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Abstract

Background: The corneal back surface is known to add some against the rule 

astigmatism, with implications in cataract surgery with toric lens implantation. This 

study aimed to set up and validate a deep learning algorithm to predict corneal 

back surface power from the corneal front surface power and biometric measures.

Methods: This study was based on a large dataset of IOLMaster 700 measure-

ments from two clinical centres. N = 19,553 measurements of 19,553 eyes with valid 

corneal front (CFSPM) and back surface power (CBSPM) data and other biomet-

ric measures. After a vector decomposition of CFSPM and CBSPM into equivalent 

power and projections of astigmatism to the 0°/90° and 45°/135° axes, a multi- 

output feedforward neural network was derived to predict vector components 

of CBSPM from CFSPM and other measurements. The predictions were compared 

with a multivariate linear regression model based on CFSPM components only.

Results: After pre- conditioning, a network with two hidden layers each having 

12 neurons was derived. The dataset was split into training (70%), validation (15%) 

and test (15%) subsets. The prediction error (predicted corneal back surface power 

CBSPP –  CBSPM) of the network after training and crossvalidation showed no sys-

tematic offset, narrower distributions for CBSPP –  CBSPM and no trend error of 

CBSPP –  CBSPM vs. CBSPM for any of the vector components. The multivariate 

linear model also showed no systematic offset, but broader distributions of the 

prediction error components and a systematic trend of all vector components vs. 

CFSPM components.

Conclusion: The neural network approach based on CFSPM vector components 

and other biometric measures outperforms the multivariate linear model in pre-

dicting corneal back surface power vector components. Modern biometers can 

supply all parameters required for this algorithm, enabling reliable predictions for 

corneal back surface data where direct corneal back surface data are unavailable.

K E Y W O R D S
biometry, corneal back surface power, deep learning algorithm, feedforward multi- output network, 
neural network, posterior corneal astigmatism
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BACKG ROUN D

Over the last two decades, research has investigated the 
effect of corneal back surface power on the imaging prop-
erties of the eye.1,2 Especially in biometry and intraocular 
lens power calculation before cataract surgery, the corneal 
back surface is widely discussed as a relevant parameter, 
as well as after keratorefractive surgery.3– 5 Modern ante-
rior segment tomographers provide reliable data on the 
corneal front and back surface curvature1,6– 8 and central 
corneal thickness (CCT) as well as the dimensions of the 
anterior chamber and crystalline lens which is used in sev-
eral newer generation lens power calculation strategies. 
However, most biometers such as the IOLMaster 500 (Carl- 
Zeiss- Meditec, zeiss.com), the LenStar 900 (Haag- Streit, 
haag- streit.com) or the OA- 2000 (Tomey, tomey.com) do 
not provide measurements of the corneal back surface.

Especially in the context of toric lens calculation, it is 
widely discussed that the corneal back surface curvature 
does not follow a fixed ratio of anterior to posterior curva-
ture, as assumed by keratometers which measure corneal 
front surface curvature and convert this to corneal power 
using an assumed refractive index.3,4,9– 12 The corneal back 
surface astigmatism shows some against the rule astigma-
tism which has to be considered during toric lens power 
calculations in order to yield the correct refractive results 
after surgery.13

With the classical Javal's rule14,15 we already know that 
there exists some discrepancy between keratometric astig-
matism and the total ocular astigmatism, which could be 
due to lenticular or corneal back surface astigmatism. For 
clinical purposes, Javal's rule is generalised with Grosvenor's 
simplification.16 Whereas lenticular astigmatism cannot be 
currently measured in vivo with sufficient accuracy, high- 
resolution anterior segment tomographers, mostly based 
on swept source optical coherence tomography (SS- OCT) 
do quantify corneal back surface curvature.10,12,17 In the last 
decade, several correction strategies have been proposed 
to correct keratometric corneal power measurement. Most 
are based on a comparison of corneal astigmatism and the 
refractive cylinder after implantation of rotationally sym-
metric lenses (e.g., the Abulafia- Koch correction9) or the 
correction strategies proposed by Savini12 or Tutchenko,18 
while others use tomographic data from Scheimpflug sys-
tems to derive statistical corrections in situations where the 
corneal back surface cannot be derived.19 All decompose 
the astigmatism into vector components using trigono-
metric functions (e.g., Humphrey notation20,21) and overlay 
fixed or regression- based offsets to the components to re-
duce or eliminate the overall trend error.

With LaHood et al.’s17total keratometry (TK) module for 
the IOLMaster 700 (Carl- Zeiss- Meditec, zeiss.com), which 
was launched to the European market in 2018, corneal back 
surface data is captured with a scanning SS- OCT. These 
data are binned to the corneal front surface data which are 
measured in classical fashion with telecentric keratometry 
to maintain distance independence of the measurement.

The purpose of the present study was to use a large 
dataset of biometric measurements with the IOLMaster 
700 in a cataractous population plus the back surface 
measurements (TK module) to develop and train a deep 
learning algorithm for prediction of corneal back surface 
curvature from corneal front surface curvature and other 
biometric measures such as patient age, axial length, cor-
neal thickness, anterior chamber depth, lens thickness and 
the horizontal corneal diameter. This prediction model, 
which could be used for standard biometers where no 
corneal back surface measurement is available, will be val-
idated and compared to a multivariate linear regression 
model based on corneal front surface curvature data.

M ETHO DS

Dataset for the deep learning algorithm

In total, a dataset with 48,455 measurements from the 
IOLMaster 700 from two clinical centres (Augenklinik 
Castrop, Germany and Department of Ophthalmology and 
Optometry, Kepler- University, Linz, Austria) was considered 
for this retrospective study. All biometry measurements 
were performed prior to cataract surgery. This study was 
registered at the local Ethics Committee (Ethikkommission 
der Ärztekammer des Saarlandes with the registration 
number 157/21). The data were anonymised by the source 
and transferred to a.csv data table using the software 
module for batch data export. The tables from both clinical 
centres were merged. Data tables were reduced to the rel-
evant parameters required for our data analysis and finally 
contained measurements of corneal front surface curva-
ture (flat meridian R1 with axis A1; steep meridian R2 with 
axis A2), back surface curvature (flat meridian RP1 with axis 
AP1; steep meridian RP2 with axis AP2), axial length (AL), 
CCT, phakic anterior chamber depth (ACD) measured from 
the corneal front apex to the lens front apex, phakic lens 

Key points

• The corneal back surface is a vital parameter for 
optical calculations, especially in the context of 
lens power calculation for toric implants or fol-
lowing refractive corneal surgery.

• The equivalent power and astigmatic vector 
components of the corneal back surface can be 
predicted using a multilinear regression model 
based on front surface measurements and 
measurements from optical biometers.

• Deep learning algorithms outperform multi-
linear regression models in predicting corneal 
back surface power, even in the case of crossed 
cylinders between both surfaces.
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thickness (LT), horizontal corneal diameter (W2W) and pa-
tient age.

Duplicate measurements of eyes, missing data or data 
with a ‘Failed’ or ‘Warning’ in the internal quality check 
of the IOLMaster 700 for keratometry, AL, CCT, ACD, LT or 
W2W were excluded. After checking for ‘Successful’ mea-
surement for corneal front and back surface curvature 
data a dataset of N = 19,553 measurements was used for 
training, validation and test of our prediction algorithm. 
The data were transferred to MATLAB v.2019b (MathWorks, 
mathw orks.com) for further processing.

Pre- processing of the data

Custom software was written in MATLAB 2019b. From the 
corneal front surface curvature data (R1/A1 and R2/A2) 
measured with the IOLMaster 700 the three vector compo-
nents CFSPMEQ, CFSPM0° and CFSPM45° were derived using 
vector decomposition according to Alpins20

For the measured corneal back surface curvature the 
respective 3 vector components CBSPMEQ, CBSPM0° and 
CBSPM45° were derived using

with the refractive index nC = 1.376/nA = 1.336 for the cornea 
and aqueous humour, respectively.22

Setup of the prediction algorithm

To identify the relevant input parameters, a stepwise fit 
strategy was applied. With this procedure, a stepwise lin-
ear regression model is fitted to the input data (corneal 
front surface power [CFSPMEQ, CFSPM0° and CFSPM45°]), 
AL, CCT, ACD, LT, W2W and patient age to read out the im-
pact of the potential effect sizes. This stepwise fit begins 
with an initial constant model and takes forward or back-
ward steps to add or remove variables, until a stopping 
criterion (maximum number of iterations: 12, significance 
level for a variable to be entered: 0.05) is satisfied. ACD 

and lens thickness were not considered as significant ef-
fect sizes in this stepwise fit model, therefore both vari-
ables were discarded.

A feedforward shallow multi- layer multi- output neural 
network23,24 was set up for predicting the corneal back 
surface power (output: CBSPPEQ, CBSPP0° and CBSPP45°) 
from the input parameters corneal front surface power 
(CFSPMEQ, CFSPM0° and CFSPM45°), AL, CCT, W2W and pa-
tient age. For the training function we used the Levenberg- 
Marquardt algorithm,25,26 as this algorithm is known to 
provide good performance in terms of convergence and 
stability. Based on the squared prediction error derived 
from the three vector components of the measured and 
the predicted back surface power values

optimisation was performed in terms of minimizing the 
mean squared prediction error, which refers to a metric for 
performance P of the prediction:

In a preconditioning step we tested several options 
using the entire dataset with several choices for the 
number of hidden layers (1/2/3/4 hidden layers) and 1 
to 25 neurons per layer with a maximum number of 50 
iterations (epochs) for optimisation in order to form an 
impression of the required number of layers and the 
number of neurons in our perceptron. Figure 1 shows the 
performance of the feedforward network for some se-
lected combinations of hidden layers 1 to 4 and number 
of neurons per layer of 1, 2, 4, 8, and 16 using the entire 
dataset for training with the cumulative histograms of 
the squared prediction errors. From the graphs we see 
that the squared prediction error sPE becomes system-
atically smaller with an increasing number of neurons 
and increasing the number of hidden layers. However, in 
contrast, the complexity of the network increases rapidly 
with the number of hidden layers. As we noticed a large 
improvement only from 1 to 2 hidden layers and a very 
small improvement from 2 to 3 or 3 to 4 hidden layers, 
we decided to use 2 hidden layers in our final model. For 
the number of neurons per layer the behaviour is simi-
lar; there is a large improvement from 1 to 2, from 2 to 
4 and from 4 to 8 neurons, but with increasing numbers 
of neurons the performance only improves marginally. 
However, an increasing number of neurons per layer 
makes the perceptron structure much more complex. 
Therefore, we decided to use 12 neurons per hidden 
layer in our final model as a compromise between per-
formance and complexity.

In the next step, the dataset with N = 19,553 measure-
ments was divided using a random selection into a training 
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set (70%, N = 13,687), a validation set (N = 2933) and a test 
set (N = 2933). 23 The neural network was trained with the 
training dataset and later validated with the validation 
dataset. A final check was performed using the N = 2933 
test dataset.

For reference we defined the corneal back surface 
curvature from a fixed ratio of front to back surface 
radius based on the Gullstrand schematic model eye 
(7.7 mm/6.8 mm) with the three vector components 
CBSPGEQ = 6.8/7.7·CFSPMEQ, CBSPG0° = 6.8/7.7·CFSPM0° 
and CBSPG45° = 6.8/7.7·CFSPM45°, respectively. In addition, 
we defined a multivariate linear regression model (with 
a 3×3 transformation matrix and a 3×1 intercept vec-
tor) which uses the three vector components CFSPMEQ, 
CFSPM0° and CFSPM45° as input values to predict the three 
vector components CBSPmvEQ, CBSPmv0° and CBSPmv45° 
as output parameters. For a direct comparison of the 
prediction performance of the neural network based 
setting and the multivariate linear regression model we 
also implemented a smart version of a neural network, 

using the same input parameters as the multivariate lin-
ear model (CFSPMEQ, CFSPM0° and CFSPM45°) to predict 
the three vector components CBSPsmartEQ, CBSPsmart0° 
and CBSPsmart45° as output parameters. For this purpose, 
we did not perform a preconditioning, but instead used a 
neural network structure with two hidden layers, 12 neu-
rons per layer and 16 epochs as done for the neural net-
work based on the full set of input parameters. All three 
reference models were also validated against the cor-
neal back surface measurements CBSPMEQ, CBSPM0° and 
CBSPM45° in terms of performance with the same metric 
(squared prediction error) using the test data.

Statistics

The input data, output data and prediction errors are 
shown with mean, standard deviation, median, minimum –   
maximum and 90% confidence intervals. The squared 
prediction error which shows in general a one- sided 

F I G U R E  1  The result of the preconditioning to determine the proper number of hidden layers and number of neurons per layer. The figure 
displays a series of cumulative histograms of the squared prediction error for variations of number of neurons per layer (to the right, 1st column: 1 
neuron per layer, 2nd column: 2 neurons per layer, 3rd column: 4 neurons per layer, 4th column: 8 neurons per layer, and 5th column: 16 neurons per 
layer) and number of hidden layers (1st row: 1 hidden layer to 4th row: 4 hidden layers). All histograms consider a range for the squared prediction 
error between 0 and 0.05 dpt2. For comparability, all calculations in this preconditioning step are performed with 50 epochs [Colour figure can be 
viewed at wileyonlinelibrary.com]
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distribution is described with median and upper 90% and 
upper 99% confidence intervals. For the multivariate linear 
prediction model we used maximum likelihood estimation 
with iterative ECM algorithm,27,28 and the respective results 
are described with the regression coefficient matrix and 
LogL as the value of the log likelihood objective function 
after the final iteration.28

R ESULTS

Table 1 shows the explorative statistics of the seven input 
parameters used to train the deep learning algorithm (AL, 
CCT, W2W, patient age, CFSPMEQ, CFSPM0°, CFSPM45°) in 
terms of mean, standard deviation, median, minimum and 
maximum and the lower and upper limits of the 90% confi-
dence intervals for the 19,553 measurements.

After our check for proper conditioning of the neural 
network with variations of number of hidden layers and 

number of neurons per layer, we decided to use two hid-
den layers with 12 neurons per layer for our final version 
of the prediction algorithm. With this setup (combina-
tion of number of hidden layers and number of neurons 
per layer) the median squared prediction error could be 
kept below 0.0064 D² (prediction error of 0.08 D, cor-
responding to the typical repeatability of keratometers 
or topographers in measuring corneal power). After 
splitting our dataset into training, validation and test 
data we checked the performance of the feedforward 
network. Figure 2 (left side) shows the performance 
plot of our final version of the feedforward neural net-
work with two hidden layers and 12 neurons per layer, 
which shows the mean squared prediction error (msPE) 
of the network applied to the training data, validation 
data and test data for variations of iterations (epochs). 
The vertical cyan line indicates proper results with 16 
epochs, and the respective msPE for the training data, 
validation data and test data with 16 epochs are shown 

T A B L E  1  Input data for our neural network for prediction of corneal back surface power

N = 19,553 Age (years) AL (mm) CCT (mm) W2W (mm) CFSPMEQ (D) CFSPM0° (D) CFSPM45° (D)

Mean 71.11 23.68 0.55 11.98 48.82 0.19 −0.02

Standard deviation 10.44 1.34 0.04 0.40 1.70 1.13 0.68

Median 73 23.48 0.55 11.98 48.79 0.14 −0.01

Minimum 25 18.71 0.42 9.71 40.35 −9.36 −9.29

Maximum 99 31.92 0.76 13.92 55.92 8.94 5.70

5% quantile 53 21.90 0.49 11.33 46.07 −1.43 −0.99

95% quantile 85 26.12 0.61 12.64 51.63 2.02 0.94

Note: Axial length (AL), central corneal thickness (CCT), and horizontal corneal diameter W2W are directly used from the IOLMaster 700 biometer. The corneal radii and 
axes of the front surface curvature measured with the IOLMaster 700 are converted to vector components CFSPMEQ, CFSPM0°, and CFSPM45°.

Abbreviation: D, dioptres.

F I G U R E  2  Left side: Performance plot of our final version of the feedforward neural network with 2 hidden layers and 12 neurons per layer 
which shows the mean squared prediction error msPE of the network applied to the training data, validation data and test data for variations of 
iterations (epochs). The vertical cyan line indicates proper results with 16 epochs, for more iteration cycles no further improvement could be reached. 
The respective msPE values for 16 epochs of optimisation are shown in the legend for the training data, validation data, and test data. Right side: 
Cumulative histogram of the squared prediction error sPE for the N = 2933 test data using the feedforward neural network with 2 hidden layers and 12 
neurons per layer optimised with 16 iterations (epochs) [Colour figure can be viewed at wileyonlinelibrary.com]
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in the legend. Figure 2 (right side) displays the perfor-
mance of the network with the cumulative histogram of 
the squared prediction error (sPE) for the N = 2933 test 
data using the feedforward neural network with two 
hidden layers and 12 neurons per layer optimised with 
16 iterations (epochs). The median sPE is provided in the 
figure title.

Using the multivariate linear model for prediction of cor-
neal back surface power vector components (CBSPmvEQ, 
CBSPmv0°, CBSPmv45°) from corneal front surface power 
components measured with the IOLMaster 700 (CFSPMEQ, 
CFSPM0°, CFSPM45°) we get a transformation matrix

with a likelihood objective function value after the last itera-
tion LogL = 5.28e4. From the coefficient matrix structure we 
see that the dominant elements are located in the diagonal 
which means that the three vector components of corneal 
back surface power are mostly determined by the respec-
tive component of the corneal front surface vector compo-
nent, with a scaling factor of around −0.115 (for the vector 
component in 0°/90°) to −0.137 (for the vector component 
of equivalent power). In addition we can see that especially 
for the vector component 0°/90° there is an offset of nearly 
−0.2 D, whereas for the vector component in the oblique 
axis (45°/135°) there is only a slight offset of around 0.04 D. 
Table 2 lists the values of the vector components of the cor-
neal back surface measured with the IOLMaster 700, together 
with the prediction of the feedforward neural network, the 
data derived from a fixed ratio of front to back surface radii 
for both cardinal meridians extracted from the Gullstrand 
schematic model eye and the predicted vector components 
for the corneal back surface power from the multivariate lin-
ear model as described above (the respective data for the 
smart version neural network are not shown here). We can 
see from the table that for the vector component at 0° (with 
the rule) and 90° (against the rule), the Gullstrand model eye 
cannot properly represent the corneal back surface power 
vector components, which leads to the discrepancy between 
the total corneal astigmatism and keratometric corneal astig-
matism based on a corneal front surface curvature measure-
ment only. In contrast, both other prediction strategies (the 
neural network approach or the multivariate linear regres-
sion model) properly resample the mean value and median 
of all three corneal back surface vector components.

The distributions of the three vector components of the 
prediction error are displayed in Figure 3 with respect to 
the vector components derived from the measured corneal 
back surface curvature CBSPMEQ, CBSPM0° and CBSPM45°. 
The three vector components of the neural network predic-
tion error (left graph) show a very good performance with 
a narrow distribution and no systematic offset from the re-
spective components of the measured corneal back surface 
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power. The smart version neural network with the same 
input parameters as used in the multivariate linear model 
(second graph from left) also shows a good performance, 
but the prediction is slightly worse compared to the neural 
network as shown on the left graph. With the multivariate 
prediction model (third graph from left) the distributions 
of the three vector components of the prediction error are 
much broader, but with no systematic offset. In contrast, 
with the fixed anterior to posterior curvature ratio extracted 
from the Gullstrand model eye (graph on the right), the 
distributions of the prediction error are much broader and 
show a systematic offset from zero for the vector compo-
nents equivalent power and astigmatism in 0°/45°.

To check for any trend, Figure 4 displays scatterplots with 
the prediction error using the neural network approach (in 

red), the smart version of the neural network (in cyan), the 
multivariate linear prediction model (in blue) and the predic-
tion using a fixed anterior to posterior corneal curvature ratio 
extracted from the Gullstrand model eye (in green). In the 
upper/middle/lower graph the situation for the vector com-
ponent equivalent power/astigmatism in 0°/90°/astigmatism 
in 45°/135° are shown, respectively. The prediction error re-
sulting from the neural network shows no systematic offset 
or effect on the respective component of the measurement. 
The smart version of the neural network also shows no offset 
or visible effect on the respective component of the mea-
surement, but a slightly broader scatter compared to the 
neural network considering all seven input parameters. The 
prediction of the multivariate linear regression also shows 
no systematic offset, but an inverse effect on the respective 

F I G U R E  3  Normalised histogram together with the kernel probability density distribution plot of the prediction error with respect to the vector 
components of the measured corneal back surface power equivalent power: CBSPMEQ, astigmatism projected to the 0°/90° meridian: CBSPM0° and 
astigmatism projected to the 45°/135° meridian: CBSPM45°. The 3 vector components of the neural network prediction error ([left graph] show a 
very good performance with a narrow distribution and no systematic offset from the respective components of the measured corneal back surface 
power. The smart version neural network based on the input parameters used in the multivariate linear prediction model [2nd graph from left] shows 
a slightly lower performance compared to the network based on all input parameters, but performs better compared to the multivariate prediction 
model. With the multivariate prediction model [3rd graph from left]) the distributions of the 3 vector components of the prediction error are 
much broader, but without a systematic offset. In contrast, with the fixed anterior to posterior curvature ratio extracted from the Gullstrand model 
eye (graph on the right) the distributions of the prediction error are much broader and show a systematic offset from zero mainly for the vector 
components equivalent power and astigmatism in 0°/45° [Colour figure can be viewed at wileyonlinelibrary.com]
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192 |   PREDICTION OF CORNEAL BACK SURFACE POWER

component of the measurement, and the prediction based 
on the Gullstrand model eye shows both a systematic offset 
for equivalent power and astigmatism component in 0°/90° 
as well as an inverse effect in the respective component of 
the corneal back surface measurement.

D ISCUSSIO N

It is well known that the keratometric measures, espe-
cially keratometric astigmatism, do not fully reflect corneal 
power.1,10,15 Keratometers (or ophthalmometers) measure 
the anterior corneal curvature by projecting keratometer 
marks onto the cornea reflected off the tear film that are 
analysed by the examiner. In automatic keratometers or 
topographers, multiple marks or a Placido pattern with 
concentric rings are projected onto the cornea, and the re-
flected mires are evaluated. Based on a schematic model 
eye –  in traditional keratometers, mostly the Gullstrand 
model eye –  the power of the cornea as a meniscus lens is 
estimated using a keratometer refractive index, which refers 
to an assumed value characterised by the schematic model 
eye.2 In ophthalmology, two different keratometer indices 
are commonly used: the Zeiss index with nK = 1.332, and the 
Javal index with nK = 1.3375. Based on the Gullstrand model 
eye, the Zeiss index describes the front vertex power of the 
model, while the Javal index represents the back vertex 
power. However in general, such a conversion from corneal 
front surface curvature to corneal power is not valid, as the 
corneal back surface is not in a fixed proportion to the front 
surface, and corneal thickness may vary.2

Javal's rule describes the discrepancy between kerato-
metric astigmatism and the refractive cylinder, and this 
discrepancy might be due to the effect of corneal back sur-
face curvature or lenticular astigmatism.14,16 In the last two 
decades, many attempts have been made to measure the 
corneal back surface curvature using tomography rather 
than estimating the effect. Several slit projection systems 
fulfilling the Scheimpflug measurement condition or oth-
erwise were launched to market that allowed the examiner 
to look behind the corneal front surface. In the last decade, 
the development of swept source OCT has made high reso-
lution three- dimensional measurement of the anterior eye 

F I G U R E  4  Scatterplots comparing the prediction error of four 
different models with the corresponding parameter as measured using 
the IOLMaster. In order, from top to bottom, the three plots compare 
the prediction error against the measured value for the three vector 
components: equivalent power, astigmatism in the 0°/90° orientation, 
and astigmatism in the 45°/135° orientation respectively. Each plot is 
colour coded with the colour of the plotted data points indicating the 
model as follows: the neural network approach with 7 effect sizes (red), 
the smart version neural network approach with 3 effect sizes (cyan), 
the multivariate linear prediction model with 3 effect sizes (blue) and 
the prediction using a fixed anterior to posterior corneal curvature ratio 
extracted from the Gullstrand model eye (green). The prediction errors 
resulting from the two neural network approaches show no (visible) 
systematic offset or trend compared to the respective component of 
the measurement. The prediction of the multivariate linear regression 
shows no vertical offset but does in each case show an inverse trend 
(negative gradient) against the respective measured vector component, 
and the prediction based on the Gullstrand model eye shows both a 
systematic vertical offset mainly for equivalent power and astigmatism 
component in 0°/90°, in addition to an inverse trend against the 
respective measured vector component. The scatter of the smart 
version neural network based model is slightly larger compared to that 
of the neural network based on all input parameters 
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segment possible and the corneal back surface can be mea-
sured directly.1,7,8 Especially in the case of biometry prior to 
cataract surgery with implantation of toric lenses, which has 
gained popularity in the last two decades, the effect of cor-
neal back surface astigmatism is highly relevant to achieve 
optimal refractive results after surgery. Therefore, several 
prediction models have been proposed,3,4,9,10,12 either ad-
justing the keratometric measurement with a fixed offset or 
based on regression analysis using the vector components 
of the keratometric astigmatism and in some cases consid-
ering the orientation of corneal astigmatism before surgery 
(i.e., with the rule, oblique or against the rule).

Since 2018, a biometer has become commercially available 
which allows measurement of corneal thickness and corneal 
back surface curvature in addition to classical keratometry.17 
As the corneal back surface curvature can be measured di-
rectly with these biometers, such prediction models for the 
contribution of corneal back surface astigmatism to the total 
astigmatism should be based on the measurement instead 
of using indirect prediction strategies, e.g., using keratome-
try and refraction data after cataract surgery with implanta-
tion of a rotationally symmetric or toric intraocular lens.

Based on a large dataset of biometric data in a population 
prior to cataract surgery, corneal back surface measurements 
were used to set up a prediction model which estimates cor-
neal back surface power (in vector components) from the cor-
neal front surface power (in vector components) and several 
distances within the eye, plus the patient age. A deep learn-
ing algorithm with a feedforward neural network23,24 with 
three output parameters (predictions of vector components 
of the corneal back surface power) from the input parameters 
patient age, AL, CCT, W2W and the three vector components 
of the corneal front surface power was set up and trained. The 
potential input parameters ACD and LT were discarded as a 
stepwise linear regression fit prior to setting up the model 
did not show a significant improvement with these variables 
included. A smart version of the neural network was set up 
using the same input parameters as the multivariate linear 
prediction model in order to make a direct comparison to 
the multivariate model. The entire dataset was split into train-
ing, validation and test data to make cross- validation and to 
avoid overfitting of the algorithm. Design parameters such 
as number of hidden layers or number of neurons per layer 
were evaluated before the final design of the algorithm was 
defined. The mean squared prediction error as the Euclidian 
norm of the prediction errors of the three vector components 
was defined as a metric for checking the performance.

The results of the neural network based algorithm (and the 
corresponding smart version) were compared to the respec-
tive results of a multivariate maximum likelihood linear regres-
sion algorithm which was set up as an iterative ECM algorithm 
optimisation27,28 based on the vector components of the cor-
neal front surface power. In addition, the vector components 
of the corneal back surface were derived from a back surface 
model based on a fixed front to back surface curvature ratio 
according to the Gullstrand schematic model eye, in the same 
way it is used for extracting a keratometer index.2,21

Both deep learning algorithms show a superior perfor-
mance compared to the multivariate regression model or 
the prediction based on the fixed curvature ratio. However, 
the neural network based on all input parameters shows a 
better performance compared to the smart version of the 
algorithm, indicating that considering additional parameters 
beside the corneal front surface vector components (i.e., pa-
tient age and additional distances in the eye) improves the 
prediction of corneal back surface curvature. First, both neu-
ral networks based algorithm show no systematic offset in 
the prediction for all three vector components, which is the 
same as the multivariate linear prediction algorithm. In con-
trast, the prediction based on the fixed corneal front to back 
surface curvature ratio shows a systematic offset for all three 
vector components, mostly for the equivalent power and the 
astigmatism at 0°/90°. Second, the neural network based algo-
rithms show a narrow distribution of all vector components 
of the prediction error, in contrast to the multivariate linear 
model or that based on the fixed ratio of corneal front to back 
surface curvature as shown in Figure 3. Third, the neural net-
work based algorithms shows no trend error for any of the 
vector components of the prediction error versus the respec-
tive vector components of the measured corneal back surface 
power which is shown in Figure 4. In contrast, the multivariate 
linear prediction algorithm based on the vector components 
of the corneal front surface curvature measurements, and 
even more the model based on a fixed corneal front to back 
surface curvature ratio, shows a systematic inverse correlation 
between the prediction error and the respective vector com-
ponent of the measured corneal back surface power.

CO NCLUSIO N

In conclusion, the deep learning model derived here could 
be used in the clinical setting to predict corneal back surface 
power vector components from the power vector compo-
nents of the corneal front surface measured with keratometry, 
corneal topography or a plugin- in keratometer in a biometer 
together with biometric data such as axial length, central 
corneal thickness, horizontal corneal diameter available from 
newer generation biometer models and the patient's age. 
This means that all required data are normally available in a 
modern cataract surgery setting to feed this neural network 
algorithm in order to make a proper prediction of the corneal 
back surface power in situations where a corneal back sur-
face measurement is unavailable. Assuming that the meas-
urement data of corneal back surface curvature of the device 
used in this study to set up our prediction model are reliable, 
then our prediction algorithm outperforms a multivariate lin-
ear prediction based on corneal front surface curvature data 
and, even more, a model based on a fixed ratio of corneal 
front to back surface curvature as used with keratometers 
when the conversion of corneal front surface curvature to 
corneal power is performed using a keratometer refractive 
index. As the neural network based prediction shows supe-
rior results compared with the multivariate model, based on 
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corneal front surface measurements only, this implies that 
there are other biometric measures (considered in our neural 
network approach) which systematically affect corneal back 
surface curvature.
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