beiträge zur Verbesserung unseres Verständnisses

von vortrainierten und angepassten Sprachmodellen, indem sie eine detaillier-

te Analyse verschiedener Teile der modernen NLP-Pipeline durchführt. Unsere

Beiträge reichen von der Analyse des linguistischen Wissens von vortrainierten

Sprachmodellen und wie dieses durch die Anpassung beeinflusst wird bis hin

zu einer rigorosen Analyse des Anpassungsprozesses selbst und wie die Wahl

der Anpassungstechnik die Generalisierung von Modellen beeinflusst, und liefern

insgesamt neue Erkenntnisse über bisher unerklärte Phänomene und Fähigkeiten

von vortrainierten und angepassten Sprachmodellen.

iv

Acknowledgments

I’d like to thank my PhD advisor Dietrich Klakow for giving me the freedom

to follow my curiosity, pursue my own research interests at all times, and for

providing a welcoming research environment free of pressure that allowed me to

thrive.

I also want to thank my colleagues at LSV: Thomas Trost, Aditya Mogadala,

David Howcroft, Xiaoyu Shen, and Michael Hedderich, who were inspiring and

helpful during the early days of my PhD; Marimuthu Kalimuthu and Volha

Petukhova for being great colleagues and friends throughout the last 5 years;

Jesujoba Alabi and David Adelani for being great colleagues and collaborators;

Miaoran Zhang for being a great teammate in the B4 project and the best Dietrich

simulator; Dawei Zhu for being the best person to share an office with and a

friend; Anupama Chingacham, Alexander Blatt, Aravind Krishnan, Dana Ruiter,

Paloma Garcia de Herreros, and Julius Steuer for being great colleagues. Thank

you also to Nicolas Louis for being a great system administrator and colleague

and for forgiving me for sending emails instead of opening tickets.

I am very fortunate to have met many great collaborators and friends along

the way. I am particularly grateful to Badr Abdullah, Vagrant Gautam, Maksym

Andriushchenko, Shauli Ravfogel, and Yanai Elazar for their friendship and for

inspiring me to become a better researcher.

I want to thank my partner Jennifer for her endless support throughout all

these years, my brothers Fabian and Marvin, and my parents Bettina and Werner

for enabling me to study and their constant support. Bettina, now I might finally

get a real job ;).

Lastly, I am grateful to the Deutsche Forschungsgemeinschaft for funding my

PhD (Project-ID 232722074 – SFB 1102).

v

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research objectives . 3

1.3 Contributions . 5

1.3.1 Probing pre-trained models for linguistic knowledge 7

1.3.2 On the interplay between fine-tuning and probing 8

1.3.3 Investigating fine-tuning stability 9

1.3.4 Investigating generalization of task-adapted models 10

1.4 Additional publications . 11

1.5 Outline . 14

2 Background 15

2.1 Notation . 16

2.2 Machine learning basics . 17

2.2.1 Supervised learning . 17

2.2.2 Generative learning . 20

2.2.3 Stochastic gradient descent 22

2.3 Pre-trained language models . 24

2.3.1 Decoder-only models . 25

2.3.2 Encoder-only models . 26

2.4 Adapting pre-trained language models 28

2.4.1 Fine-tuning . 28

2.4.2 In-context learning . 30

2.5 Probing language model representations 30

2.5.1 Sentence-level probing . 31

vii

viii Contents

3 Probing Pre-trained Models for Linguistic Knowledge 33

3.1 Introduction . 35

3.1.1 Models . 37

3.2 Related Work . 38

3.3 Probing representations for knowledge of RCs 39

3.3.1 Dataset construction . 39

3.3.2 Experimental setup . 41

3.3.3 Probing results and discussion 42

3.3.4 Diagnostics . 44

3.4 Analyzing predictions for RC awareness 48

3.4.1 Analyzing grammatical and semantic knowledge 48

3.5 Discussion and conclusion . 54

4 On the Interplay Between Fine-tuning and Probing 57

4.1 Introduction . 59

4.2 Related work . 60

4.3 Methodology and setup . 62

4.3.1 Fine-tuning tasks . 63

4.3.2 Probing tasks . 64

4.3.3 Pre-trained models . 65

4.3.4 Fine-tuning and probing setup 65

4.4 Experiments . 67

4.4.1 Probing accuracy . 67

4.4.2 How does fine-tuning affect probing accuracy? 68

4.5 What happens during fine-tuning? 71

4.5.1 Analyzing attention distributions 71

4.5.2 Analyzing perplexity . 73

4.5.3 Discussion . 75

4.6 Conclusion . 76

Contents ix

5 Investigating Fine-tuning Stability 77

5.1 Introduction . 79

5.2 Related work . 81

5.3 Datasets . 81

5.4 Fine-tuning . 83

5.5 Investigating previous hypotheses for fine-tuning instability 84

5.5.1 Does catastrophic forgetting cause fine-tuning instability? 84

5.5.2 Do small datasets cause fine-tuning instability? 86

5.6 Disentangling optimization and generalization 88

5.6.1 The role of optimization 89

5.6.2 The role of generalization 94

5.7 A simple but hard-to-beat baseline for fine-tuning BERT 95

5.8 Conclusions . 97

6 Investigating the Generalization of Task-adapted Models 99

6.1 Introduction . 101

6.2 Background . 103

6.2.1 Fine-tuning . 103

6.2.2 In-context learning . 104

6.3 A fair comparison of fine-tuning and in-context learning 105

6.4 Results . 107

6.4.1 A closer look at fine-tuning generalization 109

6.4.2 Our findings generalize beyond OPT 114

6.5 Discussion . 116

6.6 Comparing fine-tuning and in-context learning 118

6.7 Related work . 120

6.8 Conclusions . 121

6.9 Limitations . 122

7 Conclusion and Future Directions 125

x Contents

7.1 Summary of contributions . 125

7.2 Future directions . 128

7.2.1 Modular (task-)adaptation 128

7.2.2 Limits of update-free task adaptation 129

7.2.3 Good vs. bad fine-tuning minima 129

7.2.4 The pre-train–instruct–align–fine-tune pipeline 130

List of Figures 133

List of Tables 143

List of Acronyms 150

Bibliography 153

A Probing Pre-trained Models for Linguistic Knowledge 181

a.1 Probing dataset . 181

a.2 Probing results . 183

a.2.1 ALBERT-base-v1 vs. ALBERT-xxlarge-v1 184

a.2.2 Qualitative analysis for predicted type of antecedent . . . 185

B On the Interplay Between Fine-tuning and Probing 189

b.1 Hyperparameters and task statistics 189

b.2 Additional results . 190

C Investigating Fine-tuning Stability 195

c.1 Alternative notions of stability . 195

c.2 Task statistics . 196

c.3 Hyperparameters . 197

c.4 Ablation studies . 197

c.5 Additional gradient norm visualizations 199

Contents xi

c.6 Loss surfaces . 200

c.7 Training curves . 200

c.8 Additional fine-tuning results . 200

D Investigating the Generalization of Task-adapted Models 207

d.1 Experimental details . 208

d.1.1 Hardware . 208

d.1.2 Label distribution . 208

d.1.3 In-context learning: Additional details 209

d.1.4 In-context learning: Comparison with previous work . . . 209

d.1.5 Fine-tuning: Additional details 209

d.2 Additional results for OPT models 210

d.2.1 Significance tests . 210

d.2.2 In-context learning . 211

d.2.3 Fine-tuning . 211

d.3 Additional results for Pythia models 215

d.4 Analyzing individual OPT fine-tuning runs 217

1
Introduction

Contents

1.1 Motivation . 1

1.2 Research objectives . 3

1.3 Contributions . 5

1.3.1 Probing pre-trained models for linguistic knowledge 7

1.3.2 On the interplay between fine-tuning and probing 8

1.3.3 Investigating fine-tuning stability . 9

1.3.4 Investigating generalization of task-adapted models 10

1.4 Additional publications . 11

1.5 Outline . 14

1.1 Motivation

Since the introduction of transformer-based pre-trained neural language models

in 2018 (Devlin et al., 2019; Y. Liu et al., 2019a), the field of natural language

processing (NLP) has witnessed a paradigm shift. Instead of designing and training

highly task-specific models from scratch, the current default approach for most

1

2 Introduction

Figure 1.1: The modern NLP pipeline. A randomly initalized model θrand is trained on

large quantities of text, producing a pre-trained language model θPT. The

pre-training step is followed by fine-tuning, which adapts the pre-trained

model to a downstream task and results in a task-specific model θFT which

can then be used for inference. Alternatively, we can bypass the fine-tuning

step and instead perform task adaptation via in-context learning. This

allows us to directly use the pre-trained model for inference.

NLP tasks consists of adapting general-purpose1 pre-trained language models, a

process which typically requires only very few task-specific changes to the model

architecture, and therefore allows us to easily apply the same pre-trained model

to different tasks. Over the last five years (2019 – 2023), this paradigm shift has

led to impressive progress on a large variety of downstream NLP tasks, ranging

from traditional computational linguistics tasks such as part-of-speech tagging

and more challenging tasks like natural language inference, to text-based dialogue

and assistant systems (A. Wang et al., 2018; A. Wang et al., 2019b; OpenAI, 2023,

inter alia).

At the core of this impressive progress lies a very simple but general pipeline

which is illustrated in Figure 1.1. The first step of this pipeline, which we will

refer to as the modern NLP pipeline for the remainder of this thesis, consists

of pre-training a (large) neural language model on large quantities of text using

1 Given the impressive capabilities of the most recent generation of pre-trained models, e.g.,

GPT-4 (OpenAI, 2023), we believe it is justified to call them general-purpose models and we

will do so for the remainder of this thesis.

1.2 Research objectives 3

self-supervised training. Due to the discrepancy between the pre-training objective

(e.g., masked language modeling) and the downstream task (e.g., classification),

the pre-training step is followed by an adaptation step which fine-tunes the pre-

trained model to perform a specific task of interest. During fine-tuning, we either

update all of the pre-trained parameters or update only a small fraction of them

by leveraging parameter-efficient fine-tuning techniques. In both cases, however,

fine-tuning results in a task-specific model which can be used for a single task. An

alternative task-adaptation technique which was popularized by the most recent

advances in training pre-trained language models (Brown et al., 2020; OpenAI,

2023), allows us to bypass the fine-tuning step by treating the downstream task

as a language modeling problem. This process, known as in-context learning

(ICL), enables adapting a pre-trained model without updating any parameters2

and allows even non-expert users to easily leverage pre-trained language mod-

els. Recent advancements in in-context learning have led to impressive progress

on challenging reasoning benchmarks, surpassing the capabilities of fine-tuned

language models by large margins (Wei et al., 2022b); a development which has

resulted in unprecedented interest from the general public in the promises and

potential risks associated with the use of large language models.

1.2 Research objectives

The previously described pipeline is ubiquitous in modern-day NLP and pre-

trained and fine-tuned language models are now dominating research in academia

as well as in industry.3 However, regardless of their impressive capabilities, pre-

trained and fine-tuned language models are not without shortcomings and many

challenges remain. The contributions made in this thesis center around three

shortcomings of pre-trained and fine-tuned language models:

2 We provide additional details about these adaptation methods in Chapter 2.
3 We discuss an extended version of this pipeline which considers two additional steps, namely,

instruction fine-tuning and alignment to human preferences, in Chapter 7.

4 Introduction

1 It is well established that fine-tuned language models are often right for

the wrong reasons and their good performance on downstream tasks can at

least in part be explained by the tendency to pick up spurious correlations

during the adaptation process (Jia and Liang, 2017; T. McCoy et al., 2019;

Niven and Kao, 2019; Warstadt et al., 2020b, inter alia). These results stand

in contrast to a large body of evidence that pre-trained language models

encode various forms of linguistic and factual knowledge (N. F. Liu et al.,

2019; Tenney et al., 2019a; Petroni et al., 2019; Goldberg, 2019; Hewitt and

Manning, 2019, inter alia). When combined, these findings require taking

a nuanced perspective on the interplay between the strong capabilities of

language models, as shown by their impressive results on common NLP tasks,

and their encoding of linguistic and factual knowledge, and demonstrate

the need for investigating the interplay between the linguistic capabilities of

pre-trained language models and their downstream performance.

2 Fine-tuned language models often exhibit striking variation in downstream

task performance when performing small changes to the adaptation process

such as changing the random seed used for initializing model weights, the

order of training examples, or the format of a task instruction (Dodge et al.,

2020b; Webson and Pavlick, 2022; Lu et al., 2022). Large variations in

fine-tuning performance are undesirable for several reasons such as hinder-

ing reproducible research and complicating the distinction between actual

improvements due to modeling or algorithmic advances and comparisons

against weak baselines. Given the ubiquity of fine-tuned language models, it is

therefore critical to gain a better understanding of the fine-tuning algorithms

that are commonly applied to adapt language models to downstream tasks.

3 As mentioned in the previous section, the rapid progress in training ever

larger language models has resulted in novel ways to adapt pre-trained

language models to downstream tasks by simply instructing them perform

a task of interest via in-context learning. Instead of adapting a model via

gradient based fine-tuning, in-context learning allows task adaptation via

1.3 Contributions 5

mere textual interaction and has lead to impressive progress on challenging

reasoning benchmarks (Wei et al., 2022a; Wei et al., 2022b). At the same

time, there is growing evidence that in-context learning suffers from similar

shortcomings as fine-tuning such as the sensitivity to changes in the data

order (Min et al., 2022; Lu et al., 2022) and difficulties with generalizing

to out-of-distribution inputs (Si et al., 2023). Given the ubiquity of task

adaptation via fine-tuning and in-context learning in modern NLP, it is

necessary to investigate their respective benefits and downsides and provide

a fair comparison of task adaptation approaches.

The shortcomings discussed above demonstrate that in many aspects we still

lack a fundamental understanding of how and why pre-trained and fine-tuned

language models work so well, as well as of the individual steps of the modern

NLP pipeline that produce them. Next, we discuss how this thesis addresses the

aforementioned shortcomings and outline our contributions.

1.3 Contributions

The research carried out in this thesis addresses the shortcomings described above

and aims to provide a better understanding of the capabilities of pre-trained and

fine-tuned language models. To achieve this goal, we critically investigate the

individual stages of the modern NLP pipeline and rigorously analyze previously

unexplained phenomena and capabilities of pre-trained and fine-tuned language

models. Figure 1.2 shows the chapters of this thesis along the modern NLP

pipeline together with the shortcomings they address. Our contributions range

from analyzing the linguistic knowledge of pre-trained language models (Chapter 3)

and how it is affected by fine-tuning (Chapter 4), to a rigorous analysis of the

fine-tuning process itself (Chapter 5), and how the choice of adaptation technique

affects the generalization of models during inference (Chapter 6).

6 Introduction

Figure 1.2: Our contributions along the modern NLP pipeline. Each chapter addresses

one of the shortcomings posed in §1.2.

Concerning the pre-training stage, we study whether pre-trained language

models encode grammatical knowledge about relative clauses in English. We

demonstrate that viewing probing results in isolation can lead to overestimating

the linguistic capabilities of a model which highlights the importance of building

up claims about the linguistic knowledge encoded in pre-trained language models

beyond mere probing-based evaluations. We then investigate how fine-tuning

changes the linguistic knowledge encoded by a model and find that while fine-

tuning can indeed improve probing performance this is an artifact of the probing

setup rather than the result of encoding more linguistic knowledge in the model.

Next, we study the fine-tuning process itself and answer an open question

about the instability of fine-tuning and hypothesized causes. We show that fine-

tuning instability is caused by optimization difficulties that lead to vanishing

gradients and hence, poor generalization. Based on our analysis, we suggest a

simple baseline that makes fine-tuning pre-trained language models significantly

more stable while maintaining or even improving overall performance.

Lastly, we study the generalization behavior of task-adaptation via fine-tuning

and in-context learning and show that fine-tuned language models can generalize

well out-of-domain. We find that in fact both adaptation approaches generalize

similarly; both exhibit large differences in performance and crucially depend on

model size. Our findings highlight that robust task adaptation remains an open

challenge. Below, we provide a more detailed summary of our core contributions.

1.3 Contributions 7

1.3.1 Probing pre-trained models for linguistic knowledge

Chapter 3 focuses on deepening our understanding of the capabilities of pre-

trained language models by analyzing the linguistic knowledge encoded in their

representations. In our analysis we focus on relative clauses (in American English)

as a complex linguistic phenomenon needing contextual information and antecedent

identification to be resolved. In contrast to previous work, we do not analyze

the linguistic knowledge of the model by only training probing classifiers or by

evaluating the (token) predictions of the language model in isolation. Instead, we

combine these types of evaluations to get a more fine-grained understanding of

how the linguistic knowledge encoded by a model is reflected in its predictions.

Our probing results show that pre-trained language models indeed encode lin-

guistic knowledge about grammaticality, achieving high classification performance.

However, when evaluating the probing classifiers on more challenging diagnostic

cases and evaluating the token predictions of the models, we find pronounced

model-specific weaknesses especially on semantic knowledge, which strongly im-

pacts performance. Our fine-grained analysis highlights the importance of building

up claims about model performance and the linguistic knowledge of pre-trained

language models beyond purely probing-based evaluations.

The content presented in Chapter 3 is based on:

Mosbach, Marius, Stefania Degaetano-Ortlieb, Marie-Pauline Krielke, Badr

M. Abdullah, and Dietrich Klakow (2020). “A Closer Look at Linguistic

Knowledge in Masked Language Models: The Case of Relative Clauses in

American English.” In: Proceedings of the 28th International Conference on

Computational Linguistics. Barcelona, Spain (Online): International Commit-

tee on Computational Linguistics, pp. 771–787. url: https://aclanthology.

org/2020.coling-main.67.

https://aclanthology.org/2020.coling-main.67
https://aclanthology.org/2020.coling-main.67

8 Introduction

1.3.2 On the interplay between fine-tuning and probing

Our next contribution, which is presented in Chapter 4, builds on our findings

about the linguistic knowledge of pre-trained language models and investigates

the connection between high performance on downstream tasks and the linguistic

information encoded by a model. We investigate the hypothesis that the strong

capabilities of fine-tuned language models can at least implicitly be attributed to

the vast amount of linguistic knowledge which they encode (Pruksachatkun et al.,

2020a). To this end, we study three different pre-trained language models and

investigate through sentence-level probing how fine-tuning them on downstream

tasks affects the linguistic information encoded in their representations.

We find that while fine-tuning indeed changes the representations of pre-

trained models – and these changes are typically larger for higher layers – fine-

tuning has a positive effect on probing accuracy only in very few cases, and this

effect mainly depends on the pooling strategy used to compute sentence repre-

sentations for probing. Our findings demonstrate that there is no straightforward

causal relationship between the linguistic information encoded by a model and its

performance on NLP downstream tasks, which calls for a careful interpretation of

changes in probing performance as a result of fine-tuning.

The content presented in Chapter 4 is based on:

Mosbach, Marius, Anna Khokhlova, Michael A. Hedderich, and Dietrich

Klakow (2020). “On the Interplay Between Fine-tuning and Sentence-level

Probing for Linguistic Knowledge in Pre-trained Transformers.” In: Findings

of the Association for Computational Linguistics: EMNLP 2020. Online:

Association for Computational Linguistics, pp. 2502–2516. url: https://

aclanthology.org/2020.findings-emnlp.227.

https://aclanthology.org/2020.findings-emnlp.227
https://aclanthology.org/2020.findings-emnlp.227

1.3 Contributions 9

1.3.3 Investigating fine-tuning stability

In contrast to our previous contributions which focused on analyzing the repre-

sentations of pre-trained and fine-tuned language models, in Chapter 5 we focus

on analyzing the fine-tuning process itself. Previous work (Devlin et al., 2019; Lee

et al., 2020; Dodge et al., 2020a) has observed large differences in downstream

task performance simply when fine-tuning models with different random seeds.

The two most popular hypotheses proposed for this intriguing behaviour are:

catastrophic forgetting and the small size of the fine-tuning datasets. Motivated

by these anecdotal observations, we perform a rigorous investigation of fine-tuning

instability in order to determine its root cause.

We analyze three different pre-trained language models fine-tuned on widely

used datasets and show that the hypotheses commonly stated in previous work

fail to explain the observed phenomena. Instead the observed instability is caused

by optimization difficulties during fine-tuning that lead to vanishing gradients.

Based on our analysis, we present a simple but strong baseline approach for

fine-tuning that makes fine-tuning pre-trained language models significantly more

stable than previously proposed approaches while at the same time maintaining

or even improving performance.

The content presented in Chapter 5 is based on:

Mosbach, Marius, Maksym Andriushchenko, and Dietrich Klakow (2021). “On

the Stability of Fine-tuning BERT: Misconceptions, Explanations, and Strong

Baselines.” In: International Conference on Learning Representations: ICLR

2021. Online. url: https://openreview.net/forum?id=nzpLWnVAyah.

https://openreview.net/forum?id=nzpLWnVAyah

10 Introduction

1.3.4 Investigating generalization of task-adapted models

Our final contribution is concerned with the last step of the NLP pipeline, namely,

inference. We compare the generalization behavior of task-adaptation via few-shot

fine-tuning and in-context learning, which has recently gained popularity over fine-

tuning due to its simplicity and strong performance on challenging reasoning tasks.

In addition, recent work has argued that in-context learning leads to improved out-

of-domain generalization compared to fine-tuning, which is known to pick up on

spurious correlations during training (Si et al., 2023). In Chapter 6, we investigate

whether the observed weaker out-of-domain generalization of fine-tuned models is

an inherent property of fine-tuning and provide a fair comparison between the

generalization of fine-tuning and in-context learning.

Our findings demonstrate that fine-tuned language models can generalize well

both in and out-of-domain. In fact, we find that the generalization of fine-tuning

and in-context learning is highly similar as both approaches exhibit large variation

in performance and strongly depend on properties such as model size and the

number of examples. Our findings provide evidence that the poor of out-of-domain

generalization of fine-tuned models observed in previous work is not a fundamental

flaw of fine-tuning but rather a result of their experimental setup, and highlight

that truly robust task adaptation remains a challenge.

The content presented in Chapter 6 is based on:

Mosbach, Marius, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow, and

Yanai Elazar (July 2023). “Few-shot Fine-tuning vs. In-context Learning:

A Fair Comparison and Evaluation.” In: Findings of the Association for

Computational Linguistics: ACL 2023. Toronto, Canada: Association for

Computational Linguistics, pp. 12284–12314. url: https://aclanthology.

org/2023.findings-acl.779.

https://aclanthology.org/2023.findings-acl.779
https://aclanthology.org/2023.findings-acl.779

1.4 Additional publications 11

1.4 Additional publications

Beyond the contributions discussed in this thesis, I have further contributed as a

co-author to the following publications and pre-prints during my PhD:

Elazar, Yanai, Nora Kassner, Shauli Ravfogel, Amir Feder, Abhilasha Ravichander,

Mosbach, Marius, Yonatan Belinkov, Hinrich Schütze, and Yoav Goldberg

(2023). “Measuring Causal Effects of Data Statistics on Language Model’s

‘Factual’ Predictions.” In: url: https://arxiv.org/abs/2207.14251.

Zhu, Dawei, Xiaoyu Shen, Mosbach, Marius, Andreas Stephan, and Dietrich

Klakow (July 2023). “Weaker Than You Think: A Critical Look at Weakly Su-

pervised Learning.” In: Proceedings of the 61st Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers). Best paper award .

Toronto, Canada: Association for Computational Linguistics, pp. 14229–14253.

url: https://aclanthology.org/2023.acl-long.796.

Alabi, Jesujoba O., David Ifeoluwa Adelani, Mosbach, Marius, and Dietrich

Klakow (2022). “Adapting Pre-trained Language Models to African Languages

via Multilingual Adaptive Fine-Tuning.” In: Proceedings of the 29th International

Conference on Computational Linguistics. Best paper award . Gyeongju,

Republic of Korea: International Committee on Computational Linguistics,

pp. 4336–4349. url: https://aclanthology.org/2022.coling-1.382.

Deshpande, Awantee, Dana Ruiter, Mosbach, Marius, and Dietrich Klakow

(2022). “StereoKG: Data-Driven Knowledge Graph Construction For Cultural

Knowledge and Stereotypes.” In: Proceedings of the Sixth Workshop on Online

Abuse and Harms (WOAH). Seattle, Washington (Hybrid): Association for

Computational Linguistics, pp. 67–78. doi: 10.18653/v1/2022.woah-1.7.

url: https://aclanthology.org/2022.woah-1.7.

Zhang, Miaoran, Mosbach, Marius, David Adelani, Michael Hedderich, and

Dietrich Klakow (2022). “MCSE: Multimodal Contrastive Learning of Sentence

https://arxiv.org/abs/2207.14251
https://aclanthology.org/2023.acl-long.796
https://aclanthology.org/2022.coling-1.382
https://doi.org/10.18653/v1/2022.woah-1.7
https://aclanthology.org/2022.woah-1.7

12 Introduction

Embeddings.” In: Proceedings of the 2022 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies. Seattle, United States: Association for Computational Linguistics,

pp. 5959–5969. doi: 10 . 18653 / v1 / 2022 . naacl - main . 436. url: https :

//aclanthology.org/2022.naacl-main.436.

Zouhar, Vilém, Mosbach, Marius, Debanjali Biswas, and Dietrich Klakow

(2022a). “Artefact Retrieval: Overview of NLP Models with Knowledge Base

Access.” In: url: https://arxiv.org/abs/2201.09651.

Zouhar, Vilém, Mosbach, Marius, and Dietrich Klakow (2022b). Fusing Sentence

Embeddings Into LSTM-based Autoregressive Language Models. url: https:

//arxiv.org/abs/2208.02402.

Zouhar, Vilém, Mosbach, Marius, Miaoran Zhang, and Dietrich Klakow (2022c).

“Knowledge Base Index Compression via Dimensionality and Precision Reduc-

tion.” In: Proceedings of the 1st Workshop on Semiparametric Methods in NLP:

Decoupling Logic from Knowledge. Dublin, Ireland and Online: Association for

Computational Linguistics, pp. 41–53. doi: 10.18653/v1/2022.spanlp-1.5.

url: https://aclanthology.org/2022.spanlp-1.5.

Mosbach, Marius, Irina Stenger, Tania Avgustinova, Bernd Möbius, and Di-

etrich Klakow (Sept. 2021). “incom.py 2.0 - Calculating Linguistic Distances

and Asymmetries in Auditory Perception of Closely Related Languages.” In:

Proceedings of the International Conference on Recent Advances in Natural

Language Processing (RANLP 2021). Held Online: INCOMA Ltd., pp. 968–977.

url: https://aclanthology.org/2021.ranlp-1.110.

Abdullah, Badr M., Mosbach, Marius, Iuliia Zaitova, Bernd Möbius, and

Dietrich Klakow (2021). “Do Acoustic Word Embeddings Capture Phonological

Similarity? An Empirical Study.” In: Proc. Interspeech 2021, pp. 4194–4198.

doi: 10.21437/Interspeech.2021-678.

https://doi.org/10.18653/v1/2022.naacl-main.436
https://aclanthology.org/2022.naacl-main.436
https://aclanthology.org/2022.naacl-main.436
https://arxiv.org/abs/2201.09651
https://arxiv.org/abs/2208.02402
https://arxiv.org/abs/2208.02402
https://doi.org/10.18653/v1/2022.spanlp-1.5
https://aclanthology.org/2022.spanlp-1.5
https://aclanthology.org/2021.ranlp-1.110
https://doi.org/10.21437/Interspeech.2021-678

1.4 Additional publications 13

Jágrová, Klára, Michael Hedderich, Mosbach, Marius, Tania Avgustinova, and

Dietrich Klakow (2021). “On the Correlation of Context-Aware Language Models

With the Intelligibility of Polish Target Words to Czech Readers.” In: Frontiers

in Psychology 12. issn: 1664-1078. doi: 10.3389/fpsyg.2021.662277. url:

https://www.frontiersin.org/articles/10.3389/fpsyg.2021.662277.

Kalimuthu, Marimuthu, Aditya Mogadala, Mosbach, Marius, and Dietrich

Klakow (2021). “Fusion Models for Improved Image Captioning.” In: Pattern

Recognition. ICPR International Workshops and Challenges. Ed. by Alberto

Del Bimbo, Rita Cucchiara, Stan Sclaroff, Giovanni Maria Farinella, Tao Mei,

Marco Bertini, Hugo Jair Escalante, and Roberto Vezzani. Cham: Springer

International Publishing, pp. 381–395. isbn: 978-3-030-68780-9. url: https:

//link.springer.com/chapter/10.1007/978-3-030-68780-9_32.

Saveleva, Ekaterina, Volha Petukhova, Mosbach, Marius, and Dietrich Klakow

(June 2021a). “Discourse-based Argument Segmentation and Annotation.” In:

Proceedings of the 17th Joint ACL - ISO Workshop on Interoperable Semantic An-

notation. Groningen, The Netherlands (online): Association for Computational

Linguistics, pp. 41–53. url: https://aclanthology.org/2021.isa-1.5.

– (2021b). “Graph-based Argument Quality Assessment.” In: Proceedings of the

International Conference on Recent Advances in Natural Language Processing

(RANLP 2021). Held Online: INCOMA Ltd., pp. 1268–1280. url: https:

//aclanthology.org/2021.ranlp-1.143.

Grosse, Kathrin, Thomas A. Trost, Mosbach, Marius, Michael Backes, and

Dietrich Klakow (2020). “On the Security Relevance of Initial Weights in Deep

Neural Networks.” In: Artificial Neural Networks and Machine Learning –

ICANN 2020. Ed. by Igor Farkaš, Paolo Masulli, and Stefan Wermter. Cham:

Springer International Publishing, pp. 3–14. isbn: 978-3-030-61609-0. url:

https://link.springer.com/chapter/10.1007/978-3-030-61609-0_1.

https://doi.org/10.3389/fpsyg.2021.662277
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.662277
https://link.springer.com/chapter/10.1007/978-3-030-68780-9_32
https://link.springer.com/chapter/10.1007/978-3-030-68780-9_32
https://aclanthology.org/2021.isa-1.5
https://aclanthology.org/2021.ranlp-1.143
https://aclanthology.org/2021.ranlp-1.143
https://link.springer.com/chapter/10.1007/978-3-030-61609-0_1

14 Introduction

Mosbach, Marius, Maksym Andriushchenko, Thomas Trost, Matthias Hein,

and Dietrich Klakow (2019a). “Logit Pairing Methods Can Fool Gradient-Based

Attacks.” In: url: https://arxiv.org/abs/1810.12042.

Mosbach, Marius, Irina Stenger, Tania Avgustinova, and Dietrich Klakow

(Sept. 2019b). “incom.py - A Toolbox for Calculating Linguistic Distances and

Asymmetries between Related Languages.” In: Proceedings of the International

Conference on Recent Advances in Natural Language Processing (RANLP 2019).

Varna, Bulgaria: INCOMA Ltd., pp. 810–818. doi: 10.26615/978-954-452-

056-4_094. url: https://aclanthology.org/R19-1094.

Bizzoni, Yuri, Mosbach, Marius, Dietrich Klakow, and Stefania Degaetano-

Ortlieb (2019). “Some steps towards the generation of diachronic WordNets.”

In: Proceedings of the 22nd Nordic Conference on Computational Linguistics.

Turku, Finland: Linköping University Electronic Press, pp. 55–64. url: https:

//aclanthology.org/W19-6106.

1.5 Outline

The rest of this thesis is structured as follows: in Chapter 2, we introduce the

necessary background on the basics of machine learning and provide a formal

introduction to pre-training, fine-tuning, and probing of language models. This is

is followed by Chapters 3 to 6, which constitute the main research contributions

of this thesis. We end with ??, discussing conclusions and implications for future

work. Supplementary material is provided in Appendices A to D.

https://arxiv.org/abs/1810.12042
https://doi.org/10.26615/978-954-452-056-4_094
https://doi.org/10.26615/978-954-452-056-4_094
https://aclanthology.org/R19-1094
https://aclanthology.org/W19-6106
https://aclanthology.org/W19-6106

2
Background

Contents

2.1 Notation . 16

2.2 Machine learning basics . 17

2.2.1 Supervised learning . 17

2.2.2 Generative learning . 20

2.2.3 Stochastic gradient descent . 22

2.3 Pre-trained language models . 24

2.3.1 Decoder-only models . 25

2.3.2 Encoder-only models . 26

2.4 Adapting pre-trained language models . 28

2.4.1 Fine-tuning . 28

2.4.2 In-context learning . 30

2.5 Probing language model representations 30

2.5.1 Sentence-level probing . 31

This chapter introduces the definitions, concepts, and techniques central

to the research presented in this thesis. We begin by introducing fundamental

machine learning concepts in Section 2.2. Section 2.3 introduces different types

of pre-trained language models, which are the central object of study in this

thesis. Next, Section 2.4 introduces the concept of language model adaptation and

presents the most popular techniques for adapting pre-trained language models to

15

16 Background

downstream tasks. Lastly, in Section 2.5, we briefly discuss probing, a commonly

used technique to analyze the internal representations of language models.

2.1 Notation

Scalars and vectors We use plain letters to denote scalars: s ∈ R and bold

lowercase letters for vectors: v ∈ Rd. If not stated otherwise, vectors are assumed

to be column-vectors.

Sets and alphabets Sets are denoted by S = {s1, s2, . . . , sn} where |S| is the

number of elements in the set. We use Greek capital letters, e.g., Σ to denote an

alphabet which is a finite non-empty set. The elements of an alphabet are called

symbols and we use lowercase letters to represent them. Given an alphabet Σ,

a string is a finite sequence of letters from the alphabet, e.g. s = s1 · · · sT with

si ∈ Σ ∀i = 1, . . . , T .

Parametric models We use fθ : X 7→ Y to denote a function with input

space X and output space Y , parameterized by θ and let H = {fθ | θ ∈ Θ} denote

the set of all functions – also known as a hypothesis class – that can be represented

by functions parameterized by θ. We use the notation pθ when working with

conditional probability distributions pθ(y | x) parameterized by θ. We refer to fθ

and pθ as models and for the scope of this thesis, θ are typically the parameters of a

neural network model and Θ is the set of all possible weight matrices of this model.

Data Let P (x, y) denote a (unknown) joint probability distribution over X

and Y , and D = {(x1, y1), . . . , (xN , yN)} a set of examples drawn i.i.d from P (x, y).

For the scope of this thesis, the input space X is typically the Euclidean space Rd

and the output space Y some categorical set {1, . . . , K} of K classes. Similarly,

we define P (x) as the (unknown) marginal distribution over X and let P (y | x)

2.2 Machine learning basics 17

denote the (unknown) conditional probability distribution that gives a distribution

xi over possible outputs yi.

2.2 Machine learning basics

Having established our basic notion we now turn to introducing some fundamental

machine learning concepts that will be relevant in later chapters of this thesis.

2.2.1 Supervised learning

Supervised learning is one of the most widely used settings to train machine

learning models. In this setting we are given a set of training examples D =

{(x1, y1), . . . , (xn, yn)} with inputs xi and labels yi. We assume that the training

examples are drawn i.i.d. from a probability measure P on X × Y, where X is

the input space and Y is the output space. The statistical learning perspective

on supervised learning further assumes that there exists a conditional probability

distribution P (y | x) which for each input xi gives a distribution over possible

outputs yi. The goal of supervised learning is to find a function fθ : X 7→ Y from

a hypothesis class H = {fθ | θ ∈ θ} such that fθ(xi) = ŷi ≈ yi ∀i = 1, . . . , N .

In other words, the supervised learning problem consists of finding a function

fθ that predicts the given data well. For simplicity, below we use a loss function

L : Y × Y 7→ R+ that compares the model prediction to the ground-truth label.

2.2.1.1 Empirical risk minimization

Using the terminology established above we can now introduce the empirical risk

minimization (ERM) perspective on supervised learning. Assuming we are given

a loss function L, a model fθ, and we know the probability measure P, i.e. the

data generating distribution, we define the risk associated with fθ as:

18 Background

R(fθ) = E(xi,yi)∼P [L(fθ(xi), yi)] . (2.1)

Under the assumptions above, solving the supervised learning problem be-

comes an optimization problem which seeks to find a function f ?
θ that minimizes

the true risk:

f ?
θ = argmin

fθ∈H
R(fθ) . (2.2)

In real-word scenarios however, the data generating distribution is almost al-

ways unknown and we only have access to a set of training examples D =

{(x1, y), . . . , (xN , yn)} drawn i.i.d. from P . Given D, we define the empirical risk:

Remp = E(xi,yi)∼D[L(fθ(xi), yi)] =
1

n

n∑
i=1

L(fθ(xi), yi) , (2.3)

and instead of minimizing the true risk, we seek to find a solution to the empirical

risk minimization (ERM) problem:

f̂θ = argmin
fθ∈H

Remp(fθ) . (2.4)

2.2.1.2 Maximum likelihood estimation

We can alternatively approach the supervised learning problem from a Bayesian

perspective and establishing a connection between empirical risk minimization

and maximum likelihood estimation (MLE).

Given a training set D = {(x1, y1), . . . , (xn, yn)} drawn i.i.d. from P with

X = {x1, . . . , xn} and Y = {y1, . . . , yn}. The likelihood of the dataset under a

specific model fθ is defined as p(Y | X, fθ), which factorizes into

p(Y | X, fθ) =
n∏

i=1

p(yi | xi, fθ) , (2.5)

due to the i.i.d. assumption. Note that p(yi | xi, fθ) is still a function of θ.

2.2 Machine learning basics 19

To find parameters θ that fit the given data well, we define the maximum

likelihood solution as:

fML = argmax
fθ∈H

p(Y | X, fθ) = argmax
fθ∈H

n∏
i=1

p(yi | xi, fθ) , (2.6)

Instead of directly optimizing the product of likelihoods, we instead take

the logarithm of the likelihood and normalize by n, as applying a monotonically

increasing function and re-scaling does not change the arg max, i.e.,

fML = argmax
fθ∈H

p(Y | X, fθ) (2.7)

= argmax
fθ∈H

log
n∏

i=1

p(yi | xi, fθ) (2.8)

= argmax
fθ∈H

n∑
i=1

log p(yi | xi, fθ) (2.9)

= argmax
fθ∈H

1

n

n∑
i=1

log p(yi | xi, fθ) . (2.10)

Finally, we convert the maximization problem into a minimization problem

fML = argmax
fθ∈H

1

n

n∑
i=1

log p(yi | xi, fθ) (2.11)

= argmin
fθ∈H

1

n

n∑
i=1

−log p(yi | xi, fθ) . (2.12)

Comparing 2.12 to 2.4 we observe that the MLE and ERM solutions agree

when using the loss function L(f(x), y) = −log (y | x, fθ).

2.2.1.3 In-domain generalization

Recall from §2.2.1.1 that the model we are interested in should ideally have a

low risk on the the entire distribution P and not just the training data. Stated

differently, we seek to find a model that generalizes beyond the training data

used to fit the model. Naively solving for the model that minimizes the empirical

risk (or alternatively optimizing for the maximum likelihood solution) can lead to

overfitting if our model perfectly fits the training data. This can happen if the

chosen hypothesis class is too complex or a model perfectly fits the noise in the

20 Background

training data. To detect overfitting to the empirical distribution, it is common to

split the available data into a training and test set, where the purpose of the test

set is to estimate the risk on the true distribution.1 Crucially, we assume that both

the training and the test data are sampled i.i.d. from the data generating process

P and thus refer to the risk on the test data as the in-domain generalization

of the model.

2.2.1.4 Regularized empirical risk minimization

To prevent against overfitting we can bias the search for a minimizer by restricting

the set of possible models in the hypothesis space. We do this by employing

regularization. Adding a regularization functional to the empirical risk minimization

objective balances the complexity of the model and the fit of the training data.

We define the regularized empirical risk as follows:

Rremp = E(xi,yi)∼D[L(fθ(xi), yi) + Ω(fθ)] =
1

n

n∑
i=1

L(fθ(xi), yi) + Ω(fθ) , (2.13)

where the regularizer Ω : H 7→ R+ measures the complexity of a model. The

regularized empirical risk minimization (RERM) is then defined as:

f̂θ = argmin
fθ∈H

Rremp(fθ) . (2.14)

In practice, when fine-tuning pre-trained language models we commonly use

weight decay as regularization which penalizes the l2 norm of the parameters θ.

2.2.2 Generative learning

The supervised learning setting introduced above is an instance of discriminative

learning where the goal is to estimate the conditional probability P (y | x). An

alternative to discriminative learning is generative learning where the goal is to

learn the underlying distribution P (x) of the data. As we will be dealing with

1 In practice, we often have access to an additional validation set which is used to optimize

the hyperparameters of a model or the learning algorithm.

2.2 Machine learning basics 21

language modeling later in this section, we focus on the setting where P is a

distribution over natural language strings.

Maximum likelihood estimation Similar to the discriminative supervised

learning setting, we can also adopt a Bayesian perspective on generative learning

and formulate the learning problem in terms of MLE. Let D = {xi}ni=1 be a

training set of i.i.d. strings drawn from the data generating distribution P (x) and

pθ be a parametric model. We define the likelihood of D under the model pθ as

the joint probability of all xi:

L(D, pθ) =
n∏

i=1

pθ(xi) , (2.15)

We can rewrite the likelihood by factorizing the joint distribution as a product

of conditionals and applying the logarithm

n∏
i=1

pθ(xi) =
n∑

i=1

T∑
t=1

log pθ(xi
t | xi

<t) , (2.16)

and choose the optimal parameters by maximizing the likelihood of observing the

data D under that model:

θMLE = argmax
pθ∈H

L(D, pθ) (2.17)

= argmax
pθ∈H

n∑
i=1

T∑
t=1

log pθ(xi
t | xi

<t) . (2.18)

It can be shown that the maximum likelihood solution is the same as the the

solution that minimizes the cross-entropy

H(p̃, pθ) = −
∑
x∈D

p̃(x) log pθ(x) (2.19)

between the empirical distribution p̃ defined by the dataset and the modeled

distribution pθ (Goodfellow et al., 2016), which is precicely the modeling approach

we take when training language models in practice.

22 Background

The pseudo-(log)-likelihood Rather than factorizing the likelihood as a

product of conditionals as shown above, we can also approximate the likelihood

using the pseudo-(log-)likelihood (Besag, 1975). The pseudo-(log-)likelihood is

motivated by the observation that the factorization of the likelihood in 2.16 only

considers prior symbols x<t when estimating the probability of the target symbol

xt. The pseudo-(log-)likelihood instead considers both sides of the target symbol:

Lpseudo(D, pθ) =
n∑

i=1

T∑
t=1

log pθ(x
(i)
t | x

(i)
<t, x

(i)
>t) (2.20)

≈ L(D, pθ) . (2.21)

Models that use a variant of the pseudo-(log-)likelihood as a loss function are

commonly referred to as masked language models and we discuss them in more

detail in §2.3.2.

2.2.3 Stochastic gradient descent

Unlike for simple models, such as logistic regression, where we can obtain closed-

form solutions for maximum likelihood estimation (Goodfellow et al., 2016),

for functions parameterized by (deep) neural networks the maximum likelihood

optimization problem is non-convex, and closed-form solutions are generally not

available. To address this, we turn to numerical optimization via gradient descent.

For simplicity, we introduce optimization via (stochastic) gradient descent in the

context of supervised learning, i.e., we use optimization to solve the minimization

problem in Eq. (2.4).

In absence of a closed form solution, the objective of stochastic gradient

descent is to iteratively search the parameter space and find the set of parameters

that yields the lowest value for the loss function associated with the training

data. Stochastic gradient descent is an iterative update process. Starting with

initial parameters θ0, the algorithm proceeds by updating these parameters in

successive steps, moving towards the optimal set of parameters. To determine the

2.2 Machine learning basics 23

direction of this update, we employ the gradient of the loss function with respect

to the current parameters θt. The basic update formula is given in Eq. (2.22) and

consists of three components:

θt = θt−1 − η · ∇θtL(θt) , (2.22)

the current parameters θt−1, the gradient ∇θtL(θt), which provides information

about the slope and direction of steepest ascent for the loss function at that

particular point in the parameter space2, and the learning rate η, which controls

the magnitude of the step we take during each update. The vanilla version of

gradient descent (also known as batch gradient descent) uses the entire training

set when computing gradients. In contrast, mini-batch stochastic gradient descent

approximates the true gradient by using the gradient computed for a mini-batch

of examples that are randomly sampled from the training set:

∇θtL(θt) ≈ L({(xi, yi)}mi=1;θt) (2.23)

=
1

m

m∑
i=1

∇θtL(xi, yi,θt) . (2.24)

We provide the pseudo-code for mini-batch stochastic gradient descent in

Algorithm 1.

2.2.3.1 Adam optimizer

Adam is a modified version of mini-batch stochastic gradient descent proposed by

D. Kingma and Ba (2015) that differs in several important aspects. Adam computes

adaptive learning rates for each parameter by calculating moving averages of the

gradient and its squared values. Additionally, Adam uses bias correction to address

the fact that the moving averages of the gradients and squared gradients are

initialized at zero, making them biased estimates at the beginning of training.

The pseudo-code for Adam is given in Algorithm 2.

Adam is one of the best performing and most widely used optimization

algorithms in the modern machine learning and NLP literature (Schmidt et al.,

2 Since our goal is to minimize the loss, we move in the opposite direction of the gradient.

24 Background

Algorithm 1 Stochastic gradient descent
Require: Initial parameters θ0, learning rate η, number of epochs E, batch size B

Require: Training dataset with input-label pairs {(xi, yi)}Ni=1

1: Initialize t← 0 (Update steps)

2: for e = 1 to E do

3: Shuffle the training dataset {(xi, yi)}Ni=1 randomly

4: for k = 1 to N/B do

5: Sample a mini-batch of data points {(xj , yj)}kBj=(k−1)B+1

6: Compute the gradient of the loss function ∇θL({(xj , yj)};θt)

7: Update parameters: θt+1 ← θt − η · ∇θL({(xj , yj)};θt)

8: t← t+ 1

9: end for

10: end for

11: Output: Learned parameters θt

2021; Kaddour et al., 2023). For some of the experiments in later chapters of this

thesis we will rely on a slightly modified version of the algorithm that adds an

additional term for weight decay regularization (Loshchilov and Hutter, 2019).

Specifically, the parameter update in line 13 of Algorithm 2 is replaced by:

θt+1 ← θt − η(
1√
v̂ + ε

· m̂ + λθt) (2.25)

2.3 Pre-trained language models

While early work on fine-tuning focused on recurrent neural networks (Howard

and Ruder, 2018; Peters et al., 2018), transformer-based (Vaswani et al., 2017)

models were soon shown to be superior to recurrent neural networks in terms of

their training efficiency, performance, and scalability (Devlin et al., 2019; Kaplan

et al., 2020), and are now the dominant model architecture in NLP.

In this section we introduce two different types of transformer-based neural

language models and define the objective functions used for training them.

2.3 Pre-trained language models 25

Algorithm 2 Adam optimizer
Require: Initial parameters θ0, learning rate η, number of epochs E, batch size B

Require: Training dataset with input-label pairs {(xi, yi)}Ni=1

Require: Exponential decay rates β1, β2 ∈ [0, 1)

1: Initialize m← 0 (Initial 1st moment vector)

2: Initialize v← 0 (Initial 2nd moment vector)

3: Initialize t← 0 (Update steps)

4: for e = 1 to E do

5: Shuffle the training dataset {(xi, yi)}Ni=1 randomly

6: for k = 1 to N/B do

7: Sample a mini-batch of data points {(xj , yj)}kBj=(k−1)B+1

8: Compute the gradient of the loss function ∇θL({(xj , yj)};θt)

9: m← β1 ·m+ (1− β1) · ∇θL({(xj , yj)};θt) (Update 1st moment estimate)

10: v← β2 · v + (1− β2) · (∇θL({(xj , yj)};θt))
2 (Update 2nd moment estimate)

11: m̂← m
1−βt

1
(Bias-corrected 1st moment estimate)

12: v̂← v
1−βt

2
(Bias-corrected 2nd moment estimate)

13: θt+1 ← θt − η√
v̂+ε
· m̂ (Update parameters)

14: t← t+ 1

15: end for

16: end for

17: Output: Learned parameters θt

2.3.1 Decoder-only models

The first type of language model we consider are decoder-only models. Decoder-

only language models use the standard language modeling objective

LLM(θ) =
n∑

i=1

T∑
t=1

log pθ(x
(i)
t | x

(i)
<t) , (2.26)

which we optimize by choosing parameters via maximum likelihood estimation.

All of the models we experiment with are based on the transformer’s decoder

architecture (Vaswani et al., 2017; Al-Rfou et al., 2019; Radford and Narasimhan,

2018) and are a stack of layers consisting of self-attention, layer normalization,

26 Background

and feed-forward layers as well as residual connections. We consider the following

variants for our experiments.

OPT Open Pre-trained Transformer (OPT) (S. Zhang et al., 2022) is a family

of pre-trained decoder-only transformers that range from 125M to 175B parameters.

The architecture of OPT closely follows the GPT family (Radford et al., 2019;

Brown et al., 2020) ranging from 12 layers for the smallest to 96 layers for the

largest version. All models have been pre-trained on the same dataset which

consists of a mixture of documents from the Books corpus (Y. Zhu et al., 2015),

CC-Stories (Trinh and Le, 2019), The Pile (L. Gao et al., 2020), Pushshift.io

Reddit (Roller et al., 2021), and CCNewsV2 (Y. Liu et al., 2019b; S. Zhang et al.,

2022). The data have been tokenized using the GPT-2 tokenizer (Radford et al.,

2019), resulting in a training set of roughly 180B tokens. At the time of its release,

OPT-175 was the first publicly available language model that achieved comparable

in-context learning results to GPT-3 (Brown et al., 2020).

Pythia Pythia (Biderman et al., 2023) is another family of decoder-only

language models. The architecture largely follows GPT and OPT with a few

notable differences such as using parallelized attention layers (B. Wang and

Komatsuzaki, 2021), FlashAttention (Dao et al., 2022), and rotary positional

embeddings (Su et al., 2022). Similar to OPT, Pythia models come in different

sizes ranging from 70M to 6.9B parameters. All models use the GPT-2 tokenizer

(Radford et al., 2019) and were trained on The Pile (L. Gao et al., 2020). Pythia

models are specifically designed for interpretability research by ensuring that all

models are trained on exactly the same data in exactly the same order.

2.3.2 Encoder-only models

The second family of pre-trained language models we consider are transformer-

based encoder-only models. Encoder-only models are trained using a masked lan-

2.3 Pre-trained language models 27

guage modeling objective which is an approximation to the pseudo-log-likelihood.

Specifically, masked language modeling approximates the distribution over tokens

only at special masked positions.

LMLM(θ) =
n∑

i=1

T∑
t=1

log pθ(x
(i)
t | x

(i)
<t, x

(i)
>t)1{x

(i)
t = [MASK]} . (2.27)

For our experiments, we consider three popular variants of encoder-only

models, which we briefly introduce below.

BERT Bidirectional encoder representations from transformer (BERT) (De-

vlin et al., 2019) is a transformer-based encoder-only model jointly trained on

masked language modeling and next-sentence-prediction – a sentence-level binary

classification task. BERT was trained on the Toronto Books corpus and the English

portion of Wikipedia, which together consists of roughly 3.3B tokens. The BERT

model comes in two different sizes base and large, consisting of 110M and 340M

parameters respectively.

RoBERTa Robustly optimized BERT approach (RoBERTa) (Y. Liu et al.,

2019a) is an optimized variant of BERT that differs from the original BERT

model in several important aspects: RoBERTa was trained on more data, using

a larger batch size, more training steps, longer input sequences, and no next-

sentence-prediction objective. Additionally, it uses a sightly larger vocabulary

and dynamically masks a fraction of the input tokens during training instead of

applying a fixed masking chosen prior to training.

ALBERT A light BERT (ALBERT) (Lan et al., 2020) is another popular

masked language model that, in contrast to BERT and RoBERTa, uses weight-

sharing across all hidden layers—effectively applying the same non-linear transfor-

mation at every layer—and factorizes the embedding matrix into two separate

matrices. These modifications result in significantly fewer model parameters while

28 Background

maintaining overall performance. Similar to BERT, ALBERT uses a sentence-level

training objective in addition to the masked language modeling objective.

2.4 Adapting pre-trained language models

As introduced in the previous section, pre-trained language models are trained

via (masked) language modeling. This leads to a discrepancy between the task

the model has to perform during pre-training, i.e., predict the next (masked)

token, and the downstream task the model will eventually be applied to, e.g.,

sentence-level classification. To overcome this discrepancy and make pre-trained

language models usable for downstream tasks, it is necessary to adapt them.

In the following subsections, we briefly review the two most commonly used

strategies for adapting pre-trained language models to downstream tasks: fine-

tuning and in-context learning.

2.4.1 Fine-tuning

Vanilla fine-tuning Vanilla fine-tuning (Howard and Ruder, 2018; Devlin

et al., 2019) is one of the most commonly used task adaptation approaches for

pre-trained language models. During fine-tuning we typically: (i) replace the

model’s language modeling head with a new randomly initialized classification

head; (ii) update all model parameters, as well as the new head’s parameters, on

the downstream task’s training data. Vanilla fine-tuning follows the supervised

learning paradigm introduced in §2.2.1.

Pattern-based fine-tuning Pattern-based fine-tuning (Schick et al., 2020;

Schick and Schütze, 2021; Tam et al., 2021; Logan IV et al., 2022, inter alia) is

conceptually very similar to vanilla fine-tuning but differs in one important aspect.

Instead of training a randomly initialized classifier on top of the pre-trained model,

2.4 Adapting pre-trained language models 29

pattern-based fine-tuning re-purposes the pre-trained language modeling head as a

classifier. This requires us to format the downstream task as a language modeling

problem via a pattern and use a verbalizer to map token predictions to the classes

of the downstream task. To provide an example, assuming we are fine-tuning

a masked language model on a sentiment analysis dataset, we could use the

following pattern The sentiment of [x] is positive ? [MASK] to formulate

sentiment classification as a masked language modeling problem and map the

predictions of the model to class labels via the verbalizer {"yes": positive,

"no": negative}.

Pattern-based fine-tuning follows the supervised learning paradigm introduced

in §2.2.1 and has been shown to outperform vanilla fine-tuning in the few-shot

setting (Le Scao and Rush, 2021), but exhibits a large sensitivity to pattern and

verbalizer choice (Webson and Pavlick, 2022).

2.4.1.1 Parameter-efficient fine-tuning

While both vanilla and pattern-based fine-tuning typically update all pre-trained

parameters, they can be easily combined with parameter-efficient fine-tuning

methods. Parameter-efficient fine-tuning methods update only a small number of

parameters relative to the total number of parameters of the pre-trained model

(Houlsby et al., 2019; Ben Zaken et al., 2022; E. J. Hu et al., 2022, inter alia). These

parameters are either newly introduced, e.g. adapters (Houlsby et al., 2019) or a

subset of the pre-trained model’s parameters, e.g., BitFit (Ben Zaken et al., 2022).

Parameter-efficient fine-tuning approaches are appealing since they allow the re-use

of large parts of a model across tasks. Moreover, when combined with quantization

techniques, they allow us to efficiently fine-tune even billion-parameter language

models(Dettmers et al., 2023).

30 Background

2.4.2 In-context learning

A commonality shared by the adaptation approaches introduced above is the need

for updating either existing or newly added parameters. In-context learning is

an alternative approach that allows to adapt a pre-trained language model to

perform a downstream task without the need for any parameter updates (Brown

et al., 2020). Assuming we have a single example x for which we seek a prediction

from a pre-trained language model. In-context learning works by prefixing x

with a sequence of k demonstrations constructed from a set of training examples

{(xi, yi)}ki=1, and optionally a task instruction string s.3 Similar to pattern-based

fine-tuning, in-context learning applies a pattern to every demonstration (xi, yi)

and the input example x and converts the prediction of the model to the task’s

label space using a verbalizer.

Few-shot in-context learning has recently been shown to lead to strong

performance when using billion-parameter language models such as GPT-3 175B

(Brown et al., 2020) and it outperforms vanilla fine-tuning, especially on challenging

reasoning benchmarks (Wei et al., 2022a).

2.5 Probing language model representations

As a byproduct of their training, pre-trained (and fine-tuned) language models

construct rich representations of their inputs. Probing is a commonly used analysis

technique in NLP to gain insights into the representations construct by language

models. Probing involves training a classifier on top of real-valued embeddings

obtained from a pre-trained language model. The accuracy of the resulting classifier

is considered a proxy for how well the representations capture the underlying

concepts. When training probing classifiers, one has to make certain assumptions

3 Zero-shot evaluation is a special case of in-context learning where the set of demonstrations

is empty and the task instruction is the empty string.

2.5 Probing language model representations 31

about the type of classifier (e.g., using linear vs. non-linear classifiers) and the

implications of probing accuracy, as high probing accuracy does not necessarily

imply that the language model genuinely utilizes the encoded concepts for its

internal decision-making.

2.5.1 Sentence-level probing

In this thesis, we focus specifically on sentence-level probing (Adi et al., 2017;

Conneau et al., 2018) which allows us to investigate linguistic concepts encoded

within sentence-level representations. By probing sentence-level representations,

we can gain insight into how language models process and represent complex

linguistic structures on the sentence level. Drawing inspiration from early work in

the field (Alain and Bengio, 2016), we adopt the use of linear probing classifiers

in later chapters of this thesis.

Formally, let D = {(x1, y1), (x2, y2), . . . , (xn, yn)} be a labeled dataset con-

taining pairs of sentence-level representations and their corresponding linguistic

labels, where xi represents the sentence-level embedding of the i-th input, and

yi is the corresponding linguistic label or category associated with the sentence,

e.g., a binary acceptability label. The goal of the supervised probing task is to

learn a probing classifier fθ, parameterized by θ, that maps the sentence-level

embeddings xi to their respective linguistic labels yi. To train the probing classifier

we estimate the parameters θ of the probing classifier fθ(xi) that maximize the

likelihood of the observed linguistic labels given the sentence-level embeddings

following the maximum likelihood approach introduced in §2.2.1.

Once trained, we evaluate the accuracy of the probing classifier on a held-out

test set. High probing accuracy is typically treated as evidence that the language

model’s sentence-level embeddings effectively encode and capture the linguistic

concepts represented by the linguistic labels in the probing dataset.

3
Probing Pre-trained Models for

Linguistic Knowledge

Contents

3.1 Introduction . 35

3.1.1 Models . 37

3.2 Related Work . 38

3.3 Probing representations for knowledge of RCs 39

3.3.1 Dataset construction . 39

3.3.2 Experimental setup . 41

3.3.3 Probing results and discussion . 42

3.3.4 Diagnostics . 44

3.4 Analyzing predictions for RC awareness 48

3.4.1 Analyzing grammatical and semantic knowledge 48

3.5 Discussion and conclusion . 54

Transformer-based language models achieve high performance on various

NLP tasks, but we still lack understanding of the kind of linguistic knowledge they

learn and rely on. In this chapter, we investigate this question by analyzing three

different pre-trained language models (BERT, RoBERTa, and ALBERT), testing

their grammatical and semantic knowledge by sentence-level probing, diagnostic

cases, and masked prediction tasks. We focus on relative clauses (in American

33

34 Probing Pre-trained Models for Linguistic Knowledge

English) as a complex phenomenon needing contextual information and antecedent

identification to be resolved. On a naturalistic dataset which we collected, our

probing results show that all three models do indeed capture linguistic knowledge

about grammaticality, achieving high performance on sentence level probing tasks.

However, when evaluating the trained probing classifiers on challenging diagnostic

cases and evaluating the predictions of the pre-trained models directly, we find

pronounced model-specific weaknesses especially on semantic knowledge, which

strongly impacts model performance. Our findings highlight the importance of

(a) model comparison in linguistic evaluation tasks, and (b) building up claims

of model performance and the linguistic knowledge they capture beyond purely

probing-based evaluations.

The content presented in this chapter is based on:

Mosbach, Marius, Stefania Degaetano-Ortlieb, Marie-Pauline Krielke, Badr M.

Abdullah, and Dietrich Klakow (2020). “A Closer Look at Linguistic Knowledge

in Masked Language Models: The Case of Relative Clauses in American English.”

In: Proceedings of the 28th International Conference on Computational Lin-

guistics. Barcelona, Spain (Online): International Committee on Computational

Linguistics, pp. 771–787. url: https://aclanthology.org/2020.coling-

main.67.

As a first author, Marius Mosbach conceptualized the research, conducted the

experiments and led the paper writing. Stefania Degaetano-Ortlieb helped with

the conceptualization and paper writing. Marie-Pauline Krielke provided expertise

on relative clauses, helped with the writing and the lingustic evaluation. Badr

Abdullah collected the probing data and helped with writing. Dietrich Klakow

advised and provided feedback.

https://aclanthology.org/2020.coling-main.67
https://aclanthology.org/2020.coling-main.67

3.1 Introduction 35

3.1 Introduction

Endeavors to better understand transformer-based masked language models such

as BERT have been an active area of research since the introduction of these

models in 2017 (see Rogers et al. (2020) for an overview). While the BERTology

movement has enhanced our knowledge about the reasons behind BERT’s im-

pressive performance in various ways, plenty of questions remain unanswered. For

instance, linguistic phenomena such as relative clauses (RC) are less well-studied.

Besides contextual information, they require the identification of an antecedent,

making them more challenging for such models. Kim et al. (2019a), e.g., analyzed

BERT’s comprehension of function words, showing how relativizers and preposi-

tions are quite challenging for BERT. Similarly, Warstadt and Bowman (2019) find

sentences containing RCs to be difficult for BERT in the CoLA acceptability tasks.

In this chapter, we focus on RCs in American English1 to further enhance

our understanding of the grammatical and semantic knowledge captured by pre-

trained masked language models, evaluating three models: BERT, RoBERTa, and

ALBERT. For our analysis, we train probing classifiers, consider each models’

performance on diagnostic cases, and test predictions in a masked language

modeling task on selected semantic and grammatical constraints of RCs.

RCs are clausal post-modifiers specifying a preceding noun phrase (antecedent)

and are introduced by a relativizer (e.g., which). Extensive corpus research (Biber

et al., 1999) has found that the most common English relativizers are that, which,

and who. The relativizer occupies the subject or object position in a sentence (see

examples (1-a) and (1-b)). In subject RCs, the relativizer is obligatory (Huddleston

and Pullum, 2002, p. 1055), while in object position omission is licensed (e.g., zero

in example (1-b)).

1 We make our focus on America English explicit as we obtain our probing data from the

Corpus of Contemporary American English (Davies, 2015) and there exist subtle differences

in the use of relative clauses between American and British English (Rohdenburg, 2014).

36 Probing Pre-trained Models for Linguistic Knowledge

(1) a. Children who eat vegetables are likely to be healthy. (subject relativizer,

relativizer is obligatory)

b. This is the dress [that/which/zero] I brought yesterday. (object rela-

tivizer, omission possible)

Relativizer choice depends on an interplay of different factors.2 Among these

factors, the animacy constraint (Quirk, 1957) is near-categorical: for animate head

nouns the relativizer who (see Example (1-a)) is strongly prioritized, especially

over which (D’Arcy and Tagliamonte, 2010).

Our aims are (1) to better understand whether sentence representations of

pre-trained masked language models capture grammaticality in the context of

RCs, (2) test the generalization abilities and weaknesses of probing classifiers with

complex diagnostic cases, and (3) test prediction of antecedents and relativizers

in a masked task considering linguistic constraints (see Figure 3.1).

From a linguistic perspective, we ask whether pre-trained masked language

models correctly predict (a) grammatically plausible relativizers given certain

types of antecedents (animate, inanimate) and grammatically plausible antecedents

given certain relativizers (who vs. which/that), and (2) semantically plausible

antecedents given certain relativizers considering the degree of specificity of

predicted antecedents in comparison to target antecedents (e.g., boys as a more

specific option than children in Example (1-a)). Importantly, we are interested

in how these findings agree with probing results and thus investigate model

specific behavior, evaluating and comparing recent pre-trained masked language

models: BERT, RoBERTa, and ALBERT. This is to our knowledge the first

attempt at comparing and analyzing performance of different transformer-based

2 These factors include register (fiction, news, academic texts), restrictiveness (restrictive RCs

add information about the head noun necessary for identification of the latter (see Example

(1)); non-restrictive RCs add information elaborating on a head noun which “is assumed to

be already known” Biber et al. (1999, p. 602) and are usually separated by a comma, e.g.,

My children, who love me, eat vegetables.), animacy of the head noun (animate or inanimate

antecedent), American (AE) vs. British English (BE), and definiteness of a pronominal

antecedent (demonstrative vs. indefinite pronoun).

3.1 Introduction 37

one (15.3%)
bag (4.2%)
girl (3.4%)
box (2.7%)
food (2.2%)

(a) This is the ____ which
I brought yesterday.

man (22.3%)
girl (14.2%)

woman (11.6%)
one (10.2%)
guy (9.6%)

(b) This is the ____ who
I brought yesterday.

that (84.7%)
dress (0.9%)
designer (0.8%)
shop (0.6%)
girl (0.5%)

(c) This is the dress ____
I brought yesterday.

who (14.9%)
whom (6.8%)

##iac (0.6)
, (0.3%)

(d) This is the man ____
I brought yesterday.

that (72.5%)

Figure 3.1: Top-5 predictions by BERT-base-cased when masking (a) inanimate an-

tecedent, (b) animate antecedent, (c) inanimate relativizer and (d) animate

relativizer.

masked language models in such detail, investigating grammatical and semantic

knowledge beyond probing.

Our main contributions are the following: (1) the creation of a naturalistic

dataset for probing, (2) a detailed model comparison of three recent pre-trained

masked language models, and (3) fine-grained linguistic analysis on grammatical

and semantic knowledge. Overall, we find that all three masked language models

show good performance on the probing task. Further evaluation, however, re-

veals model-specific issues with agreement (where RoBERTa shows the strongest

performance) and sensitivity to the distance between antecedent-relativizer and

relativizer-RC verb (on which BERT and ALBERT are better). Considering lin-

guistic knowledge, all models perform better on grammatical rather than semantic

knowledge. Out of the relativizers, which is hardest to predict. Considering model-

specific differences, BERT outperforms the others in predicting the actual targets,

while RoBERTa is the best at capturing grammatical and semantic knowledge.

ALBERT performs worst overall.

3.1.1 Models

For our experiments, we consider three transformer-based encoder-only models:

BERT (Devlin et al., 2019), RoBERTa (Y. Liu et al., 2019b), and ALBERT (Lan

et al., 2020). We provide details about each of the models in §2.3.2.

38 Probing Pre-trained Models for Linguistic Knowledge

Importantly, for the scope of this chapter, we consider their base variants:

BERT-base-cased, RoBERTa-base, ALBERT-base-v1 with 110M, 125M, and 12M

parameters, respectively and provide additional experiments for ALBERT-xxlarge-

v1 in Appendix A.2.1.

3.2 Related Work

Related work has investigated grammaticality of unidirectional language models

using Minimal Pair Evaluation (Marvin and Linzen, 2018; Wilcox et al., 2019;

Warstadt et al., 2020a; J. Hu et al., 2020a; J. Hu et al., 2020b). Out of work

on language model prediction-based evaluation (e.g., Goldberg (2019), Ettinger

(2020), Petroni et al. (2019), Jiang et al. (2020), and Kassner and Schütze (2020)),

only Goldberg (2019) has so far evaluated masked language model predictions in

the context of grammaticality. Our study adds to this line of work, focusing on RCs

in particular and importantly, combining masked language model prediction-based

evaluation with probing.

Work related to evaluating sentence embeddings has considered prediction

of sentence length, word content, and word order (Adi et al., 2017). Conneau

et al. (2018) investigated an even broader range of linguistic properties. Extensive

work has been done on probing token-level representations of pre-trained masked

language models, especially BERT, for syntactic and semantic knowledge (see,

e.g., Tenney et al. (2019b), N. F. Liu et al. (2019) and Rogers et al. (2020) for a

more comprehensive overview).

Most similar to our work is Warstadt et al. (2019), which focuses on comparing

evaluation methods including probing and masked language modeling evaluation

to assess how models encode linguistic features.

We contribute to this strand of research by building datasets from naturalistic

(rather than artificial, as in Warstadt et al. (2019)) data, and comparing three

transformer models: BERT, RoBERTa, and ALBERT. Our focus is on RCs as

challenging sentence types for pre-trained language models as shown by, e.g., Kim

3.3 Probing representations for knowledge of RCs 39

et al. (2019a) who show relativizers to be challenging for BERT, and Warstadt

and Bowman (2019) who find RCs difficult for BERT in the CoLA tasks.

3.3 Probing representations for knowledge of

RCs

For our probing based evaluation, we train supervised probing classifiers (here:

acceptability classifiers) to assess the linguistic knowledge contained in a model’s

representations, focusing on grammaticality. This assumes that a model’s gram-

maticality awareness should be reflected in the hidden representations produced

by the model for that particular sentence. Hence, by training a classifier on top of

these representations, we should be able to discriminate between grammatical and

ungrammatical sentences based on their sentence embeddings.3 Besides capturing

knowledge on grammaticality, we also examine whether this knowledge becomes

more or less separable in the representation, considering representations produced

by different layers of a model.

In the following, we describe the collection of our probing dataset and provide

details about our probing setup before discussing our empirical results.

3.3.1 Dataset construction

To probe pre-trained masked language models’ performance on sentences contain-

ing RCs, we construct a controlled set of 48,060 sentences and their acceptability

labels using an automated procedure. Our dataset is a subset of naturally occurring

sentences extracted from the fiction portion of the COCA corpus (Davies, 2015).

First, we extract all sentences containing only one pronoun from the set

{who, whom, whose, which, that}. We then parse the sentences using SpaCy’s

3 This further assumes that grammatical and ungrammatical sentences are linearly separable

in the embedding space.

40 Probing Pre-trained Models for Linguistic Knowledge

A R SubjRC Modification Sentence

1 1 1 no modification Katrina Haus was a woman who sought to attract stares, not turn them away.

1 1 1 who → which *Katrina Haus was a woman which sought to attract stares, not turn them away.

0 1 0 no modification She pulls out a course catalog, various forms, and a letter which she hands to Kevin.

0 1 0 which → that She pulls out a course catalog, various forms, and a letter that she hands to Kevin.

0 1 0 no modification Never permit your muzzle to cover anything which you are unwilling to shoot.

0 1 0 relativizer omission Never permit your muzzle to cover anything you are unwilling to shoot.

0 0 0 no modification I never saw a penny in royalties, which was all right with me.

0 0 0 which → who *I never saw a penny in royalties, who was all right with me.

Table 3.1: Examples from the dataset (minimal pairs). A denotes Animate, R denotes

Restrictive. The relativizer is shown in bold. Modifying a sentence does not

always result in an ungrammatical sentence. For example, when Restric-

tive=1 and SubjRC=0, relativizer omission yields a grammatical sentence.

dependency parser and keep only those sentences where the pronoun constitutes a

relativizer (identified by the tag relcl). From the parse tree, we also determine

whether the relativizer fills the subject or the object position in the RC. The

automatic selection procedure is illustrated in Figure A.1 in Appendix A.1.

On top of grammatical sentences from the corpus, we manipulate the data

to obtain a set with unacceptable ones. To this end, we populate three boolean

metadata variables for each grammatical sample in our data using a set of hand-

crafted linguistic rules: animate, restrictive, and subjrc. Based on the values

of these three metadata variables, a set of modifications is applied to convert a

grammatical sentence into an ungrammatical one. The dataset creation procedure

is explained in detail in Appendix A.1. Our final dataset consists of 42.7K and

5.3K samples for training and evaluation, respectively. Both splits are balanced,

i.e., the accuracy of a majority baseline is 50%. Table 3.1 presents a set of minimal

pair examples that are generated using our procedure.

3.3 Probing representations for knowledge of RCs 41

3.3.2 Experimental setup

For our probing setup we follow the sentence-level probing paradigm introduced in

§2.5.1 and train logistic regression acceptability classifiers on sentence embeddings

obtained from the hidden layers of a pre-trained model.

We compute sentence embeddings of BERT, RoBERTa, and ALBERT and

two non-contextualized baselines: GloVe embeddings (Pennington et al., 2014)

trained on English Wikipedia and the Gigaword corpus, and fasttext embeddings

(Bojanowski et al., 2017) trained on English Wikipedia and news data (Mikolov

et al., 2018). As an additional baseline we use a rule-based classifier that simply

classifies sentences containing a relativizer (who, which, that) as grammatical and

as ungrammatical otherwise.

Input sentences are pre-processed by adding two special tokens, [CLS] and

[SEP], at the beginning and end of each input sentence respectively.4 To construct

sentence embeddings, we apply two different pooling strategies: CLS- and mean-

pooling. CLS-pooling simply returns the vector representation of the first token

of the input sentence, i.e., the [CLS] token. Mean-pooling computes a sentence

embedding by taking the mean over all (sub-word) token representations of the

input sentence. We obtain sentence embeddings from all hidden layers of the

masked language models, including the non-contextualized embedding layer (layer

0) and treat accuracy on the acceptability classification task as a proxy for the

linguistic knowledge encoded in a model’s sentence embeddings, which we evaluate

on a held-out test set.

We use the huggingface transformers (Wolf et al., 2020) and flair (Akbik

et al., 2018) libraries as well as scikit-learn (Pedregosa et al., 2011) to obtain

embeddings and train the logistic regression classifiers.

4 To be precise, for RoBERTa the special tokens are <s> and </s>. For GloVe and fasttext

embeddings as well as the rule-based classifier, we tokenize on the word level without using

special tokens.

42 Probing Pre-trained Models for Linguistic Knowledge

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

A
cc

ur
ac

y

ALBERT

BERT

RoBERTa

glove

fasttext

rule based

(a) CLS-pooling

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

A
cc

ur
ac

y

ALBERT

BERT

RoBERTa

glove

fasttext

rule based

(b) mean-pooling

Figure 3.2: Side-by-side comparison of layer-wise probing accuracy on the test set for

pre-trained transformer and baseline models using (a) CLS-pooling and

(b) mean-pooling.

3.3.3 Probing results and discussion

Figure 3.2 shows the layer-wise probing accuracy for all models when using cls-

and mean-pooling. Mean-pooling leads to higher probing accuracies for all models,

suggesting a sub-optimal encoding of sentence-level information in the CLS token

representation. Hence, we stick to mean-pooling for later experiments. We find

that the rule-based classifier is a surprisingly strong baseline, outperforming

both the GloVe and fasttext baselines. Moreover, Figure 3.2 shows that all three

transformer-based models improve significantly over the baselines for almost all

layers. The only exception is layer 0 of ALBERT, which performs similarly to

the fasttext baseline and worse than the rule-based classifier. We attribute this

finding to the embedding factorization of ALBERT. At lower (contextualized)

layers (1–5), probing accuracies of BERT, RoBERTa, and ALBERT are almost

identical. For higher layers, both BERT and RoBERTa improve over ALBERT,

with ALBERT’s probing accuracy remaining roughly constant. We note that

ALBERT has significantly fewer parameters than BERT and RoBERTa (12M vs.

110M and 125M), which might explain the lower probing accuracy. We provide

3.3 Probing representations for knowledge of RCs 43

Modification GloVE fasttext Rule-based BERT RoBERTa ALBERT

no modification 67.3 69.2 100 83.7 (78.4) 85.3 (79.7) 83.6 (71.5)

relativizer omission 77.2 85.3 97.6 96.0 (98.3) 95.1 (98.2) 96.4 (94.8)

who → which 88.0 81.7 0.00 84.9 (88.4) 87.3 (89.6) 78.8 (68.3)

which → who 18.2 21.3 0.00 47.9 (1.73) 50.0 (0.02) 44.2 (18.7)

which → that 12.8 8.0 100 80.0 (52.0) 77.6 (44.8) 72.0 (22.4)

total 69.2 71.0 73.7 84.6 (79.7) 85.5 (80.1) 83.0 (72.1)

Table 3.2: Test accuracy (in %) grouped by modification type (cf. Table A.3 for

statistics). For BERT, RoBERTa, and ALBERT we select the best model

according to the probing results shown in Figure 3.2. Numbers in parenthesis

show the accuracy of the non-contextualized baseline (layer 0) for each

model.

a more detailed discussion investigating the role of the number of parameters in

Appendix A.2.1.

Overall, the fact that probing accuracy is above 80% for almost all layers

suggests a reasonable encoding of sentence-level linguistic knowledge relevant for

grammaticality classification in all pre-trained models. Notably, linear separability

with respect to grammaticality emerges very early in the sentence embeddings of

all three models.

To get a better understanding of the accuracy achieved by each of the models,

we select the best classifier according to the results in Figure 3.2 and report test

accuracy grouped by modification in Table 3.2. For comparison, we additionally

report accuracies of the non-contextualized baselines (layer 0) of each model in

parentheses.

The results show that while contextualization leads to higher probing accuracy

overall, it is especially important for the which → who and which → that

samples. From a linguistic viewpoint this is surprising: e.g., replacing which by

who clearly makes a sentence ungrammatical and is typically easy to detect for

humans. When looking at the training data, however, this observation is not

44 Probing Pre-trained Models for Linguistic Knowledge

surprising at all. The vast majority of sentences (15K samples) belonging to

the no modification group contain who as a relativizer. All of these sentences

are grammatical (see Table A.3). On the other hand, which → who contains

only 2.5K samples, all of them are ungrammatical. Hence, our results in Table

3.2 suggest that the non-contextualized baselines might have learned a simple

heuristic, classifying all sentences that contain who as a relativizer as grammatical.

The results of the rule-based baseline classifier give further evidence for this

interpretation, showing that a simple classifier which bases its predictions only on

the existence of a relativizer has a surprisingly high accuracy (comparable to the

non-contextualized baselines) on our dataset. Interestingly, BERT and RoBERTa

seem to be especially susceptible to learning this short-cut as shown by the results

of the non-contextual baselines for BERT and RoBERTa on the relativizer

omission and which → who modifications.

3.3.4 Diagnostics

To further investigate the generalization abilities and model-specific behavior of

the best probing classifiers, we evaluate them on a diagnostic dataset containing

sentences with the following properties: (1) adjacent antecedent and relativizer (see

example (2-a), grammatical), (2) longer distance between antecedent and relativizer

(see example (2-b), grammatical), (3) longer distance between relativizer and

RC verb (see example (2-c), grammatical), (4) incorrect agreement between

adjacent antecedent and relativizer (see example (2-d), ungrammatical), and (5)

intervening agreement attractors leading to incorrect agreement (see example

(2-e), ungrammatical).

To create the dataset, we manually select four sentences and manipulate these

according to each of the above-mentioned cases. Three sentences have nominal

antecedents and one has a clausal antecedent. For the grammatical manipulations

(case 1–3), we additionally test restrictive and non-restrictive variants of each

3.3 Probing representations for knowledge of RCs 45

sentence. Overall, we test a total of 32 sentences5 and evaluate the models’

confidence based on the un-normalized log probabilities (logits), where predictions

> 0 result in classifying sentences as grammatical. In the case 2 manipulations,

besides considering nominal vs. clausal antecedent, we look at the number of

words of intervening phrases (length of 3–7 intervening words).6

(2) a. We just heard a debate which was about the differences in wage

rates [...]. (case 1: adjacent antecedent and relativizer)

b. [...] a debate on one of the most famous television channels which

was about [...]. (case 2: distance from antecedent to relativizer)

c. [...] a debate which in many regards was an important one about [...].

(case 3: distance from relativizer to verb)

d. *[...] a debate who was about [...]. (case 4: incorrect agreement be-

tween antecedent and relativizer)

e. *[...] a debate by DeGeneres who was about [...]. (case 5: agreement

attractor)

Case 1 For restrictive and non-restrictive variants and nominal antecedents,

BERT and ALBERT correctly predict sentences to be grammatical with relatively

high confidence (restrictive: 2.7, non-restrictive: 1.6). With a clausal antecedent,

they fail in the restrictive variant (−0.39 and −1.18, respectively), but they

can deal with non-restrictive RCs (0.89 and 0.57), the comma possibly being a

strong indicator of non-restrictiveness. RoBERTa always incorrectly predicts that

sentences are ungrammatical.

Case 2 With intervening phrases between an antecedent and a relativizer,

BERT and ALBERT again do well on both restrictive and non-restrictive RCs for

5 We opted for a small set for high control over factors influencing a choice.
6 Note that for case 3, the distance between the relativizer and the verb is always three words,

so length is not a factor that needs to be evaluated.

46 Probing Pre-trained Models for Linguistic Knowledge

Case Factor
BERT ALBERT RoBERTa

restrictive non-restrictive restrictive non-restrictive restrictive non-restrictive

1 (+)
nominal 2.74 1.62 2.35 1.75 −0.79 −0.85

clausal −0.39 0.89 −1.18 0.57 −0.85 −0.57

2 (+)

nominal 2.34 1.74 1.30 1.72 −1.03 −0.87

clausal −0.39 0.89 −1.18 0.57 −0.85 −0.57

3–4 words 2.35 2.52 1.30 2.55 −1.03 −0.55

> 4 words −0.69 0.54 −1.15 0.31 −1.42 −1.04

3 (+)
nominal 1.99 1.97 2.04 1.78 −1.06 −0.80

clausal −0.84 0.43 −1.54 0.17 −0.89 −0.35

4 (*)
nominal −0.47 – −0.40 – −1.46 –

clausal −1.38 – −1.75 – −1.24 –

5 (*)
nominal 0.56 – 0.08 – −1.24 –

clausal −1.38 – −1.75 – −1.24 –

Table 3.3: Prediction confidence in mean logit (> 0: grammatical, < 0: ungrammatical).

Sentences in case 1 to 3 should be predicted as grammatical (+) and case 4

and 5 as ungrammatical (*).

nominal antecedents, but fail on restrictive RCs in the clausal case. Considering the

length of the intervening phrase, for restrictive RCs, BERT deals with intervening

phrases with high confidence (2.35), provided they are relatively short (3–4 words).

For longer distance, BERT is less confident (−0.69) and chooses the (wrong)

ungrammatical class. ALBERT behaves similarly, but fails with higher confidence

(−1.15). RoBERTa always fails without a clear pattern. For the non-restrictive

RCs, both BERT and ALBERT correctly predict the grammatical class, even

though distance affects their confidence (the longer the less confident: 2.52 for

shorter, 0.54 for longer phrases). RoBERTa again predicts the ungrammatical

class for all sentences, but is especially confident for greater distance between

antecedent and relativizer (−0.55 for shorter, −1.04 for longer phrases).

3.3 Probing representations for knowledge of RCs 47

Case 3 With restrictive RCs, RoBERTa has problems with intervening phrases

between the relativizer and the RC verb, again always predicting the ungrammat-

ical class. BERT predicts this case correctly, but fails on sentences with a clausal

antecedent, even though with lower confidence than ALBERT (−0.84 vs. −1.54).

In non-restrictive RCs, BERT and ALBERT obtain perfect accuracy for both

nominal and clausal antecedents, being quite confident in their predictions, while

RoBERTa still fails, sometimes with very high confidence.7

Case 4 With incorrect agreement and adjacent antecedents and relativizers,

RoBERTa is quite confident of the ungrammaticality of the sentences (−1.46),

while BERT and ALBERT are confident in the clausal antecedent case (−1.38

and −1.75, respectively), but much less confident or even wrong with nominal

antecedents.

Case 5 With intervening agreement attractors and incorrect agreement (see ex-

ample (2-e), where DeGeneres is considered the antecedent instead of debate),

BERT gets confused due to the attractors and is only confident in the clausal

antecedent case (−1.38). ALBERT gets confused as well, but less often and with

much lower confidence than BERT (0.08). RoBERTa, on the other hand, is very

confident in recognizing the incorrect agreement (−1.24).

In summary, RoBERTa is quite confident in the case of incorrect agreement.

BERT and ALBERT deal much better than RoBERTa with longer distances

between antecedent and relativizer. Also, BERT and ALBERT learn to recognize

non-restrictive RCs quite well and can deal with phrases between the relativizer

and the RC verb. Thus, even though the models achieve very high probing accuracy

overall (see § 3.3.3), evaluating on more complex cases reveals that each model

seems to rely on different kinds of information, strongly affecting the generalization

7 BERT and ALBERT seem to rely on the comma as an indicator of grammaticality for

non-restrictive RCs (cases 0–2).

48 Probing Pre-trained Models for Linguistic Knowledge

abilities of the probing classifiers. While we are aware of the diagnostic set’s

very limited size, hindering generalizable conclusions, the controlled diagnostic

evaluation gives an indication of possible differences underlying prediction choices

across models.

3.4 Analyzing predictions for RC awareness

To get a more comprehensive picture of the differences between models, we perform

a masked language modeling evaluation (Goldberg, 2019), looking at the models’

predictions of relativizers as well as antecedents. Besides grammaticality, we also

test whether the models capture semantic knowledge.

3.4.1 Analyzing grammatical and semantic knowledge

We extract sentences containing restrictive8 object or subject RCs with one of the

three relativizers from the magazines and academic registers9 from the COCA

corpus (Davies, 2015). All sentences are formatted as described in §3.3.2, e.g.,

[CLS] The woman [MASK] studies linguistics. [SEP] The size of each set

of sentences of a particular RC type depends on the frequency of available sentences

in the COCA corpus and therefore varies between types from 20 to 50 sentences.

3.4.1.1 Relativizer prediction

We test all three models by masking the relativizer, considering the following

metrics for evaluation: (1) mean precision at 1 (MP@1) (model’s precision of target

prediction at first position), (2) mean target rank (MTR), and (3) normalized

mean entropy (NME) (uncertainty of the model’s prediction).

8 We deliberately exclude non-restrictive RCs due to the indicative comma facilitating RC

recognition (see §3.3.4).
9 We exclude fiction as it was used for the probing experiments, and spoken, due to possible

high noise in spoken data.

3.4 Analyzing predictions for RC awareness 49

objRC subjRC

who which that who which that

M
P

@
1 BERT 0.80 0.29 0.89 0.98 0.02 0.92

RoBERTa 0.80 0.24 0.96 0.92 0.04 0.92

ALBERT 0.32 0.43 0.86 0.96 0.16 0.76

M
T

R

BERT 1.23 1.83 1.11 1.00 2.46 1.10

RoBERTa 1.23 1.95 1.04 1.08 2.18 1.22

ALBERT 2.29 1.73 1.39 1.02 1.18 1.37

M
N

E

BERT 0.09 0.08 0.05 0.05 0.07 0.06

RoBERTa 0.08 0.06 0.05 0.04 0.05 0.04

ALBERT 0.19 0.21 0.18 0.12 0.13 0.17

(a) Multi-metric evaluation (MP@1: mean pre-

cision at 1, MTR: mean target rank, MNE:

mean normalized entropy)

objRC subjRC

who which that who which that

A
N

BERT 0.87 1.00 0.93 1.00 0.94 0.96

RoBERTa 0.81 1.00 0.96 0.94 0.90 0.94

ALBERT 0.71 1.00 0.93 1.00 0.94 0.92

P
L

BERT 0.81 0.98 0.93 1.00 0.92 0.96

RoBERTa 0.97 0.98 0.96 0.98 0.98 0.98

ALBERT 0.68 0.95 0.89 0.98 0.96 0.92

G
R

BERT 0.94 1.00 0.93 1.00 0.98 1.00

RoBERTa 0.97 1.00 0.96 1.00 0.98 1.00

ALBERT 0.68 0.95 0.89 0.98 0.98 0.96

(b) Semantic (AN: animacy, PL: plausibility)

and grammaticality (GR) evaluation.

Table 3.4: Relativizer prediction: quantitative (a) and qualitative (b) evaluation. Bold:

best result for each metric and category across models. Underline: best

result for each model per metric across categories.

For MP@1, all three models generally perform well across RCs apart from

which (Table 3.4a). BERT and RoBERTa show similar performance, while AL-

BERT diverges slightly, with fairly weak predictions of who in object RCs and

comparatively accurate predictions of which in both object and subject RCs. MTR

is negatively correlated with MP@1 (the larger the divergence from 1, the lower

the precision of the prediction). NME reflects the two other measures: BERT and

RoBERTa are quite confident about their predominantly successful predictions,

while ALBERT shows a higher uncertainty about overall much weaker predictions.

Next, we manually evaluate10 the actual predictions according to three criteria:

animacy (agreement between antecedent and relativizer), plausibility (semantically

plausible sentence) and grammaticality (Table 3.4b). Results show that the actual

felicity of the predictions is much stronger than MP@1 would suggest, since non-

target predictions are not necessarily infelicitous. This is especially true for which,

due to high interchangeability with that. While both relativizers are synonymous,

10 Evaluations were done by two linguistic experts.

50 Probing Pre-trained Models for Linguistic Knowledge

which is primarily used in non-restrictive RCs. Since the sample sentences are

restrictive, the models seem to predict the most frequent relativizer in restrictive

RCs, which is that (see example (3)).

(3) The action [MASK] it contemplates is command. (all models) (object RC,

target= which, prediction= that)

Animacy is predicted reliably by BERT and RoBERTa, while ALBERT seems to

have issues with who object predictions. This is due to ALBERT’s preference to

predict that instead of who, especially in fuzzy cases of general nouns describing

humans (person, people, family, etc. – see example (4)). Sometimes animacy is

predicted correctly but case marking is infelicitous; the model seems to only

take into account the subject and verb of the clause ignoring possible clausal

complements (see example (5)).

(4) He spared no expense in moving, reassembling, and restoring buildings

of people [MASK] he felt were the backbone of our nation. (ALBERT)

(object RC, target= who, prediction=that)

(5) Jennifer had been having an online affair with a person [MASK] she

believed was a man named Christopher. (ALBERT) (object RC, target=

who, prediction= whom)

Accuracy for plausibility is very high as well, with ALBERT making the least

plausible predictions. Note that plausibility entails grammaticality. Example (5)

has animacy agreement, but is neither grammatical nor plausible. Grammaticality

in contrast does not entail plausibility (see example (6)). Here, BERT predicts

the most frequent collocate of whirl according to COCA (Davies, 2015).

(6) This is something else, for I saw a whirl [MASK] I knew was a large bass.

(BERT) (object RC, target= which, prediction= wind)

3.4 Analyzing predictions for RC awareness 51

Of all criteria, predictions are most accurate for grammaticality. Even ALBERT

reaches a precision of 90% on average. Finally, we consider the ratio of (any) rela-

tivizers predicted vs. other word classes, indicating how well the models recognize

a syntagmatic environment typical for RCs. RoBERTa is again the most successful

model here (95% of predictions are relativizers), followed by BERT (94%) and

ALBERT (90%).

In summary, BERT and RoBERTa perform equally well at target prediction,

while RoBERTa is most successful qualitatively (relativizer predictions that sat-

isfies animacy, plausibility and grammaticality expectations). Overall, our qual-

itative analysis shows that all models largely make grammatical, plausible and

animacy-conforming predictions.

3.4.1.2 Antecedent prediction

Next, we test all three models by masking the antecedent (see example (7)), con-

sidering again, mean precision (MP@1), mean target rank (MTR), and normalized

mean entropy (NME) (Table 3.5a). Due to higher variation in lexical choices for

antecedents, MP@1 is expectedly much lower than for relativizers.

Best @1 predictions are achieved by all models for who and that object RCs.

Comparing models, BERT achieves best performance in all cases. MTR is around

2.5 and 3.5, with antecedents in who subject RCs being predicted most easily

by all models (rank around 2.5), also reflected in NME. The models are equally

confident in who object RCs, while they are less confident for the other cases, with

ALBERT being the least confident and RoBERTa the most confident model.

(7) Rheumatologists have to be medical detectives, because so many of the

[MASK] that we treat are obscure. (object RC, masked target: diseases)

Considering the first predicted antecedent, we qualitatively evaluate whether (a)

the animacy constraint is met, i.e., who RCs should have animate antecedents,

52 Probing Pre-trained Models for Linguistic Knowledge

objRC subjRC

who which that who which that

M
P

@
1 BERT 0.38 0.22 0.38 0.27 0.31 0.29

RoBERTa 0.31 0.08 0.29 0.22 0.17 0.14

ALBERT 0.28 0.14 0.29 0.20 0.15 0.14

M
T

R BERT 3.04 2.82 3.41 2.42 3.30 2.93

RoBERTa 2.65 3.80 2.33 2.60 2.67 2.82

ALBERT 3.20 3.23 2.45 2.58 3.17 3.18

N
M

E BERT 0.23 0.38 0.27 0.26 0.32 0.36

RoBERTa 0.18 0.28 0.22 0.21 0.24 0.27

ALBERT 0.40 0.50 0.41 0.39 0.42 0.50

(a) Multi-metric evaluation (MP@1: mean pre-

cision at 1, MTR: mean target rank, MNE:

mean normalized entropy)

objRC subjRC

who which that who which that

A
N

BERT 0.97 0.94 0.95 0.98 0.94 0.98

RoBERTa 1.00 0.97 0.95 1.00 1.00 0.96

ALBERT 1.00 1.00 0.90 0.96 1.00 0.96

P
L

BERT 0.97 0.94 0.95 1.00 0.90 0.96

RoBERTa 0.97 0.97 1.00 0.98 0.92 0.92

ALBERT 0.97 0.97 0.76 0.96 0.65 0.73

G
R

BERT 1.00 0.97 1.00 1.00 0.98 1.00

RoBERTa 1.00 1.00 1.00 1.00 1.00 1.00

ALBERT 1.00 1.00 0.95 0.96 0.98 0.94

(b) Semantic (AN: animacy, PL: plausibility)

and grammaticality (GR) evaluation.

Table 3.5: Antecedent prediction: quantitative (a) and qualitative (b) evaluation. Bold:

best result for each metric and category across models. Underline: best

result for each model per metric across categories.

and that and which most prominently inanimate ones11 (see example (8)), (b)

the sentence is plausible, (c) the sentence is grammatical (example (9) shows

ungrammaticality because of incorrect noun-verb agreement between animals

(plural) and was (singular)12).

(8) They picked a great foreman in the middle-aged, an African-American

[MASK] who she said is a science professor with a Ph.D. (target = man,

prediction = comma)

(9) By the time Ganivet drafted Idearium español, he was applying Ribot’s

psychological theories to the apparent inertia of [MASK] which he deemed

was suffering from a collective psychological malady. (target = Spain,

prediction = animals)

11 In cases where an elliptical version or other is predicted, we still check whether the animacy

was kept or changed.
12 Here, BERT seems to consider inertia as the antecedent, matching the agreement with was.

3.4 Analyzing predictions for RC awareness 53

Overall, BERT and RoBERTa show very high accuracy for these cases (see

Table 3.5b). In a few cases, the animacy of the antecedent is changed (see example

(10)) and sentences are grammatical but semantically implausible or ungrammatical

and implausible (see examples (10) and (11)). ALBERT performs worst when it

comes to plausibility, especially for which in subject RCs (see example (12)), most

cases being repetitions of words in the sentence (see example (13)).

(10) The only thing that brightened the gloom stretching out before him was

the goodness of the [MASK] that had offered him refuge before his trial.

(target = family, prediction = darkness)

(11) Coffee, the cash, and the goods they purchased, even when used in tradi-

tional exchange, were devoid of the social relations with [MASK] which

were present in traditional products. (target = predecessors, prediction =

humans)

(12) He and Carolyn saw all of Kevin’s college [MASK] that were within a

day’s drive of McIntyre. (target = games, prediction = campuses)

(13) The bill makes it illegal to adopt or enforce any law or [MASK] which

allows gays to claim discrimination. (target = policy, prediction = law)

In summary, all models have problems with the relativizer whichand they perform

best on who. The models perform worst on animacy and plausibility, especially

for subject RCs, but perform quite well for grammaticality, indicating a better

awareness for grammatical than semantic knowledge.

We further evaluate the models’ semantic knowledge considering predicted

types of antecedents based on their relationship to the target, i.e., (a) identical,

(b) synonym, (c) hypernym, general noun, determiner, pronoun, (d) hyponym13,

or (e) not directly related (i.e., no direct hierarchical relationship) or completely

unrelated.14 Results (see Table A.5 in Appendix A.2.2) show that all models

13 Hyponyms are semantically lower in hierarchy and thus more specific.
14 We relied on WordNet whenever possible (low coverage) and on other linguistic resources as

well as the expertise of two linguists.

54 Probing Pre-trained Models for Linguistic Knowledge

perform less well on subject than object RCs. ALBERT performs the worst as the

majority of its predictions are in the category of not directly related/unrelated

antecedents, or hypernyms (more general words). RoBERTa is quite good at

predicting identical targets, outperforming the other two models especially in

object RCs with who. In who subject RCs, BERT and ALBERT most often predict

more general antecedents given more specific targets (hypernyms, e.g., person

instead of girl, workers, etc.).

3.5 Discussion and conclusion

Our work makes progress towards tackling some issues in the evaluation of the

linguistic capabilities of pre-trained transformer-based masked language models

as, e.g., proposed by Rogers et al. (2020). Most prominently, we try to better

understand how strong performance on supervised probing tasks is reflected in

the predictions of the language models. To do so, we create a dataset based on

naturalistic (not artificially generated) data and perform an extensive evaluation

of masked language predictions in the context of RCs. Moreover, rather than

considering only one model, we compare three models to investigate the extent to

which findings for BERT can be generalized to other transformer-based models.

Our probing results show a significant improvement of all three transformer-

based models over the baselines for almost all layers, suggesting that models do

indeed encode linguistic knowledge relevant for grammaticality classification, as

shown in previous work (e.g., Goldberg (2019)). Performance is similar across

models, with BERT and RoBERTa performing slightly better than ALBERT,

and while contextualization improves performance overall, we have shown that

it helps immensely when considering less frequent RC modification types such

as which → who, for which uncontextualized baselines learn simple heuristics.

Evaluation on a diagnostic set, however, clearly reveals the weaknesses of probing

classifiers, and model-specific behavior. RoBERTa is quite confident in the case

of incorrect agreement between antecedent and relativizer, while this is tougher

3.5 Discussion and conclusion 55

for BERT and ALBERT. Considering distance between relativizer and anteceden-

t/RC verb, however, both models clearly outperform RoBERTa. Based on these

insights, we conclude that viewing probing results in isolation can lead

to overestimating the linguistic capabilities of a model.

Our masked language modeling evaluation provided deeper insights into

model-specific differences. We evaluated relativizer as well as antecedent prediction.

Overall, all models show better performance on grammatical than semantic

knowledge (animacy and plausibility). Regarding relativizer prediction, all models

perform worst on the target word which (plausible, as it is the most versatile

of the relativizers). Comparing models, BERT is best at predicting the actual

targets, RoBERTa outperforms the others in capturing grammatical and semantic

knowledge, and ALBERT performs worst overall.

Evaluation on semantic types of antecedents shows prediction of unrelated or

not directly related antecedents, especially for ALBERT in which RCs. Interestingly,

both BERT and ALBERT predict hierarchically more general antecedents in who

RCs, while RoBERTa is able to better capture specificity.

We believe that more work in this direction will lead to (a) awareness of

the complexity of linguistic knowledge that such models might have to capture,

considering e.g., generalization tasks, and (b) improve how evaluation strategies

capture linguistic knowledge, e.g., through a combination of probing, diagnostic,

and cloze tests, and also aid in developing evaluation best practices.

4
On the Interplay Between Fine-tuning

and Probing

Contents

4.1 Introduction . 59

4.2 Related work . 60

4.3 Methodology and setup . 62

4.3.1 Fine-tuning tasks . 63

4.3.2 Probing tasks . 64

4.3.3 Pre-trained models . 65

4.3.4 Fine-tuning and probing setup . 65

4.4 Experiments . 67

4.4.1 Probing accuracy . 67

4.4.2 How does fine-tuning affect probing accuracy? 68

4.5 What happens during fine-tuning? . 71

4.5.1 Analyzing attention distributions . 71

4.5.2 Analyzing perplexity . 73

4.5.3 Discussion . 75

4.6 Conclusion . 76

Fine-tuning pre-trained language models is an integral part of the modern

NLP pipeline. Recently, probing has emerged as a way to investigate the linguistic

57

58 On the Interplay Between Fine-tuning and Probing

knowledge captured by pre-trained models. However, very little is understood

about how fine-tuning affects the representations of pre-trained models and thereby

the linguistic knowledge they encode. This chapter contributes towards closing

this gap. We study three different pre-trained models: BERT, RoBERTa, and

ALBERT, and investigate through sentence-level probing how fine-tuning affects

the linguistic knowledge encoded in their representations. We find that for some

probing tasks fine-tuning leads to substantial changes in accuracy, suggesting that

fine-tuning introduces or even removes linguistic knowledge from a pre-trained

model. These changes, however, vary greatly across different models, fine-tuning

and probing tasks. Our analysis reveals that while fine-tuning does change the

representations of a pre-trained model and these changes are typically larger for

higher layers, it has a large positive effect on probing accuracy only in very few

cases, and is often beaten by just using the pre-trained model with a strong

pooling method. Based on our findings, we argue that both positive and negative

effects of fine-tuning on probing results require a careful interpretation.

The content presented in this chapter is based on:

Mosbach, Marius, Anna Khokhlova, Michael A. Hedderich, and Dietrich Klakow

(2020). “On the Interplay Between Fine-tuning and Sentence-level Probing

for Linguistic Knowledge in Pre-trained Transformers.” In: Findings of the

Association for Computational Linguistics: EMNLP 2020. Online: Association

for Computational Linguistics, pp. 2502–2516. url: https://aclanthology.

org/2020.findings-emnlp.227.

As a first author, Marius Mosbach conceptualized the research, conducted

most of the experiments and led the paper writing. Anna Khokhlova ran the

perplexity experiments and helped with writing. Michael Hedderich suggested and

ran the attention entropy experiment and helped with writing. Dietrich Klakow

advised and provided feedback.

https://aclanthology.org/2020.findings-emnlp.227
https://aclanthology.org/2020.findings-emnlp.227

4.1 Introduction 59

4.1 Introduction

Fine-tuned transformer-based language models like BERT (Devlin et al., 2019),

RoBERTa (Y. Liu et al., 2019b) and ALBERT (Lan et al., 2020) recently became

the state-of-the-art on a large variety of NLP downstream tasks. These models are

pre-trained on large amounts of text and subsequently fine-tuned via supervised

training on downstream tasks. Their strong empirical performance prompted

questions about the linguistic knowledge they encode in their representations and

how it is affected by the training objective and model architecture (Kim et al.,

2019b; A. Wang et al., 2019c). One prominent technique to gain insights about

the linguistic knowledge encoded in pre-trained models is probing (Adi et al., 2017;

Tenney et al., 2019a; Conneau et al., 2018; Rogers et al., 2020, inter alia). However,

to the best of our knowledge, works on probing have so far focused only on pre-

trained models and it is still unclear how the representations of a pre-trained model

change when fine-tuning on a downstream task. Further, little is known about

whether and to what extent this process adds or removes linguistic knowledge

from a pre-trained model. Addressing these issues, this chapter investigate the

following questions:

1. How and where does fine-tuning affect the representations of a pre-trained

model?

2. To which extent (if at all) can changes in probing accuracy be attributed to

a change in linguistic knowledge encoded by the model?

To answer these questions, we investigate three different pre-trained masked

language models: BERT, RoBERTa, and ALBERT. We fine-tune them on sentence-

level classification tasks from the GLUE benchmark (A. Wang et al., 2018) and

evaluate the linguistic knowledge they encode leveraging three sentence-level

probing tasks from the SentEval probing suite (Conneau et al., 2018). We focus on

sentence-level probing tasks to measure linguistic knowledge encoded by a model

for two reasons: 1) during fine-tuning we explicitly train a model to represent

60 On the Interplay Between Fine-tuning and Probing

sentence-level context in its representations and 2) we are interested in the extent

to which this affects existing sentence-level linguistic knowledge already present

in a pre-trained model.

We find that while fine-tuning does affect a model’s sentence-level probing

accuracy and these effects are typically larger for higher layers, changes in probing

accuracy vary depending on the model, fine-tuning and probing task combination.

Our results also show that sentence-level probing accuracy is highly dependent on

the pooling method being used. In fact, fine-tuning only has a greater positive

effect on probing accuracy than just using the pre-trained model with a strong

pooling method in very few cases. Our findings suggest that changes in probing

performance cannot exclusively be attributed to an improved or deteriorated

encoding of linguistic knowledge and should be carefully interpreted. We present

further evidence for this interpretation by investigating changes in the attention

distribution and language modeling capabilities of fine-tuned models which suggest

alternative explanations for changes in probing accuracy.

4.2 Related work

Probing language models for linguistic knowledge A large body of

previous work focuses on analyzing the internal representations of neural models

and the linguistic knowledge they encode (Shi et al., 2016; Ettinger et al., 2016;

Adi et al., 2016; Belinkov et al., 2017; Hupkes et al., 2018). In a similar spirit

to these first works on probing, Conneau et al. (2018) were the first to compare

different sentence embedding methods based on the linguistic knowledge they

encode. Krasnowska-Kieraś and Wróblewska (2019) extended this approach to

study sentence-level probing tasks on English and Polish sentences.

Alongside sentence-level probing, a lot of recent work (Peters et al., 2018; N. F.

Liu et al., 2019; Tenney et al., 2019b; Lin et al., 2019; Hewitt and Manning, 2019)

has focused on token-level probing tasks investigating more recent contextualized

embedding models such as ELMo (Peters et al., 2018), GPT (Radford et al., 2019),

4.2 Related work 61

and BERT (Devlin et al., 2019). Two of the most prominent works following

this methodology are N. F. Liu et al. (2019) and Tenney et al. (2019b). While

N. F. Liu et al. (2019) use linear probing classifiers as we do, Tenney et al. (2019b)

use more expressive, non-linear classifiers. However, in contrast to our work,

most studies that investigate pre-trained contextualized embedding models focus

on pre-trained models and not fine-tuned ones. We aim to assess how probing

performance changes with fine-tuning and how these changes differ based on the

model architecture, as well as probing and fine-tuning task combination.

Anaylzing fine-tuned language models While fine-tuning pre-trained

language models leads to strong empirical performance across various supervised

NLP downstream tasks (A. Wang et al., 2018), fine-tuning itself (Howard and

Ruder, 2018; Devlin et al., 2019) and its effects on the representations learned by

a pre-trained model are poorly understood. As an example, Phang et al. (2018)

show that downstream accuracy can benefit from an intermediate fine-tuning task,

but leave the investigation of why certain tasks benefit from intermediate task

training to future work. Recently, Pruksachatkun et al. (2020b) extended this

approach using 11 diverse intermediate fine-tuning tasks. They view probing task

performance after fine-tuning as an indicator of the acquisition of a particular

language skill during intermediate task fine-tuning. This is similar to our work in

the sense that probing accuracy is used to understand how fine-tuning affects a

pre-trained model. Talmor et al. (2019) try to understand whether the performance

on downstream tasks should be attributed to the pre-trained representations or

rather the fine-tuning process itself. They fine-tune BERT and RoBERTa on a

large set of symbolic reasoning tasks and find that while RoBERTa generally

outperforms BERT in its reasoning abilities, the performance of both models is

highly context-dependent.

Most similar to our work is contemporaneous work by Merchant et al. (2020).

They investigate how fine-tuning leads to changes in the representations of a

pre-trained model. In contrast to our work, their focus, however, lies on edge-

62 On the Interplay Between Fine-tuning and Probing

probing (Tenney et al., 2019b) and structural probing tasks (Hewitt and Manning,

2019), and they study only a single pre-trained encoder: BERT. We consider

our work complementary to theirs since we study sentence-level probing tasks,

use different analysis methods and investigate the impact of fine-tuning on three

different pre-trained encoders: BERT, RoBERTa, and ALBERT, providing a more

comprehensive picture.

4.3 Methodology and setup

The focus of our work is on studying how fine-tuning affects the representations

learned by a pre-trained model. We assess this change through sentence-level

probing tasks. We focus on sentence-level probing tasks since during fine-tuning

we explicitly train a model to represent sentence-level context in the CLS token.

The fine-tuning and probing tasks we study operate at different linguistic

levels, requiring a model to focus more on syntactic, semantic or discourse infor-

mation. The extent to which knowledge of a particular linguistic level is needed

to perform well differs from task to task. For instance, no deep discourse under-

standing is needed to judge if the syntactic structure of a sentence is intact. Our

hypothesis is that if a pre-trained model encodes certain linguistic knowledge, this

acquired knowledge should lead to good performance on a probing task testing

for the same linguistic phenomenon. Extending this hypothesis to fine-tuning,

one might argue that if fine-tuning introduces new or removes existing linguistic

knowledge into/from a model, this should be reflected by an increase or decrease in

probing performance. In fact, examples of this reasoning can be found in previous

work: Merchant et al. (2020) find that fine-tuning on the task of dependency

parsing leads to an improvement on constituents probing, and attribute this to the

improved linguistic knowledge of the fine-tuned model. Similarly, Pruksachatkun

et al. (2020b) view probing task performance as “an indicator for the acquisition

of a particular language skill.” We argue that encoding or forgetting linguistic

knowledge is not necessarily the only explanation for observed changes in probing

4.3 Methodology and setup 63

accuracy. Hence, the goal of our work is to test the above-stated hypotheses assess-

ing the interaction between fine-tuning and probing tasks across three different

encoder models.

4.3.1 Fine-tuning tasks

We study models fine-tuned on the following datasets taken from the GLUE

benchmark (A. Wang et al., 2018): CoLA, SST-2, and RTE. All three datasets are

sentence-level classification tasks and cover different levels of linguistic proficiency

(we elaborate on this below). In addition to the three classification datasets,

we also study models fine-tuned on SQuAD (Rajpurkar et al., 2016), a popular

question answering dataset. Statistics for each of the datasets can be found in the

Appendix B.1. Below, we provide details about each of the datasets.

CoLA The Corpus of Linguistic Acceptability (Warstadt et al., 2018) is an

acceptability dataset which tests a model’s knowledge of grammatical concepts.

We expect that fine-tuning on CoLA would result in changes in accuracy on

syntactic probing tasks, as CoLA contains sentences with syntactic, morphological

and semantic violations. We identified that about 15% of the sentences in the

CoLA training set are labeled with morphological and semantic violations. Thus,

we suppose that fine-tuning on CoLA should increase a model’s sensitivity to

syntactic violations to a greater extent than, e.g., semantic violations.

SST-2 We use the binary version of the Stanford Sentiment Treebank (Socher

et al., 2013) where the task is to categorize movie reviews as having either positive

or negative valence. Making sentiment judgments requires knowing the meanings

of isolated words and combining them on the sentence and discourse level (e.g., in

case of irony). Hence, we expect to see a difference for semantic and/or discourse

probing tasks when fine-tuning on SST-2.

64 On the Interplay Between Fine-tuning and Probing

RTE The Recognizing Textual Entailment dataset is a collection of sentence-

pairs in either neutral or entailment relationship collected from a series of annual

textual entailment challenges (Dagan et al., 2005; Bar-Haim et al., 2006; Giampic-

colo et al., 2007; Bentivogli et al., 2009). The task requires a deeper understanding

of the relationship of two sentences, hence, fine-tuning on RTE might affect

accuracy on discourse-level probing tasks.

SQuAD The Stanford Questions Answering Dataset (Rajpurkar et al., 2016)

is a popular extractive reading comprehension dataset. The task involves a broader

discourse understanding as a model trained on SQuAD is required to extract the

answer to a question from an accompanying paragraph.

4.3.2 Probing tasks

We select three sentence-level probing tasks from the SentEval probing suite

(Conneau et al., 2018), testing for syntactic, semantic and broader discourse

information on the sentence-level.

Bigram-shift is a syntactic binary classification task that tests a model’s

sensitivity to word order. The dataset consists of intact and corrupted sentences,

where for corrupted sentences, two random adjacent words have been inverted,

e.g., ``She wondered how time much had passed."

Semantic-odd-man-out tests a model’s sensitivity to semantic incongruity

on a collection of sentences where random verbs or nouns are replaced by another

verb or noun, e.g., ``I managed to block out everything, and loud music,

governing bodies, and thumping bass were all I cared about."

Coordination-inversion is a collection of sentences made out of two co-

ordinate clauses. In half of the sentences, the order of the clauses is inverted,

4.3 Methodology and setup 65

, e.g., ``I can't and I'll have to deal with them." Coordinate-inversion

tests for a model’s broader understanding of discourse.

4.3.3 Pre-trained models

It is unclear to what extent findings on the encoding of certain linguistic phenomena

generalize from one pre-trained model to another. Hence, we examine three

different pre-trained encoder models in our experiments: BERT (Devlin et al.,

2019), RoBERTa (Y. Liu et al., 2019b), and ALBERT (Lan et al., 2020). We

introduce all three models in greater detail in §2.3.2 and note that we focus on

the base variant for each of the models.

4.3.4 Fine-tuning and probing setup

For fine-tuning and sentence-level probing, we follow the general methodologies

introduced in §2.4.1 and §2.5 and provide additional details below.

Fine-tuning For fine-tuning, we follow the default vanilla fine-tuning ap-

proach proposed by Devlin et al. (2019). A single randomly initialized task-specific

classification layer is added on top of the pre-trained encoder. As input, the classi-

fication layer receives z = tanh (Wh + b), where h is the hidden representation of

the first token on the last hidden layer and W and b are the randomly initialized

parameters of the classifier.1 During fine-tuning all model parameters are updated

jointly. We train for 3 epochs on CoLA and for 1 epoch on SST-2, using a learning

rate of 2e−5. The learning rate is linearly increased for the first 10% of steps

(warmup) and kept constant afterwards. An overview of all hyperparameters for

1 For BERT and ALBERT h corresponds to the hidden state of the [CLS] token. For RoBERTa

the first token of every sentence is the <s> token. We will refer to both of them as CLS

token.

66 On the Interplay Between Fine-tuning and Probing

Model
Task

CoLA SST-2 RTE SQuAD

Devlin et al. (2019) 52.1 93.5 66.4 80.8/88.5

BERT 59.5 92.4 64.6 78.6/86.5

RoBERTa 60.3 93.6 73.6 81.7/89.3

ALBERT 45.8 88.5 69.6 79.9/87.6

Table 4.1: Fine-tuning performance on the development set on select downstream tasks.

For comparison we also report the fine-tuning accuracy of BERT-base-cased

as reported by Devlin et al. (2019) on the test set of each of the tasks taken

from the GLUE and SQuAD leaderboards. We report Matthews correlation

coefficient for CoLA, accuracy for SST-2 and RTE, and exact match (EM)

and F1 score for SQuAD.

each model and task can be found in Appendix B.1. Fine-tuning performance on

the development set of each of the tasks can be found in Table 4.1.

Probing For probing, our setup largely follows that of previous works (Tenney

et al., 2019b; N. F. Liu et al., 2019; Hewitt and Liang, 2019) where a probing

classifier is trained on top of the contextualized embeddings extracted from a

pre-trained or—as in our case—-fine-tuned encoder model. Notably, we train linear

(logistic regression) probing classifiers and use two different pooling methods to

obtain sentence embeddings from the encoder hidden states: CLS-pooling, which

simply returns the hidden state corresponding to the first token of the sentence

and mean-pooling which computes a sentence embedding as the mean over all

hidden states. We do this to assess the extent to which the CLS token captures

sentence-level context. We use linear probing classifiers because intuitively we

expect that if a linguistic feature is useful for a fine-tuning task, it should be

linearly separable in the embeddings. For all probing tasks, we measure layer-

wise accuracy to investigate how the linear separability of a particular linguistic

phenomenon changes across the model. In total, we train 390 probing classifiers

on top of 12 pre-trained and fine-tuned encoder models.

4.4 Experiments 67

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
A

cc
ur

ac
y

ALBERT CLS

ALBERT mean

BERT CLS

BERT mean

RoBERTa CLS

RoBERTa mean

(a) bigram-shift

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

0.45

0.50

0.55

0.60

0.65

0.70

0.75

A
cc

ur
ac

y

ALBERT CLS

ALBERT mean

BERT CLS

BERT mean

RoBERTa CLS

RoBERTa mean

(b) coordination-inversion

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

0.45

0.50

0.55

0.60

0.65

0.70

A
cc

ur
ac

y

ALBERT CLS

ALBERT mean

BERT CLS

BERT mean

RoBERTa CLS

RoBERTa mean

(c) odd-man-out

Figure 4.1: Layer-wise probing accuracy on bigram-shift, coordination inversion, and

odd-man-out for BERT, RoBERTa, and ALBERT. For all models mean-

pooling (solid lines) consistently improves probing accuracy compared to

CLS-pooling (dashed lines), highlighting the importance of sentence-level

information for each of the tasks.

4.4 Experiments

4.4.1 Probing accuracy

Figure 4.1 shows the layer-wise probing accuracy of BERT, RoBERTa, and

ALBERT on each of the probing tasks. These results establish baselines for

our comparison with fine-tuned models below. Consistent with previous work

(Krasnowska-Kieraś and Wróblewska, 2019), we observe that mean-pooling gener-

68 On the Interplay Between Fine-tuning and Probing

ally outperforms CLS-pooling across all probing tasks, highlighting the importance

of sentence-level context for each of the probing tasks. We also find that probing

accuracy is substantially higher for bigram-shift than for coordination-inversion

and odd-man-out. Again, this is consistent with findings in previous works (Ten-

ney et al., 2019b; N. F. Liu et al., 2019; Tenney et al., 2019a) reporting better

performance on syntactic than semantic probing tasks.

When comparing the three encoder models, we observe some noticeable

differences. On odd-man-out, ALBERT performs significantly worse than both

BERT and RoBERTa, with RoBERTa performing best across all layers. We

attribute the poor performance of ALBERT to its use of weight-sharing, effectively

applying the same non-linear transformation on all layers. We also observe that on

coordination-inversion, RoBERTa with CLS pooling performs much worse than

both BERT and ALBERT with CLS pooling. We attribute this to the fact that

RoBERTa lacks a sentence-level pre-training objective and the CLS token hence

fails to capture relevant sentence-level information for this particular probing

task. The small differences in probing accuracy for BERT and ALBERT when

comparing CLS to mean-pooling and the fact that RoBERTa with mean-pooling

outperforms all other models on coordination-inversion provides evidence for this

interpretation.

4.4.2 How does fine-tuning affect probing accuracy?

Having established baselines for the probing accuracy of the pre-trained models,

we now turn to the question of how it is affected by fine-tuning. Table 4.2 shows

the effect of fine-tuning on CoLA and SST-2 on the layer-wise accuracy for all

three encoder models across the three probing tasks. Results for RTE and SQuAD

can be found in Table B.3 in the Appendix.

For all models and tasks we find that fine-tuning mostly has an effect on

higher layers, sometimes positively and sometimes negatively affecting accuracy.

4.4 Experiments 69

Probing Task

BERT-base-cased

CLS-pooling mean-pooling

CoLA SST-2 CoLA SST-2

0 – 6 7 – 12 0 – 6 7 – 12 0 – 6 7 – 12 0 – 6 7 – 12

bigram-shift 0.07 4.73 −1.02 −4.63 0.23 1.45 −0.37 −3.24

coordinate-inversion −0.10 1.90 −0.25 −1.15 0.14 0.29 −0.48 −0.85

odd-man-out −0.20 0.26 −0.02 −1.28 −0.34 −0.29 −0.30 −1.09

Probing Task

RoBERTa-base

CLS-pooling mean-pooling

CoLA SST-2 CoLA SST-2

0 – 6 7 – 12 0 – 6 7 – 12 0 – 6 7 – 12 0 – 6 7 – 12

bigram-shift 0.58 5.35 −2.41 −7.22 0.69 1.74 −0.23 −4.87

coordinate-inversion −0.72 1.84 −1.28 −0.63 −0.22 0.02 −0.18 −3.83

odd-man-out −0.66 1.05 −1.09 −2.40 −0.08 −0.55 −0.46 −3.61

Probing Task

ALBERT-base-v1

CLS-pooling mean-pooling

CoLA SST-2 CoLA SST-2

0 – 6 7 – 12 0 – 6 7 – 12 0 – 6 7 – 12 0 – 6 7 – 12

bigram-shift 1.55 3.39 −1.94 −5.15 0.26 0.66 −0.70 −2.73

coordinate-inversion −0.69 −1.53 −1.07 −2.87 −0.07 −1.19 −0.35 −1.53

odd-man-out −0.42 −1.39 −0.90 −2.75 −0.27 −1.40 −0.60 −2.82

Table 4.2: Change in probing accuracy (in %) of CoLA and SST-2 fine-tuned models

compared to the pre-trained models when using CLS and mean-pooling. We

average the difference in probing accuracy over two different layer groups:

layers 0 to 6 and layers 7 to 12.

70 On the Interplay Between Fine-tuning and Probing

The impact varies depending on the fine-tuning/probing task combination and

the underlying encoder model.

Positive changes in accuracy Fine-tuning on CoLA results in a substantial

improvement on the bigram-shift probing task for all the encoder models; fine-

tuning on RTE improves the coordination-inversion accuracy for RoBERTa. These

findings are in line with our expectations: bigram-shift and CoLA require syntactic

information, whereas coordination-inversion and RTE require deeper discourse-

level understanding. However, a more detailed look reveals a problem with this

logic: the improvement is only visible when using CLS-pooling and becomes

negligible when probing with mean-pooling. Moreover, the gains are not large

enough to improve significantly over the mean-pooling baseline (as shown by the

stars and the second y-axis in Figure B.1 in Appendix B). This suggests that

adding new linguistic knowledge is not necessarily the only driving force behind

the improved probing accuracy and we provide further evidence for this in §4.5.1.

Negative changes in accuracy Across all models and pooling methods,

fine-tuning on SST-2 has a negative impact on probing accuracy on bigram-shift

and odd-man-out, and the decrease in probing accuracy is particularly large for

RoBERTa. Fine-tuning on SQuAD follows a similar trend: it has a negative effect

on probing accuracy on bigram-shift and odd-man-out for both CLS- and mean-

pooling (see Table B.3 in Appendix B), while the impact on coordination-inversion

is negligible. We argue that this strong negative impact on probing accuracy is

the consequence of more dramatic changes in the representations and further

investigate this observation in §4.5.2.

Changes in probing accuracy for other fine-tuning/probing combinations are

not substantial, which suggests that representations did not change significantly

with regard to the probed information.

4.5 What happens during fine-tuning? 71

1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

0.0

0.5

1.0

1.5

2.0

2.5
M

ea
n

E
nt

ro
py

base

finetuned-cls

finetuned-meanpooling

(a) Entropy

1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

0.00

0.01

0.02

0.03

0.04

0.05

M
ea

n
E

ar
th

M
ov

er
D

is
ta

nc
e

finetuned-cls

finetuned-meanpooling

(b) Earth Mover’s Distance

Figure 4.2: Entropy and Earth Mover’s Distance of the attention for the CLS token

for each layer with the RoBERTa model on the bigram-shift dataset. The

mean over all input sequences and the mean over all attention heads of

a layer are taken. The Earth Mover’s Distance is computed between the

base model and each fine-tuned model.

4.5 What happens during fine-tuning?

In the previous section, we saw the effects of different fine-tuning approaches on

model performance. In this section, we study two hypotheses about what causes

these changes.

4.5.1 Analyzing attention distributions

If the improvement in probing accuracy with CLS-pooling can be attributed to a

better sentence representation in the CLS token, this can be due to a corresponding

change in a model’s attention distribution. The model might change the attention

of the CLS token to cover more tokens and thereby build a better representation

for the entire sentence.

To study this hypothesis, we fine-tune RoBERTa on CoLA using two different

methods: the default CLS-pooling approach and mean-pooling (cf. §4.3.4). We

compare the layer-wise attention distribution on bigram-shift after fine-tuning

72 On the Interplay Between Fine-tuning and Probing

to that data. We expect to see more dramatic changes for CLS-pooling than for

mean-pooling. To investigate how the attention distribution changes, we analyze

its entropy H according to the following equation:

Hj = −
∑
i

aj(xi) · log (aj(xi)) (4.1)

where xi is the i-th token of an input sequence and a(xi) the corresponding

attention at position j given to it by a specific attention head. Entropy is maximal

when the attention is uniform over the whole input sequence and minimal if the

attention head focuses on just one input token.

Figure 4.2a shows the mean entropy for the CLS token (i.e., H0) before and

after fine-tuning. We observe a large increase in entropy in the last three layers

when fine-tuning on the CLS token (orange bars). This is consistent with our

interpretation that during fine-tuning, the CLS token learns to take more sentence-

level information into account, thus spreading its attention over more tokens. For

mean-pooling (green bars) this might not be required as taking the mean over

all token-states could already provide sufficient sentence-level information during

fine-tuning. Accordingly, there are only small changes in entropy for mean-pooling,

with the mean entropy actually decreasing in the last layer.

Entropy is, however, not sufficient on its own to analyze changes in the

attention distribution. Even when the amount of entropy is similar, the underlying

attention distribution might have changed. Figure 4.2b therefore compares the

attentions of an attention head for an input sequence before and after fine-tuning

using Earth Mover’s Distance (Rubner et al., 1998). We find a similar pattern

to the entropy results where changes in attention tend to increase with the layer

number. Again, the largest change in the attention distribution occurs in the first

token for layer 11 and 12 when pooling on the CLS-token, while the change is

much smaller for mean-pooling. This confirms our hypothesis that improvements

in fine-tuning with CLS-pooling can be attributed to a change in the attention

distribution which is less necessary for the mean-pooling.

4.5 What happens during fine-tuning? 73

(a) RoBERTa-base (b) BERT-base-cased

(c) RoBERTa-base (d) BERT-base-cased

Figure 4.3: Perplexity on Wikitext-2 of models consisting of a fine-tuned encoder and

a pre-trained MLM head. Plots (a) and (b) show how perplexity changes

over the course of fine-tuning with epoch 0 showing the perplexity of the

pre-trained model. (c) and (d) show how perplexity changes when a number

of last layers of the fine-tuned encoder are replaced with corresponding

layers from the pre-trained model. Note the different y-axes for RoBERTa

and BERT.

4.5.2 Analyzing perplexity

If fine-tuning has more dramatic effects on the representations of a pre-trained

model potentially introducing or removing linguistic knowledge, we expect to see

larger changes to the language modeling abilities of the model when compared

to the case where fine-tuning just changes the attention distribution of the CLS

token. We thus investigate how fine-tuning on CoLA and SST-2 affect the language

modeling abilities of a pre-trained model. A change in perplexity should reveal

74 On the Interplay Between Fine-tuning and Probing

whether the representations of the model did change during fine-tuning and we

expect this change to be larger for SST-2 fine-tuning where we observe a large

decrease in probing accuracy.

For the first experiment, we evaluate the pre-trained masked language model

heads of BERT and RoBERTa on the Wikitext-2 test set (Merity et al., 2017)

and compare it to the masked language modeling perplexity, hereafter perplexity,

of fine-tuned models.2 In the second experiment, we test which layers contribute

most to the change in perplexity and replace layers of the fine-tuned encoder by

pre-trained layers, starting from the last layer. For both experiments, we evaluate

the perplexity of the resulting model using the pre-trained masked language

modeling head. We fine-tune and evaluate each model 5 times, and report the

mean perplexity as well as standard deviation. Our reasoning is that if fine-tuning

leads to dramatic changes to the hidden representations of a model, the effects

should be reflected in the perplexity.

Perplexity during fine-tuning Figure 4.3a and 4.3b show how the perplexity

of a pre-trained model changes during fine-tuning. Both BERT and RoBERTa

show a similar trend where perplexity increases with fine-tuning. Interestingly, for

RoBERTa the increase in perplexity after the first epoch is much larger compared

to BERT. Additionally, our results show that for both models the increase in

perplexity is larger when fine-tuning on SST-2. This confirms our hypothesis

and also our findings from §4.4, suggesting that fine-tuning on SST-2 has more

dramatic effects on the representations of both models compared to fine-tuning

on CoLA.

Perplexity when replacing fine-tuned layers While fine-tuning leads to

worse language modeling abilities for both CoLA and SST-2, it is not clear from

the first experiment alone which layers are responsible for the increase in perplexity.

2 Note that perplexity results are not directly comparable between BERT and RoBERTa

since both models have different vocabularies. However, we are interested in how perplexity

changes with fine-tuning.

4.5 What happens during fine-tuning? 75

Figure 4.3c and 4.3d show the perplexity results when replacing fine-tuned layers

with pre-trained ones starting from the last hidden layer. Consistent with our

probing results in §4.4, we find that the changes that lead to an increase in

perplexity happen in the last layers, and this trend is the same for both BERT

and RoBERTa. Interestingly, we observe no difference between CoLA and SST-2

fine-tuning in this experiment.

4.5.3 Discussion

The main implications of our experiments and analyses are as follows.

Fine-tuning affects mostly upper layers We conclude that fine-tuning

does affect the representations of a pre-trained model and in particular those of

the last hidden layers, which is supported by our perplexity analysis. However,

our perplexity analysis does not reveal whether these changes have a positive or

negative effect on the encoding of linguistic knowledge.

For CLS-pooling, fine-tuning can improve probing performance Some

fine-tuning/probing task combinations result in substantial improvements in

probing accuracy when using CLS-pooling. Our attention analysis supports our

interpretation that the improvement in probing accuracy can not simply be

attributed to the encoding of linguistic knowledge, but can at least partially be

explained by changes in the attention distribution for the CLS token. We note

that this is also consistent with our findings that the improvement in probing

accuracy vanishes when compared to the mean-pooling baseline.

The negative impact of fine-tuning on probin performance is hard to

interpret Some other task combinations have a negative effect on the probing

task performance, suggesting that the linguistic knowledge our probing classifiers

are testing for is indeed no longer (linearly) accessible. However, it remains unclear

76 On the Interplay Between Fine-tuning and Probing

whether fine-tuning removes the linguistic knowledge our probing classifiers are

testing for from the representations or whether it is simply no longer linearly

separable.

4.6 Conclusion

We investigated the interplay between fine-tuning and layer-wise sentence-level

probing accuracy and found that fine-tuning can lead to substantial changes in

probing accuracy. However, these changes vary greatly depending on the encoder

model and fine-tuning and probing task combination. Our analysis of attention

distributions after fine-tuning showed that changes in probing accuracy cannot be

attributed to the encoding of linguistic knowledge alone but might also be caused

by changes in the attention distribution. At the same time, our perplexity analysis

showed that fine-tuning strongly affects the representations of a pre-trained model

but our probing analysis is not sufficient to determine whether this leads to

forgetting of the probed linguistic information. Hence we argue that the effects of

fine-tuning on pre-trained representations should be carefully interpreted.

5
Investigating Fine-tuning Stability

Contents

5.1 Introduction . 79

5.2 Related work . 81

5.3 Datasets . 81

5.4 Fine-tuning . 83

5.5 Investigating previous hypotheses for fine-tuning instability 84

5.5.1 Does catastrophic forgetting cause fine-tuning instability? 84

5.5.2 Do small datasets cause fine-tuning instability? 86

5.6 Disentangling optimization and generalization 88

5.6.1 The role of optimization . 89

5.6.2 The role of generalization . 94

5.7 A simple but hard-to-beat baseline for fine-tuning BERT . . . 95

5.8 Conclusions . 97

Fine-tuning pre-trained transformer-based language models has become a

common practice dominating leaderboards across various NLP benchmarks. De-

spite the strong empirical performance of fine-tuned models, fine-tuning itself is

an unstable process: training the same model with multiple random seeds can

result in a large variance of the task performance. Previous work (Devlin et al.,

2019; Lee et al., 2020; Dodge et al., 2020a) identified two potential reasons for the

observed instability: catastrophic forgetting, and the small size of the fine-tuning

77

78 Investigating Fine-tuning Stability

datasets. However, both hypotheses are anecdotal and no empirical work has yet

substantiated these claims.

In this chapter, we address this challenge by showing that both hypotheses

fail to explain the observed fine-tuning instability. We analyze three widely used

pre-trained language models (BERT, RoBERTa, and ALBERT) fine-tuned on

several datasets from the GLUE benchmark, and show that fine-tuning instability

is caused by optimization difficulties during training that lead to vanishing gradi-

ents. Additionally, we show that the remaining variance of the downstream task

performance can be attributed to differences in generalization where fine-tuned

models with the same training loss exhibit noticeably different test performance.

Based on our analysis, we present a simple but strong baseline that makes fine-

tuning pre-trained language models significantly more stable than the previously

proposed approaches while maintaining or even improving overall performance.

The content presented in this chapter is based on:

Mosbach, Marius, Maksym Andriushchenko, and Dietrich Klakow (2021). “On

the Stability of Fine-tuning BERT: Misconceptions, Explanations, and Strong

Baselines.” In: International Conference on Learning Representations: ICLR

2021. Online. url: https://openreview.net/forum?id=nzpLWnVAyah.

As a first author, Marius Mosbach conceptualized the research, conducted the

experiments and led the paper writing. Maksym Andriushchenko helped to shape

the research questions, provided feedback and helped with the writing. Dietrich

Klakow advised and provided feedback.

https://openreview.net/forum?id=nzpLWnVAyah

5.1 Introduction 79

5.1 Introduction

Pre-trained transformer-based masked language models such as BERT (Devlin

et al., 2019), RoBERTa (Y. Liu et al., 2019b), and ALBERT (Lan et al., 2020) have

had a dramatic impact on the NLP landscape in the recent year. The standard

recipe for using such models typically involves adapting a pre-trained model for a

few epochs on a supervised downstream dataset, which is known as fine-tuning.

While fine-tuning has led to impressive empirical results, dominating a large

variety of English NLP benchmarks such as GLUE (A. Wang et al., 2018) and

SuperGLUE (A. Wang et al., 2019a), it is still poorly understood. Not only have

fine-tuned models been shown to pick up spurious patterns and biases present

in the training data (Niven and Kao, 2019; T. McCoy et al., 2019), but also to

exhibit a large training instability: fine-tuning a model multiple times on the same

dataset, varying only the random seed, leads to a large standard deviation of the

fine-tuning accuracy (Devlin et al., 2019; Dodge et al., 2020a). Few methods have

been proposed to solve the observed instability (Phang et al., 2018; Lee et al.,

2020), however without providing a sufficient understanding of why fine-tuning

is prone to such failure. The goal of this chapter is to address this shortcoming.

More specifically, we investigate the following question:

Why is fine-tuning prone to failures and how can we improve its stability?

We start by investigating two common hypotheses for fine-tuning instabil-

ity: catastrophic forgetting and the small size of the fine-tuning datasets and

demonstrate that both hypotheses fail to explain fine-tuning instability. We then

investigate fine-tuning failures on datasets from the popular GLUE benchmark

and show that the observed fine-tuning instability can be decomposed into two

separate aspects: (1) optimization difficulties early in training, characterized by

vanishing gradients, and (2) differences in generalization late in training, char-

acterized by a large variance of development set accuracy for runs with almost

equivalent training loss.

80 Investigating Fine-tuning Stability

Devlin Lee Ours
0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

A
cc

ur
ac

y

maximum

majority classifier

mean

(a) RTE

Devlin Lee Ours

0.75

0.80

0.85

0.90

0.95

F
1

sc
or

e

maximum

majority classifier

mean

(b) MRPC

Devlin Lee Ours

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

M
C

C

maximum

majority classifier

mean

(c) CoLA

Figure 5.1: Our proposed fine-tuning strategy leads to very stable results with very

concentrated development set performance over 25 different random seeds

across all three datasets on BERT. In particular, we significantly out-

perform the recently proposed approach of Lee et al. (2020) in terms of

fine-tuning stability.

Based on our analysis, we present a simple but strong baseline for fine-tuning

pre-trained language models that significantly improves the fine-tuning stability

compared to previous works (Figure 5.1). Moreover, we show that our findings

apply not only to the widely used BERT model but also to more recent pre-trained

models such as RoBERTa and ALBERT.

5.2 Related work 81

5.2 Related work

The fine-tuning instability of BERT has been pointed out in various studies.

Devlin et al. (2019) report instabilities when fine-tuning BERT-large on small

datasets and resort to performing multiple restarts of fine-tuning and selecting the

model that performs best on the development set. Recently, Dodge et al. (2020a)

performed a large-scale empirical investigation of the fine-tuning instability of

BERT. They found dramatic variations in fine-tuning accuracy across multiple

restarts and argue how it might be related to the choice of random seed and the

dataset size.

Few approaches have been proposed to directly address the observed fine-

tuning instability. Phang et al. (2018) study intermediate task training (STILTS)

before fine-tuning with the goal of improving performance on the GLUE bench-

mark. They also find that their proposed method leads to improved fine-tuning

stability. However, due to the intermediate task training, their work is not directly

comparable to ours. Lee et al. (2020) propose a new regularization technique

termed Mixout. The authors show that Mixout improves stability during fine-

tuning which they attribute to the prevention of catastrophic forgetting.

Another line of work investigates optimization difficulties of pre-training

transformer-based language models (Xiong et al., 2020; L. Liu et al., 2020).

Similar to our work, they highlight the importance of the learning rate warmup

for optimization. Both works focus on pre-training and we hence view them as

orthogonal to our work.

5.3 Datasets

We study four datasets from the GLUE benchmark (A. Wang et al., 2018) following

previous work studying instability during fine-tuning: CoLA, MRPC, RTE, and

82 Investigating Fine-tuning Stability

QNLI. Detailed statistics for each of the datasets can be found in Appendix C.2

in Appendix C.

CoLA The Corpus of Linguistic Acceptability (CoLA) (Warstadt et al., 2018)

is a sentence-level classification task containing sentences labeled as either gram-

matical or ungrammatical. Fine-tuning on CoLA was observed to be particularly

stable in previous work (Phang et al., 2018; Dodge et al., 2020a; Lee et al., 2020).

Performance on CoLA is reported in Matthew’s correlation coefficient (MCC).

MRPC The Microsoft Research Paraphrase Corpus (MRPC) (Dolan and

Brockett, 2005) is a sentence-pair classification task. Given two sentences, a model

has to judge whether the sentences paraphrases of each other. Performance on

MRPC is measured using the F1 score.

RTE The Recognizing Textual Entailment (RTE) dataset is a collection of

sentence-pairs collected from a series of textual entailment challenges (Dagan et al.,

2005; Bar-Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al., 2009).

RTE is the second smallest dataset in the GLUE benchmark and fine-tuning on

RTE was observed to be particularly unstable (Phang et al., 2018; Dodge et al.,

2020a; Lee et al., 2020). Accuracy is used to measure performance on RTE.

QNLI The Question-answering Natural Language Inference (QNLI) dataset

contains sentence pairs obtained from SQuAD (Rajpurkar et al., 2016). A. Wang

et al., 2018 converted SQuAD into a sentence pair classification task by forming

a pair between each question and each sentence in the corresponding paragraph.

The task is to determine whether the context sentence contains the answer to

the question, i.e. entails the answer. Accuracy is used to measure performance on

QNLI.

5.4 Fine-tuning 83

5.4 Fine-tuning

Unless mentioned otherwise, we follow the vanilla fine-tuning strategy introduced

in §2.4.1 and use the hyperparameters recommended by Devlin et al., 2019: we

fine-tune uncased BERT-large (henceforth BERT) using a batch size of 16 and a

learning rate of 2e−5. The learning rate is linearly increased from 0 to 2e−5 for

the first 10% of iterations—which is known as a warmup—and linearly decreased

to 0 afterward. We apply dropout with probability p = 0.1 and weight decay

with λ = 0.01. We train for 3 epochs on all datasets and use global gradient

clipping. Following Devlin et al., 2019, we use the AdamW optimizer (Loshchilov

and Hutter, 2019) without bias correction.

We do not report results for BERT-base since previous works observed no

instability when fine-tuning BERT-base which we also confirmed in preliminary

experiments. Instead, we provide additional results on RoBERTa-large (Y. Liu

et al., 2019b) and ALBERT-large (Lan et al., 2020) using the same fine-tuning

strategy. We note that compared to BERT, both RoBERTa and ALBERT have

slightly different hyperparameters. RoBERTa uses weight decay with λ = 0.1 and

no gradient clipping, and ALBERT does not use dropout. A detailed list of all

default hyperparameters for all models can be found in Appendix C.3.

Fine-tuning stability. By fine-tuning stability we mean the standard devia-

tion of the fine-tuning performance (measured, e.g., in terms of accuracy, MCC or

F1 score) over the randomness of an algorithm. We follow previous works (Phang

et al., 2018; Dodge et al., 2020a; Lee et al., 2020) and measure fine-tuning stability

using the development sets from the GLUE benchmark. We discuss alternative

notions of stability in Appendix C.1 in the Appendix.

Failed runs. Following Dodge et al. (2020a), we refer to a fine-tuning run

as a failed run if its accuracy at the end of training is less or equal to that of a

84 Investigating Fine-tuning Stability

majority classifier on the respective dataset. The majority baselines for all tasks

are found in Appendix C.2.

5.5 Investigating previous hypotheses for fine-

tuning instability

Previous works on fine-tuning predominantly state two hypotheses for what can

be related to fine-tuning instability: catastrophic forgetting and small training data

size of the downstream tasks. Despite the ubiquity of these hypotheses (Devlin

et al., 2019; Phang et al., 2018; Dodge et al., 2020a; Lee et al., 2020), we argue

that none of them has a causal relationship with fine-tuning instability.

5.5.1 Does catastrophic forgetting cause fine-tuning insta-

bility?

Catastrophic forgetting (McCloskey and Cohen, 1989; Kirkpatrick et al., 2017)

refers to the phenomenon when a neural network is sequentially trained to perform

two different tasks, and it loses its ability to perform the first task after being

trained on the second. More specifically, in our setup, it means that after fine-

tuning a pre-trained model, it can no longer perform the original masked language

modeling task used for pre-training. This can be measured in terms of the perplexity

on the original training data. Although the language modeling performance of a

pre-trained model correlates with its fine-tuning accuracy (Y. Liu et al., 2019b;

Lan et al., 2020), there is no clear motivation for why preserving the original

masked language modeling performance after fine-tuning is important.1

1 An exception could by the case where supervised fine-tuning is performed as an intermediate

training step, e.g. with the goal of domain adaptation.

5.5 Investigating previous hypotheses for fine-tuning instability 85

0 2 4 6 8 10 12 14 16 18 20 22 24
Layers replaced

102

104

106

108

M
L

M
p

er
pl

ex
it

y

9.37

(a) Perplexity of failed models

0 2 4 6 8 10 12 14 16 18 20 22 24
Layers replaced

9
11
13
15
17
19
21
23
25
27

M
L

M
p

er
pl

ex
it

y

9.37

(b) Perplexity of successful models

0 200 400
Iterations

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

A
cc

ur
ac

y

0.0

0.2

0.4

0.6

0.8

T
ra

in
in

g
lo

ss

(c) Training of failed models

Figure 5.2: Language modeling perplexity for three failed (a) and successful (b) fine-

tuning runs of BERT on RTE where we replace the weights of the top-k

layers with their pre-trained values. (c) shows the average training loss

and validation accuracy for three failed and three successful fine-tuning

runs.

In the context of fine-tuning BERT, Lee et al., 2020 suggest that their

regularization method has an effect of alleviating catastrophic forgetting. Thus,

it is important to understand how exactly catastrophic forgetting occurs during

fine-tuning and how it relates to the observed fine-tuning instability. To better

understand this, we perform the following experiment: we fine-tune BERT on RTE,

following the default strategy by Devlin et al., 2019. We select three successful

and three failed fine-tuning runs and evaluate their masked language modeling

perplexity on the test set of the WikiText-2 language modeling benchmark (Merity

86 Investigating Fine-tuning Stability

et al., 2016).2 We sequentially substitute the top-k layers of the network varying

k from 0 (i.e. all layers are from the fine-tuned model) to 24 (i.e. all layers are

from the pre-trained model). We show the results in Figures 5.2a and 5.2b.

We can observe that although catastrophic forgetting occurs for the failed

models (Figure 5.2a)—perplexity on WikiText-2 is indeed degraded for k = 0—the

phenomenon is much more nuanced. Namely, catastrophic forgetting affects only

the top layers of the network, in our experiments often around 10 out of 24 layers,

and the same is however also true for the successfully fine-tuned models, except

for a much smaller increase in perplexity.

Another important aspect of our experiment is that catastrophic forgetting

typically requires that the model at least successfully learns how to perform the

new task. However, this is not the case for the failed fine-tuning runs. Not only

is the development accuracy equal to that of the majority classifier, but also the

training loss on the fine-tuning task (here RTE) is trivial, i.e. close to − ln(1/2)

(see Figure 5.2c). This suggests that the observed fine-tuning failure is rather an

optimization problem causing severe catastrophic forgetting in the top layers of

the pre-trained model. We will show later that the optimization aspect is actually

sufficient to explain most of the fine-tuning variance.

5.5.2 Do small datasets cause fine-tuning instability?

Having a small training dataset is by far the most commonly stated hypothesis

for fine-tuning instability. Multiple recent works (Devlin et al., 2019; Phang et al.,

2018; Lee et al., 2020; C. Zhu et al., 2020; Dodge et al., 2020a; Pruksachatkun

et al., 2020b) that have observed BERT fine-tuning to be unstable relate this

finding to the small number of training examples.

2 BERT was trained on English Wikipedia, hence WikiText-2 can be seen as a subset of its

training data.

5.5 Investigating previous hypotheses for fine-tuning instability 87

Full train set
3 epochs

1k points
3 epochs

1k points
11 epochs

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90

A
cc

ur
ac

y

maximum

majority classifier

mean

(a) MRPC

Full train set
3 epochs

1k points
3 epochs

1k points
26 epochs

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

M
C

C

maximum

majority classifier

mean

(b) CoLA

Full train set
3 epochs

1k points
3 epochs

1k points
312 epochs

0.50

0.60

0.70

0.80

0.90

A
cc

ur
ac

y

maximum

majority classifier

mean

(c) QNLI

Figure 5.3: Development set results on down-sampled MRPC, CoLA, and QNLI using

the default fine-tuning scheme of BERT (Devlin et al., 2019). The leftmost

boxplot in each sub-figure shows the development accuracy when training

on the full training set.

To test if having a small training dataset inherently leads to fine-tuning

instability we perform the following experiment:3 we randomly sample 1,000

training samples from the CoLA, MRPC, and QNLI training datasets and fine-

tune BERT using 25 different random seeds on each dataset. We compare two

different settings: first, training for 3 epochs on the reduced training dataset, and

second, training for the same number of iterations as on the full training dataset.

We show the results in Figure 5.3 and observe that training on less data does

indeed affect the fine-tuning variance, in particular, there are many more failed

3 We remark that a similar experiment was done in Phang et al., 2018, but with a different

goal of showing that their extended pre-training procedure can improve fine-tuning stability.

88 Investigating Fine-tuning Stability

runs. However, when we simply train for as many iterations as on the full training

dataset, we almost completely recover the original variance of the fine-tuning

performance. We also observe no failed runs at all on MRPC and QNLI and only

a single failed run on CoLA which is similar to the results obtained by training

on the full training set. Further, as expected, we observe that training on fewer

samples affects the generalization of the model, leading to a worse development

set performance on all three tasks.4

We conclude from this experiment, that the role of training dataset size per

se is orthogonal to fine-tuning stability. What is crucial is rather the number of

training iterations. As our experiment shows, the observed increase in instability

when training with smaller datasets can rather be attributed to the reduction of

the number of iterations (that changes the effective learning rate schedule) which,

as we will show in the next section, has a crucial influence on the fine-tuning

stability.

5.6 Disentangling optimization and generaliza-

tion

Our findings in §5.5 detail that while both catastrophic forgetting and small size of

the datasets indeed correlate with fine-tuning instability, none of them are causing

it. In this section, we argue that the fine-tuning instability is an optimization

problem, and it admits a simple solution. Additionally, we show that even though

a large fraction of the fine-tuning instability can be explained by optimization, the

remaining instability can be attributed to generalization issues where fine-tuning

runs with the same training loss exhibit noticeable differences in the development

set performance.

4 Appendix C.8 shows that the same holds true for datasets from different domains than the

pre-training data.

5.6 Disentangling optimization and generalization 89

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm
layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(a) Failed run

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm

layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(b) Successful run

Figure 5.4: Gradient norms (plotted on a logarithmic scale) of different layers on RTE

for a failed and successful run of BERT fine-tuning. We observe that the

failed run is characterized by vanishing gradients in the bottom layers of

the network. Additional plots for other weight matrices can be found in

the Appendix.

5.6.1 The role of optimization

Failed fine-tuning runs suffer from vanishing gradients We observed in

Figure 5.2c that the failed runs have practically constant training loss throughout

training (see Figure C.6 in Appendix C for a comparison with successful fine-

tuning). In order to better understand this phenomenon, in Figure 5.4 we plot the

`2 gradient norms of the loss function with respect to different layers of BERT,

for one failed and one successful fine-tuning run. For the failed run we see large

enough gradients only for the top layers and vanishing gradients for the bottom

layers. This is in large contrast to the successful run. While we also observe small

gradients at the beginning of training (until iteration 70), gradients start to grow

as training continues. Moreover, at the end of fine-tuning, we observe gradient

norms nearly 2× orders of magnitude larger than that of the failed run. Similar

visualizations for additional layers and weights can be found in Figure C.2 in

Appendix C. Moreover, we observe the same behavior also for RoBERTa and

90 Investigating Fine-tuning Stability

ALBERT models, and the corresponding figures can be found in Appendix C as

well (Figure C.3 and C.4).

Importantly, we note that the vanishing gradients we observe during fine-

tuning are harder to resolve than the standard vanishing gradient problem (Hochre-

iter, 1991; Bengio et al., 1994). In particular, common weight initialization schemes

(Glorot and Bengio, 2010; He et al., 2015) ensure that the pre-activations of each

layer of the network have zero mean and unit variance in expectation. However,

we cannot simply modify the weights of a pre-trained model on each layer to

ensure this property since this would conflict with the idea of using the pre-trained

weights in the first place.

Importance of bias correction in ADAM Following Devlin et al., 2019,

subsequent works on fine-tuning BERT-based models use the ADAM optimizer

(D. P. Kingma and Ba, 2015, see also §2.2.3.1). A subtle detail of the fine-tuning

scheme of Devlin et al., 2019 is that it does not include the bias correction in

ADAM.

D. P. Kingma and Ba (2015) already describe the effect of the bias correction

as to reduce the learning rate at the beginning of training. By rewriting the update

equations of the ADAM in Algorithm 2 as follows, we can clearly see this effect of

bias correction.

ηt ← η ·
√

1− βt
2/(1− βt

1), (5.1)

θt ← θt−1 − ηt ·mt/(
√
vt + ε), (5.2)

Equation (5.1) shows that bias correction simply boils down to reducing

the original step size η by a multiplicative factor
√

1− βt
2/(1 − βt

1) which is

significantly below 1 for the first iterations of training and approaches 1 as the

number of training iterations t increases (see Figure 5.5). Along the same lines,

You et al., 2020 explicitly remark that bias correction in ADAM has a similar

effect to the warmup which is widely used in deep learning to prevent divergence

5.6 Disentangling optimization and generalization 91

1 500 999
t

0.2

0.4

0.6

0.8

√
1
−
β
t 2
/(

1
−
β
t 1
)

Figure 5.5: The bias correction term of ADAM as a function of the training steps t.

early in training (He et al., 2016; Goyal et al., 2017; Devlin et al., 2019; Wong

et al., 2020).

The implicit warmup of ADAM is likely to be an important factor that

contributed to its success. We argue that fine-tuning BERT-based language models

is not an exception. In Figure 5.6 we show the results of fine-tuning on RTE with

and without bias correction for BERT, RoBERTa, and ALBERT models.5 We

observe that there is a significant benefit in combining warmup with bias correction,

particularly for BERT and ALBERT. Even though for RoBERTa fine-tuning is

already more stable even without bias correction, adding bias correction gives an

additional improvement.

Our results show that bias correction is useful if we want to get the best

performance within 3 epochs, the default recommendation by Devlin et al. (2019).

An alternative solution is to simply train longer with a smaller learning rate,

which also leads to much more stable fine-tuning.

We provide a more detailed ablation study in Appendix C (Figure C.1) with

analogous box plots for BERT using various learning rates, numbers of training

epochs, with and without bias correction.

5 Some of the hyperparameter settings lead to a small fine-tuning variance where all runs

lead to a performance below the majority baseline. Obviously, such fine-tuning stability is of

limited use.

92 Investigating Fine-tuning Stability

α = 1e−5 α = 2e−5 α = 3e−5 α = 1e−5
+ BC

α = 2e−5
+ BC

α = 3e−5
+ BC

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

ur
ac

y

maximum majority classifier mean

(a) BERT

α = 1e−5 α = 2e−5 α = 3e−5 α = 1e−5
+ BC

α = 2e−5
+ BC

α = 3e−5
+ BC

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

ur
ac

y

maximum majority classifier mean

(b) RoBERTa

α = 1e−5 α = 2e−5 α = 3e−5 α = 1e−5
+ BC

α = 2e−5
+ BC

α = 3e−5
BC

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

ur
ac

y

maximum majority classifier mean

(c) ALBERT

Figure 5.6: Box plots showing the fine-tuning performance of (a) BERT, (b) RoBERTa,

(c) ALBERT for different learning rates α with and without bias correction

(BC) on RTE. For BERT and ALBERT, having bias correction leads to

more stable results and allows to train using larger learning rates. For

RoBERTa, the effect is less pronounced but still visible.

Finally, concurrently to our work, T. Zhang et al., 2021 also make a similar

observation about the importance of bias correction and longer training which

gives further evidence to our findings.

Loss surfaces To get further intuition about the fine-tuning failure, we provide

loss surface visualizations (Li et al., 2018; Hao et al., 2019) of failed and successful

runs when fine-tuning BERT. Denote by θp, θf , θs the parameters of the pre-

trained model, failed model, and successfully trained model, respectively. We plot a

two-dimensional loss surface f(α, β) = L(θp+αδ1+βδ2) in the subspace spanned

5.6 Disentangling optimization and generalization 93

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
δ1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
δ 2 θp θf

θs

0.27

0.45

0.73

1.21

T
ra

in
in

g
lo

ss

(a) RTE

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
δ1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

δ 2 θp θf

θs

0.15
0.21
0.28
0.38
0.51
0.69
0.93
1.26
1.69
2.29
3.09

tr
ai

ni
ng

lo
ss

(b) MRPC

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
δ1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

δ 2 θp θf

θs

0.13

0.22

0.36

0.59

0.98

1.61

2.65

T
ra

in
in

g
lo

ss

(c) CoLA

Figure 5.7: 2D loss surfaces in the subspace spanned by δ1 = θf −θp and δ2 = θs−θp

on RTE, MRPC, and CoLA. θp, θf , θs denote the parameters of the

pre-trained, failed, and successfully trained model, respectively.

by δ1 = θf −θp and δ2 = θs−θp centered at the weights of the pre-trained model

θp. Additional details are specified in Appendix C.6 in Appendix C.

Contour plots of the loss surfaces for RTE, MRPC, and CoLA are shown

in Figure 5.7. They provide additional evidence to our findings on vanishing

gradients: for failed fine-tuning runs gradient descent converges to a “bad” valley

with a sub-optimal training loss. Moreover, this bad valley is separated from the

local minimum (to which the successfully trained run converged) by a barrier

(see also Figure C.5 in Appendix C). Interestingly, we observe a highly similar

geometry for all three datasets providing further support for our interpretation of

fine-tuning instability as a primarily optimization issue.

94 Investigating Fine-tuning Stability

0 0.5k 1.0k 1.5k 2.0k 2.5k 3.0k

Iterations

45

50

55

60

65

70

75
A

cc
ur

ac
y

(a) Development set accuracy over training

10−5 10−4 10−3 10−2 10−1 100

Training loss

50

60

70

A
cc

ur
ac

y

(b) Generalization vs. training loss

Figure 5.8: Development set accuracy for multiple fine-tuning runs on RTE. The

models for (a) are trained with 10 different seeds, and models for (b) are

taken at the end of the training, and trained with different seeds and

hyperparameters.

5.6.2 The role of generalization

We now turn to the generalization aspects of fine-tuning instability. In order

to show that the remaining fine-tuning variance on the development set can be

attributed to generalization, we perform the following experiment: we fine-tune

BERT on RTE for 20 epochs and show the development set accuracy for 10

successful runs in Figure 5.8a. Further, we show in Figure 5.8b the development

set accuracy vs. training loss of all BERT models fine-tuned on RTE for the full

ablation study (shown in Figure C.1 in Appendix C)), in total 450 models.

We find that despite achieving close to zero training loss overfitting is not an

issue during fine-tuning. This is consistent with previous work (Hao et al., 2019),

which arrived at a similar conclusion. Based on our results, we argue that it is

even desirable to train for a larger number of iterations since the development

accuracy varies considerably during fine-tuning and it does not degrade even when

the training loss is as low as 10−5.

5.7 A simple but hard-to-beat baseline for fine-tuning BERT 95

Combining these findings with results from the previous section, we conclude

that the fine-tuning instability can be decomposed into two aspects: optimization

and generalization. In the next section, we propose a simple solution addressing

both issues.

5.7 A simple but hard-to-beat baseline for fine-

tuning BERT

As our findings in §5.6 show, the empirically observed instability of fine-tuning

BERT can be attributed to vanishing gradients early in training as well as

differences in generalization late in training. Given the new understanding of fine-

tuning instability, we propose the following guidelines for fine-tuning transformer-

based masked language models on small datasets:

• Use small learning rates with bias correction to avoid vanishing gradients

early in training.

• Increase the number of iterations considerably and train to (almost) zero

training loss.

This leads to the following simple baseline scheme: we fine-tune BERT using

ADAM with bias correction and a learning rate of 2e−5. The training is performed

for 20 epochs, and the learning rate is linearly increased for the first 10% of

steps and linearly decayed to zero afterward. All other hyperparameters are kept

unchanged. A full ablation study on RTE testing various combinations of the

changed hyperparameters is presented in Appendix C.4 in Appendix C).

Results Despite the simplicity of our proposed fine-tuning strategy, we obtain

strong empirical performance. Figure 5.1 and Table 5.1 show the results of fine-

tuning BERT on RTE, MRPC, and CoLA. We compare to the default strategy of

Devlin et al. (2019) and the recent Mixout method proposed by Lee et al. (2020).

96 Investigating Fine-tuning Stability

Approach

RTE MRPC CoLA

std mean max std mean max std mean max

Devlin et al. (2019) 4.5 50.9 67.5 3.9 84.0 91.2 25.6 45.6 64.6

Lee et al. (2020) 7.9 65.3 74.4 3.8 87.8 91.8 20.9 51.9 64.0

Ours 2.7? 67.3 71.1 0.8? 90.3 91.7 1.8? 62.1 65.3

Table 5.1: Standard deviation, mean, and maximum performance on the development

set of RTE, MRPC, and CoLA when fine-tuning BERT over 25 random

seeds. Standard deviation: lower is better, i.e. fine-tuning is more stable.
? denotes significant difference (p < 0.001) when compared to the second

smallest standard deviation.

First, we observe that our method leads to a much more stable fine-tuning

performance on all three datasets as evidenced by the significantly smaller standard

deviation of the final performance. To further validate our claim about the fine-

tuning stability, we run Levene’s test (Levene, 1960) to check the equality of

variances for the distributions of the final performances on each dataset. For all

three datasets, the test results in a p-value less than 0.001 when we compare

the variances between our method and the method achieving the second smallest

variance. Second, we also observe that our method improves the overall fine-tuning

performance: in Table 5.1 we achieve a higher mean value on all datasets and also

comparable or better maximum performance on MRPC and CoLA respectively.

We also note that we suggest to increase the number of fine-tuning iterations

only for small datasets, and thus the increased computational cost of our proposed

scheme is not a problem in practice. In fact, we argue that overall our findings

lead to more efficient fine-tuning because of the significantly improved stability

which effectively reduces the number of necessary fine-tuning runs.

5.8 Conclusions 97

5.8 Conclusions

In this chapter, we have discussed the existing hypotheses regarding the reasons

behind fine-tuning instability and proposed a new baseline strategy for fine-tuning

that leads to significantly improved fine-tuning stability and overall improved

results on commonly used datasets from the GLUE benchmark.

By analyzing failed fine-tuning runs, we find that neither catastrophic forget-

ting nor small dataset sizes sufficiently explain fine-tuning instability. Instead, our

analysis reveals that fine-tuning instability can be characterized by two distinct

problems: (1) optimization difficulties early in training, characterized by vanishing

gradients, and (2) differences in generalization, characterized by a large variance

of development set accuracy for runs with almost equivalent training performance.

Based on our analysis, we propose a simple but strong baseline strategy for

fine-tuning BERT which outperforms the previous works in terms of fine-tuning

stability while maintaining or even increasing overall performance.

6
Investigating Generalization of

Task-adapted Models

Contents

6.1 Introduction . 101

6.2 Background . 103

6.2.1 Fine-tuning . 103

6.2.2 In-context learning . 104

6.3 A fair comparison of fine-tuning and in-context learning 105

6.4 Results . 107

6.4.1 A closer look at fine-tuning generalization 109

6.4.2 Our findings generalize beyond OPT . 114

6.5 Discussion . 116

6.6 Comparing fine-tuning and in-context learning 118

6.7 Related work . 120

6.8 Conclusions . 121

6.9 Limitations . 122

Few-shot fine-tuning and in-context learning are two alternative strategies

for task adaptation of pre-trained language models. Recently, in-context learning

has gained popularity over fine-tuning due to its simplicity and improved out-

of-domain generalization, and because extensive evidence shows that fine-tuned

99

100 Investigating the Generalization of Task-adapted Models

models pick up on spurious correlations. Unfortunately, previous comparisons

of the two approaches were done using models of different sizes. This raises the

question of whether the observed weaker out-of-domain generalization of fine-tuned

models is an inherent property of fine-tuning or a limitation of the experimental

setup. In this chapter, we compare the generalization of few-shot fine-tuning and

in-context learning to challenge datasets, while controlling for the models used,

the number of examples, and the number of parameters, ranging from 125M to

30B. Our results show that fine-tuned language models can in fact generalize well

out-of-domain. We find that both approaches generalize similarly; they exhibit

large variation and depend on properties such as model size and the number of

examples, highlighting that robust task adaptation remains a challenge.

The content presented in this chapter is based on:

Mosbach, Marius, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow, and Yanai

Elazar (July 2023). “Few-shot Fine-tuning vs. In-context Learning: A Fair Com-

parison and Evaluation.” In: Findings of the Association for Computational

Linguistics: ACL 2023. Toronto, Canada: Association for Computational Lin-

guistics, pp. 12284–12314. url: https://aclanthology.org/2023.findings-

acl.779.

As a first author, Marius Mosbach conceptualized the research, conducted

the experiments and led the paper writing. Tiago Pimentel helped to shape

the research questions, provided feedback and helped with the writing. Shauli

Ravfogel provided feedback during earlier stages of the project and helped with

conceptualizing the research and proofreading. Dietrich Klakow provided feedback.

Yanai Elazar advised the project, ran some of the experiments, helped with writing

and was involved in discussing ideas and shaping the research questions.

https://aclanthology.org/2023.findings-acl.779
https://aclanthology.org/2023.findings-acl.779

6.1 Introduction 101

6.1 Introduction

Adapting a pre-trained language model to a target task is of high practical

importance to the natural language processing (NLP) community (as seen in

Peters et al., 2018; Howard and Ruder, 2018; Devlin et al., 2019; Brown et al.,

2020, inter alia). Among the commonly used task adaptation strategies, two stand

out: fine-tuning (FT) and in-context learning (ICL). In short, fine-tuning a model

involves a supervised learning setup on a target dataset; while in-context learning

involves prompting a model with a series of input–label pairs, without updating

the model’s parameters.

Both approaches come with pros and cons: in-context learning reuses a single

pre-trained model for various downstream tasks, allows specifying the desired

behavior via natural language, and has recently shown impressive results on

challenging reasoning tasks (Brown et al., 2020; Wei et al., 2022a; Press et al.,

2022b). However, the model’s context size limits the number of demonstrations

that can be used. For instance, using 32 randomly selected examples from the

RTE dataset (Dagan et al., 2006) already exceeds the context size of OPT models

(S. Zhang et al., 2022).1 In addition, in-context learning is highly sensitive to the

format and order of its inputs (Lu et al., 2022; Min et al., 2022).

Fine-tuning, on the other hand, typically results in a single specialized model

per task,2 and can be applied to training sets of arbitrary size. However, such

models are sensitive to initialization (Dodge et al., 2020b) and can suffer from

instability during training (see Chapter 5).

For text classification tasks, where both strategies often lead to similar

performance on in-domain data (when using the same amount of data), recent

works have argued that in-context learning leads to better out-of-domain (OOD)

1 While GPT-3 and OPT both have a context size of 2048 tokens, more recent models such

as GPT-4 (OpenAI, 2023) – which has been developed concurrently to this work – support

larger contexts of up to 8192 tokens.
2 Parameter-efficient fine-tuning methods (e.g. Ben Zaken et al. (2022) and E. J. Hu et al.

(2022)) address this issue and allow to re-use most of the pre-trained weights across tasks.

102 Investigating the Generalization of Task-adapted Models

ICL – 16 samples PBFT – 16 samples

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9
ou

t-
of

-d
om

ai
n

ac
cu

ra
cy

125M

350M

1.3B

2.7B

6.7B

13B

30B

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy
Figure 6.1: In-domain (RTE) and out-of-domain performance (HANS) for in-context

learning (ICL) and fine-tuning (FT) with OPT models of various sizes.

We fine-tune models using pattern-based fine-tuning (PBFT). We report

results using 10 different data seeds. When using 16 samples, in-context

learning’s performance with a 30B model is comparable to that of fine-

tuning with smaller models (6.7B) and for most model sizes, fine-tuning

outperforms in-context learning (see Table 6.1a for significance tests). −

in the x- and y-axes indicates majority class accuracy.

generalization (Si et al., 2023; Awadalla et al., 2022). However, these comparisons

of generalization abilities were not conducted under equal conditions. Most studies

compare the in-context learning abilities of large models (e.g. GPT-3, 175B; Brown

et al., 2020) to the fine-tuning abilities of much smaller models (e.g. RoBERTa-

large, 350M; Y. Liu et al., 2019a). These comparisons raise the question of whether

fine-tuning indeed leads to weaker OOD generalization than in-context learning,

or whether this is just a byproduct of the experimental setup. In Figure 6.1, we

show this is indeed the case: when given only 16 examples, fine-tuning a 6.7B

parameters model already achieves similar results to in-context learning with a

30B model, and fine-tuning performance keeps improving with larger models.3

Moreover, we show in Section 6.4.1 that fine-tuning performance improves even

further when training on more data.

3 Table 6.1a presents significance tests for these results.

6.2 Background 103

In this chapter, we compare in-context learning and fine-tuning on an equal

footing (§6.3). We compare both strategies using the same model (OPT; S. Zhang

et al., 2022), the same number of parameters (from 125M to 30B), and the same

number of examples. Our results and analyses (§6.4) show that both approaches

often achieve comparable results. Both methods are unstable and can perform

badly on in-domain and OOD data due to training instability, or prompt choice.

We also find that both approaches improve as we increase model size, and that, for

the models and datasets we consider, fine-tuning often generalizes even better than

in-context learning. Notably, this is in contrast to prior work (§6.7), highlighting

the need for fair comparisons of task adaptation strategies.

Based on our findings, we discuss the strengths and limitations of fine-tuning

and in-context learning (§6.6), which can inform when to use and how to get the

most out of each method.

6.2 Background

For our experiments, we consider pattern-based fine-tuning (PBFT) and in-context

learning (ICL), which we introduce in detail in §2.4.1. In the following, we provide

additional details relevant for the scope of this chapter.

6.2.1 Fine-tuning

Pattern-based fine-tuning is a recently proposed fine-tuning approach that uses

the pre-trained language modeling head4 instead of a randomly initialized classifier

(as used in standard fine-tuning; Howard and Ruder 2018; Devlin et al. 2019),

to obtain predictions (Schick and Schütze, 2021; T. Gao et al., 2021, inter alia).

Compared to vanilla fine-tuning, we have to specify an input pattern (to cast the

4 In the case of encoder-only masked language models, such as BERT, this is usually an MLP

layer. In the case of decoder-only models, such as OPT, this is a linear projection.

104 Investigating the Generalization of Task-adapted Models

task as a language modeling problem) and define a verbalizer (which maps tokens

in the pre-trained model’s vocabulary to labels; Schick et al., 2020). For example,

a NLI pattern might look as follows: {premise} Question: {hypothesis} Yes

or No?, and the verbalizer will use Yes and No as tokens. Given these inputs

and targets, model parameters are fine-tuned as usual. This method has been

shown to be efficient for few-shot learning despite having no advantage over vanilla

fine-tuning when the number of examples is large (Tam et al., 2021; Logan IV

et al., 2022).

6.2.2 In-context learning

In-context learning is a task adaptation strategy that does not update the weights

of the pre-trained model (Brown et al., 2020); instead, in-context learning adapts

a model to a task by conditioning it on a sequence of demonstrations. A demon-

stration typically refers to an input x accompanied by its ground-truth label y,

both of which have been converted to a specific format using a pattern and a

verbalizer (similar to PBFT). In-context learning thus feeds the model a sequence

of such demonstrations, followed by the test input (modified by applying the

pattern transformation). The language model is then expected to predict the label

of this final data point.5 Recent work has argued that in-context learning leads to

better out-of-domain performance, when compared to fine-tuning (Si et al., 2023;

Awadalla et al., 2022). We show that this often does not hold.

5 The evaluation only considers the probabilities assigned to the verbalizer tokens, ignoring

any probability mass assigned to other tokens. See §6.3 for details.

6.3 A fair comparison of fine-tuning and in-context learning 105

6.3 A fair comparison of fine-tuning and in-context

learning

We perform a fair comparison of task adaptation via fine-tuning and in-context

learning, focusing on in-domain and out-of-domain generalization generalization.

We compare them in the few-shot setting using the same models. In the following

paragraphs, we provide details about our setup.

In-domain generalization Following the definition of in domain generaliza-

tion established in §2.2.1.3, we measure in-domain generalization by measuring

accuracy on the validation set of each dataset. This is a common practice in

analysis works, and used in previous work (Utama et al., 2021; Bandel et al.,

2022).

Out-of-domain generalization We consider out-of-domain generalization

(OOD) generalization under covariate shift (Hupkes et al., 2022). Specifically, we

focus on generalization to challenge datasets, designed to test whether models

adopt a particular heuristic, or make predictions based on spurious correlations

during inference (T. McCoy et al., 2019; Elazar et al., 2021).

Models We run all our experiments using 7 different OPT models (S. Zhang

et al., 2022) ranging from 125 million to 30 billion parameters, all of which have

been trained on the same data. This allows us to study the effect of model size on

performance without the confound of using different training data.6

Tasks and datasets We focus on two classification tasks in English: natural

language inference (NLI) and paraphrase identification. For NLI, we use the Multi-

Genre Natural Language Inference (MNLI) (Williams et al., 2018) and Recognizing

6 OPT 30B is the largest model we were able to fit given our resources.

106 Investigating the Generalization of Task-adapted Models

Textual Entailment (RTE) datasets (Dagan et al., 2006) for task adaptation and

in-domain generalization, and evaluate OOD generalization on the lexical overlap

subset of the Heuristic Analysis for NLI Systems (HANS) (T. McCoy et al., 2019)

dataset.7 We binarize MNLI by removing the neutral examples8 which allows us

to better compare MNLI with RTE (which only has two labels). For paraphrase

identification, we train on Quora Question Pairs (QQP) (Sharma et al., 2019) and

evaluate OOD generalization on PAWS-QQP (Y. Zhang et al., 2019). Given the

large size of the QQP validation set (more than 300k examples), we randomly

select 1000 validation examples.

Few-shot setup We follow the same procedure for both approaches. We

randomly sample n ∈ {2, 16, 32, 64, 128} examples from the in-domain training set

of a given dataset (unless stated otherwise).9 Due to the high sensitivity of both

approaches to the used pattern, as well as to the ordering of the demonstrations

in in-context learning (Webson and Pavlick, 2022; Lu et al., 2022), we sample 10

different sets of examples for each n. We also experiment with 3 different patterns,

resulting in 30 runs per n and adaption method.10 Table D.2 in Appendix D.1.3

provides an overview of the patterns and verbalizers for each task.

Fine-tuning setup We perform few-shot pattern-based fine-tuning using a

minimal pattern (Logan IV et al., 2022), which simply adds a question mark at

the end of every example. For the NLI verbalizer, we use Yes and No, which we

map to the task’s labels entailment and not-entailment respectively. For QQP,

7 Due to similar trends on different HANS subsets in preliminary experiments, we focus on

the lexical overlap subset.
8 We compare this to merging the neutral and contradiction classes in Appendix D.2.3, and

obtain very similar results.
9 We sample an equal number of examples per label.
10 Except for QQP, where we experiment with only 2 patterns, as one of the patterns is not

applicable.

6.4 Results 107

we also use Yes and No and map them to not-duplicate and duplicate.11 We

follow the recommendations of given in Chapter 5 and fine-tune all models for

40 epochs using a learning rate of 10−5 which increases linearly (warmup) for

the first 10% of the training steps and is kept constant afterward. Details of all

hyper-parameters are provided in Appendix D.1.5.

In-context learning setup Given OPT’s fixed context size of 2048 tokens

we are limited in the number of examples used for demonstration. Our main ex-

periments focus on 16 demonstrations, but we also present additional experiments

using 2 and 32 demonstrations in Appendix D.2.12. We consider a prediction to

be correct if the probability assigned to the verbalizer token of the ground-truth

label is larger than the probability of the other verbalizer token. We use the same

verbalizer tokens as for fine-tuning.

6.4 Results

We present the results for in-domain and OOD model performance in Figure 6.2,

comparing both in-context learning and fine-tuning. We perform task adaptation

using 16 examples for both strategies. For in-context learning, we provide additional

results that demonstrate the importance of choosing the right pattern and number

of demonstrations in Appendix D.2.2. For fine-tuning, we provide more details,

ablations and discussion of various choices later in this section.

In-domain performance For MNLI and RTE, both in-context learning

and fine-tuning exhibit in-domain performance above the majority baseline for

most model sizes. Focusing on in-context learning, MNLI and RTE in-domain

performance improves as model size increases. On MNLI the largest model (30B)

11 Preliminary experiments showed that Yes and No is a strong verbalizer for binary classification

tasks. This is consistent with previous findings (Webson and Pavlick, 2022).
12 With the exception of RTE, where 32 examples do not fit OPT’s context size

108 Investigating the Generalization of Task-adapted Models

MNLI RTE QQP

ICL

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

125M

350M

1.3B

2.7B

6.7B

13B

30B

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

PBFT

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

Figure 6.2: ICL and PBFT results for OPT models of various sizes. For each approach,

we use 16 examples and perform model selection according to OOD per-

formance. We plot 10 runs per model size which differ only in the data

seed. − in the x- and y-axis indicates majority class accuracy.

obtains an average performance of 71.4% and a maximum performance of 74.9%.

On RTE, in-context learning with the same model achieves an average and

maximum performance of 61.7% and 66.8% respectively. On QQP, the trend of

improved performance with increasing model size is less clear and most models

perform worse than the majority baseline. Table D.3 (in Appendix D.1.4) compares

our in-context learning results with previous work.

For fine-tuning, we similarly observe that in-domain performance increases

with model size. Moreover, across all datasets and model sizes, fine-tuning with

just 16 examples leads to similar in-domain performance as in-context learning (see

Tables D.5 and D.6 in Appendix D.2.1 for statistical tests comparing in-domain

performance of fine-tuning and in-context learning on RTE and MNLI). On QQP,

we again observe no clear relationship between model size and performance. Only

10 out of 70 models perform better than the majority baseline.

6.4 Results 109

Out-of-domain performance Turning to OOD performance, we find that

for MNLI and QQP most of the in-context learning models perform close to the

majority baseline. On MNLI, only the largest model (30B) shows good OOD

generalization for 4 out of 10 runs. On RTE, in-domain and OOD performance of

the 30B model mostly overlap, which is consistent with the findings of Si et al.

(2023). In particular, when comparing the relationship between the in-domain

and OOD performance of the 30B model to the smallest fine-tuned models (125M

and 350M) one might conclude that in-context learning leads to better OOD

performance; for fine-tuning on MNLI and RTE, indeed, the smallest models have

poor OOD performance.

However, as model size increases, OOD performance increases as well, demon-

strating that even in the challenging few-shot setting, fine-tuned models can

generalize OOD. Focusing on the largest models (6.7B, 13B, and 30B) fine-tuned

on MNLI, we find that for most runs, OOD performance is on par or even better

than in-domain performance. On RTE, the trend is even stronger. Even with the

1.3B model, we observe good in-domain and OOD performance, and both improve

as the models get larger. Notably, for many models, OOD performance is even

better than in-domain performance.

In summary, our comparison shows that fine-tuned language models can

generalize OOD as well or even better than models adapted via in-context learning

(see statistical tests comparing them in Table 6.1). This highlights the importance

of comparing adaptation approaches using models of the same size.

6.4.1 A closer look at fine-tuning generalization

Having established that few-shot fine-tuning can also lead to strong in-domain and

OOD performance, we now focus on better understanding the individual choices

that impact the in-domain and out-of-domain performance of fine-tuning. Given

that on QQP, most models achieve close to majority accuracy, we focus on MNLI

and RTE in the following and present results for QQP in Appendix D.2.

110 Investigating the Generalization of Task-adapted Models

PBFT

125M 350M 1.3B 2.7B 6.7B 13B 30B

IC
L

125M −0.00 0.01 0.02 0.03 0.12 0.14 0.09

350M −0.00 0.01 0.02 0.03 0.12 0.14 0.09

1.3B −0.00 0.01 0.02 0.03 0.12 0.14 0.09

2.7B −0.00 0.01 0.02 0.03 0.12 0.14 0.09

6.7B −0.00 0.01 0.02 0.03 0.12 0.14 0.09

13B −0.04 −0.02 −0.01 −0.00 0.09 0.11 0.05

30B −0.11 −0.09 −0.08 −0.08 0.02 0.03 −0.02

(a) RTE

PBFT

125M 350M 1.3B 2.7B 6.7B 13B 30B

IC
L

125M −0.00 0.00 0.02 0.01 0.10 0.11 0.07

350M −0.00 0.00 0.02 0.01 0.10 0.11 0.07

1.3B −0.01 −0.00 0.01 0.01 0.10 0.11 0.07

2.7B −0.01 −0.00 0.01 0.01 0.09 0.10 0.07

6.7B −0.01 −0.01 0.01 0.00 0.09 0.10 0.06

13B −0.03 −0.03 −0.02 −0.02 0.07 0.08 0.04

30B −0.07 −0.07 −0.05 −0.06 0.03 0.04 0.00

(b) MNLI

Table 6.1: Difference between average out-of-domain performance of in-context

learning and fine-tuning on RTE (a) and MNLI (b) across model sizes.

We use 16 examples and 10 random seeds for both approaches. For in-

context learning, we use the gpt-3 pattern. For fine-tuning, we use pattern-

based fine-tuning (PBFT) and select checkpoints according to in-domain

performance. We perform a Welch’s t-test and color cells according to

whether: in-context learning performs significantly better than fine-tuning,

fine-tuning performs significantly better than in-context learning. For cells

without color, there is no significant difference.

6.4 Results 111

Best in-domain Last checkpoint Best out-of-domain

MNLI

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

125M

350M

1.3B

2.7B

6.7B

13B

30B

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

RTE

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

Figure 6.3: Comparing model selection strategies for fine-tuning. The first and second

rows show results for MNLI and RTE respectively. We train on 16 examples

and plot results for 10 runs for each model size. − in the x- and y-axes

indicates majority class accuracy.

The role of model selection Our fine-tuning results in Figure 6.2 show that

many fine-tuned models lead to good out-of-domain generalization. But what is the

role of model selection in identifying these checkpoints? To answer this question,

we compare selecting the model (a) with the best in-domain performance, (b) at

the end of fine-tuning, and (c) with the best out-of-domain performance. Figure 6.3

shows the results when fine-tuning on 16 examples. Results for additional sample

sizes are shown in Figures D.4 to D.6 in Appendix D.2.3.

Our results show that when performing model selection according to in-

domain performance, only the largest models achieve good OOD performance. On

the other hand, when performing model selection according to OOD performance,

smaller models can also generalize well (e.g. for the 2.7B model on RTE, 7 out

of 10 models have equal or even better OOD than in-domain performance), and

this trend persists as model size increases. Interestingly, on RTE, we also observe

112 Investigating the Generalization of Task-adapted Models

16 samples 32 samples 64 samples 128 samples

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

125M

350M

1.3B

2.7B

6.7B

13B

30B

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

Figure 6.4: Exploring the effect of increasing training examples on fine-tuning. The

first and second rows show results for MNLI and RTE respectively. We

plot results for 10 runs for each model size and perform model selection

according to out-of-domain performance. − in the x- and y-axes indicates

majority class accuracy.

models with a strong OOD performance when selecting the last checkpoint, which

typically leads to poor OOD performance on MNLI.

Training on more data In contrast to in-context learning, where the maxi-

mum number of demonstrations is limited by the context size of a model, fine-

tuning allows us to perform task adaptation using arbitrary amounts of data.

Here, we analyze how the relationship between in-domain and OOD performance

is impacted by training on more data. Figure 6.4 shows the results for MNLI and

RTE, and results for QQP are provided in Figure D.6 in Appendix D.2.3. For the

smallest models, we find that while in-domain performance increases with more

training data, OOD performance remains low, which is consistent with previous

work (Utama et al., 2021). However, for larger models, OOD performance improves

as the amount of training data increases and the same trend can be observed when

performing model selection according to in-domain performance (see Figures D.4

to D.6 in Appendix D.2.3).

6.4 Results 113

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

seed=5

seed=3

seed=0

all examples

50 examples

Figure 6.5: Estimating OOD performance using less data. We compare OOD perfor-

mance estimated using all vs. 50 examples when fine-tuning OPT 13B on

RTE. Each color corresponds to a run with a different data seed.

How much OOD data is needed? In the experiments so far, we evaluated

the models on the full evaluation set (unless mentioned otherwise). Further, we

selected fine-tuning models based on this evaluation; choosing the best model

according to its in-domain or OOD performance on this entire set. This setup is

not realistic, since in such a scenario where large amounts of data are available for

evaluation, it can be used more effectively for training (D. Zhu et al., 2023). Hence,

in this experiment, we quantify the ability to estimate a model’s performance on

OOD data using smaller evaluation sets. We fine-tune OPT 13B on MNLI using

128 examples using three different data seeds and plot the OOD generalization

in Figure 6.5. Our results show that using just 50 randomly selected examples

is sufficient to distinguish checkpoints that generalize well from those that do

not, which would allow us to select, with only these 50 examples, the best

OOD checkpoint in a model’s training run. This is also reflected in the Pearson

correlation of the OOD performance during fine-tuning when evaluating it on all

vs. 50 examples, which is very high: 0.99.

Comparing fine-tuning approaches Lastly, we investigate the importance

of performing pattern-based fine-tuning instead of vanilla fine-tuning by fine-tuning

114 Investigating the Generalization of Task-adapted Models

Vanilla FT PBFT PBFT + LoRA

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9
ou

t-
of

-d
om

ai
n

ac
cu

ra
cy

125M

350M

1.3B

2.7B

6.7B

13B

30B

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

Figure 6.6: Comparing fine-tuning approaches on RTE. We use 16 examples and

perform model selection according to out-of-domain performance. − in

the x- and y-axes indicates the accuracy of the majority class label.

a model with a randomly initialized classification head (Howard and Ruder, 2018;

Devlin et al., 2019). Further, as an extra fine-tuning strategy, we also apply LoRA

(E. J. Hu et al., 2022) – a recently proposed approach for parameter-efficient

fine-tuning – on top of pattern-based fine-tuning for comparison. This makes

adaptation via fine-tuning more similar to adaptation via in-context learning as

it allows the re-use of a large fraction of the weights of a pre-trained language

model across tasks.13 We fine-tune all models on 16 examples from RTE and

present the results in Figure 6.6. For all fine-tuning approaches, we observe a clear

improvement in both in-domain and OOD performance as models become larger.

Compared to vanilla fine-tuning, pattern-based fine-tuning leads to better overall

performance. When combined with LoRA, pattern-based fine-tuning leads to very

similar performance as training all parameters. These results demonstrate the

generality of our findings beyond a specific fine-tuning method.

6.4.2 Our findings generalize beyond OPT

Figure 6.7 provides a comparison of in-context learning and fine-tuning using

Pythia models14 of different sizes ranging from 410M to 12B parameters (Biderman

13 We provide more details on both approaches in Appendix D.1.5.
14 We use the non-deduped models.

6.4 Results 115

ICL – 16 samples PBFT – 16 samples

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9
ou

t-
of

-d
om

ai
n

ac
cu

ra
cy

Pythia-410M

Pythia-1.4B

Pythia-2.8B

Pythia-6.9B

Pythia-12B

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

Figure 6.7: ICL and fine-tuning results for Pythia models on RTE. We fine-tune models

using PBFT. For each approach, we use 16 examples and perform model

selection according to in-domain performance. We plot 10 runs per model

size which differ only in the data seed. − in the x- and y-axes indicates

majority class accuracy.

et al., 2023). The corresponding significance tests for OOD performance are shown

in Table 6.2 (significance tests for in-domain performance are in Appendix D.3).

Similar to OPT, all Pythia models have been trained on the same data, and in the

same order. We fine-tune using PBFT and select models according to in-domain

performance. The results for additional patterns, model selection strategies, and

sample sizes are discussed in Appendix D.3.

Similarly to OPT, we observe a clear effect of model size on both in-domain

and OOD performance. For most model sizes, fine-tuning leads to significantly

better OOD performance than in-context learning and both the in-domain and

OOD performance of Pythia models improve drastically as we fine-tune on more

data (see Figure D.9). This demonstrates the generality of our findings beyond a

specific language model.

116 Investigating the Generalization of Task-adapted Models

FT

410M 1.4B 2.8B 6.9B 12B

IC
L

410M 0.02 0.06 0.05 0.09 0.11

1.4B 0.01 0.05 0.04 0.08 0.10

2.8B −0.03 0.01 −0.00 0.04 0.06

6.9B 0.01 0.05 0.04 0.08 0.10

12B −0.03 0.01 −0.00 0.04 0.06

Table 6.2: Difference between average out-of-domain performance of in-context

learning and fine-tuning with Pythia models on RTE. We use 16 examples

and 10 random seeds for both approaches. For in-context learning, we

use the gpt-3 pattern. For fine-tuning, we use pattern-based fine-tuning

(PBFT) and select checkpoints according to in-domain performance. We

perform a Welch’s t-test and color cells according to whether: in-context

learning performs significantly better than fine-tuning, fine-tuning performs

significantly better than in-context learning. For cells without color, there

is no significant difference.

6.5 Discussion

Our findings in the previous section demonstrate that fine-tuned language models

can generalize OOD too, highlighting the importance of comparing adaptation

approaches fairly. In this section, we present further insights from our experiments

and provide a high-level comparison of the pros and cons of adaptation via

in-context learning and fine-tuning.

What signal to learn from? Both our in-context learning and fine-tuning

results exhibit a large variance in both in-domain and OOD performance. Our

results show different OOD behavior during fine-tuning when varying only the data

seed. In addition, as previous work has shown, the choice of patterns and verbalizers

6.6 Comparing fine-tuning and in-context learning 117

impact both in-context learning and pattern-based fine-tuning performance in

unintuitive ways. For instance, Webson and Pavlick (2022) find that pattern-based

fine-tuned models perform well even when using misleading patterns. Here, we

find that in-context learning’s generalization is heavily dependent on the choice of

pattern and verbalizer. This shows the importance of the choice of training data

and patterns for task adaptation.

Advances in task adaptation The success of in-context learning led to the

development of new methods for improving on it further, such as calibration (Zhao

et al., 2021), and chain-of-thought prompting (Wei et al., 2022a). In this work, we

focus on the ‘vanilla’ version of in-context learning and the fine-tuning approach

most similar to it – pattern-based fine-tuning. Our results suggest that these

two approaches are more similar than previously thought, as they achieve similar

performance both in-domain and OOD. As such, new methods for in-context

learning can also be applied to pattern-based fine-tuning, and we expect them to

achieve similar results.

Analyzing the fine-tuning loss surface Looking at the OOD generalization

curves throughout fine-tuning (in Figure 6.5 and additional plots in Appendix D.4),

we observe that for some runs, OOD performance fluctuates heavily and models

change their generalization ‘strategy’ during fine-tuning. In Figure 6.5, we can

see that some fine-tuning runs undergo a dramatic change in OOD performance

after 75 steps. We leave it to future work to further study this behavior and

the relationship between the fine-tuning loss surface and OOD generalization

(Shwartz-Ziv et al., 2022; Juneja et al., 2023).

118 Investigating the Generalization of Task-adapted Models

Feature Fine-tuning In-context learning

Users Experts Experts & Non-experts

Interaction Pre-defined Textual

Reusability Medium High

Applicability to
High Limited

low-resource languages

Requires training Yes No

Inference time |test example| |test example| + |demonstrations|

|Demonstrations| Unlimited ≤100

Variance High High

SOTA Yes Yes

Size scaling Standard Standard

|Demonstrations| scaling Standard Limited

Invented 2018 2020

Well understood No No

Table 6.3: A high-level comparison between key features of fine-tuning and in-context

learning.

6.6 Comparing fine-tuning and in-context learn-

ing

This section examines the key features for task adaptation and compares fine-

tuning and in-context learning. We summarize our findings in Table 6.3. We

begin by discussing features related to user interaction, which can be found

in the first part of the table. Fine-tuning requires expertise in model training,

whereas in-context learning only requires natural language, i.e., non-experts can

use this approach more easily. In-context learning is also highly reusable as it

does not modify the pre-trained model and hence, the same model can be used

for many tasks; fine-tuning, however, is not as reusable (with the exception of

6.6 Comparing fine-tuning and in-context learning 119

parameter-efficient methods) and typically results in a specialized model per task.

Unfortunately, despite its user-friendliness and reusability, in-context learning

does not work out of the box for some tasks which require more sophisticated

prompting (Wei et al., 2022a).

In-context learning requires large models to work in contrast to fine-tuning,

which works well even with small models (Devlin et al., 2019). This hinders the

applicability of in-context learning to models developed for low-resource languages,

as training billion parameter-scale models requires huge amounts of training data,

which are simply unavailable for many languages. As such, fine-tuning is still the

dominating adaptation approach in this setting (Pfeiffer et al., 2022; Alabi et al.,

2022, inter alia).

Next, we compare technical details regarding the training and inference of

such approaches. While fine-tuning requires training (which when dealing with

large models can become expensive), in-context learning does not. On the other

hand, the inference time of fine-tuned models is much smaller than in-context

learning, since it only includes the time that it takes to process the minimal

pattern and the test instance. When using in-context learning, each test instance

has to include all of the demonstrations as well, which increases the inference time.

The fixed context size of the model also limits the number of demonstrations that

can be used15, while fine-tuning allows for unlimited training examples. We show

in this work that both methods can achieve strong performance on both in-domain

and OOD datasets. Both approaches improve with model size, but fine-tuning

benefits more from additional samples than in-context learning does, as was also

shown in previous work (Min et al., 2022).

Finally, we highlight that both methods are relatively recent: vanilla fine-

tuning was invented in 2018 (Howard and Ruder, 2018) and in-context learning in

2020 (Brown et al., 2020).16 As such, these methods are still poorly understood,

15 Note that some methods allow an infinite context e.g. Press et al., 2022a; Martins et al.,

2022. Most current successful LMs, however, have limited context sizes.
16 PBFT was also invented in 2020 (Schick and Schütze, 2021).

120 Investigating the Generalization of Task-adapted Models

and more research is required on both approaches to better understand their

strengths and weaknesses.

6.7 Related work

Brown et al. (2020) compare GPT-3’s few-shot in-context learning performance

with fine-tuned language models trained in the fully supervised setting, finding

that both approaches lead to similar results in question answering. However, the

fine-tuned models they compare in-context learning to are smaller models, making

the task adaptation comparison unfair. For SuperGLUE, while using smaller

models, they find that fine-tuning largely outperforms in-context learning. This

is consistent with our findings. Even in the few-shot setting, fine-tuned language

models can outperform in-context learning when comparing models of the same

size. Recently, H. Liu et al. (2022) compared parameter-efficient few-shot FT

of T0 (Sanh et al., 2022) to in-context learning with GPT-3, finding that their

parameter-efficient fine-tuning approach outperforms in-context learning. This

is consistent with our findings; however, unlike our work, they only consider

in-domain performance.

Focusing on OOD performance, Si et al. (2023) investigate the generalization

of GPT-3 along various axes, including generalization under covariate shift – as

we do. However, they compare models of different sizes, i.e., RoBERTa-large and

GPT-3 (which has 500 times the number of parameters), and different training

settings, i.e., fully supervised for fine-tuning vs. few-shot for in-context learning.

They observe much better OOD performance for in-context learning than fine-

tuning, concluding that in-context learning with GPT-3 is more robust than

fine-tuning using BERT or RoBERTa. While this conclusion is valid, it holds for

specific models, rather than the methods in general. We show how important

it is to compare methods fairly. Based on our comparable results, fine-tuning

language models results in similar or even better OOD generalization. Another

work that compares the OOD generalization of different adaptation approaches

6.8 Conclusions 121

is Awadalla et al. (2022). Unlike our choice of MNLI and RTE, they investigate

the robustness of question answering models under various types of distribution

shifts and find that in-context learning is more robust to distribution shifts than

fine-tuning. Moreover, they argue that for fine-tuning, increasing model size does

not have a strong impact on generalization. However, they don’t scale beyond

1.5B parameters. Our findings suggest that the relationship between in-domain

and OOD performance does depend on model size.

While we focus on the task adaptation of decoder-only models, Utama et al.

(2021) investigate the OOD generalization of encoder-only models adapted via

pattern-based few-shot fine-tuning. For MNLI and HANS, they find that these

models adopt similar inference heuristics to those trained with vanilla fine-tuning

and hence perform poorly OOD. They observe that models rely even more on

heuristics when fine-tuned on more data. This is in contrast to our results where we

find that pattern-based few-shot fine-tuning can lead to good OOD generalization,

and OOD generalization improves as we train on more data. We attribute this to

the fact that they experiment with a smaller model (RoBERTa-large; 350M).17

Lastly, Bandel et al. (2022) show that masked language models can generalize

well on HANS if fine-tuned for a sufficient number of steps. While they focus on

fine-tuning on the entire dataset, their findings provide additional evidence that

fine-tuned language models can generalize well OOD.

6.8 Conclusions

We perform a fair comparison between in-domain and OOD generalization of

two alternative task adaptation strategies: Few-shot in-context learning and fine-

tuning. We compare OPT models (S. Zhang et al., 2022) ranging from 125M to

30B parameters on three classification datasets across two tasks. We find that for

both approaches, performance improves as models become larger. For the largest

17 This is also related to the results of (Warstadt et al., 2020b), who show that better pre-trained

models are less prone to rely on superficial (and potentially spurious) features for predictions.

122 Investigating the Generalization of Task-adapted Models

models we experiment with (OPT-30B), we find that fine-tuning outperforms

in-context learning on both in-domain and OOD performance and even improves

further as we train on more data.

However, our results also demonstrate that the performance of both fine-

tuning and in-context learning exhibits high variance, highlighting that truly

robust task adaptation remains an open challenge. We end by providing a high-

level comparison between the two approaches, listing the benefits and limitations

of each, and discussing some future directions.

6.9 Limitations

We focus on a specific type of OOD generalization, namely, covariate shift (Hupkes

et al., 2022). Under this setup, we refer to OOD as the specific challenge datasets we

use. As such, different conclusions might be reached by repeating the experiments

and evaluating different datasets.

Further, we focus specifically on OPT decoder-only models as our goal was

to compare the generalization of adaptation via fine-tuning vs. in-context learning

using the same pre-trained model. To the best of our knowledge, existing encoder-

only models do not have strong in-context learning abilities. For encoder–decoder

models such as T5, only recent variants such as Flan-T5 (Chung et al., 2022)

demonstrate the ability to respond well to instructions. However, these models

require an additional supervised fine-tuning step on instruction data. This makes

it challenging to attribute generalization abilities (or the lack thereof) to specific

adaptation techniques (fine-tuning vs in-context learning). Hence, we focus on

decoder-only models pre-trained exclusively with a language modeling objective.

Many recent papers that experiment with in-context learning use GPT-3.

While fine-tuning GPT-3 is possible via an API, it is unclear what fine-tuning

approach is used behind that API. Since this makes a fair comparison difficult,

we chose not to experiment with GPT-3.

6.9 Limitations 123

While similarly large models (e.g. OPT-175B) are publicly available, we do

not have the computational resources to run such models. While we expect the

trends we observe in this work to hold with larger models, we are not able to

empirically test that. Moreover, we only experiment with English language models

as, to the best of our knowledge, there are no publicly available models which are

similar to OPT (decoder-only models of various sizes trained on the same data)

for other languages.

Finally, we only experiment with basic fine-tuning and in-context learning

methods. However, for both approaches there exist more advanced techniques

which we do not consider (e.g. calibration; Zhao et al., 2021). We note that such

techniques can typically be applied for both adaptation approaches. Hence we

expect an improvement for one method to improve the other as well.

7
Conclusion and Future Directions

Contents

7.1 Summary of contributions . 125

7.2 Future directions . 128

7.2.1 Modular (task-)adaptation . 128

7.2.2 Limits of update-free task adaptation . 129

7.2.3 Good vs. bad fine-tuning minima . 129

7.2.4 The pre-train–instruct–align–fine-tune pipeline 130

In this final chapter, we summarize the main contributions of this thesis and

discuss how they address the shortcomings posed in §1.2. Additionally, we discuss

perspectives for future work.

7.1 Summary of contributions

This thesis provides four analyses on crucial parts of the modern NLP pipeline

ranging from investigating the linguistic capabilities of pre-trained language

models (Chapter 3) and how these linguistic capabilities are affected by fine-tuning

(Chapter 4), to a rigorous analysis of the fine-tuning process itself (Chapter 5),

and a critical evaluation and comparison of the generalization of task-adapted

language models (Chapter 6). Below, we summarize our main contributions.

125

126 Conclusion and Future Directions

Interplay between linguistic knowledge and model performance The

first shortcoming of pre-trained and fine-tuned language models we identified is a

lack of understanding of the relationship between their strong capabilities on NLP

downstream tasks and their encoding of linguistic and factual knowledge, which

is presumed to be required to solve these tasks. Our contributions to better under-

stand this relationship are twofold. First, in Chapter 3, we perform a fine-grained

analysis of the syntactic knowledge encoded in pre-trained masked language mod-

els. Specifically, we investigate the extent to which these models encode linguistic

knowledge about relative clauses in American English. Importantly, we compare

probing accuracy—a commonly used proxy for linguistic knowledge encoded in

pre-trained models—to the actual token predictions of a model. Our results show

that while all models achieve high probing accuracy, there exist model-specific

differences when evaluating language model predictions directly. Our contributions

highlight the importance of building up claims about a model’s linguistic knowl-

edge using a more fine-grained evaluation that considers model predictions and

performance on challenging edge cases in addition to probing-based evaluation.

We build on this finding in Chapter 4, where we investigate how the lin-

guistic knowledge of pre-trained models changes when fine-tuning them on NLP

downstream tasks. We demonstrate that fine-tuning on downstream tasks can

considerably affect probing performance, suggesting a change in the amount of

linguistic information encoded by the model. However, as we demonstrate, positive

changes in probing performance can in large part be attributed to changes in the

attention distribution of the fine-tuned model, which result in better sentence

representations for probing. These results provide further evidence that probing

performance should be carefully interpreted, particularly when comparing probing

performance of pre-trained and fine-tuned models.

Taken together, we provide novel insight into how to perform a fine-grained

evaluation of the linguistic knowledge of pre-trained language models and on the

interaction between probing performance and fine-tuning, and argue for a careful

interpretation of the latter.

7.1 Summary of contributions 127

Fine-tuning stability Next, we focus on providing a better understanding

of the large variance in fine-tuning performance, a phenomenon referred to as

fine-tuning instability. As motivated in §1.2, previous work attributed the observed

instability to the small size of the fine-tuning datasets or catastrophic forgetting.

However, these observations were anecdotal and no empirical work had substanti-

ated these claims. In Chapter 5, we rigorously investigated fine-tuning instability

and demonstrated that both hypotheses in fact fail to explain the observed instabil-

ity. We show that fine-tuning instability is mainly a result of optimization difficul-

ties, specifically vanishing gradients, which result in convergence to poorly general-

izing local minima. Based on our analysis, we provide simple suggestions to improve

fine-tuning stability by training with small learning rates and bias correction.

Our proposed approach leads to strong empirical performance, outperforming

previous work in terms of stability while maintaining or even improving overall

performance. Moreover, we demonstrate how a critical investigation of the failure

cases of fine-tuning can lead to simple but well-motivated changes that have a

significant impact on performance, outperform competing approaches, and overall

lead to a better understanding of a crucial component of the modern NLP pipeline.

Generalization of task-adapted models Finally, in Chapter 6 we provide a

comparison of the in.-domain and out-of-domain generalization of two prominent

task adaptation approaches, fine-tuning and in-context learning, making a first

step towards addressing an open question about the fundamental differences in

generalization between these two adaptation approaches. Our work demonstrates

that—in contrast to previous findings—fine-tuned language models can generalize

well out-of-domain and in fact, both fine-tuning and in-context learning generalize

similarly, both exhibiting large variance in performance and sensitivity to the choice

of training examples. Additionally, we find that for both approaches, large models

generalize significantly better than small models, highlighting the importance of

fair comparisons.

128 Conclusion and Future Directions

Our findings are an important first step towards a better understanding of

the fundamental differences in model behavior from different task adaptation

approaches and shows that robust task adaptation remains an open challenge,

even with the latest generation of billion parameter language models.

7.2 Future directions

We end this chapter by discussing interesting directions for future work in the

context of analyzing pre-trained and fine-tuned language models.

7.2.1 Modular (task-)adaptation

Compared to most of the models studied in this thesis, the latest generation

of pre-trained language models have significantly increased in size, with the

most capable publicly available models reaching sizes of up to 70B parameters

(Touvron et al., 2023b; Touvron et al., 2023a). This increase in model size leads to

challenges when it comes to adapting models to new tasks, domains, or languages.

For example, gradient-based adaptation via fine-tuning is becoming less viable

due to high memory requirements.1 This trend is particularly affecting academic

researchers who often only have a small computational budget for their experiments.

A potential solution to this problem is to use parameter-efficient fine-tuning

methods, such as LoRA (E. J. Hu et al., 2022), which has shown promising results.

Especially when combined with quantization techniques (Dettmers et al., 2023),

it becomes feasible to adapt even billion-parameter language models efficiently.

However, despite its increasing popularity and empirical success, the mechanisms

and limitations of modular task adaptation are currently poorly understood.

1 For example, fine-tuning all parameters of a 30B parameter OPT model requires at least

600GB of GPU memory, i.e. access to 8x A100 80GB GPUs.

7.2 Future directions 129

To make progress towards a better understanding of modular task adaptation,

we propose future work that studies the limits of modular task adaptation, such as

investigating whether modular adaptation approaches can be used to adapt a pre-

trained model to arbitrary (task) distributions or whether the target distribution

must be, in some sense, “close” to the pre-training data.

7.2.2 Limits of update-free task adaptation

A related direction of investigation is the limitations of update-free task adaptation.

Due to the strong in-context learning abilities of the latest generation of large

language models, it is becoming increasingly common to perform task adaptation

via in-context learning, which leaves the pre-trained weights unmodified. There is

currently mixed evidence for how adaptation approaches that update parameters

perform, compared to those that don’t. While H. Liu et al. (2022)’s and our

findings in Chapter 6 document the advantages of fine-tuning for classification

tasks, Wei et al. (2022a) obtain significantly better performance on challenging

reasoning tasks with models that are adapted via in-context learning.

We hope that these findings spur future work that investigates the limitations

of update-free adaptation approaches such as in-context learning and we are

particularly excited about future work that studies differences in task learnability

and sample efficiency for task adaptation approaches with and without weight

updates.

7.2.3 Good vs. bad fine-tuning minima

Another direction for future work is inspired by some of our findings in Chapter 6,

where we observe that the out-of-domain generalization of individual fine-tuning

runs can change during training (§6.5). Notably, these changes in generalization

happen at a point in training where the fine-tuned model’s training loss suddenly

130 Conclusion and Future Directions

Figure 7.1: The modern NLP pipeline including the additional instruction fine-tuning

(Instruct) and alignment to human preferences (Align) steps. Both adap-

tation steps seamlessly fit into the general pipeline introduced in §1.1

and typically involve updating the model weights via gradient-based fine-

tuning.

spikes after approaching zero, and then drops again after. Intuitively, this could

suggest that during fine-tuning, stochastic gradient descent visits different minima

that are highly similar in their training loss but significantly different in their

generalization behavior (we note that this is also consistent with our findings

in §5.6.2, where we observe fine-tuning runs that differ quite substantially in

their in-domain generalization but all achieve a training loss close to zero). This

intuition is supported by recent results from Juneja et al. (2023), who provide

evidence for the existence of such minima.

Inspired by these findings, we hope to see future work that investigates the

generalization properties of the fine-tuning loss surface and eventually allows us

to reliably identify minima in weight space that generalize well.

7.2.4 The pre-train–instruct–align–fine-tune pipeline

Lastly, recent improvements in the capabilities of pre-trained and fine-tuned

language models are not just a result of scaling-up the amount of training data

and the number of parameters (Kaplan et al., 2020; Hoffmann et al., 2022, inter

alia), but also come from the addition of new intermediate training steps to

the modern NLP pipeline. Two of the now most commonly used intermediate

7.2 Future directions 131

steps are instruction fine-tuning (Sanh et al., 2022; Y. Wang et al., 2022; Chung

et al., 2022, inter alia) and alignment to human preferences (Christiano et al.,

2017; Ouyang et al., 2022). We show how instruction fine-tuning and alignment

to human preferences extend the modern NLP pipeline in Figure 7.1. Both of

these steps essentially adapt the pre-trained model via language modeling on

very specific input distributions. Instruction fine-tuning trains on a collection

of task instructions while alignment to human preferences requires a dataset of

instructions and potential completions and adapts the model to output completions

that are preferred by humans2.

Given the impressive capabilities of models like ChatGPT3 which have been

adapted via instruction fine-tuning and alignment to human preferences, it will

be important for future work to rigorously analyze the contributions of the

individual adaptation steps to overall model performance. While much recent

work is enthusiastic about the capabilities of alignment to human preferences,

we are interested in seeing work that also investigates its downsides, such as

introducing implicit biases. As for instruction fine-tuning, we are curious about

the generalization behavior of instruction fine-tuning, especially in multi-lingual

settings. As these questions are similar to the ones posed in this thesis, we hope

that the research presented here serves as an inspiration for future work that

tackles these challenges and propels the field forward.

2 Human preference is typically approximated by a reward model which outputs a scalar

preference value for every completion.
3 https://chat.openai.com/

https://chat.openai.com/

List of Figures

Figure 1.1 The modern NLP pipeline. A randomly initalized model

θrand is trained on large quantities of text, producing a

pre-trained language model θPT. The pre-training step

is followed by fine-tuning, which adapts the pre-trained

model to a downstream task and results in a task-specific

model θFT which can then be used for inference. Alter-

natively, we can bypass the fine-tuning step and instead

perform task adaptation via in-context learning. This

allows us to directly use the pre-trained model for inference. 2

Figure 1.2 Our contributions along the modern NLP pipeline. Each

chapter addresses one of the shortcomings posed in §1.2. . 6

Figure 3.1 Top-5 predictions by BERT-base-cased when masking (a)

inanimate antecedent, (b) animate antecedent, (c) inani-

mate relativizer and (d) animate relativizer. 37

Figure 3.2 Side-by-side comparison of layer-wise probing accuracy

on the test set for pre-trained transformer and baseline

models using (a) CLS-pooling and (b) mean-pooling. . . . 42

Figure 4.1 Layer-wise probing accuracy on bigram-shift, coordina-

tion inversion, and odd-man-out for BERT, RoBERTa,

and ALBERT. For all models mean-pooling (solid lines)

consistently improves probing accuracy compared to CLS-

pooling (dashed lines), highlighting the importance of

sentence-level information for each of the tasks. 67

133

134 list of figures

Figure 4.2 Entropy and Earth Mover’s Distance of the attention for

the CLS token for each layer with the RoBERTa model

on the bigram-shift dataset. The mean over all input

sequences and the mean over all attention heads of a

layer are taken. The Earth Mover’s Distance is computed

between the base model and each fine-tuned model. . . . 71

Figure 4.3 Perplexity on Wikitext-2 of models consisting of a fine-

tuned encoder and a pre-trained MLM head. Plots (a)

and (b) show how perplexity changes over the course of

fine-tuning with epoch 0 showing the perplexity of the pre-

trained model. (c) and (d) show how perplexity changes

when a number of last layers of the fine-tuned encoder are

replaced with corresponding layers from the pre-trained

model. Note the different y-axes for RoBERTa and BERT. 73

Figure 5.1 Our proposed fine-tuning strategy leads to very stable re-

sults with very concentrated development set performance

over 25 different random seeds across all three datasets

on BERT. In particular, we significantly outperform the

recently proposed approach of Lee et al. (2020) in terms

of fine-tuning stability. 80

Figure 5.2 Language modeling perplexity for three failed (a) and

successful (b) fine-tuning runs of BERT on RTE where

we replace the weights of the top-k layers with their pre-

trained values. (c) shows the average training loss and

validation accuracy for three failed and three successful

fine-tuning runs. 85

list of figures 135

Figure 5.3 Development set results on down-sampled MRPC, CoLA,

and QNLI using the default fine-tuning scheme of BERT

(Devlin et al., 2019). The leftmost boxplot in each sub-

figure shows the development accuracy when training on

the full training set. 87

Figure 5.4 Gradient norms (plotted on a logarithmic scale) of different

layers on RTE for a failed and successful run of BERT

fine-tuning. We observe that the failed run is characterized

by vanishing gradients in the bottom layers of the network.

Additional plots for other weight matrices can be found in

the Appendix. 89

Figure 5.5 The bias correction term of ADAM as a function of the

training steps t. 91

Figure 5.6 Box plots showing the fine-tuning performance of (a)

BERT, (b) RoBERTa, (c) ALBERT for different learning

rates α with and without bias correction (BC) on RTE.

For BERT and ALBERT, having bias correction leads to

more stable results and allows to train using larger learning

rates. For RoBERTa, the effect is less pronounced but still

visible. 92

Figure 5.7 2D loss surfaces in the subspace spanned by δ1 = θf − θp

and δ2 = θs − θp on RTE, MRPC, and CoLA. θp, θf ,

θs denote the parameters of the pre-trained, failed, and

successfully trained model, respectively. 93

Figure 5.8 Development set accuracy for multiple fine-tuning runs on

RTE. The models for (a) are trained with 10 different seeds,

and models for (b) are taken at the end of the training,

and trained with different seeds and hyperparameters. . 94

136 list of figures

Figure 6.1 In-domain (RTE) and out-of-domain performance (HANS)

for in-context learning (ICL) and fine-tuning (FT) with

OPT models of various sizes. We fine-tune models using

pattern-based fine-tuning (PBFT). We report results using

10 different data seeds. When using 16 samples, in-context

learning’s performance with a 30B model is comparable to

that of fine-tuning with smaller models (6.7B) and for most

model sizes, fine-tuning outperforms in-context learning

(see Table 6.1a for significance tests). − in the x- and

y-axes indicates majority class accuracy. 102

Figure 6.2 ICL and PBFT results for OPT models of various sizes.

For each approach, we use 16 examples and perform model

selection according to OOD performance. We plot 10 runs

per model size which differ only in the data seed. − in

the x- and y-axis indicates majority class accuracy. . . . 108

Figure 6.3 Comparing model selection strategies for fine-tuning. The

first and second rows show results for MNLI and RTE

respectively. We train on 16 examples and plot results

for 10 runs for each model size. − in the x- and y-axes

indicates majority class accuracy. 111

Figure 6.4 Exploring the effect of increasing training examples on

fine-tuning. The first and second rows show results for

MNLI and RTE respectively. We plot results for 10 runs

for each model size and perform model selection according

to out-of-domain performance. − in the x- and y-axes

indicates majority class accuracy. 112

Figure 6.5 Estimating OOD performance using less data. We compare

OOD performance estimated using all vs. 50 examples

when fine-tuning OPT 13B on RTE. Each color corre-

sponds to a run with a different data seed. 113

list of figures 137

Figure 6.6 Comparing fine-tuning approaches on RTE. We use 16

examples and perform model selection according to out-

of-domain performance. − in the x- and y-axes indicates

the accuracy of the majority class label. 114

Figure 6.7 ICL and fine-tuning results for Pythia models on RTE.

We fine-tune models using PBFT. For each approach, we

use 16 examples and perform model selection according to

in-domain performance. We plot 10 runs per model size

which differ only in the data seed. − in the x- and y-axes

indicates majority class accuracy. 115

Figure 7.1 The modern NLP pipeline including the additional in-

struction fine-tuning (Instruct) and alignment to human

preferences (Align) steps. Both adaptation steps seam-

lessly fit into the general pipeline introduced in §1.1 and

typically involve updating the model weights via gradient-

based fine-tuning. 130

Figure A.1 Visualized dependency parse trees extracted by SpaCy:

(a) object RC, and (b) subject RC. 182

Figure A.2 Annotation decision process for meta-data variables: (a)

Animate, relativizer who and which are directly cate-

gorized as animate and non-animate, respectively. The

relativizer that can be either way; thus, we categorize

these sentences based on the antecedent. We compile two

disjoints sets for antecedents that exclusively occur either

with who or which, and the decision is made based on

the membership of the antecedent. If the antecedent is

not a member of either set, the sentence is discarded. (b)

Restrictive can be easily identified since non-restrictive

RCs in American English are always preceded by comma

“,”. 183

138 list of figures

Figure A.3 Side-by-side comparison of layer-wise probing accuracy

on the test set for pre-trained transformer and baseline

models using (a) CLS-pooling and (b) mean-pooling. . . . 186

Figure A.4 Comparison of ALBERT-base-v1 and ALBERT-xxlarge-v1

using mean-pooling. Table A.4 shows the results of the

best ALBERT-xxlarge-v1 probing classifier compared to

all other models grouped by modification. 187

Figure B.1 Difference in probing accuracy (∆ in %) when using CLS-

pooling after fine-tuning on CoLA, SST-2, RTE, and

SQuAD for all three encoder models BERT, RoBERTa,

and ALBERT across all probing taks considered in Chap-

ter 4. The second y-axis shows layer-wise improvement

over the mean-pooling baselines (stars) on the respective

task. 193

Figure B.2 Difference in probing accuracy (∆ in %) when using mean-

pooling after fine-tuning on CoLA, SST-2, RTE, and

SQuAD for all three encoder models BERT, RoBERTa,

and ALBERT across all probing tasks considered in Chap-

ter 4. 194

Figure C.1 Full ablation of fine-tuning BERT on RTE. For each set-

ting, we vary only the number of training steps, learning

rate, and usage of bias correction (BC). All other hyper-

parameters are unchanged. We fine-tune 25 models for

each setting. ? shows the setting which we recommend as

a new baseline fine-tuning strategy. 198

Figure C.2 Gradient norms (plotted on a logarithmic scale) of ad-

ditional weight matrices of BERT fine-tuned on RTE.

Corresponding layer names are in the captions. We show

gradient norms corresponding to a single failed and single

successful, respectively. 201

list of figures 139

Figure C.3 Gradient norms (plotted on a logarithmic scale) of addi-

tional weight matrices of RoBERTa fine-tuned on RTE.

Corresponding layer names are in the captions. We show

gradient norms corresponding to a single failed and single

successful, respectively. 202

Figure C.4 Gradient norms (plotted on a logarithmic scale) of addi-

tional weight matrices of ALBERT fine-tuned on RTE.

Corresponding layer names are in the captions. We show

gradient norms corresponding to a single failed and single

successful, respectively. 203

Figure C.5 2D gradient norm surfaces in the subspace spanned by

δ1 = θf − θp and δ2 = θs − θp for BERT fine-tuned on

RTE, MRPC and CoLA. θp, θf , θs denote the parameters

of the pre-trained, failed, and successfully trained model,

respectively. 204

Figure C.6 The test accuracy and training loss of (a) 10 successful

runs with our fine-tuning scheme and (b) 10 failed runs

with fine-tuning scheme Devlin on RTE. Solid line shows

the mean, error bars show ±1std. 205

Figure D.1 Relationship between in-domain and out-of-domain

performance of in-context learning on MNLI for

OPT models of various sizes. Rows vary amount of training

data. Columns vary input pattern. Colors indicate model

size. We run 10 models per setting varying only the data

seed. − in the x- and y-axis indicates the performance of

the majority class label. 218

140 list of figures

Figure D.2 Relationship between in-domain and out-of-domain

performance of in-context learning on RTE for OPT

models of various sizes. Rows vary amount of training

data. Columns vary input pattern. Colors indicate model

size. We run 10 models per setting varying only the data

seed. − in the x- and y-axis indicates the performance of

the majority class label. 219

Figure D.3 Relationship between in-domain and out-of-domain

performance of in-context learning on QQP for OPT

models of various sizes. Rows vary amount of training data.

Columns vary input pattern. Colors indicate model size.

We run 10 models per setting varying only the data seed.

− in the x- and y-axis indicates the performance of the

majority class label. 220

Figure D.4 Relationship between in-domain and out-of-domain

performance of pattern-based fine-tuning on MNLI

for OPT models of various sizes. Rows vary amount of

training data. Columns vary model selection strategy.

Colors indicate model size. We fine-tune 10 models per

setting varying only the data seed. − in the x- and y-axis

indicates the performance of the majority class label. . . 221

Figure D.5 Relationship between in-domain and out-of-domain

performance of pattern-based fine-tuning on RTE

for OPT models of various sizes. Rows vary amount of

training data. Columns vary model selection strategy.

Colors indicate model size. We fine-tune 10 models per

setting varying only the data seed. − in the x- and y-axis

indicates the performance of the majority class label. . . 222

list of figures 141

Figure D.6 Relationship between in-domain and out-of-domain

performance of pattern-based fine-tuning on QQP

for OPT models of various sizes. Rows vary amount of

training data. Columns vary model selection strategy.

Colors indicate model size. We fine-tune 10 models per

setting varying only the data seed. − in the x- and y-axis

indicates the performance of the majority class label. . . 223

Figure D.7 Relationship between in-domain and out-of-domain

performance of pattern-based fine-tuning on MNLI

for OPT models of various sizes when merging the neu-

tral and contradiction classes vs. removing the neutral

examples altogether. We fine-tune on 16 examples using

10 different seeds. − in the x- and y-axis indicates the

performance of the majority class label. 224

Figure D.8 Relationship between in-domain and out-of-domain

performance of pattern-based fine-tuning on MNLI

for OPT models of various sizes when merging the neutral

and contradiction classes vs. removing the neutral ex-

amples altogether. We fine-tune on 128 examples using

10 different seeds. − in the x- and y-axis indicates the

performance of the majority class label. 225

Figure D.9 ICL and FT results for Pythia models of different

size. For in-context learning, we report results using 16

examples and three different patterns (minimal, gpt-3,

eval-harness). For FT, we report results using 16 and

128 examples using three different model selection strate-

gies (best in-domain, last checkpoint, best out-of-domain).

In all cases, we show results for 10 different random seeds.

− in the x- and y-axis indicates the performance of the

majority class label. 226

142 list of figures

Figure D.10 Generalization throughout PBFT on MNLI for

OPT models of various sizes. We train on 128 ex-

amples. Colors denote different data seeds. First column

shows in-domain, second column out-of-domain perfor-

mance. 229

Figure D.11 Generalization throughout PBFT on RTE for OPT

models of various sizes. We train on 128 examples.

Colors denote different data seeds. First column shows

in-domain, second column out-of-domain performance. . 230

List of Tables

Table 3.1 Examples from the dataset (minimal pairs). A denotes

Animate, R denotes Restrictive. The relativizer is shown

in bold. Modifying a sentence does not always result in an

ungrammatical sentence. For example, when Restrictive=1

and SubjRC=0, relativizer omission yields a grammatical

sentence. 40

Table 3.2 Test accuracy (in %) grouped by modification type (cf.

Table A.3 for statistics). For BERT, RoBERTa, and AL-

BERT we select the best model according to the probing

results shown in Figure 3.2. Numbers in parenthesis show

the accuracy of the non-contextualized baseline (layer 0)

for each model. 43

Table 3.3 Prediction confidence in mean logit (> 0: grammatical,

< 0: ungrammatical). Sentences in case 1 to 3 should

be predicted as grammatical (+) and case 4 and 5 as

ungrammatical (*). 46

Table 3.4 Relativizer prediction: quantitative (a) and qualitative (b)

evaluation. Bold: best result for each metric and category

across models. Underline: best result for each model per

metric across categories. 49

Table 3.5 Antecedent prediction: quantitative (a) and qualitative (b)

evaluation. Bold: best result for each metric and category

across models. Underline: best result for each model per

metric across categories. 52

143

144 list of tables

Table 4.1 Fine-tuning performance on the development set on select

downstream tasks. For comparison we also report the fine-

tuning accuracy of BERT-base-cased as reported by Devlin

et al. (2019) on the test set of each of the tasks taken from

the GLUE and SQuAD leaderboards. We report Matthews

correlation coefficient for CoLA, accuracy for SST-2 and

RTE, and exact match (EM) and F1 score for SQuAD. . 66

Table 4.2 Change in probing accuracy (in %) of CoLA and SST-

2 fine-tuned models compared to the pre-trained models

when using CLS and mean-pooling. We average the differ-

ence in probing accuracy over two different layer groups:

layers 0 to 6 and layers 7 to 12. 69

Table 5.1 Standard deviation, mean, and maximum performance on

the development set of RTE, MRPC, and CoLA when fine-

tuning BERT over 25 random seeds. Standard deviation:

lower is better, i.e. fine-tuning is more stable. ? denotes

significant difference (p < 0.001) when compared to the

second smallest standard deviation. 96

Table 6.1 Difference between average out-of-domain performance

of in-context learning and fine-tuning on RTE (a) and

MNLI (b) across model sizes. We use 16 examples and 10

random seeds for both approaches. For in-context learning,

we use the gpt-3 pattern. For fine-tuning, we use pattern-

based fine-tuning (PBFT) and select checkpoints according

to in-domain performance. We perform a Welch’s t-test

and color cells according to whether: in-context learning

performs significantly better than fine-tuning, fine-tuning

performs significantly better than in-context learning. For

cells without color, there is no significant difference. . . . 110

list of tables 145

Table 6.2 Difference between average out-of-domain performance

of in-context learning and fine-tuning with Pythia models

on RTE. We use 16 examples and 10 random seeds for both

approaches. For in-context learning, we use the gpt-3 pat-

tern. For fine-tuning, we use pattern-based fine-tuning

(PBFT) and select checkpoints according to in-domain

performance. We perform a Welch’s t-test and color cells

according to whether: in-context learning performs sig-

nificantly better than fine-tuning, fine-tuning performs

significantly better than in-context learning. For cells

without color, there is no significant difference. 116

Table 6.3 A high-level comparison between key features of fine-tuning

and in-context learning. 118

Table A.1 Examples of the generated paradigms and the possible

modifications for each paradigm. It is worth pointing out

that not all sentence modifications yield an unacceptable

sentence. For example, the modification relativizer omis-

sion keeps the sentence grammatical in restrictive object

RCs. 184

Table A.2 Summary statistics of the dataset splits used in Chap-

ter 3] The dataset is balanced with respect to acceptability

judgment (the probing label Acceptable). Animate and

restrictive are meta-data variables, they are only used

for creating the data and the modifications, not for probing. 185

Table A.3 Summary statistics of the dataset with respect to the

modifications. Note that modifications are not balanced. 185

146 list of tables

Table A.4 Test accuracy (in %) grouped by modification type (cf.

Table A.3 for statistics). For BERT, RoBERTa, ALBERT-

base-v1 (ALBERT) and ALBERT-xxlarge-v1 we select

the best model according to the probing results shown in

Figure 3.2. Numbers in parenthesis show the accuracy of

the non-contextualized baseline (layer 0) for each model.

ALBERT-xxlarge-v1 performs especially well on the which

→ who modification. 187

Table A.5 Predicted types of antecedents by relativizer in percent-

age. The type hypernym encompasses also general nouns,

determiners, and pronouns. 188

Table B.1 Hyperparamters used when fine-tuning. 190

Table B.2 Fine-tuning task statistics. 191

Table B.3 Change in probing accuracy (∆ in %) of RTE and SQuAD

fine-tuned models compared to the pre-trained models

when using CLS and mean-pooling. We average the differ-

ence in probing accuracy over two different layers groups:

layers 0 to 6 and layers 7 to 12. 192

Table C.1 Dataset statistics and majority baselines. 197

Table C.2 Hyperparameters used for fine-tuning. 199

Table C.3 Standard deviation, mean, and maximum performance on

the development set of SciTail when fine-tuning BERT

over 25 random seeds. Standard deviation: lower is better,

i.e. fine-tuning is more stable. 205

Table D.1 Accuracy of the majority class label for each dataset. . . 208

Table D.2 Patterns used for in-context learning. The minimal pat-

terns are used for pattern-based fine-tuning as well. . . . 209

list of tables 147

Table D.3 Comparing in-context learning results from previous work

(first three rows) with ours (last three rows). In our

results we report average and maximum performance (in

parentheses) of the largest model. Previous results are

from Si et al. (2023) for GPT-3 and S. Zhang et al. (2022)

for OPT. 210

Table D.4 fine-tuning hyperparameters. 211

Table D.5 Difference between average in-domain performance of

in-context learning and fine-tuning on RTE (a) and MNLI

(b) across model sizes. We use 16 examples and 10 ran-

dom seeds for both approaches. For ICL, we use the gpt-3

pattern. For FT, we use pattern-based fine-tuning (PBFT)

and select checkpoints according to in-domain performance.

We perform a Welch’s t-test and color cells according to

whether: ICL performs significantly better than FT, FT

performs significantly better than ICL. For cells without

color, there is no significant difference between ICL and FT.212

Table D.6 Difference between average in-domain performance of

ICL and FT on RTE (a) and MNLI (b) across model

sizes. We use 16 examples and 10 random seeds for both

approaches. For ICL, we use the gpt-3 pattern. For

FT, we use pattern-based fine-tuning (PBFT) and se-

lect checkpoints according to out-of-domain performance.

We perform a Welch’s t-test and color cells according to

whether: ICL performs significantly better than FT, FT

performs significantly better than ICL. For cells without

color, there is no significant difference between ICL and FT.213

148 list of tables

Table D.7 Difference between average out-of-domain performance

of in-context learning and fine-tuning on RTE (a) and

MNLI (b) across model sizes. We use 16 examples and 10

random seeds for both approaches. For ICL, we use the

gpt-3 pattern. For FT, we use pattern-based fine-tuning

(PBFT) and select checkpoints according to out-of-domain performance.

We perform a Welch’s t-test and color cells according to

whether: ICL performs significantly better than FT, FT

performs significantly better than ICL. For cells without

color, there is no significant difference between ICL and FT.214

Table D.8 Difference between average in-domain performance of

in-context learning and fine-tuning with Pythia models

on RTE. We use 16 examples and 10 random seeds for

both approaches. For ICL, we use the gpt-3 pattern. For

fine-tuning, we use pattern-based fine-tuning (PBFT) and

select checkpoints according to in-domain performance.

We perform a Welch’s t-test and color cells according to

whether: in-context learning performs significantly better

than fine-tuning, fine-tuning performs significantly better

than in-context learning. For cells without color, there is

no significant difference between in-context learning and

fine-tuning. 216

list of tables 149

Table D.9 Difference between average in-domain performance of

ICL and FT with Pythia models on RTE. We use 16 exam-

ples and 10 random seeds for both approaches. For ICL,

we use the gpt-3 pattern. For FT, we use pattern-based

fine-tuning (PBFT) and select checkpoints according to

out-of-domain performance. We perform a Welch’s t-test

and color cells according to whether: ICL performs signif-

icantly better than FT, FT performs significantly better

than ICL. For cells without color, there is no significant

difference between ICL and FT. 227

Table D.10 Difference between average out-of-domain performance

of ICL and FT with Pythia models on RTE. We use 16 ex-

amples and 10 random seeds for both approaches. For ICL,

we use the gpt-3 pattern. For FT, we use pattern-based

fine-tuning (PBFT) and select checkpoints according to

out-of-domain performance. We perform a Welch’s t-test

and color cells according to whether: ICL performs signif-

icantly better than FT, FT performs significantly better

than ICL. For cells without color, there is no significant

difference between ICL and FT. 228

List of Acronyms

ALBERT A light BERT 27, 33, 35–38, 41–43, 45–47, 49–55, 58, 59, 62, 65–68,

78–80, 83, 90–92, 133, 135, 138, 139, 143, 186, 188, 189, 193, 194, 197, 199,

203

BERT Bidirectional encoder representations from transformer ix, 27, 33, 35–39,

41–47, 49–55, 58, 59, 61, 62, 65–68, 73–75, 77–81, 83, 85–87, 89–92, 94–97,

133–135, 138, 139, 143, 144, 146, 186, 188, 189, 193, 194, 197–199, 201,

204, 205

CoLA Corpus of Linguistic Acceptability 80–82, 87, 88, 93, 95, 96, 135, 138, 139,

144, 189–191, 193, 194, 197, 204

ERM empirical risk minimization 17–19

FT fine-tuning 28, 101–105, 107–123, 136, 137, 144, 145, 147, 148, 209–212,

214–216

HANS Heuristic Analysis for NLI Systems 102, 106, 121, 136, 208

ICL in-context learning 3, 4, 28, 101–110, 112, 114–123, 136, 137, 139–141,

144–148, 209–212, 214–216, 218–220, 226

MLE maximum likelihood estimation 18, 19, 21

MNLI Multi-Genre Natural Language Inference 105–113, 121, 136, 139–142, 144,

147, 148, 208–215, 217, 218, 221, 224, 225, 229

MRPC Microsoft Research Paraphrase Corpus 80–82, 87, 88, 93, 95, 96, 135, 139,

144, 197, 204

NLP natural language processing 1–3, 5, 8, 23, 24, 30, 33, 57, 59, 125–127, 130

150

List of Acronyms 151

OOD out-of-domain generalization 101–103, 105–109, 111–117, 119–122, 136, 210,

215

OPT Open Pre-trained Transformer 26

PBFT pattern-based fine-tuning 102–104, 106, 108, 110, 113–117, 119, 136, 137,

140, 141, 144–146, 209, 210, 221–225

QNLI Question-answering Natural Language Inference 82, 87, 88, 135, 197, 204

QQP Quora Question Pairs 106, 108, 109, 112, 140, 141, 208–211, 220, 223

RC relative clauses 35, 36, 38, 39, 45–51, 53–55, 137, 145, 181–184, 186, 188

RERM regularized empirical risk minimization 20

RoBERTa Robustly optimized BERT approach 27, 33, 35–38, 41–47, 49–55, 58,

59, 61, 62, 65–68, 70, 71, 73–75, 78–80, 83, 89, 91, 92, 133–135, 138, 139,

143, 186, 188, 189, 193, 194, 197, 199, 202

RTE Recognizing Textual Entailment 80–82, 85, 86, 89, 91–96, 101, 102, 105–116,

121, 134–140, 142, 144–149, 189–194, 197, 198, 200–205, 208–217, 219, 222,

227, 228, 230

SQuAD Stanford Question Answering Dataset 138, 146, 189–194

SST-2 Stanford Sentiment Treebank 138, 189–191, 193, 194

Bibliography

Adi, Yossi, Einat Kermany, Yonatan Belinkov, Ofer Lavi, and Yoav Goldberg

(2016). “Fine-grained analysis of sentence embeddings using auxiliary prediction

tasks.” In: arXiv preprint arXiv:1608.04207 (cit. on p. 60).

– (2017). “Fine-grained Analysis of Sentence Embeddings Using Auxiliary Pre-

diction Tasks.” In: International Conference on Learning Representations. url:

https://openreview.net/forum?id=BJh6Ztuxl (cit. on pp. 31, 38, 59).

Akbik, Alan, Duncan Blythe, and Roland Vollgraf (2018). “Contextual String

Embeddings for Sequence Labeling.” In: COLING 2018, 27th International

Conference on Computational Linguistics, pp. 1638–1649 (cit. on p. 41).

Alabi, Jesujoba O., David Ifeoluwa Adelani, Mosbach, Marius, and Dietrich

Klakow (2022). “Adapting Pre-trained Language Models to African Languages

via Multilingual Adaptive Fine-Tuning.” In: Proceedings of the 29th International

Conference on Computational Linguistics. Best paper award . Gyeongju,

Republic of Korea: International Committee on Computational Linguistics,

pp. 4336–4349. url: https://aclanthology.org/2022.coling-1.382 (cit.

on p. 119).

Alain, Guillaume and Yoshua Bengio (2016). “Understanding intermediate layers

using linear classifier probes.” In: arXiv preprint arXiv:1610.01644 (cit. on

p. 31).

Awadalla, Anas, Mitchell Wortsman, Gabriel Ilharco, Sewon Min, Ian Magnusson,

Hannaneh Hajishirzi, and Ludwig Schmidt (Dec. 2022). “Exploring The Land-

scape of Distributional Robustness for Question Answering Models.” In: Findings

of the Association for Computational Linguistics: EMNLP 2022. Abu Dhabi,

153

https://openreview.net/forum?id=BJh6Ztuxl
https://aclanthology.org/2022.coling-1.382

154 Bibliography

United Arab Emirates: Association for Computational Linguistics, pp. 5971–

5987. url: https://aclanthology.org/2022.findings-emnlp.441 (cit. on

pp. 102, 104, 121).

Bandel, Elron, Yoav Goldberg, and Yanai Elazar (Dec. 2022). “Lexical General-

ization Improves with Larger Models and Longer Training.” In: Findings of the

Association for Computational Linguistics: EMNLP 2022. Abu Dhabi, United

Arab Emirates: Association for Computational Linguistics, pp. 4398–4410. url:

https://aclanthology.org/2022.findings-emnlp.323 (cit. on pp. 105,

121).

Bar-Haim, Roy, Ido Dagan, Bill Dolan, Lisa Ferro, and Danilo Giampiccolo

(Jan. 2006). “The second PASCAL recognising textual entailment challenge.”

In: Proceedings of the Second PASCAL Challenges Workshop on Recognising

Textual Entailment (cit. on pp. 64, 82).

Belinkov, Yonatan, Nadir Durrani, Fahim Dalvi, Hassan Sajjad, and James Glass

(July 2017). “What do Neural Machine Translation Models Learn about Mor-

phology?” In: Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). Vancouver, Canada: Associ-

ation for Computational Linguistics, pp. 861–872. doi: 10.18653/v1/P17-1080.

url: https://aclanthology.org/P17-1080 (cit. on p. 60).

Ben Zaken, Elad, Yoav Goldberg, and Shauli Ravfogel (May 2022). “BitFit: Sim-

ple Parameter-efficient Fine-tuning for Transformer-based Masked Language-

models.” In: Proceedings of the 60th Annual Meeting of the Association for Com-

putational Linguistics (Volume 2: Short Papers). Dublin, Ireland: Association

for Computational Linguistics, pp. 1–9. doi: 10.18653/v1/2022.acl-short.1.

url: https://aclanthology.org/2022.acl-short.1 (cit. on pp. 29, 101).

Bengio, Yoshua, Patrice Simard, and Paolo Frasconi (1994). “Learning long-term

dependencies with gradient descent is difficult.” In: IEEE transactions on neural

networks 5.2, pp. 157–166 (cit. on p. 90).

https://aclanthology.org/2022.findings-emnlp.441
https://aclanthology.org/2022.findings-emnlp.323
https://doi.org/10.18653/v1/P17-1080
https://aclanthology.org/P17-1080
https://doi.org/10.18653/v1/2022.acl-short.1
https://aclanthology.org/2022.acl-short.1

Bibliography 155

Bentivogli, Luisa, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and Bernardo

Magnini (2009). “The Fifth PASCAL Recognizing Textual Entailment Chal-

lenge.” In: Proceedings of the Second Text Analysis Conference (TAC 2009)

(cit. on pp. 64, 82).

Besag, Julian (1975). “Statistical Analysis of Non-Lattice Data.” In: Journal of

the Royal Statistical Society. Series D (The Statistician) 24.3, pp. 179–195. issn:

00390526, 14679884. url: http://www.jstor.org/stable/2987782 (visited

on 07/26/2023) (cit. on p. 22).

Biber, Douglas, Stig Johansson, Geoffrey Leech, Susan Conrad, and Edward

Finegan (1999). Longman Grammar of Spoken and Written English. Harlow,

UK: Longman (cit. on pp. 35, 36).

Biderman, Stella et al. (2023). Pythia: A Suite for Analyzing Large Language

Models Across Training and Scaling. arXiv: 2304.01373 [cs.CL] (cit. on pp. 26,

114, 215).

Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov (2017).

“Enriching Word Vectors with Subword Information.” In: Transactions of the

Association for Computational Linguistics 5, pp. 135–146. doi: 10.1162/tacl_

a_00051. url: https://aclanthology.org/Q17-1010 (cit. on p. 41).

Brown, Tom et al. (2020). “Language Models are Few-Shot Learners.” In: Ad-

vances in Neural Information Processing Systems. Ed. by H. Larochelle, M.

Ranzato, R. Hadsell, M.F. Balcan, and H. Lin. Vol. 33. Curran Associates, Inc.,

pp. 1877–1901. url: https://proceedings.neurips.cc/paper/2020/file/

1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf (cit. on pp. 3, 26, 30, 101,

102, 104, 119, 120, 209).

Christiano, Paul F, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and

Dario Amodei (2017). “Deep Reinforcement Learning from Human Preferences.”

In: Advances in Neural Information Processing Systems. Ed. by I. Guyon,

U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R.

http://www.jstor.org/stable/2987782
https://arxiv.org/abs/2304.01373
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://aclanthology.org/Q17-1010
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

156 Bibliography

Garnett. Vol. 30. Curran Associates, Inc. url: https://proceedings.neurips.

cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-

Paper.pdf (cit. on p. 131).

Chung, Hyung Won et al. (2022). “Scaling Instruction-Finetuned Language Mod-

els.” In: arXiv preprint arXiv:2210.11416. url: https://arxiv.org/abs/2210.

11416 (cit. on pp. 122, 131).

Conneau, Alexis, German Kruszewski, Guillaume Lample, Loı̈c Barrault, and

Marco Baroni (July 2018). “What you can cram into a single $&!#* vector:

Probing sentence embeddings for linguistic properties.” In: Proceedings of the

56th Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers). Melbourne, Australia: Association for Computational Linguistics,

pp. 2126–2136. doi: 10.18653/v1/P18-1198. url: https://www.aclweb.org/

anthology/P18-1198 (cit. on pp. 31, 38, 59, 60, 64).

D’Arcy, Alexandra and Sali A. Tagliamonte (2010). “Prestige, accommodation,

and the legacy of relative who.” In: Language in Society 39.3, pp. 383–410. doi:

10.1017/S0047404510000205 (cit. on p. 36).

Dagan, Ido, Oren Glickman, and Bernardo Magnini (2005). “The PASCAL Recog-

nising Textual Entailment Challenge.” In: Proceedings of the First Interna-

tional Conference on Machine Learning Challenges: Evaluating Predictive Un-

certainty Visual Object Classification, and Recognizing Textual Entailment.

MLCW’05. Southampton, UK: Springer-Verlag, pp. 177–190. isbn: 3540334270.

doi: 10.1007/11736790_9. url: https://doi.org/10.1007/11736790_9

(cit. on pp. 64, 82).

– (2006). “The PASCAL Recognising Textual Entailment Challenge.” In: Ma-

chine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object

Classification, and Recognising Tectual Entailment. Ed. by Joaquin Quiñonero-

Candela, Ido Dagan, Bernardo Magnini, and Florence d’Alché-Buc. Berlin,

Heidelberg: Springer Berlin Heidelberg, pp. 177–190. isbn: 978-3-540-33428-6

(cit. on pp. 101, 106).

https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://arxiv.org/abs/2210.11416
https://arxiv.org/abs/2210.11416
https://doi.org/10.18653/v1/P18-1198
https://www.aclweb.org/anthology/P18-1198
https://www.aclweb.org/anthology/P18-1198
https://doi.org/10.1017/S0047404510000205
https://doi.org/10.1007/11736790_9
https://doi.org/10.1007/11736790_9

Bibliography 157

Dao, Tri, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Re (2022).

“FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness.”

In: Advances in Neural Information Processing Systems. Ed. by Alice H.

Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho. url: https:

//openreview.net/forum?id=H4DqfPSibmx (cit. on p. 26).

Davies, Mark (2015). Corpus of Contemporary American English (COCA). Ver-

sion V2. doi: 10.7910/DVN/AMUDUW. url: https://doi.org/10.7910/DVN/

AMUDUW (cit. on pp. 35, 39, 48, 50).

Dettmers, Tim, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer (2023).

QLoRA: Efficient Finetuning of Quantized LLMs. arXiv: 2305.14314 [cs.LG]

(cit. on pp. 29, 128).

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (June

2019). “BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding.” In: Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:

Association for Computational Linguistics, pp. 4171–4186. doi: 10.18653/v1/

N19-1423. url: https://www.aclweb.org/anthology/N19-1423 (cit. on

pp. 1, 9, 24, 27, 28, 37, 59, 61, 65, 66, 77, 79, 81, 83–87, 90, 91, 95, 96, 101, 103,

114, 119, 135, 144, 204, 205).

Dodge, Jesse, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and

Noah Smith (2020a). “Fine-tuning pretrained language models: Weight initial-

izations, data orders, and early stopping.” In: arXiv preprint arXiv:2002.06305

(cit. on pp. 9, 77, 79, 81–84, 86, 195).

Dodge, Jesse, Gabriel Ilharco, Roy Schwartz, Hannaneh Farhadi Aliand Hajishirzi,

and Noah A. Smith (2020b). “Fine-Tuning Pretrained Language Models: Weight

Initializations, Data Orders, and Early Stopping.” In: url: https://arxiv.

org/abs/2002.06305 (cit. on pp. 4, 101).

https://openreview.net/forum?id=H4DqfPSibmx
https://openreview.net/forum?id=H4DqfPSibmx
https://doi.org/10.7910/DVN/AMUDUW
https://doi.org/10.7910/DVN/AMUDUW
https://doi.org/10.7910/DVN/AMUDUW
https://arxiv.org/abs/2305.14314
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://arxiv.org/abs/2002.06305
https://arxiv.org/abs/2002.06305

158 Bibliography

Dolan, William B. and Chris Brockett (2005). “Automatically Constructing a

Corpus of Sentential Paraphrases.” In: Proceedings of the Third International

Workshop on Paraphrasing (IWP2005). url: https://www.aclweb.org/

anthology/I05-5002 (cit. on p. 82).

Elazar, Yanai, Hongming Zhang, Yoav Goldberg, and Dan Roth (Nov. 2021). “Back

to Square One: Artifact Detection, Training and Commonsense Disentanglement

in the Winograd Schema.” In: Proceedings of the 2021 Conference on Empirical

Methods in Natural Language Processing. Online and Punta Cana, Dominican

Republic: Association for Computational Linguistics, pp. 10486–10500. doi:

10.18653/v1/2021.emnlp-main.819. url: https://aclanthology.org/

2021.emnlp-main.819 (cit. on p. 105).

Ettinger, Allyson (2020). “What BERT Is Not: Lessons from a New Suite of

Psycholinguistic Diagnostics for Language Models.” In: Transactions of the

Association for Computational Linguistics 8, pp. 34–48. doi: 10.1162/tacl_

a_00298. eprint: https://doi.org/10.1162/tacl_a_00298. url: https:

//doi.org/10.1162/tacl_a_00298 (cit. on p. 38).

Ettinger, Allyson, Ahmed Elgohary, and Philip Resnik (Aug. 2016). “Probing for

semantic evidence of composition by means of simple classification tasks.” In:

Proceedings of the 1st Workshop on Evaluating Vector-Space Representations for

NLP. Berlin, Germany: Association for Computational Linguistics, pp. 134–139.

doi: 10.18653/v1/W16-2524. url: https://aclanthology.org/W16-2524

(cit. on p. 60).

Gao, Leo et al. (2020). The Pile: An 800GB Dataset of Diverse Text for Language

Modeling. arXiv: 2101.00027 [cs.CL] (cit. on p. 26).

Gao, Leo et al. (Sept. 2021). “A framework for few-shot language model evaluation.”

In: Zenodo. doi: 10.5281/zenodo.5371628. url: https://doi.org/10.5281/

zenodo.5371628 (cit. on p. 209).

https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
https://doi.org/10.18653/v1/2021.emnlp-main.819
https://aclanthology.org/2021.emnlp-main.819
https://aclanthology.org/2021.emnlp-main.819
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.1162/tacl_a_00298
https://doi.org/10.18653/v1/W16-2524
https://aclanthology.org/W16-2524
https://arxiv.org/abs/2101.00027
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628

Bibliography 159

Gao, Tianyu, Adam Fisch, and Danqi Chen (Aug. 2021). “Making Pre-trained

Language Models Better Few-shot Learners.” In: Proceedings of the 59th Annual

Meeting of the Association for Computational Linguistics and the 11th Inter-

national Joint Conference on Natural Language Processing (Volume 1: Long

Papers). Online: Association for Computational Linguistics, pp. 3816–3830. doi:

10.18653/v1/2021.acl-long.295. url: https://aclanthology.org/2021.

acl-long.295 (cit. on p. 103).

Giampiccolo, Danilo, Bernardo Magnini, Ido Dagan, and Bill Dolan (2007). “The

Third PASCAL Recognizing Textual Entailment Challenge.” In: Proceedings of

the ACL-PASCAL Workshop on Textual Entailment and Paraphrasing. RTE ’07.

Prague, Czech Republic: Association for Computational Linguistics, pp. 1–9

(cit. on pp. 64, 82).

Glorot, Xavier and Yoshua Bengio (2010). “Understanding the difficulty of training

deep feedforward neural networks.” In: Proceedings of the thirteenth international

conference on artificial intelligence and statistics, pp. 249–256 (cit. on p. 90).

Goldberg, Yoav (2019). “Assessing BERT’s syntactic abilities.” In: arXiv preprint

arXiv:1901.05287 (cit. on pp. 4, 38, 48, 54).

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning.

http://www.deeplearningbook.org. MIT Press (cit. on pp. 21, 22).

Goyal, Priya, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski,

Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He (2017). Accurate,

Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv: 1706 . 02677

[cs.CV] (cit. on p. 91).

Hao, Yaru, Li Dong, Furu Wei, and Ke Xu (Nov. 2019). “Visualizing and Under-

standing the Effectiveness of BERT.” In: Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong

Kong, China: Association for Computational Linguistics, pp. 4143–4152. doi:

https://doi.org/10.18653/v1/2021.acl-long.295
https://aclanthology.org/2021.acl-long.295
https://aclanthology.org/2021.acl-long.295
http://www.deeplearningbook.org
https://arxiv.org/abs/1706.02677
https://arxiv.org/abs/1706.02677

160 Bibliography

10.18653/v1/D19-1424. url: https://www.aclweb.org/anthology/D19-

1424 (cit. on pp. 92, 94).

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun (2015). “Delving

deep into rectifiers: Surpassing human-level performance on imagenet classifica-

tion.” In: Proceedings of the IEEE international conference on computer vision,

pp. 1026–1034 (cit. on p. 90).

– (2016). “Deep residual learning for image recognition.” In: Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 770–778 (cit. on

p. 91).

Hewitt, John and Percy Liang (Nov. 2019). “Designing and Interpreting Probes

with Control Tasks.” In: Proceedings of the 2019 Conference on Empirical Meth-

ods in Natural Language Processing and the 9th International Joint Conference

on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China: Asso-

ciation for Computational Linguistics, pp. 2733–2743. doi: 10.18653/v1/D19-

1275. url: https://www.aclweb.org/anthology/D19-1275 (cit. on p. 66).

Hewitt, John and Christopher D. Manning (June 2019). “A Structural Probe

for Finding Syntax in Word Representations.” In: Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).

Minneapolis, Minnesota: Association for Computational Linguistics, pp. 4129–

4138. doi: 10.18653/v1/N19-1419. url: https://aclanthology.org/N19-

1419 (cit. on pp. 4, 60, 62).

Hochreiter, Sepp (1991). “Untersuchungen zu dynamischen neuronalen Netzen.”

In: Diploma, Technische Universität München 91.1 (cit. on p. 90).

Hoffmann, Jordan et al. (2022). Training Compute-Optimal Large Language Models.

arXiv: 2203.15556 [cs.CL] (cit. on p. 130).

Houlsby, Neil, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin

De Laroussilhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly (2019).

https://doi.org/10.18653/v1/D19-1424
https://www.aclweb.org/anthology/D19-1424
https://www.aclweb.org/anthology/D19-1424
https://doi.org/10.18653/v1/D19-1275
https://doi.org/10.18653/v1/D19-1275
https://www.aclweb.org/anthology/D19-1275
https://doi.org/10.18653/v1/N19-1419
https://aclanthology.org/N19-1419
https://aclanthology.org/N19-1419
https://arxiv.org/abs/2203.15556

Bibliography 161

“Parameter-Efficient Transfer Learning for NLP.” In: Proceedings of the 36th

International Conference on Machine Learning. Ed. by Kamalika Chaudhuri and

Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. Long

Beach, California, USA: PMLR, pp. 2790–2799. url: http://proceedings.

mlr.press/v97/houlsby19a.html (cit. on p. 29).

Howard, Jeremy and Sebastian Ruder (July 2018). “Universal Language Model

Fine-tuning for Text Classification.” In: Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers).

Melbourne, Australia: Association for Computational Linguistics, pp. 328–339.

doi: 10.18653/v1/P18-1031. url: https://aclanthology.org/P18-1031

(cit. on pp. 24, 28, 61, 101, 103, 114, 119).

Hu, Edward J, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean

Wang, Lu Wang, and Weizhu Chen (2022). “LoRA: Low-Rank Adaptation of

Large Language Models.” In: International Conference on Learning Representa-

tions. url: https://openreview.net/forum?id=nZeVKeeFYf9 (cit. on pp. 29,

101, 114, 128).

Hu, Jennifer, Sherry Yong Chen, and Roger Levy (Jan. 2020a). “A closer look

at the performance of neural language models on reflexive anaphor licensing.”

In: Proceedings of the Society for Computation in Linguistics 2020. New York,

New York: Association for Computational Linguistics, pp. 323–333. url: https:

//aclanthology.org/2020.scil-1.39 (cit. on p. 38).

Hu, Jennifer, Jon Gauthier, Peng Qian, Ethan Wilcox, and Roger Levy (July

2020b). “A Systematic Assessment of Syntactic Generalization in Neural Lan-

guage Models.” In: Proceedings of the 58th Annual Meeting of the Association

for Computational Linguistics. Online: Association for Computational Linguis-

tics, pp. 1725–1744. url: https://www.aclweb.org/anthology/2020.acl-

main.158 (cit. on p. 38).

http://proceedings.mlr.press/v97/houlsby19a.html
http://proceedings.mlr.press/v97/houlsby19a.html
https://doi.org/10.18653/v1/P18-1031
https://aclanthology.org/P18-1031
https://openreview.net/forum?id=nZeVKeeFYf9
https://aclanthology.org/2020.scil-1.39
https://aclanthology.org/2020.scil-1.39
https://www.aclweb.org/anthology/2020.acl-main.158
https://www.aclweb.org/anthology/2020.acl-main.158

162 Bibliography

Huddleston, Rodney and Geoffrey K. Pullum (2002). The Cambridge Gram-

mar of the English Language. Cambridge University Press. doi: 10.1017/

9781316423530 (cit. on p. 35).

Hupkes, Dieuwke, Sara Veldhoen, and Willem Zuidema (2018). “Visualisation

and’diagnostic classifiers’ reveal how recurrent and recursive neural networks

process hierarchical structure.” In: Journal of Artificial Intelligence Research

61, pp. 907–926 (cit. on p. 60).

Hupkes, Dieuwke et al. (2022). “State-of-the-art generalisation research in NLP:

a taxonomy and review.” In: arXiv (arXiv). url: https://arxiv.org/abs/

2210.03050 (cit. on pp. 105, 122).

Jia, Robin and Percy Liang (Sept. 2017). “Adversarial Examples for Evaluating

Reading Comprehension Systems.” In: Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing. Copenhagen, Denmark:

Association for Computational Linguistics, pp. 2021–2031. doi: 10.18653/v1/

D17-1215. url: https://aclanthology.org/D17-1215 (cit. on p. 4).

Jiang, Zhengbao, Frank F. Xu, Jun Araki, and Graham Neubig (2020). “How Can

We Know What Language Models Know?” In: Transactions of the Association

for Computational Linguistics 8, pp. 423–438. doi: 10.1162/tacl_a_00324.

url: https://www.aclweb.org/anthology/2020.tacl-1.28 (cit. on p. 38).

Juneja, Jeevesh, Rachit Bansal, Kyunghyun Cho, João Sedoc, and Naomi Saphra

(2023). “Linear Connectivity Reveals Generalization Strategies.” In: The Eleventh

International Conference on Learning Representations. url: https://openreview.

net/forum?id=hY6M0JHl3uL (cit. on pp. 117, 130).

Kaddour, Jean, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J. Kus-

ner (2023). No Train No Gain: Revisiting Efficient Training Algorithms For

Transformer-based Language Models. arXiv: 2307.06440 [cs.LG] (cit. on p. 24).

Kaplan, Jared, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess,

Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei (2020).

https://doi.org/10.1017/9781316423530
https://doi.org/10.1017/9781316423530
https://arxiv.org/abs/2210.03050
https://arxiv.org/abs/2210.03050
https://doi.org/10.18653/v1/D17-1215
https://doi.org/10.18653/v1/D17-1215
https://aclanthology.org/D17-1215
https://doi.org/10.1162/tacl_a_00324
https://www.aclweb.org/anthology/2020.tacl-1.28
https://openreview.net/forum?id=hY6M0JHl3uL
https://openreview.net/forum?id=hY6M0JHl3uL
https://arxiv.org/abs/2307.06440

Bibliography 163

“Scaling Laws for Neural Language Models.” In: CoRR abs/2001.08361. arXiv:

2001.08361. url: https://arxiv.org/abs/2001.08361 (cit. on pp. 24, 130).

Kassner, Nora and Hinrich Schütze (July 2020). “Negated and Misprimed Probes

for Pretrained Language Models: Birds Can Talk, But Cannot Fly.” In: Pro-

ceedings of the 58th Annual Meeting of the Association for Computational

Linguistics. Online: Association for Computational Linguistics, pp. 7811–7818.

url: https://www.aclweb.org/anthology/2020.acl-main.698 (cit. on

p. 38).

Khot, Tushar, Ashish Sabharwal, and Peter Clark (2018). “SciTaiL: A Textual

Entailment Dataset from Science Question Answering.” In: url: https://www.

aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17368 (cit. on p. 200).

Kim, Najoung et al. (June 2019a). “Probing What Different NLP Tasks Teach Ma-

chines about Function Word Comprehension.” In: Proceedings of the Eighth Joint

Conference on Lexical and Computational Semantics (*SEM 2019). Minneapo-

lis, Minnesota: Association for Computational Linguistics, pp. 235–249. doi:

10.18653/v1/S19-1026. url: https://www.aclweb.org/anthology/S19-

1026 (cit. on pp. 35, 38).

– (June 2019b). “Probing What Different NLP Tasks Teach Machines about

Function Word Comprehension.” In: Proceedings of the Eighth Joint Conference

on Lexical and Computational Semantics (*SEM 2019). Minneapolis, Minnesota:

Association for Computational Linguistics, pp. 235–249. doi: 10.18653/v1/S19-

1026. url: https://aclanthology.org/S19-1026 (cit. on p. 59).

Kingma, Diederik and Jimmy Ba (2015). “Adam: A Method for Stochastic Opti-

mization.” In: International Conference on Learning Representations (ICLR).

San Diega, CA, USA (cit. on p. 23).

Kingma, Diederik P. and Jimmy Ba (2015). “Adam: A Method for Stochastic

Optimization.” In: International Conference on Learning Representations. url:

http://arxiv.org/abs/1412.6980 (cit. on p. 90).

https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2001.08361
https://www.aclweb.org/anthology/2020.acl-main.698
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17368
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17368
https://doi.org/10.18653/v1/S19-1026
https://www.aclweb.org/anthology/S19-1026
https://www.aclweb.org/anthology/S19-1026
https://doi.org/10.18653/v1/S19-1026
https://doi.org/10.18653/v1/S19-1026
https://aclanthology.org/S19-1026
http://arxiv.org/abs/1412.6980

164 Bibliography

Kirkpatrick, James et al. (2017). “Overcoming catastrophic forgetting in neural

networks.” In: Proceedings of the National Academy of Sciences 114.13, pp. 3521–

3526. issn: 1091-6490. doi: 10.1073/pnas.1611835114. url: http://dx.doi.

org/10.1073/pnas.1611835114 (cit. on p. 84).

Krasnowska-Kieraś, Katarzyna and Alina Wróblewska (July 2019). “Empirical

Linguistic Study of Sentence Embeddings.” In: Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics. Florence, Italy: Asso-

ciation for Computational Linguistics, pp. 5729–5739. doi: 10.18653/v1/P19-

1573. url: https://aclanthology.org/P19-1573 (cit. on pp. 60, 67).

Lan, Zhenzhong, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut (2020). “ALBERT: A Lite BERT for Self-supervised

Learning of Language Representations.” In: International Conference on Learn-

ing Representations. url: https://openreview.net/forum?id=H1eA7AEtvS

(cit. on pp. 27, 37, 59, 65, 79, 83, 84).

Le Scao, Teven and Alexander Rush (June 2021). “How many data points is a

prompt worth?” In: Proceedings of the 2021 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies. Online: Association for Computational Linguistics, pp. 2627–2636.

doi: 10.18653/v1/2021.naacl-main.208. url: https://aclanthology.

org/2021.naacl-main.208 (cit. on p. 29).

Lee, Cheolhyoung, Kyunghyun Cho, and Wanmo Kang (2020). “Mixout: Effective

Regularization to Finetune Large-scale Pretrained Language Models.” In: Inter-

national Conference on Learning Representations. url: https://openreview.

net/forum?id=HkgaETNtDB (cit. on pp. 9, 77, 79–86, 95, 96, 134, 195).

Levene, Howard (1960). “Robust tests for equality of variances.” In: Contributions

to probability and statistics: Essays in honor of Harold Hotelling, pp. 278–292

(cit. on p. 96).

https://doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1073/pnas.1611835114
https://doi.org/10.18653/v1/P19-1573
https://doi.org/10.18653/v1/P19-1573
https://aclanthology.org/P19-1573
https://openreview.net/forum?id=H1eA7AEtvS
https://doi.org/10.18653/v1/2021.naacl-main.208
https://aclanthology.org/2021.naacl-main.208
https://aclanthology.org/2021.naacl-main.208
https://openreview.net/forum?id=HkgaETNtDB
https://openreview.net/forum?id=HkgaETNtDB

Bibliography 165

Li, Hao, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein (2018).

“Visualizing the Loss Landscape of Neural Nets.” In: Advances in Neural Infor-

mation Processing Systems 31. Ed. by S. Bengio, H. Wallach, H. Larochelle, K.

Grauman, N. Cesa-Bianchi, and R. Garnett. Curran Associates, Inc., pp. 6389–

6399. url: http://papers.nips.cc/paper/7875-visualizing-the-loss-

landscape-of-neural-nets.pdf (cit. on p. 92).

Lin, Yongjie, Yi Chern Tan, and Robert Frank (Aug. 2019). “Open Sesame:

Getting inside BERT’s Linguistic Knowledge.” In: Proceedings of the 2019 ACL

Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP.

Florence, Italy: Association for Computational Linguistics, pp. 241–253. doi:

10.18653/v1/W19-4825. url: https://aclanthology.org/W19-4825 (cit. on

p. 60).

Liu, Haokun, Derek Tam, Muqeeth Mohammed, Jay Mohta, Tenghao Huang,

Mohit Bansal, and Colin Raffel (2022). “Few-Shot Parameter-Efficient Fine-

Tuning is Better and Cheaper than In-Context Learning.” In: Advances in

Neural Information Processing Systems. Ed. by Alice H. Oh, Alekh Agarwal,

Danielle Belgrave, and Kyunghyun Cho. url: https://openreview.net/

forum?id=rBCvMG-JsPd (cit. on pp. 120, 129).

Liu, Liyuan, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng

Gao, and Jiawei Han (2020). “On the Variance of the Adaptive Learning Rate

and Beyond.” In: International Conference on Learning Representations. url:

https://openreview.net/forum?id=rkgz2aEKDr (cit. on p. 81).

Liu, Nelson F., Matt Gardner, Yonatan Belinkov, Matthew E. Peters, and Noah A.

Smith (June 2019). “Linguistic Knowledge and Transferability of Contextual

Representations.” In: Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:

Association for Computational Linguistics, pp. 1073–1094. doi: 10.18653/v1/

http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
http://papers.nips.cc/paper/7875-visualizing-the-loss-landscape-of-neural-nets.pdf
https://doi.org/10.18653/v1/W19-4825
https://aclanthology.org/W19-4825
https://openreview.net/forum?id=rBCvMG-JsPd
https://openreview.net/forum?id=rBCvMG-JsPd
https://openreview.net/forum?id=rkgz2aEKDr
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112

166 Bibliography

N19-1112. url: https://www.aclweb.org/anthology/N19-1112 (cit. on

pp. 4, 38, 60, 61, 66, 68).

Liu, Yinhan, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov (2019a).

“RoBERTa: A Robustly Optimized BERT Pretraining Approach.” In: CoRR

abs/1907.11692. arXiv: 1907.11692. url: http://arxiv.org/abs/1907.

11692 (cit. on pp. 1, 27, 102).

– (2019b). “Roberta: A robustly optimized bert pretraining approach.” In: arXiv

preprint arXiv:1907.11692 (cit. on pp. 26, 37, 59, 65, 79, 83, 84).

Logan IV, Robert, Ivana Balazevic, Eric Wallace, Fabio Petroni, Sameer Singh,

and Sebastian Riedel (May 2022). “Cutting Down on Prompts and Parameters:

Simple Few-Shot Learning with Language Models.” In: Findings of the Associa-

tion for Computational Linguistics: ACL 2022. Dublin, Ireland: Association for

Computational Linguistics, pp. 2824–2835. doi: 10.18653/v1/2022.findings-

acl.222. url: https://aclanthology.org/2022.findings-acl.222 (cit. on

pp. 28, 104, 106).

Loshchilov, Ilya and Frank Hutter (2019). “Decoupled Weight Decay Regulariza-

tion.” In: International Conference on Learning Representations. url: https:

//openreview.net/forum?id=Bkg6RiCqY7 (cit. on pp. 24, 83).

Lu, Yao, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp

(May 2022). “Fantastically Ordered Prompts and Where to Find Them: Over-

coming Few-Shot Prompt Order Sensitivity.” In: Proceedings of the 60th Annual

Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers). Dublin, Ireland: Association for Computational Linguistics, pp. 8086–

8098. doi: 10.18653/v1/2022.acl-long.556. url: https://aclanthology.

org/2022.acl-long.556 (cit. on pp. 4, 5, 101, 106).

Martins, Pedro Henrique, Zita Marinho, and Andre Martins (May 2022). “∞-

former: Infinite Memory Transformer.” In: Proceedings of the 60th Annual

https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://www.aclweb.org/anthology/N19-1112
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2022.findings-acl.222
https://doi.org/10.18653/v1/2022.findings-acl.222
https://aclanthology.org/2022.findings-acl.222
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2022.acl-long.556
https://aclanthology.org/2022.acl-long.556
https://aclanthology.org/2022.acl-long.556

Bibliography 167

Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers). Dublin, Ireland: Association for Computational Linguistics, pp. 5468–

5485. doi: 10.18653/v1/2022.acl-long.375. url: https://aclanthology.

org/2022.acl-long.375 (cit. on p. 119).

Marvin, Rebecca and Tal Linzen (2018). “Targeted Syntactic Evaluation of Lan-

guage Models.” In: Proceedings of the 2018 Conference on Empirical Methods

in Natural Language Processing. Brussels, Belgium: Association for Computa-

tional Linguistics, pp. 1192–1202. doi: 10.18653/v1/D18-1151. url: https:

//www.aclweb.org/anthology/D18-1151 (cit. on p. 38).

McCloskey, Michael and Neal J Cohen (1989). “Catastrophic interference in

connectionist networks: The sequential learning problem.” In: Psychology of

learning and motivation. Vol. 24. Elsevier, pp. 109–165 (cit. on p. 84).

McCoy, R. Thomas, Junghyun Min, and Tal Linzen (Nov. 2020). “BERTs of a

feather do not generalize together: Large variability in generalization across

models with similar test set performance.” In: Proceedings of the Third Black-

boxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP.

Online: Association for Computational Linguistics, pp. 217–227. doi: 10.18653/

v1/2020.blackboxnlp-1.21. url: https://www.aclweb.org/anthology/

2020.blackboxnlp-1.21 (cit. on p. 196).

McCoy, Tom, Ellie Pavlick, and Tal Linzen (July 2019). “Right for the Wrong

Reasons: Diagnosing Syntactic Heuristics in Natural Language Inference.”

In: Proceedings of the 57th Annual Meeting of the Association for Compu-

tational Linguistics. Florence, Italy: Association for Computational Linguistics,

pp. 3428–3448. doi: 10.18653/v1/P19-1334. url: https://www.aclweb.org/

anthology/P19-1334 (cit. on pp. 4, 79, 105, 106).

Merchant, Amil, Elahe Rahimtoroghi, Ellie Pavlick, and Ian Tenney (2020).

“What Happens To BERT Embeddings During Fine-tuning?” In: arXiv preprint

arXiv:2004.14448 (cit. on pp. 61, 62).

https://doi.org/10.18653/v1/2022.acl-long.375
https://aclanthology.org/2022.acl-long.375
https://aclanthology.org/2022.acl-long.375
https://doi.org/10.18653/v1/D18-1151
https://www.aclweb.org/anthology/D18-1151
https://www.aclweb.org/anthology/D18-1151
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
https://doi.org/10.18653/v1/2020.blackboxnlp-1.21
https://www.aclweb.org/anthology/2020.blackboxnlp-1.21
https://www.aclweb.org/anthology/2020.blackboxnlp-1.21
https://doi.org/10.18653/v1/P19-1334
https://www.aclweb.org/anthology/P19-1334
https://www.aclweb.org/anthology/P19-1334

168 Bibliography

Merity, Stephen, Caiming Xiong, James Bradbury, and Richard Socher (2016).

“Pointer sentinel mixture models.” In: arXiv preprint arXiv:1609.07843 (cit. on

p. 85).

– (2017). “Pointer Sentinel Mixture Models.” In: ArXiv abs/1609.07843 (cit. on

p. 74).

Mikolov, Tomas, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and

Armand Joulin (2018). “Advances in Pre-Training Distributed Word Represen-

tations.” In: Proceedings of the International Conference on Language Resources

and Evaluation (LREC 2018) (cit. on p. 41).

Min, Sewon, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh

Hajishirzi, and Luke Zettlemoyer (Dec. 2022). “Rethinking the Role of Demon-

strations: What Makes In-Context Learning Work?” In: Proceedings of the 2022

Conference on Empirical Methods in Natural Language Processing. Abu Dhabi,

United Arab Emirates: Association for Computational Linguistics, pp. 11048–

11064. url: https://aclanthology.org/2022.emnlp-main.759 (cit. on

pp. 5, 101, 119).

Niven, Timothy and Hung-Yu Kao (July 2019). “Probing Neural Network Com-

prehension of Natural Language Arguments.” In: Proceedings of the 57th Annual

Meeting of the Association for Computational Linguistics. Florence, Italy: Asso-

ciation for Computational Linguistics, pp. 4658–4664. doi: 10.18653/v1/P19-

1459. url: https://www.aclweb.org/anthology/P19-1459 (cit. on pp. 4,

79).

OpenAI (2023). “GPT-4 Technical Report.” In: arXiv preprint arXiv:2303.08774.

url: https://arxiv.org/abs/2303.08774 (cit. on pp. 2, 3, 101).

Ouyang, Long et al. (2022). Training language models to follow instructions with

human feedback. arXiv: 2203.02155 [cs.CL] (cit. on p. 131).

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python.” In: Journal

of Machine Learning Research 12, pp. 2825–2830 (cit. on p. 41).

https://aclanthology.org/2022.emnlp-main.759
https://doi.org/10.18653/v1/P19-1459
https://doi.org/10.18653/v1/P19-1459
https://www.aclweb.org/anthology/P19-1459
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155

Bibliography 169

Pennington, Jeffrey, Richard Socher, and Christopher Manning (Oct. 2014).

“GloVe: Global Vectors for Word Representation.” In: Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing (EMNLP).

Doha, Qatar: Association for Computational Linguistics, pp. 1532–1543. doi:

10.3115/v1/D14-1162. url: https://www.aclweb.org/anthology/D14-

1162 (cit. on p. 41).

Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer (June 2018). “Deep Contextualized

Word Representations.” In: Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers). New Orleans, Louisiana:

Association for Computational Linguistics, pp. 2227–2237. doi: 10.18653/v1/

N18-1202. url: https://aclanthology.org/N18-1202 (cit. on pp. 24, 60,

101).

Petroni, Fabio, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin,

Yuxiang Wu, and Alexander Miller (Nov. 2019). “Language Models as Knowledge

Bases?” In: Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural

Language Processing (EMNLP-IJCNLP). Hong Kong, China: Association for

Computational Linguistics, pp. 2463–2473. doi: 10.18653/v1/D19-1250. url:

https://www.aclweb.org/anthology/D19-1250 (cit. on pp. 4, 38).

Pfeiffer, Jonas, Naman Goyal, Xi Lin, Xian Li, James Cross, Sebastian Riedel, and

Mikel Artetxe (July 2022). “Lifting the Curse of Multilinguality by Pre-training

Modular Transformers.” In: Proceedings of the 2022 Conference of the North

American Chapter of the Association for Computational Linguistics: Human

Language Technologies. Seattle, United States: Association for Computational

Linguistics, pp. 3479–3495. doi: 10.18653/v1/2022.naacl-main.255. url:

https://aclanthology.org/2022.naacl-main.255 (cit. on p. 119).

https://doi.org/10.3115/v1/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://aclanthology.org/N18-1202
https://doi.org/10.18653/v1/D19-1250
https://www.aclweb.org/anthology/D19-1250
https://doi.org/10.18653/v1/2022.naacl-main.255
https://aclanthology.org/2022.naacl-main.255

170 Bibliography

Phang, Jason, Thibault Févry, and Samuel R Bowman (2018). “Sentence encoders

on stilts: Supplementary training on intermediate labeled-data tasks.” In: arXiv

preprint arXiv:1811.01088 (cit. on pp. 61, 79, 81–84, 86, 87, 195).

Press, Ofir, Noah Smith, and Mike Lewis (2022a). “Train Short, Test Long: Atten-

tion with Linear Biases Enables Input Length Extrapolation.” In: International

Conference on Learning Representations. url: https://openreview.net/

forum?id=R8sQPpGCv0 (cit. on p. 119).

Press, Ofir, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A Smith, and

Mike Lewis (2022b). “Measuring and Narrowing the Compositionality Gap in

Language Models.” In: arXiv preprint arXiv:2210.03350 (cit. on p. 101).

Pruksachatkun, Yada, Jason Phang, Haokun Liu, Phu Mon Htut, Xiaoyi Zhang,

Richard Yuanzhe Pang, Clara Vania, Katharina Kann, and Samuel R. Bowman

(July 2020a). “Intermediate-Task Transfer Learning with Pretrained Language

Models: When and Why Does It Work?” In: Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics. Online: Association

for Computational Linguistics, pp. 5231–5247. url: https://www.aclweb.

org/anthology/2020.acl-main.467 (cit. on p. 8).

– (July 2020b). “Intermediate-Task Transfer Learning with Pretrained Language

Models: When and Why Does It Work?” In: Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics. Online: Association

for Computational Linguistics, pp. 5231–5247. doi: 10.18653/v1/2020.acl-

main.467. url: https://www.aclweb.org/anthology/2020.acl-main.467

(cit. on pp. 61, 62, 86).

Quirk, Randolph (1957). “Relative Clauses in Educated Spoken English.” In:

English Studies 38, pp. 97–109 (cit. on p. 36).

Radford, Alec and Karthik Narasimhan (2018). “Improving Language Understand-

ing by Generative Pre-Training.” In: (cit. on p. 25).

https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://www.aclweb.org/anthology/2020.acl-main.467
https://www.aclweb.org/anthology/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://www.aclweb.org/anthology/2020.acl-main.467

Bibliography 171

Radford, Alec, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya

Sutskever (2019). “Language Models are Unsupervised Multitask Learners.” In:

OpenAI Blog 1.8, p. 9 (cit. on pp. 26, 60).

Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang (Nov.

2016). “SQuAD: 100,000+ Questions for Machine Comprehension of Text.”

In: Proceedings of the 2016 Conference on Empirical Methods in Natural Lan-

guage Processing. Austin, Texas: Association for Computational Linguistics,

pp. 2383–2392. doi: 10.18653/v1/D16-1264. url: https://www.aclweb.org/

anthology/D16-1264 (cit. on pp. 63, 64, 82).

Rasley, Jeff, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He (2020).

“DeepSpeed: System Optimizations Enable Training Deep Learning Models

with Over 100 Billion Parameters.” In: Proceedings of the 26th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining. KDD ’20.

Virtual Event, CA, USA: Association for Computing Machinery, pp. 3505–

3506. isbn: 9781450379984. doi: 10.1145/3394486.3406703. url: https:

//doi.org/10.1145/3394486.3406703 (cit. on p. 208).

Al-Rfou, Rami, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones

(2019). “Character-Level Language Modeling with Deeper Self-Attention.” In:

Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence

and Thirty-First Innovative Applications of Artificial Intelligence Conference

and Ninth AAAI Symposium on Educational Advances in Artificial Intelligence.

AAAI’19/IAAI’19/EAAI’19. Honolulu, Hawaii, USA: AAAI Press. isbn: 978-1-

57735-809-1. doi: 10.1609/aaai.v33i01.33013159. url: https://doi.org/

10.1609/aaai.v33i01.33013159 (cit. on p. 25).

Rogers, Anna, Olga Kovaleva, and Anna Rumshisky (2020). “A Primer in BERTol-

ogy: What We Know About How BERT Works.” In: Transactions of the Associa-

tion for Computational Linguistics 8, pp. 842–866. doi: 10.1162/tacl_a_00349.

url: https://aclanthology.org/2020.tacl-1.54 (cit. on pp. 35, 38, 54,

59).

https://doi.org/10.18653/v1/D16-1264
https://www.aclweb.org/anthology/D16-1264
https://www.aclweb.org/anthology/D16-1264
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1609/aaai.v33i01.33013159
https://doi.org/10.1609/aaai.v33i01.33013159
https://doi.org/10.1609/aaai.v33i01.33013159
https://doi.org/10.1162/tacl_a_00349
https://aclanthology.org/2020.tacl-1.54

172 Bibliography

Rohdenburg, Günter (Aug. 2014). “Relative Clauses of Reason in British and

American English.” In: American Speech 89.3, pp. 288–311. issn: 0003-1283.

doi: 10.1215/00031283-2848978. eprint: https://read.dukeupress.edu/

american-speech/article-pdf/89/3/288/395584/ASp89.3E.2Rohdenburg.

pdf. url: https://doi.org/10.1215/00031283-2848978 (cit. on p. 35).

Roller, Stephen et al. (Apr. 2021). “Recipes for Building an Open-Domain Chat-

bot.” In: Proceedings of the 16th Conference of the European Chapter of the

Association for Computational Linguistics: Main Volume. Online: Association

for Computational Linguistics, pp. 300–325. doi: 10.18653/v1/2021.eacl-

main.24. url: https://aclanthology.org/2021.eacl-main.24 (cit. on

p. 26).

Rubner, Y., C. Tomasi, and L. J. Guibas (1998). “A metric for distributions

with applications to image databases.” In: Sixth International Conference on

Computer Vision (IEEE Cat. No.98CH36271), pp. 59–66 (cit. on p. 72).

Sanh, Victor et al. (2022). “Multitask Prompted Training Enables Zero-Shot Task

Generalization.” In: International Conference on Learning Representations. url:

https://openreview.net/forum?id=9Vrb9D0WI4 (cit. on pp. 120, 131).

Schick, Timo, Helmut Schmid, and Hinrich Schütze (Dec. 2020). “Automatically

Identifying Words That Can Serve as Labels for Few-Shot Text Classification.”

In: Proceedings of the 28th International Conference on Computational Linguis-

tics. Barcelona, Spain (Online): International Committee on Computational

Linguistics, pp. 5569–5578. doi: 10.18653/v1/2020.coling-main.488. url:

https://aclanthology.org/2020.coling-main.488 (cit. on pp. 28, 104).

Schick, Timo and Hinrich Schütze (Apr. 2021). “Exploiting Cloze-Questions for

Few-Shot Text Classification and Natural Language Inference.” In: Proceed-

ings of the 16th Conference of the European Chapter of the Association for

Computational Linguistics: Main Volume. Online: Association for Computa-

tional Linguistics, pp. 255–269. doi: 10.18653/v1/2021.eacl-main.20. url:

https://aclanthology.org/2021.eacl-main.20 (cit. on pp. 28, 103, 119).

https://doi.org/10.1215/00031283-2848978
https://read.dukeupress.edu/american-speech/article-pdf/89/3/288/395584/ASp89.3E.2Rohdenburg.pdf
https://read.dukeupress.edu/american-speech/article-pdf/89/3/288/395584/ASp89.3E.2Rohdenburg.pdf
https://read.dukeupress.edu/american-speech/article-pdf/89/3/288/395584/ASp89.3E.2Rohdenburg.pdf
https://doi.org/10.1215/00031283-2848978
https://doi.org/10.18653/v1/2021.eacl-main.24
https://doi.org/10.18653/v1/2021.eacl-main.24
https://aclanthology.org/2021.eacl-main.24
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.18653/v1/2020.coling-main.488
https://aclanthology.org/2020.coling-main.488
https://doi.org/10.18653/v1/2021.eacl-main.20
https://aclanthology.org/2021.eacl-main.20

Bibliography 173

Schmidt, R. M., F. Schneider, and P. Hennig (July 2021). “Descending through a

Crowded Valley - Benchmarking Deep Learning Optimizers.” In: Proceedings

of 38th International Conference on Machine Learning (ICML). Vol. 139. Pro-

ceedings of Machine Learning Research. PMLR, pp. 9367–9376. url: https:

//proceedings.mlr.press/v139/schmidt21a.html (cit. on p. 23).

Sharma, Lakshay, L. Graesser, Nikita Nangia, and Utku Evci (2019). “Natural

Language Understanding with the Quora Question Pairs Dataset.” In: ArXiv

abs/1907.01041 (cit. on p. 106).

Shi, Xing, Inkit Padhi, and Kevin Knight (Nov. 2016). “Does String-Based Neural

MT Learn Source Syntax?” In: Proceedings of the 2016 Conference on Empir-

ical Methods in Natural Language Processing. Austin, Texas: Association for

Computational Linguistics, pp. 1526–1534. doi: 10.18653/v1/D16-1159. url:

https://aclanthology.org/D16-1159 (cit. on p. 60).

Shwartz-Ziv, Ravid, Micah Goldblum, Hossein Souri, Sanyam Kapoor, Chen Zhu,

Yann LeCun, and Andrew Gordon Wilson (2022). “Pre-Train Your Loss: Easy

Bayesian Transfer Learning with Informative Priors.” In: Advances in Neural

Information Processing Systems. Ed. by Alice H. Oh, Alekh Agarwal, Danielle

Belgrave, and Kyunghyun Cho. url: https://openreview.net/forum?id=

YCniF6_3Jb (cit. on p. 117).

Si, Chenglei, Zhe Gan, Zhengyuan Yang, Shuohang Wang, Jianfeng Wang, Jordan

Lee Boyd-Graber, and Lijuan Wang (2023). “Prompting GPT-3 To Be Reliable.”

In: The Eleventh International Conference on Learning Representations. url:

https://openreview.net/forum?id=98p5x51L5af (cit. on pp. 5, 10, 102, 104,

109, 120, 147, 210).

Socher, Richard, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D. Manning,

Andrew Ng, and Christopher Potts (Oct. 2013). “Recursive Deep Models for

Semantic Compositionality Over a Sentiment Treebank.” In: Proceedings of the

2013 Conference on Empirical Methods in Natural Language Processing. Seattle,

https://proceedings.mlr.press/v139/schmidt21a.html
https://proceedings.mlr.press/v139/schmidt21a.html
https://doi.org/10.18653/v1/D16-1159
https://aclanthology.org/D16-1159
https://openreview.net/forum?id=YCniF6_3Jb
https://openreview.net/forum?id=YCniF6_3Jb
https://openreview.net/forum?id=98p5x51L5af

174 Bibliography

Washington, USA: Association for Computational Linguistics, pp. 1631–1642.

url: https://aclanthology.org/D13-1170 (cit. on p. 63).

Su, Jianlin, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu

(2022). RoFormer: Enhanced Transformer with Rotary Position Embedding.

arXiv: 2104.09864 [cs.CL] (cit. on p. 26).

Talmor, Alon, Yanai Elazar, Yoav Goldberg, and Jonathan Berant (2019). “oLMpics–

On what Language Model Pre-training Captures.” In: arXiv preprint arXiv:1912.13283

(cit. on p. 61).

Tam, Derek, Rakesh R. Menon, Mohit Bansal, Shashank Srivastava, and Colin

Raffel (Nov. 2021). “Improving and Simplifying Pattern Exploiting Training.”

In: Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-

guage Processing. Online and Punta Cana, Dominican Republic: Association

for Computational Linguistics, pp. 4980–4991. doi: 10.18653/v1/2021.emnlp-

main.407. url: https://aclanthology.org/2021.emnlp-main.407 (cit. on

pp. 28, 104).

Tenney, Ian, Dipanjan Das, and Ellie Pavlick (July 2019a). “BERT Rediscovers

the Classical NLP Pipeline.” In: Proceedings of the 57th Annual Meeting of

the Association for Computational Linguistics. Florence, Italy: Association for

Computational Linguistics, pp. 4593–4601. doi: 10.18653/v1/P19-1452. url:

https://aclanthology.org/P19-1452 (cit. on pp. 4, 59, 68).

Tenney, Ian et al. (2019b). “What do you learn from context? Probing for sentence

structure in contextualized word representations.” In: International Conference

on Learning Representations. url: https://openreview.net/forum?id=

SJzSgnRcKX (cit. on pp. 38, 60–62, 66, 68).

Touvron, Hugo et al. (2023a). Llama 2: Open Foundation and Fine-Tuned Chat

Models. arXiv: 2307.09288 [cs.CL] (cit. on p. 128).

Touvron, Hugo et al. (2023b). LLaMA: Open and Efficient Foundation Language

Models. arXiv: 2302.13971 [cs.CL] (cit. on p. 128).

https://aclanthology.org/D13-1170
https://arxiv.org/abs/2104.09864
https://doi.org/10.18653/v1/2021.emnlp-main.407
https://doi.org/10.18653/v1/2021.emnlp-main.407
https://aclanthology.org/2021.emnlp-main.407
https://doi.org/10.18653/v1/P19-1452
https://aclanthology.org/P19-1452
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2302.13971

Bibliography 175

Trinh, Trieu H. and Quoc V. Le (2019). A Simple Method for Commonsense

Reasoning. arXiv: 1806.02847 [cs.AI] (cit. on p. 26).

Utama, Prasetya, Nafise Sadat Moosavi, Victor Sanh, and Iryna Gurevych (Nov.

2021). “Avoiding Inference Heuristics in Few-shot Prompt-based Finetuning.”

In: Proceedings of the 2021 Conference on Empirical Methods in Natural Lan-

guage Processing. Online and Punta Cana, Dominican Republic: Association

for Computational Linguistics, pp. 9063–9074. doi: 10.18653/v1/2021.emnlp-

main.713. url: https://aclanthology.org/2021.emnlp-main.713 (cit. on

pp. 105, 112, 121).

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin (2017). “Attention is All

you Need.” In: Advances in Neural Information Processing Systems 30. Ed. by

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

and R. Garnett. Curran Associates, Inc., pp. 5998–6008. url: http://papers.

nips.cc/paper/7181-attention-is-all-you-need.pdf (cit. on pp. 24, 25).

Wang, Alex, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian

Michael, Felix Hill, Omer Levy, and Samuel Bowman (2019a). “SuperGLUE: A

Stickier Benchmark for General-Purpose Language Understanding Systems.”

In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach,

H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett. Cur-

ran Associates, Inc., pp. 3266–3280. url: http://papers.nips.cc/paper/

8589-superglue-a-stickier-benchmark-for-general-purpose-language-

understanding-systems.pdf (cit. on p. 79).

– (2019b). “SuperGLUE: A Stickier Benchmark for General-Purpose Language

Understanding Systems.” In: Advances in Neural Information Processing Systems.

Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R.

Garnett. Vol. 32. Curran Associates, Inc. url: https://proceedings.neurips.

cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf (cit.

on p. 2).

https://arxiv.org/abs/1806.02847
https://doi.org/10.18653/v1/2021.emnlp-main.713
https://doi.org/10.18653/v1/2021.emnlp-main.713
https://aclanthology.org/2021.emnlp-main.713
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/8589-superglue-a-stickier-benchmark-for-general-purpose-language-understanding-systems.pdf
http://papers.nips.cc/paper/8589-superglue-a-stickier-benchmark-for-general-purpose-language-understanding-systems.pdf
http://papers.nips.cc/paper/8589-superglue-a-stickier-benchmark-for-general-purpose-language-understanding-systems.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/4496bf24afe7fab6f046bf4923da8de6-Paper.pdf

176 Bibliography

Wang, Alex, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel

Bowman (Nov. 2018). “GLUE: A Multi-Task Benchmark and Analysis Platform

for Natural Language Understanding.” In: Proceedings of the 2018 EMNLP

Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP.

Brussels, Belgium: Association for Computational Linguistics, pp. 353–355. doi:

10.18653/v1/W18-5446. url: https://www.aclweb.org/anthology/W18-

5446 (cit. on pp. 2, 59, 61, 63, 79, 81, 82).

Wang, Alex et al. (July 2019c). “Can You Tell Me How to Get Past Sesame

Street? Sentence-Level Pretraining Beyond Language Modeling.” In: Proceedings

of the 57th Annual Meeting of the Association for Computational Linguistics.

Florence, Italy: Association for Computational Linguistics, pp. 4465–4476. doi:

10.18653/v1/P19-1439. url: https://aclanthology.org/P19-1439 (cit. on

p. 59).

Wang, Ben and Aran Komatsuzaki (May 2021). GPT-J-6B: A 6 Billion Parameter

Autoregressive Language Model. https://github.com/kingoflolz/mesh-

transformer-jax (cit. on p. 26).

Wang, Yizhong et al. (Dec. 2022). “Super-NaturalInstructions: Generalization

via Declarative Instructions on 1600+ NLP Tasks.” In: Proceedings of the 2022

Conference on Empirical Methods in Natural Language Processing. Abu Dhabi,

United Arab Emirates: Association for Computational Linguistics, pp. 5085–

5109. url: https://aclanthology.org/2022.emnlp-main.340 (cit. on

p. 131).

Warstadt, Alex and Samuel R. Bowman (2019). Linguistic Analysis of Pretrained

Sentence Encoders with Acceptability Judgments. arXiv: 1901.03438 [cs.CL]

(cit. on pp. 35, 39).

Warstadt, Alex, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-

Fu Wang, and Samuel R. Bowman (2020a). “BLiMP: The Benchmark of Lin-

guistic Minimal Pairs for English.” In: Transactions of the Association for

https://doi.org/10.18653/v1/W18-5446
https://www.aclweb.org/anthology/W18-5446
https://www.aclweb.org/anthology/W18-5446
https://doi.org/10.18653/v1/P19-1439
https://aclanthology.org/P19-1439
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://aclanthology.org/2022.emnlp-main.340
https://arxiv.org/abs/1901.03438

Bibliography 177

Computational Linguistics 8, pp. 377–392. doi: 10.1162/tacl_a_00321. url:

https://www.aclweb.org/anthology/2020.tacl-1.25 (cit. on p. 38).

Warstadt, Alex, Amanpreet Singh, and Samuel R Bowman (2018). “Neural Net-

work Acceptability Judgments.” In: arXiv preprint arXiv:1805.12471 (cit. on

pp. 63, 82).

Warstadt, Alex, Yian Zhang, Xiaocheng Li, Haokun Liu, and Samuel R. Bow-

man (Nov. 2020b). “Learning Which Features Matter: RoBERTa Acquires

a Preference for Linguistic Generalizations (Eventually).” In: Proceedings of

the 2020 Conference on Empirical Methods in Natural Language Processing

(EMNLP). Online: Association for Computational Linguistics, pp. 217–235. doi:

10.18653/v1/2020.emnlp-main.16. url: https://aclanthology.org/2020.

emnlp-main.16 (cit. on pp. 4, 121).

Warstadt, Alex et al. (Nov. 2019). “Investigating BERT’s Knowledge of Language:

Five Analysis Methods with NPIs.” In: Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong

Kong, China: Association for Computational Linguistics, pp. 2877–2887. doi:

10.18653/v1/D19-1286. url: https://www.aclweb.org/anthology/D19-

1286 (cit. on p. 38).

Webson, Albert and Ellie Pavlick (July 2022). “Do Prompt-Based Models Really

Understand the Meaning of Their Prompts?” In: Proceedings of the 2022

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies. Seattle, United States: Association

for Computational Linguistics, pp. 2300–2344. doi: 10.18653/v1/2022.naacl-

main.167. url: https://aclanthology.org/2022.naacl-main.167 (cit. on

pp. 4, 29, 106, 107, 117).

Wei, Jason, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei

Xia, Ed H. Chi, Quoc V Le, and Denny Zhou (2022a). “Chain of Thought

Prompting Elicits Reasoning in Large Language Models.” In: Advances in

https://doi.org/10.1162/tacl_a_00321
https://www.aclweb.org/anthology/2020.tacl-1.25
https://doi.org/10.18653/v1/2020.emnlp-main.16
https://aclanthology.org/2020.emnlp-main.16
https://aclanthology.org/2020.emnlp-main.16
https://doi.org/10.18653/v1/D19-1286
https://www.aclweb.org/anthology/D19-1286
https://www.aclweb.org/anthology/D19-1286
https://doi.org/10.18653/v1/2022.naacl-main.167
https://doi.org/10.18653/v1/2022.naacl-main.167
https://aclanthology.org/2022.naacl-main.167

178 Bibliography

Neural Information Processing Systems. Ed. by Alice H. Oh, Alekh Agarwal,

Danielle Belgrave, and Kyunghyun Cho. url: https://openreview.net/

forum?id=_VjQlMeSB_J (cit. on pp. 5, 30, 101, 117, 119, 129).

Wei, Jason et al. (2022b). “Emergent Abilities of Large Language Models.” In:

Transactions on Machine Learning Research. Survey Certification. issn: 2835-

8856. url: https://openreview.net/forum?id=yzkSU5zdwD (cit. on pp. 3,

5).

Wilcox, Ethan, Peng Qian, Richard Futrell, Miguel Ballesteros, and Roger Levy

(June 2019). “Structural Supervision Improves Learning of Non-Local Grammati-

cal Dependencies.” In: Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Asso-

ciation for Computational Linguistics, pp. 3302–3312. doi: 10.18653/v1/N19-

1334. url: https://www.aclweb.org/anthology/N19-1334 (cit. on p. 38).

Williams, Adina, Nikita Nangia, and Samuel Bowman (June 2018). “A Broad-

Coverage Challenge Corpus for Sentence Understanding through Inference.”

In: Proceedings of the 2018 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies,

Volume 1 (Long Papers). New Orleans, Louisiana: Association for Computational

Linguistics, pp. 1112–1122. doi: 10.18653/v1/N18-1101. url: https://www.

aclweb.org/anthology/N18-1101 (cit. on p. 105).

Wolf, Thomas et al. (Oct. 2020). “Transformers: State-of-the-Art Natural Language

Processing.” In: Proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing: System Demonstrations. Online: Association

for Computational Linguistics, pp. 38–45. doi: 10.18653/v1/2020.emnlp-

demos.6. url: https://aclanthology.org/2020.emnlp-demos.6 (cit. on

pp. 41, 208).

Wong, Eric, Leslie Rice, and J. Zico Kolter (2020). “Fast is better than free:

Revisiting adversarial training.” In: International Conference on Learning Rep-

https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=yzkSU5zdwD
https://doi.org/10.18653/v1/N19-1334
https://doi.org/10.18653/v1/N19-1334
https://www.aclweb.org/anthology/N19-1334
https://doi.org/10.18653/v1/N18-1101
https://www.aclweb.org/anthology/N18-1101
https://www.aclweb.org/anthology/N18-1101
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2020.emnlp-demos.6

Bibliography 179

resentations. url: https://openreview.net/forum?id=BJx040EFvH (cit. on

p. 91).

Xiong, Ruibin, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing,

Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tie-Yan Liu (2020). “On layer

normalization in the transformer architecture.” In: arXiv preprint arXiv:2002.04745

(cit. on p. 81).

You, Yang, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh

Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh

(2020). “Large Batch Optimization for Deep Learning: Training BERT in

76 minutes.” In: International Conference on Learning Representations. url:

https://openreview.net/forum?id=Syx4wnEtvH (cit. on p. 90).

Zhang, Susan et al. (2022). OPT: Open Pre-trained Transformer Language Models.

arXiv: 2205.01068 [cs.CL] (cit. on pp. 26, 101, 103, 105, 121, 147, 210).

Zhang, Tianyi, Felix Wu, Arzoo Katiyar, Kilian Q Weinberger, and Yoav Artzi

(2021). “Revisiting Few-sample BERT Fine-tuning.” In: International Conference

on Learning Representations. url: https://openreview.net/forum?id=

cO1IH43yUF (cit. on p. 92).

Zhang, Yuan, Jason Baldridge, and Luheng He (June 2019). “PAWS: Paraphrase

Adversaries from Word Scrambling.” In: Proceedings of the 2019 Conference of

the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis,

Minnesota: Association for Computational Linguistics, pp. 1298–1308. doi:

10.18653/v1/N19-1131. url: https://www.aclweb.org/anthology/N19-

1131 (cit. on p. 106).

Zhao, Zihao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh (2021). “Cali-

brate Before Use: Improving Few-shot Performance of Language Models.” In:

Proceedings of the 38th International Conference on Machine Learning. Ed. by

Marina Meila and Tong Zhang. Vol. 139. Proceedings of Machine Learning

https://openreview.net/forum?id=BJx040EFvH
https://openreview.net/forum?id=Syx4wnEtvH
https://arxiv.org/abs/2205.01068
https://openreview.net/forum?id=cO1IH43yUF
https://openreview.net/forum?id=cO1IH43yUF
https://doi.org/10.18653/v1/N19-1131
https://www.aclweb.org/anthology/N19-1131
https://www.aclweb.org/anthology/N19-1131

180 Bibliography

Research. PMLR, pp. 12697–12706. url: https://proceedings.mlr.press/

v139/zhao21c.html (cit. on pp. 117, 123).

Zhu, Chen, Yu Cheng, Zhe Gan, Siqi Sun, Tom Goldstein, and Jingjing Liu (2020).

“FreeLB: Enhanced Adversarial Training for Natural Language Understanding.”

In: International Conference on Learning Representations. url: https://

openreview.net/forum?id=BygzbyHFvB (cit. on p. 86).

Zhu, Dawei, Xiaoyu Shen, Mosbach, Marius, Andreas Stephan, and Dietrich

Klakow (July 2023). “Weaker Than You Think: A Critical Look at Weakly Su-

pervised Learning.” In: Proceedings of the 61st Annual Meeting of the Association

for Computational Linguistics (Volume 1: Long Papers). Best paper award .

Toronto, Canada: Association for Computational Linguistics, pp. 14229–14253.

url: https://aclanthology.org/2023.acl-long.796 (cit. on p. 113).

Zhu, Yukun, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun,

Antonio Torralba, and Sanja Fidler (2015). Aligning Books and Movies: Towards

Story-like Visual Explanations by Watching Movies and Reading Books. arXiv:

1506.06724 [cs.CV] (cit. on p. 26).

https://proceedings.mlr.press/v139/zhao21c.html
https://proceedings.mlr.press/v139/zhao21c.html
https://openreview.net/forum?id=BygzbyHFvB
https://openreview.net/forum?id=BygzbyHFvB
https://aclanthology.org/2023.acl-long.796
https://arxiv.org/abs/1506.06724

A
Probing Pre-trained Models for

Linguistic Knowledge

Contents

A.1 Probing dataset . 181

A.2 Probing results . 183

A.2.1 ALBERT-base-v1 vs. ALBERT-xxlarge-v1 184

A.2.2 Qualitative analysis for predicted type of antecedent 185

A.1 Probing dataset

Figure A.1 shows how to identify sentences containing RCs using a dependency

parse tree, which were obtained using SpaCy. A sentence with an RC can be

identified if the antecedent has an outgoing edge with the tag relcl. The RC in

the sentence can be further extracted since the main verb in the RC would have

an incoming edge with the tag relcl, and the subtree where RC main verb is

the head constitutes the RC. This procedure enables us to extract sentences with

RCs that are grammatical from text.

However, probing classifiers for grammatical acceptability require both gram-

matical and ungrammatical sentences. Since grammaticality of RCs in English

181

182 Probing Pre-trained Models for Linguistic Knowledge

I find the book which you brought yesterday interesting.

detnsubj nsubj

dobj

advm

advcl
relcl

dobj

(a)

The author who wrote the book came to visit.

det

relcl

nsubj det

dobj

nsubj

aux

advcl

(b)

Figure A.1: Visualized dependency parse trees extracted by SpaCy: (a) object RC,

and (b) subject RC.

depends on restrictiveness, animacy of the head noun, and whether the relativizer

occupies the subject or the object position in the sentence, we populate three

meta-data variables for each grammatical sentence with respect to these aspects

of RCs: animate, restrictive, and subjrc. The variables animate and re-

strictive are populated using a set of hand-crafted rules for the usage of RCs

in American English (illustrated in Figure A.2), while the variable subjrc is

populated using the incoming edge to the relativizer in the parse tree (e.g. nsubj

for subject RC vs. dobj for object RC). We discard all sentences where at least

one meta-data variable cannot be populated with certainty.

Using the aforementioned annotation procedure, and given the values of

the three meta-data variables, each sentence can be manipulated to create an

ungrammatical sentence that forms a minimal pair with the original sentence.

The resulting paradigms from the three meta-data variables and the set of all

possible modifications that be applied to each paradigm are presented in Table

A.1. Each grammatical sentence in the dataset is manipulated using all possible

modifications of the paradigm to generate a “bag-of-sentences” associated with

each sentence (where the original grammatical sentence is a member of). To create

the final dataset, we sample one sentence from each bag and construct a balanced

dataset of 48,060 sentences with grammatical acceptability labels. Tables A.2 and

A.3 show summary statistics of the dataset.

A.2 Probing results 183

START

ANIMATE = 1

ANIMATE = 0

who
relativizer?

which
relativizer?

yes

yes

yes yes
ANIMATE = 1

no

no

no

who
antecedent?

discard sentence

no

that
relativizer?

yes
ANIMATE = 0

which
antecedent?

discard sentence

no

START

RESTRICTIVE = 0
comma

before RC?

that
relativizer?

yes

yes

no

no

RESTRICTIVE = 1

who
relativizer?

yes

no

RESTRICTIVE = 1

which
relativizer?

yes

no

RESTRICTIVE = 1

discard sentence

(a) (b)

Figure A.2: Annotation decision process for meta-data variables: (a) Animate, rel-

ativizer who and which are directly categorized as animate and non-

animate, respectively. The relativizer that can be either way; thus, we

categorize these sentences based on the antecedent. We compile two dis-

joints sets for antecedents that exclusively occur either with who or

which, and the decision is made based on the membership of the an-

tecedent. If the antecedent is not a member of either set, the sentence

is discarded. (b) Restrictive can be easily identified since non-restrictive

RCs in American English are always preceded by comma “,”.

A.2 Probing results

Figure A.3 shows layer-wise probing accuracies for all models introduced in §3.1.1.

CLS-pooling clearly leads to worse sentence representations performing on par

with the non-contextualized GloVe and fasttext mean-embeddings for most layers.

184 Probing Pre-trained Models for Linguistic Knowledge

Animate Restrictive Subject RC Modification Label Example

1 1 1

None 1 Katrina Haus was a woman who sought to attract stares, not turn them away.

Relativizer omission 0 *Katrina Haus was a woman sought to attract stares, not turn them away.

who → which 0 *Katrina Haus was a woman which sought to attract stares, not turn them away.

1 1 0

None 1 Two people who I loved very much have left me .

Relativizer omission 1 Two people I loved very much have left me .

who → which 0 *Two people which I loved very much have left me .

1 0 1

None 1 Buck , who was snoozing over in the corner , woke up and looked around.

Relativizer omission 0 *Buck , was snoozing over in the corner , woke up and looked around.

who →which 0 *Buck , which was snoozing over in the corner , woke up and looked around.

1 0 0

None 1 Sally turned with a welcoming grin , expecting to see Gus , whom she liked a lot.

Relativizer omission 0 *Sally turned with a welcoming grin , expecting to see Gus , she liked a lot

who →which 0 *Sally turned with a welcoming grin , expecting to see Gus , which she liked a lot

0 1 1

None 1 One is a rather, um, disconcerting bit of information which has reached my ears.

Relativizer omission 0 *One is a rather, um, disconcerting bit of information has reached my ears.

which → who 0 *One is a rather, um, disconcerting bit of information who has reached my ears.

which → that 1 One is a rather, um, disconcerting bit of information that has reached my ears.

0 1 0

None 1 Pulls out a course catalog, various forms, and a letter which she hands to Kevin.

Relativizer omission 0 *Pulls out a course catalog, various forms, and a letter she hands to Kevin.

which → who 0 *Pulls out a course catalog, various forms, and a letter who she hands to Kevin.

which → that 1 Pulls out a course catalog, various forms, and a letter that she hands to Kevin.

0 0 1

None 1 I never saw a penny in royalties, which was all right with me.

Relativizer omission 0 *I never saw a penny in royalties, was all right with me.

which → who 0 *I never saw a penny in royalties, who was all right with me.

0 0 0

None 1 Lyric clips her Walkman to her fanny pack, which she wears pouch forward.

Relativizer omission 0 *Lyric clips her Walkman to her fanny pack, she wears pouch forward.

which → who 0 *Lyric clips her Walkman to her fanny pack, who she wears pouch forward.

Table A.1: Examples of the generated paradigms and the possible modifications for

each paradigm. It is worth pointing out that not all sentence modifications

yield an unacceptable sentence. For example, the modification relativizer

omission keeps the sentence grammatical in restrictive object RCs.

A.2.1 ALBERT-base-v1 vs. ALBERT-xxlarge-v1

Figure A.4 shows layer-wise probing accuracies for ALBERT-base-v1 (ALBERT)

and ALBERT-xxlarge-v1. ALBERT-xxlarge-v1 contains 235M parameters and

hence roughly 10x as many as ALBERT-base-v1 and 2x as many as BERT and

RoBERTa. As the results in Figure A.4 show, the larger number of parameters

indeed results in a significantly higher probing accuracy, outperforming all other

models by a large margin. However, it should be noted that the larger number

A.2 Probing results 185

Total
Acceptable Animate Restrictive

0 1 0 1 0 1

Training 42720 21360 21360 11106 31614 25947 16773

Test 5340 2670 2670 1439 3901 3229 2111

Table A.2: Summary statistics of the dataset splits used in Chapter 3] The dataset

is balanced with respect to acceptability judgment (the probing label

Acceptable). Animate and restrictive are meta-data variables, they

are only used for creating the data and the modifications, not for probing.

No modif. Rel. omission who → which which → who which → that

Acceptability 0 1 0 1 0 1 0 1 0 1

Training – 20170 10512 116 8291 – 2557 – – 1074

Test – 2670 1299 19 1025 – 346 – – 125

Table A.3: Summary statistics of the dataset with respect to the modifications. Note

that modifications are not balanced.

of parameters is the results of a larger dimensionality of ALBERT-xxlarge-v1’s

embeddings space, which is 5x larger that that of ALBERT-base-v1, BERT, and

RoBERTa (4096 vs. 768). This makes the obtained probing results not directly

comparable.

A.2.2 Qualitative analysis for predicted type of antecedent

Table A.5 shows percentage for predicted types of antecedents: (a) identical

to target, (b) synonym, (c) hypernym, general noun, determiner, pronoun, (d)

hyponym (i.e. semantically lower in hierarchy and thus more specific), or (e) not

directly related (i.e. no direct hierarchical relationship) or completely unrelated.

186 Probing Pre-trained Models for Linguistic Knowledge

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

A
cc

ur
ac

y

ALBERT

BERT

RoBERTa

glove

fasttext

rule based

(a) CLS-pooling

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

A
cc

ur
ac

y

ALBERT

BERT

RoBERTa

glove

fasttext

rule based

(b) mean-pooling

Figure A.3: Side-by-side comparison of layer-wise probing accuracy on the test set for

pre-trained transformer and baseline models using (a) CLS-pooling and

(b) mean-pooling.

Results show ALBERT to perform worst as the majority falls into not directly

related/unrelated antecedents or hypernyms (more general words). RoBERTa is

quite good at predicting identical targets outperforming the other two models,

especially in object RCs with who. While the which case in object RCs is harder

for all models, RoBERTa still makes best predictions considering identical and

synonym prediction. All models perform less well on subject RCs, especially

for which and that (40% to > 50% of unrelated/not directly related targets).

Interestingly, for animate antecedents (who relativizer), the majority for all models

falls into hypernyms, i.e. more general variants. This is especially the case for

BERT and ALBERT.

A.2 Probing results 187

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

A
cc

ur
ac

y

ALBERT

ALBERT-xxlarge

rule based

Figure A.4: Comparison of ALBERT-base-v1 and ALBERT-xxlarge-v1 using mean-

pooling. Table A.4 shows the results of the best ALBERT-xxlarge-v1

probing classifier compared to all other models grouped by modification.

Modification GloVE fasttext rule based BERT RoBERTa ALBERT ALBERT-xxlarge

no modification 67.3 69.2 100 83.7 (78.4) 85.3 (79.7) 83.6 (71.5) 95.0 (70.6)

relativizer omission 77.2 85.3 97.6 96.0 (98.3) 95.1 (98.2) 96.4 (94.8) 96.2 (93.5)

who → which 88.0 81.7 0.00 84.9 (88.4) 87.3 (89.6) 78.8 (68.3) 94.6 (69.0)

which → who 18.2 21.3 0.00 47.9 (1.73) 50.0 (0.02) 44.2 (18.7) 80.6 (21.3)

which → that 12.8 8.0 100 80.0 (52.0) 77.6 (44.8) 72.0 (22.4) 73.6 (33.6)

total 69.2 71.0 73.7 84.6 (79.7) 85.5 (80.1) 83.0 (72.1) 93.8 (71.9)

Table A.4: Test accuracy (in %) grouped by modification type (cf. Table A.3 for statis-

tics). For BERT, RoBERTa, ALBERT-base-v1 (ALBERT) and ALBERT-

xxlarge-v1 we select the best model according to the probing results shown

in Figure 3.2. Numbers in parenthesis show the accuracy of the non-

contextualized baseline (layer 0) for each model. ALBERT-xxlarge-v1

performs especially well on the which → who modification.

188 Probing Pre-trained Models for Linguistic Knowledge

type objRC subjRC

who which that who which that

B
E

R
T

identical 0.38 0.22 0.38 0.27 0.31 0.29

synonym 0.03 0.08 0.10 0.10 0.06 0.02

hypernym 0.07 0.19 0.14 0.40 0.17 0.16

hyponym 0.17 0.00 0.10 0.15 0.06 0.08

unrelated/not directly related 0.34 0.50 0.29 0.10 0.40 0.45

R
oB

E
R

T
a

identical 0.48 0.22 0.52 0.31 0.27 0.29

synonym 0.00 0.11 0.00 0.10 0.15 0.08

hypernym 0.21 0.19 0.05 0.31 0.08 0.08

hyponym 0.17 0.00 0.10 0.12 0.08 0.08

unrelated/not directly related 0.14 0.33 0.47 0.16 0.47 0.42

A
L

B
E

R
T

identical 0.28 0.14 0.29 0.20 0.15 0.14

synonym 0.03 0.06 0.00 0.02 0.08 0.00

hypernym 0.21 0.19 0.24 0.43 0.10 0.16

hyponym 0.17 0.03 0.14 0.08 0.08 0.10

unrelated/not directly related 0.31 0.58 0.33 0.27 0.58 0.59

Table A.5: Predicted types of antecedents by relativizer in percentage. The type

hypernym encompasses also general nouns, determiners, and pronouns.

B
On the Interplay Between Fine-tuning

and Probing

Contents

B.1 Hyperparameters and task statistics . 189

B.2 Additional results . 190

B.1 Hyperparameters and task statistics

Table B.1 shows hyperparamters used when fine-tuning BERT, RoBERTa, and

ALBERT on CoLA, SST-2, RTE, and SQuAD. On SST-2 training for a single

epoch was sufficient and we didn’t observe a significant improvement when training

for more epochs.

Table B.2 shows number of training and development samples for each of the

fine-tuning datasets considered in our experiments. Additionally, we report the

metric used to evaluate performance for each of the tasks.

189

190 On the Interplay Between Fine-tuning and Probing

Hyperparameter Value

Learning rate 2e−5

Warmup steps 10%

Learning rate schedule warmup-constant

Batch size 32

Epochs 3 (1 for SST-2)

Weight decay 0.01

Dropout 0.1

Attention dropout 0.1

Classifier dropout 0.1

Adam ε 1e−8

Adam β1 0.9

Adam β2 0.99

Max. gradient norm 1.0

Table B.1: Hyperparamters used when fine-tuning.

B.2 Additional results

Table B.3 shows the effect of fine-tuning on RTE and SQuAD on the layer-wise

accuracy for all three encoder models across the three probing tasks.

Figure B.1 and Figure B.2 show the change in probing accuracy (∆ in %)

across all probing tasks when fine-tuning on CoLA, SST-2, RTE, and SQuAD

using CLS-pooling and mean-pooling, respectively. The second y-axis in Figure

B.1 shows the layer-wise difference after fine-tuning compared to the mean-pooling

baseline. Note that only in very few cases this differences is larger than zero.

B.2 Additional results 191

Statistics
Task

CoLA SST-2 RTE SQuAD

training 8.6k 67k 2.5 87k

validation 1,043 874 278 10k

metric MCC Acc. Acc. EM/F1

Table B.2: Fine-tuning task statistics.

192 On the Interplay Between Fine-tuning and Probing

Probing Task

BERT-base-cased

CLS-pooling mean-pooling

RTE SQuAD RTE SQuAD

0 – 6 7 – 12 0 – 6 7 – 12 0 – 6 7 – 12 0 – 6 7 – 12

bigram-shift −0.21 −0.39 −0.05 −1.50 −0.07 −0.31 −0.54 −1.66

coordinate-inversion −0.43 −0.36 0.04 0.56 0.05 0.13 −0.03 0.10

odd-man-out 0.09 0.38 −0.21 −1.89 0.09 0.01 −0.28 −1.73

Probing Task

RoBERTa-base

CLS-pooling mean-pooling

RTE SQuAD RTE SQuAD

0 – 6 7 – 12 0 – 6 7 – 12 0 – 6 7 – 12 0 – 6 7 – 12

bigram-shift −0.51 0.44 −1.17 −4.33 −0.09 −1.32 −0.28 −3.09

coordinate-inversion −0.35 3.27 0.29 0.50 0.30 −0.48 0.20 0.05

odd-man-out −0.11 1.22 −0.76 −3.01 −0.04 −1.96 −0.21 −3.58

Probing Task

ALBERT-base-v1

CLS-pooling mean-pooling

RTE SQuAD RTE SQuAD

0 – 6 7 – 12 0 – 6 7 – 12 0 – 6 7 – 12 0 – 6 7 – 12

bigram-shift 0.29 −0.43 −0.38 −3.46 −0.13 −0.82 −0.60 −3.11

coordinate-inversion 0.46 −0.44 0.32 0.92 0.13 −0.38 0.04 −0.27

odd-man-out −0.03 0.17 −0.65 −2.91 −0.17 −0.85 −0.55 −3.18

Table B.3: Change in probing accuracy (∆ in %) of RTE and SQuAD fine-tuned

models compared to the pre-trained models when using CLS and mean-

pooling. We average the difference in probing accuracy over two different

layers groups: layers 0 to 6 and layers 7 to 12.

B.2 Additional results 193

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

A
cc

ur
ac

y
∆

%

CoLA fine-tuning, CLS pooling

albert-base-v1

bert-base-cased

roberta-base

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

A
cc

ur
ac

y
∆

%
(?

)
to

m
ea

n
p

oo
lin

g
ba

se
lin

e

(a) bigram-shift

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

A
cc

ur
ac

y
∆

%

CoLA fine-tuning, CLS pooling

albert-base-v1

bert-base-cased

roberta-base

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

A
cc

ur
ac

y
∆

%
(?

)
to

m
ea

n
p

oo
lin

g
ba

se
lin

e

(b) coordination-inversion

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-4.00

-2.00

0.00

2.00

4.00

6.00

8.00

10.00

12.00

A
cc

ur
ac

y
∆

%

CoLA fine-tuning, CLS pooling

albert-base-v1

bert-base-cased

roberta-base

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

A
cc

ur
ac

y
∆

%
(?

)
to

m
ea

n
p

oo
lin

g
ba

se
lin

e

(c) odd-man-out

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

A
cc

ur
ac

y
∆

%

SST-2 fine-tuning, CLS pooling

albert-base-v1

bert-base-cased

roberta-base

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

A
cc

ur
ac

y
∆

%
(?

)
to

m
ea

n
p

oo
lin

g
ba

se
lin

e

(d) bigram-shift

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

A
cc

ur
ac

y
∆

%

SST-2 fine-tuning, CLS pooling

albert-base-v1

bert-base-cased

roberta-base

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

A
cc

ur
ac

y
∆

%
(?

)
to

m
ea

n
p

oo
lin

g
ba

se
lin

e
(e) coordination-inversion

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

4.00

A
cc

ur
ac

y
∆

%

SST-2 fine-tuning, CLS pooling

albert-base-v1

bert-base-cased

roberta-base

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

A
cc

ur
ac

y
∆

%
(?

)
to

m
ea

n
p

oo
lin

g
ba

se
lin

e

(f) odd-man-out

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-4.00

-2.00

0.00

2.00

4.00

6.00

A
cc

ur
ac

y
∆

%

RTE fine-tuning, CLS pooling

albert-base-v1

bert-base-cased

roberta-base

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

A
cc

ur
ac

y
∆

%
(?

)
to

m
ea

n
p

oo
lin

g
ba

se
lin

e

(g) bigram-shift

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-4.00

-2.00

0.00

2.00

4.00

6.00

A
cc

ur
ac

y
∆

%

RTE fine-tuning, CLS pooling

albert-base-v1

bert-base-cased

roberta-base

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

A
cc

ur
ac

y
∆

%
(?

)
to

m
ea

n
p

oo
lin

g
ba

se
lin

e

(h) coordination-inversion

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-4.00

-2.00

0.00

2.00

4.00

6.00
A

cc
ur

ac
y

∆
%

RTE fine-tuning, CLS pooling

albert-base-v1

bert-base-cased

roberta-base

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

A
cc

ur
ac

y
∆

%
(?

)
to

m
ea

n
p

oo
lin

g
ba

se
lin

e

(i) odd-man-out

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-6.00

-4.00

-2.00

0.00

2.00

A
cc

ur
ac

y
∆

%

SQUAD v1.1 fine-tuning, CLS pooling

albert-base-v1

bert-base-cased

roberta-base

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

A
cc

ur
ac

y
∆

%
(?

)
to

m
ea

n
p

oo
lin

g
ba

se
lin

e

(j) bigram-shift

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-6.00

-4.00

-2.00

0.00

2.00

A
cc

ur
ac

y
∆

%

SQUAD v1.1 fine-tuning, CLS pooling

albert-base-v1

bert-base-cased

roberta-base

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

A
cc

ur
ac

y
∆

%
(?

)
to

m
ea

n
p

oo
lin

g
ba

se
lin

e

(k) coordination-inversion

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-6.00

-4.00

-2.00

0.00

2.00

A
cc

ur
ac

y
∆

%

SQUAD v1.1 fine-tuning, CLS pooling

albert-base-v1

bert-base-cased

roberta-base

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00
A

cc
ur

ac
y

∆
%

(?
)

to
m

ea
n

p
oo

lin
g

ba
se

lin
e

(l) odd-man-out

Figure B.1: Difference in probing accuracy (∆ in %) when using CLS-pooling after

fine-tuning on CoLA, SST-2, RTE, and SQuAD for all three encoder

models BERT, RoBERTa, and ALBERT across all probing taks considered

in Chapter 4. The second y-axis shows layer-wise improvement over the

mean-pooling baselines (stars) on the respective task.

194 On the Interplay Between Fine-tuning and Probing

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

A
cc

ur
ac

y
∆

%

CoLA fine-tuning, mean pooling

albert-base-v1

bert-base-cased

roberta-base

(a) bigram-shift

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

A
cc

ur
ac

y
∆

%

CoLA fine-tuning, mean pooling

albert-base-v1

bert-base-cased

roberta-base

(b) coordination-inversion

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

A
cc

ur
ac

y
∆

%

CoLA fine-tuning, mean pooling

albert-base-v1

bert-base-cased

roberta-base

(c) odd-man-out

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

A
cc

ur
ac

y
∆

%

SST-2 fine-tuning, mean pooling

albert-base-v1

bert-base-cased

roberta-base

(d) bigram-shift

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

A
cc

ur
ac

y
∆

%

SST-2 fine-tuning, mean pooling

albert-base-v1

bert-base-cased

roberta-base

(e) coordination-inversion

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

A
cc

ur
ac

y
∆

%

SST-2 fine-tuning, mean pooling

albert-base-v1

bert-base-cased

roberta-base

(f) odd-man-out

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-10.00

-8.00

-6.00

-4.00

-2.00

0.00

2.00

A
cc

ur
ac

y
∆

%

RTE fine-tuning, mean pooling

albert-base-v1

bert-base-cased

roberta-base

(g) bigram-shift

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-3.00

-2.00

-1.00

0.00

1.00

A
cc

ur
ac

y
∆

%

RTE fine-tuning, mean pooling

albert-base-v1

bert-base-cased

roberta-base

(h) coordination-inversion

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-3.00

-2.00

-1.00

0.00

1.00

A
cc

ur
ac

y
∆

%

RTE fine-tuning, mean pooling

albert-base-v1

bert-base-cased

roberta-base

(i) odd-man-out

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

A
cc

ur
ac

y
∆

%

SQUAD v1.1 fine-tuning, mean pooling

albert-base-v1

bert-base-cased

roberta-base

(j) bigram-shift

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

A
cc

ur
ac

y
∆

%

SQUAD v1.1 fine-tuning, mean pooling

albert-base-v1

bert-base-cased

roberta-base

(k) coordination-inversion

0 1 2 3 4 5 6 7 8 9 10 11 12
Layer Index

-4.00

-3.00

-2.00

-1.00

0.00

1.00

2.00

3.00

4.00

A
cc

ur
ac

y
∆

%

SQUAD v1.1 fine-tuning, mean pooling

albert-base-v1

bert-base-cased

roberta-base

(l) odd-man-out

Figure B.2: Difference in probing accuracy (∆ in %) when using mean-pooling after

fine-tuning on CoLA, SST-2, RTE, and SQuAD for all three encoder

models BERT, RoBERTa, and ALBERT across all probing tasks consid-

ered in Chapter 4.

C
Investigating Fine-tuning Stability

Contents

C.1 Alternative notions of stability . 195

C.2 Task statistics . 196

C.3 Hyperparameters . 197

C.4 Ablation studies . 197

C.5 Additional gradient norm visualizations . 199

C.6 Loss surfaces . 200

C.7 Training curves . 200

C.8 Additional fine-tuning results . 200

C.1 Alternative notions of stability

Here, we elaborate on other possible definitions of fine-tuning stability. The

definition that we use throughout Chapter 5 follows previous work (Phang et al.,

2018; Dodge et al., 2020a; Lee et al., 2020). For example, while Dodge et al., 2020a

do not directly define fine-tuning stability, they report and analyze the standard

deviation of the validation performance (e.g., see Section 4.1 of their paper). Along

the same lines, an earlier work of Phang et al., 2018, which studies the influence

of intermediate fine-tuning, discusses the variance of the validation performance

195

196 Investigating Fine-tuning Stability

(see Section 4: Results, paragraph Fine-Tuning Stability therein) and shows the

standard deviation over multiple random seeds in Figure 1.

For simplicity, let us assume that the performance metric is accuracy and

we have two classes. Let A be a randomized fine-tuning algorithm that produces

a classifier fA, and let us denote data points as (x, y) ∼ D where D is the data-

generating distribution. Our definition of fine-tuning stability can be formalized

as follows:

Sours(A) = VarA
[
Ex,y

[
1fA(x)=y

]]
= VarA [Accuracy(fA)] .

This definition directly measures the variance of the performance metric and aims

to answer the question: If we perform fine-tuning multiple times, how large will

the difference in performance be?

An alternative definition of fine-tuning stability that could be considered is

per-point stability where the expectation and variance are interchanged:

Sper-point(A) = Ex,y

[
VarA

[
1fA(x)=y

]]
.

This definition captures a different notion of stability. Namely, it captures stability

per data point by measuring how much the classifiers fA differ on the same point

x given label y. Studying the per-point fine-tuning stability can be useful to better

understand the properties of fine-tuned models and we refer to R. T. McCoy et al.

(2020) for a study in this direction.

C.2 Task statistics

Statistics for each of the datasets studied in Chapter 5 are shown in Table C.1.

All datasets are publicly available. The GLUE datasets can be downloaded here:

https://github.com/nyu-mll/jiant. SciTail is available at https://github.

com/allenai/scitail.

https://github.com/nyu-mll/jiant
https://github.com/allenai/scitail
https://github.com/allenai/scitail

C.3 Hyperparameters 197

RTE MRPC CoLA QNLI SciTail

Training 2491 3669 8551 104744 23596

Development 278 409 1043 5464 1304

Majority baseline 0.53 0.75 0.0 0.50 0.63

Metric Acc. F1 score MCC Acc. Acc.

Table C.1: Dataset statistics and majority baselines.

C.3 Hyperparameters

Hyperparameters for BERT, RoBERTa, and ALBERT used for all our experiments

are shown in Table C.2.

C.4 Ablation studies

Figure C.1 shows the results of fine-tuning on RTE with different combinations

of learning rate, number of training epochs, and bias correction. We make the

following observations:

• When training for only 3 epochs, disabling bias correction clearly hurts

performance.

• With bias correction, training with larger learning rates is possible.

• Combining the usage of bias correction with training for more epochs leads

to the best performance.

198 Investigating Fine-tuning Stability

0.45 0.50 0.55 0.60 0.65 0.70 0.75

Accuracy

α = 3e−5 + 20 epochs + BC

? α = 2e−5 + 20 epochs + BC

α = 1e−5 + 20 epochs + BC

α = 3e−5 + 10 epochs + BC

α = 2e−5 + 10 epochs + BC

α = 1e−5 + 10 epochs + BC

α = 3e−5 + 3 epochs + BC

α = 2e−5 + 3 epochs + BC

α = 1e−5 + 3 epochs + BC

α = 3e−5 + 20 epochs

α = 2e−5 + 20 epochs

α = 1e−5 + 20 epochs

α = 3e−5 + 10 epochs

α = 2e−5 + 10 epochs

α = 1e−5 + 10 epochs

α = 3e−5 + 3 epochs

α = 2e−5 + 3 epochs

α = 1e−5 + 3 epochs

maximum majority classifier mean

Figure C.1: Full ablation of fine-tuning BERT on RTE. For each setting, we vary only

the number of training steps, learning rate, and usage of bias correction

(BC). All other hyperparameters are unchanged. We fine-tune 25 models

for each setting. ? shows the setting which we recommend as a new baseline

fine-tuning strategy.

C.5 Additional gradient norm visualizations 199

Hyperparam BERT RoBERTa ALBERT

Epochs 3, 10, 20 3 3

Learning rate 1e−5− 5e−5 1e−5− 3e−5 1e−5− 3e−5

Learning rate schedule warmup-linear warmup-linear warmup-linear

Warmup ratio 0.1 0.1 0.1

Batch size 16 16 16

Adam ε 1e−6 1e−6 1e−6

Adam β1 0.9 0.9 0.9

Adam β2 0.999 0.98 0.999

Adam bias correction {True, False} {True, False} {True, False}

Dropout 0.1 0.1 –

Weight decay 0.01 0.1 –

Clipping gradient norm 1.0 – 1.0

Number of random seeds 25 25 25

Table C.2: Hyperparameters used for fine-tuning.

C.5 Additional gradient norm visualizations

We provide additional visualizations for the vanishing gradients observed when

fine-tuning BERT, RoBERTa, and ALBERT in Figures C.2, C.3, and C.4. Note

that for ALBERT besides the pooler and classification layers, we plot only the

gradient norms of a single hidden layer (referred to as layer0) because of weight

sharing.

Gradient norms and MLM perplexity We can see from the gradient norm

visualizations for BERT in Figures 5.4 and C.2 that the gradient norm of the

pooler and classification layer remains large. Hence, even though the gradients

on most layers of the model vanish, we still update the weights on the top layers.

In fact, this explains the large increase in MLM perplexity for the failed models

200 Investigating Fine-tuning Stability

which is shown in Figure 5.2a. While most of the layers do not change as we

continue training, the top layers of the network change dramatically.

C.6 Loss surfaces

For Figure 5.7, we define the range for both α and β as [−1.5, 1.5] and sample

40 points for each axis. We evaluate the loss on 128 samples from the training

dataset of each task using all model parameters, including the classification layer.

We disabled dropout for generating the surface plots.

Figure C.5 shows contour plots of the total gradient norm. We can again see

that the point to which the failed model converges to (θf) is separated from the

point the successful model converges to (θs) by a barrier. Moreover, on all the

three datasets we can clearly see the valley around θf with a small gradient norm.

C.7 Training curves

Figure C.6 shows training curves for 10 successful and 10 failed fine-tuning runs

on RTE. We can clearly observe that all 10 failed runs have a common pattern:

throughout the training, their training loss stays close to that at initialization.

This implies an optimization problem and suggests to reconsider the optimization

scheme.

C.8 Additional fine-tuning results

We report additional fine-tuning results on the SciTail dataset (Khot et al., 2018)

in Table C.3 to demonstrate that our findings generalize to datasets from other

domains.

C.8 Additional fine-tuning results 201

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm

layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(a) Failed run: attention.key

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm

layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(b) Successful run: attention.key

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm

layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(c) Failed run: attention.query

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm
layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(d) Successful run: attention.query

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm

layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(e) Failed run: attention.value

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm

layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(f) Successful run: attention.value

Figure C.2: Gradient norms (plotted on a logarithmic scale) of additional weight

matrices of BERT fine-tuned on RTE. Corresponding layer names are

in the captions. We show gradient norms corresponding to a single failed

and single successful, respectively.

202 Investigating Fine-tuning Stability

0 200 400
Iterations

10−3

10−1

101
G

ra
di

en
t

no
rm

layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(a) Failed run: attention.key

0 200 400
Iterations

10−3

10−1

101

G
ra

di
en

t
no

rm

layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(b) Successful run: attention.key

0 200 400
Iterations

10−3

10−1

101

G
ra

di
en

t
no

rm

layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(c) Failed run: attention.query

0 200 400
Iterations

10−3

10−1

101

G
ra

di
en

t
no

rm

layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(d) Successful run: attention.query

0 200 400
Iterations

10−3

10−1

101

G
ra

di
en

t
no

rm

layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(e) Failed run: attention.value

0 200 400
Iterations

10−3

10−1

101

G
ra

di
en

t
no

rm

layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(f) Successful run: attention.value

0 200 400
Iterations

10−3

10−1

101

G
ra

di
en

t
no

rm

layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(g) Failed run: attention.output.dense

0 200 400
Iterations

10−3

10−1

101

G
ra

di
en

t
no

rm

layer 1

layer 4

layer 8

layer 12

layer 16

layer 20

pooler layer

classification layer

(h) Successful run: attention.out-

put.dense

Figure C.3: Gradient norms (plotted on a logarithmic scale) of additional weight

matrices of RoBERTa fine-tuned on RTE. Corresponding layer names

are in the captions. We show gradient norms corresponding to a single

failed and single successful, respectively.

C.8 Additional fine-tuning results 203

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm

layer 0 pooler layer classification layer

(a) Failed run: attention.key

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm

layer 0 pooler layer classification layer

(b) Successful run: attention.key

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm

layer 0 pooler layer classification layer

(c) Failed run: attention.query

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm

layer 0 pooler layer classification layer

(d) Successful run: attention.query

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm

layer 0 pooler layer classification layer

(e) Failed run: attention.value

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm

layer 0 pooler layer classification layer

(f) Successful run: attention.value

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm

layer 0 pooler layer classification layer

(g) Failed run: attention.dense

0 200 400
Iterations

10−5

10−2

101

G
ra

di
en

t
no

rm

layer 0 pooler layer classification layer

(h) Successful run: attention.dense

Figure C.4: Gradient norms (plotted on a logarithmic scale) of additional weight

matrices of ALBERT fine-tuned on RTE. Corresponding layer names

are in the captions. We show gradient norms corresponding to a single

failed and single successful, respectively.

204 Investigating Fine-tuning Stability

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
δ1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

δ 2 θp θf

θs

1.5
2.1
2.7
3.3
3.9
4.5
5.1
5.7
6.3
6.9

T
ot

al
gr

ad
ie

nt
no

rm
(a) RTE

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
δ1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

δ 2 θp θf

θs

0.4

1.6

2.8

4.0

5.2

6.4

7.6

8.8

T
ot

al
gr

ad
ie

nt
no

rm

(b) MRPC

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
δ1

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

δ 2 θp θf

θs

0.4

1.6

2.8

4.0

5.2

6.4

7.6

T
ot

al
gr

ad
ie

nt
no

rm

(c) CoLA

Figure C.5: 2D gradient norm surfaces in the subspace spanned by δ1 = θf − θp and

δ2 = θs − θp for BERT fine-tuned on RTE, MRPC and CoLA. θp, θf , θs

denote the parameters of the pre-trained, failed, and successfully trained

model, respectively.

Due to its comparatively large size (28k training samples) fine-tuning on

SciTail with the Devlin et al. (2019) scheme is already very stable even when

trained for 3 epochs. This is comparable to what we find for QNLI in Section 5.5.1.

When applying our fine-tuning scheme to SciTail, the results are very close to that

of Devlin et al. (2019). On the other hand, when training on a smaller subset of

SciTail (1k training samples) we can clearly see the same results as also observed

in Figure 5.3 for MRPC, CoLA, and QNLI, i.e. using more training iterations

improves the fine-tuning stability.

We conclude from this experiment that our findings and guidelines generalize

to datasets from other domains as well. This gives further evidence that the

observed instability is not a property of any particular dataset but rather a result

of too few training iterations based on the common fine-tuning practice of using a

fixed number of epochs (and not iterations) independently of the training data

size.

C.8 Additional fine-tuning results 205

0 2000
Iterations

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

A
cc

ur
ac

y

0.0

0.2

0.4

0.6

0.8

T
ra

in
in

g
lo

ss
(a) Successful runs

0 200 400
Iterations

0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

A
cc

ur
ac

y

0.0

0.2

0.4

0.6

0.8

T
ra

in
in

g
lo

ss

(b) Failed runs

Figure C.6: The test accuracy and training loss of (a) 10 successful runs with our

fine-tuning scheme and (b) 10 failed runs with fine-tuning scheme Devlin

on RTE. Solid line shows the mean, error bars show ±1std.

Approach

SciTail

std mean max

Devlin et al. (2019), full train set, 3 epochs 0.4 95.1 96.0

Devlin et al. (2019), 1k samples, 3 epochs 17.9 69.8 89.4

Devlin et al. (2019), 1k samples, 71 epochs 0.9 87.5 89.1

Ours, full train set 0.6 95.1 96.8

Table C.3: Standard deviation, mean, and maximum performance on the development

set of SciTail when fine-tuning BERT over 25 random seeds. Standard

deviation: lower is better, i.e. fine-tuning is more stable.

D
Investigating the Generalization of

Task-adapted Models

Contents

D.1 Experimental details . 208

D.1.1 Hardware . 208

D.1.2 Label distribution . 208

D.1.3 In-context learning: Additional details . 209

D.1.4 In-context learning: Comparison with previous work 209

D.1.5 Fine-tuning: Additional details . 209

D.2 Additional results for OPT models . 210

D.2.1 Significance tests . 210

D.2.2 In-context learning . 211

D.2.3 Fine-tuning . 211

D.3 Additional results for Pythia models . 215

D.4 Analyzing individual OPT fine-tuning runs 217

207

208 Investigating the Generalization of Task-adapted Models

D.1 Experimental details

We access all models via huggingface transformers (Wolf et al., 2020) and use its

DeepSpeed (Rasley et al., 2020) integration for efficient distributed training and

evaluation.

D.1.1 Hardware

We run our experiments on 8x A100 GPUs with 80GB of memory.

D.1.2 Label distribution

Table D.1 shows the accuracy of the majority class label on each of the datasets.

Note that MNLI (when merging the neutral and contradiction classes) and

PAWS-QQP are highly unbalanced.

Dataset Majority class

MNLI (remove neutral) 0.512

MNLI (merge neutral and contradiction) 0.645

RTE 0.527

QQP 0.632

HANS 0.500

PAWS-QQP 0.718

Table D.1: Accuracy of the majority class label for each dataset.

D.1 Experimental details 209

D.1.3 In-context learning: Additional details

Patterns We present the patterns used for in-context learning in Table D.2.

We obtain the GPT-3 pattern from Brown et al. (2020). The eval-harness pattern

is based on L. Gao et al. (2021).

Dataset(s) Pattern Text Answer prefix Target tokens

MNLI, RTE minimal {premise} {hypothesis} ? – Yes, No

MNLI, RTE gpt-3 {premise} question: {hypothesis} Yes or No? answer: Yes, No

MNLI, RTE eval-harness {premise} \n Question: {hypothesis} True or False? \n Answer: True, False

QQP minimal {question 1} {question 2} ? – Yes, No

QQP eval-harness
Question 1: {question 1} \n Question 2:{question 2}

Answer: Yes, No
\n Question: Do both questions ask the same thing?

Table D.2: Patterns used for in-context learning. The minimal patterns are used for

pattern-based fine-tuning as well.

D.1.4 In-context learning: Comparison with previous work

Table D.3 compares our in-context learning results to results from previous work.

On RTE and MNLI we achieve comparable performance to previous work. On

QQP, our in-context learning results are much worse (and very close to the

majority class classifier). We hypothesize that this is due to the difference in model

size (GPT-3 with 175B parameters vs. OPT with 30B parameters) and hence

focus on MNLI and RTE for most of our experiments.

D.1.5 Fine-tuning: Additional details

Hyperparameters Table D.4 provides an overview of all hyperparameters

used during fine-tuning.

210 Investigating the Generalization of Task-adapted Models

Model Dataset In-domain Out-of-domain

GPT-3 175B MNLI 77.6 75.3

OPT 30B RTE 62.0 –

GPT-3 175B QQP 83.5 73.7

OPT 30B MNLI 71.4 (74.9) 56.7 (72.3)

OPT 30B RTE 61.7 (66.8) 60.5 (65.4)

OPT 30B QQP 42.0 (63.1) 49.8 (53.3)

Table D.3: Comparing in-context learning results from previous work (first three rows)

with ours (last three rows). In our results we report average and maximum

performance (in parentheses) of the largest model. Previous results are

from Si et al. (2023) for GPT-3 and S. Zhang et al. (2022) for OPT.

D.2 Additional results for OPT models

D.2.1 Significance tests

Tables 6.1 and D.5 to D.7 show the results of a Welch’s t-test comparing the

average in-domain and out-of-domain performance of fine-tuning and pattern-

based fine-tuning on RTE and MNLI. We use 16 samples and 10 different seeds

for each approach and consider a p-value of 0.05 to be statistically significant. For

fine-tuning, we compare two different approaches of model selection: (1) based on

in-domain performance and (2) based on out-of-domain performance (note that

these are the same models as those shown in the first row of Figure 6.1).

For RTE, our results show that in-context learning outperforms fine-tuning

only when comparing large models to smaller models. However, when comparing

models of the same size, fine-tuning performs at least equally well to in-context

learning, and in some cases even significantly better. For MNLI, for larger models

(6.7B onwards) in-context learning outperforms fine-tuning in terms of in-domain

performance. Looking at out-of-domain generalization performance, however, we

D.2 Additional results for OPT models 211

Hyperparameter Value

Optimizer AdamW

Learning rate 10−5

Learning rate schedule linear warmup then constant

Warmup ratio 10% of total steps

Weight decay 0.0

Dropout 0.1

Batch size 32

Epochs 40

Total steps #samples
batch size ∗ epochs

Table D.4: fine-tuning hyperparameters.

again see that in-context learning only outperforms fine-tuning when comparing

large models to much smaller models.

D.2.2 In-context learning

Figures D.1, D.2, and D.3 show in-context learning results on MNLI, RTE, and

QQP for all OPT model sizes grouped by number of demonstrations and patterns.

Sensitivity to pattern choice and number of examples On MNLI and

RTE, we find that only the largest model benefits from the instructive gpt-3 and

eval-harness patterns. Moreover, on all datasets and for all patterns, models

are sensitive to the number of demonstrations and do not necessarily improve

with more demonstrations.

D.2.3 Fine-tuning

We provide all fine-tuning results in Figures D.4, D.5, and D.6. When comparing

results across rows, we see the impact of the number of training examples on the

212 Investigating the Generalization of Task-adapted Models

FT

125M 350M 1.3B 2.7B 6.7B 13B 30B

IC
L

125M 0.03 0.04 0.08 0.11 0.10 0.09 0.10

350M 0.03 0.05 0.08 0.11 0.10 0.10 0.10

1.3B 0.03 0.04 0.08 0.10 0.10 0.09 0.09

2.7B 0.00 0.02 0.05 0.08 0.07 0.07 0.07

6.7B −0.06 −0.04 −0.01 0.02 0.01 0.01 0.01

13B −0.06 −0.05 −0.01 0.02 0.01 0.00 0.01

30B −0.06 −0.04 −0.01 0.02 0.01 0.01 0.01

(a) RTE

FT

125M 350M 1.3B 2.7B 6.7B 13B 30B
IC

L
125M 0.07 0.09 0.13 0.14 0.12 0.17 0.13

350M 0.05 0.07 0.11 0.13 0.11 0.16 0.11

1.3B −0.02 −0.00 0.03 0.05 0.03 0.08 0.03

2.7B 0.01 0.03 0.07 0.08 0.06 0.11 0.06

6.7B −0.06 −0.04 −0.00 0.01 −0.01 0.04 −0.00

13B −0.13 −0.11 −0.07 −0.06 −0.08 −0.03 −0.08

30B −0.11 −0.09 −0.05 −0.04 −0.06 −0.01 −0.06

(b) MNLI

Table D.5: Difference between average in-domain performance of in-context

learning and fine-tuning on RTE (a) and MNLI (b) across model sizes. We

use 16 examples and 10 random seeds for both approaches. For ICL, we

use the gpt-3 pattern. For FT, we use pattern-based fine-tuning (PBFT)

and select checkpoints according to in-domain performance. We perform

a Welch’s t-test and color cells according to whether: ICL performs

significantly better than FT, FT performs significantly better than ICL. For

cells without color, there is no significant difference between ICL and FT.

D.2 Additional results for OPT models 213

FT

125M 350M 1.3B 2.7B 6.7B 13B 30B

IC
L

125M −0.01 0.02 0.05 0.05 0.07 0.07 0.07

350M −0.01 0.02 0.05 0.05 0.08 0.08 0.07

1.3B −0.01 0.01 0.04 0.04 0.07 0.07 0.06

2.7B −0.04 −0.01 0.02 0.02 0.05 0.05 0.04

6.7B −0.09 −0.07 −0.04 −0.04 −0.01 −0.01 −0.02

13B −0.10 −0.07 −0.04 −0.04 −0.02 −0.02 −0.02

30B −0.10 −0.07 −0.04 −0.04 −0.01 −0.01 −0.02

(a) RTE

FT

125M 350M 1.3B 2.7B 6.7B 13B 30B

IC
L

125M 0.03 0.05 0.09 0.10 0.07 0.13 0.08

350M 0.01 0.03 0.07 0.09 0.05 0.12 0.06

1.3B −0.07 −0.04 −0.01 0.01 −0.02 0.04 −0.01

2.7B −0.03 −0.01 0.02 0.04 0.01 0.07 0.02

6.7B −0.10 −0.08 −0.04 −0.03 −0.06 0.00 −0.05

13B −0.17 −0.15 −0.11 −0.10 −0.13 −0.07 −0.12

30B −0.16 −0.13 −0.10 −0.08 −0.11 −0.05 −0.10

(b) MNLI

Table D.6: Difference between average in-domain performance of ICL and FT on

RTE (a) and MNLI (b) across model sizes. We use 16 examples and 10

random seeds for both approaches. For ICL, we use the gpt-3 pattern.

For FT, we use pattern-based fine-tuning (PBFT) and select checkpoints

according to out-of-domain performance. We perform a Welch’s t-test and

color cells according to whether: ICL performs significantly better than

FT, FT performs significantly better than ICL. For cells without color,

there is no significant difference between ICL and FT.

214 Investigating the Generalization of Task-adapted Models

FT

125M 350M 1.3B 2.7B 6.7B 13B 30B

IC
L

125M 0.01 0.02 0.03 0.11 0.16 0.18 0.16

350M 0.01 0.02 0.03 0.11 0.16 0.18 0.16

1.3B 0.01 0.02 0.03 0.11 0.16 0.18 0.16

2.7B 0.00 0.02 0.03 0.11 0.15 0.18 0.16

6.7B 0.01 0.02 0.03 0.11 0.15 0.18 0.16

13B −0.03 −0.01 0.00 0.08 0.12 0.14 0.13

30B −0.10 −0.08 −0.07 0.01 0.05 0.07 0.06

(a) RTE

FT

125M 350M 1.3B 2.7B 6.7B 13B 30B
IC

L
125M 0.00 0.01 0.05 0.04 0.13 0.14 0.17

350M 0.00 0.01 0.05 0.04 0.13 0.14 0.17

1.3B 0.00 0.01 0.05 0.04 0.13 0.14 0.16

2.7B 0.00 0.01 0.05 0.04 0.13 0.14 0.16

6.7B −0.01 −0.00 0.04 0.03 0.12 0.13 0.16

13B −0.03 −0.02 0.02 0.01 0.10 0.11 0.13

30B −0.06 −0.06 −0.01 −0.02 0.06 0.08 0.10

(b) MNLI

Table D.7: Difference between average out-of-domain performance of in-context

learning and fine-tuning on RTE (a) and MNLI (b) across model sizes. We

use 16 examples and 10 random seeds for both approaches. For ICL, we use

the gpt-3 pattern. For FT, we use pattern-based fine-tuning (PBFT) and

select checkpoints according to out-of-domain performance. We perform

a Welch’s t-test and color cells according to whether: ICL performs sig-

nificantly better than FT, FT performs significantly better than ICL. For

cells without color, there is no significant difference between ICL and FT.

D.3 Additional results for Pythia models 215

results. Comparing results across columns demonstrates the importance of model

selection for in-domain and out-of-domain performance.

Figures D.7 and D.8 show a comparison between two different ways of

binarizing MNLI. For our main experiments, we remove the neutral class entirely.

Merging it with the contradiction class instead leads to an even better relationship

between in-domain and out-of-domain generalization performance.

D.3 Additional results for Pythia models

Figure D.9 compares fine-tuning and in-context learning of Pythia models ranging

from 410M to 12B parameters (Biderman et al., 2023). Similar to OPT, the Pythia

models differ only in their size and have all been trained on exactly the same

data (even in the exact same order). We focus on RTE and report results using 16

examples. For in-context learning, we use three different patterns (minimal, gpt-3,

eval-harness). For fine-tuning, we report results using 16 and 128 examples and

three different model selection strategies (best in-domain, last checkpoint, best

out-of-domain). Significance tests are provided in Tables 6.2 and D.8 to D.10.

For in-context learning, all models perform poorly when using the minimal

pattern. With the gpt-3 pattern, we can observe a clear impact of model size on

in-domain and out-of-domain performance. On the other hand, with the eval-

harness pattern, for Pythia models, only in-domain performance improves with

model size.

For fine-tuning, when using 16 samples and selecting checkpoints according

to out-of-domain performance, almost all checkpoints lead to better out-of-domain

than in-domain performance. Moreover, almost all fine-tuned models perform

significantly better OOD than models adapted via in-context learning. When

fine-tuning with 128 examples, we can see a very clear effect of model size on

both in-domain and out-of-domain performance. In particular, when selecting

checkpoints according to out-of-domain performance, almost all models perform

better out-of-domain than in-domain.

216 Investigating the Generalization of Task-adapted Models

FT

410M 1.4B 2.8B 6.9B 12B

IC
L

410M 0.05 0.06 0.06 0.09 0.07

1.4B 0.03 0.04 0.04 0.07 0.05

2.8B −0.02 −0.00 −0.01 0.02 0.01

6.9B −0.03 −0.02 −0.02 0.01 −0.01

12B −0.04 −0.03 −0.03 −0.00 −0.02

Table D.8: Difference between average in-domain performance of in-context

learning and fine-tuning with Pythia models on RTE. We use 16 examples

and 10 random seeds for both approaches. For ICL, we use the gpt-3

pattern. For fine-tuning, we use pattern-based fine-tuning (PBFT) and

select checkpoints according to in-domain performance. We perform a

Welch’s t-test and color cells according to whether: in-context learning

performs significantly better than fine-tuning, fine-tuning performs

significantly better than in-context learning. For cells without color, there

is no significant difference between in-context learning and fine-tuning.

D.4 Analyzing individual OPT fine-tuning runs 217

D.4 Analyzing individual OPT fine-tuning runs

Looking at the in-domain and out-of-domain performance for individual check-

points does not reveal the generalization behavior of individual FT runs during

training. In particular, this view does not tell us how stable the generalization of

individual runs is during FT. Therefore, in Figures D.10 and D.11 we visualize

both in-domain and out-of-domain performance throughout FT on MNLI and

RTE when using 128 examples. We observe that out-of-domain performance varies

considerably across seeds and even during fine-tuning.

218 Investigating the Generalization of Task-adapted Models

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

125M

350M

1.3B

2.7B

6.7B

13B

30B

(a) 2 samples – minimal

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(b) 2 samples – gpt-3

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(c) 2 samples – eval-h

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(d) 16 samples – minimal

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(e) 16 samples – gpt-3

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(f) 16 samples – eval-h

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(g) 32 samples – minimal

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(h) 32 samples – gpt-3

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(i) 32 samples – eval-h

Figure D.1: Relationship between in-domain and out-of-domain performance

of in-context learning on MNLI for OPT models of various sizes.

Rows vary amount of training data. Columns vary input pattern. Colors

indicate model size. We run 10 models per setting varying only the data

seed. − in the x- and y-axis indicates the performance of the majority

class label.

D.4 Analyzing individual OPT fine-tuning runs 219

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

125M

350M

1.3B

2.7B

6.7B

13B

30B

(a) 2 samples – minimal

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(b) 2 samples – gpt-3

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(c) 2 samples – eval-h

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(d) 16 samples – minimal

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(e) 16 samples – gpt-3

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9
ou

t-
of

-d
om

ai
n

ac
cu

ra
cy

(f) 16 samples – eval-h

Figure D.2: Relationship between in-domain and out-of-domain performance

of in-context learning on RTE for OPT models of various sizes. Rows

vary amount of training data. Columns vary input pattern. Colors indicate

model size. We run 10 models per setting varying only the data seed. −

in the x- and y-axis indicates the performance of the majority class label.

220 Investigating the Generalization of Task-adapted Models

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ou

t-
of

-d
om

ai
n

ac
cu

ra
cy

125M

350M

1.3B

2.7B

6.7B

13B

30B

(a) 2 samples – minimal

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(b) 2 samples – eval-h

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(c) 16 samples – minimal

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ou

t-
of

-d
om

ai
n

ac
cu

ra
cy

(d) 16 samples – eval-h

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(e) 32 samples – minimal

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(f) 32 samples – eval-h

Figure D.3: Relationship between in-domain and out-of-domain performance

of in-context learning on QQP for OPT models of various sizes. Rows

vary amount of training data. Columns vary input pattern. Colors indicate

model size. We run 10 models per setting varying only the data seed. −

in the x- and y-axis indicates the performance of the majority class label.

D.4 Analyzing individual OPT fine-tuning runs 221

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9
ou

t-
of

-d
om

ai
n

ac
cu

ra
cy

125M

350M

1.3B

2.7B

6.7B

13B

30B

(a) 16 – in-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy
(b) 16 – last checkpoint

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(c) 16 – out-of-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(d) 32 – in-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9
ou

t-
of

-d
om

ai
n

ac
cu

ra
cy

(e) 32 – last checkpoint

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy
(f) 32 – out-of-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(g) 64 – in-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(h) 64 – last checkpoint

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(i) 64 – out-of-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(j) 128 – in-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(k) 128 – last checkpoint

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(l) 128 – out-of-domain

Figure D.4: Relationship between in-domain and out-of-domain performance

of pattern-based fine-tuning on MNLI for OPT models of various

sizes. Rows vary amount of training data. Columns vary model selection

strategy. Colors indicate model size. We fine-tune 10 models per setting

varying only the data seed. − in the x- and y-axis indicates the perfor-

mance of the majority class label.

222 Investigating the Generalization of Task-adapted Models

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

125M

350M

1.3B

2.7B

6.7B

13B

30B

(a) 16 – in-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy
(b) 16 – last checkpoint

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(c) 16 – out-of-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(d) 32 – in-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(e) 32 – last checkpoint

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(f) 32 – out-of-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(g) 64 – in-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(h) 64 – last checkpoint

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(i) 64 – out-of-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(j) 128 – in-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(k) 128 – last checkpoint

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(l) 128 – out-of-domain

Figure D.5: Relationship between in-domain and out-of-domain performance

of pattern-based fine-tuning on RTE for OPT models of various sizes.

Rows vary amount of training data. Columns vary model selection strategy.

Colors indicate model size. We fine-tune 10 models per setting varying

only the data seed. − in the x- and y-axis indicates the performance of

the majority class label.

D.4 Analyzing individual OPT fine-tuning runs 223

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ou

t-
of

-d
om

ai
n

ac
cu

ra
cy

125M

350M

1.3B

2.7B

6.7B

13B

30B

(a) 16 – in-domain

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy
(b) 16 – last checkpoint

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(c) 16 – out-of-domain

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(d) 32 – in-domain

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9
ou

t-
of

-d
om

ai
n

ac
cu

ra
cy

(e) 32 – last checkpoint

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy
(f) 32 – out-of-domain

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(g) 64 – in-domain

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(h) 64 – last checkpoint

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(i) 64 – out-of-domain

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(j) 128 – in-domain

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(k) 128 – last checkpoint

0.3 0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(l) 128 – out-of-domain

Figure D.6: Relationship between in-domain and out-of-domain performance

of pattern-based fine-tuning on QQP for OPT models of various sizes.

Rows vary amount of training data. Columns vary model selection strategy.

Colors indicate model size. We fine-tune 10 models per setting varying

only the data seed. − in the x- and y-axis indicates the performance of

the majority class label.

224 Investigating the Generalization of Task-adapted Models

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

125M

350M

1.3B

2.7B

6.7B

13B

30B

(a) merge – in-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(b) merge – last

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(c) merge – out-of-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(d) remove – in-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(e) remove – last

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9
ou

t-
of

-d
om

ai
n

ac
cu

ra
cy

(f) remove – out-of-domain

Figure D.7: Relationship between in-domain and out-of-domain performance

of pattern-based fine-tuning on MNLI for OPT models of various

sizes when merging the neutral and contradiction classes vs. removing

the neutral examples altogether. We fine-tune on 16 examples using 10

different seeds. − in the x- and y-axis indicates the performance of the

majority class label.

D.4 Analyzing individual OPT fine-tuning runs 225

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

125M

350M

1.3B

2.7B

6.7B

13B

30B

(a) merge – in-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(b) merge – last

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(c) merge – out-of-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(d) remove – in-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(e) remove – last

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(f) remove – out-of-domain

Figure D.8: Relationship between in-domain and out-of-domain performance

of pattern-based fine-tuning on MNLI for OPT models of various

sizes when merging the neutral and contradiction classes vs. removing

the neutral examples altogether. We fine-tune on 128 examples using 10

different seeds. − in the x- and y-axis indicates the performance of the

majority class label.

226 Investigating the Generalization of Task-adapted Models

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

Pythia-410M

Pythia-1.4B

Pythia-2.8B

Pythia-6.9B

Pythia-12B

(a) ICL 16 samples – minimal

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

Pythia-410M

Pythia-1.4B

Pythia-2.8B

Pythia-6.9B

Pythia-12B

(b) ICL 16 samples – gpt-3

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

Pythia-410M

Pythia-1.4B

Pythia-2.8B

Pythia-6.9B

Pythia-12B

(c) ICL 16 samples – eval-h

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(d) FT 16 samples – best in-

domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(e) FT 16 samples – last

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(f) FT 16 samples – best out-

of-domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(g) FT 128 samples – best in-

domain

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(h) FT 128 samples – last

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(i) FT 128 samples – best out-

of-domain

Figure D.9: ICL and FT results for Pythia models of different size. For in-

context learning, we report results using 16 examples and three different

patterns (minimal, gpt-3, eval-harness). For FT, we report results

using 16 and 128 examples using three different model selection strategies

(best in-domain, last checkpoint, best out-of-domain). In all cases, we

show results for 10 different random seeds. − in the x- and y-axis indicates

the performance of the majority class label.

D.4 Analyzing individual OPT fine-tuning runs 227

FT

410M 1.4B 2.8B 6.9B 12B

IC
L

410M −0.00 0.04 0.02 0.06 0.06

1.4B −0.02 0.02 0.00 0.04 0.04

2.8B −0.06 −0.03 −0.04 −0.01 −0.01

6.9B −0.08 −0.04 −0.06 −0.02 −0.02

12B −0.09 −0.05 −0.07 −0.03 −0.03

Table D.9: Difference between average in-domain performance of ICL and FT

with Pythia models on RTE. We use 16 examples and 10 random seeds

for both approaches. For ICL, we use the gpt-3 pattern. For FT, we use

pattern-based fine-tuning (PBFT) and select checkpoints according to

out-of-domain performance. We perform a Welch’s t-test and color cells

according to whether: ICL performs significantly better than FT, FT

performs significantly better than ICL. For cells without color, there is

no significant difference between ICL and FT.

228 Investigating the Generalization of Task-adapted Models

FT

410M 1.4B 2.8B 6.9B 12B

IC
L

410M 0.05 0.08 0.13 0.15 0.14

1.4B 0.04 0.07 0.12 0.14 0.13

2.8B −0.00 0.03 0.08 0.10 0.09

6.9B 0.04 0.07 0.12 0.14 0.13

12B 0.00 0.03 0.08 0.10 0.09

Table D.10: Difference between average out-of-domain performance of ICL and

FT with Pythia models on RTE. We use 16 examples and 10 random

seeds for both approaches. For ICL, we use the gpt-3 pattern. For

FT, we use pattern-based fine-tuning (PBFT) and select checkpoints

according to out-of-domain performance. We perform a Welch’s t-test

and color cells according to whether: ICL performs significantly better

than FT, FT performs significantly better than ICL. For cells without

color, there is no significant difference between ICL and FT.

D.4 Analyzing individual OPT fine-tuning runs 229

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(a) 1.3B – in-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(b) 1.3B – out-of-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(c) 2.7B – in-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(d) 2.7B – out-of-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(e) 6.7B – in-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(f) 6.7B – out-of-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(g) 13B – in-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(h) 13B – out-of-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(i) 30B – in-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(j) 30B – out-of-domain

Figure D.10: Generalization throughout PBFT on MNLI for OPT models

of various sizes. We train on 128 examples. Colors denote different

data seeds. First column shows in-domain, second column out-of-domain

performance.

230 Investigating the Generalization of Task-adapted Models

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(a) 1.3B – in-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(b) 1.3B – out-of-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(c) 2.7B – in-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(d) 2.7B – out-of-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(e) 6.7B – in-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(f) 6.7B – out-of-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(g) 13B – in-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(h) 13B – out-of-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(i) 30B – in-domain

0 50 100 150
fine-tuning steps

0.4

0.5

0.6

0.7

0.8

0.9

ac
cu

ra
cy

(j) 30B – out-of-domain

Figure D.11: Generalization throughout PBFT on RTE for OPT models

of various sizes. We train on 128 examples. Colors denote different

data seeds. First column shows in-domain, second column out-of-domain

performance.

Declaration

I hereby declare that this dissertation is my own original work except where

otherwise indicated. All data or concepts drawn directly or indirectly from other

sources have been correctly acknowledged. This dissertation has not been submitted

in its present or similar form to any other academic institution either in Germany

or abroad for the award of any other degree.

Saarbrücken, 2023

Marius Mosbach

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Research objectives
	1.3 Contributions
	1.3.1 Probing pre-trained models for linguistic knowledge
	1.3.2 On the interplay between fine-tuning and probing
	1.3.3 Investigating fine-tuning stability
	1.3.4 Investigating generalization of task-adapted models

	1.4 Additional publications
	1.5 Outline

	2 Background
	2.1 Notation
	2.2 Machine learning basics
	2.2.1 Supervised learning
	2.2.2 Generative learning
	2.2.3 Stochastic gradient descent

	2.3 Pre-trained language models
	2.3.1 Decoder-only models
	2.3.2 Encoder-only models

	2.4 Adapting pre-trained language models
	2.4.1 Fine-tuning
	2.4.2 In-context learning

	2.5 Probing language model representations
	2.5.1 Sentence-level probing

	3 Probing Pre-trained Models for Linguistic Knowledge
	3.1 Introduction
	3.1.1 Models

	3.2 Related Work
	3.3 Probing representations for knowledge of RCs
	3.3.1 Dataset construction
	3.3.2 Experimental setup
	3.3.3 Probing results and discussion
	3.3.4 Diagnostics

	3.4 Analyzing predictions for RC awareness
	3.4.1 Analyzing grammatical and semantic knowledge

	3.5 Discussion and conclusion

	4 On the Interplay Between Fine-tuning and Probing
	4.1 Introduction
	4.2 Related work
	4.3 Methodology and setup
	4.3.1 Fine-tuning tasks
	4.3.2 Probing tasks
	4.3.3 Pre-trained models
	4.3.4 Fine-tuning and probing setup

	4.4 Experiments
	4.4.1 Probing accuracy
	4.4.2 How does fine-tuning affect probing accuracy?

	4.5 What happens during fine-tuning?
	4.5.1 Analyzing attention distributions
	4.5.2 Analyzing perplexity
	4.5.3 Discussion

	4.6 Conclusion

	5 Investigating Fine-tuning Stability
	5.1 Introduction
	5.2 Related work
	5.3 Datasets
	5.4 Fine-tuning
	5.5 Investigating previous hypotheses for fine-tuning instability
	5.5.1 Does catastrophic forgetting cause fine-tuning instability?
	5.5.2 Do small datasets cause fine-tuning instability?

	5.6 Disentangling optimization and generalization
	5.6.1 The role of optimization
	5.6.2 The role of generalization

	5.7 A simple but hard-to-beat baseline for fine-tuning bert
	5.8 Conclusions

	6 Investigating the Generalization of Task-adapted Models
	6.1 Introduction
	6.2 Background
	6.2.1 Fine-tuning
	6.2.2 In-context learning

	6.3 A fair comparison of fine-tuning and in-context learning
	6.4 Results
	6.4.1 A closer look at fine-tuning generalization
	6.4.2 Our findings generalize beyond OPT

	6.5 Discussion
	6.6 Comparing fine-tuning and in-context learning
	6.7 Related work
	6.8 Conclusions
	6.9 Limitations

	7 Conclusion and Future Directions
	7.1 Summary of contributions
	7.2 Future directions
	7.2.1 Modular (task-)adaptation
	7.2.2 Limits of update-free task adaptation
	7.2.3 Good vs. bad fine-tuning minima
	7.2.4 The pre-train–instruct–align–fine-tune pipeline

	List of Figures
	List of Figures

	List of Tables
	List of Tables
	Acronyms

	List of Acronyms
	Bibliography
	Acronyms

	A Probing Pre-trained Models for Linguistic Knowledge
	A.1 Probing dataset
	A.2 Probing results
	A.2.1 ALBERT-base-v1 vs. ALBERT-xxlarge-v1
	A.2.2 Qualitative analysis for predicted type of antecedent

	B On the Interplay Between Fine-tuning and Probing
	B.1 Hyperparameters and task statistics
	B.2 Additional results

	C Investigating Fine-tuning Stability
	C.1 Alternative notions of stability
	C.2 Task statistics
	C.3 Hyperparameters
	C.4 Ablation studies
	C.5 Additional gradient norm visualizations
	C.6 Loss surfaces
	C.7 Training curves
	C.8 Additional fine-tuning results

	D Investigating the Generalization of Task-adapted Models
	D.1 Experimental details
	D.1.1 Hardware
	D.1.2 Label distribution
	D.1.3 In-context learning: Additional details
	D.1.4 In-context learning: Comparison with previous work
	D.1.5 Fine-tuning: Additional details

	D.2 Additional results for OPT models
	D.2.1 Significance tests
	D.2.2 In-context learning
	D.2.3 Fine-tuning

	D.3 Additional results for Pythia models
	D.4 Analyzing individual OPT fine-tuning runs

	Declaration

