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Abstract

In this thesis we consider the calibration of a stochastic volatility model, where the volatility
driving noise is given by a continuous process of finite p-variation, for p € (1,2). This includes
fractional Brownian motion with Hurst parameter H € (0.5, 1) as a relevant example for a driving
noise of the volatility. The calibration will be done by the ”optimize then discretize” approach,
meaning that we first analyze the gradient of the cost function corresponding to our calibration
problem in continuous time. We establish a new representation of the gradient, containing the
solution of an anticipating backward stochastic differential equation, which we call the adjoint
equation. The advantage of the adjoint equation lies in the fact that the dimension of the equation
does not depend on the number of parameters of the model. This suggests that discretizing this
equation and using it in a gradient-based Monte-Carlo optimization algorithm will significantly
speed up the calibration in comparison to other methods, such as finite differences. We derive
a suitable discretization scheme for the adjoint equation and establish the corresponding conver-
gence rate. These theoretical results will then be used in a numerical case study, calibrating a

fractional Heston-type model to observed option prices.






Zusammenfassung

In dieser Arbeit befassen wir uns mit der Kalibrierung eines stochastischen Volatilitdtsmodells,
dessen Volatilitdt von einem stetigen Prozess mit endlicher p-Variation, p € (1;2), getrieben wird.
Dies ermoglicht es, fraktionale Brownsche Bewegungen mit Hurst Parameter H € (0, 5; 1) als rel-
evante Beispiele fiir einen treibenden Prozess der Volatilitéit zu betrachten. Dabei gehen wir nach
dem Ansatz "Optimieren-Dann-Diskretisieren” vor, d.h. wir analysieren zuerst den Gradienten
der Kostenfunktion des zugrundeliegenden Kalibrierungsproblems in stetiger Zeit. Wir leiten eine
neue Darstellung dieses Gradienten her, welche die Losung eines Endwertproblems fiir eine an-
tizipierende stochastische Differentialgleichung enthélt. Diese Gleichung bezeichnen wir als die
adjungierte Gleichung. Der Vorteil dieser Gleichung liegt darin, dass ihre Dimension unabhéngig
von der Anzahl der Parameter des Modells ist. Dies fiihrt dazu, dass die Diskretisierung dieser Gle-
ichung und ihre Verwendung in einem gradientenbasierten Monte-Carlo-Optimierungsalgorithmus
die Laufzeit der Kalibrierung im Vergleich zu anderen Methoden, wie z.B. der Finite-Differenzen-
Methode, signifikant verringert. Zusétzlich entwickeln wir ein passendes Diskretisierungsschema
fiir die adjungierte Gleichung und bestimmen die zugehorige Konvergenzrate. Diese Resultate
werden dann in einer numerischen Fallstudie verwendet, um ein fraktionales Heston-Modell an

beobachtete Call-Options-Preise zu kalibrieren.
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Introduction

In the area of financial engineering, continuous stochastic volatility models enjoy great popularity
among practitioners. The term “stochastic volatility” refers to the assumption that the volatility
of an asset is itself given by a stochastic process. These models are able to replicate realistic
traits of observed implied volatilities, such as volatility smiles or the leverage effect. One of
the most famous models of this kind is the Heston model, introduced in Heston| [1993]. In this
model the volatility of the asset follows a Cox-Ingersoll-Ross process and the empirically observed
negative correlation between the volatility and the asset returns (see, e.g. [French et al.| [1987])
is incorporated in this model by a parameter which directly influences the correlation between
the driving Brownian motions. The Heston model is especially advantageous for practitioners,
because of its semi analytic pricing formula for European options. The asset and volatility in
this model and most of the famous stochastic volatility models in the 20th century, e.g. [Hull
and White| [1987], Chesney and Scott| [L989], Stein and Stein| [2015], are modeled by stochastic
differential equations governed by Brownian motion noises. Researchers and practitioners also
consider another class of stochastic volatility models, where the driving noise of the volatility
is given by a fractional Brownian motion with Hurst parameter H € (0,1) (see Mandelbrot
and Ness| [1968]), which is not a semimartingale for H # 0.5. These models are called fractional
volatility models for H > 0.5, see e.g. |[Comte and Renault| [1998],|Chronopoulou and Viens| [2012],
Bezborodov et al.| [2019], [Mishura and Yurchenko-Tytarenko| [2020], Lépinette and Mehrdoust
[2016] or, inspired by the empirical findings of |Gatheral et al.|[2018] (preprint available since
2014), rough volatility models for H < 0.5, see Bayer et al.| [2016], Fukasawa) [2017], |El Euch and
Rosenbaum| [2019]. For H > 0.5 the increments of the fBM are positively correlated and their
autocorrelation function decays very slowly, such that these models are often refered to as long
memory models. The term rough volatility stems from the roughness of the paths of the fractional
Brownian motion for H < 0.5. In this thesis we consider a fractional stochastic volatility model in
the "long memory” case, but instead of working only with a fBM with Hurst parameter H > 0.5
as governing noise for our volatility, we consider a whole class of processes which contains the
fBM, namely continuous processes of finite p-variation for p € (1,2). L.C. Young introduced
in [Young| |[1936] a generalization of the Riemann Stieljes integral based on the finite p-variation
of integrand and integrator, which enables us to consider the underlying stochastic differential

equation for the volatility pathwise. For the asset dynamics in our model we keep the Brownian



motion as governing noise and allow the two processes to be correlated. This way we are able
to avoid arbitrage problems, which arise when using the fractional Brownian motion in the asset
dynamics, see e.g. Rogers| [1997].

When it comes to stochastic volatility models, calibrating the parameters of the model to fit
observed option prices is a key task for practitioners. The literature on calibration of fractional
volatility models to observed option prices is rather scarce and only specific models are considered,
see [Mehrdoust and Fallah [2022], Mrazek et al. [2016]. Inspired by results from the calibration
of standard stochastic volatility models, see Kébe et al.| [2009], we aim to calibrate our fractional
stochastic volatility model to observed option prices using a gradient-based Monte-Carlo opti-
mization algorithm. A drawback of Monte-Carlo methods is their relatively slow convergence
of order %, but combining it with a fast gradient-based local optimization algorithm can still
produce satisfactory results. However, to use gradient-based optimization routines, one needs to
calculate the gradient of the corresponding cost function with respect to the model parameters.
This is usually done by finite differences, but especially in the Monte-Carlo setting, this approach
becomes costly and leads to instabilities. The authors in [Kdbe et al| [2009] tackle this problem
by using adjoint methods in a discretized setting to efficiently calculate this gradient, and show
that it significantly speeds up the calibration of the Heston model, compared to the finite dif-
ferences approach. Adjoint techniques are well known to speed up the numerical calculation of
sensitivities, by solving corresponding backwards equations and found use in multiple disciplines
like optimal design |Giles and Pierce [2000], meteorology (Charpentier and Ghemires [2000] or in
financial modelling, to efficiently calculate option Greeks Giles and Glasserman|[2006]. The paper
Kibe et al. [2009] inspired us to look at adjoint techniques in the context of calibrating a frac-
tional volatility model to observed option prices. Conceptually we will follow a different approach
as the atuhors in Kébe et al.| [2009], by optimizing the underlying cost function in the continuous
setting, establishing a continuous representation of the gradient, which we then discretize to apply
this representation in practice.

As we already mentioned, the stochastic differential equations underlying our model dynam-
ics are of different nature. So we will first analyze the model equation itself and find sufficient
conditions on the coefficients to ensure the existence and uniqueness of the solution and also the
Frechét differentiability of the solution mapping with respect to the parameter, this will be the
content of Chapter 2. We analyze the two equations successively. Starting with the fractional
volatility SDE, we first give an introduction to p-variation spaces and the Young integral, as it
is not a commonly known topic. Then using results from Nguyen et al. [2018] and Nguyen et al.
[2020] on time dependent, multidimensional Young differential equations in the deterministic set-
ting, we establish the required properties of the solution to the volatility equation. The existence,
uniqueness and differentiability results concerning the asset dynamics SDE can be derived by
standard results on It6 SDEs.

In Chapter 3 we introduce the cost function corresponding to our calibration problem. We



find two ways of calculating the gradient of the cost function. One using the Frechét derivative
of the model solution mapping, which solves an inhomogenous linear forward SDE. We call this
equation the sensitivity equation. The second representation of this gradient will be our main
result. By considering the forward integral by Russo and Vallois Russo and Vallois [1993a], which
generalizes the pathwise Young and the Ito integral in our setting, we will be able to find a
variation of constants formula for the explicit solution of the sensitivity equation. Furthermore
using the forward integral and this explicit solution, we establish the second representation of
the gradient, containing the solution to an anticipating backward stochastic differential equation,
which we call the adjoint equation.

Having established the representations of the gradient of our cost function, we need to find
suitable discretizations of the solutions to the underlying equations, to use our results in practice.
This will be the content of Chapter 4. For the forward equations, namely the model dynamics
equation and the linear sensitivity equation, we choose first order Euler schemes and prove that
the discretizations converge to the solutions in any L!-space, uniformly in time, establishing
the corresponding convergence rate. For the discretization of the backwards adjoint equation,
we derive a suitable backward Fuler scheme and prove its convergence to the solution of the
adjoint equation, again deriving the convergence rate. These schemes are then used to prove the
convergence of the discretized cost function and its discretized gradient, inheriting the convergence
rates we previously found.

Chapter 1 provides a summary over all the results we establish in this thesis. Since the
introduction of preliminaries and the calculations needed to prove the given results are very
extensive, it seems beneficial to start with such a chapter to deliver the essence of this thesis to the
interested reader. We first give a a detailed description of the mathematical problems treated in
this thesis and then summarize the results of Chapters 2 to 4 in the Sections[I.2)to[I.4] After that,
these results will be applied in a numerical case study, where we first translate our discretization
results to the Monte-Carlo setting and then efficiently calibrate a fractional Heston-type model
to observed option prices using standard gradient-based optimization algorithms, contained in
the Matlab optimization toolbox. We will show that the adjoint approach leads to a significant
improvement of the computational time, compared to the use of the sensitivity equation or finite
differences. At the end of this chapter, we give a detailed overview over the existing literature in
the related fields of research.



Chapter 1

Overview on main results, numerical

example and literature review

1.1 Problem formulation and setting

The goal of this thesis is to find an adjoint representation of the gradient of a cost function,
evaluated at values of an asset whose dynamics are driven by fractional stochastic volatility
model. This adjoint representation will then be used to efficiently calibrate the model to a given
set of observed call option prices, using a gradient-based optimization algorithm. By "fractional”
we mean that our volatility process will be modeled by a driving process w, which paths are
almost surely continuous and of bounded p-variation for p € (1,2) (see Subsection for
the definition of the p-variation norm). This excludes the standard Brownian motion as driving
process for the volatility as used in usual stochastic volatility models, like the Heston model. On
the other hand the process driving the asset dynamics in our model will be a standard Brownian
motion B. Since we want our model to be able to capture realistic smile behaviors of implied
volatilities, we want the driving process w and B to be correlated. Now we introduce our model
setting.

Let T be a positive constant and ni,mi,ng,me,d € N = {1,2,...}. Let (2, F,F,P) be a
filtered probability space (satisfying the usual conditions) carrying an m;j-dimensional stochastic
process (wt)te[O,T}7 which paths are almost surely continuous and have finite p-variation for p €
(1,2) and a ma-dimensional standard Brownian motion (B).c[o,7], both adapted to the filtration
F = (}—t)te[(),T]v possibly dependent. Furthermore let ¢ be an open, convex and bounded subset of
R?, which will be our parameter set. We consider the parameter dependent system of stochastic

differential equations

t m t . .
g =)+ [ g+ [ olgn (1.1)
j=1



t m2 t
ot =wo(w) + [ Bt gtwdr+ Y [ aiatgt bl (1.2)
0 . 0
7=1

where

S : U — R™,

b:[0,7T] x R™ xU — R™,

o= (ot ...,0™):[0,T] x R™ x U — R™*™
and

xo: U — R"?,
b: [0,7] x R™ x R™ x U — R"?,
6= (&1,...,6m2) : [[)7T] x R™2 x R™ ><Z/l_>RnQ><mQ7

denoted in matrix form by

u  [&) §o(u) ! (r, f% - (r, &5 u wl
= (3) - () L Geata) oo S L) o

mso t 0 '
" Z/o (63‘@: mw,u)> B (3

Jj=1

Here the stochastic integral with respect to w is given by a pathwise Young integral (for details,
see Subsection and the stochastic integral with respect to B is a standard It6 integral. We
denote by | - | the Frobenius norm on R™*™, n,m € N and define ||z|lc,0,r = sup;ejo 17 |2| for
every continuous function taking values in R™*™. Under specific conditions on the coefficient
functions and the initial value functions, we are able to formulate an existence and uniqueness
result for equation and get for every parameter u € U a unique solution X'*, which is an
element of LfF(Q, C|0,T],R™*"2) for every [ > 1, where

Li(Q, 00, T], R™H72)
= {z: Q x [0,T] - R™*"| 7 is F-adapted process with almost surely continuous paths

such that E[Hx”fx,OT] < 00}

Moreover, we can prove that the solution mapping u — X" is Fréchet differentiable as a map
from R? to any LL(Q,C[0,T],R™*"2) for | > 1. The Fréchet derivative is given by a process
v e L]ZF(Q, o, 17, R("1+"2)Xd), which is the unique solution of a corresponding system of inho-

mogenous linear stochastic differential equations. Since we want to calibrate our model to e.g.



prices of European call options, we define a general cost function

1 & 2
) =5 B gu)]
pn=1
where 0 < T < ...,Ty =T is a sequence of times (e.g. the maturities of the observed options)

and the functions
Iu R™MT72 _, R

satisfy conditions which ensure the integrability of the composition and the differentiability of the
cost function J : 4 — R. The goal is to minimize this cost function over all parameters u € U.
To do this we follow the “optimize then discretize” approach and first calculate the gradient of J.
By the results we mentioned, we could already calculate this gradient, using the chain rule for

Fréchet derivatives and get

M

VI() = Y B |gu(8)| B g (228 ] (14)
p=1

To approximate this term, we discretize the underlying equations using first order Euler schemes
and show that the discretized gradient converges to VJ for a sequence of partitions converging
in mesh to zero, where we also give the convergence rate. Then using the Monte-Carlo approach
we will be able to estimate the gradient. Focusing on the computational side, the computation
of the discretized gradient boils down to numerically evaluating the values of the Euler scheme
for Y* on a partition (¢;)i=o,..n of [0,T] for every Monte-Carlo path. Since V" takes values in
R(m1+72)%d this leads to very high computational costs, especially if the number of parameters d
is very high, e.g. when the parameters are time dependent. The main goal of this thesis lies in the
reduction of these computational costs by establishing a new representation of the gradient V.J
which does not involve the process Y%, but a process A* taking values in R"17"2  which solves an
anticipating backward stochastic differential equation. Expressing the gradient of a cost function,
utilizing the solution of a backward SDE, can be seen as a stochastic analogon to the adjoint
sensitivity method in the ODE case, which has many applications in various fields of research
(see Subsection for a short overview). For that reason we call our anticipating backward
SDE, the adjoint equation. The derivation of the adjoint equation will be done by expressing
yg,au (which is the solution to an inhomogenous linear system of SDEs) by a variation of constants
formula and reformulating . To establish this variation of constants formula and to deal
with the Fr measurable (hence anticipating) random variables E [gH(Xr_’ﬁu)] g (X7,), we will make
use of the forward integral, introduced by Russo and Vallois [1993a]. This stochastic integral
generalizes the Young and the It0 integral and allows for anticipating integrands. We will then
be able to introduce the adjoint process A" as the explicit solution to the adjoint equation.

This process A* can then be approximated using a suitable discretization scheme running



backwards in time, where we again establish the corresponding convergence rate. The numerical
estimation of this new gradient now boils down to calculating the values of the discretization
scheme for A" on a partition (¢;)i—o,..n of [0,7] for every Monte-Carlo path. Since A" takes
values in R(1+n2) (as opposed to R(”1+"2)Xd) this reduces the computing time in comparison to
the first mentioned approach. Especially in the case where the parameters are time dependent,
this reduction is significant. In Subsection we show the applicability of our theoretical
results to calibrate a fractional Heston-type model to observed option prices using gradient-based

optimization algorithms, contained in the Matlab optimization toolbox.

1.2 The model dynamics equation and its differentiability with respect

to the parameter

The form of the model dynamics equation has a key property, namely that the first equation
does not contain the solution process of the second one . This makes it possible to split
the analysis of the given equations. We start with the treatment of the first equation, which is
driven by a continuous process of finite p-variation. This allows us to interpret the dw; integral as
a pathwise Young integral and we call such an equation a stochastic Young differential equation.
The properties of functions of finite p-variation, an introduction to the Young integral, existence
and uniqueness of equation and the Fréchet differentiability of the corresponding solution
mapping are contained in Section The results we establish in this section heavily rely on the
results of Nguyen et al. [2018], where the authors consider non-autonomous Young differential
equations in the deterministic setting. The second equation is a standard stochastic differential
equation in the It6 sense. The equation has random coefficients since b and & depend on the
process £“. The analysis of the properties of this equation are the topic of Section This
kind of equation often appears in stochastic control theory, so we cite and use in this section the
results of |Yong| [2019] and [Yong and Zhou [1999]. Note that there are various existing results
on the existence and uniqueness of equations that are similar to , respectively . There
are also related results on the Fréchet differentiability of the solution mappings, which could be
adapted to our setting, but impose stronger conditions in the time domain of the coefficients.
We will focus on this matter in Subsection Now we summarize the important results of
Chapter [2| Suppose we are in the setting introduced in Section Before we state the results,
we summarize all the conditions we impose on the coefficient functions, the initial value functions
and the driving process w, for the rest of this chapter. Additionally to its path properties, we

assume that the process w satisfies the following integrability condition

e Exponential moment condition: There exists K > 0 such that

E [eK”w”?J»O’T} < 00. (1.5)



For the coefficients and the initial value function of equation (1.1)), we assume:
(Hp) Let & : U — R™ be continuously differentiable, such that £ and its Jacobian D¢y are

bounded by a constant L.

(H2) Let b:[0,7] x R™ x U — R™ be a continuous function which satisfies:

— b(t,z,u) is continuously differentiable with respect to x and u.

— There exists a constant L such that for all z,y € R™, u,v € Y and every t € [0, T
b(t, z,u)| < L

by (t, z,u)| + |by(t, x,u)| < L
|bx(t7$7u) - bx(t,y,’l))| + |bu(t,x,u) - bu(taya U)| < L(|fL‘ - y| + |u - U|)

(Hs) Let o := (ol,...,0™) : [0,T] x R™ xUY — R™*™M1 he a continuous function which satisfies:

— o(t,x,u) is twice continuously differentiable with respect to = and wu.

— There exists a constant L, such that for allz € R", u e U, t € [0,T]) and j = 1,...,mq,

l=1,....n, k=1,...,d

lo(t,z,u)| < L
|o.(t, ,u)| + |07 (t, 2,u)| < L
;ioél@,x,u> +—’510%ku,x,u) <L
<1,

o .
+ ’8”0{% (t,z,u)

o .
gkt

where
aimal’j(t, T,u) ... %al’j(t,w,u)
ol (t,x,u) =
%a”l’j(t, T,u) ... %U”l’j(t, x,u)
aimal’j(t,x, u) ... %al’j(t,a:,u)
O'i(t, Z, u) = :
%a”l’j(t, xT,u) ... a%da"l’j (t,z,u)



ax?le obi(t,z,u) ... axfaxl obi(t, x,u)
;xagl (t,x,u) = :
8;1)?99&1 oItz u) . 855:?1289&1 oI (L, u)
Bu?;uk ol (t,z,u) ... auf;uk ol (t,z,u)
%aik (t,x,u) = : :
81}?;% oItz u) ... 8u§(‘2ﬂuk o™ (¢, u)

and analogously defined 207, 207,

— There exist constants L and § € [5, 1] such that for all z,y € R™, u,v e U, s <t €

0,T]and j=1,...,m,l=1,...,n1, k=1,...,d

|cr(t,a:,u) - O'(S,IL‘,U)| < L|t - $|B

|J£(t7$au) - O‘%(S,:L‘,u)’ + |U1];(tvl'au) - O'i(S,:U,’LL” < L|t - S|ﬁ

0 0
= _ Y5
ua (t,x,u) e (s,y,v)

0 . 0
Y _ Y
+ ‘a$auk(t,x,u) &Eauk(s,y,

gL(!t—s\B+|x—y|+\u—v|>.

gt = 5ol (o)

And for the initial value function and the coefficients of equation (|1.2)), we assume:

(B1) The function b : [0,T] x R™ x R™ x U — R is continuous with respect to the variables

t, z, z and u and continuously differentiable with respect to z, z and u for all ¢t € [0, T]
Denote

. obi(t, x, z, " abi(t, z, z,
by(t,x, z,u) = <Z(axzu)> , by(t,x, z,u) = (W)
i 1<i,j<na % 1<i<ng,1<j<ny

b b, (t
bu(t,,2,u) = <(a““>) .
N 1<i<ng,1<5<d

Furthermore there exists a constant L > 0 such that

sup |5$(t,x,z,u)] + ]@(t,m,z,u)\ + \I;u(t,a;,z,u)] < L.
te[0,T],x€R™2,z€R™ ,ucld

(Bs) The function 6 = (6%,...,6%) : [0,T] x R"™ x R™ x U — R"2*™2 is continuous with respect

to the variables ¢, z, z and u and continuously differentiable with respect to =, z and u for



all t € [0, T]. Denote for j =1,...,my

8&{1 (t,z,z,u) 8&{1 (t,z,z,u)

U%(t,x,z,u) = — ,U;(t,x,z,u) = —
8561'2 azig
1<i1,i2<n2 1<ii<ng, 1<ia<m

4 o67 t,x,z,u
&{t(taxvzvu) = (Zl()

) 1<i1<ng,1<i2<d

3ui2
Furthermore there exists a constant L > 0 such that for j =1,...,mo
sup 167(t, @, 2,u)| + |61(t, @, 2,u)| + |67, (¢, 2, z,u)| < L,

te[0,T],xeR™2 ,R"1 ueld
(B3) Let xg : U — R™ be a continuously differentiable deterministic function, such that zy and
its Jacobian Dx( are bounded by the constant L.

Note that the conditions, we impose on the coefficients are stronger than those needed to
establish the following results, since they are needed to show the differentiability of the solution

mapping and not just existence and uniqueness.

Theorem 1.1. For every u € U the equation (L.3) has a unique solution X", which is an element
of L&(Q, C[0, T],R™*"2) for every | > 1 and

B[12* 0] < D

where Dy ; is a positive constant independent of the parameter u.
Proof. See Corollary Corollary Lemma and Remark O

As one would expect the Fréchet derivative of the solution mapping of the equations (1.1)) and
(1.2]) solve corresponding inhomogenous linear equations of respective kind. Define for ¢ € [0, 7T

the R(M+n2)xd yalued system of linear equations
t mi t ) . )
g = Déo(u) + /O b, €5, w)yl + bu(r, E5 w) dr + Y /D ol (1, €2, )y + ol (r, €2, w) duwd - (1.6)
j=1
t ~ A
G = Daro(u) + / ba(r, 2, €%, 1) g% + by (1, 2%, €5, u)yl + b*(r, 2%, €, u) dr
0
+3 [ ahrat g a)g + ot 8wk + 0]t €8 ) dB] (1.7)
j=1"0
and in matrix form

Vi = (%)
Yt
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. D¢ (U) t by (’l“, fl‘, u) 0 " by, (’l", 571}3 ’LL)
- (on<u>> +/0 (ézm &) by(r, xmﬁ,m) e (Bum xr,gﬁ,m) o

& [t (oh(r )\ e [ohrEL )
+Z/o< 0 )y’”L( 0 )dwi

7j=1
m2 t 0 0 .

4 4 Vr+ . dB]. 1.8
];/(; <5‘?(T, xgvfgau) &%(7‘, x}f,ﬁ}f,u)) <&i(""> xgvfﬁa“)) ( )

To prove the Fréchet differentiability of the solution mapping u — X, we first need to establish
the existence and uniqueness of the inhomogenous linear equations and . For equation
we use an existence and uniqueness result concerning vector valued homogenous linear YDEs
from Nguyen et al. [2020] and establish an explicit solution to , stating a variation of constants
formula. Uniqueness then follows easily. We get a solution process y* € LL(Q, C[0, T], R"*9) for
every [ > 1. The existence and uniqueness of the inhomogenous linear It6 SDE follows by the
same result used for the existence and uniqueness of equation , since the solution process y,*
to which appears linearly in is a continuous F-adapted process having moments of all
orders, uniformly in ¢. Similar to the Young and also the ODE case we can formulate a variation
of constants formula to get an explicit solution to , using the corresponding homogenous
linear SDEs. These homogenous linear SDEs corresponding to the equations and , will
play a crucial role establishing our main goal, namely the formulation of the gradient of our cost
function by the adjoint equation, and also in the approximation of the adjoint equation. Hence
we will come back to these equations after we stated our differentiability result. In the Young
case, we show that the derivative of the solution mapping u +— &% is given by the solution to
equation generalizing the ideas of Han et al. [2012] to p-variation spaces, where related
calculations were made for Holder continuous paths, respectively using Holder norms, for the
special case of a fractional Brownian motion driver, in a stochastic control setting. In the It6
case the differentiability of the solution mapping u + x* follows by standard techniques from

stochastic analysis.

Theorem 1.2. The solution mapping u — X* fromU to LL(Q, C[0, T),R™*"2) forl > 1 is Fréchet
differentiable and the Fréchet derivative DX" equals Y*, where Y" is the unique solution to the
SDE (1.8). Furthermore, we have for every l > 1, that

l
BI7"50z] < Dy
for a positive constant Dy ;, which is independent of u.

Proof. See Corollary Corollary Lemma and Remark O

The next intermediate goal, which will be achieved in the next section, is to establish a

variation of constants formula for the equation (1.8]). Since the processes used in the variation
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of constants formula of the the two respective equations and will be an important
component in the calculations, we define them and state a result concerning their existence,
uniqueness and boundedness. We define the R™*™ valued homogenous linear stochastic YDEs
for a general initial time sp € [0,T] and we leave out the dependence of the involved processes on

u for readability

t mo et
20 =1, + / by (1, &y u) )0 dr + Z/ ol (r, &, u) ¢ dw?! (1.9)
S0 j=1 S0
and
t mooet ‘ .
0 =], _/ Vb, (r, &y ) dr — Z/ YO0l (1, &, u) dw?., (1.10)
S0 j=1 S0

Note that the generalisation to an arbitrary initial time will only be important for the approxi-

mation of the adjoint equation later.

Lemma 1.3. Both of the matriz valued YDEs (1.9) and (1.10) have a unique solution, which is
an element of the space L]ZF(Q, Cl[so, T],R™*™) for every | > 1. We have that

sup_max {B [[6" 5y 7] B [16" 15eoir| } < Do
s0€[0,T

for every I > 1, where the constant Dy, is independent of u. Furthermore, it holds for every
u € U and so € [0,T) that °" = (¢°0); 1 for every t € [so, T), P-almost surely. The explicit
solution to equation (1.6 is given by

y = duDizo(u) + /O bl () dr + > 6y /0 67109 () dud,
j=1

where ¢ and ¢~ are the solutions to the equations (1.9), respectively (1.10) with initial time
S0 = 0.

Proof. Existence, uniqueness and boundedness follow by Corollary and Corollary The
inverse relation of the processes follows by the pathwise application of Lemma for almost

all w € Q. The variation of constants formula follows by the pathwise application of Lemma
2.33] O

Analogously, we state the similar results for the homogenous linear It6 SDEs. For a general

initial time so € [0, 7], we define

0

t m2 t
o, +/ by (s v, 6, )20 dr + Z/ 53 (2 )V A (1.11)
s j=1s0
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and

t m2
5= Ly — / 0 b, 0,60 0) = S (6 (0, &) |
S0 j=1
mo t
—Z/ V06 (r, xy, &y u) dBI. (1.12)
j=1"°%0

Lemma 1.4. Both of the matriz valued SDEs (1.11)) and (1.12)) have a unique solution, which is
an element of the space L]ZF(Q, Cl[so, T],R"2*"2) for every | > 1. We have that

sup_max {B[[19“/l% sy | B 16 sesor] } < Dy
50€[0,T7]

for every I > 1, where the constant Dél 18 independent of w. Furthermore, it holds for every
weld and so € [0,T] that " = (") for every t € [so, T], P-almost surely. Setting so = 0
and &° = ¢, the solution to equation (1.7) is given by

. ot R ) my | |
@? = d)thO(u) + ¢t/0 ¢T_1 bg(t)Df;f + bZ(T) — Z(}g,] (7") (5?’7 (’I”)D{;‘f + &37] (r)) dr
j=1
mo . t ) ' 4 '
+ / ¢p ' (627(r)DE! + 6307 (r)) dBY.
=1 70

Proof. See Lemma [2.45 O

The next section summarizes the results of Chapter [3| the main chapter of this thesis. We
establish the representation of the gradient of our cost function, by the explicit solution to the

adjoint equation, which is an anticipating backward stochastic differential equation.

1.3 The cost function and its gradient

We consider our cost function

1 2
Jw) =5 > B [gu(X8)]
pn=1
where 0 < T < ..., Ty = T is a sequence of times in (0,7] and we assume for the rest of this

chapter, that the functions
' R™*™2 5 R

satisfy the following condition

(G) Let L be the constant used in the conditions on the coefficient functions b, o, b and 6. For

every i = 1,..., M, we have that g, : R(m+72) 4 R is continuously differentiable and we

13



denote the derivative by

0 0
'(2) = < 2), ., =——au(z ) € Rmtnz,
9,(2) 5o 9u(2) FE—— 9u(2)
We assume for all z,y € R™ "2 that
19, (2)| < L

and
19,,(2) — g, (y)| < L|z —yl.

Our goal is to calculate the gradient of our cost function. We will do this in two ways. One easy
way to calculate the gradient would be to use the solution of the so called sensitivity equation )
(see ), which is the Fréchet differential DX™ of the solution mapping u — X™. Using the
chain rule for Fréchet derivatives (see Ambrosetti and Prodi [1995] Proposition 1.1.4), we obtain

for the gradient

M
VJ(u) =) Elgu(Xf,)]Elg, (X, Vi, ]

Then we want to calculate an explicit solution to the (ny 4+ ng2) X d-dimensional system of linear
SDEs , by establishing a variation of constants formula similar to Lemma respectively
Lemma but for the whole system of equations. This explicit solution can then be used to
get a second representation of the gradient, involving the solution to an anticipating backward
stochastic differential equation, which we call the adjoint equation. In the course of these calcu-
lations, we will encounter several technical problems. First, one of the processes involved in the
explicit solutions of our system of differential equations , will be the product of a process
driven by Brownian motion and a process driven by w. Therefore we need an integration by parts
rule which connects both of these processes. Remember that the involved integrals are of different
type, one is a pathwise Young integral and the other is the standard Ito integral. Moreover, for
the calculation of the adjoint equation, we would like to integrate over random variables which are
Fr measurable and hence anticipating. This makes it impossible to use the Ito integral. Luckily
all these problems can be solved by applying a stochastic integral which generalizes both, the
pathwise Young and the It6 integral. The Section [3.1]is devoted to this generalization, called the
forward integral, introduced by F. Russo and P. Vallois in the paper Russo and Vallois| [1993a].
Here we will just give a short definition of the forward integral and comment on its properties.
Let (Xt)ie[so,7) e a continuous processes and (Y:);e[s,,7) be locally bounded, meaning that for

every t > sp, fsto Ysds < oo, P-almost surely. The forward integral is defined as the limit in

14



ucp-sense of the e-forward integral, if this limit exists. Precisely

X X
e — forward integral : I~ (g,Y,dX)( / R AL A M
£

and
t
Forward-integral : / Yod  Xs=1lm I (e,Y,dX)(t).
s0 e\ 0

Note that a family of processes (Hy );e|s, ) converges to a process (H¢).els, 7 in ucp-sense (uniform
in probability), if
lim sup |Hf —H¢ =0

e=0es0,7]

in probability. The key feature of this integral is that it coincides in our situation with the
Riemann integral (see Theorem cited from Russo and Vallois [2007], Proposition 1 7a)), the
It6 integral (see Theorem cited from Russo and Vallois| [2007], Proposition 6) and the Young
integral (see Theorem [3.7)). The coincidence with the Young integral was proven in Russo and
Vallois [2007] for Holder continuous integrand and integrator, we generalized the results to the
case of continuous integrand and integrator having finite p-respectively g¢-variation, such that
% + % > 1. This enables us to state an integration by parts formula (Theorem , which is then
used to establish the explicit solution to equation . To do this, we define the homogenous
linear SDEs corresponding to the inhomogenous equation . To simplify the notation we first
define the following functions for r € [0,7] and u € U:

bg(?“) = bz(’l“, g)”)) bg T) b (7" grmu)

a;"j(r) ai(r &' u), Jjj’j(r) ou(r, & u) for j=1,...,my,

Bg(T‘) B (Ta:vrv‘fr? ) BIZL(T‘) [; (r,m,,,g,,, )7 BZ(T) = Z)u(’l“, x}‘,{}f,u)

Azj’j(r) = &;(r, xr & u), 6g’j(r) = Ug(r, xr & u), &5’j(r) = &i(r, xt & u) for j=1,...,mo.

Let sg € [0,7] and leave out the dependence on the solution processes on u for readability, we
define the R(™1+72)x(n14n2)_yalued systems of equations for t € [sg, T] by

t by 0 1 t ;:LJ' 0 )
@fo = Inj4ny + / Ax(r) ~ (I)io dr + Z/ 7 (T) (I)io dwi
S0 bg(?”‘) beL(T) j=1 S0 O 0
[t 0 0 ,
+ Z/ <Au,j(r) g,j(r)> (I)io ngv (1'13)
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and

2
. s | (PR 0 Z”” 0 0
\Ijto = Inytny — \IJTO R R — R wi dr
i / <bz<r> b;%r)) = (a;%r) crﬁ(r))

1
mi t u,j m2 t
_Z/ P oz7(r) 0 de—Z/ Pso AUQ AuQ dBZ, (1.14)
j=1 S0 0 0 j=1 S0 O-Z’](T) a-xd(r)

The following theorem is an important result, since it is the basis for the formulation of the

adjoint equation.

Theorem 1.5. For every u € U and sy € [0,T] the equations (1.13)) and (1.14) have a unique
solution ®50%  respectively W50Y in LfF(Q, Clso, T),Rmtn2)x(mi+n2)y for every 1 > 1, such that

sup_max {E [ 00|, o] B 102 o 7] } < D
s0€[0,T]

where the positive constant Dg is independent of u. We have that W;" = (®;*")~! for t €

[s0,T], P-almost surely. Furthermore the explicit solution to the equation (1.8) for every t €

[0,T] is given by the following variation of constants formula (here we set the initial time of the

homogenous equations to syg = 0 and leave out the indexes sy and u)

u Déo(u) P b)) 0 r
e (pgm(u))“bt/o . [(ézm) Z(c}é"j(r)&z’f(r))]d

j=1
mi t a}j’j(r) L t 0 4

+ @t/ ot dw! +) @ / el dBJ.
2 0 20 s

Proof. The statement follows from the arguments in Section and Theorem but here we
want to give a small overview of the needed steps. Taking the form of the equations (1.13) and
(1.14)) into account, the solution processes need to be of the form

S0 S0
(bS() _ t 0 \IJSO _ t 0
t 7\ 7s0 Jso |’ t 7\ .75 0s0)’
t t t t

for every t € [sg, T]. Hence we get for both equations (1.13|) and (1.14]), three lower dimensional
equations. The two equations on the diagonal are given by the equations ([1.9) and (1.11)), re-

spectively (1.10) and (1.12), which we already analyzed in Lemma and Lemma There

we got existence, uniqueness and boundedness of the solutions. Hence the only equations which

need further examination, are

~ t N - R ma t ) _ . A
fo = / bZ(r)fbio + bg(r)cé;’io dr + Z/ 5';‘7] (r)d)io + 5;%] (T)gbedBﬂ (1.15)
S0 = Js0
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and
/ PEObE(r) + 50 | b (r Za d (r)| dr
—Z/ Vo (r) duw] — / 3062 (r)dB] (1.16)

for t € [sg, T], which both stem from the dependence of equation on the solution of equation
(1.1). The existence, uniqueness and boundedness of the solution to equation , again follows
by standard results on stochastic analysis, since it is an inhomogenous linear 1t6 SDE. Equations
of this kind were already considered, e.g. equation . We get the explicit solution by a

variation of constants formula, which is given by

t m9

A RO [ )= 2 oo opir Y ap [ @Gtorsmon an

0 — j=1 S0

The challenging part is the existence of a solution to equation ([1.16)), since the equation contains

both Young and It6 integral terms. Fortunately we can get a candidate for a solution by con-

sidering the inverse relation between the solutions to the equations (|I. 13|) and ([1.14]), which we
hope to be satisfied. We already know that 170 = (¢:°)~1 and ¢{° = (¢:°)~! for all ¢ € [so, T,
P-almost surely. Hence assuming this inverse relation and taking the explicit solution to equation
into account, we get the candidate

b0 = —(70) e (ep0) (1.17)
t R R ma2 )
o O RGO O R S ¢>SOdr-Z / D169 (1) g0 dBI | (650)".
S0 =1
(1.18)

This candidate for an explicit solution of equation (|1.15]) is now a product of a process driven by

wy, namely (¢7°)~! and a process driven by B, given by

mo mo t ) )
- [y )= D s )| drvar =3 [ értavitar as.
S0 j=1 7=1 S0

Here the introduction of the forward integral has its first application to our results. Using the
integration by parts formula from Theorem we can prove that is indeed a solution to
equation . Uniqueness then follows easily and the boundedness of the solution is a direct
consequence of the representation , and the boundedness of the factors in L!-norm for every
[ > 1, uniformly in t. Then we get directly, that ¥;* = (®;>*)~! for ¢ € [s,T] P-almost surely
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and the variation of constants formula for the equation ((1.12]) follows again by an application of
Theorem on the product (®9)~1). O

In the next theorem, we will state the second gradient representation by making use of the
adjoint equation. This is the first main result of this thesis and uses the coincidence of the Ito
and forward integral in our situation and a useful property of the forward integral, which directly
follows by its definition. Let Z be any real valued random variable, e.g. an Fp measurable

random variable, and let the process Y be forward integrable, then

T T
Z/ st—st/ ZY,d~ X,
0 0

hence the forward integral allows for anticipating integrands. This property and the variation of

constants formula from the last theorem, will be the main tool in proving the following result.

Theorem 1.6. The gradient of the cost function is given by

- Déo(u) T () & 0
e E[AO (D%(u)) +/o AT{ (%(r)) ; (&;%)&:ﬁﬂ'(m) } a
mi T 0.3,]'(,,”) ' ma T 0 -
| NSRS oy S AR P o

where the row vector

Ao =" Flou(X, g} (X4, 21,87 for t € [0,T)
T, >t

is an element of L'(Q, C[0,T],R™*"2) and satisfies the anticipating BSDE

T Uy 2 2
A= 3 Bl o)+ [ A[(l;ﬁ; EU?TJ—Z(AU,? O(T)> Jar

T2t 1\ ) o

& T (o) o), s & (T 0 0 :
+ /AT dwi + /AT wir o ws | B, 1.20
jzzjl t ( 0 0 ; t 57 (r) ax?(r) (1.20)

for allt € [0,T]. We call this equation the adjoint equation.
Proof. See Theorem 3.1 O

Having established our main result, the rest of the thesis is concerned with its numerical

approximation, to use the results in practice.
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1.4 Approximation of the cost function and its gradient

For the discretization of the model dynamics equation and the sensitivity equation ,
we choose the standard discretization by first order Euler schemes. We define the discretization
schemes on (€2, F,F, P) for a partition [T*"e" = IT¥ = (¢;),=0__, of [0, T], which is not necessarily
equidistant. For each w € Q, w € U and i € {0,...,n — 1} we define the discrete Euler scheme
X" for the equation by

n gt ( )
X, w) = i+l

)= << >>
&' (w) b (ti, € (w), ) ). L
<%u®) ( @xa e w)a) ) LT

i (G] thgt )> (wgﬁ_l (w) = wi" (w)>

7ty (w t<>>>@LN®<%WD

Ssﬁ

)
a

M§

+
1

J

and

Xl = Xo(u) = (o(u), zo(u) "

Here we left out the direct dependence of X" on w for readability. We will consider the continuous

interpolation

S,

n (ts, &8 (w), u) ) .
Qﬁ >+<v@<>$wmo(t“)

() i

=1

mao 0 j o j )
+]Z (ffj (tuwZ’“W),fg(w),u)) (Bl - Bl()

—

for t € [t;, tix1] for every ¢ € {0,...,n—1}. Similarly for eachw € Q, u € Y and i € {0,...,n—1},
we define the discrete Euler scheme Y™ for the equation (1.8)) by

n Yt
yti+1 = (g;«kl)
i+1
n by (tia 5?7 u) 0 n by, (tia gfau)
=V . ’ - : - ’ liv1 — ti
y“((bz(ti,xz,sz,u) bo (ti, 2, &, u) h bu (ti,a}, &, ) a1 —2)
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s O-g;" (tlagrzau) 0 n U&(tlvg’z?u) j j
(0 P (N
0

j=1
ma
+ Z ~J ) ~ 7 yg (Bgz‘ﬂ - Bgz)
j=1 0z (t“xg,fg,u) Oz (tuxgagtrivu) l
ma
3, (i, - Bi) (L.21)
j=1 Ou (tz,l'g,fg,u)

with
Vit = Yo(u) = (D& (u), Dxo(u)) "

and its continuous interpolation defined as above. Again we leave out the direct dependencies of
the processes on u and w for readability. We will now be concerned with the convergence of X"™*
to X% in L, C([0,T],R™*"2) and the convergence of Y™ to Y* in L}(€, C([0, T], R(m1+72)xd)
for every uw € U and | > 2. The restriction to [ > 2 is just technical to facilitate the proofs and
shorten the notation for discretization of the It6 SDEs and consequently the whole system. For
I € (1,2] the results follow by the monotonicity of L‘-norms. To get the convergence results,
we need to adapt and add some conditions on the coefficient functions, which we assume to be

satisfied by the coefficient functions b, o, 13, ¢ for the rest of this section, namely

(Hsx): The Holder exponent /3 from condition (Hs) is an element of the interval [%, 1], instead of
[5.1].

(E4): Let b, L be the function and constant from condition (Hs) and 3 € [%,
in condition (H3). For every z € R™, w € Y and s <t € [0,T1], b satisfies

1] the same constant

|b(taxau) - b(s,x,u)] + ’bx(t7$7u) - bx(s7$7u)| + ‘bu(t7$7u) - bu(s,x,u)] < L’t - S’B

(E2): Let b, 6 and L be the coefficient functions and the constant from condition (B1), respectively
(Bg). Forallz e R, y e R u el and s <t € [0,7], b and & satisfy

1b(t, 2, y,u) — b(s, 2, y,w)| + |6, 2, y,u) — 6(s, 2, y,u)| < L(L + |z| + [y])(t — )7,

We will give different convergence results depending on the properties of the driving process
w. The standard case is that w is a continuous process having paths of bounded p-variation
for p € (1,2), where we do not assume any kind of Holder condition on w. Because of this
we cannot expect to get a convergence parameter which only depends on the mesh |[ITF| =
maxj—g,.n—1 |ti+1 — t;| of the Euler partition, as it is in standard approximation schemes of
1t6 SDEs. We define two convergence parameters in this case. First, we define for all w € Q, the
parameter
O(w) = _max  |tipr =il + [w0(W)]p i

1=0,...,n

20



for the pathwise convergence of the stochastic Young differential equations. Second, we define
the L'-convergence parameter for the stochastic Young differential equation

1
l

010 :=E [(5@ ,

which is well defined, since w satisfies the exponential moment condition (|1.5). The last conver-

gence parameter we will use in the estimation of the convergence rate is defined by

52 = Imnax |ti+1 — ti|,
1=0,....,n—1
which is essential in the estimates for the It6 SDEs and for the whole systems under the following

additional condition

(HA): Holder assumption: Almost every path of the process w is Holder continuous of order
H > % and the Holder seminorm
lwy — ws|

|w|H—H 1,0, = sup
’ stea(or) It —slH

has moments of all orders.

Again we can split the analysis of the convergence to the two respective cases of approximating
the YDEs and the It6 SDEs. In both cases there is a vast amount of existing literature concerned
with the convergence of Euler schemes and the corresponding convergence rate. Here we will
only give the references which we used in our calculations but refer the reader to Subsection
[1.6] for the discussion of similar results in the literature. Concerning the convergence of Euler
schemes in the YDE case, namely £ to the solution of equation and y" to the solution of
, we first show boundedness of the Euler schemes, independent of n and the convergence
to the solutions pathwise. With the exponential moment condition satisfied by w, we then get
the L'-convergence with respect to the parameter 01,;. In these calculations we use ideas from
Lejay! [2010], where the author shows the convergence of Euler schemes (in the non-linear case) to
solutions of YDEs in a time autonomous, deterministic setting. We will be especially careful with
the w-dependent constants in the estimates, to get the convergence results in L!, by incorporating
the greedy sequence ideas from [Nguyen et al. [2018] and ideas for L'-estimates from [Hu et al.
[2016]. Concerning the convergence analysis for equation , we found no suitable results
in the literature, except for |Chronopoulou and Tindel [2013], where the authors consider time
autonomous equations in Holder spaces driven by fractional Brownian motion. We were not able
to replicate their ideas in our setting, so our proofs are very different from theirs. Hence, our
results on the boundedness of y" in Lemma the corresponding Gronwall Lemma (Lemma
and the convergence result in Theorem seem new and are of interest themselves. For
the convergence of " to the solution of and ¢" to the solution of , we use standard
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techniques like the Burkholder-Davis-Gundy inequality and the Gronwall inequality. The ideas
for the proofs are standard but taking the rather unusual setting of our model dynamics into
account, we do the calculations rigorously. The standard reference for this topic is [Kloeden and
Platen| [2011], which gives a comprehensive overview. The following two theorems provide the
rate of the convergence of X" to the solution of and )" to the solution of equation .

Theorem 1.7. We have for every uw € U, that
E [HXn,quOQO,T} < Dxny

and

1
l T (pr)/\%

E [qu - XnuHoo,O,T:| S DKx,l51,21 )

for any | > 2, where the constants Dyn; and D, ; are independent of v and n. If w satisfies
the condition (HA), then for any | > 2, there exists a constant ]-N)KX,Z > 0 such that

1
]

1 ~ 1
} < DKXJCSQ 2.

ol

Proof. See Theorem [£.7] together with the considerations of Subsection for the rate under
the condition (HA). O

Theorem 1.8. We have for every u € U, that

B[y

l
|oo,o,T] < Dyn

and

. T (2-p)A
1 —p 3
‘oo,O,T] < DKy,l51,4z )

B[l -y

for any | > 2, where the constants Dyn; and Dk, are independent of u and n. If w satisfies the
condition (HA), then for any | > 2, there exists a constant DK%I > 0 such that

1

1 (2H-1)A

~ 1
o R L T

Proof. See Theorem together with the considerations of Subsection for the rate under
the condition (HA). O

Now we come to the discretization of the explicit solution of the adjoint equation. Our
anticipating backward adjoint equation is given by ([1.20)). Note that A; is an n; +ny-dimensional

row vector. We define the approximation scheme on a partition II¥ = {ti}i=o0,...n of the interval
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[0,T] as

AL = 8 A) = AL (Tnens + i) + ) Blou(XE)]g, (X7,) €RUE™), 0 (1.22)
Tu=t;
where A} for i =0,...,n is a n; + ng-dimensional row vector and

by (ts, &, w) 0 o) tl,ft ,u) 0 ; ;
=1 i . (tig1 —t;) + wl  —wl
ntzatz+1 <bz (t“ SC? ’ éz—b ’ ’LL) bx (t“ .’,UZ ’ é.g) +1 Z 0 ( tit1 tl)

0 . ,
* i B} — B\ e Rlmtn2)x(nitn2)
Z( st ot >>< b~ BI)

ti7 xti7£tivu

for alli € {0,...,n—1} and

b= Elgu(XM)]g,(X7).
T,=T

In Section we give a short explanation how to derive this discretization scheme. We use the

constant interpolation on the interval [0, 7], meaning that

A} = A}

z+1
for t € (ti,ti+1].
Analyzing the explicit solution of equation (|1.20]), given by

A= 3 Blgu (X)) gl (X, ) 2% (@9) for ¢ € [0, 7],

T, >t

where ®f respectively (®9)~! = W) are the unique solutions to equation ([.13) and (I.14) with

initial time 0, we are able to find a connection between the convergence of A™ to A and the

convergence of the forward Euler schemes corresponding to the equations (|1.9)), (1.15)) and (1.11)).

Details of the derivation are given in Section Utilizing this connection, we establish our

second main result, given in the next theorem.

Theorem 1.9. For allu € U and l > 2, we have

1
1 (2-p)Ag
sup B [‘At - ?n(t)‘l:| < Dy 10, 4lp g
t€[0,T] -
where the constant Dk, ; > 0 is independent of u and n. Under the assumption (HA), there

exists a constant Dy, ; > 0 such that

~I=

1
(2H-1)n5

sup E [’At t (t)’l} < DKAJéQ

t€[0,T]
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Proof. See Theorem [4.20] O

Having established these convergence results, we can use them for the approximation of the

cost function and the two representations of its gradient. Our cost function is given by

M

J U =R, J(u) = % > Elga(Xf)).
p=1

We introduce the discretized cost function and prove its convergence to the cost function and that
the same holds for the corresponding gradients. Let ITP = (ti)i=0,....n be a partition of the interval
[0,T] such that (T),) p=1,..M C ¥, the discretized cost function and the discretized gradient are

given by
M
T =5 DB |gu(Xp")]
=1
v
(V)" (w) = B |gu (X7 | B | (X7 V" (1.23)
pn=1

In the following corollary and lemma, we utilize the previous results on the convergence of the

forward schemes corresponding to our model dynamics and the sensitivity equation.
Corollary 1.10. There exists a constant Dg, > 0, such that for every v € U, we have that

n 2— 3
T (u) = J"(w)] < D005 7",

where the constant Dg, > 0 is independent of uw and n. Under the assumption (HA), there exists

a constant Dy, > 0 such that

~ _ 1
[T (u) — T (w)| < Dy, o5 N,

Proof. See Corollary O
Lemma 1.11. There exists a constant Dg, > 0, such that for every u € U, we have that

n 2— 3

V() = (V)" ()] £ Dieg, 815",
where the constant D, , > 0 is independent of w and n. Under the assumption (HA), we obtain
~ 2H-1)AL
V() = (V)" ()] < Dicg, 05" .

Proof. See Lemma, O
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Now we want to find a way to include the discretized solution of the adjoint equation given
by (1.22)) into the calculation of the gradient V.J. We reformulate the representation of (V.J)"
such that it contains A™ and get a discretized version of (|1.19)).

Lemma 1.12. For every u € U, the discretized gradient (V.J)"(u) (see (1.23))) can be represented
by

(V)" (u) =

n—1
E |AIDXY +ZAt +1nZ,t¢+1] ,
=0

where

by (ti, &, u) L Uj(t- &, u) - .

u u\v1s St; u\v1s St; i 7
o= . t‘l—t~+g wy. . — Wi,

ntlytl+1 (bu(tz,xg,ég’u) ( i+ 7/) j:1 0 ( terl tz)

i Z ( (tzaxt 7€t ) )) (Bgiﬂ - BgZ)

for alli € {0,...,n—1}.
Proof. See Lemma [£.23] O

To show that our theoretical results can be used in practice, we consider a practical example

in the next section.

1.5 Numerical experiment

We showed, that we can approximate the cost function and its gradient with respect to the
parameter using the established discretization schemes. Since for the calculation of the dis-
cretized cost function and the discretized gradient we need to take expected values, we will use

the Monte-Carlo method. A comprehensive introduction to Monte-Carlo methods is given by

Glasserman| [2013]. Using random number generators, we can simulate for every i = 0,...,n
and j = 1,...,m realizations of i.i.d random variables (wi )a=1,...A and for every i = 0,...,n
and j = 1,...,msy realizations of i.i.d random variables (Bgi’a)a:17.,,7A such that (w)")e=1,...a,

respectively (Bgz,’a)azl,m, 4 have the same distribution as our driving processes w’ respectively B;
at time ¢;. Using these copies of wy, and By, we get for every v € U i.i.d copies of paths of the
discretization schemes X™* and Y™", denoted by X™%% and Y™"%. By the strong law of large

numbers we then have, that the Monte-Carlo estimators

1 1
a1 Z Xt?u,a , respectively 1 Z yZ,u,a

a=1 a=1
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converge P-a.s. to the expected values
E[X[""] , respectively E[V;"],

for every i = 0,...,n. This ideas directly translate to the approximation of the distretized cost

function and the discretized gradient by the Monte-Carlo estimators

1M1 A ’
) = 3 (A Zguw%;“’“))

pn=1 a=1
(VJ)TL’A(U> — ﬁ/[: <1§:g ( nua ) ( Z Xnua yn,u,a> (1 24)
st A e M, A m ' )

Using the central limit theorem, it is well established that the corresponding approximation error
behaves asymptotically like O(Afé) see |Glasserman [2013] Hence, combining these considera-
tions with our discretization results from Proposition [I.10]and Lemma[T.11] there exist constants
D and Ds, such that under the assumption (HA), we have

1

1
£ HJ(u) B JmA(u)H <D <A> + D25é2H_1)/\%

and constants Ds, Dy, such that

5(2H—1)/\%

E[|VJ(u) — (VJ)"(u)|] < D3 G) ) > (1.25)

In Lemma we established another representation of (V.J)", utilizing the discretized adjoint
equation ([1.22). To use the adjoint equation numerically, we need to be able to use its Monte-
Carlo paths to approximate the gradient VJ. We define the Monte-Carlo paths of the discretized

adjoint equation by

A
“ 1
A;’;Lira = ()\Zva,)\gva) A?fl ( ni+ns + 77t“t1+1) + Z (A z:lgu(x,;;a)> gZL(X,}LI;a) e Rn1+n2’
a=

Tu=t;

where

bm(tiagtn-’avu) 0 Ur tzaftnaa ) 0 i i

a f— J7a J7a
=1 v N t 1 — —|— E w; . — W
nt“tH_l (bz (t’la x?’aa 5?@7 U) bx (t’u xZﬂ, ggﬂ) l+ 0 ( i b )

0 . 4
+ ) B — B ¢ R(n1+n2)><(n1+n2)
Z( Lt p ,5?“, ) &é(ti,xz’“,ﬁz’“,u))( s~ B
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for alli € {0,...,n— 1} and

A
n.a 1 n,a n,a
A = Z (AZQN(XT )) gL(XT ).
a=1

T, =T

Now we could show that for every u € U the estimator

A n—1

1

> (A”“DXO +2Aifﬂ7§ii+1) : (1.26)
a=1

=0
where
b (tla Zla)u) Uu l) ,U) ]
nt tz+1 = (6 (t x gn,a u) Z+1 +Z (wgzil wgl )
u\% t- 1S5t 0
+ (B — B ")

Z ( tz,l‘tz 752(11 )) s

for all i € {0,...,n — 1}, approximates the discrete gradient representation (V.J)" from Lemma

Instead we will prove that for every u € U, this estimator (1.26) is P-a.s. equal to the

estimator
(VJ)nA( Z(Azgu nua) <AZ nua y%;u,a)'

This directly implies the convergence of the estimator ([1.26]) to the gradient V.J(u) with respect
to the number of subintervals n of the Euler partition II¥ and the number of Monte-Carlo samples

A.

Corollary 1.13. For every u € U and we have

A n-1

=1 1=no

Proof. We can repeat the same steps as in the proof of Lemma where we exchange the
processes X", V" A™ by A™% Y™ and A™%, consider the sum

Z tl+1

instead of
n—1
> Vi
i=0
for every a = 1,..., A and take arithmetic means with respect to a instead of expected values. [J
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This corollary states, that we get exactly the same result when realizing the random Monte-
Carlo paths and calculate the gradient via the discrete sensitivity equation or the adjoint
method . This also shows that our ”optimize then discretize” approach coincides with the
"discretize then optimize” approach in this setting. If we had started with the Monte-Carlo
paths of Euler discretization scheme X% and calculated the derivatives of the recursions with
respect to the parameter, we would have get the recursion corresponding to the Monte-Carlo
paths of the discrete Euler scheme Y™®. By Corollary [I.13] we would have obtained the discrete
adjoint equation and the adjoint gradient representation directly. Taking these considerations into
account, we can translate our calibration problem (P™) (see (4.78) to the discretized Monte-Carlo

optimization problem

2
n,A . . n,A _ e u
(P™) Find min J™" % (u) = mln (A g (X T, >

subject to

anuva — Ssza gn e (t27 gn u a’ ) t t
tiv1 n,u,a n,u,a + n,u,a  ~N,U,a ( i+1 Z)
xti+1 ‘rti b(t“ xt ) 5 i ) U)

(t’Hgnua? ) 0 j:a j7a
+ Z ( 0 ( z+1 + Z n,u,a Eﬁ,u,a u) (Bti+1 B Bti )’

j:l t’u xt

XTL,'U,,CL:XO’ 7::0,...,71_]-, a217"'7A‘

For the computation we can just simulate realizations of the discretized Monte-Carlo paths X"™*¢
for all @ = 1,..., A once up to time Tyy = t, = T and extract the values at times 7T}, for all
uw=1,...,M to calculate the cost function. As suggested in Kébe et al. [2009], we store the
increments of the processes w’ and B7 for every Monte-Carlo path to facilitate the computation.
Since we are now able to approximate the value of the cost function, as well as its gradient with
respect to the parameter, we are able to use smooth gradient-based optimization algorithms to
find the minimum of the cost function. We summarize the techniques to calculate the needed
gradient.
Finite Differences:

Probably the simplest way to calculate the gradient is to calculate the finite differences

€,

oI\ o IV hey) — T (u)
(52) 0= (VaHues :

where e; is the i-th unit column vector for i = 1,...,d. But especially in the Monte-Carlo frame-
work this methods has multiple disadvantages. First of all it leads to a substantial computational
cost, because of the d additional calculations of J™4 in every iteration of the optimization. Fur-

thermore the right choice of the parameter h is essential.
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Sensitivity equation:
The second method is to utilize the discretized sensitivity equation ([1.21) in the discretized
gradient ([1.24])). We generate A paths of the Euler schemes X™" and Y™" and get

(VJ)TLA _Z<ZQM nau) <Zgu nau y%:a,u)'

pn=1

For the numerical computation we would need to solve the recursions for X™% € R™*"2 and
the recursion for Y™ e R(m+n2)xd yp to time T for each of the A Monte-Carlo paths. The
computational cost grows linearly in the number of parameters.

Adjoint equation:
We showed that the Monte-Carlo estimator for the discretized gradient, given by , has a

second representation,

'rLA n,a
(VJ) = Z <At0 DX + Z A M%,tlﬂ) ,

i=ng

utilizing the discrete adjoint equation . The adjoint method gives another possibility to
calculate the gradient of the cost function with the advantage that instead of (n; 4+ ng) x d
forward solves of the recursion for Y, we have ny + ny backward solves. So the calculation of the
gradient does not depend on the number of parameters. Especially in the case of time dependent
parameters this reduces the numerical effort substantially in comparison the other two mentioned
methods.

Now we will use these methods on an short explicit example.

1.5.1 Case study: A fractional Heston-type model

To use our theoretical results from previous chapters to calibrate a model with volatility driven by
process of finite p-variation for p € (1,2), we first need to define a model which suits our conditions
and ensure the market we are trading in is arbitrage free to have the risk neutral pricing formula.
There are several models which incorporate the long memory phenomenon of volatility, by using a
fractional Brownian motion with Hurst parameter H € (0.5, 1) as driving process for the volatility,
i.e. [Comte and Renault| [1998],|Chronopoulou and Viens [2012], Bezborodov et al.|[2019], [Mishura
and Yurchenko-Tytarenko| [2020], |Lépinette and Mehrdoust| [2016]. For our volatility process we

would like to consider a fractional version of the Cox-Ingersoll-Ross model given by

t t
Ut:U()-l-/ m(@—vr)dr—k/ C\/EdBf
0 0

where B is a fractional Brownian motion with Hurst parameter H € (0.5,1). It was shown by
Lépinette and Mehrdoust| [2016] and also by Mishura and Yurchenko-Tytarenko [2020] that this
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equation has a unique positive solution, where the integral fg Cy/Vr dBH is given by a pathwise
Young integral. Furthermore in [Lépinette and Mehrdoust| [2016], the authors show that the
process v; is mean reverting to the parameter 6, hence the parameters can be interpreted similarly
to the standard CIR model by

vg = volatility at time 0
0 = long term mean
k = rate of return to the long term mean

¢ = volatility of volatility.

Another feature we want to incorporate is the correlation between the volatility process and the
asset price process S;. So fix T > 0 and let (£, F, (Ft)tE[O,T]a P) be a filtered probability space
carrying two independent standard Brownian motions B}, B? and a fractional Brownian motion
B} with Hurst parameter H € (0.5,1), where F is the filtration generated by B} and B?, and
B[ has the integral representation (see Hul [2005])

t 0
BF =cCy </ (t —u)2dB} +/ (t—w) 2 — (—u)f2 dB;> ,
0

—0o0

where

o 2H~(3 — H)
TN AH + D - 2H)

By defining
By = pB} + /1 - p?B2,

we obtain a standard Brownian motion By, which is correlated with By in the following way
Corr(By, B}) = p

for all t+ € [0,7]. Note that p is not the correlation between BY and the Brownian motion
driving the asset price process B, but between B and the Brownian motion B; from the integral
representation of B, This way we generate the desired correlation between the volatility process
v and the asset price S of the following model, in a similar way as in Mishura and Yurchenko-
Tytarenko| [2020]. The fractional Heston-type model we would like to consider is given by the

dynamics

t t
v = g +/ k(0 —vs)ds +/ ¢/vs dBE (1.27)
0 0
t t
St:So+/ (r—d)ds—i—/ VUsSs d(pBL + /1 — p2B2),
0 0
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where we have the spot price Sy, the riskless rate r and the dividend yield d. We assume the
market we are trading in, only consist of the asset S and a riskless bond e~" for ¢t € [0,7].
We would like to calibrate the model with respect to the parameters u = (v, k,6,(,p) to a
set of market observed European call option prices. The careful reader probably noticed some
difficulties with the problem formulation above. Taking the previous sections into account, we

are not able to use our framework on this problem because crucial conditions are not satisfied.

e The square root function in the integrand of the B¥ integral is only Hélder continuous of
order % Our approximation results demand global Lipschitz continuity and differentiability
in the state variable v;. Furthermore the coefficients of the equation (|1.27)) need to be
bounded.

e The disctretized volatility process v can become negative, since the increments of BY are

normally distributed.

e The coefficients of the equation S need to be continuously differentiable with bounded

derivatives in all variables.
e The functions g, are not differentiable, because of the maximum function.

To account for all these problems, we take an approach similar to|Kébe et al.[[2009]. We adjust our
dynamics by using a polynomial error function m; to smooth out the function 7 (x) = max(z,0)

at 0 and another function w9 which smooths out the square root function at 0. The functions are

given by
0 , T < —€1
7T1($): *m$4+%562+%$+31% ,—e1 < r <€
x , T > €1

for x € R and an error parameter £; > 0 which we choose to be 0.01 for all calculations. the

second function is given by

0 , L < —&2
—%,5(—15:67 + Teox® + 65325 — 336%:64 — 1175%3:3
71.2(1,) — 256¢,
+77e52? + 195e5 + T7l) ,—eg <z < ey
\ \/E , T > €9

for + € R and an error parameter €5 > 0 which we choose to be 0.001 for all calculations
For the upper bound of these 2 functions we construct theoretically a polynomial function which
differentiably truncates the function at a truncation value Z. In practice we choose this truncation
value so big, that it will not be needed, since v; is mean reverting and for our moderate time

horizon we do not expect the asset price in our model to explode. This is justified by our numerical
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findings. The dynamics of the adjusted fractional Heston-type model are given by

t t
vt —vo—i-/ &(9—7r1(vs))ds+/ ¢mo(vs) dBH
0 0
t t
Sy =Sy +/ (r —d)Ssds +/ To(vs)Ss d(pBL + /1 — p2B?) (1.28)
0 0

and after a log transformation S; = log(S;) in the asset equation, this yields

¢ ¢
vt :v0~l—/ ﬁ(@—m(vs))ds—l—/ (ma(vs) dB
0 0
N N t 1 t
Sy =5 +/ (r —d) — =ma(vs)? ds +/ mo(vs) d(pBL + /1 — p2B?).
0 0

2

Note that under these adjustments 72 (v,) is bounded and hence the SDE ([1.28)) has the explicit

solution
St _ Soe((r—d)t—% fot 72 (vs)? ds—i—fot 2 (vs) dBS)

Y

where B, = pB} + /1 — pQBE. For a dividend paying asset S; the discounted price process
e "8, = e "e5 is then a martingale with respect to P and the price for a call option with

maturity 7}, and Strike K, at time 0 in this model is given by

e "TWE [77 (es%u — KM)}
by the risk neutral pricing formula. We approximate this value by
Crol(u) = e E [771 (65%“ - Ku)}

and the cost function translates to

w\1? M 5
E|g, (5% )] Z (Cmod Cobs> 7
M

u=1

where g, (21, 22) = e " Temy(e® — K,,) — C’ﬁbs. Putting this into the framework of Chapter (3| we
obtain for a bounded, open and convex subset U of R the functions b: [0,7] x R x Y — R and
0:]0,T] x R x U4 — R such that

b(t,x,u) = uz(ug — m(x)) o(t,x,u) = (mo(x)
by(t, z,u) = —qull(a:) ox(t,x,u) = CTFIQ(Z‘)
by(t,z,u) = (0,us — m (), ue,0,0) ou(t, z,u) = (0,0,0,m2(z),0)
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and the functions b : [0, T]x RxRxU — R, 61 : [0, T|x RxRxU — Rand 62 : [0, T] x RxRxU —
R such that

b(t, @, z,u) = (r —d) — tma(z) &t x,z,u) = ma(2)p
by (t, @, 2,u) = Ltz 2,u) =0
ZA) (t €T,z U) ( ) (AJ';(t,l‘,Z,’U,) —7'['/2(2)/)
bu(t, z, 2,u) = (00000) 6L(t, x, z,u) = (0,0,0,0,m2(2))
&2(t7$7 Z,U) - 7T2(Z) (1 - p2)
62(t,x, z,u) =0
&g(t7m>zau) _W,Q(Z) 1_92
~2 _ p
5t x, z,u) = <0,0,0,0, ﬂg(z)ﬂ>

Note that for the fractional Brownian motion with Hurst parameter H > = , we know that for
every H' < H (see Nualart| [1995], p.274) condition (HA) is satisfied and by the Jain Monrad
criterion (see Theorem also the exponential moment condition is satisfied for p = %
We choose H' = H — ¢, for € close to zero and p = % Furthermore, all the other conditions
(H1),(H2), (H3),(B1),(B2),(Bs), (E1), (E2), (G) are also satisfied. Now we can make use of the
results at the beginning of this section to calculate numerically the cost function and its gradient
with the 3 different methods described. We use the gradients for a gradient-based optimization
algorithm to calibrate our model to the data set of observed call option prices from |[Andersen and
Brotherton-Ratcliffe| [1998], that is shown in Table

Table 1.1: Implied volatilities on the S&P 500 index with interest rate 0.06, continuous dividend
yield 0.026 and spot price 590.

Mat/Str | 501.5 | 531 560.5 | 590 619.5 | 649 678.5 | 708 767 826
0.175 0.190 | 0.168 | 0.133 | 0.113 | 0.102 | 0.097 | 0.120 | 0.142 | 0.169 | 0.200
0.425 0.177 | 0.155 | 0.138 | 0.125 | 0.109 | 0.103 | 0.100 | 0.114 | 0.130 | 0.150
0.695 0.172 | 0.157 | 0.144 | 0.133 | 0.118 | 0.104 | 0.100 | 0.101 | 0.108 | 0.124
0.940 0.171 | 0.159 | 0.149 | 0.137 | 0.127 | 0.113 | 0.106 | 0.103 | 0.100 | 0.110

1 0.171 | 0.159 | 0.150 | 0.138 | 0.128 | 0.115 | 0.107 | 0.103 | 0.099 | 0.108
1.5 0.169 | 0.160 | 0.151 | 0.142 | 0.133 | 0.124 | 0.119 | 0.113 | 0.107 | 0.102

0.169 | 0.161 | 0.153 | 0.145 | 0.137 | 0.130 | 0.126 | 0.119 | 0.115 | 0.111

0.168 | 0.161 | 0.155 | 0.149 | 0.143 | 0.137 | 0.133 | 0.128 | 0.124 | 0.123

0.168 | 0.162 | 0.157 | 0.152 | 0.148 | 0.143 | 0.139 | 0.135 | 0.130 | 0.128

0.168 | 0.164 | 0.159 | 0.154 | 0.151 | 0.148 | 0.144 | 0.140 | 0.136 | 0.132

G Wb

We calibrate the model first for the 5 parameters (v, %, 0, (, p), where we choose a closed,

convex subset of U given by

U = {(vo, 5,0,(, p) € R?| vy € [0.0001, 1], 5 € [0.0001,2], 6 € [0.0001,2], ¢ € [0.0001, 4],
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p € [—0.99,0.99]}

as our bounds for the calibration and choose different values for the Hurst parameter H. The
calibration is done on two different layers, to speed up the process. We first use a small number
of Monte-Carlo paths A = 10000 and a partition II* of [0,5] which contains the maturities of
the observed option prices by equidistantly dividing [0, 1] in subintervals of length 0.005 and
the interval [1,5] equidistantly into subintervals of length 0.05. Hence we get A = 10000 and
n = 280 with |TI®| = 0.05. Then we simulate the Brownian and fractional Brownian increments
with the assumed correlation by using the Matlab function mvnrnd and store the increments for
the whole optimization on this layer. Then we optimize our cost function, assuming the prices
are normalized to Sy = 1, using the Matlab fmincon function with the trust region reflective
algorithm and a function tolerance of 10=%, where the gradient of the cost function is calculated

via the adjoint method, starting at the parameter values
vp=01 k=1, 0=0.05,{=0.3, p=-0.7.

The found parameters are then used as starting value for the same procedure but on a finer
layer, namely M = 100000 and n = 560 by cutting the length of the subintervals of the coarser
layer in half. We repeat the optimization for the values H € {0.6,0.7,0.8,0.9} 20 times. The
results show the mean (u) and standard deviation (Sd) of each parameter for each value of
H, the mean over the 20 iterations of the average error over the 100 option prices avgErr =

> 2321 s ,11(2)1 [ C%*| and the average runtime of the optimization. We show in

table [[L.2] the results.

Table 1.2: Calibration results for different values of H € (%, 1), when calibrating our model with
5 parameters to the call option prices from table

H Vg K 0 ¢ p

7 Sd 1 Sd 7 Sd 1 Sd " Sd
0.6 | 0.014 | 0.0003 | 1.371 | 0.1043 | 0.018 | 0.0006 | 0.286 | 0.0196 | -0.640 | 0.0291
0.7 |1 0.015 | 0.0004 | 1.184 | 0.0486 | 0.017 | 0.0007 | 0.243 | 0.0099 | -0.669 | 0.0265
0.8 | 0.015 | 0.0004 | 1.197 | 0.0736 | 0.016 | 0.0005 | 0.241 | 0.0090 | -0.710 | 0.0202
0.9 | 0.015 | 0.0005 | 1.259 | 0.1033 | 0.0166 | 0.0008 | 0.232 | 0.0079 | -0.871 | 0.0537

H AvgErr runtime in sec
0.6 0.00059 393.79
0.7 0.00083 373.78
0.8 0.00106 386.08
0.9 0.00128 486.70

To illustrate the convergence result (1.25]), we consider only option prices with the maturities
1,2,3,4,5 from table to be able to consider equidistant partitions, where the mesh is cut in
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half in every step. We choose the number of subintervals of our partition successively as n; = 2°-5
for i =4,...10 and A = 100000 with parameters vg = 0.016, xk =1, § = 0.02, ( = 0.3, p = —0.7.
If (1.25)) holds, then by the triangle inequality, there also exist constants D3, Dy such that

5 (2H'-1)AL

B (|77 4w~ (v Awl) < Do ()4 Da

Hence, we calculate (V.J)"4(u) for the same Monte-Carlo paths of the fractional and standard

Brownian motion and repeat this 20 times. Then calculating

20
1 0.5n4,A,j i»A,J
Brri = o5 ;(VJ) AT () — (V)™ (u)
for ¢ = 5,...,9. We do this with paths of two different fractional Brownian motions with the
Hurst parameters H = 0.65 and H = 0.8. In figures [I.I] and [I.2] we show the log log plots for
x={ns,...,no} and y = {Errs,..., Errg} and adding a reference line with the slopes —0.3 and

—0.5 fitted to the last data point, illustrating our theoretical findings for the convergence rate.

2.2 T T
AN —*— Data
o — — —reference
24 | |
26 |
2.8 q
3k |
32 L |
3.4 L L L L L L L
4 4.5 5 55 6 6.5 7 7.5 8

Figure 1.1: loglog plot with respect to n; and the error Err; for i =5,...,10 and H = 0.65.

To compare the different methods of calculating the gradient, and to emphasize the advantages
of the adjoint method, we introduce time dependent parameters x(t), 6(t), ((t) and p(t) to our
model, which we choose to be piecewise constant on intervals (s;,sijt+1], where (s;)i=o,..1 is a
partition of [0,7] such that {s;}i—1.. 1 C {Tu}u=1,.,10, where T, are the 10 maturities of the
observed option prices. We show in table the computing time of the gradient using the 3
methods described for a increasing numbers of parameters. We see that the computation time of
the gradient calculation with the adjoint method stays almost constant for an increasing number of

parameters, as expected. Using the sensitivity or the finite differences method for the calculation,
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Figure 1.2: loglog plot with respect to n; and the error Err; for i =5,...,10 and H = 0.8.

we see that the computation time increases linearily with the number of parameters. Hence our
gradient calculation by using the adjoint model leads to a significant speed up of a Monte-Carlo-
based calibration of our fractional stochastic volatility model. We emphasize that this numerical
example is only supposed to serve as a proof of concept for the applicability of our theoretical
results in practice. For sure, there are many ways to improve the performance of the method,
e.g. by variance reduction techniques, parallelization and also the use of a more sophisticated

optimization algorithm.

Table 1.3: Runtime (RT) of the calculation of the gradient of the cost function with the 3 different
methods, for A = 100000, n = 560, and an increasing number of parameters.

Number of parameters | 5 9 13 17 21 25 29 33 37 41
RT Adjoint 22.5 | 22.0 | 22.5 | 22.2 | 22.1 | 22.3 | 22.2 | 22.4 | 22.0 | 22.1
RT Sensitivity 26.1 | 30.1 | 35.1 | 39.8 | 44.7 | 49.0 | 53.2 | 57.5 | 61.8 | 66.0
RT Finite differences | 51.4 | 85.8 | 120.2| 156.4| 191.1| 226.9| 261.1| 293.4| 327.9| 362.7

1.6 Literature review

In this chapter we want to give an overview on existing literature which relates to our results.
Starting this thesis we had a fractional stochastic volatility model in mind, where the driving
process of the volatility (w in our notation) is a non semimartingale. We want to choose an
appropriate path space which contains the fractional Brownian motion with Hurst parameter
He (%, 1), since it is the archtypical example of a long memory process used in financial modeling.
Our first approach was to interpret our model as a special case of a mixed stochastic differential

equation, where all equations are driven by both processes w and B. Such equations, where the
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driving process w is chosen as a fractional Brownian motion with Hurst parameter H € (%, 1)
or more generally Holder continuous processes with Holder exponent H' € (%, 1) were considered
by several authors in different settings, see Kubilius [2002], |Guerra and Nualart| [2008], [Mishura
[2008], Mishura and Shevchenko| [2011b], Mishura and Shevchenko| [2012], Shevchenko| [2013].
Some of these results can not be applied to our situation, because they only consider the one-
dimensional case (see Kubilius| [2002]), or need the driving processes to be independent (see
Guerra and Nualart| [2008]), which we explicitly want to avoid. Another possibility to deal with
existence and uniqueness comes from rough paths theory, introduced in Lyons [1998], which opens
a whole new perspective on differential equations driven by rough processes, which even allows
to consider fractional Brownian motion with Hurst parameter smaller than % An existence and
uniqueness result for such a mixed differential equation can be seen in (Coutin and Qianl [2002].
The drawback here is that again the driving processes need to be independent, which excludes this
approach for our purposes. The results for existence and uniqueness with the weakest conditions
is given in [Shevchenko [2013] and these could be used to ensure existence and uniqueness for
our system dynamics and also the linear equations, but under the assumption that w is Holder
continuous. Unfortunately we found no results concerning the differentiability of such equations
with respect to a parameter, only results on continuity, see Mishura and Posashkoval [2011].
Hence, we swapped from the more general setting of mixed stochastic differential equations to
the setting presented in Section which allows us to analyse the equations and
successively. Since our focus are stochastic volatility models, where only the volatility process
is driven by a non-semimartingale, this also seems the more natural approach. But this opens
up the question which exact path properties we want from our driving process w and which
solution spaces are appropriate for our volatility equation. If we first consider only a fractional
Brownian motion with H € (%, 1) as driving process, this equation can be solved pathwise,
because of the path properties of fractional Brownian motion having a.s. Holder continuous
paths with Holder exponent in (0, H). There seem to be essentially four ways of doing this
pathwise approach, using Holder norms (see Ruzmaikinal [2000]), p-variation norms (see |Lyons
[1994], Dudley and Norvaisa [2010]), the fractional integration approach introduced by Z&hle
(see |Zahle| [1998], Nualart and Rascanu [2002]), where the solutions are given in a Besov type
space, or the rough paths approach we already mentioned (see e.g. |Friz and Victoir| [2010]/Coutin
and Qian| [2002]). At the beginning of this thesis there was a recent publication Nguyen et al.
[2018] on existence and uniqueness of time dependent, mutlidimensional differential equations
driven by a continuous function of finite p-variation under similar conditions as in |Nualart and
Ragcanu| [2002], which was perfect for our purposes. So we chose the results of Nguyen et al.
[2018] together with Nguyen et al.| [2020], considering linear Young differential equations, as
basis for our pathwise considerations and developed all the properties like the continuity and
differentiability with respect to the parameter of the solution mapping to equation using

their ideas of the greedy sequences. Concerning the Fréchet differentiability we used ideas from
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Han et al. [2012], where they considered similar equations but using Holder norms in a stochastic
control setting. There were also result concerning the differentiability from rough paths theory,
see Cass et al.| [2013], where the Fréchet differentiability of the solution mapping with respect
to the initial condition, for time independent coefficients was shown. By adding dimensions to
the space variable, we could achieve the differentiability of our time and parameter dependent
equation with respect to the parameter using their results, but under stronger conditions on the
time variable as in our case. Concerning the It6 SDE analysis, we use results from stochastic
control theory given in [Yong and Zhou| [1999] and [Yong| [2019).

The main results in Chapter [3|incorporate the theory on Forward integration from Russo and
Vallois, the references are given in this chapter. Adjoint methods have a long history. Originating
in deterministic control theory, namely the Pontryagin maximum principle Boltyanski et al.| [1960],
it was then translated to the stochastic control setting in [Bismut| [1978]. An historical overview
on results related to the maximum principle can be found in [Yong and Zhou| [1999]. Since then,
adjoint methods to efficiently calculate gradients found many applications in various fields of
research like meteorology (Charpentier and Ghemires| [2000], Lafore et al.| [1998], optimal design
Giles and Pierce| [2000] or neural ODEs (Chen et al.| [2018], [Zhuang et al|[2020]. Adjont methods
in finance literature, were introduced in |Giles and Glasserman| [2006] to efficiently calculate option
sensitivities, but found many applications related to finance, e.g. |Capriotti [2011], Henrard| [2013].
The key references, which motivated our work, were Kibe et al|[2009] and Kébe [2010], since
we translate their adjoint approach for the calibration of the Heston stochastic volatility model,
to the fractional stochastic volatility case. More recent publications, which are concerned with
adjoint sensitivities for Stratonovich SDEs, are Li et al.| [2019], [Massaroli et al.| [2021]. Concerning
the adjoint sensitivities for SDEs driven by our specific model, we found no existing literature.

Coming to the first order Euler discretization results of Chapter {4} there are again different
approaches to the topic, similar as for the existence and uniqueness result. We first focus on
the discretization of the fractional SDE driven by w. We choose to work in p-variation
spaces considering this equation, but as it was for the existence and uniqueness result, every work
considering the numerical approximation of fractional SDEs driven by a fractional Brownian
motion with Hurst parameter H > % could be of interest to us. The first articles concerning the
discretization of fractional SDEs with fractional Brownian motion as driving noise by first order
Euler schemes were |Lin| [1995], Nourdin|[2005], Neuenkirch| [2006], Nourdin and Neuenkirchl [2007].
In the last of these references the authors prove that in the one-dimensional, time independent
case the Euler scheme on a equidistant partition (t;)i=1,.., of [0,1] convergences with a rate
of n'=2H pointwise a.s. to the solution of the equation. This rate is sharp in the sense that
n!=2H| X7 — X;| converges almost surely to a finite and nonzero limit. This result was then
generalized by Mishura and Shevchenko| [2008] to the multidimensional, time dependent case,
showing that n!=2# supyepo,7] | X{* — Xt| converges almost surely to a finite and nonzero limit. In

Davie| [2008] and Lejay [2010] the authors consider the first order Euler approximation of a time
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autonomous multidimensional differential equation in the deterministic setting with a continuous
driving path of finite p-variation, where p € (1,2). The author in Lejay [2010] obtains the same
rate of convergence as the previously mentioned works. Although the estimates are explicitly
given only for a driftless equation, the setting is the closest to ours and we combine ideas for the
estimates from Lejay|[2010] with the greedy sequence ideas from |[Nguyen et al. [2018] to obtain our
results. There are also results for higher order schemes, see e.g. |Jamshidi and Kamrani [2021], Hu
et al. [2016]. Or from the rough paths theory Deya et al.|[2012],|Araya et al.[[2020], [Friz and Victoir
2010], Davie [2008] for a fractional Brownian motion driver with Hurst parameter H < 1. In this
case, higher order schemes are needed as pointed out by an example in Deya et al.|[2012]. Non of
the aforementioned articles consider the convergence of discretization schemes of linear equations
of the type . The only reference we found for similar linear equations was |Chronopoulou and
Tindel [2013], where the authors consider time autonomous equations in Holder spaces driven
by fractional Brownian motion. We already commented on their work in Section For the
convergence of the discretization schemes for the nonlinear and linear It6 equations and
, we use standard techniques like the Burkholder-Davis-Gundy inequality and the Gronwall
inequality. The ideas for the proofs are standard, but taking the rather unusual setting of our
model dynamics into account, we do the calculations rigorously. We refer the reader to |[Kloeden
and Platen| [2011] for an almost complete covering of the topic. Another approach comes from the
theory of mixed differential equations we already mentioned, see Mishura and Shevchenko [2011a],
Liu and Luo|[2017] and |Liu et al.|[2020]. The authors in Mishura and Shevchenko [2011a] consider
first order Euler schemes for a mixed differential equations driven by standard Brownian motion
and a fractional Brownian motion with Hurst parameter H > %, but need the driving processes
to be independent. In Liu and Luo| [2017] the authors consider modified Euler schemes similar
to|Hu et al.|[2016]. First order Euler schemes for mixed differential equations, where the drivers
need not to be independent are considered in |Liu et al.| [2020]. The authors derive a convergence
result of order O(§2# 71/\%) in probability in a Besov type space (which was introduced in Nualart
and Rasgcanul [2002]), where 0 is the mesh of a partition of [0, 7']. While their results could be used
for the convergence of our Euler scheme X™ to the solution of equation , their conditions are
not satisfied by the coefficients of our system of linear equations (1.8)). We derive the same order
of convergence but in L!, I > 1, uniformly in time, for both the approximation of the non-linear
model dynamics equation and the linear equation stemming from the Fréchet derivative with
respect to the parameter of the model solution mapping. Considering the numerical example, we

gave the corresponding references in Section [I.5.1]
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Chapter 2

The model dynamics equation and its
differentiability with respect to the

parameter

The goal of this chapter is to introduce our model dynamics, state assumptions on the coefficients,
which ensure the existence and uniqueness of the solution to our model dynamics equation and
also the Fréchet differentiability of the corresponding solution mapping. We start by introduc-
ing the model dynamics. Let T" be a positive constant and ni,my,ne, mo,d € N = {1,2,...}.
Let (92, F,F, P) be a filtered probability space (satisfying the usual conditions) carrying an mj-
dimensional stochastic process (wt)te[o,ﬂ, which paths are almost surely continuous and have
finite p-variation for p € (1,2) (see Subsection for the definition of p-variation) and a ma-
dimensional standard Brownian motion (By)e[o,77, both adapted to the filtration F = (F)c(0,77,
possibly dependent. Furthermore let &/ be an open, convex and bounded subset of R which

will be our parameter set. We consider the parameter dependent system of stochastic differential

equations
t mi t . .
&' = &(u) —I—/ b(r, & u) dr + Z/ o’ (r, &, u) dwy, (2.1)
0 — Jo
J=1
tA ma2 t . .
wf =)+ [ bratgtwdr+ Y [ 8 (rnatetuabl (2.2)
j=1
where
f(] U — Rnl,
b:[0,T] x R™ x U — R™,
o=(c%...,0™):[0,T] x R™ x U — RM*™
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and

xo: U — R™2,

b:[0,T] x R"™ x R™ x U — R"2,

o= (&17...,6'm2) :[0,T] x R™2 x R™ x U — R72Xm2

denoted in matrix form by
XU — %L _ SO(U) + /t . b(Tv 6}“‘7 u) dr + il: /t o’ (Ta g;L“L’ ’LL) d,wj
33% Zo (u) 0 5(7”7 ZL‘?, 571”‘7 u) j=1 0 0 "

mo t O 4
+ . dB].
JZ:;/O a7 (r,xl, &Y, u) "
The form of the model dynamics, allows to consider the two equations (2.1]) and ([2.2)) successively.
We begin with the analysis of equation (2.1)).

2.1 Parameter dependent Young differential equations

In this section we examine the stochastic (Young) differential equation given in (2.1)). We cannot
use the It6 calculus in this situation, because we only assume that the process w has paths that
are almost surely continuous with finite p-variation for a given p € (1,2). A prominent example
of such a process is the fractional Brownian motion with Hurst parameter H > % Since the path
properties of w allows to solve the equation pathwise, we will develop the mathematical
foundation of Young differential equations in the deterministic setting first. We start in Subsection
with the properties of functions with finite p-variation and an introduction of the Young

integral.

2.1.1 Properties of p-variation and the Young integral

The definitions and properties of functions of finite p-variation in this subsection are mostly
adopted from Dudley and Norvaisal [2010] and Friz and Victoir| [2010], where the latter focus on
continuous functions of finite p-variation. For a more detailed discussion on Young-integration,
see [Young [1936] and Dudley and Norvaisa [2010]. For the rest of this subsection let n,m € N,
T > 0 a positive constant and [s,t] C [0, 7] intervals on the real line. We consider (R™*™ |- ||r),

where || - |7 is the Frobenius norm given by

2

lzllp = D> e

i=1 j=1
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For notational simplicity we write | - | = || - || for the rest of the thesis. We define P([s,t]) :=
{IIxy = (s =ty < t1 < -+ < t, = t)|k € N} as the set of all finite partitions of the interval [s,¢].
For a partition II;, we call [II;| = max;—o_ . r—1{|ti+1 — ti|} the mesh of the partition and for
i=0,...,k—1, we call [t;,t;1+1] the subintervals of the partition. If the number of subintervals of
a partition does not need to be specified, we will omit the index k. Let 1 < p < oo, the p-variation

(distance, semi-norm) of a function x : [s,t] — R™"*™ is then given by

k-1 »
|Zp,s,t := sup <Z e ‘Tti‘p)

keNIILeP([s,t]) \ ;=0
and the corresponding p-variation norm

[Zllp,st == |ws| + |2[p,s.2-
Furthermore, we define the spaces

WP([s, t], R™™) :={z : [s,t] = R™™| ||x

post < 00}

and

CP([s,t],R™™) :={x : [s,t] = R™™| z is continuous and ||z||,s: < co}.

The uniform norm for a function = on [s,#] is given by [|zloc,st := Sup,¢[s g 27| The obvious

inequality

[2llo0,s,6 < || + []p,s.0 (2.3)

shows that CP([s, ], R"*™) is a subspace of
C([s,t], R™™) :={z : [s,t] = R™ ™| x is continuous and ||z||c st < 00}

and all elements of WP([s, t], R"*™) are bounded with respect to the uniform norm. The following

lemma states a well known fact.

Lemma 2.1. Let p > 1, the spaces WP([0,T],R"*™) and CP([0,T],R"*"™) equipped with the p-

variation norm || - ||p.0,r are Banach spaces.

Proof. The proof for the completeness of WP([0,T], R™*™) is given in Proposition 2.10 in Dudley
and Norvaisal [1999]. Since CP([0,T],R™*™) c WP([0,T],R™*™) and by inequality every
Cauchy sequence in CP([0,7T],R™*™) converges uniformly to a limit z € WP([0,T],R™*™). Since
the uniform limit of continuous functions is again continuous, we conclude = € CP([0,T], R"*™),

which yields the assertion. O

Another embedding property is shown in the following lemma and is a easy implication of the
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inequality

(Ser) < (&)

for every finite sequence of real numbers (x;);=1,. ; and 1 < g < p.

Lemma 2.2. Let 1 < q <p. Isx € W9([s,t],R"*™), then

|Zp,s.t < [@]gst
and x € WP([s,t],R"™™). This also implies that C([s,t],R™"*™) C CP(]s,t], R"*™).

In literature concerning functions of finite p-variation it is often beneficial to define the notion

of a control function.

Definition 2.3. A continuous map ¢ taking values in the nonnegative real numbers, defined on
the simplex A([s,t]) = {(u,v) € R?|0 < u < v < t} is called a control function on [s,#], if it

satisfies the following conditions
e For all r € [s,t]: ¢(r,r) =0.
e For all u <r <win [s,t]: o(u,r)+ @(r,v) < @(u,v).

Lemma 2.4. Let ¢ and v be control functions on [s,t], C > 0 and © > 1 be real constants, then

o+v, p-v, Cp and ¢* also define control functions on [s,t].

Proof. For p+v, p-v and C'p the only property of control functions that is not a direct consequence
of the definition of a control function is the superadditivity of ¢ - v. Let u < r </ <w in [s,t],

v clearly satisfies v(r,7") < v(u,v), which yields

(p-v)(u,r) + (p-v)(r,0)
< p(u,r) - v(u,v)+ e(r,v) - viu,v)
< p(u,v)  v(u,v) = (¢ v)(u,v),

because of the superadditivity of ¢. Also for ¢ only the superadditivity is not obvious. Since
for all a,b >0 and x > 1, we have
(a+0)* >a®” +1b",

it follows directly for 0 < u <r < v <T by superadditivity of ¢ that

p(u, )" + o(r0)" < (p(u,r) +¢(r,v))* < p(u,0)"
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Lemma 2.5. Let ¢ and v be control functions on [s,t] and let o, 5 > 0 such that o+ 3 > 1, then

©* - VP is a control function on [s,t].

Proof. Compare Exercise 1.9 from |Friz and Victoir| [2010]. We only need to show superadditivity,
the other properties of control functions are obviously satisfied. For u < r < wv € [0,7T], we have

by the Holder inequality

[e3

_B_ _a _B_
T 4 plr,v) 3 v (r, v) 7

o(u,r)a+s atp v(u,r)e

_o _B_
< (p(u,r) + (1, v)) o8 (v(u,r) + v(r,v)) >+
B
< p(u, v)a+ﬁ + v(u,v)oFs.
The assertion follows by Lemma [2.4] with 2 = o + . O
Lemma 2.6. Let ¢1,...,pm be superadditive functions on [s,t], p > 1, C1,...,Cy positive con-

stants and x : [s,t] — R™™ q function on [s,t]. The pointwise estimate

m
|y — @] < ZC]‘QO]‘(U,'U)% for all u < w in [s,t]
j=1

implies the p-variation estimate
m
T |puw < Z ipi(u,v) for all uw < w in [s,t].

If ; is a control function on [s,t] for all j =1,...,m, then x is continuous on [s,t].

Proof. By definition we have

|elpue = sup DNty — )
keN,II,€P([u,v]) .

Taking the assumption and the Minkowski inequality into account, we conclude

1
k—1 m 1 P\ ?
[@lpue < sup 2| 2 Ciltisti)?
keN, I, eP([u,v]) j=0 \i=1
1
m k—1 P
< sup Z CPy @ity tjy1)
EeNIeP([un]) | 2 j=0

Ms

< sup CPoi(u,v))?
keN,IIeP([u,v]) 1:1
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m
<3 Cipilu, ).
i=1
In the case, where all the ¢; are continuous for j = 1,...,m, we have for r € [s, ]
m 1 m 1
11}}1}“ |z, — x| < ii}l}";C’icpi(u, r)r =0 and 1111{‘2 |y, — x| < }Li{%;Ciapi(r, u)? = 0.

O]

The following proposition is an important basis for all the main results in this thesis and

clarifies the connection between control functions and functions of finite p-variation.

Proposition 2.7. Let p > 1 and x : [s,t] — R™™ ™ be a continuous function of finite p-variation,
then

(P(u7v) = ‘x’p,u,v
defines a control function on [s,t].

Proof. Tt is clear that ¢(u,u) = 0 for all u € [s,t] and that ¢(u,v) > 0 for all u < v € [s,t]. To

show superadditivity, let u < r < v € [s, t] and take arbitrary partitions Il = (u = tg,...,tp =)
of the interval [u,r] and II,, = (r = fg,...,t,m = v) of the interval [r,v]. Then the sequence
ﬁk+m = (toy. .., them) := (to,...,tg = to,..., ) is a partition of the interval [u,v] and we have

k—1 m k+m

E |mti+l - :Cti |p + Z |x£i+1 - x{l ’p = Z |ZB£Z’+1 - :U£Z|p S |x’£,u,v'

i=0 i=0 i=0

Since IIj, and II,, are arbitrary partitions of [u,], respectively [r,v], this yields the assertion by
taking the supremum over all partitions of the two intevals. For the proof of continuity of ¢, we
refer the reader to Proposition 5.8[1 of [Friz and Victoir| [2010]. O

The next three lemmas are just technical necessities for the proofs to come. We define for a
function z : [0, 7] — R™ " and s <t € [0,T]

Osc(z, [s,t]) = sup{|xy — zy|lu < v € [s,]}.
Lemma 2.8. Let x € WP([0,T],R™*™), p > 1. Let p' > p, we have

-5, 0
||y s < Osc(x, [s,8])" ¥ |z]) 4

!The authors made a small error in the proof, which was corrected in the Errata to the book. It can be found
on the web page of Peter Friz.
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Proof. Let 1Ty, be an arbitrary partition of [s, t], we have

o1 k—1
/ —
E ‘$ti+1 — Ty |p < __Inax |xti+1 - T |p P Z |$ti+1 — Pt '
' i=0,...,k—1 ;
=0 =0
< OSC(ZL‘a [57 t])p/7p|x g,s,t‘

Taking the supremum over all partitions of [s,t] and taking both sides to the power ]% yields the

assertion. 0

Lemma 2.9. Let x € WP([s,t],R™™), p>1. If s=tg <t1 <--- <ty =t, then

k—1 k-1

-1
Z ‘ﬂg,ti,ti“ = |$’Z,s,t < kP Z ‘x’Zthl'
=0 =0

Proof. The first inequality follows from the superadditivity of |z|} ... and the second inequality
can easily be seen by using the triangle inequality and the and Jensen inequality for convex

functions. O

Lemma 2.10. Let p > 1, B € WP([s,t], R"*") and x € WP([s, t], R"*"™), then we have

|| Bz

p,s,t = |Bszs| + |B$‘p,s,t < |Bszs| + ||B||oo,s,t‘x|p,s7t + ||55||oo7s7t|B’p,s,t < 2HB||p,s,t||$||p,syt'

Proof. Using the definition of p-variation and the inequality (2.3]), we obtain

k—1 P
|Bx||p,st = |Bsws| + sup Z | Bty @iy — B[P
keNIIk([s,t]) \ ;=0

k-1 ’

= |Bszs|+  sup (Z |Btia 2ty — @) + (Briy — Bti)xtiw)
keN,ITx([s,t]) \ =9

< [Boas| + [ Blloc.sillpsi + [alloc.sel Blp.sc

< |Bsas| + | Bs|z

< 2||Bl|p,s.1l

pst T |B‘p,s,t’$|p,8,t + |5USHB|p7S7t + ‘$|p787t|B’p,S,t

l‘Hpvsvt'

In [Young| [1936], L.C. Young showed that it is possible do define an integral

T
/ z, dw,
0

as limit of Riemann-Stieltjes sums for partitions descending in mesh to 0 for an integrator w

with unbounded total variation. He showed that it suffices for the existence of the integral, that
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x € WP([0,T],C) and w € WI([0,T],C), where p,q > 0 and 119 + % > 1. We adapt the results of
Dudley and Norvaisa [2010] to show the existence of the integral for functions z : [0, 7] — R™*"™
having finite p-variation for p > 1 and an integrator w : [0, T] — R™*¢ (respectively R) which is
continuous and of finite g-variation for ¢ > 1 and % + % > 1.

In Dudley and Norvaisa, [2010], the authors define various generalizations of the classical
Riemann-Stieltjes integral in a very general setting. The integral in Dudley and Norvaisa) [2010]
which is of interest to us is the full Stieltjes integral, which coincides in our setting with the
classical Riemann-Stieltjes integral, because of the assumed continuity of the function w. So
every result of Dudley and Norvaisal [2010], concerning the there defined integrals (RS), (RRS),
(RYS) and (S) are applicable to our Integral. Therefore we will cite the results concerning the
existence of the Riemann-Stieltjes integral and call the given integral Young-integral in the case
where the p respectively ¢ variation of the integrand and integrator satisfy the before mentioned
condition % + % > 1. We will now summarize the results of Dudley and Norvaisal [2010] and adapt
them to our specific setting.

Let X be the Banach space (R™ ™, |.|) and Y be either the Banach space (R™*?, |- ) or
(R, | -|), all Banach spaces considered over R. In the case where Y = (R"*? | - |) the standard
matrix product defines a bilinear map from X x Y to (R™* | . |) and |zy| < |z||y| for all z € X
and y € Y. Furthermore for Y = (R, |- |) the scalar multiplication defines a bilinear map from
X xY to (R™*™ |-]) and |zy| < |z||ly| for all z € X and y € Y. Therefore these spaces satisfy
condition (1.14) of Dudley and Norvaisal [2010]. Let Il = (¢;)i=o
Ok = (7i)i=0,... k—1 a sequence of times in [s,t]. We call (II, ©) a tagged partition of [s, ] if

r be a partition of [s,t] and

-----

9,- S [ti,t“_l] for all ¢« = 0,...,k— 1.
We define the Riemann-Stieltjes sum of the functions z : [s,t] - X and w : [s,t] — Y on the
tagged partition (Ilg, ©) by

k—1
RS(x, dw, (Hka Gk)) = eri (wti+1 - wti)‘
=0

Now we are able to define the Riemann-Stieltjes integral.

Definition 2.11. Let = : [s,t] — X and w : [s,f] — Y be two functions. We say that the
Riemann-Stieltjes integral (RS-integral)
t
/ z, dw,
S

exists with value I € R™*? (respectively R™"*™), if for all £ > 0 there exists § > 0 such that for
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all tagged partitions (II, ©) of [s,¢] with |II| < §, we have
|IRS(z, dw, (I1,0)) — I| < e.

For s =t we set the integral to be 0.

The main tool in proving that the Riemann-Stieltjes sums converge, in the case where x is of
finite g-variation and w is of finite p-variation for %—f—% > 1, is the so called Love-Young inequality.
We first cite the Love-Young type inequality for Riemann-Stieltjes sums and then cite a result

concerning the existence of the Riemann-Stieltjes integral in our setting.

Lemma 2.12 (Love-Young inequality for RS-sums). Let k € N and (Ilx, ©k) be a tagged partition
of the the interval [s,t] C [0,T], where 6 is an arbitrary element of [s,t]. Furthermore let p,q > 1
with % —l—% >1, we CP([s,t],Y) and x € WI([s, t],R"*"™). We have

k—1

Z Lo, (wti+1 —wy,) — wg(w — ws)

1=0

S Cp7q|l"q757t|w‘p,8,t7

where Cpq = 1+ ((a) for ((z) = > 72, (%)x forz > 1 and o = Il9+

é_ If additionally 6 € Oy,

then Cp, 4 reduces to (o). Moreover we have

k—1
eri (wti+1 - wti) < C(a)||qu,s7t’w|p,s,t-
i=0
Proof. See Corollary 3.87 in |Dudley and Norvaisa) [2010]. O

Theorem 2.13 (Young-Integral). For 1 < p, 1< g such that o = ]% + % > 1, x € Wi([s, t], R"*™)
and w € CP([s,t],Y) the Riemann-Stieltjes Integral f; - dw, exists and the inequality

< CP»Q

T

quvt w|p7s7t (2’4)

¢
/ xp dw, — xo(wy — ws)
S

holds for every 0 € [s,t], where Cp 4 = () for ¢(x) = >, (1):;: (x > 1). Moreover, we have

1

w|’q78,t’w|pys7t- (2.5)

t
/ xdw‘ < Cpyq

In this situation we call the integral the Young integral and inequality (2.5)) the Love-Young esti-

mate.

Proof. See Corollary 3.91 and Theorem 3.92 in |Dudley and Norvaisa [2010]. O]
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Remark 2.14. In the case 2 € W9([s,t],R™*9) and w € CP?([s,t],R™*™) we can also define the

Young integral

k

t
/ (dwy )z, = hm RS(dw, x, (IIx, ©O)) Z W, — Zp,
s =0

for every sequence of tagged partitions (Ilj, ©) with |IIx| — 0 for £ — oo. Then the inequalities in
Lemma and Theorem also hold for the sums RS(dw, x, (I, ©)) and the given integral.

Now that we defined the Young integral, we list some of its properties. These are proven in
Theorem 2.72 and 2.73 of |Dudley and Norvaisa [2010].

Lemma 2.15. Let p,q > 1 and %—k% > 1, x, 2" € Wi([s, t],R™*™), w,w" € CP([s,t],Y), C1,Cy € R
and u € [s,t]. In this situation all of the following Young integrals exist by the preceeding theorem

and satisfy the following properties
i) f Crx, + Cozl. dw, = le xrdwr+Cgf xl dw,.
ii) fst z, d(Crw, + Cowl.) = C4 f z, dw, + Cy f xp dw)..
1) fst zp dw, = [z, dw, + fi xp dw,.

These properties show that for p,q > 1 and % + % > 1 the integral operator

y : Wi([s, t],R™"™) x CP([s,t],Y) — =R or Z = R"™™ depending on Y )

(z,w H/wrdwr

defines a bilinear map. The following lemma is devoted to the indefinite integral
u
Iy (z,w)(u) = / xp dw, Yu € [s,t]
S
and is an extension of Theorem 3.92 in Dudley and Norvaisal [2010], by proving its continuity on
[s,t] in our situation.

Lemma 2.16. Let 1 < p, 1 < q such that « = %—i—% > 1,z € Wi([s, t], R"*™) and w € CP([s,t],Y).

The indefinite integral Iy (xz,w) exists and is an element of CP([s,t],Y). Furthermore, we have

/ z, dw,

< Cpﬂ”l’H% ,

[Ty (z,w)|pst = 5

p,S,t
for Cpq = ((a).

Proof. For every r € [s, t] the indefinite Integral Iy (x,w)(r) exists by Theorem Let u <v e
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[s,t], then we have by property iii) of Lemma and the Young-Love estimate

v
/ z, dw,
u

Since (u,v) = |w[b .., is a control function on [s,t], we conclude the proof by applying Lemma
2.0l O

| Iy (2, w) (v) = Iy (2, w)(u)| =

< prquHq,uvv’Mnuw < Cpgq x|’q78,t’w|p7u,v'

We still need two results concerning the Young integral which will be especially helpful in
dealing with linear Young differential equations, namely a substitution rule and an integration by
parts formula. Both of these can also be found in |Dudley and Norvaisa [2010] in different form.

We will proof our version of the substitution rule and only cite the integration by parts formula.

Lemma 2.17 (Substitution rule). Let x € C1([0,T],R™*"™), y € C1([0,T],R™*™) andw € CP([0,T],R),
such that p,q > 1 and % + % > 1, then we have for [s,t] C [0,T

[ o= [ won o= [ a iy,

Proof. By Lemma we know that xy is an element of C([0,T],R"*™) and by Lemma
that Iy (y,w) € CP([0,T],R™™). So by Theorem [2.13]and Remark all integrals exist as limit
of their Riemann Stieltjes sums for sequences of partitions of [s,t] descending in mesh to 0. Let
(ITg, ©) be a tagged partition of the interval [s,¢] and note that by Lemma iii) the Young
integral is additive in its limits. We only proof the first equality, the second follows by symmetry.
For X e R and v € {1,...,n},ve{l,...,m} let X be the component of X, in the u-th

row and v-th column, we have

t (u,v) k=1 n tit1 ('U‘v]) (]U)
fiemion)” S5 ([ o)
=0 j=1 g
n k-1 tit1 )
= 1 (’LL,]) r (J’U)
B S5 ([ et aw ol
7=1 =0 v
= lim > RS(dly (2“7, w), y"), (I, Ox))
—00
j=1
and
! ) NSNS (), ()
(/S TrlYr dwr) = klglc}o <2 11’01-7 yGi’ (wti+1 _wti)
=0 j=
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7=111=0
= lim Y RS(z™ylv) dw, (11, ©))
k—o00 <
7j=1

Notice that

k-1 tit1 . . k-1 tit1 ) k-1 . .

Z </ mgu’J) dwT> yéz,v) _ Z </ x'g‘u,j) (U,J) dw ) (J v) + ng;:])yég,v) (wi,,,
=0 \Jti i=0 i J

Therefore we have

IRS(dIy (z, w) ™), yUv) (114, 04)) — RS(z“)yU?) dw, (11, O))]

.
\\t’j:
I,

n k-1 tit1 ) . .
S| [ el e | 5 e
j=1i=0 7t
= 1.

We choose p’ > p,q > q such that z% + % > 1 and obtain by using ([2.4)

n k—1 )
I < HyHoo st / g:’]) dw,
7j=11=0
n k—1
S szqHy||OO787t Z ‘(L‘(u ) slisls /7 iyli41"°
7j=11i=0

Taking Lemma into account we can estimate

k—1

Z |‘/E(U’J) |q’,ti¢i+l |w|pl’ti’ti“
=0

k-1 .
. 1—Z £ b2
Si:(lf.l.&.l,}ﬁfl{OSC(J»‘(“’]),[%JM]) 7 - Osc(w, [ti, tia])' }Zu ’])|q,tz,tl+1| o

1=

) 1-4 - 9 p
< _max {0se(@ [t ti)' 7 - Osclu [t tina ) H a2 o

_wti)'

where we used Lemma for the last estimate. Hence the term I; converges to 0 if |IIx| — 0

by the uniform continuity of z(*7) for all j = 1,...,n and w on [0, T].

Lemma 2.18 (Integration by parts). Let z € C%(|
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s, t],R™™) and y € CP([s,t],R™*™), such that



p,qzland%+%>1, we have

t t
TtYt — ToYo = / Ly dyr + / (dxr)yr‘
s s

Proof. See Theorem 2.80 in Dudley and Norvaisa [2010]. O

Now that we established most of the properties of functions of finite p-variation and defined
the Young-integral, we can concern ourselves with the notion of Young differential equations,

which will be the topic of the following subsection.

2.1.2 Young differential equations

In this subsection we will cite very important results of Nguyen et al|[2018]. In this paper,
the authors establish existence and uniqueness results for the non-autonomous ordinary Young

differential equations of the form

t t
Ty = Xo +/ b(r,x,) dr —I—/ o(r,x,) dw,,
0 0

and therefore their results will play a crucial role in the remainder of this thesis. We will state
and proof a version of their Gronwall-type lemma for a better understanding of the p-variation
techniques involved. A problem one has to overcome to make the necessary estimates for the
Gronwall-type lemma in p-variation spaces is to find partitions of the interval [0, T] such that the
p-variation of a given path is bounded by the same constant on every subinterval of the partition.
The authors obtain these partitions by constructing a so called greedy sequence of times. The
term greedy sequence of times was first introduced in |Cass et al. [2013], here we present the
construction of Nguyen et al.| [2018] in a slightly modified way. We just exchange the specific
control function |w\£787t used in the construction of a greedy sequence in Nguyen et al.| [2018] by
an arbitrary control function ¢ on [0,7] and restrict ourselves on the time interval [0,7]. Our

goal is to construct an increasing sequence of times (7;(¢))i=o,... x With 74,(¢) = T, satisfying

Ii01(9) — ()| + 97 (ri(p), Tis1 (@) = pu for i =0,k —2 26)

() — Tho1(9)] + 97 (e (), T () < o

for 4 > 0, p > 1. We call such a sequence a greedy sequence of times. For the construction, we
first define

1
10(p) =0, T1(p) = S {t + 7 (0,t) < u} :

1
Notice that x(t) = t+¢r(0,t) is continuous and strictly increasing with respect to ¢, with x(0) =0

1
and k(T) = T + ¢»(0,T). The intermediate value theorem ensures, that there exists a unique
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t > 0 such that
1
t+pr(0,t) = p,

if p<T+ Lp%(O,T), else T1(p) = T. Hence, 71(¢) is well defined. We construct the rest of the
sequence inductively. Assuming we have defined 7;(¢) for an arbitrary j € N with 7;(p) < T, we

construct 7j41(p) in the following way. Using the same arguments as before, the supremum

1
6i(p) = sup {0+ 7 (75(p), 7i(p) +9) < u}
0<6<T—7;(p)

is well defined. Hence we can set

Ti+1(p) = 7i(0) + 6;(¢p).

This sequence satisfies the property (2.6). Now we prove that the number of times of the greedy

sequence in an interval [s,¢] C [0, 7] is finite. For T' > 0 we introduce the notation

N(T,p) :=inf{k € N|j7i(¢) =T}, (2.7)

or more generally, for any 0 < s < ¢t < T, we define

N(t,¢) = ilelg{Tk((P) <t}

N(t,p) = grelg{m(w) >t}

and
N(s,t,0) = N(t,p) — N(s, ). (2.8)

If N(T, ) is well defined, then our greedy sequence (0,71, ..., Tn(r,,) = 1) defines a finite parti-

tion of the interval [0, T]. In the following, we write 7; = 7;(¢), for notational simplicity.

Lemma 2.19. Let p' > p and ¢ be an arbitrary control function on [0,T]. The following estimate

holds
=l
N < 2 (14 0m). 29)

More generally
p'—1

_ o\
Nt < 2 (=97 v

IR

(s,t)> : (2.10)

Proof. See |Nguyen et al|[2018], Lemma 2.6. Using Jensens inequality and the super additivity
of the control function ¢ on [0, 7], we obtain for every k € N, such that 7, < T

k—1 k—1 L o
kpP = P = {|Ti+1 — 7| + 805(Ti77i+1)}
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/
P
P

e
—

SO(Ti,TiH))

)

Il
=)

k-1
/1 ’
<2F > lrip — 7l +
i=0

<oVl |y (,OT;(O,Tk):| : (2.11)
Since left hand side of inequality (2.11)) tends to infinity for & — oo, the right hand side has to
be increasing to infinity in k& as well. This implies that there exists k € N such that 7, = T by
construction of our greedy sequence of times. Consequently, we obtain

or'—1 ;Y
N(T,w) < — <Tp —{—(pP(O,T)).
7!

Similarly, (2.10) holds. O

Using the greedy sequence of times the authors are able to formulate their Gronwall-type

lemma. We adapt their ideas to our setting by considering a matrix valued function y in the

p

Psite Furthermore
1<

space W4([0, T], R"*™) and using an arbitrary control function ¢ instead of |w|

we simplify the needed condition to suit our purposes.

Lemma 2.20. Let 1 < p < q be arbitrary and satisfy % + é > 1 and for T > 0. Assume that
y € W[0,T],R"™ ™) and an arbitrary control function ¢ on [0,T] satisfy the following condition:
There ezist constants K1, Ko > 0 such that for all [s,t] C [0,T], which satisfy

it — 5|+ p(s,t)» < Ko,

we have
[Ylg,s.t < Ko+ sl (2.12)

Then we get the estimate

g0 < (K1 + |yo|)e? 2 "I He(01) (2.13)

ly

and

—p
Yoo < 1Yllgor < (K1 + 2Jyo|)e? 2 T 0.1)),

If in line (2.12)) the right side does only consists of the constant K1, then the estimate simplifies
to
Ylgor < K127 Ky (TP + ¢(0,T)) (2.14)

and
19llo,0,0 < Illqo.r < lyol + K127 Ky P(TP + (0, 7). (2.15)

Proof. Compare [Nguyen et al.| [2018], Lemma 3.3/ Remark 3.4/ Corollary 3.5. We construct a
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time sequence 0 = 79 < --- < 75y = T on [0,7] using the greedy sequence of times (explained
before) with
1
(Tit1 — 7i) + @7 (T3, Tig1) < Ko

for i =0,...,N — 1, where N is given by N(T,¢) defined in (2.7). Then, by (2.12), we have
Wlg.st < K1+ |ys] (2.16)
for all s,t € [1, Ti+1], s < t. This yields that
Yrieal < MWlloomimin < K+ 2lys]

foralli =0,...,N —1. If N = 1, we have that (2.13) trivially holds. Now let N > 2 and fix
i€{0,...,N — 1} such that 7; < t < 7;41. Inductively we get

Kl + ‘yn| < Kl + Kl + 2|yn‘71|
< 2(K1 + ’yTifl |)

IN

< 27N Ky + |yn )
< 2'(Ky + |yol)-

Hence,
|y|q77'i:7'i+1 < K+ |y‘n’ < 2i(Kvl + [yol)-

By Lemma [2.9] we obtain

N-1 7
q—1 - q
[Ylgor < N (Z |y|q,n,n+1) (2.17)
=0

a1 N—1 ) q
< N (K + o) (z zm)

=0
< N(K7 + |yo|)2V
< (K1 + |yo|)e*

Taking (2.9)) with p’ = p into account, we obtain

-p
‘y|q,0,T < (Kl + ’yo‘)eszQ (ITP+¢(0,7))
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With the inequality ||y||,0,7 < ||y

207 = |yo| + |ylg0,r for all s <t € [0,T7], we conclude
1lloo0 < I9llgor < (K + 2yo|je? ="+,
Now suppose line ([2.16) simplifies to

|y|q,s,t < K17

then we can directly use the decomposition (2.17)) and get

lylgor < NKj.

By (2.9) the assertion in (2.14)) and (2.15)) follows. O

We continue by citing the conditions for the coefficients of the YDE and the main theorem of

their work concerning the existence and uniqueness of a solution to the given YDE.

(C1) o(t,x): [0, T]xR™ — R™™ is differentiable in 2 and there exist some constants 0 < 3,6 < 1,
a control function h(s,t) defined on [0,7] and for every N > 0 there exists My > 0 such
that the following properties hold:

(i) Lipschitz continuity

lo(t,z) —o(t,y)| < Lo|lz —y|, Yo,y € R, Vt € [0,T]

(ii) Local Holder continuity

0z, 0(t, ) — Op,0(t,y)| < M|z —y|°, Yo,y € R, |z|,|y| < N, Vt € [0,T]

(iii) Generalized Holder continuity in time

o (t,2) — 0(s,)] + |00, 0t 2) — Doy (s,2)| < h(s, 1), ¥ € RY, st € [0,T],s < t.

(C2) b:1]0,T] x R™ — R™ and there exists a > 0 and f € Lﬁ([O,T],R”), where 2 < o < 1, and
for every N > 0 exists Ly > 0 such that the following properties hold:

(i) Local Lipschitz continuity

[b(t, z) —b(t,y)| < Lnlz —yl, Yo,y € R", [a], |yl < N Vit € [0,T]
(ii) Growth

| [b(t,2)| < ala| + f(1), Yo € R?, Wt € [0, 7).

(C3) The parameters in (C7) and (C9) satisfy the inequalities § >p—1, > 1— ]%, da>1— %.

By the assumption p € (1,2) and the condition (C3), one can choose consecutively constants
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qo, q such that

1 1 61
1—<<min{,6’,5a,,} (2.18)
P Q p 2
1 1 1
— < —<minqa, - 2.19
90 ~ ¢ { p} 219

which gives an appropriate constant ¢ > 0, such that the solution to the YDE x is given in the
space C([0,T],R™).

Theorem 2.21. Let w € CP([0,T],R™) for p € (1,2), T an arbitrary fized positive number and
so € [0,T) be a abitrary initial time. Consider the YDE

t t

Tt = X0 +/ b(r, x,) dr +/ o(r,z,) dw,, t € [so,T], x5, € R",
S0 S0

with xo € R™ being an arbitrary initial condition. Assume that the conditions (C1), (C2) and (Cs)

hold. Then, this equation has a unique solution x in the space C4([sg,T],R™), where q is chosen

above satisfying (2.19). Moreover, the solution is in Cp/([so,T],]R”), where p’ = max{p, é}

Proof. Theorem 3.6 of Nguyen et al.| [2018]. O

The last theorem gives us the existence and uniqueness of a solution to an YDE with general
coefficients. But later we will have to calculate the explicit solution to an linear YDE which does
not satisfy the conditions (C4), (C2) and (C3). So we need another theorem to proof that such
an solution exists, therefore we will use the results of Proposition 2.2 in [Nguyen et al.| [2020]

concerning the existence and uniqueness of solutions to homogenous linear YDEs.

Theorem 2.22. Let T be an arbitrary positive number and sy € [0,T]. Let w = (w',...,w™)" €
CP([0,T],R™) for p € (1,2). Assume that D € C([so,T],R™"), EJ € C9([s,T],R™") for
i=1,...,m with %—i—% > 1 and q > p. Consider the YDFE

¢ mo et
Ty = xo—i-/ Drder+Z/ Elz,dw!, t € [s0,T],
S0 j=1 S0
with xg € R™™ being an arbitrary initial condition. Then, this equation has a unique solution x
in the space CP([sg, T],R™*"™).

Proof. See Proposition 2.2 in Nguyen et al.| [2020]. Note that in Nguyen et al. [2020] the authors
consider the corresponding vector valued YDE with w as element of C?([0,7],R). The adaption

of the arguments in their proof to our setting are straightforward. O

o7



2.1.3 Boundedness, continuity and Fréchet differentiability of the solution mapping

Now we consider the parameter dependent deterministic YDE of our interest given by

t t
xy = xo(u) +/ b(r, zy, u)dr + / o(r,z), u)dw,,
0 0

where w € CP([0,T],R"™). In this subsection we generalize the approach of Han et al. [2012] to
p-variation spaces, where related calculations were made for Holder continuous paths, respectively
using Holder norms for the special case of a fractional Brownian motion driver in a stochastic
control setting. But to ensure that all our results in the stochastic setting hold in L'-sense for
every | > 1, we assume also the boundedness of the coefficient functions in contrast to [Han et al.
[2012]. We define the set of parameters I as an open, bounded and convex subset of R?. We first

need some assumptions about the coefficients and the initial value of the YDE

(Hy) Let xg : U — R™ be continuously differentiable, such that xo and its Jacobian Dxg are
bounded by a constant L.

(Hy) Let b:[0,T] x R" x U — R™ be a continuous function which satisfies:
— b(t,z,u) is continuously differentiable with respect to x and u.
— There exists a constant L such that for all x,y € R, u,v € U and every t € [0, T

b(t, z,u)| < L

be(t, x,u)| + |by(t, z,u)| < L
|bx(t7$7u) - bx(tvyvv)| + |bu(t7x’u) - bu(taya U)| < L(|ZL‘ - y| + |u - ’U|)
(Hs) Let 0:= (co1,...,0™):[0,T] x R® x U — R™ ™ be a continuous function which satisfies:

— o(t,x,u) is twice continuously differentiable with respect to z and w.

— There exists a constant L, such that for all z e R", u € U, t € [0,T] and j =1,...,m,
I=1,...nk=1,....d

lo(t,z,u) < L

ol (t, 2, w)| + Jog(t, 2, u)| < L

<L

—aél (t,z,u)

oz

9 .
+ ’axaik(t,x,u)

<I,

o0 .
+ ’auaf% (t,z,u)

o .
ot
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where

a%lal’j(t,x,u) %al’j(t,x,u)
0’% (tv L, u) =
é)%1(7"’7'(25, T,u) ... %J"’j(t, x,u)
a%lal’j(t, T,u) ... a%dal’j(t, x,u)
ol (t.w,u) = : :
%a”’j(t, T,u) ... a%dan’j (t,z,u)
0?2 j 92
5 amaxlalﬂ(t,x,u) Toe &rla J(t, z,u)
%Jil (t,l',u) - .
2 . 2 .
8:;?836; o™l (t7 z, u) amiaxl o™’ (ta z, u)
9?2 j 0?2 j
SO obi(t,x,u) ... audaukalﬁ(t,gl:,u)
8—03 (t,z,u) = : :
u
2 . 2 .
8u?8uk o™I(t,x,u) ... audaauk o™ (t,x,u)
and analogously defined -2 b O’uk, 510?,;1
— There exist constants L and 8 € [5, 1] such that for all z,y € R", u,v € U, s <t € [0,T]

and j=1,...,m, [ =1,...

nk=1,...,d

|O-(t7$,u) - O'(S,l‘,’u,)| < L|t - 5|I8

|ai(t,az,u) — ag;(s, x,u)| + |ai(t,a:,u) — aﬂ(s,az,u)| < L|t— S|ﬁ

9
ox

. 9
o*%l (t,z,u) — —o

g
UU

‘a (t,z,u) — 3
x

01, (5,,v)

(8,9,0)

+

9 9
%Uiz (t,z,u) — %Ufﬁl(s, Y,v)

‘a (t,z,u) — (‘fuaj (s,y,v)

§L<]t—s\5+|x—y\+\u—v\>.

Remark 2.23. Note that by the boundedness of the partial derivatives of o7 with respect to z and

u for every j =1,...

,m, we clearly get Lipschitz continuity of the functions o, o) and o, with

respect to x and u. The Lipschitz constant will then depend on the dimensions m, n and d, but

for notational simplicity, we will just choose L big enough such all these conditions are satisfied.

Note that if the coefficients b and o satisfy the conditions (Hz) and (Hz) then for a given u
the coefficients b(¢,z,u) = b(t,z) and o(t,z,u) = o(t,z) obviously satisfy the conditions (C),
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(C2) and (C3). Taking a look at the parameters involved in the conditions (C1), (C2) and (Cs),

we can then set 6 = 1 and because of the boundedness of the coefficients, we formally set a = 1

in (2.18), (2.19). Since 8 > 3 the inequalities (2.18) and (2-19) simplify to

ottt (2.20)
P Q@ 2 '
1 1 1
<<l (2.21)
o~ q p

These inequalities are satisfied, if % + q% > 1, go > 2 and qg > g > p. In the next corollary we use
the existence results of Nguyen et al| [2018] to formulate an existence result for our parameter

dependent YDE, which is a direct implication of the aforementioned arguments.

Corollary 2.24. Let w € CP([0,T],R™) for p € (1,2), T an arbitrary fized positive number.
Consider the parameter dependent YDE

t t
xy = xo(u) + / b(r,zy, u)dr + / o(r,z,,u) dw,,
0 0

with xog : U — R™ being an arbitrary initial condition and v € U. Assume that the conditions (H1),
(H2) and (H3) hold. Then, this equation has a unique solution x* in the space C([0,T],R"),
where q is chosen according to the inequalities (2.20) and (2.21). Moreover, the solution is an
element of CP([0,T],R™).

Now we will come to the boundedness of the solution z* which is independent of the given
parameter, but first we will establish further properties of the coefficient o, which are necessary
for the proofs to come. This is a version of Lemma 3.1 in Nguyen et al. [2018] for the case of
parameter dependent coefficients. To proof this lemma will will need an auxiliary result which is

the well know mean value theorem for vector valued functions.

Lemma 2.25 (Mean value theorem). Let U C R™ be open and f : U — R™ a continuously
differentiable function. Let x € U and h € R™, such that the whole line segment x +th € U for
all t € [0,1]. Then we have

1
f(x+h)—f(x)—/0 Df(x+ M)hd),

where D f is given by the Jacobi matrix of f.
Proof. See [Forster| [2008], §6, Theorem 5. O

Lemma 2.26. Let p € (1,2), g € (2,-2), T > 0 and sy € [0,T]. Assume that (Hy) — (Hs) are

p—1
satisfied.
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i) For everyu e U, v € CP([so,T],R"™), we have that o(-,x.,u) € C¥([so,T],R™™) and

p,s,t>

oo w)lgoe < L (1t =5l + Jo

for every s, t € [so, T].

it) For every u,v €U, x,y € CP([so, T|,R™), j=1,...,m and s,t € [sp,T] we have that

\aj(t,:vt,v) — Jj(t,yt,u) — Uj(s, Ts,V) + aj(s,ys,u)]

SL(Ww—yH+V“WW(H—ﬂﬁ+h%—$J+@rﬂM)+1%—%—$s+%o-

i11) For every u,v €U, z,y € CP([so, T],R™), j=1,...,m and s,t € [so,T] we have that

’O-j('ﬂ Z., u) - Uj('v Y., U)|q787t

< L(J2 = yllooss + (0 = w) (1t = 517 + 2lgsos + gt ) + LIz = Ylgs

Note that by conditions (Hy)—(Hs), we could exchange in i) the function o by ol respectively o, for
every j = 1,...,m such that ob(-,x.,u) € CU([so, T],R"™") and ol (-,x.,u) € C4([so, T],R™ 7).
In ii) and i) we can exchange the functions o’ by U%i for i = 1,...,n, respectively O’%k for

k=1,...,d.

Proof. (i): By the space Lipschitz and time Hélder condition of o and since = € CP([sg, T],R"),

we can estimate

k-1 :
|J("x->u)|q787t < Sup (Z |G tl+1>l'tz+17 ) U(ti’xtiau)|q)

keNIILeP([s,t]) \ ;=g

. 3
<L sup (Z [tiv1 — \ + Ty, — tz’) )

keN,ILeP([s,t]) \

1 ‘
<L sup ( ’tH—l - tz‘q6>
1=

keEN,ILLeP([s,t])
k—1 q
+L sup | T4, — x|
keNILEP([st]) \ =g
< L (|t =51+ [zlpos)
where we used Lemma [2.2| and the inequalities p < g € (2, %), g8 > 1. We can conclude that

oz, u) € CU[so, T], Rnxm)-

(ii): is similar to the proof of Lemma 7.1 in Nualart and Rascanu [2002]. Since U is convex, we
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can use Lemma and get
|aj(t, T, V) — aj(t,yt,u) — Uj(s,xs,v) — Uj(s,ys,u)\
= ‘ /01 Ug(tvyt + Mt — yt),u+ Mo —u))(ze — ye) + Uf;(ﬁyt + Azt —ye),u+ Ao —u))(v—u)
— 008, Ys + Mws = ys), u+ A — ) (@s — ys) + 02, ys + Mws = ys), u+ A(v —u))(v - u)|.
By adding the term o2 (s, ys + A(xs — ys), u + A(v — u)) (2 — ), we obtain

1
/(; [Ui(ta Yt + )‘(xt - yt)7 U+ A(u - U)) - 0’%(3, Ys + )‘(xs - ys)7 U+ A(u - ’U))] (xt - yt)

+ U%(Says + )‘(xs - ys)au + )‘(U - u))(wt — Yt — Ts+ ys)
+ [o0(tye + Mae — ye)su+ A —v)) — 0L(8,ys + M@s — ys), u + ANu —v))] (v — u) dA
Dl — o ) (1t = 17 4 o ]+ o~ ) + Ll — e — 2+ 3l

(iii): Using (ii) and the fact that ¢(s,t) = |t — s|* for x > 1 is a control function on [0,T7], we
obtain

‘Uj('v L., U) - Uj('a Y, u)’%&t

1
q

keNIeP([s,1]) \izo

k—1
< sup (Z ’UJ(ti-‘y-laxti-o—l?U) - Uj(ti+17yti+l7u) - U(tiaxtmv) +O-(ti7yti7u)|q>

L<||x—y||oo,s,t+<v—u>>[ sup (Ztm—mqﬂ)

keN,II,eP([s,t])

1 1
q q
+ sup <Z|$tz+1 wy, |4 > + sup o) <Z Ytisr — Y1, ) ]
5,t])

kEN, I, eP([s,]) keN,II,eP

k—1
+ sup (Z ’xti+1 Yt — Ty + ytz"q>

(
1
q

keNIILeP([st]) \ ;=g

= Lz = yllo,se + (v = w) (|t = 57 + o

g5t T Ylgst) + Llx —y

q;S,t-
The assertion follows, since ¢ > p. O

By Corollary [2.24] there exists a unique solution z* corresponding to the YDE

t ¢
x) = xo(u) + / b(r,z, u) dr + / o(r,z,, u) dw,
0 0
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t
::vo(u)—i—/ b(r,xy, u) dr—i—Z/ ol (r,z%, u) dw (2.22)
0

for every u € U. We denote b%(-) := b(-, 2% u) and o%(-) := o(-, 2%, u), respectively a’/%(-) for
all ¢ € [0, T].

Lemma 2.27. Assume that xo, o and b satisfy the conditions (Hi), (H2) and (Hs). Let p € (1,2),
q > 2 such that % + % > 1. Denote by x* the solution of the equation (2.22) on [0,T] and let
w € CP([0,T],R™). Define the constant

Cy == 2max{L, LC, 4, LC, ;77 1}, (2.23)

where L is the constant from conditions (H1) — (Hs) and Cp 4 = C(% + q%) > 1 the constant from
the Love-Young estimate (2.5)). Then we have

|2 ]p 00 < 2P7OVTP + wlf 1) (2.24)

and
2[00 < 2" (lpor < L+ 227 1CV(T? + |wl? o 7)- (2.25)

Proof. Let [s,t] C [0,T] and we drop the index u for the direct dependence of the solution process
x on u for readability. We take a look at the term

|Z]p,s,t < '/ b(r, xp,u) dr / o(r,zy,u) dw,
0 0

The first integral can easily be estimated using the definition of the p-variation and the bound-

p)
k-l tit1 p
< sup Z </ Ldr>
keN HkGP([s t]) —0 t;

< L(t — s).

+
D,st

D,st

edness of b

—_
3=

tit1
/ b (r)dr

ti

/ b(r, x,, u)dr

0

k—
= sup
D,st keN erp([s t]) 1=0

RS

The second integral can be controlled using (2.5). Taking Lemma into account, we know
that o(-,z.,u) € C1([0,T],R™*™) for q € (2,-£+), which yields

) pT1
/ o' (r)dw,
0

< Cp,qHUU

‘q7 7

D,st
< Cpyqlla®(s)] + |o*

q787t) |w‘p787t
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< Cpg(L+ L(Jt - 5|B + |2[p,s,6)) [w]p,s,t-
Collecting the previous results, it follows

[2lpse < L(E = 8) + LCpglulpss (1T + [2]ps)

< Ci((t = 8) + [wlps,t) + [wlp,sel2]p,s.0)
< Cr(1+ [2lp,s,0)((E = 8) + |wlp,se) (2.26)

for the constant Cy := 2max{L, LC} 4, LC, ;77 ,1}. Now for every [s,t] € [0,T] such that

1

t— <
(t = 5) + wlpas < 5

we have
|33|p,87t <L

Hence the condition of Lemma with constant bound and ¢(s,t) = \w[i s.¢ are satisfied, which
yields the inequalities (2.24]) and ([2.25)). 0

Remark 2.28. In the proof of the last lemma we established for every u € U, that

|2%[pse <1
for every s <t € [0, 7] such that [t —s|+|wl|ps+ < 2—&,1, where (1 is the constant defined in ([2.23)
and z" is the unique solution to equation ([2.22]).

We have proven that the solution to our parameter dependent YDE is bounded independently
of the parameter. Now we show the continuity of the solution mapping with respect to the

parameter in the p-variation and consequently the uniform norm.

Lemma 2.29. In the situation of Lemma we have for every 4 € R? such that u+u € U, that

2" — 201 < (14 L)fale? COm? (T +ulor) (2.27)

qu+ﬂ u+u

- quoo,O,T <z - qunO,T

< (14 2L)[a|eX GO (Tl o r)

where the constant Cy is defined by (2.23)). This implies

u+u u+u

lim ||z — 2"{|por =0
—0

|ul

— 2|0 < lim |z
|u|—0

for everyu e U.
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Proof. Set v:=u+u €U and 4" := z¥ — 2. We obtain for [s,t] C [0,T]

m

2

psit =1

\wwﬂﬂﬁwm—wmw LD

/ U”’j(r) — J“’j(r) dwi
0

D,st

The first term can be estimated using the Lipschitz continuity of b, which yields

k-1 tit1 p %
L = sup Z / b (r) — b%(r)dr
keENITeP([s,1]) \ =g

1
k p\ P
<L s (/ hA+hdM>
keNII,eP([s,t]) <Z

=0

- >
<L sup <Z i+1 = )P (17" oo,s,t + |2])P )

keN,ILeP([s,t]) \ i)

< L7 lloo,s.e + ) (2 = s)
< Lyl + 1 lp.sie + |ul) (8 = s)-

Again we use and Lemma 6| for the estimation of Ir. Let ¢ > 2 and such that 1 + > 1,

we obtain
m . . . .
Z | J g sosit + 107 — %) g0 o )W |p st

where for all j =1,...,m
lo"7 = 0" |loe,5.0 < LI lloo,s.t + 110])-
To estimate the g-variation term we use Lemma iii) and get

‘Uv,j — oW

ot < DU ooy + 1) (1t = 517 4+ 1 o + 12 s ) + L1 s

Now we are able to estimate the Young integral term I by combining the last 3 inequalities,

which yields

I < LCpy [(|7v‘w7s,t + |ul) (1 + T+ |2 + |$“!p,s,t>

m .

, ] Z W |p,s.t
j=1

< m2LCpﬂ(|’Y:| + "Yv‘p,syt + |al) (1 +77 + |x“|p757t + ’xu|p,s,t) ’w‘ns,tv

since » 7", |w?|p 56 < mlwl,s¢. Putting all terms together, we obtain

Vst < LUVST+ 107 lpse + [al)(t = s)
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+m2LCpq(1Ne] + 17 |pusst + [T A+ TP + [2°p,se + |2"p,s.6) [w]p,st
< 2Cm(|yg [+ [V lpse + [l (14 (2% pse + 2% |p,se) (8= 5) + [wlpse)

where C} is defined by (2.23). Now let [s,¢] C [0,T], such that

1 1

t— < — < —.
( S) + |w’p,57t — 1201m < 201

Then we know by Remark that

maX{|l‘u|p,8,ta ‘xy p,s,t} <1,

which yields
1V lps < Iys |+ [al.

By our Gronwall-type lemma with o(s,t) = wl} , ;, We obtain the estimates

_ 23P (30 (TP P
o < ([a] + [yl COrm” (Tl r)

and

_ 23P(3C m)P (TP p
1V oo < 17 lpoz < (] + 2J45])e2” COm? (TPl or),

We have 7§ = xo(v) — 29(u) and by condition (H;), we know that the function zp : U — R” is
Lipschitz continuous, such that

H’)/U”p,l),T < (1+ 2L)‘ﬁ|€23p(301m)p(Tp+|w|£,o,T)'

Hence, the assertion follows. O

The rest of this subsection is devoted to prove the Fréchet differentiability of the solution
mapping u — z from U to CP([0,T],R"). For ¢t € [0,7] and u € U, we use the compact notation

by (t) := by (t, z), u), U;’j(t) = Ug(t, xi,u), by (t) = by(t,z}, u), aZ’j(t) = ai(t,xf,u).

forj=1,...,m.

Lemma 2.30. In the situation of Lemma|2.27, we have

xu+ﬁ — v — yua ) xu+ﬁ — v — yu’L_L
< lim

00,0,T - |ﬂ|—>0

lim
|a|—0

=0,
p,0,T

|l |l
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where yi* € CP([0,T], R™*9) is the matriz valued solution to the linear YDE
t m t . . .
= Dao(w) + [ B+ b dr+ 3 [t v oyl (229)
0 . 0
7=1

Before we can proof Lemma [2.30, we first need to take a look at the inhomogenous linear
YDE and clarify that the solution y;* exits and is unique. Similar to the ODE case, we give
an explicit solution for y* by using solutions to the corresponding matrix-valued homogenous
linear YDEs. So we will define the needed matrix valued YDEs, give the explicit solution to
equation and then establish its boundedness in CP([0, T], R™*9). Hence we get a bounded
linear operator from R to CP([0,T],R"), and by Lemma m this is the Fréchet derivative of
the solution mapping u — z*. We define for every u € U and the corresponding solution z* to
equation , the matrix valued homogenous linear YDEs with initial time sg for 0 < s < T

as

t
op° :In+/ by (r, zy u) ¢50dr+2/ ol (r, 2%, u) ¢S dwl
S0

t
=1, + / b (r) o dr+z / oI (r) 30 dwl (2.29)
S0 j=1 S0
and

0 = /wfob T U dr—Z/ VoI (r, 2%, u) dw!
= In —/ V"0 (r) dT—Z/ Yoy (r) dw) (2.30)

Here we left out the index u for the dependence of the solution processes on u for readability. Note
that the introduction of an arbitrary initial time so € [0, 7] will only be important later in Section
Now we use Theorem to show that both YDEs have a solution in CP?([sg, T, R"*").

Lemma 2.31. Let p € (1,2) and w € CP([0,T],R™). Consider the matriz valued linear YDEs
and (2.30), where the coefficient functions b and o satisfy conditions (Hs) and (Hs). Let
xo : U — R™ be a function satisfying condition (Hy), then we know that for each u € U there exists
a solution % to the YDE in the space CP([sp, T],R™) and both of the matriz valued YDEs
have a unique solution in the space CP([sg, T],R™"*™). Furthermore they are bounded independently

of u by the estimate

max{|* | 5o 7 |6 poso. 7} < Vne® (TPl o)

max (|9 |[o,s0,75 0] c0.s0. 7} < max{ ||V |p,so.7, 10 lIp.s0.7}
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< 2ﬁ€24p(C1m)P(TP+|w|;0YT) ,

where the constant Cy is given by (2.23)).

Proof. For readability we leave out the direct dependence of x, ¢ and ¥ on u and sg. First we

can express equation (2.30)) by its matrix transposed

t mo ot A
o = 1= [Tl dr =" [ orie) T ]
S0 j=1 S0

and that for X € CP([so,T],R"*"), we have

T T T
(XT=1X"1 (1 X loo,s0.7 = 1X " Mloo,s0,7 1K [lp,s0,7 = 1X [lp,s0,7

So we will show existence and uniqueness of equation and also estimate its p-variation
norm. The results follow directly for ¢ by the aforementioned arguments. Theorem [2.22] states
that the unique solution to equation (2 exists, if ||b%]| 0,50, and ||c%||4,s0,7 are finite for ¢ > p
and 1 —|— > 1. Choose ¢q € (2, ;2 1) The boundedness of ||bY||sc 5.t 15 & direct consequence of
condltlon (Hs) and for 027, we have by Lemma E and (Hs), that

o2 ey )l < L (1417 = 0l + [alpso.r) - (2.31)

Since z € CP([0,T],R™) the boundedness of HO’%H%SO,T follows. Hence by Theorem there
exists a unique solution ¢ € CP([sg,T],R"*"). Now we want to find an upper bound of the

p-variation norm of ¢ and ¢ which is independent of w. We have for [s, ] C [sq, T

| o | a9 aut

With condition (Hz) it is clear that

m

>

p,S,t ]:1

=1+ I
PS5t

|¢|p,s,t §

k—1
L = sup
keNTILeP([s,t]) \ ;=0

<L sup
kEN, T, €P([s,1])

k—1
<L sup Z tit1 —t;) ||¢||oo st
keNILeP([s,t]) \ 5o

< L@ oo,s,t(t — 8)
< L|[@]lp,s,(t = s).
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The second integral can be controlled using (2.5). Taking (2.31)) into account, we know that

ol (-, ¥, u) € C([so, T], R™™™) for q > 2, % + % > 1, which yields
m . -
I < r)or dwj < Cpgq Z W |p,s tlloz? @llg,s.t-
p757t ]:1

By Lemma and the same arguments used to estimate (2.31)), we obtain for j =1,...,m

gt < 20|08 ||g.sllbllg,s.t

< 2L (1 + 78 + Ix\q,s,t) [91lq,s.t

o ¢

<2l (1 + TP + lep,s,t) [@1lp,s,¢-

Collecting the previous results, it follows

Blpsit < L9llps(t = 5) +m2LCpq (14 T7 + [alpsc ) 16lpscltolpss

< 2C01m|[9ps,t (1 + |2ps,e) (It — 8|+ [w]p,se)
< 201m(|@s| 4 [@lp,s,t) (1 4 [2]p,s.e) ([t — 5| + |wlps,e) (2.32)

for every [s,t] C [so,T], where Cy is defined in (2.23]). We prolong ¢ to the interval [0,T7], by
setting ¢y = I, for t € [0,s0]. Then ¢ € CP([0,T],R™*™) and the estimate (2.32)) holds for all
[s,t] € [0,T]. Now let [s,t] C [0,T] such that

t < ! < ! .
’ 8C’1m QClm

(t = s) + [wlps
Then, we know by Remark [2.28] that
|x|P,S,t <1,

which yields
’?b p,S,t < |¢s|

By our Gronwall-type lemma with o(s,t) = wl)  , and K1 = 0, we obtain the estimate

Plp,so, 7 = ‘(b’pOT < \fe P(Crm)? (Tp+|w|5,o,T),

which implies

|6]0o,07 < ||6llp01

< 2\/;162417(()1771)17(Tp+\w|§707T)'
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Using the integration by parts formula for Young integrals we can establish the relationship

between the processes ¢ and .

Lemma 2.32. Let ¢*° and 1*° be defined by (2.29) and (2.30)), then ¢;}° = (¢7°)~1 for allt € [so, T].

Proof. First we drop the index sy for readability. We prove that ¥, = I, for all t € [sg, T] using
the integration by parts formula from Lemma and the substitution rule from Lemma 2.1

we have
d(Prpr) = e doy + (dipe) ¢r
= i () de dt + i Yo () e dw] — by (8)dy dt — fj Yo (8) ey duw]
j=1 j=1
=0.
Noting that 1s,¢s, = In, we must have ¢, = (;St_l for all t € [so, T. O

Now we give the explicit solution to equation (2.28)) using the previous results.

Lemma 2.33. Let T > 0 and p € (1,2). Let ¢ = ¢° and ¢ = ¥ be defined by [2.29) and (2.30)
for so = 0. Then the solution to equation (2.28)) on [0,T] for u € U is given by

t m t ) .
4 = ¢y Dao(u) + 61 /O ooy dr + 3 o /0 67109 (1) dud. (2.33)
j=1

Furthermore this solution is unique and y; € CP([0,T],R™*%). Hence for every u € U the solution
process Yyt defines a bounded linear operator Dzl := y¥* from R? to the space CP([0,T],R").

Proof. Again we drop the index u on the function y for simplicity. Define the function
t mo o ‘ A
3 =Daofu) + [ o) dr+ 3 [ o towir)dul.
0 — Jo
7=1

Since ¢~ € CP([0,T],R™*") by Lemma and 0! € ([0, T],R™*4) for q € (2, 555) by
Lemma it is easy to see that v is an element of CP([0,T],R"*9). We know that ¢ €
CP([0,T],R™™™), hence, by Lemma we get

d(deye) = dedrye + (doe) v

m m
= bu(t)dt+ Y o (t) dw] + V() by dt+ Y oI (t)prye du]
Jj=1 j=1
= by () eyt + by, (1) dt + Z o8I (t) gy + ol () dw].

J=1
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Since ¢oYo = Yo = Dxo(u), we conclude that y; = ¢y, € CP([0,T], R™*?) is a solution to the YDE
(2.28). Now assume for a given parameter v € U there are two solutions y! and y? to equation
on [0, 7] with y = y2 = Dz then 2z = y} — y? satisfies the homogenous linear equation

t mooap A
2zt = / b (r)zy dr + Z/ o (r)zy dw).
0 =0

By Theorem [2.:22] this equation has a unique solution, which then has to be 0. Hence the
equation has a unique solution in the space CP([0, T], R"*?), which is given by (2.33)). The
operator Dz : RY — CP([0,T],R™) is obviously linear. Notice that for a matrix valued function
X € CP([0,T),R™%) and a vector v € R?, we have for all s <t € [0, 7]

[ X0llpse < |1 Xsl[o] + [ X]p,s.elo] = [ X]lp.s.el0],

because of the submultiplicativity of the Frobenius norm. Hence, we obtain for the operator norm
of Dz

|D2] = sup || Dz
|z|=1

lpo1 < 1y"llpor < oo

O]

We have shown that a unique solution to equation (2.28) exists in the space CP([0, T], R"*9).
In the next lemma we will give an estimate for the p-variation norm and the uniform norm of the

solution which is independent of the parameter u.

Lemma 2.34. Let p € (1,2) and w € CP([0,T],R™). Consider the matriz valued linear YDE
(2.28)), where the coefficient functions b and o satisfy conditions (Hs) and (Hs). Let o : U — R"
be a function satisfying condition (Hy), then we know that for each uw € U there exists a solution
" to the YDE in the space CP([0,T],R™) and the matriz valued YDE has a unique
solution in the space CP([0, T],R"*9). This solution is bounded independently of u by the estimate

|yu|p0 T < (1 + L)624p(clm)p(Tp+|w|g,0,:r)
4 P
1y lss.0 < 1 por < (1 +2L)e2" Cm? (T7+hwlo.r)

where the constant Cy is given by (2.23)).

Proof. Again we leave out the index w for the processes x and y for simplicity. We have for
s <te|0,T], that

m

_l’_

Wlpas < \ [ s+ v ar
0 p,S,t ]:1

/0 o (P + 0 (1) d

D,s;t

=1 + I.
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I; can easily be estimated by the assumed conditions on the coefficient b, we have
I < L1+ [[ylloo,s,0) It — sl

For the estimation of I5 keep in mind that o%* € C([0, T],R"*"), o’ C1([0, T}, R"*%) by Lemma

for ¢ € (2, %) and that y € CP([0,T],R™*%) by Lemma [2.33, Hence by Lemma we
know that o2’ (-)y. + 0w’ (-) € C([0, T],R™*%) for every j = 1,...,m and by (2.5), we obtain

m
I < Cpg ) llog? ()y. +ou? ()

|q,s,t wj|p,s7t
j=1
< Cpg Y (2087 (Vlgsitllyllp,se + 1057 (Vgse) [ [p.se
j=1

Using Lemma i) on o’ and o4’ for j =1,...,m, we get the estimate

I < 2ch7qm(1 +T% + |x|p,s,t)(1 +ly p,s,t)|w’p,s,t
<2C1m(1+ ‘$|p,s,t)(1 + Hy||p,5,t)‘w|p7syt-

Collecting the terms, this yields

Ylpst < 201m(1 + |

pst) (LA [Ys| + [ylp,se) ([ — 8]+ [w]p,s2)- (2.34)

for every [s,t] C [0,7T]. Now let [s,t] C [0,T] such that

1 1

t— < < .
(=) F 1ot < 5600 =< 26m

Then, we know by Remark that

|‘T|p:37t S ]"

which yields
[Ylps,t < 1+ |ys|.

By our Gronwall-type lemma with (s, t) = [wlp ,, and K; = 1, we obtain the estimate

‘y|p,O7T S (1 + |y0|)624p(01m)p(Tp+|w|Z’o,T)

<1+ ’Dl’o(u)\)624p(01m)p(Tp+|w|5,o,T)

< (1+ L) CmP (TP Hlwl o)
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which implies

4
Wlso01 < l[yllpor < (1+ 2L)e2"Em)” (TP+wl? o 7).

Now we are able to proof Lemma [2.30)

Proof of Lemma[2.30, In this proof we use C for a positive constant, which can have different
values at different occasions. To minimize the notational effort, we set m = 1 for the proof, and
leave out the indices for the dependence of y on u. Let u € U and @ € RY such that u+u € U (U

is open and convex), set

vV=u-+1Uu
,.Yv — gV — gt
n' = i(v” — y.u)
™~
then we can write for 0 < ¢ < T
Dl’o
Y = [bY(r) — b"(r) — b — b d
(e [ )y — Vi) dr

Hence, we obtain for [s,t] C [0,T]
|77U|p,s,t <L+ 127

where

/0 B (r) — B4 (r) — Byt — BE(r)adr

|u| D,s;t

and

1
b= | [ ') - 00~ ot - otyudu,
|| Jo D8t

The integral I; can be estimated using the mean value theorem

1 o —b"(r) — b¥(M)y,u — b*(rudr
flz‘m/obm B(r) — B (r)yet — Bi(r)ad

p7s7t

(lil ) — () — e — ey )’
= sup / bY(r) — b“(r) — b(r)y,u — by (r)udr )
kEN, TP ([s.1]) al Jy,
1 tiy1 1
= sup <Z / / b (7, 2y + Ay, u+ Au)y, + by (r, ) + Ay, w4+ Aa)udA
keN P (sa) \ g 1l Ji,  Jo
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- - otmr )

Adding the term by (r, ¥ + A\yY, u + Au)y,u yields

tit1 1
/ / by (ryxy + My u+ Aa)n(r)
t; 0

a

k—1
= sup (
keNILEP([st]) \ 5

+ (ba (7, 2y + Xy, w + M) — by (7))

Jun

+ (bu(r, 2 + MY, u+ i) — bm))% d\ dr

P) P
By the Lipschitz continuity of b, and b, in the state and parameter variables and the boundedness

of b, it follows

1

k—1 Py L
<C  swp (Z<[||n”|oo,s,t+<W||oo,s,t+ra|>||yuoo,s,t+<W||oo,s,t+|a|>]<ti+1—m))

keNTILeP([s,t]) \ ;2g

=C [an”oo,&t + (”’YUHOO,S,t + WD(H?JHOO,SJ + 1)] (t—s).

The norm |7"||,s,+ can be estimated by C|a| according to Lemma and ||Y|lco,st < C by
Lemma we conclude
I < Ot = 8) (1" lloo,s.t + |ul)-

The estimation of I is more extensive. It is based on the inequality (2.5 and multiple applications
of the mean value theorem. Taking Lemma into account, we choose ¢ such that ¢ > 2, %—l—% >
1 and show that for & := (0¥ — o — o¥yu — o¥u)/|u|, we have ||&|/q0,0 = |6(0)| + |F|q0,10 < 00.

The first term can easily be estimated by

5(0)] < | T =" = ’ﬁ(my@u — o(0)a
<C <\xo<v> _T%(u)' n LI BT 1) |

By Condition (Hi), zo(+) is differentiable with bounded differential (i.e. Lipschitz), which yields

|6(0)| < C, where C is independent of @ and u. For the second term we calculate
~ 1 v U 1 WU, ~ U~
laor = grlo” = laor + Flowyi + outlgor = i+ T

Similar to the proof of Lemma [2.29] we can estimate J; by

C _
J1 < @(Wﬂ + [ lpor + [ul)
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and with the inequality (2.27) and the Lipschitz coninuity of z((-) we have

To calculate Jy, we note that by the submultiplicativity of the Frobenius norm we have
J2 < loyy +oylg0r-

The boundedness of this term was established in the proof of Lemma We conclude that
|6]q07 < oo and therefore ||||40,7 < co. Now we are able to apply the inequality (2.5) to the

term 5, we obtain

I, <Clo

“Ls?t w|p757t'

Hence,
Iy < C(|[6|oc,s,t + 15 1gs,6) [w]p,s,t-

The calculation of ||6||, s+ can be carried out analogously to the the estimation of I;. Since the
necessary properties of b and o are the same, we only have to omit the (¢t — s) term in estimate
of I, which yields

[0 llo0,s,t < CUIN"lloc,s,e + |l)- (2.35)

For the estimation of ||, s+, we take a look at the difference

|G (tiv1) — o (t:)]

1
= |09 (ti41) = 0 (tiv1) — 0 (ti1)Yri @ — 0y (ti1) T — 0¥ (83) + 0 (t;) + o (t)ye @ + oy (t:)a -
Using the mean value theorem on o¥(t;+1) — 0“(t;+1), respectively o¥(t;) — o"(t;) and similar

calculations as for I; lead to

- ‘ /01 op(tiv, x|+ Ay, et A+ (op(tivn, o + Ay, u+ Aw) — gg(tiJrl))%’i;_‘la
— o (ti, o, + Mg u+ M)y, — (ow(ti o, + Mg, u+ M) — ag(ti))yﬁ‘
+ |:O'u(ti+1; Ty, + M, u+ A0) — oy (tiv1) — oulti, Ty + Ay, u+ ) + a{f(ti)} ‘Z| d)\’.
Yt; U

By adding the terms o (t;, . + Ay, u+ )\ﬂ)nfiH and o, (t;, vy + Mg, u+ Aa) — oy (t;)) s we
can write
6 (tiv1) — o (ti)| < Io1 + Ioo + Io3 + Io4 + Ios,
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where
1
Iy = / (Oaltinn, 3, + AP0+ AT) — 0t 2 + Myt u+ AD)E,, A,
0

1
I = / ou(ti, of, + M, u+ Au)(ng,, — ) dA|
0

1
I>3 = / (oz(tiv1,zi,  + v, u+ Au) — oy (tiv1)
0

— 0z (ti, o, + My, u+ M) + 03 (8)) Yy AN

1
Iy = / (Uft(ti’$Z + )\’YZ-»U + )‘ﬂ) - O';(ti))(ytwl - yti) dA y
0

1
Iy = / ou(tiv1, $}fi+1 + )\vfiﬂ,u + Au) — oy (tit1) — Uu(ti,xfi + )\'yt”i,u + Au) + o (t;) dA|.
0

With the condition (H3) in mind, the integrals Iy, I2o and Io4 can easily be handled

Ioy < O lloosi(|tivs — il + E A A I ) (2.36)
Iy < Clny, — il (2.37)
Ioa < Clytiy — Yl (17 lloo,s,e + 1al).- (2.38)

Since the conditions on o, and o, are identical, we carry out the estimation of I>3 and adapt the

results to the Integral Is5. We have

1
123 = ‘ / (O‘z(tiJrl,l’ZJrl + )\’Y;]iJrl,U + )\ﬂ) — O';f(tz'+1)
0

— op(ti, v + My, u 4 M) 4 0y (8)) Yy, dA

)

which yields

1
< Iyllsoss / (Oaltivr, e, + Mg+ AT) — 0%(ti41)
0

— oz (ti, o, + Mg, u+ M) + o (t:)) d)\‘

noo
< [llooss 3 /
=170

— 0, (L, T, + Mg, u A+ M) + oy, (t, 2, u)

u v — u
0z, (tigt1, Ty, + )\’ytH_l,u + Ai) — oy, (i, T w)

A,

where o, is the [-th column vector of the matrix o,. Now we apply Lemma ii) on oy, for
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every [ = 1,...,n and obtain
B < Cllylse | (i = 61" +1at,, = 28] + 1ok, = 28]) 1l

# Py =28+ (= ek, -] + ek, ) lal

(2.39)
< Clyllo,sa [ (11—t + ok, — |+ lat,, =28 ]) (17" loous + )
+ 1 — 721-!] :
As mentioned before the estimation of Io5 is completely analogous and yields
I < c[(rtm — il Jag, = wbl bk, = 28 ]) (0 oo + 8D + b, —92l[. (240)

Collecting all the terms (2.36), (2.37), (2.38), (2.39) and (2.40)), we are finally able to estimate

the difference |6(t;+1) — 6(¢;)| and in conclusion the g-variation of &. We have

|0 (tit1) — o (t)]

< c[unvuoo,s,t (11— tal® + Jat = bl bk, = o ]) + ke, = w0+ Dty — v (1 lloo,s + )
o (9lloese + 1) ((ftisr = tl7 + 12, — bl + ok, = ati]) (1" oo + [a) + b, = 35]) }

which yields (since ¢ > 2, hence ¢ > p and ¢ > 1),

|o
kEN, I, P ([s,1])

n—1
g5t = sup ( G (tiv1) — 5(tz‘)|q>
1

1=

<C [Wum,s,t (1t = 517 + 2 st + 1ol ) + 117 st + 1lpse (17 oousi + 1)
+ (Illooist + 1) (1t = 81? + 12" st + 12" s ) (17" oot + 1) + 17|y ]

By Lemma we know that |z"|, s, and |z"|, s+ are bounded by a constant that is independent
of the parameter. From Lemma it is clear that ||y||cc,sts |Y|p,s,t are bounded by a constant
and from Lemma that ||7"||co,s,t and |y"|p,s,+ are bounded by C|a|. We get

10 lp,se < CUn°lloo,st + 0" |p,se + ul) < C(lng| + In”

p787t + |a’)' (2'41)

Combining the results (2.35) and (2.41), we are able to estimate the integral I5, we have

I, < C(’U?’ + ‘Uv‘p,s,t + |a’)|w‘p,s,ta
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where C is independent of % and u. Adding the estimate of I7, we obtain

7" lp.st < o+ To < ClI0°lloo,s.e + U (E = ) + (1051 + [0°|p.se + [al)[wlps.e]
< CUngl + 11°lp,s.e + [u) ([t = s + [wlp,s.0)-
For [s,t] C [0,T] with

1
|t — s+ |wlpse < Yol

this yields
1" |pst < la| + |ngl.

Again we can use the Gronwall-type lemma and get
0oz < (] + [g]) O T H 02,

Notice that 7 is given by

=2 $0(|12| — Day(u)u.

Since zq is continuously differentiable, it is totally differentiable, which yields
Ing| — 0 for |a| — 0

and therefore

|77U p,0,T — 0, for |’l_L| — 0.

We conclude

17" loo,0,7 < |n0| + |7° |p.0,r = 0, for |uf — 0.

The next theorem is the main result of this section and summarizes the previous results.

Theorem 2.35. For a open bounded and convex subset U C R? the solution mapping x. : U —
CP([0,T],R™) for equation (2.22)) is Fréchet differentiable with differential

t m t
Darl = ¢y Daro () + b / o) dr + 3 6 / 670 (1) dud. (2.42)
j=1

which is the explicit solution to the matriz valued linear equation (2.28]) on [0,T].

2.1.4 Stochastic setting

In this subsection we want to translate the previous results on ordinary Young differential equa-

tions into the stochastic setting described at the beginning of this chapter. For an introduction on
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the basic elements of stochastic processes, we refer the reader to standard textbooks like |Kallen-
berg| [2002]. For the rest of this thesis, we call a process (X¢);e[o,7) continuous and/or of bounded

p-variation, if for almost every w € )

t — X¢(w) is continuous and/or ||X (w)

‘p707T < 0.

The first problem when dealing with stochastic process, which are of bounded p-variation is the
measurability of the p-variation norm on an interval [s,t] of a process. This problem arises,
since we are taking the supremum over the uncountable set of all partitions of the interval [s, t].
Now let X;cjo, 7] be a continuous stochastic process of bounded p-variation defined on the filtered
probability space (Q, F,F, P), adapted to F. It is an easy implication of Blumenthal and Getoor

[1960] (Lemma 2.2) that for a continuous process of bounded p-variation on [s,t] C R

k—1 P
[ X (w)llp,s,t = sup ( [ X (w) = Xy (MI”) P—a.s.,
keN,II,€Pg([s:t]) 0

1=

where Pg([s,t]) is the set of finite partitions s < 9 < ...,¢; <t of the interval [s, ] such that
to,...,tx € Q. Hence, for almost every w € €, || X(w)]|p,s,¢ is the supremum of countable many
Fir-measurable random variables, which implies that it is a F; measurable random variable itself.
We will summarize the results of this section to establish all properties of the solution process
to equation , which are crucial in the following sections. The following corollary is a direct
implication of the results in Subsection [2.1.3]

Corollary 2.36. Suppose we are in the setting introduced at the beginning of this chapter. If the
coefficient functions b and o and the initial value function xg : U — R™ satisfy the conditions
(Hy), (H2) and (Hs), then for every u € U equation (2.1), given by

¢ mi ot
€ = &o(u) +/ b(r, €%, u) dr—i—Z/ o (r, €%, u) dw?,
0 — Jo
7=1
the inhomogenous linear equation

t m t . . .
gt = Déo(u) + / b, €28, u)yt + bu(r, €5, ) dr + Y / o (. €2, )y + o (r, €2, ) duo]

0 — Jo

7j=1

and the matriz valued homogenous linear equations for an initial time sy € [0, T]

0

t mi t
0 = I+ / ol €8 w0 dr + Y / o3 (1 €2, u) 0 duwd
s j=1"%0
t mi t . .
P =t [ gt =Y [ umoltgt duf
S0 j=1 S0
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have unique pathwise solutions, such that £“(w) € CP([0,T],R™), y*(w) € CP([0,T],R™*d),
¢ (w) € CP([so, T],R™*™) and ¢ (w) € CP([sg, T],R™*™) for almost every w € Q. Further-

more, we get for almost every w € Q) the bounds

[€4(W)]loc,07 < NE* (W) lIp0,7

< L4277 O0(T + (@) o 7). = Ce(w) (2.43)
6" (W) lloo,s0,7 < Nl9"(w )Hp,sm

< 2y/me2 Cm) (TR o r) —; 0 () (2.44)
1y (@) loo,0,0 < ly*(w)llpor

< (14 2L) " Comy (TP Hw@)or) = ¢ (w), (2.45)

where the bound for || (w)||co,so,7 and |[tV*°(w)||p,so,7 is also the right hand side of (2.44]). Here
the constants Cy is defined in [2.23). Let uw € U and @ € R, such that u + 4 € U, we have for

almost every w € §2

187 (@) = € (W)lloc0.r < 16" (w) = " (@) lpo.r

< (1 4 2L)|a|e?”" BCrmP (TP Hw @)l o 7). (2.46)
Moreover, the limits
lm [[€7(w) = €)oo < lim €)= € o =0 (2.47)
WY () (i U () U)ot
i, £ (w) £|u(‘w) y"(w)u OO,O,TSéigo £ (w) éhfrd) y"(w)u pM:O

hold for almost every w € Q and all u € U.

Proof. Let N € F be a P null set, such that w.(w) is a continuous path of finite p-variation
for all w € N€ Then we have for all w € N€ and v € U that there exists a unique solution
&% (w) € CP([0,T],R™) to the YDE

QMP@M_/WQ m+2/wr@ u) duwi (),

by Corollary Analogously, we obtain the solutions y“(w) € CP([0,T],R™*%), ¢¥(w) €
C’p([SO T], R’“X”l) and wu( ) € C’p([so, ] R™M*n1) for every w € N© by Lemma[2.31]and Lemma
The bounds (2.43)), (2.44]) and (2.45) are direct consequences of Lemma [2.27, 2.31 and [2.34]
Estimate follows from Lemma [2.29 - The limits in the statement of the corollary hold for
all w e N¢ by Lemma and Lemma applied on the paths £*(w) and y*(w). O

Having established the pathwise bound and limits of the process £* we are now interested if
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these bounds and limits also hold in L'-sense for some [ > 1, if we impose a suitable integrability

condition on the driving process w. We give a positive answer in the following corollary.

Corollary 2.37. In the situation of Corollary[2.36, if the process w satisfies the exponential moment
condition
Klw|?
E |e”™ror| <00 (2.48)

for some constant K > 0, then for every u € U and I > 1, we have

B 16| < E 1€ Ihor] < De (2.49)
B 16% b sor| B [16® x| < D
B 14l ] < B 10| < D

<

Bl lor] < B{ly"lhoz] < Dy

.07

for constants D¢, Dy, Dy, Dy that are independent of u, where Dy, Dy, are also independent
of so. Let uw €U and @ € R?, such that u+ @ € U, we have

B[l (w) - €@)llkenr] < B [I1€7" (@) — €@)llpor]
< Clal". (2.50)

for a constant C' > 0 which is independent of u. Moreover, the limits

lim E 6" ~ "] < lim Bl —€"0r] =0

|a|—0 |a|—0
UTU _ U U l UTU _ U Uy l
lim B ||| & -ytu <1im B || & —ytu = 0. (2.51)
il -0 |l wo0.1| ~ lal=0 |l pOT

hold for allu e and 1 > 1.

Proof. The L!-bounds of the processes are a direct consequence of the pathwise bounds in Corol-
lary and the exponential moment condition . Similarily holds. Since the limit
holds almost surely according to Corollary the limit holds in L'-sense by the domi-
nated convergence theorem, because of the pathwise bound and the exponential moment

condition. Again referring to Corollary we know that the limit

£ (w) — €'(w) —y" (@)a

|l

€7 (W) — €'(w) =y (W)

|l

=0
p,0,T

< lim
00,0, T |ﬂ|—>0

lim
|a|—0

holds for almost every w € €. Using the pathwise bounds (2.45) - the exponential moment
condition and the dominated convergence theorem show, that the limit (| - ) holds. O

To use the results of Corollary 2.37in practice, we need to identify processes which satisfy this
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exponential moment condition. There is a important result in Jain and Monrad| [1983] concerning

Gaussian processes.

Theorem 2.38. Let (xt)te[O,T] be a separable Gaussian process of bounded p-variation forp € (1,2).
Then there exists C > 0 such that
E [eC”xHIQ’ﬂO’T] < o0.

Proof. See Theorem 2.3 in Jain and Monrad, [1983]. O

One prominent example of such a Gaussian process is the fractional Brownian motion with
Hurst index % < H < 1, which paths are almost surely continuous and of bounded p-variation
for p > 1/H. This process will be the main subject of our numerical experiments. By the last
corollary, we know that the solution mapping u +— &% from U to L%(Q,C([O,T],R”l), for an
arbitrary [ > 1 is Fréchet differentiable. That is the key property we need in the remainder of
this thesis.

2.2 Parameter dependent SDEs with Brownian driver

Having established the important results concerning equation , we now focus on equation
But first we repeat the setting and add the needed assumptions on the coefficients and on
the driving process w, which we found in the last section. As in the previous section we start
by stating the setting and goal for this section, including the results we already obtained. Let
T be a positive constant and nq,my,ng,me,d € N = {1,2,...}. Let (Q,F,F, P) be a filtered
probability space, carrying an m1-dimensional process w and a meo-dimensional Brownian motion,
both adapted to F. We assume w to be a continuous, bounded p-variation process for p € (1,2)
and w satisfies the exponential moment condition . Let U be a bounded, convex and open
subset of R and T > 0 be a positive constant. We are interested in the system of parameter

dependent stochastic differential equations given by

=6+ [ orgwart [ ot wav, (2.52)
t . t

ot =wo(w) + [ bt gtwdr+ [ olrat gt dbr (2.53)
0 0

for t € [0,T], where we assume

i) o: U >R, b:[0,T]xR™ xU — R™ and o : [0, T] x R™ xU — R™*™ gsatisfy conditions
(Hy) — (Hs3) and therefore, for every u € U the process £* € LL(Q,C([0,T]),R™) is the

unique solution to the given equation (2.52)) for [ > 1 by Corollary and Corollary
Furthermore we know that the solution mapping u +— £* from U to LL(Q, C([0,T]),R™) is

Fréchet differentiable under these conditions, for every [ > 1.
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i) wo: U —» R"2, b:[0,T] x R"™ x R™ x U — R"2 and & : [0,T] x R" x R™ x | — Rn2xm2

are deterministic functions.

The goal is now to establish conditions on b and & such that the second equation in our system
admits a unique solution z* € LL(Q,C([0,T]),R"2) for every u € U, I > 1 and the solution
mapping U — LL(Q,C([0,T]),R"2), u + x* is also Fréchet differentiable. Let the aforementioned

assumptions hold for the rest of this section.

2.2.1 Existence and uniqueness

In this section we are going to examine the existence and uniqueness of the parameter depen-
dent SDE (2.53|). The solution to stochastic differential equations with a Brownian driver have
extensively been studied and many results have been established using the rich theory of It6
calculus. Since most of these results are well known we omit here an introductory chapter on the
subject and refer the reader to the corresponding literature. To name some literature concerning
stochastic differential equation we suggset Oksendal [2014], Karatzas and Shreve] [1991] Protter
[2005], Tkeda and Watanabe| [2014] and for controlled SDEs Pham| [2009], Yong and Zhou [1999]
and [Yong [2019]. We will establish the most important theorems and proofs using the notation
and ideas from [Yong and Zhou [1999] and |Yong [2019].

For any v € U, equation is a time inhomogenous stochastic differential equation with

random coefficients. We will first consider a more general equation.

() / (@) dr + [ gtr0),0) a8, )

S0

/ fryzp(w dr—i—Z/ (r, 2 (W), w) dB (w). (2.54)

In the following we will define the notion of a unique solution to equation ([2.54)) and give conditions
under which such an solution will exists. Here we use the ideas of [Yong| [2019] on SDEs with

random coefficients, explained in Chapter 1.3.

Definition 2.39. Let T > 0, sg € [0, 7], f : [s0,T] X R" x Q — R and ¢ : [s9,T] X R" x Q —
R™2*™M2 he given on a filtered probability space (€2, F,F, P) together with an F-adapted mo-
dimensional Brownian motion and a random variable zg : 2 — R"™ which is Fg, measurable. An
[F-adapted continuous process x, t € [so, T is called a solution to (2.54)), if

D) JL1b(r, ze(w),w)| + |6(r, 2(w), w)[? dr < 00, t € [59,T], P-ae. w € Q.

i) z(w) = zo(w —|—f b(r, 2 (w), w dr—|—f (r,zp(w),w)dBs, t € [s9,T], P-a.e. w € (L

Under the following conditions on the coefficient functions, we can state an uniqueness and
existence result for the solution of the SDE ([2.54]).
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(B) Let T € (0,00). The maps f : [0,T] x R™ x Q — R" and ¢’ : [0,T] x R" x Q — R"2 be
jointly measurable functions for every j = 1,...,ma, where we equip [0, 7] and R™? with the
corresponding Borel sigma algebras. For any 2 € R the processes f(-,z,-) and ¢/ (-, z, )
are F-progressively measurable. Furthermore there exists a constant L > 0, such that for
all t € [0,T], x,y e R"™, j=1,...,mg, for some | > 1

‘f(t,%’,bd)—f(t va)|<L|x_y| P—a.s.
9 (t, 2, w) — ¢’ (t,y,w)| < Llz —y| P - a.s.

B |2 15m0lar) + 5 (19 o ar)

N~

} -
Theorem 2.40. Let (B) hold. Then for any Fs, measurable random variable xo € L'(Q,R"?),
equation (2.54) admits a unique solution x such that x € LL(Q, C([so,T)),R"?) and we have

Elllzl. 0] < C | B [Jool'] + B [/

0 Fi (rO|dr]+ZE[/S

r0)|2dré] . (2.55)

0

The constant C' only depends on T, 1 and the constant L from condition (B).
Proof. See Theorem 1.25 in Yong| [2019)]. O

By Theorem we know that there exists a solution to the SDE , which is an element
of LL(Q,C([s0,T]), R"2), if condition (B) is satisfied for a given I > 1 and the initial value is
F,, measurable and an element of L!(,R"2). If condition (B) is satisfied for all { > 1 and g
has moments of all orders, we get a solution which also has moments of all orders. Now we
come back to our equation of interest . We will use the previous result to show that for
every u € U there exists a unique solution " to the equation , but since we need Fréchet
differentiability of the map u — z* from U to L]ZF(Q,C' [0,T],R™2) for every | > 1, we need to

assume further conditions on the coefficient functions b and & and the initial value Zo.

(B1) The function b : [0,T] x R™ x R™ x U — R is continuous with respect to the variables
t, , z and u and continuously differentiable with respect to z, z and u for all ¢ € [0, T].

Denote

~ l;z t ~ al;z ta ) <y
bo(t,m, 2u) =  2lh T 20 R AT S i G0
axj 1<,y < azj 1<:< 1<5<
7 no Sisng,lsgsny

. bi(t
bu(ta x? Z? u) = (8 (é:E’ Z, U)
U

) 1<i<ng,1<j<d
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Furthermore there exists a constant L > 0 such that

sup by (t, 2, 2, u)| + |ba (t, 2, 2, w)| + |bu(t, z, z,u)| < L.
t€[0,7],z€R™2 z€R™ ,ucld

(Bs) The function 6 = (6,...,6%) : [0,T] x R"™ x R™ x U — R"2X™2 is continuous with respect
to the variables ¢, z, z and uw and continuously differentiable with respect to z, z and u for
all t € [0, T]. Denote for j =1,...,mg

. 967 (t,x, 2, u , 067 (t,x, 2, u
69 (2, 2, ) = (u()> Gtz ) = <n<
1<iy,i2<n2

) 1<ii<ng, 1<ia<ny

57
IESOE (M>

)19'19?2719'231

6ui2
Furthermore there exists a constant L > 0 such that for j =1,...,my
sup 60(t,x, z,u)| + |62(t, z, z,u)| + |67 (t, x, z,u)| < L.

te[0,T],x€R™2,R™1 ucld

(B3) Let xg : U — R™ be a continuously differentiable deterministic function, such that zy and

its Jacobian Dx( are bounded by the constant L.

Now we first show that under the conditions (B1), (Bz2) and (Bs) equation ([2.53]) has a unique

solution which is bounded intependently of the parameter w.

Lemma 2.41. Let T € (0,00), b, 6 and xo(u) satisfy conditions (By), (Bs) and (Bs). Then for
any u € U, equation (2.53) admits a unique solution x* such that for all 1 > 1, E[||:EH200T] is

bounded by a constant D, ; which does not depend on u.

Proof. Assume that b, & and zo satisfy conditions (By), (Bz) and (Bs). Fix u € U, then the

coefficient functions
[0, T] x R™ x Q — R"™, (¢, 2,w) — b(t, z, &4(w), u)

and
¢ [0, T] x R™ x Q — R"™, (t, z,w) — 67 (t, x, & (w), u)

satisfy condition (B) for all [ > 1. The Lipschitz continuity in the x variable of f and ¢/ is a
direct consequence of (Bj) and (Bsg), where the Lipschitz constants do not depend on wu. Since
for every u € U the process &' is F-adapted and has almost surely continuous paths, the process
b:Qx [0, 7] - R™ (w,t) — l;(t,O,gf(w),u) is F-progressively measurable and we have for all
te[0, 7] and ueld

1b(t,0, €2, u)| < C(1€1] + |u]) + b(t,0,0,0) P-as..
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Since b is continuous in ¢ on the compact interval [0,T] and U is bounded, there exists a constant
K such that

T T
E [/ |b(r,0,£§f,u)|ldr] < KB [/ ggyl+1dr] < KiT(Dey +1) < Ko
0 0

by (2.49), where Ky > 0 is a constant that is independent of u. Analogously, we can estimate

T
E [ / |&f'<r,o,5ﬁ,u>|2dré] < Ky,
0

where K3 > 0 is a constant that is independent of w. Since (B) is satisfied on [0, 7] and xo(u) is
deterministic, Theorem implies that there exists a unique solution to (2.53|) and we have for
[ > 1 the estimate

L

TA m2 T ) 2
Ellle"| 7] < C |xo<u>rl+E[/O rb<r,o,§ﬂ,u>\’dr}+ZE (/0 rwr,o,f:zu)r?dr)

j=1
Taking the previous considerations and condition (Bs) into account, this yields
Efla" 0] < C (lzo(w)l' + Kz +maKs) < C (L' + Ko +maks ) = Dy,

where the constants C, Ky and K3 do not depend on the parameter u. ]

2.2.2 Fréchet differentiability of the solution mapping

We now repeat the same steps as in the previous section to show the Fréchet differentiability of
the map u +— 2% from U to LL(Q2, C[so, T], R™2).

Lemma 2.42. Suppose we are in the situation of Lemma |2.41], we have for every u € U, that

[qu—&-ﬂ

lim — 2" 0] = 0

|a|—0
for an arbitrary [ > 1.

Proof. We use C' as a constant which can vary over the course of the proof. Let u € U and
set v =u+1a, 7’ =z’ —a% and V¥ = £ — &%, where v € U for a @ € R? close enough to w,
since U is open and convex. Furthermore set for an arbitrary u € U, b%(t) := b(t, 2, £, u) and

6U(t) = 6 (t,x¢, &4, u), where the j-th column vector of 5%(t) is denoted by 6%/ (r). We have

t m2 t . . .
W= / () — by dr + Y / 69 (r) — 6% (r) dB.
0 o
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With the mean value theorem (Lemma , we get

= wo(e)—ao(w)+ [ BB B adr+ Y [ G5t (41 (radB,
0 : 0
j=1

(2.56)
where
1 ~
by(r) = / by (ry 2 4 MY, €8+ WP u+ i) dA
0
1 ~
bi(r) = / b (r, 2% 4+ M, €% + MY u+ M) dA
0
1
byu(r) = / bu(r, 2 + Xy, &8 4 Avf u+ Aa) dA
0
. 1 .
oy (1) = / 63 (r, x% 4+ My, €4 + A, u 4 M) dX
0
. 1 .
o7 (r) = / &I (r, x4+ M2, €% + MY u+ Ai) dA
0
. 1 .
Gy (r) = / &l (ryal + M2 €8 4+ AP u+ M) dA.
0

We know that b and & satisfy the condition (B1) and (B2) and furthermore that %, &Y €
LL(Q,0([0,T]),R™) (by Corollary , v, xv € LL(Q,C([0,T]),R™) (by Lemma and
consequently 7%, € LL(Q,C([0,T]),R™) for every [ > 1. This implies that the coefficient
functions of the SDE , defined by

and

P (r,2,w) = 329 (1) 4+ 62 (1)) + 32 ()
satisfy condition (B) on [0, 7], which yields using Theorem [2.40]

T

Bl o] < (8 fleote) ~ autwl] + £ [
+§?E [ /0 Conarr + &Mr)ur?dri] )

Bt + B (r)al dr]

Using the results of the previous section, we know that E[”VvHéo,O,T] < Clal' (by (2.50)). Since
BZ, Eu, 62 and 67, are bounded, we get

l

m2

T T
<0 (B ln) ~ o] + B | [ g+ lal |+ 308 ([ 10 + 0P ar

j=1
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<C <E [\xo(v) — mo(u)\l} + |ﬂ]l> :
By condition (Bsg) the function xo : i — R"2 is Lipschitz continuous, which yields
Bl ll5,s0,7] < Claf

for a constant C' > 0, which is independent of u. Hence, we conclude

lim B[l — 2" 0,7 =0

for every u € U. O
For notational simplicity, we define for u € U and r € [0,T], b(r) := by(r,z¥ €% u) and
repectively b“ b“ a7, az’j, G

Lemma 2.43. Suppose we are in the situation of Lemma we have

u+u __

u ~— il
— Yyu

Yy —0
00,0,T

for an arbitrary 1 > 1, where ; € R"2*% js the solution to the inhomogenous linear SDE

xT

|a|—0 |

lim E!

5t = Daolu) + j/ U () + BY(r) DEY + B (r) dr

/ WI(r)gY 4 6% (r)DEY + 6% (1) dBY. (2.57)

Contrary to the previous section, we can also use Theorem to get the unique solution to
the matrix valued linear equation and do not need to establish the explicit solution first.
But the explicit solution will be needed later in the thesis. So we will first state an existence result
for equation and establish the boundedness of the solution, independent of the parameter,

and then introduce the homogenous linear equations to give the explicit solution.

Lemma 2.44. Let b and 6 satisfy condition (B1) and (Bz). Then for every u € U, the inhomoge-
nous linear matrix equations has a unique solution §*, such that §* € LfF(Q, C([0, 1)), Rm2xd)
for every | > 1. Furthermore for everyl > 1, E [H u|l OT] is bounded independently of u, by a
constant D, ;. Hence the solution process y; defines a bounded linear operator Dx" := y* from
R? to the space L5(Q, C([0,T]),R"2) for every 1 > 1 and u € U.

Proof. Take a look at the columns of the matrix equation (2.57)) given by
i = (Daa(a)' + [ B3+ 5 m+2/ (VG + (G dB (2.58)
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fori=1,...,d. Then for a given u € U and every i = 1,...,d the coeflicient functions

fi [0, T] X R™ x Q = R™, (t,y,w), = by (t, 2 (w), &' (), )y + (bu(t, 7 (), & (@), u))'
and

g+ [0,T] X R™ x Q= R™, (1, y,0), = 65 (t, 2} (@), &' (@), wy + (3t 2} (@), &' (@), w))’

satisfy condition (B) for every [ > 1 on [0, 7], where the Lipschitz constants with respect to y do
not depend on u. By Theorem equation has a unique solution for all i =1,...,d and
we have for all [ > 1 by and the boundedness of the partial derivatives of the coefficients
and Dzg(u)

B[y

bo0,7)

. T ~ . m2 T . . 1
<0 B [i@ayl] + B[ [ 1Guat gt wylar] + 8| [ ohinat e Part
<C,

where C is independent of u and i. We conclude that equation (2.57)) has a unique solution, such
that

Al
E{15"ll0,r] < Dy

where D, ; is a constant independent of w. O

Now we come to the explicit solution of equation (2.57)). As a inhomogenous linear Ito-SDE,
we can calculate the explicit solution to the equation using the solutions to the matrix valued
homogenous linear SDEs, defined for ¢ € [sg, 7] and uw € U by

t ma ot
N L CELES S RO (2.59)
S0 j=1 S0
and
~ t ~ ~ m2 . ma2 t ~ . .
0 =L~ [ (B0 = Y@ 02 ar= Y [dperinasl (260
50 j=1 j=17%0

In the following lemma we give an existence and uniqueness result for the two SDEs, state a well
known fact on the relation of the processes QAS and 7,2 and give the explicit solution to equation
(12.57]).

Lemma 2.45. Let u € U and b, & satisfy conditions (By) and (Bs). Then the equations ([2.59) and
[2.:60) have a unique solution ¢* € LL(Q, C([s0, T]), R"2*"2) and YU e LE(Q, C([s0, T]), R2xn2)
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for 1 > 1 and there exists a constant Déﬁl’ independent of u and sg, such that

max {B [0 sc.sor] B (19" sesoir] } < Dy

Moreover, 1&50 = (A;fo)_1 for all t € [sp,T], P-almost surely. Setting so = 0 and O = ¢, the
solution to equation (2.57) is given by

t m2
i = diDaolw) +dn [ 67 BODE! + i) — 3 o0r) (629r)DEE + 63() | dr
i .
7j=1
m2 t . . .
+3 6 [ 671 (629 (r)Dg + 61 () dBY.
j=1 70

Proof. The existence, uniqueness and boundedness of the solutions of the SDEs (2.59)) and (2.60))
can be proved completely analogous to the proof of Lemma For the relation of the process
and the explicit solution to equation (2.57)), we refer the reader to|Yong and Zhou! [1999], Chapter
6.3. O

Now we come to the proof of Lemma [2.43]

Proof of Lemma[2.43 In this proof we use C for a positive constant, which can have different
values at different occasions. To minimize the notational effort, we set m = 1 for the proof and

leave out the explicit dependencies of § on u. Set

v=u+1u
71) _xv_xu
Y :é-v_é-u
C”—iv”
lal -

where v € U for a @ € R? close enough to u, since U is open and convex. We have

_ 1 [t. A 1 [t
¢ = Do) —zo(w) 1 [ bt g o -bat gty dre s [ ot g0 -o(rat 6 u) B
0 U Jo

u u

By using the mean value theorem (Lemma [2.25)) similar to the proof of Lemma we can write
for0 <t <T:

v v t~u v Tu v Tu u ! ~ U v ~u V;L“) ~u u
Ct - CO +/O bx(r>Cr + bz (T)m + bu(r)ﬁ dr +/0 O—I(T)C’F +o; (r)ﬁ + Uu(r)
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where

v %0
¢ = 50
- 1,
bi(?’)=/ by (r, 2l + AyY, €8 4+ AP, u + Aw) dA
0
1
b?(r)=/ by (r, 2 + M2, €8 + Al u + M) dX
0
1
bZ(r)—/ bu (7, 2% + MY, €L + M2, u + M) dA
0
1
62(r):/ Gu(r, x% 4+ M2, €4 + A, u+ M) dA
0
1
5Z(r)=/ Go(r, 4+ A2, €8+ AP w4 Ai) dA
0
1
53(7”)—/ Gu(r, T 4+ MY €L+ A, u 4 Aa) d.
0

By setting n* = (¥ — Z’A"TL, we obtain

@

§ — Dxo(u)u o ~ . TR U i
o = B2 e+ ) - o e+ B ()
+(B207) = B ) S + Gtr) = i) oy

+ [ ot + @ - oxon L rr) (£ D)

@ |l
Dev

H(EEr) =L))o (6 — )

[al
The partial derivatives of b and & are bounded by Conditions (B1) and (B2), % € LL(Q,C([0,T],R"2)
by Lemma ¢ e LL(Q,C([0,T),R™),

dB,. (2.61)

Elll3ll5,00] < €, ElIDE s 0.7] < C, Bl lise 0,01 + Elllr* 5,0,0) < Clal (2.62)

by Lemma Lemma [2.42] and Corollary for every [ > 1. This implies that the coefficient
functions of the SDE (2.61) satisfy condition (B) on [sg,T]. Since

xo(v) — zo(u) — Dxo(u)u

no =

]

is a non-random vector in R"2, applying Theorem [2.40} yields

T, . !
B I lcoa] < Clagl'+ CE| [ [t0) - i,
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+ |(BL(r) — b)) Dey

) - it o]

oz (r) <V;J __Dé’"a)

u].

2

+CE[( / U 1@20) — 04

N~

L) — 55 )DE + (34 (r) — 64(r))]2 dr)

We know that for every [ > 1

l
=0
00,0, T

by Corollary and by condition (Bs), we know that z¢ : Y — R™2 is totally differentiable,
which yields

VY — DEv

lim E -
|

|| —0

xo(v) — zo(u) — Dxo(u)u _0.

|l

Furthermore the partial derivatives of the coefficient functions b and & are bounded by a positive
constant and continuous with respect to the variables z, z and u. This implies that for every
te0,7]and 1 >1

lim <5§é(t) = DR + (B2 (t) = (O] + [bis(t) — b (D)

|a|—0
|53 (t) — a5 ()] + % (t) — a2 ()] + o (t) - 6’3(75)’) =0

in probability. Taking the estimates (2.62)) into account and applying the dominated convergence

theorem we conclude

w Aol
— Yyu
Y —0.
00,0, T

v

r —

|l

lim E [

e—0

O

Similar to the last section we are now able to formulate the main result of this section as a
direct consequence of Lemma [2.43] Lemma [2.45] and Lemma [2.44]

Theorem 2.46. For a open, bounded and convex subset U C R? the solution mapping x. : U —
L]%(Q,C([O,T],R”Q) for 1 > 1 corresponding to equation ([2.53)), where the coefficient function b,
& and the initial value xqo satisfy condition (Bi1), (B2) and (Bs), is Fréchet differentiable with
Fréchet differential

t M2
Dz = ¢:Dxo(u) + ¢ / 6,1 | DEODE! +bii(r) = 637 (r) (629 () DE! + 637 (r) | dr
0 .
J=1
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mo t
+3 6 [ 61 (029(r)Dg! + 619 (1) B, (2.69)
J=1 0

which is the explicit solution to equation (2.57)).

2.3 Fréchet differentiability of the model dynamics equation with respect

to the parameter

In this section we summarize the results and conditions of the last two sections, to obtain the nec-
essary preliminaries for our main result, which is stated in the next chapter. Let T > 0, (wt)t6[07T}
be an mj-dimensional continuous, bounded p-variation stochastic process for p € (1,2), which
satisfies the exponential moment condition (2.48), and (By);c(o,7) be a ma-dimensional standard
Brownian motion, both defined on the filtered probability space (2, F,F, P), both adapted to the
filtration F. Let U be a bounded, convex and open subset of R?. For every u € U, we consider

the following system of parameter dependent stochastic differential equations

u S;L _ SO(U) ! ( 5;17 r gr’ w‘
A <£L'g> - <$O(U)> +/0 (b("'?xr’{rv ) ! +Z/ ( ) o
+Z/ ( % £ )) dBJ (2.64)

for t € [0, 7] and

i) assume that & : U — R™, b: [0, T]| xR xU — R™, o = (ol,...,0™): [0,T] x R™ xU —
R™M>™1 gatisfy the conditions (H;) — (Hs). By Section we know that the unique
solution &% exists in the space LL(Q,C[0,T],R™) (for all I > 1) and the solution mapping
u — L%(Q,C[O,T],R”l),u — &% is Fréchet differentiable with Fréchet differential Dg"
defined in . The process DE is the unique solution to the linear stochastic Young

differential equation

t mi t
= Dagfu) + [ Wl 4 Vi) dr+ S [ oI+ ol () du.
0 ; 0
J=1

ii) assume that zo9 : U — R"™, b : [0,T] x R x R™ x Y — R™ & = (6',...,6™) :
[0,7] x R™ x R™ x U — R"™2*™2 gatisfy the conditions (B1), (B2) and (Bs). By Chapter
we know that the unique solution x% exists, and is an element of LL(,C[0, 7], R"2)
for every [ > 1. Furthermore, the solution mapping U — LL(Q,C[0,T],R™),u > 2 is
Fréchet differentiable with Fréchet differential Dz* defined in (2.63). The process Dz is
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the unique solution to the linear stochastic differential equation
t ~ ~ ~
G = Do) + [ D)3+ B2(r)DE + B(r) e
0
+> [ ori)a + 629 De + 61 (r) dBi.
j=170

Hence, we know that the map u — X* from U to LL(Q, C[0,T], R("1+72)) js Fréchet differentiable

at any v € Y and we have
DXt(’LL> = yt(U)

for every t € [0, T], where Y.(u) € LL(Q, C[0, T], R(1+72)%4) is the unique solution to the system

of linear stochastic differential equations

I
N
S 3
o O
=
~——
+

[ ( b ) n (égm) -

Jo b (r)yy + bz (r)gy | by (1)

S /0 <a§z”ér)y?> deg; /0 <03,;<T) ]

> <&z<r>y3 . &Ww) i i | (erit’?(r)) 5
(o) * 1 Gl i) (i)

A (O I &t oI (r) ,
+ Yy dw) + / i dw,
S (7 o) S (7)) wae

7j=1
— [t 0 0 N Y A :

4 - | yedBI + / - | aBl. 2.65
JZ_;/O 62(r) 6z (r) JZ_; o \&u”(r) 269

Remark 2.47. In the previous chapters, we examined the components of the processes X and
Y given by &, 2 and y,y. Here we summarize the results concerning the boundedness of the
components to find upper bounds for X and Y. For every u € U, we have by Corollary
Lemma [2.41] and Lemma for every [ > 1

B (12 0r] <27 (B [I6" V0| + B [l2*Ie0r])
<271 (Dgy + Day)

<Dy,
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and

BI7heor] <27 (B [y Iheoz] + B 15150 )
< Dy;.

Having established the Fréchet differentiability of the solution mapping to our model dynamics
equation, we will now introduce the cost function for our calibration problem and focus on the

representation of its gradient.
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Chapter 3
The cost function and its gradient

We assume for the rest of this chapter that we are in the situation of Section and all the
stated conditions in i) and ii) are satisfied. Since we want to calibrate our financial model to
e.g. call option prices, we introduce a cost function. Let M > 0 be a positive constant (e.g. the
number of options we are observing in the market) and 73 < --- < Tpy = T a set of times (e.g.

the corresponding maturities) on the interval (0, 7. Define the cost function
M
J:U SR, u—s QZE[gM(Xi)]Q, (3.1)
pn=1
where we assume the following condition on the functions g,

(G) Let L be the constant used in the conditions on the coefficient functions b, o, b and 6.
For every u=1,..., M, we assume that g, : R(1+12) 5 R is a continuously differentiable

function and we denote the derivative

9 9 ni1+ns
7 = (0 (2)) € RO,

e
0Zny +ny

We assume for all z,y € R"1"2 that
|9, (2) < L

and
19,,(2) = 9,.(y)| < L]z —y|.

This condition ensures that E[|g,(z)|] < oo for every z € L(Q, R"*"2), since

Ellgu(2)]] < LE[|2]] + 19, (0)]- (3.2)

Our goal in this chapter is to calculate the gradient of the cost function in two different ways. First,
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we will use the chain rule for Fréchet differentials to make use of equation , which we call
the sensitivity equation. Then we will establish our main result, namely an adjoint representation
for the gradient, which is given by the explicit solution to an anticipating backwards stochastic
differential equation. The key ingredient for the adjoint representation is the explicit solution to
the (ny + n2) x d-dimensional system of linear SDEs (2.65), which we obtain by establishing a
variation of constants formula similar to Lemma, [2.33] respectively Lemma but for the whole
system of equations. Finding this explicit solution will be the first main goal of this chapter. In the
course of the calculations for the variation of constant formula and the adjoint representation, we
will encounter several technical problems. First, one of processes involved in the solutions of our
system of differential equations will be the product of a process driven by Brownian motion
and a process driven by w. Therefore, we need an integration by parts rule which connects both
of these processes. Remember that the involved integrals are of different type, one is a pathwise
Young integral and the other is the standard It6 integral. Furthermore, for the calculation of the
adjoint equation, we will have to deal with stochastic integrals with Brownian motion integrator,
whose integrands are anticipating, such that we will not be able to use the It6 integral. Luckily,
all these problems can be solved by applying a stochastic integral which generalizes both, the
pathwise Young and the It6 integral. The next section is devoted to this generalization, called

the forward integral by Russo and Vallois.

3.1 Forward Integration

In this section we will define the forward integral and constitute all the properties which will be
necessary for our calculations. The forward integral, together with the backward and symmetric
integral, was first introduced by F. Russo and P. Vallois in the paper Russo and Vallois [1993a] and
further developed in the following years in Russo and Vallois| [1993b], Russo and Vallois| [1995],
Russo and Vallois| [1996] and Russo and Vallois| [2000]. A good summary of the aforementioned
papers can be found in the lecture notes Russo and Vallois| [2007]. We will formulate all the
definitions and results for scalar valued processes and then generalize the important results to the
multidimensional case. Let T > 0 and sg € [0,T7], as convention for this subsection we prolongate
every real function f on [so,T] by setting f(t) = f(so) for t € (—o0,s0) and f(t) = f(T)
for t € [T,00). Let (Xt)e[so,r] Pe a continuous processes and (Y);c[s,,7) be locally bounded,
meaning that for every ¢ > sq, fsto Ysds < oo P-almost surely. First we need to define the type of

convergence we are interested in.

Definition 3.1. A family of processes (Hf)te[SO’T] converges to a process (Hy)ye[s, ) in ucp-sense
(uniform in probability), if

lim sup |Hf — Hy =0
EﬁotE[SQ,T}

in probability.
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Definition 3.2. The forward integral, backward integral and the generalized covariation are de-
fined as the limit in ucp-sense of the e-forward integral, e-backward integral respectively the

e-covariation, if these limits exist. Precisely

b Xepe — X

e — forward integral : I~ (g,Y,dX)(t) = / Y, oot S s
€
S0
t Xs - Xsfs
e — backward integral : I"(e,Y,dX)(t) = / Yo——ds
€
S0
t

¢ — covariation : C'(e, X,Y)(t) = ds

/ (Xs—i-s - Xs)<Y(s+a) - }/s>
S0 €

and
t
Forward-integral : / Yid  Xs=1lm I (¢,Y,dX)(t)
50 e\0

t
Backward-integral : / Yid" X = lim I (e,Y,dX)(t)
s0 e\0

Generalized covariation : [X,Y]; = 11\1‘1(1) Ce, X, Y)(t).
3

e We say that a process X is a finite quadratic variation process, if the generalized covariation
[X] = [X, X] exists. In this case we call [X] the quadratic variation of X.

e X is a zero quadratic variation process, if [X] = 0.

e A vector ((X}

51+ X)) selso,) Of continuous processes is said to have all its mutual covari-

ations if [X?, X /] exists for all 4,5 = 1,...,n.

Remark 3.3. Let for some n € N, (I)i<j<n be a sequence such that I; is either the forward,
backward integral or the generalized covarition of some processes, by convention for the rest of
this subsection, an identity of the form Z?Zl I; = 0 means that, if we assume n —1 of the involed

limits exist, then the n-th limit exists and and the identity holds true.

We will first establish all of the properties of the generalized covariation which will be needed

in our calculations.

Proposition 3.4. i) For continuous processes (X¢)e[so, 1) and (Y2)ie[so,1) the operations (X,Y) —
JL X d7Y, and (X,Y) = [X,Y] are bilinear.

it) [X] is an increasing process, if it exists.
iii) [ X, Y] = [} X,dtY, — [} X,d7Y..

) If (Xt)e[so,r) and (Yi)ie[so,r) are finite quadratic variation processes, we have

N[

XY < ((X][Y])>.
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v) If (Xt)ie[so, 18 @ finite quadratic variation process and (Yi)ic(so,r] @ zero qudratic variation

process, then [X,Y] = 0.

vi) If (Yi)te[so,r) 18 @ continuous process and the paths of the process (Xi)ie[som are almost

surely continuously differentiable, then

t t
/YrdXs:/ Y, X! ds.
S0 S0

vii) Let (Xt)ie[so,m) and (Yi)ie[so,1) be F-local martingales on a filtered probability space (2, F,F, P),

H and H' be progressively measurable processes such that

t t
/ H,d(X,X), < oo and / H,d(Y,Y), < oo
S0 S0

t t t
[/ HrdXT,/ H;dYT] :/ H.H,d[X,Y],.
S0 S0 S0

Here (X, X); is the standard quadratic variation, defined as the limit in probability

then

k-1

li Xiypy — X1,)?
g 2 (Yo = X0

where (Il )ken is a sequence of partitions of the interval [so,t] converging to zero in mesh.
viii) Let (My)ie|sy,m) be an F-local martingale, then (M, M) = [M, M].

iz) Let (Mt)ie[so,m be an continuous F-local martingale, (Yi)ic[som) @ cadlag and F-adapted
process. If M and Y are independent then [M,Y] = 0.

Proof. Properties i), ii) and iii) directly follow from the definition of the integral and the gen-
eralized covariation. The proof of iv), vii), viii) and iz) are given in Russo and Vallois [2007].
v) is a direct consequence of iv). vi) can easily be seen by applying the dominated convergence

theorem. 0

The following results show that the forward integral generalizes the Riemann Stieltjes, the

Young and the It6 integral.

Theorem 3.5. Let (Xt)ie[so,) be a continuous, bounded 1-variation process and (Yi)ie(s, 1) be a

t t t
/ K@d+Xs = / Y'sd_Xs = / )/st&
S0 S0 S0

where the integral on the right hand side of the equation is a Riemann-Stieltjes integral.

continuous process, then
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Proof. See |Russo and Vallois| [2007], Proposition 1 7a). Here the authors prove a version of this
statement with less restrictive conditions on the processes X and Y for the Lebesgue-Stieltjes
integral. Applying the proof under the assumption of continuity of both processes yields our

statement. O

In case of the Young integral, we only found results in the literature in the case where integrand
and integrator are Holder continuous (see Russo and Vallois| [2007]). We will generalize these
results to continuous integrand and integrator having finite p-respectively g-variation, such that
% + % > 1. To proof that the forward integral coincides with the Young integral, we first need a

preliminary result.

Lemma 3.6. Let p’ > p > 1 and X be a continuous finite p-variation process, define for e > 0 and
t e [80, T]

1 t
X5 = / Xyie — X, dr
€ Jso

and
XE+ /X X, _cdr. (3.3)

Then
lim [ X7 — Xy g0 = 1im [ X57 = Xy 0.0 = 0,

e—0

Proof. We prove the statement for X¢~, the proof for X¢* is completely analogue. For any
so <t <T, we define Zf = X;~ — X;. We have

1 t t+e 1 so+e€
XfZ/Xr+e—er7“: XTdr—/ X, dr
€ S0 t € S

€ 0

and

1 t+e
Zi — 75 = - X, Xtdr—/ X, — X, dr,

s

- / Xerr — X = (Xopr — X,)dr,

where sg < s <t <T. We have using the Jensen inequality for s < s <t < T

1 £
2 = 2 < 2 [ Wi = Xo = (X = X dr
0

Y e

1 [ i
< (3] e = X = ety = 0P PPty = X = (X = X P )
0

=

_p - 1
<ol w sup Osc(X, [r,7 + 5]) <2p 18 / K = Ko 41X = Xf? dr)
r€[s0,T]
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1
v

_1 —5 (1 [°
<ol™w sup Osc(X, [r, 7+ 5])1 v’ </ X ’£7S7t ar X‘z’s’t> -
7’6[307T] ¢ Jo

It is easy to see that
1 €
Pout) = 2 [ IXeanlfuedr +1XE0g

is superadditive on A([sp,7T]). By Lemma this yields

1
7

e 1-4 -z (1 [° p p P
|Z% |y sp <2 7 sup Osc(X,[r,r+¢]) (= |X(.+r)|p75’t dr + ]X\p@t
r€[s0,T € Jo

‘ =

1 7 P
<2 (2\X - T) " sup Osce(X,[r,r+e)) v
o r€(so,T]
< C sup Osc(X,[r,r+ 6])175.
r€[so,T]

Since X is uniformly continuous on [sg, 7] and X; = X for ¢ > T, this yields

lim | X7 — X
e—0

p',s0,7 = 0.
O

Theorem 3.7. Let (X¢)e[so, 175 (Yt)te[so,r) be two real valued processes such that the paths of X
are almost surely continuous and of finite p-variation for p > 1 the paths of Y are almost surely

continuous and of finite q-variation for ¢ > 1 such that ]% + % > 1. Then

t t t
/stﬂcs—/ YSdXS—/ Y, dW X,.
S0 S0 S0

Proof. For t € [sg, T define the process

1 t
X5 = / Xyie — X, dr
S0

T e
and the process

t t X - X
Zt:/ st(y)Xs_/ ysuds.
S0 S0 €

Notice that for almost every w € €2 the paths X; ™ (w) are continuously differentiable, such that
the Young integral

¢
/ Y, dW) XE~
50
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coincides with the standard Riemann-Stieltjes integral

t
/ YsdX:™
S0
and we have the relation

/Y ste = X d_/Y ds_/Ydef— /Yd ~ P-as.

by the standard formula for Riemann-Stieltjes integrals with differentiable integrator. From our

results on Young integrals it follows that for p’ > p such that % + z% >1

1Ztlloc,s0,7 =

t
R I
S0

00,80,T

By Lemma we conclude that Z; converges uniformly P-almost surely to 0 for € — 0, which

X _
/ Kove =X (0 / Y, dY) X

uniformly in probability, for € — 0. The assertion for the backward integral can be proved
analogously by using X¢* (see (3.3))) instead of X°~. O

implies that

Using the last theorem we can establish a result concerning the generalized covariation of a

continuous, bounded p-variation process.

Corollary 3.8. Every continuous, bounded p-variation process (Xt)te[so,T] for p € [1,2) is a zero

quadratic variation process.
Proof. The statement follows directly by Proposition i7i) and Theorem O

Theorem 3.9. Let (Xt)te[so,T] be a continuous F-local martingale on a filtered probability space

(0, F,F, P) and (Yi)ie[so,1) be a progressively measurable, locally bounded, cadlag process. Then

t
/ Yod™ X,
50
t
/ Y, dX,.
50

Proof. See Russo and Vallois [2007], Proposition 6. O

the forward integral

coincides with the Ito-integral
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Remark 3.10. For an Fr measurable random variable Z and a progressively measurable, locally

bounded, cadlag process (Xi)e[s,,7] We have

T T
Z/ XSstz/ ZXsd B
S0 s

0

as the multiplication with a random variable does not change the existence of the forward integral
as limit uniform in probability. This shows that the forward integral is suitable for anticipating

integrands.

Since we are in a multidimensional setting in this thesis, we need to generalize the previous
results correspondingly. The definition of the forward integral and the generalized covariation in
the multidimensional case is straightforward. Let (Xi)ic[s,,m) be a continuous m x n-dimensional

process and (Y%);e[s,,7) be a continuous n x k-dimensional process, then for ¢ € [so, T

t
/ Xd Ys
50

is given by the ucp-limit of

L R 7 1ot ; ;
/ X, s = (S / X (Vi = vh) as
S0 € _ € S0 . .
1<i<m,1<j<k

for € — 0 if this limit exists and
[X? Y]t

is given by the ucp-limit of

1 t n 1 t - . Li ]
6/ (Xs-i-a - Xs)(Y:s-i—a - Ys) ds = (Z 6/ (lei—a - X;’l) (Ys-ﬁa - Ysm) ds
s =1 S0 1<i<m,1<j<k

0

for € — 0 if this limit exists. If both of the limits exists we can write

t n t
/ X, dY, = <Z/ X;"l dY'SlJ) c RMxk
50 =190

1<i<m,1<j<k

and

n
X,Y], = [Xi”,Yl’j] ) e R™<F.
| | <; ' 1<i<m,1<j<k
The multidimensional versions of the Riemann-Stieltjes, Young and It6 integral are analo-
gously defined, such that the results in Theorems [3.5] [3.7] and [3.9 hold in the multidimensional
case. The main result concerning the forward integral, which we need for our calculations, is the

integration by parts formula. We first state and prove the formula for R-valued processes.
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Proposition 3.11 (Integration by parts). Let (Xi)ic(so,m) and (Yi)ie[s,,r) be continuous, R-valued

processes. Then

t t
Xm:XoYo+/ Xsd‘Ys+/ Yod—X, + [X, Y]
80

50

Proof. We have

1/t 1/t
/ Xs(YVs—i-a_Ys)dS'f‘/ }/S(XS-"-E_XS) ds
e S0 3 S0

1 t

1 t
2 [ XYoo= XY ds = 2 [ (e = X (Ve = V) s,
€ Jso € Jso

The first integral can be rewritten as

1 t 1 t+4e t
- / (XS+EYS+E - Xs}/;) ds = - XYsds — XYsds
€ S0 € so+€ S0
1 t+e so+€
_ - X.Y.ds — / X, Y. ds.
€ Jt S0

Then by the fundamental theorem of calculus, this integral converges uniformly P-a.s. to X;Y; —
XoYs,- Keeping Remark [3.3] in mind, the assertion follows. O

In the multidimensional case we need to pay attention on the order of multiplication of the
given matrix-valued processes. For the multidimensional integration by parts formula, we intro-
duce another form of the forward integral for a continuous m x n-dimensional process (X¢)¢e[s,,7]

and a continuous n X k-dimensional process (Yt)te[s()’T], given by
t
/ (d XY,

50
as the ucp-limit of
1 t n 1 t il . .
5/ (Xope — Xo)Yads = [ D 5/ (X;;g - X;’l) Yl ds e R™X

=1 50

S0

g i

"1 ot . .
— (Z - / yhi (X;is — X;’l) ds> e R™xk,
=1 S0

1<i<m,1<j<k

for e — 0. If this limit exists, we have

t n t
/ (diXs)Ks = (Z/ Y'SZJ dXi,l> c R™*k
=150

50 1<i<m,1<j<k

Now we are able to state and prove the multidimensional integration by parts formula.

104



Theorem 3.12. Let (Xy)ic[so,1) be a continuous m X n-dimensional process and (Yy)e[s,, 1] be a

continuous n X k-dimensional process, then for t € [so,T]| we have

t t
XtY;f - XSQYSO +/ Xs d_Y; +/ (d_XS)Y; + [X, Y]t
80

S0

Proof. Keeping Remark in mind, let 7 € {1,...,n} and j € {1,...,k}, we have the equality

¢ i,j t .3
( X, dY;) + </ (d~X,)Y, ds)
S0 S0

:Z/ Xyl +Z/ vhi d- X

|=1"9%0 [=1"9%0

By the 1-dimensional integration by parts formula from Theorem this equals

S0~ S0

n

_ Z <Xti,lytl,j _ xilyli [Xi,l’yl,j])
=1

= (XiY2)" — (X Yep)™ — ([X,Y]0)".

This proves the assertion. ]

The next theorem is the main result of this subsection and will be used multiple times in the

remainder of this thesis. But first we introduce for [ > 1 and p > 1 the space

Li(Q, CP[sp, T), R™H72)
= {z: Q x [s9,T] — R™2| x is F-adapted continuous, bounded p-variation process

such that E[Hx”é’sO’T] < 00}.

Theorem 3.13. Let (Q, F,F, P) be a filtered probability space, carrying an m-dimensional continu-
ous, bounded p-variation process (wi)ejo,r) for p € (1,2) and an ma-dimensional standard Brown-
ian motion (By)ie(o1), both adapted to the filtration F. Furthermore let A € LL(Q, C[so, T],R™*™),
C' € LL(Q,C4so, T],R™™), DI € LL(Q,Clso, T),R™ "), A € LL(Q,C[so,T],R™*), C' €
LL(Q, CY[sq, T], R™F), Di e LL(Q, Cls0, T),R™¥) for every I > 1,i=1,...,my, j=1,...,ma
and g > p such that % + % > 1. Define the processes (Xt)ie[so,r) and (Yt)te[so,1] bY

i mi t . . m2 t . .
Xt:XSO+/ASds+Z/ Cldw)+> | DJdB]
S0 j=1 S0 j=1 S0

and

t A ml t A . . m2 t A . .
Yt:YsO+/ Asds+Z/ cgdwg+2/ D] dBj.
S0 j=1 S0 j=1 S0
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Then we have
t A ml t A . . m2 A . .
XY, = X, Vs, + / X, Agds+) / X,Cdw] +>  X,D]dB]
S0 j=1+9%0 j=1
t mi t ma2
+/ Assts+Z/ CIY, dwl +> " DIY,dB]
S0 j=1+950 j=1
m2 t .
+) / DIDIds
j=17%0

for allt € [so,T].

Proof. The processes (Xt)te[s()’;p] and (Yt>te[so,T] are F-adapted, continuous and of bounded qo-
variation for every gg > 2, such that % + q% > 1. To see this, take a look at the 3 integral

processes

(w, 1) — /t Ay(w) ds.

Since A is a continuous process, the integral process is of bounded 1-variation and therefore

of bounded ¢g-variation.

(w,1) > / €U (w) dud ().

For every j = 1,...,mq, C7 is a continuous process with bounded g-variation, where %—l—% >
1. By Lemma[2.16] the integral process is of bounded p-variation and again, since gy > 2 > p

of bounded ¢g-variation.

(w,t) — / D! (w) dBJ (w).

Since for every j = 1,...,mq, DI € LL(C([s0,T],R™*") every component of the matrix
valued integral process is an F-martingale. By Corollary 12.7 of Dudley and Norvaisa, [2010],
every semimartingale (and hence every martingale) has bounded p-variation for p > 2 on a

bounded interval. Hence the integral process is of bounded gg-variation.

The same arguments can be used for the bounded gg-variation of Y. By the continuity of X and

Y we can use Theorem [3.12] and obtain

t t
XV; = X, Yy + / X,d Y, + / (d"X,)Ys + [X, Y] (3.4)
S0

S0
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Now take a look at the first forward integral in the previous equation, we have by the biliniarity

of the forward integral that
t t s 1 t s ) m2 t s ) )
/ X, d~Y, :/ X,d~ </ Ardr) +Z/ X,d~ </ cgdwg) +Z/ X,d~ (/ DidB,%)
S0 S0 S0 j=1"50 S0 j=1"50 S0
=L+ 1+ 1.
For the integral I; we know that the (i, j)-th component of the matrix valued process
S
(w,s) — / Ay (w)dr
50
is P-a.s. continuously differentiable with differential A% , by Proposition vi), we have

t
11:/ X A ds.
50

The processes

(w.5) = [ i) dwiw)

are continuous, bounded p-variation processes for every j = 1,...,my by Lemma|2.16] since ¢ > p
and 11? + % > 1. By Theorem we have

mi t S
IQZZ/ X, dW </ ngwg)
j=1 S0 S0

By our substitution rule from Lemma [2.17] since X is a continuous process with bounded go-

variation for % + q% > 1, we obtain

1 t . .
I = Z/ X,CY dul.
j=1"5%0

For the It6 integral, note that the (i, j)-th component of the matrix valued process

wﬁH/wamw

is a F-martingale such that by Theorem the forward integral coincides with the Ito integral,

such that
ma2 t s . .
1322/ X8d</ DﬁdBﬁ).
j=1 S0 S0

Our substitution rule from Lemma can also be formulated for the Itd integral (see Karatzas
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and Shreve| [1991], Corollary 3.2.20), this yields
2 t . .
Iy = Z/ XD dBj.
j=1"s0
Collecting the terms, we obtain

t t mi t . . m2 t . .
/Xsd_Ys:/ XsAsds+Z/ X,C9 dwg+2/ X,DJ dBJ.
50 S0 j=1 S0 j=1 S0

The calculations for the integral

/ (@ XY,

S0

are completely analogous and we get

t t mioet o2 et .
/(dXs)Ys:/ AsYgderZ/ cgysdwg+2/ DY, dBJ.
S0 80 j=1"s0 j=1"s0

Since both forward integrals in (3.4]) exist, so does the generalized covariation [X,Y]; for ¢ €
[s0,T]. Take a look at the (7, j)-th component

YT =7 [ Xyt
=1 ¢
where
. A b mioopet il m2 oot il
XZ,Z :XSJ_'_/ Als,l dS—i—Z/ (Cg) dw?+2/ (D?) ng (3.5)
S0 h=1" S0 h=1"%0
and

vy [ PUPNS o / () kY / (o1)" ase. (3.6)
50 h=1" S0 h=1"%0

Notice that the Riemann-Stieltjes and Young integral processes are continuous and of bounded p-
variation for p € [1,2). This implies that they are zero quadratic variation processes by Corollary
E The quadratic variation of the It6 integral process can be calculated by Proposition vii)
and viii). D% is a.s. continuous and F-adapted and therefore it has a progressively measurable
version. B" is a F-martingale with (B", B"); =t for all h = 1,...,mg and t € [sg, T]. We get

Ut (DQ)“ dBQ,/t (DQ)“ dBQ} - /S <(D§)“>2 ds

S0 S0
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and analogously
t, o \Lj VN PN
[ / (Dg) dB", / (DQ) ng]_ / ((Dﬁ) > ds,
S0 S0 S0

therefore are the Itd integral processes, finite quadratic variation processes. Now taking the
bilinearity of the generalized covariation into account we need to calculate all the combinations
of covariations [I, J], where I is one of the mj +mg + 1 integral processes given in and J is
one of the m; +my + 1 integral processes given in . Taking Proposition v) into account,
the only covariations that do not vanish are those where I and J are Itd integral processes. For
h,h' € {1,...,mso} such that h # h’, the Brownian motions B" and B" are independent and so
[B", Bh/] = 0 by Proposition ix). Then by Proposition viii), we have

[/t (DQ)“ dBQ,/t (f)?)l’j ng’] —0.

S0 S0

So the only covariations that are not equal to zero are given by

[ (o) amt [ (o) am] = [ (o) (22)"

S0 S0 S0

for all h =1,...,mo. This yields
(XY=

and consequently

This concludes the proof. ]

3.2 Explicit solution to our system of linear differential equations

Now we have all the necessary results to formulate our variation of constants formula. We define

the homogenous matrix valued stochastic differential equation with initial time so € [0, T]

t bu 0 1 t gnj 0 )
O = Iy iy + / Aﬁm | edr Y / 7 )0 g g
S0 bz (T) bx (T) j=1 S0 O 0

. . 20 dBY, 7
+ Z/ (ML,J(T) 5 (7‘)) T r (3 )
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with @50 ¢ R(mtn2)x(m+n2) for t € 50, T]. The solution to this equation is given by the matrix
S0 0
S0 __ t
we(i 1)
t P

i) ¢% € LfF(Q, CP([s0,T]),R™*"1) is the unique solution to the homogenous linear SDE

where for every [ > 1

0

t mi t
6 =t [ s ar+ S [ otiyon vl 59
s j=1"s0

which exists by Corollary and Corollary

ii) ¢ € LL(Q, C([s0, T]), R"™2*"2) is the unique solution to the homogenous linear SDE
A t ~ ~ m2 t . ~ .
0 = Iy + / bu(r)pi dr + / &I (1) dBY,
S0 j=1 S0

which exists by Theorem [2.45

iit) ¢% € LL(Q, C([s0,T]), R"2*™) is the unique solution to the inhomogenous linear SDE
~ t ~ ~ A~ m2 t . ~ . .
P = [ Bd + 1206, dr+ Y [ 620 + 529006, dB,
S0 j=1 S0

which exists by Theorem m Hence, gZ) can be expressed using the solutions ¢ and qAﬁ of
the homogenous linear SDEs similar to Lemma by

~ ~ t ~ A m2 . . m2 ~ t ~ . .
bt = ¢y / 6 |bE(r) =Y 6uwI ()6l (r)| drdr 4+ oy / &, 162 (r)d, dBY.
%0 7=1 j=1 7%

Similar to the proof of Lemma [2.44] we can find a bound Dy, for E {H(ﬁ”l } for every

00,50,1"

[ > 1 which is independent of the parameter u and sg.

Hence equation (3.7) has a unique solution ®*, which is an element of Lk (€2, C([sg, T]), R(1+n2)x(n1+n2))

for every [ > 1 and there exists a constant Dg; independent of u, such that

sup B [[0°]|' o, r] < Do
SoE[O,T]
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For the desired explicit solution of equation (2.65]), we need the inverse matrix to ®;. Therefore

we define the matrix valued stochastic differential equation
t bi(r) 0 ([ O o\’
U0 = — / S I . — : dr
Y S AT G) Z ou(r) o1 (r)

)
)
< [ (770 0Y A [T [0 0 |
_Z/q’< . 0) i) [ % (&;‘J(r) af;:%)) w09

J=1 J=1

with W0 € ROm+n2)x(m+n2) for ¢ € [s9, T]. The solution to this equation is given by the matrix
S0 0
_ [ ¥
(2 2)
t t

i) Y% € L]ZF(Q, CP([s0,T]),R™*™) is the unique solution to the homogenous linear SDE

where

Yo = I, — / PYEObY(r dr—z / YOI (r) dwd, (3.10)

which exists by Corollary [2.36] and Corollary Furthermore, by Lemma [2.32], we have
70 = (¢5°)~! for t € [sg, T], P-almost surely.

i) 9% e LL(Q, C([so, T]), R">*"2) is the unique solution to the homogenous linear SDE

m2

t
fozlm/ 2o |b(r) = > (689 (r))?| dt — Z/ P (r)d B, (3.11)
S0

J=1

which exists by Theorem Furthermore, we have ¢f° = (¢:°)~! for t € [so, T], P-almost

surely.
iii) % € LL(Q, C([so, T]), R™2*™) is the solution to the inhomogenous linear SDE

~ t ~ ~ ~
fO:—/ EODY (1) + o | B (r Za A(r)g%i(r)| dr

S0

mi
-y Wo W (r) dwl — Z / P206MI (r)d By, (3.12)

j=1+50

We will prove this in the following Proposition. We defined equation (3.9) analogously to
the variation of constants formulas, we established in Lemma [2.33] and Lemma So we

hope that the relation WJ° = (®;°)~! for ¢t € [sg, T] holds P-almost surely. Since we already
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found that 1 = ()1 for ¢ € [s, T], P-almost surely and ¢{° = (¢; ) L for t € [so, T,
P-almost surely, we get a clear candidate for the solution of equation (3 , which would
ensure that U, &y = I, 4n, for t € [sg, T], P-almost surely. It is given by

o = (@) (o)
t R m
:(‘/< 7P - e e o dr
m2 t R ) )
S RGOt dBi)( o).
j=17s0

Since we have a clear candidate for the solution of equation ([3.12)), we just need some kind
of Ito6 formula to prove the assertion. Note that the candidate is a product of a process
driven by Brownian motion and a process of finite p-variation, with p € (1,2), such that

the standard It6 rule cannot be used. Therefore we will use Theorem [3.13]

Proposition 3.14. The solution to equation (3.12) is given by

t mo m2 t
r=1- / ()71 | B fo r)eti(r)| o dr = / (65) "6 ()i dB]. | (65)7,
S0 j=1 S0

where ($*0)=1, ¢, (™)~ are defined by B.11), (3.8), (B.10).

Proof. For readability we leave out the dependence of the processes on sg. Define for ¢ € [sg, T']
t ma o ot ' .
o= [ ot |t Zo— )60 6rdr =Y [ 67162910, dB],
S0 j=1 S0
such that 1;15 = ptqﬁt_l, where p; € R™2*™ and qbt_l € R™>™  We have

t mi t ) )
S =h - [ e a =Y [ ot dul
S0 j=19%0

To use Theorem [3.13] we define the processes

ma
Ay =—; b bt Z wi(t)| ¢p € R™*™M
,J=1,.

C] =0eR™™
D} = —¢; 67 ()¢ € R j=1,..ma
A= =gy 'bi(t) e RO
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Cf = =y 'oli(t) € R ™, j=1,...,my

T

DI =0eR™™ j=1.. my.

Then we have A, D7 € LL(Q, C[so, T],R"*™) for j = 1,...,ma, A, DI € LL(Q,C[sg, T], R™*™)
for j=1,...,mq, C7 € LL(Q, CP[sp, T],R"2*™) for j = 1,...,my and Cie LL(Q, CP[sg, T], R ™)
for j =1,...,my. So all the conditions of Theorem [3.13] are satisfied and we have

t m t
prody = — / prepy D(r) dr = / proy Lo (1) dwl
S0 j=1 S0
t ~ A~ m2 . . m2 t ~ . .
- / oo ) =S 6ni ety dr =Y / $716% (1) dBY,
50 j=1 j=1"°%0
which concludes the proof. O

The solution to equation (3.12)) is also unique. Since equation (3.11)) has a unique solution,
suppose ¢! and 9? are two solutions to equation (3.12)), then z = ! — )2 satisfies the equation

t mi ot , A
2 = —/ 2 b2 (r) dr — Z/ zro 2 (1) dw?,
S0 j=1 S0

which has a unique solution by Theorem which then has to be 0 for all ¢t € [s9,T]. The
boundedness of E [H@Z)SOHZ } , independent of the parameter and sq for every I > 1, follows by

00,50,1

the representation

7 750\ —17 ~1

0= —(0") 9" (64"
and the boundedness of all moments (uniform in time) of the processes on the right hand side,
independent of v and so. This yields that equation (3.9) has a unique solution ¥*° which is an
element of L4(Q,C([so, T]), RmFm2)x(m+n2)) for every | > 1 and there exists a constant Dy

independent of u, such that

sup B[ 0|5 02| < D
s0€[0,77]

It is easy to see that W = (®{°)~! for t € [sg,T], P-almost surely. Similar to the ODE or
1t6-SDE case we show that it is possible to express the solution to the inhomogenous linear SDE

([2-65) using the matrix valued processes ® = ®° and ®~! = (®°)~! with initial time so = 0.

Theorem 3.15. Let O, resp. <I>t_1 be the solutions to the homogenous linear SDE (3.7)) resp. (3.9))
with initial time so = 0. The unique solution to the inhomogenous linear SDE ([2.65) for a given
u €U is given by

u _ Dgo(u) b [bu(r) B - 0 r
Vo= <on(u)) +CI)t/o o [(Bgm) ; <6$’j(r)63’j(r)> ] a
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+3 9 /t<I>_1 o’ () d j+§<b /t<1>‘1 0\ 4pi
w . .
: t 0 r 0 T gt t 0 T &ZJ(T’) T

J=1

Proof. We proof the statement by applying Theorem on the product @, 1Y,. For this define

the processes

. 0
D] — .
! (&w) g

Then we have A, DJ € LL(Q,C[0,T],R"2*™) for j = 1,...,ma, A, Di e LL(Q,C[0, T, Rmixmt)
for j =1,...,mg, for ¢ > 2 such that % + % >1,07 ¢ L]lF(Q,C'q[O,T],R”QX’“) for j=1,...,m
and C7 € LL(Q,C90,T),R™>*™) for j = 1,...,my. So all the conditions of Theorem are
satisfied and we have

(D6 | e (B0 0 Yy [T (R0
e (onw)) v (ias(r) Bz<r>> vedrs [ (33(7“)) !

m o%I(r) 0 R ol (M
+ / ot Y, dwl + / P! dw?
jz; 0 < 0 0 ]z; 0 0
f’: t [ 0 0 i f Lo 0 i
+ / O ) i YV, dB] + / o i dB;}
o \or) #(r) =)o \ewitr)
Lo o) 0 (0 0o\’
o / (I); Alzt Tu - Z AU AU, J yr d’l“
0 bz (7“) bx (T) j=1 Oz (T) Oz (T)
mi t u,j m2 t
_ Z/ q)r—l Ox (T) 0 yr dwgﬂ . 2/ q);l Au‘? Au? yT dB,,j,
= o 0 0 =Jo az7(r) oz’ (r)
2
<2 [t 0 0 A [t 0
g/o (&;“ (r) &% (r)) ; o " \e¥i (el (r)
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- (Bet) Lo ()5 o))

j=1

2t UZ’j(r) &2t 0 .
+ /@1 dwl + /cbl i dBJ.
;Ot<0 jzlotaw(r)

Multiplying both sides of the last equation with ®; yields the assertion. O

Hence the map u — X* from R? — LL(Q,C[0,T]),R™*"2) is Fréchet differentiable with

derivative
w D&o(u) Y o €Y _ S 0 r
pe (on(u)> o Kézm) 2 (63’3'&)&3”@) ] d

1

- L Uﬁ’j("") - L 0 j
+Z@t/ d; deZ@t/ o' . | dB] (3.13)
= o 0 = o ou” (r)

for every t € [0, T].

3.3 The gradient of the cost function and the adjoint equation

Now we come the the analysis of our cost function

LM
JiUR, (u) = 3 > Elgu (X))
pn=1

and its gradient. We first establish a standard result, which ensures that we can use the chain

rule of Fréchet derivatives.

Lemma 3.16. Let g : R™ — R be a continuously differentiable map with bounded derivative. The
map
2 (n1+n2) 1 2
[ L2 (Q,R™MT2)) 5 R 2 — EE[g(z)]

is Fréchet differentiable for every z € L?(Q, R *72)) and we have

Df(2)h = Elg(2)|Elg' ()]
for every h € L2(Q,R(M*72)) “where ¢(2) is an ny + ng-dimensional row vector.
Proof. We need to show that

[f(z+h) = f(z) = Df(2)h]

lim = 0.
IRl ,2—0 Al 22
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We take a look at the term
2 +1) = £(2) = DFGIA = | 3Bl + WP = Gl - DI

For simplicity we leave out the index p for the rest of the proof. With the Taylor expansion for
functions between Banach spaces (see e.g. [Ambrosetti and Prodi| [1995], Chapter 1.4) applied on

g, we obtain

1
g(z 4+ 1) = g(=) + ¢/ ()h + /0 (¢/(z +rh) — /() drh = g(=) + () + r(h)h.

By the continuity and boundedness of ¢’, the Holder inequality and the dominated convergence

theorem, we obtain

4+ 1) = 1) = DI = |3Bla) + ')+ r(B? = LIEIG(NP - (2

LBIg/(2)h)? + Elr(h)A)? + Blg(2)Elr(h)h] + E[g/(z)h]E[r(h)h]]

2 2
= o([lAll2),

which yields the desired limit. O

One easy way to calculate the gradient of the cost function would be to use the solution of the
sensitivity equation ) (see ), which is the Fréchet differential of the solution mapping w —
X", Using the Chain rule for Fréchet derivatives (see Ambrosetti and Prodi [1995] Proposition
1.1.4), we obtain the gradient

M
VJ(u) =Y Elgu(Xf)IElg, (Xf )V, ]. (3.14)

To calculate this gradient numerically we will discretize (using first order Euler schemes) the
underlying equations and use the Monte-Carlo method for the estimation of the expected value.
Focusing on the computational side, the computation of the discretized gradient boils down
to numerically evaluating the values of the Euler scheme for Y* on a partition (¢;)i=o,. . n of
[0, 7] for every Monte-Carlo path. Since Y* takes values in R("1+72)%4 this leads to very high
computational costs, especially if the number of parameters d is big, e.g. when the parameters
are time dependent. The main goal of this thesis is to establish another representation of this
gradient that does not involve the the process )/, and whose numerical approximation is way
cheaper. We introduce this representation in the next theorem, which is the first main result of
this thesis. It involves the explicit solution of an anticipating backwards stochastic differential

equation, namely the adjoint equation.
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Theorem 3.17. Let M,T > 0 and (g,)u=1,..,.m be a sequence of functions satisfying condition (G).
Furthermore let Ty < --- < Tpy = T be a sequence of times in (0,T], w € U and let X} be the
unique solution to equation (2.64). The cost function

M
]' u
JiU— R, ue > Elgu (x4
p=1

1s totally differentiable and its gradient is given by

v = A (i?iiiiii) * /OT v (ZED - m; (&z%moc}xvj(r)) |
N i/OT A (oﬁ’é(ﬂ) dud + i/T A, (&33(7”)) d_Bﬁ], (3.15)

j=179
where the row vector

Ar =Y Elgu(Xf)]g,(Xf, )7, ;" for t € [0,T)

T, >t

is an element of L'(Q2, C[0,T],R™*"2) and satisfies the anticipating BSDE

T Uy m2 2
A= 3 Elgdatg g ) + [ A[(ZE; ‘2)> —Z(Au,?(r) &g,?(r) Jar

T >t z j=1 \9=
m1 T u,j m2 T
oz’ (r) 0 , 0 0 o
+ A, dw! + / Mo B 3.16
> ( 0 0) 2 M v wr)) 1)

for all t € [0,T], which we call the adjoint equation.

Proof. By the definition of J and Lemma we can use the chain rule for Fréchet differentials,

which yields
M

VJ(u) = Elgu(X2,)|Elg,(Xf, ) DX .
pn=1

Using (3.13), we get

M
V() = B[ 3 Blau )i, (4, o, (Dfoiw)

st Dzxo(u)
M ) &2 0
U / U 1 U _ ] ) r
+MZI /0 Elgu(X7,)]9,(X7,) @1, P, {(85(@) ; (657](74)637](7‘)) ] d
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M m

+ZZ/TME[9 (X)), (X Y r, @, o (1) dw?
0 e\ AT, NG\ AT, )T, Py 0 T

p=1j=1
M mo

e [ Bl e enet 0 )an
0 w\ AT, NI\ AT, )T, Py &Z’](T) T

p=1j=1

Notice that the last integral in the upper equation is no longer an It6 integral, since the intergrand
is not adapted to the filtration F. Instead we use the forward integral by Russo and Vallois (see
Remark [3.10)). Interchanging sums and integrals, we get

M
VJ(u) =E| Y Elgu(Xf)lg, (X, )P,
Dzo(u)

pn=1
T (g m2
v [ X Bl o e 0 | (ZE;) 3 (Au,j@f&w(r)) ar

0 7,>r g

j=1

mi T ) ) UZJ(T) '

+> /0 > Elgu( g (X or, 07 (7 ) du]
j=1

Tu>r

me T
=3 [0S Bl e e (LS d—Bz} (3.17)
o ou” (1)

Tu>r

D@(u))

Now we define the process A. € LY(Q, C[0, T],R™*"2) by

Ay =Y Elgu(XE)g, (X8 )@r, ®; " for t € [0, 7).

Tu>t

By the definition of ®~! (see (3.9)) and the equality

2
bi(r) 0 ) <~ 0 0 0
b (r) %(T)) 2 (6“(7") 65’](7“))

b s
o [Tu oz (r) 0 A [T 0 0
+ / P! dwl + / o » dB’
jz; t ( 0 0 z; t ](7“) O’x’](T)
for all t < T),, we can argue that for every ¢ € [0,77], we have
> Elgu(XE g (XF,) @, @77
T, >t
= > Elgu(X§)lg. (X%,
T,>t
2
r bi(ry 0 A0 0
w3 B e et (00 =S (0]
¢ Y%T S bi(r) bi(r) ; 62 (r) 637(r)
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m1 T " , N 1 O.;L,j (’I") 0 i
+ Z ’ Z E[gH(XTH)]gu(XTH)(I)TM(I)T 0 0 dwr
j=1

Tu>r

— [T 0 0 :
+ Elgu(X¥ )] gl (X )orp, & . . d~Bl,
jzzjl /t Z [g.U'( TM)]gM( TM) Tu (a_g,,] (’I") a_;[é’] (T))

Tu>r

by again interchanging sums and integrals. Hence, we see that A satisfies the anticipating BSDE

T Uy 2 2
A= 3 Elgdae g ) + [ A[(ZR ((’)> —Z(Au,?(r) &;3@)) Jar

T >t z j=1 \97
mi T u,j ma2 T
oz’ (r) 0 . 0 0 .
+ / A dw] + / Al L i d~B].
37 I L of N (R
Using the definition of A in (3.17) yields the assertion. O

If we now take a look at the computational side, the backwards equation is R™ "2 valued,

m+n2)Xd yalued process )V, hence the numerical computation of A will be

in comparison to the R(
significantly faster if we have a high amount of parameters. We have shown that our cost function
is totally differentiable and established two representations of the gradient. The following chapter
will now focus on the approximation of the cost function and its gradient to use the theoretical

results in practice.
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Chapter 4

Approximation of the cost function and

its gradient

In this chapter we discuss the numerical approximation of the solution to the model dynamics
equation X" given in , the sensitivity equation Y* given in , the solution A of equa-
tion and consequently the cost function (3.1)), together with the sensitivity and adjoint
representation of its gradient. Since we need additional assumptions on the coefficients to get
the corresponding convergence rates, we first state the standing assumptions for this chapter.
Let for the rest of this chapter (Q,F,F, P) be a filtered probability space (satisfying the usual
assumptions) carrying a mj-dimensional continuous, bounded p-variation (p € (1,2)) process w,
which satisfies the exponential moment condition and a ms-dimensional standard Brown-
ian motion B, both adapted to the filtration F. Let &/ be a bounded, open and convex subset of

R?% and T > 0 be a positive constants. Furthermore the functions
S :U—-R™) b:[0,T]xR"™ xU - R™, o:[0,T] x R™ x U — R™>"™

satisfy the conditions (H1), (Hz), (H;), where (H3) is the same condition as (H3) but with the

Holder exponent 3 is now chosen to be in [%, 1] instead of [%, 1], and the time Holder condition

(E1) Let b, L be the function and constant from condition (Hz) and § € [%, 1] be the same
constant as in condition (Hj3). For every x € R™, u € U and s <t € [0,77], b satisfies

1b(t, 2, u) — b(s, 2, 0)] + [balt, 2, u) — by(s, 2, )| + [bu(t, 7, 1) — bu(s, 2, u)| < Lt — /7.

The functions

20:U = R™, b:[0,T] x R™ x R™ xU — R™, 6:[0,T] x R™ x R™ x Y — R"*"2

satisfy the conditions (B1), (Bz2), (Bs) and the time Holder condition

120



(Es): Let b, 6 and L be the coefficient functions and the constant from condition (Bj) respectively

(B2). Forallz e R", y e R™, u €U and s <t € [0,T], b and & satisfy

|b(ta$7yau) - b(s,x,y,u)\ =+ |6(t7$7y7u) - &(vaay7u)’ < L(l =+ |$| + ‘y|)(t - 8)%

Under these conditions all the results from the previous chapters hold. Since we do not assume
any kind of Holder condition on w, we cannot expect to get a convergence parameter which only
depends on the mesh |[IT¥| = maxj—g,..n—1 |ti+1 — t;| of the Euler partition, as it is in standard
approximation schemes of [t6 SDEs. We define three convergence parameters. First, for all w € ),

we define the parameter

5("‘)) = max 1 |ti+1 - ti‘ + ‘w(w>‘p7ti7ti+1 (4'1)

1=0,...,n—

for the pathwise convergence of the stochastic Young differential equations. Second, we define
the L'-convergence parameter for the stochastic Young differential equation

1

l

51 =B M , (4.2)

which is well defined, since w satisfies the exponential moment condition (2.48). And the last
convergence parameter, which we will use in the estimation of the convergence rate of the Ito

stochastic differential equation, is defined by

52 = i:(g,r,l,z,i,);fl ’ti+1 — tz".

In the following remark, we summarize some of the results of the previous chapters to facilitate

the notation for the proofs to come.

Remark 4.1. Taking Corollary Corollary Lemma, Lemma and Remark

into account, we know that there exist random variables C¢ and Cy which are independent of u,

such that for almost every w € 2

1€ (@) loc,0.7 < (1€ (@)lp.0,7 < Ce(w)

15" (@)oo < ly* (@) llpo.r < Cy(w)

and for every [ > 1 there exist positive constants D¢, Dy, Dy, Dy, Dy, Dy; which are

independent of u such that

E[le"Ib0r] < E[I€" 0] < De

Elly"lbe0r| < B[l lhor] < Dy
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B 25| < Do
B 15" Vo] < Dy
|:HXUHOOOT_ <Dx,

B[k 0r] < Dy

For the remainder of this chapter, we postulate the aforementioned notations and assumptions.

4.1 Convergence of the Euler schemes for the forward equations

We recall the forward equations which are of interest to us. Namely, the model dynamics equation

u (& §o(u) ¢ (r &5 u) . (r, & u wl
= () = () L ) e (70 o

mso t 0 )
" Z/o (a—j (r x%fﬁw)) " 43

j=1

and the sensitivity equation
Vi = (lf@)
Yt
Déo(u) /t by(r) 0 w, [0u(r)
- 5 ) 5 d
<D$0(U)>+ o W) b)Y T )

() 0N L ()
(T ) (7)o

7j=1
<2 [t 0 0 0 .
+ / i i VE+ | s dBj, 4.4
2. (oﬁ(r) UI,J(T)) (au”(r)) o
where for all ¢ € [0, 7]
by(t) = b (8,5 u), by(t) = by (,&,u)
oI (t) = ol (t,&u), ol (t) =0l (t, & u) for j=1,...,m
bu(t) = by (t, 2}, & u), bE(t) = b (t, 2, &' w) , BU(t) = by (¢, 2}, &, u)
5wl (t) = 61 (t, o), & u), 627 (t) = 6 (o), & u), 6w (t) = 6) (t, ), &' u) for j=1,... ,my.

We define their respective discrete Euler schemes on (Q, F,F, P) for a partition ITPWer = I8 =
(ti)i=0,...n of [0,T]. For each w € Q, u € U and i € {0,...,n — 1}, we define the discrete Euler

122



scheme X" for the equation (4.3)) by

Xt< 1 w) = i+1

”()<ﬁmw>

_ (&) b (ti, & (W), u) ) -
<$Z(W)>+(6(151,3:;1(@753(%“) (tiy1 — t;)
_|_

o7 (13, €7 (W), u)> (w,, (@) - wl )

and
Xt = X = (€olu), zo(u)) "

Here we left out the direct dependence of the discrete processes £, ™ and X on u for readability.

We consider the continuous interpolation

_ (g b (t, &7, (w), u) ) .
(%w9+<ﬂmwwmmww>“ K
+

M (%SZ (w),u) ; ;
=1 ( 0 ) COMD)
" (fﬂ' (i, 2" (@), €72 (), )) (B - BLe) (4.5)

for t € [t;,ti+1] for every i € {0,...,n—1}. Similarly for eachw € Q, uw € Y/ and i € {0,...,n—1},
we define the discrete Euler scheme Y™ for the equation (4.4]) by

yg.u - (g;Jrl)
1+1
=V A ‘ A X A ‘ tit1 —
b " <<b (tl,l'?,f?,U) b:E (tmx?;a{?;au) ytz - bu (tu'xﬁaégau) ( o )
i Ox tz: ; 0 n U?% ti7 n—?“ j j
+Z (( ft ) 0) ytz- + ( ( Oftz ))) <wii+l _wgl)
J=1

ma2

0 n( J j)
. '(B;., — By
* < (tzaxt aét ) ) &gf (tZ,LUZ?gE,U)) ytl bt b

Jj=1
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+ Z ( (tz,l’t 7€t : )) (Bgiﬂ B Bgl) )

with
Vil (w) = Vi = (D&o(u), Dao(u))

and its continuous interpolation

VP = (‘Z;)
1 ([ ) () e
+Z (( (b &) 8) Vi + (UZL @%ﬁﬁv“))) (wi _wi)
+Z< (t“xt>€t7 u) &l (ti’x%fﬁ?u)) Vi (Bf—B,Q
" Z ( (t“xt S )) (5 - 51) (4.6)

for t € [t;,tiy1] for every i € {0,...,n — 1}. Again we leave out the direct dependencies of the
processes on u and w for readability. The goal of this section will be to establish the strong
convergence

1
[

Tim B (2 = 2" or| =0, lim B[y = 2"k r]" =0

o~

for a sequence of partitions (II"),en with [II"| — 0 for every [ > 2 and find the corresponding
convergence rate. In the It6 SDE case, and consequently for the whole system, we will state the
boundedness and convergence results in the theorems only for [ > 2, to shorten the proofs. The

estimates for [ € [1,2), then follow by the monotonicity of L!-norms.

4.1.1 Convergence of the Euler scheme for model dynamics equation

Because of the different nature of the stochastic differential equations involved here, we split
the convergence analysis of the Euler schemes into two parts. First we examine for a given
parameter v € U the convergence rate at which ™" in (4.5) converges to £ in P-a.s. in
the uniform norm and in L(Q2, C([0,T]),R™) for [ > 1. The convergence of Euler schemes of a
differential equation driven by a process of finite p-variation have been studied by Lejay| [2010],
Davie, [2008], [Friz and Victoir| [2010] and for the special case of fractional Brownian motion
by Mishura [2008], [Nourdin| [2005], Nourdin and Neuenkirch| [2007]. We will basically use the
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same idea for the calculation of the convergence rate as |Lejay [2010], but since the author only
considers the deterministic, time autonomous case, we adapt his results to our framework. We will
especially be very careful with the w-dependent constants in the estimates, to get the convergence
results in L!. First, we show that the p-variation of the continuous interpolation £ is bounded

independently of the number n of subintervals of the Partition II® and the parameter w.

Lemma 4.2. Let u € U, we have for almost every w € )
6" (@) posr < 27 1CY (T2 + (@) 1 )
and
€™ @)lloe0r < L+ 277168 (17 + [w(@)f .1 ) = Cen(w),
where the constant Cy is given by ([2:23). For 1 > 1, we have £™* € LL(Q,C([0,T]), R™) with
B[le" koo r] < E[Ch] = Dens < 0.

Furthermore, setting i(t) = sup{i € N|t; € II¥ and t; < t} for every t € [0,T], we have for almost

every w € 2
€ (w) — 612 (@llooor < _max_ 1€ (@)lpsoriss < L) (47)
and consequently
B[l - & o] < L'l (4.8)

where 01 is defined in (4.2)).

Proof. Let A C Q, such that P(A) = 0 and w.(w) is continuous and of bounded p-variation
(p € (1,2)) for every w € A°. First, we show that for a given v € U and for every w € A the
paths £""(w) are elements of CP([0,T],R™). Let w € A° and u € U be arbitrary, for notational
simplicity we leave out the direct dependence of the involved processes on w and u. We have that

&" satisfies the equation

& =& +/Otb <tﬁ(r)7§7?ﬁmau> d, +/0t0 (tﬁ(rr)7€{;(r),u) dw,.

By the conditions on b and ¢ and since w is continuous, the continuity of £ follows directly. By

Lemma [2.9] we can estimate

n—1
’é.n 2707T S np_l Z |£n g,tiati-‘rl'
=0
For a given i € {0,...,n — 1} and s <t € [t;, t;y1], we have
€8 — €51 < [b(ti, &3 ) (8= 5) + 0 (83, &) (we — ws)| < L(Jt = s| + |wlpse) (4.9)
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which yields by Lemma [2.6]

‘fn‘p,tmtwl < L([tipr — il + ’w|p7ti,ti+1)' (4.10)

Hence,

n—1

=0
n—1

< (2n)P'LP Z(ti+1 —t)P +wlp g
i=0

< )P LP(TP 4wl )

Since w € CP ([0, T],R™), we have ™ € CP ([0, T],R™). By Lemma[2.26| we know that o (-,£", u)
is an element of C?([0,T],R™*™) for ¢ € (2, ;%;). Notice that o (-,£",u) coincides on the

partition points of II® with the function o (tﬁ(,), 3 (_),u>, such that we can use the inequalities
from Lemma Our goal is to find an upper bound of £, which is independent of u and n.
Let t; be a partition point of II¥ for i € {0,...,n — 1} and s < t € [t;,t;+1]. We have by (&.9)
that

6" — &1 < LIt = s| + |wlp,s.0)- (4.11)

Now let 0 < 1 < s < t < tiy1 < -+~ < bym = T < t < g1 < T for m > 0 and
ti—1,. ..tk € II*, we estimate

& — &1 <& = &1+ 16 — &hl + 16 — &5,
where the second term vanishes for m = 0. Using (4.11)), we obtain
16" = €51 < LIt = il + [wlpe.0) + 1€6, — &l + L[t = s + [wlp,s.)-

For m > 1 the term [}, — &f| can be decomposed by

k—1

Z b(ti, & u) (tigr — ;)

1=l

k—1
ZU (75w§ZvU) (/wt-;Jrl - wtz‘) S Sl + 52-

1=l

& —&nl < +

The sum S; can easily be estimated by the boundedness of b and the superadditivity of ¢(s,t) =
|t —s| on A([0,T])

k—1
Sl S Z Hb (tﬁ(,),ffm»,u) H (ti+1 — ti> S L’tk — tl|.
i=l

00,l1,tk
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Since o (-, &",u) € C1([0,T],R™) for ¢ € (2, ;57), we can apply Lemma and obtain

Sy < Cp,q HU ('7£~H7U)Hq,tl,tk ‘w’%tl,tk'

This yields by Lemma i) and condition (H3), that

p»thtk:) ) |w

Dittes

Dbtk

Sy < Cpy (L +L (Tﬁ +en

where C7 := 2max {L, CpqL,Cp LT?, 1} analogue to (2.23). Hence,
&8, — &t < CLll 4+ 18" [ptr,a ) ([t — o] + [wlp,ty 0)-
Putting all terms together, we obtain

& — &1 < LIt — te| + [wlpe ) + Lt — 8| + w
< 2L(Jt — 5| + |wlp,s,t) + Cr(L 4 [§"]p,s,6)(
<2C1(1+ |§n|p,s7t)(‘t — s+ ‘w|p757t)‘

t—s|+ |w

posit)

With (4.11)) and (4.12), we get for every [r,v] C [s,t] C [0,T]

& — & <2011+ €"

pst) (v =7+ [wlpro)-
By Lemma this yields
1€ [p.st < 201 (1 + [€" |p,s,e) ([t — 8]+ [wlp,s,0)-

Now we have for every interval [s,t] € [0, 7] which satisfies

1

t— <
= sl wlpas < g

that
‘gn ’P:SJ S 1

By our Gronwall-type lemma this yields

lpor = < 27707 (74wl ).
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We conclude

€07 < 60(0)| +272CY (T7 + w1
1P (1 i)
Since w was arbitrary in A° and u was arbitrary in U, the inequalities for the p-variation and

uniform norm of £ hold P-almost surely and for all u € 4. The F-adaptedness of £” is a direct

implication of its definition and the F-adaptedness of w. Since w satisfies the exponential moment

condition (2.48)), we have
!
E [HénHéo,o,T] <E [(L + 2%-1cp (TP + |w‘z,0,T>> ] = Dgnj < 00.
Since &' — &8 | < €7 |pt; 44, fOr t € [ti,tiv1] and i € {0,...,n — 1}, we have by (4.10) P-a.s.
€ — & Moo < 8
and consequently
E [H§n =&y Hf)o,O,Tj| < Ll5l1,z-
O

Remark 4.3. Notice that in the situation of Lemma [4.2] we have for every u € U, w € A° and

every interval [s,t] € [0,7] which satisfies

1

t— <
= s+ @)l < 35

that
€™ (W) lp,s,e < 1.

The constant C is defined in (2.23)).

In the next theorem we give the convergence rate of the Euler scheme for the stochastic Young

differential equation.

Theorem 4.4. Let u € U, we have for almost every w € )
1€ (w) = €M (W)lloo0,r < [€4(W) — € (W) |por < Ke(w)d(w)* 7P, (4.13)

where the random variable K¢ has moments of all orders and is independent of n and u. Fur-

thermore, we have for 1 > 1

1
l

1
20 2— 2—
Bllg" — & lboor| " < B[KE|™ 6750 = Diceadi s}
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Proof. Let A C Q, such that P(A) = 0 and w.(w) is continuous and of bounded p-variation for
every w € A°. Let w € A° and u € U be arbitrary, for notational simplicity leave out the direct
dependence of the involved processes on w and u. Let s <t € [t;,t;41] for some ¢ € {0,...,n—1}
and define v, = & — & for all t € [0,T]. We have

& — €0 =0b(t;, &, u) (t — s) + 0 (£, &, u) (wp — wy)
and
@—@zlﬁm%MW+L3m&mwm
= [ b0 s, Ecrmyar 005,500 9
[ 060) = 005,60+ 0, ) ).
This yields

'Yt_’Yszft_gs_(gtn_gg)
= (b(s,fs,u) —b (ti,ﬁg,u)) (t—s)+ (U(s,fs,u) -0 (ti,fg,u)) (wy — ws)
+ /t b(r, &, u) — b(s, &, u) dr + /ta(r, &yu) —o(s,&s,u) dwy

= (b(57587u) - b(s,fg,u)) (t - 8) + (b (s,fg’,u) —b (tivggvu)) (t - 3)
+ (0(5,8s,u) — 0 (8,&u)) (wr — ws) + (U (5,65 ,u) —o (tiafzz:u)) (wy — ws)

t
+/ b(?", gTau) - b(S,gS,UJ) d?" + /ta(r’ gTau) - J(S,fs,u) dwT"

Using the conditions (Hs), (Hj), (E1), the Love-Young estimate for ¢ € (2, I%) and Lemma
2.26| we obtain

pitns) (1= 8]+ [t]p)
+ L(t = 517 + [Elps.) [t = 5| + Cpglo (-, €, 1)lg,s.

< LIt = 81+ folps) + L (Iti1 = til? + €1 osens ) (12 = 8] + folp)

[ = %5l < LIsl(1t = 8] + [wlps) + L (I = 1:17 + [¢”

w|p,s,t

o+ LO1t = sl + [€lps)lt = 51+ CpgL (1t = 517 + [€lpisi) [wlpis

< Llvys|(t = s| + |wlp,s¢) + Ch (|tz'+1 — il + €l ptatins + ’gn’P,ti,ti+1> (|t = 8| + [wlpst)s

where the constant C is given in (2.23]). This can be estimated by ([2.26) and (4.10)

|’7t _’7s|
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< Lyl ([t = s| + [wlp,se) + C1{ (Jtisr — til + [whptetien)® + CL 4 [Elptstinn) (tirr — il + (Wt i)

Lt — ]+ \w|p,ti,ti+1>) (It = o] + lelpe)

< L l(It = sl 4 [wlpo) + CF (87 + (14 [€lpor)6 + ) (It = ] + |wlps)
< L(1s| + Dr(O))(It = o] + [wlp,s.) (4.14)

where D1(8) = C?(6° + (1+Ce)d+0). Nowlet 0 < t1 < s <t <+ < tyym =t <t <
tr+1 < T with m > 0. Then we have

e — vs| < |y — 'Ytk| + h’tk - 7tz| + h/tl — sl (4.15)

The first and third term can be estimated by the previous considerations, which yields

e = 1] < Ll | + D1(6)) (8 = te] + [wlpy 1)

< L(lvlloo,s.t + Dr(8)) ([t = 8] + [wlp,s.¢) (4.16)
e = sl < Lvs| + Da(0)) ([t = s + [wlp,s,)

< LV lloo,s,6 + D1(0)) ([t — 8] + [wlp,s.¢)- (4.17)

For m > 1 the second term in (4.15]) does not vanish and we can estimate

h/tk - %‘z‘
k—1

S (b(ti & w) — b (8,68 w)) (tist — t)

1=l

<

+

=1
k=1, g s
Z </t b(r, &y u) — b(ti, &,y u) dr + /t o(r, &, u) — o(ti, &, 1) dwr)|

i=l

k-1

Z (O‘j(ti,gti,U) - Uj (tlaggvu)) (ng_l - wgz)

1=l

_l’_

:Il—l-IQ—i-Ig.

The term I can easily be estimated by the Lipschitz continuity of b

k—1
I <Y bt &) = b (s, &6 ) | [ty — til

i=l
k-1
<L It — til
=l

< Ll[vllootr,t1 [t = tal- (4.18)
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We know that o7 (-, &, u) and o7 (-, &7, u) are elements of C9([0,T], R™>*™1) by Lemma for
every j = 1,...,m1. Hence, we can use Lemma for every j = 1,...,m; with ¢ € (2, p%l),
which yields

my
I2 < Zcp,q< }J](tlvftlau> — o’ (tlaggau)‘ + }J] ('75'7“) — o’ ('7£~n7u)‘q,tl7tk > ‘w]’%tl,tk

j=1

mi
<Gy > (Lhul + |0/ (o6 = o7 (€8] ) [0 (4.19)
j=1

By Lemma iii), we have

‘Uj(-,f.,u) - Jj(_’g.n’u) qtistk

< Lot (1t = 817 + 1€ bty + el ) + Ll (4.20)

Inserting (4.20]) into (4.19) yields

mi
L<Cpg <L|’7tz| + LI lloo,t1, (|tk — t1l? + 16" p e + 1€ P»thtk) + Lly P»thtk) W’ |p.t, 1
7j=1

< maCr([Y ooyt + [V potrte ) (116" Ip oty + [Elpityti) [ Wlp ity 5 (4.21)

where we used that Z;n:ll \wj|p757t < mi|w|ps:. The estimation of I3 will be carried out with the
Love-Young estimate, Lemma i) and the Lipschitz and Hoélder condition of the coefficient

function b

k=1 oty k—1 tit1
I3 S Z/ |b(T7£T7u) _b(tlagtlau”dr—i_z / 0(7’757"7“) _U(tivét“u) dw’r”
i=l Vi i=] 1/t
—1
<L) <|tz'+1 —t:l7 +[l€ - €ti|!oo,ti,ti+1> (tis1 — )
=l
k—1
+ CpqlL Z <’ti+1 - ti|ﬂ + ’§|p,tz‘7t¢+1> Wity b4
1=l
k—1

< Cp,qLZ (\tiﬂ —t;|° + ‘ﬂp,ti,tHl) ([tir — til + wlpti by,

1=l
k—1 k—1

< Cpgl Y [tivr = il (Jtivs = til + [wlp i) + Cog DY Elptitins (s — til + Wl iy)

1=l 1=l

= I31 + I39,
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where we used that C}, , > 1. Using the Jensen inequality, we get

k-1
1—1
Iy <2779 Cp gL Y Ntipr — til (i — tal? + w0 )
i=l
k-1

1-1 — 1131
<2 C LYt — il (i — P + w0y ) TP (i — P+l )P
i=l

3 =

The function ¢1(s,t) = |t — s|3(|t — s|P + \w]gsjt)l_ﬁ is superadditive and increasing on [0, 7] by
Lemma and Lemma which yields

k-1
1 _
I3 < 2' PCp,qLZw(ti,tiﬂ)(sH(ﬂ Dp

i=l

< 21‘%Cp,qL¢1(tl,tk)é”(ﬁ—l)i’

< Chp1(0,T) 7 B=VPg (1 1), (4.22)

RS

where C is defined by (2.23]). The p-variation of £ on an interval [t;, t;+1] can be estimated with
(2.26),

‘ﬂpii,tﬂ-l < Cl(l + "E

P,ti,ti+1)((ti+1 - ti) + ’w‘P,tz‘7ti+1)'
We obtain
k—1

Iy < CiCpgL > (14 ¢

1=l

P7ti7ti+1)(‘ti+1 - ti‘ + ’w|p1ti7ti+1)2

k—1

22
< 2770 C1Cy L+ [Elpor) D (tiss — til? +wlh 1., )
1=l

LSEIN]

k-1
< CR(1+ [Elporr) Z(|ti+1 — ;P + Jwly )

Dytitit1

ASHLN)

1=l
Define the control function @s(s,t) = [t — s[P 4 |wl} , , on [0, T] which yields

k—1
2
Iy < CR(1+ Klpor) Y waltintin)?
i=l
k-1 .
2
< CH(L+ [Elpor) D walti tist)paltistiyr)?
i=l
k-1 B
< CH(1+ [€lpor) Z@Q(ti,tiﬂ) <|ti+1 — 4P + |w|£,t¢,ti+1) 3

i=l

< O+ ||por)p2(ty, ty)6* P
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1 1
<Ci(1+ |§’p,0,T)(P2(07T)1 P62 Py (ty, t) 7. (4.23)

Taking (4.22)) and (4.23)) into account, we have

1 B 1 1 1
I < C} (@1(0,T)1 pSFEDPG, (1, 11) 7 + (14 |€lpor)p2(0,T)' 742 p902(tlatk)p>

and since 8 € [%, 1] implies 2 — p < 1+ (8 — 1)p, this yields

2 13 52-p5hp—1 : 1= 52— 3
I3 <CT{ @1(0,T) > o1(ty, tr)? + (1 + [€]p0,1)02(0,T) > a(ty, )P
1 1
< 07 PK (W) (gpl(tl,tk)P + pg(tl,tk)P) : (4.24)
where the random variables

0= max |tiy1 —ti| + [wlptitiy S 1+T +|wlpor = Cy (4.25)

1=0,...,n—1

_1 _1
Ki(w) = C31+Ce) (#1(0,1) 7 O 4 2(0,7) 7))

have moments of all orders by the definitions of 1 and s, the exponential moment condition
(2.48) and Remark Putting all the terms (4.18)), (4.21)) and (4.24) together, we obtain

‘%‘k - ’Ytl‘
< Ll[llooty e [te — il +maCrl[vlloo it + 1V ptrte) (14 16" p iyt + 1€lp ity i) Wty 4

2 p 1 1
+ 6P Ky (w) (@1(131,7%)” + 902(tz,tk)”)
1
< mlCl(”'YHoo,s,t + "Y|p,87t)(1 + ’§n|pys,t + ’f‘pﬁ,t)(’t — 8| + ’w‘pys,t) + A(s, t)7,
where
A(s, t) = 207 1P K (w) (01 (s, t) + (s, 1))

is a control function on [0,7T]. Together with (4.16)) and (4.17)), this yields

|’Yt - 'Ys|
< L([[¥lloo,s,t + D1(8)) ([t = s + [wlp,s,t) + LV]loo,s,t + D1(0))([t — 5[ + [wlp,s,¢)

1
+m1C1([[ Vo5t + [V]pos,t) (L + (6" |psit + [Elpst) ([T — 8| + [wlpse) + Als, t)»
1
< m12C1(D1(8) + [[Vlloo,s,t + [ VIp,s,t) (1 + 17 pys,t + 1€l p,s,t) (It — 8] + |wlp,s.e) + A(s, t)P. (4.26)

So we know by (4.14)) and (4.26)) that for every [r,v] C [s,t] C [0,T]

1
o =7l < mi2C1(D1O) + [Vlloo,r0 + Vporo) (L4 1€ b0 + [Elpro) ([0 = 7]+ |wlpr0) + Alr, 0) 7
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1
< m14C1(D1(0) + |7vs| + ‘7‘1778,?5)(1 + |§n|p7s7t + 1€ p,S,t)(’U — 7|+ ’w|p,r,v) + A(r,v)7,

since [|V]loo,s,t < [Vs| + [V]p,s,e- With Lemma [2.6] this yields

1V]p,s.t

1
< mdC1(D1(0) + [vs| + [lpst) (L +1€% pst + [€lpst) (18 = 8| + |wlps.e) + Als, 1) 7 (4.27)

for every [s,t] C [0,T]. Taking Remarks and into account, we can argue that for every

[s,t] C [0,T] such that
1 1 1

t S S S 9
’ 2401m1 401 201

|t = s + [w]p,s

we have

IS8

D,8,t S 17 ’ﬂp,s,t S 1

and by (E27)
1
Vlp,s,t < D1(8) +2A(0,T) 7 + |-
Now we can use Lemma and since g = £; — &o = 0, we obtain the estimate

|'Y’p,0,T < <D1(6) + 2A(O,T)% + ‘fyo‘) 6217(24m1C1)P(TP+\w\£,0,T)

< (Dl(é) + QA(O, T)%) 672P(m1Cl)P(TP+\w\£7O’T)
and therefore
Mlooor < Illpor < (D1(8) + 24(0,T)» ) & (e v o),

Now we examine D;(d) and A(0,T") to get the convergence rate. Keeping (4.25) in mind and note
that for g € [%,1],Wehave0<2—p§ 1+ (8—1)p < B < 1. Hence,

Dy (6) = C2 (55 +(1+Ce)d+ 5)
< CE(CI27 4 (14 Coon + cpt) o2

< 307Cy, (1 + Cg) 5*7P

and

LA

A(0,T)7 = 255 P Ky (w)(101(0, T) + 2(0, T))
= (52_pK2(w),
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where
1 1
27 K1(w)(91(0,T) 4 ¢2(0,T))».

Collecting all the terms, we obtain
D1(8) + 2A(0,T)7

< 3C%C, (14 C¢) 6P + 26 P Ko (w)
< (3CEC, (14 Cg) + 2Ka(w))d*P.

Hence there exists a constant K3(w) having moments of all orders which is independent of u and
n such that

Dy (6) + 2A(O,T)% < K3(w)d*P.
This yields
Nlpor < 62 PKs(w)e” e (TPl o 7)
< Ke(w)8?,

where
Kg(w) — K3(w)e72p(Clml)p(Tp+|w|g,0,T)_

Meaning that for a given w € A° and v € U, we have

[€%(w) = (W) loc,0,r < [[€4(w) — ™" (W)l|p,0,r
= [¢"(w) = & (W)lpo,r
= Ke(w)d(w)*P.

For the convergence rate in L!(Q, C([0,T]),R™), we need to be careful, because § depends on
w. Since w satisfies the exponential moment condition (2:48), we have that K¢ € L'(Q,R) and
§ € LY, R) for every I > 1. Now for a given [ > 1 we have 01 = E[(Sl]% and we obtain with the
Holder inequality

B[l = e egr] < B (e )]’
< B[] B[] 7
<E K| a 5250,
Note that K¢ only depends on T', 3, p, q, L and m;. ]
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That is the same order of convergence as in Lejay| [2010] in the autonomous case, by a slight
different definition of §. We now consider the solution of the second equation x* in and
its Euler approximation scheme z™" in . A comprehensive introduction to the numerical
approximation of solutions to It6 SDEs is given in |Kloeden and Platen|[2011]. We use the previous
results to show the strong convergence of 2", consequently the convergence of ||X' — X" ||o0 07 in
L'-sense for | > 2. First, we show that 2" is bounded independently of the parameter and the

number of subintervals of the Euler partition.

Lemma 4.5. Let uw € U and | > 2, then there exists a positive constant Dyn, independent of u,
such that

E [Hw”\léo,o,T} < Dyny.

Let
Cy := 2max {L,Lsupl/{, max l;(t,0,0,0)} ,
te[0,7)
we obtain for 6o = max |tit1 — ti| and l > 2, that
=0,...,n—

1
Bl = o} Ibeor| < O+ Dany + Den)o3, (4.28)

where the constant C > 0 only depends on T, I, ma and Cs.

Proof. We omit the direct dependence of the involved processes on u for notational simplicity. The
coefficient functions b and & satisfy a linear growth condition by the Conditions (B;) and (Bs).
We proof this for b, but the calculations for & are completely analogous. Since b is continuous

and continuously differentiable in its last 3 variables with bounded first derivatives, we obtain
b(t, x,y,u) = b(t,0,0,0) < [b(t, &, y,u) — b(t,0,0,0)] < L(J| + |y + |ul),

which yields the estimate

b(t, 2, y, w)| < Co(1+ || + [y]),
by the boundedness of & and the time continuity of b on the compact set [0,T]. For the rest
of this proof we will use C as a constant which only depends on C5, [, my and T and can vary
from line to line. By the definition of 2", since zo(u) is constant, we get inductively that x"
is continuous and F-adapted by the adaptedness and continuity of £” and B. Furthermore by
the linear growth condition of &, we get inductively that z}’ has moments of all orders for all

i =0,...,n and the process

s
(w7 3) = / &(tﬁ(r)a x?ﬁ(r) ) EZLW(T) ) ’LL) dB;
0

is a mgo-dimensional vector of F-martingales. We have for ¢ € [0,7] and | > 2 by the Jensen
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inequality

sup

Elll2" 50, < O<E [lo31] +E
s€[0,¢]

1

S
/0 b (tﬁ(T),x?ﬁ(M,f{;m,u) dr

)

We can estimate I7 by the linear growth condition of b and Lemma and Fubinis theorem

L, l
IlgEU ’b T S I ‘ dr}
0 ( () tn('r) tn(r) )
t

SCE[/ (1+ >ldr}
0
< OB [(14 16 ) | +0 [ E[Ia"es,] ar

t
<C(1+Deng) + € [ B[lam, ] dr
0

l

+ E | sup

S
R o
se[0.4] /0 a<tﬁ(7~>,xtm),€tm),u) dB,

=C (B [lsg] + h+1).

_l’_

n n
Tty | 1 St

Similar calculations after the use of the Burkholder-Davis-Gundy inequality (Theorem 3.28 /Re-
mark 3.30 in [Karatzas and Shreve| [1991]) yield

] L
I, <CE _</0t ‘& (tﬁ(r)’ﬁmw’é&(”’u) ’2 dr> 2]
< CE _/Ot (1 + xgm)))l dr}

< OB [(14 16 ) | +0 [ E[Ia"en,] ar

n
gtﬁm ‘ +

t
< C(1+ Deny) + C’/ E (2"l ,] dr
0
Putting all terms together, we get
l l ¢ l
Ella" 0. < Clea(w]' + C(1 + Den) + € [ B[la"lLey, ] ar.
We conclude by the Gronwall inequality (Lemma 6.2 in [Hale| [2009]) and Condition (B3)

l
B [[la"lls 0] < Cllzo(w)! + 1+ Den)e®

<C
l C
< C(L'+ 1+ Deny)e
< C(1+ Deny)e® := Dyn
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for all [ > 2. Now let t € [t;, t;+1] for i € {0,...,n — 1} and | > 2, we have
Ble} - o3 l]
t/\
/b(ti,x?i,{g,u) dr
¢

i

l l

_l’_

t
/ o (tz‘,x?ﬂfg,u) dB,
t

7
( t
1

t
< O(t—t)'E [ [ @+ Il + 1€ el dr]

ti

6(t~ A u)‘2 dr> é]
1y Mt St

L, l
< CE [(t—ti)ll/ ‘b(ti,:cg,ﬁg,u)’ dr] + CE
t;

1
+ OB [((0+ 1 o + 1€ o €~ 10)
1
< CE[(1+ 2" oo o1 + 1€ 07| 53
!

< C(l + D:c”,l + D§n7l)52§.

This yields the estimate (4.28)) for [ > 2. O

Having established the boundedness of the Euler scheme, we can focus on the convergence

rate, which will be stated in the following theorem.
Theorem 4.6. Let u € U, we have

1
T (2-p)Ag
B |[lz" — 2™l oT] < Dby

for any 1 > 2, where the constant Dy, ; is independent of u and n.

Proof. We use C as a generic constants which has different values over the course of the proof,

but only depends on T', [ and my. We have for ¢t € [0, T]

t t
xt—x?:xo(u)—i—/ b(r,mmfr,u)dr—i—/ o(r,xr, &, u) dB,
0 0
t t
—al — | b(tm, 2l L u dr—/
0 /O ( () tn(v‘) tn('r) ) 0
t
= zo(u) — g —i—/ b(r,xy, & u) — b (tﬁ(r),xf,ﬁf,u) dr
0
t
+ [ 610 &r0) = & (bt 8 0) B,
0
t
+/ B tﬁramgvé.z}au _A n(r)s L 757 )
b () ) = b (taeys a0 o) dr
¢
+/6 )» r?grﬂ - n(r .%'7 757 3 dBrv
0 ( ) < 7(r)» Lt (ry? St )

6 (tarys @l €y o) ABy
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which yields for [ > 2, since z§ = xo(u)

B |llz - 2" k0] <c<

+E| sup /ff(r,xr,sr, W) — & (tngey, 2, €0 u) dB,
0

0<s<t

sup
0<s<t

1

l

/ b T Ty &y ) — (ﬁ(r)al‘?vg:}?u) dr

+E | sup /0 B (tﬁ(r)v :L'?v 5'?7 ’LL) - ZA) (tﬁ(r)a :L‘?W(T) > é—;nﬁ(r) ) ’LL) dr

0<s<t

l

S
+E | sup / % (tﬁ(r),mf,ﬂ‘,u) -0 <tﬁ(r),x?ﬂw,§fﬁm,u> dB,
0

0<s<t

l

)

=C(Lh + L+ 13+ 1y).

We define

0o := tiv1 — &
2= g e — bl

=U,...,

and estimate the term I; by conditions (By), (B2), (E2) and Theorem
by, R !
IL <CE |:/ ’b(?", Tp,&ryu) — b (tﬁ(r)awﬁag}vu)‘ dr}

0
t L

< OB [0+ o] +Ig'0F +1or ol + I —gmldr}
0

< C1+ Dot + D)ot + OB [l = €'l r] +€ [ B[l ="y, ] ar
L
< 1+ Dt + Deg)df +CDl 057 + € [ B[l = a7, ] ar

Similar arguments for the estimation of I, after using the Burkholder-Davis-Gundy inequality,

¢ L
(/0 ’6(Ta x?‘v&?‘vu) -0 (tﬁ(r)7$?7é—:‘lau) ’2 d’l“) 2]

t i
< CE [/ (U4 ] + 16183 + lar — 0+ 16, —sm’dr}
0

yield

I, <CE

< 01+ Dy + D)o} +CE [l = €] +© [ B[l = oo, ] dr

C(1+Dxl+D§l)52+CDK§2I512Z +C/ ‘x_‘rnHooOr:|
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Furthermore, we obtain

t
IggCE[/
0

t
<CB| [ ot~ at, 1+ 168 - €, ar]

N ~ l
b (tﬁ(r) ) .’E;L, 517}’ u) -b <tﬁ(r), xgﬁ(r) s ftnﬁ(r) s U) ‘ d7“:|

where
l

Bl = o, Iseor| < O+ Dany + Den )03

by (L28) and
Bller - g ooz dr] < L'6),

by (4.8)). This yields
1
I3 < C8) ;4 C(1+ Dyny + Den )53 .

By similar calculation as for I3 together with the Burkholder-Davis-Gundy inequality, we obtain

l

I, < C5l17l + C(1+ Dyn g+ Den 1)d3 .
Combining all the estimates, it follows
B [l — 2" 0] < 003 (L Dyg + Doy + Dy + Dent) + C8Ly + OD %"
" c/ot B [llz — a"ls,] dr.

By the Gronwall inequality, we conclude
1 _
E [Hx - g;”||f)o’0’T} < (Cdi’, +C(1+ Dq,)02 + CD%&%(Si(;l p)> €.

where Dy := Dy + Dyn g+ D¢y + Dgn . Since 017 < 01,97 and

1

'<E [(1 + T + |w|p,0,T)2l:| = Dy > 1, (4.29)

S

o <E [(T + lep,o,T)Ql}

we can estimate

E [l — 2" lfe.0]
L _
< O6L 4+ C(1+ Dyy)ss + CDlKg,2l6l1(§l 7

1
< 0057 (14 DY + D) + €1+ D1)o%. (4.30)
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Now we can use the inequality d2 < 019; to get a convergence rate in the parameter d; 9, but
note that this is not ideal in the case where the process w is Holder continuous for some Holder
exponent H € (3,1). We will come back to this case in Subsection We conclude

1
7

1 1 1
l 3 I(p—1 1 T (2—-p)A5
Bz —2"lccpe| <CODgy (Du%l + Dy + DKg,Ql) O 7

for a constant D, ; which is independent of u and n. O

We end this subsection with its main result, concerning the convergence rate of X™ to X'. The
result is a direct consequence of Theorem [£.4] and Theorem

Theorem 4.7. With the notations and assumptions from the beginning of this chapter, we have
for every u e U
B2 o] < Dans (4.31)

and

~|=

_ 1
E [HX“_Xn H;OT} < DKX,l5f2lp)“-

for any 1 > 2, where the constants Dxn; and D, ; are independent of u and n.

Proof. We have by the Jensen inequality
B 1A 0r] <270 (B [IE 1 o] + B [l V0] ) -
By Lemma [4.2] and Lemma this yields
B2 o p| <271 (Deny + Dany) 1= Davny.

Using similar arguments, utilizing Theorem [4.4] and Theorem [1.6], we get

E [HXU — A ZO,O,T]} <ol <DK5,215%,2§D + DKw,l‘sf;lp)Aé)
< 9l-1 <DK§,21DQ%721 + Dm,l) 552@6
= DKX,15SQ_ZP)A%.
This proves the assertion. O

The results in this subsection show that we can approximate the solution to the model dy-
namics equation with the corresponding first order Euler schemes. We continue with the approx-
imation of the sensitivity equation (4.4)).

141



4.1.2 Convergence of the Euler scheme for the sensitivity equation

Similar to the last subsection, we split the convergence analysis. First, we examine the convergence
of y" in to ¥ in P-a.s. in uniform norm and in LL(Q,C([0,T],R™*4) for [ > 1. We
start by showing that the continuous interpolation of y™ is P-a.s. bounded, independently of the
number of subintervals of the partition n and of the parameter u. In Lemma[4.2] we were able to
estimate the p-variation of {" on every interval [, 7;11] of a given greedy sequence of times by a

positive constant, because of the bounded coefficient functions b and ¢. In the equation
¢
n,u U U n,U
Yy = Déo(u) +/ bz (tﬁ(r)7 tﬁ(r)’u> Ytmiry T by <tﬁ(r)’§tﬁm’u> dr
0
+ Z/o al (tﬁ(r),fgi),zo y&i) + o), (tﬁ(,ﬂ),ggx),u) dw?, (4.32)
j=1

which is satisfied by the continuous interpolation of the Euler scheme for the process y given in
for all ¢t € [0,T], we will not be able to estimate the p-variation of y on any interval of a
greedy sequence directly. To see this let ¢; be a partition point of the Euler partition II¥ and
t; < s < tit1, then the p-variation of y on the interval [s, t] for any ¢ > s will depend on the value
of y at time t;, because of the factor Ytn(, 0 the coefficients of equation . This will not allow
us to estimate the p-variation of y on an arbitrary interval [s,¢] C [0, 7] directly. We will have to
restrict ourselves on the partition points of the Euler partition II®. This on the other hand yields
the problem, that we need to utilize the greedy sequences of times to get the desired estimate,
and the greedy sequence and II* need not to have common partition points apart from 0 and 7.
To work around this problem, we need preliminary results. We will construct a new partition
II° = {0;};=0,.~ C II¥ on [0,T], whose number of subintervals will not depend on n but the
number of subintervals of the greedy sequences of times. Recall the two mentioned partitions we

already have on [0, 7], namely the partition for the Euler scheme
¥ = {t;}ico, n WithO=tg <t; <....t, =T
and the greedy sequence of times for a constant 0 < M
II® = {r}ti—o,. N WithO=19 <71 <--- <7n =T,
which satisfies

|Tiv1 — 7il + [Wlpryryy = M foralli =0,...,N -1

TN — Tv—1] + ‘w|p7TN71,TN <M.

Note that the number of subintervals in I8 is bounded, as long as w is continuous and has finite
p-variation on [0,7], see Lemma If j <t <tiy1 < 7j41 for some i € {0,...,n — 1} and
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j€40,...,N — 1}, we can estimate
[tiv1 —ti| + ‘w|p7ti7ti+1 <|7jg1 — 7l + ‘w|p77'j77'j+1 < M.

But since we are not able to foretell the position of the greedy sequence partition points, there is
a possibility that we have multiple partition points of the greedy sequence between two partition
points of TI¥. Let 7,1 < t; < 7j < -++ < Tjsm < tix1 < Tjtmt1 and denote the number of
subintervals of the greedy sequence between t; and t;11 by m = N(t;,t;+1) (see ) If we now
want to estimate |t; 11 —;|+|wlpt; 4., , We have to take all the subintervals of the greedy sequence

between 7;_1 and Tj4,,41 into account. We have by the triangle and Jensen inequality (compare

Lemma

‘ti-‘rl - ti‘ =+ ’w|P7ti7ti+l < |Tj+m+1 - Tj—l‘ =+ ‘w’P7Tj—1,Tj+m+1

m+1 m—+1 %
-1
< Z |Tj+i B Tj_l'”‘ + <(m + 2)p Z ‘w|p:7—j1+i77j+i>

=0 =0
m+1 N m+1
1-1
< Z |Tj+i - 7'j71+i| +(m+2) » Z ’w|P7ijl+i»Tj+i
i=0 =0

N(ti,ti_;'_l)—l-l
1-1
< (N(titiy) +2) 77 Y (I — o1l + |w
=0
< (N(ti,tisn) +2)% 7 M. (4.33)

vaj—1+ia7'j+i)

To take these possibilities into account and have notational foundation for the calculations to
come, we construct the subpartition II° of II® in the following way. First, we introduce the

notation

n:[0,7] = N, s~ min{i € {0,...,n}|t; € I¥ and t; > s} (4.34)
7:[0,T] = N, s — max{i € {0,...,n}|t; € 1" and t; < s}

and define the new partition
(0)j=0,.. =1 = {t € HE’ 37 € II® such that ¢t = tp(ry OT t = tﬁ(T)} .

We give a graphical illustration of the partitions in figure

to th 02 03 04 0

] ] ] ] ] ] ] ] ] ]
T T T T T T T T T T

0=0=1p t1 T1 T2 to t3 73 ty ts te 6s=1 =17

Figure 4.1: Graphical illustration of the construction of the partition II¢.
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Some properties of 1I¢ are given by
i) If 7 =t for a 7 € I1% and ¢ € II¥, then there exists § € II° such that § =t = tn(r) = ta(r)-
i) 0,7 € II¢ since 0 =79 =tg =0p and T =t,, = 7y = Opr.

iii) There can be multiple partition points 7 € I18"°4 such that §; = tn(r) and 0j11 = ty(7),
e.g. 71,72 in Figure [£.1]

For some further notation, we recall from Chapter [2.1
:[0,7] = N, s+ min{i € {0,...,N}| 7, € II®* and 7; > s}

:10,T] = N, s — max{i € {0,...,N}|7; € II® and 7; < s}
:A([0,T]) = N, (s,t) = N(t) — N(s)

= =2 =

and define the new functions

N :[0,T] - N,s— min{i € {0,...,N}|6; € II° and 0; > s}
N :[0,T] = N, s+ max{i € {0,...,N'}|0; € I and 0; < s}
N :A([0,T]) = N, (s,t) = N(t) — N(s).

We have by construction N (s,t) < 2N(s,t) + 1 for all (s,t) € A([0,7]). The next lemma is of

Gronwall type and utilizes the partitions we just defined.

Lemma 4.8 (Gronwall type lemma on the Euler partition). Let IT¥ = {ti}i=0,..n be a partition
of [0,T] and let x € WP([0,T],R™>™), where p € (1,2). Furthermore let w : [0,T] — R™
be a continuous function of finite p-variation, Ki,a > 0 be constants. If for every t; € II7,
i€{0,...,n— 1}, we have

Z[p,ts tier < a(K1 + oy ) ([t — ] + w

pvtiati-&—l) (4-35)
and there exists a constant Ko < é such that for t;, ty € IIE with 0 < t; < tipr <ty <T and
[tk — t| + [wlpt 0 < Ko,

it holds that
|Zlp.tt < K1 A [, (4.36)

then we obtain

[2lpor < (3K + feol) (P EG7 (17 + |wll o7 ) +1) exp (23K57 (TP + [wll 1) +2).
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Proof. We can construct our partitions II1% and II¢ for the constant Ko with 0 < Ko < % The
number of subintervals of the partitions II® and II¢ is given by N respectively /. Now we consider
the p-variation of x on the subintervals [;,0;11] of the partition II¢ for i € {0,...,N — 1}, for
which there are two possibilities.

Case 1: There exists 7, € TI® and i € {0,...,N — 1} such that 6; = tz(,y and 0; 11 = t,()
(e.g. [01,02], [03,04] in figure[4.1)). By construction it follows that there exists j € {0,...,n} such
that ; = t; and 0,41 = tj1. By Property iii) of the Partition II° there can be multiple partition
points of II# in the interval [t;,¢;41]. We estimate using and

’$|p79i,9z‘+1 = ’$|p,tj7tj+1
< a(Ky A [z [) (41 — ]+ [wlpg 654.)
< a1+ 2, Dty = ey |+ 1l )
< (K1 + |wa,)(N(0;, 0111) +2)> 5. (4.37)
Case 2: There exists 7;,7j41 € II8 and ¢ € {0,...,N — 1} such that §; = tn(r,) and ;11 =
ta(r; 1) (€8 [0:,0i41] for i € {0,2,4} in Figure . Then there exists a finite number k£ — 1 =

m > 1 of subintervals of II* in the interval [6;,0;1]. Let 6; = t; < tj41,...,tiym = tx = iy, if

m = 1 we have by (4.35))

‘:L’ |P70i Bit1 = ‘x |P7tl st

< a(Ky A+ [z ) ([t =l + [wlpe .-

By assumption on the form of [0;,0;41], we have

1
[teer = til + Wlp ity < [Tj1 = T3]+ W7y 700 < K2 <
which yields
‘x’p79i79i+1 = ‘x’%tl,tzﬂ < K+ ‘moz’ (4-38)
Now let m > 2, since
[tk — til + [wlpg 0, < Ko,
we have by (4.36) that
‘$|P79i79i+1 = |2lptt, < K1+ |z, | = K1 + |20, (4.39)

By taking (4.37), (4.38) and (4.39)) into account, this yields

_1
(Z]p 6,601 < (N(0;,0541) +2)7 7 (K1 + |za,])
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for every i € {0,..., N —1}. Now we show inductively that
[20,] < ENOINOIN B, 1 [z (1.40)
for every i € {1,...,N'}. We have for all i € {0,...,N — 1} that

_1
’$9¢+1‘ < ’3391‘ + ‘x’pﬁiﬁwl < ‘xﬁ'z’ + (N(elv Hi-i-l) + 2)2 P (Kl + ‘xez‘)

Hence, for i =1
1
6, | < 2(N(0,61) +2)* 7 (K1 + [aol).

Note that

2(z + 2)27% <2z +2)2 < 2@t

for every x > 0. Hence
g, | < NIV + ).

Since N(0,61) = 1 the statement follows for ¢ = 1. Now assume (4.40) holds for some i €
{0,..., N — 1}, then

_1
[@a,,1| < |zo,| + (N (03, Oi1) +2)* 77 (K1 + |6,])

< 2NOIITN O (2, + |0|) +62(N(9i,ei+1)+1)% (K1 + 2NOOENO.0) (2K, 4 |x0’))‘

Note that every argument of the exponential functions in the above inequality is bigger or equal

to two. Hence

1 1 1 1
ETIRES 2(N(O0)+N(0,0:)) 2N (05.05+1)+1) <2K1 + §|ZBO’ + §K1 + K1+ 2|x0|>

i+1

< SZ(N(070i+1)+N(0’0i+1))(2K1 + |2o])

and the statement holds for all ¢ € {0,..., N — 1}. Consequently for 0 < i < N — 1, we have

_1
205,001 < (N (05, 0i1) +2)°7 7 (K1 + |, ])
< 2(N(Bibi41)+1) (K1 + 2(NOO)+N6)) (9f¢, |$0D)

< eZ(N(079i+1)+N(079i+1))(3K1 + |@ol)-
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These considerations enable us to finish the proof. We have

N(0,T)—1 ’
[z]por < N(O’T)p_l Z ‘x|1€79i,9i+1
i=0
1
) N(0,T)—1 P
SNOT)TP@K +[wol) | D0 VOOV O8)

i=0
< N(0,T)(3K; + |zo|) 2N OTI+NOT))

Now keep in mind that N'(0,7) < 2N(0,7) + 1 by construction of II¢, this yields
2lpor < @N(O,T) + 1)(3K; + |ao|)ePNOT)+2,
Taking Lemma [2.19| into account, we know that
N(0,T) < 271 K57 (Tp + |w\£707T> ,
which yields
[2lpor < (3K + feol) (2B 7 (17 + |wllop ) +1) exp (23K57 (17 + [wll 1) +2).

O]

Now we can use these results and repeat the same steps as in the last subsection, but this

time on the linear equations.

Lemma 4.9. We have for a given uw € U and for almost every w € )
5" (@) lpor < 3+ L) (223Cm)” (T7 + [wlf o 1) + 1) exp (273(3C1ma)” (T7 + fw(w)l7) +2)
and

[y™*(w)llos,0,7
<L+(3+1L) (23p(301m1)p (Tp + yw(w)gw) + 1) exp (23p3(301m1)P (Tp + \w(w)gw) + 2)
= Cyn (w).

For 1 > 1, we have y™* € LL(Q,C([0,T]), R™) with

E[ly"eor] <E[Ch] =Dy
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Furthermore, we have for almost every w € Q, u € U that

Iy (@) = it @llocor < _max_ |y lpayees < La(14+ Gy, (@)3w) — (441)

and consequently
1
u ol l 2 l
B [l = o] < @)t (14 D) 81
foralll > 1.

Proof. Let A C Q, such that P(A) = 0 and w.(w) is continuous and of bounded p-variation
(p € (1,2)) for every w € A°. First we show that for a given u € U and for all w € A the
paths 3" (w) are elements of CP([0,T],R™*9). Let w € A°, u € U be arbitrary, for notational
simplicity we leave out the direct dependence of the involved processes on w and u. We have that

y™ satisfies the equation
t
y? = yg + / by (tﬁ(r)vg&;(”au) yfmw + by <tﬁ(r)7€1f%(r) ) u) dy
0

+ Z/O Ug‘ (tﬁ(r) ’ 6?%(?) ) u) y?ﬂ(r) + U% (tﬁ('r’)v gl%(r) ) u) dwf‘

Since w is continuous, the continuity of y™ follows directly. By Lemma [2.9] we can estimate
n—1
-1
|yn|p70,T :S np Z |yn|p,ti,ti+1' (442)

=0

For a given i € {0,...,n — 1} we take a look at the interval [¢;,t;11]. We have

Y ptistirs < [ba(ti, & W)yl + bu(ti, &, w)| (tigr — ti)

mi
=1

< Lma (1 [y ) (i = il + [wlpti i) (4.43)

JAZRZEN]

mi ] .
where we used that > 7" [w’|p 44,4, < ma|wlpy, b, Since

‘yZ‘ < \yZ,l\ + ’yn’pvti—lati
and
lyo| = [Déo(u)| < L

we get inductively by (4.43), since w € CP([0,T],R™), that |y"|p¢ ., < oo for every i €
{0,...,n — 1} and by ({#.42)), we have y" € CP([0,T],R™*9). But this bound of 4™ depends on

n. We know that o%(-, ", u) is an element of C4([0, 7], R™*™) and o7 (-, £", u) is an element of
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C?([O,T],R”lx‘i) for q € (2, I%) and every j = 1,...,my by Lemma [2.26, Hence a%(-,f,", w)y" +
o (-, €™, u) is an element of C9([0,T],R™"*%) for ¢ € (2, p%l) and every j = 1,...,msy. Notice
that this function does not appear in the equation (4.6)), but will be used in the estimation of
ly"
a partition point of IT® for i € {0,...,n — 1} and s < t € [t;,t;11], we estimate similar to (4.43)
that

p,0,7- Now we want to find an upper bound for y™ which is independent of n and u. Let ¢; be

vt — w5l < Lma (1 + [y ([t — s + [wlp,s.¢)
< Lma (1A [y oo stis1 ) ([E = 8]+ [w]p,s,0)- (4.44)

Nowlet 0 <t <s<t1 <+ <tiym=tp1 <t<tp<Tform>1andt,...,t €IIF we
estimate

A A B [ T e o A VA I S (A VAP

where the second term vanishes for m = 1. By (4.44)), we obtain

vt = ys 1 < Lma (U4 1" oo tpmr i) (18 = thoa| + Wty ) + lwt, = vty
+ L (14 [y oo 0,000 (rr = 8+ [wlp,s 1. )-

For m > 2 the term |y;. — y;| can be decomposed by

k—2
e = ur LS (et € )y + bults, €8 w)) (tin — 1)
i=l+1
m1 k—2 i .
+ Z Z (O-%(t’u 527 u)y:: + U%(tlﬁ 627 u))(ngJ’,l - wil)
j=1 li=l+1
=51+ Ss.

The sum S; can easily be estimated by the boundedness of b,, b, and the superadditivity of
o(s,t) = |t — s| on A(]0,T]) and

S1 < L(L+ [y [loo,tip ties ) (Ee—1 — ti41)-

Taking Lemma [2.12|into account, we obtain for g € (2, ;£7)

mi
S <Y Cogllad (L€ wy™ + 0% (- € ) gty s 107 [t s
j=1
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and by Lemma and Lemma i) used on o (-, ", u) and ol (-, ", u), we get

my
Sy < Zcp,q (QHJ%('?g-nﬂu)||q7tl+17tk—1”yan,tHl:tkfl + HU%('?g-n?u)Hq,tzH,tkfl) |w]
j=1

< 2m1LCpq(1 4 1Y lptrgr b 1) (1 +[tho1 =t + €

p,tl+1,tk,1

p,tz+17tkf1) ’w‘patHlutk—l'

We obtain

Vi = Vi |

<2Cimi (14 ||y

p»tl+17tk—1)(1 + ‘gn‘P,tlH,tkq)ﬂtk—l - tl+1| + |'LU p,tz+1,tk71)v

where (' is defined in (2.23). Collecting all the terms, leads to

[ARETA
< Lma (1 + |y ooty ) (It = tha| + [0lpty_y 1) + L (1 + [[y" ooty try ) (141 — 8|+ [wlpst4)
+ 2017771(1 + Hyanytl-Hvtk—l)(]' + |€n|P7tl+1»tk—1)(|tk—1 - tl-i-l‘ + ’w|P7tl+17tk—1)'

Since t; < s <tj41 < -+ < tjam = tg—1 <t < tg this can be estimated by

lyy — yg| < Lma(1+ Hyan,tz,tkmt — 5|+ |w’p7s,t) + Lmy (1 + ||yn||p,tz,tk)(’t — 8|+ ’w|p78,t)
+2C1ma (L + [[y" |p.tr.6) (1 + 1" [t (It = 8] + |w]p,s.t)
< 3Ctma (1 + lyg | + [y" p.trt) (141 .t ) (It = 8]+ |w]ps.t)- (4.45)

Taking (4.44]) and (4.45]) into account, we have for all l < k € {0,...,n —1} and t; < s <t < t},
that

i =yl < 3Cma(L+ [y 4 15" [p.) (1 + 1€, ) (18— 5[+ [wlp,s.)-
By Lemma [2.6] this yields

1Y" |p.trt, < 3CTma(1+ |yg| + |y

pitrte) (L 18 oty ) ([t =t + |wlpe 1)

Now we have for every interval [t;, tx] € [0, 7] which satisfies

1

te —t < -
[t — ti] + |[wlpe,6, < 15C,m

that

’5” |p7tl7tk S 1’
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by Remark [£.3] and therefore

Y [t <14 ‘ym (4.46)

Hence by (4.43)) and (4.46|) we can use Lemma@with a=Lmi, K1 =1, Ky = ﬁ < L;ﬂ = %
and obtain the estimate

5" o < B+ 1) (27BCim) (17 + [wlp o 7) + 1) exp (278(3Cum1)” (17 + ol 1) +2)

By condition (H1), we have |yi| = [D&(u)| < L, this implies
o < (34 L) (273Cum)? (17 + i} o.7) +1) exp (273(3Com)? (17 + wf 7 ) +2)
and consequently

5" o0 < (34 2L) (22(BCuma)? (T7 + fuwllg.r ) +1) exp (273(3Cim )P (T7 + [l ) +2)

= Cyn.

Since w was arbitrary in A€, the inequalities for the p-variation and uniform norm of y” hold P-
almost surely and for all uw € U. The F-adaptedness of 4™ is a direct implication of its definition
and the F-adaptedness of £” and w. Since w satisfies the exponential moment condition ,
we get,

B[y o0 < B [Cha] i= Dyny < 0.

Let t € [t;, t;y1] for some i € {0,...,n — 1}, it follows by (4.43))

[yt — vl <Y ptitinr < Lma(1 4 [yg ) (Jtivr — til + [wlpts t0) < Lma(1+ |y ||oo,0,7)0-

Hence, we have P-almost surely

lp?tiati+1 < (Lml)l(l + Cyn)lél’

n__ ,n ! "
o = v oor < _max_ |y

where ¢ is defined in (4.1)). Consequently by the Holder inequality
NIE
B [lly" = vz, loor| < (Emn)'E (14 Cp)? | B |82
1
< (L)' (14 Do) B

O

In the next theorem, we establish the convergence rate of the Euler Scheme ™ corresponding
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to the solution y of the pathwise linear stochastic Young differential equation from (4.4)).

Theorem 4.10. We have for a given u € U and for almost every w € 2

Iy (@) = 5™ (W) llss01 < Ky(w)d(w)* 7,

where the random variable K, has moments of all orders and is independent of n and u. Fur-
thermore, we have for all I > 1, that

o~

27
E||ly" - nu”ooOT §DKy72l51,2f-

Proof. Let A C Q, such that P(A) = 0 and w.(w) is continuous and of bounded p-variation for
every w € A°. Let w € A, u € U be arbitrary, for notational simplicity leave out the direct
dependence of the involved processes on w and u. Let s <t € [t;,t;41] for some ¢ € {0,...,n—1}

and define v, =y, — y* for all t € [0, 7], we have

my
3 (0t € uy + ol € ) (wd — )
j=1
and

Yt — Ys = (ba(s,&s, w)ys + bu(s, &, u))(t — s)

+Z 587 ys+0 ( 7587u>) (wg_w‘;>
t
+ / bx(Ta grvu)yr + bu(r’ fr)u) - bx(Saf&u)ys - bu(safmu) dr

mi t
+§:/O%n&wwwhﬁm&ﬂﬁ—%@£&W%—Uﬂ&&mﬁm$
j=17¢

To simplify the notation we define b%(r) = by (r, &, u) and analogously b%(r), 087 (r) and 057 (r)
for all » € [0,7] and j = 1,...,m;. Furthermore define b7 (r) := b, (r, £, u) and analogously
b2 (r), o’ (r) and o (1) for all » € [0,T] and j = 1,...,m1. We get

= ol < | (D) + B (5) = D)y = bi(s) ) (¢ = )
|2 80 Bt~ #(40) (=)

( $)ys + 05 () = oI (s)yt = o2 (s)) (] — wi)
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S)i -+ ol (s) = ol ()it — o (1) (w] — wl)

" / S () + BE.(r) — B (5)ys — () dr

S

P+ 057 (1) = 59 (s)y, — 59 () du]

:Il+12+13+f4+f5+16,
where [; stands for the term in the [-th line. Using conditions (Hz), (H3) and (E;), we obtain
Iy < [(65(s) = 0 (3))ys + b () (ys — yi) + (b5 (s) — b ()| |t — s

< (L[&s = €21(1 + |ys|) + Llys — y2]) It — s|
< (L)€ = €"oo,0,7 (1 + [ylloo,0.7) + Llvs|) [t — s

and
< [(02(s) — Bt + (k) (y — i) + (Bi(s) — Bilt) It — 5]
< (L0l = t? + 12 = €2)(1 + 1y + LIy — i) It = 5]

< (L(|tz'+1 — il + 1€ ptstir ) (L A+ 1Y los0,7) + L\y"!p,ti,tm) |t — s|.

The estimates for I3 and I are completely analogue to I7 and Iy, where we just use Z 2 w? ]p st <

mi|wlp,s ¢, which yields

Is <m (L|§s - €g|(1 + ’ys,) + L’ys - y?D ’w‘p,s,t
<my (L[J€ = £ |loo,0,7(1 + [|Y]loo,0,7) + Ll7s]) [wlp,s,e

and

Iy < my (L(ls = tal? + 160 = €2+ |2 1) + LIy? = u72]) [l

< mu (L1 = 8l + 1€ i) U+ [0 loei02) + LIy it ) [0pss

The estimation of I is again similar to the previous calculation

< [ [0£0) = B+ B e~ ) + 050 - K ()] ar
< (A1t = 518 + 1€lps)(1 + Wyllociss) + Llylpsolt — |
(

< (L(Jtivt = til” + [€lptitis) A+ 1Ylloc02) + Lyl It = sl-
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For the estimation of I we use the Love young estimate for g € (2, ]%), Lemma and Lemma
2.26] and obtain

mi
Is <Y Cpglo$7 ()y. + 057 (astlw |pss
j=1

m1
<> Cpa (1057 lasllvllocsst + 1057 loousat Wl + 1057 g ) 107 s

j=1
< my(L(t = 817 + [€lp.s.t) (1 + 1Ylloc,s.e) + Llylp,s)wlpst
< m(L(ti = til7 + €l it 1+ 19lloc07) + Lyl [wlp,s.e

Collecting the terms and using the estimates from Lemma [4.9] and Remark this yields

e = s < Cp gL <|’st 1€ = € lloostistir (14 [[ylloc,0,7)

+ (|ti+1 - ti‘ﬁ + |§n‘P,ti7ti+1)(]‘ + HynHOQo,T) + ‘yn Pitistit1

+ (’ti-‘rl - ti‘ﬁ + ‘glp,ti,ti+1)(1 + HyHOO,O,T) + ‘y’}?ﬂfi,twl) (‘t - 3‘ + ‘w’p,s,t)
< Cpaim (1l + 16 = €' lwtotn (1 + C)
+ (|ti+1 - ti|6 + |§n|P7ti7ti+1)(1 + Cy”) + |yn|p7ti,ti+1

+ ([ti1 — til” + |Elp o) (1 + Cy) + |y’p,ti7ti+l) (|t = 8| + Jwlpse)

n
Pitistita + ‘y

< CpaLma (|t — 5| + [t]per) (mr Ty

+ (1€ = Eootsstirs + 2Mtivr — il° + 1Eptitirs + 1€ pstistins) (1 + Cyn + Cy))- (4.47)

We know from (Z20), (31, (). (13) and

1€lp,ts tisy < C1(1 4 Ce)d
[Ylptitic: < 2C1mi(14 Cy)(1 4+ Ce)d
1€ poti i < L6
1§ = € lootitigy < Ked® P
Y ptitirs < Lma(1+ Cyn)d,

where (' is defined in (2.23). Furthermore we can estimate

ltir1 — til® < (Jtir — il + |[wlpaiss)® < 65
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Inserting all the estimates in (4.47)) yields

vt — vs| < Cp gLy <|’ys\ +2C1m1(1 4+ Cy)(1 + C¢)6 + Lmy (1 4 Cyn)d
+ (Ke0?7P +26% + C1(1 + C¢)d 4 L) (1 + Cyn + Cy)> (|t — 8| + [w]p.s.s)
< CpqLmy <|%| +62Cm (14 Cy)(1+ Ce) + 1+ Cyn)
+ (0277 + 6% 4 20)201 K¢ (1 + C¢) (1 4 Cyn + Cy)> (|t — 8| + [w]pss)
< G (il + Dy +6°4:30) ) I = o + [l

where
Dl(w) = 201m1K€(1 -+ Cf)(2 + Cyn + Cy)

Now we take a closer look at the term
627P 4 68 4 36.

We can estimate since 8 >

=

6277 67 + 35 < 777 (14074772 4 3977
and since 6 < (1 4+ T + |wlpo,1) := Cyw(w), where C,, has finite moments of all orders, we get
6P 436 + 67 < (1 +4C,(w))6*7P.

We conclude
Ve = sl < Crma(|[V]loo st + Da(w)3*P) (|t — s + [w]ps.0),

where

Dy (w) := Di(w) (1 4+ 4Cy(w)) .

Now let tg <tj—1 <s<t; < - <tpom =1t <t <tpy1 < T with m > 0. Then we have

Ive = vs| < Ive — Vel + [ve — vl + 1ve — sl (4.48)

The first and third term can be estimated by the previous considerations, which yields

e = | < Crma([[Vllooty,t + D2(w)8* P (|t — ti + |wlp,t)
< Crma([Yllso,st + D2(w)6* P (|t — s| + [w]p,s.z) (4.49)
e, = sl < Crma([[Vlloo,sit, + D2(w)d* P) ([t — s + |wlp,sz,)
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< Crmi (I lseus + Da(w)8> P) (|t = 8| + |tw]ps). (4.50)

For m > 1 the second term in (4.48)) does not vanish and we get

[yt, — Yt — Y, + |

k—
Z (86 (g, + B (8:) — B (t)yit = V() (tia — )

mi

>
k- tz+1
Z </ Py 4 b5, (r) — VS (8:)ye, — VS, (t:) dr

m1

tz+1 3 . . . .
+2 / o8 (r)yr + 059 (r) — 089 (ti)ys, — 0§ (1) dwi) ]

j=1"1

k—
Z (87t + 057 (1) — 023 1)yt — o2 (8)) (w,, — ]

=1L+ 1, + Is.

To estimate the term I; we use the condition (Hj) and take a look at the term

w(ti)yti + bi(tl) - bg(tl)yg - bZ(t’L)
(i) — by () w(ti) — by (ti)

< L€ = & loo,0,7 (1 4 [[9llo0,0,7) + LV lloo b1, -

|10z (E) e | +

Taking (4.13]) and Remark into account, this yields
< L(Ke(1+ Cy)6* ™ + [V]loo,ti,e)

forallt =1,...,k — 1. Inserting that into I, we obtain

k—1

<D (Ke(l+ 062 + (oot (b1 — t2)
1=l

< L (Ke(1+ Cy)0* P + ¥ oot ) (tie — 1) (4.51)

Using Lemma similar to the last lemma with ¢ € (2, Z%) and Lemma yields

mi
Iy < Cpg Y 1057 ()y. + 057 () = 39 (Y = o7 () gty |
j=1

= Ly Z H(Ufg]() — o™ ())y. + o™ ((y. —y") + o'i’j(.) —o™I(.)
j=1

Dbtk

it W [t
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“I:tlytk HyH%tz,tk + QHUoTcL’jH%tl,tk HVththtk

mq
<G (2!!0%3(-) i)
i=1

Tl osﬂ‘<->uq,n,tk) I

Taking Lemma i) and iii) into account to estimate the g-variation norm of the partial deriva-

tives of the coefficient function o , we obtain
mi

< Cpo 2 (2 (20 + It = 0 + 1€ an + €l )€ = o + LI = lae) (14 ol
j=1

+2L(1 + [ty — ] + |€"

atntn) 1Y ||q,tz,tk> | [ty

< 2y ( (147 + 16" + Epa)l — s + 16— o) (1+ lollpo)
(Ul =0+ 1) o ) ol

By Remark and , this yields

I, <2C1my < (1 + Cen + Ce)Ke8® P + Ke627P) (1 + Cy)

st \s”\p,tlmuwnp,tl,tk) Wl

< 2C1m1 ((24 Cen + Ce)(1 + Cy) K6 P + (14 1€ ptrti) 1V Iprtit) [Wpite
= (D3(w)d* 7P + 2C1ma (1 + €% ptr i) 1V lpotaste ) 10pito (4.52)

where
Dg(w) = 201m1(2 + C{n + Cg)(l + Cy)Kg.

The estimation of I3 will be carried out with the Love-Young inequality and the Lipschitz and

Holder condition of the coefficient function b

k=1 .
I3 < Z/
i=l Yt

k—1

+

1=l

i+l

BS(r)yy -+ b5, (r) — 05 (t:)ye, — b5, (L) | dr

tit1
/ o&(r)yr + 05(r) — oSty — o5 (t:) duy | . (4.53)

t;

We first estimate for r € [¢;,t;41], using (H2) and (E;) the term

b5 (r)yr + 05, (r) — b (t)ye, — 05(8)

b (t:)

< ]bg(r) — B (t) b, (r) — b5, (t:)

lyr| + [Yr — yt;| +
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L(|T - ti|5 + ‘57“ - Etz|)(]‘ =+ ||y||007ti7ti+l) =+ L‘y|P7ti:ti+1

L(|tz’+1 - ti’B + |£|P7ti:ti+l)(l + HyHOO,O,T) + L’y|p7ti,t¢+1

A

L(l + Cy)(|ti+1 - ti|ﬁ =+ |€|p7t¢,ti+1) + L|y|p7ti,ti+1'

Inserting this into the integral in (4.53)), we obtain for the first sum

i=l Vi
k—1

L1+ Cy) Y (tivr —til® + |Elptitis + |y

1=l

bg:(r)yr + bi(r) - bg(tl)ytz - bi(tz) dr

pitiytit ) (ti-i-l - ti)'

The second sum can be estimated using the Love-Young estimate and Lemma [2.10] we have for

g€ @2
m k=l e A . , A A
S| ot + o) — 089 (), — o5 (6)
j=1 i=1 It
< Cpa 2D | O 00| e
i qtistit1
mi k—1
< Cp,q Z Z (’Jg"] qtitiv ”yHOO titit1 =+ ’Jg’]’m titit1 ’y‘P,tz‘7ti+1 + ‘U§7J(')‘q,ti,ti+1) ’w ‘P,tutz-u
j=1 i=l
Using Lemma i) for 057 and 057 for j=1,...,my implies
m k=l i+ . . .
SS| [ o o) — o8, — o5
7j=1 i=l
my k—1
< Cpg 20 D0 (Bt = il + lptoti) 0+ C) + Lltlp i ) 07t
7=1 4=l

k—1
< LCpgmi(1+Cy) > (|75i+1 — il + €lptitigs + \y|p,t¢,t¢+1) | Wpti i -
i=l

Combining the previous results leads to

k-1
I3 < LCpqma (14 Cy) > (tivs = til® + 1Elptitiss + Wlptiti ) ([tivs = il + (Wl 1,0
i=l

k—
< ml(l + C (chq Z ‘tl—i-l - tl + ‘§|p,ti7ti+l)(’ti+1 —ti| + ‘w’[’,ti,ti+1)
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k—1
+ Z LCp,q|y’p,ti,ti+1(’ti+1 - ti| + ‘w’pativti+l)>

i=l

= m1(1 + Cy)(Igl =+ 132).

The estimation of I3; is completely analogous to the estimation of I3 in the proof of Theorem
[4.4l We obtain

2p 1 1
I31 < 677PDy(w) <<P1(tl,tk)p + @2(%%)”) ,
where
1 1
Difw) = CH(1+ Ce) (1 (0.T) H O+ a(0,7)'3)

and
e1(s,t) =t — s|°(|t — sP + Jwh )P
pa(s,t) = |t —s|P + yw|§7s7t.

For the estimation of I32 consider (2.34]), which gives

|y Pstistit < Clml(l + 05)(1 + Cy)(|ti+1 - ti| + |w’p,ti,tz‘+1)'

This yields

k—1
Iy < Cpg LCyma (14 Cy)(1 4 Ce) Y ([tivs — til + [wlptiniy,)?

i=l
k—1

2
< CPmi(1+Cy)(1+Ce) D @alti, tivn)?
=l

_1 5 1
< CFmi(1+ Cy)(1+ Ce)p2(0,T)' 76 P (ty, ty,) 7.
Combining the estimates for I3; and I3o, we get
2 p 1 1
I3 <mi(1+Cy)| 6“PDy(w) <<p1(tl,tk)1° + <p2(tl,tk)p)
1 1
+ Ctmi(1+ Cy)(1 + Ce)ipa(0,T)' 76> Popa(t, tk)p>
2 p 1 1
< D5 (@) (i1t )7 + paltis )7 ) (4.54)

where

D5(w) = m1(1 + Cy) (D4(w) + C’%ml(l —+ Cy)(l =+ CE)(,OQ(O, T)l_llﬁ> .
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Putting all the terms (4.51)), (4.52) and (4.54) together, we obtain
Y, — Y1y, — yu + vk < L (Ke(1+ Cy)0” P + [Vl ooin) (b — 1)
+ (D3(w)* 7P 4+ 2C1ma (1 + 1€ [p.ty,t) 1V lp,trte) [w0]p,10,84
1 1
+ D5(w)§>7? (@1(tl,tk)’“ + 902(75z7tk)")
1 1
< 627 D(w) (It = il + Wy, + 21 (i 1h)7 + P2l )

+ 2C1ma (1 + (€% |pt, i) 1V .t ([T — 1] + [w

pvthtk)’

Notice that K¢ > 1 (seen in the proof of Theorem such that

Dg(w) := 2m3C2(1 + C,)%(2 + C¢ + Cen) Ke (1 4 01(0,T) 7 CPP~L 4 (0, T)%)
> max {LK¢(1+ Cy), D3(w), Ds(w)} .

Coming back to (4.48) combined with (4.49) and (4.50)), this yields for all [s,t] C [0, 7]

e = ] < 2C1ma(|lylloo,st + Da(w)d*P) ([t = s + [wlp,se)
+2C1my (1 + |€"

posit) 1V]p,s,t ([t — 8| + [wlp,s.t)
1 1
+ Do(w)d® (ip1(5,1)7 + a5, 1)7 + [t — 5| + |y,

<4C1my (14 [§"[p.s,t) [[7]lp,s,e ([t = s| + |w

psit)

1 1
+ Dr(w)§°7? <<P1(8’t)5 +pa(s,t)p + [t —s[ + \w\p,s,t> ;
where

Dr(w) = 8m2C2(1+ Cy + Cyn)2(2 + Ct + Cen)(1 + 4Dy (w)) K¢ (1 4 o1(0,T)r CPP1 1 (0, T)%)
Z 2max{201m1D2(w), Dﬁ(w)}

This means that for all [r,v] C [s,t] C [0,T] we have

[ = Yol < 4CIma (14 |€7]p,s.0) [1V[lp,s,e ([0 — [ + [w]prw)
1 1
+ D7) (1, 0)7 + 27, 0)7 + |0 = 7] + [wlpro)

With Lemma [2.6] this yields for every [s,t] C [0,T].

Vlp,s,t < 4C1ma (1 + (€% p,s,) [V Ilp,sit (1t = 8|+ |wlp,s,2)
1 1
+ Dr(w)d* 7 (p1(s,0)7 + pa(s,6)7 + [t — 5] + w00

< AC M (1 + [€%p,s,) (sl 4 [VIpus,t) ([t = 8] + |wlp,s) + Ds(w)d* 7P,
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where
Dys(w) i= Dr(w) (#1(0,T)7 + @2(0,T)? + (T + [wlpo.r) )

is P-a.s. bounded independently of u and n and has finite moments of all orders. Taking Remark
into account, we can argue that for every [s,t] C [0, 7] such that

1
- <
| S| + |w|p737t — 1601m1

we have
’é‘n’p,s,t S 1

and
Vlpst < 2Ds(w)d*7P + |-
Now we can use Lemma and the fact that 79 = 0, to obtain the estimate

5
Vo0 < Ylpor < (2D8(w)(52_p + ‘70‘) 2P (miCOP(TP+|wl} o 7)

< 2D8(w)527pe25p(m1Cl)p(Tpr';O,T).

Hence,

H'YHoo,O,T < Ky(w)(SQ_p,

where
K, (w) = 2Dy (w)eQSP(m1C1)p(TP+\w\5707T)'

The random variable K (w) is bounded independently of v and n and has finite moments of all
orders, since w satisfies the exponential moment condition. The same holds for 4, such that we

can use the Holder inequality and obtain for [ > 1 and §;; := E[él]% the estimate
7 2 2
2 — —
E [H’YHéo,o,T] <E [Kﬂ 079 < Dr, 210, 5 -
U

Having established the convergence rate for the discretization of the linear stochastic Young
differential equation from (4.4)), we now consider the solution ¢ in (4.4) and its Euler approxima-
tion scheme g™ from (4.6]).

Lemma 4.11. We have for a given u € U and | > 2, that there exists a constant Dgn ; independent

of u and n, such that
B |15l 0z] < Dygna
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Furthermore, we obtain for d3 = max |tiv1 — ti| and 1 > 2, that
1=0,...,n—

1
B3 = 6 ez ] < €O+ Dyny + Dy )83 (4.55)

The constant C' > 0 only depends on T, [, mo and L.

Proof. We omit the direct dependence of the involved processes on u for notational simplicity
Furthermore we define b7 (r) := by (t;, ', £, u) for every r € [0,T] and analogously b7, b, 657,
627 and 6,7 for each j = 1,...,mo and let C be a generic constant that is only dependent on

L, 1, mo and T'. It is easy to see that the process
(1) = Z/ () Ui 7(r) ( )+ &?J(tﬁ(?"))y?ﬁm (w) + 6Z’j(tﬁ(r)) dB (w)

for t € [0,7T] is well defined and an ny x d-dimensional matrix of F-martingales. We have for

t €[0,7] and I > 2 by the Jensen inequality and condition (B3), since g3 = 9o = Dxo(u)
l]

)

E[l17"l15,0.4) = El7" 1% 0.

<o finf] +»

ma
+ E | sup
Z LE [0,¢]

sup
s€[0,¢]

/ G2 () i,y + 027 (b)) Wi,y + 0 (tagry) dBY

/b”<ﬂ%u+@@wm&m+QWWMr

l

j=1
=C(1+ L+ ).

We can estimate I1 by the boundedness of I;m, I;Z l;u, Lemma and Fubinis theorem

t, . . l
)i, + 82t + Bt

t l
SCE[/ T+ |+ 1yt | dr]
0 ( ta(r) t(r))

< C(1+Dyn,l)+0/0 E [II@”II&,O,T] dr.

IlgE{
0

Similar calculations after the use of the Burkholder-Davis-Gundy inequality yield

(

t
gayu%p+cAEMw&m}w

l
2 2
I, < CE 67 (ta()) Ut + 0% (b))t + Ou (tﬁ(r))’ dr) ]
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Hence, we get

Bl < OO+ D) +0 [ E[1571,] dr
and we conclude by the Gronwall inequality
B 15"l 0.z] < €O+ Dyn)eC i= Dy (4.56)
Now let t € [t;,ti+1] for i € {0,...,n — 1} and [ > 2, we have
Bl - il
!
|
t . . . .
/t' (63t 2 €7 u)gF + 63 (k. 2 €7 w4+ 8 (1,2 €7 ) dBY

t
/ (bx(tuxZ)&Z’u)gZ + bz(tlaxgaggvu)yg + bu(tlaxg>§t717u)> dy,

|
By the boundedness of the coefficient functions, the estimate (4.56)), Lemma and by the
Burkholder-Davis-Gundy inequality, we get

B [l — 321] < € - 6B |13 e + 107 + 1]
1 ~
+ 0= 03B 17 + I g +1]
1
< O+ Dgn g+ Dyng)d5.

This yields the estimate (4.55) for [ > 2. O

Theorem 4.12. We have for a given u € U and | > 2 that

1
. el 7 (2-p)A3
E [Hyu - Z/n’uHoo,o,T] < DKg,l‘SLzu :

where the constant DKQJ is independent of u and n.

Proof. We have for ¢ € [0,T]
t/\ ~ ~
gt - :’-}? = :&0 + / bm(T', Ly, £T7 U)QT + bz(T, Ly, {Ta u)yT' + bu(T, Ly, 57“7 U) dr
0

mo t
+ Z/ Gl (r, xp, &y W)Yy + 6L(r, e, &y )y + 62 (ry 20, &y u) dBY
— Jo
7=1
t ~ ~
- QSL - /0 by (tﬁ(r)7 m?ﬁ(r) ) f{;m > 'LL) Q?ﬁ(ﬂ + b; (tﬁ(r) ) x?ﬁ(” ) 5;;(” ) U,) y{;(ﬂ
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+ Bu <tn 7 7£t—( )? )
m2 i . .
- Z;/O Uajv (tﬁ(r)a I?ﬁ(r) ) 5;%(7*)’ ) yt—(T) + O-g (tﬁ(r)u xtﬁ(r) > ftnﬁ(r)v > ytf(,«)
j=
+ 5—1% (tﬁ(r) ) 'x?ﬁ(r) ) 5&(7") > u) dB7]’
t
= Z)O - %1 + / by (T xrvf?"v ) - b ( n(r)s x?ﬁ(rygtnﬁ(r)vu) Z);;(T) dr
0
t
+ / bz(T, T, 57"7 u)yr — b, (tﬁ(r) ) x?ﬁ(r) ) gfﬁ(” ’ U) y?ﬁ(r) dr
0
t
b [ bz ) = B (b8 6 )
0
m2 t . . .
+ Z / &i (T‘, Ly, g’/‘? U)QT - &% (tﬁ(r)a x?ﬁ(” ’ gtnﬁ(ﬂ ) U) Z);;(T) dB7J“
j=1 0
+ Z/ o1(r,xr, &, u)yr — 62 (tﬁ(r)aﬂﬂfm,),ffw),U> Ui, 4B}

=+ ZA a’i(?", xra&?"vu) - 6’% ( n(r)s n(r)7§tn<r ) dB7j“
j=1

Let C' > 0 be a constant which only depends on T', [, mo and L, we have for [ > 2, since g5 = 9o

3) oo ,0 t]
!
Sup b (T x'r‘7§7‘7 ) _b (tﬁ(rﬁm?f 761"1 7u) g'tn; dr
0cset () Stagr) (r)
s N l
+E | sup / by (r, &, & w)y, — bs (tﬁ(r), x?mT),f%(T),u) yfﬁ(r) d,
0<s<t|Jo
s R !
+E | sup | [ bulray &) = bt 2l &) dr
o<s<t |Jo n(r)’ >n(r)
m2 s . . !
+> | sup | [ o = 63 (b a8, €8 ) 8, 4B
— |o<s<tlJo
=1 [0ss<
m2 i s . . !
+> | swp | [ ol a6 u)ye = 0L (tay, 2t € ) v, AB]
— 0<s<t 0 n(r) n(r) n(r)
=1 [0ss<
m2 i s !
+ ZE sup Gu(r, Tpy &pyu) — Gy (tﬁ(,,),:zﬁ V&L ,u) dB,
= o=t o m(r)’ Sta(r)

=C(L+ Lo+ I3+ Iy + I5 + I5).
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We estimate the term I; by conditions (Bj), (F2), Lemma and the Jensen inequality

t
11§C'E[/
0

+ (bac (Ta Tr, &, u) — by (tﬁ(r)a x?mr) ) fllﬁ(m ) u)) ytn<r

BI(Tv xTagTau)(gT‘ _g)'rq?) +i)x(’l", ﬂfr,é_r,u)( ytf(r))

l
dr]

<<CE{/\w llcordr| + CE (13" - it I'or]

n

t 1 l
+CE /'(u+4xA+waD@—%w: xtuum@T+us—<gmnm@T>nngpjd1
0

l

t
<C [ E[l5-3"o,] dr+ €O+ Dgos + Dy 5
0
I 1
+ OB {1+ ol + €065 1" s |

[ cnpl
+CE |(llz = "0 + a7 = 2 o) 15" 0.7

+CE [(lIg - €0 + 16" = €8 o) 19" 07 -

Using the Holder inequality and then the results from Remark Lemma Lemma
Theorem [£.4] and Theorem [£.6] we get

l

t
Il < C/ E [Hg) AnHooOT] dr + C(l + DQ",Z —|—Dyn7l)(52§
0

1

+ CE (3" 12 0r" (Ek1+Wﬂm@T+nmm@wﬂfé2+Ehw—xww04

N

+E[Hx —ap HOO()T} +E{H€ §nHo<>0T}1+E[”§n gtnw”OOOTT)

l

< c/ 19— 9" Wee0,] dr +C(1+ Dy + Dy )65

1 L 1((2—p)AL 1 L
<(1+DI,21+D§7QZ)2522 + D, iy P 4 (L4 Dy oy + Den 21)263

@ > o=

+CD2,
I
+ Dé{s74l51(,4z Py 5 2l>

Since )

02 < 1o < St B [(14 T+ Jwlpor)| " = Din 21 (457)

analogue to (4.29), we obtain

. 2—-p)AL
L < C/ 9 — n”ooOT} dr + C(1+ Dgn +Dy”l)D5) 4151(,511 PIhg)

l
2
Dw,4l

N[

1L
+ CD2n 2 <(1 + D%Ql —+ D€’21)2D5)’4l —+ DlI(I,4l + (1 + Dac”,Ql —+ D£n72l)
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W(2-p)A3)
+DZK§,4ZD a+Di 4l> O °

<Dy [(B[1o -k, ] o
where
Dy = C(1+ Dgny + Dyw)D; atCD y% <(1 + Dy + Dsal)%Dé,zu + D,
+ (14 Dgn oy + Dgn,m)%Dw at DK5 41D at D., 4z>

Analogously after using the Burkholder-Davis-Gundy and Jensen inequality, we can estimate the

term I, and obtain
1((2-p)AL t JOA
<Dl " B[l - o] o
0

where Dq; and Dy, only differ in the constant C' because of the Burkholder-Davis-Gundy in-
equality. Since Ex, b. and b, share the same properties the estimation of Is and I3 is very similar
to the estimation of I;, we just need to exchange the processes §j and g™ by y and y" for the

estimation of Iy and use the corresponding results. We get

t
IQSCE[/
0

+ (Bz (Ta Tr, &r, u) - BZ (tﬁ(r) ) 'r?ﬁ(r) ) gfﬁ(ﬁ") ) u)) y?;T(T)

< CE [Hy Yy ||000T} + CE [Hyn - yl;(.)lléo,oz}
¢ l

/ dr| .
0

Using the Hélder inequality, Lemma [4.2] Lemma [4.5] Theorem [4.4] and Theorem [4.6] we get

62(7'7 Ty &y u) (Yr — yr') + I;z<7'a Ty &y u) (Y — y?ﬁ(r))
l
dr}

(bz (7,2, &y u) — by (tﬁ(r)7 ‘T?ﬁ(m ) 5{;“) ) u)) y?ﬁm

+CE

1
_[2 < CDK 2l51(§l p) + C (1 + D;”,Ql) 51 2[

1 L 1((2—p)AL
o ((1 + Dyt + Do) 205 + Dl 0 s 2" 4 (14 Dyn ot + Dgn )

N

1
2
52

N

+CD;
+ D 10137 45 )
Ke,4191,41 1,20
Again using the inequality (4.57)), we obtain

oAl 1 1
I, < 51(55 PIAS) <CDle,2lD5;,4l +C (1 + D;n’21> va,4l>
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N[

1
+CDgn o ((1 + Dzo1 + De i)

[SIE

1
Dju+ Dic. 4+ (14 Dyn gy + Den )

D’L%UAI
+ DlK&AlDé;Al + Dfu,4l> 51(,55_1))%)
< Doty Y,
where
Dy = (CDle’QlDé}Al +C (1 + Dyéml) Dl ,4z>
* CDy%"le <(1 + Do+ DE,QZ)%DE,M + Dle,4z + (1 + Dyn o1 + Dgngl)%Dé}Al

l
l 2 l
+ D, Dy, 4 + Dw,4l>'
Analogously, we can estimate I5 by

AL
I5 < D5,l5i(75§ pMQ)?

where Dy; and Ds; only differ in the constant C' because of the Burkholder-Davis-Gundy in-
equality. The term I3 can be estimated using the condition (Bj), (F2) and the Jensen inequality

t
IggCE[/
0

l
52 l l
< CE [(1 t 2o + IElloo02)'6F + llz = "l o + 1™ — 2. oz

A~

~ l
bu(r, 2 & 0) = bu (bt 0 )| dr]

HlE = € lhar + 16" - € o]

Again using the results of Lemma Lemma Theorem [£.4] and Theorem [£.6] this yields

3 ! U(2—-p)A3) 14
Ig S C (1 + Dx,l + D&l)(SQ + DK172151,2I + (1 + Dsz + DS",Z)Q(SQ

l 12— !
+ DK§,2151(,2l p) + 61,l> .

Since

1

02<611 <61 <E {(1 + T + wlpor)* 7= Dy > 1,

we obtain

Is <6

!

1((2—p)AL L
1(,21 7 2)C((l + Doy + Dgy)D2 o+ Dig, oy + (1+ Dyny + Den )

N

D

2
w,2l

l
! 5 !
+ D, Dy, o + Dw,2l)
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Al
< D3,l5l1(,(2? p)/\2)7

where

!

2
w,2l

NI

1
D3,l = C<(1 —+ Dx,l —+ val)qu)Ql + Dle,2l =+ (1 -+ DI"J -+ Dé‘nJ) D

i
+ DlKg,QlDile + Di;,zl) .

Analogously, we obtain

Al
Is < D6,l5§(g pMZ),

where again Ds; and Dg; only differ in the constant C', because of the Burkholder-Davis-Gundy
inequality. Combining all the estimates, it follows since d1; < 91,2

t
L L ((2-p)A3)
B {15 = " o] <€ [ E[15=0"0,] dr+ Dusy "

(2-p)A3) (2-p)A3) (2-p)A3)

+ D47551,4l + D27551,4l + D57551,4l
1((2—p)AL 1((2—p)AL
+ Ds,l51(,(21 e Dﬁ,l51(,(21 PnD)

t 1
o 1((2—p)A L
< C/O B (15— 5"150,| dr+ gy ",

where
Dl = maX{Du, .. ,Dﬁ,l}.

By the Gronwall inequality, we conclude

L (2-p)A3)
E [l = §"llheorl] < Doy 72

This yields

~|

n Al (2-p)A%
E [Hy - ynHoo,O,T} < Dryidy gy 2

where
1

._ C
DKA | = Dll e,

Yo

which concludes the proof. O

We end this subsection with its main result concerning the convergence rate at which )"

converges to ) in the L'-norm, uniform in time. The result is a direct consequence of Theorem

410 and Theorem .12

Theorem 4.13. With the notations and assumptions from the beginning of this chapter, we have
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that for every | > 2, there exists a constants Dyn; and Dy, independent of n and u such that

E [Hynu ‘f)o,O,T] < Dyny

and

2-p)nd
E[19" =" Inr] < Diyadia”?

for everyu e U.
Proof. We have

eor])
00,0, T

E [Hyn,quoop’T} < 9l—1 (E {Hyn,quOO’O’T] +E [Hgn,u

and by Lemma and Lemma this yields

B[y

l -
\oo,o,T] <271 (Dyry + Dyn ) = Dyn .

By Theorem and Theorem we get

1
l

_ 1
B 1y 3] < 2] T

2—p
D, 2101 o) + Drcy 10y 4

_1 1 2—-p)AL
< 9l—9 <DKy,2lD5,74l + DK@,Z) 55’4117) 2

O

In the proof of Theorem we mentioned that an estimate was not ideal in the case where
the driving process w is Holder continuous. But since this case is important for practical purposes,

we will devote the next subsection to this matter.

4.1.3 Convergence rates for Holder continuous driving processes

For numerical experiments the convergence parameter dq; is not very practical. Instead, we wish
to use the convergence parameter do which only depends on the mesh of the underlying Euler
partition. To accomplish that, we assume that w is Holder continuous of order H € (%, 1), which

implies that w is of bounded p-variation for p > % We get
_1
§(w)2P < (8g + Crr(w)6E) 77 < (T'H 4 Cpy ()62 1,

where Ciy(w) is the Holder seminorm of the path w(w). Consequently, if the process w is Holder

continuous of order H, the convergence rate for the convergence of the Young differential equation
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€™ to € and y" to y is equal to those in Mishura [2008] and Nourdin and Neuenkirch| [2007]. In
the case where E [C’fq] < 00, we get for every [ > 1

1
Sy <E|[(TYH 4 cp)t| ' ol (4.58)

This moment condition is e.g. satisfied by the fractional Brownian motion with Hurst parameter
H' > 1 for every H < H’' (see Nualart| [1995], p.274). In the proof of Theorem [4.6, we noted
that the estimate do < 01 97 was not ideal in the case were the process w is Holder continuous. To
see this, suppose we just use the inequality (4.58]) in the statement of Theorem then we get
the convergence rate
(2H-1)AZ

0 .
If we would not use the estimate d2 < 019 and use instead (4.58|) in (4.30) to estimate d1 o, we
get

l
E |1z = 2"l 0,]
l

1

and hence there exists a constant lA?KIJ independent of v and n, such that

1
T ~ 2H—-1)A
B{lle - 2"he0e] " < Dreoats ™V

Hence, we get in the Holder case the better convergence rate (2H — 1) A % >(2H-1)A %, which
can be seen as the worst of both cases, the rate 2H — 1 as standard for the convergence of the
first order FKuler Scheme in the YDE case and the standard rate % for the convergence of the
first order Euler scheme in the Brownian SDE case. With the above arguments, we get for every
u € U the modified estimates

1

E [Hfu - f)o,O,T] < Die 63" (4.59)

for [ > 1 and in the Brownian SDE case, respectively the whole system,

r Al
E [qu - 90"’””&;,0,7’} ' < DKI,Z(5§2H R (4.60)
and .
L DAL
B2 = 2l or] " < Dicasy” " (4.61)

for I > 2. The constants lA?KE,l, D K., and D x,1 are independent of u and n. These estimates now

carry over to the proof of Theorem Using (4.58)), (4.59) and (4.60) in every estimation of
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the terms I; for i = 1,...,6, we get the estimate

o~

- (2H-1)AZ
S DK@,Z(;Q 27

o anyl
B[l5 - 5"l%.0]
where the constant ﬁK@l is independent of v and n. This also changes the rate in Theorem
and we conclude )
T A 2H-1)AL
E 19" = ¥ lleor]" < Dyasf™ T,
Our governing noise of the volatility process ¢ in our practical example will be a fractional
Brownian motion with Hurst parameter H > %, so that in the following sections, we will state
the convergence results in the general case where w is just a continuous process of finite p-variation

for p € (1,2) and furthermore we will state the results under the following additional assumption

(HA): Holder assumption: Almost every path of the process w is Holder continuous of order

H > % and the Holder seminorm

lwy — ws|
|w|g—Holo,r = sup T "
stea(or)) It — s

has moments of all orders.

4.2 Convergence of the approximating scheme for the backwards adjoint

equation

In the last section, we established the convergence rate of the Euler schemes for the forward
equations, we are interested in. In this section, we keep the assumptions and notations from the
beginning of this chapter and add the assumption, that the sequence (g,),=1,.. m of functions
Iy R(m+n2) _ R satisfies condition (G) given in the introduction to Chapter |3l We come to the

approximation of the backwards adjoint equation given by

_ u / u T b?;;‘(r) 0 . i 0 0 : r
Ar =Y Elgu(Xf)]g.(X4,) + /t AT[(ZJ“(T) B;;@«)) : <&?’j(7“) ff:?’j(r)> ]d

Tu>t z 7=1
2T Jg’j(r) 0 o2 T 0 0 .
+ A, dwi + / Al © )a B, 4.62
Z/t 0 0 Z ¢ o2 (r) o7 (r) (462)
7j=1 7=1

where 0 < Ty < --- < Ty = T € [0,T] and ¢ € [0,T]. Here bi(r) := by(r, &%, u), bi(r) :=
l;x(r, ¥ & u) and the other functions o , l;g, 6% and 6% are defined analogously. For read-

ability we will leave out the index u in cases where no confusion might occur. We know by
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Theorem that this equation has the explicit solution given by

Ay =Y Elgu(X1,)g, (X1, ) @7, ®; " for t € [0, 77,
T,>t

where ® and ®~! = ¥ are the solutions to the homogenous linear matrix valued SDEs given in
and with initial time 0. Note that A; is an n; + ne-dimensional row vector.

To derive a suitable discretization scheme for the approximation of the solution to the adjoint
equation, we heuristically develop the ideas in one dimension. Let (Q, F,F = (F¢)ejo,m, P) be
a filtered probability space, satisfying the usual conditions, carrying a one dimension continuous
process of finite p-variation w; (p € (1,2)) and a standard Brownian motion By, both adapted to

the filtration F. Take a look at the anticipating backward equation

T T T
At:ATJr/ )\r(br—&f)dtJr/ Ara,,dwmu/ A&y d” B, (4.63)
t t t

where Ap is a constant terminal value, and the process b,0 and ¢ are F-adapted processes sat-
isfying conditions to ensure the existence of the above integrals. Now we take an equidistant
partition 0 = ¢y < t; < --- < t, = T of the interval [0,7] and consider the first order Euler
approximation of the above equation, taking the left endpoints of the integrands, because of the

forward integral. By setting A; = t;11 —t;, Aw; = wy,, — wy;, and AB; = By, | — By,, we obtain

)‘ti = )‘ti+1 + )\ti [(th — 62)A1 + O'tz.A’wi + &tzABz]
= )\ti+1 + Atinti

and by rearranging the terms

>\ti+1 = Atz(]' - ntz)

for every ¢ = 0,...,n — 1. Since we have an terminal condition, we need a backwards scheme and

therefor use the Taylor expansion of order 2 on the function f(z) = (1 — z)~!, such that

)\ti = )\ti+1(1 + 77ti + 77t21 + RZ)
= Aty (L+ (by, — 67)A; + 0, Aw; + 6¢,AB; + 6 AB? + R;)

fori =1,...,n—1. Note that all the terms in R; have 0 quadratic variation, since w has bounded
p-variation for p € (1,2). Since the quadratic variation of B, is t and ¢ is F-adapted and square

integrable, by choosing the mesh of our partition small enough, we get

|
_

n

62 (AB? — A) = 0.

7

s
I
o
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This suggests that

)\ti ~ )\t btlAl + O'tiAwi + 6,5LAB,]

i1 [

yields a suitable discretization for the equation (4.63). Now translating these ideas to the multidi-
menisonal case, we define the approximation scheme for the adjoint equation (4.62)) on a partition
E = {#;}i=0...n of the interval [0, T] by

AL = (AL =AY (Tnygms +Mitinn) + O Elgu(XF)gl (XF,) € RmAm), (4.64)
Tu=t;
where

ba(ti, €8, 1) 0 L (od(ti, €0 u) 0 , ,
Mitivr = (3 ( h n 5 n )> (tiv1 —ti) + Z 0 b 0 (wy,,, —wi,)

z ti>$?7£t-7u) bﬁ?(ti’x?i’{ti’u Jj=1

0 . A o
+Z( ( ~j n en )> (Bgi+1_Bt]i)€R( 1+n2) X (n1+n2)

tZaxt 7£t7 ) O—GE(thxti?gti’u

for alli € {0,...,n — 1} and

B= ) Elgu(AP)]g(X).
T,=T

We use in this case the constant interpolation on the interval [0, T], meaning that
A? - An¢+1

for t € (t;,ti+1] and ¢ € {0,...,n — 1}. Notice that by the definition of A", we have for i €
{0,...n — 1} that

AZ- = Z E[gu(XZQ)]gL(XYG)(Iernz + 77tn71,T) """ (In1+n2 + 77ti+1,t¢+2)(ln1+n2 + nti,ti+1)

T,=T

+ Z E[gu(XtZ_l)]gL(XtZ_l)(Im-&-m + ntn727tn71) e ([n1+n2 + nti7tz‘+1)

Tyu=tn_1
-+ Z gu Xt +1 (Xt:LH)(Im-‘rM + ntiyti+1)
Tu=tit1
+ Z )g (X7 (4.65)
Tu=t;

The goal of this section is to show that for [II¥| — 0 and I > 2, we have

l
sup E“At—Af t” —0
te[0,7) n(t)
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(see (4.34), for the definition of n) and to find the rate of this convergence. To show this, we take
a closer look at the explicit solution of equation (3.17)), given by

A=Y Elgu(X1,)] g, (X1, ) @1, ®; " for t € [0, T).
T >t

We add the initial time 0 as index to the processes ® and ®~!, such that b, = CID(:},M and ¢, -
(®9)~! in the last equation. We know that ®° and (®°)~! are elements of L% (€2, C([0, T], R™*"2)
for every [ > 1, such that we have for ¢ € [0,7] and s € [¢t,T] that

PO() I = =1, . +/s ba(rw) 0 ;0 ()~ dr
s (Pt Sy \be(r @, &y u) bu(rag, ) ) T

my s % L&), 0 . B )
> (0 e O)@f@?) ! dud

v\ &u) Gh(r iy bu)) "

such that ®%(®9)~1 satisfies the equation

S ba(r, &, 0
Ot =T, 0, + / belrn&ru) ot dr
t bz(ry x’r‘7€7”7u) bl‘(ry x’r‘7€7”7u)

S B %(7&“)7 ) 0 j
+Z/ (U no 0>q>¢dwg

m2 s 0 0 .
+ , , ®! dBJ 4.66
Z/t (5%(7“, xra&rvu) OA'%(T, x?‘a&ﬂ”)) ( )

for s € [t,T]. In Section [3.2| we established that equation (4.66]) has the unique solution

o 0
o= <¢> ¢>> ’

s mi s
ot = I, +/ bx(r,xT,gr,u)#dr—FZ/ ol (r, 2y, &, u) @l dw]
t - t
Jj=1

where

S
~

mo s
o :1n2+/ bx(r,xr,ﬁr,u)&dt%—Z/ &3(r, zp, &r, )Pl dBY (4.67)
t . t
7j=1

~ SA 7 "
Z:/t bz(r,xr,gr,u)qbi+bx(r,:v7«,£r,u)¢id7"
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mo s ~ '
+ Z/ 6—;(7'7 x'f‘af’f’vu)¢f‘ +6—9Jc(ra xT7§T7u)¢7t” ng (468)
j=17"

and that for every ¢ € [0, T], ® is an element of L (Q, C([t, T]), R(+n2)x(m+n2)y for every [ > 1,
such that

sup B |:”(I)t||f>o,t,T} < D¢, (4.69)
te[0,T

where Dg; > 0 is a constant independent of u. This yields that

A=Y Elgu(X,)] g, (X1, )@ for t € [0,T].
T, >t

Now let IT¥ = {¢;};—0..» be a partition of the interval [0, 7] and for every k € {0,...,n — 1}, we

define the Euler scheme .
V;tk _ (@tf 0 ) € R(n1+n2)><(n1+n2)

7 Ntk Atk

Soti soti
for i € {k,...,n — 1}, such that

by (t:, &0, u 0
Vil =V (s i) Vik(tin — )
i+ ’L bz(t“x?;,g?;,u) bw(tl’x27€{i)u) %

! %tu n~7 0 ] j
+ <U( &) )Vtik(wi —wy))

3

0 0 i1

j=1
my
0 0 . . ,
+ y » Vik (Bl - B])
; <02(t¢,w2,£ﬁ,U) oé(ti,x;@,sz:,u)> e T
= (In1+7L2 + ntiyti-&-l)‘/;fik (4'70)
and
V;‘ik = Ini4ny-
Here we use the continuous interpolation, such that
V;tk = (In1+n2 + nti,T)VZk (4'71)

for r € [ti, tit1), 1 € {k,...,n—1} and

te
V; — fni+n2

for all r € [0, t]. Notice that

ng = (In1+n2 + nti—hti) T (In1+n2 + ntkatlﬁ-l)’
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which yields by (4.65))

TL tn
My = 20 BlaR (Ve + 3 Bl (4 Ve

T,=T Ty=tn—1
oot Z E[gu(Xt?H)]gH(XtiJrl t Tiz)ﬂ + Z g“ Xt n(t) ]gH(X n(t))
Tu=tn(t)+1 Tu=tn(r)
= > Blou(X)lgL (X )V
Tuztg(t)

This connection between A™ and V allows us to proof the convergence of the backwards approx-

imation scheme A™ to A by proving the convergence

sup E [H@t O, 1 } =0 (4.72)
te[0,T

for [TI¥| — 0. To see this, take a look at

l
sup E UAt — AZ(t)’ ] . (4.73)
te[0,7 -

Notice that
‘At - ﬁ(t)‘

= | Blgu(n, gl ()05, — 3 Elg, (X5 ]l (X5, )V

Tu>t Tuztu)
< > [Blou(¥n g () — Blou(X2 gl (X8, )| 10k,
Tﬂztﬁ(t)
ty
Y Bl ()l (X8| @, — v
Tuztg(t)
< ¥ (E[gA%J]—E[gAXﬁ)}\yg;L(xT“)HE[gu(Xﬁ)]\ g;L(xTM)—gL(»cﬁ))@tTJ
Tzt
ty
+ Y [Bloua)lguxe)| | @, - vl
Tuztg(t)

By condition (G), (3-2), Lemma [4.7 and (.69) this yields

A= A

< X (T -+ (LEIAE D+ 0,00)) 2], - | 0t
Tzt
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n
= }j L (LENXE, [ + 94(0)) |@F, — Ve

Ty >t

<CE [HX = X"loo,0,7] |2 [loo,t.7 + C (D1 + max, g, (0))| & = X o0,0,7 19" [loo .7

+C(Dxa + M:mLE-L-i:M 9(0)) H(I)t = Vo Hoo,tﬂ(t),T ’

where C depends on M and L. Inserting this inequality into (4.73) and taking (4.69)), the Jensen
and the Holder inequality into account, this yields

l
t)

< CDpBJ|X = X% oy 7]+ C(Da + max g,(0)'B |4 — 2" [2 1]

sup E UAt — A}
te[0,T) o

l ¢ ty
+C(Dxs + mox, ,(0)' sup B (let = el ]
By Theorem we have for every v € U and | > 2, where 6;; is defined in (4.2),that

(2-p)A3
B2 - 2"l oz < Dty

which yields by the monotonicity of L!-norms

Z]

1(2—p)A L

sup E UAt — AL,
t€[0,7] ()

1(2—p)Ad
>+ C(Dxa+ Hllax gu(O)) D3 21D1Kx72l51(,4l P

77777

< CD@ ZDKX 25

+wm+mwmhww@WMMT]
/1/:17---7M te[O/T} n(t)»

Hence, there exist constants D1, Dy > 0 independent of u and n such that
Z]
12-p)A3 ¢ to(r)
< Didyy + Dy sup E|[|@" — VoL,
te[0,T]

sup E UAt
te[0,7) "(t)

(4.74)

n(f):

Now we will establish (4.72) and examine the corresponding convergence rate. Note that we
defined three matrix valued Euler approximations in (4.70). Fort € [0,T] and i € {n(t),...,n—1},

we defined

t, t, ty n j
@tfff = %Otf(t) + bz(tj,vaU)SOtZ(t) (tiy1 —t;) + ZU] tzaft ) )Sot (t)( tiv1 wgl)
7=1
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‘Pt:l(tl) Py, 0 + b (tuxt o u ) (tz—l-l —t;) + ZU thxt U u)py n(t) (Bng Bfl)

7=1
~tn ~tn 7 123 7 ~tn
(pt;ﬁ) = @t;@) + |:bz (tiv xZaéZu u)sotz(t) + bz (tiv xZaéZ’ u)soti(t)] (ti-‘rl - ti)
ma2
~J t.. gl gn In(t) ~J t tn(t) B] _Bj
+ al( za%i:ftiau)@ + &2 ( vatzagt ) )‘Pt tis1 t )
j=1
where

tn(t) atn(t) ~ln(t) naXni
Pruy = I Pty = Iy Py =0ER

and the continuous interpolation defined trough (4.71)) in the similar way. We will show that for
IT®| — 0

sup B ([|¢" — g0 |L, 7| =0
telo,7] - - -

sup E ||¢ ghn | —0
¢€[0,T] o0 tn(n) T ]

Sup E ||¢t n(t)”ootn(t), - 0
t€[0,T]

successively. Conceptually we repeat the same steps from the last section, by showing the bound-

edness of the respective Euler schemes first and then prove their convergence.

Lemma 4.14. We have for a given u € U, for all t € [0,T] and for almost every w € Q

H‘PHpﬂfﬂ(t)vT
< v (22 3Cm)? (T2 + [l 1) +1) exp (2236Cm)? (T2 + [l o7) +2)

and

”SDHOO,tﬂ(t),T
<2/ (23P(301m1) (TP + |w\p0T) + 1) exp (23P3(301m1) (TP + |w|p0T> + 2)
= Cy(w).

For 1 > 1, we have ¢"'»® € LL(Q, C([0,T]), R™*"1) with

sup E HsOut"(t)Hootn(t), ] <E [C } =Dy,
t€[0,T7]
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Furthermore, we have for almost every w € Q, u € U and t € [0,T)

u7tn u7t’n
- = (w) = tﬁ(s(t> (w)”m’tﬂ(t)’T = i:ﬂ(rtr)l?t}fn_l |<‘Ou’tﬂm Iptitis < L Cp(w)d(w)
and consequently
u,ty, Uty 1
sup E |[l¢. 20 _Sotﬁ(f)(t)||f>o,tn(t),T < (Lml)lD;,zz(S{l,Ql-
te[0,T) -

Proof. Note that ¢ is very similar to y™ in the last section, the difference is that ¢ does not contain
the partial differentials of the coefficient functions with respect to the parameter v and we need to
be careful with the initial time of ¢ which is now ¢ instead of 0. Let A C Q, such that P(A) =0
and w.(w) is continuous and of bounded p-variation (p € (1,2)) for every w € A°. Let w € A,
u € U and t € [0,T] be arbitrary, for notational simplicity we leave out the direct dependence
of the involved processes on w, u and t,,;). Note that since we prolonged ¢ to the interval [0,T]
by setting s = I, for all s € [0,%,)], we get that |p|p0r = \g0|p7tﬁ(t),T. Adapting the estimates
from Lemma it is easy to see that the path ¢. is an element of CP([0, 7], R"*™) and that
ol(-, €™, u)p. is an element of C7([0,T], R™*") for q € (2, p%l) and every j = 1,...,m;. Again
repeating the steps from Lemma on the Euler partition II¥, we obtain for every t¢;,t; € II®
such that t;,ty € [t,), 1] that

[@lp.ttr < 3C1ma([pn | + 1@lpt ) (L + 1€ pty0) (e =t + |wlpr 2,)-

Note that this inequality then also holds for every #;,t; € II* such that ¢;,t; € [0,7]. Now we
have for every interval [t;, t] € [0,T] which satisfies

1

ty — 4| + |w < —

[tk — t| + |[wlpt e < 15C,m
that

1€ [ptre <1
by Remark and therefore
|90 Pty < ’90tz|'

Hence, we can use Lemmaﬁwith a=Lmy, K1 =1, Ky = m < L%m = é and obtain the
estimate
|(p|p7tg(t)7T = |()0 p»07T

< ety (27 BCIm) (TP + w7 ) +1) exp (273(B3Cum ) (TP + [wll .7 ) +2)
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We have |¢; |In,| = /11 and consequently

n(t) | =

1€ llo0,tn ey, T

< oy |+ ‘Soypiﬂ(t),T

<2ynr (23P(301m1)P (Tp + |w\§70,T) + 1) exp (23p3(301m1)P (Tp + |w|g’07T> + 2)

= Clp.
Since w was arbitrary in A€ and ¢ was arbitrary in [0, T], the inequalities for the p-variation and
uniform norm of ' hold P-almost surely and for all u € U and t € [0,T]. The F-adaptedness

of ') is a direct implication of its definition and the F-adaptedness of " and w. Since w
satisfies the exponential moment condition ([2.48)), we get

sup E [Hwtﬂu)‘&’tn(t)j] <E [CH =Dy < oo.
t€[0,T -

Let ¢ again be arbitrary in [0,7] and let s € [t;, t;11] for some i € {n(t),...,n — 1}, then

los = o] < @lptitipr < Lmalen [([tirr — il + [wlptits0) < Lmallolloo,t, 79

Hence, we have P-almost surely

HQQ — Ptuey HOO,tﬂ(t),T < i:g(rtr)l?i).{,n—l ’90|p7ti,ti+1 < LmlCGDé?

where § is defined in (4.1)). Consequently by the Holder inequality

1 1
E [lp. = @ty Wtyyr] < (L) E[C2]* B [67]?

1
< (L)' [CZ]* ol y

1

< (Lm1)' D2 5,0} -

Since the right hand side of the last inequality is independent of ¢ and ¢ was arbitrary in [0, 77,

we conclude

1
l Inz sl
sup E |[lo. — @tﬁ(A)Hoo,tﬁ(t),T] < (Lma) D;,Qlél,Ql'

t€[0,T]
O
Theorem 4.15. We have for a given u € U, for all t € [0,T] and for almost every w € Q
6" (@) = "0 (W) oo 1, < Ko(w)d(w)* 7, (4.75)
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where the random wvariable Ky has moments of all orders and is independent of n, u and t.

Furthermore, we have

~l=

1
21 2— 2—
sup 2 [t — gty | T < B [KE|T 6T = D,

00t ()1
t€[0,T ()

foralll > 1.

Proof. Let A C Q, such that P(A) = 0 and w.(w) is continuous and of bounded p-variation for
every w € A¢. Let w € A°, u € U and t € [0, T] be arbitrary and define 72* = ¢L" — goiﬂ(t)’u for
all s € [0,T1], for notational simplicity leave out the direct dependence of the involved processes
on w, v and t. Focusing on the interval [t,), T], we can repeat the arguments form Theorem
analogously, where we just exchange in all the estimates for Iy, ..., I in the short time step case
and Iy, ..., I3 in the multistep case the constants (1+Cy) by Cy and (14 Cyn) by C,. We obtain

with
Di(w) 1= 8m3CH(Cy + Cyn) (2 + Ce + Cen) (1 + 4Dy () Ke (14 91(0, )2 CF ! + 5(0,7) )
for every [r, s| C [ty), ], that

Vlpors < 4CIma (1 + €7

) [V llprs (s = 7l 4 [wlp,p,s)
1 1
+ Da(w)8 7 (p1(r,5)7 + 9a(r,5)7 + |s = 7+ [wlps)

< 4Cyma(1+ ’fn’p,r,S)(‘%‘ + [y pmsms — 7|+ ‘w|pvr,8) + D2(W)527p7

where
1 1
Da(w) i= Di(w) (£1(0,7)7 + @2(0, T)% + T| + |07

is P-a.s. bounded independently of v and n and has finite moments of all orders. Now we set
Vs = Vi, forall s € [0, ()], such that, taking Remark into account, we can argue that for

every [r,s] C [0,T] such that
1

L
prs = 16017711

|s — 7|+ |w

we have

and
Vlp,rs < 2D2(W)627p + |l
where D is independent of ¢, n and u. Now we can use Lemma [2.20] and obtain the estimate

"Y’p,tﬂ(t),T < (2D2<w)527p + ‘,.Ytﬁ(t)‘)62510(m1C1)P(TP+\w\§,o,T)
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and therefore
||7||oo,tﬂ(t),T < (2D2(w)52*p + 2|’Ytﬂ(t) |)62510(m1Cl)P(TP+|w|5,0,T).
We have by (2.32) used on the interval [t, 1]

Venoy] = |Ptay = Paco |
= [|¢ — @lloo it
< W’p,t,tﬂ(t)
<201m1Cy(1 4 Ce)d
< Do(w)6%7P.

Which yields

H’VHOO,tﬂ(t),T < 4D2(w)52—p62517(m1C’1)P(TP+\w‘£,0,T)

< Kg(w)§> 7P,

where
K¢(w) = 4D, (w)625p(m101)P(TP+\w\§’O7T) .

Since K4(w) is P-a.s. bounded independently of u, n and ¢ and has finite moments of all orders,
we get the estimate (4.75)). The same holds for §, such that we can use the Holder inequality and
obtain for [ > 1 and 6;; := E[5l]% the estimate

1
20|20 2—p 2—p
<E [qu} 51,21 < DK¢72Z51,21 :

~l

sup E [l 7]
t€[0,T -

O

Now we come to the approximation of the solution to the Brownian motion driven SDEs (4.67))
and . These are matrix valued linear SDEs which are very similar to the inhomogenous
linear SDE , if we exchange ¢ by ¢ and neglect the derivatives w.r.t. z and w respectively
exchange g and y by ¢ and ¢ and neglect the derivatives w.r.t. u. So in the following lemmas
and theorems we will refer to the proof of Lemma and Theorem since the calculations

are analogous.

Lemma 4.16. We have for a given u € U and | > 2 that

!
At l 2 C .__ N
sup E|||¢ mnuwtn(t)j] < Cn3eC =Dy,
te€[0,T] -
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Furthermore, we obtain for d3 = max |tiv1 — ti|, that
1=0,...,n—

AUty O i
sup B |[|¢.7" =@ ", 1| < CDgad3 . (4.76)
t€[0,T -

The constant C' > 0 only depends on T', [, my and L.

Proof. Let t € [0,T] be arbitrary, we omit the direct dependence of the involved processes on
u and t for notational simplicity. It is easy to see that ¢ € LfF(Q, C([tnw), T],R™*"2) for every
[ > 2 and that the process

m2 s . .
w8y / 679 b)) Bt () B ()
j=1"tn

for s € [ty(), T] is well defined and an ng X ng-dimensional matrix of F-martingales. Using the
same arguments as in the proof of Lemma we get for every s € [t ), T

1 S
~nl 5 Al
Bl < O +C [ B[I6ly 0] o
n(t)
and we conclude by the Gronwall inequality

)

il z

B (1@l 0| < Cn3eC = Doy

Since the right hand side of the last inequality does not depend on t, we get

l

sup E [H@u’t 00yt (1y,T

te[0,T]

} < Dy
Now let t € [0,T] and s € [t;, t;+1] for i € {n(t),...,n — 1}, we have

l]
S

t

E [|¢7s - @tiﬂ < C'E[

oS
j=1

s

/ bx(t17x27§zuu)¢tz d'U
t;

]

By the boundedness of the coefficient functions and by the Burkholder-Davis-Gundy inequality,

we get

S
Al
160ty ]
t;

~ ~ N 1
B (16 = 0] < Cls — 0B [Ipllny o] +Cl6 - 1515

1
< CDyy6%.
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This yields the estimate (4.76)) for [ > 2. O

Theorem 4.17. We have for a given u € U and | > 2 that

1
l T 1
Tut Aty (2-p)ng
¢u - (Pu n(t) < DK(j;,l(slAl :

ooin(t)’T:|

sup E “
te[0,T

for any 1 > 2, where the constant DKdS’l 1s independent of u and n.

Proof. Let t € [0,T] and s € [ty),T] and consider the processes ¢t and @¢Wtn® on tnee)s T
where we omit the indexes u, ¢ and ,,(;) for readability. Let C' be a generic constant that is only

dependent on L, [, mg and T'. Since now we focus on the interval [t, ), T] instead of [0, 7] as in
Theorem we need to take care of the term

" ~ l n Al " l
Io =B [|d,0 = Pugo | SE[10 = Bllscn] =B [16 = Tallbeag, ] -

We have using the Jensen and Burkolder-Davis-Gundy inequality and condition (B;) and (Bs)

s l
Iy < CE[ sup / bg;(’f’,.%'r,fr,U)(br dy, ]
Se[t,tﬂ(tﬂ t
ma S ) R ) l
—l—CZE{ sup / l(r,zy, &, u)o, dB] ]
o1 Lseltta) 1/t
1 oy L oy
< C(tﬁ(t) _t) E / ‘¢r| d +C(tﬁ(t) - t)Q E / ‘¢r| dr
t t
1
< CD, 83
1
< DO,l(SQQa

where
DO,Z = CDq;,l'

The other estimates are completely analogous to the estimates from the proof of Theorem [4.12

By adapting the corresponding constants

w

L 1 , L
Dl,l = CDQBJD2,4I + CD(E,QZ <(1 + Dx,?l + DE,ZZ) 2D13),4l + DZKIAZ

N[

L L
+ (1+ Dyn g + Dgn 21)2 D2 4y + Dl 4D2 ,; + Dfu,z,u)

and Dy ; which only differs from D ; in the constant C because of the Burkholder-Davis-Gundy
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inequality, we get that

o ° o : U(2-P)A3) ((2-p)A}
B{16 = @llaiye] <€ [ B[I6=0llaryo] do+ Dot + DLs™"s 4 Dl

tn(t)

s ~ !
<C [ B[I6= Elhanye] dv+ D)
n(t)

)

((2-p)A3)
!

5

)

where l
Dl = maX{DO,lDziAl’ Dl,l? DQ’Z}.

By the Gronwall inequality, we conclude

L H(2-p)nd)
B ”¢t . Sotﬁ(t) Hloo,tﬂ(t),T:| S Dl6174l P)ANS @C
H(2—p)A3)

< Dqu,l(SlAl

Since the right hand side of the last inequality does not depend on ¢, the assertion follows. ]

Lemma 4.18. We have for a given u € U and | > 2 that

sup E [H@u,tﬂ(t)nfx)’t (t)7Ti| < C(l + Daﬁ,l)ec = D@J.
tef0,7) =

Furthermore we obtain for 9 = max |tiv1 — ti|, that
1= n—

=U,...,

Uty ~Uty, L
d E [Hw- "=y 2 HZO,W),T] < C(Dgg + Dyy)ds. (4.77)
€10, -

The constant C' > 0 only depends on T, I, mo and L.

Proof. Let t € [0,T] be arbitrary, we omit the direct dependence of the involved processes on u
and ¢ for notational simplicity. It is easy to see that ¢ € LL(Q,C ([tne), T1), R™2*™ ) and that the

process
ma

(w7 S) = Z /t &;l,j (tﬁ(v))étﬁ(v) (w) + &?’j (tﬁ(v) )@tav) (w) qu]} (w)
=1 ta(e)

for s € [ty(), T] is well defined and an ng X nj-dimensional matrix of F-martingales. Using the
same arguments as in the proof of Lemma[4.11] and the results from Lemma [4.14], we get for every
S € [tﬂ(t)v T]

S
- ~ 1l
E (16100 < CDot+C [ B (I8l ] o
n(t)
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and we conclude by the Gronwall inequality
~l C._
E |:”<PHOO,tﬁ(t),Tj| S CD(Pvle T D@J
Since the right hand side of the last inequality does not depend on ¢, we get

sup E [||¢"!
te[0,7

l
oo,tﬂ(t) ,Ti| S DSZ’:I :

Now let t € [0,T] and s € [t;, t;y1] for i € {n(t),...,n — 1}, we have
! i 7
B [|S53 - ¢t1| ] < CEH/ bx(tiazvgaégau)@ti + bz(t’iatrgafgvu)@ti dv
t;
ma l
+02E[ }
j=1

By the boundedness of the coefficient functions, Lemma [{.14] and by the Burkholder-Davis-Gundy

inequality, we get

l}
S
7

/ 6%(“7 l’Za&Za“)@h + 52(15@', l‘g»fg, u)(pti quj)
t,

B (160 = ul] < 06 = 0B 191y + Iellbeir

L_

S
~ 11l l
#0060 = 03B [ 18l + ol 7]
t; - -
l

< C(Dgi+ Dyp)d3.
This yields the estimate (4.77) for [ > 2. O
Theorem 4.19. We have for a given u € U and | > 2 that

~ l
a6 oo

t€[0,T]

! (2-p)Ag
= DK(;,lél T
Oo,tﬂ@),T ’

for any 1 > 2, where the constant DK(;J is independent of u and n.

Proof. Let t € [0,T] and s € [t,),T] and consider the processes %t and @%in® on [tn(e), T,
where we omit the indexes u, ¢ and i, for readability. Let C' > 0 be a constant which only
depends on T', [, mz and L. Since now we focus on the interval [t, ), T] instead of [0,T] as in

Theorem [4.12] we need to take care of the term

Iy =E |11, = Pt '] E[16 = Bllrcnyy] = B {1015 nan |-
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We have using the Jensen and Burkolder-Davis-Gundy inequality and condition (B;) and (Bs)
l]

S
/ 51 (1 Ty v W) & (s T €y 1) by A
t

/ l;x(rawrvérvu)qgr +BZ(T7‘TT’7§T’7U)¢T dT
t

Iy < CE{ sup
Se[t,tﬂ(t)]

]

tn(t)

m2
+C Z E [ sup
j:1 SE[t,tﬂ(t)]

thty . !
< Oty — ) 'E [ /t (1601 + 16,1 dr} + Oty —t)2'E [ /t

l

< C(Dé,l + D¢7l)(525

(16:] + \Wdr]

1
< DO,1522a

where
Dy, = C(D(fs,l + D¢’l).

)

By repeating the arguments from the proof of Theorem and the results from Lemma

and Theorem [4.15| we have for

[N

L 1 L

D
1L 1L
+ (14 Dan ot + Den 21)2 D2 4y + D, D24y + Div,4l>

l 1
R ! 2 2 !
Dy = CDy, 4Dy, gy + CDZ o Dy 1

1A

1 1L 1
+CD. o ((1 + Dy + D)2 Dy, + Di, 41+ (14 Dyn 9 + Den 1) 2Dy 4
!
l 2 l
+ D, Dy + Dw,4l>
and constants Ds;, Dy such that D;; and Ds;, respectively Dy; and Dy; only differ in the
constant C because of the Burkholder-Davis-Gundy inequality, that

T 5 ’ S 5 U(2-P)AD)
B |16 = Pltyipa] SC [ 16~ Bl ] dot Dogss +Dradyy ™"
n(t)
1((2—p)AL 1((2—p)AL 1((2—p)AL
+D3,l51(,5u & 2)+D27l61(,il § 2)JFD4,Z51(,24 )

S b—@ 1((2—p)AL
SC/t E [Hé—cp”éo,tm),v} dv + Dl(sl(,(l D) 2)7
n(t)

where l
Dl = CmaX{D071D374l, Dl,l cey D4’l}.
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By the Gronwall inequality, we conclude

b~ U(2-p)A3)
E [Wt — plaw Hloo,tﬂ(t),T] <Dy 77 ¢

— pl 1(2-p)Ag)
= Pk 1014

Since the right hand side of the last inequality does not depend on ¢, the assertion follows. O

The following theorem is the second main result of this thesis, where we summarize all the

results of this subsection.

Theorem 4.20. For allu € U and ] > 2, we have

~]=

2-p)AL
sup B[IA = AL 1" < Dicgoyy”"?.
t€[0,T] -

and under the assumption (HA), we get

~ _ 1
sup E [’At _ A?n@) ’l} < Dy (2H-1)A3
te[0,7 -

for constants D, ; and DKA,l independent of u and n.

Proof. Let C > 0 be a constant only dependent on L, M, [, Dxn 1, Do i, DIKX ;and max,—1, . a7 9u(0).

By (4.74)), we have

!
-
t€[0,T7] n
RSt
< @M Lo qp B [||q>t_vtﬁ(t>|yf>ovtn(tﬂ}
te[0,T] B
1((2-p)AL
< 051(7(1 PING) +C sup E [H(ﬁt - thﬁ(t)Héqtn(t),T}
te[0,T] B

+C SB%}E [Hét _ @tﬂ(w”fx’tn(tﬂ} +C s[lé[;]E [Hét _ gétﬂ(”Héo,tn(t),T] .
te|0, B te|0, o

Taking Theorem [4.15] Theorem and Theorem [4.19]into account, this yields

1
l:| T
2-p)Ad _ 2-pIAL 2_AL
< 087" + CDi, b} + ODi 10,737 + ODe 16y "

sup E UAt — Ay,
+€[0,] ()

where )
Dgy1 = C(1+ Dr,uD; ;+ Dk, + Drc )
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Under the assumption (HA), we follow the same arguments as in Subsection to proof the

assertion. 0

4.3 Discretization of the cost function and its gradient

Let to = T1 < ...,T; = T be a sequence of times in [0,7], and (g,)u=1,..,m be a sequence of

functions satisfying condition (G). Our cost function is given by

M
1
JiU = Rue o > Elgu(Xf)]%.
pn=1
The problem we want to approximate numerically is given by
| M
(P) Find min J(u) = min — 5 E[gu(.)(}‘u)]2

ueU ueU
pn=1

subject to

u o zl,u _ EO(U) ! (T’ 51?7 T, fr? ’LU'
i <x> - (xo(u)>+/o (bo«,xr,s )d +Z/ ( >d ’]"
mo ¢ 0 4
2 (frj(r,xﬁ,gﬁ,u)) o

We introduce the discretized calibration problem and show that the discretized cost function
converges to the cost function and the same holds for the corresponding gradients. Let ITP =
(ti)i=o,....n be partition of the interval [0, T] such that (7},),=1,.. m C 1%\ {0}, with the notations
of Section the discretized calibration problem is given by

(P") Find min J" (u) = min 2 ZE [gu (xn “)r (4.78)

subject to

X:L — 41 — 7 + R 7 (tz+1 _ t’L) + i (wj. _ w]‘)
+ Bl —BI), i=0,...,n—1,X" = Xy(u
Z < tz,l't >£t 9 )) ( fi tz) o 0( )

In the following corollary, we utilize the results from the previous section to show that J"

approximates J.
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Corollary 4.21. There exists a constant Dy, > 0, such that for every u € U, we have that

29— 1
T (u) = J"(w)] < D, 605 "2,

Under the assumption (HA), there exists a constant l~7KJ > 0 such that
6§2H71)/\%‘

[J(u) = J"(u)| < D,

Proof. Let u € U, since (gu)u=1,...,m satisfies condition (G), we get

[T (u) = J" (u)]
1M 2 2
=5 z:l E [QM(X%M)] —E {gu(xﬁu)} ‘
=
< ;%E ng()(ﬁ) - gu(X:?Mu)H E ng(xﬁ) + gu(X:I?::u) ]

p=1

1
< ML (LE 1% gz + LE 12" o] +2 max |gu<o>r) B[l = xm o] -

By Theorem Remark and the monotonicity of L'-norms, we get

1 2-p)A 3
T(u) = T (w)| < 5ML <LDX,1 +LDxny +2 max \gﬂ(0)|> Dicyadiy 2

_ 1
< DKJ5§,24 p)/\2

Under the assumption (HA), we have by (4.61)) and the monotonicity of L!-norms
A 2H-1)A%
Bl — A" locnr] < Dicyads 2.

Hence, we get for every u € U

5;2}1—1)/\%

[J(u) = J"(u)| < Dk,
O

For the gradient VJ, we have two representations, one using the sensitivity equation and
the one established in Lemma using the solution to the adjoint equation . In Subsection
we showed that we can approximate the sensitivity equation by its corresponding
discretization scheme . Now we will use this to show that we can approximate V.J with the
help of the Euler approximations of X and ).
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Lemma 4.22. For every u € U, we define the discretized gradient

(VJ)"(u) := ﬁ/[:E [gH(X”“)} E [gu( WAL
p=1

Then there exist positive constants Dy, and DKW, independent of u and n, such that
2—p)AL
V.7(u) = (V)" (0)] < Dieg, b5 .
and under the assumption (HA), we get
(2H-1)A3

IVJ(u) — (VJ)"(u)| < Dk, 0y

Proof. By definition of VJ(u) and (V.J)"(u), we have

] ]

(X, — gl (X Y

W (X7, VE,

M
VI () = (V)" (W) < DE [[gu(%E,) — g0 (7
p=1

|5

)

M
o3 )
pn=1
= 51+ Ss.

By the Lipschitz continuity of g, the boundedness of ¢’, Remark Theorem and the

monotonicity of L'-norms, we can estimate the first sum by

S < ML Dy B[ X = X" o ]

l
< ML*Dy 1 Dicy20iy 2.

The sum Sy can be decomposed by

23k Jucai e

Using (3.2)), the Lipschitz continuity of ¢’, the boundedness of ¢’ and (4.31]) this yields

l( n,u

LX) — gl ()

‘Jﬂ%ﬂ +

)| v, -

-

So <M <LDX" 1+ max, g#(0)> LE {qu - 00,07 1Vl o0 + 1YV = ymuHoo,O,T} .

n=

By the Hoélder inequality, Theorem Theorem and again the monotonicity of L‘-norms,
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this yields

1

S0 M (LD + s, 9u0)) L(B 14 = 012 o] B [19 e

)

— 1 1 2 1
= ML (LDX”J -+ max gu(0)> (DKX:251,4 *Dy, + DKy,26§ 8 p)A2> :
/"L: ARG ’ ’

(NI

+E [”y“ —

Hence, there exists a constant D, independent of u and n, such that
92— 1
V.7 (u) = (V)" ()] < Dic,dp5 ",

since 014 < 01,8. Using the arguments from Subsection the convergence rate under the
assumption (HA) follows. O

We want to include the discretized adjoint equation given by (4.64]) into the calculation of the
gradient V.J. But instead of discretizing the gradient given in (3.15]), we find another represen-
tation of (V.J)™, which contains A".

Lemma 4.23. For every u € U, the discretized gradient (VJ)"(u), can be represented by

(V)" (u) =

n—1
AnDXO + Z At i+1 nt“t’LJ’,l] )
1=0

where

u tia It~)§t~)u

+Z< <tz,xt,a, >> (B, = BL)

for alli € {0,...,n — 1}. Here the discrete adjoint equation is given by

y bu(t:, €7 u) X (ot & u)\ :
nti,ti+1 = (l; ( ntl n )) (ti-'rl - tl) + Z 0 " (wgi_t,_l - wgz)
7j=1

AL = (AL = AL (Tnygns +itis) + O, Blgu(XE)g,(XE,) € RMH72,
T[.L:ti

where

b (ti, £, u) 0 ol twgt su) 0) j
o= i . t; ) + wl —w]
ntzytl-&-l (bz(tz’:ﬂg’gt"’u) bx(t,“;[;?l,gg’u) i+1 — Z 0 ( tz+1 tz)

+Z< ( ) ~J ?L n )) (Bg+1_Bgi)€Rm+n2

tlvxtzagtl Jw(tiamtiagtiv u
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for alli € {0,...,n—1} and

analogously to (4.64)).

Proof. We use ideas similar to the proof of Theorem 5.1 in |Kébe et al.| [2009]. For v € U we have

the discretized gradient representation

a7 = 3B [a] B ).
p=1

where for all 4 € {0,...,n — 1}, we have
Y,
Vi = (Y
= P . A : o ' tiv1 — i
ytl * ((b (tlvxgvé-?vu) b:C (t17xga§£au) ytl * bu (thxgvé-gvu) ( i )
tla€ 3 0 n Ugl(tlvgriau) j j
+Z<< & ) O)yti+< Ot <wii+1_wgi)

E 0 0
' <(: (“’xt7@a u) &%(%vwﬁvéﬁ,U)> . (6$(Q,x2a§Z7Ui)> (B - 5)

= VP4 (BRUYE + BL(t)) (it — 1) + 3 (SR )VE + Su(t)™) (wi,, — wl,)

tit1
J=1

S e s0) (1,5
= (]nl-f—nz + Uti,ti+1)yg + TIZ,tm

with
Vi = Yo = (D&o(u), Dao(u)) .
We consider the sum

n—1

mn
2 :yti+1
i=0

and multiply each of the recursive equations with row vectors A}

#,, € RMT2. Furthermore we
add the term Af)y on both sides, which yields

Z A Z+1yt2+1 Anyo - Z A tit1 ( n1+n2 =+ 77t1,t1+1)yt + nt t2+1) + Agyg)l

=0
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This is equivalent to

|
—

n n—1

(AZ - ?H—l (In1+n2 + ntivtiJrl)) yt + Atnytn Anyo + Z A 7.+177t7,7tz+1
i=0 i=0
If we now choose Ay, for i =0, ..., n according to the statement of the Lemma, this yields

Z Z 9u(X7 )9, (X7) V7, + Z Elgu(X7))9,(X7) V7,

i=0 T)=t; T, =T

= AU(Déo(u), Dzo(u)) " + Z AL s

which is equivalent to

M
> Blgu(X7,))g0 (X7, VE, = A DXo(u) + Z AL
pn=1

Taking the expected value on both sides, yields
n—1
(V)" =E |[AjDXo + > AL iy
i=0

and hence, the assertion. ]

We proved that we can approximate the gradient of our cost function by discretizing either
the sensitivity equation or the adjoint equation. How these results can be used in practice is
shown in Section [L.5l
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