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Abstract: While particulate bone substitute materials are applied in a variety of augmentation proce-
dures, standardized defects are being used for preclinical testing. This in vitro study evaluated the
density and homogeneity of a particulate bone substitute in ridge preservation procedures. Premo-
lars and molars were extracted in ten semimandibles of minipig cadavers. Light body impression
material was used for determining the volume of the extraction sites followed by augmentation with
particulate material, thereby weighing the graft material needed. Microradiographs and histologic
sections were obtained for evaluating the homogeneity and density of the augmentation material.
Statistical analyses were based on Shapiro–Wilk tests, Spearman’s rho and one sample Wilcoxon test
followed by Bonferroni–Holm correction for multiple testing (α = 0.05). Based on 103 single alveoli
evaluated, the mean volume determined was 0.120 cm3 requiring a mean amount of graft material of
0.155 g. With only three exceptions, all parameters (volume, mass of augmentation material, density
and homogeneity) correlated significantly (p < 0.020). The apical parts of the alveoli showed reduced
density as compared to the middle parts (p < 0.001) and the homogeneity of the augmentation material
was also lower as compared to the middle (p < 0.001) and cervical parts (p </= 0.040). The packing of
augmentation material is critical when non-standardized defects are treated.

Keywords: ridge preservation; bone substitute materials; alveolar ridge augmentation

1. Introduction

Prosthetic-driven implant placement frequently requires bone augmentation [1–3]
or at least the prevention of bone loss following tooth extraction [4–7]. Similarly, bone
augmentation has been described for implants immediately placed in extraction sockets
for filling up empty spaces between implants and socket walls [8]. Such situations are
comparable to crater-like peri-implantitis lesions [9], which are not only difficult to assess
during preoperative imaging [10,11] but also require regenerative treatment following
debridement and disinfection [12,13].

While the choice of augmentation technique and biomaterial depends on the defect
morphology [2,14], particulate bone substitute materials [1,15] play an important role
in implant-related surgeries [14]. Heavily affecting the regenerative potential [16], the
shape of the granules [17], pore size within the granules, as well as particle size [18] and
interconnectivity of pores have received lots of attention [19,20] in order to optimize the
vascularization of the graft [21] and subsequent mechanical bone quality [22,23].

It has been argued based on a clinical study that the complete fill of random-shaped
bony defects cannot be achieved predictably [9]. As one of the few options for intervention
during augmentation, but at the same time a critical factor, the level of compaction of
augmentation material cannot be standardized and depends on the clinical experience of
the surgeon [24,25]. In a recent animal study, it was shown that compressive forces in the
range of 200 g would facilitate the penetration of particulate graft materials into apical
regions of sockets and defects and hence optimize bone formation [24,26].
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This basic problem of adapting hard bone filling material to a specific surgical site
is already well known from the non-dental field [27]. Using calcium phosphate-based
composites in the form of injectable bone substitutes may constitute a convenient alternative,
thereby avoiding the problem of incomplete or non-homogenous socket filling. Calcium
phosphates have been investigated due to their similarity to the mineral component of
bone [27] and various attempts have already been made in order to optimize the handling
properties of the material [28]. An interesting approach was described and tested by
Klijn et al. [29] adding NaHCO3, Na2HPO4 and NaH2PO4 in specific concentrations and in
a strict order to calcium phosphate, which led to the production of CO2 from NaHCO3 [29].
The rationale for this approach was to introduce adequate pores and interconnectivity into
the bone substitute.

From a scientific and regulatory point of view, bone augmentation materials are often
tested in standardized defects [22,30] in order to allow for a quantitative analysis of healing
processes [31,32], which does not reflect reality where, e.g., extraction sockets [26] with
variable size and shape are present [5,30], which may affect the regenerative potential.

The primary goal of this animal cadaver study was to evaluate intraalveolar voids
being present following augmentation with one specific particulate bone substitute material
by determining homogeneity and density. From a methodologic point of view, a secondary
endpoint was to compare microradiographic and histologic analysis.

2. Materials and Methods

Ten semi mandibles of adult Aachen minipig cadavers [25,30] were obtained (Hein-
richs Tierzucht, Heinsberg, Germany) and the premolars P3 and P4 as well as the first molar
M1 were carefully extracted using standard instruments. The premolars had two roots each
(mesial and distal) while the molars had four roots (mesiolingual, distolingual, mesiobuccal
and distobuccal). The complete extraction of all roots was verified using periapical radio-
graphs (Heliodent, Dentsply Sirona, York, PA, USA/VistaScan image plates, Dürr Dental,
Bietigheim-Bissingen, Germany).

Light body silicone impression material (Silasoft, Detax, Ettlingen, Germany; density:
1.17 g/cm3) was subsequently injected into the alveoli and allowed to fully set. After
removal, the silicone impressions were weighed for determining the accessible volume.
Mean values based on five impressions were noted for statistical analyses.

Particulate bone augmentation material (Creos, Nobel Biocare, Gothenburg, Sweden)
was then used for filling the single alveoli, thereby measuring the amount of material
needed until the ridge crest is reached. The alveoli were subsequently covered with wax
paper mimicking coverage with a membrane in order to avoid the loss of granules during
subsequent processing.

All bone specimens were fixed in 10% neutral buffered formalin for 48 h and reduced
to small blocks using a diamond band saw (EXAKT 300, EXAKT Advanced Technologies
GmbH, Norderstedt, Germany). The specimens were then dehydrated in alcohol solutions
of increasing concentrations, clarified in xylene and embedded in polymethylmethacrylate
(Technovit 9100, Heraeus Kulzer, Hanau, Germany). One vertical cross-section was ob-
tained per specimen using a cutting and grinding technique [33]. With the sections reduced
to a thickness of 120 µm, microradiographs (Faxitron X-ray, Lincolnshire, IL, USA; 14 kV,
0.3 mA, 2.5 min; VistaScan image plates) were made. Following a further reduction of
the sections to a thickness of 50–80 µm and staining with toluidine blue O solution after
preprocessing in 10% H2O2, the samples were inspected using a microscope (LEICA DM4B,
LEICA Mikrosysteme Vertrieb GmbH, Wetzlar, Germany) equipped with a color image
analyzing system (LEICA Application Suite, LEICA Phase Expert, LEICA Mikrosysteme
Vertrieb GmbH). A representative image of each alveolus was taken depicting its complete
outline. Both microradiographs and histologic sections were then evaluated by three inde-
pendent examiners with the goal of rating the homogeneity (1 = no; 2 = partly; 3 = yes) and
density (1 = low; 2 = medium; 3 = high) of the augmentation material in the apical, middle
and cervical third of each alveolus.
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Statistical analyses were based on Shapiro–Wilk tests on the normal distribution of
measurement values and ratings followed by calculating Spearman’s rank correlation
coefficients between variables and one-sample Wilcoxon tests (Mann–Whitney tests) for
comparisons. Given that ratings in different regions of the alveoli [24] could not be con-
sidered as being independent, rating differences (middle-apical; middle-cervical; and
apical-cervical) were tested with respect to differing from zero. Correction for multiple test-
ing was performed according to the Bonferroni–Holm method and the level of significance
was set at α = 0.05.

3. Results

A total of 103 single alveoli were evaluated and the mean values and standard devia-
tions for the volume of the alveoli (Figure 1) and mass of augmentation material required
(Figure 2) as well as for ratings of density and homogeneity (Figure 3) are given in Table 1.
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paper was adapted and secured in order to avoid particles from falling out during further pro-
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Figure 1. Hemi-mandible of an Aachen minipig with premolars and first molar extracted (a). Injection
of light body silicone into the alveoli for determining the volume available for augmentation (b).
Impression material harvested from an alveolus, which was weighed for determining alveolar
volume (c).
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Figure 2. Particulate bone substitute material was used for filling the single alveoli and the wax paper
was adapted and secured in order to avoid particles from falling out during further processing.

Shapiro–Wilk tests showed significant values (p < 0.040) for all parameters indicating
a non-normal distribution requiring a non-parametric correlation test (Spearman’s rho).
While correlation coefficients varied widely (Table 2), significant correlations were found
after Bonferroni correction for all combinations of parameters with the following exceptions:
Volume/Homogeneity—histology (p = 0.060); Density—microradiograph/Homogeneity—
histology (p = 0.060); and Homogeneity—microradiograph/Homogeneity—histology
(p = 0.060).

Separating the cervical, middle and apical thirds of alveoli, mean values for density
and homogeneity were calculated and differences between these regions were expressed
as p-values (Table 3). In the apical regions (Figure 4a), significantly lower density of
the augmentation material was reached as compared to the middle part of the alveoli
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(microradiograph p < 0.001; histology p < 0.001). In addition, the middle section showed
greater density as compared to the cervical section in histology (p = 0.020) but not in
microradiographs (p = 0.200). Similarly, the homogeneity of the augmentation material
was significantly lower in the apical region as compared to the middle (microradiograph
p < 0.001; histology p < 0.001) and cervical parts (microradiograph p = 0.040; histology
p = 0.002). No differences were seen between the cervical and middle regions of the alveoli
with respect to homogeneity (Figure 4b).
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Figure 3. Representative cross-section of two different alveoli shown as microradiograph (a) and
histologic section (b). The microradiograph shows a considerable void within the bone substitute
material and high density of the substitute material in the cervical area, while a comparably low
density is visible in the histologic section which, however, appears as homogeneous throughout
the alveolus.

Table 1. Mean values and standard deviations for all measurements and ratings.

Parameter Mean SD

Volume [cm3] 0.120 0.041
Mass Creos [g] 0.155 0.054

Density—microradiograph 2.291 0.395
Density—histology 2.018 0.504

Homogeneity—microradiograph 2.258 0.445
Homogeneity—histology 1.807 0.448

Table 2. Correlation coefficients (Spearman’s rho) for all parameters evaluated.

Mass Creos Density—
Microradiograph

Density—
Histology

Homogeneity—
Microradiograph

Homogeneity—
Histology

Volume 0.918 0.995 0.290 0.987 0.227
Mass Creos 0.913 0.262 0.959 0.263
Density—

microradiograph 0.279 0.323 0.230

Density—
histology 0.267 0.449

Homogeneity—
microradiograph 0.233
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Table 3. Mean values, SD and comparisons of apical, middle and cervical thirds of alveoli with
respect to density and homogeneity.

Apical Middle Cervical One Sample Wilcoxon Tests
(Corrected p-Values)

MEAN SD MEAN SD MEAN SD apical—
middle

apical—
cervical

cervical—
middle

Density—microradiograph 2.139 0.591 2.408 0.526 2.327 0.570 <0.001 * 0.100 0.200

Density—histology 1.903 0.692 2.149 0.629 2.003 0.637 <0.001 * 0.300 0.020 *

Homogeneity—
microradiograph 2.117 0.634 2.372 0.600 2.285 0.553 <0.001 * 0.040 * 0.200

Homogeneity—histology 1.641 0.575 1.896 0.603 1.883 0.548 <0.001 * 0.002 * 1.000

Significant differences are marked with *.
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4. Discussion

Questioning the relevance of standardized but unrealistic defects for evaluating bio-
materials during preclinical testing [30], the primary goal of this study was to evaluate
the homogeneity and density of augmentation materials in simulated ridge preservation
procedures. While manufacturers try to optimize the particle size, pore size and intercon-
nectivity of bone substitute materials [16], the handling of the material by clinicians may
alter the overall porosity by applying insufficient or excessive compression [20]. Overall,
alveolar ridge preservation has been described as an effective therapy preventing bone
resorption [3,4], but the use of a particulate synthetic bone substitute has also been shown to
interfere with the normal healing processes of alveolar bone [19] and a certain dependency
on the exact grafting material used [34] may exist.

Being in line with a clinical report showing that a complete fill of random-shaped
defects cannot be achieved predictably [9], less compaction and less homogeneity of aug-
mentation material was seen in the apical parts of the alveoli. The middle third of the
alveoli showed the best values for the parameters density and homogeneity, indicating
a certain level of predictability. Taking into account inevitable variations in defect sizes
following extractions, standard deviations calculated for the volume and mass of augmen-
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tation material did not exceed 35%, while ratings for density and homogeneity showed
maximum standard deviations of 25%. The weak but mostly significant correlations found
among all parameters studied further indicate the reliability of the data presented as well
as the comparability of microradiographic and histologic analysis.

A recent animal study has shown that compressive forces in the range of 200 g acting
on the crestal surface of an extraction socket are required for a particulate graft material to
penetrate into apical areas [24]. While it is generally argued that voids would compromise
bone formation, a calcium phosphate cement with an uneven distribution and shape of
bubbles performed better in an animal model as compared to more uniform materials [29].
The authors argued that gas bubble formation for the in situ fabrication of optimal porosity
would be hardly controllable as gas bubbles move through the augmentation material
leading to greater voids in crestal areas [29]. Based on these findings, it may be argued
that the overpacking of bone substitutes hindering access to necessary vasculature may be
problematic, too [29]. However, a novel mineral–organic osteoconductive adhesive based
on tetracalcium phosphate, phosphoserine and water has shown superior regenerative
potential without displaying porosity upon placement [35].

Several limitations have to be considered when interpreting the findings presented.
The animal model used here differs morphologically from human patients but is in line
with a regularly used animal model for preclinical research [30]. As was pointed out
in a previous report [36], the socket volume of human teeth is in the range of 0.5 mL,
which is greater as compared to this animal model where, in addition, only single roots
of teeth have been considered. Limited access to augmentation sites also plays a role in
achieving uniform results, which has not been restricted in this experiment. In addition,
working on cadaver bone excludes blood flow, which may be problematic in clinical settings.
Also, the bone substitute material was not rehydrated prior to use in order to avoid an
uncontrollable variable. As such, the results presented may be seen as best-case scenarios
obtained under simplified conditions. Furthermore, conducting this study as a live animal
experiment would have allowed us to evaluate the relevance of the void spaces seen
with respect to the bone response. While the study at hand was aimed at evaluating the
extent of graft compression during augmentation procedures, the limitations of the ex
vivo study design hinder the transferal of the results into clinical practice immediately. A
potential solution for the problem presented here, i.e., non uniformity of augmentation
material, may be the in situ formation of a bone substitute, as previously tried for calcium
phosphate-based materials [29]. From a methodologic point of view, the results are limited
to this specific bone substitute as the shape of the granules may have an effect on defect
filling [17]. As shown in a previous study [22], the material used here shows regenerative
performance comparable to a more frequently used particulate bovine material, BioOss.
Despite maximum care during processing, artefacts resulting from augmentation material
being lost during processing cannot be excluded.
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