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Abstract

Pause-internal phonetic particles (PINTs) comprise a variety of phenomena including:
phonetic-acoustic silence, inhalation and exhalation breath noises, filler particles “uh”
and “um” in English, tongue clicks, and many others. These particles are omni-present
in spontaneous speech, however, they are under-researched in both natural speech and
synthetic speech. The present work explores the influence of PINTs in small-context
recall experiments, develops a bespoke speech synthesis system that incorporates the
PINTs pattern of a single speaker, and evaluates the influence of PINTs on recall for
larger material lengths, namely university lectures.

The benefit of PINTs on recall has been documented in natural speech in small-
context laboratory settings, however, this area of research has been under-explored
for synthetic speech. We devised two experiments to evaluate if PINTs have the
same recall benefit for synthetic material that is found with natural material. In
the first experiment, we evaluated the recollection of consecutive missing digits for a
randomized 7-digit number. Results indicated that an inserted silence improved recall
accuracy for digits immediately following. In the second experiment, we evaluated
sentence recollection. Results indicated that sentences preceded by an inhalation
breath noise were better recalled than those with no inhalation. Together, these
results reveal that in single-sentence laboratory settings PINTs can improve recall for
synthesized speech.

The speech synthesis systems used in the small-context recall experiments did not
provide much freedom in terms of controlling PINT type or location. Therefore, we
endeavoured to develop bespoke speech synthesis systems. Two neural text-to-speech
(TTS) systems were created: one that used PINTs annotation labels in the training
data, and another that did not include any PINTs labeling in the training material.
The first system allowed fine-tuned control for inserting PINTs material into the
rendered material. The second system produced PINTs probabilistally. To the best
of our knowledge, these are the first TTS systems to render tongue clicks.

Equipped with greater control of synthesized PINTs, we returned to evaluating
the recall benefit of PINTs. This time we evaluated the influence of PINTs on the
recollection of key information in lectures, an ecologically valid task that focused on
larger material lengths. Results indicated that key information that followed PINTs
material was less likely to be recalled. We were unable to replicate the benefits of
PINTs found in the small-context laboratory settings.

This body of work showcases that PINTs improve recall for TTS in small-context
environments just like previous work had indicated for natural speech. Additionally,
we’ve provided a technological contribution via a neural TTS system that exerts finer
control over PINT type and placement. Lastly, we’ve shown the importance of using
material rendered by speech synthesis systems in perceptual studies.





Ausführliche Zusammenfassung

Pauseninterne phonetische Partikeln (PINTs) umfassen eine Vielzahl von Phänome-
nen, wie z. B. akustisch-phonetische Stille, Ein- und Ausatmungsgeräusche, die Füll-
partikeln "uh" und "um" im Englischen und "äh" und "ähm" im Deutschen sowie
Zungenklicks. Diese Partikeln sind sowohl für natürliche als auch für synthetische
Sprache weitgehend unerforscht. Die vorliegende Arbeit ist in drei Kapitel unterteilt.

Kapitel 3 befasst sich mit dem Einfluss von PINTs in synthetischer Sprache auf
den Abruf von Ein-Satz-Laborstimuli. Kapitel 3 basiert auf den Veröffentlichungen
Elmers et al. (2021a) und Elmers et al. (2021b). Frühere Arbeiten haben gezeigt,
dass die Aufnahme von PINTs in natürliche Sprache Vorteile für die Wahrnehmung
bringt. Daher ist es ein Hauptziel dieses Abschnitts, die Wahrnehmungsvorteile von
PINTs in synthetischer Sprache zu bewerten. Es wurden zwei Experimente durchge-
führt. Das erste Experiment verwendete ein konkatenatives Sprachsynthesesystem,
um randomisierte siebenstellige Zahlen zu erzeugen. Das Erinnerungsvermögen der
Teilnehmer wurde durch ein Wahrnehmungsexperiment bewertet, bei dem sie gebe-
ten wurden, drei aufeinanderfolgende Ziffern in einem später präsentierten Strang zu
ergänzen. Vor einigen der Ziffern wurden Pausen eingefügt, um deren Einfluss auf das
Erinnerungsvermögen zu ermitteln. Das zweite Experiment, eine Replikationsstudie
von Whalen et al. (1995), untersuchte das Erinnerungsvermögen der Teilnehmer an
synthetische Sprache. In diesem Experiment wurde ein konkatenatives Synthesesys-
tem zur Erzeugung von Sätzen verwendet. Vor einigen Sätzen wurden Einatmungs-
geräusche eingefügt, um das Erinnerungsvermögen an die Satzinhalte zu bewerten.
Insgesamt deuteten diese Experimente darauf hin, dass synthetisierte PINTs in La-
borumgebungen mit nur einem Satz das Erinnerungsvermögen verbessern können.
Die nächsten beiden Absätze beschreiben die beiden Experimente ausführlicher.

Evaluierung der Wirkung von Pausen auf das Erinnerungsvermögen an
Zahlen bei synthetischer Sprache Diese Studie untersucht die Auswirkungen
eingefügter Stille auf das Ziffernerinnerungsvermögen bei synthetisierter Sprache. Die
Teilnehmer nahmen an einem Wahrnehmungsexperiment teil, bei dem sie eine sieben-
stellige Zufallszahl hörten, die von einem Sprachsynthesesystem wiedergegeben wurde.
Bei einigen Stimuli wurde vor einer der Ziffern eine Pause (200 ms oder 500 ms lang)
eingefügt, während andere keine Pause enthielten. Unmittelbar nach jedem Stimulus
wurden die Teilnehmer gebeten, eine fehlende Folge von drei benachbarten Ziffern zu
ergänzen. Die Ergebnisse zeigen, dass die Erinnerungsgenauigkeit unmittelbar nach
einer Pause verbessert wird. Außerdem fanden wir einen signifikanten Effekt bei ei-
ner Pausendauer von 500 ms, aber nicht bei einer Pausendauer von 200 ms. Bei
der Untersuchung der Reaktionszeit stellten wir fest, dass sich die Reaktionszeit der
Teilnehmer erhöhte, wenn eine Pause vorhanden war. Insgesamt zeigen die Ergeb-
nisse, dass Pausen in der synthetischen Sprache eine Rolle spielen. Diese Forschung
kann im Zusammenhang mit der Untersuchung von Pausen und pausen-internen Par-



tikeln (z. B. Atemgeräusche) in synthetisierter Sprache und deren Auswirkungen auf
menschliche Zuhörer betrachtet werden.

Einatmen: Atemgeräusche verbessern das Erinnerungsvermögen bei syn-
thetischer Sprache Diese Studie greift Whalen et al. (1995) auf, indem sie eng-
lischsprachige Teilnehmer in einem Wahrnehmungsexperiment auswertet, um festzu-
stellen, ob ihr Erinnerungvermögen durch das Einfügen von Atemgeräuschen in Sätze,
die von einem Sprachsynthesesystem erzeugt werden, beeinflusst wird. Whalen fand
eine Verbesserung des Erinnerungsvermögen für Sätze, denen ein Atemgeräusch vor-
angestellt war, im Vergleich zu Sätzen ohne Atemgeräusch. Während Whalen et al.
(1995) die englischen Sätze mit Hilfe der Formantensynthese wiedergaben, verwenden
wir ein modernes konkatenatives Synthesesystem. In der vorliegenden Studie wurden
Einatmungen von drei verschiedenen Längen verwendet: 0 ms (kein Atemgeräusch),
300 ms (kurzes Atemgeräusch) und 600 ms (langes Atemgeräusch). Unsere Ergebnis-
se stimmten mit denen von Whalen et al. (1995) für die 600 ms-Bedingung überein,
aber nicht für die 300 ms-Bedingung, was darauf hindeutet, dass nicht alle Inhala-
tionen das Erinnerungsvermögen verbessern. In der vorliegenden Studie wurde auch
ein signifikanter Effekt für die Satzlänge festgestellt, was zeigt, dass kürzere Sätze ei-
ne höhere Erinnerungsgenauigkeit aufweisen als längere Sätze. Insgesamt deutet die
vorliegende Studie darauf hin, dass Atemgeräusche für das Erinnerungsvermögen an
synthetisierte Sprache wichtig sind und dass sich Forscher bei zukünftigen Studien auf
längere und komplexere Arten von Sprache, wie Absätze oder Dialoge, konzentrieren
sollten.

Kapitel 4 untersucht die Erkennung von PINTs und entwickelt eine maßgeschnei-
derte Sprachsynthese basierend auf dem PINTs-Muster eines einzelnen Sprechers.
Kapitel 4 basiert auf den Veröffentlichungen Elmers (2022) und Elmers et al. (2023).
Im ersten Experiment wurde die Klassifizierungsgenauigkeit von PINTs unter Ver-
wendung verschiedener maschineller Lernarchitekturen bewertet. Die verschiedenen
Architekturen für maschinelles Lernen schnitten ähnlich ab, wobei einige PINTs er-
folgreich klassifiziert wurden, während andere nicht klassifiziert werden konnten. Dies
veranlasste uns, ein internes Annotationsschema zu entwickeln, um ein Synthesesys-
tem zu schaffen, das eine Vielzahl von PINTs erzeugen kann. Es wurden zwei Text-
to-Speech-Systeme (TTS) entwickelt: eines, das PINTs mithilfe von konkreten Labels
erzeugt, und ein zweites System, das keine Labels in den Trainingsdaten enthält und
PINTs auf probabilistische Weise erzeugt. Das erste System bietet Kontrolle über die
Platzierung und den PINT-Typ und ist unseres Wissens nach das erste System, das
Zungenklicks erzeugt. Außerdem wurde eine Wahrnehmungsstudie mit Stimuli durch-
geführt, die von dem gelabelten System erzeugt wurden. Insgesamt stellt der zweite
Teil einen technologischen Beitrag dar und zeigt, dass Sprachsynthesesysteme, die
natürliche Phänomene einbeziehen, leistungsstarke Werkzeuge für die Erstellung und
Auswertung von manipuliertem Versuchsmaterial sein können. Die nächsten beiden
Absätze beschreiben die beiden Experimente ausführlicher.



Vergleich von Erkennungsmethoden für pauseninterne Partikeln In die-
ser Studie wurden verschiedene Architekturen des maschinellen Lernens zur Klassi-
fizierung von PINTs untersucht, wie z. B. Füllpartikeln (FPs), Atemgeräusche und
Zungenklicks. Viele dieser PINTs treten gemeinsam auf, und durch die gleichzeitige
Modellierung dieser PINTs soll die Klassifizierungsgenauigkeit auch für die umgeben-
den PINTs verbessert werden. Für die Modellierung wurde eine annotierte Teilmen-
ge aus einem deutschen Spontansprachkorpus verwendet. Mel-Frequenz-Cepstrum-
Koeffizienten wurden als Eingaben verwendet, um PINTs mit drei Arten von neuro-
nalen Netzen zu modellieren: ein allgemeines neuronales Netz, ein konvolutionelles
neuronales Netz und ein rekurrentes neuronales Netz. Die Modelle verwendeten die
gleichen Hyperparameter, die gleiche Anzahl von Schichten und die gleiche Anzahl
von Neuronen für diese Schichten, sodass der Schwerpunkt auf die Modellarchitek-
tur gelegt wurde. Es wurde erwartet, dass das rekurrente neuronale Netz am besten
abschneiden würde, da es in der Lage ist, zeitliche Informationen zu erfassen. Alle
Modelle schnitten jedoch ähnlich ab. Die Modelle schnitten am besten bei der Klas-
sifizierung stiller Segmente ab, gefolgt von Ein- und Ausatmungen. Allerdings gelang
es allen Modellen nicht, FPs und Klicks genau zu klassifizieren, was darauf hindeu-
tet, dass die gleichzeitige Modellierung von PINTs nicht immer die Genauigkeit für
umgebende PINTs verbessert. Diese Ergebnisse deuten darauf hin, dass eine genaue
Klassifizierung eher von der Quantität und Qualität der Annotation als von der Mo-
dellarchitektur abhängt. Die wichtigsten Beiträge dieser Arbeit sind die gleichzeitige
Klassifizierung mehrerer PINTs und die Verbesserung der Klassifizierung von PINTs
für die deutsche Sprache.

Synthese nach ein paar PINTs: Untersuchung der Rolle von pausenin-
ternen phonetischen Partikeln in der Sprachsynthese und -wahrnehmung
Pauseninterne phonetische Partikel, wie z. B. Stille, Atemgeräusche, Füllpartikeln,
Zungenschnalzen und Zögern sind in der natürlichen Sprache weit verbreitet. Die-
se Partikeln spielen eine wichtige Rolle in der Sprachwahrnehmung, werden aber in
der Sprachsynthese selten modelliert. Wir haben zwei TTS-Systeme entwickelt: 1)
ControlledPINT, ein Modell, das PINT-Labels in die Trainingsdaten einbezog, und
2) AutoPINT, ein Modell, das keine PINT-Labels in die Trainingsdaten einbezog.
Beide Modelle produzierten weniger PINTs und hatten eine geringere Gesamtdauer
der PINTs als die natürliche Sprache. Das gelabelte Modell erzeugte mehr PINTs und
hatte eine längere Gesamtdauer der PINTs als das Modell ohne Labels. In einem Hör-
experiment mit dem gelabelten Modell haben wir den Einfluss verschiedener PINT-
Kombinationen auf die Wahrnehmung der Sprechersicherheit untersucht. Wir teste-
ten vier Bedingungen, die durch das ControlledPINT-Modell generiert wurden: eine
“flüssige” Bedingung ohne PINTs-Material, eine Bedingung mit langem Schweigen, ei-
ne Bedingung mit Füllpartikeln und eine kombinierte Bedingung, die Schweigen, Füll-
partikel “um”, Zungenklick und Einatmung beinhaltete. Die Bedingung ohne PINTs
wurde als signifikant selbstsicherer wahrgenommen als die PINTs-Bedingungen, was



darauf hindeutet, dass wir durch die Einbeziehung von PINTs verändern können,
wie selbstsicher TTS-Sprecher wahrgenommen werden. Die drei Bedingungen mit
PINTs schnitten insgesamt ähnlich ab, wobei die Bedingung mit langem Schweigen
geringfügig besser abschnitt als die Bedingung mit Füllpartikeln, die wiederum ge-
ringfügig besser abschnitt als die Kombinationsbedingung. Diese Ergebnisse zeigen,
dass das Einfügen von PINTs in synthetische Sprache dazu verwendet werden kann,
den Klang des Materials zu beeinflussen. Darüber hinaus unterstreicht diese Studie,
dass der Output von TTS-Systemen für die Untersuchung von Forschungsfragen im
Bereich der Sprachwissenschaft genutzt werden kann. Da TTS-Anwendungen, wie
z. B. Konversationssysteme, zunehmend in der Lage sind, eine lebensnahe Kommu-
nikation zu ermöglichen, muss die Rolle dieser spontanen Sprachphänomene besser
verstanden werden und Teil der generativen Modellierung werden.

Kapitel 5 vergleicht die Verwendung von PINTs zwischen Universitätsdozenten und
englischsprachigen Testmaterialien und verbindet den perzeptuellen Erinnerungsfokus
aus Kapitel 3 mit dem maßgeschneidert Sprachsynthesesystem aus Kapitel 4. Kapitel
5 basiert auf den Publikationen Elmers & Trouvain (2022), Elmers (2023) und El-
mers & Székely (2023). Zunächst verglichen wir die Verwendung von PINTs aus Vor-
lesungen der Yale University mit dem TOEFL iBT Hörverstehensübungsabschnitt.
Wir stellten fest, dass die PINTs fast 1/3 der Gesamtzeit in den Yale-Vorlesungen
ausmachten. Dieses Ergebnis deutet darauf hin, dass untersucht werden muss, wie
PINTs den Abruf von Schlüsselinformationen in Vorlesungen beeinflussen. Anstatt
sich auf Einzelsatz-Laborstimuli zu konzentrieren, konzentrierte sich das Kapitel 5
auf die Evaluierung der Erinnerungseffekte von PINTs in realen Bildungssituationen.
Als nächstes führten wir ein Wahrnehmungsexperiment durch, bei dem natürliche
Sprache aus Universitätsvorlesungen verwendet wurde. Die Teilnehmer waren sowohl
englische Muttersprachler als auch Nicht-Muttersprachler. Die Teilnehmer hörten
dreiminütige Abschnitte, die aus Vorlesungen in voller Länge extrahiert wurden, und
beantworteten Multiple-Choice-Fragen. Einigen Informationen, die für die Beantwor-
tung der Fragen entscheidend waren, wurden PINTs vorangestellt. Die Ergebnisse
zeigten, dass Inhalte, denen PINT-Material unmittelbar vorausging, mit geringerer
Wahrscheinlichkeit abgerufen wurden. Im dritten Experiment wurde das gleiche Ver-
suchsparadigma wie im zweiten Experiment verwendet, allerdings mit synthetischer
Sprache. Die Audioinhalte wurden genauso wiedergegeben wie die natürliche Sprache.
Auch hier zeigte sich, dass Informationen, denen PINTs unmittelbar vorausgingen,
weniger wahrscheinlich abgerufen wurden. Insgesamt waren diese Experimente nicht
in der Lage, die Vorteile von PINTs, die in Einzelsatz-Laborsituationen gefunden wur-
den, in realen Vorlesungsszenarien zu replizieren. Wichtig ist, dass in diesen Studien
nur das PINT-Profil eines einzelnen Sprechers untersucht wurde. Die Muttersprache
der Teilnehmer hatte in keinem der beiden Experimente einen signifikanten Einfluss
auf das Erinnerungsvermögen. Dies ist ein positives Ergebnis, das darauf hindeutet,
dass die Einbeziehung von PINTs-Material in ein Sprachsynthesesystem keine anderen
Auswirkungen auf nicht-muttersprachliche Hörer hat als auf muttersprachliche Hörer.



Diese Arbeit dient der Erforschung der komplexen Effekte von PINTs. Zukünftige
Arbeiten sollten weiterhin eine Vielzahl von PINT-Sprecherprofilen evaluieren und
untersuchen, wie die Verwendung von PINTs die Leistung in Bildungsumgebungen
beeinflusst, insbesondere in Universitätsumgebungen, in denen Studenten mit unter-
schiedlichem Sprachhintergrund auf der Grundlage ihrer Erinnerung an Vorlesungs-
material bewertet werden. Die nächsten drei Absätze beschreiben die Experimente
ausführlicher.

Vergleich der PINTs in Universitätsvorlesungen In dieser Studie wurde die
Verwendung von PINTs in fünf Universitätsvorlesungen aus Open Yale Courses (2007b)
mit dem TOEFL iBT Hörtest für englischsprachige Vorlesungen verglichen. Die fol-
genden PINTs wurden annotiert: Schweigen, Einatmen, Ausatmen, “uh”, “um”, Zun-
genklicks und eine Kategorie “andere”. Insgesamt wurden für die Yale-Vorlesungen
Material von 5 Stunden (1 Stunde pro Sprecher) und für die TOEFL-Vorlesungen 15
Minuten annotiert. Die Yale-Vorlesungen wurden während eines dreimonatigen Se-
mesters aufgezeichnet, so dass die Annotationen zu Beginn, in der Mitte und am Ende
des Semesters gemacht wurden, um die Variation der PINTs zwischen den Dozenten
zu vergleichen. Die Ergebnisse zeigten, dass die PINTs bei den Yale-Vorlesungen
30% der Gesamtzeit ausmachten und bei den TOEFL-Vorlesungen 20%. Bei den
Yale-Vorlesungen wurde bei den verschiedenen Sprechern eine unterschiedliche Ver-
wendung von PINTs in Bezug auf die Art der PINTs, die Anzahl, die Dauer und die
Häufigkeit festgestellt. Allerdings waren die Dozenten während des gesamten Semes-
ters in ihrer PINT-Verwendung konsistent, was auf minimale Variationen innerhalb
der Dozenten hindeutet. Der hohe Anteil an PINTs in Vorlesungen deutet darauf
hin, dass weitere Arbeiten durchgeführt werden sollten, um zu untersuchen, wie diese
Partikeln den Abruf von Vorlesungsmaterial beeinflussen.

Einfluss von Pausenpartikeln auf das Erinnern von Vorträgen Diese Studie
untersucht den Einfluss von PINTs auf die Erinnerung an natürliche Sprache bei mut-
tersprachlichen und nicht-muttersprachlichen Hörern des Englischen. Die Teilnehmer
waren 45 monolinguale englische und 45 deutsche L1-Hörer, die Abschnitte aus Uni-
versitätsvorlesungen in englischer Sprache hörten und inhaltliche Fragen beantwor-
teten. Es wurden drei Versionen der Vorlesungsstimuli erstellt: eine unmanipulierte
Originalversion, eine "Silence"-Version und eine "No PINTs"-Version, bei der alle
PINTs einschließlich der Stille entfernt wurden. In der Original- und der "Silence"-
Version wurde die Hälfte der Schlüsselinformationen durch PINT-Material eingeleitet.
Die Ergebnisse zeigten, dass das Material, dem PINTs vorangestellt waren, mit gerin-
gerer Wahrscheinlichkeit abgerufen wurde. Außerdem war die Erstsprache der Teil-
nehmer für das Verstehen des Sprechers nicht von Bedeutung. Allerdings schnitten
englische Hörer in der Bedingung “keine PINTs” tendenziell besser ab, während deut-
sche Hörer in der Originalbedingung tendenziell besser abschnitten. In dieser Studie
konnte der in den Laborexperimenten mit Einzelsätzen gefundene Erinnerungsvorteil



von PINTs nicht repliziert werden. Die Interaktion zwischen PINTs und dem Abruf
von Informationen ist komplex, insbesondere in realen Vorlesungsszenarien. Diese
Arbeit zielt darauf ab, das Verständnis von PINTs zu verbessern und zu zeigen, wie
sie sowohl muttersprachliche als auch nicht-muttersprachliche Hörer in Bildungssitua-
tionen beeinflussen.

Die Auswirkung von pauseninternen phonetischen Partikeln auf den Abruf
in synthetisierten Vorlesungen Wir untersuchten die Auswirkung von PINTs auf
das Erinnerungsvermögen von englischen Muttersprachlern und Nicht-Muttersprachlern
in einem Hörexperiment mit synthetisiertem Material, das eine Universitätsvorlesung
simulierte. Mit Hilfe eines neuronalen Sprachsynthesizers, der auf aufgezeichnete Vor-
lesungen mit PINTs-Kommentaren trainiert wurde, erzeugten wir drei verschiedene
Bedingungen: eine Basisversion, eine "Silence"-Version, bei der nicht-stille PINTs
durch Stille ersetzt wurden, und eine "No PINTs"-Version, bei der alle PINTs, ein-
schließlich Stille, entfernt wurden. Die Hälfte der Teilnehmer wurde darüber infor-
miert, dass sie computergenerierte Audiodaten hörten, während die andere Hälfte
darüber informiert wurde, dass die Audiodaten mit einem Mikrofon von schlechter
Qualität aufgenommen worden waren. Zusätzlich haben wir die Meinungen der Teil-
nehmer zu den Audios, wie z. B. ihr Interesse, mit einem Fragebogen erhoben. Es
zeigte sich, dass weder die Bedingung noch die Muttersprache der Teilnehmer einen
signifikanten Einfluss auf das Gesamtergebnis hatten, und dass das Vorhandensein
von PINTs vor kritischen Informationen einen negativen Effekt auf die Erinnerung
hatte. Das Interesse der Teilnehmer an den Audioinhalten wirkte sich signifikant po-
sitiv auf die Erinnerungsleistung aus. Diese Studie unterstreicht die Bedeutung der
Berücksichtigung von PINTs für Bildungszwecke in Sprachsynthesesystemen.
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Chapter 1

Introduction

1.1 Motivation

Pause-internal phonetic particles (PINTs) comprise a variety of phenomena including:
phonetic-acoustic silence, inhalation and exhalation breath noises, filler particles “uh”
and “um” in English, tongue clicks, and many others. The benefit of PINTs on recall
has been documented in natural speech in small-context laboratory settings, however,
this area of research has been under-explored for synthetic speech. Therefore, a
major goal of this thesis was to evaluate the perceptual benefits of PINTs on recall
in synthetic speech.

Speech synthesis systems often do not provide much freedom in terms of control-
ling PINT type or location. Therefore, we endeavoured to develop bespoke speech
synthesis systems that produce a variety of PINTs. Two neural text-to-speech (TTS)
systems were created: one that used PINTs annotation labels in the training data,
and another that did not include any PINTs labeling in the training material. The
first system allowed fine-tuned control for inserting PINTs material into the rendered
material. The second system produced PINTs probabilistally. To the best of our
knowledge, these are the first TTS systems to render tongue clicks. Importantly,
these systems showcased that the output of TTS systems can be used to investigate
research questions in the speech science field. As TTS applications, such as conver-
sational systems, become increasingly capable of facilitating lifelike communication,
the roles of these spontaneous speech phenomena will need to be better understood
and become part of the generative modeling.

Using one of our developed TTS systems, we returned to evaluating the recall
benefit of PINTs. This time we evaluated the influence of PINTs on the recollection of
key information in lectures, an ecologically valid task that focused on larger material
lengths. This work improved the understanding of PINTs and how they influence
listeners in educational settings. Furthermore, this work highlighted the importance
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of considering PINTs for educational purposes in speech synthesis systems.
This body of work showcases that PINTs improve recall for TTS in small-context

environments just like previous work had indicated for natural speech. Additionally,
we’ve provided a technological contribution via a neural TTS system that exerts
finer control over PINT type and placement. We’ve shown the importance of using
material rendered by speech synthesis systems in perceptual studies. Ultimately, the
motivation behind this body of work is to improve the generation of synthetic PINTs
and evaluate the effects of PINTs in laboratory and educational settings.

1.2 Research Questions

This thesis explores the following research questions:

1. What are the perceptual effects of PINTs in synthesized speech?

• How do PINTs influence recall in single-sentence laboratory experiments?

• How do PINTs influence recall in larger material lengths (i.e., university
lectures)?

– Do PINTs influence native and non-native listeners differently?

2. How well do different detection methods classify PINTs?

3. How much control can researchers have over the insertion of PINTs for speech
synthesis systems?

4. How often do PINTs occur in lecture environments?

1.3 Structure

This body of work is divided into three main chapters. Chapter 3 focuses on the
influence of PINTs in synthetic speech on the recall of single-sentence laboratory
stimuli. Chapter 3 is based on the publications Elmers et al. (2021a) and Elmers
et al. (2021b). The first experiment used a concatenative speech synthesis system
to generate randomized 7-digit numbers. Participant’s recollection was evaluated via
a perceptual experiment where they were asked to recall three consecutive missing
digits. Silences were inserted before some of the digits to evaluate their influence
on recollection. The second experiment partially replicated Whalen et al. (1995)
by evaluating participant’s recollection of synthetic audio. This experiment used a
concatenative synthesis system to generate sentences. Inhalation breath noises were
inserted before some of the sentences to evaluate recollection of the sentence contents.
Overall, these experiments indicated that in single-sentence laboratory environments
synthesized PINTs can improve recall.
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Chapter 4 investigated the detection of PINTs and developed bespoke speech syn-
thesis systems based on the PINTs pattern of a single speaker. Chapter 4 is based on
the publications Elmers (2022) and Elmers et al. (2023). The first experiment eval-
uated the classification accuracy of PINTs using different machine learning architec-
tures. The different machine learning architectures performed similarly, successfully
classifying some PINTs, while failing to classify others. This led us to develop an
internal annotation schema with the purpose of creating a synthesis system capable
of generating a variety of PINTs. Two TTS systems were developed: one that pro-
duced PINTs with overt labels, and a second system that did not include labels in
the training data, which produced PINTs probabilistically. Additionally, a perception
study was conducted using stimuli generated from the labeled system. Overall, the
second part provides a technological contribution and showcases that speech synthe-
sis systems, that include natural phenomena, can be powerful tools for creating and
evaluating manipulated experimental material.

Chapter 5 compares the PINTs usage between university lecturers and English-
language test materials. Chapter 5 also merges the perceptual recall focus from
chapter 3 with the custom speech synthesis system from chapter 4. Chapter 5 is
based on the publications Elmers & Trouvain (2022), Elmers (2023), and Elmers &
Székely (2023). First, we compared the PINTs usage from Yale University lectures to
the TOEFL iBT lecture listening practice section. We found that PINTs comprised
almost 1/3 of the total time in the Yale lectures. This finding indicated a need for
evaluating how PINTs influence the recall of key lecture information. Rather than fo-
cusing on single-sentence laboratory stimuli, chapter 5 focuses on evaluating the recall
effects of PINTs in real-world educational settings. Next, we conducted a perceptual
experiment that used natural speech from university lectures. Participants included
both native and non-native speakers of English. Participants heard three-minute
sections, that were extracted from full length length lectures, and then answered
multiple-choice questions. Some of the information that was critical to answering
the questions was preceded by PINTs. Results revealed that content immediately
preceded by PINTs material was less likely to be recalled. The third experiment
used the same experimental paradigm from experiment two, except with synthesized
speech. The audio contents were rendered the same as the natural speech. Again, we
found that information immediately preceded by PINTs was less likely to recalled.
Overall, these experiments were not able to replicate the benefits of PINTs found in
single-sentence laboratory settings in real-world lecture scenarios. The participants’
native language did not significantly influence their recall in either experiment.





Chapter 2

Background

Pauses exhibit a great variety in their type and focus. For example, Trouvain &
Werner (2022) describe four kinds of pauses: 1) articulation pauses, 2) listener pauses,
3) transition pauses during conversational turn-taking, and 4) pauses during con-
nected speech. This thesis focuses on the fourth definition of pauses and investigates
the pauses found within monologic speech. Pause-internal phonetic particles (PINTs)
describe a variety of phenomena, such as acoustic-phonetic silence, breath noises
(i.e., inhalations and exhalations), filler particles (FPs) like “uh” or “um”, and tongue
clicks. PINTs, in general, have a wide variety of functions and applications. PINTs
are sometimes referred to as non-verbal vocalizations (NVVs), hesitation phenomena,
or disfluencies. However, each of these classifications has its own definition and focus,
often without a consensus amongst researchers. Therefore, this work will exclusively
use the term PINTs, with definitions and focus provided in this chapter. Specifically,
we investigated the influences of PINTs in recall, their inclusion in text-to-speech
(TTS) synthesis systems, and their general educational applications. This chapter
contains a section dedicated to each of the PINTs investigated in this work.

2.1 Silences

Silence segments (henceforth silences) refer to periods of acoustic-phonetic silence
that are silent in production, but not in transmission. We use a definition of silences
similar to Belz & Trouvain (2019). In other words, silences are phases absent of other
phonetic particles such as breath noises, clicks, laughter, etc. Figure 2.1 provides
an annotated silence example with spectrogram and waveform information. Even
when the spectrogram and waveform both show an absence of sound, silences are not
always obvious to listeners. MacIntyre & Scott (2022) found that participants could
not reliably detect gaps of silence until the silence exceeded 440 ms, and that silence
gaps below 200 ms were only correctly detected at chance levels. Goldman-Eisler



2. Background 6

Figure 2.1: Example waveform and spectrogram for silence annotation.

(1961) found that a majority of silences in discussions are less than 1 second, and that
very few silences are longer than 2 seconds. Silence durations between sentences for
Japanese newscasters have been modeled using the preceding and following prosodic
information (Nakamura et al., 2020). Additionally, both intonation phrase length
and prosodic structure have been shown to affect the duration of silences (Krivokapić,
2007). For example, silences have an important role in breaking up speech. Goldman-
Eisler (1958) found that silences are often found before key information words, and
after redundant information words.

Silence, like many of the other PINTs investigated in this work, are highly indi-
vidualistic with a mixture of influences. Silence rates also showcase unique values
based on the gender, ethnicity, and geographic region of the speaker (Kendall, 2009).
Similarly, silences exhibit a variety of lengths due to speaker idiosyncrasies, silence
types, and dialogues (Fors, 2015). Silences are also influenced via diachronic change
and style differences. For example, Trouvain (2011) showed that the extensive use of
silences found in 1970s television commentaries is no longer common in modern times,
and differs from the silence usage of radio commentators. When comparing political
interviews, casual interviews, and political speeches, Duez (1982) also found stylistic
differences with the total silence duration being 50% longer in political speeches than
for the interviews.

2.2 Breath Noises

This work focuses on breath noises that occur during speech, such as inhalations and
exhalations. Breath noises, like silences, also vary by speaker. Breath noises, for
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Figure 2.2: Example waveform and spectrogram for inhalation breath noise anno-
tation.

example, can mark speaker individuality (Kienast & Glitza, 2003) or indicate formal-
ity in Korean (Winter & Grawunder, 2012). Breath noises are often associated with
syntactic-prosodic breaks (Trouvain et al., 2020). Trouvain et al. (2020) also shows
that many pauses contain inhalation noises, that inhalations are often low in inten-
sity, and vary greatly in duration. Figure 2.2 and Figure 2.3 provide an annotated
example for an inhalation and exhalation, respectively. Inhalations, in particular,
can provide perceptual cues to listeners. While evaluating single sentences, Whalen
& Kinsella-Shaw (1997) found a positive correlation between the duration of an in-
halation and the length of the upcoming sentence. Fuchs et al. (2013) similarly found
that the intensity and duration of breath noises are influenced by speech planning,
and can help the listener predict the amount of upcoming material. Breath noises also
frequently display a relationship with prosodic breaks during turn-taking. Overall,
speakers tend to economize breathing in their speech to their communicative needs
(Włodarczak et al., 2015).

2.3 Filler Particles

Filler particles (FPs) are another common PINT type, often with different realizations
depending on the language. Examples of FPs include: “uh” and “um” in English, “äh”
and “äm” in German, and “eto” and “ano” in Japanese. Figure 2.4 and Figure 2.5
show annotated examples for the English FPs “uh” and “um”, respectively. FPs have
a number of functions. For example, FPs exhibit communicative functions for turn-
taking and maintaining the floor (Clark & Fox Tree, 2002), and as a sociolinguistic
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Figure 2.3: Example waveform and spectrogram for exhalation breath noise anno-
tation.

identifier (Fruehwald, 2016). FPs can function as markers for forensic purposes (Braun
& Rosin, 2015; Muhlack et al., 2023), and have technological applications for forensic
voice comparison (Hughes et al., 2016). Laserna et al. (2014) showed that FP usage
correlated with age but not gender. FPs usage also varies between languages. For
example, Di Napoli (2020) found that FPs in Italian were far less common than
prolongations, which differs to what Eklund (2001) found for Swedish. Muhlack
(2023) found that English speakers preferred vocalic-nasal FPs (um), while Spanish
speakers used vocalic FPs (uh). de Leeuw (2007) found language-related differences in
the realization, location, and frequency of FPs in English, German, and Dutch. In a
longitudinal study, de Boer et al. (2022) evaluated L1 (Dutch) and L2 (English) FPs at
two time points (2.5 years), and found that FP spectral characteristics were consistent.
While there are high levels of variability for FPs between speakers and languages, Lo
(2020) showed that FP usage and acquisition for simultaneous bilingual speakers is
also influenced by their linguistic surroundings. Using a map task where participants
would play as both an instructor and instructee, Belz & Klapi (2013) found the role
was a significant factor for determining L1 and L2 FP usage. Specifically, Belz & Klapi
(2013) found that L1 and L2 speakers have different FP behaviors, with L2 speech
incorporating longer silences after FPs, compared to the shorter silences after FPs
in L1. Silber-Varod et al. (2020) found that with task-oriented dialogues, speakers
differed significantly in their FP usage, however, there was no difference when the
speaker switched roles.

While evaluating the presence of FPs at Japanese sentence and clause boundaries,
Watanabe et al. (2006) found that the ratio of FPs was dependent on the complexity
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Figure 2.4: Example waveform and spectrogram for filler particle “uh” annotation.

Figure 2.5: Example waveform and spectrogram for filler particle “um” annotation.
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of the upcoming material, with higher ratios found before complex clause boundaries.
Barr & Seyfeddinipur (2010) found that listeners expected new information when the
speaker used “um”, but the expectation was dependent on what was new information
for both the listener and speaker. Watanabe et al. (2008) found that Japanese listeners
had a faster response time when phrases were led by a FP, compared to when no FP
or silence was present. Conversely, Kosmala & Morgenstern (2019) did not find a
relationship between the rate of FPs and perceived question difficulty. Thus asserting
FPs occurred usually in an initial position, and are used mostly for planning and for
buying time.

In terms of public-speaking, FPs are often criticized, and orators recommend trying
to remove FPs from presentations. However, listener awareness of FP usage isn’t
always accurate and can be influenced. For example, Niebuhr & Fischer (2019) found
that listeners are less aware of both short and nasalized FPs, and that when speaker’s
used these types of FPs their oratory skills were rated higher. Transcribers also make
mistakes and often fail to transcribe FPs and other spontaneous speech phenomena
(Zayats et al., 2019). Overall, FP usage incorporates personal characteristics, and
FPs can be used for the prediction of upcoming information.

2.4 Tongue Clicks

Tongue clicks (henceforth clicks) involve velar ingressive suction with the back of the
tongue near the velum and the blade of the tongue near the front of the mouth,
potentially between the teeth or at the alveolar ridge (Ogden, 2020). Figure 2.6
shows an example of a click. Similar to other PINTs, clicks can also serve a variety of
functions. One unique function of clicks is the their ability to be indirect. For example,
clicks can refer to socially inappropriate topics, such as swearing, self-aggrandizing,
or sexual innuendos (Ogden, 2020). Additionally, it is possible to combine clicks with
gestures for additional effects or new meanings (e.g., click + wink). Clicks can also
have other social functions, such as indicating assertive or authoritative positions in
Irish English (Schulte, 2020). Clicks can function as discourse markers that index
a new sequence or signal formulation difficulties (Trouvain & Malisz, 2016). Pinto
& Vigil (2019) found that search clicks appear more frequently near nouns or noun
phrases, and that clicks might function as a hedge in a search event. However, Vigil
& Pinto (2020) found that listeners were unable to detect click sounds, and that it
might not be ideal to have long periods of silence. Since clicks can influence the
perception of speech, making it seem less dynamic or more more monotone.

2.5 Combination

So far, each particle has been shown in isolation, however, real-word examples are usu-
ally more complex and involve the co-occurrence of multiple PINTs (see Figure 2.7).
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Figure 2.6: Example waveform and spectrogram for tongue click annotation.

For example, Zellers (2022) found that FPs tended to appear next to search clicks
while inhalations appeared next to turn-continuation effects. Ogden (2013) also found
that clicks co-occurred in word-search, alongside other PINTs such as FPs, inhala-
tions, and silences. Clicks that index new sequences occurred at different syntactic
locations than clicks which index word searching. Moreno (2019) similarly found
clicks were used in word search and co-occur with filler particles.

Silences often are found surrounding other PINTs. Silence duration is influenced
by the type of FP, with silence durations being consistently shorter before FPs (Betz
& Kosmala, 2019). Many short silences, known as edge silences, are found adjacent
to other PINTs. Again, we also find that the distribution of co-occurring PINTs
depends on the communicative purposes (i.e., style). For example, oral presentations
include more pre-utterance clicks and inhalations (Kosmala, 2020). Adell et al. (2012)
found that 60% of FPs were preceded by a silence, and that only 24% of FPs were
followed by a silence. Speakers are able to exert their unique linguistic flair via their
PINTs usage, resulting in variation both between and within speakers for PINTs. For
example, some speakers heavily use FPs while others prefer not to use them, and
some speakers use short or long silences during their planning, or incorporate other
hesitations (Betz & Gambino, 2016). The use of both silences and FPs has been
associated with honest speech, rather than deceptive speech (Benus et al., 2006).

2.6 Other PINTs

There are many other phenomena found within pauses that are not the focus of
this work. The following PINTs were not evaluated: laughter, swallowing, coughing,
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Figure 2.7: Example waveform and spectrogram for co-occuring PINTs annotations.
Annotations include silence (sil), inhalation noise (in), exhalation noise
(ex), filler particles (uh), and speech (sp).

throat clearing, sniffling, lip smacking, yawning, interjections (e.g., “wow” in English),
back-channels (e.g., “uh-huh” in English), lexical fillers (e.g., “you know” in English),
and discourse markers (e.g., “like” in English). There are other phenomena that are
often associated with PINTs that also aren’t covered in this work such as: repairs (e.g.
replacement of immediately preceding erroneous speech), repeats (e.g., the repetition
of a single or series of words), false starts (e.g., start speech but quit before comple-
tion), and lengthenings (e.g., prolongation of part or parts of a word). A popular
model for describing hesitation behavior was put forth by Levelt for self-monitoring
and error repair (1983). This model explains how errors are detected, the incorpo-
ration of an editing term (e.g., silence or FP), and the repair. These lists are not
exhaustive, especially as researchers become more granular in their annotations of
these phenomena. Importantly, all of these phenomena have a richness and wealth to
their exploration but are out of scope for this work.

2.7 PINTs in TTS

Speech synthesis systems display large amounts of variation in how they handle
PINTs. For example, PINTs are often handled haphazardly, applying rudimentary
punctuation-based heuristics for determining their location, frequency, and duration.
Most modern TTS systems do not implement PINTs with appropriate placement and
duration (Trouvain & Möbius, 2018), and fail to include any breath noises whatso-
ever. However, there are a number of notable exceptions (Braunschweiler & Chen,
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2013; Székely et al., 2020).
PINTs are an important tool for helping listeners subdivide synthesized speech into

easily understood pieces. When trying to model silences, Yang et al. (2014) found
syntax, discourse, topic, and length all influenced the silence duration, showcasing
some of the numerous factors that influences silence durations. Moreover, using a
regression model, Yang et al. (2014) found that approximately 80% of silence duration
variance could be explained using only syntax, discourse hierarchy, and post-boundary
length, indicating that some factors contribute more than others. Similarly, Rose
(2017) found that silences have a stronger association with syntatic and discourse
planning than FPs. Since there is structure to the placement of FPs, they can be
modelled for TTS systems (Dall et al., 2014a). Gustafson et al. (2021) was able to
insert fillers found in spontaneous speech without changing the personality. Modeling
the placement of silences is important for TTS, since accurate prediction can improve
both naturalness and intelligibility (Braunschweiler & Maia, 2016). Wang et al. (2010)
found that grammatically inappropriate breath noise durations and locations were
more present in spontaneous speech tasks than passage reading in natural speech.
However, this finding also has implications for modeling duration and location of
breath noises in speech synthesis, and shows that simple heuristics are inadequate for
modeling how breath noises occur in natural spontaneous speech. Moreover, inserting
PINTs into unsuitable locations can have adverse effects on the listener. Werner
et al. (2022) found that emulating a human-like PINTs pattern requires a deeper
understanding of location optionality, duration variability, and the inclusion of breath
noises. Werner et al. (2022) adds that in order to successfully model PINTs across
language, the overly simple punctuation-dependent heuristics need to be expanded.

Speech synthesis systems have begun to reach human levels of naturalness when
trained on read speech. The high level of naturalness has led to a variety of poten-
tial uses for PINTs in TTS. As the general segmental quality of TTS systems has
improved, the focus has shifted towards suprasegmental elements, with the intent of
creating natural and expressive sounding speech. For example, the inclusion of breath
noises in speech synthesis may improve the naturalness and expressiveness desired in
audiobooks, conversational assistants, and characters for movies and games. Robotics
also has potential benefits from the implementation of PINTs in TTS, where the robot
is able to employ appropriate PINTs while interacting with humans (Carlmeyer et al.,
2018). However, PINTs still remain largely unexplored (Dall et al., 2016; Székely et al.,
2019a) in the modeling and synthesis of spontaneous speech, with few attempts at
modeling disfluent speech (Adell et al., 2007, 2008, 2010).

Another important aspect to consider is how the synthesis technique influences
PINTs. For example, when comparing a parametric and unit-selection TTS systems,
Aylett et al. (2020) found that personality is dependent on the type of TTS. The para-
metric voice was evaluated as less neurotic, and the unit-selection voice was evaluated
as more open. Andersson et al. (2010) incorporated both FPs and lexical fillers into a
unit-selection synthesis system and, via a perceptual study, found that their inclusion
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made the synthesis system more conversational without harming naturalness. Adell
et al. (2007, 2012) found similar results that FP insertion did not reduce naturalness,
in fact, listeners reported that the version without FPs was less natural. Using a
deep neural network TTS system, Székely et al. (2017) were able generate FPs and
modify the length of individual syllables for use in perceptual studies. They found
that FPs and lengthenings could be used to modify the certainty or uncertainty of
the generated speech. One of the difficulties in modeling PINTs for speech synthesis
is the lack of consistent annotation methods. Difficulties arise due to annotator id-
iosyncrasies, different conversational tasks, and microphone conditions (Trouvain &
Truong, 2012). Another important consideration during TTS training is the type of
training data used. Gustafson et al. (2021) has shown it is beneficial to train a TTS
system with different speaking styles (e.g., read and spontaneous), thereby the voice
can generate a dynamic continuum of features present throughout the data.

The implementation of PINTs into TTS can further explore the relationship be-
tween listen-oriented benefits and PINTs. For example, FPs can improve TTS by
reducing the cognitive load for the listener (Dall et al., 2016). It isn’t always clear if
phenomena that are beneficial to natural speech will be beneficial to synthetic speech
as well. For example, Dall et al. (2014b) found that FPs helped reaction time in
natural speech, but were detrimental to reaction time for synthetic speech. Betz
et al. (2015) found that silences could be inserted into speech synthesis systems and
still maintain acceptable quality. However, this finding was not replicated for FPs.
Therefore, a primary goal was to evaluate the perceptual effects of PINTs in both
natural and synthetic speech.

2.8 Recall and Education

In this dissertation, the terms ‘recall’ and ‘recollection’ are used interchangeably to
refer to the ability to retrieve key information from memory. Research has shown that
PINTs have listener-oriented benefits in both natural and synthetic speech. In natural
speech, FPs have been found to improve the recall of story plot points (Fraundorf &
Watson, 2011) and the following word (Corley et al., 2007), while silent pauses have
been found to improve the recall of the following word (MacGregor et al., 2010). In
synthetic speech, FPs can reduce the cognitive load for the listener (Dall et al., 2016),
silences can improve digit recollection (Elmers et al., 2021a), and breath noises can aid
in sentence recollection (Elmers et al., 2021b). These findings collectively illustrate
that PINTs can improve the recall for small contexts, such as words or sentences in
laboratory settings.

While the perceptual effects of PINTs have been researched in small contexts,
larger contexts, such as education settings, have not been thoroughly evaluated. For
example, Blau (1990) found that in a variety of proficiency levels, pauses were more
beneficial for comprehension than using a “normal” speech rate or a mechanically
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slowed speech rate. Flowerdew & Tauroza (1995) found L2 subjects understood lec-
ture material better when discourse markers were included, rather than excluded.
When evaluating note-taking practices in lectures, Ewer (1974) found that the lec-
ture must be as genuine as possible, which involves not imitating a ‘reading’ style. In
other words, it is important not to omit elements of a ‘lecture’ style, such as PINTs.
Similarly, Flowerdew & Miller (1997) espoused the need for providing students with
genuine lecture material, otherwise they are not adequately prepared for authentic
lecture settings. Mizuno (1990) found silences to be beneficial in a digit recall experi-
ment conducted in a foreign language. Moniz et al. (2014) found that teachers use an
intricate series of PINTs to allow for more time to edit their content during lectures,
showing a different style of PINTs usage compared to dialogues.

The perceptual effects of PINTs can manifest differently for native speakers (NSs)
and non-native speakers (NNSs). For example, Fayer & Krasinski (1987) found hes-
itations to be a major hurdle for NNSs to understand second language speech. Voss
(1979) found similar effects with nearly 1/3 of all perceptual errors associated with
hesitations, claiming that listeners sometimes mistake hesitations for lexical items or
part of words. van Os et al. (2020) found for both NSs and NNSs that individuals who
spoke quickly were rated as more fluent than individuals who spoke slowly. For NSs,
answering a question too quickly or including long silences resulted in lower fluency
ratings. However, for NNSs, only answers with long silences resulted in lower fluency
ratings. van Os et al. (2020) shows that, as listeners, we perceive and evaluate NSs
and NNSs differently, which is important to consider in educational settings. For ex-
ample, silence duration has been shown to influence foreign accentedness in adult L2
speakers (Trofimovich & Baker, 2006; Kang, 2010). Specifically, Kang (2010) found
that international teaching assistants who used shorter silences were evaluated as
more native-like in terms of accentedness. Using FPs in Japanese to evaluate the pre-
diction of difficult material, Watanabe et al. (2008) found that FPs did not influence
the response time for low-proficiency NNSs, indicating that language proficiency is
involved in the benefits of FPs. Rose (2017) found silences at clause boundaries were
longer in L1 speech than L2 speech. Rose (2013) found for Japanese and English, that
silence rate and duration were related to L1 performance, and that as their L2 skills
improved their silence usage emulated their L1 silence patterns. In educational set-
tings, NNSs are especially susceptible to difficulties when attempting to comprehend
materials, such as university lectures. With many universities comprised of NNSs,
it’s important to understand when PINTs can help with recollection and when they
disrupt the understanding key information.

The following chapters explore the influence of synthetic PINTs on recall, the
detection and inclusion of PINTs in speech synthesis, and the implementation of
synthesized PINTs in lecture-based scenarios.
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2.9 PINTs Recall in Laboratory Setting

Chapter 3 investigates the effects of PINTs in speech synthesis on recall in small-
context environments. This chapter consists of two experiments from Elmers et al.
(2021a) and Elmers et al. (2021b).

In chapter 3.1 we evaluated the effects of an inserted silence on the recollection
of numbers using synthesized speech. Participants heard segments that included a
random 7-digit number. A silence of either 0 ms, 200 ms, or 500 ms was inserted prior
to one of the digits. After listening to the 7-digit number, participants were tasked
to fill in three missing consecutive digits. The results showed that participants’ recall
was improved for the number immediately after the silence. This effect was found
only for the longer silence condition (500 ms) and not for the shorter silence condition
(200 ms). Participants’ response time was also higher when a silence was included in
the stimuli.

In chapter 3.2, we conducted a partial replication of Whalen et al. (1995), which
investigated whether inhalation breath noises in synthesized speech affected the recall
of sentences. Whalen found that when inhalations were inserted at the beginning of a
sentence that recall was improved over sentences that did not include an inhalation.
Whalen used a formant synthesizer while we used a concatenative synthesizer. We
investigated three conditions of breath noises: no inhalation (0 ms), short inhala-
tions (300 ms), and long inhalation (600 ms). Our study was able to replicate the
main findings of Whalen, that inhalations improved recall of the following sentence.
However, the beneficial recall effect was only found for the long inhalation condition
in our data. We also found that shorter sentences were recalled better than longer
sentences.

Collectively, these experiments indicate that PINTs, namely silence and inhalation
breath noises, can improve recollection for synthesized speech in single-sentence labo-
ratory settings. These findings are similar to studies that evaluated the improvement
of PINTs on recall in natural speech. These experiments also indicated that duration
is an important aspect to the recall effect of PINTs, since only the long duration
conditions improved recall. Both of these experiments used small-context stimuli and
had limited PINTs control due to the systems used. Therefore, our next step was to
develop a speech synthesis system that provided greater PINTs control and could be
used to evaluate the effect of PINTs on recall in larger contexts.

2.10 PINTs Detection and Synthesis Generation

Chapter 4 evaluated different methods for detecting PINTs and the development of
a custom speech synthesis system that produced PINTs with greater control. This
chapter consists of two experiments from Elmers (2022) and Elmers et al. (2023).

Since PINTs are often omitted in corpora annotation, we investigated automatic
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approaches to annotating PINTs for large quantities of data. Chapter 4.1 compared
the classification of PINTs using three different machine learning architectures: 1) a
general neural network, 2) a convolutional neural network, and 3) a recurrent neural
network. Mel-frequency cepstral coefficients were chosen as the input. An equal num-
ber of hyperparameters, numbers of layers, and neurons per layer was used to put a
spotlight on the architectural differences of the models. Our initial hypothesis was
that the recurrent neural network would outperform the other models since it is best
able to handle temporal information, which is important considering that PINTs often
co-occur. However, the three models performed similar to one another. All models
successfully classified silences and breath noises, but were unable to successfully clas-
sify filler particles and tongue clicks, indicating that modeling PINTs simultaneously
doesn’t necessarily improve the accuracy for nearby PINTs. Overall, these results
indicated that the annotation quantity and quality were better predictors of model
accuracy than the model’s architecture.

In chapter 4.2 we developed two text-to-speech (TTS) synthesis systems: 1) Con-
trolledPINT, which incorporated labeled PINTs in the training data, and 2) Au-
toPINT, which did not include labeled PINTs in the training data. Both models were
able to successfully generate a variety of PINTs but produced fewer PINTs and had a
shorter total PINTs duration compared to natural speech. Moreover, the Controlled-
PINT version produced a greater number of PINTs and a longer total PINTs duration
than the AutoPINT model. We conducted a perceptual experiment using the Con-
trolledPINT model to evaluate the perception of certainty for the generated material.
This experiment included four conditions: 1) a “fluent” condition that did not include
PINTs, a long silence condition, a filler particle condition, and a combinatory con-
dition that included a silence, filler particle “um”, a tongue click, and an inhalation.
The “fluent” condition without PINTs was rated as significantly more certain than the
conditions that included PINTs, indicating that TTS certainty can be altered with
the inclusion of PINTs material. The three PINTs conditions performed similarly, but
the long silence condition was rated slightly higher than the filler particle condition,
which was rated slightly higher than the combinatory condition.

Together, these two experiments indicated that it possible to detect and model
PINTs for speech synthesis systems. The first experiment improved our understand-
ing for automatically classifying multiple PINTs simultaneously, and improved the
general understanding for classifying PINTs in the German language. Since the first
experiment did not produce a model that could accurately detect all the PINTs ma-
terial of interest, we developed an internal PINTs annotation system to train our
TTS models. The second experiment provides a technological contribution with our
models being, to the best of our knowledge, the first TTS systems to produce tongue
clicks. Additionally, this study showcases that stimuli generated by TTS systems are
a promising alternative to evaluate research questions in speech science. Since life-like
communication is a continual goal of TTS systems, it is important to understand how
PINTs and other spontaneous speech phenomena influence perception.
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2.11 PINTs Recall in Lecture Setting

Chapter 5 synergizes the goals from the first two parts of this work, which involved
investigating the recall effect of PINTs in synthetic speech and the creation of TTS
systems that can generate PINTs. While chapter 3 focused on the recall effect in
single-sentence laboratory settings, chapter 5 investigates larger contexts, specifically
the influence of PINTs on the recall of synthetic lectures. This chapter incorporates
three experiments. Chapter 5 is based on the publications Elmers & Trouvain (2022),
Elmers (2023), and Elmers & Székely (2023).

In chapter 5.1, we developed a baseline PINTs usage by comparing real-world
lectures from Yale University to the TOEFL iBT, a popular English-language profi-
ciency exam used for university entrance. Annotations included 5 hours of material
from 5 different Yale lectures (1 hour per speaker) and 15 minutes from the TOEFL
lecture listening section. Since the Yale lectures were recorded during a three month
semester, an additional analysis was made to compare intra-speaker PINTs variation
at the beginning, middle, and end of the semester. Overall, PINTs filled 30% of
the total lecture time for the Yale lectures, and 20% of the TOEFL lecture listening
section. For the Yale data, speakers displayed unique PINTs usage with respect to
count, duration, and frequency. Speakers were consistent with their PINTs usage,
indicated by minimal intra-lecturer variation throughout the semester. Considering
that PINTs made up 1/3 of real-world lecture time, it is important to understand
how PINTs material influences the recall of key lecture information.

Most work evaluating the influence of PINTs on recall in both natural and synthetic
speech has been conducted using single-sentence contexts. Chapter 5.2 established
a baseline by evaluating the influence of PINTs on the recall of key information in
lectures in natural speech. Participants included 45 native English listeners and 45
non-native L1 German listeners who heard English-language lecture segments, and
answered content-based questions. Three conditions were evaluated: 1) an unmanip-
ulated version, 2) a “silence” version, and 3) a “no PINTs” version where all PINTs
material was removed. In the unmanipulated and “silence” conditions, half the crit-
ical information followed PINTs material. Overall, the recall of key information was
reduced when the material was preceded by PINTs material. The listener’s first lan-
guage did not have a significant effect on recall. However, native English listeners
performed better during the “no PINTs” version, while the non-native L1 German
listeners performed better during the original condition. This study was unable to
find the recall benefit of PINTs in natural speech found in single-sentence laboratory
experiments.

Chapter 5.3 replicated the experimental methodology used in chapter 5.2, but used
synthesized speech rather than natural speech. The neural speech synthesizer from 4.2
that was trained on labeled PINTs annotations was used to generate experimental
stimuli. This experiment also included three conditions: 1) a base version, 2) a
“silence” version, where all non-silence PINTs were replaced with silence of the same
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duration, and 3) a “no PINTs” version where all PINTs material was removed. Half of
participants were told they would hear computer-generated audio, while the other half
were told that the audio was recorded with a poor-quality microphone. Participants
also provided their subjective evaluations, such as interest level, via a questionnaire.
Again, recall of key information was lower when the material was preceded by PINTs.
Participants’ recall was not influenced by their first language or the condition they
heard. Higher levels of interest resulted in a significant positive effect on the recall of
key information.

This final section highlights multiple important points. First, PINTs are widely
present both in real-world lectures and in the lecture listening section of the popular
TOEFL iBT English-language proficiency test. Second, in both lecture recall experi-
ments, the presence of PINTs lowered the recall of key information for both natural
and synthetic speech. This finding contrasts with the results of single-sentence lab-
oratory experiments, indicating that additional work is required to tease apart the
influence of PINTs on recall. Finally, we were able to show that PINTs, in both
natural and synthetic speech experiments, did not negatively influence non-native
listeners more than native listeners.





Chapter 3

PINTs Recall in Laboratory Setting

3.1 Evaluating the Effect of Pauses on Number
Recollection in Synthesized Speech

3.1.1 Abstract

This study investigates the effects of an inserted pause on digit recollection for syn-
thesized speech. Participants took part in a perception experiment which involved
listening to a 7-digit random number that was rendered by a speech synthesis system.
Some of the stimuli had pauses (200 ms or 500 ms in duration) inserted before one of
the digits, while others did not include a pause. Immediately following each stimulus
the participants were asked to provide a missing sequence of three adjacent digits.
Results indicate that recall accuracy is improved immediately following a pause. Ad-
ditionally, we found a significant effect for a pause duration of 500 ms but not for a
pause duration of 200 ms. When investigating response time, we found that partici-
pants’ response time increased when a pause was present. Overall, the results show
that pauses have a role to play in synthesized speech. This research can be regarded
in the context of investigating pauses and pause-internal particles (e.g. breath noises)
in synthesized speech and the effects they have for human listeners.

3.1.2 Introduction

Speech synthesis systems have become ubiquitous in the banking and telephone in-
dustries. This progression has created situations where the average person is required
to interact with synthesized recordings, often of strings of numbers (e.g. credit card
and bank account). These exchanges are regularly complicated by a necessity for
high accuracy and show no redundancy, in contrast to most other types of linguis-
tic information. There is evidence that telephone numbers are grouped prosodically,
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which helps to recall those numbers (Baumann & Trouvain, 2001). This prosodic
grouping is usually realized by rhythmic features such as alternations of accented and
unaccented digits within a minor prosodic phrase. The boundaries of these minor
prosodic phrases are sometimes marked by a short pause. Therefore, in this work,
a perceptual experiment was conducted to investigate the effects of the presence of
a pause on recollection accuracy for synthesized digits. More specifically, this ex-
periment endeavoured to investigate the consequences of pauses on short-term digit
recollection.

We previously conducted a pilot study with a similar focus using MaryTTS (Schröder
& Trouvain, 2003). The pilot study focused on a single, short pause duration of ap-
proximately 200 ms and compared it against a no-pause condition. The results from
the pilot study indicated that pauses in synthesized speech could improve digit rec-
ollection. For the current study, we aimed to elaborate on our previous findings and
document the improvement of digit recollection with pause insertion for synthesized
speech.

When researching TTS systems for the present study, multiple systems were con-
sidered, including MaryTTS (Schröder & Trouvain, 2003), Festival (Taylor et al.,
1998), and Amazon Polly (2016). Interestingly, none of these systems created pauses
automatically when generating synthesized digit sequences, and they all required some
form of text markup. Both MaryTTS and Festival occasionally experienced problems
where part of the digit audio was truncated. To avoid any fractured audio we opted
to use Polly to synthesize the audio clips. While all three TTS systems use voices cre-
ated by concatenative synthesis, Polly was found to be superior in audio quality when
compared to MaryTTS and Festival. This punctuated our decision to move forward
using Polly and facilitated our intention to keep any audio quality discomfort as low
as possible when listening to the audio clips. This in turn, allowed the participants
to focus on the prompted digits rather than audio irregularities.

Another change that we made between the pilot and the present experiment was
the addition of a second pause duration. In the pilot study, we observed a tendency
towards the pause condition in the recollection accuracy between no pause and the
200 ms pause insertion. In this study we have added an additional pause duration of
500 ms. Our decisions regarding pause duration were based on a large multilingual
study of silent pause durations (Campione & Véronis, 2002). By adding the longer
pause to the experiment we hoped to see further exaggerations of the results indicated
in the pilot study.

3.1.3 Method

Material

Participants listened to audio clips of synthesized speech that contained a randomized
7-digit number (e.g. 3852791). A 7-digit number was selected based upon Miller’s Law
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(Miller, 1956), which states that the average person’s short-term memory capacity is
7 +/- 2. Participants were asked to type a 3-digit sequence. There were 5 potential
sequences:

1. {1 2 3} 4 5 6 7

2. 1 {2 3 4} 5 6 7

3. 1 2 {3 4 5} 6 7

4. 1 2 3 {4 5 6} 7

5. 1 2 3 4 {5 6 7}

In both pause conditions (200 and 500 ms), a pause was inserted prior to one of the
digits participants were asked to type, i.e., the digits within the curly brackets. A 3-
digit graphical sequence was chosen to mask the critical digit, viz. the digit following
the pause. The experiment included three pause durations: 0 ms, 200 ms, 500 ms.
The durations of 200 and 500 ms were chosen to represent a short and a normal pause,
respectively. The first and last digits were included as a baseline to confirm primacy
and recency effects (McLeod, 2008).

The stimuli were generated using Amazon Polly’s TTS service with Joanna’s voice,
the standard TTS voice generated using concatenative synthesis. The pauses were
inserted by using an instruction in the Speech Synthesis Markup Language (SSML)
(Baggia et al., 2010) indicating the pause duration in milliseconds.

Experiment

The material was uploaded to the online experiment platform Labvanced1 (Finger
et al., 2017). When beginning the experiment, participants were asked to use head-
phones and test their audio on the instruction screen. Then participants were in-
structed that they would hear a sound clip with a 7-digit number and that each clip
would be played only once. After listening to the prompted clip, a box appeared on
the screen and participants were asked to type a 3-digit sequence from the 7-digit
number. Figure 3.1 shows the instructions participants received before beginning the
experiment. And Figure 3.2 shows the screen that appeared after listening to the
audio clip, where participants entered the 3-digit sequence.

The experiment consisted of 35 audio clips, which included two trial runs that
were not counted in the results, and a follow-up questionnaire. The experiment was
designed so that each participant would experience every condition, including all
pause locations, sequences, and durations. Total completion time was 10–20 minutes
for each subject.

1Accessed via https://www.labvanced.com/ on Dec. 01, 2021.

https://www.labvanced.com/
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Figure 3.1: The instructions participants received before beginning the experiment.

Figure 3.2: The screen participants saw after listening to the stimulus. Here they
would enter a 3-digit sequence.
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Figure 3.3: Accuracy of the critical digit following the pause, or the sequence-central
number in the no-pause condition, arranged by pause duration.

Participants

Participants were recruited from an online service using Prolific2 (2014) and were
offered payment for their time. There were a total of 15 subjects (10 F and 5 M,
age range 25–60, mean age 36.2 years). All participants, except one, self-reported no
form of hearing impairment. The participant who self-reported hearing impairment
was excluded from the analysis. In order to determine familiarity with synthesized
speech, subjects were asked, ’how often do you listen to text-to-speech audio?’ Pos-
sible responses included were, “never”, “monthly”, “weekly”, and “daily”. Of the 15
participants, 8 (53%) indicated that they never listen to TTS audio, 4 (27%) indi-
cated monthly, 1 (7%) indicated weekly, and 2 (13%) indicated daily usage.

3.1.4 Results

The presence of a pause resulted in a higher recollection accuracy for the following
digit than when the pause was absent. Similarly, Figure 3.3 shows that both the short
(200 ms) and the normal (500 ms) pause durations caused a higher accuracy than the
condition with no pause.

2Accessed via https://www.prolific.co/ on Dec. 01, 2021.

https://www.prolific.co/
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Table 3.1: Model 1: GLMM Results Accuracy~Pause Occurrence + (1 | Subject) +
(1 | Item).

estimate std. Error z p

(Intercept) 0.8947 0.6915 1.294 0.1957

PauseOccurs 1.6214 0.7475 2.169 < 0.05

Accuracy Modeling

Multiple statistical models were analyzed for accuracy of the critical digit, i.e. the
digit following the pause, and for response time (RT). The response variables were
analyzed by using generalized linear mixed-effects models (GLMMs) from the lme4
package (Bates et al., 2015) in R (R Core Team, 2021).

Model decisions were made bottom-up, beginning with only random intercepts for
subject and item, and progressively adding fixed effects. Random slopes for the fixed
effects were added for subject assuming no issues from over-fitting or non-convergence.
Models were compared via the Akaike information criterion (AIC) (Akaike, 1973) to
determine unexplained variance. If the AIC decreased by at least two points, then a
factor was kept in the model.

The GLMMs were analyzed with accuracy of the critical digit (binary categorical
variable, 0 for incorrect and 1 for correct) as the response variable. Models with the
following predictor variables were evaluated: pause occurrence (binary categorical
variable: 0 for absent, 1 for present), pause duration (factor with three levels: 0 ms,
200 ms, and 500 ms), sequencing (factor with 5 levels), and digit position (factor with
6 levels). For digit position, the first digit was not taken into account as it was never
the critical digit. Due to collinearity effects, pause occurrence and pause duration
were modeled separately.

Model 1 (Table 3.1), the model with the lowest AIC, included pause occurrence
as the only fixed effect. Subject and item were included as random intercepts. The
GLMM used a binomial family and logit link. This model shows that the presence
of a pause is statistically significant and increases recollection accuracy (estimate
(log-odds) = 1.6214, SE = 0.7475, z = 2.169, p < 0.05).

Model 2 (Table 3.2), the model with the lowest AIC, included pause duration as
the only fixed effect. Subject and item were included as random intercepts. The
GLMM used a binomial family and logit link. This model indicates that the pause
duration of 500 ms was statistically significant (estimate (log-odds) = 1.9911, SE =
0.8309, z = 2.396, p < 0.05) and is beneficial for recollection accuracy. However, the
200 ms pause duration was not statistically significant. Models were also analyzed
for accuracy predicted by RT, yet none of the models achieved a lower AIC than the
model with only random effects.
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Table 3.2: Model 2: GLMM Results Accuracy~Pause Duration + (1 | Subject) +
(1 | Item).

estimate std. Error z p

(Intercept) 0.8940 0.6871 1.301 0.1932

PauseDur200ms 1.3019 0.7918 1.644 0.1001

PauseDur500ms 1.9911 0.8309 2.396 < 0.05

Table 3.3: Model 3: GLMM Results RT~Pause Occurrence + (1 | Subject) + (1 |
Item).

estimate std. Error z p

(Intercept) 4930.62 26.48 186.19 < 0.001

PauseOccurs 363.40 28.09 12.94 < 0.001

Response Time Modeling

The subject’s response time (RT) was also recorded. Participants were only able to
hear the clip once, and the RT timer started as soon as the audio clip ended. Upon
submitting their answers the RT timer finished. The participants’ RT had a highly
positive skew, therefore, values that exceeded 3 standard deviations above the mean
were excluded. Even with these values removed RT still skewed positive but was
far less extreme. Even so, a gamma distribution was chosen. Additionally, while
investigating RT, only correct answers were included in the models.

For Model 3 (Table 3.3), the model with the lowest AIC, included only pause
occurrence as a fixed effect. Subject and item were included as random intercepts.
A GLMM, with a gamma family and identity link, was chosen over a LMEM with a
log-transformation of RT. This decision was made to prevent issues that can occur
from seeking normality of a log-transformed RT (Lo & Andrews, 2015).

Table 3.3 shows that pause occurrence is significant for RT (estimate = 363.40,
SE = 28.09, z = 12.94, p < .001). Interestingly, the effect is an increase in RT. The
coefficient value of 363.40 is similar to the average duration between the two pause
durations, 200 and 500 ms. This duration might be representative of an abstract
pause involved when the participants mentally recall the synthesized digits, before
typing their answer. Models were also analyzed for RT predicted by pause duration,
yet none of the models achieved a lower AIC than the model with only random effects.

3.1.5 Discussion and Summary

In this study, participants were tasked with listening to a 7-digit clip of synthesized
speech to determine if a pause affected their recollection accuracy for the following
digit. This study aimed at improving an effect found in our pilot study, specifically
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that a pause in synthesized speech aided in digit recollection. This study made
improvements over the pilot by including: a higher quality concatenative TTS system,
an additional 500 ms pause duration, and investigating RT. Using GLMM models,
we have shown, generally, that the presence of a pause indeed affects recollection
accuracy. Moreover, we also found that the 500 ms pause duration improved digit
recollection. However, we were unable to confirm the results from our pilot study
that a 200 ms pause duration improved digit recollection. These results emphasize
the importance of further research on pauses in synthesized speech.

An important aspect of synthesized digit sequences is the prosodic structure, specif-
ically how the number sequences are grouped and the number of groups. All stimuli
in this study contained two prosodic groups. The first included all digits up to the
pause, while the second consisted of all the digits following the pause. It is impor-
tant to investigate these prosodic structures with more attention. Additionally, in
the future we could include basic grouping strategies (e.g. 3-2-2) for 7-digit numbers
(Baumann & Trouvain, 2001) to evaluate different prosodic groups and their influence
on digit recollection accuracy.

In the current study we have shown that the presence of a pause also influences
response time, with RT increasing when a pause is present. Results indicate that the
participant does not differentiate between pause durations while recalling the digits.
The RT model showed that participants might be retaining some abstract pause
duration in their mind during recollection. RT was measured after the sound clip
finished and without a delay. Future research should evaluate whether the duration
between when the clip finishes, and when the participant is able to respond, affects
their accuracy. A promising next step in this research would be to investigate pause-
internal particles, such as breath noises, for their effects on synthesized speech digit
recollection.
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3.2 Take a Breath: Respiratory Sounds Improve
Recollection in Synthetic Speech

3.2.1 Abstract

This study revisits Whalen et al. (1995) by evaluating English speaking participants
in a perception experiment to determine if their recollection is affected by including
breath noises in sentences generated by a speech synthesis system. Whalen found
an improvement in recollection for sentences that were preceded by a breath noise
compared to sentences without one. While Whalen and colleagues used formant
synthesis to render the English sentences, we use a modern concatenative synthesis
system. The present study uses inhalations of three different lengths: 0 ms (no
breath noise), 300 ms (short breath noise), and 600 ms (long breath noise). Our
results are consistent with Whalen and colleagues for the 600 ms condition, but not
for the 300 ms condition, indicating that not all inhalations improved recollection.
The present study also found a significant effect for sentence length, illustrating that
shorter sentences have higher accuracy for recollection than longer sentences. Overall,
the present study indicates that respiratory sounds are important to the recollection
of synthesized speech and that researchers should focus on longer and more complex
types of speech, such as paragraphs or dialogues, for future studies.

3.2.2 Introduction

In the present study, we examined pause particles in synthesized speech. Previous
work by Whalen et al. (1995) (henceforth Whalen) found that English speaking par-
ticipants’ recollection, sometimes referred to as recall (as in Whalen), was better for
sentences preceded by a breath noise than those not preceded by a breath noise.
Whalen’s study was conducted using a formant synthesizer, KLATTALK (Klatt,
1982). In contrast, Trouvain & Möbius (2013) used concatenative synthesis to eval-
uate the perception of telephone numbers preceded by an inhalation. They found
that the majority of subjects did not have a preference. The results from Whalen
et al. (1995) and Trouvain & Möbius (2013) offer conflicting interpretations of the
effect of breath noises in synthesized speech, which called for further investigation.
Elmers et al. (2021a) found that the insertion of a silent pause in a 7-digit sequence
improved the recollection of the following digit. An appropriate next step was to
evaluate breath noises and revisit Whalen’s study.

The primary objective for this experiment is to clarify the conflicting interpreta-
tions between Whalen et al. (1995) and Trouvain & Möbius (2013). Therefore, we
endeavoured to examine if breath noises aid in recollection. In an effort to investigate
this question, the present study closely mirrors the Whalen study, with some updates
concerning technology. Specifically, we used Amazon Polly (2016) to generate our
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stimuli and a web-based platform to conduct the experiment. By including these
modifications, and other nuanced updates, we intend to contribute research to pauses
and pause particles in synthesized speech.

3.2.3 Method

Comparison of the Present Study and Whalen

The present study is a partial replication of Whalen, combining ideas from their
experiments 1, 3 and 4. In each experiment participants listened to synthesized
audio and, afterwards, wrote down what they heard. Experiment 1 focused on the
effect between a breath noise and a no breath noise condition, with each condition
separated into a single block. For example, the participants would hear a block of 20
sentences each preceded by a breath noise, followed by a second block of 20 sentences
not preceded by a breath noise. The opposite ordering of blocks was also included.
They found a significant effect for breath noises on the improvement of recollection.
Moreover, the no breath noise condition did not have a significant effect on recollection
improvement. Lastly, they found an improvement due to practice.

Experiment 3 and 4 maintained the breath noise/no breath noise conditions from
experiment 1, but with more specificity. In experiment 3, rather than using the same
block system from experiment 1, the breath noises were inserted randomly before
sentences. Once again practice was found to be significant, but breath noises were
not significant. While experiment 3 focused on random distribution of the breath
noises, experiment 4 focused on appropriateness. In their earlier experiments they had
maintained the appropriateness of the breath noise. In other words, short sentences
were only preceded by the short (mean duration ∼600 ms) breath noise and long
sentences were only preceded by the long (mean duration ∼740 ms) breath noise. In
experiment 4, they tested appropriateness in a way that both short and long breath
noises appeared before both short and long sentences. They found appropriateness
was not significant but they indicated this may be due to the small range of sentence
lengths.

The present experiment synergizes many of the aforementioned ideas from Whalen.
We incorporated the breath noise vs no breath noise conditions from experiment 1.
We assigned breath noises randomly before sentences, rather than in blocks (like
experiment 3). Lastly, we evaluated appropriateness by inserting short breath noises
before long sentences, and vice versa (like experiment 4). This experiment examines
the following durational conditions: a 0 ms no breath noise (henceforth NO-brn), a
300 ms breath noise (henceforth SHORT-brn), and a 600 ms breath noise (henceforth
LONG-brn). Table 3.4 contains a comparison between the present study and Whalen
for breath noise durations and sentence lengths. Participants in both experiments
heard synthesized audio and recollected what they heard. However, in the present
experiment participants typed their responses after each stimulus rather than writing
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Table 3.4: Mean (SD) for breath and sentence lengths reported here compared to
Whalen (SD was not reported in Whalen).

present study Whalen

Short breath duration (in ms) 300 597

Long breath duration (in ms) 600 738

Short sentence length (in words) 8.5 (2.0) 8.1

Long sentence length (in words) 16.2 (3.6) 15.2

them by hand. The experimental design in Whalen is easily converted into a web-
based study like we did here.

Creating the Stimuli

For this experiment we used Amazon Polly, which Amazon describes as a “Text-to-
Speech service that uses advanced deep learning technologies to synthesize speech
that sounds like a human voice” (Amazon Web Services, 2016). The documenta-
tion for Polly does not provide further information beyond “advanced deep learning
technologies” to clarify how the breath noises were created or the amount of breath
noise variation. Polly’s breath feature announcement claims that Polly can parrot the
sounds of both inhalation and exhalation for normal speech. However, in our time
working with Polly only inhalations could be identified. Additionally, the breath
tags required for synthesizing respiratory sounds are currently only available for the
standard voices, which use concatenative synthesis, not for the neural voices.

Polly includes an automated mode which allows the user to indicate (using preset
values) the volume, frequency and duration for the synthesized breaths. The current
experiment uses the manual mode to specify exact locations, and to customize the
duration and volume. The breath noises (for both automated and manual mode)
must be indicated using text mark-up, specifically Speech Synthesis Markup Language
(SSML) (Baggia et al., 2010).

Whalen’s stimuli were created with KLATTALK (Klatt, 1982), a formant synthe-
sizer. Their breath noises were made from recordings of a person with a similar vocal
tract to the voice model of their synthesizer. They recorded a total of six breath
noises (3 short and 3 long) to add variety and factor out any oddities. Additionally,
they indicated that their sentences were not completely comprehensible, but every
sentence was answered correctly by at least one participant.

With the goal of creating more natural and expressive speech, we used Polly to
generate inhalation sounds. The three conditions for this experiment were: 1) NO-brn
(i.e. 0 ms), SHORT-brn (mean duration: 300 ms), and LONG-brn (mean duration:
600 ms). Our justification for the short and long inhalation durations are from a study
on phrase-initial inhalation noises (Werner et al., 2021), which differ from phrase-
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Figure 3.4: Schematic for the first second of the stimuli in the three conditions.

internal inhalations.
We chose to use Polly’s “default” breath noise since it is ∼300 ms in duration. We

also chose Polly’s “default” intensity value since it is ∼40 dB, which is consistent with
what (Werner et al., 2021) found as a median intensity for phrase initial inhalations.
Werner et al. (2021) also found a median value of ∼140 ms for the right-edge pause
between the phrase-initial inhalation and the onset of speech. Polly naturally inserts
a ∼50 ms right-edge pause between the inhalation and the speech, so we increased
this to a total of 150 ms by adding an additional 100 ms of silence (Fig. 3.4).

The present study uses a total of 28 different sentences (24 experimental, 3 practice,
and 1 for instruction). For the 24 experimental stimuli, 12 were short sentences
(mean number of words = 8.5, SD = 2.0, range: 5–12) and 12 were long (mean
number of words = 16.2, SD = 3.6, range: 13–26). Some sentences included simple
numbers, but none included complex or alphanumeric expressions. The sentences were
created with Polly using the aforementioned methodology and consisted of situations
that are typically discussed with conversational assistants such as weather, schedule
information, restaurant bookings, etc.

Three versions of each sentence were created using our three conditions (NO-brn,
SHORT-brn, and LONG-brn), resulting in a total of 72 tokens. These 72 tokens were
evenly divided into three lists, designed in such a way that each sentence appeared
only once per list. Additionally, the lists were balanced to achieve an equal number
of each breath noise condition. The tokens in each list were randomized, so that
different lists had a different ordering of sentences. However, participants who saw
the same list encountered the sentences in the same order.

Participants

We created our web-based experiment using Labvanced3 (Finger et al., 2017) to
present the audio stimuli to the participants and collect their typed answers, question-

3Accessed via https://www.labvanced.com/ on Mar. 03, 2021.

https://www.labvanced.com/
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naire information, and response time (RT). Participants were recruited with Prolific4

(2014) and consisted of 63 monolingual English participants (mean age 36.92 years;
age range 18–70 years; 29 females, 33 males, 1 non-binary; 59 British accented, 2
American accented, 2 Australian accented) who were paid for their participation.
One participant indicated hearing impairment and was excluded from the results.
For the experiment, subjects were instructed to type what they heard exactly as they
heard it. Subjects were presented with one of three lists. Each list consisted of the
same 24 sentences. However, they varied in which breath noise condition (NO-brn,
SHORT-brn, LONG-brn) preceded the sentence, and in the overall ordering of the
stimuli. Participants listened to one audio clip during the instruction screen which
was followed by three practice sentences (not included in the results). The prac-
tice sentences included examples that were preceded by a breath noise and some not
preceded by a breath noise. After completing the listening portion they filled out a
questionnaire.

Scoring and Data Processing

After collecting the participants’ results, we standardized the data by tokenizing,
removing punctuation and extra white space, converting words to lowercase, and
correcting some spelling errors. For example, if a participant typed “appoxiately”, we
corrected it to “approximately”, and counted it as correct during the scoring. However,
homophones or words that did not preserve the intended meaning of the sentence were
not corrected. For example, if a participant wrote “weight” instead of “wait” in the
context of waiting for a table at a restaurant then their word was not corrected, and
consequently, not scored positively.

After standardizing the data, participants were scored based on how many of the
correct words they had included in their response. They were awarded 1 point for
each correct word. In the present study we focused on whether the correct word
was included, not on the order. Whalen’s scoring method provided one point for a
correct word in the correct location. A mostly correct word was worth 0.5. A correct
word in the incorrect location provided 0.5. Whalen scored homophones as correct
and did not encounter semantically related words. In the present study, the scoring
system was simplified so that participants were awarded 1 point if the word in their
submission was found in the canonical version (i.e., the correct version). The present
study and Whalen, counted function and content words equally when scoring, since
the TTS systems used in the two studies did not reduce function words as in human
connected speech. Scores were normalized by dividing the participant’s score by the
length (i.e., number of words) of the canonical version of the sentence. Normalized
scores ranged from 0 to 1. The differences in scoring methods might affect differences
between the two studies. However, within the study, since all stimuli were scored
using the same method, there is a level of consistency when comparing the scores.

4Accessed via https://www.prolific.co/ on Mar. 03, 2021.

https://www.prolific.co/
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Table 3.5: Scores normalized by number of words for different conditions.

condition mean sd

All Conditions 0.909 0.154

NO-brn 0.902 0.164

SHORT-brn 0.902 0.160

LONG-brn 0.923 0.136

Length Short 0.959 0.110

Length Long 0.860 0.175

3.2.4 Results

The mean and standard deviation for the different breath noise conditions can be
seen in Table 3.5. When looking at the mean scores for all conditions, it is clear that
participants are already scoring near the normalized score ceiling, which can also be
seen in Fig. 3.5. When looking at the individual breath noise conditions, we find
higher scores for the LONG-brn condition compared to the NO-brn and SHORT-brn
conditions. As for length, we also find a score difference between short and long
sentences.

Statistical models were analyzed with linear mixed-effects models (LMEM) from
the lme4 (Bates et al., 2015) package (Version 1.1.25) and the lmerTest (Kuznetsova
et al., 2017) package (Version 3.1.3) in R (R Core Team, 2021) (Version 3.6.3). Models
were made using backwards selection, i.e., starting with the maximal model for fixed
and random effects and gradually reducing (starting with random slopes) in the case of
over-fitting or non-convergence. Models were compared with the Akaike information
criterion (AIC) (Akaike, 1973), which calculates unexplained variance, and the model
with the lowest AIC was considered as the model with the best fit.

The final model was: lmer(NormalizedScore ∼ BreathNoise + Length + (1 |
Subject)+(1 | Sentence), REML = FALSE). This model includes breath noise du-
ration and sentence length as fixed effects (without an interaction term). As random
effects, intercepts were included for both the subject and the individual sentences.
Visual inspection for the residual plot revealed deviations from homoscedasticity and
a violation of normality (partly caused by the ceiling effects). However, Schielzeth
et al. (2020) has shown that linear mixed-effects models are robust to these types of
violations. Our analysis revealed a main effect for the LONG-brn condition (Esti-
mate = 0.02077, SE = 0.00722, t = 2.877, p < 0.01) and the short sentence length
(Estimate = 0.09894, SE = 0.02986, t = 3.314, p < 0.01). These main effects in-
dicate an increase in recollection of the sentence. We found that shorter sentences
are recalled better than longer sentences, and that sentences immediately preceded
by a LONG-brn are recalled better than sentences preceded by the NO-brn or the
SHORT-brn.
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Figure 3.5: Scatterplot for score normalized by number of words for each of the
breath noise conditions.

3.2.5 Discussion

The present study replicated one of the major findings from Whalen, namely that
the LONG-brn condition improves recollection. With these results in mind, future
research can investigate the following: duration, learning effects, sentence length, and
measuring recollection.

Duration

When designing the experiment, the first author found the SHORT-brn to be most
natural, while the LONG-brn appeared abnormally long. However, the SHORT-brn
condition was not significant while the LONG-brn condition was significant. The
short and long breath noises used by Whalen were longer than the versions used
in the present study, and found to improve recollection. Importantly, the present
study’s LONG-brn was approximately the same duration as Whalen’s short condition.
This finding may indicate that exaggerated breath noises, and possibly other pause
particles, are more suitable for synthesized speech with respect to recollection.

There are many hypotheses that could explain the improvement in recollection
caused by various particles in speech (Fraundorf & Watson, 2011), including breath
noises. While we describe these options, we do not position one as the primary
rationale for recollection improvement. Three possibles hypotheses are: 1) processing-
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time hypothesis, i.e., the breath noises are providing more time for the listener to
process what they hear, 2) attention orienting hypothesis, i.e., the breath noises are
drawing the listener’s focus, and 3) predictive processing hypothesis, i.e., participants
use the breath noises to predict upcoming speech content. Future work should further
investigate the specific mechanisms for improving recollection in synthesized speech.

Learning Effects

Whalen found that participants performed better during the second half of the stim-
uli than during the first half (i.e. learning effect). The present study did not find
any kind of learning effect, possibly due to improvements in audio quality for modern
TTS systems. Another possibility is that listeners have become more acclimated to
hearing synthesized audio. In a follow-up questionnaire, participants were asked how
often they listen to computer-generated audio, such as conversational assistants or
in-car navigation. Only 11 of the 63 participants reported never listening to computer-
generated speech; however, this number might be inaccurate if participants misun-
derstood potential situations in which they hear computer-generated audio, such as
robocalls or online videos.

Sentence Length

Whalen measured sentence length in number of words. Consequently, the present
study also measured length via number of words, in order to maintain parity with
Whalen. Ideally, length would be evaluated using a more stable metric such as a
speech timing unit, e.g., number of syllables. This would alleviate the problem that
arises when two sentences share the same number of words but vary greatly in their
number of syllables.

The present study found high recollection scores for short and long sentences.
Therefore, future work should include longer material lengths, such as paragraphs
or fragments of dialogue. In the present study, short sentences (mean length = 8.5
words) had a mean accuracy of 0.959, whereas the long sentences (mean length =
16.2 words) had a mean accuracy of 0.860. The high quality of the synthesizer al-
lows participants to not only understand the material, but repeat it verbatim, with
near perfect accuracy. While we see an accuracy drop in the longer sentences, fu-
ture experiments should investigate both longer and more complex sentences and
discourses. In fact, Braunschweiler & Chen (2013) concluded that paragraphs and
longer sentences are important and might improve naturalness for the listener by
reducing the monotony and improving the prosody of speech synthesis. Interesting
examples would be paragraphs of material, such as audiobooks, or dialogic conversa-
tion between humans and conversational agents. Finally, it would be interesting to
look into semantically unpredictable sentences to see if these results for recollection
hold.
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Measuring Recollection

Both the present study and Whalen tested the participants’ ability to recollect the
exact message they had heard. While typing or writing their answer, participants are
required to focus on spelling, potentially reducing the amount of effort they can give
to the general content. It is important to think about what metrics and constructs
are used to measure participant recollection, since there are many different ways to
measure understanding and memorization. One possible alternative could have par-
ticipants listen to an audio clip and record a summary in their own words, similar
to Fraundorf & Watson (2011), so that a participant’s score would be dependent on
overall comprehension rather than a word-for-word memorization. Another alterna-
tive could provide participants with multiple-choice questions. Future work should
focus on a particular format to evaluate specific details with more nuance.

3.2.6 Conclusion

The present study investigated the effect of an inserted breath noise on recollection
of synthesized speech, similar to Whalen et al. (1995). Our results are comparable to
the results found by Whalen and colleagues. Three breath noise conditions were eval-
uated, a NO-brn (i.e. 0 ms) condition, a SHORT-brn (mean duration: 300 ms) con-
dition, and a LONG-brn (mean duration: 600 ms) condition. Participants displayed
a high level of recollection overall, even in the NO-brn condition. The LONG-brn
improved recollection, whereas the SHORT-brn did not. We also found a signifi-
cant effect for sentence length, which indicates that recollection is better in shorter
sentences.

This experiment evaluated breath noises in single sentence contexts, avoiding con-
nected speech due to difficulties in determining whether the breath noise influences
the planning of the upcoming sentence or is a consequence of the preceding speech.
Therefore, we chose to investigate breath noises in a smaller, more manageable con-
text before looking towards longer and more complex forms of discourse in the future.
Beyond investigating recollection abilities as a function of breath noises, future work
should also view this phenomenon from the perspective of naturalness, which is impor-
tant for maintaining expressiveness without sacrificing the pleasantness of synthetic
speech.





Chapter 4

PINTs Detection and Synthesis
Generation

The experiments in this chapter examined the following: 1) the automatic detection
of PINTs, 2) the training of neural synthesis systems with pause material, and 3) the
rendering of synthetic material that incorporated PINTs. The automatic detection
and classification of PINTs is an important step for training TTS systems. Experiment
1 (chapter 4.1) investigated a variety of machine learning methods, with the goal of
modeling multiple PINTs simultaneously. Experiment 2 (chapter 4.2) explored the
training of two neural synthesis systems, one that generated PINTs via the insertion of
designated labels, and a second system that rendered PINTs probabilistically. These
experiments used speech signal processing and machine learning methods to model
PINTs in both natural and synthetic speech. Overall, this chapter ties together the
detection and rendering of PINTs material with speech technology.

4.1 Comparing Detection Methods for
Pause-Internal Particles

4.1.1 Abstract

This study investigates different machine learning architectures for classifying pause-
internal phonetic particles (PINTs), such as filler particles (FPs), breath noises com-
plementary to silences, and tongue clicks. Many of these PINTs co-occur, and by
modeling them simultaneously, the aim is to improve the classification accuracy for
the surrounding PINTs as well. An annotated subset from a German spontaneous
speech corpus was used for modeling. Mel-frequency cepstral coefficients were used as
inputs to model PINTs with three kinds of neural networks: a general neural network,
a convolutional neural network, and a recurrent neural network. The models used
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the same hyperparameters, number of layers, and number of neurons for those layers,
so that the focus was put onto the model architecture. The recurrent neural network
was expected to perform the best since it is able to capture temporal information;
however, all models performed similarly. The models performed best at classifying
silent segments, followed by inhalations and exhalations. However, all models failed
to accurately classify FPs and clicks, indicating that modeling PINTs simultaneously
doesn’t always improve accuracy for surrounding PINTs. These findings suggest that
accurate classification is more dependent on annotation quantity and quality than
model architecture. The main contributions of this paper are the classification of
multiple PINTs simultaneously, and the improvement of PINTs classification for the
German language.

4.1.2 Introduction

The inclusion of PINTs in synthetic speech can improve naturalness and intelligi-
bility. For synthetic speech, pauses have been shown to improve digit recollection
(Elmers et al., 2021a), whereas breath noises improve sentence recollection (Elmers
et al., 2021b). The detection and modeling of breath groups can improve the quality
of speech synthesis (Székely et al., 2019b, 2020). Previous work (Henter et al., 2016)
has indicated the importance of quality training data for TTS applications. Most
modern TTS systems are unable to generate PINTs with appropriate location, dura-
tion, and frequency, especially for spontaneous conversational situations. Similar to
Székely et al. (2019b), an additional goal of this work is to incorporate this detection
method into a future TTS pipeline, for generating appropriate PINTs for spontaneous
synthesis. These TTS systems can then be incorporated further into robotics, call
centers, digital agents, etc.

Often PINTs co-occur with one another in a variety of sequences. Condron et al.
(2021) showed that training with more classes improved performance for non-verbal
vocalizations (similar to PINTs) and laughter detection. The traditional approach has
been to search for a single PINT, while collapsing all other PINTs to an ‘other’ class,
or ignoring them altogether. Since these particles are not usually detected together,
there is an absence of studies that incorporate state-of-the-art methods for detecting
multiple PINTs simultaneously, especially for the German language. We expect that
the classification of PINTs will benefit from simultaneous modeling, by training with
multiple classes of PINTs, and have a positive outcome on synthesis quality for future
research.

There are many applications for audio classification including medical, automatic
speech recognition (ASR), and TTS. Previous classification research has distinguished
between coughs and breath noises (Coppock et al., 2021), and detected respiratory
disorders (Lei et al., 2014; Saraiva et al., 2020). Fukuda et al. (2018) found a reduction
in error rate when using breath events as a delimiter for ASR, and Székely et al. (2020)
found that annotating breath groups, and including breath noises, while omitting low
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probability breath events, created more fluent TTS.
Many methods have previously been used to detect PINTs: for silent segments

(Braunschweiler & Chen, 2013; Singh et al., 2017; Garcia et al., 2018), breath noises
(Székely et al., 2019b; Condron et al., 2021; Braunschweiler & Chen, 2013; Garcia
et al., 2018), filler particles (Goto et al., 1999; Audhkhasi et al., 2009; Krikke &
Truong, 2013; Reichel et al., 2019), and clicks (Condron et al., 2021; Garcia et al.,
2018). PINTs classification has used a variety of methods, such as convolutional
neural networks (CNN) (Saraiva et al., 2020), support vector machines (SVM) (Garcia
et al., 2018), Gaussian mixture models (GMM) (Krikke & Truong, 2013), decision tree
algorithms (Germesin et al., 2008), and template matching (Ruinskiy & Lavner, 2007;
Lu et al., 2020).

In a pilot study conducted with a small English dataset, a neural network (NN) was
used to perform a binary classification, predicting breath noises using mel-frequency
cepstral coefficients (MFCCs) as input. Historically, MFCCs have performed well
for audio classification. This approach appeared promising for the task of locating
PINTs. Machine learning algorithms are extremely prevalent in current research. This
paper will model PINTs using a NN, a CNN, and a recurrent neural network (RNN).
The RNN is expected to outperform the other models since it is able to evaluate the
temporal relationship between different PINTs.

4.1.3 Methods

Corpus

The Pool corpus (Jessen et al., 2005) consists of 100 male native speakers of German
(age range 21–63 years old; mean age 39 years old). The present study considers
the combination of the free technical setting with the spontaneous speech task, i.e. a
picture description task. Similar to the board game Taboo, the speaker must describe
a picture while not using any of the words listed beneath the picture.

This corpus has been annotated with information for different PINTs. There are
100 files in total (duration range 124–374 s; mean duration 223 s; total duration 6.2
hours). All signals are sampled at 16 kHz on a single channel. From these files, a
total of 17,641 annotated PINTs were extracted (see Table 4.1). Additional classes
were annotated like laughter, nasal filler particles (hm), glottal reflex, and other
disfluencies like lengthening, truncation, and repair. However, their occurrences were
too infrequent to include in the modeling.

Data Pre-Processing

The first step for pre-processing was to extract 13 MFCCs with a frame size of 93 ms,
and a hop length of 23 ms, using the Librosa python package (McFee et al., 2015).
Where the files differed in duration zero-padding was used in order to maintain the
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Table 4.1: Overview of annotated PINTs. The minimum (min), maximum (max),
mean, and standard deviation (sd) are measured in seconds. Total refers
to the durational total and is measured in minutes. The proportion
(prop) is the PINTs durational total divided by the total time of the
corpus and is expressed as percentage out of 100%.

count min max mean sd total prop

silent segment 10237 0.01 20.01 0.65 0.95 111.04 29.92
inhalation 2891 0.05 2.10 0.51 0.27 24.79 6.68
exhalation 1887 0.03 3.23 0.38 0.28 12.15 3.27
filler (uh) 1156 0.04 1.44 0.35 0.16 6.81 1.83

filler (uhm) 549 0.15 2.64 0.53 0.25 4.85 1.30
click 921 0.00 0.50 0.06 0.05 0.96 0.25

same size for modeling. The models were trained on the following nine classes: silent
segments, inhalation, exhalation, two FPs (“uh” and “uhm”), clicks, task change (long
stretches of silence while the interviewer changes tasks), zero-padding, and a final
category for speech.

Model Architecture and Training

Models were implemented using Keras (Chollet et al., 2015). All models are compiled
using a sparse categorical cross entropy loss function, a learning rate of 0.0001, the
Adam optimizer, a batch size of 32, and for 40 epochs. A training/test split of 75/25
is used for all the models. Additionally, 20% of the training set is used for validation.
Since there are 100 files, 60 files of material were randomly selected for training, 15
files of material were randomly selected for validation during model training, and 25
files of material were randomly selected and withheld for testing. Each model was
trained using a different training/test split.

Neural Network

The NN model (see Fig. 4.1) incorporates a flattened input layer followed by two
fully connected hidden layers, each with 64 neurons, a rectified linear unit (ReLU)
activation function, and a 30% dropout for each layer. The output is a softmax layer
to predict the output class. Training time is approximately 25 minutes on CPU.

Convolutional Neural Network

The CNN model (see Fig. 4.2) is comprised of two 1D convolutional layers. Each
with 32 filters (size = 1, stride = 1), a ReLU activation function, followed by a 1D
max pooling and batch normalization. The output is then flattened and fed into a
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Figure 4.1: Architecture of NN.

dense layer with 64 neurons and a ReLU activation function, with a dropout of 30%
applied to this layer. The output is a softmax layer for predicting the output class.
Training time is approximately 35 minutes on CPU.

Figure 4.2: Architecture of CNN.

Recurrent Neural Network

The RNN model (see Fig. 4.3) consists of two fully connected long short-term memory
(LSTM) layers each with 64 neurons. Next is a dense layer with 64 neurons, a ReLU
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activation function, and a 30% dropout. The output is a softmax layer which predicts
the output class. Training time is approximately 70 minutes on CPU.

Figure 4.3: Architecture of RNN.

4.1.4 Results

Table 4.2 compares the accuracy, precision, recall, and F1 score for the three models.
Both the CNN and the RNN performed slightly better than the NN in terms of ac-
curacy and F1 score. The CNN and RNN performed similarly, except that the RNN
performed better for precision. All models began with a relatively high accuracy and
improved minimally throughout the remaining epochs. Overall, the scores for pre-
cision, recall, and F1 were lower than expected. Therefore, a confusion matrix was
generated for each model (see Table 4.3, Table 4.4, and Table 4.5) to further inves-
tigate the classification of individual PINTs. All three models performed best when
classifying silent segments, followed by inhalations and exhalations. For both inhala-
tions and exhalations, they were most often confused for a silent segment in all models.
Overall, the models performed well when separating inhalations from exhalations and
vice versa. However, all models failed to classify FPs and clicks. Table 4.6 compares
model performance for the individual PINTs. The CNN performed best when classi-
fying silent segments, the NN performed best when classifying inhalations, and both
the CNN and RNN performed equally well for classifying exhalations.

4.1.5 Discussion and Conclusion

This paper considered different machine learning architectures for classifying PINTs.
Surprisingly, the NN, CNN, and RNN performed similarly, with some individual ad-
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Table 4.2: Accuracy, Precision, Recall, and F1 Score for different models expressed
as a percentage out of 100%.

Accuracy Precision Recall F1 Score

NN 85.6 53.5 41.6 40.5
CNN 86.1 53.2 41.9 41.8
RNN 86.1 69.0 42.1 41.7

Table 4.3: NN confusion matrix for test set. Rows correspond to annotated class
and columns correspond to prediction.

sil in ex uh uhm click sum

silent segment (sil) 64971 2743 789 - - - 68503
inhalation 4141 10372 58 - - - 14571
exhalation 3215 497 2188 - - - 5900
filler (uh) 60 3 34 - - - 97

filler (uhm) 68 4 33 - - - 105
click 209 85 6 - - 1 301

sum 72664 13704 3108 - - 1 89477

Table 4.4: CNN confusion matrix for test set. Rows correspond to annotated class
and columns correspond to prediction.

sil in ex uh uhm click sum

silent segment (sil) 66494 1375 754 - - 1 68624
inhalation 5111 9351 100 - - - 14562
exhalation 3173 336 2532 - - - 6041
filler (uh) 53 2 27 - - - 82

filler (uhm) 80 5 20 - 11 - 116
click 181 73 11 - - - 265

sum 75092 11142 3444 - 11 1 89690
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Table 4.5: RNN confusion matrix for test set. Rows correspond to annotated class
and columns correspond to prediction.

sil in ex uh uhm click sum

silent segment (sil) 64771 1813 811 - - - 67395
inhalation 4214 10098 113 - - - 14425
exhalation 2812 394 2308 - - - 5514
filler (uh) 38 2 13 - - - 53

filler (uhm) 50 2 17 - 3 - 72
click 165 74 8 - - 3 250

sum 72050 12383 3270 - 3 3 87709

Table 4.6: Proportion correct for each model and class expressed as a percentage
out of 100%.

sil in ex uh uhm click

NN 94.8 71.2 31.1 0.0 0.0 0.3
CNN 96.9 64.2 41.9 0.0 9.5 0.0
RNN 96.1 70.0 41.9 0.0 4.2 1.2

vantages in different cases. We had hypothesized that the RNN would perform better
than the other two models since it is better able to capture temporal information.
However, this was not the case. The models were able to easily identify silent seg-
ments and could classify inhalations fairly well, most likely due to them being the
most frequently annotated classes. The models had middling success when attempt-
ing to detect exhalations. This is possibly due to the lower frequency of occurrence
of exhalation annotations in the data. Inhalations and exhalations were sometimes
misclassified as silent segments, possibly due to their frequent proximity.

All models were unable to accurately classify FPs and clicks. This finding is counter
to the hypothesis that modeling multiple PINTs simultaneously would improve the
classification accuracy of other PINTs. The models might have had difficulty classify-
ing FPs because they were too similar to the speech category. The models struggled
to properly classify clicks, which were often incorrectly classified as a silent segment.
This could be in part due to the extremely short duration of clicks or a drawback of
using only MFCCs as input.

The models were designed to encourage parity between them by having a simi-
lar number of layers, neurons for those layers, and the same hyperparameters. This
decision was made to highlight the architectural differences of the models. During
training time all three models started with a relatively high accuracy and only im-
proved slightly during subsequent epochs. Since all the models performed similarly, we
hypothesize that further improvements in accuracy could be gained by increasing the
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number of occurrences for the PINTs, especially the infrequent ones, showcasing the
importance of quality annotations. Other possibilities include using techniques such
as oversampling the less frequent PINTs, or undersampling the more frequent PINTs,
to create a more balanced dataset. These techniques might increase the model’s ca-
pability to correctly classify infrequent PINTs. In addition to MFCCs, other acoustic
features should be investigated in order to improve classification. Since the inputs
were MFCCs, the CNN model used 1D convolutional layers. Classification could
possibly be further improved, by using spectrogram images instead of MFCCs for
models using a CNN architecture. Future work could also investigate hybrid models
that include the strengths of CNNs (i.e., feature extraction) and RNNs (i.e., temporal
dependencies) to better detect and classify PINTs.

A primary goal for developing these classification models is to improve speech
synthesis. Future work will implement a PINTs classification method as part of the
training process for a TTS pipeline to create more natural, conversational speech
synthesis.
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4.2 Synthesis after a Couple PINTs: Investigating
the Role of Pause-Internal Phonetic Particles in
Speech Synthesis and Perception

4.2.1 Abstract

Pause-internal phonetic particles (PINTs), such as breath noises, tongue clicks and
hesitations, play an important role in speech perception but are rarely modeled in
speech synthesis. We developed two text-to-speech (TTS) systems: one with and one
without PINTs labels in the training data. Both models produced fewer PINTs and
had a lower total PINTs duration than natural speech. The labeled model generated
more PINTs and longer total PINTs durations than the model without labels. In a
listening experiment based on the labeled model we evaluated the influence of various
PINTs combinations on the perception of speaker certainty. We tested a condition
without PINTs material and three conditions that included PINTs. The condition
without PINTs was perceived as significantly more certain than the PINTs conditions,
suggesting that we can modify how certain TTS is perceived by including PINTs.

4.2.2 Introduction

PINTs are largely unconscious both in their production and perception and we are
still working towards understanding the scale of their influence. PINTs, as speech
planning tools or hedging mechanisms, are less salient than features such as focus,
prominence, intonation or even “tone of voice”. As conversation systems strive to be
lifelike and realistic at all levels (Aylett et al., 2022), it is important to understand
the functions of PINTs. If conversational systems begin using PINTs in their verbal
interaction as a means of sounding more realistic and relatable, they risk producing
PINTs that modify the perception of the message, like transmitting incorrect speaker
certainty (Kirkland et al., 2022).

The goal of this study is to model PINTs based on a spontaneous speech corpus,
and apply the resulting synthetic speech in a perceptual experiment. First, we present
a technological contribution that incorporates PINTs from spontaneous speech into
a TTS system. While synthesis of filled pauses and breath events have been the
focus of other studies (Dall et al., 2016; Székely et al., 2019a, 2020), to the best
of our knowledge, this is the first synthetic voice that is able to produce discourse
clicks. Second, we demonstrate that a variety of PINTs patterns, generated with
TTS, can be used as experimental material. This is a contribution to an emerging
methodology that uses state-of-the-art neural TTS for stimuli creation, instead of
manual manipulations of recorded speech samples (Kirkland et al., 2022). Specifically,
we evaluated the effect of PINTs, on perceived certainty of the speaker, via a listening
experiment.



4. PINTs Detection and Synthesis Generation 49

Figure 4.4: Example section from speaker. Annotations of PINTs: silence (sil), in-
halation noise (in), exhalation noise (ex), filler particles (uh) and (um),
tongue click (cl). Speech is annotated as “sp”.

4.2.3 Method

TTS Generation

Our training material is from Open Yale Courses (2007b), which is a project that pro-
vides free and open access to a number of introductory courses from Yale University.
We selected lectures that included a high number of spontaneous speech phenomena.
Next, we annotated a subset1 of lectures totaling 3 hr 7 min for a single speaker with
a diverse PINTs profile. The selected speaker’s PINTs material was approximately
40% of the total lecture time. An example annotation can be found in Figure 4.4.

Our training data incorporated transcripts taken from the Open Yale Courses
website. We removed all punctuation in the original transcripts, as these are meant
to improve the readability and do not correspond to acoustics. Next, we assigned
PINTs to the available punctuation labels. For example, silence (,), inhalation (;),
exhalation (.), tongue click (tk), filler particle (uh), and filler particle (um). The
following is an example transcript with PINTs punctuation inserted: “; the metropolis
which uproots people . , tk uh takes them away takes them out of ; traditional cultures
, tk ;”. Numbers were typed alphabetically (e.g., nineteen twenty two), accented
symbols (e.g., Leger vs. Léger) and hyphens (e.g., self consciously) were removed,
and acronyms were written out (e.g., r i s).

The original annotations included an “other” category, which comprised a variety
of phenomena such as laughter. The “other” labels from the annotations were not
included in the training transcript because they comprised rare cases that were too
infrequent to reliably model. We exclusively used punctuation and textual labels for
PINTs, as opposed to introducing new symbols or phonemes. This ensures that our
TTS system is capable of interpreting automatically generated input that is trained
on text alone. In particular, this enables the fine-tuning of large language models on

1Lectures 1, 7, 13, and 24 from https://oyc.yale.edu/english/engl-310

https://oyc.yale.edu/english/engl-310
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TTS corpora, as demonstrated in Wang et al. (2022), to generate synthesis prompts
that produce the distribution of PINTs in the training data. For example, inserting
semi-colons in places where the speaker is likely to take a breath, or ‘tk’ tokens when
a speaker is likely to use a tongue click.

The training data was segmented into breath groups following Székely et al. (2019b,
2020), which meant that audio snippets began and ended with an inhalation label. If
the duration of the utterance was greater than 11 seconds, a constraint of Tacotron
2 (Shen et al., 2018), the audio was cut at a silence label instead. PINTs are often
modeled beyond single sentences. However, due to the limitations of Tacotron2, we’ve
only investigated single-sentence environments. All utterances were at least 4 seconds
long. In total, we included 1224 breath group utterances, with 1128 in the training
data and 96 held out for validation.

The TTS system was trained using a PyTorch implementation2 of the sequence-
to-sequence neural TTS engine Tacotron 2 (Shen et al., 2018). The models (with
28.2M parameters) were trained using transfer learning on a pre-trained model based
on a large read speech corpus, LJSpeech (Ito & Johnson, 2017). This approach has
been beneficial to TTS quality when training on a limited size spontaneous corpus.
Specifically, in reducing the number of mispronunciations and increasing speed of
convergence (Székely et al., 2019a). We trained two models on the data: Controlled-
PINT, where all transcribed PINTs are included with their own lexical token, and
AutoPINT, where we removed the transcriptions of the PINTs. Phoneme-level in-
put is used for training and synthesis and is obtained from the transcripts using the
g2p_en package (Park & Kim, 2019). Both voices were trained for 70k iterations on
top of the published read speech model, on 3 GPUs each, for 67 hours, with a batch
size of 28. The speech signal is decoded from the model output using the neural
vocoder HiFi-GAN (Kong et al., 2020).

To evaluate the PINT insertion of the ControlledPINT and the AutoPINT models,
we compared their outputs to natural speech using five sentences that were excluded
from the training data. For the ControlledPINT model, we designed the input to
match the type and location of the PINTs in the natural sentence. The AutoPINT
model used only the textual material. We synthesized multiple versions using each
model and selected the versions with minimal distortions or errors, without regard to
PINTs production. We avoided versions3 that included metallic reverberations that
would sometimes occur due to the recording conditions.

Perceptual Study

Using synthesized samples generated by the ControlledPINT model, we developed
a perceptual experiment that uses generated audio to evaluate how PINTs influence

2https://github.com/NVIDIA/tacotron2
3Sample audio used for TTS comparison and perceptual experiment can be found at https:

//mikeyelmers.github.io/paper_interspeech23ttsdemo/

https://github.com/NVIDIA/tacotron2
https://mikeyelmers.github.io/paper_interspeech23ttsdemo/
https://mikeyelmers.github.io/paper_interspeech23ttsdemo/
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Table 4.7: Description of conditions used in perceptual study. The inserted material
(punctuation labels) during generation is included.

condition punctuation

PINTsless N/A

long silence , , ,

filler particle , um

combinatory , um tk in

certainty scores. In this study the participants listened to audio samples and evaluated
how “certain” the speaker sounded of their opinion.

The textual material consisted of 10 sentences of similar syntactic structure, where
the speaker describes their observations and opinions about artwork. For example,
“The brush strokes in this painting contribute to a feeling of liveliness and energy”.
The semantic content of the utterances allowed for perceived hedging, indicating un-
certainty. A Likert scale was used for evaluation with 1 representing “completely
uncertain” and 7 representing “completely certain”. Listeners heard a total of 40 au-
dio stimuli, consisting of 10 different sentences synthesized in 4 different conditions
(see Table 4.7). The “PINTsless” condition did not insert PINTs during synthesis.
The “long silence” condition inserted a longer silence by including 3 silence symbols
in a row. The “filler particle” condition inserted a silence and “um”. And the “combi-
natory” condition inserted a silence, um, tongue click, and inhalation. Sentence final
inhalations were removed, since the stimuli were evaluated in isolation. The tongue
click in the “combinatory” version was surrounded by other PINTs because previ-
ous research has found that they co-occur alongside other PINTs in word-searching
(Ogden, 2013; Moreno, 2019).

Our first hypothesis was that the PINTsless condition would be rated as more
certain than the conditions that included PINTs. Our second hypothesis was that
the combinatory condition would be rated as more certain than the filler particle
condition. A FP may indicate that the speaker has encountered word search (e.g.,
lexical retrieval) problems and the following tongue click may signal that the word
was found. The long silence condition was included as a distractor to prevent the
participants from developing overly simple heuristics in their certainty ratings.

In an initial questionnaire, participants were asked about hearing impairment and
age. All participants listened to the same set of stimuli, the order of which was
randomized. The experiment required the use of headphones. Participants were
asked to rate ‘How certain does the speaker sound?’ on a 7-point Likert scale. The
audio began automatically and the participants could click a “Play” button to hear
the audio up to two more times before making their decision.

The perception study was created using a web-based experiment platform, Lab-
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Table 4.8: Duration information for the different TTS models and natural speech
for five sentences excluded from training. Both the total PINTs duration
(PINTs dur) and the total audio duration (total dur) are measured in
seconds. The proportion (prop) is measured out of 100%.

condition PINTs dur total dur prop

natural 15.96 41.57 38.39

ControlledPINT 13.82 40.82 33.86

AutoPINT 7.95 36.11 22.00

vanced4 (Finger et al., 2017), which presented the audio material and collected re-
sponses. We recruited participants using the crowd-sourcing platform Prolific5 (2014).
Fifty native English participants from the UK participated (mean age 40.7 years; age
range 20–70 years, reflecting a diverse range of ages that represents a broad popula-
tion). None of the participants self-reported hearing impairment. Participants were
paid for their participation.

4.2.4 Results

Evaluation of TTS Model Performance

Using the five sentences that were excluded from the training data, we annotated three
versions and measured the duration of their PINTs material (see Table 4.8). Our re-
sults6 showed that the natural condition had the longest duration of PINTs material,
which closely matched the overall PINTs profile proportion of the speaker (40%). The
ControlledPINT model produced the second longest durations and second largest pro-
portion, while the AutoPINT version produced the shortest durations and smallest
proportion. These findings were expected, but it was noteworthy that the Controlled-
PINT version closely resembled the natural version, and that the AutoPINT version
could generate PINTs durations and proportion that were half of natural speech with-
out any explicit labels. This is in line with the findings of Székely et al. (2019a), where
filled pauses were automatically synthesized with a similar method.

We also looked at count information for the individual PINTs grouped by condition
(see Table 4.9). The natural condition has the highest count values, with many more
silences, especially edge silences that are adjacent to other PINTs, than material
generated by either of the TTS systems. The ControlledPINT model produces more
of the filler particle “uh” than the AutoPINT condition, but both systems produced
the same number of “um” filler particles. The ControlledPINT system sometimes

4Accessed via https://www.labvanced.com/ on Feb. 24, 2023.
5Accessed via https://www.prolific.co/ on Feb. 24, 2023.
6All data and code for the results can be accessed at https://github.com/MikeyElmers/paper_

interspeech23

https://www.labvanced.com/
https://www.prolific.co/
https://github.com/MikeyElmers/paper_interspeech23
https://github.com/MikeyElmers/paper_interspeech23
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Table 4.9: Count information for the different TTS models and natural speech: si-
lence (sil), inhalation (in), exhalation (ex), filler particles (uh) and (um),
tongue click (cl), and other (o).

condition sil in ex uh um cl o

natural 43 23 2 10 − 2 8

ControlledPINT 14 14 1 17 1 − −
AutoPINT 10 13 1 4 1 − −

produce multiple PINTs from a single label, rendering more “uh” PINTs than was
present in the natural speech. Only the natural material had tongue clicks or other
labels.

Both the ControlledPINT and AutoPINT systems sometimes generate exhalations
without a label. These exhalations were often near other PINTs in the data and this
close association might be the cause of their unlabeled inclusion. Further evidence to
support this theory comes from the ControlledPINT system sometimes producing a
sequence of PINTs from just one or two labels in the input. Overall, the system is able
to generate PINTs well, mirroring the PINTs pattern of the speaker. Occasionally, in
cases with 5 or more PINTs in a row, the system struggles to perfectly recreate the
PINTs sequence.

Our observations also revealed that tongue clicks were only realized by Tacotron2
when adjacent to silences or breath events. This is likely due to the fact that tongue
clicks were one of the rarer PINTs in the training data and were almost always adjacent
to other PINTs. Without an inhalation or silence in the prompt, the synthesizer
would attempt to pronounce the tongue click symbol (tk) phonetically. The quality
and loudness of the synthesized audio was also variable, likely due to differences in
recording conditions across lectures. Originally, we expected the models to be quite
probabilistic in their PINTs generation, however, they were more consistent than
expected. Sometimes versions differed in their PINTs content but more often the
differences were due to prosody and pronunciation variations.

Evaluation of the Perceptual Study

We created material, generated by the ControlledPINT system, for a perceptual ex-
periment to evaluate the certainty of sentences in four conditions. The results for the
perceptual study are in Table 4.10. Participants used the full scale in all conditions.
We incorporated three measures of central tendency: mean, median, and mode. Each
of these measurements highlights a different aspect of the data. For example, the
mode for the PINTless condition was 7, indicating that the most common value was
the highest possible rating.

The results confirmed our initial hypothesis that the PINTsless version would
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Table 4.10: Descriptive statistics for the different conditions.

conditon mean median mode sd

PINTsless 5.90 6 7 1.10

long silence 4.31 4 4 1.30

filler particle 3.72 4 4 1.24

combinatory 3.51 3 4 1.27

Table 4.11: ANOVA comparison of base model and model with condition (cond) as
a predictor. Includes number of parameters (par), AIC, log-likelihood
(logLik), likelihood ratio test statistic (LR), degrees of freedom (df),
and p-value (p).

par AIC logLik LR df p

base 8 5718.5 −2851.2 − − −
cond 11 5637.2 −2807.6 87.24 3 < 0.001

be rated more certain than the conditions with PINTs. The mean, median, and
mode all clearly indicate that the PINTsless version sounded most certain. We also
hypothesized that the combinatory version would be rated as slightly more certain
than the filler particle condition. However, the data did not support this. All three
PINTs conditions had similar certainty ratings but the long silence condition had the
highest mean of the three PINTs conditions. The long silence condition also had more
certainty scores in the 5-7 range than the other two PINTs conditions. The certainty
scores for both the filler particle and combinatory conditions are similar but the filler
particle condition has marginally higher certainty scores.

Statistical modeling was conducted with cumulative link mixed models (clmm)
from the ordinal (Christensen, 2022) (Version 2022.11-16) package in R (R Core Team,
2021) (Version 4.1.2). A post-hoc analysis was conducted using emmeans (Lenth,
2023) (Version 1.8.4-1).

We compared a base clmm model, clmm(certain ∼ (1 | id) + (1 | stimuli), and a
condition model, clmm(certain ∼ condition+ (1 | id) + (1 | stimuli). The condition
model predicts the certainty score with a single predictor, condition, as a fixed effect.
For random effects, both subject id and stimuli with intercepts was included. An
anova() was used to compare the two models. Table 4.11 shows that the model
with condition as a predictor provides a significantly better fit than the base model
as determined by both the Akaike information criterion (AIC) (Akaike, 1973) and
log-likelihood.

A post-hoc analysis for pairwise comparisons was conducted (see Table 4.12). The
PINTsless condition was significantly different (p < 0.001) from all PINTs conditions.
The long silence condition was significantly different from both the filler particle
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Table 4.12: Post-hoc pairwise comparison using Tukey method for comparing a fam-
ily of 4 estimates.

contrast est SE df z p

fluent− sil 3.320 0.312 Inf 10.624 < 0.001

fluent− tc 4.852 0.321 Inf 15.130 < 0.001

fluent− um 4.409 0.318 Inf 13.859 < 0.001

sil − tc 1.532 0.302 Inf 5.077 < 0.001

sil − um 1.089 0.301 Inf 3.621 < 0.01

tc− um −0.443 0.300 Inf −1.478 0.451

Table 4.13: Model information.

est SE z p

sil −3.32 0.31 −10.62 < 0.001

click −4.85 0.32 −15.13 < 0.001

um −4.41 0.32 −13.86 < 0.001

condition (p < 0.01) and the combinatory condition (p < 0.001). However, the filler
particle and combinatory conditions were not significantly different (p = 0.451).

Table 4.13 shows that the three PINTs condition (sil, click, and um) are all sig-
nificantly different from the reference level which is the fluent condition. Table 4.14
shows the 95% confidence intervals for the different PINTs conditions which have
overlap.

4.2.5 Discussion

In our listening experiment, we expected the combinatory condition to indicate higher
certainty scores than the other PINTs conditions, but this was not the case. Surpris-
ingly, the long silence condition received slightly higher certainty scores than the other
two PINTs conditions. One possible explanation is that the long silence condition
might be less obtrusive than the filler particle or combinatory conditions. However,
the long silence condition still disrupts the flow of speech more than the PINTsless

Table 4.14: 95% Confidence Intervals.

condition 2.5% 97.5%

sil −3.93 −2.71

click −5.48 −4.22

um −5.03 −3.79
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condition, thereby reducing the listener’s certainty. All PINTs were evaluated equally
even though each PINT has different realizations that can influence certainty. Ad-
ditionally, evaluating the effects of dialect, age, and gender for the interpretation of
PINTs was outside the scope of this experiment.

Tongue clicks exhibit a number of functions such as: introducing a new sequence or
topic, word search, maintaining a turn, backchanneling, stance marking, and repair
(Ogden, 2013; Zellers, 2022). The acoustic realizations of these tongue clicks are
highly variable (Trouvain & Malisz, 2016), which means that the tongue clicks the
TTS engine rendered might behave differently from our intended function. The fact
that tongue clicks did not improve certainty by signaling a successful word search
affirms that the production and perception of different PINTs patterns might require
more elaborate experimental design, such as in-context perceptual evaluations. Future
research could provide insights for audio enhancement tools, to reveal which tongue
clicks can be removed from the recording and which are necessary for retaining the
speaker’s original intent.

We created two different TTS systems that were able to produce PINTs. The an-
notations for the TTS corpus were made manually, and therefore a time-consuming
process. One limitation of the manual annotations was that we were only able to
evaluate a single speaker. Automatic detection of PINTs is a challenging task, espe-
cially since some particles are less common than others (Elmers, 2022). Improvements
could be made by including more data and more consistent audio quality. This study
modeled PINTs in single-sentence environments. Future work should explore multi-
sentence environments, which are more representative of the way PINTs occur in
natural speech. The experiment in our paper is one possible example of how gen-
erative modeling can be used to create materials and test hypotheses, in this case
improving our understanding of the functional properties of PINTs. Using genera-
tive modeling to distill knowledge is not going to replace the need for corpus-based
research, but it is becoming a useful and necessary addition.

4.2.6 Conclusion

We developed an annotation scheme that uses plain text punctuation symbols to
describe a speaker’s PINTs pattern, which focused on consistency for successful gen-
erative modeling. Using these annotations, we trained two synthetic voices: Con-
trolledPINT and AutoPINT. ControlledPINT used overt PINTs labels in the training
material. AutoPINT did not include any PINTs labels and relies on the probabilistic
rendering of Tacotron2 to insert them automatically. We conducted a quantitative
and qualitative analysis of these two models. The novelty of our models is that they
are the first to produce tongue clicks. Using the output of the ControlledPINT model,
we conducted a perceptual experiment to evaluate how certain a synthetic speaker
sounds in 4 different conditions. Importantly, we have shown that by incorporat-
ing natural phenomena (e.g., clicks), we are able to create manipulated experimental
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material. We hope that this line of research will contribute towards a deeper under-
standing of these complex and latent speech phenomena. Additionally, by including
controllable PINTs material in TTS voices, we can equip conversational systems to
utilize PINTs, to better manage perception in social communication.





Chapter 5

PINTs Recall in Lecture Setting

The experiments contained in this chapter investigated the usage and perceptual
effects of PINTs material in educational settings, specifically in lecture environments.
Experiment 1 (chapter 5.1) analyzed the differences in PINTs between lecture material
from Yale University and the TOEFL iBT listening practice section. We found that
PINTs have a strong presence in both of the aforementioned lecture environments.
This led to evaluating the recall benefits of PINTs, using lecture materials, in the
second (chapter 5.2) and third (chapter 5.3) experiments. Experiment 2 and 3 used
the same experimental methodology, with the major difference being that experiment
2 used natural materials, while experiment 3 used synthetic materials.

5.1 Comparing PINTs in University Lectures

5.1.1 Abstract

This study compared the PINTs usage of five different lecturers recorded at Yale
University to the lecture listening sections of the TOEFL iBT English-language test.
We annotated 5 hours of material from Yale lectures and 15 minutes of material from
the TOEFL iBT lecture listening section. Additionally, we evaluated intra-speaker
PINTs variation for the Yale lectures since the recordings spanned a three month
semester. The following PINTs were annotated: silences, inhalation breath noises,
exhalation breath noises, the filler particles “uh” and “um”, tongue clicks, and an
“other” category. Results showed that PINTs comprised approximately 30% of the
total time for Yale lectures, and 20% for the TOEFL iBT lecture listening section.
Each Yale lecturer showcased a different PINTs pattern with respect to type and
number of PINTs, but remained individually consistent with their PINTs type and
frequency during the semester. Our findings showcase a need for additional research,
especially on how PINTs influence recall, since PINTs can inhabit approximately 1/3
of the total lecture time.
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5.1.2 Introduction

PINTs provide a great deal of information, and despite their relatively short du-
ration, they exert a large influence upon style (Trouvain & Barry, 2000), percep-
tion (Bosker et al., 2014), and memory (Corley et al., 2007). University lectures
showcase unique, style-specific features. For example, lectures are semi-prepared and
somewhat-rehearsed while simultaneously spontaneous and monologic. This is in con-
trast to sentences recorded in a laboratory setting with a neutral style. Regarding
lectures, Kjellmer (2003, p.190) stated, “a lecture that is read aloud from the written
page is often difficult to take in when its delivery lacks the verbal guides and signposts
that we more or less subconsciously expect to find in speech; as listeners we are in
danger of missing the point of the argument.”

In this study we annotated lectures and provide a descriptive statistical analysis of
the PINTs information. Specifically, we’ll look at PINTs count, type, duration, and
correlation. Exploring where, what kind, and how often PINTs are present in lectures
is an important first-step towards investigating the influence of PINTs on memory in
a university lecture setting. Therefore, we’ve opted to also annotate and compare
the Yale lecture annotations to annotations from the TOEFL iBT English-language
lecture listening section. The study is interested in the follow:

• How often do lecturers use PINTs?

• Is PINTs usage unique to each lecturer?

• Does PINTs usage change for each lecturer during the three month semester?

• How does PINTs usage compare to an English-language lecture listening test?

5.1.3 Method

Lecture material was collected from Open Yale Courses (2007b), which contains free
and open access courses provided by Yale University. We selected five lecturers (Ham-
mer, 2007a; Wargo, 2010; Merriman, 2008; Wrightson, 2009; Echevarría, 2009) that
used many spontaneous speech phenomena. We then annotated a subset of lectures
totalling approximately 5 hours (i.e., 1 hour / lecturer). Since the lectures were
recorded over a three month semester, 1/3 of the annotations were from the first
lecture, 1/3 of annotations were from the half-way point of the semester, and 1/3
of annotations were from the final session of the semester. With multiple lecturers
and data from three different time points, we were able to compare both inter- and
intra-lecturer PINTs usage. The audio was annotated with the following PINTs la-
bels: silence, inhalation breath noises, exhalation breath noises, the filler particles
“uh” and “um”, tongue clicks, and an “other” category (e.g., coughing, swallowing,
etc.). No minimum threshold was enforced for any of the PINTs.
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Table 5.1: Count information for the Yale and TOEFL lecture annotations: si-
lence (sil), inhalation (in), exhalation (ex), filler particles (uh) and (um),
tongue click (cl), and other (o).

sil in ex uh um cl o

Y ale 11559 5234 800 3218 277 625 471

TOEFL 473 192 12 58 24 20 1

The TOEFL iBT (Test of English as a Foreign Language, Internet-based Test)
is a standardized test that evaluates the English-language proficiency for non-native
speakers of English, and is a popular admission test for university entrance. We chose
to compare the TOEFL iBT to the Yale lectures since the test has a focus on higher
education preparation. In this study, we collected material from the TOEFL1 iBT
listening practice test. We annotated the same PINTs information for the TOEFL
lectures as for the Yale lectures. The amount of material available for annotation for
the TOEFL lecture listening practice was approximately 15 minutes, significantly less
than what was annotated for the Yale lectures.

5.1.4 Results

R (R Core Team, 2021) (Version 4.1.2) was used to perform both descriptive and infer-
ential statistics on the data2. Visualizations were generated using ggplot2 (Wickham,
2016) (Version 3.4.2).

We found 22,184 PINTs in the 5 hours of annotated Yale lecture material, compared
to 780 PINTs found in the 15 minutes of annotated TOEFL lecture material. Table 5.1
shows count information for the individuals PINTs for both the Yale and TOEFL
lectures. Both the Yale and TOEFL annotations show that a majority of annotations
are made up of silences, inhalation, and the filler particle “uh”.

Duration

Duration information for each PINT type are provided for the Yale lecture data (see
Table 5.2) and for the TOEFL lecture data (see Table 5.3). Individual PINTs duration
information for the Yale lecture data can also be seen in Figure 5.1. The silence PINT
type has a large standard deviation for both data collections, since silences inhabit a
variety of durations.

1The TOEFL lecture listening practice was downloaded from https://www.ets.org/toefl/
test-takers/ibt/prepare/practice-tests.html from the link titled “Download TOEFL iBT
Listening Practice Sets with audio tracks (zip)” under the “TOEFL iBT Practice Sets” section.

2This project’s data and scripts can be found at https://github.com/MikeyElmers/paper_
pp22.

https://www.ets.org/toefl/test-takers/ibt/prepare/practice-tests.html
https://www.ets.org/toefl/test-takers/ibt/prepare/practice-tests.html
https://github.com/MikeyElmers/paper_pp22
https://github.com/MikeyElmers/paper_pp22
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Table 5.2: Duration information for each PINT type from Yale lecture annotations.
The mean and standard deviation are measured in milliseconds. The
total duration (total dur) for each PINT is measured in seconds. The
proportion (prop) is measured out of 100%.

PINTs mean sd total dur prop

sil 197 319 2279 12.6

in 335 164 1754 9.7

ex 213 155 171 0.9

uh 262 124 842 4.7

um 410 129 114 0.6

cl 62 33 39 0.2

o 209 205 99 0.5

Table 5.3: Duration information for each PINT type from TOEFL lecture annota-
tions. The mean and standard deviation are measured in milliseconds.
The total duration (total dur) for each PINT is measured in seconds.
The proportion (prop) is measured out of 100%.

PINTs mean sd total dur prop

sil 165 208 78 8.2

in 399 170 77 8.1

ex 252 138 3 0.3

uh 310 99 18 1.9

um 402 80 10 1.0

cl 34 26 1 0.1

o 143 − .143 0.0
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Figure 5.1: Box plot for individual PINTs duration.

Proportion

PINTs comprised approximately 30% of the total time for the Yale lectures (see
Figure 5.2), and approximately 20% of the total time for the TOEFL lectures. Fig-
ure 5.3 shows a bar plot representation of the individual PINTs proportions for the
Yale lecture data set. The total PINTs proportion is mostly compromised of silences,
inhalations, and the filler particle “uh” for both data sets. The proportions for each
PINTs type is usually higher in the Yale lecture data.

Inter-Lecturer Comparison

Each lecturer displayed a unique PINTs usage for the Yale lecture annotations. Ta-
ble 5.4 shows duration differences for each of the five lecturers. The lowest PINTs
proportion was approximately 20% for lecturer 3, and the highest PINTs proportion
was approximately 40% for lecturer 1. This result indicates large differences between
total PINTs duration for each lecturer.

Intra-Lecturer Comparison

We evaluated intra-lecturer PINTs usage (see Figure 5.4). Different speakers prefer
different PINTs. For example, lecturer 1 uses many more “uh” compared to lecturer
4. Each lecturer tended to be consistent with their PINTs usage throughout the
semester.
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Figure 5.2: Pie chart for proportion of PINTs to speech.

Figure 5.3: Bar plot for individual PINTs proportion out of total speaking time.
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Table 5.4: Duration information for each of the five lecturers from the Yale lecture
annotations. Both the total PINTs duration (PINTs dur) and the total
audio duration (total dur) are measured in seconds. The proportion
(prop) is measured out of 100%.

lecturer PINTs dur total dur prop

1 1457 3604 40.4

2 937 3602 26

3 787 3609 21.8

4 990 3603 27.5

5 1126 3604 31.3

Figure 5.4: Bar plots for between- and within-speaker variability for each speaker
and session.
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Table 5.5: Comparison of speech rate and PINTs rate for each Yale lecturer.

lecturer speech rate PINTs rate

1 2.47 1.56

2 3.20 1.39

3 3.42 1.12

4 2.86 0.99

5 2.67 1.09

PINTs Rate

Table 5.5 compares the speech rate (i.e., number of syllables / total time), measured
in the number of syllable per second, to the PINTs rate (i.e., number of PINTs /
total), which is measured in the number of PINTs per second. Speakers varied in
their PINTs frequency, with some having a PINTs rate as low as 0.99 PINTs/sec, and
others with 1.56 PINTs/sec. The correlation analysis between speech rate and PINTs
rate did not reveal a statistically significant relationship (t(3) = -0.55, p > 0.05, r =
-.30).

5.1.5 Discussion

Since teaching time is valuable, we expected to find few, if any, PINTs during the
Yale lectures. Instead we found many particles that accounted for more than 30% of
the total time. This finding is in stark contrast with current speech synthesis tech-
niques which include silences but omit the other PINTs. Meaning, current synthesis
techniques ignore about 30% of material, at least for this speech genre. Additionally,
these results are evidence against the belief that silence dominates pauses since ap-
proximately 2/3 of the entire pause duration consists of particles that are not silent.
This work can function as a baseline for achieving a more natural usage of PINTs for
lectures in speech synthesis.

While the PINTs usage was lower in the TOEFL lecture data, there numbers
were still comparable to the low end of lectures in the Yale data. Again, we did not
expect to find PINTs included in the TOEFL listening test, especially since the audio
seems appears curated. It is important to investigate whether these particles have an
influence on the recollection of lecture material, and if the effects are consistent for
both native and non-native speakers.

5.1.6 Conclusion

The present study compared the PINTs usages for annotation from both Yale and
TOEFL lectures. Both the Yale and TOEFL annotations showed a majority of counts
comprised silences, inhalations, and the filler particle “uh”. We found that PINTs
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comprised approximately 30% of the total time for the Yale data, and approximately
20% of the total time for the TOEFL data. In most cases the PINTs proportions
were higher in the Yale data. Results indicated unique PINTs usage in terms of
type, total duration, and frequency for the five lecturers annotated in the Yale data.
Despite the differences in the type, amount, and duration between lecturers, PINTs
usage remains relatively consistent over the semester for each lecturer. The strong
presence that PINTs can occupy in both testing and real-world lectures indicates a
need continuing to investigate their influences.
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5.2 Pause Particles Influencing Recollection in
Lectures

5.2.1 Abstract

This study investigated the influence of pause-internal phonetic particles (PINTs) on
recall for native and non-native listeners of English. Participants were 45 monolingual
English and 45 L1 German listeners who heard segments from university lectures, in
English, and answered content-based questions. Three versions of lecture stimuli were
created: an unmanipulated original version, a “silence” version, and a “no PINTs”
version where all PINTs were removed including silences. In the original and “silence”
versions, half of the key information was preceded by PINTs material. The results
indicated that material preceded by PINTs was less likely to be recalled. Additionally,
the participant’s first language was not significant for understanding the speaker.
However, English listeners tended to score higher during the “no PINTs” condition,
while German listeners tended to score higher during the original condition. This
study was unable to replicate the recall benefit of PINTs found in single sentence
laboratory setting experiments.

5.2.2 Introduction

Pause particles can exhibit an influence on recollection. For example, Fraundorf &
Watson (2011) found that the recollection of story plot points was improved when
including FPs. In word recognition studies, Corley et al. (2007) found that disfluen-
cies improved the recollection of the following word, while MacGregor et al. (2010)
found that silent pauses improved the recollection of the following word. Importantly,
MacGregor et al. (2010) claims that a feature of disfluencies is that they provide ad-
ditional time. Watanabe et al. (2005) found that native and non-native listeners
exhibited shorter response times for complex phrases that were preceded by FPs or
silence compared to a no pause condition. Overall, these studies show that PINTs
can affect recollection in laboratory settings. However, these studies do not utilize
material from a real-world setting and focus on smaller contexts (i.e., words or sen-
tences). This study expected to find a PINTs benefit for recollection in university
lecture segments, similar to the previously mentioned smaller contexts.

Similar to Wagner et al. (2015), this study does not advocate for ‘lab speech’ or
‘natural speech’, rather the goal is to improve awareness around the types of data
and methods used. This study explored the influence of PINTs on memory, using
real-world data, rather than in a laboratory setting and with material larger than
a single sentence. Another main goal was to evaluate the effect of PINTs on both
native speakers (NSs) and non-native speakers (NNSs). We opted to examine English
monolingual listeners and L1 German listeners due to the English language stimuli
used in the study.
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Figure 5.5: Example section from speaker. Annotations of PINTs: silence (sil),
inhalation noise (in), filler particle (uh), and other (o).

5.2.3 Method

Lectures were collected from Open Yale Courses (2007b) which contains free and open
access courses from Yale University. English-language lectures were chosen based on
the speaker’s PINTs profile. After selecting a specific speaker, annotations were made
for a subset of their lectures. The chosen speaker displayed a relatively high number
of PINTs during his lectures, with upwards of 40% of his total time incorporating
PINTs material. Fig. 5.5 shows an example for this speaker.

Participants

This study used a web-based experiment created with Labvanced3 (Finger et al., 2017)
to present the audio stimuli to participants, and to collect their answers and ques-
tionnaire information. Participants were recruited using the crowd-sourcing platform
Prolific4 (2014) and consisted of 45 monolingual English participants (mean age 38
years; age range 21–62 years) and 45 L1 German participants (mean age 35 years; age
range 21–72 years) who were paid for their participation. One monolingual English
participant reported hearing impairment and was not included in the results.

Stimuli

Stimuli consisted of four three-minute sections extracted from full length lectures.
Each audio segment was followed by two multiple-choice content-based questions,
with one question preceded by PINTs material and the other not. The study was
balanced so that the key material was equally preceded, or not preceded, by PINTs.
However, neither question was preceded by PINTs material in the “no PINTs” con-
dition, since all PINTs material was removed. An example question was: “According

3Accessed via https://www.labvanced.com/ on Dec. 06, 2022.
4Accessed via https://www.prolific.co/ on Dec. 06, 2022.

https://www.labvanced.com/
https://www.prolific.co/
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original

no PINTs

silence

Figure 5.6: Schematic of the duration for the three conditions showing speech
(white), PINTs (grey), and speech material that contained the key in-
formation (black).

to Paul Fussell, what is the essential trope or rhetorical figure of World War One
poetry?” The possible answers were: a) hyperbole, b) metaphor, c) oxymoron, d)
irony. The participants did not need to know what these concepts meant, or any
other encyclopedic or background knowledge. Instead, they needed to answer based
on the content as presented by the lecturer.

The different conditions were created using a Praat (Boersma & Weenink, 2022)
script that would remove or replace the PINTs material. In the “silence” condition,
non-silence PINTs were replaced with a silence taken from the audio and matched to
the duration of the cut material. Therefore, the “silence” condition maintained the
same duration as the original audio. The original and “silence” conditions provided
the same amount of processing time, while the “no PINTs” condition provided less
processing time (see Fig. 5.6). The “no PINTs” condition did not include any acoustic
pause whatsoever. Participants only heard one of the three conditions, i.e., one third
of participants heard four original clips, one third of participants heard four “silence”
clips, and one third of participants heard four “no PINTs” clips. Each of the conditions
included the same textual material, however, the order of the four audio clips was
randomized to prevent ordering effects.

Procedure

Participants were informed that they would hear four audio clips, each approximately
three minutes, and answer content-based questions immediately following each clip.
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Table 5.6: Mean score, median score, standard deviation score, and count informa-
tion for the different conditions and L1s.

condition L1 mean median sd n

noPINTs EN 6.26 7 1.83 15

silence EN 6.07 6 1.44 13

original DE 6.00 6 1.07 15

original EN 5.88 6 1.92 16

noPINTs DE 5.87 6 1.41 15

silence DE 5.67 5 1.76 15

Participants were instructed to use headphones and test their audio volume before
starting. They were told to not take notes. They were also told that the recordings
were from a non-ideal microphone and included some background noise. This was in
order to draw their attention away from some of the minor artefacts that occurred
from the audio manipulation in the “silence” and “no PINTs” conditions. Participants
were told that they would receive a score at the end of the test as an additional
incentive to perform well. While listening to the audio, participants saw “Listen
closely!” on their screen. They heard each audio clip only once.

After completing the listening section, participants answered a questionnaire that
included: age, hearing impairment, L1, self-assessed English skills (for the German
listeners), a test score if possible (for the German listeners), highest completed ed-
ucation (high school, university, or other), level of interest in the audio contents (1:
very uninterested to 5: very interested), how easy the speaker was to follow and un-
derstand (1: very difficult to 5: very easy), and how prepared they found the speaker
(1: very unprepared to 5: very prepared). Total completion time was between 15-20
minutes.

5.2.4 Results

Participants were scored based on how many questions they answered correctly with
a maximum score of 8 (1 point per correct answer). The monolingual English partic-
ipants scored higher than the L1 German participants in all conditions except in the
original condition, however, the monolingual English speakers usually had a higher
variance (see Table 5.6). Monolingual English participants scored highest during the
“no PINTs” condition while the L1 German participants scored highest during the
original audio condition.

The data5 was pre-processed using the dplyr (Wickham et al., 2023a) (Version
1.1.1), stringr (Wickham, 2022) (Version 1.5.0), and tidyr (Wickham et al., 2023b)

5This project’s data and scripts can be found at https://github.com/MikeyElmers/paper_
icphs23.

https://github.com/MikeyElmers/paper_icphs23
https://github.com/MikeyElmers/paper_icphs23
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Table 5.7: Mean and standard deviation score based on whether the answer was
immediately preceded by PINTs material.

preceding PINTs mean sd

no 0.81 0.39

yes 0.66 0.47

(Version 1.3.0) packages. Homogeneity of variance was evaluated using Levene’s test
from the car (Fox & Weisberg, 2019) (Version 3.1.2) package. Statistical models
were analyzed with linear regression and binomial generalized linear mixed models
(binomial GLMMs) with the lme4 (Bates et al., 2015) (Version 1.1.31) and lmerTest
(Kuznetsova et al., 2017) (Version 3.1.3) packages in R (R Core Team, 2021) (Version
4.0.4). Models were compared with the Akaike information criterion (AIC) (Akaike,
1973) to calculate unexplained variance. The best fit model was selected as the model
with the lowest AIC.

Preceding PINTs

This study investigated the effect of PINTs material immediately before key infor-
mation on participant score. These models did not include the “no PINTs” audio
condition since all PINTs material was removed. Scores are out of 1 rather than 8
since the evaluation is done on a by-question basis rather than a subject’s collective
score. Table 5.7 shows that when key information was preceded by PINTs, the result
was an overall lower score. The data showed violations for normality, as indicated by
the Shapiro-Wilk test, and homogeneity of variances, as indicated by Levene’s test.
Therefore, the non-parametric Wilcoxon rank sum test was used. Results indicated
a significant difference between the preceding PINTs conditions (W = 32096, p <

0.001 ). Participants performed significantly better when critical information was not
preceded by PINTs information.

Binomial GLMMs were used to evaluate which variables influenced score. The
model with the best fit was: glmer(score ∼ precede + (1 | id), family = binomial).
This model predicts score based on the answer being preceded by PINTs information
as a fixed effect, and subject with intercept as a random effect. This model performed
better than models that incorporated L1, condition, or the questionnaire variables.
The analysis revealed a main effect for preceding PINTs (Estimate = -0.88, SE =
0.23, z = -3.87, p < 0.001 ). This main effect indicates that the presence of PINTs
material before the answer lowered participants’ score.

Ease

Participant’s reported how easy it was to follow and understand the speaker (1: very
difficult to 5: very easy). Overall, the mean ease was 2.82. The condition that re-
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Table 5.8: Summary information of linear model with ease as predictor.

est SE t p

(Intercept) 4.84 0.42 11.60 < 0.001

ease2 1.15 0.51 2.28 < 0.05

ease3 0.95 0.54 1.77 0.08

ease4 1.54 0.55 2.81 < 0.01

ease5 1.95 0.64 3.09 < 0.01

Table 5.9: Pearson correlations between total score and questionnaire responses for
all participants.

age ease interest prep

total score 0.09 0.30 0.10 0.28

moved all the pause material was considered the easiest to follow when averaging
over all participants. However, an analysis of variance (ANOVA) showed no sig-
nificant differences between conditions (F(2, 86) = 0.88, p > 0.05 ). This finding
was interesting since substituting or deleting PINTs material created minor artefacts
within the audio. The original, unmanipulated version was found to be the most dif-
ficult to follow, possibly because this speaker uses a high frequency of PINTs (∼40%
of his total speaking time). When comparing means of ease by L1, we found that the
monolingual English group (M = 3.05 , SD = 1.29) and the L1 German group (M =
2.60, SD = 1.16) were not significantly different (t(87) = 1.71, p > 0.05, d = 0.36 ).
These results indicate that the NNSs found the English-language lecturer as easy to
understand as the monolingual NSs of English.

Linear regression models were tested with L1, condition, and the different ques-
tionnaire variables. The model with the best fit (lowest AIC) predicted total score
with ease as the only fixed effect. Table 5.8 shows that with an ease value of 1, par-
ticipants’ total score was 4.84 (out of a total of 8) and that the higher the ease value,
the higher the total score. Significant effects for all levels of ease were found, except
for a value of 3. Importantly, an ease value of 5 improved participants’ total score
more than an ease value of 4 which improved more than an ease value of 2. The ease
value of 3 did not follow this trend.

Correlation

Table 5.9 contains the Pearson correlations between total score and the questionnaire
variables. No correlation was found between age or interest and total score. However,
we found a weak correlation between ease and total score (t(87) = 2.98, p < 0.01, r
= 0.30 ), and between preparation and total score (t(87 = 2.77, p < 0.01, r = 0.28 ).
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5.2.5 Discussion

This experiment evaluated whether PINTs improved the recall of English-language
lecture material for native and non-native listeners. We found that PINTs immedi-
ately preceding key information negatively impacted score. While we found that L1
did not influence the ease rating of the speaker, non-native students may encounter
significant problems when listening to lectures, such as word recognition or with cre-
ating meaning (Kilbon, 2022). These issues are related to linguistic aptitude and
awareness of the lecture material. This study found that monolingual English listen-
ers tended to scored better in the “no PINTs” situation, while L1 German listeners
tended to scored better with the original audio. This may be due to monolingual En-
glish listeners being above the threshold of needing the time-buying aspect of PINTs.
Conversely, the L1 German listeners still benefited from the time-buying aspect of
PINTs. Blau (1990) found that a base skill level might be required before the ben-
efits of additional processing time from pauses can be seen, and importantly, that
beyond a certain skill level pauses may no longer aid and, instead, be an irritant to
the listener. Jacobs et al. (1988) found that pauses may increase comprehension, but
only for advanced students. Jacobs et al. (1988) also found that increasing the dura-
tion of pauses has a ceiling and once above that ceiling, comprehension will decrease.
Therefore, it is important to consider the impact of PINTs in environments where the
recall of key information is crucial, such as educational settings, and for both native
and non-native listeners.

This study investigated the influence of PINTs on recollection in an ecologically
valid scenario with longer material lengths. We found PINTs to be detrimental to
the recollection of upcoming content in a lecture scenario, which is contradictory to
what previous studies have found. These results might differ from other studies due
to the longer material lengths, or because there are many variables that are difficult
to control in a real-world scenario. Additionally, this experiment treated all PINTs
equally. In real-world scenarios, speakers have distinct PINTs profiles and often many
PINTs will co-occur making it difficult, if not impossible, to evaluate individual PINTs
separately. Furthermore, effects of both PINTs placement and frequency should be
further explored. While non-native participants were asked for their test score, we
were not able to get an accurate picture of the influence of PINTs for different skill
levels. In this study most of the L1 German listeners were advanced in English.
Future work should continue to evaluate longer material lengths, with a variety of
language backgrounds and skill levels.
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5.3 The Impact of Pause-Internal Phonetic
Particles on Recall in Synthesized Lectures

5.3.1 Abstract

We studied the effect of pause-internal phonetic particles (PINTs) on recall for native
and non-native listeners of English in a listening experiment with synthesized material
that simulated a university lecture. Using a neural speech synthesizer trained on
recorded lectures with PINTs annotations, we generated three distinct conditions: a
base version, a “silence” version where non-silence PINTs were replaced with silence,
and a “nopints” version where all PINTs, including silences, were removed. Half of
the participants were informed they were listening to computer-generated audio, while
the other half were told the audio was recorded with a poor-quality microphone. We
found that neither the condition nor the participants’ native language significantly
affected their overall score, and the presence of PINTs before critical information had
a negative effect on recall. This study highlights the importance of considering PINTs
for educational purposes in speech synthesis systems.

5.3.2 Introduction

Research in speech synthesis for education is an important area of study that can
yield benefits for both native speakers (NSs) and non-native speakers (NNSs). Kang
et al. (2008) found that NNSs comprehended synthetic sentences more easily than
synthetic words, and that ratings were dependent on the listener’s comprehension
level. Additionally, Kang et al. (2008) highlighted the need for investigating longer
material lengths for speech synthesis. For example, when evaluating recall for larger
contexts with real-world data, Elmers (2023) found no recall effect for PINTs for
both native and non-native listeners. Specifically, Elmers (2023) used segments from
English-language universities and found that PINTs reduced the recall for upcoming
information. Therefore, we were interested in investigating how PINTs might influ-
ence synthesized speech in the same lecture setting, and whether their impact on
recall was similar for both NSs and NNSs. Our present study replicated (Elmers,
2023), using the same textual material but with a novel approach: the material was
synthesized instead of being natural speech, and two instruction sets were created.
One instruction set informed participants they were listening to synthesized speech,
while the other instruction set told participants that the audio was recorded with a
poor-quality microphone. Our investigation focused on the impact of PINTs on the
recall of sections of synthesized lectures.
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Figure 5.7: Spectrogram of original textual material. PINTs annotations: silence
(sil), exhalation noise (ex), inhalation noise (in), filler particle (uh),
tongue click (cl), and other (o).

5.3.3 Method

We sourced lecture material from Open Yale Courses (2007b), a collection of free and
open access courses provided by Yale University. The speaker used for this study
had a significant occurrence of PINTs during their lectures, accounting for 40% of
their total lecture time. We annotated a subset of these lectures to train the speech
synthesis model. Fig. 5.7 and Fig. 5.8 compare the same segment of speech for both
the original and synthesized versions.

Stimuli

To generate the stimuli for the experiment, a neural text-to-speech (TTS) voice was
created, using a method similar to the one described in Elmers et al. (2023). This TTS
system was trained using a PyTorch implementation6 of the sequence-to-sequence
neural TTS engine Tacotron 2 (Shen et al., 2018). We used phoneme-level input for
training and synthesis, which was obtained from the transcripts using the g2p_en
package (Park & Kim, 2019). The training corpus was divided into segments, delin-
eated by an inhalation breath on each end, where multiple breath groups were joined
into utterances of at most 11 seconds. For the phonetic input, specific tokens for
the different PINTs were added to allow exact prompted reproduction. The voice
was trained for 70k iterations on top of the published read speech model, using 3
GPUs and a batch size of 28. The speech signal was decoded from the model output,
using the neural vocoder HiFi-GAN (Kong et al., 2020). The published model was
finetuned for 1.33M iterations on the corpus.

6https://github.com/NVIDIA/tacotron2

https://github.com/NVIDIA/tacotron2
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Figure 5.8: Spectrogram of synthetic speech textual material. PINTs annotations:
silence (sil), exhalation noise (ex), inhalation noise (in), filler particles
(uh), tongue click (cl).

The perceptual experiment material was generated one breath group at a time
following Székely et al. (2019b, 2020), with each segment starting and ending with
an inhalation. Since the synthesizer is non-deterministic, we synthesized multiple
versions and chose the version that included fewest distortions or errors. Specifically,
we avoided versions that included background noises, which occasionally occurred
due to the varying audio quality of the speech corpus. After synthesizing all breath
groups for each lecture segment, we concatenated the segments together using Praat
(Boersma & Weenink, 2022).

The study we replicated included three different conditions for the audio stimuli.
We created the same conditions using a Praat (Boersma & Weenink, 2022) script,
which either removed or replaced the PINTs material. For the silence condition, the
non-silence PINTs were replaced with silence taken from the audio that was adjusted
to match the duration of the removed material. As a result, the silence condition
maintains the same duration as the base condition. The “nopints” condition removed
all acoustic pauses. Both the base and silence conditions provide the same processing
time, whereas the “nopints” condition allows for less processing time (see Fig. 5.9).

Participants

This study used a web-based experiment, designed with the Labvanced7 (Finger et al.,
2017) platform, to present the audio stimuli and collect responses and questionnaire
data from participants. Recruitment was carried out with the crowd-sourcing plat-
form Prolific8 (2014). A total of 180 participants were recruited, including 90 mono-
lingual English participants (mean age 40 years, age range 20–75 years) and 90 L1

7Accessed via https://www.labvanced.com/ on Apr. 12, 2023.
8Accessed via https://www.prolific.co/ on Apr. 12, 2023.

https://www.labvanced.com/
https://www.prolific.co/
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Figure 5.9: Duration schematic for the three conditions, with speech material in
white, PINTs in grey, and speech material that includes the answer
depicted in black.

German participants (mean age 33 years, age range 18–70 years), who received com-
pensation for their participation. Three monolingual English participants and two L1
German participants self-reported hearing impairment and were excluded from the
results.

Procedure

Participants listened to four sections of synthesized material, each approximately
three minutes in length, and then answered two multiple-choice questions based on
the content. The experimental material used the same textual content from Elmers
(2023), which extracted sections from full-length lectures. The stimuli were carefully
chosen to ensure that all information needed to answer the question was present in
the audio, i.e., no prior knowledge was required to answer the questions. For each
audio segment, one question was preceded by PINTs material, while the other was
not. In the “nopints” condition, neither question contained PINTs material. An
example question was, “According to Paul Fussell, what is the essential trope or
rhetorical figure of World War One poetry?” Possible answers included: a) hyper-
bole, b) metaphor, c) oxymoron, d) irony. Participants only needed to understand
the contents, as presented by the speaker, and did not require any encyclopedic or
background knowledge to answer the questions. The study was balanced to ensure
that the material preceding the first and second question was equally distributed,
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with or without PINTs.
Before beginning the experiment, participants received a set of instructions. They

were informed that the study involved listening to four audio clips, each lasting ap-
proximately three minutes, and answering content-based questions immediately fol-
lowing each clip. The participants were instructed to use headphones and test their
audio volume prior to commencing the experiment. There were told to not take any
notes while listening to the audio clips. Half of the participants were informed that
the audio was computer-generated audio, while the other half were informed that
the recordings were made using a sub-optimal microphone, and contained some back-
ground noise. The latter group of participants were not informed that the audio was
computer-generated. Participants were told that they would receive a score at the
end of the experiment to incentivize them to perform well.

Following the listening task, participants were required to complete a question-
naire. The questionnaire included various demographic and language-related ques-
tions such as age, hearing impairment, L1, highest level of completed education,
interest in the audio contents (1: very uninterested to 5: very interested), ease of
following/understanding the speaker (1: very difficult to 5: very easy), and percep-
tion of the speaker’s preparedness (1: very unprepared to 5: very prepared). The
L1 German listeners were asked to provided their self-reported English proficiency
and, if available, a test score. The total time for completing the listening task and
questionnaire averaged between 15 to 20 minutes.

Each participant listened to one of three conditions. Specifically, one-third of the
participants listened to four unmodified (i.e., “base” condition) audio clips, another
one-third listened to four audio clips from the “silence” condition, and the remaining
one-third listened to four clips from the “nopints” condition. The textual material was
the same across all conditions, but the order of the four audio clips was randomized to
prevent potential order effects. Participants saw “Listen closely!” displayed on their
screen while the audio played, and each audio clip was played only once.

5.3.4 Results

R (R Core Team, 2021) (Version 4.1.2) was used to perform both descriptive and
inferential statistics on the data9. Prior to analysis, the data was pre-processed using
the dplyr (Wickham et al., 2023a) (Version 1.1.1), stringr (Wickham, 2022) (Version
1.5.0), and tidyr (Wickham et al., 2023b) (Version 1.3.0) packages. The homogeneity
of variance assumption was assessed using Levene’s test from the car (Fox & Weisberg,
2019) (Version 3.1.2) package. Cohen’s d was calculated using the effsize (Torchiano,
2020) (Version 0.8.1) package. Post-hoc comparisons after conducting the Kruskal-
Wallis rank sum test were performed using Dunn’s Test from the dunn.test (Dinno,
2017) (Version 1.3.5) package. The statistical models were analyzed using either

9This project’s data and scripts can be found at https://github.com/MikeyElmers/paper_
ssw23.

https://github.com/MikeyElmers/paper_ssw23
https://github.com/MikeyElmers/paper_ssw23
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Table 5.10: Duration information for the original and synthesized material. Values
include all four passages. Total PINTs duration (PINTs dur) and total
audio duration (total dur) are reported in seconds. Proportion (prop)
is expressed as a percentage value out of 100%.

condition PINTs dur total dur prop

original 314.45 761.48 41.29

synthesized 273.68 705.23 38.81

Table 5.11: Count information for the original and synthesized material. The values
include all four passages. The following labels were investigated: silence
(sil), inhalation (in), exhalation (ex), filler particles (uh) and (um),
tongue click (cl), other (o).

condition sil in ex uh um cl o

original 656 234 65 210 30 43 82

synthesized 288 232 9 212 30 45 2

linear regression or with binomial generalized linear mixed models (binomial GLMMs)
implemented through the lme4 (Bates et al., 2015) (Version 1.1.32) and lmerTest
(Kuznetsova et al., 2017) (Version 3.1.3) packages. The Akaike Information Criterion
(AIC) (Akaike, 1973) was used to compare models and choose the best fit model
with the lowest AIC. Visualizations were generated using ggplot2 (Wickham, 2016)
(Version 3.4.2).

Duration and Count

We compared the count and duration information of the four synthesized passages to
the original versions. The originals had a longer PINTs duration, a longer total dura-
tion, and a higher PINTs proportion (see Table 5.10). However, while the synthesized
passages were shorter overall, the PINTs proportions were comparable. Both versions
were similar to the speaker’s overall PINTs profile proportion of 40%. Table 5.11 con-
tains count information for the individual PINTs grouped by condition. The original
material had more silences, exhalations, and “other” particles. Both versions had a
similar number of inhalations, filler particles “uh” and “um”, and tongue clicks.

L1 Comparison

Participant performance was determined by the number of correctly answered ques-
tions, with a potential maximum score of 8 (1 point for each correct answer). We
compared total score means grouped by L1. The normality assumption for the de-
pendent variable was violated, as determined by the Shapiro-Wilk Normality test (p
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Table 5.12: Descriptive statistics for total score (possible maximum score of 8) for
the different conditions. Participants were told that the audio was
computer-generated in the conditions with the subscript “cg”.

condition mean median sd n

silencecg 5.77 5 1.41 31

nopints 5.71 6 1.61 28

basecg 5.61 6 1.64 28

base 5.45 5 1.78 29

nopintscg 5.34 5 1.72 29

silence 4.77 5 1.68 30

< 0.05). The assumption of equal variances was met, as verified by Levene’s test
for homogeneity (p > 0.05). Since the sample sizes exceeded 30, a parametric test
was used following the central limit theorem, despite the violation of normality. An
independent samples t-test compared the mean scores of the monolingual English
group (M = 5.31, SD = 1.67) and the L1 German group (M = 5.57, SD = 1.64). The
findings revealed no significant difference between the two groups (t(173) = -1.03, p
> 0.05, d = -0.16), indicating that the L1 German group and monolingual English
group performed similarly.

Condition and Group Comparison

Given that L1 was not a significant factor, we proceeded to investigate the effect of
condition. Total scores grouped by condition are summarized in Table 5.12. Par-
ticipants were informed that they were either listening to computer-generated audio
(in half of the conditions) or that the speaker was using a poor-quality microphone
(in the remaining half). Notably, the highest mean score was obtained in the silence
condition where participants were told that the audio was computer-generated. The
lowest mean score was observed in the silence condition where participants were told
that the speaker used a poor-quality microphone. This pattern was not universal,
but in general, when participants were told the audio was computer-generated, the
total score was higher than when they were told the audio came from a poor-quality
microphone, except for the “nopints” condition.

We conducted an analysis of variance (ANOVA) to investigate the mean differences
in total score between conditions, with condition as a fixed factor. The normality as-
sumption was violated in the following comparisons as indicated by the Shapiro-Wilk
test, while Levene’s Test did not reveal any significant differences in variances across
groups. Given that the sample sizes exceeded 30, satisfying the central limit theo-
rem, we utilized parametric tests. The results did not indicate any significant effect
of condition on total score (F(5, 169) = 1.50, p > 0.05). Post-hoc comparisons using
pairwise t-tests with Bonferroni correction did not reveal any significant differences
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Table 5.13: Descriptive statistics, including mean and standard deviation, based
on whether the question material was immediately preceded by PINTs
material.

precede mean sd

no 0.77 0.42

yes 0.58 0.49

between individual groups. However, the Bonferroni correction is conservative by
nature. A two-sample t-test was conducted to compare the mean total score between
the silencecg (M = 5.77, SD = 1.41) and the silence (M = 4.77, SD = 1.68) conditions.
The results showed that the silencecg condition had a significantly higher total score
(t(59) = 2.55, p <0.05, d = 0.65). We conducted additional analyses by grouping
conditions based on audio type (i.e., base, silence, and nopints) and whether par-
ticipants were informed that the audio was computer-generated (i.e., cg group and
non-cg group). However, these analyses did not reveal any significant differences in
mean total score when grouping by audio type (F(2, 172) = 0.44, p > 0.05) or by
computer-generated instruction type (t(173) = 1.12, p > 0.05, d = 0.17).

Preceding Material

We explored the impact on recall based on whether the question material was preceded
by PINTs. Table 5.13 demonstrates that answers immediately preceded by PINTs
material had an overall lower score. The nopints and nopintscg conditions, which did
not contain any PINTs information, were excluded from this analysis. Scores were
out of 1, rather than 8, since the evaluation was done on a by-question basis rather
than the subject’s collective score. A score of 1 indicated a correct response, and
0 an incorrect response. Due to violations of both normality, as indicated by the
Shapiro-Wilk test, and homogeneity of variances, as indicated by Levene’s test, we
used the non-parametric Wilcoxon rank sum test. Our analysis revealed a significant
difference between the conditions where PINTs material immediately preceded the
question, and those where it did not (W = 132396, p < 0.001). Specifically, the mean
score for questions preceded by PINTs material was significantly lower than those
without any preceding PINTs information. These results suggest that the presence
of PINTs information immediately before key information, may have a detrimental
effect on recall performance.

We utilized a binomial generalized linear mixed effects model to investigate the
relationship between score (0 or 1) and preceding PINTs, L1, condition, and ques-
tionnaire variables. The model with the best fit, as determined by the lowest AIC,
was glmer(score ∼ precede + interest + (1 | id), family = binomial). This model
predicted score based on whether the answer was preceded by PINTs information
and interest level as fixed effects, with the subject as a random effect. This model
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outperformed alternative models that incorporated L1 status, condition, or other
questionnaire variables. Our findings indicated that both preceding PINTs and in-
terest level significantly predicted score. The intercept was significant (β = 0.84, p
< 0.001), and whether the answer was preceded by PINTs material had a significant
negative effect (β = -0.96, p < 0.001). Interest level had a significant effect on score,
with the highest levels of interest being the strongest predictors (β = 1.80, p < 0.001
for interest level 5; β = 0.98, p < 0.001 for interest level 4; β = 0.42, p > 0.05
for interest level 3; β = 0.38, p > 0.05 for interest level 2). These results suggest
that only the highest levels of interest (4 and 5) are associated with higher odds of
a positive outcome on score. In summary, our findings indicate that when holding
all other variables constant, the odds of a positive outcome on score decrease when
PINTs precede, while the highest levels of interest are associated with higher odds of
a positive outcome on score.

Interest

Participants rated their level of interest in the audio contents on a scale of 1 (very un-
interested) to 5 (very interested), with a mean rating of 2.73. An independent samples
t-test was conducted to compare the mean interest ratings between the monolingual
English group (M = 2.70, SD = 1.22) and the L1 German group (M = 2.76, SD =
1.13). The results indicated no significant difference between the two groups (t(173)
= -0.33, p > 0.05, d = -0.05).

Interest was further examined by condition (see Table 5.14). We used an ANOVA
to investigate mean differences in interest between the different conditions. The
results revealed a significant effect of condition on interest (F(5, 169) = 2.45, p < 0.05).
Post-hoc pair-wise t-tests with Bonferroni correction showed a significant difference
between the nopints condition and the base condition (p < 0.05). Both the L1
and condition comparisons violated normality, as indicated by the Shapiro-Wilk test.
However, homogeneity of variances was maintained, as indicated by Levene’s test. As
a result, we opted for parametric tests since both comparisons satisfied the central
limit theorem.

We used linear regression models to investigate the relationship between total score
and L1, condition, and the questionnaire variables. The model with the lowest AIC
included interest and instruction type (whether participant were told the audio was
computer-generated) as fixed effects: lm(total score ∼ interest+cg). This model was
statistically significant (F(5, 169) = 5.76, p < 0.001) and explained 14.56% of the
variance in total score (R2 = 0.1456). Our results indicated that interest level had a
significant effect on total score, with the highest level of interest being the strongest
predictor (β = 2.42, p < 0.001 for interest level 5; β = 1.05, p < 0.01 for interest
level 4; β = 0.42, p > 0.05 for interest level 3; β = 0.13, p > 0.05 for interest level 2).
However, instruction type did not have a significant effect on total score (β = 0.38, p
> 0.05). The intercept was significant (β = 4.72, p < 0.001). The adjusted R-squared
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Table 5.14: Mean interest values for the different conditions. Participants were
told that the audio was computer-generated in the conditions with the
subscript “cg”.

condition mean sd

nopints 3.25 1.17

sil 2.90 1.03

silcg 2.77 1.09

basecg 2.64 1.16

nopintscg 2.59 1.18

base 2.24 1.27

Table 5.15: Pearson correlation coefficients for participants’ total score and their
questionnaire responses. Includes correlation information for all partic-
ipants (Both), L1 German (DE), and monolingual English (EN).

participants age ease interest prep

Both 0.20 0.15 0.33 0.10

DE 0.15 0.07 0.25 −0.00

EN 0.30 0.24 0.39 0.19

of the model was 0.12, with a residual standard error of 1.55. These findings suggest
that the level of interest in the audio content has a significant effect on total score,
but instruction type does not have a significant effect on total score.

Correlation

Pearson correlations for participants’ total score and their questionnaire responses
are presented in Table 5.15. The questionnaire assessed how easy it was to compre-
hend the speaker, level of interest in the lecture content, and evaluated the speaker’s
preparedness. Ratings were made on a 5-point Likert scale. Age, ease, and prepared-
ness were weakly correlated with total score, while interest was moderately correlated
(t(173) = 4.56, p < 0.001, r = .33). The correlation between total score and interest
was stronger for monolingual English participants than for L1 German participants.
Overall, the higher the participant’s interest level, the better their total score.

5.3.5 Discussion

Compared to the original version, the synthesized version struggled to generate short
silences, often found adjacent to non-silence PINTs (i.e., edge silences), resulting in
fewer silences. Similarly, the counts for exhalations and the “other” category also
decreased in the synthesized version, possibly due to the scarcity of exhalations in
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the data. The “other” category was not included during the synthesizer’s training
due to the diversity of phenomena within the category. Nevertheless, the synthesizer
generated some “other” labels without any explicit inclusion. Despite these differences,
the synthesizer maintained similar counts for inhalations, filler particles “uh” and
“um”, and tongue clicks. However, the synthesizer occasionally produced multiple
PINTs from a single label, leading to a higher count of “uh” and tongue clicks than
was present in the original material. Overall, it was unexpected to find that the
synthesized version closely modeled some of the counts, given that the output is not
deterministic.

Our findings indicated that the participants’ total score was not affected by their
language background, whether they were monolingual English or L1 German, when
listening to English-language content. This is a favorable outcome that suggests syn-
thetic speech could be an effective equalizer for educational purposes, as both NSs
and NNSs performed similarly. Additionally, we also observed significant differences
in total score between the condition where participants were told the audio was syn-
thesized (silcg), and the condition where participants were told the audio came from
a poor-quality microphone (sil). This discrepancy may be due to participants being
more lenient when they knew that the material was synthesized, as opposed to those
who might be more critical assuming it was from a human speaker.

Our study found similar results to the study we replicated Elmers (2023), that
PINTs preceding key information lowered recall. This highlights the need for future
research to determine when PINTs can be beneficial for recall. However, neither study
was able to replicate the benefits of PINTs observed in single sentence laboratory
settings. It is possible that the PINTs profile of the speaker we used to train the
TTS is an outlier. Lecture recordings from a speaker who uses PINTs to a lesser
extent may reveal recall benefits. One limitation of using a single speaker is the
difficulty in comparing how listeners perceive different realizations of the same PINTs.
Moreover, it is challenging to isolate individual PINTs for analysis in spontaneous
speech recordings, where many PINTs co-occur. In this experiment, we treated all
PINTs equally, despite each PINT having different realizations that may impact recall
differently.

Participants who rated their interest in the audio content as high (4 or 5) had a
significantly higher total score, and this was reflected in a moderate correlation be-
tween interest and total score. Contrary to expectations, the instruction type did not
have a significant effect on the total score, suggesting that whether the participants
knew the material was synthesized or not, did not impact their performance. When
comparing mean interest scores by condition, it was unexpected to find the “nopints”
condition had a higher interest score than the “base” condition, despite the audio
artefacts resulting from the removal of the pause material. One possible explanation
is that, again, the speaker used for training the TTS model used too many PINTs
during their lectures, which might have resulted in a less engaging experience.

For most levels of proficiency, Blau (1990) found that pauses helped comprehension
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more than speaking at a normal rate or artificially slowing the speaking rate. However,
there is a threshold, beyond which pauses have a negative effect on comprehension
(Jacobs et al., 1988; Blau, 1990). It is possible that the PINTs used in this study
exceeded the threshold and became a detriment to recall. These results indicate that
the impact of PINTs in synthesized speech should be carefully considered when recall
of information is important, such as in education, for both native and non-native
listeners.





Chapter 6

General Discussion

6.1 Recall

The first section of this dissertation focused on the influence of PINTs on recall in
synthesized single-sentence laboratory contexts. Both silences (for digit recollection)
and inhalations (for sentence recollection) showed a recall effect. In both experiments
only the longer duration yielded the recall benefit. For the digit recollection exper-
iment, we didn’t evaluate different prosodic grouping structures often found when
speaking a series of numbers. For example, a common grouping structure for 7-digit
phone numbers is 3-2-2 (Baumann & Trouvain, 2001). Our results are unable to
clarify possible interaction effects between prosodic groupings and PINTs insertion in
synthesized speech. These results indicate the importance of evaluating multiple du-
rations in a variety of contexts. For the sentence recollection experiment, our breath
noises were chosen to be shorter than the versions used in Whalen et al. (1995). Our
long breath noise duration was approximately the same duration as the short breath
noise condition used by Whalen. Our results indicated that for synthetic speech,
longer PINTs durations might be ideal for the purpose of recollection. Fraundorf &
Watson (2011) posited three possible hypotheses for the durational benefit in recall:
1) a processing-time hypothesis where the longer durations give additional time to
the listener, 2) an attention orienting hypothesis where the longer duration PINTs
are better able to attract the attention of listeners, and 3) a predictive processing
hypothesis where participants use the PINTs duration to make assumptions about
the length of the upcoming material. Future work should continue to tease apart the
relationship between duration and PINTs recollection, with a focus on the mechanism
for the durational benefit.

Another area for future research is the experimental measurement. While both
experiments used recall as their experimental measurement, digit recollection and
sentence recollection are very different tasks. In the case of sentence recollection, par-
ticipants were tasked with recalling the sentence verbatim. This isn’t a trivial task for
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participants and, in addition to recall, required a focus on spelling and typing/writ-
ing their response. These additional requirements might have lowered the amount of
focus available for recollection. This measurement was chosen because participants
were recalling sentences. However, in the case of longer material lengths, this form
of recollection isn’t plausible. Longer material lengths may even help participants
by increasing the naturalness of the situation and prevent boredom (Braunschweiler
& Chen, 2013). Luckily, there are a number of interesting potential materials, such
as audiobooks, or by incorporating dialogic elements between humans and conversa-
tional agents. This was a motivation for using a more realistic approach for measuring
the effects of recall in lectures by evaluating the recall of key information. Another
possible experimental measurement often used in perceptual studies is reaction time.
While reaction time wasn’t ideal for our purposes, it is an important measurement
that can be used to evaluate different perceptual phenomena. Future work should also
investigate the distinction between understanding and memorization. The sentence
recollection task involved memorization, while the lecture recall experiments involved
understanding the content. Our lecture recall experiments involved multiple-choice
questions but there are other options, such as fill-in-the-blank or short-answer re-
sponses. Another way to measure understanding would be to have the participants
summarize material using their own words, similar to Fraundorf & Watson (2011),
in order to gauge their degree of understanding. Experimental measurements are
important to establish during experimental design, and each brings different pros and
cons. Future work should continue to evaluate the influence of PINTs using a variety
of different experimental measurements, allowing researchers to investigate with more
specificity.

For the sentence recollection experiment, we found that shorter sentences were
recalled better than the longer sentences. However, we were unable to determine
the exact length where sentence length transitions from being an easy recall to a
difficult recall. This is compounded since recall is influenced by individual features.
Furthermore, in this experiment we measured sentence length via number of words,
since this experiment was a partial replication study of Whalen. However, this metric
isn’t very stable since sentences with a few words can still be quite lengthy when
containing longer words. Future work should evaluate more stable metrics such as a
speech timing unit (e.g., number of syllables).

Whalen found a learning effect where participants had increased recall in the sec-
ond half of the stimuli. In our replication study we did not find any kind of learning
effect. One possible explanation is the audio quality. Whalen used a formant syn-
thesizer while our experiment generated stimuli with a concatenative synthesizer,
possibly indicating that improvements to the audio quality for modern speech syn-
thesis systems might be a cause for the lack of a learning effect. Another possibility
is that listeners are more accustomed to hearing computer-generated audio, com-
pared to when Whalen’s study took place in the mid-1990s. We also incorporated
a questionnaire where participants were asked about how often they hear computer-
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generated audio, such as conversational agents or in-car navigation systems. Most
participants reported familiarity with computer-generated audio. Overall, future re-
search should continue to investigate the relationship between PINTs and recall via
duration, recollection measurements, length measurements, and learning effects.

6.2 Synthesis

The second section of this dissertation focused on the detection and synthesis of
PINTs. During the detection experiment, the neural network (NN), convolutional
neural network (CNN), and recurrent neural network (RNN) performed similarly.
This contrasted with our hypothesis that the RNN would outperform the other mod-
els, since RNNs are able to account for temporal information. All models were able
to easily classify the silence segments and inhalations, which were the most common
annotations in the data. The models found moderate success with classifying exha-
lations, which was the next most common annotation type. Finally, all three models
failed to classify FPs and clicks, which were the least frequent annotations within the
data. Overall, these results suggest that the accurate classification of PINTs is more
dependent on annotation quantity and quality than the model architecture. Moreover,
all models began with a relatively high accuracy during training and improvement
was minimal during the remaining epochs. Regarding misclassified segments, both
inhalations and exhalations were sometimes wrongly classified as silence segments,
which might be caused by the common adjacency of these PINTs. The models were
unable to classify FPs, possibly because the models found them too similar to the
speech category. Clicks were also unable to be classified and were generally misclas-
sified as silence segments, possibly due to their shorter durations. The models were
trained using mel-frequency cepstral coefficients (MFCCs) as input. Incorporating
acoustic features or training on spectrogram images might improve the classification
of PINTs and should be evaluated in future work.

Since we were unable to develop an automatic method for classifying multiple
PINTs simultaneously, we proceeded with manual annotations for developing our
speech synthesis systems. Manual annotations are a time-intensive process and lim-
ited our ability to model more than a single speaker. Therefore, we are unable to
determine whether our results would transfer to other speakers who use different
PINTs patterns. Future work should incorporate the PINTs patterns of multiple
speakers to determine if certain patterns are more beneficial for certain tasks, like
recall, than others.

We generated two TTS systems using the annotations from our single speaker:
ControlledPINT and AutoPINT. The ControlledPINT system used our labeled anno-
tations in the training data, while the AutoPINT model did not. The ControlledPINT
system allowed the researcher to select a specific PINT and location. Conversely, the
AutoPINT model inserts PINTs probabilistically. The ControlledPINT model pro-
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duced more PINTs, both in terms of count and duration than the AutoPINT model.
Importantly, the AutoPINT model showcased that even without labelled annotations,
there was enough salient information to capture and model PINTs.

Both systems are, to the best of our knowledge, the first synthetic systems to
produce tongue clicks, providing a technological and scientific contribution. Tongue
clicks can display a number of different characteristics such as: indicating a new topic,
word search, turn maintenance, backchanneling, stance marking, and repair (Ogden,
2013; Zellers, 2022). Additionally, the acoustic realizations for tongue clicks are highly
variable (Trouvain & Malisz, 2016), indicating that the tongue clicks generated by
our speech synthesis systems might not display our intended function of signaling
a successful word search. Future work can further evaluate whether tongue clicks
should be inserted or removed in order to create the desired meaning.

We compared the output of the ControlledPINT model to material from the same
speaker that was not used during training. Our results showed that the Controlled-
PINT model produced counts similar to the original speech for inhalations, the filler
particles “uh” and “um”, and tongue clicks. Additionally, the ControlledPINT version
sometimes produced a string of PINTs from a single label, resulting in a higher count
for “uh” and tongue clicks than was used by the original speaker. The ControlledPINT
model produced fewer silences overall compared the the original material. This was
largely caused by the model struggling to generate edge silences, which are very short
but also very frequent alongside other PINTs material. The ControlledPINT model
also produced fewer exhalations, most likely due to lower frequency of annotations
within the data.

Using the ControlledPINT model, we conducted a perceptual listening experiment
to determine how inserted PINTs influenced certainty ratings for the audio. For the
PINTs conditions, we expected the combinatory condition to elicit higher certainty
scores since the inserted tongue click could indicate that the speaker had successfully
accomplished their word search. However, this hypothesis was not verified in our ex-
periment. The PINTs condition with the highest certainty scores was the long silence
condition. A possible explanation is that the long silence condition was found less
distracting or obtrusive than the FP or combinatory PINTs conditions. In this experi-
ment all PINTs were evaluated equally. However, each PINT has different realizations
that may affect perceived speaker certainty. This is a complex problem, especially
since many PINTs co-occur, creating difficulties when trying to evaluate the effects
of individual PINTs. Going forward it will be important to continue to evaluate a
variety of PINTs, in a multitude of contexts, to further elaborate on the effects of
different realizations. This experiment was also unable to verify possible influences of
dialect, age, and gender. Future work should continue to evaluate how these factors
interact with PINTs material. The experiment from our TTS system showcased that
stimuli generated from speech synthesis systems has potential for providing greater
experimental control. Moreover, as King (2015) notes, experimental design in the
speech and hearing sciences has struggled to incorporate modern technologies, result-



6. General Discussion 92

ing in researchers compromising their materials. While generative modeling won’t
replace other research methods, it is an important and useful tool.

6.3 Lectures

The final section consisted of three experiments. In the first experiment we com-
pared the PINTs usage of Yale University lectures to the TOEFL iBT, a popular
English-language proficiency exam with a lecture listening component. Our initial
hypothesis was that since lectures are a high proficiency speech style, that we would
find minimal PINTs both for the Yale lectures and TOEFL lectures. Instead, we
found approximately 1/3 of the total time for Yale lectures included PINTs mate-
rial, and approximately 1/5 of the total time of the TOEFL lecture listening section
included PINTs. These findings stress the importance of evaluating the influence of
PINTs, especially for the recall of key information. Moreover, these findings illus-
trate that by not including PINTs in synthesized lectures, approximately 1/3 of total
material is being lost and ignored. Often it is assumed that silences contribute to
a majority of pause durations. However, we found that approximately 2/3 of the
pause duration were PINTs other than silence. This experiment provided a baseline
for the PINTs usage in a lecture style, which was important to developing a model
that synthesizes PINTs with a lecture style. Future work should continue to evaluate
the PINTs distribution of additional speakers in the lecture style, and in styles other
than lectures. Non-native speakers are a major demographic for both the TOEFL
iBT and university lecture courses. Therefore, it is important to extend the focus on
the perceptual effect of PINTs beyond native speakers.

The second and third experiments investigated the influence of PINTs on recall
for English-language lecture material. While experiment two used natural speech,
experiment three used synthesized speech. Overall, our results indicated that recall
was negatively impacted if the key information was immediately preceded by PINTs
material. An important aspect of experiment two and three was the focus on eco-
logically valid scenarios that utilized materials longer than a single-sentence, in this
case lecture segments. The recall effect of PINTs has been found for both natural and
synthesized speech for single-sentence lengths, however, we were unable to replicate
these results with lecture segments both for natural and synthesized speech. The
results for the lecture segments could differ, because of the longer material lengths,
or possibly because there are a variety of variables that are difficult to control in
real-world contexts. Future work should continue to investigate a variety of longer
material lengths and languages beyond English.

In both experiments we also captured questionnaire information. The question-
naire for experiment three revealed some interesting effects for interest. Participants
who rated their interest levels as high for the audio content had a significantly higher
recall. When investigating the relationship between interest and the stimuli condition,
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certain trends emerged. The “no PINTs” condition had higher interest scores than the
“base” condition, even though the audio incorporated minor artefacts that resulted
from removing the PINTs material. This might be caused by the way some audio
media is digested. For example, audio material can be listened to at 2x speed, which
significantly reduces perceivable PINTs. Therefore, if it is becoming more common to
listen to content-based audio at higher speeds, then the “no PINTs” condition might
be more interesting due to it’s shortened length. Another avenue for future research
is evaluating the perceptual effects of different PINTs profiles. In our experiment
we used a single speaker, so it is possible our chosen speaker is an outlier in PINTs
usage. Another possibility is that the speaker used too many PINTs found in the
“base” condition, which resulted in a less interesting style for listeners. Therefore, it
would be beneficial to evaluate, in both natural and synthetic speech, other PINTs
profiles. Future work should continue to evaluate how PINTs, in a variety of settings
and styles, influences the interest levels of listeners.

Experiment three incorporated an instruction type condition where half of the
participants were told that they were listening to computer-generated audio, while
the other half were told they were listening to audio produced using a poor-quality
microphone. Overall, the instruction type did not have a significant effect on recall,
indicating that participants did not adjust their expectations based on whether or
not they knew the audio was synthesized. However, we did find significant differences
between the interaction of the condition and instruction type for the silence condi-
tion. When participants heard the silence condition, and were told that the audio was
computer-generated, their recall score was significantly higher than when they heard
the silence condition and were told that the audio came from a poor-quality micro-
phone. Participants might have been more tolerable with the longer silences when
they thought it was produced by a computer than a human. Since interactions with
conversational systems is becoming more frequent in everyday life, it is important to
understand how interlocutors adjust their perceptions based on whether they think
they are conversing with a live or synthetic agent.

Since many students at university are non-native speakers of English, we evaluated
both native and non-native speakers in experiments two and three. We did not find a
significant difference between the recall scores for native and non-native participants
in either experiment. In both studies, we used L1 German participants who had an
intermediate or advanced level of English. A limitation of our experiments was that
we couldn’t evaluate how skill level and the recall effect of PINTs interact. Our results
demonstrated that future research should continue to determine whether PINTs can
aid in recall, and evaluate possible interaction effects for native or non-native speakers.

Non-native students can experience a variety of problems while listening to lec-
tures, such as word recognition or meaning creation (Kilbon, 2022). Blau (1990)
found that pauses aided in comprehension for most proficiency levels, more than us-
ing a normal speaking rate, or artificially slowing the speaking rate. However, the
benefits have a limit, and beyond this threshold pauses were found to have a neg-
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ative effect on comprehension (Jacobs et al., 1988; Blau, 1990). It is possible that
the PINTs stimuli incorporated in these studies exceeded this threshold, and became
a detriment to recall. For example, Betz et al. (2015) noted that we are still un-
sure about the maximum acceptable duration of silences in TTS systems before they
become disruptive, and Rose (2013) indicated that silence rate and duration have
implications in the evaluation of L2 proficiency.

It’s important to consider the influence of technologies in educational settings.
For example, natural language processing can be applied to evaluate students while
learning a language (Meurers, 2020). Furthermore, Adell et al. (2012) argues that
TTS systems should emulate spoken speech, rather than read speech. Ewer (1974)
stresses the need to create realistic lectures by including PINTs, as well, as gestures,
glances, and other hesitation phenomena. Similarly, Wang et al. (2021) concluded
that it is important to combine the synthesis of speech and gesture. The relationship
and coordination of PINTs and gesture is not evaluated in this work but is certainly
an important area for future research. Mazzocconi et al. (2022) argues the inclusion
of laughter is also crucial for affective aspects, natural language understanding, and
pragmatic reasoning. Additionally, Betz et al. (2016) advocates for the inclusion of
lenthenings as a strategy for providing additional time.

Synthetic speech could be a potential equalizer for educational purposes, evident
from our finding that synthetic speech stimuli didn’t create additional recall issues for
non-native listeners. This is an important finding, considering the wealth of opportu-
nities synthetic speech provides to educational applications. This work incorporated
a variety of methods for evaluating synthetic speech such as: digit recall, sentence
recall, lecture segment recall, and questionnaires. Many evaluators of TTS systems
still focus on mean opinion scores, and while these are valuable, it is important to con-
tinue to evaluate a variety of objective and subjective metrics. Mendelson & Aylett
(2017) stressed the importance of evaluating TTS with creative implementations that
incorporate appropriate use cases. Moreover, Wagner & Betz (2017) concluded that
TTS evaluations can be greatly improved by designing engaging situations that in-
corporate both subjective and objective measurements. The present work has shown
one possible example of designing TTS for educational purposes that incorporates
engaging impressionistic and behavioral metrics within the experimental design.





Chapter 7

Conclusion

The findings from this body of work contribute to a deeper understanding of the
perceptual benefits of pause-internal phonetic particles (PINTs) in both natural and
synthetic speech. While previous studies have generally only investigated PINTs in
single-sentence laboratory experiments, this work has also investigated longer material
lengths from semi-spontaneous sources.

PINTs can have significant effects in the processing of audio materials, especially
in regards to recall. As speech synthesis systems strive to be more human-like they
will continue to include PINTs. Going forward it will be important to understand
and evaluate how these particles influence the perception of synthesized speech. This
work initially investigated the perceptual effects when PINTs are inserted into single-
sentence environments rendered by a text-to-speech (TTS) system. By analyzing
the influences of PINTs in these shorter contexts, we found that PINTs improved
recall. However, the TTS systems used for these experiments were limited in terms
of PINTs control. Most TTS systems could not render any PINTs material. Systems
that were able to render, could only implement silence or an inhalation, but not both.
Moreover, these systems did not offer the kind of fine-tuned control that is ideal for
experimental design. This led to the development of two custom TTS systems that
could render PINTs: ControlledPINT and AutoPINT. The two systems differed only
on their training data. The ControlledPINT system included lexical tokens for an-
notated PINTs material, allowing the researcher to specify the type and location of
PINTs material. The AutoPINT system did not include lexical tokens for the anno-
tated PINTs material, and rendered PINTs material entirely based on probabilistic
modeling. To the best of our knowledge, these are the first models to produce tongue
clicks. The ControlledPINT model was used to further evaluate the perceptual ef-
fects of PINTs on recall. However, instead of using single-sentence environments,
we evaluated three-minute lecture segments that were extracted from full university
lectures. Using both natural speech and the synthesized output from the Controlled-
PINT system, we evaluated the effect of PINTs on recall for native and non-native
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speakers of English. For both the natural and synthetic speech, PINTs negatively
affected the recall of upcoming material. These findings were in contrast to the recall
improvement found in single-sentence contexts. Importantly, the influence of PINTs,
in both the natural and synthetic setting, did not impact non-native listeners more
than native listeners. Through this research, we contributed to the broader scientific
understanding of PINTs in synthetic speech, their influence on recall, and possible
educational effects.

Chapter 3 consisted of two experiments investigating the effects of PINTs on recall
in synthesized speech. Both experiments evaluated single sentences contexts. The
first experiment investigated digit recollection. Participants heard a 7-digit number
generated by a TTS system and were tasked with recalling a sequence of three ad-
jacent digits. Some of the stimuli inserted a 200 ms or 500 ms silence before one
of the digits. Results showed that recall accuracy improved after the inserted silent
segment. We found a significant effect for the 500 ms silence condition, but not for
the 200 ms condition. The second experiment investigated sentence recollection and
was a partial replication of Whalen et al. (1995). Sentences were rendered using a
concatenative synthesis system that included sentence initial inhalation breath noises.
Three conditions of inhalation duration were evaluated: 0 ms (no inhalation), 300 ms
(short duration inhalation), and 600 ms (long duration inhalation). Results indicated
that sentences immediately preceded by the 600 ms inhalation were recalled better
than sentences that were preceded by the 0 ms or 300 ms conditions. In summary,
both experiments found recall benefits for PINTs in synthesized speech. The TTS
systems used for both of these experiments did not provide much control in terms of
PINTs. Therefore, the next step was to develop a custom TTS system that provided
additional PINTs control for stimuli generation.

Chapter 4 consisted of two experiments with the goal of developing a bespoke
speech synthesis system capable of generating PINTs. The first experiment sought
to automate the process of labeling and annotating PINTs via evaluating different
machine learning architectures. Using an annotated subset from a German spon-
taneous speech corpus, mel-frequency cepstral coefficients were extracted as inputs
for modeling PINTs. Three different model architectures were compared: a general
neural network (NN), a convolutional neural network (CNN), and a recurrent neu-
ral network (RNN). Models used the same hyperparameters, number of layers, and
neurons per layer. Therefore, the model architecture was the main point of compar-
ison. We hypothesized that the RNN would outperform the NN and CNN, since it
is better able to handle temporal information. However, this was not the case, as all
the models performed similarly. All models were able to detect silent segments and
inhalation breath noises, the most common PINTs in the data. However, all models
found moderate success when classifying exhalation breath noises, and failed to de-
tect filler particles and tongue clicks. These results indicated that modeling multiple
PINTs simultaneously doesn’t always improve the classification accuracy of other sur-
rounding PINTs. Moreover, accurate classification appeared to be more dependent on
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annotation quantity and quality than the model architecture. Since none of the clas-
sifiers were able to adequately detect all PINTs of interest, we proceeded to manually
annotate a subset of university lectures. In the second experiment we developed two
neural TTS systems: ControlledPINT and AutoPINT. The ControlledPINT system
used labelled data for training, while the AutoPINT model rendered PINTs material
probabilistically. When compared to the natural material, both systems produced
less PINTs material for count and duration. However, the total PINTs proportion
of the ControlledPINT system was much closer to the natural version than the Au-
toPINT version. Next, we used stimuli generated by the ControlledPINT system in
a perceptual experiment to evaluate certainty scores. Since the ControlledPINT ver-
sion allowed control over the type of PINT and location, we created four conditions:
a PINTless (base) condition, a long silence condition, a filler particle condition, and
a combinatory condition that included multiple PINTs. Our hypotheses was that
the PINTless condition would be rated highest, and that the combinatory condition
would be rated second highest. Results indicated that the PINTless condition was
rated as the most certain, however, the combinatory condition was found to be the
least certain.

Chapter 5 used the ControlledPINT model to, again, evaluate the influence of
PINTs on recall in synthesized speech. This time the focus evolved past single-
sentence contexts and onto three-minute segments excised from full length English-
language university lectures. In the first experiment, we evaluated natural speech to
develop a baseline. The goal was to incorporate a realistic educational setting where
the usage of PINTs might have an important outcome, for example, quizzes in a
university course. Additionally, we evaluated both native speakers of English and non-
native speakers of English (L1 German), in order to determine if the effects of PINTs
differ between the two groups. Three conditions were developed: an unmanipulated
original version, a “silence” version where all non-silence PINTs were replaced with
silence of the same duration, and a “no PINTs” version where PINTs were removed
altogether. In both the original and “silence” conditions, half of the key information
was preceded by PINTs material. The key information was crucial for the participant
to correctly answer the question after listening to the audio contents. This paradigm
allowed us to see if the the PINTs material immediately preceding the key information
was assisting the listener in the recall of the aforementioned key information. The
results indicated that key information immediately proceeded by PINTs material was
less likely to be recalled. Additionally, both native and non-native speakers of English
performed similarly. In experiment two, we used the same experimental paradigm
as experiment one. However, experiment two used synthesized speech instead of the
natural speech. The results were consistent with experiment one, in that participants’
recall score was not effect by their language background. Again, we found that
the presence of PINTs information immediately preceding key information had a
detrimental effect on recall. These findings differ from the recall benefits found in
single-sentence environments.
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Collectively, this work contributes to our understanding of the recall effect of
PINTs, PINTs in speech synthesis systems, and PINTs in educational settings. This
body of work has shown the influence that PINTs can have in a variety of settings.
We’ve shown that PINTs improve recall in single-sentence contexts. Conversely,
PINTs did not improve recall in longer segments of speech. These studies exem-
plify the large amount of diversity found within the application of PINTs material,
and that nuance is critical to their evaluation. The conflicting findings between the
single-sentence recall experiments and the longer context recall experiments indicate
that there is still a large, and exciting, area to explore within this space.
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