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Abstract

The Internet’s routing ecosystem constantly evolves to meet the needs of its stakeholders
and users. Tracking this evolution is essential, e.g., to identify business opportunities,
address security challenges, or inform protocol design. However, most Internet protocols
were designed without measurability in mind; hence, many measurements and inference
methods rely on exploiting protocol-specific side effects.

This dissertation first assesses the limitations of our deployed observation infrastructures
and commonly used inference methods via three orthogonal contributions: a case study
on a European Internet Exchange Point to assess our visibility into the Internet’s AS
topology; a framework to identify and measure biases in the placement of our vantage
points across multiple dimensions; and a systematic analysis of the biases and sensitivity
of AS relationship inference algorithms. We found that our view of the Internet’s AS
topology diminishes over time, and that our AS relationship models are more biased and
sensitive to short-term routing dynamics than previously assumed.

With these limitations in mind, we focused on one of the most critical routing ecosystem
changes, IPv4 exhaustion, and two ways network operators can deal with it. First, we
explored the IPv4 buying and leasing markets, identified market trends, and discussed
the viability of these markets for different network types. Second, we analyzed the
benefits, usage patterns, and disadvantages of announcing tiny address blocks—which
we call "hyper-specific." We argue that a combination of leased IPv4 addresses and hyper-
specific prefix announcements likely suffice for many networks to bridge the gap until
full IPv6 adoption.

Besides its IPv6 adoption, the routing ecosystem also evolved in other dimensions. We
first studied AS path prepending to assess the security implication of these changes. We
found a typical configuration with no benefits yet an increase of an AS’s vulnerability to
prefix hijacks. Infrastructural changes led to an overall decrease in prepending sizes over
time and hence a safer use of the technique. However, we demonstrated that we can ex-
ploit the same changes to re-orchestrate prefix de-aggregation attacks to overcome widely
deployed prevention mechanisms. We validated our assumptions and attack model
using a real-world testbed and proposed updates to existing prevention mechanisms.
Our two-stage disclosure campaign contributed to a safer routing ecosystem.
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Zusammenfassung

Das Routing-Ökosystem des Internets entwickelt sich ständig weiter, um den Bedürfnis-
sen der Beteiligten und Nutzer gerecht zu werden. Die Verfolgung dieser Entwicklung
ist wichtig, um z.B. Geschäftsmöglichkeiten zu erkennen, Sicherheitsprobleme zu antizip-
ieren oder neue Protokolle zu entwickeln. Die meisten Internetprotokolle wurden jedoch
ohne Rücksicht auf ihre Messbarkeit entworfen; daher beruhen viele Messungen und
Schlussfolgerungsmethoden auf der Ausnutzung protokollspezifischer Nebeneffekte.

In dieser Dissertation werden zunächst die Grenzen der von uns eingesetzten Beobach-
tungsinfrastrukturen und der gängigen Inferenzmethoden anhand von drei orthogonalen
Beiträgen bewertet: eine Fallstudie an einem europäischen Internet-Austauschpunkt
zur Bewertung der Vollständigkeit unserer Sicht auf die AS-Topologie des Internets; ein
Rahmenwerk zur Identifizierung und Messung von Verzerrungen bei der Platzierung
unserer Beobachtungspunkte über mehrere Dimensionen hinweg; und eine systematis-
che Analyse der Verzerrungen und der Empfindlichkeit von Algorithmen zur Inferenz
von AS-Beziehungen. Unser Blick auf die AS-Topologie des Internets nimmt mit der
Zeit ab, und unsere AS-Beziehungsmodelle sind voreingenommener und empfindlicher
gegenüber kurzfristigen Routing-Dynamiken als bisher angenommen.

Mit diesen Einschränkungen im Hinterkopf haben wir uns auf eine der kritischsten Verän-
derungen im Routing-Ökosystem, die Erschöpfung von IPv4, und zwei Möglichkeiten,
wie Netzbetreiber damit umgehen können, konzentriert. Zunächst untersuchten wir
die Kauf- und Leasingmärkte für IPv4 Addresses, ermittelten Markttrends und disku-
tierten die Nutzbarkeit dieser Optionen für verschiedene Netzwerktypen. Danach haben
wir die Vorteile, Nutzungsmuster und Nachteile der Nutzung von Routen für winzige
Adressblöcke, die wir "hyperspezifisch" nennen, analysiert. Wir argumentieren, dass
eine Kombination aus geleasten IPv4-Adressen und hyper-spezifischen Routen für viele
Netze ausreichen dürfte, um die Zeit bis zur vollständigen Verfügbarkeit von IPv6 zu
überbrücken.

Neben der IPv6-Einführung hat sich das Routing-Ökosystem auch in anderen Bereichen
weiterentwickelt. Wir untersuchen zunächst exemplarisch das AS Path Prepending,
um die Auswirkungen dieser Änderungen auf die Sicherheit zu bewerten. Wir haben
eine typische Konfiguration gefunden, die keine Vorteile bringt, aber die Anfälligkeit
eines Netzwerks für Präfix-Hijacks erhöht. Infrastrukturelle Änderungen führten zu
einem allgemeinen Rückgang der global verwendeten Prepending-Längen im Laufe
der Zeit und damit zu einem sichereren Einsatz der Technik. Wir zeigen jedoch, dass
wir dieselben Änderungen ausnutzen können, um Präfix De-Aggregations-Angriffe zu
konstruieren welche weit verbreitete Präventionsmechanismen überwinden können. Wir
haben unsere Annahmen und unser Angriffsmodell anhand einer realen Testumgebung
validiert und Aktualisierungen für bestehende Schutzmechanismen vorgeschlagen. Un-
sere zweistufige Aufklärungskampagne hat zu einem sichereren Routing-Ökosystem
beigetragen.
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Chapter 1
Introduction

Initially starting as a research endeavour, the Internet has become a vital tool for modern
society, providing individuals and businesses unparalleled access to information, com-
munication, and opportunities for commerce and social interaction [201, 269, 287, 320].
It has played a crucial role in facilitating the democratization of information, allowing
for greater access to education, news, and other forms of knowledge [169, 265, 387, 443].
Today, approximately 5.3 billion people [119] access the vast services offered by the
Internet (e.g., social media, video streaming, or gaming) using a wide range of consumer
devices such as smartphones, PCs, or wearables [143].

The Internet’s routing ecosystem, which enables end-to-end communication between
those devices, consists of tens of thousands of interconnected networks called Au-
tonomous Systems (ASes). ASes exchange routing information (i.e., how to reach specific
sets of destinations) via the Border Gateway Protocol (BGP). While BGP remained mostly
unchanged over the decades, the routing ecosystem itself continuously evolved.

In the early 1990s, The routing ecosystem had a hierarchical structure [509] in which larger
Internet Service Providers (ISPs) provided transit for smaller ones. Since then, the Inter-
net’s routing hierarchy began to flatten as ASes reduced their reliance on costly transit
providers by establishing settlement-free peering agreements between each other [49, 71].
To facilitate peering, networks within the same region began establishing specialized
facilities called Internet Exchange Points (IXPs). Today, there are thousands of IXPs [378],
some forwarding tens of terabits per second of data between thousands of members [135].
The vast deployment of IXPs also enabled Content Delivery Networks (CDNs) to directly
peer with thousands of networks and deliver their traffic as close to the customer as
possible [122, 512].

Besides the vast deployment of new IXP infrastructures, the routing ecosystem is in the
midst of adopting Internet Protocol Version 6 (IPv6). This adoption became necessary
as the available Internet Protocol Version 4 (IPv4) address space rapidly diminished
throughout the last decades. While the community monitored, analyzed, and decelerated
(e.g., via the introduction of carrier-grade Network Address Translation (NAT) and
stricter allocation policies) this process—which is also known as IPv4 Exhaustion—new
allocation requests can no longer be fulfilled in all regions.
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It is important for network operators to continuously monitor these changes to remain
competitive. By understanding current and emerging trends, network operators can
anticipate the impact of new technologies on their business, identify opportunities for
growth and innovation, and proactively address (security) challenges. In addition to
network operators, academics and policy-makers can also benefit from an updated
view of the Internet’s routing ecosystem. Insights about available resources, achievable
performance, and critical issues can inform future system designs and help to determine
the appropriate level of potential regulation.

The goal of this dissertation is to assess and improve our ability to model the In-
ternet’s routing ecosystem and its evolution and to investigate the ramifications of
changes in the routing ecosystem for network operations and security. This goal is
challenging as most of the Internet’s protocols and applications were designed without
measurability in mind [20]—an oversight that impacted recent design and enhance-
ment efforts [213, 375]. Researchers and operators often have to exploit protocol-specific
side-effects [50, 259, 382], re-purpose previously collected data sets [179, 293, 313], or
deploy their own infrastructure [446, 448, 497] to even have a chance of measuring the
Internet. For example, the widely used traceroute tool exploits the IP protocol’s loop-
prevention mechanism to obtain information about routers along the forwarding path to
a destination [302]. These challenges motivate our first research question:

(1) How accurately can we model and track the Internet’s routing ecosystem and its
evolution with our deployed observation infrastructures and commonly used

inference methods?

Once we have identified the limitations of our observation infrastructure and modelling
methods, we are prepared to focus on the routing ecosystem’s currently ongoing changes.
One of the most noticed, analyzed, and discussed changes throughout the last decade
is the rapid exhaustion of available IPv4 address space. While the Internet’s routing
ecosystem made significant progress adopting IPv6 (e.g., in protocol specifications [56,
314], hardware [112, 152], route announcements [224], or filtering recommendations [153,
356]), many ASes—and subsequently many services—do not support IPv6 yet [191, 202,
346]. This situation drives our second research question:

(2) How can network operators cope with the exhaustion of IPv4 addresses while
parts of the Internet still lack sufficient IPv6 adoption?

Besides its ongoing adoption of IPv6, the routing ecosystem has drastically evolved
regarding available peering infrastructure, involved stakeholders, and the complexity of
routing operations. At the same time, some of BGP’s initial shortcomings, such as the
lack of authenticity and legitimacy of control information [262], were only addressed via
a patchwork of supplementary security recommendations (e.g., RFD [498] and MAX-
PREFIX [111] limits or ROV [330], ASPA [51], BGPSec [281], and MANRS [306] filtering)
and their gradual adoption [108, 155, 192, 468]. Yet, as some of these proposals were
designed decades ago with a substantially smaller, less complex, and less dynamic
Internet structure in mind, we pose our third research question:

(3) How does the evolution of the routing ecosystem affect the security of routing
operations?

In the remainder of this chapter, we first expand upon these three questions in §1.1, §1.2,
and §1.3. Afterwards, we clarify the contributions of this dissertation in §1.4 and outline
its content in §1.5.
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1.1 Inferring the Routing Ecosystem’s Structure

Inferring, analyzing, and tracking the Internet’s routing structure is essential. It allows
operators to design, grow, and manage networks more effectively [72, 447, 512, 518],
informs the design process of novel protocols and systems [257, 262, 522], and aids
policymakers in the decision process for regulatory interventions [429, 469, 527]. Hence,
the operator community introduced route collectors to gather routing information. BGP
route collectors are dedicated devices that peer with hundreds of volunteering ASes to
receive, dump, and archive the routing information they propagate. As BGP’s route
redistribution is policy-based and strongly depends on the business relationships among
ASes, route collectors provide only a limited view into the routing ecosystem [101, 188,
204, 435, 436]. Over the years, researchers introduced different data-plane and control-
plane methods to partially overcome this lack of visibility [49, 103, 162, 188].

Beyond uncovering interconnections, route collector data is often used to infer the
business relationships between ASes. These play a beneficial role in determining peer-
ing partners, estimating route propagation, or pinpointing performance bottlenecks.
Throughout the last two decades, researchers proposed various inference algorithms
using sets of heuristics, machine learning, or stochastic modelling to correctly label each
AS link as either peering, transit, or sibling (i.e., two ASes that are owned by the same
organisation) connection [167, 185, 188, 248, 251, 292]

This dissertation revisits our inference models for the routing ecosystem’s structure.
First, we infer the peering fabric of one of the world’s largest IXPs; analyze its routes’
availability, cost, and importance; and compare its interconnections to those visible via
public route collectors. We then re-examine state-of-the-art business relationship infer-
ence algorithms focusing on their inference stability, their geographical and topological
biases, and the generalizability of their evaluation performance. Finally, we introduce a
simple yet easily extendable framework to detect bias in the placement of route collector
vantage points.

1.2 Addressing Despite IPv4 Exhaustion.

ASes must obtain and announce address space to participate in the Internet’s routing
ecosystem. Besides this basic requirement, many networks benefit from additional
addresses. With more address space, ASes may diversify their address assignment
policies and route announcements, ultimately enabling fine-grained traffic engineer-
ing [174, 260, 396]. While IPv6 was introduced decades ago, only <40% of the top 1
million websites [202] and ~40% of Google users [191] support IPv6 in January 2023, forc-
ing operators to rely on IPv4 addresses to ensure global accessibility of their addresses.

The resource allocation process. Traditionally, Internet resources (such as IP addresses
and AS numbers) are requested and allocated at little cost by the five Regional Internet
Registries (RIRs). As depicted in Figure 1.1, each RIR is responsible for the resource
assignment, bookkeeping, and community support within its own service region, i.e.,
AFRINIC, APNIC, ARIN, LACNIC, and the RIPE NCC serve the African, Asia Pacific,
American, Latin American, and European & Middle Eastern region, respectively.1

1Notably, there are some "legacy" resources assigned before the introduction of the RIR framework. While
some of these were re-incorporated over the years, others still remain outside the control and management of
the RIR framework.
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Figure 1.1: Geographic service regions for the 5 Regional Internet Registries, taken from [504].

IPv4 exhaustion. With tens of thousands of networks requesting address space across
multiple decades, the RIRs have almost entirely exhausted the initial pool of available
IPv4 addresses [363]. As of January 2023, most RIRs have started recovery programs
requesting LIRs to return unused IPv4 address space to their allocation pools [28, 28,
127, 418]. In the meantime, most RIRs have no more IPv4 addresses left to allocate
immediately; hence, allocation requests are added to a waiting list and fulfilled on a first-
come-first-serve basis [29, 45, 277, 428]. Due to their shortened supply, IPv4 addresses
have become a valuable asset [241], impeding their recovery. To illustrate: There are
currently more than 1100 requests in RIPE NCC’s waiting list, some of which are already
waiting for more than 300 days [428]. In summary, the standard RIR allocation process is
too slow to keep up with today’s fast-paced business environments.

In this dissertation, we look closely at two options that network operators may choose to
fulfil their addressing needs despite IPv4 exhaustion. First, we explore the availability,
benefits, and cost of obtaining IPv4 resources via buying and leasing markets. After-
wards, we analyze the viability, potential use cases, and drawbacks of announcing and
redistributing hyper-specific prefixes, i.e., prefixes so specific that operators commonly
recommend filtering them.

1.3 Secure Routing Operations

The routing ecosystem is a complex system involving interactions between tens of thou-
sands of networks. Despite most having genuine intentions, some networks use the
Internet for malicious activities such as data theft, espionage, or infrastructural attacks
to gain economic benefits, protest against political decisions, or limit the communica-
tion of conflicted countries [58, 300, 442, 476, 490, 506]. While some attack types—e.g.,
amplification-based Distributed Denial of Service (DDOS) attacks—target the victim’s
data-plane [148, 502], there are various exploitable control-plane issues resulting from
BGP’s lack of authenticity and legitimacy verification. In a BGP hijack, for example,
an attacker announces the same prefix as another AS, generating a scenario in which
the routes from two different ASes compete for the incoming traffic [331, 456, 487]. To
limit the impact of BGP hijacks and similar (intentional and unintentional) attacks, op-
erators retro-actively deploy prevention mechanisms such as Route Origin Validation
(ROV) [488], BGPSec [281], or route filters [221, 319].

Despite their best efforts, the routing ecosystem and its respective routing threats contin-
uously evolve. Hence, operators must frequently evaluate and update their prevention
strategies to adapt to the evolving threat landscape. This dissertation further informs this
process in two ways. First, it analyzes the usage, effectiveness, and security drawbacks of
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AS path prepending—a prominent inter-domain traffic engineering technique. Second, it
revisits prefix de-aggregation attacks and demonstrates that the continuous evolution of
the Internet’s routing ecosystem weakened the already deployed prevention mechanisms
for such attacks.

1.4 Contributions

The goal of this dissertation is to assess and improve our ability to model the Internet’s
routing ecosystem and its evolution and to investigate the ramifications of changes in
the routing ecosystem for network operations and security. We make the following
contributions towards this goal:

Case study about the peering fabric and available routes at a large European IXP: We
systematically analyze and compare route server snapshots from eight of the world’s
largest IXPs. We further analyse bilateral and private peering at one of those IXPs based
on its peering LAN traffic and queries to carefully selected looking glasses. We compare
the richness of the uncovered peering fabric with the view obtainable from public route
collectors, and we assess the importance of available prefixes via two orthogonal metrics:
the number of domains served from the prefix and the traffic volume that a large eyeball
network egress towards it.

Re-examination of the generalizability of business relationship inference evaluations:
We systematically analyze the geographical and topological biases within the sets of in-
ferred and validated AS relationships. We empirically demonstrate that bias mismatches
may affect classification correctness for three recent classification algorithms. We discuss,
in-depth, different approaches for compiling less biased and more complete validation
data sets and highlight (i) the need for active discourse with operators and (ii) how the
routing ecosystem’s continuous change can be exploited to over-sample validation data.

Analysis of the short-term stability of business relationship inferences: We systemati-
cally generate and analyze tens of thousands of input data sets that slightly differ by the
data they use, the time window over which they are aggregated, and the exact time at
which their time window starts. Based on these data sets, we perform an in-depth study
of one of the most-used inference algorithms. Our results suggest that future inference
efforts should consider the variance in inference performance introduced by short-term
routing dynamics.

Framework to quantify bias in the AS-level placement of vantage points: We define
bias in a multi-dimensional context and develop a simple, generic, and extendable
framework to quantify the biases in the placement of internet measurement vantage
points. We provide an in-depth study of the placement bias within RIPE Atlas, RIPE RIS,
and RouteViews, and show that our framework confirms known issues while uncovering
new ones. We show that our framework can be used to either sub-sample or further
extend the existing infrastructure to minimize bias. We perform a blind test of our
sub-sampling method, showing that it significantly reduced the bias for measuring the
end-to-end latency distribution of a large content provider.

First look at the emerging IPv4 leasing and buying markets: We outline the current
IPv4 exhaustion state, address allocation policy, and waiting list status for all five RIRs.
We argue that traditional allocation requests for IPv4 resources are too slow for operator
needs and focus on two newer business models: buying and leasing of IPv4 resources.
We analyze the current IPv4 address transfer market based on RIR transfer statistics and
privately obtained pricing data from four of the world’s largest IPv4 brokers. We further
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compare different methods to infer leasing agreements based on publicly available
BGP data and RIPE’s Registration Data Access Protocol (RDAP) database. Finally, we
contextualize our findings with insights from discussions with IP brokers.

Analysis of the viability of hyper-specific prefix announcements: We perform an in-
depth, longitudinal analysis of Hyper-Specific Prefixs (HSPs). We compare their visibility
within the routing ecosystem with their prevalence in different routing databases and
argue about their use cases based on insights from analysing CIDR sizes, BGP communi-
ties, and service hit rates. We reason about their accidental or intentional use and discuss
how HSPs might be used and treated in the future.

Analysis of the usage patterns, effectiveness, and shortcomings of AS Path Prepending:
We perform a longitudinal characterization of ASPP utilization, prepend sizes, and
geographic policies. We use a real-world BGP testbed to quantify the effectiveness and
security issues of path prepending experimentally. We identify prepending policies with
no apparent ITE effect yet potentially detrimental security implications and analyze their
prevalence in the wild. We discuss our findings with network operators and devise
recommendations for using ASPP.

Re-evaluation of prefix de-aggregation attacks: In light of Internet flattening, we revisit
the concept of BGP prefix de-aggregation attacks and show that current prevention
mechanisms only transform such attacks into a session-hunting problem. We analyze the
resources required to perform prefix de-aggregation attacks by formulating them as an
Integer Linear Programming problem on top of real-world routing information. After
demonstrating their theoretical feasibility, we test for practical hurdles by deploying
the infrastructure required to perform a small-scale prefix de-aggregation attack using 4
IXPs, and validate our assumptions via BGP data analysis, real-world measurements,
and router testbed experiments. We extensively discuss possible defence mechanisms
and perform a two-stage vulnerability disclosure campaign.

1.5 Overview and Structure

We align the structure of this dissertation with the above-mentioned challenges and
contributions:

Chapter 2 provides the required background information for this dissertation. This
chapter covers, e.g., the Internet’s current routing infrastructure, BGP, and routing
policies.

Chapter 3 takes a closer look at how we infer the structure of the Internet’s routing
ecosystem. It first validates previous assumptions using a case study at a large European
IXP. Then it analyzes biases in the validation (data) for business relationship inferences
and quantifies the impact of short-term routing dynamics on one of the most prominent
algorithms. Finally, it introduces a framework to quantify bias in the AS-level placement
of vantage points. While some parts of this chapter have been pre-published in [389, 390],
other parts are currently under submission.

Chapter 4 focuses on how operators may fulfil their addressing needs despite IPv4
exhaustion. Its analyses on the current IPv4 buying and leasing markets and the viability
of hyper-specific prefix announcements are pre-published in [391, 452].

Chapter 5 dives deeper into the security aspects of routing operations. It analysis the
usage patterns, effectiveness, and security drawbacks of AS Path prepending and further
investigates the viability of prefix de-aggregation attacks in a hyper-connected routing
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ecosystem. While the former has been pre-published in [312], the latter is currently under
submission.

Chapter 6 concludes this dissertation with an in-depth discussion about its findings and
greater impact.
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Chapter 2
Background

This chapter will cover the background for this dissertation. We start with a summary
of IP addresses, their allocation, and usage in Section 2.1. We then explain how networks
communicate paths towards addresses in Section 2.2 and provide a high-level overview
of the routing ecosystem’s major components in Section 2.3. Finally, we provide an
overview of frequently used vantage points and operator databases in Section 2.4 and
provide a description of the neologism "routegazing" in Section 2.5.

2.1 Addressing

Throughout this section, we will discuss what kinds of addresses exist and how they
are represented in subsection 2.1.1, how network operators can obtain addresses in
subsection 2.1.2, and what types of special addresses exist in subsection 2.1.2.1.

2.1.1 Internet Protocol

The Internet uses Internet Protocol (IP) addresses to uniquely identify endpoints, i.e.,
devices or, more precisely, their interfaces. While the Internet governance body specified
many different versions of IP addresses over the years, most of today’s devices use
IPv4 and IPv6 addresses. The IPv4 and IPv6 header represent addresses by 32 and 128
bits, respectively. While this limits the number of unique IPv4 addresses to roughly
4.3 Billion, there is a virtually infinite pool of 3.4 × 1038 unique IPv6 addresses [7].
IPv4 addresses are commonly expressed in dotted decimal notation, where each of the
four octets is converted to an Integer and then joined via dots, e.g., 1.2.3.4 [129]. In
contrast, IPv6 addresses are usually expressed in (shortened) colon-hexadecimal notation,
where each of the eight hextets is represented in hexadecimal and joined via colons, e.g.,
1:2:3:4:5:6:7:8. The shortened format allows to omit 0-valued hextets, e.g., the
IPv6 address 1:2:3:0:0:0:0:8 can be expressed as 1:2:3::8 [209]. Notably, there
are many ways to represent IP addresses, yet we will stick to the two before-mentioned
formats throughout this dissertation.
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2.1.2 Resource Allocations & Assignments

In the Internet’s earliest days, IP address blocks (and other Internet resources) were
manually assigned and managed by John Postel. The management effort required to
handle and track these assignments grew with increasing popularity until the current
allocation and assignment framework was ultimately established. In this framework, the
Internet Assigned Numbers Authority (IANA) received all addresses and subsequently
allocated them to five Regional Internet Registries (RIRs). These five RIRs are AFRINIC,
APNIC, ARIN, LACNIC, and RIPE and serve the African, Asia Pacific, American, Latin
American, and European & Middle Eastern regions, respectively. Each of the five RIRs
can further allocate address blocks to Local Internet Registries (LIRs)—which further
assigns the allocated address space—or directly assign an address block to end users.
Network operators need to send an address allocation request to either LIRs or their
respective RIR in order to receive an assignment. Section 4.1 further provides additional
details about existing requirements and current policies for this process.

2.1.2.1 Special (Purpose) Addresses

The Internet governance body has dedicated specific Internet resources to specific use
cases, e.g., the IPv4 address 255.255.255.255 is used when an interface wants to
broadcast a message to all devices within the same subnet. As these "reserved" resources
have globally unique meanings, networks should not introduce them to the routing
ecosystem; hence, they are also referred to as "bogon" resources.

Besides bogon resources, there are resources that were never integrated into the IANA/RIR
framework. The resource holders received their resources directly from John Postel and
avoided the integration process, as it would require them to abide by the RIR policies.
These resources and their assignments are often called "legacy" resources/assignments.

2.1.3 Network Organisation

The routers within a network need to fulfil two tasks. First, the need to route, i.e.,
determine a feasible path towards a destination IP address. Second, they need to forward
traffic, i.e., send a data packet to one of the connected interfaces. Yet, storing paths for all
possible IPv4 and IPv6 addresses is memory-wise infeasible; hence, large numbers of IP
addresses are grouped into subnets. These subnets represent continuous address blocks
based on the left-most bits (also called network bits) that their binary representations
share; therefore, they are also called prefixes. Prefixes are often represented in CIDR
notation, i.e., as a combination of a network address (i.e., the lowest address within the
described address block) and the number of network bits; to illustrate: 1.2.3.0/24
would be a prefix that would include all addresses between 1.2.3.0 and 1.2.3.255
(both included). To further reduce the memory footprint of paths and facilitate network
management, networking devices virtually abstract the networking infrastructure under
a single administrative entity into so-called Autonomous Systems (ASes) and represent
them via a single Autonomous System Number (ASN). The combination of a prefix and
an AS path is referred to as a route.
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2.2 Inter-domain Routing

2.2.1 Border Gateway Protocol

In order to make their resources globally reachable, ASes (more accurately, their AS
border routers) exchange routes between each other via the de-facto standard inter-
domain routing protocol called the Border Gateway Protocol (BGP). Hereby, a BGP
session runs on top of a Transmission Control Protocol (TCP) connection between two IP
routers. Whenever an AS announces or redistributes a route, a route prepends its AS’
ASN to the AS path, effectively assembling the AS path during the propagation process.
Besides announcing a route, an AS can also withdraw a route, which signals other ASes
that it is no longer available. Besides the prefix and AS path, route announcements can be
tagged with additional attributes such as BGP Communities—4 [96] or 8 [207] Byte long
binary fields with uniquely encoded meanings (except for a few well-defined values, see,
e.g., [228, 264]). Community encodings can represent arbitrary things such as geographic
locations [357] or the board state in a game of battleships [125]. Each router stores the
currently available paths and their attributes for each prefix in its Routing Information
Base (RIB) and further enters the IP-level next-hop for its chosen "best" path per prefix
into its Forwarding Information Base (FIB).

2.2.2 Policies

BGP is a policy-based routing protocol that allows routers to apply policy-based actions
at different points in time (e.g., when a route is received or redistributed via some session
or before it enters the RIB). Policies are triggered based on, e.g., the session, router, or AS
a route was received from, the specific prefix it describes, or the AS path it traversed—just
to name a few. Once triggered, a policy may perform actions such as dropping/filtering
an announcement, modifying the AS path or redistributing the route to a predefined set
of neighbouring ASes. BGP policies often directly reflect or indirectly rely on business
relationships with neighbouring ASes, e.g., it is recommended to filter announcements
from customers that have already passed through major transit providers to limit the
propagation of certain misconfigured announcements (also known as route leaks).

2.2.3 AS Business Relationships

While the business relationships between ASes may be complex and vary by, e.g., ge-
ographic location, connection type, or traffic volume, the academic literature often
abstracts them into three different classes: (1) peering relationships allow ASes to ex-
change traffic and routes between each other and their respective customers without
monetary compensation, (2) customer-to-provider (or transit) relationships in which one
AS pays another to forward its traffic and access its routes, and (3) sibling relationships
between ASes operated by the same organisation and hence can have arbitrary economic
and routing-related policies. While no authoritative entity globally collects relationship
information, a large branch of academic work focuses on the inference of AS business
relationships. For a more in-depth discussion of state-of-the-art inference methods and
additional details on the complexity of business relationships, please refer to Chapter 3,
more specifically Sections 3.3 and 3.4.
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2.3 Anatomy of the Internet Routing Ecosystem

The Internet’s routing ecosystem consists of tens of thousands of interconnected net-
works with hundreds of thousands of interconnections. This section provides a high-level
overview of the more prominent components and their characteristics.

2.3.1 Internet Service Providers

As their name implies, Internet Service Providers (ISPs) are ASes that provide Internet
connectivity to their customers (e.g., other ASes or end-hosts). Besides typical tran-
sit, broadband, and mobile providers, there are many specialised types of ISP, such
as high-frequency trading networks [68], low-Earth orbit satellite networks [67], or
blockchain-based wireless networks [246]. ISPs are often classified into multiple tiers
depending on their size and function. Tier-1 ISPs operate globally and often own subsea
cable deployments and optical backbone infrastructure. Given their size, reach, and
importance, Tier-1 networks can not rely on other transit providers but rather have
to peer with all other Tier-1 ISPs to get access to the remainder of the Internet that is
not (in)directly connected to them. Tier-2 ISPs are often referred to as National Service
Providers (NSPs) as they rely on Tier-1 ISPs for most of their international traffic delivery.
As their infrastructure spans a smaller geographic area than Tier-1 ISPs, they rarely own
subsea cables yet usually operate optical backbones. The remaining ISPs are usually
classified as Tier-3 ISPs. These ASes tend to cover only a small geographic area, often
limited to certain regions within a single country.

2.3.2 Internet Exchange Points

Internet Exchange Points (IXPs) allow ASes in the same geographic region to cost-
effectively interconnect via a shared Layer-2 peering Local Area Network (LAN). The
LAN often spans multiple colocation data centers where hundreds of IXP participants
establish a physical presence via AS border routers. Many IXPs operate multiple peering
LANs (e.g., in multiple cities) and host value-adding services such as Route Servers (RSs),
which allow the connected members to receive routes from many other participants easily.
We provide deeper insights into the structure of IXPs, their available interconnection
models, their peering opportunities, and associated costs in Chapter 3, more specifically
Section 3.1.

2.3.3 Content and Cloud Providers

Major content and cloud providers (also known as "hypergiants") like Apple, Amazon,
Facebook, Google, etc. originate substantial amounts of Internet traffic, e.g., Labovitz
reported that up to 90 % of consumer traffic is served by hypergiants [270]. To hand
off their vast amounts of traffic as cost and performance effective as possible, hyper-
giants deployed enough infrastructure to directly connect to tens of thousands of net-
works [49, 122]. Besides deploying their own networking infrastructure (e.g., data
centers [200, 332], fiber lines [329], or submarine cables [190, 326]), they achieve such
high degrees of connectivity by heavily relying on IXPs. To further improve content
delivery, hypergiants also deploy content caches within other ASes—a strategy known
as off-net deployments [179].
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2.4 Vantage Points & Databases

There are a number of vantage points and databases that allow operators and academics
to measure, secure, and debug the routing ecosystem. Throughout this section, we will
briefly introduce those that we rely on later in the thesis.

2.4.1 Route Collectors

Route Collectors (RCs) are devices dedicated to receiving, dumping, and archiving
routing information. RCs establish sessions with many ASes at the same physical location
(e.g., the same IXP) or via multi-hop across the entire Internet. While they never send
any traffic data and rarely2 produce any route announcements, route collectors dump the
BGP updates they receive into "Multi-Threaded Routing Toolkit (MRT)"-formatted [70]
files. Besides update files, route collectors also dump a snapshot of their RIB periodically.
The most well-known route collector projects are RIPE RIS [349] and Routeviews [364].
While Packet Clearing House (PCH) operates route collectors for approximately the same
time as the two before-mentioned projects [379], accessing large amounts of historical
data via their web front-end is prohibitively slow, leading to a limited usage of their data
in academic studies. Isolario used to be a fast-growing route collector project that actively
reached out to networks in under-represented locations [244], yet it was terminated at
the end of 2021. In 2022, bgp.tools started to set up its own route collector project and
already assembled more than 500 BGP sessions by the beginning of 2023 [64]. Nowadays,
MRT data is most commonly accessed via either BGPStream [109] or BGPKit [62], yet
older alternatives that work on already downloaded MRT files, e.g., BGPScanner [243] or
BGPdump [350], are still functional.

2.4.2 RIPE Atlas

RIPE Atlas is a measurement platform with probing devices in thousands of ASes.
Users that host a probe continuously earn credits which can then be used to run active
measurements (e.g., ping, traceroute, or DNS lookups). RIPE also provides researchers
with Atlas credits upon request. While each probe supports a minimal set of measurement
types, certain probes (e.g., the better-equipped Atlas Anchor probes) have additional
measurement types (such as throughput measurements). The RIPE Atlas platform
is frequently used for measurement campaigns due to its easy accessibility, unified
measurement interface, and broad coverage.

2.4.3 The PEERING Testbed

The PEERING testbed is an AS that allocates networking resources and infrastructure
to experiments proposed by researchers [444, 448]. Once an experiment proposal is
approved, an experiment receives resources (e.g., dedicated prefixes), credentials (to
access and control the infrastructure), and capabilities (that restrict the types of actions
that can be performed as part of the experiment). Using this setup, researchers can
perform real-world experiments by announcing BGP routes via more than a hundred
ASes directly connected to the PEERING testbed.

2some periodically announce and withdraw routing beacons, see [348]
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2.4.4 Internet Routing Registries & WHOIS

Internet Routing Registrys (IRRs) are a set of distributed databases that contain infor-
mation about the routing policies of ASes (e.g., an AS may enter a set of neighbours
from which it imports all routes) in the Routing Policy Specification Language (RPSL).
In a similar fashion, the WHOIS protocol (and respective service) allows users to query
registration information (e.g., the maintainer, the responsible RIR, or a point of contact)
for Internet resources (e.g., ASNs or IP addresses) via a set of distributed databases.

2.4.5 PeeringDB & EuroIX

PeeringDB and EuroIX freely provide user-maintained information and statistics about
IXPs, their members, and their infrastructure [159, 381]. While both organisations are
non-profit and community-driven, their information is often the first stop for finding
new peering partners, potential collocation facilities, and other peering-related details.
Both databases can be accessed via APIs, and CAIDA even generates daily snapshots of
the PeeringDB database [90].

2.4.6 Resource Public Key Infrastructure

The Resource Public Key Infrastructure (RPKI) is the most widely adopted framework to
secure routing operations. One of its most prominent features is Route Origin Validation
(ROV)—a mechanism to validate the legitimacy of route announcements based on signed
Route Origin Authorization (ROA) records. Resource holders can generate signed ROA
records for their resources, and ASes can then incorporate the ROA validation state of a
route into their BGP policy rules (e.g., drop the route if the ROA status is invalid).

2.5 Routegazing

The term "routegazing" describes the act of stargazing in a routing context. Like an
astronomer who studies the stars, I also gazed at billions of routes to uncover their
mysteries. The more I explored this complex system, with its incompatible components,
erratic configurations, and unexpected events, the more my curiosity was piqued to
venture into previously uncharted territory. Similar to the vastness of space, it is the
wealth of unexplored and stimulating areas that, I believe, not only propelled past
research but will also inspire the future exploration of the routing ecosystem.
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Chapter 3
Modelling the Routing Ecosystem

Understanding the Internet’s routing ecosystem is essential for troubleshooting connec-
tivity issues, optimizing network performance, and making more informed decisions
about network design, infrastructure, and policies. It further helps to anticipate, mitigate,
and prevent potential security vulnerabilities, informs the regulation finding process of
policy makers, and aids in the development of new protocols and systems.

Quality of the Observation infrastructure. For multiple decades, academics used route
collectors—which were initially deployed by operators to track the propagation of their
announcements—to study the Internet’s routing ecosystem. Over the years, various
independent studies unearthed problems in the assertiveness of route collector data.
While routing policies prevent route collectors to obtain full visibility into the routing
ecosystem, their vantage-point placement is also highly skewed towards larger, more-
central ASes. While route collector platforms are keen to provide meaningful data
to their community, their acquisition models are largely based on passively receiving
peering requests. The first half of this chapter, in particular §3.1 and §3.2, will focus on
re-assessing and reducing the limitations of the current route collector infrastructure.

Quality of the Business relationship inferences. While tracking the ecosystem’s current
routes and interconnections is valuable to assess its size and complexity, many essential
tasks (e.g., predicting route propagation, inferring spoofing activity, or monitoring inter-
domain congestion) require explicit knowledge of the business relationships among
ASes. Hence, a large branch of literature focuses on finding and refining methods to
infer business relationships based on primarily routing information using, e.g., domain
knowledge in the form of heuristics, machine learning, or stochastic modelling. The
second half of this chapter, specifically §3.3 and §3.4, will take a closer look at the
most prominent AS business relationship inference algorithms, focusing on the effect of
short-term routing dynamics and the existence of biases within our evaluation data.

The contributions of this chapter can be summarized as follows:

• We analyze and compare Route Server snapshots from eight of the ten largest IXP
peering LANs worldwide. We find that all Route Servers show consistent insights:
(1) only 10 % of Route Server peers provide more than 100 routes while 30%
provide less than ten routes, (2) approximately half of the Route Server routes have
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a minimum path length of three ASes (announced by close and distance peers alike)
and about two-thirds of all routes lead to out-of-continent destinations, and (3) most
large Route Servers have a prefix overlap of ~50 % while the actually reachable IPs
overlap by ~60-70 %. We then run a case study on one of Europe’s largest IXPs. We
infer routes available via bi-lateral and private peering. Similar to Ager et al. [15],
we observe that most ASes use the switching fabric to establish additional transit
sessions. As such connections can drastically influence our inferences of available
routes, we developed a methodology to increase the coverage of relationship
inference algorithms at IXPs from initially only 22 % to 74 %, and we use the
resulting relationships to isolate transit connections during the inference process.
Similarly, we introduce a methodology to infer routes available via private peering
based on the careful selection and querying of looking glass utilities. Finally,
we compare the IPv4 and IPv6 routes available via multi-lateral, bi-lateral, and
private peering against two top-10K prefix lists: one based on the number of
served domains and one based on the traffic volume of a large European eyeball
network (see §6). We find that nearly all top-10k IPv4 prefixes are available via
bi-lateral peering. For IPv6, we observe that prefixes serving many domains are
often unavailable (up to 15 %) or can only be obtained via private peering.

• We define bias in a multi-dimensional context and present a simple yet generic and
easily-extendable framework to quantify the biases in the AS-level placement of
vantage-points. When analyze the biases of RIPE Atlas, RIPE RIS, and RouteViews,
our framework clearly confirms well-known biases, e.g., RIPE RIS is heavily biased
towards larger networks and IXPs. Yet, it can go beyond these observations, e.g.,
we show that while networks that peer at many IXPs are over-represented in RIPE
RIS, their peering policies are representative of the Internet’s peering ecosystem
(as captured by PeeringDB). Leveraging our framework, we design methodologies
to reduce bias when using the existing platforms, and demonstrate based on a
real-world use-case of a large anycast CDN that reduced placement bias may yield
more representative measurements. Finally, we focus on strategies to guide the
acquisition process for new vantage points and show that placement bias can be
reduced while following independent goals.

• We analyze to which degree the geographical and topological biases within sets of
inferred and validated relationships match. We uncover significant mismatches:
While the "best-effort" validation data covers 31 % of all links between ASes in
the ARIN region, it only covers less than 1 % of links in the LACNIC region.
Yet, both regions contain roughly 15 % of the inferred relationships. We further
analyze how such bias mismatches may affect classification correctness for three
(ASRank [292], ProbLink [248], and TopoScope [251]) classification algorithms
and uncover substantial drops in precision for certain groups of peering links.
In particular, we observe that the near-perfect precision of 96-98 % for the entire
validation data set drops by 14-25 % (depending on the algorithm) for peering
relationships between Tier-1 and transit providers. Finally, we discuss, in-depth,
different approaches for compiling less biased and more complete validation data
sets and highlight (i) the need for active discourse with operators and (ii) how the
routing ecosystem’s continuous change can be exploited to over-sample validation
data.

• We systematically generate tens of thousands of input data sets for ASRank that
slightly differ by the data they use (RIBS and/or updates), the time window over
which they are aggregated, and the exact time at which their time window starts.
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When analysing the differences between the inference outcomes for these data sets,
we find the following: We first uncover that ASRank’s inferred clique is highly
sensitive to one of its input parameters and frequently includes “hypergiants” (e.g.,
Akamai or Amazon) as the transit degree metric relies on an imperfect assumption.
We show that ASRank infers ~94 % of all links consistently (i.e., with the same label
each time) through- out our three month period. When extending this observation
to the validation phase, we distinguish between two classes of errors: persistent and
transient. While the former occur in all input sets and hint at deeper algorithmic
problems, the latter change their label across different input sets, likely due to
short-term routing changes. Even though only ~6 % of links are inconsistently
inferred, 55 % and 85 % of all inference errors for the median and worst snapshot
are transient, respectively. While recent works achieved a 1.6× error-rate reduction
over ASRank for certain snapshots, we show that ASRank’s error-rate can be
reduced by 5.4× just by picking a different time for the evaluation. We conclude
our work with insights into the minimum requirements needed to accurately detect
the impact of short-term routing dynamics in future evaluation efforts.

3.1 Case Study: a Large European IXP

Traditionally, the Internet follows a hierarchical structure. At the top of this hierarchy
resides a set of large transit providers—also called Tier 1 networks—that exchange traffic
with each other at no monetary compensation. The literature commonly refers to this
type of interconnection (and business relation) between two ASes as “peering.”

When logically descending from the top, higher-tier networks deliver traffic for their
lower-tier customers, i.e., they provide transit. Since the early 2000s, the "topology flatten-
ing" phenomenon gradually superseded this hierarchical structure. Lower-tier networks
started to shift more of their transit traffic to newly established peering connections. The
continuous acquisition of new peering partners is often incentivised by cost reduction
and potential latency improvements [16].

The fast and widespread deployment of Internet eXchange Points (IXPs) has further
accelerated the establishment of new peering connections. Traditionally, IXPs allow
physically-close networks to exchange traffic via a shared layer-2 switching fabric; thus,
they eliminate unnecessary routing detours, which reduces the overall latency and helps
to "keep local traffic local." Today, the largest IXPs have grown to multiple hundreds—
sometimes even thousands—of members (see Figure 3.1) and handle peak traffic volumes
of more than 10 Tb/s [22, 134, 245].

As different networks have different negotiation positions, various forms of peering have
emerged. The simplest form, bi-lateral peering, refers to a direct connection between two
ASes via the IXP’s switching fabric.

To ease the life of their customers, most IXPs also offer Route Servers that redistribute
all routes they received from one IXP member to all others via a single BGP session per
member. As this form of peering involves more than two networks, the community refers
to it as multi-lateral peering. As a third option, networks can establish private peering
sessions amongst each other. Instead of using the IXP’s layer-2 fabric, ASes establish
these peering sessions via a dedicated cross-connect in the same colocation facility (or
via layer-2 transport for different colocation facilities).

While peering itself is a well-established concept that has been broadly discussed in
the research literature (e.g., [15, 49, 71, 72, 94, 101, 288, 311]), we still lack fundamental
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Figure 3.1: Number of members over
time based on PeeringDB

Figure 3.2: Illustration of different peering types
at an IXP.

insights into the actual extent and importance of the routes available at large IXPs. In
this section, we take a closer look at how the different forms of peering translate into
transit-free prefix reachability. We characterize and compare the multi-lateral peering
routes available at the Route Servers of the world’s largest IXPs and further estimate the
bi-lateral and private peering routes available at one large IXP in Europe that we refer to
as L-IXP. We contrast our reachability analysis using two dimensions of importance: the
number of top domains that a route serves and the traffic volume that one of the largest
European eyeball networks egresses towards it. In particular, our contributions can be
summarized as follows:

• Characterization of Multilateral Peering: We analyze and compare Route Server
snapshots from eight of the ten largest IXP peering LANs worldwide (see, §3.1.3). We
find that all Route Servers show consistent insights: (1) only 10 % of Route Server
peers provide more than 100 routes while 30 % provide less than ten routes, (2) ap-
proximately half of the Route Server routes have a minimum path length of three
ASes (announced by close and distance peers alike) and about two-thirds of all routes
lead to out-of-continent destinations, and (3) most large Route Servers have a prefix
overlap of ~50 % while the actually reachable IPs overlap by ~60-70 %.

• Characterization of Bi-lateral & Private Peering: For one of Europe’s largest IXPs, we
infer routes available via bi-lateral and private peering (see §3.1.4.1). Similar to Ager
et al. [15], we observe that most ASes use the switching fabric to establish additional
transit sessions. As such connections can drastically influence our inferences of
available routes, we developed a methodology to increase the coverage of relationship
inference algorithms at IXPs, and we use the resulting relationships to isolate transit
connections during the inference process. Similarly, we introduce a methodology to
infer routes available via private peering based on the careful selection and querying
of looking glass utilities.

• Route Importance: We compare the IPv4 and IPv6 routes available via multi-lateral,
bi-lateral, and private peering against two top-10K prefix lists: one based on the
number of served domains and one based on the traffic volume of a large European
eyeball network (see §3.1.5). We find that nearly all top-10k IPv4 prefixes are available
via bi-lateral peering. For IPv6, we observe that prefixes serving many domains are
often unavailable (up to 15 %) or can only be obtained via private peering.
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3.1.1 Background

In this section, we provide an introduction to the different interconnection models
and highlight important observations from related work. We refer to Figure 3.2 as a
visualization of the individual components explained throughout this section. While
interconnection agreements can be rather complex in practice, the scientific literature
abstracts mainly into two categories: transit and peering.

In a transit agreement, a customer pays a transit provider for delivering its traffic from
its egress router to any IP. In a (settlement-free) peering agreement, two ASes—usually
of similar size and with roughly equal traffic volume towards each other—forward each
other’s traffic without substantial amounts of money flowing in either direction. As
neither of the peering partners is a provider for the other, both ASes have to negotiate
where to physically interconnect and who is bearing the infrastructure costs. Over time
and with the spread of Internet Exchange Points across the globe the peering ecosystem
itself became rather complex and different peering practices emerged. In the following,
we give an overview of the fundamentals of current peering models.

Internet Exchange Points. As establishing a single BGP peering session for every
interconnection partner separately is rather wasteful, operators started building common
switching infrastructure that could be shared (w.r.t. usage and cost) among ASes. These
switching infrastructures—envisioned to keep local traffic local— belong to so-called
Internet eXchange Points (IXPs) located in well-connected colocation facilities. Those
colocation facilities provide dedicated infrastructure (e.g., rack space, electricity, and
cooling) for the housing of peering equipment. Figure 3.2 gives an abstract example for a
layer-2 peering fabric. While IXPs may attract very diverse sets of members, previous
work reported that they observe traffic for 40 % or more of all theoretically possible
peering connections [76]. As some large IXPs observe traffic originated by or destinated
towards tens of thousands of ASes and millions of servers [101] and could theoretically
reach 70 % of all routed addresses [71], it nowadays is also common that networks pay
remote-peering providers to get access to remote IXPs [94]. A recent study by Nomikos
et al. [360] revealed that around 90 % of 30 tested IXPs had more than 10 % of their
members connecting via remote peering. They further reported that for certain large
IXPs up to 40 % of members can be connected via remote-peering.

Bi-lateral Peering. This practice describes a BGP peering session between two member
ASes at an IXP via the shared peering fabric as depicted in Figure 3.2 (green arrows).
While legal processes and concerns of peering policy leakage slow down the acquisition
of bi-lateral peering partners [310], Marcos et al. proposed a framework that allows
IXP members to quickly provision peering sessions based on an intent abstraction and
digitally handled legal contracts [311]. Interestingly, Ager et al. showed in 2012 that also
Tier1 providers peer at IXPs and that they use their IXP peerings not only as backup
routes. They further showed that these Tier1 providers also abuse the peering LAN for
transit connections to their customers [15].

Multi-lateral Peering. As briefly discussed previously, IXPs provide a Route Server for
their members to establish multi-lateral peerings. In addition to reducing the number of
needed interconnections to reach most IXP members3, Route Servers can also implement
additional functionality (e.g., the frequently used per-peer blackholing [148]) to make
them more attractive to IXP members. Those services are often realized by attaching a
specifically formatted BGP Community onto Route Server announcements. As a route

3A Route Server reduces the number of totally needed BGP sessions for a fully-meshed topology from
n ∗ (n− 1)/2 to n, where n is the number of BGP speakers.
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server has to store such information to act properly based on it, some IXP members do
not establish a session with the route server as they expect that it might expose their
peering policies [105]. As a notable example of such exposition, Giotsas et al. showed
that it is possible to uncover 200k multi-lateral peering agreements by analyzing the BGP
community values visible at few Route Servers [188].

Private Peering. When present at the same colocation facility, e.g. because they are
members of the same IXP, two networks can establish a private peering session via direct
cross-connect avoiding the IXP’s peering fabric. Especially large ASes prefer this peering
practice as it is provides a very fine-grained control over their peering sessions. Hence,
networks that, e.g., need to egress a high traffic volume often require direct peering
sessions on dedicated physical infrastructure with guaranteed capacity. This form of
interconnection usually comes with monetary compensation for certain Service-Level
Agreements (SLAs). Even though private peering keeps the peering policies of an AS
hidden and often provides dedicated capacity, even private peering sessions can suffer
from outages when, e.g., the entire colocation facility goes down—a not so uncommon
scenario as Giotsas et al. reported (160 outages in 5 years) [183].

Cloud and Content Provider Connectivity. Many Cloud and Content providers peer
at hundreds of physically distinct locations [72] to thousands of different networks [49].
While they often require private peering connections, they sometimes also rely on bi-
lateral peering to ensure that they directly connect with as many eyeball ASes as pos-
sible [106] or to gain tens of milliseconds of latency improvements over their transit
providers [446]. Hence, it is unsurprising that those providers also dominate the peering
LAN traffic (as shown for two medium-sized IXPs by Cardona et al. [92]). Yet, as most
networks try to establish private peering connections with them directly in the coloca-
tion facilities, those facilities have established so-called cloud exchanges—specific ports
which directly provide connectivity, called Virtual Private Interconnections (VPIs), to any
number of cloud service providers within the colocation facility [519].

Identifying Peering Partners. Many network operators rely on a network policy database
called PeeringDB to identify potential peering partners [381]. In particular, PeeringDB
differentiates between four peering policy types: (1) open: A network with an open
peering policy that peers with any other network, (2) selective: A network that will peer
under certain conditions, e.g., minimum traffic volume or location, (3) restrictive: A
network that already has an existing set of peers and needs strong, convincing arguments
to establish a peering connection, and (4) no peering: These networks do not peer at
all and rely entirely upon transit [362]. Notably, the vast majority of peering policies in
PeeringDB are of the ’open’ type. Yet, PeeringDB is known to have certain inaccurate
entries [288, 467]. Further, many small networks—especially in developing regions—do
simply not register in PeeringDB [288].

3.1.2 Preface: Data Sets

While we introduce each data set separately when using it, this section summarizes the
used data sets to provide a better overview of time coherence and caveats.

3.1.2.1 Main Data Sets

PeeringDB snapshots (2010/08/01—2021/06/01, monthly). PeeringDB is a community-
effort database containing information about the infrastructure and policies for IXPs,
colocation facilities, peering LANs, and networks [381]. PeeringDB is known to have
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a small set of inaccurate entries [288, 467]. Similarly, Lodhi et al. reported that Peer-
ingDB underrepresents small—especially developing country—networks [288]. The
Center for Applied Internet Data Analysis (CAIDA) produces monthly snapshots of this
database [90].

Route Server snapshots (2021/06/06—21, once). WWe compiled a set of Route Server
snapshots for the largest (in terms of members) peering LAN for eight of the world’s
largest IXPs. We received these snapshots via multiple personal contacts throughout 15
days.

IXP traffic data (2021/05/01-2021/06/07). We obtain IPFIX traffic captures from one of the
largest European IXPs. The traffic is sampled at a rate of 1 out of 10K (1:10k) flows. The
captures encompass all traffic exchanged via the peering LAN; hence, it contains traffic
exchanged via multi-lateral and bi-lateral peering sessions but misses private peering
traffic. In particular, we utilize the data from May 2021 to analyze how our observation
period influences our results and subsequently report most of our results based on the
first week in June 2021.

ISP traffic data (2021/06/10). We obtain a single workday of egress traffic captured from
all border routers from a large European eyeball network. The data was sampled at a
rate of 1:1K packets.

Domain-based prefix top list (2021/04/30). We obtain a recently recomputed domain-
based prefix top list from Naab et al. [336]. Their methodology relies on a domain top list
as input, then resolves those domains to IP addresses from a single physical location, and
finally aggregated the number of Fully Qualified Domain Names that is served by every
norm-prefix (i.e., a /24 prefix in IPv4 and a /48 prefix in IPv6). We use the prefix top list
that relied on Umbrella’s domain top list [115] as input, as it was the only one that could
provide us with 10K IPv6 prefixes. Notably, this domain-based prefix top list is biased
towards the European service region as DNS load-balancing [449] and caching [399] may
lead to strongly regionalized address resolutions.

Please note that we handled our traffic data sets in compliance with measurement ethics
and best practices. We performed all data analyses on servers located at the respective
premises of our vantage points using data collected as a part of their routine network
analysis. We analyzed flow data summaries based on packet headers that did not reveal
any payload information. We further anonymized all flow attributes not explicitly needed
for the results presented in this section. This is in line with Ethical Committee policies.
For the remaining data sets, we rely on publicly available sources only.

3.1.2.2 Orthogonal Data Sets

Maxmind GeoLite2 snapshot (2021/06/01). We utilize a snapshot of Maxmind’s GeoLite2
database [316] to geolocate Route Server prefixes. While they can have significant
inaccuracies on a city or country-level [97], even freely available databases achieve
near-perfect continent-level predictions [315].

CAIDA’s AS relationships snapshot (2021/06/01). CAIDA produces monthly snapshots
of the business relationships inferred by ASRank [292] based on routing information
collected by RouteViews [364] and RIPE/RIS [343] from the first five days within the
month [87]. While it misses many peering links, this data is reasonably complete for
transit links [204, 365, 368]. Further, the inference algorithm is known to near-perfectly
infer transit relationships but often misinfers peering relationships as transit [167, 248,
251], i.e., it overestimates the number of transit relationships.
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CAIDA’s IP-to-AS mapping snapshot (2021/06/10). CAIDA generates daily IP to AS
mappings based on routing information from selected Route Views [364] collectors [86].

CAIDA’s AS-to-Org mapping snapshot (2021/04/01). CAIDA produces quarterly snap-
shots of AS-to-Organization mappings generated based on the WHOIS databases of all
Regional and some National Internet Registries [219]. Notably, WHOIS data is known to
contain malformatted and hard-to-parse entries [284], leading to potential inaccuracies
in the inferred AS-to-Organization mapping. The April snapshot is the latest available
snapshot before our measurement period.

3.1.3 Multilateral Peering

We start our analysis with the lowest-hanging fruit: multi-lateral peering. While some
IXPs have explicit APIs that could be used to re-build the current routing table of their
route servers, we explicitly request Route Server snapshots for the largest peering LAN of
different IXPs. Out of the ten IXPs shown in Figure 3.1, only Nl-IX and EPIX did not fulfil
our request. Our eight Route Server snapshots are from differents days between 6th and
21st June, 20214 and contain the entire routing information base for each session, i.e., they
contain all paths from all neighbours (rather than just one best path) for a given prefix.
Using those snapshots, we look at what routes an AS may expect from the Route Server
and how consistent those findings are across different IXP Route Server. In particular,
we arrive at the following takeaways:

• Large Route Servers across the world are very similar: They not only have the same
distribution of routes per peer but also share the majority of reachable prefixes
and IPs, i.e., joining a second, third, etc. Route Server only negligibly improves
reachability.

• Due to the growing trend of remote peering, Route Servers provide only a limited
amount of in-continent routes.

• We observe that most routes (at all analyzed Route Servers) contain at least three
hops. While both close and distant peers announce those lengthy, unattractive
routes, we find that members often only use one-hop Route Server routes.

How consistent are the distribution of routes to peers across route servers? Our
snapshots show that connecting to the Route Server immediately provides routes from
up to 650 IXP members. Yet, Richter et al. already reported that not all IXP members
announce the same number of prefixes [412]. As a first look at how similar Route
Servers are, we analyze whether this distribution is consistent across them. Figure 3.3
shows the number of prefixes (y-axis, logarithmic) announced by every peer (x-axis) per
Route Server. Indeed, we observe strong consistency across different IXP Route Servers
regardless of the protocol. For the AMS-IX Route Server (top curve), the top ~1.5, 10, 30,
and 70 % of Route Server peers announce routes for more than 10K, 1K, 100, and 10 IPv4
(1K, 100, 20, and 5 IPv6) prefixes. While most Route Servers are close to AMS-IX, peers
at NAPAfrica (bottom curve) announce around an order of magnitude fewer prefixes.e
fewer prefixes, most other IXPs are closer to AMS-IX.

Notably, not all prefixes are necessarily exported to all peers by the Route Server. To
estimate how many prefixes can only be received conditionally, we inspect the Route

4As we obtained similar results for all Route Server related plots for a set of inital snapshots that we obtained
throughout January and February, we do not expect any major inconsistencies due to a two week offset.
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Figure 3.3: Number of prefixes announced per peer

Server snapshots for BGP communities that control its redistribution rules. For, e.g.,
DE-CIX, we inspect routes with the 0:6695 Community that is used to exclude all peers;
this community is usually combined with other BGP Communities of the form 6695:X
which instruct the Route Server to explicitly redistribute a route to peer X. Overall,
we find that 31.3 % of IPv4 and 11.2 % of IPv6 Route Server prefixes are not globally
exported.

Do Route Servers help to keep local traffic local? As briefly discussed in §3.1.1, IXPs
initially were established as a solution to interconnect geographically close ASes follow-
ing the idea to "keep local traffic local." Yet, given that many peers announce tens of
thousands of prefixes to hundreds of millions of hosts, we now want to take a look at
how strictly this idea is followed through by today’s Route Servers. We first use a naïve
approach to answering this question: We look at the AS path length (after removing AS
Path Prepending). Figure 3.4 shows the Route Server prefixes of different IXPs separated
by the number of ASes in their shortest route. We observe that for around half of all
prefixes the shortest path contains three or more ASes. This result goes against the “keep
local traffic local“ idea, as local routes would likely either directly lead to an access/eye-
ball network or indirectly via a national service provider. However, given that the AS
path length is often not a good proxy for geographic distance, we now switch to a more
insightful perspective.

Rather than looking at the AS path, we now directly map the visible prefixes to countries
and continents using a snapshot of Maxmind’s GeoLite2 database [316] from 1st June
2021. While perfect IP-to-geolocation mapping is a long-standing research problem,
previous work showed that for various public geolocation databases 99 % of predictions
stay within 600 km of the actual location [97]. Similarly, Maxmind claims that for many
countries 0 % of predictions are off by more than 250 km [315]. While this large radius
might influence the accuracy of country-level predictions, it provides us with near-
perfect accuracy for continental predictions as most of our Route Servers have even more
distance between their location and the closest continental border. Figure 3.5 shows the
Route Server prefixes of different IXPs separated by whether they lead to in-country, in-
continent, or out-of-continent ("other") hosts. Notably, there is a small number of prefixes
for which the database did not include a mapping ("NA"). Interestingly, looking at host
locations provides an even more drastic result than looking at AS paths: Regardless of
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Figure 3.4: Length of shortest AS path per prefix Figure 3.5: Geolocation of prefixes relative to
Route Server

the actual Route Server, around two-thirds of all prefixes lead to out-of-continent hosts.

While the growing trend of remote-peering [360] can easily lead to many out-of-continent
routes, it is unclear whether it also contributes to the high number of lengthy routes. To
better understand whether this correlation exists, we want to compare the path length
of each route with the RTT (as a proxy for distance) to its next-hop interface. Hence,
we run ping measurements from a server directly connected to the switching fabric of
L-IXP towards each member interface.5 To account for latency inflations due to, e.g.,
congestion, we repeated those measurements 100 times and collected the minimum RTT
towards each interface throughout all runs. Finally, we associate the shortest path of
each prefix with the minimum RTT we measured for its respective next-hop interface.
Notably, if there was more than one possible shortest path, we picked the one for which
the next-hop RTT was the lowest. Figure 3.6 shows for each prefix of a given minimum
path length the minimum latency to its next-hop.6 We observe that there is no strict
correlation between the distance of a peer and the length of the routes it provides.

Now that we know that even local peers forward lengthy routes to the route server, the
question becomes whether those routes see any traffic. For one of our observed IXPs, we
obtained IPFIX captures sampling 1 out of every 10K packets traversing its peering LAN.
While we can observe multilateral and bi-lateral peering traffic in this data set, we have
no insights into traffic exchanged via private peering established via direct interconnects
as it does not traverse the public peering infrastructure. Based on the captured flows
between the 1st of June and the 7th of June7, we calculate the aggregated number of Bytes
destined towards each prefix. Figure 3.7 groups Route Server prefix by their shortest
path and shows for each prefix (x-axis) the number of bytes (y-axis, logarithmic) relative
to the prefix with the most bytes (i.e., we show bytes normalized by the prefix with the
maximum byte count, ρ). We observe that 6 % of prefixes reachable via one hop carry at

5We neither had probing devices at other peering LANs, nor was our probing device at L-IXP IPv6-enabled
at the time of our study.

6We explicitly avoid the classification into remote and local peers based on RTT estimates alone given the
caveats presented in [360]

7We provide details on how we choose this time window in the next section.
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Figure 3.6: Distance to next-hop per prefix, sepa-
rated by length of shortest AS path

Figure 3.7: peering LAN bytes per prefix, sepa-
rated by length of shortest AS path

least 1 % of ρ’s bytes while only less than 0.5 % of 2 or more hop prefixes carry that much
traffic. Apart from the top 6 %, prefixes reachable via two or more hops carry around an
order of magnitude less traffic—with only minor differences between two, three, and
four or more hops. Finally, we observe that 8, 19, 24, and 25 % of IPv4 (60, 72, 73, and
77 % of IPv6) prefixes with a shortest path of 1, 2, 3, and 4+ hops carry no traffic at all,
respectively.

Those observations are likely tied to how long-established IXP members engage with a
Route Server: In contrast to new members, long-established members already acquired
many bi-lateral peering sessions. It is common that members attribute higher local
preference values to such bi-lateral sessions as they often come with Service Level
Agreements (SLAs). Hence, long-established members often peer with the Route Server
to get an idea of which routes are available at all but only hand-pick routes they actually
use based on, e.g., how consistently they are available or how much performance benefit
they may introduce. As local preference values only de-prioritize (rather than filtering
them) multi-lateral peering routes, Route Servers are also used as automatic fall-back in
case a bi-lateral peering session suffers from, e.g., an outage [183, 412].

How Route Server specific are multi-lateral peering routes? Until now, we saw that
most Route Servers have very similar characteristics; hence, we now try to understand
where the actual difference lies. As a similarity metric, we use the Jaccard distance. The
Jaccard distance between two sets of elements, A and B, is calculated as JD(A,B) =
|A∩B|
|A∪B| . In comparison to other common similarity metrics (e.g., the overlap coefficient

OC(A,B) = |A∩B|
min(|A|,|B|) ), the Jaccard distance also produces small values when A is

entirely contained in a significantly larger B, i.e., it not only considers the similarity
of elements but also the cardinalities of the sets. For each pair of Route Servers we
now compute the Jaccard Distance between prefixes (see, Figure 3.8) and reachable IP
addresses (see, Figure 3.9). As the Jaccard index is symmetric, we show results for IPv4
in the top-right triangle and results for IPv6 in the bottom-left triangle.

While we observe that certain Route Server combinations show more overlap than others
(e.g. AMS-IX and DE-CIX), the average similarity for IPv4 lies at around 50 % (77 %
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Figure 3.8: Similarity of prefixes between Route
Servers

Figure 3.9: Similarity of addresses between
Route Servers

for IPv6). As prefixes can be more-specifics of others, it is also unsurprising that the
similarity of reachable IP addresses lies roughly 13 % higher for IPv4. While we observe
similar behaviour for many IPv6 combinations, we observe that France-IX and DE-CIX
are different from the others but similar to each other. We observe that this “clustering“
is mainly the result of a single route: 2002::/16 announced by AS6939 (Hurrican Electric).
When ignoring this route (see Figure 3.10), the takeaways for IPv6 and IPv4 are consistent.

Finally, we want to know whether ASes with memberships at multiple IXPs share the
same routes with the respective Route Servers. Hence, we rerun the same analysis but,
this time, focus only on routes announced by the same member ASes at both IXPs (see
Figure 3.11). While this comparison shows naturally higher overlap compared to Figure
3.8, we observe that certain Route Server combinations still show a Jaccard distance of
less than 70 %; yet those routes barely make a difference for the number of reachable IPs
(Figure not shown).

Summary. We observe that the distribution of prefixes across Route Server peers that
was presented by Richter et al. [412] is also present in many other Route Servers across
the world. In general, we show that the characteristics of routes at various Route
Servers are very similar. We observe that the majority of routes at Route Servers lead to
out-of-continent destinations—likely a side-effect of the growing remote-peering trend.
Surprisingly, we found that most routes at Route Servers contain three or more ASes
and that the distance of the peer is not a factor for this phenomenon, i.e., even local
peers provide many unattractive routes to the Route Server. Nevertheless, the peering
LAN traffic from one IXP suggests that its members primarily use the routes to direct
destinations, and mostly rely on the Route Server for failover or analysis purposes.

3.1.4 Inferring Peering Relationships

After we analyzed the routes that are available to newly joined IXP members via multi-
lateral peering, we are now interested in the routes that can be obtained by establishing
bi-lateral and private peering sessions.
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Figure 3.10: Similarity of addresses between
Route Servers without HE’s 2002::/16 route

Figure 3.11: Similarity of prefixes between Route
Servers for common peers

Similar to the work of Richter et al. [412], we infer bi-lateral peerings (and the prefixes
that are announced via them) by observing the traffic that flows through the IXP’s peering
LAN. As shown by Ager et al., some ASes may "abuse" the peering LAN for additional
transit connections to their customers. Given that our reachability analysis might be
rather sensitive to the presence of transit relationships 8, we substantially extend the
method used by Richter et al. to account for them.

As the inference approach for bi-lateral peerings relies on traffic data, we now limit
the scope of our analysis to one large European IXP, L-IXP. While the IXP’s peering
LAN may cover most of the bi-lateral peering agreements, it offers no visibility into
the private peerings that happen within the co-located data centers; hence, we rely on
carefully selected looking glasses within those data centers to uncover routes that are
available via private peering. Notably, this approach does not allow us to accurately
distinguish between dedicated private peerings and connections to, e.g., cloud exchanges
(as discussed in section 3.1.1).

3.1.4.1 Bilateral Peering

We bootstrap our analysis in a similar way to Richter et al. [412]: Whenever we observe
traffic destined towards IP I flowing from A to B, we deduct that the respective covering
/24 (or /48 for IPv6) for I must have been announced from B to A. Notably, this approach
relies on the assumption that an ASes will eventually send traffic to most, if not all, of the
prefixes it received from a neighbor. Hence, we first have to understand for how long we
need to observe peering LAN traffic before we arrive at a rather static "snapshot."

Picking a reasonable window size. On the one hand, a small window size (e.g., an hour)
may underestimate the available routes as not all of them continuously see traffic; on the
other hand, a large time window (e.g., a year) is more likely to yield an extensive list, yet
may provide an overestimate as certain routes are withdrawn in the meantime.

8As customers can potentially send traffic destined for the entire Internet to their transit providers, incorpo-
rating such connections would bloat up the set of reachable prefixes.
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Figure 3.12: Influence of window size on visible prefixes

To get a better sense of what might be a good window size, we test by how much a certain
window size would affect the number of /24s and /48s for which we observe traffic. For
various window sizes between 4 hours and 14 days, we calculate the prefix counts and
then move the window forward by one hour. Using this method, we generate, e.g., 739,
719, 575, and 407 data points for the window sizes 4 hours, 1 day, 7 days, and 14 days
throughout the entire May 2021. Figure 3.12 show the median prefixes (y-axis) that we
observed for a given window size (x-axis) as well as the Inter Quartile Ranges (IQRs) for
IPv4 and IPv6. While the knee of the curve (i.e., the point at which further increases of the
window size start to yield smaller improvements) lies at around one and a half days, we
observe a continuous, almost linear, increase after a window size of six days. We decided
to choose a window size of seven days. While this choice might yield a small number of
already withdrawn prefixes, it covers workdays as well as weekend days—which are
known to exhibit rather different traffic characteristics [165, 256, 279, 457].

Removing transit sessions. Now that we have some understanding of the routes that
are announced between each member pair, we have to isolate and ignore transit sessions
as they might substantially inflate the set of reachable prefixes. Perfectly identifying the
business relationships of links has been an academic goal for more than two decades. The
current state of the art algorithm, ASRank [292], is well-known for its high accuracy when
it comes to identifying transit relationships (even in narrow contexts [389]). CAIDA hosts
two versions of monthly-updated business relationship information: serial-1 and serial-
2. While serial-1 relies solely on routing information (i.e., AS paths), serial-2 contains
serial-1’s information but is further extended with topology information inferred via
additional sources, e.g., traceroute paths that were mapped to AS Paths. As a result,
serial-2 contains more relationships but also inherits inaccuracies from its data extensions
(e.g., from IP-to-AS mapping [50, 313]). Surprisingly, neither serial-1 nor serial-2 can
cover more than 21.2 % or 22.3 % of the 220k+ IPv4 IXP member pairs that exchanged
traffic during that period.

Improving Relationship Coverage via Route Server Paths. Whether the ASRank al-
gorithm produces an inference for a given AS link mostly depends on the set of AS
paths that it is executed on. Hence, we can improve our inference coverage by providing
additional AS paths that ’cross’ (i.e., contain two consecutive IXP members) the IXP’s
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peering fabric. To uncover such paths, we revisit the Route Server of our IXP.

Our main idea is as follows: Our Route Server snapshot contains various routes as well
as their respective Route Server redistribution communities, i.e., Route Server specific
communities to express the instructions: (1) announce to all neighbor, (2) don’t announce
to any neighbor, (3) announce to a specific neighbor, and (4) do not announce to a specific
neighbor. Notably, instruction (1) and (2) are usually paired with instructions of type
(3) and (4) but not with one another. By simulating the redistribution, we can deduce the
paths that each IXP member received via its Route Server session(s).

More formally, we construct paths as follows: Let AS A announce some route with AS
path (A, p′) to the Route Server where p′ refers to some (potentially empty) sequence of
ASes—we ignore the few routes that contain AS_SETs. A also attaches a set of (potentially
large) BGP communities that we translate into the previously explained instructions
(1) -(4) . To retrieve the set RP of Route Server peers to which the route is redistributed,
we first sort the set of instructions in the order we introduced them 9. While we set RP to
all Route Server neighbors for instruction (1) , we set RP to the empty set for instruction
(2) ; if both instruction (1) and (2) are present we ignored the route. Notably, if n either
instruction (1) nor (2) is present, we defaulted to instruction (1) . Afterward, we first
added and then discarded specific ASes to/from RP according to the instructions of type
(3) and (4) . respectively. Finally we constructed paths of the form (B,A, p′),∀B ∈ RP
which ’cross’ the IXP at the link (B,A).

We combine those paths with routes gathered from five days of the rib snapshots from
the route collector projects RIPE RIS and RouteViews (i.e., the same data sources that
CAIDA uses to produce serial-1 data). For IPv4-related inferences, we use the publicly
available ASRank script that is hosted by CAIDA. For IPv6, we apply the necessary
changes described by Giotsas et al. [186] to adjust the inference script to IPv6 routig
policies. Both scripts require a list of Route Server ASNs for their inference. To generate
this list, we extract all ASNs with the type ’Route Server’ from PeeringDB. After these
steps, our extended relationship data set covers 69.0 % and 63.2 % of traffic-carrying IPv4
and IPv6 links.

Improving Relationship Coverage via Manual Search. At this point, we still have
various ASes with limited coverage. Hence, we decided to manually search for additional
relationship information. We invested three days of manual relationship look-ups for
ASes that either (i) are in the top 30 contributors of unclassified links, (ii) have only less
than 10 % of their links covered, or (iii) have more than 10 % of their links inferred to be
transit connections.

For our manual search, we mostly relied on entries in PeeringDB (e.g., [380]), RAD-
b/Whois (e.g., [397]), and targeted web searches (e.g., [499]) that clearly described
(at least some) relationships of a given ASN— please note that the three given exam-
ples are chosen randomly and may or may not belong to members of our studied IXP.
For autnum objects in RADb/Whois, we used an approach similar to that described
in [292] to infer transit relationships (even though we did not automate the process). We
used as-set objects in RADb/Whois with clearly defined names (most commonly, e.g.,
AS<XXX>:AS-CUSTOMER(S), AS<XXX>:AS-TRANSIT(S), AS<XXX>:AS-UPSTREAM(S)
or AS<XXX>:AS-PEER(S)) to identify relationships. For PeeringDB and the targeted
web searches, we searched for exhaustive enumerations of, e.g., providers as part of, e.g.,
the network infrastructure description. Whenever possible, we differentiated between
IPv4 and IPv6 relationships as well as regional relationships (i.e., if a websites described

9This order represents a conservative approach—if both the instruction to add AS X and to delete X are
present, x will ultimately not be included in the set of Route Server peers.
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Figure 3.13: Coverage of Relationships for traffic-
carrying links (IPv4).

Figure 3.14: Coverage of Relationships for traffic-
carrying links (IPv6).

AS X as peer in Europe but as provider in Asia, we noted it as peer giove that our IXP
operates in Europe.)

While investigating the relationships for the ASes mentioned above, we observed di-
minishing coverage improvements; hence, we decided to not extend our manual search
beyond them. Notably, whenever an AS explicitly specified its providers and customers
but not its peers, we assumed that all remaining links are peering relationships.

Our final set of relationships covers 74.2 % and 65.9 % of traffic-carrying IPv4 and IPv6
links at our IXP. Figure 3.13 (for IPv4) and Figure 3.14 (for IPv6) show the fraction of
links for each AS that are inferred to be P2P and P2C relationships. We observe that in
both plots our data set covers at least a fourth of all relationships for 93 % of ASes. On
median, we cover 66 % of IPv4 and 51 % of IPv6 relationships. While we observe that
overall only 1.2 % (IPv4) and 1.5 % (IPv6) of all inferred links have transit relationships,
we also observe that these relationships are distributed across almost all IXP members;
hence, it is rather the norm than the exception to establish additional sessions with transit
providers via the IXP’s peering fabric. Beyond its coverage, we are also interested in the
filtering impact of our relationship data set.

Figure 3.15 shows the number of available IPv4 and IPv6 norm-prefixes per traffic-
carrying, directed10 AS link. We observe that certain links carry traffic for more than 106

norm-prefixes. Yet, when only considering links that our data set classifies as peering
links, we filter out all links that carry traffic for exceptionally many prefixes. Hence, we
continue our analysis using only the links explicitly inferred as peering links, i.e., we not
only ignore those links explicitly inferred as transit links but also those for which we
have no inferred relationship.

3.1.4.2 Private Peering

As previously discussed in section 3.1.3, our traffic captures do not contain any private
peering connections. We rely on queries to carefully selected Looking Glasses (LGs) to

10If A and B exchange traffic in both directions, we treat the links (A,B) and (B,A) separately.
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Figure 3.15: Norm-Prefixes per directed AS Link

infer routes available via private peering. To automatically query looking glass interfaces,
we write identification and querying interfaces—similar to those described in [182]—for
common looking glass utilities including, e.g., HSDN [461], RESPAWNER [317], and
COUGAR [124]. To initially find ASes with looking glasses, we rely on PeeringDB [381]
as well as various online lists [60, 63, 235, 263, 291, 482]. We first narrow down our
selection by removing all LGs from ASes that are not members of our IXP. Afterwards, we
removed all LGs that our indentification interface could not map to a LG template. Then,
we manually went through the looking glass interfaces of the remaining 63 ASes and
validated whether they could look at the routing table of a router that is located within
one of the IXPs contiguous colocation facilities—we heavily relied on the naming and
excluded all entries for which the location was not exactly matching a colocation name.
Finally, after removing LGs requiring captchas, exploring rate-limiting, or explicitly
stating ’no automation allowed’, we are left with LGs from 17 different ASes to trigger.

Triggering Looking glasses. As looking glasses are usually provided on a voluntary
basis from operators to operators, we do not want to abuse them with gazillions of bursty
queries. First, we limit the set of norm-prefixes for which we query the LGs to those that
are (1) necessary for the analysis in section 3.1.5 and (2) not yet covered by multi-lateral
or bi-lateral peering. Second, when a looking glass yields a longest-prefix match rather
than an exact match and returns a covering prefix that is likely not a default route (i.e.,
a routes less specific than /8 and /16 for IPv4 and IPv6, respectively), we no longer
query for any other norm-prefixes covered by this less-specific. Third, we waited 39.3
seconds11 on average between two consecutive queries to the same looking glass. With
those safeguards in place, we queried looking glasses as follows:

1. Querying a LG. We choose a looking glass in round-robin fashion and performed—
depending on the LG utility—either an exact match or, preferably, a longest-prefix
match query against it.

2. Ignoring transit routes. If the LG returned a route for which the first-hop would
be a transit provider to the AS the looking glass resides in, we ignore that route.
Similarly, if we can’t find a relationship and the first hop is a Tier 1 provider, we
also ignore the route (given that it likely represents a transit relationship).

11a result of multiple small waits between queries to different LGs in combination with the answer time of
the other LGs.
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3. Requiring IXP routes. To ensure that the route is locally available at the IXP, we
ensured that the first-hop AS is also an IXP member.

If no route remains after steps 2. and 3., we wait 2 seconds and then query the next
looking glass until we have exhausted our LG list. If one LG returned a non-filtered
route we marked the norm-prefix as reachable (and queried the next round-robin-order
LG for the next norm-prefix), otherwise we mark it as unreachable.

In total, we were able to uncover 2.33M, 6.73M, and 6.77M IPv4 (3.41B, 3.41B, and 3.45B
IPv6) norm-prefixes available via multi-lateral, bi-lateral, and private peering covering
19.8, 57.1, and 57.4 % (37.3, 37.4, 37.8 %) of all routed IPv4 (IPv6) addresses (according
to Geoff Houston’s Routing Table Analysis Report [218]), respectively. These results
provide a real-world calibration for the 70+ % of reachability theoretically calculated by
Böttger et al. [71] in 2018.

3.1.5 Route Importance

In this section, we present a qualitative analysis of the uncovered peering prefixes with
two different measures of importance: (a) How many domains in a top N ranking are
served by transit-free reachable prefixes, and (b) how many of the top destination prefixes
of a large eyeball network are reachable without transit. The findings of this section can
be summarized as follows:

• For both rankings, around half of the top-100 norm-prefixes can be reached via
multi-lateral peering.

• For our traffic-based ranking, nearly all prefixes can be reached via bi-lateral
peering with few exceptions that can mostly be reached via private peering.

• For our domain-based ranking, the same holds true for IPv4. For IPv6, we observe
that bi-lateral peering has a substantially lower impact. While, in general, more
prefixes remain unreachable than for IPv4, most of the top norm-prefixes can be
obtained via private peering.

• We observe that the prefixes that remain unreachable even via private peering
mostly lead to large Transit and Tier 1 providers.

3.1.5.1 Prefix Rankings

Traffic-based Ranking. To provide a traffic-based importance ranking from an indepen-
dent source, we use traffic statistics from one of the largest European ISPs. In particular,
we collect egress traffic from all the ISP’s eyeball source addresses at all edge routers
over one day (10th June 2021) at a sample rate of 1:1000 packets. For each destination
IP, we sum the number of egress bytes throughout the day, aggregate these values to
norm-prefixes, and cluster the top 10k norm-prefixes for IPv4 and IPv6.

Domain-based Ranking. To quantify the importance of IPs with another metric, we
obtain a domain-based importance ranking. Thus, we rely on re-computed results
from a previous work by Naab et al. [336]. The domain-based norm-prefix top list is
generated by picking a common domain top list (e.g., from Alexa [18], Majestic [301], or
Umbrella [115]), resolving these domains to as many IPs as possible, and then ranking
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Figure 3.16: Coverage of eyeball-based top-10K
prefix ranking

Figure 3.17: Coverage of domain-based top-10K
prefix ranking

each norm-prefix by the number of Fully Qualified Domain Names (FQDNs) that can
be resolved to an IP.We requested an updated snapshot of the top list from the authors
of [336] and promptly received a re-computation from 30th April 2021. We decide to use
the Umbrella-based norm-prefix top list because it is the only one from which we can
derive 10K IPv4 as well as 10k IPv6 prefixes.

3.1.5.2 Reachability of the Top-10K

Now that we got the domain- and traffic-based top 10 IPv4 and IPv6 norm-prefixes, we
can analyze how many of those prefixes are reachable via different peering types.

Traffic-based Ranking. Figure 3.16 separates the top 10k prefixes into different classes
based on their respective ranking (x-axis) and shows for each class the fraction of reach-
able prefixes (y-axis) for IPv4 at the bottom and IPv6 at the top.

In addition, prefixes are colored by the lowest-requirement peering type (requirement
and economical costs for PNI > BLP > MLP) they can be reached by (if any). We observe
that the top 100 prefixes for both protocols can be fully covered using all peering types.

In general, we observe that only very few prefixes can not be reached. Notably, the vast
majority of top-10k prefixes can solely be reached via bi-lateral peering agreements. This
result benefits aspiring IXP members who, if they carefully select a few private peering
partners, can keep their operational costs minimal.

Domain-based Ranking. Figure 3.17 shows our results for the domain-based top 10k
prefixes in the same style as the previous figure. First, we observe that significantly
more—especially lower rank—prefixes are unreachable (e.g., approx. 15 % of the lowest
5k IPv4 prefixes are not reachable). Second, we see a drastic shift in patterns for IPv6:
The difference between routes available via multi-lateral and bi-lateral peering is almost
negligible compared to IPv4. Consequently, IXP members have to rely substantially more
on private peering to reach the prefixes with the highest domain counts. Yet, for approx.
15 % of 500-or-lower prefix class prefixes IXP members still have to rely on their transit
as they are unreachable via peering.
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Figure 3.18: Unavailable Prefixes by Origin AS Type.

To reduce their operational costs, members of large IXPs may egress most—if not all—of
their high-volume destination traffic via (mostly bi-lateral) peering connections while
using their transit to egress low-volume yet domain-heavy prefixes. Notably, between 25
and 50 % of both top-10k prefix lists can be reached via multi-lateral peering—a finding
that further highlights the importance of Route Server connections especially for new
IXP members.

3.1.5.3 Missing Routes

To get some idea of which routes were not available, we mapped norm-prefixes to ASes
via a longest-prefix match on the previously mentioned IP-to-AS data set from CAIDA.
We further map each origin AS to a class using CAIDA’s AS Classification data set [85].

We further refine the classification using lists of Tier 1 Networks [507] and Hyper-
giants [73]. Figure 3.18 shows the number of missing norm-prefixes (y-axis) that are
originated by the ASes of different classes (x-axis) for IPv4 (bottom) and IPv6 (top).
For IPv4, we observe that most of the missing /24 prefixes belong to content provider-
s/hypergiants. In particular, we observe that more than half of the prefixes in both of
those classes can be attributed to Amazon’s AS14618 and AS16509. Notably, most of
the missing prefixes for Amazon do not see any peering LAN traffic (regardless of the
business relationship) throughout our measurement period.

As most of these prefixes are unique to the traffic-based prefix ranking, we suspect
that our eyeball vantage point has access to routes that are only announced via private
peering on dedicated connections, and, hence, remain hidden from the peering LAN.
Taking Amazon out of the picture, the most prominent class would be the same as for
IPv6: Transit ASes. Notably, the individual contributions made by single ASes are much
more uniformly distributed; out of the 61 and 231 total ASes contributing to the IPv4
and IPv6 Transit AS class, the top ASes contribute no more than 21 and 29 prefixes
respectively. Further, we observe that the vast majority of the prefixes that belong to
Transit ASes are only present in the domain-based top list but not in the traffic-based top
list. In summary, our observations suggest that ASes can indeed offload high-volume
prefixes to peering links by joining an IXP but they still require transit to reach the heavy
tail of (potentially low-traffic) domains.
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3.1.5.4 Limitations

Next, we discuss limitations and specifically elaborate on the generalization of our
findings. Multi-lateral Peering: We analyzed the Route Servers of different IXPs based
on separate snapshots generated throughout seven days. Hence, our observations may
be biased by sequences of high-frequency updates (as described by Ariemma et al. [36]).
Yet, we discussed our results with some of the IXP operators that provided Route Server
snapshots, and they told us that they did not observe unusual behavior during the
days from which the snapshot was taken. Yet, as many prefixes can only be seen when
aggregating updates over some amount of time, a single snapshot might miss unstable
routing information. Bi-lateral Peering: Our analysis of bi-lateral peering reachability
relied on sampled peering LAN traffic data and inferred business relationships. While
we used an entire week of traffic data to partially overcome the problem of missing
traffic for existing routes, we likely still missed a few routes as (1) they genuinely did
not receive any traffic during our observation period or (2) they small amounts of traffic
yet the sampling algorithm did not incorporate any of their packets. While we did our
best to improve the coverage of inferred business relationships, we can not guarantee for
the correctness of the business inference algorithm. While both algorithms were shown
to provide high-quality inferences on public data [186, 292], we utilize them in a rather
different context which could potentially lead to iimpairments in their performance [389].
Private Peering: For the inference of private peering routes, we used a very small set
of looking glasses and queried them in a restrictive manner. Especially for our findings
regarding the summed reachability, our observations can only be seen as a lower bound.
If our number of vantage points would have been significantly higher and we could
have triggered queries at a high rate, the amount of private peering prefixes would
have certainly increased leading to overall higher estimates for the total achievable
reachability. Regional Importance Bias: The utilized data sets to infer peering relations
and qualify the importance of IPs and prefixes (see §3.1.4 and §3.1.5) are biased towards
the European service region. While it is for the conducted analysis required to compare
reachability at IXPs and relevance (ISP data set and DNS) in the very same region, it
may not necessarily apply to others. As different cultures may have unique eyeball
behaviors, a traffic-based ranking for other large eyeball networks around the world may
lead to different prefixes especially in the lower part of the top-10k ranking. As address
resolution is often location-skewed (e.g., due to DNS load balancing) our domain-based
ranking is likely biased towards norm-prefixes primarily used in the European region.
While we expect unmatching biases (e.g., comparing American top lists to European IXP)
to lower the overall top list coverage based on, e.g., routing policy differences [188], we
do not expect that such a comparison would yield considerable differences.

3.1.6 Discussion

Our results suggest that networks that peer at one of the larger IXPs can indeed move
most traffic to bi-lateral peerings, yet (especially for IPv6) not all prefixes that serve a
high number of domains are reachable via peering. While an assessment of the quality
of those available peering relationships (i.e., the capacity and latency guarantees they
provide) goes beyond the scope of this work, previous works already hinted at certain
obtainable benefits[16], e.g., Schlinker et al. [446] showed that the latencies for 10 % of
Facebook’s traffic can be decreased by up to 10ms when switching from transit to peering
routes.

That many high-volume prefixes can be served via bi-lateral peering at IXPs is strongly
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correlated with the observation that Hypergiants—large content providers such as
Google, Facebook, or Amazon [73]— interconnect at tens (if not hundreds) of IXPs
(see PeeringDB). According to Pujol et al. [393], these relatively few Hypergiants can be
responsible for up to 80 % of all ingress traffic of large eyeball networks.

Similar to hypergiants, the routes of many lower-tier networks are also available via
peering. To them, broadly announcing their routes allows them to reduce the volume
of ingress traffic delivered via some of their transit providers. Over time, such an
approach may transform an asymmetric traffic ratio into a symmetric one, and allows
these networks to re-negotiate their previous transit providers into a peering relationship.

In contrast, we observe that many of the domain-based top prefixes belong to large
transit providers and Tier-1s. To reach those prefixes, IXP members often still have to
rely on transit.

But how do those findings relate to different types of networks? Large networks and
hypergiants already established thousands of peering connections [49] and use sophis-
ticated traffic engineering strategies [447, 518] among those connections. Their egress
traffic mapping is already automated to a degree where adding new peers does not
pose a challenge anymore which leads to constant growth of their peering edges and
continuous dwindling of dependence on their transit connections.

In contrast, small (access) networks may rely on a few border routers operated mostly
manually by a small group of network engineers. Adding new bi-lateral peers for
these networks often poses a challenge in terms of resources and network complexity
(operational costs). Hence, despite our findings, many of such networks may only peer
with a Route Server and a few carefully selected bi-lateral peers on purpose. To them,
the reduced supplier cost that comes with sophisticated peering is often not worth the
increasing added operational complexity.

Medium-sized networks (e.g., smaller national service providers) sit in between those
two extremes. While many of them have neither automated their egress traffic mapping
nor their peer acquisition yet, they are typically run by competent IT staff capable of
anticipating how much their network would benefit from a particular peer. The earlier
those networks transition from a few expensive yet feature-rich routers to a distributed
fleet of cheaper routers (with potentially partial visibility), the sooner they can quickly
scale their peering edge allowing them to take full advantage of the opportunities
provided by large IXPs.

3.1.7 Conclusion

Throughout this section, we analyzed the routes available via multi-lateral, bi-lateral,
and private peering. For multi-lateral peering, we analyzed Route Server snapshots from
eight of the world’s largest peering LANs and showed that most of their routes lead to
out-of-continent locations via three or more AS hops. While remote peering might be a
major contributor to the geographic distance of Route Server destinations, we observe
that close and distant IXP members alike provide lengthy, unattractive routes to the
Route Server. When comparing those findings to peering LAN traffic, obtained through
a collaboration with one large IXP, we saw that mostly one-hop routes saw substantial
traffic. In fact, we observed that 25 % and 77 % of IPv4 and IPv6 Route Server prefixes
with at least four hop long paths see no traffic at all. This indicates that even though
Route Servers provide many routes, most IXP members only make use of local routes.
Afterwards, we used two heuristic-based methodologies to infer bi-lateral and private
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peering routes from the IXP’s peering LAN traffic. During our inferences, we carefully
isolated transit connections that were established over the peering LAN—a phenomenon
previously reported by Ager et al. [15]. Based on our inference, we observe that at least
19.8, 57.1, and 57.4 % (37.3, 37.4, 37.8 %) of all routed IPv4 (IPv6) address space can be
reached at our IXP via multi-lateral, bi-lateral, and private peering, respectively. Those
results provide practical contrast to the 70+ % reachability theoretically calculated by
Böttger et al. [71]. Finally, we show that almost all of the top 10k egress prefixes of a large
European eyeball network can be reached via bi-lateral peerings. In contrast, we also
find that up to 15 % of top 10k domain-serving prefixes can not be reached via any type
of peering at our IXP. Notably, we observe that most of these prefixes belong to large
transit and Tier 1 providers.

3.2 AS-level Bias in Vantage-Point Placements

Network operators and researchers frequently use public Internet Measurement Plat-
forms (IMPs) such as RIPE Atlas [433], RIPE RIS [349], or RouteViews [364]. They
use the available measurement capabilities and publicly archived data to, e.g., detect
routing events and malicious networks [171, 456, 487], analyze the Internet’s struc-
ture [49, 194, 367], understand and optimize (their own) routing policies [192, 454, 478],
or detect outages and performance bottlenecks [183, 458, 496].

IMPs are attractive for Internet measurements as they operate a wide array of globally
distributed vantage points. RIPE Atlas hosts around 11,000 measurements probes in
3,300 autonomous systems, RIPE RIS and RouteViews collect routing information from
around 300 and 500 ASes, respectively. Even though the number of vantage points is large,
visibility in the more than 70,000 globally routed ASes is still partial. It is well-known that
IMPs capture incomplete views of the Internet [15, 49, 188, 367, 390] and sometimes offer
misleading or incomplete answers for seemingly simple questions [137, 212, 436, 510].
In fact, the incompleteness problem spawned entire branches of research focusing on
extending the observed AS topology via other data sources [49, 57, 103, 162, 188] or by
adding new, favorable-positioned vantage points to IMPs [121, 194, 282, 435]. While the
incompleteness aspect has been extensively studied, it is still unclear how representative
(wrt. the entire Internet) the view we have through the IMPs is. Do we have equal visibility
to all types of networks? And, if not, how biased are our views?

In this section, we aim to shed light to this unexplored aspect of IMPs. Capturing repre-
sentative sets of vantage points is an inherently multi-dimensional problem. While the
trend of "hunting for the most AS links" may improve the fraction of observable Internet
topology, it may bias IMPs along other dimensions, e.g., network types or geographic
placement. To this end, we take first steps towards characterizing and navigating this
multi-dimensional landscape of biases and improvements. Our contributions can be
summarized as follows:

• We define bias in a multi-dimensional context and present a simple yet generic and
easily-extendable framework to quantify the biases in IMPs (§3.2.2).

• We analyze the biases of RIPE Atlas, RIPE RIS, and RouteViews (§3.2.3). Our
framework clearly confirms well-known biases, e.g., RIPE RIS is heavily biased
towards larger networks and IXPs (previously stated in, e.g., [436]). Yet, it can go
beyond these observations, e.g., we show that while networks that peer at many
IXPs are over-represented in RIPE RIS, their peering policies are representative
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of the Internet’s peering ecosystem (as captured by PeeringDB). Also, we study
the biases involved in common measurement practices (e.g. RIPE Atlas probes
selection, or using individual route collectors).

• Leveraging our framework, we can design methodologies to reduce bias in existing
IMPs (§3.2.4). Carefully selecting subsets of IMP vantage points ("subsampling")
can lead to significantly more representative measurements. We demonstrate this
through a use case, in which we estimate the client latency distribution of a large
content delivery network (CDN) through RIPE Atlas measurements: subsampling
can lead to a more accrurate estimation than randomly selecting probes, or even
than using the entire set of Atlas probes.

• Another way for reducing bias is by extending the current IMP infrastructure
(§3.2.5). Using RIPE RIS as an example, we calculate the bias difference each AS
would introduce upon connecting to the platform. Since not every AS may be
equally easy to acquire as participant in RIS, we collect data from domain experts
and try to infer the acquisition complexity per AS. Our findings show that there
are many easy-to-peer-with ASes that would reduce RIPE RIS bias.

We deem our work as only the first step towards understanding and mitigating bias in
IMPs. There are still many aspects of bias that can be analyzed and even more problems
to be studied. To this end, we publicly share our code and tools (§3.2.6) to facilitate
further research, and provide a critical discussion about related work (§3.2.7), involved
limitations and open research questions (§3.2.8).

3.2.1 Internet Measurement Platforms and Bias: a Primer

In this section, we introduce the concept of bias on a general example (summarized in
Table 3.1). Afterwards, we introduce the three major IMPs that we analyze in this section
(§3.2.1.1), discuss some of their known biases, and motivate the research questions that
our study aims to address (§3.2.1.2).

Let us assume a population consisting of 100 people, 50 of which are men and 50 women.
If we run a survey with 10 people, of which 8 men and 2 women, our sample is biased
towards men. We say that our sample is biased as there is a difference in the distributions
between the entire population and our sample.

Measuring bias. To identify this bias, one could run statistical tests (e.g., Kolmogorov-
Smirnov test) to compare the two distributions. To further quantify the bias, it is common
to measure the distribution distance among the population and the sample distributions
(e.g., with the Kullback-Leibler divergence metric)

Men Women Country A Country B
Entire population 50% 50% 70% 30%
Survey sample 80% 20% 80% 20%

Table 3.1: Bias example: population and sample statistics.

Multi-dimensional bias. Let us consider that our survey focuses on the height of
individuals. If we compare the distributions of height within our total population to
that within our survey sample, we may find that they differ as men (who naturally
tend to be around ~7 % taller [374]) are over-represented. Now, let us consider that our
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(a) Location (b) Network type

Figure 3.19: AS-Level location (a) and network-type (b) bias for different IMPs.

survey further focuses on the native language of individuals. For this second case, the
gender-bias in our sample would not affect our findings. In contrast, the country-bias
(e.g., see the right side of the Table 3.1) of our sample, may play a major role. In other
words, different bias dimensions (e.g., gender or country) may affect our measurements findings
differently, depending on how they relate to the insights we want to gain.

3.2.1.1 IMPs: RIPE Atlas, RIPE RIS, and RouteViews

We provide a brief overview of the three major IMPs on which we focus.

RIPE Atlas [433] is a platform that hosts more than 11,000 measurement "probes" in
more than 3,000 ASes. Probes support a fixed set of measurement types (e.g., ping,
traceroute, DNS). Users can select sets of probes and execute measurements (e.g., a
traceroute towards a target IP), under some rate-limits.

RIPE RIS [349] and RouteViews [364] are two global platforms that host "route collec-
tors", which are dedicated devices that passively receive, dump, and publicly archive
the routing information from their peering networks. Most route collectors are located
at large IXPs such that they can quickly establish many sessions over the IXP’s peering
LAN. The "multi-hop"-enabled route collectors may establish indirect sessions with
remote ASNs. In total, RIPE RIS and RouteViews host 27 (of which 3 multi-hop) and 36
(20 multi-hop) route collectors with more than 500 and 300 peer ASNs, respectively. A
peering ASN may provide feeds for the entire routing table ("full feed") or only a part of
it.

3.2.1.2 Known IMP Biases & User Awareness

Location bias. A glance at the map with the locations of RIPE’s infrastructure (see [347]
for Atlas probes and [3] for RIS route collectors) reveals a higher density of the infras-
tructure in Europe, which is in imbalance with the spread of ASes around the world, i.e.,
there is location bias in RIPE Atlas and RIPE RIS. On the contrary, as it can be seen in
Fig. 3.19(a), the RouteViews project has route collectors deployed in more representative
locations around the world.

Topological bias. Route collectors (RIPE RIS and RouteViews) are biased towards larger
core networks and at Internet eXchange Points (IXPs) [436].

39



Bias awareness. Neither the location-based nor the topological bias are new to expert
users. However, not even expert-users might be able to accurately judge the extend of
different biases on different IMPs, e.g., while RIS and Atlas have substantial location
bias, this bias is almost negligible for RouteViews. Similarly, other biases along (less
prominent) dimensions, such as the network type (see Fig. 3.19(b)), might be even harder
to judge. A questionnaire related to the topic of this section that we ran supports the fact
that not all users are aware of biases: out of the 50 questioned operators and researchers,
only 26 (52%) consider IMPs to be biased, while 28% consider that there is no bias (or,
probably not), and 20% "do not know". This lack of (or, partial) awareness motivates our
study to comprehensively quantify the bias in IMPs.

3.2.2 Data and Methodology

Similarly to the example of §3.2.1 where people are characterized by two features (gender
and origin country), the IMPs can also be characterized by a multitude of features, such
as, location, connectivity, traffic levels, etc.. Each characteristic/feature can be considered
as a dimension, and the bias can be calculated over each dimension. Then, depending
on the measurement use case, all of some of the dimensions can be taken into account,
depending on their relevance (see §3.2.1).

In this section, we first formally define the bias and the metrics to quantify it (§3.2.2.1).
Then, we present the data we use to retrieve characteristics for the IMPs (i.e., “bias
dimensions”) and the taxonomy we use in the section (§3.2.2.2).

3.2.2.1 Quantifying Bias: Definition and Metrics

Definitions: Let P be the distribution of a characteristic (e.g., network size) within a
set of networks N . If the characteristic takes K distinct values, its distribution is P =
[p1, ..., pK ], where pi is the probability of a network having the i value (e.g., pEurope=0.32
for the entire population of ASes; see Fig. 3.19(a)); formally, pi = 1

|N |
∑

j∈N Ij→i, where
Ij→i an indicator function that is 1 if the network j has the characteristic i, and |N | the
size of the set N .

Also, let a subset of networks V ⊂ N , and Q be the corresponding distribution within
the set of networks V . We define the bias (of the set V wrt. to the set N ) as the distance
between the distributions P and Q.

Identifying bias: If the distance between P and Q is statistically significant, then there is
bias. There are several statistical tests that could be applied. We use the Kolmogorov-
Smirnov (or, KS-test), which is a nonparametric test that compares two distributions
(two-sample KS-test), and answers “what is the probability that P and Q are drawn from
the same distribution?”.

Bias Metrics: There exist several metrics to quantify the distance between two distribu-
tions. A common metric is the Kullback–Leibler (KL) divergence:

BKL =
∑K

i=1 pi · log
(

pi

qi

)
(3.1)

The KL-divergence takes values in [0,+∞], where the higher the value the more the two
distributions differ. In the work, we use a bounded version of the KL-divergence that
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takes values in [0, 1] [440, 477]12, and we call it the bias score.

For example, in terms of the location distributions depicted in Fig. 3.19(a), the bias score
for RIPE Atlas and RIPE RIS is BKL = 0.06 and BKL = 0.07, respectively, while for
RouteViews, which follows a similar distribution to the entire population, the bias score
is BKL = 0.01. For the network type (Fig. 3.19(b)) the bias scores for RIPE Atlas, RIPE
RIS, and RouteViews are 0.03, 0.12, and 0.09, respectively, clearly highlighting the higher
bias in the route collector projects.

Remark: We tested other common metrics (e.g,. Total Variation) for the bias score as well,
and while the actual values of each metric are different, the qualitative findings of this
section remain the same.

3.2.2.2 Bias Dimensions: Data and Categories

Data sources We focus on the characteristics of IMPs at an AS-level (e.g., two RIPE Atlas
probes in the same AS have the same AS-level characteristics). Yet, our methodology and
analyses are extensible and applicable to a more fine-grained level (e.g., per monitoring
device, such as at a vantage point level or router level; see also the discussions in §3.2.6
and §3.2.8). We compile a list of characteristics for each ASes from the following data
sources: CAIDA’s AS-rank [88] and AS-relationships [87] datasets, PeeringDB [90, 381],
Internet Health Report (AS-hegemony) [172, 231], and bgp.tools [65].

Remark: Our choice for AS-level granularity is twofold: data availability and scope.
Specifically, at the AS-level there are several public datasets, while at at a finer granularity
there is scarce information; this would limit the generality of our analysis in terms of
bias dimensions. For a finer granularity, one would need to conduct measurements
and analyses to collect or infer the needed data, which can be very useful for several
use cases, but is out of the scope of this section that aims to give a first comprehensive
characterization of bias in the IMPs. We deem it as the beginning of a research thread,
and discuss more about its limitations and potential future directions in §3.2.8.

"Vantage Points (VPs)": Since we study bias at an AS-level, in the remainder, we will
not differentiate between different probes in RIPE Atlas that are hosted in the same AS,
or between different peers of RIPE RIS and RouteViews with the same ASN. And, for
brevity, we will refer to the ASes that host RIPE Atlas probes or provide feed to RIPE RIS
/ RouteViews as "vantage points" or VPs.

Dimension categories. From the datasets we select a number of characteristics that are
more relevant to the concept of bias and group them in the categories:

• Location: RIR region; Country; Continent
• Network size: Customer cone (#ASNs,#prefixes,#addresses); AS hegemony
• Topology: #neighbors (total, peers, customers, providers)
• Interconnection (IXP-related): #IXPs; #facilities; Peering policy
• Network type: Net. type; Traffic ratio; Traffic volume; Scope; Personal ASN

Remark: Our methodology is generic and more characteristics can be included or grouped
differently. We only use this taxonomy to facilitate the discussion throughout the section
(i.e., to refer to multiple dimensions under a single term). It does not affect any of the
results, which we present in detail for all dimensions.

12We substitute qi → (1− w) · qi + w · pi, with w = 0.01 and normalize with its upper bound log 1
w

, to get

BKL = 1
log 1

w

·
∑

i∈K pi · log
(

pi
(1−w)·qi+w·pi

)
.
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(a) Bias in IMPs (b) Correlation between dimensions

Figure 3.20: Radar plot showing the multi-dimensional bias in IMPs.

3.2.3 Analyzing IMP Bias

In this section, we study the biases in RIPE Atlas, RIPE RIS, and RouteViews. Fig-
ure 3.20(a) shows a radar plot with bias scores for all dimensions. The colored lines—and
their included area—correspond to the bias metric of a given IMP along a given dimen-
sion, e.g., the bias score for RIPE RIS (orange line) in the dimension “Location (country)”
is 0.2. Larger bias scores (i.e., farther from the center) correspond to more bias, e.g., in
the dimension “Location (country)” RIPE RIS is more biased than RIPE Atlas (blue line).

Remark: As knowing the overall distributions of a characteristic may help to better
understand the bias along a certain dimension, we provide detailed distribution plots
(i.e., similar to those in Fig. 3.19) for all characteristics in Appendix A.2. Based on
Figure 3.20(a), we make the following observations:

• While the bias of IMPs differs significantly by dimension, RIPE Atlas is substantially
less biased than RIPE RIS and RouteViews along most dimensions.

• RIPE RIS and RouteViews have significant topological bias (e.g., number of neigh-
bors/peers) as most of their collectors are deployed IXPs, where ASes establish
many (peering) connections [390].

• RouteViews and RIPE RIS are also quite biased in terms of network size (“Customer
cone” dimensions), since route collectors peer with many large ISPs. While having
feeds from large ISPs may be desired in terms of visibility, users still should be
aware of it since it may lead to biased measurements.

• In most IXP-related and network type dimensions (that correspond to data mainly
from PeeringDB), all platforms have relatively low bias; with an exception of RIPE
RIS and RouteViews that are biased in terms of number of IXPs/facilities the
monitors are connected to.

• There are small differences between RIPE RIS and RouteViews. RIPE RIS is more
biased in terms of topology (number of neighbors, total and peers), whereas Route-
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Views is more biased in terms of network sizes (“Customer cone” and “AS hege-
mony” dimensions).

• We applied the KS-test for all platforms and dimensions. In almost all cases,
the KS-test rejected the null hypothesis that the IMPs vantage points follow the
same distribution as the entire population of ASes. The only exceptions were
the "Personal ASN" dimension for all IMPs, and the "RIR region" and "Location
(continent)" for RouteViews (where bias scores are less than 0.01).

Figure 3.20(b) shows the correlations between dimensions (grouped as in §3.2.2.2; values
correspond to averages among groups) for the entire population of ASes. As expected, di-
mensions in the same category are correlated. Also, topology dimensions are significantly
correlated with network size and IXP-related dimensions. Nevertheless, comparing with
Fig. 3.20(a), we can see that correlated dimensions do not necessarily share similar bias
scores. This highlights that a multi-dimensional bias exploration as in Fig. 3.20(a) can
give a more detailed view.

Beyond this basic analysis, we conduct three similar analyses deepening our understand-
ing of different IMP aspects.

Combining RIS and RouteViews: Using data from both RIPE RIS and RouteViews
is common (e.g., via CAIDA BGPStream [371]); hence, we analyze the combined bias
in Fig. 3.21(a). When considering vantage points from both projects, the bias slightly
decreases in most dimensions. Interestingly, there are some exceptions, e.g., number of
neighbors (total and peers), where it would be preferable—in terms of bias—to use only
feeds from RouteViews.

Full vs. all feeds: Only 240 and 70 peers of the RIPE RIS and RouteViews peers provide
feeds for the entire routing table ("full feeds"), respectively. Figure 3.21(b) compares the
bias of only feed peers against the entire IMPs. For RIPE RIS the increase in bias is small,
whereas for RouteViews the set of full feeds is significantly more biased. In fact, while
RIPE RIS is on average more biased than RouteViews, the opposite becomes true when
considering only full feeds.

IPv4 vs IPv6 vantage points: Figure 3.21(c) compares the set of ASes hosting IPv4, IPv6,
and any RIPE Atlas probes. The set of networks hosting IPv6 probes is slightly more
biased than networks hosting IPv4 probes in most dimensions. The only exception is
the #addresses in customer cone, which is mainly due to the differences in the IP space
between the two versions. In RIPE RIS (not depicted in the plot), the differences between
IPv4 and IPv6 peers is negligible.

3.2.3.1 Analyzing Improvement Potential

Now that we have a basic understanding of the current biases in IMPs, we want to
compare the current state to an (hypothetical) case, where vantage points are randomly
deployed among all types of networks, locations, etc. This comparison (i) provides a
better understanding of the potentially avoidable IMP bias, and consequently (ii) reveals
room for improvement (under practical limitations).

Random sampling from the entire population is an unbiased process. A sufficiently large
random sample would lead to zero bias. Yet, small samples tend to be biased especially
for characteristics with large variance. We treat the bias score that can be achieved via
random sampling as a non-biased baseline.
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(a) RIS & RV (b) Full feeds

(c) Atlas: IPv4 vs IPv6

Figure 3.21: Radar plot showing the multi-dimensional bias in IMP variations.

Table 3.2 compares the average bias over all dimensions13 of the IMPs against that of a
random sample with the same number of vantage points (e.g., in the case of RIPE RIS we
consider random samples of size |V|=539). We repeat our random sampling 100 times
and report the average bias. We observe that with the same number of VPs as in the current
IMPs, a random sample of ASes would have on average (almost) no bias. This indicates that

Platform Atlas RIS RV RIS & RV
(#vantage points) (3391) (539) (340) (762)
Platform bias 0.06 0.16 0.15 0.14
Random sample bias 0.00 0.01 0.01 0.01

Table 3.2: Bias of IMPs vs. random sample of vantage points.

the “limited“ number of vantage points is not the root cause of bias (which is mostly
due to the deployment strategies; see §3.2.1.2) . In fact, we show later that adding few
well-chosen VPs can drastically reduce the overall bias (§3.2.5.2) and that very low-biased
IMP subsets can be selected via subsampling (§3.2.4).

13There infinite options of combining bias scores of different dimensions. In this section, we consider
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(a) (b)

Figure 3.22: Effect of IMP subsampling on (a) average and (b) multi-dimensional bias.

Bias vs. number of vantage points While the current set of VPs is clearly not optimal in
terms of bias, we wonder how bias changes when we only use a smaller random set of
VPs (e.g., measurements with few Atlas probes due to rate/credit limits, or collecting
feeds from a subset of route collectors peers due to the large volumes of data [19]).

Figure 3.22(a) shows the average bias for different sample sizes drawn randomly from
either the entire population of ASes (‘all’) or one of the three IMPs. Lines correspond to
averages over 100 sampling iterations, and errorbars indicate 95% confidence intervals.
For ease of comparison, dashed lines correspond to the bias values of using the entire
infrastructure (i.e., the values in Table 3.2). We observe that: (1) the bias decreases with
the sample size (as expected), (2) random sampling has always lower bias (for the same
number of VPs), and (3) even for very small sample sizes (≥20 VPs), random sampling
has lower bias than the entire sets of RIPE RIS and RouteViews VPs (see dashed lines),
while the same holds for RIPE Atlas for ≥40 VPs.

For a deeper inspection of the bias in smaller sets of VPs, Fig. 3.22(b) presents the bias of
random samples of RouteViews VPs of sizes 10, 20, and 100 (similar results hold also
for RIPE RIS and Atlas). We can see how the bias decreases in all dimensions for larger
subset sizes. Yet, the bias does not decrease linearly, e.g., in network type dimensions the
relative increase in bias for small subsets is much larger than in topology dimensions.

3.2.3.2 Bias in Common Measurement Practices

In this section, we briefly analyze the bias involved in common VP selection methods
that users follow in practice.

RIPE Atlas probe selection algorithm. RIPE Atlas users can either select specific probes
to use in their measurements or not specify them (which is is the default choice; with

averaging as an intuitive choice, and discuss other options in §3.2.8.
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(a) Atlas probe selection (b) Bias vs. #monitors per RC

Figure 3.23: Effect of subsampling on average bias for (a) atlas probes and (b) route collectors.

parameters 10 probes from “worldwide locations”14). In the latter case, RIPE Atlas has
an automated algorithm to assign probes to a measurements, which prioritises probes
with less load over more loaded probes, which makes the probe selection procedure not
equivalent to true random sampling.

In Fig. 3.23(a) we study how the RIPE Atlas selection algorithm, "Atlas (platform)", per-
forms compared to random sampling from either all RIPE Atlas probes, "Atlas (random)",
or from all ASes ("all"); the values for these latter cases are the same as in Fig. 3.22(a)). We
considered the sets of probes that the RIPE Atlas platform returned when we initiated
measurements with parameters type="area" and value="WW". Lines correspond to
averages over 100 sampling iterations, and errorbars indicate 95% confidence intervals.
We observe that when using the RIPE Atlas algorithm for selecting probes, "Atlas (platform)",
then the bias is significantly higher compared to selecting randomly probes, "Atlas (random)".
In fact, the bias is almost two times higher. This indicates that even with the existing
infrastructure, users could decrease bias by 50% by not depending on the built-in probe
selection process, but select random probes themselves.

Feeds from a single Route Collector (RC) may be used in cases that there are processing
limitations (e.g., in terms of real-timeness or storage) due to the large volume of data,
see [19, 36, 193]. Figure 3.23(b) presents the average bias score per RC (i.e., the bias
of the set of VPs that peer to a RC) in relation to its number of VPs. Overall, there is
a clear (negative) correlation between the number of VPs and the bias score of a RC.
Nevertheless, the size of a route collector does not predict its bias as (1) the three RCs of
RIPE RIS (rrc01, rrc03, rrc12) that are significantly larger (>80 members) than the rest
of RCs, are not less biased (in fact, there are several smaller RCs with lower bias) and
(2) there are several medium-size RCs (and even some with only 10-20 monitors) that
have relatively low bias. For RIPE RIS, the three multihop RCs (rrc00, rrc24, rrc25) are
less biased than most of the non-multihop RCs (which are deployed at IXPs).

Summary of main takeaways: (1) Our framework can easily detect bias and finds that
RIPE RIS and RouteViews are substantially more biased than RIPE Atlas; (2) if IMPs
would choose VPs entirely random, their current set of VPs would be very close to an
ideal sample; and (3) common practices to limit the number of VPs yield higher bias than
simple random samples from IMPs.

14https://atlas.ripe.net/docs/udm/#probe-selection
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3.2.4 Reducing Bias via Sub-sampling

The bias of the IMPs is due to the fact that some types of networks are under-represented
and others over-represented (e.g., networks in Asia and Europe, respectively, for RIPE
Atlas; see Fig. 3.19(a)). To decrease the bias, we need to have a balanced representation of
all network types. To this end, we can either (i) deploy new VPs to the under-represented
network types or (ii) use only a subset of the existing monitors whose types are over-
represented. In this section, we study the latter option, which is immediately applicable
and does not involve any extra costs. We study aspects of extending the IMPs in §3.2.5.

3.2.4.1 Sub-sampling: Problem and Algorithms

We consider the problem of selecting a subset of VPs in the IMPs (subsampling), whose
bias is lower than the bias of the entire set of VPs; or, more formally:

minS⊆V B(S) (3.2)

where S is a subset of the VPs of a IMP, S ⊂ V , and B(S) is its bias score, which we want
to be less than the bias of the entire set of VPs in the IMP (B(S) < B(V)). Optionally, we
may impose constraints, e.g., to require a given size of the subset (|S| ≤ k).

Problem complexity. The above problem is combinatorial, and relates to the best subset
problem with cardinality constraints, which is NP-hard [59]. Moreover, it is straightfor-
ward to show (through counter-examples) that it lacks the properties of monotonicity and
submodularity, which would allow to design approximation algorithms with performance
guarantees [266]. Informally, the complexity of the problem is due to the fact that adding
a VP in a set could either decrease or increase bias (no monotonicity). And, since the bias
score is calculated over distributions of characteristics for the entire set of selected VPs
(see Equation 3.1), having two VPs can be equally, less, or more than the sum of effects of
adding each VP individually (no submodularity).

Greedy algorithm. We design a heuristic algorithm to select a subset of VPs with low
bias (Algorithm 1). The algorithm starts by considering the entire set of VPs in the IMP
V . Then, for every VP v ∈ V , it calculates the resulting bias score if we remove this VP
from the IMP, i.e., the bias score of the set15 V\{v} (see lines 2–4). And, it removes from
the set V the VP v that would decrease the most the bias score, i.e., argminv B(V\{v})
(lines 5–6). It repeats the above process for the updated set V by removing one VP at
each iteration, until the remaining set is of the desired size k.

The complexity of the algorithm is O
(
(|V| − k) · |V|2

)
, or ≈ O

(
|V|3

)
for small k, since

the loop in lines 1–7 is executed |V| − k times, and the loop in lines 2–4 is executed |V| − i
times at the ith iteration (i.e., complexity O(|V|), and the calculation of bias in line 3
requires the calculation of the distribution P (probabilities pi in Equation 3.1) which is of
complexity O(|V|).

Simple sorting algorithm. We also study the performance of a simpler algorithm
(Algorithm 2), which initially calculates for every VP the resulting bias score if the VP is
removed from the set V , and then it removes (without further calculations) the |V| − k
vantage points that correspond to the lowest bias scores. The complexity of the algorithm
is O

(
|V|2

)
, which is significantly lower than the greedy. However, it is expected to

perform worse than Algorithm 1, since it does not take into account the combined effects
of removing multiple VPs.

15A\B denotes all elements in a set A, except for those that belong also to a set B.
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Algorithm 1: Greedy

Input: N (population), V (vantage
points), k (sample size)

1: while |V| > k do
2: for v ∈ V do
3: Bv ← calc_bias(N ,V\{v})
4: end for
5: v ← argminB
6: V ← V\{v}
7: end while
8: Return V

Algorithm 2: Sorting

Input: N (population), V (vantage
points), k (sample size)

1: for v ∈ V do
2: Bv ← calc_bias(N ,V\{v})
3: end for
4: while |V| > k do
5: v ← argminB
6: V ← V\{v}
7: end while
8: Return V

Figure 3.24: Subsampling algorithms

3.2.4.2 Sub-sampling Efficiency

Figure 3.25(a) shows the bias score (y-axis) for subsets of the IMPs selected by the greedy
Algorithm 1 (continuous lines) or the simple sorting Algorithm 2 (dashed lines) for
varying set sizes k (x-axis). The bias score values at the rightmost part of the curves
correspond to the bias score of the entire set of VPs V . As we move on the left of the
x-axis, the subsampling algorithms remove VPs from V . In all cases, the subsampling
with the greedy algorithm has a similar behavior: the bias score decreases as we remove
VPs (i.e., moving to the left of the x-axis) to a minimum point, and then it increases again
as the subset sizes become small. The minimum is achieved at samples sizes k that are
one order of magnitude less than the size of the entire IMP |V| (note the log scale of the
x-axis).

RIPE RIS and RouteViews: the sweet spot of 50 peers. RIPE RIS and RouteViews
have a similar behavior, with sample sizes of around 50 VPs achieving the lowest bias
score values of less than 0.04, which is four times lower than the bias score of the entire VPs
sets. Comparing the curves with this of random sampling in Fig. 3.22(a), we see that for
sample sizes k < 100 VPs, the subsampling algorithm can select sets that have lower bias
than what a random sample (of the same size) from the entire population of networks
has.

RIPE Atlas: almost zero bias with a few hundreds of probes. In the case of RIPE Atlas
the bias score is less than 0.01 (i.e., six times lower than the entire set of Atlas VPs) for
subsets of a few hundreds of VPs (84 ≤ k ≤ 976). The minimum is achieved for around
300 VPs, and the greedy algorithm performs better than random sampling for samples
smaller than ∼1,000 VPs.

Greedy vs. Sorting. Finally, we compare the performance of the greedy algorithm
(continuous lines) against the simple sorting algorithm (dashed lines). For large subset
sizes (k > 200 for RIPE RIS and RouteViews, and k > 2000 for Atlas) the performance of
both algorithms is similar. However, as the subset sizes decrease, the sorting algorithm
performs worse, since it does not take into account in its decisions the combined effect of
removing more than one VPs.

And, while for RIPE RIS and RouteViews the minimum achieved bias score by the sorting
algorithm (0.05 and 0.04, respectively) is not far from the corresponding of the greedy
algorithm (25%–30% higher), in the case of RIPE Atlas the sorting algorithm achieves
at best a 3 times higher bias score and for a much larger subset size k (more than 1000

48



(a) (b)

Figure 3.25: Bias scores for greedily and optimally chosen subsets of RIPE Atlas, RIPE RIS, and
Routeviews (a) with a comparison to Atlas’ random choice algorithm (b).

VPs). Nevertheless, the computation complexity of the sorting algorithm is much lower16.
Hence, there is a trade-off between computational complexity and performance, allowing
for a need-based algorithm choice (e.g., real-timeness or resources).

Remark: The subsampling algorithms can be applied to any set V . For example, Fig. 3.25(b)
shows the results for a scenario where the algorithms received as input a random set of
300 RIPE Atlas VPs (“Atlas Rnd. 300”; purple lines). The greedy algorithm efficiently
decreases the bias score from a value of 0.07 (for the entire random sample of 300 VPs)
to a value of 0.02 (achieved at the subset of 90 VPs). This is worse than applying the
subsampling on the entire set of Atlas VPs (green lines), however, it comes at a much
lower computational complexity.

3.2.4.3 Sub-sampling in the Wild: a Use Case

In this section we demonstrate through a use case how subsampling can improve mea-
surement methodologies.

Use case: estimation of latency distribution. We consider a measurement scenario
where the goal is to estimate the distribution of the latency between a network (e.g., a
content distribution network, CDN) and its client networks. A network may already
have a custom measurement system to monitor the latency between all its customers.
However, in some cases having a system like this may not be possible, and we may
need to rely on IMPs (e.g., ping measurements). For example, we may want to test a
routing configuration that does not serve traffic, or evaluate the expected performance of
a non-existing deployment [322].

More specifically, let ℓi be the latency between the network and a client network i, and
L be the distribution of the latency values ℓi for all client networks i ∈ N . Also, let
us consider measurements from a subset S of the infrastructure, S ⊆ V , and LS the
distribution of the latency values for the networks i ∈ S. We want to investigate whether
sets S of lower bias results to a distribution LS that better approximates the ground-truth
distribution L.17

16In our experiments the greedy algorithm needed significantly more time, e.g., several minutes for RIPE RIS
and RouteViews, and hours for RIPE Atlas.

17Note that our goal is simply to investigate the role of the set S in the accuracy of a simple estimator
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(a) RIPE Atlas measurements (b) CDN measurements

Figure 3.26: Relative error between the actual and measured RTT distribution for different IMP
subsets.

Experiment setup. We conduct our experiment from a large production CDN with
multiple points of presence and global coverage.

• Groundtruth latency data: We collect client latency data in the form of Roud-Trip-Times
(RTTs) for all client ASes from the CDN monitoring infrastructure using TCP socket
estimates, similar to [446]. For each client AS, we collect multiple latency samples
(from connections to different hosts in the same AS) and calculate the median18 latency
value ℓi per AS i.

• RIPE Atlas measurements: We conduct ping measurements from all RIPE Atlas probes
to the same global CDN infrastructure as measured in the previous step, and collect
the RTT values. For ASes hosting more than one probes, we calculate the median
latency, which we denote as ℓ

′

i for an AS i.

We calculate the latency distribution of the ground-truth data L from the CDN measure-
ments over all ASes, i.e., {ℓi : ∀i ∈ N}. We want to investigate how accurately we can
estimate L with the RIPE Atlas platform. Hence, we consider the following subsets S of
the RIPE Atlas platform:

• Atlas All: S = V , i.e., all ASes that host at least one RIPE Atlas probe.
• Greedy (k=300): The set S selected by Algorithm 1 for size set k = 300, i.e., the subset

with the minimum bias score (see §3.2.4.2 and Fig. 3.25(a)).
• Random (k=300): A set S consisting of a random sample of 300 Atlas probes. For

statistical significance, we consider 10 different sets.

For each set S, we calculate two latency distributions: The actual measurement distribution
L

′

S , which consists of the RTT values from the RIPE Atlas measurements ℓ
′

i, i ∈ S,
and the simulated measurement distribution, LS , which consists of the values of the CDN
measurements ℓi, i ∈ S. The reason for this additional consideration is to isolate any
noise due to methodological differences between RIPE Atlas and CDN measurements
per AS, i.e., differences between ℓi and ℓ

′

i.

Results. Figure 3.26 presents the relative error (y-axis) between the measured latency

LS . Designing a fine-tuned methodology for accurately estimating the latency distribution from a set of
measurements is out of the scope of this section.

18Considering other values (e.g., averages or minimum) did not affect our findings.
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Measurements Greedy (k=300) Atlas All Random (k=300)
RIPE Atlas 26% 31% 32%
CDN 12% 18% 18%

Table 3.3: Average relative error (over all percentiles) in latency measurements.

distribution L
′

S and the groundtruth distribution L for all percentiles (x-axis). For
example, if the 30th percentile of LS is t sec. (LS(30) = t) and the corresponding
percentile for L is L(30) = 0.8 · t sec., then the relative error is |LS(30)−L(30)|

L(30) = |t−0.8·t|
0.8·t =

0.25.

We can see that the relative error for the subset selected by the greedy algorithm (blue
lines) is lower than the relative error of the entire set of Atlas VPs (orange lines) and the
average relative error of the randomly selected sets (black lines) in the majority of the
percentiles. For low percentiles (e.g., less than 20%) the subsets selected by the greedy
show a higher relative error, however, due to the fact that these percentiles correspond to
latency values of a few milliseconds, small differences in the measured latencies lead to
high relative errors (see the higher variability of the random results indicated by the gray
area). Taking into account the accuracy over the entire distribution (i.e., average accuracy
over all the percentiles), the subsampling achieves almost one third lower errors than
using the entire set of Atlas probes or random sets of them (see Table 3.3).

The same trends holds both for the RIPE Atlas measurements (Fig. 3.26(a)) and the CDN
measurements (Fig. 3.26(b)); in the latter, the errors are lower due to the isolation of the
"noise" from the different measurement methodologies.

These results indicate that subsampling for sets of lower bias can improve measurement
methodologies. Further refinements in the subsampling per use case, e.g., identifying the
bias dimensions that relate to latency measurements and taking only them into account,
could lead to higher accuracy (see §3.2.8).

Summary of main takeaways: (1) We extended our framework with subsampling
methods that allow users to choose low-bias subsets of the VPs of an IMP; (2) While
choosing sets of ~50 vantage point from RIPE RIS and RouteViews can decrease the
bias 3.25-fold, greedily choosing a set of ~300 RIPE Atlas vantage points can almost
entirely eliminate bias; (3) A first in-the-wild test of our subsampling methods showed
that its selection of RIPE Atlas probes can improve the prediction of the global latency
distribution for a large anycast CDN.

3.2.5 Extending the Platforms

The bias of IMPs can be decreased by adding new participants from under-represented
dimensions. In this section, we take a closer look at the effectiveness (§3.2.5.1) and
complexity (§3.2.5.2) of adding vantage points.

3.2.5.1 Selecting New Vantage Points

As our framework can calculate bias for arbitrary sets of VPs, we can calculate the
difference in bias that a given VP v would introduce by adding it to the existing set of
VPs of a platform V , i.e.,

B(V ∪ {v})← calculate_bias(N ,V ∪ {v}) (3.3)
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Figure 3.27: Relative difference in bias score when extenting RIPE RIS and RouteViews.

This problem shares the same hardness and complexity properties as the subsampling
problem we discussed in §3.2.4.1. Hence, we again may rely on either a sorting or a
greedy strategy: The algorithm sorts VPs based on how they affect bias (Eq. 3.3) and
either (1) selects the k VPs that decrease the bias score the most (sorting algorithm) or
(2) greedily chooses the v that minimizes the IMP bias (i.e., v ← argminB(V ∪ {v})) in
each iteration and adds it to the set of all VPs V . Despite its similarity to the subsampling
variant, this greedy algorithm has a much higher complexity of O

(
|N | · |V|2

)
. Since the

algorithm has to investigate N\V vantage points in each iteration and N is multiple
orders of magnitude larger than V , the algorithm effectively runs in≫ O

(
|V|3

)
.

Extending RIPE RIS and RouteViews. For RIPE RIS and RouteViews, we calculate the
bias difference for every19 AS not in IMPs (using Eq. 3.3), and present the distribution
of these differences in Fig. 3.27(a). While few ASes would further increase the bias (i.e.,
values larger than 0.0), the vast majority of ASes would decrease the bias (i.e., negative
values); this shows that there are many good options for extending the route collector
projects. We further observe that certain ASes are especially beneficial as they would
decrease the bias score by more than 2% for RouteViews or almost 1% for RIPE RIS.

Yet, substantially decreasing the bias of a platform requires greater efforts than connecting
a single AS. Using the sorting algorithm, Fig. 3.27(b) shows how the bias for these
platforms reduces with increasing amounts of new ASes. The bias in both RIPE RIS and
RouteViews can decrease to a value of 0.05 with a few hundreds of extra VPs (which is
close to the minimum value achieved by subsampling; see Fig. 3.25(a)), while RouteViews
would need less extra VPs compared to RIPE RIS to reach a certain bias score value.

3.2.5.2 Acquisition Complexity of ASes

While certain ASes could substantially reduce the overall bias, not all of them might
be equally eager to join a project. Some of them might have security, privacy, or com-
munication policies that entirely impede connecting them. In contrast, some ASes (e.g.,
personal-use ASes) often join projects within hours of first contact. In the following, we
study the complexity/cost of adding an AS as a VP, and how this relates to its impact

19In this analysis we omit stub ASes, i.e., edge networks having only one neighbor AS and connecting to the
Internet through this single upstream provider.
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on the bias score. This acquisition complexity can play a crucial role in practice, and it
should not be overlooked when considering vantage point placement.

The complexity for peering with an AS depends on various aspects (operational, legal,
etc.). And, to our best knowledge, this dependence has not been publicly reported or
studied. Since peering coordinators of route collector projects may manually explore
those aspects, we (i) ran a targeted questionnaire among 4 experts involved in 3 route
collector projects to record existing domain knowledge, and (ii) build a model to infer
the peering complexity for all ASes.

Approach overview. First, we compile a set of labels, based on various datasets, that
characterize an AS (with each AS potentially having multiple labels). Then, we asked
the peering coordinators to assess—based on their experience—the peering complexity
associated with each label. Finally, since each AS is associated with some labels, and each
label is mapped to a complexity score, we infer a complexity score for every AS.

Characterizing ASes. ASDB [528] combines a multitude of databases and classifiers to
associate a set of labels to an AS (e.g., "ISP", "Research and Education", or "Government
and Public Administration"). The ASDB dataset characterizes more than 100K ASes with
one or more labels (out of 86 potential labels20). Moreover, we extend the ASDB data
with the following labels:

Community-support: ASes that are involved in IMPs (by April 1st, 2022), by (i) hosting an
active RIPE Atlas probe, or (ii) peering with a RIPE RIS or RouteViews collector, or (iii)
participating in the NLNOG Ring project [414].

Education: ASNs for which the PeeringDB [381] info_type field in the net record is
Educational/Research [90], or which are operated by a national research and educa-
tion network, NRENs (we manually mapped the organization names from Wikipedia [508]
to ASNs using PeeringDB, ipinfo.io [234], bgpview.io [66], bgp.tools [64], or their web-
sites).

Isolario-peer: ASes that previously peered with the Isolario route collector project [244]
that terminated service on Dec. 31st, 2021. While the MRT data files are no longer
publicly available, we extracted the list of peer ASes for each Isolario route collector on
June 21st, 2021.

Personal-use: A list of ASes that belong to (mostly) individuals (e.g., as hobby projects, or
for testing or research) [65].

Point-of-contact: We extract from PeeringDB [90], all ASNs whose role field in the poc
record is either set to Maintainance, NOC, Policy, or Technical as we expect other
roles, e.g., Abuse, to not handle peering requests.

State-owned: ASes that are owned (at least partially) by states, based on the list published
by Carisimo et al. [93].

Questionnaire & Complexity Scores. We asked the participants to judge, based on
their prior experiences, how much each characteristic/label may influence the ease of
peering on a scale from -3 (prevents peering) to +3 (easily peers upon request). Table 3.4
summarizes the answers. While we observe the +3 option twice, we only observed the
-3 option once. In general, all participants tended to agree in their answers (with an
exception for the "Point-of-contact" label).

For each label, we take the mean value across all questionnaire answers. For each AS, we

20ASDB assigns primary and secondary labels. For simplicity, we counted combinations of these two label
classes.
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Label min mean max

Community Groups ±0 +1 +2
& Nonprofits

Computer & Info. Techn. ±0 +0.25 +1
Edu. & Research ±0 +0.25 +1
Finance & Insurance -1 -0.25 ±0
Gov. & Public Admin.
→Military, Security, ... -3 -0.75 ±0
→ Other 2nd labels -1 -0.25 ±0

Services
→ Law, Business, ... -1 -0.25 ±0
→ Other 2nd labels ±0 ±0 ±0

Label min mean max

Community ±0 +0.75 +2
support

Education +1 +1.75 +2
Isolario-peer ±0 +1.75 +3
Personal-use ±0 +2 +3
Point-of-contact -2 +0.75 +3
State-owned -2 -1 ±0

Table 3.4: Summary of questionnaire answers.

merge the different labels as follows: if there is a -3 or +3 label, we set the complexity
score to -3 or +3 (preferring -3 over +3), respectively, otherwise we take the mean across
all labels; this approach ensures that our final values always comply with the strong
indications provided by the experts. Finally, we divide this score by 3 to normalize it.

Complexity scores for current and future ASes. Figure 3.28(a) (black curve, "All") shows
the distribution of acquisition complexity scores across all ASes: approximately 80 %
of ASes are equally hard to peer with, while the remaining 20 % split almost equally
between ASes that are substantially harder/easier to peer with. Comparing with the
distributions of ASNs that are part of IMPs, we can see that all platforms are biased
towards easier-to-connect ASes; this trend is stronger for RIPE Atlas as only ~17 % of
probe hosting ASes have equal or lower complexity scores than the median AS (i.e., ~0.1).

Does this mean that decreasing the bias can only be achieved by convincing hard-to-connect
ASes? Figure 3.28(b) shows a heatmap that compares these two dimensions for the RIPE
RIS platform. We can observe that there is no strong correlation, i.e., there is no pattern
indicating that networks that could decrease bias are harder to connect to. Moreover,
there are several ASNs that are ideal candidates to extend RIPE RIS (top left part of
the heatmap), since they could significantly decrease bias and are easy to connect. For
example, AS132139 —a cloud on-ramp provider21 with three upstreams that mainly
operates in Hong Kong, is registered under APNIC, and announces few IPv4 and IPv6
prefixes—would be a great choice for extending RIPE RIS as it has labels that indicate a
low peering complexity (0.66) and also reduces the bias drastically (-0.59%).

Summary of main takeaways: (1) Adding extra a few hundreds VPs to IMPs can decrease
their bias by 50%; (2) While ~10 % of ASes are easy to acquire as new VPs, another ~10 %
of ASes need substantial effort to be connected; (3) There is a very clear set of extension
candidates that can easily be connected and substantially reduces bias.

3.2.6 Open Data, Code, and API

To facilitate users and further research and analyses, we provide data, code, and tools to
calculate and visualize the bias in a set of networks.22

21An AS that mainly provides transit to all major cloud providers / hypergiants.
22To ensure anonymity, a link to these resources will be provided at a later stage.
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Figure 3.28: Relation between acquisition complexity and bias scores.

Data. The data we aggregated from different sources are provided as a table with rows
corresponding to ASNs and columns to network characteristics (see §3.2.2.2).

Code. We open-source the code for calculating the bias. The method receives as input (i)
the data table, (ii) a set of ASNs that are considered the “population” N , (iii) a subset V
of the population, whose bias we are interested in, (iv) the set of characteristics that will
be taken into account.

Visualizations. We provide visualizations of the bias data, namely, radar plots (as in
Fig. 3.20(a)) and the detailed distributions per characteristic (CDF plots or histograms, as
in Appendix A.2) for all platforms.

Open API. To further facilitate access to data and methods, we provide an API that
receives a set of ASNs and returns their bias score per dimension.

3.2.7 Related Work

Topological bias of route collectors. When analyzing the Internet’s topology, route
collectors often miss many interconnections of CDNs [49], at IXPs [15, 188, 390], or
due to complex routing setups [367]. While it is hard to remove these biases, many
works tried to understand the importance of certain biases for their work by analyzing
how their results would change when using only subsets of the available infrastructure,
e.g., [251, 292, 312, 455].

Biases and usecases. While Roughan et al. argued in 2010 that route collectors are biased
towards larger core networks and IXPs [436]. Chung et al. [108] saw no substantial
differences when comparing their view on the longitudinal deployment of route origin
validation with that of Akamai gathered from an order of magnitude more monitors23.

23The study only analyzed prefix-origin pairs that were visible by the route collectors. It remains unclear
whether this result would change when also considering Akamai’s privately received BGP announcements.
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This highlights that biases might be use-case dependant—a fact further supported by
the work of Cittadini et al. from 2014 which showed that route collectors have different
biases for topology analysis and iBGP policy inference [121]. In 2009, Heidemann and
Papdopoulos argued that Internet measurements, in general, are biased by various
(sometimes unknown) factors such as traffic volume, user populations, or topology [206],
which is further supported by a serious of exemplary experiments conducted by Bush et
al. [82].

Bias in RIPE Atlas. In 2015, Bajpai et al. showed that the distribution of Atlas probes to
ASes is heavy-tailed and also analyzed the network type distribution of probe hosting
ASes (without comparing it to the overall type distribution) [52]. A later study by Bajpai
et al. in 2017 further found that 91 % of RIPE Atlas probes are located in the RIPE and
ARIN region and that the number of probes is not representative for the number of
Internet users in countries such as Japan [53].

Extending current platforms. In 2008, Roughan et al. model the topology discovery
problem as an extension of the simple capture-recapture model that is frequently used in
biological research to estimate the population of a species via K random yet comparable
samples. They argue that their model can also be used to estimate beneficial route
collector peers and they estimate that significant global link coverage can be reached
with fewer than 700 peers [435].

In 2012, Gregori et al. observed that customer ASNs see most—if not all—of their
provider’s routing information. Based on this observation they introduced a metric
named p2c-distance that counts the number of transit relationships an update has to
travel between two ASNs. Their approach defines the optimal route collector set as the
minimal number of ASes needed such that each AS in the entire Internet has at most
a p2c-distance of N (they practically used 2) to at least one feeder ASN. They solve a
slightly modified minimum set cover problem to compute this set of ASNs and find that
multi-homed stub ASNs are most valuable as new collector feeds [194].

In 2022, Leyba et al. analyzed AS topology from a probabilistic standpoint. They
accumulated different observations over several time periods, and assigned to each link a
probability of existence. Their model show the most uncertainty for links in Israel, Egypt,
Georgia, Bulgaria, and Iceland, suggesting that connecting ASNs in these countries can
be beneficial for topology discovery [282].

Subsampling IMPs. Two very recent studies [19, 34] considered subsampling of RIPE
Atlas and RIPE RIS vantage points, respectively. [34] calculates a similarity matrix
between Atlas probes based on measurements, and proposes a method to select subsets of
probes that are dissimilar. Similarly, [19] calculates VPs similarities based on topological
characteristics, and applies a clustering algorithm to select a set of dissimilar of VPs
aiming to achieve a good tradeoof between volume of information (i.e., less VPs) and
observability of the AS topology.

3.2.8 Conclusion

This work aims to be the first effort for a systematic and comprehensive characterization
of bias in IMPs, by providing a framework to quantify bias (metrics, data, code, etc.) and
an analysis of popular IMPs. Being aware about the existence of bias and its "flavors"
(e.g., how much and at what dimensions) can help the users of IMPs to carefully interpret
the results of their measurements, and avoid pitfalls or wrong generalizations that may
appear due to the bias.
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Moreover, our findings and tools (data, code, API) can further help users to fine-tune
their measurements (e.g., select a set of vantage points), and provide useful insights to
IMP operators for extending their platforms. We see several promising messages in our
results towards these directions.

We deem our work as an initial (but, necessary) step towards a complete understanding
of bias in IMPs and its impact on user measurements. There are many research directions
and improvements that would need a more extensive investigation and can be addressed
in future work. In the following we provide a critical discussion for some of these
directions, in relation to our work:

AS-level granularity. We conducted our analysis at an AS-level, because the majority
of data sources provide data at this granularity. It is straightforward to generalize our
framework to a more fine-grained level (all methods, metrics, etc., directly apply). For
example, if we have available data per prefix24, then we can consider as our "population"
all the routed prefixes, and as "sample population" the prefixes that contain the IP
addresses of the RIPE RIS / RouteViews peers or the RIPE Atlas probes. Our methods
would then simply take as input a matrix with rows the prefixes (instead of the ASNs)
and columns the prefix characteristics (instead of the AS characteristics).

Several use cases could benefit from such a more fine-grained granularity. However,
the challenging part is the data availability. To extract even a single characteristic at
this granularity, we may need extensive measurements and analyses. For example, a
custom method is needed to infer per-prefix locations [511], while to infer customer
cones per-prefix could lead to incomplete data since aggregating measurements from
VPs in different prefixes would not be possible.

Dimensions of bias (per use case). Not all dimensions of bias may be relevant to a
measurement study. For example, any bias in the "peering policy" dimension may not
affect latency measurements (this is just a conjecture), whereas it is probable to affect
BGP hijacking detection measurements. Identifying which dimensions are important per
use case, could improve our understanding of bias and its role. However, this requires
a per case analysis, since there are many different measurement use cases with a wide
range of scopes and objectives.

Our framework considers bias per dimension, allowing for various use cases. Specifically,
while in our work we decrease the average bias score along all dimensions (§3.2.4 and
§3.2.5), one can define different aggregation ways (i.e., other than averaging). More
formally, if Bi(S) is the bias score of a set S along a dimension i, then the overall bias
score can be any function f of the individual scores: B(S) = f (B1(S), B2(S), ..., BK(S)).
Some examples could be: (i) a weighted average, where the importance of each di-
mension would be captured by a weight wi (which can be tuned per use case), or (ii)
the "stricter" case of maxi Bi(S) that captures the "worst case" of bias, or (iii) B(S) =
1−

∏
i=1,2,...,K (1−Bi(S)) that aims to achieve a "balance" among all dimensions.

Impact of bias. In the CDN use case, bias is responsible for a 6% in the latency estimation
error (see randomly selected vs. low-bias sets of Atlas probes; Table 3.3). Another
study [455], has shown that estimating the impact of a hijack with RIPE RIS leads to a
10% higher error than custom measurements to random ASes. Knowing the impact of
bias in a use case can help us build new methods (or even inform us to not focus on it, if
the impact is small). However, as in our above discussion, this would need a per case
analysis.

24Some ASes consist of many—sometimes globally distributed—routers that make independent decisions,
which can be captured at a prefix level.
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Accuracy, completeness, and bias in ground truth data. The input to our framework
(i.e, the AS characteristics) is from public datasets. And, some of them are known to
suffer from inaccuracies (e.g., country information per ASNs), incompleteness (e.g., only
25% of ASNs have records in PeeringDB), or even biases (e.g., data inferred based on
measurements from the existing –biased– platforms, such as, customer cones, topology,
etc.). Improving the datasets would be beneficial, in general, and for the quantification
of bias, in particular, since they could reveal further insights25; nevertheless, this is an
orthogonal task.

Generalization of our framework: beyond IMPs. The population (i.e., set N ) does not
necessarily be the entire population of ASes; depending on the use case, it can be the
set of clients of a network, or a set of networks with a given characteristic (e.g., all ASes
in a continent, or non-stub ASes), etc. Similarly, the selection of the subset V may not
be limited to IMPs; e.g., it can any arbitrary set of networks that can be measured. In
this way, our framework can be used to quantify biases in setups other than IMPs; one
just needs to change the input sets (N and V) in our methods, while the data remain the
same.

3.2.9 Ethics

We carefully designed this study to protect user privacy and ethical research.

Questionnaires. Throughout this study, we circulated two anonymous questionnaires. We
do not collect any personal data, and we follow the basic principles of ethical research (Re-
spect for Persons, Beneficence, Justice, etc.), and the guidelines for collecting anonymous
data through online surveys (informed consent, comprehension, voluntariness, returning
benefits, minimization of risks, etc.). To minimize the risk of identifying individuals, we
will neither publish the raw or preprocessed versions of individual answers.

AS characteristics. (i) The complexity score we inferred for each AS indicates the chances
that an AS peers with route collectors, and (ii) the bias score is calculated for a set of
networks and indicates how representative this set is wrt. the entire population of ASes;
none score characterizes in any other way an AS.

CDN measurements. In our use case (§3.2.4.3), we collaborated with a large CDN with
strict policies to retrieve anonymized performance statistics. The individual data points
presented in this section were entirely produced on servers at the CDN’s premise, and
do not carry any per-individual or per-network information.

3.3 AS Business Relationships and Evaluation Bias

The Internet consists of many autonomous systems that exchange reachability infor-
mation (also known as routes). Which routes are made available to a neighbor often
depends on business relationships. While actual business relationships are rather com-
plex [180, 185], we often categorize them into three different types: (1) Provider-to-
Customer (P2C), (2) settlement-free Peer-to-Peer (P2P), and (3) relationships between
ASes that belong to the same organization called Sibling-to-Sibling (S2S).

25The main insights of this section are not expected to deviate significantly, since we have not identified any
counterintuitive findings in our analysis
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Many researchers rely on accurate relationship information for (1) simulations of rout-
ing incidents [319, 331, 456], (2) IP-to-AS mapping [220, 313], or (3) network (resource)
management [268, 492]. Yet, there is no organisation or entity that can provide author-
itative knowledge for those relationships. Over the last two decades, this lead to a
large corpus of research focusing on inferring relationships from, e.g., routing informa-
tion [167, 175, 185, 186, 248, 251, 292].

Yet, there are two major problems that those inferences suffer from: (1) limited visibility
into the Internet’s AS interconnection graph and (2) lack of ground-truth validation data.
The visibility problem is a well-known challenge in Internet topology research [15, 99,
195, 365]. While various partial solutions have been proposed (e.g., using data plane
information [49, 103, 162], routing policy databases [57], or BGP community encodings
at IXP route servers [188]), it is still a challenge to generate a comprehensive AS-level
typology that also captures, e.g., private network interconnections [512].

The lack of ground-truth validation data has been pointed out as a challenge many times
(e.g., [175, 292, 483]), yet recently proposed and evaluated algorithms (see, [248, 251]) rely
entirely on "best-effort" validation data compiled from BGP communities—a technique
initially introduced and used (among others) by Luckie et al. [292].
To better understand the implications of this trend, this section focuses on the basic
question: How good is our "best-effort" validation (data)? In particular, our work makes the
following contributions towards answering this question:

• Bias Analysis. We analyze to which degree the geographical and topological
biases within the sets of inferred and validated relationships match (§3.3.4). We
uncover significant mismatches: While the "best-effort" validation data covers
31 % of all links between ASes in the ARIN region, it only covers less than 1 % of
links in the LACNIC region. Yet, both regions contain roughly 15% of the inferred
relationships.

• Implication analysis. We analyze how such bias mismatches may affect classifi-
cation correctness for three (ASRank [292], ProbLink [248], and TopoScope [251])
classification algorithms26 and uncover substantial drops in precision for certain
groups of peering links (§3.3.5). In particular, we observe that the near-perfect
precision of 96-98 % for the entire validation data set drops by 14-25 % (depending
on the algorithm) for peering relationships between Tier-1 and transit providers.

• Future outlook: We discuss, in-depth, different approaches for compiling less
biased and more complete validation data sets (§3.3.6) and highlight (1) the need
for active discourse with operators and (2) how the routing ecosystem’s continuous
change can be exploited to over-sample validation data.

To allow for the reproduction of our results and to facilitate the analysis of future valida-
tion efforts, we make our research code publicly available via:

https://gitlab.mpi-klsb.mpg.de/lprehn/imc2021_breval

3.3.1 Why Should We Care about Bias?

Biases commonly arise in all forms of classifications—whether one looks at face detec-
tion [81], patient treatment [385], or criminal behavior [369]. While those disciplines

26While we would have also analyzed UNARI [167], the authors do not provide publicly available artifacts.
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may have stronger social impacts, the correctness of business relationships may have far-
reaching and unintended consequences when studying the Internet’s routing ecosystem.
For instance, Müller et al. [334] recently proposed an algorithm that relies on the inferred
relationships between Internet Exchange Point (IXP) members to identify spoofed pack-
ets (i.e., packets with a forged source address). The misclassification of a P2C as a P2P
relationship could potentially result in many packets being falsely flagged as spoofed.
If an IXP would publicly disclose, e.g., the number of spoofed packets per member, the
reputation of certain members could sustain damage.

Yet, how did bias affect this example? IXPs are often built with the intention to keep
local traffic local [15], i.e., they connect ASes within the same geographical region.27

As most geographical regions have their own operator meetings, conferences, and
communities—e.g., RIPE [425], NANOG [337], or APRICOT [35]—that release different
recommendations on how to operate certain types of networks, the best practices for
routing can differ among regions (and IXPs). For instance, Marcos et al. [312] recently
reported that the usage patterns for AS path-prepending (a commonly used traffic
engineering technique) vary strongly by region and over time. Similarly, topological
biases can arise from how ASes of different sizes or locations within the Internet’s
hierarchy select their peering policies [288].

In summary, features such as the geographical or topological positioning of a network
can greatly influence the routing decisions taken by its operators. This may become
important when relationships are explicitly or implicitly28 used in narrow contexts, e.g.,
only between members of an IXP. In such a case, the correctness estimates that were
obtained from a potentially larger base of relationships may provide a false sense of
safety which may result in economical consequences (as in the example above).

3.3.2 Background

In this section, we first give a brief introduction to selected29 relationship inference
algorithms, then provide details on previously used techniques for obtaining validation
data, and finally summarize the already-known sources of bias in validation data.

3.3.2.1 Classification Algorithms

Lixin Gao was the first to describe the Internet as a strict hierarchy in which customers
receive transit from the providers "above" them and redistribute routes according to
economically incentives [175]. Based on this hierarchy, she described the notion of a
"valley-free" path—a path that travels strictly upwards, then to at most one AS of the
same height, and then strictly downhill. Using this property, her proposed algorithm
tries to maximize the number of valley-free paths.

Rather than maximizing the number of valley-free paths, more recent algorithms often
first determine the clique of provider-free ASes at the "top" of the hierarchy and then
iteratively infer relationships. In 2013, Luckie et al. [292] proposed ASRank—one of
the most-used classifiers till today. ASRank utilizes AS-triplets, a new metric called
"transit-degree", and an extensive list of heuristics to classify relationships. Giotsas et al.
later modified the ASRank algorithm to adapt it to the IPv6 routing ecosystem [186].

27usually only a small fraction of ASes connect remotely [94].
28e.g., while using bdrmapit—a tool to map IPs to routers and ASes that relies on relationship inferences—on

paths obtained from a limited number of vantage points
29based on significance to our work and recency.
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In 2014, Giotsas et al. used routing information, IP paths, and geolocation data to
infer two more complex types of AS relationships: partial-transit and hybrid relation-
ships [185]. If a provider exports routes towards its customers and peers but not towards
its own providers, then the provider and customer have a partial-transit relationship. Fur-
ther, two ASes have a hybrid relationship if their observed relationships differ throughout
various Points of Presence (PoPs).

In 2019, Jin et al. proposed ProbLink—a meta-classifier that builds upon an initial
classification (e.g., from ASRank) [248]. The algorithm assigns a probability to each link
to be of a certain type based on, e.g., the relationships of other nearby links, refines the
selected relationship based on the highest probability, and iterates those two steps until
convergence. UNARI [167] takes the idea of probability one step further and produces a
measure of certainty for each link type as its outcome. TopoScope [251]—as the newest
classification algorithm—applies machine learning techniques on a large set of link
features to perform its classification. Notably, this algorithm also predicts additional AS
links that, despite note being visible, might exist.

3.3.2.2 Validation Data

Compiling a set of ground-truth labels is crucial to properly evaluate any classification
algorithm. Yet, this step has proven to be rather difficult for AS relationships. Before
Luckie et al [292], only the works by Gao [175] and Dimitropoulos et al. [150] presented
validation data from a Tier-1 and via operator surveys, respectively.

In 2013, Luckie et al. compiled their validation data from (1) directly reported relation-
ships (e.g., by operators through a web interface), (2) relationships extracted from routing
policies encoded in WHOIS databases (more specifically, inside their autnum records)
via the Routing Policy Specification Language (RPSL), and (3) relationships extracted
from BGP Community encodings within the Internet Routing Registry (IRR) databases
or public documentation (e.g., ISPs that host such encoding on their website).

While relying on multiple databases allows for frequent re-computation of valida-
tion data, the sources (2) and (3) suffer from a set of well-known challenges. Most
records within the WHOIS databases are added and maintained voluntarily, hence, some
records get stale (i.e., become inconsistent with publicly visible routing information) over
time [99].

While the same may be true for the publicly documented BGP community encodings,
those, in addition, suffer from ambiguity problems. Simply put, BGP communities are
just colon-separated value pairs30 [96] that can be tagged onto routes. Which infor-
mation is encoded into/decoded from a specific BGP community depends on the AS
that sets/reads it. Ambiguity is introduced when a single BGP community represents
different meanings to (potentially overlapping) sets of ASes, e.g., while the BGP commu-
nity 3356:666 could be recognized as an attempt to blackhole a route [264], AS 3356
(Level3/CenturyLink/Lumen) uses it to tag peering routes [398].

Despite those challenges, the data compiled by Luckie et al. presents the first exten-
sive source of validation information. Recent classification efforts rely solely on re-
computations of their third data source—relationships from BGP communities [167, 248,
251].

30or triplets, see large BGP communities [207].
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3.3.2.3 Existing Insights into Validation Bias

Hard-to-Infer Links. Jin et al. [248] reported on sets of links for which it is challenging
to infer them correctly. They describe those "hard" links as links with at least one of the
following characteristics: (1) node-degree < 100, (2) observed by 50− 100 vantage points,
(3) neither incident to a vantage point nor a clique AS, (4) stub links for which there
is no triplet containing two consecutive clique ASes, and (5) links for which a simple
top-down classification results in a conflict. They further showed that even sophisticated
algorithms like ASRank wrongly infer many of the relationships for hard links and that
the validation data set is skewed towards links for which it is easy to infer them correctly.

Clique & Vantage Point Links. Luckie et al. [292] show that for their 2014 validation
data set links incident to a clique AS are over-represented while links between stubs and
non-clique ASes are under-represented. They also note that this disparity is mostly due
to the significant biased introduced by the community-based data set—the validation
data that has been used for the more recent validations. Similarly, they report that the
community-based data set over-represents links incident to a vantage point over those
only remotely visible.

Complex Relationships. As discussed in §3.3.2.1, AS relationships can differ based
on the PoP the link is observed at. Giotsas et al. [185] reported that their improved
algorithm exposed around 1k relationships as hybrid and around 3k relationships as
partial-transit. As the inference of such relationships can be ambiguous, they should be
handled separately during the validation process.

3.3.3 Obtaining & Cleaning Data

In this section, we first describe how we obtain validation and inference data (§3.3.3.1).
Afterward, we take a closer look at the validation labels and identify entries that either
need to be removed or handled carefully (§3.3.3.2).

3.3.3.1 Obtaining Validation Data & Inferences

Validation Data. While ASRank’s validation data from April 2013 is publicly available
at [87], ProbLink and TopoScope do not contain validation data in their public reposito-
ries [249, 250]. Upon request, we received the same validation data for both tools—12
snapshots unequally spread between January 2014 and April 2018. Each snapshot was
generated using the community-based relationship extraction method described by
Luckie et al. [292] for their ASRank validation.

Inference Data. The monthly generated inference snapshots that are publicly available
for ASRank, ProbLink, and TopoScope only overlap throughout 2019. As this period is
not covered by any of our validation snapshots, we requested (and promptly received) an
inference snapshot for April 2018 generated by ProbLink. To produce comparable results
for all three algorithms, we continue using the inference and validation snapshots for
April 2018 throughout the remainder of the section (unless explicitly specified otherwise).
Notably, we use the term "inferred links" to refer to all AS links visible in the ASRank
data set for April 2018.
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3.3.3.2 Label Quality & Treatment

Spurious Labels. When taking a first look at the validation data, we notice 15 AS
relationships formed with AS 23456. This AS is also known as "AS_TRANS" and is
exclusively used to represent 32-bit ASNs for devices that only support 16-bit ASNs;
therefore, AS_TRANS does not represent an actual network and hence can not have any
business relationships. We further find 112 relationships involving reserved (e.g., for
documentation or internal use, see [229]) ASes that should neither be publicly routed nor
be used to validate business relationships.

Ambiguous Label Treatment. As briefly discussed in section 3.3.2, two ASes can have
different relationships based on the PoPs they interconnect at [185]. In April 2018, the
received validation data contains multiple labels for 246 relationships involving 233
different ASes. Arguably, those entries should be ignored for validation unless the
classification algorithm explicitly infers or handles them; otherwise, it is ambiguous
whether a simple relationship prediction is correct. Interestingly, we find that those
validation entries are handled very differently in practice. If we treat an entry with
multiple labels as P2P if it starts with P2P and otherwise as P2C, the number of P2P and
P2C links in the validation data for 2017 and 2018 matches exactly those reported in the
Toposcope paper [251]. We observe a similar match for the numbers reported for 2017 in
the work by Jin et al. [248] if we treat an entry with multiple labels always as P2C.

Sibling Labels. Sibling (S2S) relationships represent links between two ASes that belong
to the same organization and, hence, can use their resources interchangeably. When
applying CAIDA’s AS-to-Organisation data set [219], we find that 210 relationships in our
validation data set and 2800 of the inferred relationships are actually sibling relationships
and should be ignored during the validation process (unless specifically handled by the
classification algorithm).

3.3.4 Is our Validation Data Biased?

Regional Imbalance. As briefly discussed in section 3.3.1, how an AS routes traffic may
depend on its geographic region. To analyze regional bias, we first map each ASN to a
geographic service region using IANA’s list of initial ASN assignments [229] and then
refine the mapping based on the daily delegation files published by the Regional Internet
Registries (RIRs) [12, 32, 46, 278, 431]. We abbreviate AFRINIC, APNIC, ARIN, LACNIC,
and RIPE NCC as AF, AP, AR, L, and R, respectively. While IANA’s list bootstraps
the mapping for all ASes, the RIR delegation files correct the mapping for resources
transferred between different regions after IANA’s initial assignments [391]. Notably,
no mapping from ASes to geographical regions is perfect; even with large amounts of
active scanning, we would neither be able to reliably measure all IPs (and respectively
infrastructure) that belong to an AS [55] nor would we be able to perfectly geolocate
them [97]. Yet, we argue that our mapping—which relies on an AS’ organizational service
region rather than its infrastructure footprint—is still representative enough to provide
hints on regional biases, if they really exist.

Using this mapping, we separate AS links into different link classes: If one of the
involved ASes is reserved, we discard the link. If both ASes belong to the same region,
we mark the link class as <region>° (e.g., AF° for links between two ASes in AFRINIC).
If the ASes belong to different regions, we mark the link class as <region1>-<region2>
where <region1> is always the lexicographically smaller region, i.e., we treat AS links as
undirected links.
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Figure 3.29: Regional imbalance. Figure 3.30: Topological imbalance.

Figure 3.29 shows the distribution of inferred relationships onto link classes as fractions
(at the top) as well as the validation coverage (at the bottom), i.e., the fraction of links
in a class for which we have validation labels. We observe that most (~79 %) of the
relationships that we infer are between ASes of the same region. Yet, we observe drastic
differences for the validation coverage among region-internal relationships: Even though
we infer roughly the same number of AR° and L° relationships, we validate more than
~31 % of AR° links but less than 1 % of L° links.

Topological Imbalance. Next, we focus on whether the positioning of an AS in the
Internet’s hierarchical structure yields a mismatch in bias. First, we classify each AS
into either "Stub" or "Transit" based on whether the AS has at least one other AS in its
customer cone (see CAIDA’s customer cone data set—available at [87]). Afterwards,
we refine this basic mapping using two additional data sources: We re-classify ASes as
(1) "Tier-1" providers based on a list from Wikipedia [507]31 and (2) "Hypergiants" (i.e.,
the largest content providers) based on the list generated by Böttger et al. [73].
Figure 3.30 shows the topological balance based on those classes in a similar style as
Figure 3.29. We observe that we only have substantial validation data for classes that
involve Tier-1 ASes. While this insight in itself is not very new (compare [292] and [248]),
we find its impact to be more drastic than previously reported: For our two majority
classes, S-TR and TR°, that, in summary, contain 82 % of all inferred links, we can only
validate 6 % and 12 % of relationships, respectively.

While most of the inferred links are in the S-TR class, this class is rather uninteresting as
it largely consists of P2C relationships (67.8% according to validation data) for which
all three classifiers are well-known to perform near-perfect. Thus, we drill deeper
into our second largest class, links between Transit providers. In particular, we want to
understand whether the distribution of AS "size" matches between inferred and validated
TR° links.

Figure 3.31 shows a heatmap over all TR° links in the inferred data (top) and the validated
data (bottom) where the x-axis shows the transit degree for the larger incident AS while

31which largely overlaps with the set of clique ASes inferred by ASRank.
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Figure 3.31: Transit degree imbalance for transit links.

the y-axis shows the transit degree for the smaller incident AS.32 We observe that the
vast majority of TR° links that we infer are between relatively small transit ASes (i.e.,
in the left-bottom corner). This mismatches with the more uniform distribution of our
validation data. We further repeated this experiment with two alternative metrics: the
provider-peer-observed customer cone—which relies on the correctness of the inferred
business relationships and might hence be biased—and the node degree. The related
figures (which can be found in Appendix A.3.2) suggest an even stronger mismatch.

3.3.5 Is our Validation Biased?

Now that we have a basic understanding of regional and topological bias mismatches
in our validation data, we analyze how such mismatches translate to differences in
classification correctness. For each of the tested classifiers, we calculate two confusion
matrices (i.e., the number of True Positives, False Positives, True Negatives, and False
Negatives) that result from treating either P2C links or P2P links as the "positive class."

Tables 3.5, 3.7, and 3.6 show the following classification correctness metrics for links of
different classes33: (1) precision (PPVX ) and (2) recall (TPRx) when choosing P2P links
(X → P ) or P2C (X → C) links as positive class34, the number of P2P (X → P ) and
P2C (X → C) links per class as LCX , and Matthew’s Correlation Coefficient (MCC) as
symmetric evaluation metric35.

Simply put, the MCC takes all values of the confusion matrix into account (i.e., it does not
matter which class is treated as positive), is relatively robust against class imbalance (i.e.,

32The row above 150 and the column to the right of 1500 catch all transit degree equal of larger than 150 and
1500, respectively. This prevents the few ASes with a substantially larger transit degree from distorting the plot.

33we only show those classes that contained at least 500 relationships in summary
34As they only provide additional mixtures of precision and recall, we decided to not show (balanced)

accuracy and f1-score.
35The Fowlkes–Mallows index—as the second prominent symmetric evaluation metric—showed slightly

less numerical change, yet similar results.
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Class PPVP TPRP LCP PPVC TPRC LCC MMC
Total° 0.982 0.990 14216 0.996 0.992 30105 0.980
AP-AR 0.979 0.979 546 0.988 0.988 928 0.967
AP-R 0.985 0.987 892 0.968 0.965 338 0.952
AP° 0.992 0.992 502 0.994 0.994 648 0.986
AR-L 0.930 0.976 43 0.999 0.997 872 0.950
AR-R 0.956 0.978 1752 0.994 0.987 5707 0.957
AR° 0.926 0.954 617 0.998 0.996 12871 0.937
R° 0.990 0.996 9587 0.995 0.989 8318 0.985
S-T1 0.000 0.000 26 0.999 0.999 15533 -0.001
S-TR 0.994 0.988 2538 0.995 0.997 5334 0.987
T1-TR 0.839 0.955 641 0.996 0.985 7260 0.886
TR° 0.991 0.996 10219 0.980 0.952 1822 0.959

Table 3.5: Per group validation table for ASRank

Class PPVP TPRP LCP PPVC TPRC LCC MMC
Total° 0.966 0.976 14216 0.988 0.983 30105 0.957
AP-AR 0.973 0.939 546 0.960 0.983 928 0.927
AP-R 0.973 0.995 892 0.986 0.927 338 0.940
AP° 0.976 0.989 502 0.991 0.981 648 0.969
AR-L 0.619 0.975 43 0.998 0.962 872 0.761
AR-R 0.953 0.951 1752 0.984 0.984 5707 0.936
AR° 0.951 0.859 617 0.993 0.998 12871 0.899
R° 0.971 0.988 9587 0.985 0.964 8318 0.954
S-T1 0.295 0.650 26 0.999 0.998 15533 0.437
S-TR 0.980 0.987 2538 0.994 0.991 5334 0.976
T1-TR 0.718 0.670 641 0.971 0.976 7260 0.667
TR° 0.982 0.996 10219 0.978 0.903 1822 0.930

Table 3.6: Per group validation table for ProbLink

the fraction of validated P2P/P2C links in a class), and ranges between -1 and 1; values
close to 1/-1 indicate positive/negative correlation between inference and validation
while values close to 0 indicate correctness similar to an unbiased coin-toss [104].

Each table further colors differences between the classification correctness on the entire
data set (Total°) as follows: If the per-class value is at least 1 % larger than the value for
the entire data set, it is colored in green; if it is at least 1 %, 5 %, and 10 % lower, it is
colored in yellow, orange, and red, respectively.

The tables first confirm common wisdom: All three algorithms perform near-perfect
for P2C links. Yet, our evaluation further shows that all algorithms struggle with the
same P2P link classes, namely AR-L, S-T1, and T1-TR. The low correctness for S-T1
links was already reported by [248], yet we disagree with their conclusion that "peering
relationships between high-tier ASes and low-tier ASes are becoming more prevalent."
We observe that most of those 26 links are formed with research ASes, anycast-based
DNS providers, content delivery networks, and cloud providers, i.e., we observe that the
problem lies in the broad aggregation of many diverse businesses models into a single
"Stub" class, rather than a drastic change in policies. The overall correctness gap for P2P-
based T1-TR relationships of up to 25 % shows that future classification efforts can still
make substantial improvements for certain link classes. Yet, the increase of the correctness

66



Class PPVP TPRP LCP PPVC TPRC LCC MMC
Total° 0.976 0.988 14216 0.995 0.989 30105 0.974
AP-AR 0.980 0.985 546 0.991 0.988 928 0.972
AP-R 0.983 0.994 892 0.985 0.959 338 0.961
AP° 0.986 0.992 502 0.994 0.989 648 0.980
AR-L 0.833 0.976 43 0.999 0.991 872 0.897
AR-R 0.947 0.975 1752 0.993 0.984 5707 0.950
AR° 0.930 0.943 617 0.997 0.997 12871 0.934
R° 0.984 0.993 9587 0.993 0.983 8318 0.976
S-T1 0.042 0.043 26 0.999 0.999 15533 0.041
S-TR 0.989 0.989 2538 0.995 0.995 5334 0.984
T1-TR 0.798 0.947 641 0.995 0.980 7260 0.858
TR° 0.989 0.996 10219 0.981 0.942 1822 0.954

Table 3.7: Per group validation table for Toposcope

gap from ASRank to the two follow-up algorithms shows that following a strategy of
simply improving the overall classification error can lead to substantial correctness
degradation for classes that contain fewer links. Finally, the reduced correctness for AR-L
relationships might hint towards unique routing policies in the LACNIC region that are
not yet captured by algorithms that were constructed and validated almost exclusively
on the policies present in the RIPE and ARIN regions.

3.3.5.1 Case Study: AS714 Cogent Communications

To better understand the low performance for the T1-TR class, we do a case study for
AS714 (Cogent Communications). We chose AS714 as it is involved in around half
(54 out of 111) of all the links that were wrongly inferred as P2P (i.e., those links that
decreased PPVP ) by ASRank (which has the best precision and recall for this class). For
the remainder of this section, we call those links "target links."

When analyzing the paths that include our 54 target links, we were unable to find
any triplet "C|AS714|X" for which AS714|X is a target link and C is another clique
AS. This observation is critical as such triplets are necessary for ASRank to arrive at a
P2C inference for AS714|X . While this provides us inside into what algorithmically
caused the wrong inference, it does not explain why or how the routing phenomena that
underpin those algorithms have changed.

To analyze target links beyond the public routing data, we focus on the 17 links that are
also inferred to be P2P links in the most recent (Sept. 2021) snapshot. This allows us to
directly trigger Cogent’s looking glass to further investigate. We find that all the ASes
involved in the 17 links consistently tag the routes they redistribute to AS714 with the
BGP Community 174:99136. This community prevents Cogent from redistributing the
received routes to other peers—including all of the other clique members.

We discussed the issue with few of the involved operators and also looked up the related
RPSL routing policy objects via RADB. We found that there are two reasons why ASes
tagged this community: Cogent only offers them partial transit (i.e., routes towards
customers but not towards peers) and inaccurate validation data37 (only 1 case).

36Notably, this community is stripped before redistribution to customers; hence, it is rarely visible from the
public routing infrastructure.

37i.e., contrary to the community-based validation data, the link is a P2P link rather than a P2C link.
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3.3.6 Discussion & Outlook

Bias Mismatches. Throughout this section, we demonstrated bias mismatches between
inferred and validated relationships. While the features that we analyzed showed
substantial mismatches, other features could introduce similar (or even greater) ones.
Even though a more complex analysis of additional groups of "hard links" lies beyond
the scope of this section, we provide a list of twelve potential features for future analysis
in the Appendix (§A.3.3).

Balance Through Sampling. While over-sampling of small classes or under-sampling of
large classes are commonly used techniques to counteract biases, neither of them works
(by default) well on AS relationships. Under-sampling prominent classes would result
in a reduction of the already too small number of validated relationships. In contrast,
simple over-sampling would bias the importance of specific error types (and often lead
to over-fitting for ML-based classifiers). While there are more complex over-sampling
methods (e.g., SMOTE [102], ADASYN [203], or MDO [1]) that synthetically (based on
interpolation) produce new yet similar data points, theses techniques may introduce
"incorrect" validation information when working with high dimensional data [168]. Yet,
we might be able to leverage the heterogeneity and intrinsic, continuous change of the
routing ecosystem to our advantage. If we understand for how long a certain set of
relationships remains unchanged (e.g., via frequent exchange with network operators),
we may be able to find a time frame after which the same AS can be re-sampled while
still providing a unique-enough, new data point.

Future Validation Data. Most of our current validation data is passively obtained by
scraping (poorly maintained) operator databases. We argue that compiling more exten-
sive validation data requires active collaboration with network operators. In particular,
we must clearly communicate incentives (e.g., services that they can benefit from) for why
operators should accurately report (some of) their relationships through the channels
they most commonly use (e.g., during operator meetings). A successful story using
such a do-ut-des approach is the route collector project "Isolario." In only four years, the
project acquired more peer ASes than RIPE RIS or Routeviews by partnering with HE.net.
Whenever an AS connected to Isolario, HE.net would use the provided data to improve
its statistics. The increase in reported size rendered the AS more attractive as a peering
partner—a benefit that convinced many networks to continuously provide data.

Arguably, some operators may consider business relationships more sensitive than the
routing information observed by a single (carefully selected) router. Yet, accurate infor-
mation about a network’s business relationships may be used to compile more valuable
assets than simple statistics. One example would be router configurations generated by
the Peerlock system. Peerlock utilizes relationship information to generate snippets of
router configurations that prevent the redistribution of (accidental) route leaks [319].The
mechanism’s effectiveness may depend on the number of considered business relation-
ships. Hence, operators might be willing to provide (and continuously update) their
relationships in exchange for more secure and up-to-date Peerlock configurations. Simi-
larly, relationship information may also be used to engineer recommendation systems
for peering opportunities, i.e., rankings of beneficial IXPs (to peer at) and ASes (to peer
with) for a given network.

Notably, the targeted interaction with operators could also counteract the current problem
of missing validation data for an entire region that was reported in §3.3.4.

Future Research Efforts. Our analysis in §3.3.5 showed that (negligible) improvements
in global classification correctness can severely impact the correctness for classes with
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potentially fewer links. In line with this finding, we argue that the current goal of
negligibly improving the overall correctness actually hinders progress in this research
space. Hence, we advocate that future efforts should be evaluated against more diverse
goals. Further, given our findings from §3.3.3.2, we advocate for more careful and
explicit handling of spurious labels, sibling relationships, and complex relationships
during future validation efforts.

3.4 AS Business Relationships and Routing Dynamics

The Internet consists of tens of thousands of networks—the autonomous systems—that
redistribute routing information according to their business relationships among each
other. While AS business relationships can be complex and location dependant [180,
185], the academic literature usually abstracts them into three main classes: transit
relationships between providers and customers (C2P or P2C), settlement-free peering
relationships between peers (P2P), and sibling relationships between ASes of the same
organisation (S2S). Such relationship information is then used to, e.g., detect routing
events including route leaks and prefix hijacks [319, 456, 460], infer performance and
robustness bottlenecks [144, 517], emulate and counteract routing attack vectors [33, 463,
484], or map IP paths to AS paths [220, 313].

While relationship information is not available directly, it can be inferred from observed
routes, e.g., via route collector projects such as RIPE RIS and RouteViews38. These
projects collect the routing updates as well as periodic39 snapshots of each peer’s Routing
Information Base (RIB). However, the AS relationship inference process is non-trivial
and, over the last two decades, many academics works have been published. They can
be loosely grouped into three classes: (1) algorithms that solve optimization problems
using different objective functions [145, 150, 175, 483, 516], (2) algorithms that use a
top-down approach, i.e., which first infer the apex of the routing hierarchy and then
the lower levels [186, 292, 366, 521], and (3) algorithms that utilize probabilistic problem
formulations and/or machine learning [167, 248, 251].

While their inference strategies differ, most recent efforts evaluate their algorithms using
a similar approach: (1) They assemble input data based on (a subset of, see [248, 251])
the format introduced by Luckie et al. [292] in 2013, see [167, 248, 292]40; (2) based
on this input data, they produce inferences for their and previous algorithms; and
(3) they compare the resulting inferences against some “best-effort” validation data.
This type of evaluation is often repeated for varying subsets of vantage points [167, 251,
292] or few selected dates across multiple years [248, 251, 292]. While this evaluation
approach already seems rather extensive, we argue that it entirely neglects that the
routing ecosystem is highly dynamic. A recent work by Ariemma et al. [36] emphasized
this by showing that update bursts affecting thousands of prefixes are the norm rather
than an exception.

Thus, this section takes a step back and focuses on the impact that short-term routing
dynamics have on the outcome of the business relationship inferences process. In
particular, we focus on the inferrences produced by the ASRank algorithm [292] as it
(1) is well-know in the research community41, (2) is still considered the baseline that new

38Route collectors peer with many, selected (border) routers of various ASes.
39Every eight hours for RIPE RIS and every two hours for RouteViews.
40Please note that ProbLink paper is cited twice as their sections 3.1 and 7.1 claim different input formats.
41and has consequently been used by hundreds of academic publications throughout the last decade
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algorithms have to outperform, and (3) requires only routing information as input42. To
test the algorithm’s inferences, we systematically generate tens of thousands of input
data sets that slightly differ by the data they use (RIBS and/or updates), the time window
over which they are aggregated, and the exact time at which their time window starts.
When analysing the differences between the inference outcomes for these data sets, we
find the following:

Clique inference: We first uncover that ASRank’s inferred clique frequently includes
“hypergiants”43 (e.g., Akamai or Amazon) as the transit degree metric relies on an imper-
fect assumption. We further show that the clique inference algorithm is highly sensitive
to one of its input parameters, see Section 3.4.3.

Link inference: We show that ASRank infers ~94 % of all links consistently (i.e., with the
same label each time) throughout our three month period. When extending this obser-
vation to the validation phase, we distinguish between two classes of errors: persistent
and transient. While the former occur in all input sets and hint at deeper algorithmic
problems, the latter change their label across different input sets, likely due to short-term
routing changes. Even though only ~6 % of links are inconsistently inferred, 55 % and
85 % of all inference errors for the median and worst snapshot are transient, respectively.
While recent works achieved a 1.6× error-rate reduction over ASRank [248] for certain
snapshots, we show that ASRank’s error-rate can be reduced by 5.4× just by picking a
different time for the evaluation, see Section 3.4.4. We conclude our work with insights
into the minimum requirements needed to accurately detect the impact of short-term
routing dynamics in future evaluation efforts.

3.4.1 Data Sources and Aggregation

Validation Data. We requested and received a snapshot of AS business relationship
validation data from the authors of [389]; this snapshot is from April 1st, 2018 and was
initially produced by the algorithm proposed in [292]. This best-effort validation data—
which was already used to evaluate ASRank [292], ProbLink [248], and Toposcope [251]—
is compiled from direct operator reports, routing policies within the autnum records
of the WHOIS databases, and the BGP community encodings that can be found in the
Internet Routing Registry (IRR) databases and public websites [292]. Please note that
this validation data contains different caveats and biases; we handle caveats according
to section 4.2 in [389] and discuss the potential impact of bias on our results whenever
necessary.

ASRank Setup. The code to execute the ASrank algorithm is publicly available at [87]. As
the authors hard-coded the reserved ASN ranges used throughout the input sanitation,
we updated the code to properly reflect IANA’s April 1st, 2018 allocation status (based on
a snapshot of [229] that we automatically took at that time). Besides AS paths, ASRank
requires a list of IXP route server ASNs as input. To generate this list we utilized a
snapshot of PeeringDB [381] from April 1st, 2018 hosted by CAIDA at [90]. We obtained
a list containing 131 ASNs by extracting the ASN from all net records for which the
info_type field specified Route Server.

Hourly IPv4 AS paths. We pick the three months preceding our validation data snapshot
(i.e., January 1st, 2018–April 1st, 2018) as observation period for our study. We use the
IPv4 routing information in MRT format that was collected, published, and archived

42all other inputs remain static throughout our observation period
43Hypergiants are well-connected content providers that source substantial amounts of Internet traffic but

usually do not provide transit [73, 393].
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Figure 3.32: Inference snapshot generation for ws = 8h.

by the RIPE RIS [427] and Routeviews [364] projects. To fetch the data, we relied on the
BGPStream utility [372] (more specifically, the pybgpstream Python library [91]). For
each hour within our time window, we aggregated all visible IPv4 AS paths. While most
hours only contain update files (i.e., incremental messages), every eighth hour includes
a RIP snapshots (i.e., a full dump of all available routes) for each route collector. We
explicitly utilize update files as we find that 5-20 % of routes change within less than
24 hours (based on the last-update timestamps across all rib entries in our observation
period.)

Inference Snapshots. To generate the input AS path data for ASRank, we start at the
first hour of our observation period, aggregate all hourly paths that fall into a given
time window of size ws, and then repeat this process after shifting the window by
one hour. We illustrated this process in Figure 3.32 for ws = 8h. Using this method,
we generate between 1440 and 2176 slightly different input sets for each ws of eight
hours (8H) as well as one (1D), two (2D), five (5D), ten (10D), and thirty days (30D). By
shifting the window by 8 hours each time and only using the paths from rib snapshots, we
additionally produced 258 snapshots of the “one rib snapshot per day for five consecutive
days“ (5Dro) input format used by ASRank, UNARI, and ProbLink44.

3.4.2 The ASRank Algorithm

ASRank is a top-down business relationships inference algorithm that works on AS
path triplets—continuous (sub-)paths of length 3 (e.g., the AS path A − B − C − D
contains the two triplets A−B−C and B−C−D). The entire algorithm contains eleven
separate steps that—when ignoring various input sanitizing steps—can be grouped
into three phases: (1) infer a clique of provider-free ASes at the apex of the hierarchy
(and, consequently, infer peering relationships between those ASes), (2) iteratively infer
transit relationships based on a set of heuristics that relies on size comparisons and AS
path triplets for which one of the two links was labeled in the previous iteration, and
(3) infer all still unclassified links as peering relationships. While step (1) contains its
own sub-algorithm (see below), all steps heavily rely on the transit degree metric rather
than the node degree metric as a measure of a network’s size and/or importance to "...

44For ProbLink it remains unclear whether a single day or five days of data were used as input to the
algorithm as Sections 3.1 and 7.1 state contradicting information.
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avoid mistaking high-degree nodes (but not high-transit degree, e.g., content providers)
for transit providers." [292], which we show to be incorrect in Section 3.4.3.

Transit degree. The transit degree metric can be calculated from AS path triplets (A−
B − C) by adding the outer two ASes (A and C) to the transit set of the center ASN (B)
and finally determining the length of the the transit set. Consider the following example:
There are only two AS paths, A−B −C and C −D. As only B appears in the center of a
triplet, it is the only AS with a non-empty transit set (B’s transit set is {A,C}). Hence,
the transit degree of B is 2 while all other transit degrees are 0; in comparison, the node
degree (i.e., the number of neighbors) is 1 for A and D and 2 for B and C. Notably, ASes
that never appear in the center of a triplet will always have transit degree 0 but can have
arbitrarily large node degrees.

Clique inference (sub-)algorithm. ASRank’s clique inference starts by sorting all ASes
by transit degree in descending order. It then finds the maximal clique C1 among the
N largest ASNs using the Bron/Kerbosch algorithm [78]—which we call the C1 seed
clique throughout the section. Notably, the authors argue that setting N = 10 "... reveals
most clique ASes and is small enough to prevent the incorrect inference of a clique below
the top of the hierarchy." [292], which we show to be incorrect in Section 3.4.3. Starting
from the AS with the largest transit degree, ASRank then extends C1 whenever an AS
has links to all current C1 members—which we will refer to as the extension phase. If
an AS has links to all but one AS in C1, it is added to C2. After all ASes were tested,
ASRank determines the clique of provider-free ASes by finding the maximal clique that
can be build from all ASes in C1 ∪ C2 (again using the Bron/Kerbosch algorithm). When
determining each maximal clique, the summed transit degree of a clique is used as a
tie-breaker between cliques with the same number of ASNs.

Version-dependant implementation bug. While analyzing the generated data, we
noticed that the asrank.pl script, available at [88], does not implement the C2 clique
behavior described in the paper. The authors confirmed this finding after we contacted
them, and also informed us that an updated (and correct) version of the script is available
in the artifacts of Müller et al. [334], which were published on GitHub in 2019 [335].
As we received this information after our massive data generation effort, our insights—
similar to those of other follow-up work (e.g., ProbLink [520])—are based on the old
script that did not implement the C2 behavior.

3.4.3 Clique Inference

After briefly introducing its main concepts, we first examine the influence of short-
term routing dynamics on ASRank’s clique inference. Figure 3.33 shows a normalized
histogram (y-axis of each vertically stacked subplot) of the inferred cliques sizes (x-axis)
over all snapshots for a given window size.

Based on this plot, we make two main observations: (1) incorporating update messages
(all subplots except 5Dro) drastically changes the outcome of the clique inference algo-
rithm and (2) the larger the window size gets, the smaller the set of unique inferred
cliques gets, resulting in only two possible outcomes for a window size of thirty days.

Cliques from the 5Dro input. We observe that the cliques inferred using the 5Dro input
format always contain the following 15 Tier 145 ASNs: 209, 286, 701, 1239, 1299, 2828,
3320, 3356, 3491, 5511, 6461, 6762, 6830, 7018, and 12956. Besides these ASNs, there are
two disjunct sets of ASNs appearing in the clique: (1) ~30 % of times the IPv4 Tier 1 ASNs

45Based on Wikipedia’s well-maintained list [507]
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Figure 3.33: Clique size. Figure 3.34: Inference consis-
tency.

Figure 3.35: Inconsistency dis-
covery

174, 2914, 3257, and 6453 as well as AS4134 (which purchases transit from AS3356 and
AS174) help to form the 20 ASNs large clique. (2) ~70 % of times AS7922 and AS6939—
two major transit networks that only rely on providers to reach small portions of the
IPv4 address space—appear in the clique (with clique size 17). In the latter case, there is
also a ~50 % chance that either AS20940 or AS16509 is added to the clique, increasing the
clique size to 18.

Hypergiants as clique members. Most of the ASes that appear in the cliques are either
Tier 1 networks or major transit providers. Yet, AS16509 (Amazon) and AS20940 (Akamai)
are major content providers (also called hypergiants) that the authors explicitly wanted
to avoid by changing from node-degree as underlying metric to transit degree. They still
appear in approximately one-third of all inferred cliques due to the combination of the
following two problems: (1) The transit degree metric is build on an imprecise assumption.
While it is generally true that hypergiants do not actively seek out transit customers,
most of them provide transit for their own sibling networks, e.g., Amazon’s AS16509
provides transit for its siblings AS8987, AS14618, and AS62785. Consequently, AS16509
appears in many X − 16509− S triplets, where X is a large transit provider or a direct
route collector peer and S is one of AS16509’s sibling ASes. When checking for the
hypergiants identified by Bottger et al. [73], only the transit degree of AS46489 is 0
while the transit degree of all other hypergiants is closer to their node degree than to
0, effectively nullifying the benefits of choosing the transit degree metric over the node
degree metric.

(2) Some hypergiants peer with (almost) all Tier 1 networks. As a result, they would extend
most C1 cliques in the extension phase. If that is the case, why do they not appear in
100 % of all inferred cliques? Whenever AS16509 is not in the clique, it misses a link
with AS2828.46 While, in theory, AS16509 should get admitted to C2 (unless AS4134—
with which AS16509 also has no direct connection—is added to the clique before it),
the asrank.pl script does not implement this behavior (as previously discussed in
Section 3.4.2). Hence, AS16509 is not added to the clique.

In summary, whether a hypergiant enters the clique strictly depends on the visibility of
few AS links. If these links are present, the clique extension phase will eventually—in
fact, very early for hypergiants with non-0 transit degree—test a hypergiant and add it
to C1. We spot-checked a few snapshots in 2013 and found that both of our observations

46Please note that while paths with this link exist in the input data set (e.g., 27446− 27446− 2828− 16509),
the list of inferred relationships does not include the link, i.e., the sanitation process removes this path even
though we could not explicitly identify the corresponding sanitation rule.
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already existed when the ASRank algorithm was originally published. At that time,
hypergiants did not continuously appear in the clique as fewer Tier-1 ASes peered
with route collectors, leading to "just-enough" unobserved (yet likely existing [49]) links
between Tier-1 ASes and hypergiants.

Cliques from other input formats. When relying on any input format besides 5Dro, there
is a set of eight Tier 1 ASes that consistently appears in the clique. These ASes are AS209,
AS701, AS1239, AS1299, AS3356, AS6762, AS7018, and AS12956. Yet, most of these ASes
do not appear as part of the C1 seed clique, e.g., for the ws = 30D snapshot staring at Jan.
31st, 2018 00:00 UTC+0 (which we picked at random) AS209, AS701, AS1239, AS6762,
and AS12956 are added to the clique during the extension phase. With larger window
size it becomes clearer that there are only two main AS sets that complete the above eight
ASes to form cliques of size 10 and size 16. The clique with 16 ASes further contains ASN
172, 2914, 3257, 3320, 3491, 4436, 6453, and 6461, i.e., most of the ASes from the 5Dro size
20 clique. The clique of 10 ASes further includes AS6939 as well as one of the following
hypergiants: AS714 (Apple), AS8075 (Microsoft), or 16509 (Amazon).

Pinpointing the clique decision. To gain deeper insight into why the algorithm flips
between two cliques, we ran a manual in-depth analysis on few example snapshots.
We find that the outcomes depends on the first step in the clique inference: find the
largest clique among the top N largest ASes by transit degree. While the difference
between the transit degree of the first and second ranked AS is ~2000, the difference
for the 6th and 20th ranked AS is only ~500, i.e., there are many ASes with comparable
transit degree around the N = 10 limit that the authors deemed reasonable. Which ASes
actually make the top 10 (and become eligible for the C1 seed) varies drastically based
on few temporarily (in-)visible AS links. In summary, our analysis (for which details
are available in Appendix A.3.6) suggests that the clique inference algorithm is very
sensitive to how the N parameter is chosen.

Summary of takeaways: (1) For certain Hypergiants (e.g., Amazon or Akamai) the transit
degree metric is often closer to the node degree than to 0 as they provide transit to their
sibling ASes. (2) The clique inference algorithm always includes (even more so if the C2

set mechanic would be properly implemented) hypergiants into the clique unless a very
limited number (often only one) of links is temporarily invisible. (3) When including
BGP updates in the input format, the clique inference algorithm mainly chooses between
two drastically different cliques. The actual result strictly depends on the N parameter
(chosen by the authors as 10) that limits the number of ASes among which the C1 seed
clique is build.

3.4.4 Link Inference

After taking a closer look at the clique inference, we now dive deeper into the link
inference. While a correctness analysis of each inference rules is beyond the scope of this
section, we again analyse the consistency of the inference results.

Consistency of Link Inferences. Figure 3.34 shows an ECDF over the fraction of times
each link was assigned a peering/P2P relationship across all snapshots of a given window
size. Please note that this figure only incorporates permanent links (i.e., links visible
in every snapshots), and that the plot looks the almost identical for temporary links
(not shown). We first observe that the fraction of P2P links increases when using longer
observation periods—a well-known property of the routing ecosystem [204, 367].47 More

47The 5Dro format is the only outlier to this observation; however, it is, in general, hard to compare the
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importantly, we observe that, regardless of the input format, the vast majority of links
are either never or always classified as P2P, i.e., they are continuously assigned the same
relationship. In fact, only 3.61 %, 5.87 %, 5.51 %, 5.38 %, 4.97 %, 4.72 %, and 4.10 % of
the inferences observed for the 5Dro, 8H , 1D, 2D, 5D, 10D, and 30D are inconsistent,
respectively.

Classifying errors by stability. Next, we study the importance of these inconsistencies
on the evaluation of inferences. We evaluate each snapshot by calculating error rates
for three types of link sets: (1) for all links (ANY), (2) only for p2p links48 (P2P), and
(3) only p2c links (P2C). Whenever we evaluate an inference for a snapshot as erroneous,
we classify it into persistent or transient. We call an error transient if its links is one of
the < 6% of inconsistently inferred links; otherwise, we call the error persistent. While
transient errors are affected by short-term routing events, persistent errors hint at deeper
(potentially algorithmic) problems.

Figure 3.36 shows an ECDF of the fraction of transient errors across all snapshots of a
given window size. First, we point out the drastic variance across snapshots for the 5Dro

format. While ~55 % of all errors are transient for the median snapshot, the snapshots
with the smallest and largest fraction contain ~37 % and ~87 % transient errors. A second
important observation is the difference between P2P and P2C links. Only between ~9 %
and ~32 % of errors for P2C links are transient, yet for certain snapshots up to ~93 % of
errors for P2P links are transient. Our results further suggest that for ANY, P2P, and P2C
links error-rate decreases of up to 2.22×, 3.57×, 1.19× on median and 7.38×, 14.64×, and
1.49× are theoretically49 possible as a result of shifting the observation window in time.
When we actually compare the 5Dro snapshots with the least and most errors, ASRank’s
error rate has decreased by 5.4×. Finally, Figure 3.36 shows substantially lower variance
within and difference between the fraction of transient errors for ANY, P2P, and P2C
links if the input format contains update information.

Uncovering transient errors. As this result suggest that short-term routing dynamics
influence the evaluation of business relationships, we now focus on how to uncover
their impact in the future. While we analyzed thousands of slightly shifted snapshots
in this work, it is an Utopian idea to require future works to go through similar efforts.
Hence, we ask the question: "How many of the total N inconsistently inferred links can
we uncover when using only s randomly chosen snapshots?" To better understand the
involved variance, we repeat the analysis 100 times for each size s and calculate the
minimum, median, and maximum fraction of uncovered links.50 Figure 3.35 shows the
fraction of links that were detected as transient on the y-axis and the number of randomly
chosen snapshots on the x-axis. It shows the median across all 100 repetitions as lines and
shades the area between the min. and max. fractions in the same color. We first observe
that the variance in our experiment is rather small; in fact, the min. to max. areas are
barely larger than the linewidth of the curves. We observe that for the 5D and 10D input
formats, ~80 %, ~90 %, and ~95 % of inconsistent links can already be observed with ~13,
~22, and ~60 snapshots; hence, we belief that future studies can arrive at meaningful
claims about the impact of short-lived routing dynamics when using approximately 20
(random) snapshots across three months.

Summary of takeaways: (1) Even though only less than 6% of links are inconsistently
inferred, these links account for the majority of errors in evaluations. (2) Choosing ~20

perspective gained from five independent, single-moment samples to that of a continuous observation period
due to, e.g., short-lived routing information that (dis-)appears between two snapshots.

48as identified by the validation data
49iff all transient links are inferred in-/correctly for the worst/best snapshot
50we only test up to s = 200 for 5Dro due its limited amount of snapshots
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(a) ws = 5Dro. (b) ws = 5D.

(c) ws = 10D. (d) ws = 30D.

Figure 3.36: ECDF over contribution of transient links to miss-classified links across all ws snap-
shots.

snapshots across three months uncovers ~90 % of transient inferences. (3) Shifting the
observation window may result in a 5.4× decrease in ASRank’s error-rate.

3.4.5 Discussion

Input format. While the 5Dro input format has been frequently used to evaluate business
relationships, we showed that it introduces various problems. In Section 3.4.3, we
demonstrated that various algorithmic problems in the clique inference remained hidden
by using this input format. We further demonstrated in Section 3.4.4 that this input
format leads to a very unstable fractions of transient inference errors per snapshot—
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which makes it hard to properly interpret previous evaluations. We belief that future
business inference efforts should not only be more elaborate on why they decide for a
certain input format, but also analyze the sensitivity of their method towards it.

Clique inference. The authors of ASRank decided to infer transit-free ASes rather than
Tier-1 ASes "Since Tier-1 status is a financial circumstance, reflecting lack of settlement
payments, ....". The same decision was later made by the authors of ProbLink [520],
TopoScope [251]51, and UNARI [167]. We showed throughout this section that this
decision may lead to drastic short-term variance in the inference results. Hence, we
argue that using a fixed clique as input to the algorithm (i.e., the same way that CAIDA
produces their publicly available inference results since August 2019) may provide
inference results that are more robust to short-term routing dynamics. The Tier 1 network
page from Wikipedia [507] may be useful to determine the input clique as its content
is actively maintained, moderated52, and discusses deeper nuances such as "regional
Tier-1s."

Past & future evaluations. While it is common that authors test their new algorithms
on varying subsets of vantage points [88, 167, 251] or for long-term routing dynamics
(e.g., via few snapshots across multiple years) [248, 251, 292], it is rare that authors
also analyse the impact of short-term routing dynamics. This is problematic as we
showed that substantial error-rate improvements can be achieved by slightly shifting the
observation period. While, based on our analysis in Section 3.4.4, we would recommend
to use around 20 snapshots across 3 months to properly capture short-term routing
dynamics, the authors of ProbLink already made a step in the right direction: They
aggregated daily data sets and ran ten individual evaluations for ten consecutive days.
We hope that such types of evaluations become more prominent in the future.

3.4.6 Conclusion

In this section, we have analyzed the impact short-lived routing dynamics have on
business relationship inferences and their evaluation. We have compared thousands of
inferences generated from subtly different inputs and showed that these dynamics can
substantially vary the outcomes. Throughout our analysis, we have uncovered various
issues (e.g., not only is the clique inference algorithm highly sensitive to a argument,
it also frequently mistakes hypergiants for large transit providers) that remain hidden
when only analyzing long-term routing dynamics. We further have shown that for certain
snapshots almost all inference errors are transient (i.e., are classified inconsistently across
snapshots) even though only < 6% of all links are transient. These transient inferences
may lead to a 5.4× decrease in error-rate when slightly shifting observation window for
which ASRank is invoked. To enable future works to incorporate short-lived routing
dynamics in their evaluation, we analyzed the discovery rate for transient links and
found 20 random snapshots within a three month period may uncover up to 90 % of all
transient links.

3.5 Chapter Summary

We analyzed the routes available via multi-lateral, bi-lateral, and private peering at a
large European IXP. For multi-lateral peering, we analyzed Route Server snapshots from

51Toposcope relies on the clique inferred by ASRank
52Misleading or wrong edits are promptly discussed among various editors and reverted if necessary.

77



eight of the world’s largest peering LANs and showed that most of their routes lead to
out-of-continent locations via three or more AS hops. While remote peering might be a
major contributor to the geographic distance of Route Server destinations, we observe
that close and distant IXP members alike provide lengthy, unattractive routes to the
Route Server. When comparing those findings to peering LAN traffic, obtained through
a collaboration with one large IXP, we saw that mostly one-hop routes saw substantial
traffic. In fact, we observed that 25 % and 77 % of IPv4 and IPv6 Route Server prefixes
with at least four hop long paths see no traffic at all. This indicates that even though
Route Servers provide many routes, most IXP members only make use of local routes.
Afterwards, we used two heuristic-based methodologies to infer bi-lateral and private
peering routes from the IXP’s peering LAN traffic. During our inferences, we carefully
isolated transit connections that were established over the peering LAN—a phenomenon
previously reported by Ager et al. [15]. Based on our inference, we observe that at least
19.8, 57.1, and 57.4 % (37.3, 37.4, 37.8 %) of all routed IPv4 (IPv6) address space can be
reached at our IXP via multi-lateral, bi-lateral, and private peering, respectively. Those
results provide practical contrast to the 70+ % reachability theoretically calculated by
Böttger et al. [71]. Finally, we show that almost all of the top 10k egress prefixes of a large
European eyeball network can be reached via bi-lateral peerings. In contrast, we also
find that up to 15 % of top 10k domain-serving prefixes can not be reached via any type
of peering at our IXP. Notably, we observe that most of these prefixes belong to large
transit and Tier 1 providers.

After confirming the blindness of the public route collector infrastructure, we took a
closer look at its inherent biases. Before our work, significant biases in IMP vantage point
placements have been documented by experience papers from well-established scientists
(e.g., [82, 436]) or via a few dedicated analyses [52, 53, 212]. Besides reproducing their
original findings, the framework we introduced drastically facilitates finding new biases
among diverse dimensions and tracking the evolution of these biases over time. We
demonstrate, e.g., that while IXP peering oriented networks are over-represented in
RIPE RIS, their peering policies are representative of the Internet’s peering ecosystem53.
Our framework further provides the tools needed to counteract the impact of bias
when extending IMP infrastructures or choosing an unbiased set of vantage points for
measurements.

After uncovering new biases in the placement of our Internet Measurement Platforms,
we took a closer look at our state of the art AS business relationship inference algorithms.
We demonstrated substantial geographical and topological bias mismatches between
those links for which we inferred relationships and those that we were able to evaluate,
e.g., while we infer roughly the same amount of business relationships for the ARIN and
LACNIX regions, our validation data covers 31 % of inferences within the ARIN region
yet only less than 1 % of inferences within the LACNIC region. We further find that he
near-perfect classification precision of 96-98 % for the entire validation data set drops
by 14-25 % (depending on the algorithm) for peering relationships between Tier-1 and
transit providers. This finding further emphasizes the importance of the biases within our
validation data. Our analysis further showed that (negligible) improvements in global
classification correctness can severely impact the correctness for classes with potentially
fewer links—an insight that calls for the introduction of more diverse evaluation goals in
the future.

Finally, we analyzed the impact short-lived routing dynamics have on business relation-
ship inferences and their evaluation. We compared thousands of inferences generated

53as captured by PeeringDB.
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from subtly different inputs and showed that these dynamics can substantially vary the
outcomes. Throughout our analysis, we have uncovered various issues (e.g., not only
is the clique inference algorithm highly sensitive to a argument, it also frequently mis-
takes hypergiants for large transit providers) that remain hidden when only analyzing
long-term routing dynamics. We further have shown that for certain snapshots almost
all inference errors are transient (i.e., are classified inconsistently across snapshots) even
though less than 6 % of all links are transient. These transient inferences may lead to a
5.4× decrease in error-rate when slightly shifting observation window for which ASRank
is invoked. To enable future works to incorporate short-lived routing dynamics in their
evaluation, we analyzed the discovery rate for transient links and found 20 random
snapshots within a three month period may uncover up to 90 % of all transient links.

Discussion. Our understanding of the Internet’s routing topology—even at the AS-
level—is not only very limited but further seems to diminish over time (compare ~30 %
AS link visibility from route collectors in Ager’s 2012 study to the ~22 % discussed
in Section 3.1). At the same time, our tools to infer business relationships are heavily
influenced by short-term routing dynamics. This lack of knowledge makes it difficult
to accurately estimate the baseline from which measurement configurations are drawn,
ultimately clouding our understanding of the biases present in the placement of vantage
points and hence Internet routing measurements in general. Further, our results suggest
that it remains unclear whether recent business relationship inference algorithms really
made progress over their predecessors. Even though they may depend on time, location,
protocol, and diverse handshake agreements, we still infer AS business relationships
primarily based on time-wise and location-wise aggregated AS paths and evaluate them
against binary (rarely ternary) identifiers obtained by scraping voluntarily maintained
operator databases.

While it is not trivial to break this paradigm, we belief that long-term progress can be
achieved through various independent contributions. While the lack of broad, up-to-date
validation data set is currently a major road block, previous efforts (e.g., the Isolario
project) showed that the operator community is willing to share their information for
mutual benefits. Hence, a platform that safely ingests data from operators and produces,
e.g., secure router configuration snippets may be able to obtain, actively maintain, and
characterize business relationship validation data. Another contribution could be an
annotation service for routing information based on, e.g., decoded BGP communities,
data plane measurements, and data base look-ups, providing the inference process with
a richer set of characteristic for each route. Further, a field study is needed to better
understand the spectrum of current relationship types and the data sources that would
be needed to identify them (e.g., AS paths alone are unable to distinguish economical
variants such as paid-peering and settlement-free peering).
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Chapter 4
Managing IPv4 Address Exhaustion

After our assessment of the limitations of our observation infrastructure and inference
methods, we are now prepared to focus on one of the most pressing routing ecosystem
changes throughout the last decade: IPv4 exhaustion. IP addresses are essential for
networks as they allow devices to connect to the Internet and communicate with each
other. While there are more than enough available IPv6 addresses, many parts of the
Internet—including, e.g., end-hosts, servers, and routing infrastructure—have not fully
adopted IPv6 due to, e.g., a lack of awareness, the potential upgrading costs, or the
reluctance to change a well-running system. As a result, ASes may not rely on IPv6
addresses for global reachability. At the same time, the pools of available IPv4 addresses
that can be assigned by the RIRs have depleted rapidly throughout the last two decades—
a process known as IPv4 exhaustion. This puts operators in a position in which a simple
switch to IPv6 may be economically or operationally infeasible while obtaining IPv4
addresses through the standard allocation process is impractical.

In this chapter, we asses two potential ways to deal with this situation. First, we take
a look at the emerged buying and leasing markets that allow operators to temporarily
or consistently obtain IPv4 address space at low and high cost, respectively. Besides
investing substantial resources into obtaining address space, we further analyze the
viability of announcing the already obtained address space in smaller, hyper-specific,
prefixes. The contributions of this chapter are:

• We provide an overview over the IPv4 exhaustion status, address allocation policy,
and waiting list status for each RIR. While three RIRs gave fully depleted their IPv4
address pools and subsequently started waiting lists, two RIRs still maintain small
reserves of IPv4 addresses.

• We use the RIR transfer statistics as well as pricing data from four large brokers
to investigate the IPv4 address transfer market. We find that prices have doubled
between 2016 and 2020, yet they are significantly lower than predicted by previous
work. In 2020, the average price for an IP address, regardless of the RIR, lies around
$22.50 with little variance.

• We revisit the concept of address space delegation using publicly available BGP
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data, RPKI data, and data from RIPE’s RDAP database. We observe that, for the
RIPE region, the amount of delegated IPv4 address space visible in BGP heavily
underestimates the actual market size. We further find that current leasing prices
vary significantly—$0.3 to $2.4 per address per month—based on the leasing
provider.

• We analyze the CIDR sizes, BGP communities, and services involved in the publi-
cally announced hyper-specific prefixes across multiple years and infer potential
use-cases. We find that IPv4 HSPs mostly represent (internal) routes towards peer-
ing subnets and blackholing, whereas IPv6 HSPs are mainly used for address block
relocations and, in substantially fewer cases, blackholing. We further find that
HSPs are unlikely to contain many end hosts and that they are rarely used for
traffic engineering.

• We compare the HSPs visible in BGP with those that were explicitly entered into
routing databases—in particular, the IRR and RPKI databases—to investigate
intended or accidental use of HSPs. We find that while thousands of ASes explicitly
specify their intent to use HSPs, many HSPs likely represent accidentally leaked
routes.

• We discuss future direction in which the research and operator communities may
use or handle hyper-specific prefixes.

4.1 IPv4 Buying & Leasing Markets

As of today, the world has almost run out of unallocated IPv4 addresses to satisfy the
ever-growing demand for new addresses [341]. Three RIRs, namely ARIN, LACNIC,
and RIPE NCC, have depleted their pool of unallocated IPv4 addresses, and the last
two RIRs, APNIC and AFRINIC, currently allocate from their last /10 and /11 address
block, respectively. Thus, all have changed their IPv4 allocation policies to shortage
management [27, 41, 340, 354]. As part of those policies, all RIRs have reduced the size
of the IPv4 blocks a new member can receive (e.g., the RIPE NCC only allocates /24 IPv4
prefixes [418]), and most of them instantiated a waiting list for already approved but
not fulfilled requests. Since their pools contain no more unallocated addresses, depleted
RIRs have to rely on organizations to return some of their allocated resources; thus, the
amount of time a request stays on the waiting list is unpredictable. As a result, networks
may need to use alternative ways to acquire IPv4 address space: leasing and buying.

The Internet standardization and governance community already foresaw the exhaustion
of IPv4 address space some 20 years ago and introduced IPv6[210]. In the past, networks
got a decently sized address block upon becoming an RIR member and could request
additional resources as needed. Today, this only holds for IPv6. Despite increasing IPv6
adoption (especially by end-users [191]), many popular services are still not reachable via
IPv6 [140]. Thus, many networks—even in 2020—prefer (or may need) new or additional
IPv4 addresses over IPv6 addresses [303]. While techniques such as Carrier-Grade NAT
(CGN) [413] reduce the need for public IP addresses, they do not eliminate it.

Motivated by the fact that the RIPE NCC allocated its last IPv4 address block on 25th
Nov 2019, we study how networks satisfy their demand for IPv4 addresses in 2020. We
highlight the challenges and the costs that IPv4 dependent networks face by analyzing
the IPv4 address markets that emerged as a result of the address shortage. We do not only
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study allocations and address transfers within the RIRs but also the emerged leasing and
buying markets for IPv4 address space. Accordingly, the contributions of this sections
are:

• For each RIR, we summarize the IPv4 exhaustion status, address allocation policy,
and waiting list status in §4.1.1.

• To understand the IPv4 address transfer market, we use the RIR transfer statistics
as well as pricing data from four large brokers, see §4.1.2. We find that prices have
doubled since 2016, yet they are significantly lower than expected given predictions
from a previous study [285]. Today, the average market price per IPv4 address,
regardless of the RIR, lies around $22.50 with little variance.

• To get a glimpse of the IPv4 leasing market, we revisit the concept of address space
delegation using publicly available BGP data as well as data from RIPE’s RDAP
database. We observe that, for the RIPE region, the amount of delegated IPv4
address space visible in BGP heavily underestimates the actual market size. We
further find that current leasing prices vary significantly—$0.3 to $2.4 per address
per month—based on the leasing provider, see §4.1.3.

We outline how our work extends existing literature in §4.1.4 and discuss the interplay
of our findings combined with insights from discussions with 13 IP brokers in §4.1.5. We,
finally, point out that due to the huge range of leasing prices the amortization time for
buying IPv4 address space can range from less than a year to 36 years.

4.1.1 Getting IP Resources

To actively participate in the Internet’s BGP routing ecosystem, organizations need
IP resources. Initially, Jon Postel manually assigned IP resources. This process was
formalized later in the 1990s, see RFC 7020 [216]. The Internet Assigned Numbers
Authority (IANA) manages hierarchical allocations of IP addresses and AS numbers
to the five Regional Internet Registries (RIRs). Those RIRs, namely AFRINIC (African
region), APNIC (Asia Pacific region), ARIN (American region), LACNIC (Latin American
region), and the RIPE NCC (European and Middle Eastern region), are responsible for
address assignment, bookkeeping, and community support. Some of the IPs that Jon
Postel assigned are still not managed by the RIR framework and, hence, are called
"legacy" addresses. There are three options to obtain new IPv4 resources: (i) joining
an RIR as a member and requesting new address space; ii) joining an RIR and buying
address space; and iii) leasing address space.

RIR Membership. RIRs are membership-based organizations: If an organization receives
address space from an RIR, it typically becomes a member of that RIR—a Local Internet
Registry (LIR). Membership status is not necessarily bound to address space allocation
but rather implies participating in the Internet governance effort. RIRs develop their
operational policies through engaging discussions among their members. LIRs can
(e.g., by voting for board members or (dis)approving financial decisions) influence the
policies of their RIR. To become and stay an LIR, an organization has to pay an annual
membership fee plus fees depending on the number of requested resources. Yet all five
RIRs differ in their exact pricing model. [11, 30, 38, 275, 423]. In October 2020 the RIPE
NCC handled a first time incident where the “Right to Registration of IPv4 Addresses“
was auctioned to recover money in a legal case [342]. case.
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RIR Down to last /8 Start of Recovery
AFRINIC 03/31/2017 [9] — (last /11, 01/13/2020 [13])
APNIC 04/15/2011 [26] 07/27/2014 [28] (still /10 available)
ARIN 04/23/2014 [358] 09/24/2015 [127]
LACNIC 02/15/2017 [276] 08/19/2020 [273]
RIPE NCC 09/14/2012[430] 11/25/2019 [418]

Table 4.1: IPv4 exhaustion timeline for the five RIRs.

Towards IPv4 exhaustion. All RIRs maintain IPv4 and IPv6 address pools. They receive
addresses from IANA, other RIRs, or organizations that no longer need their allocated
IPs. The IPv4 address pools decreased drastically over time. Since IANA allocated its
last remaining IPv4 address blocks to APNIC on 31st January 2011, the RIR pools can
no longer receive reserved IPv4 addresses. As a result, the RIRs soon reached their last
/8 (see Table 4.1). To distribute the remaining resources fairly, all RIRs soon established
more restrictive assignment policies—this phase is also known as “soft-landing”.

IPv4 exhaustion. ARIN, LACNIC, and the RIPE NCC completely depleted their address
pools in 2015, 2020, and 2019, respectively. Now, those RIRs have to recover unused
IPv4 address space before they can fulfill any requests. APNIC and AFRINIC combined
still have less then the equivalent of a /9 of IPv4 addresses left. Currently all RIRs
recover IP address space if an organization closes down or the original criteria for the
initial assignment are no longer satisfied [370]. APNIC actively contacts members who
have received delegations that are not at least partially visible in the global routing
system [354]. Upon recovering IP address space and removing the associated objects
from the database most RIRs put the blocks into a six month quarantine period before
redistributing it again [339]. As a result, assignment policies became more restrictive,
and most RIRs introduced waiting lists.

Today, AFRINIC [13], ARIN [39], and LACNIC [272] limit the assignable address space
per organization to a /22. For APNIC [30] it is a /23 and for RIPE [418] a /24. That does
not mean that the RIRs force organizations to return address space if they previously
received a larger address block. To highlight the impact of IPv4 address exhaustion, we
point out that the waiting lists of ARIN, LACNIC, and RIPE held up to 202, 275, and 110
approved requests, respectively [45, 277]. For Arin, this corresponds to waiting times of
up to 130 days.

Since November 2019 RIPE used recovered address space to fulfill all approved waiting
list requests [341, 428]. Currently, its address pool still contains around 340k IPv4
addresses (equivalent to more than a /13) [420]. In contrast, APNIC abolished its
waiting list on 2nd July 2019 [29] since it only included requests from members whose
already allocated address space exceeded a /22. Since then, APNIC only hands out IPv4
addresses to new members.

Buying IPv4 addresses. Since neither the limited size of approvable IPv4 address space
nor the required waiting time satisfies their needs, many LIRs started to buy additional
IPv4 address space. Formally, LIRs do not buy IP addresses per se—there is no clear
notion of legal IP ownership [459]—but rather acquire their usage rights. In October
2020 the RIPE NCC had a first time incident where the “Right to Registration of IPv4
Addresses During a transaction, a buying LIR pays the selling LIR such that the latter
invokes a resource transfer of the address space to the buyer. This resource transfer may
involve additional payments to the RIR. After the transfer, the buying LIR is responsible
for the RIR’s annual resource maintenance costs. Certificated IPv4 brokers help to
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facilitate this process [42, 43, 422]. They connect buying and selling LIRs, help them in
price negotiation, and often handle the formalities of the address transfers. Based on
discussions with 13 brokers, their commissions range from ~5 % to ~10 % and may be
charged to either LIR or partially by both of them.

Leasing IPv4 addresses. While Internet Service Providers lease address space to their
customers for a long time, there is a recent increase in the number of organizations
that lease their address to any organization independently of routing or connectivity
agreements. Leasing providers are LIRs that temporarily delegate the usage rights
for some of their address space to a customer. While leasing does not involve any
resource transfers at the RIR, it may encompass altering objects in the WHOIS database—
a database that contains information about Internet resources, organizations, and contact
persons. A leasing contract can restrict address usage and may include hosting or
network connectivity agreements, or both. For hosters, the leased address space is
usually still located in their own AS. In this section we are considering two types of
IP leasing models. In the first model an IP broker only leases IP address space to a
customer, while in the second the IP leasing is bundled with antoher service contract,
e.g., infrastructure hosting.

Not all IP addresses are equal. Over the years, IP based blacklists have become very
popular to mitigate malicious activities, e.g., E-Mail spam or flooding attacks [472]. These
blacklists contain IP address blocks that are associated with said activities, and network
operators rely on them to filter ingress traffic. Once an IP address block appears on a
blacklist, it can be hard to remove it again—the IP address is tainted. IP address blocks
that never appeared on a blacklist and have no association with any malicious activity
are known as ”clean IPs.” To keep their address blocks clean, leasing providers often
demand information on how a potential customer intends to use the leased resources.
Besides, leasing providers often install registry data—e.g., Shared WHOIS Project records
(also known as SWIP records [44])—to secure their remaining address space from getting
blacklisted when spamming is detected in a delegated block [473]. Similarly, most LIRs
check the “reputation” of address blocks before buying them to ensure the addresses are
globally reachable.

4.1.2 The IPv4 Address Reseller Market

When the RIPE NCC entered the "Recovery Only"-phase, many organizations expected
an increase in brokered IPv4 transfers as well as address prices. Therefore, we first
analyze the number of transfers. Next, we augment our findings with public and private
pricing information from four IPv4 address brokers. Finally, we discuss the ability to
obtain address space from foreign RIRs.

Each RIR publishes daily transfer statistics. Those not only include transfers between
LIRs but also include transfers that are results of Mergers and Acquistions (M&A) of
companies that consolidate their IPv4 address space. While AFRINIC [10], ARIN [40],
and RIPE NCC [421] label such transfers APNIC [31] and LACNIC [274] do not. Thus, we
can remove M&A transfers for the former RIRs. For the latter RIRs, we could potentially
use the heuristics proposed by Giotsas et al. [184]. However, since the authors do neither
present an evaluation nor an analysis of the output’s sensibility to the input parameters,
we decided against this option.

Figure 4.2 shows the number of transfers aggregated over three months for each region
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Figure 4.1: Evolution of Price per IP based on prefix size and region.

from October 2009 to June 2020. Observe that the regional transfer markets54 start, i.e.,
for APNIC, ARIN, and the RIPE NCC, once the RIR was down to its last /8 (compare
to Table 4.1). ACNIC has recently depleted, the number of transfers in those regions is
negligible. This can be attributed to two factors: (i) cloud providers consume a huge
amount of IP space [491], yet most of their data centers are located in the ARIN, APNIC,
and RIPE NCC regions [308]; (ii) mobile rather than fixed-line broadband access is the
norm in the AFRINIC and LACNIC regions—mobile operators often rely on IPv6 [470]
and deploy carrier-grade NAT for IPv4 more aggressively [413]. We further observe that
the number of monthly transfers fluctuates significantly. While for the RIPE NCC the
pattern aligns with the end of each year, we cannot identify any specific patterns for
ARIN. This indicates that the IPv4 transfer markets are in flux.

To understand the cost of buying IPv4 addresses, we use publicly available pricing
information from IPv4.Global [239] as well as private pricing information obtained from
Brander Group [196], IPTrading.com [237], and IPv4 Market Group [197]. All data is
anonymized: Rather than containing the IPv4 prefix and the participating organizations,
we track the number of IP addresses transferred per region. Since prefixes less-specific
than a /16 are rarely transferred, they are identifiable; therefore, our data set only
contains transactions for /16 or more-specific prefixes. In total, we obtained pricing
information for 2.9k transactions between 1st January 2016 and 25th June 2020. Since our
data set only contains 31 transfers for those regions, and they do not yet have vibrant
transfer markets, we exclude AFRINIC and LACNIC from our analysis.

Figure 4.1 shows the pricing information as box plots grouped by prefix size, region,
and three months interval. Across all prefix sizes, our data contains 8-23, 83-196, and
12-19 transactions APNIC, ARIN, and RIPE per interval, respectively. We first observe
that there is no statistical difference in pricing across the regions, i.e., whether a prefix is
allocated to the APNIC, ARIN, or RIPE NCC region has no significant impact on its price.
In contrast, buying IP addresses in /24 or /23 blocks is more expensive than buying
larger address blocks; when a broker decides to sell a large address block in separate
small parts, the associated secondary costs increase. The broker not only needs to find
more buying parties but also needs to initiate more separate transfers. As our analysis

54Here, "region" refers to the region associated with the RIR that allocated (and maintains) the IPv4 address
block. ICANN established this relationship when initially handing our addresses to an RIR. If an RIR transfers
address space to another RIR, the region is updated accordingly. Therefore, every region-based analysis refers
to the RIR that an IP address block belongs to.

86



does not cover prefixes less specific than /16, we can only report on them based on
information from IPv4 brokers: Since large continuous blocks are rare, the price per
IP rises again. Overall, we observe that prices, regardless of the actual prefix size or
region, have doubled since 2016, which correlates with the diminishing availability of
unallocated address blocks from the RIRs.

Starting from Spring 2019, the IPv4 market seems to have entered a consolidation phase,
i.e., a state in which the market price barely changes and where the number of transfers
no longer corresponds to the actual demand [232]. We observe the first, see Figure 4.1,
and learned about the latter via discussions with the brokers. During a consolidation
phase, sellers hold back many of their assets as they wait for the largest sellers to dictate
new pricing trends. When discussing our findings with thirteen additional brokers, they
argued that the disclosure of market prices by IPv4.global provided a reference point
for the average cost of an IP address that is also available to potential buyers. Thus,
increasing prices beyond this reference point lead to a decrease in potential customers.
As a result, most brokers told us that they strictly align their prices with those advertised
by IPv4.Global.

An organization can also get IP address space from a foreign RIR and then request a
transfer of the addresses to the RIR associated with its actual region. While such action
must adhere to the policies of all involved RIRs, some policy regulations are easy to
satisfy. For example, ARIN’s current policy practice for out-of-region requestors is [126]:
A requestor is eligible for receiving an allocation if it announces the least-specific prefix
in ARIN’s service region. Thus, organizations with a single PoP in ARIN’s service region
(even if it only consists of a single router) are eligible to receive addresses. However,
inter-RIR-transfers can only take place between APNIC, ARIN, and the RIPE NCC since
these RIRs agreed on common transfer policies [416]. Figure 4.3 shows the number of
inter-RIR transfers by origin and destination for each RIR from 2012 to 2020. While the
number of inter-RIR transfers continuously increases, the blocks transferred get smaller.
Most transfers move address space away from ARIN and either to APNIC or RIPE. The
latter may, in part, be explained by ARIN’s assignment policy and different feature sets
of the RIR management interfaces.

4.1.3 The IPv4 Address Leasing Market

Buying IP addresses does not only require a significant upfront investment but also
introduces delay (i.e., for the address transfer). Leased address space is often available
in less than a day [236] and only requires monthly payments. Thus, IP leasing is an
attractive option for businesses with immediate needs, small budget, or limited long-
term perspective. To understand to which extend the leasing option is currently used,
we analyze two sources of data: (i) we infer leasing agreements from routing information
by revisiting the concept of BGP delegations; (ii) we use a snapshot of RIPE’s WHOIS
database and queries to its RDAP database to track address block delegations.

Inferring BGP delegations. Leasing IP address space is only economically useful if
the organization also announces the prefix within the BGP eco-system. Therefore, most
leased address space should be visible as delegated address space whereby the leasing
provider may still announce a less-specific prefix. We say that a delegator AS S owns
a prefix P and delegates a more-specific sub-prefix P ′ to a delegatee AS T . We infer a
delegation P ′

ST if we observe that S and T originate P and P ′, respectively. To infer such
delegations, we build upon the work of Krenc and Feldmann [268] (our extensions are
marked with +): (i) We obtain the set of all prefix-origin pairs. (ii)+ We remove all pairs
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Figure 4.2: # of market transfers. Figure 4.3: Inter-RIR transactions.

seen by less than half of all BGP monitors to ensure global visibility55—this limits the
impact of, e.g., local misconfigurations or locally-spread BGP hijacks. (iii) We remove
pairs for which the respective prefix is originated by an AS_SET or multiple ASes. (iv)+

Relying on CAIDAs AS-to-Organization mapping [89], we remove delegations between
ASes of the same organization within the next available snapshot56. (v)+ We compensate
for temporarily not announced delegations—many delegations show on-off-patterns—
based on insights from analyzing delegation consistency in RPKI: If we observe the same
delegation ten days apart while not observing a conflicting delegation (i.e., we observe
P being delegated to another delegatee AS T ′) in the meantime, we presume that the
delegation also exists for all days in between. We chose this rule as its fail-rate (i.e.,
the fraction of possibilities with an invalid conclusion based on all possibilities with
a valid premise.) is below 5 % for delegations inferred from RPKI snapshots between
01/01/2018 and 06/01/2020, see Appendix B.1.

Limitations. Despite taking precautions against hijacks, our algorithm may still infer
a delegation between a victim AS and a hijacking AS if the hijack is performed using
a more-specific prefix. Our algorithm may wrongly infer delegations in combination
with BGP-based scrubbing services (i.e., services that announce their customer’s prefixes,
analyze and drop incoming malicious traffic, and tunnel the remaining "clean" traffic
back to their customer).

BGP-delegations. We apply our inference algorithm to the routing information collected
by RIPE RIS [427], Route Views [364], and Isolario [244] between 1st January 2018 and
1st June 2020. We aggregated the data daily; i.e., we use the RIP snapshot at 0:00 UTC+0
and all update files for that day. If an update file is missing, we additionally download
the first available rib snapshot afterward. To sanitize our data, we remove all routes for
private and reserved address space [486], routes that contain ASes currently reserved
by IANA [229], and routes that contain a loop in their AS-PATH. We find that our
extensions significantly reduce the number of inferred delegations but eliminate the large

55As long as the monitor threshold is chosen between 10% and 90% the difference in inferred delegations is
negligible.

56Internet resources such as address space or AS numbers are assigned to organizations; thus, ASes that
belong to the same organization can utilize each other’s address space without an actual leasing agreement.
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variance produces by the previous approach, see Figure B.2. Overall, we see an increase
in delegations by ~7 % with a negligible change in delegated IPs caused by decreasing
delegation sizes.

RDAP-delegations. Some RIR’s maintain publicly accessible Registration Data Access
Protocol (RDAP) [353] interfaces designed to eventually replace the WHOIS protocol.
Like WHOIS, this database contains registration information but is more extensive. If
an LIR assigns address space to an “end-host”57, the parentHandle field contains an
RIR-unique identifier for the parent network—this can be used to infer delegations. Since
RDAP interfaces do not allow wild-card or range requests, we rely on inetnum objects
from a current WHOIS snapshot [424] as input space to our RDAP queries. While the
RIPE NCC and ARIN provide the parentHandle field in their RDAP responses, only
RIPE NCC also offers publicly available WHOIS snapshots. Thus, we restrict this analysis
to the RIPE region58. First, we select all inetnum objects from RIPE’s WHOIS database
with delegation-related types: The SUB-ALLOCATED PA type refers to address space
sub-allocated to another organization, and the ASSIGNED PA type refers to address
space assigned from an LIR to an end-host. We find ~4.5k entries and ~3.96M entries
for June 2020, respectively. Notably, most, 91.4%, of the ASSIGNED PA entries are for
address blocks smaller than /24. To minimize the load on RIPE’s RDAP interface, we
ignore all blocks smaller than /24. We further remove intra-organization delegations,
i.e., where the child block has the same registrant or administrator as the parent block.
Aftward, we have 181k remaining RDAP-based delegations.

BGP-delegations vs. RDAP-delegations. When comparing the delegations identified via
BGP on June 2020 with those from RDAP delegations we observe that: BGP-delegations
cover only ~1.85 % of the RDAP-delegated IPs while the RDAP-delegations cover ~65.7 %
of the BGP-delegated IPs in the RIPE region (using [421]). This limited coverage of BGP-
delegations implies that the leasing market is significantly larger than previous work has
predicted [268].

The limited coverage of BGP-delegations may be due to: (i) the assumption that the
delegated prefix and the covering prefix are announced within the BGP eco-system; (ii)
even if the delegatee announces it, the more-specific prefix may be aggregated and is no
longer globally visible; and (iii) large LIRs often delegate medium-sized address blocks
to ISPs. These ISPs use some of the address space but reserve significant chunks for
future customers. The latter is invisible in BGP. While organizations have incentives to
enter their leasing agreements into the WHOIS and RDAP databases (e.g., to reduce the
blacklisting risk due to malicious activity in a leased prefix [473]), not all leasing provider
require entries. Hence, RDAP-delegations will also miss some leasing agreements.

RDAP-delegations are complementary to BGP-delegations—the former captures the
administrative processes, the latter the actual usage. Neither can catch all leasing agree-
ments. Thus, combining both data types is essential to estimate the size of the IPv4
leasing market.

Leasing prices. To understand the leasing price evolution, we fetched the advertised
leasing prices from 12 websites [142, 178, 205, 214, 233, 236, 238, 240, 289, 290, 352, 392]
between 26th October 2019 and 1st June 2020. On the 1st June 2020, we added 9 additional
websites [24, 95, 141, 208, 283, 388, 402, 406, 471].

Even though some websites offer up to 10% discounts when either leasing larger prefix
sizes or committing to multi-month contracts, we consider the prices for leasing a /24

57Here, end-hosts are networks that cannot further assign the addresses to other LIRs or end-hosts.
58Snapshots from other RIRs may depend upon signing access agreements.
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Figure 4.4: Advertised leasing prices.

for a single month. The advertised leasing prices are shown in Figure 4.4. In general, we
observe that prices vary substantially: from $0.30 to $2.33 per IP per month. We also find
no structural price difference between pure leasing providers compared to IP leasing
bundled with infrastructure hosting. This indicates that the market has not converged
yet. Still, only three providers changed their advertised leasing prices: Heficed reduced
its monthly per IP price from $0.65 to $0.40; IPv4Mall [240] increased it from $0.35 to
$0.56; and IP-AS [233] from $1.17 to $2.33. IP-AS also seems to have tested the market in
January by increasing the price to $3.90—more than > 10× the lowest available price.

4.1.4 Related Work

The IP address trading market is not yet widely discussed in the research world, as
practical relevance became only apparent with the global IPv4 depletion. Livadariu et
al. [285], in 2017, characterized the evolution of RIR allocations and transfers. Using
the few publicly disclosed transactions, they proposed a model to predict the value
of the IPv4 address market. Their estimated price of $30 per IP for the end of 2015
exceeds the actual price at that time by about 200 %. In contrast to their claims, we
also find no statistically significant difference in the prices of different regions. In 2015,
Richter et al. [410] provided a detailed, historical perspective on changes and policies
that preceded the current IPv4 exhaustion and pointed out possible solutions, e.g.,
Internet-wide adoption of IPv6, carrier-grade NAT, and efficient use of address space
(reassign unrouted address space). In 2015, Edelman and Schwarz [157] proposed a
market regulation rule to avoid excessive trading and provided an estimation model for
IP leasing and buying prices. However, their model lacks validation based on real-world
data and shows opposing trends to the market price evolution we observe. While Van
Audenhove et al. [495] showed that permitting active transfers of IPv4 resources between
entities of the same RIR leads to a “thriving” transfer market in 2013. Livadariu et
al. [286] reported that most transfers until 2013 occur between a small set of countries. In
2011, Osterweil et al. [373] discussed the implications of possible regulations for IPv4
transfers. They argued for using additional reverse DNS records to validate IP ownership.
Giotsas et al. [184] reported inconsistencies between RIR transfer data and information
inferred from BGP data sets. They also point out that frequently transferred blocks are
more likely to be involved in malicious activity.
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4.1.5 Discussion

In the first half of 2020, the IPv4 address market showed a stable price range. When,
in contrast, considering current leasing, buying, and maintenance prices, we observe
that possible amortization times for buying IPv4 addresses are somewhere between 10
months and multiple tens of years. Through our discussions with brokers, we learned
that the average amortization time for their customers is between two to three years.
Given the current state of the buying market, IPv4 address holders need to be careful
when to sell their assets: An early sell may not reach the maximum economical gain (if
prices increase) while waiting for too long may result in an economical loss (if prices fall).
On the other end, the demand for IPv4 addresses currently outweighs its supply. As a
result, potential customers are currently willing to pay higher prices.

How an organization engages with the leasing and transfer markets is often strongly
correlated to its business model: Internet Service Providers (ISPs) often buy blocks larger
than /20 with the intent of leasing parts of them to (potential) customers; on the other
end, long-term customers buy address space smaller than /20 to fulfill their addressing
needs and terminate their address leasing contracts with, e.g., an ISP. Young businesses
often start by leasing small address blocks and then increase their leased address space
until they have secured enough funding to buy address space. In contrast, many VPN
providers continuously lease address space but frequently "rotate" the actual IPs such
that it is harder to block their service. Finally, spammers often use short-lived leasing
agreements of varying sizes while ensuring that their own address space remains clean
when they engage in malicious activities. Another strategy we have encountered in
discussions with brokers is buy and lease back: In this model organizations owning more
IPv4 address space than they currently utilize (e.g., ISP) sell this address space to a broker
and, in return, only lease the amount they need with previously agreed terms should
they ever need additional space. Such a contract can provide the selling organization
with immediate cash flow while ensuring a continuous supply of addresses.

There are still allocated but unused IPv4 addresses even though the RIRs have moved to
shortage management. The active policies require the return of unused addresses [340,
354], but the current market situation provides little incentive to release acquired re-
sources. As such, the number of available IPv4 addresses will soon hit rock-bottom, a
point at which the world-wide deployment of IPv6 becomes inevitable for future services.
With advancements in IPv6 deployments, the focus may shift away from IPv4 addresses.
Thus, one might argue that the question is no longer if IPv4 address prices will drop,
but when. On the other hand, brokers also told us that they expect a huge price increase
because many players prefer to engage in the ”known” costs of acquiring IPv4 address
space rather than moving their networks forward to IPv6.

4.1.6 Conclusion

In this work, we present the current state of the IPv4 address market and provide
a base for further scientific analysis as well as a starting point for organizations to
assess their options for offering and obtaining IPv4 addresses. The current state of IPv4
address exhaustion is: APNIC and AFRINIC still have a small amount of address space
available, RIPE NCC was recently able to fulfill the approved requests in its waiting
list using recovered addresses, ARIN’s waiting list has waiting times up to 130+ days,
and LACNIC’s waiting list currently holds 275 approved but not fulfilled requests. As a
result, networks that are still relying on IPv4 lead to vibrant leasing and buying markets.
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Although prices for IPv4 addresses doubled since 2016, previous work [286] significantly
over-estimated the price development—especially for small address blocks. While the
prices per IP decrease with address block sizes (except for large blocks), we find no
statistically significant difference between regions. We observe that the buying market
has been volatile since 2016 but went into a consolidation phase at the beginning of
2019. Even though individual price changes by the “big players” may dictate future
pricing trends, directly buying IPv4 address space—at an average cost of $22.50 per IPv4
address for a /24—is currently an economically viable option. When focusing on the
IPv4 leasing market, we find that, through the lens of BGP, the amount of leased IPv4
addresses increased by 7% over the last two years. Current leasing prices range from
$0.30 to $2.33 per IP per month (for a /24). This huge range (even though the service
levels may differ) indicates that the market has not converged on a price tag.

We showed that state-of-the-art delegation inferences are noisy and only reveal a small
fraction of the actual delegations. We highlight that delegations in the RPKI system
provide a rather different perspective on the consistency of delegations. We argue that
future research efforts should combine routing information, RPKI data, as well as the
RDAP databases to obtain a better picture of the leasing ecosystem and its characteristics.

4.2 Hyper-specific Announcements

Autonomous Systems use the Border Gateway Protocol to announce prefixes to their
peers [405]. Each BGP-speaking router of an AS can decide to accept or reject incoming
announcements based on the prefix itself, the AS path, or other attributes that are
attached to a route (e.g., BGP community values). Due to this concept, every single AS
(and, in fact, also all its routers) may have a unique viewpoint into the Internet’s routing
ecosystem [436].

Many popular BGP guidelines recommend the rigorous filtering of prefixes that encom-
pass only a few addresses [153, 156, 306, 356, 359, 464, 465] and, hence, those prefixes
have been shown to propagate neither far nor reliably [481]. While the possible reasons
for announcing these types of prefixes are broad and range from traffic engineering over
multi-homing configurations to prefix-hijack prevention [120, 227], the boundary for
announcements which are deemed “widely acceptable” are usually considered to be a
/24 prefix in IPv4 and a /48 prefix in IPv6.

In this section, we perform an in-depth analysis of prefixes that are more specific than
those boundaries (i.e., /25 to /32 IPv4 prefixes and /49 to /128 IPv6 prefixes). We refer
to those prefixes as hyper-specific prefixes (HSPs) and analyze their prominence in the
global routing ecosystem, the functions that they serve, and whether they represent
intentional or accidental announcements. More specifically, we make the following main
contributions:

Observability. We perform a decade long analysis of HSPs as seen by 67 route collectors
(see §4.2.1). We find that the number of HSPs has increased substantially since 2010
and peaked in 2018 at around 115K IPv4 and 18K IPv6 prefixes. While we observe
that especially HSPs which are announced consistently for an entire year are visible by
hundreds of collector peers, the average HSP can only be seen by a handful of them.

Use Cases & Functions. We analyze potential use cases of HSPs by combining insights
from different analyses of CIDR sizes, BGP communities, and service hit rates across
multiple years. (see §4.2.2). We find that IPv4 HSPs mostly represent (internal) routes
towards peering subnets and blackholing, whereas IPv6 HSPs are mainly used for
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address block relocations and, in substantially fewer cases, blackholing. We further find
that HSPs are unlikely to contain many end hosts and that they are rarely used for traffic
engineering.

Intended or Accidental Use. We compare the HSPs visible in BGP with those that were
explicitly entered into routing databases—in particular, the Internet Routing Registries
(IRRs) and Resource Public Key Infrastructure (RPKI)—to investigate intended or acci-
dental use of HSPs (see §4.2.3). We find that while thousands of ASes explicitly specify
their intent to use HSPs, many HSPs likely represent accidentally leaked routes.

The Future of HSPs. We discuss how the research and operator communities could
make use of HSPs in the future. Finally, we plan to maintain a dashboard providing
up-to-date HSP statistics to help AS operators in detecting leaked internal routes.

4.2.1 Observability

We begin our exploration of hyper-specific prefixes by analyzing their current and past
presence in the Internet’s routing ecosystem.

In particular, we examine the routing information from hundreds of globally distributed
ASes—called “feeder ASes” or “route collector peers”—collected by the Isolario [244],
RIPE RIS [349], and Routeviews [364] projects. Starting from January 2010, we generate
snapshots consisting of a week of RIB and update files every three months until October
2021. We provide further details about the choice of this window size in Appendix B.2.2.
We employ various filtering steps to sanitize the data from, e.g., announcements of
unallocated Internet resources, certain noisy origin ASes59, or temporarily misconfig-
ured feeder ASes. We also reached out to operators of noisy origin ASes. Two of these
operators were not aware of this problem, but addressed it quickly upon our notifica-
tion. A comprehensive lists with justifications for the individual steps can be found in
Appendix B.2.5.

First, we investigate the evolution of HSPs from January 2010 to October 2021. Figure 4.5
shows the number of hyper-specific prefixes (lines) and ASes that originate them (bars)
over time. Looking at the left sub-plot, we observe that the number of observed HSPs
(despite being noisy) consistently increases throughout the eleven years. We see more
than 10k IPv6 and 100k IPv4 HSPs by the end of 2021, i.e., approximately one-tenth of
all visible prefixes are hyper-specific (see Appendix B.2.3 for further details). Relative to
the increase in HSPs, we also observe an increase of ASes that originate them, with 584
and 2.5K ASes announcing hyper-specific prefixes via IPv6 and IPv4 by the end of 2021,
respectively.

Given that the route collector projects acquired feeder ASes within our observation
period, the increasing trend could simply be a sampling error. To test this hypothesis,
we replicate the analysis using only data from the 105 IPv4 and 45 IPv6 feeder ASes
that were consistently peering with route collectors throughout all snapshots. While our
observations remain similar for IPv6, there are two changes for IPv4: (1) the number of
hyper-specific prefixes that can be seen by a consistent set of ASes appears more stable
(if any trend exists, it remains hidden behind the massive fluctuations); and (2) despite
an initial increase, the number of ASes originating HSPs stagnates after 2016. Therefore,
the number of IPv4 HSPs does not show a constant increase over time, but rather we

59These ASes announced either (1) an extraordinarily high number of HSPs (i.e., 100 or more times higher
than in other snapshots) or (2) HSPs in an extraordinarily high number of anchor prefixes for a limited amount
of time.
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Figure 4.5: Growth of HSPs and HSP origin ASes as visible in all feeder ASes and consistent set of
feeder ASes.

observe more IPv4 HSPs due to an increase in feeder ASes at route collector projects.

This hypothesis check leads to another observation: When shrinking the set of feeder
ASes, the number of HSPs and their respective origin ASes drops substantially. To
improve our understanding of this insight, we analyze the visibility of HSPs, i.e., by how
many peers each HSPs is seen. At the same time, we want to understand what causes the
substantial fluctuations in the number of HSPs; hence, we also analyze their consistency,
i.e., the fraction of time for which the prefix was seen by at least one feeder AS. Given
that a one-week observation period would not provide much insight into consistency
patterns, we conduct this analysis using data from the entirety of 2020. We first read
the RIB snapshots from January 1, 2020 and then apply all updates for the whole year
sequentially. By tracking the state of each routing table on a per-update basis, we can
extract consistency in seconds granularity.

Figure 4.6 reports the visibility of an HSP on the y-axis against its consistency on the
x-axis. For both heatmaps—IPv4 (left) and IPv6 (right)—each cells represents groups
of ten feeder ASes on the y-axis and two weeks of time on the x-axis. We first observe
that there is no particular consistency trend: While some HSPs can only be observed
for less than two weeks, others can be observed throughout the entire year. Our second
observation is that the vast majority of hyper-specific prefixes can only be observed
by a small number of collector peers, although we do also observe HSPs being visible
during the entire year by hundreds of peers. This observation aligns with the restricted
propagation characteristics of HSPs reported by previous blog posts [4, 5, 481] and
observed by our own active experiments (an in-depth description of the experiments,
their analysis, and subsequent results can be found in Appendix B.2.4). We hypothesize
that the substantial fluctuations in the number of totally observed HSPs is a result of these
two observations; the restricted propagation of HSPs might inflate the importance of the
individual placement of feeder ASes and HSP origin ASes, and the tens of thousand of
short-lived HSPs might cluster around certain real-world events, such as DDoS attacks
or data center outages.
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Figure 4.6: Heatmap showing HSP visibility and consistency for IPv4 (left) and IPv6 (right).

In summary, we observe that the presence of hyper-specific prefixes in the Internet’s
routing ecosystem has increased through the last decade and HSPs make up about one-
tenth of all the prefixes that are observed by route collectors. In IPv4 the increase in HSPs
is driven by an increment in feeder ASes, whereas in IPv6 we see an increase also for a
constant set of feeder ASes. While most HSPs only propagate locally, some of them are
globally visible and can be consistently observed throughout an entire year.

4.2.2 Use Cases & Functions

Given their past and current presence in the global routing table, we want to get deeper
understanding of the functions that hyper-specific prefixes potentially serve. As a first
step in this direction, we use the fact that specific CIDR sizes often hint towards certain
use cases. Consider the following example: If an AS wants to defend one of its servers
against an ongoing DDoS attack, it may use blackholing announcements. Up to 98 % of
these announcements are /32 (/128) IPv4 (IPv6) prefixes, i.e., they only cover the specific
addresses of the attacked servers [148, 149, 187]. Larger CIDR sizes are rarely used for
blackholing, as they would impair the services running on non-attacked servers as well,
i.e., they would introduce unnecessary collateral damage [338]. Using similar lines of
reasoning, we rely on the following associations between CIDR sizes and intended use
cases: We associate (1) /25 and /26 IPv4 prefixes with traffic engineering (e.g., selective
announcements[100, 396]), (2) /29 and /30 IPv4 prefixes with (Point-to-Point) peering
subnets (i.e., the subnets needed to form inter-AS connections) [407], (3) /31 and /32
IPv4 prefixes with blackholing [148, 149, 187], (4) /49 to /64 IPv6 prefixes with address
block reassignments [376], and (5) /113 to /128 IPv6 prefixes again with blackholing60.

Figure 4.7 shows the number of IPv4 (left) and IPv6 (right) HSPs over time colored by

60In private conversations a large European IXP confirmed that around 90 % of all blackholed IPv6 prefixes
fall into the /113 to /128 range.
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Figure 4.7: HSPs per CIDR size over time. Figure 4.8: Hit rate comparison of HSPs vs. IPv4-
wide.

their respective CIDR size groups. We first observe that the overall trends are stable over
time. In IPv4, we observe that the most common CIDR size is /31–/32, i.e., the most
prominent use case seems to be blackholing. Yet, we also observe that that /29-/30 HSPs
are comparably common; hence, many HSPs may actually represent peering subnets.
Given that only about 10 % of HSPs have a CIDR size of /25 or /26, we believe that traffic
engineering is a rare use case. For IPv6, we mainly observe the /49–/64 CIDR size range
that we associate with address block relocations. In some ASes we also observe instances
of /64s being used by hypergiants for off-nets [179]. We further observe a small fraction
of /113–/128 CIDR sizes that we associate with blackholing. The share of blackholing
HSPs is smaller in IPv6 compared to IPv4, which is in line with reports that blackholing in
IPv6 makes up less than 2 % compared to IPv4 [187, 338]. Those observations also explain
some of the fluctuations that we observed in the previous section—blackholing events,
and their subsequently announced prefixes, are often short-lived [338] and subsequently
can cause substantial changes in the number of unique HSPs seen throughout a week.
As our CIDR-based analysis only provides us with hints on the actual usage, we now
also analyze the services hosted in hyper-specific prefixes. For this analysis, we leverage
archived scanning data from Rapid7’s Open Data platform [401] for 2019, 2020, and
2021. Rapid7 frequently scans the entire routed IPv4 address space61 for more than 100
well-known TCP and UDP ports. To compare regular with hyper-specific prefixes, we
rely on the difference in protocol hit rate, i.e., we compare the fraction of responding
hosts and total tested hosts62 on a per-protocol basis. We observe that four out of the
top five protocols with the highest hit rate for regular and HSP prefixes overlap; BGP
is only present in the HSP top five while CWMP is only present in the IPv4-wide top
five. For those six protocols, Figure 4.8 shows a the relative change of hitrates between
regular and hyper-specific prefixes, where a positive value indicates an increase of hit
rate in hyper-specific prefixes. While HTTP and HTTPS overall only see an increase of
+100 %, we observe strong differences when drilling down on a per-CIDR level: When
considering only /32 prefixes, HTTP’s hit rate increases by more than +500 % compared
to its hit rate for IPv4-wide scans—which substantiates the association of the /32 CIDR
size for blackholing. Even more pronounced than HTTP(S), SMTP and BGP see increases
of up to +500%. When digging deeper we further observe that BGP is mainly prevalent in
/30 and /29 prefixes which substantiates that these sizes might be dedicated to routing
infrastructure. In contrast, we observe the only hit rate decrease (of more than 90%)

61Except for prefixes on their blocklist which were explicitly requested by network operators.
62Given that Rapid7 does not publish the state of their blocklist, we assume that all (at the time of the scan)

routed IP addresses were tested. Additionally, we focus on analyzing what services are prominent in HSPs. We
can not ensure that Rapid7 (or its upstream) does in fact receive the HSP announcements, as information about
their probing vantage points and routing is not available.
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Figure 4.9: BGP communities distribution for HSPs.

for CWMP—a protocol used to remotely manage Customer-Premises Equipment (CPE)
devices such as home routers [489].

Finally, we investigate BGP communities attached to HSP announcements. BGP com-
munities are used for many different reasons, such as information tagging, blackholing,
route redistribution. The most common BGP communities attached to hyper-specific
prefixes are route steering or prepending instructions. In our analysis we look for BGP
communities which are specifically used for blackholing (BH) [264] or restrict route
propagation (RES)63. Figure 4.9 shows the use of BGP communities among HSPs from
snapshots between 2019 and 2021. The bars indicate the median share of HSPs with
the respective community, the whiskers denote the standard deviation over time. The
"Any" keyword is used to specify groups of community targets, e.g., "Any RES" describes
all prefixes that have any restriction community attached (i.e., it refers to the union
of prefixes with "NO_ADV" community and prefixes with "NO_EXP" communities);
similarly, the "Any Comm." bar refers to the highest aggregation, i.e., number of prefixes
for which we saw any community attached. As we can see, 60% of all IPv4 HSPs and
almost three quarters of IPv6 HSPs come with some form of BGP communities. The
vast majority of these communities is, however, not related to blackholing or restricting
propagation. Only about 13% and 7% of prefixes can be associated with blackholing
for IPv4 and IPv6, respectively. The by far most popular blackholing community is
X:666. Moreover, we see no propagation restriction communities (“no advertise” or “no
export”) in IPv6 and only about 0.5% in IPv4. Furthermore, we see that RES communities
are a subset of BH communities, hinting that operators do not want their blackholing
prefixes to propagate. Blackholing is therefore one contributor of HSPs, but blackholing
communities are not present on the majority of HSP announcements. We note that the
blackholing communities that we see at route collector peers is a lower bound: Blackhol-
ing communities—similar to other communities—could be cleaned along the path but
the prefix itself could continue to propagate [267].

In summary, we observe that for IPv4 many and for IPv6 some HSPs are likely related to

63We also test for communities such as NOPEER or NO_EXPORT_SUBCONFED, but these are not prevalent
among HSPs.
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blackholing activities. While we also observe many HSPs dedicated to routing infras-
tructure (e.g., peering subnets or address relocations), we observe that hyper-specific
prefixes rarely contain any CPE devices.

4.2.3 Intended or Accidental Use?

Now that we have a basic understanding of the use cases of HSPs, we want to analyze
whether HSPs are used intentionally or accidentally by ASes and their operators. If oper-
ators take the time and effort to explicitly enter hyper-specific prefixes into voluntarily-
maintained databases, then it is likely that they plan to use them. Hence, we look at the
Resource Public Key Infrastructure (RPKI) and Internet Routing Registry (IRR) operator
databases.

We use private, three-monthly IRR snapshots [242] between January 1, 2017, and October
7, 2021, which contain information about routing policies. The RPKI database contains
legally binding mappings between Internet resources and ASes. We use daily snapshots
of the RPKI database [432] from April 1, 2015, until October 7, 2021, generated by Chung
et al. [108] to verify the validity of HSP announcements by ASes.

While we extract HSPs directly from the route(6) objects contained in the IRR databases,
the Route Origin Authorization (ROA) objects in the RPKI snapshots describe CIDR size
ranges [222]. Hence, a ROA can explicitly describe an HSP when both the minimum and
maximum prefix length are hyper-specific, or implicitly when only the maximum prefix
length is hyper-specific. When extracting HSPs and their origins from the RPKI database,
we rely solely on explicit definitions as these clearly represent the desire to use HSPs
(as all covered prefixes are hyper-specific). As implicit definitions might describe the
future—but not necessarily current—use of HSPs (e.g., an AS might currently announce
a /24 but has already entered a currently unused max-length of /25), we decided to
ignore them. We compare the HSPs on those two databases against the HSPs visible via
BGP route collectors.

Figure 4.10 shows the number of unique origin ASes for both IPv4 and IPv6 within
each dataset over time. We classify those origin ASes available in more than one dataset
into the “Multiple” category. Our first observation is that for both IPv4 and IPv6, the
IRR dataset contains the largest fraction of HSP origin ASes. While this might imply
that network operators tend to actually use HSPs, it is well-known that route objects
can become stale given that the database is only maintained on a voluntary basis [462].
Yet, Some entities, e.g. certain IXP Route Servers [133], require route objects in the
IRR database to redistribute prefixes (i.e., HSPs). Yet even for the RPKI database we
observe hundreds of explicitly defined HSPs64. Notably, for the last snapshot in October
2021, implicit HSPs would have increased the number of RPKI origin ASes from 294
to 990 for IPv4 and from 172 to 794 for IPv6, respectively. Beyond these intentional
HSPs, we also observe that many of the HSPs from Route Collectors have no entries in
operator databases, hence, they could potentially represent accidental announcements or
misconfigured route collector sessions that leak internal routes.

While it is hard to link malicious intent to a more-specific announcement (since it could
be, e.g., an address leasing agreement [391] or traffic engineering of sibling ASes [175]),
we want to understand if the visible HSPs in the BGP are legitimate prefix advertisements
by valid origin ASes or associated with possible prefix hijacks. Therefore, we perform
Route Origin Validation of HSPs and its origin AS by checking them against the ROA

64Most of these HSPs are also in the BGP data set and hence end up up in the multiple class.
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Figure 4.10: Visibility of origin ASes across data sets.

records from the RPKI dataset. If a ROA covers the address space described by the prefix,
then this prefix can violate the ROA in two ways: it can be too specific—which we mark
as “Invalid (Length)”—and it can be announced by a different origin—which we mark
as “Invalid (Origin).” If both of these conditions are met at the same time, we mark a
prefix as “Invalid (Both).” If none of these conditions are met, we consider the prefix as
“Valid.” Notably, we observe that 22 % of IPv4 and 19 % of IPv6 HSPs have a covering
ROA entry (median percentages across snapshots in 2020 and 2021).

Figure 4.11 shows that legitimate ASes, i.e., the valid and invalid length categories
together, advertise around 75 % of all HSPs. With an average of 25 % peaking to around
50 % in 2016, 2017, and 2019 IPv6 has a higher percentage of valid HSPs than IPv4. The
HSPs with invalid length form the largest group in IPv4, and mostly the second largest
group in IPv6. The third largest group of HSPs has the “Invalid (Both)” ROV state, while
the invalid origin category forms a minor fraction of HSPs’ ROV state. Legitimate ASes
advertise around 75 % of HSPs, which indicates that HSPs are not majorly associated
with BGP prefix hijacks. Beyond malicious ASes, the “Invalid (Origin)” and “Invalid
(Both)” status could also be caused by not properly entered sibling ASes [175].

In summary, we observe that for both IPv4 and IPv6, hundreds of ASes intentionally
entered hyper-specific prefixes into operator databases. Yet we also saw that many of
the HSPs that are visible from route collectors have no respective entries and are likely
related to the accidental announcement or disclosure of internal routes. This is further
substantiated by the observation that most HSPs are actually ROV invalid since they are
more specific then intended by their covering ROA entry.

4.2.4 Discussion

Research Community. While many HSPs seem to be intentional, we also observe
a large number that potentially represent leaked internal routes. While the task of
reconfiguring a leaking router ultimately belongs to the feeder AS’ operators, we believe
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Figure 4.11: ROV status for HSPs

that the maintainers of route collector projects play a vital role when it comes to raising
awareness for the existing problems. To support and guide this process, we plan to
maintain a dashboard that provides up-to-date HSP statistics as well as a rankings of the
top HSP contributors. Beyond fixing potential leakage errors, we believe that studying
the potential correlations between hyper-specific prefixes and their less-specific counter
parts may lead to new insights into the routing optimizations used by ASes.

Operator Community. Even though various guides [153, 156, 306, 356, 359] recommend
strict filtering of HSPs, we observed that many hyper-specific prefixes propagate to
100 or more collector peers. After discussing our results with thirteen operators from
different types of networks, we believe that the limited filtering is often a result of
popular customer requests. The operator of a major transit network told us that his
network recently (throughout Summer 2020) changed from the filtering of all IPv4 HSPs
to only filtering prefixes more specific than /28; this shift enabled (especially new and
small) customer networks to perform basic traffic engineering despite a limited address
allocation65.

This opens up the question whether operators should filter HSPs in the first place. We
believe that for IPv6 the answer is a resounding “yes”. Given that there is no shortage of
IPv6 addresses and obtaining new blocks is virtually free (compared to the high costs
of obtaining IPv4 addresses), we do not see any reason to loosen the current filtering
guidelines. For IPv4, we think that the answer should be more nuanced. While loosening
the filter guidelines allows even small ASes to perform traffic engineering, it would also
further increase the routing table size. Hence, we believe that shifting the acceptable
boundaries by a few CIDR sizes (e.g., /26 or /28) might be an agreeable compromise.

65This is a direct result of the current IPv4 Address exhaustion and the subsequently inflated prices [391].

100



4.2.5 Related Work

In this section, we report on related work in the areas of hyper-specific prefix analysis
and prefix deaggregation.

HSP Analysis: Previous research in this area consists mostly of blog posts. In 2014,
Aben and Petrie report on an experiment where they announced /24, /25, and /28 IPv4
prefixes and ran RIPE Atlas measurements to them [4]. Their findings show that HSPs
are visible for at most 20 % of RIPE RIS peers [349] with route objects slightly improving
the visibility. The RIPE Atlas experiments lead to similar results with fewer than 15 %
of probes reaching their targets. One year later, Aben and Petrie revisit the propagation
of hyper-specific prefixes and find a marginal increase of a few percent [5]. In 2017,
Strowes and Petrie conclude that not much has changed regarding hyper-specific prefix
propagation and at most one fourth of all BGP peers receive those announcements [481].

Prefix Deaggregation: In 2002, Bu et al. first characterize prefix deaggregations and the
reasons for them, e.g., traffic engineering, multi-homing, and address fragmentation [80].
Meng et al. report in 2005 that even newly assigned address space is deaggregated and
that the deaggregation rate of prefixes increases over time [324]. In 2010, Cittadini et
al. [120] report that more than 10 % of ASes deaggregate their prefixes while around
1 % of ASes announce more than 10 prefixes for each address block they got assigned.
Lutu et al. present a simulation model that estimates that origin ASes can reduce
their transit cost by 5 % by using more-specific announcements [294–296]. Notably,
the authors neither focused on IPv6 nor on hyper-specific prefixes. In 2016, Krenc and
Feldmann analyze the address delegations realized via prefix deaggregations and report
on delegations from customers to providers or between unrelated ASes (often involving
CDNs) [268]. In 2017, Huston analyzes the prevalence and different types of more-
specific prefix announcements in the Internet as an effect of prefix deaggregation [227].
His taxonomy attributes MSPs to three different root causes, hole punching (different
origin AS), traffic engineering (same origin AS, but different AS path), and overlay (same
AS path). He concludes that the former two play a useful role for network operators,
while the usefulness of overlay more-specific prefixes could be argued about. Huston
did not specifically investigate the effect of hyper-specific prefixes.

To the best of our knowledge, this section presents the first scientific analysis of hyper-
specific prefixes by providing an in-depth look into the prevalence and possible root
causes for HSPs in the wild.

4.2.6 Conclusion

In this section, we analyzed the presence of hyper-specific prefixes in the Internet’s
ecosystem throughout the last decade. While we found an overall increase in the number
of HSPs, most of them can only be observed by a few route collector peers. Yet, there
are still plenty of HSPs that propagate to hundreds of route collector peers and can be
consistently observed throughout an entire year. Inspired by those findings, we took a
closer look at the function that these prefixes serve. For IPv4, we observed that HSPs
are mainly associated with blackholing and infrastructure announcements (e.g., routes
to peering subnets). While we only found limited evidence for any connection to traffic
engineering, we observed that hyper-specific prefixes are less likely to contain end-user
devices. For IPv6, we observe that almost all hyper-specific prefixes are related to address
block reassignments, with only a small fraction representing blackholing. Even though
we have seen that hundreds of networks use HSPs intentionally, we attributed even more
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cases to the accidental “leakage” of internal routes. Finally, we discussed the current
state of HSPs from an academic as well as an operator-related review.

4.3 Chapter Summary

In this section, we described the IPv4 exhaustion state in 2020, took a look at the emerged
IPv4 buying and leasing markets, and analyzed the viability of hyper-specific announce-
ments.

While AFRINIC and APNIC still have a small number of addresses left in their allocation
pools, the three other RIRs introduced waiting lists with current waiting times of at least
300 days. As a result, networks that are still relient on IPv4 enter the vibrant leasing
and buying markets. Although prices for IPv4 addresses doubled between 2016 and
2020 as well as between 2020 and 2022, the actual price is still lower than previous
work predicted. While the prices per IP decrease with address block sizes (except for
large blocks), we find no statistically significant difference between regions despite their
varying allocation policies. We observe that the buying market has been volatile since
2016 but went into a consolidation phase at the beginning of 2019. When inferring IPv4
leasing agreements from BGP announcements, we found that the amount of leased IPv4
addresses increased by 7% between 2018 and 2020. Yet, at the same time we showed that
state-of-the-art delegation inferences are noisy and only reveal a small fraction of the
actual delegations. While a completer picture could be drawn by incorporating RPKI
and RDAP data, not all RIRs provide an RDAP interface. We further find that the leasing
market for IPv4 addresses had not converged in 2020 as prices per IP per month (within
a /24) range between $0.30 to $2.33.

We compared the visibility of hyper-specific prefixes within BGP route collectors, the
RPKI ecosystem, operator databases, and active measurements. While we find thou-
sands of ASes announcing hyper-specific prefixes, we observe that only few of these
prefixes propagate globally. For IPv4, we observed that HSPs are mainly associated
with blackholing and infrastructure announcements (e.g., routes to peering subnets). We
only found limited evidence for any connection to traffic engineering, yet found that
hyper-specifics are less likely to host end-user devices. For IPv6, we observe that almost
all announced hyper-specific prefixes are related to address block reassignments, with
only a small fraction indicating blackholing activities.

Discussion. While the leasing market, at face value, appears to be an option for only
temporary resource use, it takes multiple decades to amortize a similarly sized IPv4
prefix when currently buying it. Hence, leasing IPv4 addresses to bridge the gap until
full IPv6 adoption may be economically cheaper than actually buying IPv4 resources. At
the same time, the increased demand and subsequently rising prices for IPv4 addresses
may be a future driver for accelerated IPv6 adoption. In the meantime, ASes may further
announce their existing IPv4 address space as hyper-specific routes. While these routes
are not frequently redistributed, they may be used in combination with less-specific
covering prefixes to ensure global reachability. As many (especially larger) ASes accept
them locally (despite not redistributing them), hyper-specific prefixes may be effective for
traffic engineering across immediate neighbors. The ongoing flattening of the Internet’s
hierarchy and the subsequent increasing of peering partners makes this characteristic
even more attractive over time.
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Chapter 5
Securing Routing Operations

The previous chapters focused on how to track and navigate parts of the Internet routing
ecosystem’s evolution. In this chapter, we will take a closer look at how an evolving
routing ecosystem may affect security aspects.

We start this chapter with an explicit demonstration of how parts of the routing ecosystem
changed throughout the last decade, and how these changes affect the safe use of
a popular, well-known, and easy-to-use inter-domain traffic engineering technique
called AS Path Prepending. By combining more than a decade of passively obtained
routing information with active, real-world experiments, we measure the prevalence
of prepending in the wild, identify typical usage patterns, assess the security risks
associated with these patterns, and quantify the number of risk-exposed ASes.

After this initial demonstration, we want to stress the potential impact that the ecosys-
tem’s evolution has on routing security. In particular, our focus lies on two specific
changes: the rising deployment and viability of IPv6 and the increasing availability of
low-cost peering opportunities. We analyze the synergies between these changes and
prefix de-aggregation attacks and find that they allow adversaries to overcome previously
deployed prevention mechanisms.

The contributions of this chapter can be summarizes as follows:

• We perform a longitudinal characterization of ASPP usage and identify a steady
increase. On May 2020, 30 % of ASes prepend at least one of their prefixes, resulting
in 25 % of the IPv4 prefixes being originated with prepending. We further find
that ASes mainly originate their prefixes with two distinct prepending sizes (e.g.,
without prepend and with two extra prepends) to indicate their preference for
inbound traffic. Surprisingly, we also find that roughly 6k ASes originate a total
of more than 28k prefixes with a single prepending size (different than zero), thus
resulting in no traffic steering effect.

• We discover that in scenarios with only two upstreams, ASPP effectiveness is
strongly dependent on the vantage point. Yet, when using many diverse upstreams,
ASPP shifts traffic from most incoming sources.

• Using active experiments, we identify that prefixes with three or more prepends
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are highly vulnerable to prefix hijacking. Today, there are more than 15k prefixes
with at least three prepends, increasing the risks of widespread route leaks or prefix
hijacking without apparent traffic steering benefit.

• We revisit prefix de-aggregation attacks and analyze their theoretical and practical
viability using a mix of a theoretical Integer Linear Programming formulation, the
deployment of a real-world testbed, various BGP data analyses, real-world route
propagation measurements, and router testbed experiments.

• We find that the routing ecosystem’s evolution weakened previous prevention
mechanisms to the point where prefix-deaggregation become viable on the Internet
today, by anyone, and with a limited budget. Hence, we propose and extensively
discuss possible defense mechanisms and perform a two stage vulnerability no-
tification campaign involving 8 major IXPs, 20 Tier-1 ASes, and 7 major content
providers.

5.1 AS Path Prepending

Many Internet Autonomous Systems (ASes) receive significantly more traffic than they
send. They often use Inbound Traffic Engineering (ITE) to influence the link through
which they receive traffic based on economic considerations (e.g., transit cost) or op-
erational demands (e.g., latency, packet loss, capacity). ITE has become even more
important, as there are more options for inter-AS connectivity due to, e.g., IXPs (Internet
eXchange Points), PNIs (Private Network Interconnects), and an overall increase of
peering [71, 447, 512, 518, 519]. Border Gateway Protocol (BGP)-enabled ITE techniques
include AS path-prepending (ASPP) [100, 146, 523], selective or more-specific prefix
announcements [174], BGP communities [151, 478], or Multi Exit Discriminator (MED)
values [164, 321].

In this section, we focus on understanding ASPP deployment and the potential issues
associated with it. ASPP is a straightforward, easy-to-use technique that is often men-
tioned among the first ITE techniques by router vendors [114, 138, 173, 253, 328]. It is a
technique where an AS artificially inflates the BGP AS path by inserting (subsequent)
duplicate entries of its ASN. Since the length of an AS path is the second most impor-
tant tie-breaker in BGP best path selection, ASPP may steer traffic from one route to
another. However, its effect depends on route propagation and the routing decisions
made by other ASes. Despite (or because of) its simplicity and its inherent limitations,
the appreciation of ASPP among operators and researchers is mixed. On the one hand,
ASPP—unlike other ITE techniques—does not need any support from other ASes, nor
deaggregatable prefixes. On the other hand, its need, effectiveness, and predictability
have been questioned [298, 395, 485]. In addition, there have been concerns about the
extent to which ASPP can amplify existing routing insecurities [299, 309, 479], and reports
of improper ASPP configurations triggering bugs in router software [529, 530].

Motivated by the mixed views about the ASPP method, we investigate the current use of
ASPP and find that more than 30% of ASes use it. Thus, to contribute to an informed
discussion, we address three fundamental questions:

(1) How do ASes use prepending? To put effectiveness and risk into context, we first
identify and characterize the policies ASes apply (i.e., the number of prepends used for
each prefix) when using ASPP. Even when using data from all route collectors over the
last decade, limited route visibility [103, 194, 365] poses a significant challenge. We deal
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with it by conducting interviews with more than 20 operators and by cross-checking our
results with private data sources from large Internet players.

(2) How effective is prepending? Among both operators and academics, the opinion
on whether ASPP is effective as an ITE technique diverges and often depends on the
position of an AS in the routing ecosystem. For example, Quoitin et al. [395] showed that
ASPP is unpredictable using their vantage point. We claim that the effectiveness of ASPP
is indeed diverse—it depends on the vantage point within the routing system and the
number of available upstreams. We highlight this behavior by actively testing a large
number of vantage points and varying the number of upstreams.

(3) Does prepending amplify existing routing security risks? Often, a “malicious” route
needs to be the shortest path in order to be adopted. ASPP facilitates the spreading
of malicious routes by making the legitimate paths longer. While one may observe
malicious routes in public BGP data, the lack of suitable what-if scenarios (i.e., how
would the scenario change with a larger prepend size) poses a significant challenge. We
shed light on this topic by systematically emulating numerous prefix hijacks from many
vantage points.

We approach these questions using both active and passive measurements. We use
passively collected routing information from Isolario [244], RIPE RIS [349], and Route-
Views [364] to perform a longitudinal study. We then use the PEERING testbed [444, 448]
to systematically explore ASPP from a large number of vantage points and emulate many
scenarios through targeted BGP route announcements and probing traffic.

We summarize our main contributions as follows:

• We perform a longitudinal characterization of ASPP utilization and identify that,
despite the community mixed opinions, its utilization has been steadily increasing.
We find that, on May 2020, 30 % of the ASes prepend at least one of their prefixes,
resulting in 25 % of the IPv4 prefixes being originated with ASPP (see § 5.1.3).

• We also identify that ASes mainly originate their prefixes with two distinct prepend-
ing sizes (e.g., without prepend and with two extra prepends) to indicate their
preference for inbound traffic. Surprisingly, we also find that roughly 6k ASes
originate a total of more than 28k prefixes with a single prepending size (different
than zero), thus resulting in no ITE effect (see § 5.1.4).

• We discover that in scenarios with only two upstreams, ASPP effectiveness is
strongly dependent on the vantage point. Yet, when using many upstreams, ASPP
shifts traffic from most incoming sources (see § 5.1.5).

• Using active experiments, we identify that prefixes with three prepends are highly
suitable for prefix hijacking. Today, ASes originate more than 15k prefixes with
at least three prepends, increasing the risks of widespread route leaks or prefix
hijacking with no apparent ITE benefit (see § 5.1.6).

We discuss ethical considerations in Appendix § 5.1.9, and to foster reproducibility and
research on ASPP, we make all of our analysis code available to the research community.66

66https://gitlab.mpi-klsb.mpg.de/lprehn/imc20_aspp
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(a) AS A announces the prefix P with ASPP to one of
its neighbors.

(b) ASPP in effect.

(c) Route adoption regardless of ASPP.

Figure 5.1: AS-Path Prepending behavior.

5.1.1 Primer on Path Prepending

ASPP is an ITE technique in which an AS adds its own AS number n extra times (n ≥ 1)
before originating/propagating a BGP route, thus artificially increasing the resulting
AS-Path length by n. We refer to n as the prepend size. Whenever an AS receives a route
announcement, it chooses the best path according to a list of tie-breaking rules. The
first rule relies on local preference. To affect the route selection of remote ASes [405], an
AS uses ASPP to inflate the AS Path to influence the second tie-breaking rule: to prefer
the shortest AS path. (If the tie persists, route origin and MED values are among the
remaining tie-breakers.)

In Figure 5.1(a), we illustrate the use of ASPP by an AS with two neighbors. AS A
announces a prefix P to both neighbors with different prepend sizes. By making one
path longer, AS A attempts to influence remote ASes to send traffic through AS B. The
success of this attempt will depend on how remote ASes will receive the announcements.
In Figure 5.1(b), we depict a case where ASPP can influence the decision of AS F. Even
though the path traversing AS C has fewer ASes than the one going through AS B, AS F
prefers the second path as it is the shortest. In Figure 5.1(c), we show a case where the
ASPP by AS A cannot influence the decision of AS F as it has fewer prepends—AS F
prefers the path traversing AS C as it has the smallest AS path length. These cases
underline that ASPP cannot guarantee remote route changes and the resulting ingress
traffic distribution.

We distinguish two forms of prepending. If the AS prepending is the originator, we refer
to it as origin-prepending; otherwise, we refer to it as intermediate-prepending. When an
AS prepends on behalf of another AS, we refer to this particular form of intermediate-
prepending as remote-prepending. In such cases, ASes can use BGP communities or web
interfaces to ask the other ASes to prepend. ASes use remote-prepending to affect path
choices that are beyond the reach of origin-prepending.

ASes can use ASPP for load balancing among upstreams, to minimize transit cost (by moving
traffic away from an expensive upstream), or to establish backup links. Among the reasons
mentioned by operators for ASPP popularity are its ease of use on commercial routers,
its efficiency in steering incoming traffic, and the requirements and shortcomings of
alternate mechanisms.
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5.1.2 Data sets and Data Sanitation

To analyze ASPP utilization, we rely on (BGP) MRT data publicly available from Iso-
lario67 [244], RIPE RIS[349], and Route Views [364]. We use the following datasets in our
analyses.

BGPContinuous : This dataset contains RIB snapshots from all available BGP collectors on
March 1st, 2020 at 0:00 UTC+0. In addition, it contains all subsequent update files until
April 1st, 2020, at 0:00 UTC+0. If an update file is missing in a collector’s repository, we
add the next available RIB snapshot to capture potentially missed changes.

BGPWeekly : This dataset contains data for each Monday between January 1st, 2018, and
May 4th, 2020. For each day, we use the RIB snapshots from all available BGP collectors at
0:00 UTC+0 and all consecutive updates for that day. We, again, compensate for missing
files.

BGPMonthly : This dataset contains data for the 15th day of every month between January
15th, 2010, and April 15th, 2020. We generate the data of a single day in the same way as
for the previous dataset.

ROAS: Rather than using tools (such as Routinator [355]) to preprocess RPKI data, we
take advantage of the preprocessed data provided by Chung et al. [108]. We use data for
the same days as in the BGPWeekly dataset.

RIR: This dataset contains the (extended—if available) delegation files from AFRINIC [8],
APNIC [25], ARIN [37], LACNIC [271], and RIPENCC [415] for all days in the BGPMonthly
dataset.

Data sanitation. Before analyzing our BGP data, we remove well-known artifacts. First,
we remove bogon routes, i.e., routes that lead only to reserved address space [486] or
routes that contain ASes currently reserved by IANA [229]. Similarly, we remove all
routes to prefixes less specific than /8. This step ensures that we only analyze default-
free routing information.68 We further remove all routes for which the path contains a
loop. The sanitation, up to this point, removed ~3.36M (0.7 %) routes and reduced the
number of prefixes from ~1.29M to ~932k (-28 %) using the last snapshot of the BGPWeekly
dataset as reference (we find similar values for other snapshots). To avoid making false
inferences due to lack of visibility, we only analyze prefixes visible by at least one-third
of the BGP monitors set on the corresponding date. When analyzing how many monitors
see each prefix, we find a clear separation between locally and globally visible prefixes
regardless of the exact year (in Appendix § C.1.2 we report more details). Notably, the
last step reduced the number of unique prefixes to ~803k.

5.1.3 Trends in the Use of ASPP

Previously reported metrics about ASPP differ across studies, with the most recent results
being from 2016 [77, 164, 174, 503]. To understand ASPP utilization better, we analyze its
trends over the last decade using the BGPMonthly dataset. We note our numbers represent
lower bounds of the actual ASPP utilization, as (1) the visibility of route collectors is

67Isolario was hit by lightning on July 30th, 2019, leading to some missing files until August 16th, 2019 —we
find that the impact to our analysis is minimal.

68As opposed to cases in which an AS uses the default route (i.e., 0.0.0.0/0) to send traffic to some/all
destinations.
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Figure 5.2: Fraction of ASes deploying ASPP. Figure 5.3: Fraction of Prefixes/IPs with ASPP.

limited [103, 194, 365]; (2) prepended paths tend to be less attractive than non-prepended
ones; (3) we sanitize our data (see § 5.1.2).

One-third of all ASes use origin-prepending. Figure 5.2 shows the fraction of ASes
using ASPP (for IPv4) separated by prepending type (recall § 5.1.1): origin-prepending or
intermediate-prepending. First, we see that the fraction of ASes using ASPP has increased
slightly, from ~28% (9.4k) on January 15th, 2010 to ~31.4% (21.6k) on April 15th, 2020,
with most ASes using origin-prepending. Similarly, we observe a small increase in
intermediate prepending—from 4.7% (1.6k) on January 15th, 2010, to 5.5% (3.8k) on
April 15th, 2020. 69 We also see a very small fraction (<1%) using only intermediate
prepending, some of which might be due to ASes offering remote-prepending, e.g., via
BGP communities.

The fraction of prepended prefix-origin pairs and addresses has increased slightly.
Next, we focus on prefixes. We consider a prefix/IP address as prepended if at least
one AS has added its ASN more than once (consecutively) to the path. In Figure 5.3 we
observe that the increase of prefixes with origin-prepending is similar to the one observed
respective to ASes—from ~21.3% (65.2k) on January 15th, 2010 to ~25.9% (207.7k) on
April 15th, 2020.70 Regarding the intermediately prepended prefixes, we observe that for
the entire BGPMonthly dataset, (almost) all prefixes contain prepend in all snapshots. Such
a condition happens because there are transit ASes (especially Tier-1s) that prepend most
prefixes before redistributing them to at least one of their neighbors.

For IP addresses we see a larger increase of origin-prepending—from ~26.2% (570 million)
in January 15th, 2010 to ~38.9% (1.1 billion) on April 15th, 2020. This more pronounced
increase is likely correlated to the exhaustion of the IPv4 address space and the fact that
prefixes more specific than /24 tend to propagate less [384].

69The spike on the fraction of ASes applying intermediate prepending corresponds to the period in which a
set of experiments [478] involving the use of BGP communities to manipulate ASPP was taking place.

70We also analyzed ASPP growth considering only monitors available on January 15th, 2010 and find similar
behavior.
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To not overestimate the numbers, we check how many of these addresses are covered
by more-specific non-prepended prefixes.71 We find that on April 15th, 2020, only
9.3% of the origin-prepended address space was reachable through more-specific non-
prepended announcements. We also observe that for 79% of the cases, the less specific
announcements were visible in more monitors than the more-specific ones, indicating
that 9.3% may be an over-estimate.

Discussion. Despite various public call-outs of the drawbacks of ASPP [298, 299, 309,
479], we observe that its use has not decreased. Most operators were surprised by
the results. According to them, the long-term use of ASPP is a sign of either bad
capacity planning or inexperienced network engineers. Nevertheless, some argued that
many factors might render ASPP more attractive than other ITE techniques for network
operators, including not being able to obtain an address space larger than a /24 in
certain regions (e.g., RIPE[417, 419]); the capital required to expand the infrastructure;
the simplicity of ASPP; and its prominence in router vendor handbooks.

Focus on origin-prepending and IPv4. As the large number of intermediately prepended
prefixes is the result of the routing policies of a small number of large ASes (e.g., Tier-
1s), for the remainder of this section, we focus on the (far more common) origin-based
prepending. Also, we choose to focus on IPv4 prepending, as IPv6 accounts for only 6%
of the total cases of prepending on April 15th, 2020.

5.1.4 Prepending Policies in the Wild

To understand how operators use ASPP with the prefixes they originate, we identify
different policies and look at their prevalence in-the-wild, both in terms of prefix-origin
pairs (§ 5.1.4.1) and ASes (§ 5.1.4.2). In our analyses, we find a surprising incidence
of a seemingly innocuous form of ASPP, called uniform prepending, which we thus
investigate more closely (§ 5.1.4.3). Last, we examine the evolution of prepending sizes
in different geographic service regions (§ 5.1.4.4). As in the previous section, we consider
only prefix-origin pairs visible by at least one-third of all BGP monitors.

5.1.4.1 ASPP Policies: Prefix-Origin Pairs

We identify four different prepending policies that can be used in a prefix-origin pair.
They are (1) no-prepend: no visible prepended route; (2) uniform: the only visible prepend
size is N , where N > 0; (3) binary: visible routes either have prepend size M or N , where
M,N ≥ 0 and M ̸= N ; (4) diverse: the number of different prepend sizes in the visible
routes exceeds two.

ASes tend to stick with a (per-prefix) policy over time. Our first focus is on policy
consistency—how often does an AS change a prefix prepending policy? For this analysis,
we use the BGPContinuous dataset, in which we identify roughly 2.3 million unique prefix-
origin pairs. For each pair, we define as its primary policy the one we observe more often
throughout the full month (among no-prepend, uniform, binary and diverse). We examine
the stability of the primary policy for a prefix-origin pair with respect to its visibility
period. Figure 5.4 shows a heatmap, where colors indicate the number of pairs in each
cell. We observe a concentration in the top right section of the plot, which corresponds to
54% of prefix-origin pairs, indicating that they are visible all the time and never change

71Recall BGP longest-prefix-matching prefers routes for (non-prepended) more-specific prefixes over
(prepended) less-specific ones.
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Figure 5.4: Prefix-origin primary policy con-
sistency across a month.

Figure 5.5: Prefix-origin: Fractions through
time of visible prefixes per ASPP policy.

their primary policy. We repeated the analysis for another month (Sep. 2019) and found
similar primary policy stability, which allows us to adopt weekly (BGPWeekly ) or monthly
(BGPMonthly ) snapshots without any loss in the subsequent analyses.

The use of policies has been stable, with binary policy being more common. Using
the BGPWeekly dataset, we examine the use of prepending policies for prefix-origin pairs
between January 1st, 2018, and May 4th, 2020. In Figure 5.5, we see that the most
common prepending policy is binary, followed by diverse and uniform policies. Their
popularity remains largely stable, if considering the proportion to the full set of pairs:
diverse increased from 4.5% (30k) to 6.1% (50k), binary decreased from 17.2% (114k)
to 15.9% (131k), while uniform remained at 3.6% (24.4k to 29.4k)72. We note that the
trend regarding the use of more fine-grained policies might be related to the increasing
connectivity level of ASes (e.g., connecting to more IXPs). For the sake of comparison, we
looked at the use of uniform prepending back in January 2010, and it was 2.7% (8.2k). The
consistent presence of uniform policy through time is surprising since, in theory, it should
not influence any remote BGP decisions. We take a closer look at this phenomenon
in § 5.1.4.3.

More prepending during COVID-19 lockdown. We also note that between February
and April of 2020, the number of prefix-origin pairs with ASPP reached approximately
30% (4% increase). Such a peak is likely related to the lockdown measures due to COVID-
19, which resulted in people staying more time at home [189, 513, 514]. In this period
there have been reports of traffic increases [21, 132, 333], which also resulted in content
providers such as Netflix and Youtube stopping streaming in 4k to save bandwidth [199].

We believe that the higher use of ASPP during this period was necessary for network
operators to handle the increasing demands of traffic while upgrading their links (as
ASPP use has decreased in May). When we discussed this with network operators, some
of them mentioned that they were observing more use of ASPP, especially during large
live events streamed on Youtube [327], and that some of their transit customers were
requesting capacity upgrades.

72In May 4th, 2020, all types of prepending combined represented 25.6% of all prefix-origin pairs, corroborat-
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Figure 5.6: Mixed policy ASes grouped by # of
prefixes.

Figure 5.7: Fractions of prepending policies
through time for a fixed set of uniform-prepend
prefixes.

5.1.4.2 ASPP Policies: ASes

We now change the perspective of our policy analysis to ASes. We differentiate per-AS
ASPP policies as follows. When an AS employs a single policy for all prefixes it originates,
we say it adopts one of the four policies already defined: no-prepend, uniform, binary or
diverse. Otherwise, we say an AS employs a mixed set of policies.

Most ASes that prepend use multiple policies. Using the BGPWeekly dataset, we analyze
the use of AS prepending policies between January 1st, 2018, and May 4th, 2020. We
observe that more than 30.8% (20.8k) of the ASes prepend at least one prefix they originate
(consistently with § 5.1.3), and most ASes use mixed prepending policies on May 4th,
2020. Among those using a single policy, the most common case is the binarypolicy,
followed by uniform and diverse, respectively. Over time the fractions of different policies
are substantially stable, with only a slight increase in all but binary policies. (In May 4th,
2020 we observe the following percentages: uniform 2.5%, diverse 1.4%, mixed 16.4%, and
binary 10.4%). Once again, we note an increase in fine-grained prepending policies, which
may be associated with a general increase in AS connectivity. We consider conceptually
more straightforward for an AS to employ a single policy. Nevertheless, ITE may require
the AS to use mixed policies, such as binary for some prefixes and no-prepend for others.

ASes with mixed policies mainly use binary policies. Next, we focus on ASes using a
mixed set of policies and analyze the fraction of prefixes using each of the prepending
policies. We group these few ASes according to the number of originated prefixes, in four
“bins”: 1 − 10, 11 − 100, 101 − 1000, 1000+ prefixes. For each AS in a bin, we calculate
the fraction of prefixes for each policy and present it as a boxplot in Figure 5.6 for May
4th, 2020 (we observe similar behavior for other snapshots). The plot shows only ASes
that employ a mixed set of policies73, and we observe that for these ASes, the most
common is the binary policy (in all bins). We also find, confirming our intuition, that

ing findings in § 5.1.3.
73The same plot for different dates, namely all snapshots of the BGPWeekly dataset showed similar results.
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the fraction of the diverse policy increases with the number of prefixes an AS originates
(more pronounced for the two larger bins). Conversely, we see the fraction of uniformly
prepended prefixes decreasing (with AS size).

5.1.4.3 Uniform Prepending

Uniform prepending is widespread. There is no apparent reason for an AS to use the
same prepending size for all its neighbors when originating a prefix, as it implies no
differentiation among them. Nevertheless, on May 4th, 2020, we observe more than
29k (3.6%) uniformly prepended prefix-origin pairs originated by 5.8k (8%) ASes, out of
which 1.7k (2.5%) ASes prepend all their prefixes uniformly.

Some prefixes use the uniform policy consistently. The use of uniform policy might be
the result of temporary events. To determine whether this is a common case, we pick
all the (25.8k) uniformly-prepended prefix-origin pairs on a specific date (December
31st, 2018), and use the BGPWeekly dataset to show the fractions of policy type change
for these prefixes in the preceding/following months. Figure 5.7 shows that the total
number of prefixes decreases both sides, as up to 20% prefixes were not visible earlier
or stop being visible afterward. We observe that both before and after December 31st,
2018 the fractions of no-prepend, binary, and diverse (for this fixed set of prefix-origin pairs)
increase while uniform decreases. In other words, for some of these prefixes, uniform
prepending was temporary. On the other hand, for the entire period, we see at least 50%
of prefix-origin pairs using the uniform policy. Since there is no guarantee that these are
the same prefixes, we look into it further.

Between January 1st, 2018, and May 4th, 2020, we observe 1.16M prefix-origin pairs in
our BGPWeekly dataset. Out of these, 108k prefixes are uniformly prepended in at least one
snapshot, and 3.4k (originated by 1.1k ASes) use this policy the entire time—henceforth
referred to as consistently uniform. We also note that another 13.1k (originated by
4.3k ASes) are uniformly prepended for at least one year, continuously. Thus, counter-
intuitively, we find that a substantial number of ASes, roughly 6% on the Internet, are
making consistent use of uniform prepending.

Uniform prefix prepending is dominated by small ASes. How large are those interesting
cases of ASes uniformly prepending all their prefixes? To answer this question, we
determine the total number of prefixes each of these ASes originate. Taking May 4th,
2020, as an example, there were 848 (out of 1717) ASes with only a single prefix. Another
767 ASes originated between 2 and 10 prefixes, and 89 ASes, between 11 and 50. The
remaining 13 ASes originated more than 50 prefixes, all of them uniformly prepended,
with the largest one originating 379 prefixes. Among the larger ASes (with 50+ prefixes),
we identified a large online social network, two universities, and several ISPs. These
ASes are from North America, South America, and Asia.

We then check for how long these ASes used the uniform policy. We find that 6k ASes (out
of 74k that we observe when combining all snapshots) uniformly prepend all prefixes
in at least one snapshot, and 263 ASes used this policy between January 1st, 2018, and
May 4th, 2020. We also see that other 716 ASes uniformly prepended all their prefixes
for at least one year. From the group of 13 ASes that on May 4th, 2020, were uniformly
prepending all of their 50+ prefixes, we find the following: one AS used it at least since
January 1st, 2018, five for at least the past two years, one for the past 22 months, three for
at least one year. The others consecutively prepended between 2 and 5 months.

We account for potential artifacts when measuring uniform prepending. Even though
our sanitation ensures global visibility of all prefixes, missing interconnections may cause
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Figure 5.8: Uniform prefix-origin IXP traffic on April 28, 2020.

prefixes to incorrectly appear as uniformly prepended. There might be additional private
network interconnects and peering links that are not visible to the BGP monitoring
infrastructure [103, 365, 519]. We use two different approaches for cross-checking the
results. First, we use bdrmapIT [313], a state-of-the-art tool, to infer interconnections
based on public traceroutes from CAIDA’s Archipelago (Ark) [84] between March 25th,
2020 and April 4th, 2020. We picked Ark traceroutes as it contains measurements to each
/24 sub prefix from multiple vantage points. We then compare the list of interconnections
from bdrmapIT with the ones we observe in our snapshot from March 30th, 2020 (the
mid-point of our traceroutes). On our reference date (March 30th, 2020), 5.8k ASes
were originating at least one prefix uniformly prepended. With bdrmapIT, we identify
additional interconnection links for 1.7k (29%) of these ASes. Nevertheless, for the
other 71% ASes originating uniformly prepended prefixes, bdrmapIT did not add any
additional links. For the 263 ASes that uniformly prepended all their prefixes in all
snapshots of the BGPWeekly dataset, we identify new links for only 18 of them. We note
that even though we identify new links, we cannot draw any inference regarding the
BGP announcements made through those links.

The second cross-check is to increase our visibility into the BGP routing system with data
from two large global CDNs (each connected to more than 200 peering infrastructures)
and one regional CDN present in more than 25 peering infrastructures. We choose CDNs
since they have many private peering interconnections and need excellent visibility
within the routing system for their operations. When checking their private data for all
prefixes uniformly prepended in all snapshots of the BGPWeekly dataset, we observe more
diverse policies for only 51 of those prefixes. Thus, we can conclude that our inferences
are valid for the vast majority of the uniform cases.

Some of these prefixes carry large volumes of traffic. Some operators mentioned that
consistently uniformly prepended prefixes might only carry little traffic, reducing the
need to care about them. To check this hypothesis, we use a large European IXP as our
vantage point on April 28th, 2020. We check the traffic volumes to and from each of the
consistently uniformly prepended prefixes and observe that some of them carry as much
traffic as prefixes of large social networks.74

74We are not allowed to disclose the actual byte counts of each prefix.
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To provide a picture of the traffic associated with all consistently uniformly prepended
prefixes in our vantage point, Figure 5.8 shows the fraction of bytes flowing towards
each prefix (as well as in both directions) relative to the prefix with the most significant
amount of traffic. For 57% of the prefixes, we do not observe any traffic towards them,
and for 35%, we observe traffic from them, but not towards them. We note that only a
few prefixes (<2%) carry representative volumes of traffic, either considering one or both
directions. The vast majority of the prefixes we observe carry small volumes of traffic.
While we cannot guarantee that other vantage points would observe similar numbers,
we can conclude that, contrary to network operators’ intuition, some of the consistently
uniformly prepended prefixes carry substantial traffic volumes.

Many plausible causes for uniform prepending. Is there any practical explanation for
the use of uniform prepending? We investigate this aspect by interviewing network
operators, and report here a summary of potential causes: Loss of a neighbor: an AS may
have used ASPP to differentiate between multiple upstreams but later terminated the
relationship with some. Indeed, we observe that many (77% on May 4th, 2020) of the
uniformly prepended prefixes are propagated via a single neighbor. Lack of knowledge: A
reoccurring opinion is that many network operators, especially from small ASes, have
limited understanding of BGP. Indeed, our analysis showed that many of the cases of
uniform prepending were from small ASes. Procrastination for stability: Some network
operators know about the presence of ASPP but are reluctant to remove it, out of fear
of negatively affecting their reachability and/or routing stability in general. Good news
travels fast—bad news, slowly: Some operators indicated that uniform prepending may help
implement ITE policies when needed quickly. Instead of waiting to insert prepends when
some change is needed, an AS can prepend in advance, and when the time comes, remove
from one upstream to indicate a preferred route. Since “good news” travel fast, such an
approach provides faster BGP convergence. Sibling artifacts: One operator pointed out
that there might be cases in which two or more sibling ASes originate the same prefix,
but with different prepending policies. We analyze this possibility using the CAIDA
AS2Org dataset [219] and the data from May 4th, 2020. We find 17 cases in which two or
more sibling ASes individually announced the same prefix, one uniformly prepended
and the other with a different policy, resulting in a non-uniform policy. Strikingly, in
16 out of 17 cases, one of the ASes announces using uniform and the other one with a
different policy. In one case, both ASes originate the prefix uniformly prepended, but
with different prepending sizes. Other ASes ignoring prepends: One operator argued that
uniform prepending might even lead to the desired traffic shift due to route-optimizers
ignoring all prepends on one upstream and not on the others.

Looking at two relevant cases of uniform prepending. To validate our observations and
to understand some of the actual reasons why ASes uniformly prepend their prefixes, we
reached out to network operators from two ASes that have been originating uniformly
prepended prefixes for more than one year.75 One is a regional ISP that uniformly
prepends 25 prefixes (out of 100+), while the other is a large online social network
uniformly prepending all its 80+ prefixes. The operators from the regional ISP confirmed
that the uniform prepending was unintentional and attributed it to legacy configurations
and changes to their upstreams. The large online social network also confirmed that they
were using uniform prepending unintentionally: the prepends are a result of how their
internal routing platform operates. Since then, none of these ASes have removed the
uniform prepends.

75We note that not all ASes are interested in discussing aspects of their operational practices. While discussing
with network operators might not be enough for generalization, their comments allow us to provide insights
regarding uniformly prepended prefixes.
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Figure 5.9: Prefix-origin: Prepend size by region across time.

5.1.4.4 Prepending Sizes

We use the BGPMonthly dataset to track if ASes changed the number of prepends they use
over time. Since different service regions have distinct characteristics (e.g., availability of
peering infrastructures [505]), we analyze them individually. We use the delegation files
from the Routing Information Registries (RIRs) to identify the prefix region. While we
acknowledge that there might be some misclassification, e.g., for global ASes, transferred
prefixes, or due to IPv4 address delegations, we expect it to provide valid data for most
prefixes. For each prefix, we analyze its minimum (non-zero) and maximum prepend
size, i.e., if an ASes originates a prefix with 0, 2, and 3 prepends, its minimum prepended
size is 2, and its maximum is 3. Figure 5.9 shows the results as a set of subplots, one for
each service region and year. Each subplot shows a histogram for both the minimum
(green) and maximum (purple) prepend sizes across all prepended prefixes. The blue
bars represent the overlap between the green and the purple bars.

Prepending sizes are polarized and consistent among regions. We observe that the
prepending size distributions for ARIN and RIPE, which hardly change during the
decade, are polarized: most prefixes either have a prepending size of one or at least four.76

LACNIC and AFRINIC are different: in 2010, there is no polarization, with a substantial
number of prefixes with at least four prepends, while in 2020 polarization happens with
a more significant incidence of prepending of size one. The change happens gradually
over time, but in AFRINIC, the period 2014–2017 was an exception: prepending sizes
varied “rapidly” and somewhat unpredictably. Towards 2020, the observable differences
between the service regions become negligible—they are all polarized. In APNIC, the
span between max and min prepend sizes increased, indicating more polarization, with
an even more fine-grained set of prepending policies.

When we discussed these results with operators, they pointed out that the Internet
infrastructure changed significantly throughout the decade, particularly for LACNIC
and AFRINIC. Before 2015, many routes within Africa took long inter-continental de-

76In July 2019, we spot an AS originating four prefixes with 905 prepends, which is the maximum number of
prepends we observe in our datasets.
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Figure 5.10: Fraction of ASes adopting longer alternative.

tours [198]. In order to use intra-continental paths whenever possible, ASes resorted to
excessive prepending. With the increased availability of IXPs and peering within each
region, intra-continental path diversity increased [163]. This may have reduced the need
for excessive prepending, thus reducing prepend sizes.

5.1.5 Evaluating ASPP’s Effectiveness

Given the widespread use of ASPP, in this section we explore the propagation of
prepended routes and how effective ASPP is today.

Prepended paths propagate less than non-prepended ones. The common assumption is
that the larger the prepend size of a route is, the less a network operator will expect it to
propagate. Thus, prepending should mainly affect routing in the local neighborhood of
an AS. To investigate how prepended prefixes propagate, we analyze all prefixes with
a binary prepending policy where the prefix originator has not prepended one of the
alternatives. For each prefix, we compute the fraction of ASes (out of those that we
observe propagating the prefix) that propagate each alternative. Figure 5.10 shows the
results for May 4th, 2020 (we observe a similar behavior for other snapshots). We observe
that in 70% of the analyzed cases, independently from the prepend size, the prepended
alternative traverses fewer ASes than the non-prepended one. While it may seem that the
prepend size has no direct effect on route propagation, a more plausible explanation is
that the ASes are tuning their prepend size to control how far the prefixes can propagate.
Figure 5.10 shows that the distributions of the intended scopes of propagation are quite
similar for different prepending sizes.

Nevertheless, it is unclear to which extent the adoption of a prepended path impacts
the actual traffic flow, since (a) different routers in an AS may pick different preferred
paths, (b) BGP monitors cover only a subset of ASes, and (c) some ASes might even
remove ASPP (see § 5.1.6.1). Thus, we run active measurement experiments using the
PEERING testbed as our vantage point. The PEERING testbed offers unique possibilities
for our experiments. First, it operates on a geographically diverse set of locations—we
refer to each location as Point of Presence (POP). Second, each PoP has a diverse set of
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upstreams—the number of upstreams and the degree of connectivity of the individual
upstreams differ among PoPs. Third, the PEERING testbed allows us to originate probing
traffic towards a diverse set of targets using ICMP, TCP, and UDP.

On an abstract level, we create a scenario where we announce a route with prepends for
some upstreams and no prepends (preferred) for others. Then, we use ICMP/TCP/UDP
ping probes towards a diverse set of targets to generate response traffic towards the
PEERING testbed AS. If the traffic enters via one of the preferred ASes, we refer to the
result as a “hit”, otherwise as a “miss”. We note that the PEERING testbed allows us to
correctly identify in which of the POPs the response has arrived.

Target selection. We base our target selection on Rapid 7’s list of HTTP/1.1 GET re-
sponses [400]. We first select only IP addresses that responded with the HTTP status
code “200 OK” when queried by an HTTP/1.1 GET request. To sample a diverse set of
targets, we first map IPs to ASes by performing a longest prefix match on the closest
snapshot of our BGPWeekly data set. Afterward, we classify ASes as follows: (1) we use a
public list [507] to identify Tier-1 ASes; (2) we use CAIDA’s AS type classification [85] to
identify “Content” and “Enterprise” ASes; (3) we identify the remaining ASes as either
“Access” or “Transit”—based on whether we observe them only as origin ASes in the
BGPWeekly snapshot77. Since the Tier-1 class only contains 23 ASes, we use all of them as
target ASes. For each of the remaining classes, we sampled 250 target ASes, resulting in
1023 targeted ASes. By running our own GET requests, we make sure to select only ASes
for which 20 different IPs respond, resulting in a final target set of 20460 IP addresses.

Upstream selection. While the PEERING testbed has hundreds of upstreams, only
roughly 20 provide transit. Since ASPP will have no effect if the prefix is subject to
prefix aggregation [405] by a remote AS, we check how “well” our prefix propagates.
We then announce it in one upstream per time and check how many monitors observe
the prefix without aggregation. We filter out those upstreams that propagate our prefix
to less than 200 monitors after 30 minutes of convergence. After this step, 11 transit
providers—present at 10 different PoPs—remain. For the sake of simplicity, we focus
on only one transit provider per PoP. We use the following PoPs: Amsterdam (A),
Clemson University (C), Georgia Institute of Technology (GA), GRnet (GR), Northeastern
University (N), Seattle (S), UFMG (UF), Utah (UT), University of Washington (UW), and
University of Wisconsin (W).

Experiments. Each experiment employs a pair of PoPs, and we repeat it for all com-
binations and for different sizes of prepending (none, one, two, and three). We then
run three sets of experiments. In the first set, we pick one upstream from each PoP and
announce our test prefix on both—one with prepending and one without prepending. In
the second set, we announce the prefix to all upstreams, prepending for all but one. In
the last set of experiments, we announce the prefix to all upstreams but prepend to only
one. We refer to specific choices of prepending size, upstreams, and experiment-class as
an iteration. Our experiments took place between August 27th, 2020, and September 21st,
2020.

Iteration schedules. We deploy two similar iteration schedules that only differ in their
first two rounds of announcements. For the “Post”-schedule, we start each iteration
announcing our prefix P via all upstreams without any prepending. After waiting 15
minutes to allow BGP to converge, we announce P with X prepends via the chosen
upstream (Appendix § C.1.1 shows a detailed graphical timeline). For the “Pre”-schedule,
we do the opposite: we first announce P with X prepends via the chosen upstream;
we wait for 15 minutes, and finally, announce P without prepending via all but the

77All those ASes are in the “Access/Transit” class in CAIDA’s classification.
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Figure 5.11: Fraction of potentially movable tar-
gets.

Figure 5.12: Fraction of actually moved targets.

chosen upstream. We employ both schedules to contain the impact of route age as a
tie-breaking factor. We wait another 15 minutes for both schedules for BGP convergence
before starting a 25 minutes long probing period. Each probe consists of ICMP, TCP, and
UDP pings since the transport protocol can potentially bias the forwarding path [50, 382].
We probe once per minute all targets. To reduce probing bursts, we spread the packets
evenly across the one minute time interval. To enable targets to opt-out, we embed our
contact information in the payload of every probe. The cleanup phase starts 30 minutes
after the start of the probing phase. Thus, we have a 5-minute break to ensure that the last
responses can arrive before we withdraw the prefix. To allow for BGP to converge and
minimize the risk of BGP Route Flap Damping, we wait for 30 minutes before starting a
new iteration.

Data cleaning. In our results, we only consider those targets for which we see a significant
number of responses: we require at least 10 of 25 probes for each protocol to be successful.
However, we notice multiple probing artifacts, including many duplicates, additional
ICMP packets, and RST packets. Thus, we first clean our data in the following manner:
(1) we remove duplicate packets by relying on ICMP and TCP sequence numbers—since
we sent SYN-packets, we receive duplicate TCP SYN-ACKs and RESET packets caused
by receiver timeouts; (2) we only consider ECHO-REPLY ICMP packets—we remove,
in particular, ICMP TYPE 3 (destination port unreachable) for UDP and TCP probes;
(3) we hardly get any responses to the UDP probes, hence, we do not further consider
them; (4) for a given iteration, we remove all targets for which we receive responses via
multiple interfaces—this can, e.g., occur if an AS uses load balancing. Overall, these
steps remove less than 3 % of the unique iteration-target combinations for ICMP and
TCP.

Location matters when using only two upstreams. First, we look at how different
prepending sizes influence routing behavior when using only two upstreams. Figure
5.11 shows the ECDF for the fraction of potentially movable targets (i.e., those targets
initially routed via the later prepended upstream) per iteration and iteration type. We
observe that our tested upstream-pairs cover the entire spectrum of scenarios, i.e., few,
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Figure 5.13: Hitrates by protocol and target class. Figure 5.14: Hitrates when prepending 1
(top)|N-1 (bottom) PoPs.

medium, and many potentially movable targets. Given this insight, we investigate how
many of the potentially movable targets have been moved by each prepend size. Figure
5.12 shows an ECDF for the fraction of actually moved targets (based on the number
of potentially movable targets) per PoP combination. We observe that the effectiveness
of prepending can strongly depend on the location (for around 20 % of cases, ASPP
has moved no targets, while for another 20 %, it moved almost all targets). We further
observe that the change from a prepend of size one to a prepend of size two has a
much larger impact than the change from size two to three. While we observed that
the Pre-schedule performs slightly better than the Post-schedule (see the effectiveness of
the maximum prepend size for both schedule types in the figure), the route age did not
significantly affect our results. When manually looking into our data, we observe that
for some pairs, the traffic shifts can happen either way (e.g., GRnet and Northeastern
University), whereas for others, prepending has little effect (e.g., for Georgia Institute of
Technology and Clemson University). The lack of effectiveness of ASPP might be caused
by the low connectivity degree of the ASes. However, we observe a different result for
Northeastern University despite the same number of upstream providers of Clemson
University and Georgia Institute of Technology. This highlights that location (not only
connectivity) plays an essential role in the effectiveness of ASPP. In addition, we observe
that traffic shifts, in most cases, are not gradual; instead, there is a minimum prepend
size necessary to shift a majority of the targets.

Effectiveness differs based on the target class. Based on the above results, we study if
the probing protocol and target class change the effectiveness of ASPP. Figure 5.13 shows
a box plot of per-target hit rates (i.e., fraction of experiments where the target was a hit)
per prepend size, network type, and transport protocol. Comparing the top plot with the
one at the bottom, highlights that the overall hit rates are the same for both protocols.
Comparing the different network classes, shows that Tier-1 targets were the hardest to
influence using ASPP; however, the difference between target classes is not statistically
significant.

With many upstreams, ASPP is able to shift almost all targets consistently. Finally, we
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analyze prepending’s effectiveness for more than two upstreams (second and third sets
of experiments). Figure 5.14 shows the hit rate per PoP when only one PoP is prepended
(top) or when all other PoPs are prepended (bottom). In the experiments in which all but
one upstream use prepending (bottom plot), we observe that, except for few cases, even
small prepending sizes steer all traffic to the non-prepended upstream. The same holds
for the inverse (top plot). If only a single PoP prepends, its hit rate quickly drops with
increasing prepend size; however, it never drops to zero.

Discussion. In conclusion, with only two upstreams, the effectiveness of ASPP is strongly
dependent on the location within the routing ecosystem; whereas with many upstreams,
ASPP is able to shift almost all targets consistently. This notion is consistent with our
conversations with operators. On the one hand, a few operators told us that certain
ASes (mostly CDNs) might ignore prepends during their best-route selection, leading
to limited effectiveness. On the other hand, many operators claimed that prepending
works well for their networks most of the time, highlighting that ASPP is indeed useful
for certain ASes.

5.1.6 Security Implications

In this section, we shed light on some of the security concerns of ASPP that the community
recently brought to network operators’ attention [298, 299, 309, 479]. We first analyze if
ASes manipulate prepended paths, i.e., remove prepends. Then, we experimentally verify
and evaluate—on the Internet—the potential impact of hijacking of prepended prefixes
as a basis for discussing the increased vulnerability of prepended prefixes. Finally, we
estimate if ASes that prepend their prefixes also use RPKI-based Route Origin Validation
to protect their prefixes against hijacks.

5.1.6.1 Is Removing Prepends a Common Case?

When propagating routes, ASes should prepend their ASN at least once and keep the
remaining AS path unchanged [405]. Nevertheless, no mechanism prevents an AS from
modifying the path. Indeed, there have been reports about ASes (possibly) removing
prepends from paths [524]. An AS might remove (all) prepends from a path to create
a shorter path and potentially attract more traffic. Besides malicious behavior (i.e., for
traffic inspection), potential reasons include economics (e.g., to earn revenue by trying to
increase the 95th-percentile of the exchanged traffic [361, 453]) and performance (e.g., to
adapt traffic flow).

Consider the scenario of Figure 5.1(b), where AS A announces the prefix P to its two
upstreams (AS B and AS C). AS B receives the non-prepended route, while AS C receives
a route with three extra prepends. AS A would expect that most of the traffic towards
prefix P would arrive on the link with AS B. Now suppose that AS C intends to increase
its revenue. If AS C removes (all) prepends added by AS A, it makes its route shorter
and more attractive to others.

Methodology. We check if we can observe such behavior happening systematically in
the wild. We perform active measurements, since using passive BGP data to infer path
manipulations is difficult (e.g., due to lack of visibility). Using the PEERING testbed,
between May 3rd, 2020 and May 12th, 2020, we announce our prefix with three prepends
via one of the PEERING’s upstreams, and 30 minutes later, we withdraw it. After the
withdrawal, we wait for another 30 minutes before starting a new iteration using a
different upstream. After iterating through all available upstreams, we analyze all BGP
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updates (visible at route collectors) for our prefix. If we identify an update where at
least one prepend is missing, we mark the upstream for further analysis. In the end,
we do an in-depth experiment for the marked upstreams (that removed at least one
prepend). For each of these, we announce a prepended path and wait 15 minutes for BGP
to converge. Then we manually inspect the chosen best routes via BGP looking glasses
and route servers to identify which AS is likely the one that is removing prepends. Then,
we withdraw the prefix. After 45 minutes, we check the next marked upstream. We
announce our prefix using 231 different upstreams, resulting in more than 22k observed
paths and 738 traversed ASes.

Prepending removal is rare. After manual investigation, we find that a single AS
removed prepends, on a single path (in a previous run of this experiment, in September
2019, we found three ASes consistently removing prepends). We cannot attribute this to
malicious behavior, as we learned from conversations with network operators that some
route optimizers might remove prepends.

5.1.6.2 Can ASPP “Ease” Prefix Hijackings?

By artificially increasing the AS path length, an AS makes a route “less attractive” to
other ASes. However, this behavior may create opportunities for other ASes to hijack
this prefix for a larger part of the Internet ecosystem, since longer paths are more suitable
for prefix hijacking [54]. Recall the scenario of Figure 5.1(b). Let us assume an AS X
(un)intentionally originates a path for prefix P that contains AS A as the first hop. ASes
that use a prepended path are more likely to adopt this new route (originated by AS X)
since it is shorter than the one originally propagated by AS C. Possible variations of
this scenario reflect different prefix hijacking types (e.g., using an illegitimate origin, or
manipulating the path so that the malicious AS is next to the actual origin AS [107, 456])
and route leaks [211, 475]. In all these scenarios, a “bad” route may replace a legitimate
prepended route.

Routes with at least three prepends are more vulnerable to prefix hijacking. Recall that
there have been reports that ASPP may increase the risk of prefix hijacking [298, 299, 479].
To better understand to which extent different lengths of ASPP facilitate the adoption of
hijacked routes, we performed an experiment using the PEERING testbed.

We ran our measurements between January 13th, 2020, and January 17th, 2020. In
each round, we announce our prefix using two different ASNs as originators. We first
announce it via one of the PEERING’s PoPs to all attached upstreams using AS61574 as
originator and 0, 1, 2, or 3 prepends. Then, 15 minutes later, we also announce the same
prefix via a second PEERING PoP to all its upstreams without prepends using AS61575.78

30 minutes after the second announcement, we withdraw all routes for the prefix. 30
minutes later, we repeat the experiment using a different combination of PoPs and/or
number of prepends. We select PoPs based on their location and number of upstreams:
Amsterdam, 44; Seattle, 33; GaTech, 4; GRnet, 4; and Clemson, 1. To capture the prefix
hijack’s impact, we analyze the fraction of BGP monitors that adopted the “hijacked
route” via AS61575.

Figure 5.15 shows the fraction of monitors that adopted the hijacked route per pair of
PoPs and prepend size. The results confirm the intuition that the likelihood of prefix
hijacking succeeding increases with the number of prepends. Overall, we find that if
the initial announcement used three prepends, at least 94% of the monitors adopted
the hijacked route, even when the hijacking location only has single upstream (e.g.,

78The PEERING testbed requires us to add AS47065 after the originating AS to the AS path.
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Figure 5.15: Hijacking: Fraction of BGP monitors adopting a hijacked route.

Clemson). Still, connectivity plays a vital role in the success of prefix hijacking. For all
cases where we attempted to hijack the prefix from Amsterdam (a highly connected PoP),
we succeeded for at least 93% of the monitors. In contrast, when we hijack via Clemson
(a poorly connected PoP), we only succeed if the other PoP is prepending three times.
Except for Clemson, all other PoPs were able to hijack Seattle mostly. Also, Seattle (with
33 upstreams) had less success in hijacking routes unless they had three prepends, which
highlights the complexities of the Internet routing ecosystem.

Our results using a uniform prepending policy are an indication of how ASPP can
increase the success of a hijacking attempt. While in § 5.1.4 we show that ASes uniformly
prepend many prefixes, most ASes use a binary or diverse prepending policy, whereby
one route is often not prepended. This means that the increased risk of hijacking only
applies to the part of the Internet that chooses the prepended route.

More than 18% of prepended prefixes include apparently unnecessary prepending,
which increases their exposure to hijacking and route leaks.

While for most prepended prefixes (169k) the minimum prepend size is 0, still many ASes
originate prefixes with at least one prepend to all their neighbors, which can increase
their exposure to hijacks and/or route leaks. For example, on May 4th, 2020, 6.9k
ASes originated 38.5k prefixes with this characteristic (18.6% of all prepended prefixes).
Among these, 29.4/7.4/2k used a uniform, binary, diverse policy. All these routes
contain at least one unnecessary prepend—all their policies can be implemented with
less prepending (at least as observable at the BGP monitors).79 To further understand
such potential risks, we use the BGPWeekly dataset to analyze the minimum prepending size
for all prepended prefixes. Based on results in Figure 5.16, we see that the above finding
holds across time, and also that the number of affected prefixes has grown.

5.1.6.3 RPKI-covered, Prepended Prefixes

One of the main techniques for enhancing routing security is ROV. RPKI allows ASes to
create ROAs (Route Origination Authorizations) for each of their prefixes that other ASes

79We confirmed this conclusion in our conversations with network operators.
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Figure 5.16: Prefix-origin: Pairs with at least X
prepends.

Figure 5.17: Fraction of prepended prefixes with
ROAS.

can use to validate routes using ROV (Route Origin Validation) [108, 409, 488]. Although
ROV cannot avoid the removal of prepends (see § 5.1.6.1), it can protect against prefix
hijacking attacks in which the hijacker alters the origin AS [107, 456]. Given that ASPP
potentially increases the exposure during hijacking attacks, we analyze to which degree
prepended prefixes are protected by ROAs.

Most prepended prefixes are not covered by ROAs. We use the ROAS dataset to check
which of the prepended prefixes in the BGPWeekly dataset has a ROA object. Figure 5.17
shows the coverage by ROAs of all prefixes in which all alternatives contain prepend
and for those prefixes without prepend (none).

We observe first that the fraction of prefixes covered by ROAs has been increasing in the
past years. On the other hand, we note that no more than 25% of the prefixes in each
prepending class have ROAs80. This indicates that most prepended prefixes are not even
partially protected against prefix hijacking attacks, regardless of the minimum number
of prepends.

Discussion. Our security related results confirmed the assumptions that most network
operators shared with us. Nevertheless, some of them argued that coming close to a spe-
cific traffic distribution may be more important to some ASes than reducing the potential
impact of prefix hijacks—especially with the added security due to the increasing ROV
deployment.

5.1.7 Related Work

Previous studies already focused on characterizing ASPP, understanding its effectiveness,
and pointing out possible security aspects.

Characterization. To understand the characteristics of ASPP, previous work analyzed the

80We note that the fraction of prepended prefixes whose minimum number of prepends is zero that has
ROAs is similar to the ones in the plot.

123



view of ISPs [164], IXPs [76], and route collectors [77, 174, 503, 525]. Since their numbers
were inconsistent, we refreshed and extended their findings by performing a 10-year
analysis of the main properties of ASPP. In addition, our work is the first that focuses on
prepending policies rather than only utilization rates.

Effectiveness. Swinnen et al. found—in simulations based on a degree-based network
model—that ASPP cannot always move all traffic [485]. This finding was later confirmed
in 2004 by Quoitin et al. when running measurements from a single vantage point
connected to two upstreams [395] (similar to our effectiveness measurements). In contrast
to their methodologies, we emulated and tested more than 100 real-world location
combinations and showed that the effectiveness of ASPP varies substantially by location
and the number of upstreams through which an AS announces the prepended prefix.

Security. Zhang et al. analyzed the potential of interception-attacks exploiting ASPP
based on simulations on an AS Graph extracted from the public BGP data of RouteViews
and RIPE RIS [524]. They show that well-connected ASes (e.g., Tier-1 ASes) are less prone
to this type of attack and that longer prepends amplify their risks. We actively measure
the security impact that ASPP has based on hijack emulations from various locations
and experiments to identify ASes that remove prepends; we also observed that 18.6 %
of prepended prefixes have unnecessary prepend sizes that increase their exposure to
attacks.

5.1.8 Final Remarks

Despite mixed opinions about ASPP in the networking community, we find that ASPP
is still very present on the Internet, and its utilization is slightly increasing. Surprised
by this, we checked with operators and found that the main reasons are the simplicity
of ASPP and the fact that it does not have any prerequisites. Our analysis of ASPP
reveals that prepending policies are mostly stable over time; that ASes are using a wide
range of policies when announcing their prefixes; and that prepend sizes are becoming
polarized—with either one or more than three prepends.

We unexpectedly spot many ASes uniformly prepending (all) their prefixes to all neigh-
bors, hence not influencing any remote routing decision. Via our conversations with
operators, we identified poor housekeeping of BGP configurations, limited knowledge
about BGP, and desire for stability as the possible leading causes. Our complementary
analyses with traceroutes and cross-checks with CDN data confirm that, the limited
visibility of public route collector projects cannot be the explanation for most of our
observations.

During our interviews, many operators pointed out that using ASPP suffices to accom-
plish their ITE goals. Our active measurements confirm that ASPP is effective—since even
small prepend sizes can steer the traffic of multiple routes—if used with many upstreams.
When using only two upstreams, ASPP’s effectiveness is dependent on the AS location.

We also discuss the security implications of ASPP. First, we show through active mea-
surements that some ASes remove prepends, but it appears to be rare at the moment.
Second, we find that ASPP can increase the spread of prefix hijacks, since the hijacked
route is more attractive (than the actual route) to a larger fraction of ASes. Third, we
detect that ASes originate 18% of the prepended prefixes with unnecessary prepends.

ASPP has value, and ASes are using it extensively on the Internet. However, as Internet
paths are getting shorter (as the core is getting denser), the need for large prepend sizes
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is decreasing. Thus, given the security implications of large prepends and the fact that
small prepends are often sufficient for moving traffic, we recommend network operators
to review their prepending policies, removing unnecessary prepends and using small
prepend sizes when performing ITE.

5.1.9 Ethical Considerations

To conduct our study, we relied on active as well as passive measurements. When we
used the PEERING testbed to actively announce prefixes to the Internet, we ensured
that we did not overwhelm any networks by waiting 15 minutes between consecutive
announcements. When actively sending traffic from the PEERING testbed, we ensured
not to cause any harm through the following mechanisms: (1) we sent probing packets at
a low rate, i.e., each target IP was probed with one ICMP, one TCP, and one UDP probe
once per minute. (2) we avoided traffic bursts by spreading the sending of probes equally
throughout a one-minute interval. (3) we included our contact info in the payload of each
probe providing details on how to opt-out of the probing process. We have not received
complaints nor requests to opt-out of the experiments during the entire duration of our
active experiments.

While most of our passive datasets are publicly available, we cannot share any of the
data received from CDNs and the European IXP for validation purposes. As this limits
the possibility for others to take action based on our results, we tried, whenever possible,
to reach the network operators of ASes that consistently announce uniform prefixes.

5.2 Prefix De-Aggregation Attacks

The Internet is an indispensable resource for communication, trade, commerce, education,
and entertainment in today’s world. Over the past years, the Internet has become more
and more important in people’s everyday life. Moreover, the reliance of many societies
on the Internet has only increased with the COVID-19 pandemic [74, 75, 79, 166, 297].

To counter IP address exhaustion among other things, the IPv6 protocol was designed
more than 20 years ago [136]. Although IPv6 usage was low initially, more and more
websites, services, and networks are now using IPv6. Around 20% of all websites are
IPv6-ready [501], a third of all Autonomous Systems announce IPv6 routes [224], and
around 40% of Google users globally access the website via IPv6, with some countries
reaching a deployment of more than 60% [191].

However, the additional capabilities provided by IPv6 come with new threats: e.g.,
targeted probes can find home routers in the vast IPv6 address space [177, 439]; privacy
mechanisms can be defeated and devices can be tracked over time [438]; even a single de-
vice using legacy IPv6 addressing can foil all privacy extension and prefix rotation efforts
[441]. In addition to these attacks on the data plane, IPv6 also introduces new challenges
for the control plane. Its vast address space raises questions about the scalability of the
Internet’s standard interdomain routing protocol: the Border Gateway Protocol (BGP).
Some large networks own /19 IPv6 prefixes, each of which contain half a billion possible
/48 subprefixes that reliably propagate over BGP. As routers have a limited amount of
memory available, such a large number of IPv6 prefixes would exhaust the memory of
many routers deployed today on the Internet.

In this section, we introduce and analyze a BGP flooding attack named Kirin—standing
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for Killing Internet Routers in IPv6 Networks—that overcomes traditional protection
mechanisms (e.g., per-session prefix limits and route flap damping) by originating
millions of unique IPv6 routes distributed across many BGP sessions. More specifically,
we make the following key contributions:

• Kirin: We describe a BGP flooding attack, Kirin, its threat model and recent technology
trends that enable it (cf. §5.2.2).

• Theoretical Feasibility Analysis: We combine real-world data with an Integer Lin-
ear Programming definition of our attack to theoretically analyze its feasibility wrt.
(1) required IXP presence, (2) required sessions at each IXP, and (3) the resulting ASes
that are affected. We show that Kirin is not only theoretically feasible, but can already
affect ASes globally when connecting to just 20 transit providers at 25 IXP peering
LANs (cf. §5.2.3).

• Router Testbed Evaluation: We test the effects of Kirin on one virtual and one physical
router from different vendors. We find that we can exceed router memory already
with 109k specially crafted IPv6 prefix announcements (cf. §5.2.4).

• Real-world Experiment: To demonstrate how Kirin’s requirements can be met in the
real world, we deploy the infrastructure needed to perform a small-scale Kirin attack.
Our testbed was built from scratch and fully functional in a few weeks and cost only
500 EUR (cf. §5.2.5.1).

• BGP Testbed Validation: We validate our assumptions on how routes propagate
using BGP data analysis and real-world experiments from our own and the PEERING
testbed (cf. §5.2.5.2).

• Defense Mechanisms & Notification: We extensively discuss possible defense mecha-
nisms (cf. §5.2.6) and lay-out our plan for a vulnerability notification campaign (cf.
§5.2.7).

5.2.1 Background

BGP is the standard interdomain routing protocol, where Autonomous Systems (ASes;
groupings of routers) announce and redistribute reachability information between each
other according to certain routing policies [156]. When an AS receives an announcement,
it usually consists of an IP prefix and a path of ASes to traverse; the term route thus is
used to refer to a prefix-path pair.

Routers. Routers within ASes establish dedicated TCP sessions over which BGP is run
between them. For the IPv4 and IPv6 protocols separately, each router holds a routing
information base (RIB) that contains all currently active routes. For each prefix, a router
determines its current best-path from all alternatives, and then installs the best-path’s
next-hop in its Forward Information Base (FIB). The FIB is then used to quickly retrieve
the next-hop to which the router forwards a packet. To allow a router to achieve high
throughput, the FIB is often stored in expensive, specialized memory formats such
as TCAM or DRAM, which are optimized to quickly perform longest-prefix-match
operations. This specialized memory is often a scarce resource due to its high cost, a fact
that has previously been exploited for theoretical stress attacks [139].

Route Propagation in Theory. Once a router determines the best-path for a given prefix,
it may redistribute the new route to its BGP neighbors. Whether a route is redistributed
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to a certain neighbor is determined by applying a chain of egress filter rules; the sum
of these rules commonly expresses more abstract policies that represent a network’s
business incentives. In 2001, Gao and Rexford first categorized the business relationships
between ASes and identified the consequential redistribution patterns [176]. The Gao-
Rexford model describes three types of relationships: (1) transit relationships in which a
customer pays a transit provider to forward traffic, (2) peering relationships in which
two ASes achieve mutual benefits by forwarding traffic for one another at no cost, and
(3) sibling relationships in which two ASes appear as two logically separate AS numbers
but are operated by the same organization and hence produce “arbitrary” redistribution
patterns. Based on these relationship categories, ASes only redistribute routes that
provide monetary benefit. While ASes would redistribute routes they received from
their customers to all other neighbors (as the customer ultimately pays for the delivered
traffic), they would not forward routes that they received from peers to other peers or
transit providers (as the peer would not pay for resulting maintenance or transit costs).

Route Propagation in Practice. While these abstract relationship models still hold
today [180, 251, 292], they are partially superseded by more nuanced relationships [154,
185], e.g., partial transit (i.e., for a limited set of routes), paid peering (i.e., one AS pays
the other a small fee to access routes towards its customer cone—the set of all direct and
indirect customers), or hybrid relationships, where the actual relationship between two
ASes depends on the physical location. Besides business relationships, the propagation
behavior of an AS can be influenced by various factors including (1) route reputation—
some ASes may filter and ignore routes if they or their originating AS appear in block lists
[6, 128, 474]—(2) aggregation strategy—ASes may aggregate routes before redistribution
to limit routing table growth [255, 280] or provide customers with (partial) default
routes [434]—or (3) remote signaling where, e.g., customers instruct their providers to
redistribute a route in a certain way using BGP Communities [69, 478].

Propagation Timing. There are also factors that determine when a router propagates a
route. Many ASes configure a Minimal Route Advertisement Interval (MRAI) during
which announcements are aggregated; after this timer expires, only the active best-path
is propagated, which reduces the number of propagated updates due to route flapping81

[161, 181]. Another widely deployed approach which influences the propagation time
is Route Flap Damping (RFD) [192, 383]. An RFD-enabled BGP session keeps a penalty
counter for each prefix. The counter is incremented for each received update and
decremented at fixed time intervals. If the counter exceeds a “suppress” threshold,
the router starts to dampen the prefix, i.e., it withdraws it from all its peers and no longer
redistributes updates for it. It remains in this state until the counter has decreased to
some “reuse” threshold, after which it starts to redistribute the prefix again.

Path Exploration. A router may enter a “path exploration” period once it receives a
withdraw. When the origin AS entirely withdraws a prefix, a remote AS receives the
withdraw messages from different paths spread across a certain time window—a result
of the propagation timings of the routers along a path. If a router knows multiple paths
for a prefix and it receives a withdraw for its current best-path first, then it chooses some
other path as its new best-path and generates an update that reflects the change. If a
router knows N paths for a prefix, it may repeat this cycle up to N − 1 times (in the worst
case) before it finally redistributes the withdraw message: i.e., it “explores” potentially
all of the other available paths before it fully withdraws the prefix. Path exploration is
present in most (if not all) active route propagation experiments and has been studied
extensively [17, 307].

81i.e., routes that generate many update messages as they rapidly shift between two or more configurations.
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Internet eXchange Points (IXPs). Over the last decade, peering has increasingly gained
importance [71]. IXPs allow their members to cost-efficiently establish peering sessions
with other members on top of their existing peering LANs, i.e., layer 2 switching infras-
tructures that are bound to specific geographic locations [15]. Many IXPs also provide
route servers to further facilitate peering: using a single BGP session, an IXP member can
exchange routes with all other (often 500 or more) ASes that are connected to the route
server [412]. As of 2022, there are more than 650 active82 IXPs worldwide [378]. Some of
these IXPs provide access to more than 1000 potential peering partners and routes for
more than half of the Internet [71, 390]. These reachability benefits provided by IXPs also
make remote participation attractive. Nowadays, “remote peering,” i.e., connecting to a
peering LAN via some layer 2 connectivity provider, has become the norm rather than
an exception [94, 318, 360].

Topology Blindness. While IXPs are highly popular and have been shown to enable
hundreds of thousand of interconnections, most of these interconnections are invisible to
the existing BGP monitoring platforms [15, 390]. While these platforms, in total, operate
50+ route collectors that receive and dump routing updates from 600+ feeding ASes,
they, in general, miss many peering links as those often do not propagate to any feeding
AS [15, 49, 188, 365].

Route Aggregation & Filtering. To reduce their routing table size, some ASes perform
route aggregation, i.e., they summarize multiple more-specific routes into a single less-
specific route and only propagate this summary route [174, 255, 280]. Besides aggregating
routes, operators often configure their routers to ignore specific types of routes. Especially
routes towards small amounts of address space (i.e., those with CIDR sizes more specific
than /24 and /48 for IPv4 and IPv6, respectively) are very commonly filtered [452, 480].

5.2.1.1 Related work

While the option to de-aggregate a prefix has been well-known in the operator community
for multiple decades, academic focus on the issue is limited.

Chang et al. experimentally investigated the response of 3 commercial grade routers to
large BGP routing tables in 2002 [98]. The authors found significant differences in how
routers respond and highlighted that the BGP graceful restart capability could alleviate
the effects of BGP malfunctions on IP routing. A deliberate attack and its impact on
the Internet are outside the scope of that paper. Yet, similar to Ceasar et al. [83], the
authors advocate for the use of prefix limits on BGP sessions. The operator community
largely shares this sentiment as prefix de-aggregation often exacerbates the impact of
route leaks [170, 386].

In 2013, Schuchard et al. first described the concept of prefix de-aggregation attack for
IPv4 [450]. While they describe the same underlying idea, in comparison with Kirin,
the paper does not consider various practical details: (1) they assume that the attack is
executed by major transit networks with rich peering fabrics; (2) they assume that an
AS can obtain enough address space via squatting (illegitimately announcing unused
address space) and that filters against squatting are negligibly deployed; and (3) they
assume that typical max prefix limits range between tens of thousands of prefixes and
the full routing table size. While our work builds upon the same simple idea, it actively
addresses these real-world issues, ultimately rendering the attack practically feasible:
(1) based on discussions with network operators, we assume that prefix limits are widely
deployed and usually range between hundreds to a few thousand prefixes on peering

82We consider only IXPs with operational status “active” and at least two participants.
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sessions; (2) we leverage IPv6 as an enabler to source millions of legitimately allocated—
and hence unfiltered and even RPKI-valid—prefixes; and (3) we leverage remote peering
providers, VPS providers, and IXPs to assemble thousands of sessions allowing arbitrary
actors to execute Kirin at a minimal cost. Thus, besides a theoretical feasibility analysis,
we evaluate the interlinking parts of our improved attack model in practice and on
real-world Internet data.

5.2.2 Kirin: Overview

In essence, the Kirin attack is simple and ostensibly obvious: the attacker introduces
enough new IP routes to overflow the FIB and/or RIB of the BGP routers within victim
ASes. After that, the attacker simultaneously withdraws all previously established routes,
which triggers the path-hunting phenomenon that leads to a flood of update messages
that impact the performance of routers.

The idea that routers may crash due to memory constraints is not new: many operators
already reported crashed routers when the IPv4 routing table reached 512K and 768K
routes [2, 158]. Nowadays, high-end devices from major router vendors support ~2–
4M routes in total in their FIB: Cisco’s Catalyst 8200 and 8500 platforms can store
between 800k and 4M routes (depending on the exact model and its respective DRAM
storage [117, 118]), Arista’s FlexRoute Engine can store up to 2.5M total routes [48], and
Juniper’s PTX10001 platform can handle 2M total routes [515].

However, it is the new context and availability of new methods that we believe re-enable
a well-known attack to be successfully executed on the Internet today, by anyone, and
with a limited budget. Although there are various roadblocks built into the routing
ecosystem to prevent the exploitation of the FIB/RIB overflow issue, Kirin uses a set of
observations and tricks to maneuver the existing roadblocks.

5.2.2.1 Threat Model

Our threat model, which was already introduced in a similar form by Schuchard et al.
[450], focuses on highly connected ASes with legitimate BGP speakers that act maliciously.
The goal of our adversary is to fill the FIB or RIB within a remote router to the point where
it fully exhausts the available memory using millions of prefix announcements. Hereby,
the adversarial AS is not limited to transit ASes; as we demonstrate in §5.2.3 that even
stub ASes are capable of reaching this goal. In fact, we show in §5.2.5.1 that an adversary
can start without any resources or infrastructure and yet is able to perform prefix de-
aggregation attacks within less than a month and at a cost bearable for individuals.
Notably, an AS may either intentionally decide to become an adversary (and explicitly
assemble the required infrastructure) or may be forced in this role by an outside entity
that compromised various BGP routers or a global route controller.

While an adversary’s router can only send BGP messages to the direct neighbors it
established sessions with, it relies on those genuine peers to redistribute these messages
according to common BGP policies. Further, our adversary may potentially ignore best
common routing practices, yet must assume that all other ASes may implement them.
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5.2.2.2 Enablers

IPv6. IPv6 addressing space is so much bigger than IPv4, that instead of assigning 1
IP address to 1 end-user—or even many more end-users through Network Address
Translation (NAT)—in IPv6 end-users are typically assigned /64 prefixes each. As a con-
sequence, Internet operators also handle much bigger IP prefixes, e.g., ARIN’s allocation
policy states that an ISP should never receive less than a /32 prefix allocation [47]. Given
that the smallest IPv6 prefix that reliably propagates over BGP is /48 [391, 452, 480],
potential bad actors could split their typical IPv6 prefix into much more subnets compared
with their typical IPv4 prefix. Splitting a /29 IPv6 prefix is enough to inject 1M unique
and valid routes into the global routing table. Note that these sub-prefixes can overlap:
e.g., a /46 prefix can source 7 routes in total (1x /46, 2x /47, and 4x /48). In general, if
C is the difference between the smallest propagating CIDR size (typically 48) and the
parent prefix length, an attacker can source up to 2C+1 − 1 unique routes.

Ineffective Route Aggregation. Given that we source all prefixes from the same con-
tinuous address space, a wide deployment of aggregation would nullify Kirin’s attack
potential. To overcome this challenge, Kirin only announces non-aggregatable prefix
combinations to each neighbor and may also alternate its origin AS. Please note that
the use of small, non-aggregated IPv6 prefixes is already common, and that the average
prefix length is increasing over time [225, 226].

Per-Session Max-Prefix Limits. The most commonly recommended approach to prevent
the announcements of many routes is to set a maximum number of accepted prefixes for
each BGP session. Upon hitting this limit, the session may produce a warning, might
be capped—i.e., stop accepting updates for new prefixes yet keep updating existing
ones—or can be dropped entirely [111]. Because this approach requires only per-session
state, it is simple to implement and requires no cooperation—two key factors that pushed
today’s wide deployment. Kirin attempts to respect per-session limits by distributing a
dedicated set of prefixes to each of many BGP sessions: no single prefix is shared between
any two sessions. Using this strategy transforms the goal of announcing millions of
routes into a session-hunting challenge. We further explore this relation theoretically and
experimentally in Sections 5.2.3 and 5.2.5, respectively. Moreover, during our experiments
we find IP transit and IXP operators to be permissive about increasing the prefix limits
when inquired. One major transit provider stated they do not impose prefix limits on
IP transit links; another stated they allow the limit that we set ourselves in the Internet
Routing Registry (IRR).

Accessible Internet resources. It is relatively easy to obtain an AS number and a large
IPv6 prefix valid for use in the global routing system. A quick and relatively cheap way
is to use services of a sponsoring LIR, who proxies a request for resources to one of the
5 RIRs (e.g., [14]). LIR operators can lease their allocated IP space, e.g., some offer /29
prefixes with a 48h free trial [403], which is enough to launch Kirin. Another essentially
free (yet illegal) method for malicious attackers could be squatting, a method in which
non-announced Internet resources allocated to an unrelated organization are used [351].
Finally, it is also possible to become a regular LIR and gain direct access to legit and large
IPv6 allocations. For example, as of 2022, becoming a RIPE member costs under 2500
EUR and allows for /29 IPv6 allocations without providing any justification [344, 345].

Instant and cheap BGP peering. It is no longer true that in order to establish a BGP
session neighboring networks must be physically connected [360]. Remote peering at
IXPs is an established reality, and a recent study found that already over 10% of members
of major IXPs are remote [318]. Commercial services allow for instantly establishing
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peering links with dozens of significant IXPs, cloud operators, and data centers [323,
404, 408]. Furthermore, prompt provision of VMs with IXP peering sessions has never
been easier: e.g., a VM with NL-IX peering could cost under 30 EUR per month [230],
and a VM with BGP IP transit could cost just a few USD per month [500]. Moreover,
while carrying our experiments for this section, we found it is easy to obtain free IPv6
transit—foremost from Hurricane Electric (HE), a major Internet operator, who actively
seeks to establish bi-lateral peering sessions with new IXP members. We also inquired
a few other major operators and found the cost of a BGP peering port with IP transit
would cost around 100–300 USD per month, depending on location and bandwidth.

Circumventable Filtering. While it is hard to enter millions of route-objects into IRR
databases, many providers nowadays also accept routes with valid ROAs. As ROA
entries allow for CIDR ranges, an adversary may enter a single ROA with CIDR sizes
/29–/48, wait for it to propagate, and then would pass, e.g., the route filtering checks of
HE. [221].

5.2.2.3 Collateral Damage via Path Hunting

While Kirin itself mainly fills the FIB/RIB of victim ASes, it does so by announcing
millions of routes globally that, at some point, need to be withdrawn from the Internet
again. If a global route gets fully withdrawn, the path-hunting phenomenon may
produces a burst of updates (see §5.2.1 for details).

Given that Kirin triggers this phenomenon simultaneously for millions of prefixes, it
“accidentally” generates a distributed update flooding attack. Given that some ASes use
route flap damping to ignore these announcements and stop the redistribution, it is hard
to provide realistic estimates on the number of produced updates at each AS. Hence, we
leave the analysis of collateral damage as future work and focus on Kirin’s main idea:
propagation of millions of prefixes via thousands of distributed sessions.

5.2.3 Theoretical Feasibility Analysis

In this section, we theoretically analyze Kirin’s feasibility. We consider two different
scenarios: (1) the adversary obtains (potentially costly) transit from a few providers and
(2) the adversary obtains as many (virtually cost-free) bi-lateral and multi-lateral peers as
possible. While, in reality, an adversary may use both of these scenarios simultaneously,
examining them independently allows us to keep our analysis reasonably simple while
still obtaining deep insights into Kirin’s cost-benefit trade-off. Further, we assume that
an adversary only establishes a single (virtual) port via a single method and service
provider at each peering LAN.

We start this section by clearly stating the assumptions we make about route redistri-
bution (§ 5.2.3.1) and the data sources that we build our analysis upon (§ 5.2.3.2). We
then define the cost-benefit trade-offs for the first and second scenario as ILP problems
(§ 5.2.3.3 and § 5.2.3.4) and finally discuss our analysis results (§ 5.2.3.5).

5.2.3.1 Assumptions & Definitions

Routing Policies and Assumptions. The policies that underpin today’s inter-domain
routing mostly follow economical incentives [23]. In particular, we assume that:
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Figure 5.18: Provider funnel example.

1) If an AS receives a route from a customer, it forwards the route to all neighbors.

2) If an AS receives a route from a settlement-free peer or a provider, it forwards the
route to customers only.

3) An AS will always forward a route by the above rules to maximize its economical gain.

The first and second assumptions are known as the Gao-Rexford redistribution model [176]
and have been standard assumptions for more than two decades in the field of AS re-
lationship inference [167, 185, 248, 251, 292]; the third assumption has frequently (yet
usually implicitly) been used for simulating route propagation, e.g., [257, 331, 526].
Notably, these assumptions do not always capture the real-world behavior of all ASes
perfectly (see, e.g., complex relationships [185] or non-economic incentives [180]), yet
their frequent appearance in the related literature renders them as reasonable abstractions.
Based on these assumptions, Luckie et al. introduced the notion of the customer cone,
i.e., the set of all direct and indirect customers of an AS [292]. While they introduced
multiple methods to calculate this set, we choose the one that only uses routes the AS
forwarded to its peers and providers, as it yields more stable and realistic results. By
recursively applying our three assumptions, one arrives at the high-level statements:
(1) routes sent to a peer will eventually reach all ASes in the peer’s customer cone and
(2) routes sent to a transit provider will eventually reach all83 ASes globally.

Provider Funnel & Funneling Degree. In this work, we introduce the concept of provider
funnel PFT as the set of all recursively added providers for a given target AS T . We
use the example in Figure 5.18 to further illustrate this concept. In our example, T is
multi-homed to two direct providers—P1 and P2. Neither P1 nor P2 are Tier1 ASes, so
they also rely on different transit providers P ∗ and I to reach certain parts of the Internet.
When P ∗ announces a route to P1, P1 likely forwards this route to T . Even though P ∗

and T share no direct connection, P ∗ is an indirect provider of T .

When executing Kirin, our vantage point V has connections to ASes within T ’s provider
funnel. As these ASes redistribute our routes so they ultimately reach T , we call them
injection ASes. Moreover, as V might maintain multiple BGP sessions to I (e.g., at different

83Notably, there are certain situations in which a route does not propagate, e.g., because it is filtered or
because certain ASes only want to have a default route from their providers.
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IXPs), we further define an injection session as a unique BGP session to an injection AS.

Finally, we call the number of ASes in PFT as the funneling degree of T and denote it as
FDT . Note that we include T in its provider funnel, i.e., PFT = {P1, P2, P

∗, I, T}. We
use the term restricted funneling degree FDS

T to refer to the size of the provider funnel
when only considering ASes in S, i.e., FDS

T = |PFT ∩ S|.

5.2.3.2 Data Sources & Processing

We estimate funneling degrees using two inputs: (1) the number of sessions that each AS
has with each peering LAN and (2) the provider funnel for each AS.

Estimating Peering LAN Sessions. On 2022-09-09, we generated a snapshot of EURO-
IX’s IXP database [159]. We further obtained a PeeringDB snapshot for that day from
CAIDA’s daily archive [90]. While the EURO-IX data set does not contain a direct
reference to the IXP, it contains the PeeringDB identifier for each co-location facility,
which allowed us to merge the (peering LAN, ASN, IPv6 address) triplets we
extracted from both data sources. The obtained data describes 24k sessions via 725
peering LANs.

Estimating IPv6 Provider Funnels. While CAIDA publishes provider-peer-determined
customer cone files on a monthly basis (available at [87]), this data set comes with two
problems: (1) it it not available for the IPv6 routing ecosystem and (2) it only uses data
from public route collectors which miss significant portions of the AS topology. Hence,
we generate this data set (and most of the required tooling) from scratch.

We first extract all IPv6 routes from public route collector data via BGPStream on 2022-
09-09 (including routes from all RIB snapshots and update messages). Next, we add
routes from 130 IPv6 route servers of 11 IXPs—e.g., DE-CIX, LINX, and IX.br—including
both primary and (potentially multiple) secondary servers. All of these route servers
provide a public Alice-lg looking glass utility [131] that has a back-end API allowing for
obtaining all IPv6 routes received from their peers. We automated the querying process
and obtained the IPv6 routes of all route servers throughout 2022-09-09.

To estimate AS relationships, we utilize the publicly available ASRank script [87]. We
modify the script to tailor it towards the IPv6 ecosystem [186]. We use the previously
collected IPv6 routes and a list of route server ASNs—that we obtained by selecting
ASNs with the “Route Server” network type within our PeeringDB snapshot—as input
to the modified ASRank script, which leads to the inference of 247K peering links and
32K transit links. Finally, we convert the IPv6 paths and business relationships into peer-
provider-determined customer cones [334]. To calculate provider funnels, we inverted
these customer cones, i.e., we checked for each AS in which other AS’ customer cone it
appears.

5.2.3.3 ILP Formulation: Transit Scenario

Now that we obtained the required data sets, we can formalize Kirin’s resource needs
and attack potential. In our first scenario, we assume that the adversary chooses multiple
transit providers and then joins peering LANs to establish additional sessions with the
chosen providers. As discussed in § 5.2.3.1, we assume that routes announced to a transit
provider propagate globally. As every prefix reaches each AS globally, we can focus on
the number of sessions that can be obtained by using Pmax providers and connecting to
Lmax peering LANs.
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Sets. Let A be the set of all IPv6-enabled ASes and L be the set of all peering LANs.

Parameters. Let ωa,l denote the number of unique sessions that can be established with
AS a ∈ A at peering LAN l ∈ L. We can then build the following session matrix:

S =


ωa1,l1 ωa2,l1 · · · ωa|A|,l1

ωa1,l2 ωa2,l2 · · · ωa|A|,l2

...
...

. . .
...

ωa1,l|L| ωa2,l|L| · · · ωa|A|,l|L|


We further provide the parameters Lmax ∈ N and Pmax ∈ N that reflect the maximum
number of peering LANs and providers that can be chosen.

Variables. We first introduce a binary decision matrix D that contains a binary decision
variable da,l for each ωa,l that denotes whether provider a ∈ A at peering LAN l ∈ L is
part of the solution. Further we introduce two sets of binary decision variables that help
us to realize our constraints: CL contains a variables cll for each l ∈ L that determines
whether the adversary has to connect to peering LAN l while CP contains a variable cpa
for each a ∈ A that determines whether a is chosen as a transit provider

ILP Problem Formulation. Given S, Lmax, and Pmax, our goal is to chose a set of
providers and a set of LANs such that we can obtain the maximum number of sessions,
i.e.,

maximize
∑
l∈L

∑
a∈A

ωa,l ∗ da,l

To ensure that only Lmax LANs and Pmax ASes are chosen, we add the following two
constraints:

wrt.
∑
l∈L

cll ≤ Lmax∑
a∈A

cpa ≤ Pmax

Next, we need to make sure that da,l is always 0 whenever either cll or cpa are 0—if a
LAN/AS is not chosen, its entire line/row should only contain zeros. If both, cll and cpa,
are set to 1, we want ωa,l to be arbitrarily large (the more sessions can be obtained, the
better). To represent this circumstance we introduce a “large enough” number, B, and
formulate the following constraints:

∀a ∈ A :
∑
l∈L

ωa,l ∗ da,l ≤ cpa ∗B

∀l ∈ L :
∑
a∈A

ωa,l ∗ da,l ≤ cll ∗B

For our calculations, we set B = 1010 which is multiple orders of magnitude larger than
the sum over all entries in the session matrix S. Using this ILP formulation, we can
now calculate the maximum number of sessions that can be obtained for at most Pmax

providers when connecting to at most Lmax peering LANs.
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5.2.3.4 ILP Formulation: Peering Scenario

In our second scenario, we assume that the adversary chooses multiple settlement-free
peers as injection ASes and then joins peering LANs to establish additional sessions
with them. This case differs from the previous one, as routes are no longer propagated
globally but rather only into the customer cone of the injection AS. We reuse the notation
from § 5.2.3.3.

While we already defined the funneling degree, FDa, of an AS a ∈ A in § 5.2.3.1, we need
to extend this concept to incorporate the number of sessions that can be established with
the injection ASes. We can calculate the Session-Multiplied Funneling Degree (SMFD),
fP
a,l, for AS a using only injection ASes in I ⊂ A that are present at peering LAN l:

f I
a,l =

∑
i∈I

ωi,l · 1PFa
(i)

where 1Y (x) represents the indicator function that returns 1 if x ∈ Y and otherwise 0.

Parameters. After calculating f I
a,l for each (peering LAN, ASN)-pair, we build the matrix

F as our first parameter:

F =


f I
a1,l1

f I
a2,l1

· · · f I
a|A|,l1

f I
a1,l2

f I
a2,l2

· · · f I
a|A|,l2

...
...

. . .
...

f I
a1,l|L|

f I
a2,l|L|

· · · f I
a|A|,l|L|


We also provide the parameters R ∈ N and N ∈ N and a set of potential injection ASes,
I . R describes the required SMFD to count an AS as fully affected, and N describes the
required number of fully affected ASes.

Variables. We add two binary decision variables, dl ∈ {0, 1}, l ∈ L and ca ∈ {0, 1}, a ∈ A;
dl determines whether the adversary should participate at peering LAN l while ca tracks
whether the current peering LAN selection introduce a session-multiplied funneling
degree of at least R for AS a.

ILP Problem Formulation. Given I , F , N , and R, our goal is to minimize the resources—
i.e., the number of peering LANs with which we have to establish a connection—needed
to perform the Kirin attack, i.e., our objective function is:

minimize
∑
l∈L

dl

Every valid solution should have a least N fully affected ASes. Hence, we first add this
constraint: ∑

a∈A

ca ≥ N

Next, we want to assure that the combined SMFD (across all chosen LANs) of an AS
is larger than R for at least N many ASes. Here, we utilize the fact that at least N
many ca variables are set to 1 (by the previous condition) while all other are set to 0.
When we multiply R by ca we effectively generate a switch that either does nothing
or conditions the session-multiplied funneling degree of a to be larger than R. As the

135



Figure 5.19: Transit Scenario: trade-off landscape.

described condition works only for a single AS, we have to add it once for each AS:

∀a ∈ A :
∑
l∈L

dl ∗ f I
a,l ≥ Rca

Notably, this formulation does not incentivize the ILP solver to arrive at the solution
with the largest number of set ca variables—each solution that sets at least N of them is
seen as equally good by the solver.

5.2.3.5 Analysis & Results

Now that we have formulated our two models, we can run an ILP solver with varying
input parameters to explore Kirin’s cost-benefit trade-off landscape.

Implementation and Execution. We implement the ILP program using Python3’s PuLP
library [394]. We configure PuLP to use the CBC C++ solver [123] and time out (i.e.,
return the current best, potentially sub-optimal solution) after three hours. We refine sub-
optimal solutions whenever possible, i.e., when an optimal run with stricter requirements
produced a better objective value than a sub-optimal run, we copy the results from the
optimal run over to the sub-optimal run.84

Transit Scenario We solve the ILP problem defined in § 5.2.3.3 for Lmax and Pmax

values between 1 and 100 and obtain the maximum number of sessions that can be
established using each pair. Figure 5.19 shows different lines for the number of transit
providers (Pmax), the number of peering LANs (Lmax) on the x-axis, and the resulting
number of obtainable sessions on the y-axis.

Peering Scenario We first observe that we can establish more than a thousand transit
sessions by choosing 20 providers and join 25 peering LANs. Given the many possibilities

84e.g., when you need X peering LANs to affect 1000 ASes, you do not need more than X to affect 900 with
otherwise identical configuration.
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Figure 5.20: Peering Scenario: trade-off landscape for Iall (left), I20 (middle), and I5 (right).

to remotely connect to a peering LAN as well as the cheap (in fact, often free) IPv6 transit
options, deploying such an infrastructure is not a major hurdle. If each sessions allows
us to send 1000 prefixes (which is not uncommon for transit sessions), this setup would
already allow us to inject 1M routes into the global routing table.

We further observe that we need to contract at least 35, 45, and 60 transit providers while
joining at least 40, 60, and 80 peering LANs to establish 2000, 3000, and 4000 sessions via
just a single port per peering LAN, respectively. While certainly harder to achieve, these
scenarios are not out of reach for, e.g., state-backed adversaries.

We solve the ILP problem defined in § 5.2.3.4 for different required SMFDs (R), required
fully affected ASes (N ), and three different sets of injection ASes (I). We first choose
Iall to be the set of all IPv6-enabled ASes, which corresponds to setting up a bi-lateral
peering link with each AS that participates at a peering LAN. While accomplishing this
connectivity setup is unrealistic for new and small ASes, it provides us with a lower
bound for the number of needed peering LANs. After that, we choose restricted sets
of injection ASes, i.e., a scenario in which the adversary convinces a limited number of
ASes to setup bi-lateral peering. In this scenario, choosing peers with large customer-
cones and many sessions is the most ideal; hence, we rank ASes by the product of their
customer-cone size and their total session count across all peering LANs and then choose
the top 5 and top 20 ASes to represent the injection sets I5 and I20, respectively.

Figure 5.20 shows the resulting trade-off landscapes for Iall (left), I20 (middle), and
I5 (right). Each subplot shows the number of fully affected ASes (N ) on the x-axis,
different curves for the minimal required session-multiplied funneling degree (R), and
the resulting minimal number of required peering LANs on the y-axis. The Iall subplot
shows that if an adversary could establish bi-lateral peering connections to all ASes
at IXP LANs, connecting to a single (or few) peering LAN(s) is sufficient to generate
R = 600 for 8000 (and probably more) ASes. If the adversary can only establish peering
with the injection ASes in I20 or I5, it is realistic to connect to enough peering LANs to
introduce R = 200 for 5000+ ASes, yet further increasing the required session-multiplied
funneling degree might become a significant obstacle.

While a real adversary would realistically arrive at a setup somewhere between Iall
and I20, properly representing the full spectrum of possibility, which is probably highly
dependent on case-by-case, non-technical aspects (e.g., access to the right contacts, mar-
keting, justification of need, “prestige” in the operator community, etc.), goes beyond the
scope of this section. Yet, our analysis shows that running Kirin solely based on peering
connections—which often have max-prefix limits of ~100—seems unrealistic. This insight
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is further substantiated by our experiments in § 5.2.5.2 which show that announcements
via bi-lateral peering sessions do not necessarily propagate to all ASes within a peer’s
customer cone, which means that our calculated SMFDs are likely overestimates.

Discussion & Feasibility While it is unlikely that an adversary acquires enough ses-
sions via bi-lateral peering alone, we demonstrated it is possible to get thousands of
sessions from various transit providers. Notably, our analysis took a very conservative
approach for estimating the session count. In reality, an adversary could use 5, 10, or even
more different VPS and remote peering providers simultaneously to establish multiple
ports at each peering LAN, which would provide a linear multiplication factor to the
number of sessions that can be established. Hence, a highly motivated adversary could
potentially end up with 10k+ sessions, most of which capable to reach a significant
portion of the IPv6 routing ecosystem. Even if each session would be tightly limited
to 100 prefixes, such a setup could still produce an increase of 1M prefixes; hence, we
conclude that performing Kirin is clearly feasible.

5.2.4 Testing Router Behavior

As the ”512k day” in August 2014 (as well as its successors) received substantial media
coverage [2, 158], router vendors are well aware of the possibility and potential impact
of exceeding a router’s available RIB or FIB memory. In this section, we examine how
routers react to a large number of announced non-aggregatable IPv6 routes.

We perform our evaluation in our testbed with one popular enterprise router—the
Juniper MX5 [252]—and one virtual version of a popular core router—the Cisco Virtual
Router XRv9k [110]. We use ExaBGP [160], a stateless BGP speaker, to quickly announce
a large number of routes from a measurement machine to each of the two routers and
assess the impact of those announcements over time. We devise two different scenarios
for our experiments: (1) the best-case scenario (from the victim’s perspective), where
each route contains the shortest possible AS path (i.e., a single AS, resulting in a path
length of 1) and no BGP communities attached at all; (2) the worst-case scenario, where
each route contains the longest possible AS path and maximum number of large BGP
communities85. For both AS numbers as well as BGP communities we choose 32 bit
values to maximize the impact on router memory. For the hardware and the virtual
router we use a minimal configuration whenever possible. The Juniper MX5 does not
have any prefix limit configured by default, while the Cisco Virtual Router XRv9k has a
default prefix limit of 524,288 for IPv6 [113]. We increase XRv9k’s prefix limits for our
experiments. Note that these prefix limits do not make Kirin infeasible (cf. §5.2.2.2),
in fact they can be easily circumvented by announcing prefixes over multiple sessions.
While we continuously announce new routes via ExaBGP, we monitor the resource usage
of the system under test.

5.2.4.1 Juniper MX5

We begin our testbed experiments with the Juniper MX5 router. In Figure 5.21 we show
the results of our memory exhaustion experiments. In the best-case scenario, the router
is able to accept around 2.04 million prefixes, before running out of memory. In the

85The maximum possible AS path length and number of BGP communities that can be sent with ExaBGP
is 251, even though the BGP [405] and BGP large communities [207] specifications allow even longer path
attributes.

138



Figure 5.21: Juniper MX5 and Cisco XRv9k memory exhaustion for best-case (BC) and worst-case
(WC) announcements.

worst-case scenario this number drops to a low 109k prefixes—which is substantially
lower than the current number of all announced IPv6 prefixes (164k) [217].

Once the router’s memory is exhausted it will trigger an out-of-memory exception, which
results in the BGP routing process being killed. This results in a core dump of the routing
process86, a complete loss of all established BGP sessions, and a purge of all entries in the
RIB and FIB.

5.2.4.2 Cisco Virtual Router XRv9k

Next, we perform our experiments with the Cisco Virtual Router XRv9k. We show the
results of our memory exhaustion experiments in Figure 5.21. In the best-case scenario,
the virtual router accepts slightly more than 5 million prefixes before running out of
memory. In the worst-case scenario, it only accepts around 1.16 million prefixes.

The virtual Cisco router deploys different levels of memory alerts [437]. (1) a minor alert
is triggered at 85% memory occupancy which leads to rejection when trying to establish
new eBGP sessions, whereas already established sessions are not affected. (2) a severe alert
is raised at 90% memory usage and at that point the BGP daemon shuts down already
established eBGP sessions until the memory threshold becomes minor. The daemon
shuts down BGP sessions with the lowest percentage of best paths selected (# best paths
from peer/# total paths from peer). (3) a critical alert will be triggered at 95% memory
usage, which leads to a shutdown of all established BGP sessions. In our experiments we
trigger all of these alerts sequentially, leading to a complete shutdown of all established
BGP sessions.

86Interestingly, the core file can be so large that it leads to the /var directory on the router becoming full,
which can not be written to anymore, unless cleaned manually.
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5.2.4.3 Theoretical Lower Bound Memory Usage

We can also calculate the lower bound RIB memory usage of our worst-case announce-
ments as follows:

MEM = (PREFIX_SIZE + (255×ASN_SIZE)+
(255× COMM_SIZE))×NUM_PFX

Assuming a prefix size of 16 bytes for the IPv6 prefix and 1 byte for the IPv6 prefix length,
an ASN size of 4 bytes, and a BGP large community size of 12 bytes, we get a lower
bound of MEM = 4097×NUM_PFX , i.e. every worst-case prefix needs at least 4kB
of RIB memory. Given that today’s core routers (e.g., Cisco ASR 9000, Juniper MX960, or
Arista 7280CR2K) have RIB memory sizes of 32 or 64 GB, a large number of worst-case
prefixes can still bring a router with lots of memory to its knees: 8M prefixes—which
can be obtained from de-aggregating a /26—suffice to fill up 32 GB. Finally, as the IPv4
Internet is approaching the 1M route threshold [223] and the increasing deployment of
technique such as RPKI [466], fewer routes from an attacker will be needed to further fill
up a router’s RIB memory.

Takeaway 1: Enterprise routers can already be overwhelmed with as little as ≈ 100k announce-
ments, whereas core routers can at least handle around 1M. In the worst case, a route needs at
least 4KB router memory to be stored.

5.2.5 Real-World Experiments

Due to ethical concerns as well as economical and social consequences, we can not simply
perform a large scale attack on the Internet to provide a proof-of-concept. Instead, we opt
for multiple small-scale experiments that provide interlocking insights into the viability
of different parts of the attack.

5.2.5.1 Obtaining Resources and Connectivity

We state in Section 5.2.2.2 that it is fairly easy to (1) receive the resources needed to execute
the proposed attack, (2) join multiple IXP peering LANs, and (3) establish additional
sessions to large transit providers. Below we report on our experience in building and
operating a proof-of-concept network capable of performing a small-scale Kirin attack at
negligible cost.

Internet Resources. We obtained an AS number (AS39282) and a few IPv6 address blocks
(2a10:cc47:100::/40, 2a0e:b107:e80::/44, and 2a10:2f00:15d::/48) through a sponsoring
LIR (Securebit), at a total cost of 270 EUR (valid for 1 year). It took only a few days from
requesting these resources until obtaining them for use on the Internet.

Takeaway 2: It is possible to obtain ASNs and IP prefixes within days and at a low cost.

Peering LANs. We built our proof-of-concept network using 2 VMs with IXP access:
one in Frankfurt (provided by vServer.site) and another in Dusseldorf (provided by
Securebit). This allowed us to directly access all route servers and peering LANs of 4
medium-to-large size IXPs: DEC-IX, NL-IX, KleyReX, and LocIX. In total, we paid an
initial setup fee of 160 EUR and a monthly operating fee of 60 EUR. It took a day till we
connected to the first IXP and a few weeks until we connected to the last IXP.

Takeaway 3: IXP connectivity providers let new ASes quickly join many peering LANs at a
small cost.

140



Transit Sessions. We decided to use Hurricane Electric (HE, AS6939) as our main transit
provider, as it is one of the most important IPv6 networks [247]. Surprisingly, HE reached
out to us about setting up bilateral peering sessions at our IXPs—with a free IPv6 transit
option—before we even knew the IXP on-boarding process finished. Additionally, we
obtained a VM in Amsterdam from Vultr (AS20473), which provides BGP transit to its
customers at no additional cost. We paid no setup fee and a monthly operating fee of 5
USD. The VM was available in a few minutes.

Takeaway 4: It is possible to instantly get cheap IP transit.

Prefix Limits. After finding out our sessions have low prefix limits, we asked if our
providers could raise them. As a result, in less than 24h, most operators increased the
limits by an order of magnitude without asking for explanation. Other operators stated
they could arbitrarily raise the limits given a reasonable justification.

Takeaway 5: Increasing prefix limits is a matter of asking, and often requires no justification.

5.2.5.2 Propagating Announcements

Below we take a closer look at the routing ecosystem itself. In particular, we analyze
the correctness of the claims we made earlier in Sections 5.2.2 and 5.2.3. We use the
infrastructure described in the previous subsection and the PEERING testbed to run
real-world experiments for a limited number of ASes and contrast our findings with
insights obtained from the routing information captured by the route collector projects.

Setup Specifications We make use of the proof-of-concept network that we built in
the previous subsection to produce IPv6 route announcements. Besides the thousands
of (implicitly gained) multilateral peering sessions via route servers, our network only
has few direct sessions (most of which connect to HE). To improve our coverage of
large IPv6 transit providers and, thereby, improving the generalizability of our results,
we also utilize the PEERING testbed [444, 448]. The PEERING testbed is a research
network that allocates resources (i.e., ASNs and prefixes) to submitted and accepted
project proposals. It has 207 direct IPv6 sessions to 150 different networks distributed
across 9 physical locations as well as dedicated IPv6 sessions to 12 route servers at 5
IXPs. All announcements from the PEERING testbed were originated from AS 47065
and sourced from the 2804:269c:10::/44 IPv6 address block. In addition to the standard
project capabilities we received the additional capability to announce BGP communities
that control the redistribution behavior of the connected route servers.

Announcement Schedules. We announced a dedicated /48 IPv6 prefix via each session.
As we control fewer unique /48 prefixes than we have sessions, we first organize the
sessions into groups and then reuse the same prefixes across groups (but not within each
group). To substantially reduce the likelihood that two successive groups are influenced
by one another (e.g., as the first one triggers Route Flat Damping), we adopt a two hour
announcement schedule—we announce all prefixes within a group, then wait 30 minutes
for route convergence, then withdraw all prefixes, and then wait another 90 minutes
before repeating the cycle with the next group. While, e.g., MRAI timers [181] or similar
update minimization techniques may introduce few minutes of delay to the propagation
of our our announcements, we have to wait additional 60 minutes in the last step to
ensure that accidentally triggered Route Flap Damping penalties expire [192] and can
hence no longer influence the next group of announcements.

Routing Information. We utilize the route collector projects RIPE RIS and Routeviews as
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our vantage points. In total, they operate 47 IPv6-enabled route collectors that connect to
305 full-feed ASes via 555 IPv6 sessions. For our analysis, we utilize all available RIB
snapshots at 2022-09-26, 00:00 UTC+0 using the BGPStream utility.

Routes Paths Prefixes

Total 58.2M 13.9M 223K
AS set 12K (0%) 10K (0%) 57 (0%)
ATOM. 4.2M (7%) 1.0M (7%) 161K (72%)
AGGR. 5.1M (8%) 1.3M (9%) 16K (6%)
Any Hint 6.4M (10%) 1.6K (11%) 162K (72%)

Table 5.1: Results of aggregation analysis.
Route Aggregation In this first experiment, we announce pairs of aggregatable routes
via all our transit providers, i.e., HE at our infrastructure and 7 different transit providers
at the PEERING testbed. We repeat this experiment twice. The first time, we announce
two consecutive prefixes (i.e., A:B:C::/48 and A:B:C+1::/48) via each session. As both
routes are entirely identical, a transit network may decide to aggregate these two routes
and only redistribute the resulting /47 route that covers both announcements. The
second time, we announce a /47 covering prefix and the /48 sub-prefix with the same
network address (i.e., we announce A:B:C::/47 and A:B:C::/48 but not A:B:C+1::/48).
In this scenario, a transit AS may decide to not redistribute the more-specific /48 route
given that the AS path is identical. While we see all announcements propagate globally
(i.e., each prefix is seen by at least 95% of all route collector peers), we see no signs of
aggregation.

Analysis. When an AS aggregates a route, it may leave up to three clues in the BGP
messages that it redistributes. First of all, AS paths may consist of AS sequences and AS
sets [405]. A set is generated whenever two routes with different AS paths are aggregated;
they represent a summary of the non-matching parts of the two initial AS paths. If an
AS aggregates a route and generates no AS set during this process, it should add the
ATOMIC_AGGREGATE attribute to the message. Finally, an AS may set the AGGREGATOR
field to indicate that it produced this route aggregate. We searched all IPv6 routes seen
by the route collectors for these three hints and display our findings in Table 5.1. While
we observe that 72 % of prefixes have at least one path with an aggregation hint, we only
observe 11 % of paths and 10 % of routes with aggregation hints; hence, we believe that
only few ASes actively perform route aggregation. While we did not find any signs of
route aggregation during our own experiments, an adversary could also make routes
less aggregatable by announcing neither neighboring nor covering prefixes to the same
neighbor, and alternating the origin AS.

Takeaway 6: While aggregation is a theoretical challenge, it is rare in practice and can be
circumvented.

Route Redistribution Next, we want to analyze whether our assumptions for the route
propagation behavior of transit, bi-lateral, and multi-lateral sessions are accurate. While
the number of transit providers for both testbeds is limited, applying our schedule to
all bi-lateral and multi-lateral peers connected to the PEERING testbed would require
extensive amounts of time; hence, we select a smaller set of important ASes.

Tested Networks. The importance of a network for our attack can be characterized by
two dimensions: the number of sessions we can establish with it, and the number of
networks it redistributes our announcements to. Figure 5.22 shows the customer cone
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Figure 5.22: PEERING testbed peers: customer cone vs. peering LANs.

size (y-axis) against the number of peering LANs to which a network is connected (x-axis)
as a scatter plot for all networks with PeeringDB entries. We mark networks that connect
to the PEERING testbed in blue (“PTB Peer”) or red (“Selected”) and all other networks
in green (“Others”). As both dimensions are equally important to Kirin, we select the 15
PEERING peers with the highest harmonic mean87 of customer cone size and the number
of potential sessions.

Experiment. Figure 5.23 shows the fraction of route collector peers (y-axis) reached
by /48 announcements via each of the three different session types (on the x-axis).
We calculate this fraction twice: once relative to all IPv6 route collector peers (green,
“total”) and once relative to the peers within the customer cone of the neighbor to
which we announced the prefix (blue, “within customer cone”). We can first verify
that announcements towards transit providers always propagated globally and that
announcements via multi-lateral peers barely propagates at all. Yet, contrary to our
assumption, not a single bi-lateral peering sessions redistributed our announcements
into even half of its customer cone. Hence, we likely over-estimated the achievable
funneling degrees in § 5.2.3.4, which we already noted in that section.

Analysis. To further test the validity of our transit propagation assumption, we analyze
the public BGP data. After removing path-prepending [312], we select all prefixes for
which all paths have the same first-hop AS, i.e., that were announced via a single transit
provider. Figure 5.24 shows the minimal, median, and maximal propagating route for
each of these transit providers as an ECDF. We observe that for 80 % of transit providers
every route propagates globally (i.e., to more than 80 % of route collector peers), while
for 89 % and 94 % at least the median and best route propagated globally, respectively.

Takeaway 7: While bi- and multi-lateral peers do not necessary redistribute into their entire
customer cones, announcing to a transit provider leads to global redistribution.

87Compared with arithmetic mean, the harmonic mean leans towards lower numbers, which penalizes
networks that appear large in only one dimension.

143



Figure 5.23: Redistribution behavior of different
session types.

Figure 5.24: Redistribution behavior for transit
providers of single-homed ASes.

5.2.6 Discussion

Targetability & Collateral damage. While we introduced Kirin as a global attack, BGP
has many mechanisms that allow an adversary to steer the redistribution of a route. Many
transit providers allow their customers to directly decide to which neighbors their routes
get redistributed by attaching specifically encoded BGP community attributes [69, 96,
478]. In addition to this collaboration-based technique, the adversary may also “poison”
the AS path to avoid that certain ASes accept the route. The poisoning method leverages
cyclic route filters implemented by most routers: if the adversary A forges a route with
the path AXA and this route propagates to AS X , X will likely drop it [258]. As the
Internet’s routing hierarchy has flattened drastically over the last decade, it is likely that
a combination of these two mechanisms could be sufficient to steer routes towards most
regional networks. Yet, even if the adversary succeeds in steering the majority of the
attack towards a single AS, the increase in redistributed routes at the intermediate ASes
should still be very noticeable providing an opportunity to detect the attack and limit
the redistribution.

Detection & Mitigation. Kirin is easily detectable as it introduces multiple times more
routes than the current IPv6 routing table contains in total. Hence, even operators that do
not monitor their own network could detect it by checking Twitter notifications from the
IPv6 routing table size bot or the BGPStream bot [109, 130]. Once some operator detected
the attack and shared the origin ASes involved in it via some high-visibility operator
mailing list such as NANOG, the attack can be mitigated by adding simple ingress filters
for the covering prefix and origin ASes. Once these filters are added, the routers no
longer import any routes related to the attack which should prevent the router from
running out of memory and also drastically lower the CPU load. Due to the simplicity
of the mitigation process, Kirin’s attack duration is effectively limited to how quickly
network operators (especially those of intermediate ASes) can co-ordinate the mitigation
efforts—a time that we hope to substantially reduce by raising awareness via this work
and our carefully designed disclosure process.

Traceability & Repercussions. Kirin’s resources are easily traceable to the RIRs that
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allocated them and, from there, might be directly accountable to a specific person or
organization. While this seems like a large issue, there are no real sanctions or direct
repercussions for “routing vandalism.” Bitcanal illustrates this issue nicely: besides loos-
ing some “reputation” via call-outs from researchers and operators [451, 487], Bitcanal
continued to frequently hijack the resources of other ASes over multiple years, until
Spamhaus added all related ASNs to their “Don’t route and peer” list [474].

5.2.6.1 Potential Defense Mechanisms

While Kirin can be mitigated quickly, we ideally would like to entirely prevent it from
being feasible. Yet, based on its distributed nature, there is no simple solution that fully
prevents the attack; however, there are multiple technical and non-technical mechanisms
that may limit Kirin’s impact or increase its requirements.

Dynamic Yet Tight Max-Prefix Limits. Transit providers should introduce dynami-
cally growing yet tight per-session limits on their eBGP sessions. We recommend to allow
customers and peers to announce at most 1.5x the number of prefixes they announced
the previous day. Similarly, the IPv6 routing table currently grows <50k new prefixes
per year [217]; hence, we further recommend to allow a maximum daily increase of at
most few thousand prefixes on transit sessions. Automatic imports of max-prefix limits
from, e.g., PeeringDB should be sanity checked and not be allowed to surpass a certain
pre-defined limit—otherwise adversaries could enter arbitrary high numbers and abuse
the prevention automation.

Per-Origin and Per-Block Prefix Limits. We highly recommend transit providers to stop
the redistribution once too many routes within the same covering prefix or by the same
origin AS are announced. While covering prefixes would optimally be determined by
analyzing the daily IRR delegation files, counting on a /29 or /32 basis might be easier to
implement. Currently, the AS with most announcements is AS9808 with 3870 IPv6 routes
and the covering prefix with the most more-specific announcements is 2409:8000::/20
with 9807 more-specifics. As implementing these limits on each router is costly (and
may still be insufficient if different routers receive unique sets of routes), we highly
recommend (if available) to introduce these limits on a route reflector.

Tight Resource Monitoring & Filtering. We recommend transit providers to monitor the
number of sessions that other ASes establish with them—especially if their peering policy
is fully open or they employ a fully automated session establishment service. If they
automatically generate filter lists from third party data sources (e.g., RPKI [304], IRR [325],
or Team CYMRU [128]), we recommend them to carefully monitor the resulting filter size;
checking the number of acceptable prefixes may reveal the preparation for a Kirin attack
early. Further, we recommend transit providers to only redistribute what is correctly
registered and avoid loose filtering, i.e., do not assume that more-specific versions of
route objects or ROA records are valid by default. While this will not directly prevent the
attack, it will increase the effort on the adversary’s side to register the resources correctly.

Delayed Propagation of Unfamiliar Routes. The concept behind Pretty Good BGP [257]
is to avoid propagation of anomalous routes, not seen in a window of historical data.
Thus, the use of previously unseen routes is delayed, with the hope of identifying and
neutralizing any attacks in the meantime, if the route was really malicious. In the context
of Kirin, if the attacker used a hijacked prefix, the idea presented in that paper could stop
the attack from propagating further, yet note that prefix history tracking needs memory
anyway. On the other hand, as Kirin does not need IP prefix hijacking, the attacker
can use a large pool of addresses that has never been announced on the Internet before.
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Thus, we suggest modifying the Pretty Good BGP idea so that it also delays accepting
announcements of new prefixes that are not contained in already propagated, larger
address blocks.

5.2.7 Ethical Considerations

The attack framework we present in Section 5.2.2 has the potential to cause serious harm.
Hence, our research naturally raises several ethical concerns, which we discuss in this
section.

Real-world Experiments. While we performed a thorough theoretical evaluation of our
attack’s potential impact (Section 5.2.3) and assess the behavior of various hardware
implementations exclusively in a non-Internet-connected lab environment (Section 5.2.4),
the Internet is a dynamic system, and—given the issue of deaggregation is well known—
might not be susceptible to the attack after all. Hence, we also conducted real-world
experiments, see Section 5.2.5.

When designing our experiments, we closely followed the Menlo report [261] and work
by Partridge and Allman [377] to mitigate potential harm to the Internet. This includes a
thorough harm benefit analysis after assessing the theoretically possible impact. Here, we
weighted that the underlying techniques of our attack are generally known in the commu-
nity, and it is likely that others with potentially malicious intentions may independently
develop our scaling methods for prefix deaggregation. At the same time, the networking
community considers existing techniques—like per session prefix limits—sufficient to
mitigate the threat, and is unlikely to consider our attack as serious and implement
prevention mechanisms, unless the feasibility can be practically demonstrated.

Hence, we decided to conduct a small-scale experiment using 500 prefixes via Vultr.
Given the size of the IPv6 routing table (~160k prefixes), we believe that that these 500
prefixes (~0.3%) were well inside the daily BGP IPv6 table size churn. Furthermore, we
limit the duration of our announcements, made them unlikely to trigger route flapping,
and ensured that our announcements are properly withdrawn after we have completed
the experiments. In our PEERING testbed experiments we never announced more than
20 IPv6 prefixes simultaneously. Similarly as with Vultr, we ensure proper withdrawal of
our announcements in the PEERING testbed.

Independent Reproduction by Unknown 3rd Party. Despite our best efforts to design
an experiment that does not cause harm, it was still visible in the global routing table.
Six days after we conducted our experiments—which did not cause noticeable load at an
independent leaf AS we operate as well—we observed an unknown entity that replicated
our experimental setup executing Kirin with over 8,000 prefixes from one /32 via Vultr.
This caused noticeable load on the independent leaf AS we operate and was widely
noticed in the operator community.

We hence decided to accelerate the initial disclosure process we had planned to take
place (see below). Furthermore, it demonstrates that, by now, threat actors are actively
monitoring the global routing table. Researchers conducting experiments for potential
vulnerabilities in the routing ecosystem must consider that even small-scale experiments
may reveal attack opportunities to third parties. This leads to substantial problems when
the “attack” opportunity is (technically) well-known in the community, yet is currently
not considered “exploitable enough” [147].

Disclosure Schedule. After an independent third part potentially replicated our experi-
ments on a significantly larger scale, we immediately launched a two-stage notification
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process. While technically, a lengthy coordinated vulnerability disclosure process [215]
would have been preferred, also to have more time to carefully discuss with operators
why this well-known vector is a higher threat now, we opted for this path due to the
actions of the unknown third party around the 5th of October, 2022 [61].

• Private Disclosure Phase (2022/10/11–19). We first disclosed the details of our attack
via a whisper-network of well connected Tier-1 network operators and IXPs. In this
process, we distributed the document enclosed in Figure C.4. This process included 8
major IXPs, 20 Tier-1 ASes, and 7 major content providers. We followed-up the initial
notification with a clarifying statement, highlighting that an independent third party
potentially already executed the attack on a larger scale. We received the feedback that
this clarification made the severity of the problem apparent.

• Public Disclosure Phase (2022/10/20 and onward). After sufficient reaction time and
no signals to further delay the disclosure, we publicly disclosed our findings via
13 different operator mailing lists (including, e.g., NANOG, DENOG, and the RIPE
Routing Working Group) as well as via different social media platforms.

During our disclosure phases, we continuously discussed our findings with network
operators, integrated their experiences, and assisted them in deploying prevention
mechanisms whenever possible. From private e-mail exchanges, we know that at least
two Tier-1 ASes, three cloud providers, and various smaller networks actively configured
prevention mechanisms against our new form of prefix de-aggregation attacks.

5.2.8 Summary

In this section, we presented Kirin, an attack that overwhelms BGP routers by globally
distributing millions of IPv6 routes via thousands of distributed sessions. We demon-
strated that Kirin can bypasses traditional prevention mechanisms via its distributed
nature and showed that its required infrastructure and resources can be obtained swiftly
and at a cost bearable even for single individuals. We tested our assumptions in lab
experiments, real-world measurements, and by analyzing passively obtained routing
information. Finally, we launched a two-stage disclosure campaign to notify network
operators and expedite the deployment of prevention mechanisms.

5.3 Chapter Summary

We analyzed the prevalence of AS Path Prepending and found that it is still very present
on the Internet, with its utilization slightly increasing over time. Our analysis further
reveals that prepending policies are mostly stable over time; that ASes use a wide
range of policies when announcing their prefixes; and that prepend sizes are becoming
polarized—with either one or more than three prepends. We unexpectedly spot many
ASes uniformly prepending (all) their prefixes to all neighbors, hence not influencing
any remote routing decision. Our complementary analyses with traceroutes and cross-
checks with CDN data confirm that our observations are likely valid despite the limited
visibility of public route collector projects. Our active measurements confirm that ASPP
is effective—since even small prepend sizes can steer the traffic of multiple routes—if
used with many upstreams. When using only two upstreams, ASPP’s effectiveness is
dependent on the AS location. Yet, we find that ASPP has security considerations as it
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can increase the spread of prefix hijacks, as the hijacked route becomes more attractive
than its prepended counterpart to a larger fraction of ASes. This issue is emphasized by
the observation that for approximately 18 % of the prepended prefixes the prepending
does not yield any traffic steering benefits.

We revisited the viability of prefix de-aggregation attacks in the current hyper-connected
routing ecosystem. We showed that these attacks may overwhelms BGP routers by
globally distributing millions of IPv6 routes via thousands of distributed sessions. We
demonstrated that they can bypasses traditional prevention mechanisms when executed
in a highly distributed manner and showed that their required infrastructure and re-
sources can be obtained swiftly and at a cost bearable even for single individuals. We
tested our assumptions in lab experiments, real-world measurements, and by analyzing
passively obtained routing information. Finally, we proposed a set of updated prevention
mechanisms and performed a two stage vulnerability notification campaign involving 8
major IXPs, 20 Tier-1 ASes, and 7 major content providers.

Discussion. While we demonstrated that the routing ecosystem’s constant evolution
has weakened previously deployed prevention mechanisms for prefix de-aggregation
attacks, it’s key enablers—the routing ecosystem’s increase in scale and the vast address
space offered by IPv6—may also affect other prevention mechanisms in the future. One
explicit example—that was recently discussed by Richter et al. in [411]—is the usage of
block-lists to drop traffic from a specific source IP (e.g., to protect against email spam or
phishing attacks). While it is technically still possible to block individual IPv6 addresses,
IPv6 weakens the association between devices and addresses as it allows end-users to
quickly pick new addresses. At the same time, blocking an entire IPv6 prefix is also
infeasible as, on the one hand, it is unclear at what CIDR size operators should block
while, on the other hand, the blockage of entire network prefixes would incurs large
amounts of collateral damage, i.e., legitimate sources with genuine traffic might also be
blocked.
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Chapter 6
Summary & Future Directions

In this dissertation, we measured the Internet’s routing ecosystem, a complex and dy-
namic system that constantly evolves to accommodate the needs of its tens of thousands
of stakeholders and billions of users. This constant evolution challenges operators, aca-
demics, and policy-makers when maintaining, optimizing, securing, and regulating
networks. In Chapter 3, we first measured our ability to model and track the routing
ecosystem and its evolution accurately and found that our observation infrastructure
and inference methods tend to be more incomplete, biased, and sensitive to variance
than we initially assumed. In Chapter 4, we then explored different ways to handle
one of the Internet’s recent major changes, IPv4 exhaustion, and found that leased IPv4
address space and hyper-specific announcements are economically and operationally
attractive options to bridge the gap until IPv6 deployment has fully matured. Finally,
we showed in Chapter 5 that tracking the evolution of the routing ecosystem allows
us to identify new security issues and also helps us to understand whether previously
deployed prevention mechanisms still provide the defensive properties we expect.

6.1 Summary

Throughout this dissertation, we addressed three major challenges posed by the Internet
routing ecosystem’s continuous and rapid evolution. First, we focused on the question:

(1) How accurately can we model and track the Internet’s routing ecosystem and its
evolution with our deployed observation infrastructures and commonly used

inference methods?

To address this question in Chapter 3, we initially started with a case study at a large Euro-
pean IXP. We carefully inferred the IXP’s peering fabric and found that less than a fourth
of its AS links are visible from public route collectors while, in total, the IXP’s peering
fabric alone contains more AS links than the route collector view. We further observe that
at least 19.8, 57.1, and 57.4 % (37.3, 37.4, 37.8 %) of all routed IPv4 (IPv6) address space
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can be reached at our IXP via multi-lateral, bi-lateral, and private peering, respectively.
Those results provide practical contrast to the 70+ % reachability theoretically estimated
by Böttger et al. in 2018. Finally, we observe that many publicly available routes at the
route server are unattractive (i.e., they lead to out-of-continent with relatively many
AS-level hops) and hence see little to no traffic. Putting these findings into perspective,
we find a public route collector view that not only diminishes in completeness but also
loses in importance as the visible routes may be similarly unattractive as route server
routes (given their length and potential geographic routing detours) and hence may carry
lower volumes of traffic.

We then focused on the biases and sensitivity of business relationship inference algo-
rithms. We performed two orthogonal studies: In the first, we evaluated validation
coverage and inference performance on varying subsets of AS links (chosen based on
common features). This study revealed that our validation data has significant topolog-
ical and geographical biases and that the inference precision may drop by up to 25 %
for certain combinations of algorithms and link classes. This result drastically reduces
our confidence in the correctness of inferred business relationships in narrow contexts,
e.g., when applied to a single IXP or a small set of ASes. In the second study, we gen-
erated tens of thousands of slightly altered (e.g., shifted by two hours) input data sets
and compared the inferences that the ASRank algorithm produced for them. While we
found that paying attention to these kinds of short-term routing dynamics may uncover
algorithmic issues, we further found that it had a non-negligible impact on performance
evaluation. Even though we show that only 6 % of AS links are inconsistently inferred,
55 % and 85 % of all inference errors (for the median and worst snapshot) are transient
(i.e., appeared only in some snapshots), respectively. To put this result into perspective:
ASRank had a 5.4× lower error rate for the best compared to the worst performing
input within a three-month window, yet recent works claimed that they improved upon
ASRank when only lowering the error rate for a handful of inputs by 1.4×. In summary,
our two studies suggest that our inference methods for business relationships are more
biased and sensitive to short-term routing dynamics than we previously thought.

We acknowledged the multi-dimensional nature of bias and proposed a framework
to quantify the AS-level bias of vantage point placements along various dimensions.
Our framework not only confirmed previously known biases but further provided new
insights, e.g., while highly-peered networks are over-represented as route collector
peers, the distribution of their peering policies is representative of the Internet as a
whole (according to PeeringDB). We further extended our framework with tools to sub-
sample the existing infrastructure and predict the bias reduction that can be obtained
by acquiring a given new AS as a vantage point. Finally, we show that unbiasing the
route collector infrastructure can go hand-in-hand with use-case-specific goals, such as
reducing the minimum number of hops between origin ASes and vantage points across
prefixes.

With the uncovered limitations of our observation infrastructure and inference methods
in mind, we focused on one of the most critical routing ecosystem changes throughout
the last decade by asking the question:

(2) How can network operators cope with the exhaustion of IPv4 addresses while
parts of the Internet still lack sufficient IPv6 adoption?

In Chapter 4, we explored two options to address this question. First, we analyzed at
which cost operators may be able to (temporarily) obtain IPv4 addresses via the buying
and leasing markets based on data from four major brokers and tens of leasing services.
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While we showed that public data sources only provide a spotty view of market size, both
markets appear to thrive. In 2020, the cost of an average IP address circulated around
$22.50, with little to no difference among regions. In contrast to the buying market, the
leasing market has not yet converged with offers ranging from $0.30 to $2.33 per IP per
month depending on, e.g., the contractual details of the service, the geographic region,
and the purpose of usage. Given that these observations project the amortization time
of an IPv4 address to anywhere between ten months and more than six years, leasing
agreements may be the economically preferred option to bridge the gap until full IPv6
deployment for some networks.

Besides obtaining additional address space, we further explored the option of announcing
the already available address space as smaller, hyper-specific prefixes. While these
prefixes are commonly filtered and do not propagate globally, we can observe tens of
thousands of them in the routing ecosystem. We found that hyper-specific prefixes most
commonly represent blackholing and peering subnet announcements in IPv4, whereas
they are primarily associated with blackholing and address re-assignments in IPv6.
Despite not redistributing them, many larger networks accept hyper-specific prefixes
internally. This characteristic may popularize the usage of hyper-specific prefixes as the
Internet’s routing ecosystem continues to flatten.

After this look at one of the more prominent changes, we moved our focus to our final
question:

(3) How does the evolution of the routing ecosystem affect the security of routing
operations?

To approach this question in Chapter 5, we first focused on an easy-to-use, well-known
traffic engineering technique: AS path prepending. We first measured the usage of path
prepending and the frequency of different prepending sizes over time in the wild, then
identified common usage patterns and discussed and experimentally tested their traffic
engineering benefits and potential security issues. Hereby, we took special care of our
previous findings and validated our results extensively with additional active measure-
ments and the help of three CDNs. We found that the usage of AS path prepending,
despite already being high, is steadily increasing. While we found that prepending
is effective in many scenarios, we also found that around 18 % of prepended prefixes
employ a uniform prepending policy, i.e., they have the same prepending policy on all
paths. While this policy may only achieve traffic steering effects in rare corner cases
(e.g., when a neighbour uses a route optimizer that ignores prepending), it equally
de-prioritises all paths, effectively aiding the spread of BGP hijacks. In this case, the
routing ecosystem’s evolution aided the secure operation of AS path prepending: The
introduction of additional networking infrastructure and IXPs over the last decade led to
shorter prepending sizes, making it harder for adversaries to take advantage of currently
deployed prepending policies.

Next, we wanted to stress the security impact yielded by the evolution of the Internet’s
routing ecosystem. Hence, we focused on the synergies of two major recent changes—the
rapid deployment of peering infrastructures and the vastness of the available IPv6 ad-
dress space—and how these changes may be exploited to orchestrate globally distributed
prefix de-aggregation attacks. Using a mix of a theoretical Integer Linear Program-
ming formulation, the deployment of a real-world testbed, various BGP data analyses,
real-world route propagation measurements, and router testbed experiments, we demon-
strated that these attacks are capable of bypassing deployed prevention mechanisms and
can be arranged at relatively low cost and effort. To prevent the misuse of our findings,
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we proposed a set of updated prevention mechanisms and performed a two-stage vulner-
ability notification campaign involving eight major IXPs, twenty Tier-1 ASes, and seven
major content providers. Our results clearly indicated that the impact of the routing
ecosystem’s evolution is unpredictable—while it may aid secure routing operations, it
also has the potential to impede them substantially.

6.2 Discussion & Future Directions

Internet Modeling. Our findings from Chapter 3 paint a rather dark picture for the
future of tracking the Internet’s hierarchy. As the flattening of the Internet’s hierarchy
continues, our visibility and ability to track trends will ultimately diminish. While our
current solution—the acquisition of additional vantage points—likely slows this blinding
process down, it not only introduces storage issues but also makes it hard to actually
derive insights from the large volume of raw data. To not lose our ability to track the
Internet’s routing ecosystem accurately, we should clearly define the use cases for which
we want to use route collectors and, based on those, develop tailored data capturing and
compression approaches.

Further, many promising avenues exist for improving our inference of business rela-
tionships. From a conceptual perspective, we should infer relationships on a more
fine-grained level than the AS level and also embrace the diversity of real-world busi-
ness relationships beyond the three main abstractions of peering, transit, and sibling
relationships. From a practical perspective, we should put more effort into evaluating
these models as we showed our best current practices to be both biased and sensitive to
short-term routing dynamics. Finally, from a data perspective, we should stop aggregat-
ing routing information over time and sessions before starting the inference process. This
aggregation step introduces conflicting information and may be avoided by inferring
relationships in each session after each update. In this way, we could identify incoher-
ences across sessions and time. This would allow us to handle these cases appropriately
(e.g., using the orthogonal information available in BGP communities) and gain a deeper
understanding of our inference algorithms’ underlying issues.

Addressing. Despite our findings from Chapter 4, bridging the gap between IPv4
exhaustion and full IPv6 adoption remains challenging as different networks have unique
business environments that often prompt individually tailored solutions. While IPv4
prices are still rising, IPv6 adoption will eventually render IPv4 the ’legacy’ protocol,
ultimately leading to a price crash. This dissertation aided in the process of making
this market behaviour more transparent to all involved parties as various brokers (e.g.,
Brandergroup, IXPO, and IPv4marketgroup) started to openly disclose their pricing
information on regular intervals after we first presented actual pricing information from
multiple major brokers in our 2020 study.

While IPv6 adoption has come a long way over the last two decades, global adoption
still remains a major challenge. Additional research is needed to identify the areas that
primarily lack adoption, deeply understand the factors that impede adoption in those
areas, and explicitly tailor incentives and solutions to those areas—a journey that requires
joined efforts from the operator and academic community. Until IPv6 is fully adopted,
the coexistence of IPv4 and IPv6 poses multiple challenges:

First, IPv6 is rarely deployed independently but is part of dual-stack deployments.
Once IPv4 has become the ’legacy’ protocol, these dual-stack deployments are wasteful
regarding processing power, available memory, and maintenance efforts. Hence, a set of
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questions arises: How can we reduce (or entirely remove) IPv6’s current "dependency"
on IPv4 to deslag our future networking infrastructure? What are the major pitfalls of a
separated deployment approach, and how could these be mitigated? How transparent
does this transition have to be to upper layers or users?

Second, the IPv6 routing table size currently increases almost exponentially, with ap-
proximately 25k new prefixes being added globally across 2021. Over the next decade,
RIBs that contain IPv4 and IPv6 routes from many peers may exceed currently available
memory sizes and increase the processing overhead. This issue would be further exac-
erbated by the increasing popularity of hyper-specific prefix announcements. In fact,
larger networks such as PCCW not only accept them but also redistribute these prefixes
already. Hence, the current evolution of the routing ecosystem may potentially lead to a
natural RIB memory exhaustion.

Secure routing operations. In general, routing security was more an afterthought than a
fundamental principle for the design of BGP. This resulted in a lack of authenticity and
legitimacy verification and a continuously increasing patchwork of best common practice
documents that detail how to identify, mitigate, or prevent specific security issues. In
Chapter 5, we demonstrated that the routing ecosystem’s change could positively and
negatively impact the security of routing operations and the strength of prevention
mechanisms. While we specifically focused on prefix de-aggregation attacks, the new
opportunities that IXP interconnections and IPv6 introduced into the routing ecosystem
may likely weaken the protection of more current prevention mechanisms. While this
observation would require us to check and potentially improve all best common practice
documents, it is unrealistic that this due diligence is meticulously performed, potentially
leaving us open to routing-based attacks in the future.
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Appendix A
Modelling the Routing Ecosystem

A.1 Case Study: Alternative Traffic Metrics

This appendix section provides the interested reader with variants of the plots provided
in section § 3.1 using alternate metrics (e.g IPv4/6 Bytes or Packets). Notably, the
conclusions drawn in the section are equally supported by these plots.
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Figure A.1: Similarity of addresses between
Route Servers without HE’s 2002::/16 route
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Figure A.3: ECDF for the number of
received IPv4 Bytes per member

Figure A.4: ECDF for the number of
received IPv6 Bytes per member

Figure A.5: ECDF for the number of
received IPv4 Packets per member

Figure A.6: ECDF for the number of
received IPv6 Packets per member
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Figure A.7: ECDF for the ratio of /24
receiving traffic per member pair
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Figure A.8: ECDF for the ratio of /48
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A.2 Distributions of the IMP Infrastructure Characteristics

Figures A.10 and A.9 present the detailed distributions of the characteristics we consider
(see §3.2.2.2) for the entire population of ASes and for the ASes in the IMPs.

Network size dimensions

(a) Customer cone
(#ASNs)

(b) Customer cone (#pre-
fixes)

(c) Customer cone (#ad-
dresses)

(d) AS hegemony

Topology dimensions

(e) #neighbors (total) (f) #neighbors (peers) (g) #neighbors (cus-
tomers)

(h) #neighbors (providers)

Interconnection (IXP-related) dimensions

(i) #IXPs (j) #facilities (k) Peering policy

Network type dimensions

(l) Network type (m) Traffic ratio (n) Traffic volume (o) Scope

Figure A.9: Network size, Topology, Interconnection (IXP-related) and Network type dimensions.
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(a) RIR region (b) Location (continent)

Figure A.10: Location dimensions

A.3 Business Relationship Inferences

A.3.1 Does Performance Correlate with Validation Coverage?

Some of the link classes for which the inference algorithms perform poorly have a higher
validation coverage. In this section, we show that there is no correlation between these
two metrics. We set up the following experiment: We uniformly sample a subset of
relationships and track their evaluation performance using the metrics discussed in §3.3.5.
We vary the subset size between 50 % and 99 % of the original set size by increments of
1 %. To get a more stochastically robust result, we repeat this process 100 times for each
sample size. While we have done this analysis for all link classes mentioned in §3.3.4, we
now discuss the results for the T1 − TR class as it produced low-performance results
while containing more than 600 peering relationships.

Figure A.11: Precision (P2P) Figure A.12: Recall (P2P) Figure A.13: MCC

Figure A.11, A.12, and A.13 show the sample size on the x-axis against the precision
(PPVP ), recall (TPRP ), and MCC on the y-axis. While the figures mark the individ-
ual performance measurements for each sampled set with a cross, they also show the
interquartile-range (IQR) and median across all 100 sampled sets. Even though we
observe that the variance increases with decreasing sample size, we neither observe an
increasing nor a decreasing trend for the performance metrics. Notably, the other link
classes (not shown) allow for similar conclusions.
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A.3.2 Plots for Alternative Metrics

15

30

45

Sm
al

le
r P

PD
C 

siz
e Inference

250 500 750
Larger PPDC size

15

30

45

Validation

0.005

0.05

0.10

0.15

0.20

0.25

Fr
ac

tio
n 

of
 li

nk
s

Figure A.14: Customer Cone
Imbalance for transit links
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Figure A.15: Customer Cone
Imbalance for transit links
(ignoring links with incident
Route Collector Peers)
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Figure A.16: Node degree Im-
balance for transit links

Figures A.14, A.15, and A.16 show alternate variants of figure 3.31 for the customer cone
size (CCS), CCS when ignoring links incident to route collector peers (i.e., vantage point
ASes), and the node degree.

A.3.3 List of Potential Bias Dimensions

The following per-link metrics might help to identify additional groups of ’hard links’:

1. visibility over time

2. number of prefixes redistributed via link

3. number of addresses covered by those prefixes

4. number of prefixes originated through the link

5. number of addresses covered by those prefixes

6. number of ASes that can observe (i.e., occur left from) the link

7. number of ASes that might receive traffic via (i.e., occur right from) the link

8. the relative difference in transit degree between the incident ASes

9. the relative difference in PPDC size between the incident ASes

10. and the number of common IXPs where both incident ASes are present

11. and the number of common peering facilities where both incident ASes are present

12. how the incident ASes behave, e.g., BGP serial hijackers [487] vs MANRS partici-
pants [305]
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A.3.4 Ethical Considerations

This work relies only publicly available routing information and privately obtained
validation data. Despite being privately obtained, the validation data is comprised
of only public information—only the parsing and processing scripts are not publicly
available–from various operator data bases. The individuals that provided routing
information to route collector projects as well as the individuals that entered their
information into operator databases knowingly offered their information to the public.
Both data sources have been used extensively for academic research throughout the last
two decades, which shows that their collection and analysis results in substantial benefits
for the research community. Based on these observations and the fact that this work does
not conduct any form of research on human subjects, we argue that this work raises no
ethical concerns.

A.3.5 Ranks & Cliques
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(a) AS1299
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Figure A.17: Ranking of potential clique ASes across snapshots

To illustrate the clique dynamics between AS1299, AS2914, and AS6939, we explicitly
calculated the transit degree of all ASNs (again using the asrank.pl script) for 200 30D
snapshots. The first 100 are randomly chosen from the set of snapshots for which AS6939
is part of the clique while the other 100 are chosen from snapshots for which AS6939 is
not part of the clique. Figure A.17 shows the rank (based on largest transit degree) that
AS1299 and AS2914 have w/o AS6939 (HE) as clique member. The plot indicates that
most of the time that HE is part of the clique neither AS1299 nor AS2914 are part of the
top-10 ASes ranked by transit degree—an indication we verified by manually inspecting
various snapshots.
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A.3.6 Untangling Clique Choices

To illustrate why each clique is chosen, we consider the outcomes of two exemplary
snapshots for ws = 30D88. 2018-01-31, 10 a.m. snapshot: The two cliques that compete
for becoming the C1 seed clique are {6939, 3356, 7018} and {174, 2914, 3356, 7018} with
summed transit degrees of 7428 + 4671 + 2123 = 14222 and 5240 + 1890 + 4671 +
2123 = 13924, respectively. 2018-02-01, 08 a.m. snapshot: The competing cliques are
{6939, 3356, 7018} and {174, 1299, 2914, 3356, 7018} with summed transit degrees of
7408 + 4679 + 2122 = 14209 and 5488 + 2082+ 2224+ 4679+ 2122 = 16595, respectively.
Across all snapshots, AS6939 has a transit degree difference of ~2000 ASes to the second
largest AS while some of the top-10 ASes not even have a transit degree of 2000. Hence,
if a clique does not include AS6939, it must include at least one extra top-10 AS to have a
comparable transit degree sum to that of cliques with AS6939. For input formats with
shorter window size (e.g., 8H), the slight changes in the transit degrees of the top-10 ASes
across snapshots lead to AS6939 repeatedly entering and leaving the seed C1 clique (and,
after extension, the final clique). The second snapshot illustrates yet another problem:
The 6th to 20th ranked AS often have comparable (~500 ASes difference) transit degrees.
Hence, the lower half of the top-10 ASNs is very volatile across time. Figure A.17(a)
and Figure A.17(b) (both in appendix A.3.5) show that AS6939 (Hurricane Electric (HE))
never gets into the clique when AS1299 and AS2914 make it both into the top-10 (which
represents the second scenario above). Hence, the magic number of N = 10 ASes among
which the seed clique is formed ends up substantially impacting the clique inference
outcomes.

88Please note that while we would have expected AS3549 to be part of all four competing cliques—as it
always was in the top-10 and had links to all other top-10 members—the asrank.pl code included it in none.
So far, we were not able to identify the exact code responsible for this behavior.
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Appendix B
Managing IPv4 Exhaustion

B.1 Delegation Consistency

Delegations and RPKI. In order to observe delegations in BGP data the delegated
address space needs to be announced. Since the deployment of route origin validation
has increased significantly [108, 409, 488], the Resource Public Key Infrastructure (RPKI)
database has become a valuable source to infer delegations. Rather than taking the
announcements of P and P ′, we now check whether those prefixes have Route Origin
Authorizations (ROAs) assigned to different ASes. When inferring delegations based
on the preprocessed RPKI snapshots by [108], we observe an order of magnitude less
delegations compared to BGP. Yet RPKI-based delegations provide a different view on
delegation consistency: If S has a ROA assigned for P and delegates P ′ to T , than
T continuously needs to have a ROA for P throughout the entire delegation period,
otherwise many ASes would filter and not propagate the delegated prefix P ′.

We utilize this characteristic of RPKI-based delegations to evaluate the correctness of
different consistency rules and then pick one rule to compensate for the on-off-patterns
observed for BGP delegations. In general, we analyze rules of the form: "If we observe a
delegation on day X and on day X +M , the delegation also exists for all but N days in
between." In Figure B.1, we present the fail rate (i.e. the fraction of possibilities for which
a rules’ premise is valid but its conclusion is violated) for rules with different values for
N on the y-axis against an increasing values of M (i.e., increasing time frame) on the
x-axis. First, we observe that ~90 % of delegations that are seen at least 90 days apart
are visible for the entire time frame except for at most 3 days. We also observe that the
fail rate never reaches 30 % even when picking extremely large time frames of 100 days.
Finally, we observe that even when N is 0 (i.e., the delegation must be visible for all days
within the time frame) the rule is only violated for ~5 % of all possibilities when choosing
a time frame of ten days; therefore, we decided to apply the following consistency rule
to all BGP delegations: When we observe the same delegation ten days apart and we
do not observe a conflicting delegation (i.e. we observe P being delegated to another
delegatee AS T ′) in the meantime, the delegation also exists for all days in between.
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Figure B.1: Validation of different consistency
rule values on RPKI delegations.
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Figure B.2: Number of BGP delegations and del-
egated addresses w/wo our extensions.

Delegations. Figure B.2 shows the number of delegations as well as the amount of
delegated address space inferred by the previously proposed algorithm [268] as well as
our extended algorithm over time. While we observe that our extensions significantly
reduced the number of delegations inferred for each day, we also see that it almost
completely eliminated the high variance that can be observed when using the previously
proposed inference algorithm. While the previous approach suggests a significant
increase in both, the number of delegations as well as the number of delegated addresses,
our extended algorithm only yields an increase of delegations by ~7 % with a negligible
change in delegated IPs. When looking further into this result we found that delegation
sizes decreased: While the fraction of /20 delegations decreased from ~7% to ~3%, the
fraction of /24 delegations increased from ~66 % to ~72 %.
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B.2 Orthogonal Analyses for HSPs

B.2.1 Definition: MSPs vs HSPs

In this section, we want to briefly contrast the definitions of More-Specific Prefixes (MSPs)
and Hyper-Specific Prefixes (HSPs). P is an MSP of P ′ when the address space that P
describes is entirely contained in the address space that P ′ describes, e.g., 1.0.0.0/24
is an MSP of 1.0.0.0/22. In contrast, we call a prefix hyper-specific if its CIDR size is
larger than /24 or /48 for IPv4 and IPv6, respectively. While labelling a prefix as an
MSP requires another (covering) prefix, the HSP label relies entirely on the CIDR size
of a given prefix and does not require a second, related prefix. Notably, many—but not
all—hyper-specific prefixes are also MSPs of less-specific prefixes. As the definitions
of MSPs and HSPs are very different, further classifications of HSPs (as in, e.g., Geoff
Huston’s blogpost [227]) are not directly applicable to HSPs.

B.2.2 Route Collector Consistency

In order to analyze representative route collector snapshots of the three RC projects
Isolario [244], RIPE RIS [349], and Routeviews [364], we first analyze their consistency
over time. To estimate the consistency, we initially retrieve data for all days in 2010,
2013, 2016, and 2020. For each day, we download the first routing information base (RIB)
snapshot as well as all available update messages produced by each RC. If an update file
is missing, we, additionally, download the first available RIB snapshot after the missing
update file. After extracting the HSPs for each day, we analyze consistency as the fraction
of HSPs seen at day n+w+1 that are also visible within the observation period [n, n+w].
Notably, we try all possible window size positions, i.e., n ∈ {0, ..., d− w − 1} where d is
the number of days in the given year.

Figure B.3 shows the mean as well as the interquartile range (IQR) across all possible n
for window size w between 1 and 60 days for IPv4 and IPv6 HSPs in 2020. We observe
that a seven-day window allows us to achieve a consistency of 97 % and 98 % for IPv4
and IPv6, respectively. Notably, further expanding the window size to 60 days would
only increase the consistency by ~0.5 %. Given that we now have a snapshot aggregation
window, we still need to pick a snapshot interval. When comparing the number of visible
HSPs for different snapshot intervals, we observe that a three-month interval provides
an optimal balance: While the number of data points is still capable of capturing all
visible trends in more-frequent snapshot intervals, the reduced amount of data (i.e., only
seven days every three months) still allows us to perform computationally expensive
observations for the entire decade promptly.

B.2.3 In-depth Visibility Analysis

How prominent are HSPs? To understand the prevalence of hyper-specific prefixes, we
aggregate the routing tables of all collector peers and compare the distribution of prefixes
depending on CIDR sizes. Figure B.4 shows those distributions as stacked bar plots for
each snapshot. We observe that up to 13 % (in 2015) and 25 % (in 2018) of totally visible
prefixes are hyper-specific for IPv4 and IPv6, respectively. Yet, the usual contribution
of HSPs is approximately 10 % for most months. Note that this does not mean that any
single routing table contains that many HSPs on its own.
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Figure B.3: Impact of window size on visible HSPs.

How visible are HSP? To further elaborate on this point, Figure B.5 shows the number
of hyper-specific prefixes per IPv4 (left) and IPv6 (right) snapshot separated based on
the number of route collector peers that can see them. For IPv6, we observe that most
hyper-specific prefixes can be seen by two or more peers, with around a fifth of all HSPs
being visible by 11+ peers for most snapshots. Similar to the previous plot, we again
observe a peak of (~20K) hyper-specific prefixes at around 2018. While we are not able to
account this peak to a single factor, we observe that the increase is rather uniform across
collector peers, origin ASes, intermediate ASes, and address space and, hence, is unlikely
to stem from a measurement artifact or some local misconfiguration. When comparing
the situation before and after the peak, we still can see an increase from ~7K HSPs in
2016 to ~11K HSPs in 2021. In contrast to IPv6, many HSPs in IPv4 can only be seen by
one peer. While we observe few HSPs that can be seen by 100+ peers, the vast majority
of HSPs can only be seen by 10 or less peers. Even though the number of low-visibility
HSPs strongly fluctuates between snapshots, it increases rather continuously across many
snapshots. Both such characteristics are significantly less pronounced for IPv4 HSPs that
can be seen by 6+ peers. This difference may be accountable to various reasons including
the association of a prefix to a certain function or a prefix’s lifetime.

HSP aggregation. ASes often have economical incentives to keep their BGP routing table
size low. To realize this goal, some ASes aggregate (multiple) more-specific routes into a
single less-or-equally-specific route [120]. If an anchor-prefix results from aggregating
prefixes with different CIDR sizes (prefix-based aggregation), we know that one of such
pre-aggregation prefixes must have been hyper-specific. Yet, confidently identifying
such aggregations is challenging. According to RFC 4271 [405], a router MAY set the
AGGREGATOR field when it performs prefix-aggregation—which can serve as indication
that some form of aggregation must have happened. Thus, we first extract all routes
for anchor-prefixes which have the AGGREGATOR field set. At this stage, our selected
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Figure B.4: HSP prefix contribution over time
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Figure B.5: HSPs by # Peer ASes over time

routes might be a result prefix-based aggregation or the aggregation of different routes—
e.g., with different AS_PATH attributes (path-based aggregation)—for the same prefix
(or both). To reduce the likelihood of falsely identifying HSP usage due to path-based
aggregation, we rely on the ATOMIC_AGGREGATE field as well as the presence of AS_SET
elements in the AS_PATH attribute. A router SHOULD set the ATOMIC_AGGREGATE field
if the newly generated AS_PATH attribute of the post-aggregation route does not contain
all AS numbers present in the pre-aggregation routes, e.g., the paths AB and AC can be
aggregated to AB (which hides the existence of C). If the ATOMIC_AGGREGATE field is
not set, ASes often use AS_SETs to signal path-aggregation, e.g., the paths AB and AC
can be aggregated to A{B,C} (where {...} denotes the AS_SET containing all ASes after
A). As the ATOMIC_AGGREGATE field and AS_SETs indicate path-based aggregation, we
remove all anchor-routes that contain at least one of them.

Where does HSP aggregation happen? Now that we have a set of anchor-prefixes
that are likely the result of prefix-based aggregations, we can analyze how close to the
origin HSPs are aggregated. We compare the AS number in the AGGREGATOR field
with the AS_PATH and differentiate between the following cases: (1) Origin—the origin
itself performed the aggregation, (2) On-path—an AS within the AS path that is not
the origin performed the aggregation, and (3) Off-path—some AS that does not occur
in the AS path performed the aggregation89. Figure B.6 shows the number of anchor
prefixes in each class over time. Notably, the figure also contains the class Multiple that
contains anchor prefixes for which there are multiple paths with inconsistent classes.
We observe that the the vast majority of anchors are actually aggregated at the origin
with only few hundreds of anchors being aggregated on-path. Origin and off-path
(especially AGGREGATOR fields with private ASNs) aggregation often occurs due to the
use of BGP confederations [116, 254] where the AS is internally split into multiple private
sub-ASes. Depending on how an AS border router handles the aggregation of internal
confederation routes, it might either correctly set the external AS number or leak the
internal confederation AS Number in the AS_PATH or AGGREGATOR attribute. Notably,
those HSP routes are likely not available to other ASes (including neighbors of the origin).

Projected actual usage. While our IRR snapshots produced actual HSPs, our final prefix-
aggregation and ROAs only produced a list of anchor-prefixes that is likely to contain
HSPs. Therefore, we decided to analyze the potential extent of HSP usage on the basis
of anchor-prefixes. Figure B.7 shows the number of IPv4 (left) and IPv6 (right) anchor-
prefixes per data set (stacked) over time. Notably, the aggregated class only contains
on-path aggregated anchor prefixes and the RPKI class only contains anchor prefixes
for explicit HSP ROAs. The “multiple“ class covers those entries that are visible via

89This class also includes reserved AS numbers.
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Figure B.6: Position of HSP Aggregation
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Figure B.7: HSP anchors across data sets

multiple data sources. We observe that the current route collector infrastructure misses
roughly one-third of the of the anchor prefixes that potentially contain HSPs. We further
observe a less noisy, linear increase in the number of anchor prefix for which HSPs are
visible compared to the raw count of visible HSPs. Notably, some part of this increase
can potentially be accounted to the increasing numbers of route collectors and route
collector peers over time.

Who uses hyper-specific prefixes? We leverage the “AS Classification Inferences” dataset
described in ASDB [528] to classify ASes as Content, Education, Hypergiant, ISP (Stub),
ISP (Transit), Tier 1, and Others. Figure B.8 compares the classes of all BGP-visible ASes
(left) to HSP origin ASes (right) over time. We find that in contrast to all origin ASes,
HSP origins are more likely to be ISP (Transit) ASes. Interestingly, the majority of Tier 1
ASes is also originating HSPs. During the period of January 2019 until October 2021, we
identify between 12 and 15 of the total 19 Tier 1’s as HSP origins. In contrast to the high
share of Tier 1 HSP origins, we find that most hypergiants do not originate HSPs.

B.2.4 Real-World Propagation Experiment

Does BGP reflect control plane reachability? Finally, we want to understand how
much the lack of additional BGP vantage points impacts our observations on reachability.
Hence, we configure a real-world experiment using the PEERING testbed [445] in which
we announce an anchor prefix as well as multiple hyper-specific prefixes. Once those
prefixes have converged, we run traceroutes from RIPE Atlas [433] probes and compare
their resulting paths to those visible at route collectors.

Vantage points & resources. The PEERING testbed allocates Internet resources (specifically,
IPv4/IPv6 address space and AS numbers) to its users based on approved experiment
proposals. Once allocated, users can announce those resources via the testbed’s infrastruc-
ture. Given that the PEERING testbed strongly relies on third party resources (e.g., for
hosting infrastructure), announcements must be designed carefully to not cause trouble
or irritation for other network operators. For our experiment we use the address ranges
184.164.240.0/23 and 2804:269c:4::/46. More specifically, we utilize 184.164.240.0/24 and
2804:269c:4::/48 as anchor prefixes (i.e., they represent our control group) and announce
HSPs only from the remaining address space90.

RIPE Atlas [433] is a measurement platform with probing devices (henceforth called
probes) all over the world. To maximize probing coverage and minimize probing load,
we choose at most one probe per AS. To reduce the likelihood of probe outage, we

90In particular, we announce 184.164.241.0/25, 184.164.241.128/28, 184.164.241.255/32, 2804:269c:5::/49,
2804:269c:6::/64, 2804:269c:6:8000::/65, and 2804:269c:7::/128.
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Figure B.8: HSP origin AS classification over time.
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Figure B.9: PEERING testbed
propagation results

select only probes that are not tagged with system-problematic tags91. We further
validate that selected IPv4 and IPv6 probes are tagged with system-ipv4-works, and
system-ipv6-works, respectively. If an AS hosts multiple probes, we prefer dual-stack
probes (such that we can use a consistent probe for our IPv4 and IPv6 measurements)
over anchor probes (i.e., better equipped probes) over any other probes. If we still have
multiple choices, we pick the probe that is tagged with the highest stability tag (e.g.,
system-ipv4-stable-90d). Our final probe set consists of 3097 probes distributed
across 2990 IPv4 and 1239 IPv6 ASes.

Experimentation environment. The PEERING testbed currently has a total of 180 IPv4
and 152 IPv6 neighboring ASes. Yet, most neighbors do not support/redistribute HSPs.
We identify supportive neighbors by iteratively announcing a /25 or /49 prefix from
our allocated address space through each neighbor and analyzing the resulting update
stream from RIPE RIS and Routeviews. Since, at this point, we only care about a “life
sign“ (i.e., whether or not any update was received) rather than full convergence, we
adopt a short announcement cycle: We announce a prefix at the beginning of every
full hour and withdraw it 30 minutes later92. We identify a set of 8 IPv4 and 9 IPv6
neighboring ASes that redistribute HSPs. Notably, those ASes are distributed across 4
and 3 geographically separate Points of Presence.

Technical realization. Throughout May 21 and 22, 2021, we announce /24, /25, /28, and
/32 IPv4 prefixes and /48, /49, /64, /65, /128 prefixes through a single neighbor at the
beginning of every even hour. After the announcement, we wait 40 minutes to allow
the prefix to converge93. After those 40 minutes, we run active measurements for 10
minutes, and then withdraw the prefixes again. Notably, we choose 70 minutes between a
withdrawal and the next announcement on purpose such that we out-wait the expiration
of potential Route Flap Damping hold-down timers, which have been shown to usually
expire after 60 or less minutes [192].

91tags: system-flash-drive-filesystem-corrupted, system-v1,
system-no-flash-drive, system-flash-drive-bad-or-too-small,
system-firewall-problem-suspected, system-trying-to-connect
system-readonly-flash-drive, system-no-controller-connection,
system-bad-firmware-signature, system-flakey-connection, system-flakey-power,
system-flash-drive-problem-detected, and system-v2

92These experiments ran between the May 1, 2021 and the May 3, 2021.
93During previous experiments we observed that usually the 95th percentile of updates reach the collector

peers already in the first 15 minutes.
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During our 10 minute active measurement period, we run paris-traceroutes from all
probes towards either the network address or the first non-network address of all prefixes
(which are configured to be pingable). To reduce the dependence of our results on the
underlying protocol, we simultaneously issue ICMP, TCP, and UDP probing. To keep the
induced load for the RIPE Atlas platform as well as for the peering testbed manageable,
we reduce the number of probing packets used per per hop by paris-traceroute from RIPE
ATLAS’ default of 3 packets to one packet. Notably, as the resulting load still exceeds
the default limitations (e.g., for measurement results per day) for a single RIPE Atlas
account, we coordinate our probing efforts with the RIPE Atlas team who generously
raised the limits for our experiments.

We map traceroutes to AS Paths using the state-of-the-art mapping tool bdrmapit [313].
As bdrmapit requires a large corpus of traceroutes as input to perform well, we use
traceroute data from CAIDA’s IPv4 Prefix-Probing data set [493], CAIDA’s IPv4 Routed
/24 Topology Dataset [493], CAIDA’s IPv4 Routed /48 Topology Dataset [494], and
RIPE’s hourly archives of Atlas traceroutes [426] between May 17, 00:00 and May 24,
00:00. For all the other inputs (e.g., prefix-to-origin mappings or business relationship
inferences) we use recent snapshots from the recommended data sources. Finally, we
use bdrmapit’s output to map our successful (i.e., only those that actually reached the
respective target host) traceroutes to AS paths.

Comparison. Figure B.9 compares the the number of ASes (aggregated over all itera-
tions) that (1) hosted Atlas probes that reached the target (ATLAS_SOURCE, yellow),
(2) appeared along the path between ATLAS_SOURCE ASes and the Peering Testbed
(ATLAS_PATH, dark red), (3) are visible from route collector peers (BGP, gray). The
most drastic observation is that hyper-specific prefixes see a very sharp drop in reach-
ability. Even the best performing CIDR size, /25, only reached ~15 % of of the ASes
that are reached by its respective anchor prefix. Especially for IPv6 we observe that
most PEERING neighbors redistribute our prefixes (including the anchor prefix) only
towards their customers, hence, some of our Atlas probes are unable to reach the peering
testbed even for the anchor prefix. We further find that the more-specific the prefix
gets, the less likely it propagates. This finding is interesting as most recommended
filtering guides [153, 156, 306, 356, 359] treat all hyper-specific CIDR sizes equally. Our
third observation is that the reachability reflected by route collector peers substantially
underestimates data plane reachability. While we are able to observe approximately a
third of the total ASes for our /48 prefix via BGP, this fraction lies at around 14 % for our
/24 prefix.

B.2.5 Filtering Pipeline

When an AS peers with a Route Collector, the router that feeds the collector may provide
all routes that are not removed during (or before) egress filtering. Hence, misconfigured
egress filters can lead to misinterpretations. For our analysis, we filter out HSPs which
are originated by feeder AS directly connected to a route collector. However, we use the
HSP if it has been propagated to at least 2 AS hops, including feeder AS. In addition, we
filter all private, reserved, multicast, and experimental IP prefixes. Furthermore, we also
filter prefixes originated by a private AS. Finally, we remove the HSPs we identify as
outliers during the data cleaning process. Appendix B.2.6 provides detail information on
HSPs we have filtered out.
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B.2.6 Applied Data Isolation Rules

We applied the data isolation rules summarized in table B.1. ASes marked with ⋆
contributed/announced either (1) an extraordinarily high number of HSPs (i.e., 100 or
more times higher than in other snapshots) or (2) HSPs in an extraordinarily high number
of anchor prefixes for a limited amount of time.

Timeframe Filter name Filter Details Reason

entire period Private Origin ASes Origin AS number from private IPv4 ranges.
2 Bytes 64512 to 65534

entire period Private Origin ASes Origin AS number from private IPv4 ranges.
4 Bytes 4200000000 to 4294967294

entire period Private IPs IPv4 Private IP ranges private IPv4 ranges.

entire period Class D and E IPv4 Prefixes > 223.x.x.x IPv4 multicast & class E.

entire period Abnormal Prefixes for IPv4 prefix > /32 abnormal IPv4 prefixes.
for IPv6 prefix > /128 abnormal IPv6 prefixes

entire period No Origin Routes having no origin AS AS-internal routes.
Internal Feeder AS is the Origin AS

2015/10/01-07 IPv4 Noisy Origins Origin AS == 9498 origin AS.⋆
2016/10/01-07 IPv4 Noisy Origins Origin AS == 36937 origin AS.⋆
2017/04/01-07 IPv4 Noisy Origins Origin AS == 9498 origin AS.⋆
2019/07/01-07 IPv4 Noisy Origins Origin AS 7122 origin AS.⋆
entire period IPv4 Noisy Origins Origin AS 12400 origin AS.⋆
2016/07/01-07 IPv4 Noisy Peer AS Peer AS 35908 peer AS.⋆
2017/01/01-07 IPv4 Noisy Peer AS Peer AS 60924 and 27630 peer AS.⋆
2017/10/01-07 IPv4 Noisy Peer AS Peer AS 37497 peer AS.⋆
2018/10/01-07 IPv4 Noisy Peer AS Peer AS 14361 peer AS⋆
2019/01/01-07 IPv4 Noisy Peer AS Peer AS 262757 peer AS.⋆
2020/04/01-07 IPv4 Noisy Peer AS Peer AS 268430 peer AS.⋆
2021/04-07/01-07 IPv4 Noisy Peer AS Peer AS 398465 peer AS.⋆
2021/01-10/01-07 IPv4 Noisy Peer AS Peer AS 203125 peer AS.⋆
2020/04-07/01-07 IPv4 Noisy Peer AS Peer AS 268430 peer AS.⋆
entire period IPv6 Noisy Origins Origin AS 4761 origin AS.⋆
2017/07/01-07 IPv6 Noisy Origins Origin AS 17451 and 45899 origin AS.⋆
2019/04/01-07 IPv6 Noisy Origins Origin AS 7713 origin AS.⋆
2021/07/01-07 IPv6 Noisy Origins Origin AS 8100 origin AS.⋆
2018/07/01-07 IPv6 Noisy Peer AS Peer AS 199036 peer AS.⋆

Table B.1: Applied filtering and isolation rules.
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Appendix C
Securing Routing Operations

C.1 Path Preprending

C.1.1 Timeline for the Effectiveness Experiments
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Figure C.1: Effectiveness experiment: Timeline and experimental setting (PX : announcement of
prefix P with X ∈ 0, . . . , 3 prepends; WP : withdraw P .
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In Figure C.1, we depict the timeline of events and the configuration scenarios from each
iteration of our effectiveness experiment. First, see Scenario T1, we create a baseline by
announcing our prefix P via all upstreams without any prepending. After waiting 15
minutes to allow BGP to converge, we announce P with X prepends via the chosen
upstreams, see Scenario T2. After again waiting for 15 minutes to allow BGP to converge,
we conclude the setup period and start a 25-minute probing period. Each probe consists of
ICMP, TCP, and UDP pings triggered once per minute to all targets. To reduce probing
bursts, we spread the packets evenly across the one-minute time interval. Before the
cleanup, we have a 5-minute break to ensure that the last responses can arrive before we
withdraw the prefix. After the break, we start the cleanup period with the withdrawal of
the announcements in every upstream, see Scenario T3. To allow for BGP to converge
and to minimize the risk of BGP Route Flap Damping, we wait for 30 minutes before
starting a new iteration.

C.1.2 Monitor Filtering

Figure C.2 shows the distribution of the fraction of monitors that observe a given prefix
based on all routing information available on January 15th of each year. While prefix
visibility has increased over the decade, we find a clear separation between two distinct
regions in the plot regardless of the year. On the leftmost side, we have locally visible
prefixes (seen by less than 20 % of monitors), and on the rightmost side, globally visible
prefixes (seen by over 80 % of monitors). Based on this finding, we decided to remove
all routes to prefixes observed by less than one-third of all monitors, as indicated by the
threshold line. Notably, picking any other threshold between 0.2 and 0.8 only results in
negligible differences.
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Figure C.2: Fraction of monitors that observe each prefix-origin pair.

C.2 Private Disclosure Notification

Figure C.4 shows the initial email that we sent out in the private disclosure notification.
In Figure C.3 we show the follow-up email highlighting why the attack can cause serious
harm and has already been run on a larger-scale by an unknown third party.

Dear colleagues,

we received some feedback that the message we provided you with is simply stating the
obvious, and noticed an important piece of information missing:

Note, that we conducted experiments with a limited (<=500 prefixes) test-setup around the
29th of September. On the 5th of October an entity unknown to us replicated our experiments
via AS20473 with around 8k prefixes, already causing noticeable load but yet staying below
the potential of this technique. We hence assume that our technique is by now known--not
only commonly known in the community but potential attackers being consciously aware--to
third parties, which is why we are sending out these notifications for something
technically well known. We plan to notify the wider networking community in one week from
now.

With best regards,
Lars Prehn

Figure C.3: Follow-up email text of private disclosure notification.
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Dear <Person>,

I’m a researcher at the Max Planck Institute for Informatics in Germany and received your contact from <Person>, who believes that you might be the right contact at <
Company> for the following issue:

We started the private disclosure process for an IPv6−based routing attack discovered in a research collaboration between the Max Planck Institute for Informatics in
Germany and the Institute of Theoretical and Applied Informatics, Polish Academy of Sciences. We’d highly appreciate your valuable insights and hope you join our efforts
in globally deploying effective prevention mechanisms. To keep the Internet and its users safe, it is important to keep the attack details confidential until prevention
mechanisms are in place; we count on you not to publicly share this information prior to the public disclosure, which we currently plan for Wednesday, 19th October 2022.

# What is the problem?
Routers either crash, drop sessions, or behave in other unintended ways when their FIB or RIB runs out of memory. While newer routers can store up to 4M prefixes, many
ASes still run (at least some) older hardware that may only be able to store 1M routes or even less. TL;DR: We found an attack that allows an adversary to introduce very
quickly more than 1M new and unique IPv6 prefixes into the global routing table and is only preventable with the help of major transit networks and IXPs. If, afterwards,
these prefixes also get withdrawn simultaneously, the resulting path−hunting behavior additionally results in a massive flooding attack.

# How does the adversary even obtain 1M unique prefixes?
After obtaining a /29 address block from any of the RIRs (e.g., RIPE this does not even require need−based justification) the adversary announces every possible /48, /47,...
/29 route leading to the announcement of 1.048.575 unique routes−−−if C is the difference between the minimal propagating CIDR size, /48, and the CIDR size of the address
block from which an attacker sources routes, the adversary can announce up to 2^(C+1) − 1 unique routes, e.g., a /46 block can source seven routes in total: one /46 route,
two /47 routes, and four /48 routes.

# Don’t we have per−session prefix limits that prevent such attacks?
If the average per−session limit is X, an adversary ’simply’ has to distribute its routes via 1M/X many sessions, i.e., per−session limits do not eliminate the issue, they only
transform it into a session−hunting challenge. During our real−world experiments and discussions, we noticed that while many ASes set tight (often 100−500 prefixes) per−
session limits on their peering sessions, it’s less common that ASes on either side of a transit session enforce prefix limits.

# Why does ROV not protect us from this attack?
It is possible to set a single ROA entry that specifies that the /29 prefix can be announced with CIDR sizes up to /48. If the adversary generates such a ROA and waits some
days for it to propagate to all validating ASes, each of the more than 1M prefixes would be a valid announcement.

# How can an adversary even get hundreds or thousands of sessions?
The idea is that remote peering providers and VPS providers (e.g., Vultr) enable the adversary to quickly and cheaply ’click together’ (virtual) ports at many (think 20+)
different peering LANs. The adversary obtains transit by picking providers that also establish transit sessions over peering LANs (Hurricane Electric being the prime
example), many bi−lateral peering sessions via openly/aggressively peering networks (that can be identified via, e.g., PeeringDB), and additional (less effective) sessions via
multi−lateral peering with Route Servers. Surprisingly, while it would be hard to assemble enough sessions with just one port at each peering LAN (yet eventually doable),
this limitation does not exist in reality; while certain providers directly allow clicking multiple ports for a single peering LAN, there are also multiple providers−−−this allows
the adversary to obtain a 5X to 10X factor for its session counts by establishing multiple sessions to each neighbor (in fact each port of each neighbor).

# Do these routes even propagate far enough?
TL;DR: yes. As a rule of thumb: The routes announced via transit sessions usually propagate globally, routes announced to bi−lateral peers usually propagate into the peer’s
customer cone, and routes announced via multi−lateral peering usually propagate only to the peer’s regional customers. As part of our research, we analyzed the
propagation behavior and found that an adversary that combines announcements via all three peering types can inject lethal amounts of IPv6 routes into routers of 8k+ ASes,
i.e., yes, enough of these routes propagate far enough.

# Don’t ASes along the path aggregate the individual routes?
While some ASes do aggregate routes, it is possible to launch the attack in such a way that routes can not be aggregated: the adversary would have to choose the prefixes in
each session in such a way that neither two consecutive prefixes nor a prefix and its covering prefix are announced via the same session and/or neighbor. To be extra safe, the
adversary could switch between multiple origin ASNs for the announcements or use path−poisoning to alter a route’s AS path.

# What can IXPs do to help prevent the attack?
Ensure that your route servers have tight prefix limits and that they only accept a small number of sessions from each participant.

If applicable, monitor your members’ session acquisition behavior (e.g., by looking for BGP−session related packets in the peering LAN’s traffic data) to identify potential
adversaries early.

# What can transit providers do to help prevent the attack?
Introduce dynamically growing yet tight per−session limits on all of your sessions. Allow, e.g., customers and peers to announce at most 1.3x the number of prefixes they
announced yesterday. Similarly, the IPv6 routing table currently grows at a rate of <50k new prefixes per year; hence, one could limit the maximum daily growth to, e.g., at
most 10k prefixes.

Closely monitor the number of sessions that other ASes establish with you−−−especially if your peering policy is fully open or you employ a fully automated session
establishing service.
Given that the attack model is highly distributed, the best position to install protection mechanisms is your route reflectors, as they often have a complete view of the globally
redistributed routes. If possible, implement the following two limiters:

(i) ensure that you only accept and redistribute a certain number of routes per origin AS
(ii) ensure that you only accept and redistribute a certain number of more−specific routes for each assigned address block.
(iii) accept only what is correctly registered. Do not allow an automatic "or longer" for any registered prefix. This will not prevent the attack but add more effort on the
attackers’ side to register the resources correctly.
(iv) monitor your generated filter size. A simple check on the number of acceptable prefixes can reveal the preparation of such an attack.

If you have any further questions, please don’t hesitate to contact me!
Best regards,
Lars Prehn

Figure C.4: Private disclosure notification email text.
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