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Abstract

In this thesis we present a rigorous existence theory for a class of quasilinear analytic wave
equations. This theory is developed by writing both wave equations as infinite-dimensional
evolutionary systems via the spatial dynamics approach. Using methods from centre-
manifold theory and conserved quantities of the resulting evolutionary equations, we
construct a family of generalised pulse solutions on the entire real line. These generalised
pulses are exponentially close to a reversible homoclinic solution to either

2 = 29 + RS (21, 22),
2','2 =21 — CZ% + 57?5(21, ZQ)

or

&1 =y1 + R 1 (71, Y1, T2, Y2),
i1 =1 — Cay (27 + a3) + eR1 (@1, 41, 2, 42),
Ty = Yo + R 1 (T1, Y1, T2, Y2),
y2 = T2 — OI’Q(SC% + l’%) + 87?’;,2(*1'17 Y1, .1’2,?/2),
for all times, where R; are quadratic and R;; cubic reversible perturbations and ¢ is a

small parameter. As applications we consider steady gravity water waves with vorticity
and steady three-dimensional gravity capillary water waves.






Zusammenfassung

In dieser Arbeit entwickeln wir eine rigorose Existenztheorie fiir eine Klasse quasilinearer,
analytischer Wellengleichungen indem wir diese mit Hilfe rdumlicher Dynamik als un-
endlich dimensionaler Evolultionsgleichungen formulieren. Methoden aus dem Bereich
der Zentrumsmannigfaltigkeitstheorie kombiniert mit Erhaltungsgrofien der gegebenen
Evolutionsgleichungen ermoglichen es uns eine Familie verallgemeinerter Pulslosungen
fiir alle reellen Zeiten zu konstruieren. Diese Losungen liegen fiir alle Zeiten exponentiell
dicht an einer reversiblen homoklinen Losung des Systems

21 = 29+ 5R§(2’1, 22),
22 =21 — CZ% + 87—\),;(21, ZQ)

oder

£y =y + eRT 1 (@1, 91, T2, Y2),
i1 =21 — Cay (2] + 23) + R 5 (21, 41, T2, o),
Ty = Yo + eR5 1 (%1, Y1, T2, Y2),
Jo = 3 — Cwo(a] + 13) + RS 5(21, 41, T2, o),

wobei R; quadratische und R, ; kubische reversible Storterme sind und ¢ ein kleiner Para-
meter. Als Anwendungen betrachten wir permanente Wasserwellen unter Schwerkraft
und Vortizitdt sowie dreidimensionale Wasserwellen unter Schwerkraft und Oberflachen-
spannung.
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1 Introduction

1.1 Pulses

The system

21 = Z9, (11)

22 = Z1 — CZ%

with C' # 0 and 2, 20: R — R is a simple example of a dynamical system admitting a
homoclinic solution (see Figure 1.1). This solution is given by the explicit formula

()=

h(t) = 230 sech? (;)

Perturbations of equations (1.1) and (1.2) of the form

where

21 = 29 + €Ri(2’1, ZQ), (13)
Zo = 21 — CZ% + €R§(21,22), (14)

where

Ri(z1,22) = O(|(z1, 22)°)

and ¢ is small parameter, in general do not have homoclinic solutions. If we additionally
assume that equations (1.3) and (1.4) are reversible, i.e. equations (1.3) and (1.4) are
invariant under t — —t, (21, 22) — (21, —22), we still are able to construct symmetric
homoclinic solutions by showing that the stable manifold W consisting of points on orbits
which converge to zero as ¢t — oo intersects the symmetric section {zo = 0}. Indeed

W = { (Zgg) te R},

which intersects {z; = 0} transversally at (h(0),0)"; since transversality is an open
phenomenon the intersection persists for small positive values of €. (See Lemma 4.4 for a
functional-analytic proof of this result.)

11



(a) The case C' < 0. (b) The case C > 0.

Figure 1.1: Phase portrait of equations (1.1) and (1.2).

An example of a system with a cubic nonlinearity and homoclinic solutions is given by

$.1 =Y, (15)

. 3
7 = a1 — Cay,

where C' > 0 (Figure 1.2); they are given by the formula

(0)-+(0)

where

The four dimensional system

1 =1, (1.7)
U1 = 11 — Cay (23 + 73), (1.8)
9 = 1, (1.9)
Uy = 19 — Co(a? + 23), (1.10)

also has homoclinic solutions since it admits the invariant plane {(z1,y;)}, the flow in
which is governed by equations (1.5) and (1.6).

AV
|

Figure 1.2: Phase portrait of the invariant plane {(x, 1)} of equations (1.7) — (1.10).
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Now consider the perturbed system

&1 =y + R 1 (71, Y1, T2, Y2),
i =z — Cay (2 + 23) + eRY o1, Y1, T2, Y2),
Ty = Yo + €R5 1 (71, Y1, T2, Y2),
o = 23 — Cmy(x] + x3) + eR3 5 (21, 41, T2, y2),
where
Rf,j(l"l,thz,yz) = O(|(z1,y1, 22, 12)]%),

assuming the reversibility ¢t — —t, (z1, 41, %2, y2) — (T1,Y1, —Z2, —Y2). In this case

T1
o_Jlw| . (z1) _ h(t) yr\ h(t)
wo=d[5) () = (10). (2) < (). mac o
Yo

where Ry is a rotation through 6, and this manifold intersects the symmetric section
{y1 = 0,25 = 0} transversally in the points (+h(0),0,0,0)T. We thus obtain the existence
of two symmetric homoclinic solutions for small positive values of €. (See Lemma 4.12 for
a functional-analytic proof of this result.)

Equations (1.3) and (1.4) arise from the system

21:ZQ+..., (115)
=X —-Ca+..., (1.16)

where \° = ¢ + O(g?), by the scaling

P e (RO (¢ 241(f)
T \2(t) (A)’5())
This system exhibits homoclinic bifurcation (from zero) associated with a 0? resonance
(the eigenvalues of the linearised system form a purely imaginary pair for € < 0 which
collides at the origin as € 1 0, forming a Jordan block, and splits into a real pair for

e > 0; see Figure 1.3). Similarly, equations (1.11) — (1.14) arise from the system given in
complex coordinates by

)
)

lei(w+05)zl+22+..., (117)
2o = ()22 +i(w+0%)2 — Czola [P + .., (1.18)

where \° = ¢ + O(g?), 0° = O(e), by the scaling
21@)) _ toree [ X (B0 +i0a()
(1) (A2 (i () + ida(D)) )

This system exhibits homoclinic bifurcation associated with an (iw)? resonance (the
eigenvalues of the linearised system form two purely imaginary pairs for ¢ < 0 which
collide pairwise as € 1 0, forming two Jordan blocks, and split into a complex quartet for
e > 0; see Figure 1.4).
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rm)\ Im A\ Im A

Re A Re A

@ — e o
‘ Re \

e<0 e=20 e>0

Figure 1.3: An 0% resonance at & = 0.

Im A\ Im A\ Im A\
®iw ° °
Re A Re A Re A
T—iw ° °
e<0 e=0 e>0

Figure 1.4: An (iw)? resonance at € = 0.

It is convenient to write system (1.15) and (1.16) or system (1.17) and (1.18) as
2= L2+ hoy(2), (1.19)

where z € R", n € {2,4}, L¢, is the matrix associated with the 0? or (iw)? resonance and
h,, is the (parameter-dependent) nonlinearity. Let us now couple equation (1.19) with a
second, possibly infinite-dimensional equation, to arrive at the system

2= Lyw? + gun(z, 1) + hiy(2), (1.20)
= Lgu+ gon (2, u) + hg, (2), (1.21)
where the new nonlinearity g5, satisfies g5, (2,0) = 0. The variable u belongs to a

Banach space Xy, and L : Dy, C Xy, — X, is a densely defined, closed linear operator,
while g5, : R" x Dy, — Xy, and hS: R® — X, are nonlinearities with ¢5 (z,0) = 0.
Under the assumption that the spectrum of LZ, lies in two wedge-shaped regions (see
Figure 1.5), the centre-manifold theorem asserts that all small, globally bounded solutions
to equations (1.20) and (1.21) lie on a locally invariant manifold

M: ={(z,u) :u=1r°(2)}

given as the graph of a nonlinear reduction function ¢, where ¢, z, u lie in neighbourhoods
of the origin in R, R™ and Dg,. The flow on the centre manifold is determined by the
reduced equation obtained by inserting u = r°(z) into equation (1.20). The reduced
equation is of the type (1.19), and one can investigate homoclinic bifurcation for this
equation, and hence system (1.20) and (1.21), using the above techniques. This method
has been particularly successful in studies of travelling gravity-capillary water waves.
Writing the hydrodynamic equation as evolutionary system in which the horizontal spatial
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coordinate plays the role of time (‘spatial dynamics’), one finds that the system has the
form (1.20), (1.21). The above procedure thus reduces the problem to a 0 resonance (see
Kirchgéssner [10]) or (iw)? resonance (see Tooss and Kirchgéssner [10]) depending upon
the values of the physical parameters. The resulting homoclinic bifurcation generates
homoclinic solutions to system (1.20) and (1.21) known as solitary waves.

Im A

Re A

2no 2no

Figure 1.5: The spectrum of LY is contained in wedges with spectral gap of distance 2y
to the imaginary axis.

Alternatively, one can consider the coupled system

z = Lypz + gon(z,w) + hip(2), (1.22)
b = LEw + g2z, w) + H(2), (123

where w € R? and L¢ is a matrix with d pairs of purely imaginary eigenvalues denoted by
+iwy, . .., Fiwg (see Figure 1.6), and g°: R" x R?? — R?? hS: R™ — R?*? are nonlinearities
with g5(z,0) = 0. In general system (1.22) and (1.23) does not have homoclinic solutions.
Each point on a homoclinic solution is a point of intersection of the stable and unstable
manifolds W and W, which are both F-dimensional (dim W and dim W are the number
of eigenvalues of LS, with respectively negative and positive real part), and in general
two -dimensional manifolds do not intersect in R+2d,

Im A\

Re \

Figure 1.6: The spectrum of L{ consists of d pairs of purely imaginary eigenvalues.
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Equations of the form (1.22), (1.23) were considered in a series of papers by Groves
and Schneider [7, 8, 9] (they actually considered an infinite-dimensional version of these
equations which arise from nonlinear wave equations, but the issue is the same). In the
special case that hZ = 0 system (1.22) and (1.23) has the invariant subspace {w = 0}, the
flow in which is determined by equation (1.19), and one can find a homoclinic solution
p° to equation (1.19), and hence a homoclinic solution (pf,0) to (1.22), (1.23), using the
methods described above. Groves and Schneider showed that if h.(z) = O(|z|") then
(1.22), (1.23) has reversible solutions (z,w) which satisfy

(=) = P (1), w(®)| = ON),  te[-1,17],

where t* = O(¢™"). Furthermore, a sequence of near-identity ‘normal-form’ transforma-
tions can be used to successively remove terms in the Maclaurin expansion of hS(z) and
hence achieve the condition hZ(z) = O(]z|"). The result is thus a family of ‘generalised
pulses’ which exist and are approximated algebraically closely by p® over an algebraically
long time scale (here ‘algebraic’ means with respect to the amplitude of p°, which is O(¢%).
This result can be considerably strengthened if the nonlinearities are analytic. In this
case one can find an optimal value of N so that hZ(z) is exponentially small for values
of (z,€) in an appropriately chosen neighbourhood of the origin. One then finds that
system (1.22) and (1.23) has reversible solutions (z,w) which satisfy

1

|(2(t) = p°(#), 0)| = O(e 2%)

fort € [—t*,t*], where t* = O(e!/2V). These generalised pulses exist and are exponentially
close to p® over an exponentially long time scale (see Figure 1.7).

(z,w,u)

N

—t* t*

Figure 1.7: A generalised pulse solution to equations (1.24) — (1.26) lies in an exponentially
thin tubular neighbourhood of (p#,0,0) over an exponentially long time scale.

In this thesis we study the general coupled system

2= L2+ gin(z,w,u) + hiy(2), (1.24)
i = Liw + g2 (2w, ) + he(2), (1.25)
= Lju+ g5, (z,w,u) + hg (2) (1.26)

obtained by combining equations (1.20) and (1.21) with equations (1.22) and (1.23).
Assuming analyticity of the nonlinearities, we show that system (1.24) — (1.26) has
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generalised pulse solutions which exist and are exponentially close to p° (a homoclinic
solution in the invariant subspace {(w,u) = (0,0)} over an exponentially long time scale.
(Note that this result cannot be achieved by the standard method of constructing a locally
invariant centre manifold of the form

{(z,w,u) : (w,u) =7r(2)}

since the reduction function ¢ typically does not inherit the analyticity of the equations.)
We improve this result further for systems with a conserved quantity which is positive
definite on the subspace {(z,u) = (0,0)}, showing that the generalised pulse can be
extended to the entire real line. These solutions do not necessarily decay to zero at
infinity but they are exponentially close to p® for all times. A similar result was obtained by
Groves and Schneider [9] for algebraic approximations to p® in the context of system (1.22)
and (1.23).

1.2 The main result

In this thesis we consider the system

Z = Lz + gon (2, w, u) 4+ hiy,(2), (1.27)
b = Liw + gf(z, w,w) + BE(2), (1.28)

for (z,w,u): R — R"xR?*!x Dy, where n € {2,4}, d € N and Dy, is a dense subspace of a
Banach space Xy,. (We use the terminology ‘weakly hyperbolic’, ‘strongly hyperbolic’ and
‘centre’ and the subscripts ‘wh’; ‘sh” and ‘¢’ in analogy with finite-dimensional dynamical
systems.) We abbreviate R" x R? x X, R" x R?? x Dy, to respectively X', D and R?? x X,

R?? x Dy, to respectively X, g, Degn Similarly we write L€ instead of (L%, L, Lg,). On
the right-hand side we make the following assumptions.

(A1) The bounded linear operators LS, : R" — R", L:: R* — R and L, : Dy, — X
depend analytically upon .

(A2) The functions g('l)q, g\, gs(il), h%, Re), héﬁ take values in respectively R™, R?¢ X,
R", R* X, and are analytic at the origin in respectively R x D and R x R". We
suppose that

gjvh(szvu)7gg(zaw7u)?.ggh(szvu) = O(”(vavu)”D||(wvu)|
wn(2), hE(2), hgy(2) = O(|2]*).

Dc,sh)’

(A3) The spectrum of the complexified operator L € C?¥*2? consists of finitely many
simple purely imaginary eigenvalues +iwf, ..., +iw, where w5,...,w5 > 0 (see
Figure 1.6).

(A4) The system (1.27) — (1.29) is reversible, i.e. there exist Sy, € R™", S, € R?4*2d and
Sen € L(Dgn) N L(Xn) such that system (1.27) — (1.29) is invariant under ¢ — —t,
(z,w,u) — (Swnz, Scw, Ssht).

17



(A3)

(A6)

There exists a real-valued function Z() which is analytic at the origin in R x D,

satisfies
T (z,w, u) = O(||(z,w,u)||3)

and
7°(0,w,0) = |w|* + O(|w|?)

and is such that Z° a conserved quantity of system (1.27) — (1.29).

The linear operator LY : Dy, C Xy, — Xap is closed and satisfies the estimate

1
: ]_LO —1 <
IG7 = L) e S 7

for s € R.

For the weakly hyperbolic component we treat two distinct cases. For n = 2 we assume
the following properties.

(B1)

(B2)

18

The spectrum of the linear operator LZ, € R**? exhibits a 0% resonance at € = 0,
meaning that as € 7 0 a pair of purely imaginary eigenvalues of L, collides at the
origin (forming a Jordan block) and splits into a pair of real eigenvalues for e > 0
(see Figure 1.3). We write z € R? as

z=z1e+ 25f,

where LY, e =0, LY, f = e, and assume that

e 0 1
Lo = (()\5)2 0) )

where A is an analytic function of € with
2 =¢e+0(?).
Additionally, we assume that Syp(z1, 22) = (21, —22)-

The coefficient of zfe in the Maclaurin expansion of i, (21, 22) denoted by —C' does
not vanish.



For n = 4 we make the following assumptions.

(C1) The right-hand side of equations (1.27) — (1.29) satisfies the estimates

hin(2) = O(|2),
he(2), ha(2) = O(|=).

(C2) The spectrum of the complexified linear operator L, € C*** exhibits an (iw)?
resonance at € = 0, meaning that there exists w > 0 such that as € 1 0 two pairs
of purely imaginary eigenvalues of L, collide to form geometrically simple and
algebraically double eigenvalues +iw and split into a complex eigenvalue quartet for
e > 0 (see Figure 1.4). When working with complex coordinates we write z € R?* as

z=zie+2f +ZE+ nf, 2,2 €C,

where (L2, —iwl)e =0, (LY, —iwl)f = e, and assume that

iwro) 1 0 0
e (29?2 i(w+0o°) 0 0
wh = 0 —i(w+o09) | )
0 0 (A°)? —i(w + o)

where \°) ¢° are analytic functions of ¢ with
N =¢e 4 0(?), o = 0O(e).

Additionally, we assume that Syu(z1,22) = (21, —22) and kw # w? for all j €
{1,...,d} and k € N.

(C3) The conserved quantity Z¢ satisfies
IE((Zla 22)7 w, u) = O(H(ZQ’ w, u) ||R2><]R2d><Dsh || (Zlv <2, W, u) ||D + 5”(21’ Z2, W, U)H%)
(in complex coordinates).

(C4) The coefficient of z1|ze|?f in hSy(2) — ¢5,(2, Xe(2, 2), Xan(2, 2)) denoted by —C,
where X (z, z) is the unique solution of the equation

1
_Lg,shX(Zu Z) + X(Z, 2LthZ) = _5 d2hg,sh[0](zu 2)7

is positive.
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We prove the following results for each fixed v € (0, 1)

Theorem 1.1. Suppose n = 2 and Assumptions (A1)

— (A6) and Assumptions (B1)
and (B2) hold. There exist positive constants £y and ¢* with the property that for each
e € (0,&9) equations (1.27)

(1.29) admit a family of generalised pulse solutions satisfying

and

S
=
:_/
2

)l

c,sh S € 2\/E
for all t € R, where

Fi(0) = o sect® (L) + 0,
p5(t) = i(;&, sech? (t)> + O(ce M),

Theorem 1.2. Suppose n = 4 and Assumptions (A1)

(A6) and Assumptions (C1) — (C4)
hold. There exist positive constants g and ¢* with the property that for each e € (0, &¢)
equations (1.27) — (1.29) admit a family of generalised pulse solutions satisfying

= 5(z(t), w(t), u(t))
and
A1) _ o PN ) i (A°)) -
| (a(t)) ( ( SOt) +iG5(°1)) <,
I ole), u(@)l, < 5
for all t € R, where

Pt (C)% sech(t) + O(ge™"),
G (t) = ij((o) sech?®(t )) + O(ee™MM)

5(t), 5(t) = O(ee™).

Remark 1.3. Theorems 1.1 and 1.2 hold for ¢ € |

—e~¢"/2VE ¢"/2V%] rather than t € R if
Assumption (B2) or Assumption (C4) is not satisfied



The proofs of Theorems 1.1 and 1.2 make heavy use of techniques employed in the
proof of the centre-manifold theorem for quasilinear evolution equations, and we therefore
begin with a thorough review of this proof in Chapter 2. In the construction of the centre
manifold it is necessary to solve equations of the form

= Lyu+ f(t) (1.30)

with a function f: R — X, (in the above notation). For this purpose we use a maz-
imal regularity result by Arendt et al. [I] which states that for each f € CY(R;Xy)
equation (1.30) has a unique solution u € C2(R; Dg,) N Cp*(R; X,y) provided that

1
is] — L%)™* <
I(is ) Mo S 7 e

for all s € R (here a € (0,1) is fixed). In general this result does not hold for o = 0,
which necessitates the use of Holder spaces in the entire construction. In particular we
discuss composition operators in such spaces. Our proof is a slight modification of the
proof given by Kirrmann [17]. It is also possible to replace C with LP for p > 1 (see

Arendt et al. [1]), and a proof of the centre-manifold theorem in this setting was given
by Mielke [21].

In Chapters 3 and 4 we adapt the normal-form theory given by Groves and Schneider
[9] on the basis of earlier work by Iooss and Lombardi [ 1] to construct a sequence of
near-identity changes of variable which systematically remove the jth order terms of the
Maclaurin expansion of h{ g, for j € {1,...,p} while preserving the overall structure of the
system. In general it is not possible to remove hg y, completely but we can at least make
an optimal choice of p so that the remaining terms are exponentially small in comparison
to ¢ in a suitable neighbourhood of the origin. This normal-form theory requires that L,
is diagonalisable. Since this condition is evidently not met we use the following change of
parameter to ‘replace’ it with a diagonal matrix.

In the case of a 0? resonance we write ¢ = p? and introduce the scaled variables

()= (G2 ()= (1) =l

(

to convert equations (1.27) — (1.29) into

Z=1IL'7+ G (Z,W,U)+ H",(Z), (1.31)
W = L'W + G*(Z,W,U) + H"(Z), (1.32)
U=1LhU+Gh(Z,W,U)+ H"(2), (1.33)
where

o (L) _ (0 M (2

wvhlz,) —\ M 0)\Z,)°
Gan(Z, W, U) = O(|(W,U)llp, , I(Z, W, U)|lp),

GI(Z, W, U), G4 (2,W,U) = O(42|| (W, U) o2, U)lp),
Hly(Z) = O(|1Z]%),
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HI(Z), Hy,(Z) = O(u*| Z]7),

: € € H
and we have abbreviated LZ|._,2, L |2 to LY, LL,.

In the case of an (iw)? resonance we again write e = u? after an additional preliminary

transformation (this step is necessary since the scaling leads to slightly worse estimates
for the nonlinearities) and introduce the different scaled variables

M= Moz,
o = 0%|cmp2,

Zy\ (5\“) 22
(2)-(n2)
W = (X“)_lw,
U= (M) 2u

This transformation converts equations (1.27) — (1.29) into

Z=1L"7Z+G(Z,W,U)+ H" (2), (1.34)
W = Lr'W + G*(Z,W,U) + HM(Z), (1.35)
U=LKU+ G- (Z,W,U) + H4(Z), (1.36)
where
i(w+d*") A 0 0
h AH i(w+a*) 0 0
wh 0 0 —i(w + ") M
0 0 Ak (w+ &)
(in complex coordinates), and
Gi(Z,W,U) = O p,(Z. W, U)|Ip).
G (2, WU)ZO(#|W||| (7, WU> . l(Z. W, 0)|p).
Gi(2,W,U) = O([(W. U)o, ., (2, W, U)HD),
Hy(Z) = O(|ZP),
H!(Z), H4,(Z) = O(|(Z, w1 Z]?)

: € € H
and we have abbreviated Lf|._,2, L |2 to L¥, L% .
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The result of the normal-form theory is the existence of an optimal value of p and § > 0,
c¢* > 0 such that the transformed system

Z=1L"7+G" (ZW,U)+ H" (2), (1.37)
W = LMW + G*(Z,W,U) + H*(Z), (1.38)
U=LNU+Gh(Z,W,U)+ H4(Z) (1.39)
satisfies
V(D) S 12675,
JAB 4 (2) | (s S e 5
for |(Z,n)| < 0.

The normal-form theory is presented in a general context in Chapter 3 and applied
to our specific problems in Chapter 4. Chapter 4 also contains the following results for
the ‘approximate pulses’ in the invariant subspace {(w,u) = (0,0)} obtained by selecting

he gu(2) = 0, and estimates for the transformed nonlinearities are given in Remarks 4.8
and 4.16.

Lemma 1.4.

(i) Suppose n = 2. For fixed v € (0,1) and € > 0 the system
F= Lo+ i (2)

has a reversible homoclinic solution of the form
Gw§:<u%ﬁw>
p5(1) (A*)’p3(t))”

B(O)] S e

where

for all t € R. The scaled equation
= L2+ HY(2)
has the reversible homoclinic solution
W@:<§p§:<¥ﬁ@muw>
5 (1) )\“pg()\”t)\gz,p
which satisfies the estimate
[PH(1)] S MRl

for all t € R.

23



(ii) Suppose that n = 4. For fixed v € (0,1) and € > 0 the system

has a pair of reversible homoclinic solutions of the form

el(w-i-a < E(ﬁ ( )+i}52(/\5 )) )
(A2 (d5 (X°t) + ig5(A°t))

where
TAGINAGIEE

for all t € R. The scaled equation
Z=LLZ+ HE(Z)

has the reversible homoclinic solutions

- (50) - (2

which satisfy the estimate

for all t € R.

In Chapter 5 we turn to the construction of generalised pulses. Writing

Z = P'+R,

we obtain the system

R = K"R+ N*"(R,W,U),
W = LMW + GH*(P* + R,W,U) + H*(P" + R),

U: LghU+égh(Pu+R7WU)+F[éﬁ(Pu—i_R)a

where
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K"R = Ly, R+ dH}, [PY)(R),

NHR,W,U) = Hvlih<PH + R) — ﬁv%h(Pu) - dffééh[P"](R) + G@h

(1.40)
(1.41)
(1.42)

(P*+ R,W,U).



Since we anticipate the W-component to grow linearly (being the centre part of the
system), we cannot expect solutions of equations (1.40) — (1.42) to be bounded in their
W-component. We therefore modify system (1.40) — (1.42) by replacing W in the nonlin-

earities by ¢p(W) = w(e%|W|)W, where 1: R — R is a smooth cut-off function with

o(6) {1, <1,

0, [t|>2

and |0 (t)] < 2! for t € R and | € Ny. We write the modified system as

R=K"R+ N" (R, W,U), (1.43)
W = LEW + G*(P* + R,W,U) + H*(P* + R), (1.44)
U=L5U + G4 (P + R, W,U) + H4 (P* + R). (1.45)

In Section 5.2 we establish the following theorem by formulating equations (1.43) —
(1.45) as a fixed-point problem.

Theorem 1.5. Fix v € (0,1). For each W, € R* with S.W, = W, and |W;| < ue_gTL
there exists a reversible solution (R, , Wiy, , Uy, ) of equations (1.43) — (1.45) with W (0) =
WO in

E 5 = C%.(R;R™) x C5

VAH VAH

(R; R*)) x C%

VAH

(R; Dsh)
(where the subscript refers to the use of the exponential weighting e~ It in the norms)
satisfying

sup| Riy, (£)] S pe” 27,

teR

sup Wiy, (8)] S e,
te[—egj,e%‘]

_<
Dsn SJ l’l’e 2

sup||Uyy, (1)]
teR

for some § > 0. These solutions thus in particular solve equations (1.37) — (1.39) for
t € [—e /2" e /2], In analogy with familiar dynamical-systems theory we define

VVIS)Z - {(RT/VO’WJV()?UITVO)(O) : SCWO = Wo, |W0| S ,ueigiu}

and refer to W&, as the local centre-stable manifold for reversible solutions to equa-

tions (1.37) — (1.39). The behaviour of functions with initial values lying on W, is
summarised in Figures 1.8 — 1.10.

The proof of Theorems 1.1 and 1.2 is completed by showing that in fact
sup| Wiy, (1)] < e 3,
teR

so that (Ry,, Wy, Uyy,) solves equations (1.37) — (1.39) for all + € R. We accomplish
this result in several stages in Sections 5.3 and 5.4, by proving the following results.
Theorems 1.6 and 1.8 are more precise than usual versions of familiar results in centre-
manifold theory, while Lemma 1.7 is proved using the conserved quantity Z°|._,2 as a
Lyapunov functional.
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Figure 1.8: The central part of functions with initial values on W, satisfies |W (t)| < e ™2

for t € [—GST‘, e§7]. It may leave this neighbourhood of the origin for larger
values of |t].

ay

Figure 1.9: The weakly hyperbolic part of functions with initial values on W& lies in a

tubular neighbourhood of P* such that [(Z(t) — P*(t))| < e % forall t € R.

CS

Figure 1.10: The strongly hyperbolic part of functions with initial values on W,
1U(#)||p,, <e 2 forall t € R.

satisfies
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Theorem 1.6. The equations

Z =LiZ + NI (Z,W,U) + B (2), (1.46)
W = LW + G*(Z,W,U) + H!(Z), (1.47)
U=LLU+G"(Z,W,U)+ HL(Z) (1.48)

obtained from equations (1.37) — (1.39) using the cut-off function have a centre manifold
We=A{(Z,W,U):(2,U) =¥ (W)},
where W: B2, (0) = R™ x Dy, satisfies the estimate
1@ (W)[rnxp,, S W]
Any solution (Z, W, U) to equations (1.46) — (1.48) satisfying
|2l ey IW = LEW oy g Ny pny < €5

lies completely on W€.

Furthermore, any solution to equations (1.37) — (1.39) with

*

1Z |y mirmys (W | ey mir24y, U ||y (mip) < € 2

lies on

Wi = {(Z.W.U)  (Z.U) = O(W), W] < e 5},

and any solution passing through a point on Wy remains on Wy as long as it remains in

o*
Dsh S € 2”}'

{(zW,U) eD:|z],W| U]

Lemma 1.7. Any solution (Z, W, U) of system (1.46) — (1.48) lying on the manifold W*

with |[W ()| < %(3757 (so that (Z, W, U)(ty) € W) satisfies |W (t)| < %ef%u (and hence
(Z,W,U)(t) € Wg,) for all t > t,.

Theorem 1.8. Let (Ryy, , Wy, , Uy, ) be a solution to equations (1.37) — (1.39) with
(Rivy» Winy» Uiy, )(0) € Wi, There exists a solution (Z, W, U) of equations (1.46) — (1.48)
on W€ such that

o*

sup Wiy, (t) — W(t)] < pe %
te(t*,00)

for t* = —“— (see Figure 1.11).

uuxﬂ

Noting that t* < e 2, we find from the estimate
sup [ Wiy (0] S e
te[o,e_%u]
that |[Wy, (t°)] < %6_57 and hence [Wy, ()] < %e_i for t > t*. The fact that

Wi, ()] < ¢ % for all t € R follows from the symmetry of Wiv,- The generalised
pulses in Theorems 1.1 and 1.2 are obtained from (P* + Ry, , Wy, , Ujy, ) by reversing the
scaling from ¢ to p.
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: : t ............. W
0 v o5 — Wi,
e 5
Figure 1.11: The central part Wy, of a function with initial values on W5, converges

exponentially to the central part W of a solution to equations (1.46) — (1.48)
on W¢.

1.3 Applications

1.3.1 Generalised solitary waves on rotational flows

In Section 6.2 we consider gravity-driven steady waves on the surface of water in a
uniform rectangular channel bounded below by a rigid horizontal bottom and above by a
free surface. In a Cartesian coordinate system moving with the wave the fluid domain is

{(,y) ;v eR,0<y <n(x)}

for some profile function 7: R — (0, 00). Working in dimensionless coordinates, we seek
the velocity field in the form (¢, —1),), where the stream function 1: R?* — R satisfies
the boundary-value problem

Yz + Wy + W (¢) =0, 0<y<n, (1.49)

Y =0, y =0, (1.50)

P2+ 1/{,3 + 2n = 3r, y=n (1.52)

(see Keady and Norbury [14]). Here the wvorticity function w') is a real-valued function

which is analytic at the origin in R x R and r is a parameter referred to as the Bernoulli
constant. A solitary wave is a solution (1, 1) to equations (6.8) — (6.11) such that n decays
to a constant, while a generalised solitary wave instead decays to small ripples far up-
and downstream. Solitary waves were found by Kozlov et al. [19] under the assumption
that w is a large negative constant. In this section we apply the results of Chapter 5
to establish the existence of generalised solitary waves with exponentially small tails for
linear vorticity functions (see Figure 1.12).
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Figure 1.12: A generalised solitary wave on the surface of a stream solution.

We start by interpreting our flow as a perturbation of a stream solution (A® h) of
equations (1.49) — (1.52), that is a solution (n,) with ¢ = A°(g) and n = h, so that

(A%)" + w*(A%) = 0, 0<gy<h,
A® =0, y =0,
A =1, y = h,
((A°)')? + 2h = 3r, y =
(see Kozlov and Kuznetsov [13] for a complete discussion of stream solutions); we assume

that A° € H?(0, h) depends analytically upon . Equations (1.49) — (1.52) are equivalent
to the spatial evolutionary system

d; = U + Ni(®, V), j<h, (1.53)

Uy = —Byy — (W) (A9 + N5(B, D), j<h,  (154)

b =0, , (1.55)

=0 , (1.56)

Dy — KD = NE(D, D), y=h, (1.57)

in terms of the new coordinates

T=ux ﬂ—ih y
’ n(z)
and variables
- A€/
<I>:<I>—A5—gj( >C,
) h
U=

_ é(>h)
TR ey

where
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The nonlinearities are given by

NE(®,0) = o i hnif + Cyfh( h(Aa)"g)
G

(79);
<+2h AV € 3 /~C
w57 )

h (wa( AT+ ﬁ(Aa)’g) — W (A%) = (W) (A%) (@ + g(Aa)’g)),

TN
+
/‘\3‘

with

P(n) = 35(3r = 2n).

Equations (1.53) — (1.57) have the conserved quantity
: Mh o (se (& ey, WA 2
) = / ( (C+h)<\p = (5 + (A% + =) )
Sl y(A)'¢
h h

re-n

HE(

CERos (4 a

)) dg + = (§+h) - 27"((—1—11).

Using spatial dynamics we write equations (1.53) — (1.57) as the evolutionary system

B\ i
<\i’>i = f5(P, V), (1.58)

where ( )
= = U+ N:(O, T
f&‘ (I),\I/ = < T e € )
O =\ - ()8 + N3 (@, )
note that f¢ takes values in X' and is analytic at the origin in R x ), where
Y ={(®,%) € H*0,h) x H'(0,h) : ®|5—0 = 0,¥|;— = 0},
X ={(®,9) € H'(0,h) x L*(0,h) : D50 = 0}.
The domain of the vector field on the right-hand side of equation (1.58) is
{(D,0) €Y : By — k°D = N5(®, V) for y = h}.

To linearise the nonlinear boundary condition associated with equation (1.58) we introduce
new coordinates I, & given by
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This change of variable transforms equation (1.58) into the evolutionary system

T

(F) ~wie. (1.59)

where k5(T, €) takes values in X and is analytic at the origin in R x Y. The domain of
the vector field on the right-hand side of equation (1.59) is

D — {(f,g) € H?(0,h) x HY(0,h) : T(0),£(0) = 0,T5(h) — x°T'(h) :0}

and H¢ is transformed into a conserved quantity for equation (1.59).

We note that the linearisation of k° is given by [s: DF C X — X with

v (E) - (‘fg@ - (ie)’(/\a)f>

and study the spectrum of L¢ for the specific choice w®(¥) = (b + ). We show that
for each N € N there exists a choice b = by for which the spectrum a(lv'f) consists of
purely imaginary eigenvalues i(—pu$)Y2, +i(—u5)Y?, ..., £i(—ps)"?, real eigenvalues
(Ui 40)"?, £(usye3)Y?, . .. and additionally

(i) a pair of purely imaginary eigenvalues i(—ps,,)"/? for e > 0,
(ii) a pair of real eigenvalues £(us, )2 for € < 0,
(iii) a zero eigenvalue for ¢ = 0
(see Figure 1.13).

We proceed by decomposing X' = X5, & A @ X5, where Xy, = P [X], A = PS[X]
and Xy, = P5 [X], P¢ and P5, are the spectral projections corresponding to respectively
[ (=) V2, i (=5 VY and (o (15 0) V2, £ (3 4) V2, o} and PRy, = [ — PE— P,
A further near-identity change of variable maps X, ., X7 and Xj, into the fixed spaces
X0,,X% and XY (see Section 6.1 for full details of the procedure) and thus converts
equation (1.59) into a system of the form equations (1.27) — (1.29). The following theorem

is finally obtained by verifying Assumptions (A1) — (A6) and Assumptions (B1) and (B2).
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Im A Im )\

Re A % Re A
e<0 e=0
Im A
Re A
e>0

Figure 1.13: The spectrum of Le.

Theorem 1.9. For each n € N there exist positive constants b}, €9 and c* such that
for each € € (0, ¢) equations (1.53) — (1.57) admit a family of generalised pulse solutions
satisfying in particular n(Z) = h + ((Z), where ((Z) = ((—Z) and

tan(y/b-h) (A2 (A°F)| < e 27,

(2) +

NS

Here v and (—1)VC are positive numbers (given by equation (6.41) with b = b} and
equation (6.42)),

N 2 (1 —ult|
7°(t) = — sech (5) + O(ee™M)

and £\° are the two real eigenvalues of the linearised problem with \* = O(e).

1.3.2 Periodic steady gravity-capillary water waves with localised
transverse profiles

In Section 6.3 we consider gravity-capillary steady waves on the surface of water bounded
below by a rigid horizontal bottom and above by a free surface. In a dimensionless
Cartesian coordinate system moving with the wave the fluid domain is

{(z,y,2) rz,y,z€e R,0<y <1+4n(z,2)}

for some profile function n: R? — (=1, 00) which is 27 /7-periodic in the z-direction.
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Working in dimensionless variables, we seek the velocity field in the form (¢,, ¢, ¢.),
where the velocity potential ¢: R3 — R satisfies the boundary-value problem

7-2@5:1::0 + ¢yy + ¢zz = 07 0< Yy < 1+ n, (160)
Qby - O, Yy = O, (161)
¢y - Tznx(b:r - nz(bz — TNz, Yy = 1+ n (162)

and
1
— T+ 5 (T + by + 00) +an

_572[ M L_”B[ i L:o, y=1+n (1.63)

VT4 VR

Here the period in the z-direction has been normalised to 27 and «, 3 are dimensionless
parameters which measure respectively the speed of the wave and the strength of surface
tension (see Groves [0]). In this section we establish the existence of solutions to equa-
tions (1.60) — (1.63) with localised profiles which decay to small ripples in the transversal
direction (see Figure 1.14). Waves with localised profiles which decay to zero in the
transverse direction were found by Groves [6]. We introduce a bifurcation parameter by
writing (5, «) = (5o, ag + €), where the values (fy, o) are chosen later.
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Figure 1.14: A steady wave which is periodic in the direction of travel and spatially
localised in the transverse direction.
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Equations (1.60) — (1.63) are equivalent to the spatial evolutionary system

1—1—7’27732C 3
Nz = (52) w,

1+ 7% B2 — W2\ 2
- v+ e(1 ) |
“ (1+n ( ) / U L+7n3) la

N / (‘I"Q %2 LT (q)g B %y%)
0 \2(1+mn)? T o147
42 (cpc 3 <I>yym><1> 79Nz
v 1+77 +n

(o T o] ) o

+ (e +e)n — 79|51,

o v’ (1+r >2y<I>’W
Pl \B-W2) 149

27 '’ 1 2\ 5 gL
L () s
1+7 Wwz2) 14+n

!/

<I>~~ L gn;
W= -2 (1 (@ - 2 )
n i

1+ 1+n
DLijna WGV (1+ 7202\ 2
s - 40 VI (e
with boundary conditions
(ID% =0, y=0,
P’ Dinz W /14 722\
TNz + Y :7—2j<q)22 >+ ( ZI?)’ ~:17
g 1+7n " 1+7 L+n\3— Y
where

1 1
W= +7/ U'gd! dy.
Tl T

The coordinates and variables are

~ ~ Y ~
T =ux, =— Z=z
YT ()
and
]_ 27 1
q>’:q>—7/ ‘odjde, U = \If——/ /\Ifdgjdx,
2w Jo  Jo
where
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(1.64)

(1.65)

(1.66)

(1.67)

(1.68)

(1.69)



(I)(i‘aga 2) = ¢($7y72)7
1 ®~ zZ\ ~ ~ z

L+ I+ +n2

R T (!

We define the spaces
X, = H3FN(S) x H2,(S) x H3HY(D) x H,.(2)

per per per per

for s > 0, where S = (0,27) and ¥ = (0,1) x (0,27) and

H;,(2) = {u € H; (Z):/Eudgd:izo},

per per

and X = X, Y = X;. We can then formulate equations (1.64) — (1.67) and boundary
conditions (1.68) and (1.69) as the evolutionary system

e 3

/ = f€<7]7w7 (I)/7\Ij/); (170)
v
the domain of the vector field on the right-hand side of this equation is given by
D={(nw,®, ¥)eY: (1.68) and (1.69) are satisfied}.

To linearise the nonlinear boundary conditions associated with equation (1.70), we note
that they are equivalent to

q)%_}_ng-T = F(T]’w’ q),7 qj,)’ g e {07 1}7

where
_ . . L+ 770513
F(n,w, ®,0") = =gz + §7°nz(P5(1 + 1) — unz) + ?JW‘I’/(W) :
The requisite change of variable is given by
(p, 07 F; 6) = (777 W, P — X \Ij’)

with x = A7'F(p,w,®,¥’) being the unique solution to the elliptic boundary value
problem

TQXECTZ + Xﬂ?j = F(way (b/7 qj,)v (j7g) € E’
X = 07 ?j S {07 1}'

This change of variable transforms equation (1.70) into the evolutionary system
p
O\ = k.01, (1.71)
&/
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where k%(p, 0,1, ) takes values in X and is analytic at the origin in R x ), and H® is
transformed into a conserved quantity for equation (1.71). The domain of the vector field
on the right-hand side of equation (1.71) is

D = {(p,H,F,f) e): Fg’gzo = O,sz + Fg‘g:l = 0}

We note that the linearisation of k° is given by [¢: D C X — X with

1
p %6 ,

ie 0 _ | —7Tilg=1 + (o +&)p — 7°Bopaz
r £
3 —7°Tz — Ly

and study the spectrum of this operator using Fourier series in the Z-coordinate.

Lemma 1.10.

(i) The eigenvalues of L with eigenvector in the 0th Fourier mode are +(c/3)"/? and
+nm, n e N.

(ii) Suppose m € N. A complex number A is an eigenvalue of LY with corresponding
eigenvectors in the mth Fourier mode if and only if

(g — P02 sin o, +m*72 cos o, = 0, (1.72)
where
o2 =\ —m?7?

In particular X is either real or purely imaginary.

For each m € N equation (1.72) has at most two purely imaginary solutions =is,, which
correspond to geometrically double eigenvalues of L°. The eigenvalues +is,, collide at the
origin at points of the line

Cp = {(Bo, ) : (o + Bom?7?) sinh mr = m7 coshm7}

in (fy, ap) parameter space (see Figure 1.15). At these points the two zero eigenvectors
each have a Jordan chain of length 2. We proceed by choosing

(507 O./()) € Cm \ {Pl,ma s 7Pm—1,m7 Pm,m—i—la Pm,m—i—?}a

defining X, , A and X in the obvious fashion using spectral projections and map-
ping those spaces to X2, X? and XJ. The following theorem is obtained by verifying
Assumptions (Al) — (A6) and Assumptions (C1) — (C4) and applying Theorem 1.2 to
equation (1.71).
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B
Figure 1.15: The line C,, consists of points in 3, a parameter space at which two real ei-
genvalues in the mth Fourier mode become purely imaginary by passing

through 0. It connects ((m7)~!coth(m7),0) with (0, m7 coth(m7)) and
crosses Chy1, Cpmo, . .. at the points P, i1, Promt2, - - -

Theorem 1.11. Suppose that (8y, ) € Cop \ {Prms-- -, Pn—t.ms Prm+1s Prm+2s - - -}
and f3, € (targ;(LTT), CO%TT) for m € N. There exist positive constants 9 and ¢* such that
for each € € (0,2¢) equations (1.64) — (1.67) and boundary conditions (1.68) and (1.69)
admit a family of generalised pulse solutions satisfying in particular n(z, 2) = n(—z, —2),
n(Z +2m, 2) = n(z,2) and

®

sinh(mr) cos(ma) A\ (A°2) ‘ <e 3,

n(@,2) -

'70,m

Here 7., and C are positive numbers (given by equations (6.79) and (6.80)),
2.1
Ft) = i(é) 2 sech(t) + O(ee M)

and £\° are the two real mode m eigenvalues of the linearised problem with A* = O(e).
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2 The centre-manifold theorem

The reduction of a (possibly infinite-dimensional) parameter-dependent evolution equation

i = f(\z) (2.1)

to a low-dimensional dynamical system is an established method to analyse its local
bifurcations. The centre-manifold theorem states an existence criterion for a locally
invariant manifold which contains all small global solutions of equation (2.1). In contrast
to abstract methods such as the Lyapunov-Schmidt reduction the centre-manifold theorem
has the advantage of preserving the status of equation (2.1) as an evolution equation.
There is a huge and growing literature on centre-manifold theory, and here we mention
just a few key results. Early versions of the centre-manifold theorem were proved by
Kelley [15] and Pliss [22] for finite dimensional systems. Vanderbauwhede [23] wrote a
survey about the theorem for semilinear systems and Mielke [21] proved it for quasilinear
systems on Hilbert spaces.

In this chapter we present a complete proof of the centre-manifold theorem for quasilinear
systems on Banach spaces due to Kirrmann [17], the technical details of which form the
basis of the research we present later. While Mielke and Kirrmann both employ maximal
regularity results for the ‘hyperbolic’ part of the linearised equation, Mielke works in LP-
based spaces while Kirrmann uses Holder spaces. Kirrmann’s approach has the advantage
of being applicable in Banach spaces but involves many technical estimates for composition
operators in Holder spaces which we review in particular detail as they are needed later.
We are also able to simplify Kirrmann’s proof slightly by using maximal regularity results
due to Arendt et al. [1].

2.1 Function spaces

First we introduce the function spaces used in our proof of the centre-manifold theorem.

Definition 2.1. Let w: I — (0,00) be a weight function, that is a non-constant, positive,
continuous function, n € N, a € (0, 1), I an interval and X,X7, ..., X,, Banach spaces.

(i) We denote the space of all bounded functions from I to X by B(I; X).

(ii) We denote the Banach space of all bounded continuous functions from I to X by
Cy(I; X) and equip it with the usual norm

lulloy i) = supllu(?)lx-
tel
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(iii)

(iv)

(v)

(vi)

(vii)

We denote the Banach space of all n-linear mappings from Xi,...,X,, to X by
LM (X,...,X,; X). For notational simplicity we write £ (X;;X) instead of
LONXy, . Xy X)if X =...=X,.

We denote the Banach space of all bounded uniformly continuous functions from [
to X by Chu(l; X).

We define the Banach space of bounded Holder continuous functions from I to X
with Holder exponent « as

Co(; X) = {u € C(L; X) : ulleerx) < oo}7

where Ju(t) — uts)]
uty) —ullz)||x
[ullce () = llullc,zx) + sup ——.
t1,ta€l ‘tl - t2’
to <ty

The second term in the definition of ||-||ce(7,.x) is called the Hélder seminorm.

We define the Banach space of Holder continuous weighted functions from I to X
with weight w and Holder exponent « as

CIX) = {u e C(I; X) : [lullegrx) < o0},
where |[ul|ce(r,x) = ||wu||cg([;X).

For notational simplicity we write Cy(I; X) instead of C¢,,(I; X) and C} L(I; X)
instead of C%,,(1; X).

The Banach space of k times continuously differentiable weighted functions from I
to X with weight w: I — (0, 00) is defined as

Ch(w; 1, X) = {U € CMI; X) : Hu”c{j(w;l,X) < 00}7

where

k
tll ey = supw (B)|u(t) | x + > supw(t)[[u (1)]|x.
tel j=1 tel
In the case w = e™ for n € R we write Cf(I; X) instead of Cfi(e™; 1, X) and
abbreviate the case n = 0 to CF(I; X).

(viii) We denote the Banach space of even continuous bounded functions from R to X by

Co(R; X)) and the Banach space of odd continuous bounded functions from R to X
by Co(R; X).

For some frequently used weight functions such as exponential functions there exists
an equivalent norm

t1) — ul(t
ulllcarxy = supw()|lu(t)||x + sup min{w(tl)w(tz)}nu( 1) —ulfa)llx
wis tel ty t2€T1 |ty — ta]®
o<t

on C%(I; X) which is often easier to handle in Lipschitz estimates.
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Proposition 2.2. Suppose that w is a weight function satisfying |||w|||Ca71(],R) < oo. The

norm |[||l[ca (s x) is equivalent to [|[lce rx)-

Proof. We suppose that min{w(t;),w(t2)} = w(ty) for fixed —oco < ty < t; < oo (the other
case is handled similarly). We find that

Jw(t)u(ty) — w(ta)ulte)l|x < w(t)|lu(ty) — u(te)|lx + w(t) — w(t)|[[u(t) |l x
|w(t1) — w(t2)

|
< o |t — tal® i |t — tal®
> H|UH|CW(I,X)| 1 — b+ 61 — to]ow(ts) H|UH|CW(I,X)| 1 — b
< |||U|||cg(1;x)|t1 — bl + |||W|||0371(1;R)|||U|||Cg(1;x)|t1 — bo|”
= (Lt lllwllioe m)llullog sl =t
and
w(t)[[uty) —u(ta)l|x < llw(t)u(ts) — w(ta)u(t)llx + l|w(te)ults) — w(t)u(tz) | x
|w(ty) — w(ta)]
< N I e
< lulleg(rx) [t — 2| * + it — falow(ty) [ullcarx)ty — ta
< @t llwllee am)liulesaxolts — |
for t1,ty € I satisfying to < t;. L]

Corollary 2.3.

(i) The norms ||-[|c,r;x) and |[[-[ll5, ;.x) are equivalent.
(ii) The norms [|-||c, .rx) and [, , 7,x) are equivalent.
Proof.

(i) Suppose that —co < t, < t; < co. In the case min{e”l1l e721} = ezl we find that

lemtl — emmltal]

|ty — ta|*

le~ltl — gmmltal|
|t — o]
_ 1 el
T =t
1 — e nlti—tz|
|t — ta]®
1—e™

< sup
t>0 te

< 00. (2.2)

min{e"'t”, en\tzl} — nt2]

The other case is treated in the same manner, so that |He_’7"|]Hc_n(1.X) < o0. Pro-
position 2.2 therefore yields the equivalence of both norms.
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(ii) For ") we consider that

ot |eﬁt1 _ ent2| 1 — enlta—t1)
e —
|ty — ta* |ty — ta|*
1 — e~ nlti—t2|
=t
1—e
< su
- t>%)) te
< OQ.

The case e~"0) is treated in the same manner as "), so that [||e*"() e, - r:x) < o0
Proposition 2.2 therefore yields the equivalence of both norms.

]

2.2 Cut-off functions

A cut-off function x € C*°(R) is a function with the properties

and [xW(r)] < 2! for all 7 € R and [ € N. Let the function h.: R? — R? be given by

he(z) = x(e7'|2l)2

for all z € R? and ¢ > 0. The function h. induces a composition operator H,: C(I; R?) —
C(I;RY) in a natural way with the formula

He(u)(t) = he(u(t))

which satisfies
[ He (W)l (rmay < 22

by construction for all v € C(I;R?). In this section we study H. as an operator
CH(I;RY) — C)(I; RY) and Cy(I;RY) — C(I;RY).

Proposition 2.4. The function h.: R? — R? satisfies the estimates

|he(2)] < 2e,

dehe[Z]Hcm(Rd;Rd) Se it

for all z € R? and j € N.
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Proof. Clearly
[he(2)] < x(e 7 |2D)ll2] < 22
for all z € R? because x(¢71|z|) = 0 for all |z| > 2. Similarly

T
1.y - zz _
dhelz] = e X (e 7 |2l) T + x(e7 =]

2|

and hence
ldhe (2]l cmay < e Hx(e 2Dzl + Ix(e Mz S 1,

where we have used the facts that x(e7!|z|) = 0 for all |z| > 2e and |x(¢7}z])] < 1 for
all z € R%

The higher-order estimates are obtained inductively in the same fashion. O

Definition 2.5. Let n,e > 0 and A € R¥4, We define

E,oa(l;RY) = {u € CH(I;RY) : [a(t) — Au(t)| < e for all t € I}.
In fact E, . 4(I;R?) is a closed and convex subset of C) (I; RY).

Lemma 2.6. The set E, . 4(I;R?) is convex and (E, . a(1;R?), || - lc1(1ra)) is a complete
metric space.

Proof. The convexity of E, . a(I;R?) follows directly from the calculation

|raq (t) + (1 — r)ug(t) — rAus(t) — (1 — r)Aug(t)| < rlug(t) — Auy(t)]
+ (1 = r)[ia(t) — Aua(t)]
<e

for all uy,us € Ep. a(I;RY), r € (0,1) and ¢ € I.

The space E, . a(I;R?) is clearly closed in C},(I :RY), so that it is complete. O

Proposition 2.7.
(i) The operator H. satisfies the estimate
IH ()l ey S (1+ [ Ao )2
for all u € E, . 4(I;RY).
(ii) We have that
1H. (1) — He(uz)llep iy S (14 [|Al|zaxa ) 1 — 2l oprizay

for all uy,uy € E, . 4(I;R?).
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(iii) The operator Hs. also satisfies the estimates given in (i) and (ii) for all uy,us €
E, e a(L;RY).

Proof.

(i) From Proposition 2.4 it follows that |H.(u)(t)| < 2¢ for all u € E, . 4(I;R?) and
t € I. Furthermore, Proposition 2.4 and dh.[z] = 0 for |z| > 2¢ yield
() ()] = lahcu@)] (a(1)
dt

= |dhe[u()] (i(t) — Au(t) + Au(?))]
S (L+ [ Allpaea)e
so that
[H (W)l cprmay S (1 + |\A||Rdxd>g
for all u € E, . 4(I; R?).

(ii) Next, we find that

|Ho(un)(t) — He(uz)(t)] = | /O Cdhcloun(t) + (1 — o)us(1)] (ui(t) = ua(t)) do|
S el Jur — u2||C7,(I;Rd)

for uy,us € B, a(I;R?) and ¢ € 1.

Before considering %HE we notice that for all vy, vy € R? we obtain the estimate

T
I 217 _
ldhe[z2] — dh[2]l| ey = [ (72 l) e
1/ 1 Z2Z2T 1
— e ) T e 21|

< e X al) = x(e el

2128 Zezy

EA 2]

+Ix(e al) = x(e7 z)

<2 s?p]|X((1 — 7)5_1|21| + 75_1|z1|)|5_1|z1 — 29
T€[0,1

L(R4)

+e X (e =)l

+ 47t sup|x(7)||z1 — 22
T€R

S 671‘21 - 22’7

where we have again used the facts that x(e7!z|), x(e7!|z|), x(e7|z]) = O for |z| >
2e combined with the estimate

‘|22|zlzlr — ]21|2222T) < 3|z || 22|21 — 22l



The above estimates imply that

d
5 () @)~ H(w)0))
< || dheua ()] |maxalin (£) — i2(t)]
+ [[dhe[us (£)] — dhe[ug ()] |maxalia(t) — Aua(t) + Auy(t)]
S i (t) = a2(t)] + (1 + [[Allgexa)[u () — ua(t)]
< (1 | Allgosa) ™ lus — walloprmey
for all u € E, . 4(I;RY).
(iii) The assertion follows by replacing € by 2¢ except in the estimate |u(t) — Au(t)| < e.
0
Remark 2.8. Since the embedding CJ(I;R?) < C}(I;R?) is continuous for a € [0,1]

and > 0 we can change the norm from || - [[c1ra) to || - [loo(mpa) on the left-hand side
of the estimates in Proposition 2.7.

2.3 Localisation and composition operators

Suppose that X, X, are Banach spaces and U, V are neighbourhoods of the origin in
R? and X,. The localisation of a continuous function ¢g: U x V — X is the continuous
function g.: RY x V — X, defined by the formula

9:(2,y) = g(h<(2),v),

where € > 0 is chosen such that By. X By, C U x V. The localisation of ¢ in turn defines
a composition operator G.: C(I;R?) x C(I; X5) — C(I; X;) by the formula

Ge(u, v)(t) = g=(u(t), v(t)).
For better readability we henceforth use the notation
Ce = CHI;RY) x CE(I; Xa)
for ¢ > 0. In this section we study G. on the closed subset
S D) = Eyea(RY x B = {(0,0) € EyeaI) x CS(1:X2) ¢ lollog s < €}

of C, for fixed n > 0, e > 0 and A € R"*". First we show that G. and G5 are well-defined
as operators into Cf(I; X1) or CF([; X) for pu > 0.
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Lemma 2.9. Suppose that g € Gy (U x V; X7).
(i) The operators G. and G map Ey'. 4(I) into CF(I; X;) and satisfy

|Ge(u,V)lcorxy S sup |g(z,9)llx, +&  sup  ldgz, y]ll cirex xaixy)
(2,y)€B2: X Be (z,y)€B2s X Be

and

[Goe(w, ) lcogxy S sup gz 9)llx, +e sup  ldglz, y]ll cmescxaix)

(2,y)€Bac x Bac (2,y)EBae x Bas
for all (u,v) € Ey. 4(1).
(ii) For each y > 0 the operators G. and Ga. map Ep,_ ,(I) uniformly continuously into
Cﬁ (I ) Xl)'
Proof.

(i) We observe that

1Ge(u, 0) () lx, = lg=(u(®), v@)lx, < sup  [lg(z,9)llx,
(2,y)EB2: X Be

for all t € I, and Proposition 2.7 and Remark 2.8 yield the estimate

1G=(u, 0)(t) = Gelu, v)(s)] x,
= [1ge(u(t), v(t)) — ge(uls), v(s))llx,

< sup 1dglz, Y]l craxxax0) [t — s (HHE(U)HCS(R;Rd) + HU“CS(R;XQ))
(z,y)GBzEXBE

Se o osup [ldglz ylll cmaxxxo It — s|”
(Z7y)€B28><BE

for t,s € I with s <.
The proof for G, is identical.

(ii) First we prove uniform continuity with respect to the weighted supremum norm. To
that end let p > 0 be given and observe that

sup e MM (Go(ur, v1) = Gelug,v2))(H)l|lx, <2 sup  [lg(z,p)llx,e "
t>R (2,y)EB2s X Be

< —
4p
for R > 0 sufficiently large. Since the function g.: R? x B, — X is uniformly continuous,
there exists d; > 0 such that

1

l9-(21, 1) — 9:(22,42) || x, < ZP

for all (21,41), (22,42) € R? x B, with |[(21,y1) — (22, %2)||rixx, < 01. From this fact we
deduce that ||(u1,v1) — (us, v2)||c, < €76, implies
1

sup e |G (uy, v1)(8) — Ge(u, v2) (1)1 x, < 1
tI<R
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Hence
1

||G5(U1jv1) - Ga(u2av2)||C’u(I;X2) < 50

for all (Ul,U1>, (UQ,’UQ) € ETO;,E,A([> with ||<U1,U1) - (UQ"UQ)“CTI < 51.

It remains to prove uniform continuity with respect to the Holder seminorm. For R > 0
sufficiently large and s < ¢t with max{|s|, [t|} > R we obtain the estimate

[(Ge(ur, v1) — Ge(uz, v2))(t) — (Ge(ur, v1) — Ge(ug, v2))(s)||x,
< ge(ua(t), v1(t)) — ge(ur(s), v1(s))lx,
+ [|ge (ua(t), va(t)) — ge(ua(s), v2(s))llx,

< sup [l dglz ylll et — s (I1H:(u) lop gy + He(u2) |l cpgizay + 22)
(2,y)€EB2: X Be

< gt — s|* max{etltl erlslyerR

1
4"

For —R < s <t < R we write
Gy, 01) (1) = Ge(uz, v2) (1) — (Gelur, v1)(5) = Geluz, v2)(s))
= g.(ur (1), 01 (1)) = - (ur (), v1()) = (9 (wa(1), v2(1)) = g-(us(s), v(5)))

= /0 "y [ (he(un (), 02(8)) + (1= 1) (he(ua(s)), v1(5)) | (he(ur (1)) = he(ua(s)),
vi(t) — Ul(S)) dr

-/ g [r(elus(®)),va(®)) + (1 = ) (heua(s)), 0a(8))] (helua(t)) — holua(s))
va(t) — vz(s)) dr.

The uniform continuity of the mapping

[0,1] x R x B. x R x B, — L(R? x B.; X}),
(7, 21, Y1, 22, y2) = dg[r(he(z1), 1) + (1 = 7)(he(22), y2)]
implies the existence of d, > 0 such that
I dglr(he(z1), 1) + (1 — r)(he(22), 42)]

P
= dglr(he(21),51) + (1= ) (he(z), o))l cmarrasn) <
for all (r, z1,y1, 29, y2), (7', 21, Y1, 25, 45) € [0,1] x R? x B, x R? x B, with

(21, 91, 22, 92) — (21, ¥4, zé?yé)”[o,l]dexﬁsdexEE < 02.

Proposition 2.7 and Remark 2.8 yield the estimates

e (ua () = he(un(s)), v1() = v1(8) ey S (IHe(a) | epirma + lv1llos o ) It = 51°
<elt — s
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and

e (un () = he(ua(t)) = (he(ua(s)) = helua(s))), vr(t) = va(t) = (vi(s) = va(s)) e,
SNt = 8% (ur = ug, v1 — v2) [ enrmayxcs (1x2)
for all (uy,v1), (uz,v2) € By 4(I) with

[ (w1, v1) = (u2,v2)llc, < o

For § := min{d;, d2} we thus obtain
|Ge(u1,v1) — Ga(u27v2)”Cﬁ“(I;X1) <p
for all (uy,v1), (ug,v2) € Ep_ 4(I) with

[ (w1, v1) — (Uz,"Uz)ch < 0.
The proof for GG, is identical. 0

In fact G. is Lipschitz continuous under the stronger assumption that g € CZ (U x

Lemma 2.10. Suppose that g € C? ,(UxV; X1). The operator G.: Eg_ 4(I) = Cy(I; X1)
is Lipschitz continuous; more precisely it satisfies the estimate
|Ge(ur, v1) — GE(“%'U?)HC’%(I;XH

< ( sup  [ldglz ol cmoran
(2,y)EB2e X Be

— ng[z,y]nm(wxxz;xl)s) s = sy 01 — ),
(z,y)€B2: X Be

for all (uy,v1), (ug,ve) € Er(ie,A(I)‘

Proof. We find that
|Ge(ur, v1) — Ge(uz, va)llc, 1) = Sup e M| Ge(uy, v1)(t) — Ge(ua, v2)(t)||x,
c

< SEp . || dg[zay]HE(RdXXz;Xl)
(zvy)eBQEXBE

x (o) = HoCws) ez + llos = vl
for all (u1,v1), (ug,v2) € By, 4(I). The estimates from Proposition 2.7 now imply that
|Ge(ur,v1) — Ge(us, U2>HC77(I§X1)

S osup [l dglz Yl cmasoxax (v — ug, v — v2)llc,-
(z,y)€B2: %X Be
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Next we reformulate the Holder seminorm as
g (ur (1), v1(£)) = ge(ua(s), v1(5)) = (g (ua(t), va(t)) = ge(uals), va(s)))
= /0 g [ (he(ur (), v1(8)) + (1= 7) (he(ua(s)), va(s) ) | (he(ua (£) = he(ua(s)),
v (t) — vl(s)) dr

-/ dg[r(e(ua(®)),va(®)) + (1 = ) (heua(s)), va(s))] (helua(t) — holua(s))
vo(t) — vg(s)) dr

= [ [ o (r(hetis ), 00) + (= 1) (helur()) 0(5)))
41— 0) (1 (), v2(0) + (1 =) (hela(5)), 2(5)) )|

(7 (helin(®)) = he(ar(5)), 0a(8) = v1(5))
+ (1= 1) (he(ua(t) — he(ua(s)), vat) — va(s)).
(helun(8)) = he(ar(5)), 01(8) = v1(5)) ) dordr
+ [ dglr(hetus(0). () + (1 =) (e(ws(5)), ()
(o) = b6 = (o) = (),
vit) = vi(s) — (va(t) - w@)))) ar.

and again use Proposition 2.7 to obtain

|Ge(ur, v1)(t) — Ge(uz, v2)(t) — (Ge(ur, v1)(s) — Ge(uz, v2)(s))|lx,

< sup [ gz, Yl e raxxaixy)
(zvy)€B2€><B5

X | (he(un (£)) = he(us(t)) = (he(ur(5)) = he(ua(s))),
on(t) = va(t) = (v1(s) = v2(5)) ) s,
X | (he(ur (£)) = e(un(s)), 01(8) = w1 (5)) [zx,

+ sup Hdg[zvy]HZL(RdxXz;Xl)
(Z,y)GstXBg

x || (e (ur (1)) = he(uz(t)) = (he(ua(s)) = he(ua(s))),
vr(t) = va(t) = (v1(5) = va(s)) ) e,

< sup [ A%z Yl e raxxaixy)
(2,y)€B2: X Be

x (IHo(ur) — He(u2)l| o (ray + 01 — vallog (1))
x (IHH(ur) — He(u2)l|eg rmay + [lv1 = vellog (1))
x max{el e}t — 5|«

+ sup Hdg[zvy]HZL(RdxXz;Xl)
(Z,y)GstXBg

x (1 He(ur) = He(ua)lcgqrmn + o1 = vallog rix,) ) max{e™!, e}t — 5|
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S ( sup || d%g[z, ylllcer@ixxne + sup ‘|dg[z7y]H£(Rd><X2;X1)>
(2,y)€B2: X Be (2,y)EB2e X Be
X |[(ur — w2, v1 = v2)|lcr 1Ry x o (1:x5) max{e”®l e}t — 5|2,

]

The reformulation of the Holder seminorm used in the proof of Lemma 2.10 can be
used as a general strategy for estimating the Hoélder norm of composition operators on
Banach spaces.

Remark 2.11. Let By,..., By, B be Banach spaces, I an interval, w a weight function
satisfying w € C%..(1;(0,00)) and f: Uy x ... x Uy — B an analytic function, where
Ui, ..., Uy are neighbourhoods of the origin in respectively By, ..., B;. From the identities

Flu, . ua)(t) — flor, ... va Z/ def[{v; (B2), ou(t) + (1 — o)uilt),
{u (1)} ] (ur () — vk () do
and
flur, .. ug)(t) — fog, ..., 09)(t)
— (fu, - ua)(s) = f(vr, - va)(s))

EJ/dufws JHh oun(t) + (1= 0)un(s), (1)}
(ur(t) = u(s)) do

—Ey/dm ()}t ou(t) + (1 = 0)oe(s), {03 oy
(vk(t) — v(s)) do

—Z/aﬂwsﬂmmwuhwm>muhw1
(Uk(t) — uk( ) — Uk )

+Z//(Z%Mﬁyjme+OT>UMAMHp
our(t) + (1= o)ur(s), {u;(£)} ]
(w(s) = w(s), ve(t) = v(s))
+ A} o) 7 (oun(t) + (1= o)ui(s))
+ (1= 7)(ou(t) + (1 = o)ui(s)), {u;(£) 1]
@WM@—%@D+O—JWA) vk(s)), vr(t) = vk(s))

S

I=k+1
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we find that the composition operator F' induced by f given by

F(uy,...,uq)(t) = f(ui(t), ..., uqt))

satisfies
||F(U1,---,Ud)—F(U1,-~,Ud)||03(1,3)
d
< sup (32 swp 1 [fus(s)) 4 o) + (1= 0)uels), w0l
s<e ET s g — velloa sy

+Z (Z sup [l duf [{y(s S)Y2h ru(s) + (1= 7)u(s), {u; () oy,
L cur(t) + (1 — o)ur(s), {uy ()Y sl oo xism)
||Uz - UlHCa(I,Bl)”UkHCb(I;Bk)
+_sup [N m(oud®) + (1 - o)u(s))
+ (1= 1) (ou(t) + (1= o)uils)), {u; ()} oy ]| o2y

X Huk - Uk”cff(I:Bk)HkaCb(I§Bk)

d
+ 2 sup fldedif({u(s)}] L ru(s) + (1 — T)u(s),
ou(t) + (1 — o)ui(s), {o;() Yk,

Tu(t) + (1 = 7)ug(s), {u; () Y1)l cBox BBy

X lw = vzllcg(I;Bl)Hvk||cb(1;Bk)))'

for all (uq,...,uq), (v1,...,vq) € CA(I,By) X ... x C%(1, By).

2.4 Composition operators induced by derivatives

In the sense of Section 2.3 the composition operator
GY): C(I;RY) x C(I; Xy) — C(I; LY (R? x X3 X)

induced by the jth derivative of g. € ngu(Rd x V; X1) is defined by the formula

ng) <u> U) (t) - djge[u(t)v U(t)]‘

In this section we study the operator

GU): C(I;RY) x C(I; X3) — L9 (C(I;R?) x C(I; X2); C(I; X1) )

given by . ,
GO (u, ) ({ (s, v3) Hoy ) (8) = @ gelul), o ()] ({(wi (), vi(t) Hr)

and its connection to GY), using the same notation as in Section 2.3.
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Lemma 2.12. Suppose that g € C«k+1(B4€ X Boe; X1). Forall j € {1,...,k} the operator
ng) has the following properties.

i) The operator GY) maps E®_ ,(I) into C*(I; L9 (R? x X,: X)) and satisfies
€ n,e,A b

A s .
IGO (W, v)llop o @ixxomxy S 2o sup [ digle gl co @axxox
i=1 (2,y) € B4e X Bae

for all (u,v) € E7_ 4(I).
(ii) For each p > 0 the operator GY) maps EZ, ,(I) uniformly continuously into
Co(l; LD (R x Xy; X71)).
Proof.

(i) Notice that

Vo= Y

1= lmEMJZ Z'

¢ A il (2 ) (™ [, g, A, y])),

where
ha(z,y) = (hg(z),y),
My ={(my,...,mi) smy + .. +mi = j},
1
Si(L) (@, m5) = = > Lo, To),
J: o€S;
and

AF mi(K(Ll, . ,Li))(%, o, Tj)

= K(L1<£L'1, c. ,.I'ml), ey (xmlereriflJrl? c. ,.TJ>>

Using Proposition 2.4 yields

Hdmﬁg[z, y]”ﬁ(ﬂ(Rdxxg;RdxXQ) Sem,
and the calculation
87m1+1 . e —m;+1 __ €7j+i
implies the estimates
sup || dgelz, ylll cormixxaxny S 2’ sup [ d'glz, ylll o rax xaix)
(2,y)€B4s X Bag =1 (=, y)eB45><BQ€

for each fixed j € {1,...,k}.
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Writing k = d’¢. and noting that

k(z,y) = dgelz,y] = A ge[hae(2),y] = kae(2,y)

(since d7g.[z,y] = 0 for |z| > 2¢ and hy.(2) = 1 for |z| < 2¢), we find from Lemma 2.9

that
Hng)(u’U)||C§(I?£(j>(RdxX2;X1)) = |12 (u, v)llog (e axxasx))
S sup _ ”djga[zﬂy]”[,(j)(RdXXz;Xl)
(z7y)EB4EXBZE
+e  osup (| gelz Yl oo i o)
(Zvy)eBALEXBQe
and hence
1G9, 0)llog (i @ty S 3087 sup [l d'glz ]l co @)
i=1 (2,y)€Bac X Bae

(ii) This is a direct consequence of Lemma 2.9(ii).

]

Corollary 2.13. Suppose that g € CSII(U x V;X;) and (q,...,¢ > n. The operator
C?gj) has the following properties.

(i) r_ﬁFhe operator GY) maps E2. A(I) into LO(Cq,, ..., Cy,; CE 4. 4¢; (13 X1)) and satis-
es
1GY (u,v) ||L<J'>(C<1,...,C<j O 44, (X))
g+ .
S ZE_FM sup | dlg[zvy]”L(i)(RdxXg;Xl)
i=1 (z,y)€B4c X Bae

for all (u,v) € Ey_ 4(1).

(ii) Suppose that ( > (1 + ...+ Cj.‘ The operator C;'gj) maps the set £ 4(I) uniformly
continuously into the space LU (Cy,, . .. , Oy CE(1; X))

(iii) The operator GY=D: EY_ ,(I) = LUD(C,,,...,C,_,; C2(I; X1)) is differentiable
with

dGU-1 — égj)7

)

where ¢; +...+ (1 < (—1n.
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Proof.

(i) By definition

= sup { G () v o)l iy vl = L € {10}
Estimating the weighted supremum norm by

G (u, 0) ({ (i, ) Hot) ey v, (10
= sup e M d g fu(t), v () ({ (wit), vi(t)) Hor)lx,

tel
J
< sup || dg. u(t), v(O)]llcor rxass) L1t 00 e
=1
‘ J
= 1G (u, v)ll ¢y 100 et x0TI (s 03) e,
i=1

and the weighted Holder seminorm by

|G , 0)({ (s, v) o) (1) = G (s 0)({ (s v1)ia )
= [[dge[u(t), v (O] ({ (wi(t), vi(£)) i=1) — & gefus), v

s)lix,

(
()] ({(uils), vi(s)) Hen) L x,

< g1, 8)] — ), o(5) oy TLIH0), (0 e,
1) o)y LTN0) = ), 00) = (5 s,

< max{e@ Tt elar Gl — g2 GV (u, V)l cor20) (Rax Xa3x1))

T 9l
we therefore find that
1G9 (u, V)l o e, CoyiCE 4.y, (X)) < 1G9 (u, )|l o (100 (Rix X2:x1)) (2.3)
for (u,v) € By, 4(I). Lemma 2.12(i) and estimate (2.3) imply the desired estimate.

(ii) This is a direct consequence of Lemma 2.12(ii) and estimate (2.3).

(iii) For the weighted supremum norm we find that

|Ge(u,v) = Ge(@t, 0) = GO (u, v)(u — @, v — )
= sup oM g-(u(t), v(t)) — ge(at), o(t)
— dg.[u(t), v(®)] (u(t) — at), v(t) — 0(t))| .

< sup supe | dg.[ru(t) + (1 - r)a(t), ro(t) + (1 - r)a(2)]

ref0,1] tel N .
— dgefu(t), v(t)]ll crax xpxy I (u = 4, v = )|,

Ce(I;X1)

o4



< St[?l]HGi”(m + (1 =), 1o+ (1 =7)0) = GO (u, 0) |0, @i xax0)
rel0, - -
x |(u—=a,v=17)c,,

where = ¢ —n. For the weighted Holder seminorm we find that

Q

Ge(u,v)(t) = G(,0)(t) — G (u, UN)(U — @,v = 0)(t)

— (Gl 0)(s) = Gel@, 9)(s) = G (u, v)(u — @, v = 9)(s))
(

_|_

< S%%}HG(U(TU + (1= 7r)a, v+ (1= 1)0) = G (u, 0) [l og (e xxax,))
re|l,

X max{eq”, egls‘}|t —s%|(u = @,v —v)||c,-
Lemma 2.12(ii) yields

IGH (ru+ (1= )i, ro+ (1= 1)8) = G (u,0)llog e@ix o Il (u = @0 = 9)le,
= o([l(u—@,v = 0)]c,)

as (u,v) — (@,0), so that

Now suppose that 7 > 2. For the weighted supremum norm of égj ~1 we find that
H (é&'—%, v) = GU (@, 5) — G (u, v)(u — v - ﬁ)) (€ o2 o
= sup e ( @ g.u(t). o(8)] — & g.fa(o), 5(0)

|
= dig.u), o(®))(ul) — a0, o(t) ~ 50) ) ({(wi (1), () }))
< supe Mg u(), o(t)] — g fa(t), (1)

tel _ djgg [u(t), U(t)] (u(t) — fb(t), U(t) - ﬁ(t))

X1

LD (Rdx Xo;X71)
j—1

< [T vi)le,
i=1

< sup sup e_“|t||| A go[ru(t) + (1 —r)a(t), ro(t) + (1 —r)o(t))]

rel0,1] tel . - -
= @ ge[u(@), v (O]l £ Rax x| (0 = 8,0 = D),
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< s GO (rut (1= )i o+ (1= 1)) = G,y 10 sy
rell, ~ ~
<l = v = 9)c,

where p =¢ — ¢ — ... = (j—1 —n. For the weighted Hélder seminorm we find that

X3

LU= (RIx X9;X7)

= dgc[ult), v()] (u(t) — @(t), v(t) — o(t))

X TTIua(t) = wils), vi(t) — vi(s)) lraxx,

=1

LU= (RIx X2;X7)

< Sl[tpl]HGE:j) (TU + (1 - T)fb, U+ (1 - T)ﬁ) - ng) (U,, U)HCﬁ(I;ﬂ(j)(RdXXQ;Xl))
re|0,
7j—1
x max{et, et — s (u — @, 0 = 0)le, [TII(ws, vi)lles,

=1
Lemma 2.12(ii) yields
Hng) (ru + (1 - 7’)7], TV + (1 - 7’)17) — ng) (U; U)HCE(I;[:(J')(]RdXxQ;XI))
x |[(u—a,v=17)|c,

= o[l(u = @,v = 0)]c,)

as (u,v) — (u,0), so that



2.5 Maximal regularity

The linear equation

a(t) = Lult) + f(t) (2.4)

has mazimal C{-regularity in a Banach space B if for all f € C2(R; B) it has a unique
solution u € Cp*(R; B) N C¢(R; D(L)). Tt follows from the closed-graph theorem that
this solution satisfies

[ull gro g,y + lullog @y S If llcp@:m)-

The following maximal regularity result by Arendt et al. [I, Theorem 6.1 and Remark
6.3(a)] implies a similar result for weighted spaces.

Lemma 2.14. Let a € (0,1) and L be a closed, densely defined linear operator on a
Banach space B. The equation

ilt) = Lu(t) + £
has a unique solution v € Cp*(R; B) N C&(R; D(L)) with
[ullgre@,p) + llullog@pwy S 1 g @z

for each f € C(R; B) if and only if the operator L satisfies iR C p(L) and

1
L+ |s]

(s — L) 2y S

for all s € R.

Remark 2.15. It was shown by Baillon [1] that when B is a reflexive Banach space
equation (2.4) has maximal Cy-regularity if and only if L is bounded.

Corollary 2.16. Let a € (0,1), w, € {e™1 e") e} and L be a closed, densely
defined linear operator on a Banach space B which satisfies iR C p(L) and the estimate

1
is] — L)~ < 2.5
H( ) HE(B) ~14 ’8| ( )
for all s € R. There exists ny > 0 such that the equation
u(t) = Lu(t) + f(1) (2.6)
has a unique solution
ue C;%R; B)NCg (R;D(L))
for every f € C (R; B) and n € [0, 7). Furthermore,
lullcte@.m + llullos, @ow) S Wfllog, @5 (2.7)

uniformly over 7 € [0, ).
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Proof. Estimate (2.5) implies the existence of positive numbers ~, sy such that
- 8
M = L)) < o (2.8)

for all A € C with A = is and |s| > so. We find that estimate (2.8) is extendable to a
cone |Re A| < qo|/ITm | and |s| = [Im \| > sq, where 0 < gy < 7!, by considering
-1
IO = L) Mleqmm = 11— A= is)(L—isD)™") (L —isD) ™ emim)
< (1= = i9)(L = isD) leqem) (L = i) eeaim)
(1+qo)y

— (1=7q)[Al
Choosing 79 = 3 dist(o(L),iR) therefore implies that L & nI also satisfies estimate (2.5),
uniformly over n € [0, 1]

Suppose that w, = e, We define
fa(t) = e "x(®) (1),
f-(t) =e™(1 = x(®)f (),
where xy € C*(R) is a smooth cut-off function such that
0, t<—1,
x(t) = {1’ P> 1,
so that fi € CY(R; B). From Lemma 2.14 we find that the problems
w(t) = (L F nlu(t) + f=(1)
have unique solutions uy € C*(R; B) N C&(R; D(L)) satisfying the estimates
[usllcrop) + lutllcp@owy S M1 llog@:s) (2.9)
uniformly over 7 € [0,70]. The function u: R — D(L) defined by
u(t) = eMuy(t) + e Mu_(t)
for t € R solves equation (2.6) and satisfies

Hen(.)UJrHC#D‘(R;B) + ”e_n(.)u*HC}]’o‘(R;B)

HuHC},’O‘(R;B) N
N ||U+||cé’°‘(R;B) + ||u—||Cé’°‘(R;B)
S Iflleg@n) + [1/-llcgwimy
S 1 flles @;:p)-
uniformly over 7 € [0, 7).

The cases w, = e"0) and Wy = e ") are treated analogously by applying Lemma 2.14
to

g(t) = e"x(t) f(t)
and

gt) = e "x(®)f(t).
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2.6 Proof of the centre-manifold theorem

In this section we give a complete proof of the centre-manifold theorem for autonomous
quasilinear evolutionary equations. Let (X, ||-||x and (Y, |]||y) be Banach spaces with Y’
continuously and densely embedded in X. We consider the nonlinear differential equations

a(t) = Au(t) + ga(u(t), v(t)), (2.10)
o(t) = Lo(t) + ga(u(t), v(t)) (2.11)

for t € R, where A € R¥9 has purely imaginary spectrum. Furthermore the linear
operator L: Y C X — X and the functions g;: R x Y — R?, go: R? x Y — X satisfy
the following assumptions.

Hypothesis 2.17.
(i) The linear operator L: Y C X — X is closed.

(ii) The spectrum of L satisfies o(L) NiR = @ and

isI — L) ! <
I(isI = L) leco) S 775

for all s € R.
(iii) There exist k& € N and neighbourhoods U and V' of the origin in respectively R?

and Y such that ¢, € Cﬁ:l(U x V;RY) and g, € Cﬁ;l(U x V; X). Additionally we
assume that

91(07 0)7 92(07 0) = 07
dgl [O, O], dgg[O, O] =0.

Choose 7 > 0 and € > 0 such that By x Bo. C U x V. The following generalized
contraction result by Vanderbauwhede [23, pp. 105-106] is one of the main ingredients in
the proof of the centre-manifold theorem.

Lemma 2.18. Let k& be a natural number and Xg, ..., X} complete metric spaces. Addi-
tionally, let F': X7 x ... x X, = X7 x ... X X} be a function of the form

F(xo, ... xx) = (Fo(wo), Fi(zo, 21), - . ., Fi(20, - ., 7)),

where F;: Xy x ... x X; = Xj is a contraction in its jth argument which is uniform in
its remaining arguments.

(i) The function F' has a unique fixed point (Zg,...,Zx) € Xog X ... X Xj.

(ii) Suppose that the functions Fj(-,z;): Xo X ... x X;_1 — X are continuous for all
j €{0,...,k}. The fixed point of F'is attractive, i.e.

JLIEOFH(IKQ,...,Z']C) = F(zo,...,Tk)

for all (xq,...,xx) € Xog X ... X X.
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In the proof of the centre-manifold theorem we consider the linear equations

u(t) = Au(t) + ki (t), u(0) =w, (2.12)
0(t) = Lo(t) + ka(t), (2.13)

~—~

where k; € C2(R;RY) and ko € C2(R; X) for a € (0,1). The solution to equation (2.12)
1s

u(t) = (Sw)(t) + (Sok1)(t),
where § € L(R?; CL(R; R?)) is given by

(Sw)(t) = e*'w,
and
So € L(Cf(R;RY); Gy (R;RY)) N L(Cy (R; RY); C)* (R; RY))

is given by

(Sok)(t) = [ LA (5) ds.

0

Equation (2.13) is solved by maximal regularity methods (see Section 2.5). We denote its
solution by Mk, and note that

M e L(C(R; X); Cp*(R; Y)) N L(CE(R; X); Cp*(R; Y))
with i € (0, o] for some 1y > 0 (see Lemma 2.14 and Corollary 2.16).
Theorem 2.19 (Centre-manifold theorem). Under Hypothesis 2.17 there exist neighbour-

hoods U and V of t}}e origin in respectively R? and Y with U C U and V C V, and a
function ¥ € C*(U; V) with ¥(0) = 0 and d¥[0] = 0 such that the centre manifold

M, = {(uo,\lf(uo)) D Uup € ﬁ} CUxV
has the following properties.
(i) The manifold M. is locally invariant, i.e. if (u,v): [0,7] — X for T" > 0 is a solution
of equations (2.10) and (2.11) with (u,v)(0) € M, and (u,v)(t) € U x V for all
t €10, 7] then (u,v)(t) € M. for all t € [0,T].
(ii) Any solution of equations (2.10) and (2.11) with (u,v)(t) € U x V for all t € R
satisfies (u, v)(t) € M, for all t € R.

Proof. Let W C R? be a bounded neighbourhood of the origin. For w € W we consider
the system

U(t) = Au(t) + g1 (u(t),v(t)), u(0)=w, (2.14)
(1) = Lo(t) + g2 (u(t), v(t)), (2.15)
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where g1 . and go. are the localisations of g; and g in the sense of Section 2.3. First we
reformulate the above system as the fixed-point problem

u)  [(Sw+ SGi(u,v)
(v) - ( MGy (u,v) )
=: Fy(u,v), (2.16)

where GG . and Go. are the localised composition operators corresponding to ¢g; and g,
in the sense of Section 2.3.

We construct a k times (with respect to w) differentiable solution to equation (2.16) by
formally differentiating equation (2.16) with respect to w to obtain a fixed-point problem
suitable for Lemma 2.18. Denoting (d/u[w], dv[w]) by (u"),v\9)) we find that

W9 () = A9 (8) + S, (Z 3

=1 TI’LGM]Z

Admeme d@ g Tu(t), ()] (™) (1), 0™ (1)) 21))7

09 (1) = Lot +S<Z )

=1 mEM]l

ml!

ml!
e d<l>gz,a[u<t>,v<t>]<{<u<mi><t>,vm)(t» )
with «(0) = I, v (0) = 0 for j € {2,...,k}, which leads to

u SI—I—SOG (u v)(uM, M)
o) TN MG, )W, o)

= Fy (u,v)(u®, o), (2.17)
and
< ) 5~ i S (A SoGY (u, v) ({ (w0 )} ))
z=1meMlm1' e\ 85 (A MG (o) ({ (), 0 Hy)
= Fj(u,0)({ (a0 ") }o,), (2.18)

where Ggl)e and égl)g are defined as in Section 2.4, and

Mj,i:{(ml,...,m-)'ml-l- Hmi =g,

Si(L) (1, ..., x; Z Lo - To(p)

065’

and

Aj’m1 """ mi(K(Ll,...,Li))(ZE‘l,...,.Z'j)
= K(Ll(arl, B I ¢ T P ,xj)).
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Define

and

Xo = Cb(W; E;;a,A)a
XI' = B(W; LY(RY; Cipij-1yu)

for j e {1,...,k}, n>0and p > 0, where we use the notation

Cc = CHR;RY) x CE(R;Y),
D¢ = C&(R;R?) x CE(R; X)
for ¢ > 0 and
Eyea={(uv) € Byea(R) X CER;Y) : [|vflcamy) < e},

which we consider as a closed subset of C,. The calculations

| S (S04 8o (u,0)) — A(Sw + SoGa e v)

Oy (RRY) S ||G1,5(U,U)||cg(R;X)

<e
(which is obtained from Lemma 2.9 and the facts g(0) = 0 and dg[0] = 0) and

IMG2c(u, v)[legmy) S [1Gae(us v)llopmx)
<é’

(which is obtained from Lemma 2.9 and again the facts ¢(0) = 0 and dg[0] = 0) imply
that Fy maps X into itself. Corollary 2.16 yields the existence of 79 > 0 such that

[Fo(u, v) = Fo(@, )l x, S 1Ge(u,v) — G=(a, 0) || sow:p,)
for n € (0,7). Lemma 2.9 therefore implies that
[Fo(u, v) = Fo(@, )l x, S ell(u = 1,0 = 9) | x,

so that Fy: Xg — X, is a contraction.
Turning to F; we assume that j satisfies
kn+ (2k — 1) < no

in order that Corollaries 2.13 and 2.16 remain applicable. We notice that

~(0)
Gg) = (q%l§>
GQ,a
maps EZ. , boundedly into LU (Cryps@mi—1yus - - - Congn@m—1)u5 D5, 2j-n,) by Corol-
lary 2.13(i), since (my,...,my) € M, satisfies

l
> omin 4 (2m; — Dp=jn+ (25 — Dp

=1
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by definition. Furthermore (u(™),v(m)) € B(W; L0™)(RY; Cypyipte2mi—1)n))- Thus

(wm»«wwkwwn%ﬂyﬁé@wﬂw«wwhwwnLﬂ
maps Xo X X x...x Xt into B(W; LO(RY Dy, 2-1).))- The fact that

mq my
Dijni@i—nu = Dinr2i—1)u

shows that Fj maps Xy x X1 x ... x X} into X}. Corollary 2.13 implies that

15 (e, 0), {(u®, )}, ) — F«uw{<@ﬁ% )l
—H 5@52( ) () — 4@ ) — )
i Am ~§12(u v)(u® — g vl — 50))
S NGO (u,0) (@ — @, 00 — 50 mbau 4Dy s a3

<e||(u) — @D @) — gl )HX”
so that Fj((u,v), {(u®,v®)}_] .) is a uniform contraction.
It follows from Lemma 2.18 that F: Xo x X{' x ... x X} = Xo x X{' x ... x X}

has a unique fixed point ((u o), (@M, oMY, ..., (a9, E(j))). Since (@, 5™) is unique and
X? C X#, we conclude that (@, v (’)) X9 forallie {1,...,5}.

Now we suppose that x4 > 0. It remains to prove the differentiability of (u,v). To
that end we first prove that Fj(-, (49, 09))) is continuous for all j € {1,...,k}. Corol-
lary 2.13(ii) implies that

GO (w, 0) (@D, 09) = G (@, 9) (@Y, 09| pw,co) @ep,, 0y 110)
<G (w,0) = G 0) | B0 0y 1@, 59| x0
—0

as ||(u,v) — (q, )”Xo — 0. Similarly Corollaries 2.13(i) and 2.13(ii) yield that
GO (w, o) ({ (™, 0 NY_) = GO (@, 8) (@), 87 Vo) | swseo @450, 4 ;1)
< ||( g)(u,v) (l)(ﬂ @))({(ﬂ(mi)’@(mi)) 221)||B(W;w)(Rd;Dm%_l)H))
+IGY @, 0)({ (™) — @), o) — SNV | pwico @D, 4 05 1)

+ |
l)
|| <u’ U)”B WiL® ({Cpp, in+(2m;— Du i1 Dgn+2i-nw)

!
% H”(u(mi) _ a(mi)w(mz) _ plm )HX“

— 0

as ||(u,v) — (4, 0)||x, = 0 for L € {2,...,j}, where we used the fact that

l
S omin 4 (2m; — Dp=jn+ (25 — D < jn+ (25 — p,
=1
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so that

Dijnt@j—nu € Din+2j-1)p

to apply Corollary 2.13(ii). Lemma 2.18 now yields that ((ﬁ, o), (@M, oW, ... (a), 17(j)))
is an attractive fixed point of F'.

Now set
(uo, o), (ug”, v§), .., (uf, v§”) = (0,0)
and define
((nsr o), (gl o) (e o)) = F (o), (0 00), o (), 09)

for n € Ny. By construction (u,,v,) € CH(W; Cjyy(2j-1),) With
(W o) = (0 o)

(see Corollary 2.13(iii)). Uniform convergence yields that (u,v) € CHW; Cjpi(2j—1)u) With
(da, dIv) = (), 09) for all j € {1,...,k}.

Set U=B.CR% V=DB.CY and
U(w) = v(w)|s=o-

The facts that
(@(0),9(0)) = (0,0),  (a(0),5(0)) = (0,0)
imply ¥(0) = 0, d¥[0] = 0, and assertions (i) and (ii) are obtained as follows.

(i) We first show that M. is a globally invariant manifold for equations (2.14) and (2.15).
Suppose that (u®,v°) € E}, 4 is a solution to equations (2.14) and (2.15) with

We notice that
(@, 0°)(t) = (u(t + s),v°(t + 5))

is also a solution to equations (2.14) and (2.15) in Ey_ 4 for each s € R, so that

which is equivalent to

for all s € R.

Now we take a solution (u,v) of equations (2.10) and (2.11) with

and
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for all t € [0, T]. Let (u®,v%) € Ey_ 4 be the solution of equations (2.14) and (2.15)
with uf(0) = u(0). By construction

(u, 0)(t) = (u,0%)(t)

and

for all ¢t € [0, 7], so that

for all t € [0,T].

(ii) Next let (u,v): R = R? X Y be a solution to equations (2.10) and (2.11) with
(u,v)(t) € U x V for all t € R, so that (u,v) is a solution of equation (2.16) with
(u,v) € Ey_ 4. This fact implies that

(u, v) = (u,0)(u(0)),

and the result follows from (i).

O

Next we consider the parameter dependent system
(1) = Au(t) + ga (3 u(t), v(2)), (2.19)
5(t) = Lo(t) + g2\ u(t), v(t)) (2.20)

for t € R. Instead of Hypothesis 2.17(iii) we now assume the following hypothesis.

Hypothesis 2.20. There exist £ € N and neighbourhoods A, U and V' of the origin in
respectively R?, R? and Y such that g; € CLH (AxUxV;R%) and go € CEIH(AXUXV; X).
Additionally we assume that

qn (07 Oa O)a 92(07 07 O) = 07
d2.gl [07 07 0]7 d2.g2 [07 07 0] - 07

where dy denotes the derivative with respect to (u,v).

Corollary 2.21. There exist neighbourhoods A, U and V of the origin In respectively
RP, R? and Y with A C A, U CU and V C V, and a function ¥ € C¥(A x U; V) with
U(0,0) = 0 and daW[0, 0] = 0 such that the centre manifold

M} = {(uo,\I/(/\;uo)) tug € U} CUxV

has the following properties for each A € A.
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(i) The manifold M is locally invariant, i.e. if (u,v): [0,T] = X for T' > 0 is a solution
of equations (2.19) and (2.20) with (u,v)(0) € M2 and (u,v)(t) € U x V for all
t € [0,T] then (u,v)(t) € M} for all t € [0,T).

(ii) Any solution of equations (2.19) and (2.20) with (u,v)(t) € U x V for all t € R
satisfies (u,v)(t) € M2 for all t € R.

Proof. We extend equations (2.19) and (2.20) to the system

Set
A 0
_ (p+d) X (p+d)
A= ( !> eR ,

»={a)

and apply Theorem 2.19 with A, g and U replaced by respectively A, g and U=AxU.
Without loss of generality we may assume that the reduction function W is defined on a
‘rectangular’ neighbourhood of the origin A x U in RP*¢. The properties of ¥ are deduced
by noting that all solutions (A(¢), u(t),v(t)) satisfy

define §;: A x U x V — R+ by

A = const;

in particular setting A = 0 returns us to the ‘standard’ parameter-independent setting
and yields ¥(0,0), da¥[0,0] = 0. O
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3 Normal-form theory

Suppose that D and X are Banach spaces with D continuously and densely embedded in
X. We consider the parameter-dependent evolutionary system

Z =F"Z,Q), (3.1)
Q= L'Q+G"(Z,Q) + H*Z),

for (Z,Q): R — R" xD. Here L*: D C X — X is a closed linear operator such that L* €
L(D; X) depends analytically upon pand FO): RxR"xD — R", GO: RxR"xD — X,
HO: R x R" — X are functions analytic at the origin with

FH(Z,Q) = 0(Z] + |(Z.Q)lfp).
*(2,Q) = O(IQlIol(Z. Q) <),
1H(Z) = O |2)

for some a > 0 and b > 2. Systems of this kind arise from scalings of an evolutionary
system (for @) coupled to a dynamical system (for Z) which undergoes a change in the
number of its purely imaginary eigenvalues as a bifurcation parameter ¢ is varied through
zero; the spectrum of the linear operator for () is on the other hand non-critical in the
sense that it is either purely imaginary or bounded away from the imaginary axis for all
values of ¢.

This chapter is motivated by the observation that if the @)-independent term H* in
equation (3.2) is not present the set {Q) = 0} is an invariant subspace of equations (3.1)
and (3.2), so that the solutions of the approzimate system

Z = F™(Z,0) (3.3)

also solve equations (3.1) and (3.2). We construct a normal-form theory consisting of a
sequence of changes of variable which systematically remove the jth order terms of the
Maclaurin expansion of H* with respect to (Z, u) forall j € {2, ..., p} while preserving the
overall structure of the system. In general it is not possible to remove H* completely but
we can at least make an optimal choice of p so that the remaining terms are exponentially
small in comparison to (Z, u) in a neighbourhood of the origin. In Chapter 4 we use
this fact to prove that under certain circumstances homoclinic solutions of equation (3.3)
approximate solutions of equations (3.1) and (3.2) with exponentially small remainder.
Our analysis is based upon a theory for finite-dimensional dynamical systems given by looss
and Lombardi [11], and we use their notation and refer to several of their combinatorial
results here.
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3.1 Banach-space valued polynomials

Before we begin the construction of our normal form we restate some useful facts about
Banach-space valued polynomials of n real variables. Suppose that B is a Banach space.

Definition 3.1. Let k£ € N,.

(i) We call an expression

D) = 3 v .2
la|=k

where v, € B, a homogeneous polynomial from R"*! to B of degree k and denote
the space of all such polynomial functions by Py (R™*; B).

(i) We call U = Y% (W, where U; € P;(R"*'; B) and W}, # 0, a polynomial from R !
to B of degree k.

Additionally to the definition of homogeneous Banach-space valued polynomials given
above there is an equivalent one in terms of bounded symmetric operators. Since it is
quite easy to compute an abstract formula of the derivative of a given polynomial in this
alternative definition it is often more convenient to use in proofs.

Remark 3.2. Let £ € N.

(i) A given function ¥y: R"™! — B is a homogeneous polynomial of degree k if and
only if there exists a bounded symmetric k-linear operator Ay : R"*! — B satisfying

Vi1, Tpg1) = Ak(*{(iﬁ, e ,$n+1)}(k))
for all (xq,...,2Zn1) € R so that

k
Vo = (a) Ay ({el}(o‘l), . {en+1}(a”+1))

in the notation of Definition 3.1, where {e1,...,e,.1} is the standard basis of R" 1.

(ii) The expression

Wklo = [ D JvallBal ... any!
la|=k

defines a norm on Py (R™™; B).

(iii) The derivative of the polynomial function ¥ : R"*' — B is given by
dWy[a](v) = kA ({z} ), v)

where v € R™™ and Ay is defined as in (i), so that d¥;, € P,_;(R"; L(R"T; B)).
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Next we introduce two additional norms for P, (R"™!; B). In a context where we consider
the polynomial function induced by ¥ we use the operator norm

H\D() )HB
Ulgr = —_—
’ ‘OJC YEEE—H |§/|IC

and if we treat W like a traditional polynomial we use

1
Wz, = ﬁm’b-

The relations between the two norms for Py, (R™" !, B) are given in the following proposition
(see Tooss and Lombardi |11, Lemma 2.10 and 2.11]).

Proposition 3.3.

(i) The estimate

k+2
Wilog < |Wilox < ( 5 )"Dkfo,k < vVn+ 1k|Y|ok

holds for every ¥, € P,(R™"; B).

(ii) Let ¢ € N, 7 €{0,...,q} and py,...,p,—; € N be given; additionally let the operator
R, € LORMDI » B~ B) be g-linear and B € {B,R"*}.

For every polynomial function ¥, € P, (R"™; B) and | € {1,...,q — i} the
function Y — R,({Y}, 9, (Y),..., ¥, ,(Y)) lies in P;;,(R"™; B) with p = p; +

Wy
-+ pg—i and
[R({Y 3 W, (V) Wy (V)i
< |||Rq|||L(R(n+1>iqu—z‘;B)(V n+ 1)Z|\I’p1 (Y)|27p1 el |\I/pq—i<y)|27pq—i'

(iii) Let k € N, p € Ny and ¥y, € Pe(R"*}; B), N, € P,(R*T! R,
The polynomial function Y — dW¥.[Y](N,(Y)) lies in Py_14,(R" B) and

ALY T(Np(Y)) |2 p-14p < VE2 + nk|W4(Y) |2 k| Np (V) |2-

3.2 Construction of the normal-form transformation

Writing Y = (Z, 1) and appending the new equation
p=0,
we reformulate equations (3.1) and (3.2) as

Y =F(Y,Q),

Q=L"Q+GY, Q)+ H(Y),
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where

F(Y,Q) = F'(Z,Q),
G(Y,Q) =G"(Z,Q),
H(Y) = H"(Z).

To construct our normal form we opt for an near-identity transformation
Y=Y, Q=Q+o().
This transformation leads to the equations

Y = F(Y,Q), (3.4)
Q=L'Q+G(Y, Q)+ H(Y),

where ® maps R*™! to D and
F(Y,Q) = (F(Y Q- a(Y)) - F(v,—a(Y)), 0), (3.6)

G(Y,Q) = do[Y] <F(Y Q—a(Y)) - F(Y, —<I>(Y))> (3.7)
+G(Y,Q - a(Y)) - G(Y,—2(Y)),

AY) = —LFB(Y) + dD[Y] (F(Y —<I>(Y))>
+G(Y,=0(Y)) + H(Y). (3.8)

Here we have dropped the tildes on the variables for notational simplicity.

Restricting ourselves to polynomial transformations
p
O(Y) =) u(Y)
k=2

preserves the analytic structure of our system and also enables us to explicitly compute
the normal form up to order p. To calculate a suitable polynomial transformation that
removes the mth order terms of H we consider its linear and nonlinear (with respect to
®) parts which are given by

(LD)(Y) = L°®(Y) — d@[Y](dy F[0,0](V)) (3.9)

and
N(Y) = =(L' = L)®(Y) + G(Y, =®(Y)) + H(Y)

+dP[Y](F(Y, @) — d F[0,0](V)).
We construct @ by successively solving the equation
L, = N, (3.10)

for k € {2,...,p}, where Ny denotes the part of N that is homogeneous of degree k. This
choice of ® ensures that the Maclaurin expansion of H does not contain any terms of
order less than p 4+ 1 and that

oY) = O(u"|Z]").
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Hypothesis 3.4. We assume that £: P, (R"*; D) — P, (R"; X) is invertible with
operator norm a = [||£7!||| independent of m.

Remark 3.5. Hypothesis 3.4 typically requires that d; F'[0, 0] is semi-simple (see Iooss
and Lombardi [11]).

3.3 Estimates for the transformation

Before tackling the estimates of H and dH it is necessary to derive precise estimates for
® and the transformed nonlinearities defined in equations (3.7) and (3.8). We calculate
the constants in order of magnitude explicitly and use the notation

1 L
F;(Yi,....,Y,,Q1,...,Q;) = (i+j>!dlldJQF[O,O](Yl,...,Yi,Ql,...,Qj)
1 L
GZ,](}/la7)/va177Q]):mdzldj2G[ovO](}/l77Y;7Q177Qj)

and
LYo, Y) = 5 ALY, Yo,
H(Yy,....Y;) = Z.lldiH[O]m,...,Y;).
We also introduce the notation
Oy = (Pp,,...,Pp,)

and

24’2’

q
Cbp = H |(I)pi
=1

for a polynomial ® of degree of at most p and p € N? or p € N with ¢ € {0,...,p},
where Ns is the set of all natural numbers greater or equal than 2.

Using equation (3.10) and Hypothesis 3.4 yields
‘(I)mb,m S a|Nm‘2,m
for m € {2,...,p}. A straightforward calculation shows

Nin(Y) =Hp(Y) — Z Lin—i(Y)®r(Y)

2<k<m—1

XY T Gl (V) -0y
2<g<m i=0 IZIEZNT%:Z' (3.11)

q .

. d%[w( DD E,q_x{Y}a—cbp(Y))).

2<k<m—1 2<q<m—h+1i=0  peni~i
|p|=m—k+1—i
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Since F', G and H are analytic, there exist constants ¢, p > 0 such that

C
|F’L,j(}/17 .. 7Y;ZaQ1)- . 7QJ)| < QpH_]' 1| |YZ| ’ ||C21||D et ||Qj||D7
”G’L,j(}/l77}/l7Q177Qj>HX§ H_]lYl‘ ‘K’”Ql”l)“@j”l%
||LZ(Y)| Xc,sh S

c
(Y, ..., Yi)[la < 2pi|Y1| Y

Using Proposition 3.3 yields

&
|Nm|2,m < pim(\/ n —+ ]-)m +

> ‘ (Vn+1)" g,

m—k
2<k<m—1 P

N | —

1
LYY Y e,
2<

<qg<m =0 pENq i

lp|=m—i
q
c
+ > VEAnke, Y. Y Y —(Vn+1)g,
2<k<m—1 2<g<m—k+1i=0  peni~ P

|p|l=m—k+1—1i

spfnwm " Y Y Y ST,

2<q<m i=0 pGNq i

[pl=m-i
q
IS .
+ ). VE ke, Y. Y Y. —(Vn+1)'d,
2<k<m—1 2<g<m—k+1i=0  peNi P

|p|=m—k+1—:

from which we construct a recursively defined sequence {5,,}5°_; C R bounding ¢,,.

Proposition 3.6. Consider the sequence {5,,}2°_; C R defined recursively by

p m—2 q p q—2
wm=(2) S ey (L) s
2<q<m i=0 peg—

|p|=m—i

oy oy Sy (2)

2<k<m—1 2<qSm—hk+1i=0 g
|p|l=m—k+1—i

for m > 2, where we have used the notation

Bp = H Bpj'
j=1

The estimate

Pm < \/—<\/TGC> 71/3m (3.12)

holds for all m > 2.
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Proof. We establish this result by mathematical induction. For m = 2 we have that £, = 2

and
¢2 < a|Na|ao
2
c c .
<as(Vnt1)?+a)] Y S(Vnt1) e,
P i=0 pENg_i
lp|=2—i

=2vn+ 1(%5vn+ 1)
p
ac
n+ 1<?\/n + 1)62.
Now we assume that the result holds for all & < m with m > 3. We find

on < S WRTIY 4 S 3 > - Varap (S,

2<q<m =0 ENq @ pq
|p|=m—i
acv/n +1
+ ) ¢k2+nk\/n+1<) Br
2<k<m—1 p?

I S S N e

2<g<m—k+1i=0 pGNgfi
|lp|l=m—k+1—1

(= (D S E 2 )

U q
P P ac 2<q<m i=0 GNq i P

[pl=m—i

PY o XY X S(%) )

p

. _ q
2<k<m—1 2<g<m—k+1i=0  peni P
lp|=m—k+1—i

_ \/n—‘H<aC\/F)m_lﬁm

Remark 3.7. Because of 5; = 1 and

q

2 2 B= 2 B

i=0 peNg~ peN?
[pl=m—i lpl=m

we can write

b= ()" X X ()78

2<q<m peN?
|p|=m
p \a-2
oY kB ) > (7) Po
2<k<m—1 2<q<m—k+1 peNd ac

[p|=m—k+1

(3.13)
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for all m > 2.

Finally, we construct a non recursively defined sequence {a,,}°°_; C R to estimate

{Bm}%ozl'

Proposition 3.8. We define
= 0" (m — 2)!

for m > 2 and ay = 1, where 6 is chosen large enough to satisfy p/(acf) < 1/n and

1 5(n+1) 2 10(n+1) 1
ST S N AR <1.
20 0T T 9 T8m+n -
The estimate
B < 2"y, (3.14)

is satisfied for all m € N.

Proof. We prove the statement by mathematical induction. First we note that
fr=1=a;=a

and
ﬁg =2 S 40&2.

Now we assume the estimate 5, < 2¥ay to hold true for all & < m, where m > 3.
Combining the inductive hypothesis with equation (3.13) we find that

B < 2" (AL +AZ + A3+ AL) + (p)m_2,

ac

where

M= v s (L),

3<g<m peN?
lp|l=m
2 p 12
A2 =2nt1) Y ke Y Y () o,
2<k<m—1 3<q<m—k+1 peNd ac
|p|l=m—Fk+1
3
A= > gy,
1<k<m—1
4
AL =2(n+1) Z kay, Z O Ol o155
2<k<m—1 1<j<m—k

where we have used the notation
q
Qp = H Qp;
Jj=1

for p € N9,
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Using the same combinatorial arguments as Tooss and Lombardi 11, Steps 4 and 5 in
the proof of IEmma 2.13 | we obtain that

q—2 1 q—2 a
Al < 2(/)) < 2< ) < =
"= Z Am = Z n+1 Am ="

ach)

3<q<m 3<q<m
The above estimate in conjunction with Iooss and Lombardi [I 1, Lemma 2.13 step 2]
yields
AL <n 37 koOm g
2<k<m-—1
=n Y k0" P(k—-2)!(m—k—1)!
2<k<m—1
n+1 k(k—2){(m —k—1)!
ntl, s ME=2m ko)
0 a<hTm—1 (m —2)!
5(n+1)
< ———ay,.
=g O
In the same fashion we estimate
A3 < ga
m — 0 m
and 4 1 k(k —2)! E—1)! 10 1
AL <o 0D g HE=DUm koDl 10y
0 2<k<m—1 (m —2)! 0

Finally we find

p m—2 < p )m2 S 1 I 2m
— =\ 75 0 < ——0 < —0—— ms
(ac) act T n+1 - 8(n+1)a
since n - 2™ > 8(n + 1) for m > 3.

Altogether we find

1 5n+1) 2 10(n+1) 1
o < (= —L = 2"y, < 2May,.

<G+ =5 T57 +8(n+1)) Am = 2@

m
The preceding proposition implies that
m—1 m—2

2 1 4 1 2 lach

b <2 TH(M) 02 (m — 21 = (n+2 )ac< \/n+2 ac (m— 2!
P P P

(3.15)

holds for m > 2 and by imposing a mutual constraint on the order p of the normal-form
and J, we can use estimate (3.15) to obtain an estimate of the supremum norm of ® and
of the operator norms of d® and d%®.

Proposition 3.9. Let B be a Banach space and ®;: R""' — B a homogeneous polyno-
mial of degree k. The derivative of ®; satisfies the estimate

1Ay < /(0 + 1)k| By
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Proof. By Remark 3.2 there exists a symmetric k-linear operator A,: R™+V% — B such

that
O(Y) = A({Y ™)

and the derivative of &, is given by

dP,[Y] = kAL ({Y}EY,),

so that
k—1\°
|dq)k|§ = kz Z al! Tl Oén+1!< o ) HAk({el}(al)a SRR {en+1}(an+l)7 ')H%(R”‘H;B)
|a|=k—1
2
kE—1 .
Y ale anﬂx( - ) A1}, e}
|a|=Fk—1 Y|=1

k

(07

2
<(n+1Dk D> ol an+1!< ) |Ap({er} @, {epyg Yom))|13

la|=k
= (n+ Dk|®.|5.

Proposition 3.10. We suppose > 0 and p to satisfy

2

p
op < ———— 3.16
b= 4+/n + lach ( )

and find the estimates

Y wy), < Y
2<k<p
2(n+1
H 2§%pd2®k[Y]H£(Rn+l;D) < (ne)7
2(n +1)?
H 2;@&%[1/]!]@ sy S g

to hold for |Y| < 6.

Proof. Using Proposition 3.3 and estimate (3.15), we find that

H > q’k(Y)HDS ST @rlosl Y]

2<k<p 2<k<p

< 3 #po”

2<k<p

2 k-2

> 4(n + 1)(10(5 (2\/71 —i—21a065> (— )

2<k<p p p

k-1
_ 2v/n + 16 Z (2\/n+21a095) (ki —2)
0 5% P
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<

where we have used (k —2)!/p* ! <1/pfor 2 <k <p.

The remaining estimates are obtained by similar calculations combined with Proposi-
tion 3.9. O

3.4 Estimates for the transformed coupling term

Now we are in a position to construct an estimate for H(Y) by computing an explicit
expression for it. Assuming the normal form has been constructed up to order p we find
that

H(Y) = ; H,({Y}9) — ; Ly i(@(Y)) (3.17)

q
+20 D GV, —,(Y))
2<q =0 peNg~

|p|>p+m—i

o) d@,ﬂ[y]< 2 i > E,qi({Y}(i’,—q)p(Y)))

k1+ko>p+2 22q<kz i=0 peNg~*
|p|=kz—i
= Y H{Y}?) = Y L@ (V) = Y L) X @)
p+1<q 2<q<p p+1<q 2<k<p
p+1<m

q .
+ 3> > GV, =0,(Y))
2<q<p i=0 peng~i
|p|>p—i

+ > iGz-,qi({Y}@,{ ) ‘I)k(w}(qi))

p+1<qi=0 2<k<p

() X35 S R a0

+ iFi,qi({Y}(“a{ > ‘I)k(w}(qi)))

p+1<qi=0 2<k<p

q .
D SRR 151 (D SHD RND SR FRI(i e L e

2<k<p 2<q<m—k+1i=0  peng~
p+1<m<p+k—1 pl=m—l41—i

(3.18)
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In the neighbourhood Bj of the origin, where p and § satisfy

2
0

op < ——,

P = 4v/n + lacH

Proposition 3.10 yields

~ 1 c 1 c
IHY)llx < 5 >, L (Vn+1)%7+ 3 Y. —(Vn+1)10"bn
p+i<q P 2<g<p
p+1<m
+ 1 ﬁivnﬂ(gqﬂ

T S e
= lp|l=m—i
2 1 4 N+ 10\
+(1+ ("; AR Zcq(\/nﬂ(sy( n; )
p+1<q i=0

- > Vn+1kg, Y zq: > pcq(\/n +1)'pp0™

2<k<p 2<q<m—k+1i=0  pHeNI~?
p+1<m<p+k—1 2

2 1
< (2+(”+)> S S Di(g+ 1)
0 pt+1<q P
2ln+1 o™
+(1+ (9>) 2. 2. %
2<4<p pe{l,..p}1 P
pHIEm p[=m

+ Y Vn+lkg, > ¥ %Cbpém’

2<k<p 2<q<m—k+1 penNe P
pHI<m<p+k—1 [pl=m—k+1

lp|=m—k+1—i

where we have chosen # > 1 and defined ¢, = v/n + 1. From the above inequalities we
now conclude an estimate independent of ®.

Proposition 3.11. Suppose that

2
p
p< —eo—
P= "4/ + Teact’
together with 8 > 1 and

The estimate

- 2(n+1)+1 1 1
e < 2D (i ),

holds for all Y € R™™! with Y] < §, where

Avn+ lact
Pt

C

78



Proof. We first note that the estimate

4(n+ 1)ac (2\/71 + 1ac>m_2
2 Am

p? p

Om <

continues to hold for m = 1 since

4 1 2 1 -1
(n+ )ac( \/n—: ac) o = 2Un 1

I p

Furthermore, since 6 > 1 we have that
O < 0™ (m —2)),
for m > 2, and the estimate also continues to hold for m = 1, since (—1)! =1 and «a; = 1.

Now we define

2(n+1)

Ay =(2+ ;

) 3 S )m(g+ ),

p+1<q p
2(n+1) i

R S
2<q<p pe{l,.pyt P
pF+1I<n |p|=n+1

A= S Varikg Y S gt

q
2<k<p 2<q<n—k+2 pe{l,...,p}? P
p<n<p+k—2 Ipl=n—k+2

We note that
2vn+16 < P 1

<
p ~ 2acpl ~ 4(n+1)

for p > 2, so that

> g+ D) (V1)1 < C(QV“er)p“ 2 (4(1)>q

pt1<q P P n+l
< 4(n+1)c (2\/71 + 15)p+1
“4n+1)—-1 p ’
and hence
Al < (24+2(n+1)4(n+1)c (2\/71 + 15>P+1
P 4n+1) -1 ) ‘
Next we find

co™
DR DD D
2<q<pp+1<m pe{l,...,p}? P
|p|=m

<Y ¥ 3 co™ (4(n + 1)ac)q<2\/n——:1ac)m2qap

q 2
2<q<p p+1<m pe(l,.p}7 P P P
|p|=m

<ec >ty S (@)™ pr =2 (pg—2)!
2<q<p  p+l<mpe{l,...p}?
Ip|=m
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1

< C(DPH QS%:SP 4 pg;mpe{;p}q (E)m(pl _9)1.
[pl=m

<" 2, (5 0rv-)

<2 G )

<" G

< c((ﬁ)p“‘;f = :

since 2/p < 1. Hence

(1+2(n+1)0)4cr> 1 1
€p+l ' F : 1 _ 7".

Finally we obtain

1 4(n+ 1ac /2v/n + lac\* 2
<o X \/n—+1k<p2)< Py,

@ a<k<p P
p+1<n<p+k—1

A

3
p

(pg — 2)!

S 3 ac ((4(n + 1>ac>q<2mac)nk+22q%5n+1>

9<gin—kt2 pena  P? p? 02
lp|=n—k+2
1 4 1 2 Tacy 2
D s V= >ac< Vit ),
@ a<k<p p P

pH1<n<p+k—1

X Z Z ac ((4(71 + l)ac)q <2\/n—_|_1ac)1—2qa

2<q<n—k+2 peNd Pl P> p?
|p|=n—Fk+2
1 24/ Tac\ "1
@ a<k<p p

p+1<n<p+k-1

D IDY (p)”apan+1>

)

2<g<n—k+2  peN? ac

[p|=n—k+2

2
S aicgan—k—l—Q
1—2%
3
2 1)z 2/ Tac\ -1
< M Z 5n+1<n—;—ac> Qn_sk(k—Q)!(n—k—l)!
¢ p

2<k<p
p+1<n<p+k—1

azg;:g Z k(k — 2)|(05>p+1 Z (Cé)nfp—1<n e 1)'

2sksp p<n<p+k—2

IN

S K-t Y

2<ksp p<n<p+k—2

Iyn—p-1(n—k—1)!
2 =

IN

Y
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where we have used the fact Cd < 1/(ep) < 1/(2p). Now we observe that

(m—Fk—1)!

pmfpfl

<(p-k)

holds for p+1 <m < p+ k — 1, and thus we obtain

2

AL P ST k(k— 200 12(p — b
69 2<k<p
2(n +1)p? 1
< 7(05)1&1]9! e
a’ch? 2;%612 (i)(l{; —1)
2(n + 1)p? (Co 1
- a2cf’ T 1
~ 2(n+ 1)p? pH,
a3 (C9)

Altogether we have

VY| < (2+2(n+1))4(n+1)c (2\/71 + 15>P+1 N (14 2(n+1))der?
= 4n+1) -1 p ertt
2(n+1)p
(293(05)p+1 '
_ @2+ DU+ Do, pppn | (420 D)der® 11
4n+1)—1 eptl pr 1—r
2(n + 1)er’
4 W(C{S)pﬂp!
2(n+1)+1 1 1
<O gag)
O
Next we use Iooss and Lombardi [I |, Lemma 2.19] to determine a sufficient order up

to which the normal form of H has to be constructed so that it is exponentially small.

Lemma 3.12. Let ¢ > 0 be given. We define f.: Z — R by f.(p) = ePTlp! and extend
f- to f-: R — R by defining 3
fe(x) = f(L=]).

Choosing
1
Popt = L—:eJ
we find .
~ 9 2
e\ _~ <m 76_57
f <8e) - e
where
ep!
m = sup < 00

peN pp+26 p

(by Stirling’s formula).
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Setting € = C'¢ in the preceding lemma we obtain

_ {1J
Port = | 05

and note that p,p, satisfies

5popt < eé'
Clearly
2 < Popt < e(l;,(s < Popt + 1
and
L < 2eC6.
Popt

Hence for |Y| < § we find

2(n+1)+1 1
L e (G R
2n+1)+1 (-
= 1 C( C5(p) ep+1p2>
2(n+1)+1 (0F) —2 n 1
c| my| —e T
n—+1 e p2ertl
2 1 1 @)
(nt 1)+ c(m —e T + (2eC’5)Qe_eé6>
n+1 e
2 1 1 nt1
(nt1)+ c(eC§)2e~ w3 <m (€O =T +4>
n+1 e
<1
2 1 1
n—+1 e
2 1 1 1
(n+ 1)+ cC?(me + 4e*)§%e s .
n+1

3.5 Estimates for the derivatives of the transformed
coupling term

Before we derive the corresponding estimates for dH we introduce the following notation.
For a polynomial ® and p € N or p € Ni and I € N{ with ¢ € N we introduce the
notation
OV(V;Y) = ("0, [V](V), ..., d"®,,[Y](Y,))
for Y = (Yi,...,Y,) with ¥; € (R™') for i € {1,...,¢}. In the case I = 0 we just write
DOV T) = @y(Y)

for notational simplicity.
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Remark 3.13. For a polynomial ® and p € N?, I € N{ we obtain from Proposition 3.9
that

¢§)l) = ﬁ|dll¢pz 2,pi—1; S (V n+ 1>l H (pp_Z'l)'ng
Differentiating equation (3.17) yields
dH. YY)
= > ¢, ({Y}VY)
p+1<q
= Y (YT By (1)) + L(V) A [V)(T) )
piiSm
= 2 ()X 0) + L) ¥ deny)7))
p+1<g 2<k<p 2<k<p

q . -
Py d?cpkm( SIS m,q_x{Y}“),—@p(Y)),Y)
2<k<p 2<qSm—k+1i=0  pei—i
p+1<m<p+k—1 |p|l=m—k+1—i

D SRR 56N S0 SD Sl (. P(1s LR S i)

2<k<p 2<g<m—k+1 =0 pGNgfi
p1<m<prk—1 Dl b1
0)
b R a0
1eNi?™?
=1

q ~
LYY Y (z‘Gi,q_x{Y}“—”,x—@pm)
254<p =0 pena—

lp|>p+1—i

Y Gn(Y ), el (v f/)))

leNd™
lt|=1
1 . (i) v (g—1)
+ 3 > zGi,q_,({Y} YAY o)) )
p+1<qi=0 2<k<p

+(q—i)Gz‘,qi({Y}(i)a{ > BV }q o ;Y Aoy (Y >>

2<k<p 2<k<p

FEE)( T T R} -a,m)
e \pzlogzlj—%?—z‘

> in-,qi({Y}‘”,{ 2 %(Y)}(‘”)),ff)

p+1<q =0 2<k<p

83



- (éd@k[YD( Z Xq: Z (in’,qi({Y}(q_i),Y/,—q)p(Y))

25qSp =0 peng

[p|>p+1—i Z Eq z({Y} q)(l (Y Y)))

i
+ ;K é(m,qi({yy“)y,{%; cpk(Y)}(“’,KZk< dd)k(Y)(f/))>).
) o o (3.19)

By using Proposition 3.10 and Remark 3.13 we therefore have that

IAHY ]| cns,)
<

1 c _
> Loyt

p+1<q
1 c _ vn+1y -
+- > —q(q(\/n+ D+ 7)5 Lo
2 05y P 0
p+1<m

il 3 pcqéq(qwn—ﬂ)q—l + %Jrl)

2 p+1<q
n+1 Z Z ¢ slel-1
2<q<p peN?
|p\>p+1
2(n+1 c .
+ (0) > —(Vn+1)%6"" (¢ +1)
pt1<q P
2(n —|— 1) c<5| pl- 1
+ (1 ) S Y p
2<q<p peN?
[p|>p+1
2(n+1 c -
+ (1 + (9)) >, —a(Vn+1)% (g +1)
p+1<q

¢ -1
+ > Vntlkge > m-a 90"
2<k<p 2<q<m—k+1 peNd
pH1<m<p+k—1 lpl=m—k+1

< 2(1 + 2(715_1)) > %q(\/n +1)%67 g+ 1)

p+1<q

P DY) v s,

2<q<p peN?
lp|>p+1

+ Z vn+ 1key Z Z mpcngpém_l,

2<k<p 2<q<m—k+1  peNd
p+1<k<p+k-1 Ipl=m—k+1

where we have chosen 6 > 1 and defined ¢; = v/n + 1.

An estimate for ||dH || zgn+1.p) is obtained from the above calculations and repeating

the proof of Proposition 3.11.

84



Proposition 3.14. Suppose that

2

5p < '0—7
— 4y/n + leach

that @ > 1 and that

For every Y € R"™! with |Y| < § we find

- (2(n+1)+1)c 1 1
AR oy < = (007 04 )

where

4+/n + lacH

C= 7

Proof. Define

A = 2(1 + 2(n+1)) > %q(\/n +1)%67 (g + 1),

0 p+1<q

A;:<1+4n—i-1> Z Z |p

2<¢<p peN?
[p|>p+1
Mo Y Vit Y Y D
P k q p
2<k<p 2<q<m—k+1 penNe P
pH1<m<p+k—1 [pl=m—k+1

We note that

(¢ +Da(vn+1)" < (2vn + 1)

for ¢ > n and

Wikl _ _p 1 1
p ~ daclp — A(n+1)p ~ 8(n+1)

for p > 2 so that

Z %q(q—i—l)(\/—)q(gq 1 C(Zx/n—-l—l(S)pﬂé(g(ll))q

p+1<q K P n+
8(n+1)c (2\/n+ 1(5>p+1
~ 8n+1)-1)6 p

and hence

Al < 16(n+1)c (1 N 2(n + 1)) (2\/71 + 15)p+17
(8(n+1)—1)0 0 P
where we have assumed p > 4.

Turning to A2, we have that

Z Z Z 75m¢p
2<q<p m>p+1 ‘p|€Nq p
P
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<Y Y ¥ (NP o, - 2)

2

2<q<p m>p+1 peN? P
lp|=m

14er? 1 1

— Jertl p2'1—r

by requiring C' < % Hence

(1+4(n+1))der? 1

1
2
Bp < eptly ']?.1—7"

Finally we have that

2(n+1)vn+1 5 6mm<2\/n—|—1ac

ad p?

m—1
A3 < ) 0" 31k — 2)l(m — k — 1)!

2<k<p
p+1<m<p+k—1

3p? 5 (4\/71 + lach
— a2cl36 25hep p?
pH1<m<pt+k—1

2<n+1)p2 p+1 |
—  a?ch3s (Co)p!

)mk(k —)(m —k— 1)!

by our previous method.

Altogether we find

48(n +1)%c <2\/n + 1(5)1”1 20(n+1er* 1 1
(8(n+1)—1)0 p ertly pr 1—r
2(” + 1)p2 p+1.
a?cf? (Coy™ !
48(n +1)%c <TC5)P+1 20(n + 1)cr? 11
“Bn+1) -1\ 2 ertly PP l—r
2(n+1)c L
+ (nt 1)25(05) p!
48(n + 1)%c
~ B(n+1)—1)(2(n+ 1))t

2c
CESTAA

c((C(S)p“p! ;L 2).

ep+1p

|AH[Y]|| ni.20) <

20(n+ 1)c
(n + 1)2ert1ip2s

(CoPH +

+

23
(n+1)0

<

Arguing as before, we find that

% 23
[dH[Y]|| @nt1,2) < ni_i_clca(me + 4e2)5e_ﬁ

for all Y € R™+! with |Y| < 4.
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4 Approximate pulses

We consider the evolutionary equation system

5= Loz + gz w,0) + By (2), (4.1)
W = Liw + gz, w, u) + hi(2),
U= Lju+ gseh(Z, w, u) + hzh(z)

for (z,w,u): R — R™ x R?? x Dy, where n,d € N and Dy, is a dense subspace of a
Banach space Xy,. We abbreviate R” x R?? x X, R® x R?? x Dy, to respectively X, D
and R? x X, R* x Dy, to respectively X. g, Degn. On the right-hand side we make the
following assumptions.

(A1) The bounded linear operators LS, : R® — R® L: R* — R?! and Lg,: Dy, — Xan
depend analytically upon ¢.

(A2) The functions g(%, g\, gs(l'f, h%, Rb), hgﬁ take values in respectively R", R?¢ X,
R, R?? X, and are analytic at the origin in respectively R x D and R x R™. We
suppose that

gsvh(za w, u)? gi(zv w, u)? gseh(za w, u) = O(”(Z’ w, u)HDH(w’ u)| Dc,sh)’

hin(2), he(2), b, (2) = O(|=]).

(A3) The spectrum of the complexified operator L € C?¥*2¢ consists of finitely many

simple purely imaginary eigenvalues +iwf, ..., +iwg, where w5, ..., w5 > 0 (see
Figure 4.1). For later use we denote the corresponding eigenvectors by €5, ..., €5
and €3,...,€5.

(A4) The system (4.1) — (4.3) is reversible, i.e. there exist Sy, € R™" S, € R?¥*24 and
Ssn € L(Dgn) N L(Xy,) such that system (4.1) — (4.3) is invariant under t — —t,
(z,w,u) — (Synz, Scw, Ssht).

(A5) There exists a real-valued function Z() which is analytic at the origin in R x D,
satisfies
T (z,w,u) = O([| (2, w, ) |3)

and
Z°(0,w,0) = |w|* + O(|w]?)

and is such that Z¢ is a conserved quantity of system (4.1) — (4.3).
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Im A

Re \

Figure 4.1: The spectrum of L{ consists of d pairs of purely imaginary eigenvalues.

Im A

ANAAUANNNNNNN NN NN NNNNN NN

9, is contained in wedges. We call the distance 2 of the

wedges to the imaginary axis the spectral gap.

Figure 4.2: The spectrum of L

(A6) The linear operator LY : Dy, C X, — Xap, is closed and satisfies the estimate

<

1GsT = Law) ™l e

~ 1+ s

for s € R. This estimate implies the existence of v,7y > 0 such that o(Lg,) lies in

the region

{Ae C:|Re)| > 2, |Re A| > ~|Im A}

(see the proof of Corollary 2.16 for details).

Remark 4.1. Assumptions (A5) and (A6) are not needed to prove the existence of

approximate pulses in this chapter but will be heavily used in Chapter 5.

In this chapter we construct homoclinic solutions to the (reversible) approzimate system

(4.4)

and use a scaling and the normal-form theory from Chapter 3 to transform equations (4.1)
— (4.3) into a system with the same structure but for which the coupling terms in equa-

tions (4.2) and (4.3) are exponentially small in a neighbourhood of the origin. We treat
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the cases n = 2 and n = 4 in detail, assuming that equation (4.4) undergoes respectively
a 0% and an (iw)? resonance at & = 0.

4.1 The 0? resonance

In the case n = 2 we assume that equations (4.1) — (4.3) satisfy the following additional
assumptions.

(B1) The spectrum of the linear operator LZ, € R?*? exhibits a 0% resonance at e = 0,
meaning that as € 1 0 a pair of purely imaginary eigenvalues of L, collides at the
origin (forming a Jordan block) and splits into a pair of real eigenvalues for € > 0
(see Figure 4.3). We write z € R? as

z=z1e+ 25f,

where L%, e =0, L%, f = e, and assume that

L=y o)

where A° is an analytic function of € with

2 =+ 0(?).
rm)\ Im A\ Im A\
@ — e o
‘ Re )\ Re \ Re )\
e<0 e=20 e>0

Figure 4.3: The 0% resonance at € = 0.

(B2) The term
hah(zl 22) _ (h;h,1(21722)>

P2 (21, 22)

satisfies .

We show that the approximate system (4.4) has homoclinic solutions by a method due to
Kirchgéssner [16, Proposition 5.1].
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Proposition 4.2. The linear operator L: C*(R) — C(R) given by
Ly=19y—vy
has the following properties.

(i) The restrictions L: C% (R) — C_,(R) and L: C? (R) N C,(R) — C_,(R) N C(R)
of L are well defined for all v > 0.

(ii) For 0 < v < 1 the operator L: C? (R) — C_,(R) is invertible with

Llfuy:—;/”et%ﬂgd&

— 00

Proposition 4.3. The operator A,: C(R) — C(R) given by
Apy = L™ (—2Chy),

where h € C_1(R) is even, C' € R and L is defined as in Proposition 4.2, has the following
properties.

(i) The restrictions A: C,(R) — C?(R) and A, : C.(R) — C2(R) of A;, are bounded

linear operators for 0 < v < 1.
(ii) The restriction Ay : C,(R) — C_,(R) of Ay is compact for 0 < v < 1.

(iii) The restriction A,: C_,(R) — C_,(R) of A}, is compact for 0 < v < 1.

Lemma 4.4. For fixed v € (0,1) and ¢ > 0 the system (4.4) has a reversible homoclinic
solution, that is invariant under the transformation (z1, 22)(t) — (21, —22)(—t), of the

form
() - (Gpecs).

where
Proof. The scaling

converts equation (4.4) to

=5+ NR(5, %), (4.5)

v v v I3 /(v v
Zy =% — CZ + N R5(%4, 22),
where Rf, Rj are respectively odd and even in Z, with

|R§(51, 52)| = O(|5|2)
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For € = 0 this system has the explicit reversible homoclinic solution

where

In fact we have the family

{1,%2) = (hto + ), hlto +)) |

to€ER

of homoclinic solutions. Note that the solution in the case t, = 0 is reversible (see
Figure 4.4).

(a) The case C' < 0. (b) The case C > 0.

Figure 4.4: Phase portrait of equations (4.5) and (4.6) for e = 0.

Using the implicit function theorem we can solve equation (4.5) for Zy = Z5(Z, 51), to
find that
52 = 51 + 8@6(51, 51),

where v° is analytic and odd in % and |v°(%, %) = O(|(21, %1)||(%1, 21, €)]). Hence we can
rewrite equations (4.5) and (4.6) as
%1 = 51 — Cé% + 585(51, ,\Z./l),
where S¢ is analytic and even in %, and
[8°(21, )] = O(I(z, 2|31 21, )],
Now we write Z; as perturbation
51 =h + Yy

of h, so that
g —Yy= _2Chy + 7’6(% ya t))

with the obvious definition of r¢. We study this equation in the space C? (R) with fixed
v € (0,1) and consider the nonlinearity r* with a slight abuse of notation as an analytic
mapping C2,(R) — C_,(R) and C? ,(R) N C(R) = C_,(R) N Ce(R) with

I Wllo_ @) S e+ 11yl @)
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Next we write the above equation as
y = Ay + L7 (y), (4.7)

where Aj, and L are defined in Propositions 4.2 and 4.3. To solve equation (4.7) by means
of the implicit function theorem we prove I — Aj: C_,(R) N Ce(R) — C? (R) N C.(R) to
be invertible. To this end it suffices to check that the eigenspace of A, to the eigenvalue
1 lies in C_,(R) N Co(R). We know that

Ay =y

is equivalent to
J—y+2Chy =0

which has the fundamental solution set {y;,y2}, where

yi(t) = ;sech2 (;) tanh (;) = —(;h(t) (4.8)
and
y2(t) = cosh(t) + ;) sech (;) ( — 8 + 2cosh(t) + 5t tanh (;)) (4.9)

We note that y; is odd and s is even. Hence all bounded solutions of

Ay =y

are multiples of h. The eigenspace of A, to the eigenvalue 1 is therefore <h> and lies in
C_,(R)NCy(R). The implicit function theorem now yields a solution h* to equation (4.7)
which satisfies

1772, @) = O(e).

The result now follows with

O

To apply the normal-form theory in Chapter 3 the parameter-independent part of
L%, should be diagonalisable as discussed in Remark 3.5. Since LY, is evidently not
diagonalisable, we use a change of parameter to ‘replace’ it by the zero matrix. Writing
e = p? and introducing the scaled variables

(2)=(372). (5)=vor(2). #=x

converts equations (4.1) — (4.3) into
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7= LELZ +GL(Z, W, U) + HE (2), (4.10)
W = LMW + G*(Z,W,U) + H*(Z), (4.11)
U= LE U+ GL(Z,W,U) + HY (Z2), (4.12)
where

" 0 M

i (7) - (0 0) (%)
G (Z W, U) = O(||(W,U)|lp. . [(Z, W, U)]|p),

GI(2Z,W,U),G4(2,W,U) = O(p?|| (W, U)lp,.. I(Z, W, U)Ip),

Hy(Z) = O(|Z]),

H!(Z), HY,(Z) = O(1?| Z]?),

3 € € H
and we have abbreviated Lf|._,2, L |2 to L¥, L% .

Remark 4.5. The formula

IMZ W, U) =TI (z,w,u)

‘azlﬁ
defines a conserved quantity of equations (4.10) — (4.12) and satisfies

M2, W,U) = O(u*[[(Z, W, U)lI).

The equation ‘

has the reversible homoclinic solution
PEWY _ (M5 (V)]
PH(t) = 1 = (5 PV P e=p 4.1
0= (sht0) = (Fen ) (419
which satisfies the estimate

|PH()] < Wem Ml

(see Lemma 4.4).

The estimates gathered above are not sufficient to construct a contractive iteration
scheme which will be our main tool in the existence proof of generalised pulse solutions
in Chapter 5. The following preliminary transformation improves these estimates by
removing those terms of G%, which are linear or quadratic in (Z, 1) and linear in (W, U)
at the expense of modifying higher-order terms.
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Lemma 4.6. There exists a near-identity, finite-dimensional change of variables which
transforms equations (4.10) — (4.12) into

Z=1"7+G" (2, W,U)+ H".(2), (4.14)
W = L'W + G2, W,U) + H"(2), (4.15)
U=ILU +Gh (Z,W,U) + B (2) (4.16)

and preserves the reversibility. The transformed nonlinearities G*, G% and H¥, H"
satisfy the same estimates as respectively G¥#, G5 and H*, H.,, while

H3(Z) — Hip(Z) = O((Z, )| Z1%),

so that the p-independent quadratic terms of HY, are untouched by the transformation,
and

w(Z, W, U) = O(Z][(Z, (W, U)]

(W, U)|

’Dc,sh + l’[/2|1/‘[/|2 —I— ||U| D Dc,sh)‘

sh

Proof. We consider the near-identity transformation
Z=2Z+dzZ,W), (WU)=WU),
where d: R? x R — R? is bilinear; its inverse is given by
Z=0—dZ,W)+R(Z,W),
where R is analytic and satisfies
R(Z,W) = O(Z|IW]2).

We find that

A

7 =1" 7+ FYZ,W,0),
where
FMZ,W,0)
= L4y (R(Z,W) = d(Z,W)) + Hly (Z = d(2,W) + R(Z,W))
+ Gl (2 = d(Z,W) + R(Z,W), W, 0)
+ d(Lgh(z d(Z W) +R(Z,W)) + H (2 — d(Z, W)

A A A~

R(Z, W) + Gl (Z — d(Z,W) + R(Z,W), W, 0), W)
+d(ZL“W+ #(Z - d(Z,W) + R(Z,W),W,0)
HY (2 - d(2.W) + RI(Z. W)))

= H},(2) + Gy, (ZWU)+d(Z LIW) + O(IZI|(W, U)o, [(Z, )] + (W, 0))]

,QDC,Sh)7

Dc,sh

so that o . o R R
Fo110(Z,W) = fo110Z,W)+d(Z, LSW)a
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where Fp 11,0 and f0717170 are the parts of F' and ~§‘ that are linear in Z and W. Choosing

d(Z,W) = —f0,1,1,o(Za (Lg)_lﬁ/)

therefore leads to
Foi10=0.

By also applying a similar near-identity transformation
Z =7 — for01(Z, (L) "'U)

we achieve Fp ;01 = 0, where F;0; and f(],l’(],l are the parts of ' and fﬁ‘ that are linear
in Z and U.

To eliminate terms that are homogeneous of degree 2 in W and homogeneous of degree
i €{0,1} in u we use the near-identity transformations

A 1 A n
Z =7 — §f0,0,2,0((L2)_1VV7 W)

and 1
Z =7 — ﬂfl,o,z,o((Lg)flm W)>

where ﬁ7072’0 is the part of fé‘ that is homogeneous of degree i € {0,1} in p and quadratic
in W, and (LF), is the part of L¥ that is linear in pu.

Defining R
HLL(Z) = F*(Z,0,0)
and o o o
G\/fvh(Zv‘/Va U) =F"(Z,W,U) - Hé‘,h(Z)
yields the desired estimates. O]

The next step is to apply the normal-form theory presented in Chapter 3 to equa-
tions (4.14) — (4.16). Defining

X = Xc,sh = Xc X XS}U
D= Dc,sh = Dc X Dsh7
Q= (W7 U)

and
FYZ,Q) = Ly Z + G (Z,W,U) + Hip (Z),
LH'Q = Lg,sh(VVv U) = (LEW, L{,U),
G"(2,Q) = G (2,W,U) = (GH(2,W,U), G4,(2,W,U))
we are now in the setting described in Chapter 3 and note that
d, F°[0,0] = 0.

Hypothesis 3.4 is verified in the following result.
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Lemma 4.7. The operator L: Py(R? D) — Pr(R?* D gn) defined by
(LU)(Y) = Loy Pr(Y)
is invertible on Py(R?; D, ) and the operator norm of its inverse

sup |(£) ™ Wkl

[Wgl2=1

is independent of k.

Proof. The fact that 0 € p(L{,) yields the existence of (L{,)~" and we find that

(£710) (V) = (L24) 1 (Wi(Y))

for every Wy, € Py, (R?; D. ). From this fact we obtain for an arbitrary polynomial function
Uy, € Pr(R3 Degn) given by

Ue(Y) = D vayfys2ys?,

la|=k
where v, € Dc g, that
L7045 < (L) " eeay 2 Ivallpemanlaslas! = [[(Leaw) ™ e Prl2
|a|=k
holds independently of p and k. O]

Chapter 3 therefore yields the existence of a near-identity, finite-dimensional change of
variable . . )
Y=Y =(Zup, W=W+d(Y), U=U+du(Y)

satisfying
®(Z,p) = O((Z, )| Z*) (4.17)

which transforms equations (4.14) — (4.16) into

Z = L 7 + é&h(za W, U) + Ffdh(Z),
W = LEW + GH(2,W,U) + H!(Z),
U=LLU+GY(ZW,U)+ H4(Z)

and d > 0 such that
’lﬁcysh(Y)HXc,sl\ S /’626_;7’
ldHe (V)| cqos, o) S pe” 2

for |Y] <. Equations (3.6) — (3.8) and estimate (4.17) imply the following estimates for
the transformed nonlinearities.
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Remark 4.8. The transformed nonlinearities satisfy

(i) H".(Z) - H",(Z) = (’)(|(Z, u)||Z|2>, so that the p-independent quadratic terms of
HPE, are untouched by the transformation,

(i) G (2, W,U) = 0<!ZH(Z, IV, U)llp, . + 12 W + Ul I (W, U)HDC,Sh),

(iii) G4 (Z,W,U) = O(IZI(Z. ) PII(W, )|

pew + I Z WPV, DB, )

(iv) dfl, (2] = O(|z]),

(v) G [2,W,0] = O (1(Z, NV ) o, + IOV, ), )

(vi) oG [2, W, U], 3Gy [2,W,U) = O(1 2] + pl Z| + (W, U)]

Dc,sh)7

(vil) diGl (2, W, U] = O(1(Z, ) PIl(W, U)o, + [(Z, ) I1(W, O)3,,.,.),
(vill) oG, [Z, W, U), ds G, [2,W, U] = O(1Z1|(Z, )P + (Z, ) P| (W, D) ... )-

4.2 The (iw)* resonance

In the case n = 4 we assume that equations (4.1) — (4.3) satisfy the following additional
assumptions.

(C1) The right-hand side of equations (4.1) — (4.3) satisfies the estimates

hin(2) = O(|2),
he(2), b (2) = O(|=]).

(C2) The spectrum of the complexified linear operator L, € C*** exhibits an (iw)?
resonance at € = 0, meaning that there exists w > 0 such that as € 1 0 two pairs
of purely imaginary eigenvalues of L, collide to form geometrically simple and
algebraically double eigenvalues +iw and split into a complex eigenvalue quartet for

e > 0 (see Figure 4.5). When working with complex coordinates we write z € R* as
z=zie+ unf + Zie+ nf, 21,7 €C,

where (L2, —iwl)e =0, (LY, —iwl)f = e, and assume that

i(w+ 0o°) 1 0 0
o e 0 0
wh 0 0 —i(w + o) 1 ’
0 0 (X°)? —i(w + o)

where \°, ¢° are analytic functions of ¢ with

N =¢+0(e?), o = O(e).
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Additionally, we assume that Sypn(21,22) = (21, —%2) and kw # w? for all j €
{1,...,d} and k € N.

Im A Im A\ Im A
® iw ° °
Re A Re A Re A
T—iw ° ¢
e<0 e=0 e>0

Figure 4.5: The (iw)? resonance at ¢ = 0.

(C3) The conserved quantity Z¢ satisfies

(Zl, Z2,W, U)HD + 6”('21’ 22, W, U)H%)

IE((Zb Z2)7 w, U) = O(H (ZQa w, U) ”RQX]RMXDS},
(in complex coordinates).

Since the scaling in this case leads to slightly worse estimates for the nonlinearities we
need to eliminate the e-independent term of i, which is homogeneous of degree two in
z. This change of variable affects the coefficient in kS, (part of the cubic terms of h?,)
which determines whether homoclinic bifurcation takes place. We therefore eliminate this
term as a separate preliminary step by writing

Z=2z w=w+ Xc(z,2), uw=u+ Xu(z 2),

where X = (X, Xq): R* x R* — D, is a bounded symmetric bilinear operator. Ap-
plying a transformation of this kind leads to the equations

2= L2+ Gon(2,0,0) + By (2), (4.18)
W = L + e (2, @, @) + hi(2), (4.19)
U= L5+ §5,(2,w,0) + B:h('%)a (4.20)

Fan(5,10,1) = g5 (2,0 — Xo(2,2), 6 — Xan(5,2)) — gin (2, = Xe(2,2), = Xan(2, 7)),
Ge (2,0, 1) = 2X.( 2, (f7(5,0 — Xe(2,2), 1 — Xan(2,2)) = £7(5, = Xe(£,2), = Xan(%, z)))
+ 52,0 — Xe(,2), 1 — Xan(2,2)) — 02 (2, — Xe(2,2), - Xau(2.9)),
35, (3, 0, @) = 2X4, (z (£5(2 0 — Xe(2,2), 6 — Xan(3, 7))
= 17(2 = Xe(£,2), — Xan 2, z)))
+95.(2,0 — Xe(2,2), 1 — Xau(5, 7)) — 65 (5, = Xe(£,2), —Xan(%,2)),
R (2) = B (2) + gin (5, = Xe(2, 2), = Xa(£,9)),
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hE(3) = —LiX.(3, %) + 2X, (z (2, = Xe(2,2), - Xan 5, z)))
+ (2 Xe(2,2), - Xan(,2)) + B(2),
hey(2) = —L5 Xan(Z, 2) + 2Xa (2, (2,0, - Xa(2, 5)))
+ i (25— Xel2,2), = Xa(2,2)) + 15,(2)
and
[E(Z0,0) = L Z + gon (2,0, @) + 15y, (2),

so that the quadratic terms of lNLgsh are given by

W

1
_Lg,shX('g7 2) + X('§7 2L0h2) + 5 d2hg,sh[0](ga 2)7
while the cubic terms of h%, are
1
¢ P01z, 2,.2) = A0 [0]((2.0,0), (0, Xe(2, 2). Xan(2,2))). (4.21)
We therefore have to solve the operator equation

—LI G X (2,2) + X(3,2L]

W

WZ) = —; d*hY 4, [0](Z, 2). (4.22)

The following result was proved by Arendt et al. [2].

Lemma 4.9. Suppose that E, F' are Banach spaces, A: D(A) C E — E'is a closed linear
operator, B € L(F'; F') and the spectrum of —B is separated from the spectrum of A by
a finite number of simple closed curves 7. The Sylvester equation

AX+XB=Y (4.23)

has a unique solution X € L(F; E) for each Y € L(F; E), and this solution is given by

the formula )
X=_— /(/\I ~A)YY (M + B)LdA (4.24)
¥

27

Proposition 4.10. Suppose that the hypotheses of Lemma 4.9 hold. The solution X
to equation (4.23) lies in L(F;D(A)) for each Y € L(F; E). Furthermore X depends
continuously on Y in this sense with

| X || 2:piay S Sup (M — A) Nl empapl (M + B) e |Y [ 2 2)-
my

Proof. We observe that the resolvent of A is a holomorphic function p(A) — L(E;D(A)),
so that (A — A)7'Y(A\ + B)™' € L(F;D(A)) depends continuously on A € Im~; the
integral on the right-hand side of equation (4.24) therefore converges in this sense. Fur-
thermore X — AX 4+ X B is a bounded bijective mapping L(F;D(A)) — L(F; E), so
that by the inverse mapping theorem its inverse is also continuous; the estimate follows
directly from equation (4.24). O
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Applying Proposition 4.10 with A = —Lg,sh and B = 2L%, to the equation

1
_Lg,shX(27 ) + X(27 2L8vh) = _5 dzhg,sh[o](ga )
yields a unique solution X (Z,-) € L(R?* D.g,) which depends linearly and continuously
on Z € R*. Tt follows that X is a bounded symmetric bilinear operator R* x R* — D,
which satisfies equation (4.22). The transformed nonlinearities satisfy

g\fvh(zv w, u)7 95(2, w, u)? ggh(za w, u) = O(” (Zv w, U’) ”DH(U}; u)| Dc,sh)v
w(2) = 0(|z),
he(2), hg(2) = O(|(e, 2)||2),
where we have dropped the tildes for notational simplicity.
Now we turn to the approximate equation

The following result is a straightforward application of the normal-form theory given by
looss and Péroueme [12].

Proposition 4.11. There is a polynomial change of variable

5
F=z4 )y £0l(2), (4.26)
i+j=3
Jj=3
where <I>§- is homogeneous of degree j in z, which converts equation (4.25) into

%= LynZ + hun(2),

where in the same notation

Rohiy, ;(2) = hiy i(RoZ), i+j€{3,4,5}, j=>3

for all rotations

0

Rg(Zl, 29, 21, 22) = (eiezl, ei 29, 671921, 671922), 9 € [0, 271']

In particular ﬁgvh’g is obtained from h{; 5 by the removal of all monomials which are not
equivalent under rotations.

Applying the change of variable (4.26) to the complete system

2./' - LhoZ + gi,h(Z?w;U) + hivh(z)7
W= Lz + go(z,w,u) + hi(z),
U= L:hZ + gseh(za w, u) + h:h(z)7

transforms A, in the same way, while the estimates for the other nonlinearities remain
unchanged. Without loss of generality we therefore assume that

Rohl, (2) = hi, (Rpz), i+j€{3,45}, ;>3

wh,j wh,j
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for all € [0, 27|, and we write equation (4.25) as

Z =i(w+0%)z1 + 20 + Pi (21, 22, 21, 22) + R (21, 29, 21, 22), (4.27)
2y = (X922 +i(w + 0%) 20 + P5(21, 20, 21, Z2) + R5(21, 22, 21, 22), (4.28)
where
Pi(z1, 22, 71, 22) = —PS(21, —22, 21, — %),  P5(21, 72, 21, 22) = P5(21, — 20, 21, —22),
Ri(il, 29, 21, 52) = —'Rfi(zl, —29, 21, —22), 'Rg(il, 29, 21, 52) = R5(21, —22, 21, —52),
as well as

Pj(elgzl, 61022, 671051, 671022) = 6197);:<21, 29, 51, 22),

[R5 (21, 22, 21, 22)| = O(|(e, 2)P’l2[)

for 6 € [0,27] and j € {1,2}. At this point we make an additional hypothesis concerning
the term of hS, which determines whether equation (4.25) has a homoclinic solution.

(C4) We assume that the coefficient of 21|z |* in P5(z1, 29, Z1, Z2) is negative and can
therefore be written as —C' for some C' > 0.

Changing to real coordinates by writing
z1 = r1 + iz, Zy = Y1 + 1y,
we find that (with a slight abuse of notation)
i=(w+o°)Rzx+y+Pi(z,y) + Ri(z,y), (4.29)
j = (w+0°)Rzy + (X°)°x + P (z,y) + R5(x,y), (4.30)
where © = (x1,2)", y = (y1,92)"-
Lemma 4.12. For fixed v € (0,1) and € > 0 the system (4.29) and (4.30) has a pair of re-

versible homoclinic solutions, that is invariant under the transformation (xy, z2, y1,y2)(t) —
(1, =22, —y1, y2)(—1), of the form

ek () _ (T (A1), P ( t))
P = Ry (( 2R ). 85 (¥ >>T)
which satisfy the estimate

57 (O 17 (O] S e,

Proof. Writing
y==%—(w+0o°)Rzx +v,

we find from equation (4.29) that
v+ Pi(r, & — (w+0o°)Rzx +v) + Ri(z,& — (w+ 0% )Rz +v) = 0.
We seek solutions to this equation of the form

v=20](r,% — (W+0°)Rzx) + v3(z, & — (w+ 0°) Rz ),
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where

vi +Pi(z, & — (w+ 0 )Rzx +0]) =0

(4.31)
and
vy +Pi(, & — (w+ 0°)Rax +vi(z, & — (w+ 0°)Rax) + 05)
—Pi(z,2 — (w+0°)Rzx +vi(2, & — (W + 0°)Rzx))
+Ri(2, & — (w+ 0% )Rzx +vf(2, & — (W + 0°)Rzx) +v3) = 0. (4.32)

Using the implicit function theorem we obtain unique solutions v§ = vi(z, &

=vi(z,i—(wt+o°)Rzx)
and v5 = v3(x, & — (W + 0°)Rzx) to equations (4.31) and (4.32) respectively depending
analytically upon €, z and & — (w + 0°Rz ) and satisfying

€

vi(z, & — (w+0°)R

) =O(|(z, 4 — (w+ o) Rz2)[),
Rovi(z,2 — (w+0°)R

z) = vi(Rpz, Re(L — (w + 0°) Rz 1))

INIE] INIE]

for all § € [0, 27) and

v5(x, & — (w+0°)Rzx) = O(|(x, & — (w+ 0%)Rz2)]*|(e, 2, & — (w+ 0°) Rz x)|).

Substituting

y=17— (w+0°)Rzx + 0] + 03
into equation (4.30) we obtain that

(0 — (w+ JE)Rg)% = —(0 — (w+0°) Rz )(v] +153)

()2 + Pe(x, & — (w+ 0°)Rzx) + Ré(z,4 — (w+ 0°)Rzx),

Pi(z,& — (w+0°)Rzx + v7),

zx) = P5(2,% — (w+ 0% )Rzx + 0] +v3) — P52, — (w+ 0°)Rzx + 0f)
+R5(z, & — (w+ 0°)Rzx + 0] + v3).
Therefore, we find that
(0 — (w+ 0°)Rz)*w = =005 (& — (w4 0°)Rza) — D0 (0; — (w + 0°) Rz )
N2z + P, 4 — (w+ o°)Rzx)

— O103(% — (w + 0°) Rzw) — Dpv3(0; —

(w+0o°)R )2:U
— O1v5(w + 0°) Rz — Oyvg(w + 0°) Rx (&

— (w+0°)Rzx)
+ (W + o) Rzv; + Ré(z,2— (w+o *)Rzx),

(4.33)
where we have used the notation 9;v;,

= djvi[z,& — (w + 0°) Rzz] and the calculation
(0r — sRx)vi(2, & — (W + 0°) Rz )
= oni(z, & — (w+0°)Rzx)(¥ — (w+ 0°)Rz )
+ 05 (2, & — (w+ 0°)Rz)(0) — (w+ 0°)Rz )’z
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based on the rotational invariance of vj.
Introducing the scaled variables
T(t) = N Riyroeyd(f), =Nt
equation (4.33) transforms into

.% == f—0f|f|2+736(f, i’)_’_R_(w_;’_o-s)t/)\s Q‘S(R(w_i_o—s)t//\sjj, R(w_;'_o-s)t/)\e.%, R(w_i_o—s)t//\s.%), (434)

since
i —(w+ UE)Rgm = ()\6>2R(w+os)t«%(g>7 (O — (w+ 05>R%)2$ = <)‘6>2R(w+05)t%(t>'
We can rewrite equation (4.34) as the second order system

J%1 =1 — 01’1(55% + 1’3) + S5 (24, 1732’531,352, 9%’175%2)7 (4.35)
T

to — Coy (72 + &2) + S5(&y, #g, &1, To, F1, 2), (4.36)

where ST and S5 are continuously differentiable functions of € and their arguments in a
neighbourhood of the origin, and S§ is even and S5 odd in (&1, T2, T2) with

SE(d1, da, F1, ¥, 21, d2) = O(e)
for j € {1,2}. For e = 0 this system has the explicit reversible homoclinic solution

(571’ i?) = (h7 O)a

where

h(f) = ()é sech(f).

Figure 4.6: Phase portrait of the invariant plane {(i;,#;)} of equations (4.35) and (4.36)
for e = 0.

103



In fact, we have the family
{(#1,%2) = Ra(hlfo + ), 0),a € [0,27),fg € R}

of homoclinic solutions, where the solutions p* for a« = 0 and £, = 0 as well as p~ for
a =7 and £, = 0 are reversible (see Figure 4.6).

Now we write & as perturbation
&1 =h+p, T2=ps
of the homoclinic solution (h,0) so that equations (4.35) and (4.36) become

P — p1 = —3Ch*p1 + 7 (p1, pa, P1, P2, P1, P2, ), (4.37)
Po —p2 = —Ch®py + 75(D1, D2, D1, D2, D1, Do, 1), (4.38)

with the obvious definitions of r{ and r5. We study this system in the space C2(RR)?
and consider the nonlinearities r{ and r5, with a slight abuse of notation, as continuously
differentiable mappings C? (R)? — C_,(R)?* with

7501, p2) = Ole + (01, p2) 122 ))-

In terms of the (vector-valued versions of the) operators L and A; defined in Proposi-
tions 4.2 and 4.3 we write equations (4.37) and (4.38) as

p=Ap+ Lilrs(p), (4.39)

where p = (p1,p2) and ¢ = (r§,75). In order to solve equation (4.39), we show that the
operator

I=Ap: (Co(R)NCe(R)) x (C_,(R)NCo(R)) — (C2,(R)NCe(R)) x (C2,(R)NCo(R))
is invertible.
As a first step we show that 1 is a geometrically double eigenvalue of
Ap: Cy(R)? = C (R)?,

noting that the eigenvalue problem

App=p
is equivalent to the decoupled system
P =p1 — 3Ch’py, (4.40)
Po =p2 — Chps (4.41)

of ordinary differential equations. Now let

ws(f) = sech(f)(2f + sech(2f)),
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and note that {v,ve} is a fundamental solution set for equation (4.40) and {wy, w9} is
a fundamental solution set for equation (4.41). Since vy, w; are bounded and vy, wy are
unbounded, we conclude that all bounded solutions of equation (4.40) are multiples of
v; = —h and all bounded solution of equation (4.41) are multiples of w; = (2/C) " 2h.
The eigenspace of Ay : C_,(R)* — C_,(R)? corresponding to the eigenvalue 1 is therefore

(0)-6))
and lies in (C,(R) N Co(R)) x (C_,(R) N Ce(R)).

In particular 1 is not an eigenvalue of Ah|c_V(R)mce(R)Xc_V’O(R) and since the operator
Ay is a compact operator C_,(R)? — C_,(R)? by Proposition 4.3, it follows that the
spectrum of Ap|c_, mync.(®)xc_,.o(r) consists only of eigenvalues, so that

I=Ap: (C_(R)NCe(R)) x (C_,(R)NC(R)) = (C2,(R)NCe(R)) x (C2,(R)NCo(R))

is invertible. We can therefore solve equation (4.39) for sufficiently small values of £ > 0
using the implicit function theorem. The solution h* satisfies [[h*[|c2 &) = O(e). The
lemma now follows with

p(d) = () + h* (D),
d(i) = h(f) + h*(7)
+ () 7207 ()2 (1), Ai(1))

v
+ (A) 2 B om0 (R ey i N2 (D), Ry ey (£,
where v° = v +v5 and t = {/\°.

The second homoclinic solution p*~ satisfying the above estimates is obtained analog-
ously to p~. O]

Since the matrix L2, is evidently not diagonalisable, we need to use a change of variable
to ‘replace’ it by a diagonalisable matrix to apply the normal-form theory in Chapter 3,
as in the 0% resonance case (see Remark 3.5 for further details). Writing ¢ = p? and
introducing the scaled variables

M= Aoy,
7" = 0=y,

Z1\ () 2z
(%) = (Gn-1m):
W:(S\“)_lw,
U= (M) 2u,

converts equations (4.18) — (4.20) into

7 =1I"7+G" (Z,W,U)+ H" (2), (4.42)
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W = L'W + G"(Z,W,U) + H"(Z), (4.43)

U =LhU + G (Z,W,U) + H(Z), (4.44)
where
i(w+d*") K 0 0
Ih AH i(w+ o) 0 0
wh ™ 0 —1(w~—|— at) A
0 0 A i(w+ ")

(in complex coordinates), and

Gi(Z,W,U) = O 0, (2, W, U)|p),
GH(Z,W,U) = 0(M|W||| (Z, W, U>| ., 1(Z,W,U)]p),
G2, W,U) = O([(W, U)o, ., | (Z, W, U)HD),
HYW(2) = 0 2)),
HY(Z), H(2) = O((2,m)]| Z]?)

and we have abbreviated LZ|._,2, L% |.—,2 to L¥, Lf .

Remark 4.13. The formula
IMZW,U) =T (2, w,u)|c—p2
defines a conserved quantity of equations (4.42) — (4.44) and satisfies
M(Z,W.U) = O(u*|[(Z, W, U) ).

The equation
7= L7 + H\(2)

has the reversible homoclinic solution

"o lw—i—a“t (5‘>
e (o

N= D=

(75 (V) + it (N t))@z)
(qvii()‘ t) +1(j§i()‘ t))’sz;ﬂ 7

which satisfies the estimate
(D) S (W) re Al
(see Lemma 4.12).
The estimates gathered above are not sufficient to construct a contractive iteration
scheme which will be our main tool in the existence proof of generalised pulse solutions
in Chapter 5. The following preliminary transformation improves these estimates by

removing those terms of G%, which are linear or quadratic in (Z, 1) and linear in (W, U)
at the expense of modifying higher-order terms.
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Lemma 4.14. There exists a near-identity, finite-dimensional change of variables which
transforms equations (4.42) — (4.44) into

7 =1"7+G" (2, W,U)+ H".(2), (4.45)
W = LMW + GH(Z,W,U) + H*(2), (4.46)
U=LAU+ G- (Z,W,U)+ H"(Z) (4.47)

and preserves the reversibility. The transformed nonlinearities G G“ and H nOH" ., satisty
the same estimates as respectively G¥, G4 and H¥, HY , while

Hi(2) = Hyu(2) = O((Z,m)|12]),
so that the p-independent cubic terms of HY, are untouched by the transformation and

G (Z,W.U) = O((Z, )| Z]|(W, U)] Do)

Dc,sh + ||(W U)|

Proof. We consider the near-identity transformation
7 =7+ pd(Z,W), W=W, U=U,

where d;: R* x R*? — R* is homogeneous of degree j in the first argument and linear in
the second; its inverse is given by

Z =7 —pidy(Z,W) + R(Z,W, ),
where R is analytic at the origin and satisfies
R(Z, W, ) = O(u | ZP|W?).
We find that
7 = FYZ,W,0),
where
FMZ,W,0)
= L2 + Ly (R(Z,W) = i (2,W) + Hi (2 = pldy(Z,W) + R(Z, W, )
+ Gl (2 = pidy(Z, W) + R(Z,W, ), W, 0
+ 'y (Lo (Z — pd(Z, W) + R(Z, W, 1))
+ H(Z = p'dy (2, W) + R(ZW, )
+ Gl (Z = pidy(Z, W) + R(Z, W, p), W, 0), W)

W, 0)

1 id (z LW + G (2 = d(2,W) + R(Z, W), W
+H!Z - d(Z W) +R(Z,W) )
= Hi(2) + G (2, W, 0) — i L9y dj (2, W) + i dy (L9, 2, W) + pidy (Z, LIW)
+O((u 2y +M|le+l>\|<w, Do + 12, W, D)o (W, )13
+ i (Z, w1 Z17F),

c,sh
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so that

Fijno{my D A2y W) = — ' L8, dy (2, W) + pid; (L8, 2, W)
1t di (2, L) + (Gan)ijno({p} D, {239, W),

where Fi,j,m and (Gyn)ij1,0 are the parts of F' and G* wn that are homogeneous of degree

i in p, homogeneous of degree j in Z and linear in W. Therefore, to achieve Fm,l,o =0
we have to solve the equation

— ' L0y di (2, W) + pldy (L2 2, W) + pid(Z, LOW) = (Gn)ijao({u} @, {239 W),
which is equivalent to the system

(iwi ] = Lon)ds(Z, em) + dj(LanZ, em) = (Gan)igao ({1} A2} em),  (4.48)
—(iwmd + Lop)d;(Z,em) + dj( L Z, ) = (Gun)igao({1}Y {239, ) (4.49)

form € {1,...,d}, where d; and (Gyn)i ;1,0 have been extended linearly to complex-valued
second and third arguments. Applying Lemma 4.9 with A = iw% T — L% and B = LY,
to equation (4.48) and with A = —(iwd 1+ L%,) and B = Loh to equation (4.49) we
find unique solutions d;(-, e,,) € L(R*;C*) and d, (-, Em) € LR CY) for m € {1,...,d}.
(Note that d;(-, e,,) = dj( em).) Constructing d; for (1,7) € {(1,0),(2,0),(1,1)} yields

Gun(Z,W.U) = O((Z, W PIZI| (W, U)llp, o, + W ZIIU D, + (W, 0)I5, )

in the new variables, where we have dropped the hats.
To obtain the desired estimates we consider the near-identity transformation
Z=Z+udzZ,U), W=W, U=U,
where d: R* x Dy, — R* bilinear; its inverse is given by
Z =7 —pd(Z,0)+R(Z,U,p),
where R is analytic at the origin and satisfies
R(Z,U, 1) = O | Z||UP).
Repeating the same arguments, we find that

A ~

Z = FZ,W,0),
where
FH(Z,W,0) = Hiy(2) + G (Z,W,0) = pLyd(Z,U) + pd(L9,, 2, U) + pd(Z, LY,U)
+ 012 2]+ plZ(W, U)llp, o, + 1(Z, W, 0) 1| (W, D13
+ul(Z, W1 Z)1P),

Dc,sh

so that A o
Fiio1(Z2,Up) = — uLd, ) + Hd(LOhZ U)
)+

d(Z,
+ /,Ld(Z, Lsh ) (Gwh)i,j,o,l(:u? 27 (j)a
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where meovl and (Gyn)ijo,1 are the parts of F and G",, that are homogeneous of degree
¢ in p1, homogeneous of degree j in Z and linear in U. To achieve F} ;o1 = 0 we have to
solve the equation

—puL%d(Z,0) + pd(L3, 2, U) + pd(Z, LY,) = (Gan)i0a (i, 2,0),

which is equivalent to the system

(L8, +iw)d(e, U) + d(e, LST) = (Gun)1.1.01(1,¢,0) (4.50)
(Lgy, + iw)d(f, 0) +d(f, LShU) (Gyn)1,1,01(1, f, A) (4.51)
(L8, —iw)d(e,U) + d(e, LOU) = (Gun)11.01(1, & 0), (4.52)
(LY, — iw)d(f, U) +d(f, L[s)hU) (Gun)1101(1, f, 7), (4.53)

where d and (Gyn)i 0,1 have been extended linearly to complex-valued first and second
arguments. Applying Lemma 4.9 with A = L%, + iwl and B = LY, to equations (4.50)
and (4.51) and with A = L%, —iwl and B = LY, to equations (4.52) and (4.53) we find
unique solutions d(e, -),d(f, "), d(€,-),d(f,-) € L(Dg; C*). (Note that d(é,-) = d(-,e) and

Finally, define

X = Xc,sh = Xc X Xshu
D= Dc,sh = DC X Dsha
Q=W.U)

and

FMZ,Q) = L' Z + G"(Z,W,U) + H".(Z),
L'Q = Lg (W, U) = (L{W, L, U),
G* (Zv Q) = Gg,sh<Zv W7 U) = (Gg(ZW; U)vésh(zv W7 U)),

so that we are now in the setting described in Chapter 3 and note that

0 Loh
i FO[0,0] = Ko = | 737 ).

Hypothesis 3.4 is verified in the following result.

Lemma 4.15. The operator £: Py(R*; D, q,) — Pr(R?"; X. ) defined in equation (3.9)
is invertible and the operator norm of its inverse

sup |(£)71‘I}k|2,k
[Wgl2, k=1

is independent of k.

Proof. In order to invert £ we have to find a k-linear operator Ay: R* — D, g, for a
given k-linear operator By: R*™ — X, g, solving

L g A ({Y ) — kALY, KaY) = Bi({Y}?) (4.54)
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for all Y € R?". Instead of equation (4.54) it is sufficient to solve the operator equation
Lo A ({Y Y ,) = A({Y Y kK ) = Bu({Y}*Y,) (4.55)

for fixed Y € R*". Using Proposition 4.10 with A = L2 4, B = —kKy, and 7 as the union
of circles around Fikw and 0 with sufficiently small radius to separate (LY ,) and o (Kyn)
yields a unique solution A,({Y}*#~V .) € L(R*";D.4,) which depends (k — 1)-linearly

and continuously upon Y € R?". From the calculation

1
1+ kw

(A = kK wn) ™ ceny S

T =

+

for all A € v we obtain

_ 1 _
k 5 " ,C(Rzn;/DC’sh) ~ 7. k )" L"(Rzn;Xc,sh)’
ALY 0] S CIB{YIEY, )

so that
|L7 Bylax < V5E|L7 Brlos < V5| Bilox < |Bilog

holds independently of k, where we have slightly abused the notation by using By inter-
changeably with its induced polynomial. O]

Chapter 3 therefore yields the existence of a near-identity, finite-dimensional change of
variable

Y=Y =(Zu), W=W+3(Y), U=U-+du(Y)

satisfying
®(Z 1) = O((Z, I ZI*) (4.56)
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which transforms equations (4.10) — (4.12) into

W = LEW + GH(Z,W,U) + H!(Z),
U = LU + G4 (Z. W,U) + H4(2)

and d > 0 such that
||[:IC,sh(Y)||XC,sh S MQQ?STU
dH e n (V) 2@ S pre 5

for |Y| <. Equations (3.6) — (3.8) and estimate (4.17) imply the following estimates for
the transformed nonlinearities.

Remark 4.16. The transformed nonlinearities satisfy

(i) H" (Z2)— H".(Z) = O(\(Z, ,u)HZ]?’), so that the p-independent cubic terms of HE,
are untouched by the transformation,

(i) Gon(2.W.0) = O(1(Z, ) FIZII V. U)o, + | V.0, ).

(iii) G(Z,W,U) = O(uW||(Z, W, U)llp + 1| Ulp,,I(Z, W, U)|1p),
(iv) G4(2,W,U) = O([|(W,U)llp,... I (Z, W, U)|Ip),

(v) dil,[2] = 0(|12]),

(vi) diG[2, W, U] = (9<|(Z> WPV, D)lp,, + (W, T)]

2
Dc,sh ’

(vid) oGy [Z, W, U], ds Gl [2,W,U) = O((Z, ) P|Z] + (W, U) ...,

Dc,sh) )

(ix) duG2[2,W,U] = O(ul|(Z,W,U)|p),

(viii) d;G[2Z,W,U] = O(pl|(W, V)|

(x) dsGE[Z, W, U] = O(ulW| + 2|2, W,U)|1p ).

Dc,sh) )

(i) doGl4[Z, W, U), ds Gl [2, W, U] = O(||[(Z, W, U)|p).

(xi) &G4 [2, W,U) = O(| (W, )]
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5 Construction of generalised pulses

In this chapter we consider the evolutionary system

W = L'W + G*(Z,W,U) + H*(Z), (5.2)
U=LhU+Gh(Z,W,U)+ H" (Z) (5.3)

for (Z,W,U): R — R" x R* x Dy, derived in Chapter 4. Recall that these equations
have the following properties.

(D1) The bounded linear operators L%, : R" — R™, L#: R?? — R LA : Dy — Xy
depend analytically upon pu.

(D2) We assume that

0 M
th_(v o)

for n = 2 and

i(w+ ") M 0 0

I M i(w+ 6*) 0 0

wh 0 0 —i(w + ") M-
0 0 K —i(w + o+

(in complex coordinates) for n = 4, where A and " are analytic functions of p
with
M=+ 0(t), & =0,
(D3) The functions C?ﬁv{l, GO, @éﬁ, ﬁ‘fvl)l, HO, ]:Is(h) take values in respectively R™, R??
X, R?, R X, are analytic at the origin in respectively R x D and R x R", and
satisfy the estimates given in Remarks 4.8 and 4.16 for n = 2 and n = 4 respectively.

(D4) The spectrum of the complexified operator L# € C??*2¢ consists of finitely many
simple purely imaginary eigenvalues +iw/’, ..., +iw}, where i, ... wh > 0.

(D5) The system (5.1) — (5.3) is reversible, i.e. there exist Sy, € R™", S, € R??*24 and
Seh € L(Dgn) N L(Xg) such that system (4.1) — (4.3) is invariant under ¢t — —t,
(27 VV, U) = (SWhZa ScVVa SshU)-

(D6) There exists a conserved quantity Z() of system (5.1) — (5.3) which is analytic at
the origin in R x D and satisfies

M2, W,U) = O(u'|[(Z, W, U)|[p)-
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(D7) The linear operator L[s)h: Dy, C Xy, — Xy, is closed and satisfies the estimate

1
is] — LO)™! <
H(IS sh) Hﬁ(Xsh) ~1 + ‘S|
for s € R.
(D8) The approximate system ' .

has a homoclinic solution P* satisfying the estimate

[PH(1)] < e (5.5)
in the case n = 2, and )

PE(L)] < ey ppae™ 1 (5.6)

in the case n =4 for all ¢t € R.

Our goal in this chapter is to complete the proofs of Theorems 1.1 and 1.2 by constructing
generalised pulse solutions to equations (5.1) — (5.3), meaning solutions of the form
(P* + R,W,U), where (R,W,U) is an exponentially small remainder which does not
necessarily vanish as ¢ — £oo (see Figure 5.1). To that end we reformulate equations (5.1) —
(5.3) again by interpreting Z as a perturbation of the homoclinic solution P*. To guarantee
that |Y| = |(Z, n)| <6, so that

*

IHY | xo S e %, [JAH[Y ]| pnrtoe, ) S pe 7 (5.7)

for some constant ¢* > 0, we set
0= (2cn, + 1)uo

and restrict the perturbation R = Z — P" to {|R| < cunupo}, ie.  (Z,p) to
{1Z] < 2enpp0,0 < 1 < po} and define

. 1
= eC'(2ch, + 1)
Writing
Z =P'+R,

we obtain the system
R=K'R+ N*(R,W,U), (5.8)
W = LMW + GH(P* + R,W,U) + H*(P" + R), .
U=L'U+G" (P*+ R, W,U) + H4 (P* + R), (5.10)

where

K"R = Lk, R+ dfH}, [P*)(R),
NHR,W,U) = Hvlih(PH + R) — ﬁv%h(Pu) - dffééh[P"](R) + vah(Pu + R, W,U).
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(Z,W,U)

2y

............. (P*,0,0)
— (P*+ R,W,U)
t

Figure 5.1: A generalised pulse solution to equations (5.1) — (5.3) lies in an exponentially
thin tubular neighbourhood of (P*,0,0).

Remark 5.1. Using the analyticity of H*, and Remarks 4.8 and 4.16 we find the following
estimates.

(i) In the case n =2 we have that

NERW,U) = O (1R + (1 + [RICR ] [V, U)o, + IOV, )
and
A N*[R, W, U] = O(|(R, )|l (W, D)l .., + II(W, D)II3..).
A NH[R, W, U, dsN*([R, W, U] = O + | R||(R, )] + (W, U)o, ...)

(ii) In the case n =4 we have that
N (R, W, U) = 0<!R|2 +I(R, ) PIW. D)l .,, + (W, U)H?DC,SJ

and

4 N"[R, W, U]
dQNM[R7 Wv U]7 d3Nu[R7 VV, U]

O(IR| + (R, ) Pl (W, D) ..., + (W, U)I[3,.,.),
O(|(R, w)* + (W, ), .. )-

We first construct a family of reversible solutions to equations (5.8) — (5.10) which remain
exponentially small in comparison to p over exponentially long timescales and thus define,
in analogy with familiar dynamical-systems theory, a local centre-stable manifold for
equations (5.8) — (5.10) consisting of their initial data. Finally, by showing that solutions
with initial data on our constructed local centre-stable manifold converge to solutions on
a local centre manifold of equations (5.1) — (5.3) and using a Lyapunov stability argument,
we obtain the existence of a global centre-stable manifold for equations (5.1) — (5.3)
consisting of initial data of generalised pulses.
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5.1 Formulation as a fixed-point problem

Since we anticipate the W-component to grow linearly (being the centre part of the
system), we cannot expect solutions to equations (5.8) — (5.10) to be bounded in their
W-component. We therefore modify system (5.8) — (5.10) by artificially bounding the
W-component. Let ¢: R?? — R?? be defined by

$(v) = ¥ (e |v] v, (5.11)
where 1: R — R is a smooth cut-off function with
L | <1,
t pu—
and ¥ (t)| < 2! for t € R and | € Ny. Consider the modified equations
R=K'R+ N*(R,W,U), (5.12)
W = LW + G*(P* + R,W,U) + H*(P" + R), (5.13)
U=LNU+G" (P*+ R, W,U) + H4 (P* + R), (5.14)

where
N“(R,W,U) = N*(R, (W), U),
ij(Z, w, U) = Gg(Za ¢(W)7 U),
Ggh<Za W, U) = égh(Z7 ¢(W)7 U)

Observe that the system (5.12) — (5.14) is equivalent to the fixed-point problem

R = Fun(R,W,U),
W = F(R,W,U),
U=Fan(RW,U),

where
FalRWU)0) = [[(VARW.0)(0): () (1) dr (1)
—/tOO<N“(R,W,U>(T);(u“)*(f)>dm#(t), (5.15)

in the case n = 2,

2

FaRW.0)8) = 3 [ (8B, W, U)(7): (5)"(7) d ()

_i/tooW”(R’W’U)(T)s(U?)*<T>>dru7(t), (5.16)
in the case n = 4, J
Fo(R,W,U)(t) = "' Wy + /0 b L) (Gé‘( Pr RN (F)
+ HE(P" + R)(1)) dr, (5.17)

116



and finally Fy, (R, W, U) is the unique solution of the equation
M = LA M + G* (P* + ExuR, EW,U) + HY (P* + EuR) (5.18)

in a suitable class of functions (see below). The initial value W, € R?? is chosen such that
S Wy = Wy. Here &£,y and &. denote the extensions to R by reversibility given by
R(t), t >0,

(EnB)(E) = {(Sth)(—t), t<0

and
W (t), t>0,

(EW)(E) = {(SCW)(—t), t < 0.

In equations (5.15) and (5.16) {s*,u*} and {s/, sh, uf’, us} are fundamental solution sets

for the linear problem ‘
R=K"R

(with dual bases {(s")*, (u*)*} and {(s])*, (s4)*, (u])*, (u4)*}) constructed in the following
results.

Lemma 5.2. Suppose n = 2. The linear equation
R=K'R
has solutions s*, u*: [0, 00) — R? such that the estimates
OIS e ()] S

hold for ¢ € [0,00). The dual basis {(s*)*(t), (u*)*(t)} to {s"(t),u”(t)} in R? satisfies the
estimates ) )
)@ e W)l Se™

for t € [0, 00). Furthermore u* is reversible and s* antireversible, i.e. they satisfy
uf(=t) = (Swne”)(t),  s"(=t) = =(Swns")(t)
for t € [0, 00).

Proof. Observe that

B2 = (_ ) + OUZNIZP)

and since by construction

v s (ROW) p
Pr(t) = A ( M)) +RA(E)

with )
IRME)| S ple™

we conclude that
K*R =LK, R+ T{'(R) + T5(R), (5.19)
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where

0
H = Z -
TiZz) = (—QCh()\“t)/\“Zl>
and i
TE (O] S e
for ¢t € [0, 00).

We first consider the system
Z =147 +T2),

which has the explicit solutions

()
s(t) = <z’/1 ) ) (5.20)
ya(N't)
u(t) = (P20 5.21
0= (2 (5.21)
where yy, yo are given by equations (4.8) and (4.9), and these solutions satisfy

s()] Se ™M Jut)] S M

for t € [0,00). The dual basis {s*(t),u*(¢)} to {s(t),u(t)} is given by

s(t) = ; (_‘U;S(A:ZQ : (5.22)
W)= (‘ﬁ&ﬁ?) (5.23)

and satisfies )
OIS, (@) S e

for ¢t € [0, 00).
Now we turn to equation (5.19). We note that any solution of either
(1) = s(t) = 5(t) [ () (7). 5" ()) dr
— ) /t TR ()P (1), (7)) dr, (5.24)
(1) = ut) + s(0) [ (T ()57 () dr
—u(t) /t ST ()t (7), (7)) d (5.25)

is also a solution of equation (5.19). To construct a solution of equation (5.24) we denote
its right-hand side by G(s*) and use the estimates for s and u to obtain that

|G(s")(t) = s(1)] S/t T3 ()] A7l o guo0rzze "
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This estimate now implies
16(#) = sl oeerze) S 15" le_guooarsny [ ITE ()] dr

(e’ ~
S lo_suoomre) [ e dr
S wlls*lle_su o002,

so that
1G(s) = G()lco_s,000)2) = 1G(5 = 5) = sllo_s, (000)2) S Hlls1 — s2llcs, (0,00)72)-

Hence the operator G: C'_5,([0,00); R?) — C_5,.([0,00); R?) is a contraction on By(s) C
C _5.([0,00); R?). Thus G has a fixed point s* satisfying

[s(1) = s(B)|eX" < 1
and in particular |s*(t)] < e for t € [0, 00). We also observe that
#40) — s1 < [T 7| o - 0
as t — oo and

t—o0 t—o00 —2

lim s“(t)ej‘ut = lim s(t)e;\”t = ( 2) :
In a similar fashion we construct a solution u* of equation (5.25) satisfying
(1)) <
for ¢t € [0, 00) and
Jlim u“(t)e_j‘“t = lim u(t)e_;wt = ( ) :
Next we compute the dual basis {(s*)*(¢), (u*)*(t)} to {s(t),u(t)}. To this end we

define
M(t) = (s"(t)u(t))

N N

and
M () = (") ()] (") (1))
so that M* = (MT)= or (M*)T = M~!. Hence we find that
det M (t) = Jim det M (t)

R Mt — At
= lim det (s“(t)e |ut(t)e )
R Mt —\Ht
= lim det (s (t)e™ u(t)e )
= lim det (s)u(t))
=2

since

jtdetM:trK“detM:O.
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From this computation and the identities
. 1 det (e |ut(t)
(s")°(t) = ~—=7= ,
det M (t) \det (ex|ut(t)

. B 1 det 5u<t)’€1
() = wora (det Eswwrezg)

we obtain )
() ()] S Ju ()] S e
and )
(W) ()] S [s"(8)] S e
for all ¢ > 0.

Finally we note that u* is reversible by construction since u*(0) € (u(0)). Furthermore
PH(\'t) is an antireversible solution of equation (5.19). Since { P*#(\#t), u”(t)} is a funda-
mental solution set for equation (5.19) we find every bounded solution of equation (5.19)
to be a multiple of P#(A\“t). This fact is in particular true of s#, which is therefore
antireversible. O

Lemma 5.3. Suppose that n = 4. The linear equation
R=K'R (5.26)
has solutions s{, b, u}, ub: [0,00) — R?* such that the estimates

4] S e M ()] S M

~Y

hold for all ¢t € [0,00) and j € {1,2}. The dual basis {(s})*(¢), (s5)*(¢), (ui)*(t), (u5)*(t)}
to {sh'(t), sh(t),ul(t),us(t)} in R* satisfies the estimates

|(8?)*(t)| < eS‘Mt, |(u?)*(t)| < oMt

for all t € [0,00) and j € {1,2}. Furthermore v/ are reversible and s antireversible, i.e.
they satisfy
Synttf (0) = uf(0),  Synsi(0) = —s5(0).

J J

Proof. We use the transformation
ri(t) = ei(wﬁu)tzl(t% ra(t) = ei(w+6u)t22(t),

to find that it suffices to prove this result for the special case w + 6* = 0. Using real
coordinates
21(t) = 71 + vy, 20(t) = y1 +iyy,

we observe that

0
—Cxy (22 + 23)
0
—Czy(af + 23)

LinZ + Hyy(Z) = MT(Z) + +0((Z, w1 Z),
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where

and since by construction

with

we conclude that

€ U1
T, Y1 _ T1
T2 Y2 |’
Y2 T2
()
- 3 5
SICOH K BR-20
0

RA(1)] S e,

K"R = MT,(R) + T5(R) + T4 (1),

where

T3

and

We first consider the system

which has the explicit solutions

S1 (t)

where

which satisfy

71 0

U1 —3Ch2(/\ ))\“l’l

) o ~0 ’

Yo —Ch*(\H ))\“xz
T ()] S ple ™.

7 =NMT(2)+THZ),

’Ul(é\ut) 0

vl(é“t) sa(t) = wl(%”t) | (5.27)
0 wy (Nt

'UQ(%\Mt> 0

Vg (A1) B 0
0L = e | (5.28)
0 wy (N1

ch(t
h(t
h(t

ch(t

) tanh(t),

)(—3 + cosh®(t) + 3t tanh(t)),
);

)(2t + sinh(2t)),

< e/\“t

[

< e—)\“t

~Y )

ur (8)], [uz(t)]
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for t € [0,00). The dual basis {s}(t), s5(t),uj(t),us(t)} to {s1(t), sa(t),u1(t), us(t)} is
given by

Do (N't) 0
* (0 —va( A1) ey L 0
si(t) = o | SO=3 wGen | (5.29)
0 —U)2<)\Mt)
— o1 (M) 0
wt) =5 | " w0 =1 e | (5.30)
0 w1 S\‘Mt)

and satisfies } .
;O] S M fuj(t)] S e

] ~Y

for t € [0,00) and j € {1, 2}.

Now we turn to (5.26). Consider the integral equations
0 =50 -3 [T, ) sl

- fjl /t ST () ()l (7)) dr (e, (5.31)
10 = w0+ 3 [T 5(0) b s ()

-3 [ o) 532)

for 7 € {1,2} and note that any solution of equation (5.31) or (5.32) is a solution of
equation (5.26). Our task is therefore to find solutions to equations (5.31) and (5.32)
which satisfy the desired estimates. To this end denote the right-hand side of equation
(5.31) by G;(s%). Arguing as in the proof of Lemma 5.2, we find that the mapping G;
is a contraction on Bi(s;) € C_5.([0,00); R*) and thus has a fixed point s} satisfying
|54 (t)] S e for t € [0,00). We also observe that

$5(8) = 5,01 < [T dr 115l o) — 0

as t — oo and conclude that

1

lim sf(t)ej‘”t = lim s; (t)e;\“t = 5

t—o00 t—o00

{(2’ -2,0,0)", ’ (5.33)

J
(070727_2)T7 j

In a similar fashion we construct a solution v to equation (5.32) with
[ (1)) < M

and

t5oo0 7 t—o00

lim w¥(t)e ™" = lim u; (t)e Mt = {
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The next step is to compute the dual basis {(s})*(t), (s5)*(t), (u))*(t), (u)*(t)} in R*.
To this end define the matrices
M(t) = (st(®)lsz (O)]ur (D) |uz (2)),  M*(E) = ((s1)" ()] (s2)" ()] (W) (¢)[(u2)" (¢))
and note that M* = (M ")~! by definition of the dual basis. In order to compute M*, we
note that

((;tdetM:trK“detM:().

Using the multilinearity and continuity of the determinant we compute
det M = lim det M
t—00
= lim det (st (£)eM | sh (£) e |uh (t)e ™ [uly (t)e ™)
= lim det(s1(£)eM s (£)eM ug (£)e ™ ua (t)e )

t—o00
— lim det(s: (1) so(D)us ()]s (1))
=38.
In terms of the adjunct matrix M# the entries of M* can now be computed via
T 1
(M) = det M7 M*
with
M7 = (1) det(c"| -~ |eesletfal - - [ed),
in which c denotes the j-th column of M and {ey,...,es} is the usual basis for R*. We
thus obtaln the explicit formulae
det (eq|sh (£)]uy (¢)[us (1))
8 | det(es|sy (¢)[ur (t)|uz()) |
— det(eq| sy () (£) |us (t))
det(s7()]s5 ()]e]ub (t))
(W) (1) = £ |~ detsE(D)lsh (B)lealus (1)
det (st (t)|s5 (£)]es|us(t)) | °
— det(s7 (£)[ 5 (£)]eaus (¢))
— det(sy (t)]ex[uf (£) |us (2))
(Sg>*(t) _ 1 det(sﬁf(t)|€2|ulll(t)|ul2i(t))
8 | —det(sy (¢)|es|ur (t)|us(t)) |7
det (7 ()]ealuy (£)[us (1))
— det (st (8)| 4 (D (D]er)
(ul)*(t) = 1 det (s (t)]s5 (t)|uy (t)]e2)
8 | —det(sy (t)]s5 () ]uf (t)|es)
det (st (2)|s5 (£)[ur (t)]ea)

()" ()] S Ish Ol (O] Jub ()] S e,
[(s5) (O] S sk )]k ()] Jub ()] < e,
() (1)) S s 5 (O]Jub (B)] < e,
() (1)) S Is5(0)]]s5 ()] [uf (£)] < e
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for ¢t € [0, 00).

It remains to demonstrate the reversibility of u% and the antireversibility of s/. It
follows from equation (5.32) that u4'(0), u5(0) € (uf(0),u4(0)), and since the functions u/
and uh are reversible, we conclude that u4 and uf are reversible. Moreover, recall that
equation (4.4), written in the new variables as

2= LanZ + Hip(2),

has the family
{Rap”(to + ) a € [0, 27T), ty € R}

of homoclinic solutions. Hence the functions

~ d ~ d
S = —Rup"(to+-) = (p")', So=—R.p'(to+") = Ry op*
dio ato=0 da ato=0
are linearly independent, antireversible, homoclinic solutions of equation (5.26), and the
following argument shows that the set {5, S, uf,u4} is a fundamental solution set to
equation (5.26). Suppose that

Oélgl(t) + OZQS’Q(t) = —ﬁlu’f(t) — Bgug(t), t - [0, OO),

for some scalars «; and 3;. The function on the left-hand side is antireversible, while the
function on the right-hand side is reversible, so that

CYl»gl(t) + OéQS’Q(t) = O, 51Ulf(t) + 62U5(t> = O, t e [O, OO),

and thus ap = ag = 1 = By = 0, since S;, Sy as well as uy,u are linearly independent.
Now by construction {s{, s5, uf', u5} is also a fundamental solution set to equation (5.26),
so that each of the bounded solutions s} and s is a linear combination of S; and S,. In
particular s} and s are antireversible (note that we cannot simply take s} = Sy, s4 = S,
since we a priori know only that [Sy(t)],[S2(t)| < e ™M for t € [0, 00)). O

5.2 A local centre-stable manifold

In this section we show that the function
F(R,W,U) = (Fu(R, W, U), Fo(R,W,U), Fan(R, W, U)) (5.34)
is a contraction on the closed, convex subset

+
BI/S\“

= {(R,W,U) € G ([0,00);R") x C.5,([0, 00); R**) x Gy (R; D) :

1Rllcg o008 1Ullep @pas W = LEW 6y 0 00)m20) < €27,
(SunR)(0) = R(0), (S:W)(0) = W(0)}

of
+ «
B =005

VAH

([0, 00); R™) x C¢

VAR

([0, 00); R?*) x C'%

VAH

(R; Dsh)
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provided that S.Wy = Wj. An auxiliary argument shows that its fixed point denoted by
(Ryy,, Wiv,» Uy, ) satisfies Sq, Uy, (0) = Uy, (0), so that (Ryy,, Wiy, , Uy, ) is a reversible,
bounded solution of equations (5.12) — (5.14).

Our results show that the fixed points (Ryy,, Wiy, , Uy, ) induce a family of reversible
solutions to equations (5.12) — (5.14) in
i CQ

VAH

(R;R") x CLs, (R;R*) x C%

UM (R7 DSh)
for [Wy| < ,ue_57 satisfying

sup|Riy, (t)| < pe™ %,

teR

sup Wi, (0] S ple 5,

te[—ec™ /21 ec™ /20

SupH U;Vo (t) | sh ~ Me 2“
teR

for some § > 0 (in the case n = 2 we have 6 = 1). These solutions thus in particular
solve equations (5.8) — (5.10) for t € [—e® /2 e¢"/2#]. In analogy with familiar dynamical-
systems theory (see Kelley [15]) we define

I/I/IOC - {(RT/VO7W‘;/Q7U$VO)(O) . SCWO = W07 |W0’ S ’u/e_gTL}

and refer to W& as the local centre-stable manifold for reversible solutions to equa-

tions (5.8) — (5.10). Observe that W is a graph over {W, € R* : S. Wy = Wy, [Wy| <

pie” %} since Wi, (0) = Wy. The behaviour of functions with initial values lying on Wi,
is summarised in Figures 5.2 — 5.4. In this section and Section 5.4 below we show that in

fact [Wy, ()] < ¢ % for all t € R (cf. Figures 5.2 — 5.4), so that W, is actually a global
centre-stable manifold for equations (5.8) — (5.10). We treat the cases n =2 and n =4
separately. In the proofs of our theorems we use the fact that the norms ||- Hca (1;p) and

1IE |Hcaw (1:p) are equivalent, uniformly in 4, for I € {[0,00), R} and B € {R2 RQd,Dsh},
so that changing between them does not introduce any new dependency upon .
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Figure 5.2: The central part of functions with initial values on W, satisfies |W (t)| < e~ 2

for t € [—GST‘, e§7]. It may leave this neighbourhood of the origin for larger
values of |t].

ay

Figure 5.3: The weakly hyperbolic part of functions with initial values on W&, lies in a

tubular neighbourhood of P* such that [(Z(t) — P*(t))| < e % forall t € R.

CS

Figure 5.4: The strongly hyperbolic part of functions with initial values on W&,
|U(t)||p,, <e 2 forall t € R.

satisfies
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5.2.1 The case n =2

First we show that F is a contraction.

Theorem 5.4. The operator F given in equation (5.34) maps B}, into itself. Further-
more,

||FWh(R7 VVa U)HC?([O,OO);RQ) 5 ”67;77 (535)
d o
Bl _Ip < e %
Hdt}'c(R,W,U) LIF.(R,W,U) ‘Cb(R;]RQd) < e, (5.36)
| Fan (B, W, Ul e rpny) S pe” 2 (5.37)
and
sup | Fo(R,W,U)(8)| S pe™ 5 (5.38)

ct
te[0,e21]

for all (R,W,U) € B, provided that |Wp| < pe” 5.

Proof. Suppose that (R,W,U) € B’;,. Inspecting equations (5.15) and (5.17) shows that
(SwnFwnR)(0) = R(0) and (S F.W)(0) = W(0) (recall that S. Wy = Wy and (Syn(u)(0) =
u#(0).)

To estimate Fyn(R, W,U) we observe that
[N*(R, W, U)(t)|
< IR I ooy (2 + 1l Rllcp o) + 1 RIs ooz OV, U) e (0000
+ [I(e(W),U) H2cg([o,oo);1>c,sh)
< e,
(5.39)
where we have used Remark 5.1. The above estimate implies that

/Ot<N“(R,W,U)(T);(su)*(T»dTSM(t)’S/Otﬂge;;e;quTe_;Mt

= (1 —eM)e %

< pe” 2
and

/Ot<Nu(R,W,U>(T); (u)* (7)) dr uu(t)‘ < e /°° IS T

t

for all ¢ € [0, 00), so that

Sup | Fun (R, W, U)(t)| S pe™ 5.

t€(0,00)
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Next we observe that

[ Olles, qoom < e lles, ooy 1

and

”SHHC’f;\H([O,oo);RQ) S ||8”||01M([o,oo);R2)
S1+4 sup M|KH(t)s"(t)|
te[0,00)
S

where we have used the fact that [|-||ce (o,c0:m) < ||'||C>1\u([0,oo);R)' Similarly we obtain
[u*llce, (0,00)2) S 1

Using Lemma 5.2 and estimate (5.39) we find that

R W) ) (5 () dr () — [N R WD) ) () () dr (02)

= | [ R w0 () () dr s ()

)

= [ W00 () () dr (5 0) — (1)

i NN e (M1 — 1) (1) — 5" (1)

< pe” i (e
< pe” 5 [|eX Ol e (0,00 |1 = ta|* + pe” 5 |8 [0 (0,00)m2) |1 — ta|*
< pe” |ty — to|

and in a similar fashion

t1 to

|V R W) () () (7)) dru (1) = [NV R WU (1) () (7)) (1)
0 0

< e Bty — t]°

for 0 <ty < t; < 00, so that

“th(R7 w, U)<tl) - th(R> W, U)(t2>’ 5 Mei%‘tltl - t2’a'

Altogether we obtain
[ Fan (B, W, U e (0,00)m2) < pre 2. (5.40)

For F.(R,W,U) we use Remark 4.8 and estimate (5.7) to find that
[ Fe(R, W, U)(1))|

too, - -
< |Wo| + ‘ / T (P! + R,W,U)(r) + HE(P' + R)(7)) dr
0

t c* c*
SWol+ [ (1P + B)() e 5 + e ) dr
t ~ o* o*
< [Wol +/ (/fe_”MTe_ﬂ + ,uQe_T) dr
0

< Wo| + pe™ % + tple ™ (5.41)
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and
FC(R7 W> U) (t>’ S H‘FC(R> VV? U)HCS([O,OO);R2d) + HG?(PH + R> VVa U)HC{)"([O,OO);RM)
+ | HE (P + R) || co((0,00) 24

S [ Wol + (t+ 1)#36757

d
P

for t € [0,00). Altogether we obtain

||‘/TC(R7 W, U)Hciiu([g’oo);]gw) < 00

and
d
||&fc(R7 VV; U) - Lng(R7 I/V? U)ch(R;RQd)
_ ”Gzct(pﬂ + R, W,U) + FIﬁ(P“ + R)HCb(R§R2d)
< (5.42)

For Fan(R, W, U) we first consider
IG5 (P + EaR, EW,U)(t) — G4 (P* + EaR, EW,U)(t2) | 2,
_ H / LG [P ER) (1) + (1= 0) (P + ER)(t2), S(EW)(t:), U (k)]
((P"+ EmR)(h) = (P + EmR)(t2)) do
b [ G (P + £ )(02), COEM (1) + (L~ )O(EW ) (1), U (1)
(DEMW)(t1) — S(EW)(t2)) do
+ [ LG [(PP 4 £ R) (t2), (€M) (t2), aU (1) + (1 — 0)U (12)]

(Ut) = Uta) da‘

Xsn
< e 5 |(P 4 ER) () — (P + ER)(t2)
+ 1 (|(EW) (1) = SEWV)(t2)] + U (11) = U(ta)llp,, )
<ty — t2|aﬂ3e_%(||P“Hcg(R;R2) + [[EwnRllcs mz2)
1t — 1ol (IS EM ) op gz + Ul i)
< e 5t — by (5.43)
and
| HE(P" + EwnR)(t) — HE (P + EmR)(t2)
- CAHE (0Pt EanR)(1)
: + (1= 0)(P" + EnR)(R)]((P" + EnR) (1) — (P + EmR)(t2)) do

Xsh

< pe” T || PH 4 Ean R co@r) |t — 2],
(5.44)
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where we have used Proposition 2.7, Remark 4.8, and estimate (5.7). Using the maximal
regularity result (Lemma 2.14) we find that

| Fan (B, W, Ul co@pay S II(L4 — Ly)U + G4(P* + R,W,U) + HE (P* + R)||ce za,)
< e, (5.45)

Finally, we note that estimates (5.35) — (5.38) follow directly from estimates (5.40) —
(5.42) and (5.45). O

To show that F: B+ — BJr is a contraction we use Remark 2.11 to prove that

A N2
the composition operators 1nduced by the nonlinearities of the right-hand side of equa-

tion (5.18) are Lipschitz-continuous.

Theorem 5.5. The operator F: B;, — BY;, is a contraction provided that S.Wy = Wy
and |Wo| < pe™ 2.

Proof. Suppose that (Ry, W1, Uy), (Rg, W, Us) € Bj;\u. For Fg we first consider
|J_VM(R17 W17 Ul) - ]_V“(R27 W27 U2)<t)’
1
= | /0 GNP R, + (1 — 0)Ra, 6(W1), U1](Ry — Ry)(t) do
1
+ [ AN R, 06(W3) + (1= 0)6(W2), Us] (6(W3) — 6(112)) (£) do

+ /01 dsN"[Ra, (W2), 0Ty + (1 — 0)Ua](Us — Ua)(t) do|
S pP|(Ry, W, U (t) = (Ro, Wa, Up)(t)],

where we have used Remark 5.1. The above estimate now implies that

S, Wi, U) = N (R, Wa, U)) (0 ) (7)) dr (1)
< / N*(Ry, Wy, Uy) — N*(Ry, Wa, Us) ) (7) [ dre "
< [1#(18 - Ro)(7)]
+16) = oW ()| + (U = Ua) (7, )™ dre ™

- t -
MSe—)\NtH(Rl’ le Ul) _ (Rg, WQ, UQ)HE*:\# /O e(1+1/))\ Tdr

IN

3
< Hm
T (I4v)AH

< pe"Y|(Ry, W1, Uy) — (Ry, Wa, U2)llgs,

¢ N|(Ry, Wi, Uy) — (Ra, W, U2)”E+1u
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and

[ Ry, W3, U)(7) = N (R, W, U) () () (7)) 7 ()

t

St [N Ry Wa U2 (7) = N(Ry, Wa, U)(7) o™ ™

’S M?)H(Rl’ Wl’ Ul) o (R27 WQa U2)HE+5\N l e(’/—l)j\!‘q- dTe;\Ht

13

S 1| (Ry, Wi, Ur) = (R, Wa, U) -

N

N |(Ry, Wi, Uy) — (Ra, W, U2)||E+w

We also find that
[ R, W, U0 (7) = N, W, Ua)(7); () (7)) i (1)

= ([ W, U (7) = N (R, W, ) ()5 ()" (7)) (1))

0

[0Ry + (1 — o) Ry, o(W1), U1](Ry — Ry)(7) do
b [ NHIR, 06 (1) + (1= ) (W), U (9(017) — 6(W2) (7) do
- /O LA NH[Ro, 6(Wa), 0Ty + (1 — o) U)(Ty — U (7) dofeX'” dre "

to
+/

+ /01 doN"[Ry, 00p(W1) + (1 — 0)p(Ws), Uy (¢(W1) - ¢(W2))(7') do

/01 i N*[oRy + (1 — 0) R, o(W1), U1 |(Ry — Ry) (1) do

1 -
+A dgN'u[Rg, d)(Wg), O'Ul + (]. — O')UQ](Ul — UQ)(T) dO"eAHT dT|S‘u(t1) — Su(t2>|
S ety — o] | (Ry, Wh, Us) = (Ra, Wa, U)l|

~Y

and
[ R W, V) () = N (R, W, U) (1) () 1)

(/0 (NH(Ry, Wy, Uy)(T) — N“(RQ,WQ,UQ)(T);(u”)*>d7'u“(t2)>‘

S pe™ 1ty — to|°||(Ry, Wh, Uh) — (Ra, W, Co)llz,

for 0 <ty < t; < 00, so that

||-th<R17W17U1) _‘th<R27W27U2)||CO‘ ([0,00); RQ IU/”<R17W17U1)HE+S‘”'

Considering Fo(Ry, W1, U;) — Fe(Rs, Wa, Us), we obtain the estimates
¢ _ N
‘eLé”tW +/ ple (t=7) (G“(P“ + Ry, Wy, Uy)(7) + H*(P* + Rl)(7)> dr

B ( S +/ e(t=) G“ (P" + Ro, Wo, Us)(7 )+F[5(P#+R2)(7))d7>‘
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S /Ot | (/01 diGEo(P* + Ry) + (1 — 0)(P* + Ry), ¢(W1), Ui](Ry — Ry)(7) do
+ [ GHP! + Ry op(W1) + (1= 0)p(Ws), U] (6(113) — (W) (r) do
+Aﬂm%um+3%mwgﬂUﬁw1—@@Km—Ug@ma
+AwﬂﬂdP”+Rﬂ+u—UMPHJ%MRya&XﬂdaMh

< sup [ e (1 (6(Wh), U)(7)|

o€l0,1] /0

Do |[B1 — Rollce (0,00)i22)

+ (M5 + 12| (0p(Wh) + (1 — 0) (W), Us)(7 )HDCSh)le Wallce (10.00)im20)
+Qi+um< ), 01+ (1= o)) (Tl ..
+,ue*7||R1 RzHca ([0,00);R2 )dT

< pe M| (Ry, Wi, Uy) — (Ry, W, Ua)lg -

U1 = Usllce, mip.)

where we again have used Remark 4.8 and Proposition 2.7. We also find that

(Ry, Wy, Uy) — FC(RQ,WQaUQ))(t)‘

< | Fe(Ry, Wy, Uy () — Fe( Ry, Wa, Us)(1)]

+ [GE(P" 4 R, Wi, U (1) = GE(PY + Ry, W, Ua) (1)
+|HE(P* + Ry)(t) — HE (P + Ry)(8)]

< ,ue";th(Rlea Up) — (Ry, Wy, U2)||Ej—)~\ll«,

5

so that
[ Fe(Bey, Wh, Ur) = Fe( By, W, Ua)llcr (o,copmeey S M”(Rth?Ul)”EJr :

For Fy(Ry, W1,Uy) — Fan(Ra, Wo, Us) we obtain from maximal regularity (see Corol-
lary 2.16) that

| Fen(Re, W1, Uy) — Fan(Ra, Wa, U2)||ca L (RiDyy,)
< (A, — LT, — Us)les, oot
+ || Gl (P + Ean Ry, EWr, Un) — Gl (PF + Exn Ry, EWs, Us)llce. , (10,00)5m)
+ (| H (P + EanRy) — HE (P + EanRs)lloe (0,001
S Uy = Uallee , (10.00)Du0)
+ [|GE(P" + Egn Ry, EWL, Ur) — G (P + EqnRa, W27U2)||Ca ([0,00):Xen)
+ || HL (P + EnRy) — HY (P* + EmRa)llce (10,00)2)

sh)

and it follows from Remarks 2.11 and 4.8, estimate (5.7), and Proposition 2.7 combined
with the facts that all second derivatives of G5 and H/, are O(1) that

IG5 (P* + Egn Ry, EWV1, UL) — G (P* + Egn R, & W2,U2)||ca ([0,00);Xsn)
S wl[(Ry, Wi, Uy) — (Ra, W, U2)HE+M
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and
|5, (P + EnBy) — HE(P* + EwnRa)llco., (10,00):0)
S pll (B, W, Un) = (Ba, W, U) || - O

Corollary 5.6. The operator F has a unique fixed point (Ryy,, Wiy, Usy,) € B, for

each W, € R* with S.W, = W, and |[Wy| < ,uef% in the case n = 2. This fixed point
satisfies (SsnUgy, )(0) = Uy, (0).

Proof. The existence and uniqueness of Ry, , Wy, and Uy, follows directly from Theor-
ems 5.4 and 5.5. Observing that (Riy,, Wiy, SsnlUsy,) € B, is also a fixed point of F,
we conclude that Sg, Uy, = Uy, i.e. (SauUsy,)(0) = Uy, (0). O

5.2.2 The case n =14

The estimates for F, are more involved in the case n = 4 because of the weaker estimate
PE(D)] S e

It does not suffice to estimate |P#(t)| < p for all ¢ > 0. Instead we use a two-step
approach, first estimating | P*(¢)| < p” over the interval [0, ¢*], where e ™"t = 17 for an
appropriately chosen constant ~, and then using this result to obtain the final estimate

over the exponentially long interval [0, e /2].

Theorem 5.7. The operator F given in equation (5.34) maps B:“;w into itself. Further-
more,

1Fun (B, W, U) s 0,00ty S e 75, (5.46)
d -
= 7 < e
| F(RWU) = LEFRW.O)| oo S e, (5.47)
| Fan (R, W, U)o gipy) S pe” % (5.48)

for all (R, W, U) € B, provided that |Wp| < pe” 5.

Proof. Suppose that (R, W,U) € B;&H. Inspecting equations (5.16) and (5.17) shows that
(SwnFwnR)(0) = R(0) and (S FW)(0) = W(0) (recall that S. Wy = Wy and (Syn(ut)(0) =
ut(0).)

To estimate Fyn(R, W,U) we observe that

|N*(R, W, U)(t)|

SR o,00ymsy + (1 + el Rllcao.0012) + 1Rl (0,001 ) 16V, Ul (0,00)D0 )

+[[(e(W),U) ”%g([o,oo);pc,sh)
< e,
(5.49)
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where we have used Remark 5.1. The above estimate implies that

/tU-V“(R W, U)(T);(sg‘)*(r»dm;(t)’ < /Otu o AT g A

0
= p(1—e e
< Me*%

and

! S R v AH <t
/ <J_v#(R,W,U)(T);(u;%)*(T))dm;(t)‘ < pte 5 / T Ay M e
0 t
for all t € [0, 00), so that

Sup | Fun (R, W, U)(t)| S pe™ 5.

te[0,00)

Next we observe that

e Olleg, qooer® S ™ Olles, oo S 1

and

||5]HC°* ([0,00);R%) <H33||c1 . ([0,00)R*)

S1+ sup MK (1)sh(t)]
te[0,00)

<1

Y

where we have used the fact that [|[|ce (o,c0r) < H'||c§u([o,o<>);R). Similarly we obtain

[ llce, 0,00y S 1.

Using estimate (5.49) and Lemma 5.3 we find that

R W) ) () () dr i) — [N R WD) ) () () dr )

[ R W00 ()70 dr s )

= [T R WO ) () () dr (4(0) - s (1)
< pe zu( Mty _ g Mta)e Mt e~ (M )5 (1) — st (t)|

< ,ue_ﬂ |’e/\“(.)||0§‘”([0,oo))’t1 — t2|a + /Le_gu

“HCO‘ . ([0,00);RY) [t — to|®
< pe [ty — to]®

and in a similar fashion

[N R WU (7): () () 1) = [ ANVEOR LU () () () ()

0

< pe” [ty — by
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for 0 <ty < t; < 00, so that
[ Fan(R, W, U)(t1) = Fun (R, W, U)(t2)]  pe” %[ty — to|”.
Altogether we obtain
[ Fon (B, W, U) |l e (0,00):m0) < jie” %, (5.50)
Using Remark 4.16, estimate (5.7), and Proposition 2.7 we find that
t ~ ~
< Wol+ | [0 (Gu(Pr + BW,U)) + HE(P! + R)()) dr

< |W | + ,u2 UL
< et (5.51)

~

and
‘ d

E}—C(R, W, U)(t)‘ S F(B W, U) || co((0,00)m24) + IGH(R, W, U) | e (0,00):R24)

+ ||]:Ig(Pu + R)HCS([O,OO);RQd)
< [Wol + pe ™"
< euj\/‘t'
for t € [0,00). Altogether we obtain
| Fe(R, W, U)Hcl . ([0,00);R2d) < OO

and

d

Hdtf (R W U) Lng(Ra I/Va U)HCb(R;RM)

= [|GE(P* + R,W,U) + H!(P" + R)|| ¢y, (rip2e)
< e 5, (5.52)

For Fun(R, W, U) we first consider
|G4 (P + EnR, EW, U)(t1) — G (P* + EaR, EW, U)(t2) | x,,
H / GG (P! + EmR) (1) + (1= 0) (P + ER) (), S(EW) (1), U(1)]
((P“ +EmR)(t) — (P* + EwR)(t2)) do
4 [ Qs [(PF 4 £ ) (12), 00(EW) (1) + (1~ 0)O(EIW)(12), U]
(SEW) (1) = B(EW)(t2) ) do
+ / daGl [(P* 4 EuuR) (12), D(EIV ) (t2), o U (t1) + (1 — 0)U ()]

(Ut) = Ultz)) do

Xsh
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S NSV), U)o, as, i [ (P + EnR) (1) — (P + EnR) (1))
+ (P + Ean R, 6(W), D) ey (I6(EWV) (1) — $(EW) (8]
+ U (1) = Ulta)llp,, )

< |t — t2|a<€_§“(||P“||cg(R;R4) + [ Rllcp @ )

P+ ERt 600),0) ey so (I9EW egimen + Uz mimn)) (559
< ue_%ltl — to]®
and
|G (P + EaR) (1) — HE(P" + ER)(t2)

-/ 4B (0P + ER)(t)
+ (1= 0)(P" + EnR)(82)] (P + EmR) (1) — (P + EwR)(t2)) do

S e 7 || P + En Rl oo ey [ty — t2], (5.54)

Xsh

where we have used Remark 4.16, estimate (5.7), and Proposition 2.7. Using the maximal
regularity result (Lemma 2.14) we find that

| Fen(R, W, U)|lcamep, S II(Lh, — Ly)U + G4 (P* + R,W,U)
+ HG, (P + R)||co®x)
< o8, (5.55)

Finally, we note that estimates (5.46) — (5.48) and (5.61) follow directly from estim-
ates (5.50) — (5.52) and (5.55). O

Theorem 5.8. The operator F: B}, — B}, is a contraction provided that S.Wy = W,
and |Wy| < /Le_%.
Proof. Suppose that (Ry, W1, Uy), (Re, W, Us) € B:’;\M. For Fyn we first consider
|N#(Ry, Wi, Ur) — N¥(Ra, Wa, Us) (1)
= | /01 AN o Ry + (1 — o) Ry, ¢(W1), Ur](Ry — Ro)(¢) do
+ [ NI, 00(W1) + (1= 0)6(1W2), U] (6(11) — 6(175)) (1) do

+ /01 A5 N[ Ry, 9(W2), 0Ty + (1 — o) Ua)(Us — Ua)(t) do|
S WP |(Ry, W, Un)(t) = (Re, Wa, Ug)(t)],

where we have used Remark 5.1. The above estimate now implies that

[ (R, Wi, U2 = N (R, Wi, 1) (1) ()¢ () b )|

0
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\H Y
N dre Mt

N

(Rq1, W1, Un) N“(RQ,W2,U2))(T)

IN

/ (v
(1
+ 1(B(W1) — o 2))(T)|+H(U1—Ug)(T)HDS}JeX“TdTeX“t

~ t ~
S luse_)\ tH(Rla W17 Ul) - (R27 W27 UQ)HE'J?\M /0 e(l—H/))\ Tdr

3
K VA
S T YRy, Wi, U) = (R, W, Un)

< e | (Ry, Wy, Uy) — (Ra, Wa, U2)llgs,

and

/°°<z_w<31, Wi, Uy )(1) — N*(Rg, Wa, Ua)(7); (uf)*(7)) dr uf (1)

t

S w0 [ TINH R WL, U0)(7) = N, W, ) () e e

< 13||(Ry, Wy, Uy) — (RQ,WQ,UQ),‘E+M/t RO

3
/.L UM
me MRy, Wh, Uy) — (Ra, W, UQ)HE:M

< ue”j‘utH(Rh Wi, Ur) — (Rg, Wa, U2)HE+M‘

A

We also find that
| [N By Wi, 0 () = NP (R, W, U)(7); (57 (7) s 1)
= ([ W D) () = NP (R, W, ) () ()7 (7)) (1) )|

[oRy + (1 — 0) Ry, o(W1), U] (Ry — R2)(7) do

+ /01 doN*[Ry, 0p(W1) + (1 — 0)p(Wa), Ui] (¢(W1) - ¢(W2))(7') do
+ /01 dsN*[Ry, p(W3),0U; + (1 — 0)Us](Uy — Us)(7) da’e;\”T dre Mt
+ /;2
+ /O1 LN [Ry, 0p(Wh) + (1 — 0)p(Wa), Ui] (¢(W1) - ¢(W2))(T) do

+ /01 dsN[Ra, p(Wa), oUy + (1 — 0) U] (Uy — Ua)(7) da|e¥™ dr[sh (1) — s/(t)|

/0 NP0 Ry + (1= 0)Ray 6(W1), UL)(Ry — Ro)(7) do

S pe Nty = || (Ry, Wi, Uy) = (Ro, W, Ua)
and
t1
)/ "(Ry, Wi, Up)(1) — N¥(Ry, Wa, Up)(7); (u")*) dr uff (t1)

(/0< H(Ry, Wh, Uh)(7) — ]_V”(Rz,Wz,Ug)(T);(u“)*>d7'u§‘(t2)>‘
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< 'ueyj‘utl |t1 — t2|a||(R1, W17 Ul) - (RQ’ W27 U2)||E+,‘\u

for 0 <ty < t; < 00, so that

’|fwh<R1> Wi, Ul) - th(Rm W, U2)’|CSXH([0,OO);R4) 5 NH(Rh Wi, Ul)”E};

For F. we find that

10, 1 /Ot M (GE(P! 4 Ry, Wr, Uy) () + HE(P* + Ry)(7)) dr
_ <eL5tWo + /Ot MU (GI(P! + Ry, Wy, Un)(7) + HE(PY + Ry)(7)) df)‘
S /Ot '(/01 GO (P* + Ry) + (1= 0)(P* + Ry), ¢(Wh), Ul](Ry — Ry)(7) do

+ "GP 4 Ry, 06(W3) 4+ (1 — 0)6(Wa), U]
(6(W7) = 6(W5)) () do
n /01 dsGE[PH + Ry, (Ws), Uy + (1 — 0)Us)(Uy — Us)(7) do

+ /01 dH"[o(P" 4+ Ry) + (1 — 0)(P* 4+ Ry))(Ry — Ry)(7) do) ‘ dr

AN

sup [ (sll(@(W), U2) ()l (Br = R)(7)

o€0,1] /0
+ (6 + pll(ed(W1) + (1 = 0)¢(W2), Un)(7)
+ (1 + ull(6(Wa), oUs + (1 = o)) (7) . )
e | Ry (1) — Ry(r)|) dr

+ /Ot:uKPM + RQ)(T)HWI(T) — WQ(T)| dr

D) |6(W1)(7) — G(W2) ()|
|UL(7) = Ua (7).

t ~
< swp [T (ull @), U)o IRy — Relles, oo

o€l0,1] /0
+ (1 + (08 (W1) + (1 = 0)(Wa), Un) (7)., ) [(W1) = (W2) |, (mime
(1 4 (W), 0Us + (1 = )02) () o, ) U2 = Vel @mm
+ pe_% | Ry — R2HC§M([0»OO)%R4)) dr
+ W = Walloo (0,00)m20)
S ue (R, Wa, U) = (Ra, Wa, U)ll s

where we again have used Remark 4.16 and Proposition 2.7. We also find that

(Fe( R, Wi, Ur) — Ful Ro, W, Un) ) (8)]
S Fe(Ry, W, Un)(t) — Fe(Ro, Wa, Us)(1)]
+ |GE(P" + Ry, Wi, Uy)(t) — GE(P* + Ry, Wy, Us)(t)]
+ |HE (P + Ry)(t) — HE(P + Ro)(t))]

d
@
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< L eyS\“t

~Y

(Ry, Wh,Uy) — (R, W, UQ)HE*/.\M?
so that

[ Fe(Ry, Wh, Ur) = Fe( By, Wa, Ua)lcr (o,00)m2)
S pl[(Ry, Wi, Ur) — (Rp, Wa, U2)HE+:W'

For Fy, (R, W1,Uy) — Fan(Ra, Wo,Us) we obtain from maximal regularity (see Corol-
lary 2.16) that
[ Fen(By, Wi, Ur) = Fen(Ba, Wa, Us)lce | .0
< (L, = LS (U = U)o ooy
+ ||GH (P* + Egn Ry, EW, Uy) — G (P* + Egn Ry, EWs, UQ)HCa ([0,00):
+ | HE (P + EaB) — HE (P" + ExnRa)ll e, (0,000
S Uy = Uallee , (0,.00)50)
+ ||GE (P* + Egn Ry, EW1, Uy) — GB (P* + Egn Ry, EWs, Us)llce. (0,00
+ | HE (P + EaRy) — HG (P" + EwnRa)llce, (0.00))

sh)

ih)

and it follows from Proposition 2.7, Remarks 2.11 and 4.16, and estimate (5.7) combined
with the facts that all second derivatives of G4 and HY; are O(1) that

||G~§h(P“ + Egn Ry, EWL,Uy) — Gs (P* 4+ EwnRa, EWs, U2)“C°“ ([0,00);Xsn)
S wl[(Ry, Wi, Un) — (Rg, W, UQ)HE‘*M

and

|5, (P + EanRr) — Hi (P + EanRo) oo, (0.00)
S pll(Ry, W, Uy) — (Ry, Wy, U2)||E+M'

ih)

[]

Corollary 5.9. The operator F has a unique fixed point (R, , Wi, Uyy,) € Bj}\u for

each Wy € R* with S.Wy = Wy and [Wy| < ,uengL in the case n = 4. This fixed point
satisfies (SanUgy, )(0) = Uy, (0).

5.3 The local centre manifold

The local centre manifold W . for solutions to equations (5.1) — (5.3) is constructed in a
similar fashion to W.. We formulate the modified equations

Z =L Z + G (Z,W,U) + Hiy(Z), (5.56)
W = LIW + G¥(Z,W,U) + H!(Z), (5.57)

139



U=LhU+Gh(Z,W,U)+ HY(2), (5.58)

where

—él\:zh<Z> W7 U) = Gl\:rh(Zv ¢(W)7 U)7
as the fixed-point problem

(Z,W,U) = (Gun(Z, W,U), Ge(Z, W, U), Gan(Z, W, 1)), (5.59)
where
G ZW0)0) = [ ((H(2) + Go(Z,W,0)) ()57 drs e
= [{(2) + Gl 2 WD) (s wre T dr e,

in the case n = 2,

Gun(Z, W, U)( Z/ (H(2) + Gl (Z,W,0) ) (7); 5567 ) dr sye

! J
_ Z/ Héih )+ GE (2, W, U))(T);u;e_;uT> "
in the case n = 4,
G2 W.0)(8) =W+ [0 (e W.0)(e) + B(2) )

where s, u, 8%, u* are defined in equations (5.20) — (5.23) and s;, uj, s}, u} are defined in
equations (5.27) — (5.30) (with the obvious modifications if w + 6# # 0), and Gy, (Z, W, U)
is the unique solution of

M = Ly M + G4,(Z,W,U) + Hi(Z)

(in the appropriate sense). Repeating the previous arguments, we find that G is a con-
traction on the closed, convex subset

B,s = {(Z,W,U) € B 5 : |1 Z)lcg @, Ul og @, [W — LEW o rigasy < €5 }

v

of
E 5. = 0%, (R;R") x Cl5, (R;R*) x C%, (R; Dap).

Its unique fixed point (Zy , Wit , Uy ) satisfies

sup| Zj7, ()] < pe™ %,
teR

Sup”U{;(Q (t)| sh ~y Me 2”
teR

Any solution (Z, W, U) to equations (5.56) — (5.58) satisfying

12l ce®rmys U |lcg®pas IW = LW ||, rigeay < €2
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lies in F ;. and is a fixed point of G with W (0) = W, its initial value (Z, W, U)(0)
therefore lies on

We = {(Z, Wi, Ui )(0) : Wy € R}
={(Z,Wo,U) € D: (Z,U) = U (W), Wy € R*}

(by uniqueness of the fixed point of G), where
U(Wo) = (Wun(Wo), ¥en(Wo)) = (Ziy,» Uz, )(0).-

Using the autonomy of equations (5.56) — (5.58) we further conclude that in fact each
point (Z, W, U)(t) of (Z,W,U) lies on W* for all t € R. Restricting the domain of ¥ to
B,-e+2.(0) leads to the local centre manifold

I/Vl((:)c = {(Z7W U) : (Z, U) = \I/(W)’ |W| < e_%}
for equations (5.1) — (5.3); all solutions with

1 Z ]| ¢y irmys | W | ey rir2a), Ul mipay) < €%

lie on Wy, and any solution passing through a point on Wy remains on Wy as long as
it remains in

{(zw,U)eD:|Z|,|W|,|Ullp, <e %},

The following results show that in fact any solution (Z, W, U) with (Z, W, U)(to) € W,
and |W (to)| < %e_%u satisfies (Z, W, U)(t) € WE, for all t > t.

Proposition 5.10. The function W: B, o2, (0) — R™ x Dy, satisfies the estimate

1 (Wo)llzrxp, S [Wol*.

Proof. Since G: B, 5. — B, ;. is a contraction with Lipschitz constant less than or equal
to 1/2, we know that

H(Zv VV? U) - (Z;Ijo’ Wli[}kov Uli;ko)HEl,;u < 2”(27 VV? U) - g<Z> W7 U)HED;M
for all (Z,W,U) € B,5,. Using this result with (Z, W,U) = (0, e’ )W, 0), we find that
[0 (Wo)[[rnxpy, = [[(¥wn(Wo), Wo, Yeu(Wo)) — (0, W, 0)|lp
< ||(07 eLg(')W()v 0) - (ZWN I;;koﬂ U{:[;;)HEVS\;L
< 2[|(0, " OW,,0) — G(0, 5 OWp, )| .,
< || Gwn (0, e Oy, 0)] o, (RR)
+ ||eLéL()WO - gc(ov eLéL(.)WOa O)HCJ;\M(R;RM)
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Observing that |e%OW,| = [Wo| and ¢(Wy) = Wy, we find that

t , . -
Gwh O,GLg(')W070 co (®RRY) S s LETW PN T dr e
1/>\A“‘( ’ ) — 00
+ /OO MZ‘eLgTWOPG—S\”T dr eS\”t
t

< [Wol>.

From the fact that Gg,(0, e )y, 0) is the unique solution to
M = LA M + G5 (0, "Wy, 0)
in B, 5. and Corollary 2.16 we obtain that

1Gan (0, €™ OWy, 0) [l ey S 1Gan(0, €O, 0)l|carmay S [Wol”

Finally we find that

© © t © ~ N
€40y = G0, Wy, 0)] = | [ SO0 (0, e TWy,0) dr| 5 2l [ W2

0

and

d t ~ ~
’&(eLgtWO — Go(0, ™t 0))‘ = Lff/ =TI Gr(0, e T W, 0) dT + G (0, 51T, O)’
0
S wA (It + Dol

so that
Ko,
HgC(OveLC()WOvo)HCiM(R;R%) < [Wol?

(since p2|t|e= I < 1). O
Lemma 5.11. Any solution (Z,W,U) of system (5.56) — (5.58) lying on W° with

W (to)] < %e_% (so that (Z,W,U)(ty) € Wy,.) satisfies |W(t)| < %6_57 (and hence
(Z,W,U)(t) € Wg,) for all t > t,.

Proof. Using Assumption (D6) we find that
. . 1
INZ,WU) = IM(Wwn(W), W, U (W) = §M4|W|2

and
TH(Z,W,0) = (0 (W), W, W (W) < a7

for (Z, W,U) € W¢..

Now we suppose that (Z, W, U) is a global solution of equations (5.56) — (5.58) on W*¢
with |[W(to)| < %efgiu. Assume there exists a time ¢ > ¢, such that |W(t)| > %6737. The
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continuity of W yields the existence of a time t* € (to,t) such that |[W(t*)| = %e_%. Since
(Z,W,U) solves equations (5.1) — (5.3) for t € [to, t*] we find that
9 c* 1

e = = *\ |2

which is a contradiction. O

5.4 The global centre-stable manifold

Suppose that (Ryy, , Wy, Uy, ) is the fixed point of the operator F. We observe that
(P* 4 Ry, Wy, Ujy, ) yields a generalised pulse solution to equations (5.1) — (5.3) if

Wi (8)] < e % (5.60)

for all ¢ > 0 (and by the symmetry of Wy, for all ¢ € R), since (P* + Ry, Wy, Uyy,)
then solves equations (5.1) — (5.3), in which no cut-off function is used. Since we have

*

already proved it for ¢t € [0, e2] it remains to show that estimate (5.60) remains true for

t > e% . To this end we show that (P*+ Ry, , Wiy, , Uiy, ) converges to a solution (Z, W, U)
of equations (5.56) — (5.58) on W€, so that in particular

sup Wi, (1) = W(1)] < e

te[t* 00) o

for some t* (see Figure 5.5).

Proposition 5.12. There exists o > 0 such that

sup Wiy, (0)] < e 5. (5.61)

cr
te[0,e21]

Proof. The central component Wiy, of the fixed point of F satisfies equation (5.13) so
that Remark 4.16 and estimate (5.7) yield an a priori estimate for |WWj, | over the interval
[0, ¢*], where
_ 7llog

vAR
so that e — 47 for an appropriately chosen constant 7. Applying e %! to equa-
tion (5.13) and taking the inner product with e=2¢*WW we obtain

t*

— VAP

(e MWy, (8) — Lite "W, (1) e Wi, (1)
= (M (GE(P" + Riyy, Wiy, Uiy ) () + He(P* + Ry )(8) ) e Wi, (1)),
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so that
1d —LEtyr* 2 < 2 * 3 —c —LEtyr*
sl Wi @ S (W Wi, ()] + pPe > )[e™™ Wiy, ()]
and thus
1d —LEtyrr* 2 iy * |2 4 —<
§&|e Wi, (O < M Wi |° 4 cop”e w
Gronwall’s inequality now yields
Wity (D < (W0 + eapa’e™ % e
(since |e~L¢*(.)| is equivalent to the usual norm for R?¢, uniformly in ). By choosing

v =v/ey, so that e = 1/u, we find

1 e
Wi, (O < = ([Wol* + capre” 7 t7)

1
1 9 9 &V

< —(|Wol” + cop”e” # —|log pl)
w 1

< pllog ple”

for all ¢ € [0,¢*]. Using the above estimate yields
|W{;/0 (t) - |’FC( >i‘;[/07 W;Vo’ U;I/o)(t”
t N N
< Wl + | [ B0 (GHPH + Riyy, Wiy, U ) () + FE(P + Ry ) (7)) dr

t* o ¢ - ) .

SWal+ [ (Wi Ol e W) dr [t e e ) dr
t*

S |W0| + Mgﬂog ,u|%e*57t* + e’%‘e—uf\“t* + tuei%

S Wl + (2 log ul? + p)e™ 5 + tpue™

In view of the estimate
sup_ [Wigy (0] < o5,

i
te[0,e 2+

showing that t* < e yields |[W (t*)| < %e_%u and hence

3 _
sup Wy, (£)| < Je 2
te[t*,00) 4
(by Lemma 5.11).
Setting
= € 0,5,
2
we find that . .
UMM —c_
e 2 =€ 2m,
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Figure 5.5: The central part Wy, of a function with initial values on Wi, converges
exponentially to the central part W of a solution to equations (5.56) — (5.58)

on W¢.

so that

2

_gl _9
|PH(t)| < {N € *“7 n )

c

pe 2, n =4,

for t > % Let x: R — R be a smooth cut-off function with

and [y®(t)| < 2 for t € R and [ € Ny. The function (Z, W, U) given by
(2, W,U) = x(P* + Ry, , Wi, Usip)

satisfies the equations

W G v!é (Z) +Qwh7
W = LAW + G*(Z,W,U) + H(Z) + Qe,
U= L4,0+Gh(Z,W,U) + HL(Z) + Qu,

where

Qun = XHU, (P* + Riy,) + XGlan (P* + Ry, Wik, Uy, + X(P* + Riy,)
— Hiy (x(P* + Ryy,)) — Gl (X (P + Riyy, Wik, Uii),
Qc = XGE(P* + Riyy, Wiy, Usyy,) + X HE(P* + Riy ) + XWiy,
— GH(X(P* + Ry, Wiy, Ui ) — HE(X(P* + Ryy,)),
Qs = XG“ (P* + RWO, WWO, UWO) + XH;;(P“ + Ry, ) + xUWO
— Gl (x(P" + Ry Wives Ui)) — HE (x(P* + Riy,))-
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To show that (Z, W, U) converges exponentially to a solution of equations (5.56)
on W¢ we have to find a solution (Awh, Ac, Agy) to

— (5.58)
Awp = Lx}fthwh + gv%h<Z) ( wh) + vah(27 VT/? U)
— G2 = A, W = A ,[7 Agn) + Qun, (5.62)
Ac = LFA + GHZ,W,0) + HH(Z)
- GH(Z - A, W — A, U~ Ag) — HYZ — Aw) + Q. (5.63)
Ag = LAy + G4(2,W,0) + HE(Z)
— G (Z = A, W — AU = Ay) — HY(Z — Awp) + Qs (5.64)
which decays exponentially to zero as ¢ — oo and has the property that

(Z7 VV, U) = (Za V[A/a U) - (Awha Aca Ash)
lies on W€ i.e. is a fixed point of the operator G defined in Section 5.3. To this end we
formulate equations (5.62) —

(5.64) as the fixed-point problem
Awh - ICWh(AWhJ AC; Ash)7
Ac = ’CC<AWh7 Aca Ash)
Ash = ICsh(AWhv AC) Ash)'
Here

Sefj‘#t
[T (D) + Gl (2.,.0)(7) — (2~ D))
— G2 = A W — AL U — Ay)(7)
+ Qun(7T);u"e MTN Qg Mt
in the case n = 2

KB B 8a)(0) = 3 [ (FL(2)(7) + Gl 2.W.0)(r) = (2 = Baa)(7)
I=t A — A, W — Ao, U — Ag)(7)

Z,W,0)(7) = Hitp(Z = Ay (7)
= — G (2= A, W = A, U = Ag)(7)
+ Qua(r);uje ™) dr uyet (5.66)
in the case n =4
KelBun A Aa)(t) = = [ H 0 (Gu2W0.0) + H(2)
— G Z — A, W — AL U — Ay)
— HM(Z — Agn) + Q) (1) dr, (5.67)
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where s, u, s*,u" are defined in equations (5.20) — (5.23), s;,u;, s}, u; are defined in equa-

tions (5.27) — (5.30), and K, (Awn, Ac, Agn) is the unique solution to
M =LA M+ G1 (Z,W,0) + HA(Z) — G~ (Z — A, W — Ao, U — Ag)
- F[éfl(z — Agn) + Qun (5.68)

(in the sense specified below). We now prove that K = (Kyn, K¢, Kn) is a contraction on
the closed, convex subset

Bsu, = {(ZW,U) € Eysu, |1 Zllcgmn: 1Ullcg epas IW — LEW | ey < o5 )
of

(R, R?) x C%

o (R, D).

EVS\“,—I- =Cy VA +(R Rn) X Cl)\u -+

As in Section 5.2 we use the fact that |[-[|ce  (g.p) and H"‘C"M+(R;B) are equivalent
v VAR,

norms for C%, +(R; B), uniformly in pu, where B € {R", R?? Dy, }.

Proposition 5.13. The operators Qyn, Q. and Qg satisfy the estimates

e
1Qun |y @zm)s | Qclley mmeay, |Qsnllco @iy, S e .

Furthermore,

®r24Y, |Qshllce (i) < 00.

VAR 4

1@unlle, s , k) [|Qelle:

UM +

Proof. Observing that t* < e_%, so that
Wi, (8)] < ™5
and thus ¢(Wyy, (1)) = Wy, () for ¢ € [5,t*], we find that

|Qun ()], Qe ()], [ Qs () 2
S P+ Ry, Wik, Uiy ) (0115 + [P + Riy, Wi, Uiy ) (1) | 2
S P+ iy, Wik, Uiy ) (015 + XA (P + Ry Wik, Uiy, ) (8) 1

< Pe 5 (5.69)

because |(P* + Ry, )(t)| S ue 57 and |y(t)] S £ < p? for t € [4,t*]. Next we note

~Y

that [x(P" + Ry, )(t)| < pe 5% for all ¢ € R. As in the proof of Theorem 5.4 (see
estimates (5.43) and (5.44)) we find that

G2, (XCP" + Rivys Wiy, Uing) ) (1) = Gl (X(P" + Ry, Wiy, Usig)) ) (£2)
5 u3e7%|t1 - tgla (570)

and
HXGsh(Pu + R;Vo’ W;/()? Ulﬂ/}/o)(tl) - X—é:h(P“ + R;Vo’ WI;/()? U{:V())<t2) Xh
S GG (P" + iy, Wiy, Ui ) (0) = GG, (P + Ry, W, Uy ) (2) [ 2,
< ple |ty — ty]® (5.71)
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and similarly

|H(X(P" + Rup)) (1) = H(X(P* + Ru))(t2) |, S pe” % [t — 1" (5.72)

and

IXH (P + Riy, ) (1) = xH(P* + Ry, ) ()|, S pre” |ty — b (5.73)
for —oo < ty < t; < 00, where we have used the estimate

IXllegm® < Ixllore < 1-
Combining estimates (5.69) — (5.73) we obtain

1Qanllcam) S e 5.

For the second assertion we first consider the calculation

‘QWh(t)’a ‘Qc(t” 5 u?’e*%

~ t*
—_= e—l/)\”” 2

" -

— eukf‘ge—u)\“t*
ettt xnu

S eu)\ Te vAHL

* ~
S UMMt
—= e2re ,

where we have used the fact that Qun(t), Q.(t) = 0 for all ¢ > ¢*. Next we observe that
X(t)Qsn(t) = Qun(t) for all t € R, where ¥ € C*°(R) is a smooth cut-off function satisfying

) 1, |t < ¢
nw:{ |

0, [t| > 2t*.
We find that
1@snllos;, @) = He”xu(')Qsthg(R;xsh)

= % OQull oo st

S 1% Olles @) | Qulles @)

< IR O eymypte

< 00,
where we again have used the fact that Qg,(t) = 0 for all £ > ¢*. O

Lemma 5.14. The operator K maps B, 5. , contractively into itself. Furthermore,

I (Awn, Ac, Aai)l|ca(@izny S pe” 2,

d _<
H&KC(AW}” Ac, Agn) = LEK(Awn, Ac, Ash)HCb(R;RM) S pe 2,
||ICsh(Awha Ac, Ash) ||C§(R§Dsh) 5 Mei%t

for all (Ayn, Ac, Asn) € B su -
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Proof. Suppose that v is one of s, u, s, uj, s*, u*, s}, or u} and (Ayn, A, Agn) €

Using Remarks 4.8 and 4.16 we find for Ky (Agn, Ac, Ag) that

[ () + G2 W.0)(7) — (2 = A7)
—GP (2 = A, W — A, U = Ay) 3

[T {HE(2D)(0) + G (2.W,0)(r) = Bl (2 = A7) ~
= Gh(Z = D, W = A, U = Ag)(7);0(7)e ™) dr v(t)e |
s/ T (A, o) — S — A), A, dr e

+ / e e (A, o) — oW — A), Ash>|\m,+ dr e

<wh,< )= SV = A, Al 0N

H( why O(W) = d(W = A), Sh)HEy;M#e*VMt
S ull(A wh7¢( >_¢(W_AC)JAsh)||E- e—u;\ut

VAR, +

and

‘/_too <Qwh(7');v( Je *)\#T>d v(t)e Mt
+ /too <Qwh(7)§ U(T)ej‘“7> dr v(t)e_j‘“t’
N /;\Qwh(ﬂ]e;\% dr e_xut‘i‘/tooleh(T)\e_X“T dr Mt

V)\“,+'

(5.74)

t - 0o ~ .
< NQuilles oz [ VT dr e 4 [Qualle, iy [ e 0T dr
—0o0

1 —UAH
S m||Qwh||Cm,+(R;R")e '

for t € R. Remark 4.8 and Proposition 5.13 yield that

(5.75)
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s [1 [ lafitloZ + (1-0)(2 - Aw)ldu)0)
+ G0 + (1= 0)(Z = D), o(W), U] (D) (7)
+ Ao [Z = D, 00(W) + (1= 0) (6(W) = ¢(A0)). UN(¢(A0)) (7)
+ Ay Gy [Z = A, 6(W) = (A),
ol + (1= 0)(U = Aw)|(Aa)(7)| do '™ d7 ™0

+
=
Q
RS
=
5
NNES
_l_
=
|
2
@
l>
=
5
ST

+
g\..
>—
o
=
)
Ny
+
—
|
Q
N
>
=
Z
=
=
=
5

A

+ A2 Gy [Z = B, 0 (W) + (1= 0) (W) = $(A)), U)(@(AC)) (7)
+ d3GWh[Z - AWha ¢<W) - ¢(Ac)7
ol + (1= 0)(T = Aw))(Aw)(7)|doe ™7 dr e — e7"%2|

S pll(Awn, SOV) = 6(W = Ac), A5, [t1 — B2 """ (5.76)

and

‘ _:<Q‘”h<7); U(T)eX#T> dr (ty)e ™" + /:o <Qwh(7->; U(T)e*”7> dro(t; )Mt
— /t; <Qwh(7');v( Je MT> dro(t )e—iutg _ /OO <Qwh(T);v(T)e_5‘“T> dTU(tg)eS‘“tQ

t2
t1 - B to ~ . i
S / |Qun (1) 7 dre +/ |Qun ()N 7 dr (612 — e7M'M)
to o0
o0 3 < ~
+ / |Qun(7)]e™" dr (e7M'2 — o)
t1

1 D % .
S m”QWh||Cuxu,+(R;R”)<e(l S

1 - - 5
. (1=0)ita Sty 0t
+ _ V)}’\HHQWhHCV;\M’JF(R;R")e 2(@ 2 e 1)

1 5y Y ~
+ 7||QWh||CVS\#,JF(R;R”)G_(IJFV))‘MQ (e)\utl . e)‘ut2)

(14 v)Iw
1 . -
(1—v) A () B (1—v)3ts — Xt
< m”QWhHCm,#R;R” lle loe 5 @t —ta|% 2g N2
1 1 — e)\ (ta—t1) -
| Quallc ., e o — e A
(1 _ V))\:U'HQ h||CV/\I»‘,+(R7R ) | t |a ‘ 1 2|
1 1 — eM(t2—t1) .
1 NN, w b — | —UAFto
+ (1+I/) ||Q h||cy>\ﬂ +(RR™) | t2|a | 2| (S
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1 (6% _V~
S @l @it = tloe (57

for —o0o < ty < t; < 00, where we have estimated e~ < e~ M2 hetween the third and
fourth line and N
1 . ef}\“|t17t2|

<1
|ty — to]®

between the fourth and fifth line. From Proposition 2.7 and estimates (5.74) — (5.77) we

obtain Kypn(Ae, A, Agy) € C oy +(R,]R”).

For Kc(Awn, Ac, Agn) we use Proposition 5.13 and similar estimates as for F. in the
proofs of Theorems 5.5 and 5.8 to find that

(A, A, A ) ()] < pefy;th(Awh’ ¢(W) — ¢(W —A.), Ash)”Eum,Jr
+ [ 1@l
S Me_y:\#tl‘ (Awha ¢<W) - ¢(W - AC)7 ASh)HEVS\u,Jr

1 — VARt
+ B 1Qclle, s, , mimeaye (5.78)
and

(A, A, M) (1) <pe™ M |(Agn, SF) = 6(W = Ac), Aw) 15 5,

+1Qclle ., . mmaaye™" (5.79)

VAR +

-

for t € R, so that Kc(Awn, A, Agy) € Ct R; R?).

uZ\M,+(

For g (Awn, Ac, Agn) we first note that it follows from Proposition 2.7, Remarks 2.11,
4.8 and 4.16, and estimate (5.7) combined with the facts that all second derivatives of
GL, and HY are O(1) that

VK, +

|G (Z1, Wi, Ur) — Gy, (Z2, We, Ua)llce,, LED) S pll (Z1, Wi, Ur) = (Z2, Wa, Us) ||
and

1HE(Z)) = HE(Zo)lles,, @) S #1210 = Zollesy, | e

c,sh

for all (Zy, W1,Uh),(Z2, W2, Usz) € B,5. . Using these estimates together with Corol-
lary 2.16 and Proposition 5.13 we obtain that

”Ksh(Awha Am Ash)”Ca~ (R,Dgp) ,S ||Ggh(27 W> U) Gg ( AWh) W Aca U ASh)
vAM 4+ 5 N R
+ HA(Z) — H(Z — D) + Qailles,, @)
S ull(Awn, ¢(W) = (W = Ao), Aan) 1,5,

+ ||Qsh||C&)\u + (R,Xsn)

S 1l (A, 9(W) = 6(W = Ac), Aa) 15,50,
+ [|Qsnllee, o (RX)) (5.80)
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so that Ko, (Awn, Ac, Agy) € C

iy +(R, Dqn), where we also have used Proposition 2.7.

Now we show that K maps B, 3. , into itself. Repeating the arguments used in estim-
ates (5.74) and (5.75) with v = 0 yields that

|leh(Awh7 ACJ ASh)( )| < MH( whu (W) - ¢(W - AC)) Ash)”Cg‘(R;’D) + ,U/e_giu
for all ¢t € R, and from estimates (5.76) and (5.77) we obtain

|]CWh(AWh7 Aca Ash)(tl) - ICWh(AWhv Aca Ash)(t2)|

S ull (A, 6(W) = 6(W = Ao), A e @yt — ta| + pe” 2 [t — to]*
for all —oco <ty < t; < 0o. Combining the two previous estimates yields
[ wn (Ayns A, Ash)HCﬁ‘(R;R”) S Ne_gj- (5.81)
Using Remarks 4.8 and 4.16 and Proposition 5.13 again we find that
(A Ay M) (£) = LEKC (A, Ac, Agn) (8)]

= |GH(Z, W, 0)(¢t) + HA(Z)(t)

—GEHZ = D, W = A, U = D) (1) = HEZ = Aw)(8) + Q1)
S 1l (A, 6(V) = 6(W = Ao), Mg, , + e 5
for all t € R, so that

e

< pe 2.

Avvha Ac; Ash) L'g’Cc(Awhy Aca ASh)HCb(R-RM) ~

5%
Finally, using Proposition 5.13 and the same arguments as in estimate (5.80) we obtain

1K on( Aty A, Al co@pa) S 1l (A, 9(W) — (W — Ac), Aqp) | comp) + pPe”

o*

S pe”
so that C(Awn, Ac, Aa) € B s -

The fact that K: B3,  — B, 3., Is a contraction is established by repeating the above
arguments with (Z, W, U) and (Z — Ay, W — A, U — Ag,) by respectively (A AWM A )

wh»

and (AR, AD, AD). O

Corollary 5.15. The operator K: B 5. ; — B, 5., has a unique fixed point denoted by
(Awn, Ac, Agn) which satisfies the estimates

*

||Awh ”Cg([o,oo);Rn) < ,ue_§7,

| Ashllce®pa) S pie” 2,

and
I(Awn, A, Aqh) || £ St < ,ue””“%
Furthermore o
(Zv I/I/J U) = (Z7 VV; U) - (Awhv Am ASh)
lies on W¢.
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Proof. The first assertion follows from Lemma 5.14 and the fact that

~ * 1
AR L .
1K) 15, , < pe™5, Lipg , K<

O 2

(see estimates (5.78) — (5.81)).

The function o
(Z7 VI/’ U) - (Za VV: U) - (Awha AC: ASh)
is by construction a solution of equations (5.56) — (5.58) and because of
1Zlce®rny < | Z]lco@rny + (| Awnllce @rn) S pe™ 2,
1Ullce®Dpa) < IUllce@rn) + | Ashllco®pa) S pe™ 2,
W — LEW || oy mimeny < W — LEW | oy migeay + [|Ae — LEAC oy rigeay S pe” 2

it lies on W°.
It remains to deduce the assertion given at the beginning of this section.

Theorem 5.16. The function Wy, satisfies

Wiy, (8)] < e 2

for all t € R.

Proof. In the notation of Corollary 5.15, we observe that
Wi, (1) = W(0)] = W (t) = W(t)]
< [[(Awh, Ac; Asn) (B)[|p
< || (AWh7 AC) Ash)

~ t* ~/,L
< Iueu)\“ﬁefu)\ t
Y

—VARE
||Eyj\u7+e v

~ *
UM
VA 5

< pe
for t > t*. On the other hand, by construction

Wiy, (O] S e

for t € [0,e2] D [0,#*], so that [W(t*)] < %ef%u and hence by Lemma 5.11
3 e
(W) < e =
4
for t > t*. Combining estimates (5.82) and (5.83) we find that
Wiy, (8)] < e 2
for t > ¢*. Since Wy, is symmetric, we have that
Wiy, ()] < e
for all £ € R.

(5.82)

(5.83)
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6 Applications

6.1 Generalities

In this chapter we apply Theorems 1.1 and 1.2 to the evolutionary equation
o = Lfv + N¢(v) (6.1)

for v: R — Y, where X', Y are Banach spaces with )} continuously and densely embedded
in X. Let {D}.cr be a family of closed subspaces of ) and suppose that

(i) the linear and nonlinear functions L) and N©) take values in X and are analytic
at the origin in R x ) with

1N (@)l = O(l[v]13),

(ii) the linear operator [5: D° C X — X is closed, densely defined and depends ana-
lytically upon ¢ in the sense of Kato [13, VII-§2]: there exists Tc e L(D% V) such
that 7: D° — D= is a bijection and T¢ € £(D% Y) (and hence LT¢ € L£L(D°; X))
depends analytically upon €.

The spectral hypotheses on L¢ are that

(i) it has finitely many simple purely imaginary eigenvalues +iwy5, ..., w5, where
wi,...,ws5 >0,

(i) it exhibits a 0% resonance (a pair of imaginary eigenvalues become real by colliding
at the origin) or an (iw)? resonance (two pairs of imaginary eigenvalues become
complex by colliding on the imaginary axis) at ¢ = 0,

(iii) the rest of U(ZE) is bounded away from the imaginary axis, uniformly in e.

Let 7. and 7, be simple closed curves enclosing respectively +iwf, ..., +iw§ and the
colliding eigenvalues in the 02 or (iw)? resonance and no other points of o(L?). Define the
corresponding spectral projections by the formulae

1 “
Piv = 7_/ (M — L) wd),
27r1 Ywh
1 “
Py = 7_/ (A — 1) wd),
27 Ye

Pov= (I = P5 = Pg)v.
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Defining X%, = P, X, Af = PP, &5 = P53, X (with similar notation for ) and D¢), we
can rewrite equation (6.1) as the system

'Owh - Livhvwh + Nvavh(vwha Ve, Ush)a (62)
i)c = Livc + Nf(vwh, Ve, Ush)7

. Te \TE
Ush = Lshvsh + Nsh(vwh7 Ve, Ush)

— 3 — 3 — 13 ] ] 141 V€ VFJ V€
for vy = Pguv, ve = Pov, vg, = Piv (with the obvious definitions of L3, Lg, Lg, and

vah, N, N§,). The dependence of the function spaces upon € can be removed using the
following result (Kato [13, 11-§4]).

Proposition 6.1. Let B be a Banach space and Pf, ..., Pf € B(B) be projections which
depend analytically upon € in a neighbourhood of the origin and satisfy

PP P =0, P;

for 7,5 € {1,...,1} and

There exists Q° € £(B) such that
Q&PiO(Qe)—l — ])is
for i € {1,...,1}. Furthermore Q° and (Q°)~! depend analytically upon e.

Applying Proposition 6.1 with B = £L(X) N L(Y) and P = P, Ps = P, P§ = P5,
yields Q° € L(X) N L(Y) such that

Q" Py (Q°) ™! = Py,

QP = P

Q PoL(Q) " = P4
Applying the equations P2, (Q°)~! = (Q°) "' P, and P, (Q°) = Q°PY, to X and Y, we
find that Q°[X2,] = X%, and Q°[DY,] = D¢, and similarly Q°[X?] = X7, Q°[X3] = A5,
and Q°[D?] = Dz, Q°[DY,] = D5,. The change of variable

Vwh = QE'Z? Ve = Qawv Ush = qu>

transforms equations (6.2) — (6.4) into

z = LhoZ + Nvf/h(za w, U), (65)
w = Liw+ N (z,w,u), (6.6)
U= Lihu_l_NsEh(vaau)? (67)

where

Lo = (@) ' Leu @,
Nvavh = (Qa)_leavh(Qezv Qawv Qeu)
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with corresponding definitions for LZ, L5 and NZ, Ng,. We can also write
Nvf/h(z7 w, U) = g\fvh(zv w, U’) + hivh(’z))

where hyp(2) = N¢(2,0,0), with corresponding definitions for ¢¢, ¢, and hZ, hS,. Equa-
tions (6.5) — (6.7) are of the form (1.27) — (1.29) with X, DY, = R", X7, D? = R*! and
Xg = X3, Dy, = DY,. Note that the spectra of LS, and LS, L and L¢, L5, and LS, are

identical, and furthermore (6.2) — (6.4) and (6.5) — (6.7) coincide for € = 0.

We now turn to the special case that the linearised equation
0= L%

represents Hamilton’s equations for a linear Hamiltonian system (X, €, H°). Here the
symplectic 2-form €2 is a bounded, bilinear, skew-symmetric mapping X x X — R and
the Hamiltonian H°: X — R is a functional which is homogeneous of degree 2; they have
the property that

Q(L, w) = dH[v](w)

for all w € X. The following result gives a simple representation of the spectral projections
PY and P?, (see Mielke [21, §3.1]).

Proposition 6.2.

(i) Letey,éy,...,en, e, be eigenvectors corresponding to the eigenvalues +iw?, . . ., +iw?

n’

normalised such that Q(e;, ¢;) = £i, where € is extended bilinearly to the complexi-
fication of X. The spectral projection P? is given by

Py = Z (siQ(v, éi)e; — siQ(v, ei)él-),
i=1

where s; = —Q(e;, €;).

(ii) Suppose that L# exhibits a 0% resonance at e = 0. Let f1, fo satisfy L0f; = 0,
L°fy = f1 and Q(f1, f2) = 1. The spectral projection PY, is given by

Pv(\)/hv = Q(v, f2)f1 — Qv, fi) fo.

(iii) Suppose that L¢ exhibits an (iw)? resonance at £ = 0. Let e, f satisfy Lo = iwe,
(LO —iwl)f = e and Qle, f) = 1, Q(e, f) = —1, all other symplectic products being
zero (and € is extended bilinearly to the complexification of X). The spectral
projection P2, is given by

P = (v, fle = Qv e) f
+ Q(v, fle — Qv,e)f.
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6.2 Generalised solitary waves on rotational flows

In this section we consider gravity-driven steady waves on the surface of water in a
uniform rectangular channel bounded below by a rigid horizontal bottom and above by a
free surface. In a Cartesian coordinate system moving with the wave the fluid domain is

{(@,y) ;v eR0<y <n(x)}

for some profile function 7: R — (0, 00). Working in dimensionless coordinates, we seek
the velocity field in the form (¢, —1,), where the stream function 1: R* — R satisfies
the boundary-value problem

Yz + by + W (¢) =0, 0<y<n, (6.8)

Y =0, y =0, (6.9)

=1 y =, (6.10)

¢§+¢§+2n:3r, y=mn (6.11)

(see Keady and Norbury [14]). Here the wvorticity function w®) is a real-valued function

which is analytic at the origin in R x R and r is a parameter referred to as the Bernoulli
constant. A solitary wave is a solution (7, 1)) to equations (6.8) — (6.11) such that n decays
to a constant, while a generalised solitary wave instead decays to small ripples far up-
and downstream. Solitary waves were found by Kozlov et al. [19] under the assumption
that w is a large negative constant. In this section we apply the results of Chapter 5
to establish the existence of generalised solitary waves with exponentially small tails for
linear vorticity functions (see Figure 6.1).

Figure 6.1: A generalised solitary wave on the surface of a stream solution.

6.2.1 Formulation as an evolutionary system

We begin by transforming equations (6.8) — (6.11) to a boundary value problem on the
fixed strip R x [0, h]. We achieve this aim by introducing the new coordinates
. . h
r =1z, Yy=—"=Y
n(x)

and variable

(2, 9) = (z,y),
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to transform equations (6.8) — (6.11) into

2

n € _ @ ~F . @’“2 N - @~ ).
iz + 55 Pgy + W (P) = p (505 07 ‘Dy>g + (P2 ; §%g)z, 0
=0, Y
o =1, y
2
Nz Ui _
(Pz — qu’g)g + ﬁq)z + 2n = 3r, 7
Introducing the additional variable
. n Nz .
U(z,79) = E(q);i - ?y%)
we find equations (6.12) — (6.15) to be equivalent to
h 7 _
By =~ + jap 0<§<h,
n n
v, = " gu). — e “(D) 0<j<h
z = —\Y g — —Pgg — 7W 5 ) )
n Y n vy h
® =0, y= 0,
U =0, y=0,
¢ =1, 7y =h,
2 2 n\? -
v +®g:(3r—2n)<h>, g = h.

From equation (6.20) we find that ®z(-,h) = 0, so that the definition of ¥ yields

_ \D<>h)
= (I)17<'>h).

A\
<

> O

s

(6.22)

Regarding equations (6.16), (6.17) and (6.22) as an evolutionary system in which  is
the time-like variable (spatial dynamics) and equations (6.18) — (6.21) are boundary

conditions, we can show it has a conserved quantity.

Proposition 6.3. The system of equations (6.16) — (6.22) has the conserved quantity

He(n, ®, V) = /Oh (2};(\1;2 +®7) + %QE((I)))

where

fﬂﬂ:-[ﬁﬂ@@.

Proof. We find that

: " h N . N
H;OL@,W):.A (ﬁ(wmi-©g¢@)+-gw(¢u¢j)dy

%(Ah(JWWQ—éariQﬁéndg+n—

2

2

dj+ L -

2

2

3

5”%

3r
> Nz
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n? 2Y% )y 2715
+ (77 - ;T>ﬁj
h?n; 1 h?
3 (W) = B, 1) = U BBy, )
2
a2 (B0, 1)) + U BBy h) + (0= Sr)
2
= ;772(\112(', h) + Wi (., h))T]j + (7] — 27‘)7)@
=0,

where we have used the boundary conditions in the last two steps.

]

We proceed by interpreting our flow as a perturbation of a stream solution (A%, h) of
equations (6.8) — (6.11), that is a solution (n,v) with ¢ = A°(g) and n = h, so that

(A%)" + w®(A%) = 0, 0<g<h,
A° =0, y =0,
A =1, y=h,
((A%))? + 2h = 3r, y =
(see Kozlov and Kuznetsov [18] for a complete discussion of stream solutions); we assume

that A° € H?(0,h) depends analytically upon e. Note that (n, ®, ¥) = (h, A%, 0) solves

equations (6.16) — (6.22). We thus introduce the new variables

5 e ()
OP=P—-A"—7y .

Since (h, A®) satisfies equations (6.13) — (6.15) we find that

(, V=0V, (=n-nh

(A%)'(h)
and -
T )+ () i m(1-n i)
s ’ (A=) (h)
Substituting ® and ¥ in equations (6.16) — (6.21), we obtain
Oz = U+ N{(D, V), 0<§<h,
\i/j = —Cbgg — (wa)/(As)i) + N;(i), i’), 0< g < h,
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y=20 (6.25)

$ =0,
T =0, y =0, (6.26)
d; — kD = NE (D, D), y = h, (6.27)
where the nonlinearities are given by
eEH O\ — C T ?JC@ 5 . y e\l
NE(®0) = ==+ 2 (B + (M),
erE T\ _£ e/ [ AE\F z ~ B
N3 (2, ¥) = — 2 (w) (A )<I>+C+h( U);
C T C 5 e <+2h e\/ e e /~C
+ e (B o9 - T2 (i)
h - 3
SR (B A AT ) - () — (@) (A (B + (A7) ),
T I T R s B (S e P
Ni (B, ) Q(AE),< b <q>y h+~<A5),<I>) +P(h (AS),) P(h)
P
+ P(h) (As)f))
with
c_( 1 2 Wi (1)
k ((Ae)/) (Ae)/ )

P(n) = 35(3r = 2n).

Now we can write equations (6.23) — (6.27) as the evolutionary system

P (& &
<\ij>m 3, (6.28)
where = H
o U+ N§(®,¥) :
(@ 1) = (“i)g@ — (@) (A%)® + Nzg(&”i’)) 7

note that f¢ takes values in X' and is analytic at the origin in R x ), where

Y=

{(@,%) € H*(0,h) x H"(0,h) : ®|g=g = 0, ¥];— = 0},
X ={(®,9) € H'(0,h) x L*(0,h) : D3 = 0}.

The domain of the vector field on the right-hand side of equation (6.28) is

{(D,0) €Y : Dy — k°D = N5(®, V) for y = h}.

The conserved quantity of equations (6.16) — (6.22) evidently transforms into a conserved

quantity of equations (6.23) — (6.27).

161



Proposition 6.4. The functional H¢ defined by
~ o~ o~ h h ~ _ (A
H(9,0) :/0 <W<\D2 — (5 + (A% + MC)Q)
h - (AEY 1 3
+ CZQE(CD AT 4 y(h)f)> Qg+ 2CHm = Sric ) (629)

is a conserved quantity of equations (6.23) — (6.27) and satisfies

(0) =~ [ (A ag — w

0
5 AZHE[0](D, T) = ; /0 " (92 — @2 + () (A)0?) dji + ;Kf&ﬂ(h).

Y

0) = [~ S 00 g+ 22— o
-/ (= S+ (508 (09), — G (A (A ) dj + Sh* = S
= [ (= e+ Sa(ien), + (), ag s Sae o
= [ (0 + G + 59e(a) ) ag + a2 = o

" 1

((A°))? dg + ;((AE)’(h)z +2h = 3r)h — S’

ol i) - [ (W5 - ey, - syt +

= ;g((AE)’(h)Q +2h — 3r)
=0,
and
2 fre O — hl~2_~2_ ~ a//£2_ (5 Ellg £ F_(AEY
CH@,8) = [ (5= 82— (7)) )" = 2B55(A))'3) + 55 (285(47)
FANY@AYYS) — (A7) + S (A% (@ + (A7)
o)A@+ g(aY5) ) dg 5
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+ £ h ( _ &)Q(Q(AE)I)/ + &)Q(As)/ + WE(AE)é + (wE)’(AE)g(As)’cﬁ) dj

o [ 5 @y) + ey acyy
= SUAY)P + A ADAY + S GAY)?) df + 5

-/ "L - 82 1 () (09)82) dg + () (u(h))

+ (= @AWY + G0 + 3¢
_ /Oh;(\ilz . é; + (wE)I<AE)(i)2) dg

(=AY = S ) ) + 5
= [ 508 = @ @y (193 g + (1 - (A (A ) )
M Lce e VAN A5 L L2 1 w (1)
=/ 5(\11 — (I)g—i- (w®)'(A%)@%) dg + 5(1) (h)((Ag)/<h)2 o (As)/(h))‘

]

To linearise the nonlinear boundary condition associated with equation (6.28) we intro-
duce new coordinates I', £ given by

(L.€) = G*(, ),

where

The following result shows that GG* defines a valid change of variables.

Proposition 6.5. For each ¢ in a neighbourhood of the origin in R the mapping G* is
an analytic diffeomorphism of a neighbourhood of the origin in ) onto a neighbourhood
of the origin in ) which, together with its inverse, depends analytically upon ¢ € R.

Furthermore the operator dG¢[®, U] € £()) extends to an isomorphism d/q\a[fi), 0]
L(X) which, together with its inverse, depends analytically upon € € R and (®, ¥) €

Proof. Observe that GO takes values in ) and is analytic at the origin in R x ) and

ACE [, 0] = (I A dN?f@,\if}c)ds) |
I
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Furthermore, for each ¢ in a neighbourhood of the origin in R and (é, \il) in a neigh-
bourhood of the origin in Y the operator dN;[®, ¥] € L£(Y) extends to an operator
dN5[®, U] € L£(X) which depends analytically upon & and (®, ¥); the above formula
shows that the same is true of dG¢[®, U]. Finally, observe that dG°[0] and dGP[0] are the
identity operators in respectively £()) and L(X).

The assertions now follow by applying the implicit-function theorem to the functions
Fi: YxYxR—=Yand Fp: L(X) x X x R — L(X) given by

(T, )

(&)7@)75): (~7~)
(&)7@>75) = [(i) \i}]

]

The change of variable given by G® transforms equation (6.28) into the evolutionary
system R o
r =~ (KD g))
) =0 = (Y, 6.30
@i =g (6:30)

B8 = 467 (6 (0.8 (£((6)(1.6))

takes values in X and is analytic at the origin in R x ). The domain of the vector field
on the right-hand side of equation (6.30) is

where

D = {(f,é) € H?(0,h) x H'(0,h) : T(0),(0) = 0,15 (h) — x°T'(h) = o}.

We note that the linearisation of k° is given by L[s: D° C X — X with

Y. T B ) g )
r <g> B (‘Fgg - (ws)’(AE)I‘> (6.31)

(since dG°[0] = I) and this operator depends analytically upon ¢ since

- (F) _ (f ~ e ) /ghf(s) ds)

§

defines an isomorphism 7° € £())) which depends analytically upon € and maps D° onto
D¢. The quadratic terms are given by

5 PRIOIEE = M) + L [ AV 8(E ~Fyy — @ (1))
where
(T £\ ~<h) c é(h) - f(h) g e\
M1 (Fvg) = h(AE)/(h)é- - yh(A‘f)’(h) (Fﬂ - (Ae)/(h)E(A ) )7
o s e 1 (A ()2 3r 6y D2
M;(T,§) = 2(A<Y(h) ( & (Fg B (ﬁ * (As)’(h)) ) - (h2 E> (Ae)"(R) )’
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21 ~~_2 (T ¢ g e ¢ z—:/sghz-:~~ e ¢
@008 = 25,6 + Laps(R.6) — (w0 [ (L&) + (T8
where
e & g(h) (gg)ﬂ o f(h)2 WE(AE f(h) WY (AE I
WED==wym e — rayer” ™ raym @
20(h)* o a1 e T(R) g(AT) N2
- h(A&*)[(h)Q (w ) (A ) 3 - i(w ) (A )(F - (Ag),(h) h )

6.2.2 The linearised system

In this section we study the linear operator [f:D°CX X given by equation (6.31).
We begin with two general results which hold for all choices of vorticity functions w®.

Proposition 6.6. The linear equation
r . (T
o I
(6.~
represents Hamilton’s equations for the linear Hamiltonian system (X, 2, HS), where
~ - ~ o~ h o~
Q((F1a§1)7 (Pzan)) = /0 (&It = &) dy
and

HE(0.8) = 1 ['(& ~ B+ () (A)F) dg + web(n)”

Proof. A direct calculation shows that
Q(L(T,€), (T',€)) = dH5 [T, (T, €)

for all (I',€) € X and (T, €) € D~. O

Lemma 6.7. The operator [ satisfies the estimates

(L —isD) | gy S Isl 7"
(L7 —isI) | caipe) S 1

as |s| — oc.

Proof. Consider the self-adjoint operator ADcx =X given by

v

A (I) = =Ty — (W) (AT,
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where

X =1I20,h), D°={Ie H*0,h):T(0)=0,Ty(h) =rT(h)}.
Observing that

if and only if . . o .
—Tys — (W) (AT + s°T = £ +isl™,
we find that +is € p(L) if and only if —s? € p(A®). The calculation
h, e
(=T = @y (a9 ag
(= @)Y AP+ |T5%) dj — s [T ()
h eN'( AEN|T 2 ™12 ~ € e ~
(= @Y AOIE? + [051) dg — 267 [T dg
h . h . KE rho_
(@) (AT dg + (1 = w0) [ |2 dg =5 [P g

> (%4 sup [y (1)) [ IFPag

7€[0,h]

I
S~
>

AV
|
S—

for T' € D and sufficiently small § shows that o(A?) is bounded from below and in
particular that —s* € p(A®) and hence +is € p(L¢) for sufficiently large values of |s|.

The estimates
I(LF = isD)Hleeey S I8l
and
(2 = isD) M leeep) S 1
for sufficiently large values of |s| follow from equations (6.32) and (6.33) by the calculation
h Tk 2 k|2 k|2 ~
JOE R+ 152+ 1) ag
0
h ~ ~ ~ ~ ~ ~
= [" (18 = 1D + 16 — 15Tyl + Iy + () (A)F + isd]?) 4
h ~ ~ ~ ~ - ~
= | (I€P + & + 1Tgl* + (T + D5 + [€]°) + () (A)?|T) dg
0 L ) ’
~2sIm / (€ + &0y + &1y + £ (A9)T) a

h

+2Re / (wF) (AP T 5y dg

0

and the inequalities

b ~ h ~12 |2 ~
2s [CEIITIdg) < Jsl [ (12 +ITP) g,
0 0
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2s m E()P(1)] < s8I + 2 P(n)P
sl

—jsto [* Ligag+ 1 [ Lipag
0 g YT s )y ag Y

Ny
2 21512\ 9~ 2 2\ 1~
<o [ (1&F+s8R) ag+ 5 [ (1 + I0F) g,
‘2/hm|f \d~‘<5/hyf |2d~+1/hyf|2d~
0 g3l Y] = oW Y 0 Jo 4

(for sufficiently small values of 9). O

Corollary 6.8. The spectrum of L¢ consists only of isolated eigenvalues with finite
algebraic multiplicity.

Proof. Since D¢ is compactly embedded in X we know that (LF —isI)™* € L(X) is

compact for sufficiently large values of |s|. The result now follows from Kato |13, Theorem
I11.6.29]. m

Now we specialise to the case w®(V) = (b+ €)WV, where b is a positive constant, so that

A*(9) = sin(Vb + &),
. sin?(v/b + eh) + 2h
— ; 7

k° =k(b+¢),

where

k(b) = 2tan2(\/5h) — Vb tan(Vbh).

To calculate the spectrum of L# we consider the eigenvalue problem
€=,
—Ty5 — (b+e)l = A,
which is equivalent to the eigenvalue problem
~Lgg— (b +e)l =pl
for the self-adjoint operator A°: D° C X — X given by
AT = Ty — (b+e)T,
where
X =1I120,h), D ={T e H*0,h):1(0)=0,T3(h) = s(b+e)(h)}.

The following auxiliary result is a combination of Zettl [24, Theorem 3.5.1, Theorem 3.8.2
and Theorem 4.4.3] (simplified for our needs) concerning the continuous dependence of
the spectrum upon the boundary conditions.
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Lemma 6.9. The self-adjoint Sturm-Liouville problem

— gy — q® = Mcﬁ 7€ (0,h), (6.34)
®(0) = (6.35)
AD(h) + Bdy(h) = o, (6.36)

where ¢, A € R and B € R\ {0}, has a countable infinite family {u,}°, of simple
eigenvalues with

M1 < p2 < p3 < ...

and j, — oo as n — oco. Each eigenvalue of problem (6.34) — (6.36) depends continuously
on (q, A, B).

Furthermore in the case A = 1 the eigenvalue pu, depends continuously upon B for
B # 0 but has a jump discontinuity at B = 0; more precisely we have

(i) pn(B) = pn(0) as B | 0 for each n € N,

(ii) pins1(B) = pn(0) as B 10 for each n € N.

Lemma 6.10. For any N > 1 and h > 0 there exists b}, > 0 such that the eigenvalues
{pg }22 ; of the Sturm-Liouville problem

—Igy — bl = pll, j € (0,h), (6.37)
I'(0) =0, (6.38)
Ty(h) = w(b)['(R) (6.39)

with b = by + € satisty pj,...,u5y < 0and 0 < p;, for n > N + 1 for sufficiently small
e € R. Furthermore, %, =0, S, > 0 for e < 0 and p5,; <0 for e > 0.

Proof. The solution of (6.37) and (6.38) is given (up to a multiplicative factor) by T'(§) =
2
sin(v/b+ € + pg). With b = by = (]Y) , equation (6.39) yields the eigenvalues

= (o)) e

so that Y < 0 for n < N and pY > 0 for n > N. We proceed by showing that there is
precisely one value of b in (by,by1), which lies in the interval (by, byy1/2), for which 0
is an eigenvalue of problem (6.37) — (6.39).

For = 0 to be an eigenvalue of problem (6.37) — (6.39) we need to find b such that
() = sin(V/bj) satisfies equation (6.39), so that

1 sin®(v/bh) M  heos -
b cos?(v/bh) \/Ecos(\/gh) Vbcos(vbh) =0, (6.40)

or equivalently

g(b) = tan(v/Bh) — b} — ;sin(Z\/Eh) 0.
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A lengthy calculation shows that

=" L — Cos _3
g(6) = 2\/[_)<COSQ(\/Bh) (2\/5h)> 2\/5

and
— sin?(2v/bh)(2 + cos(2v/bh)) + 6h3
8 cos(v/bh)b?
B 3sin(2vbh)(1 + 2COS4(\/Bh))h2
8 cost(v/bh)b?
3sin?(2v/bh)(2 4 cos(2v/bh)) 3
32 cos*(v/bh)b3 8b3
3h3/b — 3h?
~ 8cost(vbh)b?
>0

g9 (0) =

for b > by, so that in particular ¢’ is strictly convex in (by, bN+%) and thus has at most
one minimum and no other stationary points in this interval. From ¢'(by) < 0 and
g'(b) >0 asb?t bN+% we find that ¢’ has exactly one zero in (by, bNJr%). Combined with
the facts g(by) < 0 and g(b) — oo as b 1 bN+% we conclude that ¢ has exactly one zero

in (by,bny1/2). Furthermore g is negative in (by1/2,bn41) and therefore has no zeros in
this interval.

Denote the unique zero of g in (by,bny1/2) by by (and note for later use that by €
(bnt1/4,bn41/2) since g(byi1/a) < 0 and g(b) — 00 as b T byy1/2). Since the eigenval-
ues {jn}p>, of problem (6.37) — (6.39) depend continuously on b € [by,byy1/2) (see
Lemma 6.9), we conclude that either

(i) uv < 0 for by < b < by, puy = 0 for b = by, p > 0 for by < b < byji1/2 (With
M1y ooy UN—1 < 0 and UN4+1, UN42, - -0 > 0 for all b € (bN7bN+1/2);

(ii) pn41 > 0 for by < b < by, ping1 = 0 for b = by, pn41 < 0 for by < b < byyiyo
(with g, ..., un < 0 and pny2, fings, ... > 0 for all b € (by, by11/2)-

By reformulating equation (6.39) as

1 -
I'(h) — —=T'i(h) =0
() =~ o(h)
and noting that —k(b)~' 1 0 as b 1 by1/2, we find from Lemma 6.9 that ju,4; — ©l as

b1 byt1/2, where
i (- v+ )

are the Dirichlet eigenvalues. It follows that (ii) holds. O

Set b = bj,. Since A is an eigenvalue of L if and only if \? is an eigenvalue of A®, we

conclude that the spectrum of L¢ consists of purely imaginary eigenvalues =i(—pu5)/2,

+i(—ps)V?, .. Ei(—psy) Y3, real eigenvalues +(uS,0)Y%, £(uiy3)Y?, ... and addition-
ally
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(i) a pair of purely imaginary eigenvalues +i(u5_;)"/? for e > 0,
(ii) a pair of real eigenvalues &(us, ;)2 for € < 0,

(iii) a zero eigenvalue for e =0

(see Figure 6.2). The eigenvectors corresponding to +iuS are given by e and e; ©, where

¢ = & (Emﬂvb_(“ﬂ%n ) ie{l,...,N}
VO i sin(yb— (u)%9)) S

d
o - _ (1 sin(2hy/b — (us)?) e
Yi _< - th ) 79
so that

O(e5, &) = —i, ie{l,...,n}.

R

o % (sin(8@>> . f= % (sin((\)/gg)>

are the generalised eigenvectors for the zero eigenvalue with

For € = 0 the vectors

Lle=0, L°f=ec.
Here \/_
sin(2v'bh)\ h
2v/bh /2
so that
Qe, f) =1.

We can therefore write

w=Cred 4 ...+ COnel + C1&d + ... + Cnel,
z=zie+ 29f,
so that
1

1
H3(0,0,0) = S (W)ICHP — ... = (%I

and

Pon() = Q(, fle = Q(e)f.
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Im A\

e<0

Im A
Re A %
e=0
Im A
Re A
e>0

Figure 6.2: The spectrum of Le.

6.2.3 Existence theory

We now set

w (W) = (by +¢)V¥,

Re A

derive equations (6.5) — (6.7) from equation (6.30) as explained in Section 6.1 and prove

Theorem 1.9 by applying Theorem 1.1. Assumptions (Al) —

(A3) and (B1) are obviously

satisfied, while Assumption (A6) follows from Lemma 6.7. It therefore remains to verify
Assumptions (A4), (A5) and (B2). To this end we note that equation (6.30) is reversible

with reverser

which satisfies, with a change of notation

1°00,w,0) = —HY(w) + O(Jw|?)

1
= 5 ()’ |G +

2

1
SR

(1 )*|Cx[* + O(Jw]?).

Finally, note that the coefficient of 2? in the Maclaurin expansion of hS, is given by

(5

Q(; CR0] (e, e
QL a20[0](c.

)) ))>’
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so that
C = (3 k[0 (e, ), ¢).
A lengthy calculation shows that
1
C =~ sec( bich)(—4h — by (4b3°h? + by — 3) + 4 (by*h? + by) cos(2 \/bih)
+ (b + by +4h) cos(44/bih)
+8b3"?h (cos(y/biyh))* sin(y/bih) )
1 (-3
x (tan(y/byh))?byy "3 (2h — sin(2 /by h)—) *. (6.42)
\VON

Proposition 6.11. The coefficient C' is negative if N is odd and positive if N is even.

Proof. We note that

C= —% sec(D) tan2(5)(2b_81fl(2b)>_2D,
205 (by)? Vo

where
D = 8b* cos*(b)h? — 8sin(2b)h°
+ b*(—1 — 4b* cos(2b) + cos(4b) + 8bcos®(b) sin(b))
and b = |/bih. For fixed b we find that

dD ~ ~ ~
T 160 cos* (b)h — 40 sin?(2b)R*,

so that D has a unique global maximum at
2\3
- ()
5

~ ~ 24 2\ %~ ~ ~ ~ ~ -
Diax = b*(=1 + cos(4b)) + 5 (5) D% cos (b) cosec? (2b) + 8b7 cos®(b) — 8b° sin?(b).

cos? (b) cosec’ (2b);

S
W

its value is

Noting that
—1 4 cos(4b) <0

- ~ 1
cos%(b) cosec%(%) < —,
8.23
~ ~ 1
cos®(b) sin(b) < 7
~ 1
—gin?(h) < ==
sin“(b) < 5

for b € (N 4 1/4)7, (N 4 1/2)7), we conclude that

1

- 9% 10 -
Dipax < 25° + gjbf —

53

for b > 5m/4. The sign of C therefore agrees with the sign of sec(b) in the interval
(N+1/4)7, (N +1/2)m). O
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6.3 Periodic steady gravity-capillary water waves with
localised transverse profiles

In this section we consider gravity-capillary steady waves on the surface of water bounded
below by a rigid horizontal bottom and above by a free surface. In a dimensionless
Cartesian coordinate system moving with the wave the fluid domain is

{(z,y,2) rz,y,z€e R,0<y <14n(z,2)}

for some profile function n: R? — (—1,00) which is 27 /7-periodic in the z-direction.
Working in dimensionless variables, we seek the velocity field in the form (¢, ¢y, @),
where the velocity potential ¢: R3 — R satisfies the boundary-value problem

T2¢:c;r + ¢yy + szz =0, 0< Yy < 1+ n, (643)
¢y =0, y =0, (6.44)
¢y = 7_277:0¢x — NPz — TNy y=1+n (645)

and

1
— Ty + 5(7%% +¢o + ) +an

_572[ Mo L_B[ I L:O’ y=1+n (6.46)

V147202 +n? V1 + 702+ 02

Here the period in the z-direction has been normalised to 27 and «, 3 are dimensionless
parameters which measure respectively the speed of the wave and the strength of surface
tension (see Groves [0]). In this section we apply the results of Chapter 5 to establish
the existence of solutions to equations (6.43) — (6.46) with localised profiles which decay
to small ripples in the transversal direction (see Figure 6.3). We introduce a bifurcation
parameter by writing (8, a) = (So, ao + €), where the values (S, ) are chosen later.
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Figure 6.3: A steady wave which is periodic in the direction of travel and spatially localised
in the transverse direction.
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6.3.1 Formulation as an evolutionary system

We begin by transforming equations (6.43) — (6.46) to a boundary-value problem in the

fixed strip R x (0,1) x (0,27). In terms of the new coordinates

- - Yy -
T =ux, = Z=2z
YT ()
and variable
(I)(i‘,g,?) = ¢<x7y72>7
we find that
1 Nz . Nzz 772 -
2 _ 2 . _ z -
T q)ja: (1+ >2q)yy+q)2§—7' (21 wy+<1+77 (1+n)2) Yy
Nz \2 )
_ D--
(1+ny> vy
2
n: . Nzz 1z -
2 50 — d
+ 1+n y+(1+77 (1+n)2)y Y
—(772 Q)QCI>~~ 0<g<l1
1_'_7,] yy» ’
®Q207 ?]: )
1 Nz .
1+nq)§272%(‘1>1—71+ny®g>
Nz . -
m(@ - myq)g) — TNz, y=1
and

- 1 E
—T(ij — 177_}_,03;(1310 + 5 (7’2 (CI)QE — 177%—77%1)31)2
1

2 Nz . 2

+ (a0 + £ — for® || — | ] =0, j=1
V14 7nE + 2l V314 7nE+ 2l

Introducing additional variables

1 i
w:—/ (@2—@ yn
0 1+mn

)Zj‘bg dy + Bo

and setting

1 1
W = +7/ Ujd, dy,
w 147 Jo e

(6.47)
(6.48)

(6.49)

(6.50)

we find equations (6.47) — (6.50) to be equivalent to the spatial evolutionary system

2,2 1
n = (F5h) W
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w1+ l BE— W2\1
v =y ><60 T 2/iWy® 4 =7 ns(T o)
-7 7’ UL
+/o ( (1+n)y 7(% 1y+77>
T dyy T ~ ~
( ) 11/—:5737 + 72[(@5 - 1yi7z7>¢gy]j) dy
+ (a0 + &) — 7P; Iy ’ (6.52)
1\ 1+ 7202\ s g, W
D, = T ( ) — (6.53)
¥— - - g’ () (s = T2)], 2 [ (2 - 7)),
T ) @5
with boundary conditions
o, =0, j=0, (6.55)
_— o s (CI)i B <1>;777i) N W ([13;—_7;7/]%2)%7 j=1 (6.56)

147 1+n

Equations (6.51) — (6.54) and boundary conditions (6.55) and (6.56) are invariant
under the transformation ® +— ® + ¢ for any constant c. To eliminate this symmetry it is
convenient to replace ®, ¥ with new variables W', W' &4, ¥y, where

|
@0:—/(I>dgd:i,
2m Je

1
Woz—/\lfdgdi',
2m Jx
O = B — By,
V=0 — 0,

and X = (0,1) x (0,27). We note that

/ &' djdi = 0,
>

/ V' dj di = 0.
b
The new variables satisfy the equations

1+ 7202\ 2
Nz = <W> W, (6.57)
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1+¢ B2 — W2\ 3
wromn- o215
+/ <(\I”+\II) (I)’Z_I_Tz(q), <I>/y7755>
0 2(1 +n)? 2\ 7 147

@gym> 5ynz
1+n/1+n

% n; . ~
w77 (o - 0 )l ) o

+ (a0 + €)n — 7051,
o YT <1+r2n§>égj%w

+ 7 (@; —

147 B2—-W2) 1+
1 R A AL A AN
5 L <2 ) Ty
2rJe\ 147 By —W IL+n
g x
e [(1+77)< yn)
1+n 1+n
N 2[~ <q>’ <I>yynx)] +W<?3(‘I’ +®0>)g<1+7277%>5
A L+7 gy —wz)
1 v+ v 1 3 <I>’W
@02:/( * 0_( =70 )y )dgd:z,
21 Jx 1+TI BO W2 ]."’77
\IJOZZ())
with boundary conditions
) =0, 7=0
P Pinz\ W + W) /1472022
s + —2 :72%(@%— 77)+ Gl 0)< ;LTUJC)Q? j=1
where
W= w4 — /1(qf’+\p) o d
= W R m— ~
1+nJo 0¥ Y

(6.58)

(6.59)

(6.60)

(6.61)
(6.62)

(6.63)

(6.64)

We note that Uy is a conserved quantity and ®, does not appear in equations (6.57) —
(6.60), (6.63) and (6.64). We can therefore eliminate these variables by setting Wy = 0,
solving equations (6.57) — (6.60), (6.63) and (6.64) for (n,w, ®, ¥) and recovering ®, by

quadrature from equation (6.61).

Our final system of equations is thus given by

1+ 722\ 2
772:< 2 nz)Qm
Bo —W
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w 1+ 722 3 1 B2 —W? 3
) [ v ()"
N (1+n)2<5§—W2) /0 S CACE Ty P

+/1 (M+7—2(@£_ Q)g}gnj>2
0o \2(14+n)? 2\ " 140

L ( o %1777@) LNz
o140/ 149
5z
2 @C—“)@’f] >d~
+T[< o140 yyf Y
+ (Oéo + 8)77 — T(I)%’gzl, (666)
o (1+r2ng)ég%w
Pl4n \B-W2) 1+
1 —nW 12Nz gL
_/< 1 ( ;FT”I)”/ 5 >dgjd5:, (6.67)
2n Js \1+1n B —W?2/) 1+n
U — _%_72[(14_”)(@{_%)}
‘ 1+n o 14n/ls
Y\, WGy ( L+ 7202\
(o )] VI
Ty 14+n/lg 14+n \3—W?2 (6.68)
with boundary conditions
®; =0, gy =0, (6.69)
D7 Doz W /14 722\2
G =72 (@ — = y =1 6.70
m+1+n Tn(“/’ 1+n>+1+n(5g—w2>’ y=5 (6.70)

where

1 1
W= 7/ V'GP dj.
w+1+77 ; yey dy

Proposition 6.12. The system of equations (6.65) — (6.68) and boundary conditions (6.69)
and (6.70) has the conserved quantity

2
()2 - B,

H qy\p/:/(l O — 7 s+t T
(n,w, @', ¥') T )@ — 7P + 20

_ it 172 (e, — ‘I’%@%)2> g di
2 o147

b [ (= 5o+ b+ o — (8~ R+ 7a)E) i,

where S = (0,27) and ¥ = (0,1) x (0, 27).
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Proof. We find that
/

dH 1 gDz
:/ W( + 7 m) daz+/nﬁ(r<1>;—¢y 1) 5! dg d
S P

dz pE— W2 I
_/ ~(M+1(T@4_Tﬂ‘%%)2
s P\ 212 T2V T4y
§PimzN  JPynz N
o — 7 y )d d
+(T‘” 1+77>Tl+77 yer
W' go7 1—1—7'77
- xz!|T z 5 d d
/”7’7 1+ 722 n /’7 1+ 1) W2) v

- [S(ao +e)mzdr + 71 /E (n=®% + gPynzz) dy da

GO ne . WU 1+ ruEai @\
<I>’~~<2®’~—y . 2)? — y)dd
+/2 (2% 1+n)y”+1+n(ﬁg—w2> 1+q) Y

7Pz S
— 2/ (@) — Y2V (1 +n)did

+/ (14 n)®,: — @-iime) dj di

g WQCI>'~ 14+ 722\
+ [ ( y 2>d~d~,
1417 1+77<5o— ) e
and, by integrating by parts in ¢ and Z, therefore
dH 1+ 72n? -
= W =) dx
dz /s (52 )
By — W2\s
+/77z< CYO""E‘:)T’—’— (Tnx(l—l—’TQ’I]%) )53

2 N
_/ ( q)/ +172(<I>'~—yq);7%)2
2(1+mn)? 2 o147

4 72 (cp’ y%%) goyn:  WU'GP; ( 1+ 722 ) §> di

ol 14n o (L4n)? NG - W2
_/01 (7 (2 - %@ﬁ?)g@ ~olg+/017(<1>;z,—gcp;@) dg) di
LG T G e
L o= o T G - )
[0t (72 (0 — L Y+ I (TN T8 )] s

PNz
+/c1>’ o, — 15;)(1+n))jdgdj
1

+/ (/ T(=nz®L + n:®%) Ay — [gTn: DL, )di“
s MJo
- /(Wznz — nzwsz) dT + / (V@7 — LW%) djdE

s

gPLnz\ _ Wy 1+ 722\ o’ B 1
(9], — T gy, iV 0 g )@l d
+/ 1+n)y"+1 n(ﬁg—m) 1+7 ) 02|, d
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=0,

where we have used equations (6.65) — (6.68) and boundary conditions (6.69), (6.70) in
combination with the calculation

/\I/C( 4 +Wg%<1+7277§>%)dgd:i
2 \1+n 149 \F5—-W?
v W 1
L
g WG 11+ 722\ 3
L v (% ) o
/ WY STy P T\ o) Y
_/ ( v’ Wgcl>g7<1+72n§>%
1+77 1+n \f§—W?
1/ o/ qu)/g(l—l-TQ?]%
2r Jel+n  14+n \FZ— W2
:/xlf;cp;dgdsz,
b

N

1
) * dy dj’:) dgj d

noting that
1
- / V. dgdz = 0.
2 Js

We define the spaces

X, = H}Y(S) x H2,.(S) x HFH(D) x H?, (%)

per per per per

for s > 0, where
Hyo(2) = {u € () ¢ [ udgds = 0},

and X = Xy, YV = X;. We can then write equations (6.51) — (6.54) and boundary
conditions (6.55) and (6.56) as the evolutionary system

n
w

o = rowe v, (6.71)
v
the domain of the vector field on the right-hand side of this equation is given by
D={(n,w,® ¥)eY: (6.69) and (6.70) are satisfied}.

The following proposition shows that f¢ and H® take values in respectively X and R and
are analytic at the origin in ) (see Lions et al. [20, Theorems 9.4 and 9.8|, Bagri and
Groves [3, Proposition 2.1] and Buffoni and Toland [7]).
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Proposition 6.13.

(i) The spaces H:! (S) and H#2 (¥) are Banach algebras for s; > 1/2 and so > 1.

per per

(ii) The formulae w +— w|z—p, w = w|z=, define continuous linear mappings i3, (¥X) —
H3.1/2(S) for each s > 0.

per
(iii) The formula
(w1, wz) = wiws
defines continuous bilinear mappings L2..(X) x H}.(S) — L2, (%), Hy,
L2.(S) = L2, (%) and H! () x H!.(S) = H!. ().

per per per per per

(%) x

(iv) The formula
1
(wlu w2) = /0 wl('7 g)wQ('7 g) dg

defines continuous bilinear mappings L7 (X) x H}..(S) — L2..(S), H}.(3) x
L2 (S)— L2 (S)and H! (X) x H! _(S) — H! (S).

per per per per per

(v) Let f: R® — R be analytic at the origin and satisfy f(0) =0 and let s > 1/2. The
induced composition operator f: H*(R) — R is analytic at the origin.

The next step is to linearise the nonlinear boundary conditions associated with equa-
tion (6.71). To this end note that the boundary conditions are equivalent to
!/ ~ o / ! ~
(I)g_‘_yTnx_F(nawaq)a\Ij)a y€{071}7
where

1+7277§)%.

FW%%®CW3=—ﬂﬂmf+ﬂ9%@%ﬂ+ﬁ%—ﬁﬂﬂ+§W@%ﬁz_w6

g
The requisite change of variable is given by

(/)7 97 F? é) = (7]7 w, (I)/ - X?j? \Ij/) = G(na w, (I)/7 \Ijl)

with x = A7'F(p,w,®, ¥’) being the unique solution to the elliptic boundary value
problem

T2XCE§: + Xgg = F(P7w7 q)/) \Ij,)a <j7g) S 27
x =0, g€ {0,1}.

We note that
/FM@z/@M@—/M@M
> > >

:/ d)’dfdg—/[x]éd:i:
> S

:/@M@
b
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Lemma 6.14.

(i) The mapping G is an analytic diffeomorphism from the neighbourhood V' of 0 in Y
onto a neighbourhood V' of the origin in ).

(ii) The operator dG[v]: Y — Y extends to an isomorphism dG[v]: X — X for each
v € V. The operators dG[v], dG[v]! € L(X) depend analytically upon v € V.

Proof.

(i) This result follows by the analytic inverse function theorem since G is a near identity
transformation.

Hl
the formula

(ii) Using Proposition 6.13 we note that the operator dF[v] € L(Y; H], (X)) given by

dF[n? UJ, ®/7 \IJ/:I (777 @7 é/’ \I~Il)

= —grim: — §rnis + 570 (P51 + 1) — )
+ 57 (P4 (1 + ) — s ) + G770 (V4] — Pi)
B 1 2,.2 1 NIA% 2 j~§;
+gW\I]/( 2+T77x2)2 y . TTITI -
g =W (85 —W2)2 (14 72n;)2

+

1+ 722
4 BgﬂWQlIf/( :_ T 779;)
(85 — W?)

wlw| NI=

) qaoon

- el Lo
1 .

e /0 (5P, + W'Y dg)

extends to dF[v] € L(X; L2

Zer(X)) which depends analytically upon v € V. Hence

dG[v] € L(Y) extends to dG[v] € L£(X) which depends analytically upon v € V.
Furthermore,
dG[o] =1

is an isomorphism, and the result follows from the analytic implicit and inverse
function theorems.

]

The change of variable given by G transforms equation (6.71) into the evolutionary
system

P
O\ = k.00, (6.72)
e

where

K (p,0,T,€) = dGIG(p,0,T, )] (J (G (p,6,T,)))
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takes values in X and is analytic at the origin in R x ). The domain of the vector field
on the right-hand side of equation (6.72) is

D ={(p,0,1,€) €Y : Tylymo = 0,7ps + Tyls=1 = 0}
because

Pylgetony + 97z = Py + 570z — Xaglyeroy
= (I)Z] + YTz + TQXCEi - F(U> W, (D7 \I’)’ge{m}
= CI)Z? + gTTIf - F<777 W, @7 \II)|Z7€{O,1}-

We note that the linearisation of k° is given by [f: D C X — X with

p 5.0

y — 7280 0nim

L5 6 — TF |y 1 + (Oéo _I_ 8) T 50pw1‘ (673)
r ) £
§ —71° Tz — Dy

(since dG[0] = I) and this operator depends analytically upon €. The e-independent
quadratic and cubic terms are given by

1
5 K0)(p,0.1,€) = / JeT, dj + 2/
2 ~ ~ ~
+5 /0 7 +9lz0g + yrﬁr~) dy
— 7oz 521 + TQ?]P;UF +7 Pz:cyr~ — 72l — 7°pals

0
iy
By

—217T/( 95*50 ;) dj di

RTAN (6;5(040,0 Bopzz — Tlz|g=1) + 59(—Fgg — 7Tzz)

+7ppz + pLgg — p§ +

?JT y 2
0 ex +T€F+T:px)
5,00 3,V 5, yTpat

and

S H0)(,0,T. )

1 p [ 0> | mpi6 !

_ 1 ~<I>~d~——/~1“~d~ - : ?—T7)dj
ﬂ/oyf 25 AY ﬁoygyy+253+ 45 0(f y)y
7_2 1 R B _ 0
+5 (/0 (2 + gl + gTal'y) dy> — 7®szp=1 — gﬁ

0 115~
+ 72305 — 272 p2y + T2 pazPay — péfy
— p"Tgg + 7039 55 — 77035 T + pPagz — 77ppals — 7psPaz

. N 0] L .
- TQPP&:yPgi + 7'2,05:11161’2@@ — 72p®oszz + p2E + 51—‘;7/0 gsly dy
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j 70 1 Lo 70 o
— LTy + 2y — */Z (p2§/0 y&ly dy — z/ﬁfg + yﬁ%g> dz dy

Iof B 27
_ Z]Z 2 g 2 ! ~ ~
— 95A 1<527 070z + E(—Fgg -7 Fﬁ)/o y&ly dy
ge [t N S L.
+ 5 s §(—Tyy — 7°Tzz) df + 6/0 985 dy
272 LQ

— —pa0:90y — T2 p20&5 + —0pzil s
5 Y MG

2

T - -
+ g PPl + 72 ppalia
g 1 1 ! . _ _
+5E(5 [ (€ =T dp+ G [ (034 90T+ 5eTy) dj
- TCI)Qi:lg:l)
y 2.~ 2 2~ 2

_ 1 5 1 J 1
~ %os || 9T d5 = Grp [ BEL,)sdy + 57T [ g(ery)s g

6.3.2 The linearised system

In this section we study the linear operator [s:DCX > X given by equation (6.73).

Proposition 6.15. The linear equation

represents Hamilton’s equations for the linear Hamiltonian system (X', Q2, HS), where

Q((Phghrlufl), (02792,F2752)) = /S(szl - P291) dz + /2(52F1 - F2§1) dydz,
1 N S
HE(p,0,T,€) = /2(5(52 — 72— T2) + oLy — mpegly) dj di

1 o L, 99 1 oy
+/E(—§(ao+€)p —5507 pi—l—Q—BOQ)dJ;.

Proof. A direct calculation shows that

Q(L(p,0,1,€), (5,0,1,€)) = dH5[p,0,T,€](5, 0,1, )

for all (p, é,f‘,é) € X and (p,0,T,¢) € D.
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Lemma 6.16. The operator ¢ satisfies the estimates

(L7 —isD) ey S Isl 7Y
1(LF —isI) Y| zep) S 1

as [s| — oc.
Proof. Consider the self-adjoint operator ADcxrx - x given by

Je (P) _ <—§0F5:|g:1 +ﬁ(ao +e)p— T2p:?:fi:>

where

L2 (S) x L2.(%),

X per per

D ={(p,T) € H> (S) x H2.(Z) : T3(0) = 0,7pz + T5(1) = 0},

per per

and X is equipped with the inner product

((p1:T1), (p2,T2)) = ﬁo/sﬂlfb dz + /2F1F2 dydz.

Observing that

1
—0 —isp = p*,
B PP
—71T]521 + (o +€)p — T2 Bopsz — i = 07,
E—isl' =17,

—T2F5;5; — ng — 185 = g*
if and only if

T

Bo

L
Bo
—72 T3 — Dyy + 8T = & +is[™,

1
Ff|g:l+7<050+€),0_7—2pjj—|—82p: 6*+15p*’

Bo
we find that +is € p(L¢) if and only if —s® € p(A°).

The calculations

T 1 ) ~ 2 ~ 1~
= [(=2rTalpmrp + (o + 2ol +lpsf?) i + [ (P*ILaf? + [Ty*) djdi
= /5(27'F|g:1p;g + (ap +€)|p)? +72\p¢\2)di+/2(7'2|rj\2 + |Ty)?) dg dz

and estimate

1
< */’F|g=1|2di’+5/ | psl* d dz
0 Js b

27’/ F‘gzlpj dz
S
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11
< 2040 (L 7/ 2 1~ 1~ / 20 12 14
_5/E|ry| djdi + (5 +5;) [T dgdz+3 [ r[psf dz

for I' € D and sufficiently small § show that

1
50/ ( - lf‘i|g:1 + (o +e)p— TQP&::E)Pdf + / (—=7Tas — Iyy)T dgdz
s\ B Bo =

. 1 1 -
> (Oéo+€)/s\/?\2dx— (5+52>/2|F’2dyd33

1 1
S 2 4 2 4i )
> (5+52>(ﬂo/s|p| di + [ P[*djdz

Thus o(A°) is bounded from below and in particular —s? € p(A°) and hence +is € p(L°)

for sufficiently large values of |s|.

The estimates

(L = isD) Mooy S sl (L7 —isD) Moy S 1

for sufficiently large values of |s| follow from equations (6.74) — (6.77) by the calculation

BRI 2+ 72831l 1672 dz + (102 + 72052 + T3+ l6°[?) dj d
= /S(|9 —isBopl* + 7|0z — isPopz|”
+ |—7-F5C|g:1 + (Oé() + €)p — 7'250p5550 — 189|2) dz
+ (1§ —isTP? + 721z — isT|? + |g — isT
= L1612+ 721851 + 72 sl + (a0 + )%l + 7B
+ 2Bl + 7B sl + 101)) di

— 2sIm ‘/5(609,5 + TQ/BOQjﬁj — Trjlgzlé + (CY() + 8)p§ + 7—2ﬁ08ﬁ:€;ﬁ> dz

+ 2Re/s(—7'<050 + €>Ff|g:1ﬁ + BoTsrﬂg:lﬁjj — (Oéo + 6)7’2ﬁ0p,5ﬁ) dz

+/2 (167 + 7216l + &1 + 72| Tsal” + [Ty
+ 820 + 72[Ta? + [Ty + [¢)) dij di
X

+2 Re /E TQFjjfgg dg dz
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> /S(WIQ + 721051 + (a0 +€)?[pl* + 7' B3| paal® + 2(c0 + €)7ol ps|®
+ s2(B31pl* + 7231z + 1012)) da
—2s Im/S(fJOep — 7T4|g=10 + (g + €)ph) di
+2Re /S(—T(ao + )ls|gz1p + BTl j=1ps5) AT
‘1‘/2 (|€|2 + 7187 + |&° + T2 Tazl” + [Tygl® + 2| Tag)?
+ 2|02 + 72052 + [Ty + ¢)) dij da
~9sTm (/Edegjdj— /STaglpi)

+ Re/ 73F1|g:1ﬁ§«j dz
S

and the inequalities

25T [ 0543] < |s| [ (16 + |pP?) dz,
S S

2sTm [ €0agdi| <|s| [ (¢ +I0%) dj dz,
b} >

— ~ ~ S ~
‘281m/grj’g:19d$ §5\s\/3]f‘j|g:1]2dz+u/S]QPd.’/E
—olsl [ Ly agaz + 2 102z
» dgy 0 Js
S5/(|ng|2—|—$2‘F;z’2)d17d3~3—|—5|8]/‘ijzdﬂdf—l—‘S|/’9]2d§3,
b b 0 Js
2s1m [ €l di| <8 [ (11 + s*I¢) dﬂdf+6|s|/xr£|2dgda:~+"g'/gwolf,
1
2 /ri~:*<5/rj~: 2 —/’2d~
2Re [ Talyap| <8 [ Calpma +5 [ 16 a2
1
<6 [ @I+ I0s5) dgda + < [ 152 d,
5 0Js
. 1 - -

1 1
< Fj~2 y dx ( >/F5[}2 y dx / 5;52 ~.
_5/2| 517 dgdz + (5+(52 zl *dgdz + ¢ S|p |*dz

]

Corollary 6.17. The spectrum of L¢ consists only of isolated eigenvalues with finite
algebraic multiplicity.

Proof. Since D is compactly embedded in X we know that ([vf —is)™t € L(X) is
compact for sufficiently large values of |s|. The result now follows from Kato [13, Theorem
I11.6.29]. m

Our next result is proved by a direct calculation.
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Lemma 6.18.

(i) The eigenvalues of L° with eigenvalue in the Oth Fourier mode are 4(ayg/5)"/? and
+nm, n € N.

(ii) Suppose m € N. A complex number A is an eigenvalue of LY with corresponding
eigenvectors in the mth Fourier mode if and only if

(g — Bo02) O sin 0,y +m*7 cos o,y = 0, (6.78)
where
o2 =\ —m?7?

In particular X is either real or purely imaginary.

For each m € N equation (6.78) has at most two purely imaginary solutions +is,, with
eigenvectors e et and e, , e where

m?

2 (s2 4+ m272)2 sinh(s2, + m272)2 cos ma

mr
—2ismfBo ( 2 2,.2\% o 2 2,.2\1 >
ot 1 T’:(sm—i—mr)z sinh(sz, + m*1?)z cosma
m 1. N )
Vi 2 cosh(s?, + m272)2 g sin ma
: 1o
—2is,, cosh(s?, + m27?)2g sinmz
2 (2 22\% 2 2 oyl . -
——=(s5, +m*7?)2 sinh(s;, +m*7%)2 sinmi
2ismBo (o2 2 2\1 2 2,2\ s ~
- 1 | =m0 (sy, +m?7%)2 sinh(s), +m?77)2 sinma
m 1 B
Vm 2 cosh(s?, + m?72)2§ cosma
: 1 .
—2is,, cosh(s?, + m?72)2§ cos mi

and

2
Sm

i 2 2 oy1
) Sinh2(572n + m27-2)% + sinh 2(s7, + m?7°)z >

Vm = 27T8m <2 + 460(1 —f‘ (32 n m27—2)%

m272

The eigenvectors have been normalised such that

Qlet,eh) =Qle, e )= —i

m?)m m?m

and the symplectic product of any other combination is zero. The eigenvalues =+is,, collide
at the origin at points of the line

C = {(Bo, ) : (ap + Bom?7?) sinh mt = m7 coshmr}

in (By, ) parameter space (see Figure 6.4). At these points the two zero eigenvectors
each have a Jordan chain of length 2: the vectors

2sinh(m7) cos(mz) —2sinh(m7) sin(m?2)
1 0 1 0

“a= Vo | 2cosh(mg) sin(mi) | 2= Vo | 2 cosh(mTg) cos(mi)
0 0
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B
Figure 6.4: The line C), consists of points in 3, parameter space at which two real

eigenvaules in the mth Fourier mode become purely imaginary by passing
through 0. It connects ((7m)~!coth(rm),0) with (0,7m coth(rm)) and

crosses Chyi1, Cpmga, - . . at the points P, i1, Prmat2s - - -
0 0
1 23y sinh(mt) cos(mz) 23 sinh(m7) sin(mz)
fl = 0 ) f2 = 0 )
vV Yo,m
2 cosh(mry) sin(mz) 2 cosh(mTy) cos(ma)
where 1o
Yom = 7T<2 + 4B sinh®(m7) + s1n(m7‘)>, (6.79)
mr

satisfy Legfm =0, Lf(fm = e(“fm; moreover Q(eg,,, fom) = 1, Q€gm, fom) = 1 and the
symplectic product of any other combination is zero.
We choose (5o, @) € Cou \ {Prim,-- s P—1.m, Pmm+1; Prm+2, - - - and write
w=>Y (Cfef +Cie; +Clef +Cre;),
z=zie+ 2f + Z1e + % f,

where 1 1
625(61_i62>7 fzg(fl_iﬁ)’
so that 1
Hy(0,w,0) = =3 551G + 17 )
and

Po(-) = 29Q(, fle = 2Q(- e) f +29(, f)e — 2Q(,e) .

In these formulae the sums are taken over those values of j for which LY has two mode J
eigenvalues =is;.
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6.3.3 Existence theory

We now derive equations (6.5) — (6.7) from equation (6.72) as explained in Section 6.1 and
prove Theorem 1.11 by applying Theorem 1.2. Assumptions (Al) — (A3) are obviously
satisfied, and Assumption (A6) follows from Lemma 6.16. It therefore remains to verify
Assumptions (A4), (A5) and (C1), (C3), (C4). To this end we note that equation (6.72)

is reversible with reverser
and has the conserved quantity

Ig(p,e,r,f) = —HE(G_l(p,Q,F,f))
=O([(p,6,1,9)3),

which satisfies, with a change of notation,

7°00,w,0) = —HY(w) + O(jw*)

fe'e) 1 B
=-> Qsj(lcfP +[C1P),
j=1
7°((21,0),0,0) = —H(z1¢ + %€, 0,0)

=0,
so that

(Zl, Z9, W, u)H'D + 5”(217 22, W, U>H%)

I ((21, 22), w,u) = O(]| (22, w, ) |2 e,

To verify Assumptions (C1) and (C4) we change to real coordinates by writing

z1 = I1 + 179, Zo = Y1 + 192,
so that
z=Ti1e1 +y1f1 + Taez + o fo
and
Pun = Q(-, fi)er — Q- e1) f1 + Q- fo)ea — Q- e2) fo.

Writing

1 i~ ke~

5 *R,0(2) = > hgvh,ijklxlmj?ylfyé

it gt k=2

with similar notation for the other nonlinearities, we find that

hgvh,QOOO = P, whhgooo
= Q(% koJO[O](Bl, 61>, f1)61 — Q(% ko’O[O](el, 61), 61)f1
-+ Q(% d2k0 [0](61, 61), f2)62 — Q(% d2l{?0[0](61, 61), €2>f2
=0

i i i S T

since
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Similar calculations show that the remaining components of A%, also vanish.

Similarly, writing o
X(z,2)= Y Xyu@ @i,
i+ jth+l=2
we find from equation (4.21) that
Lc,shXQUOO = Pc,sh(% dzko[o](eb 61)),
which can also be written as

1
LOXQOOO = 5 koJO[O] (61, 61)

because d?h%, [0] = 0. We find that

1
o
/1 X
Ko (2 (L) | S|
2000
4
X2(02)0
where
v m?r? 1 > > cos(2mj)<4 sinh(2mr) + sinh(4m7))
o o 2 (g + 4m272fy) sinh(2m7) — 2m7 cosh(2m7)’
x3 =0
2000 ;

9sinh?(mr)

1
X8 = 5 sin(2ma) (20 cosh(m7g) sinh(mr) — o

— 24mrygsinh(mr) sinh(m7y) + cosh(2m7g) tanh(mr)

6m?72(6 4 cosh(2mr))

+ cosh(2m7y)

(g + 4m72 /) sinh(2m7) — 2m7 cosh(2mr)
6mT (g + 4m>725y) sinh(2mT)

+ cosh(2m7y)

4
Xz(oz)o = 0.

The coefficient C' is given by
C = Qg &h3u[0](en, eq, e1), 1) — 25 g0, [0] (€1, Xa000), €1)
= Q(% d3k0[0](el, €1, 61), 61) — 29(% koO[O](el, Xgooo), 61)
= m 7% —8(13 + 3m?7?B2) cosh(2mr)
— 4(40 + 15m*7%3; + 4 cosh(4m7) + 2 cosh(6m7))
+ m7 5 (12m760(9 cosh(4mt) — 2 cosh(6mT)
+ 24m7 3y cosh(m7) sinh® (m7))

— 93 sinh(2m7) — 60 sinh(4m7) + 23 sinh(GmT))

(ap + 4mT2 ) sinh(2m7) — 2m7 cosh

(2mT) )’

)

X L(?ﬂrnﬁo cosh(mT) — sinh(m7)) ™ (m7 By sinh(m7) — cosh(m7)) ™!

167
X (2mT + 4mT By sinh2(m7') + sinh(2m7)) 2,
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where we have eliminated ag using the relation

g = —Bom*1* + m7 coth(m7).

Proposition 6.19. The coefficient C' is negative for 5y € (0, %

BO € (tanh(mT) coth(mT)).

Imt mT

) and positive for

Proof. Tt suffices to show that the numerator in the above formula for C' is negative for
Bo € (0, M) We can write the numerator as the polynomial

mT

n(fy) = —8s°(20 + 13 cosh(2s) + 2 cosh(4s) + cosh(6s))
+ 59(—93 sinh(2s) — 60 sinh(4s) + 23 sinh(6s))
+ 485"(5 + 5 cosh(2s) — 2 cosh(4s)) sinh?(s) 52
4 288s® cosh s sinh®(s) 33,

where s = m7. Observe that the coefficient of 33 is positive, while the constant term is
negative.

Define
ca2(s) =5+ 5 cosh(2s) — 2 cosh(4s)

and note that n has precisely one positive root if co(s) > 0 (by Decartes’s rule of signs).
Since

n(0) = —8s°(20 + 13 cosh(2s) + 2 cosh(4s) + cosh(6s)) < 0,

n(COt};(S)) = —645"(2 + cosh(2s)) < 0

and n(fy) — oo as By — 0o we conclude that this root is larger than ©¢ and n(s) < 0
for B € (0, <22). We note that

¢5(s) = 10sinh(2s) — 8 sinh(4s).

Since

Zsech(s) <1

is true for all s and equivalent to
ch(s) <0

we find that cy(s) is a strictly decreasing function of s, and since ¢,(0.68) > 0 we conclude
that ca(s) > 0 for all s € (0,0.68], so that n(8) < 0 for B € (0, <% and s € (0,0.68].

Next we note that

n'(By) = s°(—93sinh(2s) — 60 sinh(4s) + 23 sinh(6s))
+ 9657 (5 4 5 cosh(2s) — 2 cosh(4s)) sinh?(s)3,
+ 8645° cosh s sinh®(s) 32
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is a quadratic polynomial in fy. Its discriminant is given by

A(s) = (9657(5 + 5 cosh(2s) — 2cosh(4s)) sinh®(s))”
— 34565°(—93 sinh(2s) — 60 sinh(4s) + 23 sinh(65))s® cosh(s) sinh®(s)
= 2885 sinh* sA(s),

where

A(s) = 1100 cosh(2s) + 108 cosh(4s) — 140 cosh(6s) — 5 cosh(8s).

We note that
A'(s) = 8(275 sinh(2s) + 54 sinh(4s)) — 40(21 sinh(65s) + sinh(8s))
and that .
A'(s) <0

is equivalent to
__ 1110sinh(2s) + 27 sinh(4s)

d(s) = 20(21 sinh(65s) 4 sinh(8s)) <L

Furthermore
2(s) = —(6101 + 92724 cosh(2s) + 7734 cosh(4s) + 108 cosh(6s)) sinh®(2s)
B 5(51sinh(6s) + sinh(8s))2
< 0,

so that d(s) is a strictly decreasing function of s and therefore

7T
<1i — 2o
d(s) < lim d(s) 60 <

Hence A(s) is also a strictly decreasing function of s and since A(s) < 0 we conclude that

A(s) < 0 for all s € [0.67,00). The fact that n’ has no roots for these values of s implies
that n has no critical points among these values. Because n(f3y) — oo as fy — oo we
conclude that n is strictly increasing. Since n(2#) < 0 we deduce that n(8y) < 0 for

Bo € (0,<222) 50 that n(fy) < 0 for By € (0, <22) and s € [0.67, 00).

Altogether we have shown that n(8y) < 0 for all 5, € (0, ©22) and all s > 0.
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