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Zusammenfassung

Das maschinelle Lernen (ML) hat in den letzten zehn Jahren enorme Fortschritte
gemacht und wurde für eine breite Palette wichtiger Anwendungen eingesetzt. Durch
den zunehmenden Einsatz von Modellen des maschinellen Lernens ist die Bedeutung
von Datenschutzrisiken jedoch wichtiger denn je geworden. Diese Risiken können je
nach der Rolle, die ML-Modelle spielen, in zwei Kategorien eingeteilt werden: in eine,
in der die Modelle selbst anfällig für das Durchsickern sensibler Informationen sind, und
in die andere, in der die Modelle zur Verletzung der Privatsphäre missbraucht werden.

In dieser Dissertation untersuchen wir die Datenschutzrisiken von Modellen des
maschinellen Lernens aus zwei Blickwinkeln, nämlich der Anfälligkeit von ML-Modellen
und dem Missbrauch von ML-Modellen. Um die Anfälligkeit von ML-Modellen für
Datenschutzrisiken zu untersuchen, führen wir zwei Studien zu einem der schwerwiegend-
sten Angriffe auf den Datenschutz von ML-Modellen durch, nämlich dem Angriff auf
die Mitgliedschaft (membership inference attack, MIA). Erstens erforschen wir das
Durchsickern von Mitgliedschaften in ML-Modellen, die sich nur auf Labels beziehen.
Wir präsentieren den ersten "label-only membership inference"-Angriff und stellen fest,
dass das "membership leakage" schwerwiegender ist als bisher gezeigt. Zweitens führen
wir die erste Analyse der Privatsphäre von Netzwerken mit mehreren Ausgängen durch
die Linse des Mitgliedschaftsverlustes durch. Wir nutzen bestehende Angriffsmethoden,
um die Anfälligkeit von Multi-Exit-Netzwerken für Membership-Inference-Angriffe zu
quantifizieren und schlagen einen hybriden Angriff vor, der die Exit-Informationen aus-
nutzt, um die Angriffsleistung zu verbessern. Unter dem Gesichtspunkt des Missbrauchs
von ML-Modellen zur Verletzung der Privatsphäre konzentrieren wir uns auf die Manip-
ulation von Gesichtern, die visuelle Fehlinformationen erzeugen können. Wir schlagen
das erste Abwehrsystem UnGANable gegen GAN-basierte Gesichtsmanipulationen vor,
indem wir den Prozess der GAN-Inversion gefährden, der ein wesentlicher Schritt für
die anschließende Gesichtsmanipulation ist.

Alle Ergebnisse tragen dazu bei, dass die Community einen Einblick in die Daten-
schutzrisiken von maschinellen Lernmodellen erhält. Wir appellieren an die Gemein-
schaft, eine eingehende Untersuchung der Risiken für die Privatsphäre, wie die unsere,
im Hinblick auf die sich schnell entwickelnden Techniken des maschinellen Lernens in
Betracht zu ziehen.
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Abstract

Machine learning (ML) has made huge progress in the last decade and has been
applied to a wide range of critical applications. However, driven by the increasing
adoption of machine learning models, the significance of privacy risks has become more
crucial than ever. These risks can be classified into two categories depending on the role
played by ML models: one in which the models themselves are vulnerable to leaking
sensitive information, and the other in which the models are abused to violate privacy.

In this dissertation, we investigate the privacy risks of machine learning models from
two perspectives, i.e., the vulnerability of ML models and the abuse of ML models. To
study the vulnerability of ML models to privacy risks, we conduct two studies on one of
the most severe privacy attacks against ML models, namely the membership inference
attack (MIA). Firstly, we explore membership leakage in label-only exposure of ML
models. We present the first label-only membership inference attack and reveal that
membership leakage is more severe than previously shown. Secondly, we perform the
first privacy analysis of multi-exit networks through the lens of membership leakage.
We leverage existing attack methodologies to quantify the vulnerability of multi-exit
networks to membership inference attacks and propose a hybrid attack that exploits the
exit information to improve the attack performance. From the perspective of abusing ML
models to violate privacy, we focus on deepfake face manipulation that can create visual
misinformation. We propose the first defense system UnGANable against GAN-based
face manipulation by jeopardizing the process of GAN inversion, which is an essential
step for subsequent face manipulation.

All findings contribute to the community’s insight into the privacy risks of ma-
chine learning models. We appeal to the community’s consideration of the in-depth
investigation of privacy risks, like ours, against the rapidly-evolving machine learning
techniques.
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1.1. OUR CONTRIBUTIONS

Machine learning (ML) has made tremendous progress in the past decade, leading to
significant advancements in many real-world applications, such as medical image analy-
sis [74, 131, 25], automatic driving [150, 22], and artificial intelligence generated content
(AIGC) [45, 71, 103, 105, 109]. In addition, AI-based systems are also ubiquitous in
smart devices used by individuals in daily life, e.g., smartphones [87] and IoT devices [90],
which rely on machine learning techniques to offer personalized recommendations and
enhance user experiences.

Accordingly, the rapid development and widespread adoption of machine learning
models have led to two significant trends: the demand for large-scale data and higher
quality of generated multimedia content. The demand for large-scale data in machine
learning cannot be overstated, as it allows machine learning to learn patterns and
make predictions with greater accuracy and reliability. In addition, with the ability to
generate higher-quality multimedia content, AIGC opens the door to a range of exciting
applications in areas as diverse as creative arts, advertising, filmmaking, and video
games.

However, as these trends continue to grow, the significance of privacy risks has become
more crucial than ever. Data privacy refers to personal and confidential information,
such as medical records, personal identities, facial attributes, and other personally
identifiable information. Recent research has shown that privacy in machine learning
can be violated through various attacks, which can compromise sensitive information
and undermine the trustworthiness of machine learning systems. Concretely, the demand
for large-scale data has led to large amounts of sensitive data (e.g., medical records and
biometric data) being collected and used to train ML models. ML models trained on
these sensitive data have proven to be vulnerable to leaking sensitive information about
the data. Some examples of such privacy risks are membership inference attacks [116,
124, 128, P1, 34], model inversion [42, 148], and training data reconstruction [115].
In addition, AIGC, which enables the creation of higher-quality multimedia content,
is vulnerable to being used as a tool for privacy violations, i.e., the adversary abuses
ML models for malicious purposes. The most representative privacy risk is visual
misinformation through deepfake technology based on machine learning and especially,
generative models such as Generative Adversarial Networks (GANs). For instance,
malicious editing of face images based on GAN-based face manipulation [141, 160, 122,
63, 48] can create false impressions, deceive people, or even trick biometric systems.

1.1 Our Contributions

In this dissertation, we evaluate the privacy risks of ML models. Abstractly, the privacy
risks of ML models can be divided into two categories depending on the role played
by ML models: one in which the models themselves are vulnerable to leaking sensitive
information and the other in which the models are abused to violate privacy.

More concretely, in this dissertation, we comprehensively investigate the privacy
risks of the two perspectives, i.e., the vulnerability of ML models and the abuse of
ML models. For the vulnerability of ML models, we explore one of the most severe
attacks against ML models, namely the membership inference attack (MIA). Specially,
we conduct two works on membership inference attacks. For the abuse of ML models,
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we focus on deepfake face manipulation that abuses ML models. We explore how to
protect facial images from malicious face manipulation. All the above work stretches
across the following peer-reviewed publications [P1, P2, P3].

Label-Only Membership Inference Attacks. In our first work [P1], we focus on the
membership inference attack, one of the most representative privacy attacks against ML
models to infer sensitive data information. Existing membership inference attacks [124,
85, 116, 146, 129, 60, 78] rely on the confidence scores (e.g., class probabilities or logits)
returned by a target ML model as their inputs, i.e., an ML model is more confident
facing a data sample it was trained on, and this confidence is reflected in the model’s
output scores. However, these attacks can be easily mitigated if the model only exposes
the predicted label. In this work, we propose label-only membership inference attacks
and demonstrate that label-only exposures are also vulnerable to membership leakage.
In particular, we develop two types of label-only attacks, namely transfer-based attack
and boundary-based attack. Empirical evaluation shows that our label-only membership
inference attacks can achieve remarkable performance, and even outperform the previous
score-based attacks in some cases. We further present new insights on the success of
membership inference based on quantitative and qualitative analysis, i.e., member
samples of a model are more distant to the model’s decision boundary than non-member
samples. Finally, we evaluate multiple defense mechanisms against our decision-based
attacks and show that our two types of attacks can bypass most of these defenses.

Auditing Membership Leakage of Multi-Exit Networks. In our second work [P2],
we explore the vulnerability of multi-exit networks, which endow a backbone model
with early exits, allowing to obtain predictions at intermediate layers of the model
and thus save computation time and/or energy. However, current various designs of
multi-exit networks are only considered to achieve the best trade-off between resource
usage efficiency and prediction accuracy, the privacy risks stemming from them have
never been explored. In this work, we perform the first privacy analysis of multi-exit
networks through the lens of membership leakages. In particular, we first leverage
the existing attack methodologies to quantify the multi-exit networks’ vulnerability
to membership leakages. Our experimental results show that multi-exit networks are
less vulnerable to membership leakages and the exit (number and depth) attached to
the backbone model highly correlates with the attack performance. Furthermore, we
propose a hybrid attack that exploits the exit information to improve the performance
of existing attacks. We evaluate membership leakage threat caused by our hybrid
attack under three different adversarial setups, ultimately arriving at a model-free and
data-free adversary. These results clearly demonstrate that our hybrid attack is very
broadly applicable, thereby the corresponding risks are much more severe than shown by
existing membership inference attacks. We further present a defense mechanism called
TimeGuard specifically for multi-exit networks and show that TimeGuard mitigates the
newly proposed attacks perfectly.

Defending Against GAN-inversion-based Face Manipulation. In this work [P3],
we focus on one of the most representative privacy risks caused by the abuse of ML
models, namely deepfake, which poses severe threats of visual misinformation to our
society. One popular deepfake application is face manipulation which modifies a victim’s
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facial attributes in an image (e.g., changing her age or hair color), and the state-of-the-art
face manipulation techniques rely on Generative Adversarial Networks (GANs). In this
paper, we propose the first defense system, namely UnGANable, against GAN-based
face manipulation. In specific, UnGANable focuses on defending GAN inversion, an
essential step for face manipulation. Its core technique is to search for alternative images
(called cloaked images) around the original images (called target images) in image space.
When posted online, these cloaked images can jeopardize the GAN inversion process. We
consider two state-of-the-art inversion techniques including optimization-based inversion
and hybrid inversion, and design five different defenses under five scenarios depending
on the defender’s background knowledge. Extensive experiments on four popular
GAN models trained on two benchmark face datasets show that UnGANable achieves
remarkable effectiveness and utility performance, and outperforms multiple baseline
methods. We further investigate four adaptive adversaries to bypass UnGANable and
show that some of them are slightly effective.

1.2 Organization

The rest of this dissertation is organized as the following. We first present the prelim-
inaries and background in chapter 2. chapter 3 presents our label-only membership
inference attacks. Then, we explore the membership leakage risk of multi-exit networks
in chapter 4. We next investigate deepfake face manipulation and propose our defenses
against face manipulation in chapter 5. Finally, we presents related works in chapter 6,
and chapter 7 concludes the dissertation.
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2.1. MACHINE LEARNING PRELIMINARIES

Linear Layer (Classifier)

Convolutional Layer
Residul Block

Block Group

Internal Exit 
Point (Exit 0)

Internal Exit 
Point (Exit 1)

Final Exit 
Point (Exit 2)

Figure 2.1: An illustration of the multi-exit network with three exits inserted, including two
internal and one final exit point.

In this chapter, we present the preliminaries and background related to this disser-
tation. We start by introducing the machine learning classification task and multi-exit
networks. We then introduce the most representative privacy attack against machine
learning models. namely membership inference attack. Lastly, we introduce the deepfake
based on GAN-base face manipulation

2.1 Machine Learning Preliminaries

2.1.1 Machine Learning Classifiers

The classification task is a fundamental aspect of machine learning that is applied in
various domains, such as face recognition [73, 154], medical image analysis [74, 131,
25], and spam filtering [30]. The goal of the classification task is to train a machine
learning classifier that can identify the decision boundary between classes and predict
the category or class for new data points based on a set of features or attributes. This
is typically achieved through supervised learning, where the machine learning classifier
is trained on a labeled dataset that associates each data point with a specific class or
category label.

2.1.2 Multi-Exit Networks

Relying on the fact that not all inputs require the same amount of computation to
yield a confident prediction, the multi-exit network [132, 58, 72] is gaining attention
as a prominent approach for pushing the limits of efficient deployment. Multi-exit
networks save computation by making input-specific decisions about bypassing the
remaining layers once the model becomes confident. More concretely, a multi-exit
network applies multiple lightweight classifiers on a vanilla ML model to allow the
inference to preemptively finish at one of the exit points when the network is sufficiently
confident with a predefined stopping criterion. See Figure 2.1 for an illustration of the
design of multi-exit networks.

Backbone Initialisation. As aforementioned, multi-exit networks modify the vanilla
ML model by adding multiple lightweight classifiers at certain placements throughout the
network. Here, vanilla ML models are also referred to as backbone models. A backbone
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model can be any regular machine learning model architecture, such as VGG [125],
ResNet [50], and MobileNet [117].

Exit Placement. For simplicity, exit placements are restricted to be at the output of
individual network blocks, following an approximately equidistant workload distribution.

Multi-Exit Network Training. Given a training dataset, a multi-exit model is
optimized by minimizing the loss function of all training samples and exit points. The
training process consists of two steps: the feedforward pass and the backward pass. In
the former, a data sample is passed through the model, including both the final exit
point and internal exit points, the output from the network at all exit points is recorded,
and the loss of the network is then calculated. In backward propagation, the loss is
passed back through the network and the model’s weights are updated using gradient
descent.

Early-Exit Criteria. Given a data sample, it will leave at one of the exit points
when the network is sufficiently confident with a predefined stopping criterion. To
quantify confidence, we use the estimated probability of the sample belonging to the
predicted class. We deem a prediction confident if this probability exceeds the threshold
τ . The threshold facilitates on-the-fly adjustment of the early exits based on resource
availability and performance requirements. Following most previous works [132, 58, 72,
101, 55, 110], the principle of threshold selection is to guarantee the same or similar
classification performance as vanilla models while gaining a lower computational cost.

2.1.3 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [45] is a type of deep learning algorithm
that has attracted tremendous attention recently. GANs consist of a generator and a
discriminator, and these two neural networks are trained in tandem to produce real
outputs that closely resemble the distribution of the input data. Besides, GANs are
often used to model data points, estimate probabilities, and use these probabilities to
distinguish between categories. The probability distributions learned by the GAN from
the dataset can be used as a guide for creating new data points. Specially, GANs have
been successfully applied in various fields, including image and video synthesis [45, 69],
natural language processing [147], and image manipulation [141, 37, 160, 122]. Currently,
researchers are actively working to improve GANs and further design various promising
GANs, such as DCGAN [104], WGAN [46], StyleGANv1 [70], and StyleGANv2 [71].
These GAN models are built with different architectures, losses, and training schemes.

2.2 Membership Leakage of Machine Learning Models

In this section, we introduce one of the most severe privacy risks of ML models, namely
membership leakage. The corresponding attack is called membership inference attack
(MIA).
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Figure 2.2: Illustration of GAN inversion methods. The upper is the optimization-based
inversion. The bottom is the hybrid inversion.

2.2.1 Membership Inference Attack

Membership inference attack occurs when an adversary tries to determine if a particular
data sample was used to train a given model. More formally, given a candidate data
sample x, a well-trained ML model M, and external knowledge of an adversary, denoted
by Ω, the membership inference attack A can be defined in the following form.

A : x, M, Ω → {0, 1}.

Here, 1 represents x as a member of M’s training set, and 0 represents x as not. Besides,
the attack model A is actually a binary classifier. This type of privacy attack is called
membership inference attack [124].

Successful membership inference attacks can cause severe privacy consequences, as
they may reveal sensitive information such as human identifications. For instance, if the
model is trained on sensitive data (e.g., diseases), identifying the person in the training
dataset directly reveals this individual’s health status.

2.3 GAN-based Face Manipulation

We here present one of the most representative privacy risks caused by abusing ML
models, called GAN-based face manipulation. In particular, GAN-based face manipula-
tion consists of two steps, namely GAN inversion and latent code manipulation. In the
threat model we considered in chapter 5, we refer to the malicious face manipulator as
the adversary, the adversary-controlled generator as the target generator Gt, and the
adversary-controlled encoder as the target encoder Et.

2.3.1 GAN Inversion

In chapter 5, we consider two representative and most widely-used techniques of GAN
inversion, i.e., optimization and hybrid formulations, as shown in Figure 2.2.
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Optimization-based Inversion. Existing optimization-based inversions [14, 15]
typically reconstruct a target image by optimizing the latent vector

z∗ = arg min
z

Lrec
(
x, Gt(z)

)
(2.1)

where x is the target image and Gt is the target generator. Starting from a Gaussian
initialization z, we search for an optimized vector z∗ to minimize the reconstruction loss
Lrec which measures the similarity between the given image x and the image generated
from z∗. Lrec is a weighted combination of the perceptual loss [68] and MSE loss:

Lrec = Lpercept
(
Gt(z), x

)
+ Lmse

(
Gt(z), x

)
where Lpercept measures the similarity of features extracted from a pre-trained neural
network, such as VGG-16 [125], and Lmse measures the pixel-wise similarity.

Hybrid Inversion. An important issue for optimization-based inversion is initialization.
Since Equation 2.1 is highly non-convex, the reconstruction quality strongly relies on a
good initialization of z. Consequently, researchers [159, 159, 139, 133] propose to use an
encoder to provide better initialization z for optimization, namely hybrid inversion.

Hybrid inversion first predicts z of a given image x by training a separate encoder,
then uses the obtained z as the initialization for optimization. The learned predictive
encoder serves as a fast bottom-up initialization for the non-convex optimization problem
Equation 2.1.

2.3.2 Latent Code Manipulation

Considering that a given image has been successfully inverted into the latent space,
the editing of the image can be easily executed. There are multiple methods [141,
160, 122, 63, 48, 123, 149, 99, 31, 44] to manipulate the latent code, most of them are
based on algebraic operations on the latent code. For instance, in InterFaceGAN [122],
the authors move the latent code z along a certain semantic direction n to edit the
corresponding attribute of the image (z + n). As the adversary has full control over
the manipulation step, it is extremely difficult to defend this step. Therefore, we only
focus on defending against the GAN inversion step - the adversary can only obtain a
misleading latent code that is already far from its exact one. In this way, the latent
code manipulation step will not achieve its ideal result.

2.4 Datasets Description

We now present the datasets used for the evaluations in this dissertation.

CIFAR-10/CIFAR-100. CIFAR-10 [1] and CIFAR-100 [1] are benchmark datasets
used to evaluate image recognition algorithms. CIFAR-10 is composed of 32×32 color
images in 10 classes, with 6000 images per class. In total, there are 50000 training
images and 10000 test images. CIFAR-100 has the same format as CIFAR-10, but it has
100 classes containing 600 images each. There are 500 training images and 100 testing
images per class.
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GTSRB. The GTSRB [2] dataset comprises 43 traffic signs in RGB-encoded color
images of varying sizes, ranging from 15×15 to 250×250 pixels (not necessarily square).
It contains 51,839 images, with 39,209 for training and 12,630 for testing. To ensure
consistency, all images are resized to 64×64 before classification.

Face. The Face [3] dataset includes more than 13,000 face images obtained from the
Internet and contributed by 1,680 individuals with at least two images each. In our
evaluation, we focus on 19 classes containing individuals with more than 40 images.
This dataset is particularly difficult for the facial recognition task because the images
were not captured in a controlled laboratory environment. In addition, the distribution
of data between classes is unbalanced.

TinyImageNet. TinyImageNet [4] is a benchmark dataset utilized for assessing image
recognition algorithms, comprising of 100,000 64x64 colored images categorized into 200
classes with 500 images per class. The dataset also includes 500 training, 50 validation,
and 50 test images for each class.

Purchases. The dataset for the “acquire valued shoppe” challenge on Kaggle contains
197,000 customer records with 600 binary features indicating their purchase history. The
records are categorized into 100 clusters, each representing a distinct purchasing style,
and the goal is to predict which purchase style a customer belongs to. This dataset is
also widely used to evaluate membership inference attacks in [124, 60, 64, 78, 93, 106,
34].

Locations. The dataset used in this study is a pre-processed version of the Foursquare
dataset1, containing 5,010 data samples with 446 binary features. Each feature represents
whether a user visited a particular region or location type. The objective is to classify
the users into one of 30 geosocial types based on their record. This dataset is used to
evaluate membership inference attacks in [66, 124, 34].

Texas. The dataset comprises 67,330 instances with 6,170 binary features derived from
the Discharge Data public use files of the Texas Department of State Health Services.2
The features related to external causes of injury (e.g., drug misuse, suicide), diagnosis,
procedures performed on the patient, and generic information such as age, gender, and
race. In line with [58], our study focuses on the top 100 procedures (i.e., 100 classes)
by frequency, and the task is to predict a patient’s procedure using their data. This
dataset is used to evaluate membership inference attacks in [60, 78, 66, 34, 124, 121].

CelebA. CelebA [83] is a collection of 200,000 images of celebrities’ faces, with each
image having 40 attributes annotated.

FFHQ. The Flickr-Faces-HQ (FFHQ) dataset [70, 71], sourced from Flickr, comprises
70,000 high-resolution human face images with a resolution of 1024 × 1024 pixels. The
dataset includes significant variations in age, ethnicity, and image background quality.
It is considered a high-quality image dataset for human faces.

1https://sites.google.com/site/yangdingqi/home/foursquare-dataset
2https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm
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3.1 Introduction

Machine learning (ML) has witnessed tremendous progress over the past decade and
such developments rely on not only novel training algorithms and architectures, but also
access to large-scale data, which typically consists of sensitive and private data, such as
health data. Various recent research [114, 116, 124, 146, 135, 54, 85, 129, 60, 86, 78,
153] has shown that ML models are vulnerable to leaking sensitive information about
the data. One major privacy risk of ML models is membership inference: An adversary
aims to determine whether or not a data sample is used to train a target ML model.
Membership inference attacks can reveal sensitive information about an individual. For
example, if an ML model is trained on data collected from individuals with a specific
disease, an adversary who knows that a victim’s data was part of the training data can
infer the victim’s health status. Membership inference attacks have been demonstrated
in various domains, including biomedical data [19] and mobility data [102].

Existing membership inference attacks [124, 85, 116, 146, 129, 60, 78] rely on the
confidence scores (e.g. class probabilities or logits) returned by a target ML model as
their inputs. The success of membership inference is due to the inherent overfitting
property of ML models, i.e., an ML model is more confident facing a data sample it was
trained on, and this confidence is reflected in the model’s output scores. See Figure 3.1
for an illustration of accessible components of an ML model for such score-based threat
model. A major drawback for these score-based attacks is that they can be trivially
mitigated if the model only exposes the predicted label, i.e., the final model decision,
instead of confidence scores. The fact that score-based attacks can be easily averted
makes it more difficult to evaluate whether a model is truly vulnerable to membership
inference or not, which may lead to premature claims of privacy for ML models.

3.1.1 Contributions

This motivates us to focus on a new category of membership inference attacks that have
so far received fairly little attention, namely label-only attacks. Here, the adversary
solely relies on the final prediction of the target model, i.e., the top-1 predicted label, as
their attack model’s input. It is more realistic to evaluate the vulnerability of a machine
learning system under label-only attacks with sole access to the model’s final prediction.
First, compared to score-based attacks, label-only attacks are much more relevant in
real-world applications where confidence scores are rarely accessible. Furthermore,
label-only attacks have the potential to be much more robust to state-of-the-art defenses,
such as confidence score perturbation [66, 143, 93]. In label-only exposure, a naive
baseline attack [146] infers that a candidate sample is a member of a target model if it
is predicted correctly by the model. However, this baseline attack cannot distinguish
between members and non-members that are both correctly classified.

In this work, we propose two types of label-only attacks under different scenarios,
namely transfer-based label-only attack and boundary-based label-only attack. We outline
the threat models considered in this work in Table 3.1. In the following, we abstractly
introduce our proposed two label-only membership inference attacks.

Transfer-Based Attack. We assume the adversary has an auxiliary dataset (namely
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Figure 3.1: An illustration of accessible components of the target model for each of the
two threat models. A score-based threat model assumes access to the output layer; a
label-only threat model assumes access to the predicted label alone.

shadow dataset) that comes from the same distribution as the target model’s training
set. The assumption also holds for previous score-based attacks [124, 85, 116, 129]. The
adversary first queries the target model in a manner analog to cryptographic oracle,
thereby relabeling the shadow dataset by the target model’s predicted labels. Then,
the adversary can use the relabeled shadow dataset to construct a local shadow model
to mimic the behavior of the target model. This way, the relabeled shadow dataset
contains sufficient information from the target model, and membership information can
also be transferred to the shadow model. Finally, the adversary can leverage the shadow
model to locally launch a score-based membership inference attack.
Boundary-Based Attack. Collecting data, especially sensitive and private data, is a
non-trivial task. Thus, we consider a more difficult and realistic scenario in which no
shadow dataset and model are available. To compensate for the lack of information in
this scenario, we shift the focus from the target model’s output to the input. Here, our
key intuition is that it is harder to perturb member data samples to different classes
than non-member data samples. The adversary queries the target model on candidate
data samples and perturbs them to change the model’s predicted labels. Then the
adversary can exploit the magnitude of the perturbation to differentiate member and
non-member data samples.

Extensive experimental evaluation shows that both of our attacks achieve strong
performance. In particular, in some cases, our boundary-based attack even outperforms
the previous score-based attacks. This demonstrates the severe membership risks
stemming from ML models. In addition, we present a new perspective on the success of
current membership inference and show that the distance between a sample and an ML
model’s decision boundary is strongly correlated with the sample’s membership status.

Finally, we evaluate our attacks on multiple defense mechanisms: generalization
enhancement [130, 135, 116], privacy enhancement [13] and confidence score perturba-
tion [93, 66, 143]. The results show that our attacks can bypass most of the defenses
unless heavy regularization is applied. However, heavy regularization can significantly
affect the model’s accuracy.

In general, our contributions can be summarized as the following:

• We systematically investigate membership leakage in label-only exposures of ML
models and introduce label-only membership inference attacks, which are highly
relevant for real-world applications and important to gauge model privacy.
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Table 3.1: An overview of membership inference threat models. “✓” means the adver-
sary needs the knowledge and “-” indicates the knowledge is not necessary.

Category Attacks Data Shadow Detailed Prediction Final Prediction
Distribution Model (e.g. probabilities) (e.g. class label)

Score-Based [124, 85, 116, 146, 129, 60, 78] ✓or - ✓or - ✓ ✓

Label-Only
Baseline [146] ✓ - - ✓

Transfer-Based ✓ ✓ - ✓
Boundary-Based - - - ✓

• We propose two types of label-only attacks under different scenarios, including
transfer-based attack and boundary-based attack. Extensive experiments demon-
strate that our two types of attacks perform better than the baseline attack and
even outperform the previous score-based attacks in some cases.

• We propose a new perspective on the reasons for the success of membership
inference and perform a quantitative and qualitative analysis to demonstrate that
members of an ML model are more distant from the model’s decision boundary
than non-members.

• We evaluate multiple defenses against our label-only attacks and show that our
novel attacks can still achieve reasonable performance unless heavy regularization
is applied.

3.1.2 Organization

The rest of this work is organized as follows. Section 3.2 presents the threat models, key
intuition, attack methodology, and evaluation of the transfer-based attack. Section 3.2
presents the treat models, key intuition, attack methodology, and evaluation of the
label-only attack. In Section 3.4, we provide an in-depth analysis of the success of
membership inference. Section 3.5 provides multiple defenses against label-only attacks.

3.2 Transfer-Based Label-Only Membership Inference At-
tack

In this section, we present the first type of label-only membership inference attacks, i.e.,
transfer-based attack. We start by introducing our key intuition. Then, we describe the
attack methodology. Finally, we present the evaluation results.

3.2.1 Threat Model

In the transfer-based label-only membership inference attack, we define that the adver-
sary only has black-box access to the target model. Concretely, the adversary cannot
access the target model’s confidence scores but relies on the final predictions, i.e., the
predicted label, to launch the membership inference attack.
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Based on our key intuition (Section 3.2.2), we assume that the adversary trains a
local model (called shadow model) to mimic the behavior of the target model and relies
on the shadow model to infer membership information. We further assume that the
shadow model has the same architectures as the target model. Note that we show this
assumption can be relaxed in Section 3.2.

To train the shadow model, we make another assumption that the adversary has an
auxiliary dataset (namely, shadow dataset) that comes from the same distribution as
the target model’s training set. Note that both the shadow model and shadow dataset
assumptions hold for previous score-based attacks [124, 85, 116, 129].

3.2.2 Key Intuition

The intuition of this attack is that the transferability property holds between the shadow
model and the target model. Almost all related works [96, 36, 82, 92] focus on the
transferability of adversarial examples, i.e., adversarial examples can transfer between
models trained for the same task. Unlike these works, we focus on the transferability of
membership information for benign data samples, i.e., the member and non-member
data samples behaving differently in the target model will also behave differently in
the shadow model. Then we can leverage the shadow model to launch a score-based
membership inference attack.

Algorithm 1: Transfer-based label-only attack algorithm.
Input: shadow dataset Dshadow , shadow model S, target model M, a candidate

sample (x, y), threshold τ , minibatch m, membership indicator T ;
Output: Trained shadow model S, x is member or not;

1 Initialize the parameters of shadow;
2 Relabel Dshadow by querying to M;
3 for number of training epochs do
4 for i = 1; i ≤ |Dshadow |

m ; i + + do
5 sample minibatch of m samples from Dshadow ;
6 update S by descending its Adam gradient
7 end
8 end
9 Feed x into S to obtain pi;

10 calculate loss: l = −
∑K

i=0 1y log(pi);
11 if l ≤ τ then
12 T = 1; ; /* x is a member */
13 else
14 T = 0; ; /* x is a non-member */
15 end
16 return S, T ;

20



3.2. TRANSFER-BASED LABEL-ONLY MEMBERSHIP INFERENCE ATTACK

3.2.3 Attack Methodology

The transfer-based attack methodology can be divided into four stages: shadow dataset
relabeling, shadow model architecture selection, shadow model training, and membership
inference. The algorithm can be found in Algorithm 1.
Shadow Dataset Relabeling. As aforementioned, the adversary has a shadow
dataset Dshadow drawn from the same distribution as the target model M’s dataset
Dtarget . To train a shadow model, the first step is to relabel these data samples using
the target model M as an oracle. In this way, the adversary can establish a connection
between the shadow dataset and the target model, which facilitates the shadow model
to be more similar to the target model in the next step.
Shadow Model Architecture Selection. As the adversary knows the main task
of the target model, it can build the shadow model using high-level knowledge of the
classification task (e.g., convolutional networks are appropriate for vision). As in prior
score-based attacks, we also use the same architecture of target models to build our
shadow models. Note that we emphasize that the adversary does not have the knowledge
of the concrete architecture of the target model, and in Section 3.2.5, we also show that
a wide range of architecture choices yield similar attack performance.
Shadow Model Training. The adversary trains the shadow model S with the
relabeled shadow dataset Dshadow in conjunction with classical training techniques.
Membership Inference. Finally, the adversary feeds a candidate data sample into
the shadow model S to calculate its cross-entropy loss with the ground truth label.

CELoss = −
K∑

i=0
1y log(pi), (3.1)

where 1y is the one-hot encoding of the ground truth label y, pi is the probability that
the candidate sample belongs to class i, and K is the number of classes. If the loss
value is smaller than a threshold, the adversary then determines the sample being a
member and vice versa. The adversary can pick a suitable threshold depending on their
requirements, as in many machine learning applications [20, 102, 47, 43, 116, 66]. In
our evaluation, we mainly use the area under the ROC curve (AUC), which is threshold
independent as our evaluation metric.

3.2.4 Experimental Setup

Following the attack strategy, we split each dataset into Dtarget and Dshadow : One is
used to train and test the target model, and the other is used to train the shadow model
S after relabeled by the target model. For evaluation, Dtarget is also split into two: One
is used to train the target model M, i.e., Dtrain , and serves as the member samples of
the target model, while the other Dtest serves as the non-member samples.

It is well known that the inherent overfitting drives ML models to be vulnerable
to membership leakage [124, 116]. To show the variation of the attack performance on
each dataset, we train 6 target models M-0, M-1, ..., M-5 using different sizes of the
training set Dtrain, exactly as performed in the prior work by Shokri et al. [124] and
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many subsequent works [135, 116, 129, 85]. The sizes of Dtrain , Dtest , and Dshadow are
summarized in Appendix Table A.1.

We execute the evaluation on randomly reshuffled data samples from Dtarget , and
select sets of the same size (i.e, equal number of members and non-members) to maximize
the uncertainty of inference. Thus the baseline performance is equivalent to random
guessing. We adopt AUC as our evaluation metric, which is threshold independent. In
addition, we further discuss methods to pick the threshold for our attack later in this
section.

3.2.5 Evaluation

Experimental Setup. Following the attack strategy, we split each dataset into Dtarget
and Dshadow : One is used to train and test the target model, and the other is used to
train the shadow model S after relabeled by the target model. For evaluation, Dtarget is
also split into two: One is used to train the target model M, i.e., Dtrain , and serves as
the member samples of the target model, while the other Dtest serves as the non-member
samples.

It is well known that the inherent overfitting drives ML models to be vulnerable
to membership leakage [124, 116]. To show the variation of the attack performance on
each dataset, we train 6 target models M-0, M-1, ..., M-5 using different sizes of the
training set Dtrain, exactly as performed in the prior work by Shokri et al. [124] and
many subsequent works [135, 116, 129, 85]. The sizes of Dtrain , Dtest , and Dshadow are
summarized in Appendix Table A.1.

We execute the evaluation on randomly reshuffled data samples from Dtarget , and
select sets of the same size (i.e, equal number of members and non-members) to maximize
the uncertainty of inference. Thus the baseline performance is equivalent to random
guessing. We adopt AUC as our evaluation metric which is threshold independent. In
addition, we further discuss methods to pick the threshold for our attack later in this
section.

Attack AUC Performance. Figure 3.2 depicts the performance of our transfer-
based attack and baseline attack. First, we can observe that our transfer-based attack
performs at least on-par with the baseline attack. More encouragingly, on the CIFAR-10
and GTSRB datasets, our transfer-based attack achieves better performance than the
baseline attack. For example, in Figure 3.2 (M-5, CIFAR-10), the AUC score of the
transfer-based attack is 0.94, while that of the baseline attack is 0.815. The reason why
our transfer-based attack outperforms the baseline attack on CIFAR-10 and GTSRB
rather than on CIFAR-100 and Face, is that the size of the shadow dataset for the first
two datasets is relatively larger than that of the latter two, compared to the size of
each dataset (see Appendix Table A.1). In the next experiments, we make the same
observation that a larger shadow dataset implies better attack performance.

Effects of the Shadow Dataset and Model. We further investigate the effects
of shadow dataset size and shadow model complexity (structure and hyper-parameter)
on the attack performance. More concretely, for the target model (M-0, CIFAR-100),
we vary the size of the shadow dataset Dshadow from 5,000 to 42,000, where the target
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Figure 3.2: Comparison of our transfer-based attack performance with the baseline
attack by Yeom et al. [146]. The x-axis represents the target model being attacked and
the y-axis represents the AUC score.

training set Dtrain is 7,000. We also vary the complexity of the shadow model from 0.86M
(number of parameters) and 26.01M (FLOPs,1 computational complexity) to 4.86M and
418.88M, where the complexity of the target model is 3.84M and 153.78M, respectively.
We conduct extensive experiments to simultaneously tune these two hyper-parameters
and report the results in Figure 3.3. Through investigation, we make the following
observations.

• Larger shadow dataset implies more queries to the target model which leads to
better attack performance.

• Even simpler shadow models and fewer shadow datasets (bottom left part) can
achieve strong attack performance.

• In general, the transfer-based attack is robust even if the shadow model is much
different from the target model.

1FLOPs represent the theoretical amount of floating-point arithmetic needed when feeding a sample
into the model.
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Figure 3.3: Attack AUC under the effect of changing the dataset size and shadow
model complexity (upper is the number of parameters, lower is the computational
complexity FLOPs). The target model (M-0, CIFAR-100)’s training set size is 7,000, and
the complexity is 3.84M parameters and 153.78M FLOPs.

Effects of Statistical Metrics. As prior works [124, 116] also use other sta-
tistical metrics, i.e., maximum confidence scores Max(pi) and normalized entropy

−1
log(K)

∑
i pi log (pi). Here, we also conduct experiments with these statistical metrics.

Figure 3.5 reports the AUC on the CIFAR-10 and CIFAR-100 datasets. We can observe
that the loss metric achieves the highest performance with respect to the different target
models. Meanwhile, the AUC score is very close between the maximum confidence
score and entropy. This indicates that the loss metric contains the strongest signal on
differentiating member and non-member samples. We will give an in-depth discussion
on this in Section 3.4.2.

Loss Distribution of Membership. To explain why our transfer-based attack works,
Figure 3.4 further shows the loss distribution of member and non-member samples from
the target model calculated on the shadow model (M-0 and M-5 on CIFAR-10 and
CIFAR-100). Though both member and non-member samples are never used to train
the shadow model, we still observe a clear difference between their loss distribution. This
verifies our key intuition aforementioned: The transferability of membership information
holds between shadow model S and target model M, i.e., the member and non-member
samples behaving differently in M will also behave differently in S.

Threshold Choosing. As mentioned before, in the membership inference stage,
the adversary needs to make a manual decision on which threshold to use. For the
transfer-based attack, since we assume that the adversary has a dataset that comes from
the same distribution as the target model’s dataset, it can rely on the shadow dataset to
estimate a threshold by sampling a certain part of that dataset as non-member samples.
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Figure 3.4: The cross-entropy loss distribution obtained from the shadow model. The
x-axis represents the loss value, and the y-axis represents the loss number.
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Figure 3.5: Attack AUC for three different statistical measures. The x-axis represents the
target model being attacked, and the y-axis represents the AUC score.

3.3 Boundary-Based Label-Only Membership Inference At-
tack

This section presents our second type of label-only membership inference attack, i.e.,
boundary-based attack. We start with the threat model description. Then, we introduce
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Table 3.2: The cross-entropy between the confidence scores and other labels except
for the predicted label. ACE represents the Average Cross Entropy.

Truth Predicted Cross Entropy
Status Label Label 0 1 2 · · · 7 8 9 ACE
(a) Member 6 6 7.8156 8.3803 4.1979 · · · 7.6328 1.5522 1.2923 4.4946
(b) Non-member 8 8 2.3274 0.8761 0.8239 · · · 1.1152 - 5.0451 1.2218
(c) Member 3 3 1.2995 5.2842 5.4212 · · · 7.1547 3.2411 4.7910 4.2334
(d) Non-member 7 9 2.8686 1.8325 3.6480 · · · 0.6866 3.1071 - 2.1766

the key intuition and attack methodology. In the end, we present the evaluation results.

3.3.1 Threat Model

Since curating auxiliary data requires significant time and monetary investment. Thus,
we relax the assumptions of both the shadow dataset and shadow model in this attack.
The adversary does not have a shadow dataset to train a shadow model. All the
adversary could rely on is the predicted label from the target model. To the best of our
knowledge, this is by far the most strict setting for membership inference against ML
models.

3.3.2 Key Intuition

Our intuition behind this attack follows a general observation of the overfitting nature
of ML models. Concretely, an ML model is more confident in predicting data samples
that it is trained on. In contrast to the prior score-based attacks[124, 85, 116, 146, 129,
60, 78] that directly exploit confidence scores as analysis objects, we place our focus on
the antithesis of this observation, i.e., since the ML model is more confident on member
data samples, it should be much harder to change its mind.

Intuitively, Figure 3.6 depicts the confidence scores for two randomly selected member
data samples (Figure 3.6a, Figure 3.6c) and non-member data samples (Figure 3.6b,
Figure 3.6d) with respect to M-0 trained on CIFAR-10. We can observe that the
maximal score for member samples is indeed much higher than the one for non-member
samples. We further use cross entropy (Equation 3.1) to quantify the difficulty for an
ML model to change its predicted label for a data sample to other labels.

Table 3.2 shows the cross entropy between the confidence scores and other labels for
these samples. We can see that the member samples’ cross-entropy is significantly larger
than non-member samples. This leads to the following observation on membership
information.

Observation. Given an ML model and a set of data samples, the cost of changing
the target model’s predicted labels for member samples is larger than the cost for
non-member samples. Furthermore, consider the label-only exposures in a black-box
ML model, which means the adversary can only perturb the data samples to change
the target model’s predicted labels, thus the perturbation needed to change a member
sample’s predicted label is larger than non-members. Then, the adversary can exploit
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(d) Non-member data sample

Figure 3.6: The probability distribution of the target model (M-0, CIFAR-10) on member
samples and non-member samples.

the magnitude of the perturbation to determine whether the sample is a member or not.

3.3.3 Attack Methodology

Our attack methodology consists of the following three stages, i.e., decision change,
perturbation measurement, and membership inference. The algorithm can be found in
Algorithm 2.

Decision Change. The goal of changing the final model decision, i.e., predicted
label, is similar to that of adversarial attack [23, 98, 97, 27, 134, 119], For simplicity,
we utilize adversarial example techniques to perturb the input to mislead the target
model. Specifically, we utilize two state-of-the-art black-box adversarial attacks, namely
HopSkipJump [29] and QEBA [77], which only require access to the model’s predicted
labels.

Perturbation Measurement. Once the final model decision has changed, we measure
the magnitude of the perturbations added to the candidate input samples. In general,
adversarial attack techniques typically use Lp distance (or Minkowski Distance), e.g.,
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Algorithm 2: Boundary-based label-only attack algorithm.
Input: adversarial attack technique HopSkipJump, target model M, a

candidate sample (x, y), threshold τ , membership indicator T ;
Output: x is member or not;

1 for number of query do
2 Feed x into M to obtain predicted label y′;
3 if y′ ̸= y then
4 x′ = x; ; /* perturbed sample x′

*/
5 else
6 Apply HopSkipJump to perturb x ;
7 end
8 end
9 calculate perturbation P = |x − x′|2;

10 if P ≤ τ then
11 T = 0; ; /* x is a non-member */
12 else
13 T = 1; ; /* x is a member */
14 end
15 return T ;

L0, L1, L2, and L∞, to measure the perceptual similarity between a perturbed sample
and its original one. Thus, we use Lp distance to measure the perturbation.
Membership Inference. After obtaining the magnitude of the perturbations, the
adversary simply considers a candidate sample with perturbations larger than a threshold
as a member sample and vice versa. Similar to the transfer-based attack, we mainly
use AUC as our evaluation metric. We also provide a general and simple method for
choosing a threshold in Section 3.3.4.

3.3.4 Evaluation

Experiment Setup. We use the same experimental setup as presented in Section 3.2.5,
such as the dataset splitting strategy and 6 target models trained on different sizes of
the training set Dtrain. In the decision change stage, we use the implementation of a
popular python library (ART2) for HopSkipJump. Note that we only apply untargeted
decision change, i.e., changing the initial decision of the target model to any other
random decision. Besides, as HopSkipJump requires multiple queries to perturb data
samples to change their predicted labels, we set 15,000 as the default. We further study
the influence of the number of queries on the attack performance.
Distribution of Perturbation. First, we show the distribution of perturbation
between a perturbed sample and its original one for member and non-member samples
in Figure 3.7. Due to the decision change scheme, i.e., HopSkipJump, applies L2 distance
to limit the magnitude of perturbation, thus we report results of L2 distance as well.

2https://github.com/Trusted-AI/adversarial-robustness-toolbox
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Figure 3.7: L2 distance between the original sample and its perturbed samples gen-
erated by the HopSkipJump attack. The x-axis represents the target model being
attacked, and the y-axis represents the L2 distance.

As expected, the magnitude of the perturbation on member samples is indeed larger
than that on non-member samples. For instance, in Figure 3.7 (M-5, CIFAR-10), the
average L2 distance of the perturbation for member samples is 1.0755, while that for
non-member samples is 0.1102. In addition, models with a larger training set, i.e.,
lower overfitting level, require less perturbation to change the final prediction. As the
overfitting level increases, the adversary needs to modify more on the member sample.
The reason is that an ML model with a higher overfitting level has remembered its
training samples to a larger extent, thus it is much harder to change their predicted
labels, i.e., larger perturbation is required.

Attack AUC Performance. We report the AUC scores over all datasets in Figure 3.8.
In particular, we compare 4 different distance metrics, i.e., L0, L1, L2, and L∞, for each
decision change scheme. From Figure 3.8, we can observe that L1, L2, and L∞ metrics
achieve the best performance across all datasets. For instance in Figure 3.8 (M-1,
CIFAR-10), the AUC scores for L1, L2, and L∞ metrics are 0.8969, 0.8963, and 0.9033,
respectively, while the AUC score for L0 metric is 0.7405. Therefore, an adversary can
simply choose the same distance metric adopted by adversarial attacks to measure the
magnitude of the perturbation.
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Figure 3.8: Attack AUC for four different Lp distances between the original samples and
its perturbed samples generated by the HopSkipJump attack. The x-axis represents the
target model being attacked, and the y-axis represents the AUC score.

Effects of Number of Queries. To mount the boundary-based attack in real-world
ML applications such as Machine Learning as a Service (MLaaS), the adversary cannot
issue as many queries as they want to the target model, since a large number of queries
increase the cost of the attack and may raise the suspicion of the model provider. Now,
we evaluate the attack performance with the different number of queries. Here, we
show the results of the HopSkipJump scheme for M-5 over all datasets. We vary the
number of queries from 0 to 15,000 and evaluate the attack performance based on the
L2 metric. As we can see in Figure 3.9, the AUC increases sharply as the number of
queries increases in the beginning. After 2,500 queries, the attack performance becomes
stable. From the results, we argue that query limiting would likely not be a suitable
defense. For instance, when querying 131 times, the AUC for CIFAR-10 is 0.8228 and
CIFAR-100 is 0.9266. At this time, though the perturbed sample is far away from
its origin’s decision boundary, the magnitude of perturbation for member samples is
still relatively larger than that for non-member samples. Thus, the adversary can still
differentiate between member and non-member samples.
Threshold Choosing. Here, we focus on the threshold choosing for our boundary-
based attack where the adversary is not equipped with a shadow dataset. We provide
a simple and general method for choosing a threshold. Concretely, we generate a set
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Figure 3.9: Attack AUC under the effect of the number of queries. The x-axis represents
the number of queries, and the y-axis represents the AUC score for our boundary-based
attack.

of random samples in the feature space as the target model’s training set. In the case
of image classification, we sample each pixel for an image from a uniform distribution.
Next, we treat these randomly generated samples as non-members and query them
to the target model. Then, we apply adversarial attack techniques on these random
samples to change their initial predicted labels by the target model. Finally, we use these
samples’ perturbation to estimate a threshold, i.e., finding a suitable top t percentile
over these perturbations.

We experimentally generate 100 random samples for M-5 trained across all datasets,
and adopt HopSkipJump in the decision change stage. We again use the L2 distance to
measure the magnitude of perturbation and F1 score as our evaluation metric. From
Figure 3.11, we make the following observations:

• The peak attack performance is bounded between t = 0% and t = 100%, which
means the best threshold can definitely be selected from these random samples’
perturbation.

• The powerful and similar attack performance ranges from t = 30% to t = 80%,
reaching half of the total percentile, meaning a suitable threshold can be easily
selected.

Therefore, we conclude that our threshold-choosing method is effective and can achieve
excellent performance.

Comparison of Different Attacks. Now we compare the performance of our two
attacks and previous existing attacks. In particular, we also compare our attacks
against prior score-based attacks. Following the score-based attack proposed by Salem
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Figure 3.10: Comparison of our two types of attacks with the baseline attack and
score-based attack. The x-axis represents the target model being attacked, and the
y-axis represents the AUC score.

et al. [116], we train one shadow model using half of Dshadow with its ground truth
labels, and one attack model in a supervised manner based on the shadow model’s
output scores. Here, we do not assume that the attacker knows the exact training set
size of the target model, which is actually a strong assumption. Note that this is not a
fair comparison, as our label-only attacks only access to the final model’s prediction,
rather than the confidence scores.

We report attack performance for our boundary-based attack using the L2 metric
in the HopSkipJump scheme. From Figure 3.10, we can find that our boundary-based
attack achieves similar or even better performance than the score-based attack in some
cases. This demonstrates the efficacy of our proposed label-only attack, thereby the
corresponding membership leakage risks stemming from ML models are much more
severe than previously shown.

As for cost analysis, the attack logic is different for each method, so it is difficult to
evaluate the cost with standard metrics. Besides the adversarial knowledge acquired for
each attack, we mainly report training and query costs in Table 3.3. We can find the
baseline attack only queries once for a candidate sample. However, in our transfer-based
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Figure 3.11: The relation between the top t percentile of the L2 distance, i.e., threshold,
and the attack performance. The x-axis represents the top t percentile and the y-axis
represents the F1 score.

attack, once a shadow model is built, the adversary will only query the shadow model
for candidate samples without making any other queries to the target model. Therefore,
we cannot prematurely claim that the baseline attack has the lowest cost, but should
consider the actual situation.

Table 3.3: The cost of each attack. Query cost is the number of queries to the target
model.

Attack Shadow Model Query for Query for a
Type Training Epochs Dshadow candidate sample

Score-Based Attack 200 - 1
Baseline Attack - - 1

Transfer-Based Attack 200 |Dshadow | -
Boundary-Based Attack - - Multiple

3.4 Membership Leakage Analysis

The above results fully demonstrate the effectiveness of our label-only attacks. Here,
we delve more deeply into the reasons for the success of membership inference. Our
boundary-based attack utilizes the magnitude of the perturbation to determine whether
the sample is a member or not, and the key to stopping searching perturbations is
the final decision change of the model. Here, the status of decision change actually
contains information about the decision boundary, i.e., the perturbed sample crosses the
decision boundary. This suggests a new perspective on the relationship between member
samples and non-member samples, and we intend to analyze membership leakage from
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this perspective. Since previous experiments have verified our key intuition that the
perturbation required to change the predicted label of a member sample is larger than
that of a non-member, we argue that the distance between the member sample and its
decision boundary is typically larger than that of the non-member sample. Next, we
will verify it both quantitatively and qualitatively.

3.4.1 Quantitative Analysis

We introduce the neighboring Lp-radius ball to investigate the membership leakage
of ML models. This neighboring Lp-radius ball, also known as Robustness Radius, is
defined as the Lp robustness of the target model at a data sample, which represents
the radius of the largest Lp ball centered at the data sample in which the target model
does not change its prediction, as shown in Figure 3.12d. Concretely, we investigate
the L2 robustness radius of the target model M at a data sample x. Unfortunately,
computing the robustness radius of a ML model is a hard problem. Researchers have
proposed many certification methods to derive a tight lower bound of robustness radius
R(M; x, y) for ML models. Here, we also derive a tight lower bound of robustness
radius, namely Certified Radius [152], which satisfies 0 ≤ CR(M; x, y) ≤ R(M; x, y) for
any M, x and its ground truth label y ∈ Y = {1, 2, · · · , K}.

ACR of Members and Non-members. In particular, the value of the certified
radius can be estimated by repeatedly sampling Gaussian noises [152]. Thus, for the
target model M and a data sample (x, y), we can also estimate the certified radius
CR(M; x, y). Here, we use the average certified radius (ACR) as a metric to estimate
the average certified radius for members and non-members separately, i.e.,

ACRmember = 1
|Dtrain |

∑
(x,y)∈Dtrain

CR(M; x, y), (3.2)

ACRnon−member = 1
|Dtest |

∑
(x,y)∈Dtest

CR(M; x, y). (3.3)

We randomly select an equal number of members and non-members for target
models and report the results in Table 3.4. Note that the certified radius is actually an
estimated value representing the lower bound of the robustness radius, not the exact
radius. Therefore, we analyze the results from a macroscopic perspective and can draw
the following observations.

• The ACR of member samples is generally larger than the ACR of non-member
samples, which means that in the output space, the ML model maps member
samples further away from its decision boundary than non-member samples.

• As the level of overfitting increases, the macroscopic trend of the gap between
the ACR of members and non-members is also larger, which exactly reflects the
increasing attack performance in the aforementioned AUC results.

Furthermore, we also feed the equal member and non-member samples into each
corresponding shadow model and obtain the ACR. Note that member and non-member
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Table 3.4: Average Certified Radius (ACR) of members and non-members for target
models.

Target CIFAR-10 CIFAR-100 GTSRB Face
Model Member Non-mem Member Non-mem Member Non-mem Member Non-mem
M-0 0.1392 0.1201 0.0068 0.0033 0.0300 0.0210 0.0571 0.0607
M-1 0.1866 0.1447 0.0133 0.0079 0.0358 0.0215 0.0290 0.0190
M-2 0.1398 0.1170 0.0155 0.0079 0.0692 0.0463 0.0408 0.0313
M-3 0.1808 0.1190 0.0079 0.0074 0.0430 0.0348 0.1334 0.1143
M-4 0.1036 0.1032 0.0141 0.0116 0.0212 0.0176 0.0392 0.0292
M-5 0.1814 0.0909 0.0157 0.0080 0.0464 0.0385 0.1242 0.1110

Table 3.5: Average Certified Radius (ACR) of members and non-members for shadow
models.

Shadow CIFAR-10 CIFAR-100
Model Member Non-mem Member Non-mem
M-0 0.1392 0.1301 0.0091 0.0039
M-1 0.1873 0.1516 0.0150 0.0071
M-2 0.1416 0.1463 0.0177 0.0068
M-3 0.1962 0.1452 0.0121 0.0047
M-4 0.1152 0.1046 0.0099 0.0092
M-5 0.1819 0.0846 0.0176 0.0087

samples are never used to train the shadow model. We report the results in Table 3.5,
and we can draw the same observations as for the target model. In other words, this
again verifies our key intuition for the transfer-based attack: The transferability of
membership information holds between shadow model S and target model M, i.e., the
member and non-member samples behaving differently in M will also behave differently
with high probability in S.

3.4.2 Qualitative Analysis

Next, we investigate the membership leakage of ML models from a visualization approach.
We study the decision boundary of the target model (CIFAR-10, M-3) with a given set
of data samples, including 1,000 member samples and 1,000 non-member samples. To
better visualize the decision boundary, there are two points to note:

• Both member and non-member samples are mapped from the input space to the
output space, presenting the membership signal. Thus, we visualize the decision
boundary in the output space, i.e., the transformed space of the last hidden layer
fully connected with the final model decision.

• Due to the limitation of the target dataset size, we further sample a large number
of random data points in the output space and label them with different colors
according to their corresponding classes. This can visualize the decision boundary
that distinguishes between different class regions.

To this end, we map the given data samples into the transformed space and embed
the output logits or scores into a 2D space using t-Distributed Stochastic Neighbor
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Figure 3.12: The visualization of decision boundary for target model (a, b) and shadow
model (c), and the search process of the perturbed sample by HopSkipJump (d).

Embedding (t-SNE) [5]. Figure 3.12a shows the results for 10 classes of CIFAR-10. We
can see that the given data samples have been clearly classified into ten classes and
mapped to 10 different regions. For the sake of analysis, we purposely zoom in four
different regions in the left of the whole space. From Figure 3.12b, we can make the
following observations:

• The member and non-member samples belonging to the same class are tightly
divided into 2 clusters, explaining why the previous score-based attacks can achieve
effective performance.

• More interestingly, we can see that the member samples are further away from the
decision boundary than the non-member samples. That is, the distance between
the members and the decision boundary is larger than that of the non-members.
Again, this validates our key intuition.

Recall that in the decision change stage of boundary-based attack, we apply black-
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box adversarial attack techniques to change the final model decision. Here, we give an
intuitive overview of how HopSkipJump and QEBA schemes work in Figure 3.12d. As
we can see, though these two schemes adopt different strategies to find the perturbed
sample, there is one thing in common: The search ends at the tangent samples between
the neighboring Lp-radius ball of the original sample and its decision boundary. Only
in this way, can they mislead the target model and also generate a small perturbation.
Combined with Figure 3.12b, we can find that the magnitude of perturbation is essentially
a reflection of the distance from the original sample to its decision boundary.

We again feed the 1,000 member samples and 1,000 non-member samples to the
shadow model (CIFAR-10, M-3) and visualize its decision boundary in Figure 3.12c. In
particular, we mark in red the misclassified samples from non-members. First, looking at
the correctly classified samples, we can also find that the member samples are relatively
far from the decision boundary, i.e., the loss is relatively lower than that of non-member
samples. As for the misclassified samples, it is easy to see that their loss is much
larger than any other samples. Therefore, we can leverage the loss as a metric to
differentiate members and non-members. However, we should also note that compared
to Figure 3.12b, the difference between members and non-members towards the decision
boundary is much smaller. Thus, if we do not adopt the loss metric, which considers
the ground truth label, then the maximum confidence scores Max(pi) and normalized
entropy −1

log(K)
∑

i pi log (pi) which are just based on self-information will lead to a much
lower difference between members and non-members. This is the reason why the loss
metric achieves the highest performance.

Summarizing the above quantitative and qualitative analysis, we verify our argument
that the distance between the member sample and its decision boundary is larger
than that of the non-member sample, thus revealing the reasons for the success of
the membership inference, including score-based and label-only attacks. In addition,
we verify that membership information remains transferable between the target and
shadow models. Last but not least, we also show the reason why the loss metric of the
transfer-based attack achieves the best performance.

3.5 Defense Evaluation

To mitigate the threat of membership leakage, a large body of defense mechanisms has
been proposed in the literature. In this section, we evaluate the performance of current
membership inference attacks against state-of-the-art defenses. We summarize existing
defenses in the following three broad categories.

Generalization Enhancement. As overfitting is the major reason for membership
inference to be successful, multiple approaches have been proposed to reduce overfitting,
which were first introduced by the machine learning community to encourage general-
ization. The standard generalization enhancement techniques, such as weight decay
(L1/L2 regularization) [135, 116], dropout [130], and data augmentation, have been
shown to limit overfitting effectively, but may lead to a significant decrease in model
accuracy.

Privacy Enhancement. Differential privacy [28, 40, 62] is widely adopted for
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Figure 3.13: Attack AUC of transfer-based and boundary-based attacks against multiple
defense mechanisms.

mitigating membership privacy. Many differential privacy-based defense techniques add
noise to the gradient to ensure privacy in the training process of the ML model. A
representative approach in this category is DP-Adam [13], and we adopt an open-source
version of its implementation in our experiments.3

Confidence Score Perturbation. Previous score-based attacks have demonstrated
that the confidence score predicted by the target model clearly presents a membership
signal. Therefore, researchers have proposed several approaches to alter the confidence
score. We focus on two representative approaches in this category: MemGuard [66] and
adversarial regularization [93], which changes the output probability distribution so
that both members and non-members look like similar examples to the inference model
built by the adversary. We adopt the original implementation of MemGuard,4 and an
open-source version of the adversarial regularization.5

For each mechanism, we train 3 target models (CIFAR-10, M − 2) using different
hyper-parameters. For example, in L2 regularization, the λ used to constrain the
regularization loss is set to 0.01, 0.05, and 0.1, and the λ in L1 regularization is set

3https://github.com/ebagdasa/pytorch-privacy
4https://github.com/jjy1994/MemGuard
5https://github.com/SPIN-UMass/ML-Privacy-Regulization
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Table 3.6: Attack AUC performance under the defense of MemGuard.

CIFAR-10, M-2 Face, M-2
Attack None MemGuard None MemGuard
score-based 0.8655 0.5151 0.755 0.513
baseline attack 0.705 0.705 0.665 0.665
transfer-based attack 0.7497 0.7497 0.6664 0.6664
boundary-based attack 0.8747 0.8747 0.8617 0.8617

to 0.0001, 0.001, and 0.005, respectively. In differential privacy, the noise is randomly
sampled from a Gaussian distribution N (ϵ, β), wherein ϵ is fixed to 0 and β is set to
0.1, 0.5, and 1.1, respectively.

We report the attack performance against models trained with a wide variety of
different defensive mechanisms in Figure 3.13, and we make the following observations.

• Our label-only attacks. i.e., both transfer-based attack and boundary-based attack,
can bypass most types of defense mechanisms.

• Strong differential privacy (β=1.1), L1 regularization (λ = 0.005) and L2 regu-
larization (λ = 0.1) can reduce membership leakage but, as expected, lead to a
significant degradation in the model’s accuracy. The reason is that the decision
boundary between members and non-members is heavily blurred.

• Data augmentation can definitely reduce overfitting, but it still does not reduce
membership leakage. This is because data augmentation drives the model to
strongly remember both the original samples and their augmentations.

In Table 3.6, we further compare the performance of all attacks against MemGuard [66],
which is the latest powerful defense technique and can be easily deployed. We can find
that MemGuard cannot defend against label-only attacks at all, but is very effective
against previous score-based attacks.

3.6 Conclusion

In this chapter, we perform a systematic investigation on membership leakage in label-
only exposures of ML models and propose two novel label-only membership inference
attacks, including transfer-based attack and boundary-based attack. Extensive experi-
ments demonstrate that our two attacks achieve better performances than the baseline
attack, and even outperform prior score-based attacks in some cases. Furthermore, we
propose a new perspective on the reasons for the success of membership inference and
show that members are further away from the decision boundary than non-members.
Finally, we evaluate multiple defense mechanisms against our label-only attacks and
show that our novel attacks can still achieve reasonable performance unless heavy regu-
larization has been applied. In particular, our evaluation demonstrates that confidence
score perturbation is an infeasible defense mechanism in label-only exposures.
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4.1 Introduction

To achieve better performance, large ML models with increasing complexity are proposed.
The improvement in performance stems from the fact that the deeper ML model fixes
the errors of the shallower one. However, such progression to deeper ML models has
dramatically increased the latency and energy required for feedforward inference, as
some samples that are already correctly classified or recognized by the shallow ML
model do not require additional complexity. This reality has motivated research on
input-adaptive mechanisms, i.e., multi-exit network [132], which is an emerging direction
for fast inference and energy-efficient computing.

The multi-exit model consists of a backbone model (i.e., a large vanilla model) and
multiple exits (i.e., lightweight classifiers) attached to the backbone model at different
depths. The backbone model is used for feature extraction and the lightweight classifiers
allow data samples to be predicted and to exit at an early layer of the model based
on tunable early-exit criteria. Multi-exit architecture can be applied to many critical
applications as it can effectively reduce computational costs. For example, exiting early
means low latency, which is crucial for operating under real-time constraints in robotics
applications, such as self-driving cars. Furthermore, exiting early can improve energy
efficiency, which directly influences battery life and heat release, especially on mobile
devices.

4.1.1 Contributions

Multi-exit networks, despite their low latency and high energy efficiency, also rely on
large-scale data to train themselves, as the way vanilla ML models are trained. As
described in chapter 3, these data typically contain sensitive and private information of
individuals. Various studies have already shown that vanilla ML models, represented by
image classifiers, are vulnerable to leaking sensitive information about the data [94, 76,
124, 116, 78, 128, P1].

However, current various designs of multi-exit networks are only considered to
achieve the best trade-off between resource usage efficiency and prediction accuracy, the
privacy risks stemming from them have never been explored. This prompts the need
for a comprehensive investigation of privacy risks in multi-exit networks, such as the
vulnerability of multi-export networks to data privacy attacks, the reasons inherent in
this vulnerability, the factors that affect attack performance, and whether or how these
factors can be exploited to improve or reduce attack performance.

In this work, we take the first step to audit the privacy risks of multi-exit networks
through the lens of membership inference. More specifically, we focus on machine
learning classification, which is the most common machine learning task, and conduct
experiments with 3 types of membership inference attacks, 6 benchmark datasets, and
8 model architectures.

Main Findings. We first leverage the existing attack methodologies (gradient-based,
score-based, and label-only) to audit the multi-exit networks’ vulnerability through
membership inference attacks. We conduct extensive experiments and the empirical
results demonstrate that multi-exit models are less vulnerable to membership inference
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attacks than vanilla ML models. For instance, considering the score-based attacks, we
achieve an attack success rate of 0.5413 on the multi-exit model trained on CIFAR-10
with the backbone model being ResNet-56, while the result is 0.7122 on the corresponding
vanilla ResNet-56. Furthermore, we delve more deeply into the reasons for the lower
vulnerability and reveal that the reason behind this is that the multi-exit models are
less likely to be overfitted.

We also find that the number of exits is negatively correlated with the attack
performance, i.e., multi-exit models with more exits are less vulnerable to membership
inference. Besides, a more interesting observation is that considering a certain multi-exit
model, exit depth is positively correlated with attack performance, i.e., exits attached
to the backbone model at deeper locations are more vulnerable to membership inference.
These observations are due to the fact that different depths of exits in the backbone
model actually imply different capacity models, and that deeper exits imply higher
capacity models, which are more likely to be overfitted by memorizing properties of the
training set.
Hybrid Attack. The above findings render us a new factor to improve the attack
performance. More concretely, we propose a novel hybrid attack against multi-exit
networks that exploit the exit information as new knowledge of the adversary. The
hybrid attack’s methodology can be divided into two stages:

• Hyperparameter stealing: the adversary’s goal is to steal the hyperparameters,
i.e., the number of exits and the exit depth of a given multi-exit network designed
by the model owner.

• Enhanced membership inference: the adversary then exploits the stolen exit
information as new knowledge to launch more powerful member inference attacks.

In particular, we study three different adversaries for obtaining exit information
by starting with some strong assumptions, and gradually relaxing these assumptions
in order to show that far more broadly applicable attack scenarios are possible. Our
investigation shows that indeed, our proposed hybrid attack can achieve better attack
performance by exploiting extra exit information, compared to original membership
inference attacks.
Adversary 1. For the first adversary, we assume they have direct access to the exit
information, i.e., exit depth, as well as train a shadow model of the same architecture
(especially the exit placements) as the target model. Further, the adversary trains the
shadow models on a shadow dataset that comes from the same distribution as the target
dataset. The assumption of the same architecture and same distribution also holds for
almost all existing membership inference attacks [94, 76, 124, 116, 78, 128, P1].

We start by querying the target model using a large number of data samples to
determine the number of exits attached to the model. Then we propose different methods
(e.g., one-hot encoding) based on the attack models adopted by existing attacks to
exploit this exit information. Extensive experimental evaluation shows that extra
exit information indeed leaks more membership information about training data. For
example, our hybrid attack achieves an attack success rate of 0.7681 on a multi-exit
WideResNet-32 trained on CIFAR-100, while the result of the original attack is 0.6799.
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Adversary 2. For this adversary, we relax the assumption that they have direct access to
exit information and keep the assumption of the same architecture and same distribution
unchanged. This is a more challenging scenario compared to the previous one.

In this scenario, we propose time-based hyperparameter stealing to obtain the exit
information. Concretely, we feed a set of samples to the target multi-exit model and
record the inference time of these samples. We then propose a simple but effective
unsupervised method to cluster the samples based on different inference times. Thus,
the number of clusters implies the number of exits, and the index of the cluster implies
the exit depth.

The intuition is that the goal of multi-exit models is to reduce computational costs
by allowing data samples to be predicted and to exit at an early point. Therefore,
the inference time for data samples inevitably varies with the depth of the exit, i.e.,
data samples leaving deeper exit points imply longer inference times. Thus, we can
determine the exit depths by observing the magnitude of inference time. Experimental
results show that our hybrid attack achieves a strong performance as our time-based
hyperparameter stealing can achieve almost 100% prediction accuracy of exit depths.
Adversary 3. This adversary works without any knowledge about the target models
and target datasets, that is, the adversary can only construct a shadow model that is
different from the target model or a dataset from a different distribution from the target
dataset. Meanwhile, the different architectures between the shadow model and the target
model will inevitably lead to different exit placements between them. Encouragingly, our
hybrid attack still has better attack performance than the original attacks, suggesting
that the extra exit information has a broader range of applicable attack scenarios.

Finally, we propose a simple but effective defense mechanism called TimeGuard,
which postpones giving the prediction, rather than giving them immediately. Our
in-depth analysis shows that TimeGuard can reduce attack performance to a lower
bound and maintain high efficiency, i.e., achieve the best trade-off between privacy and
efficiency.

Abstractly, our contributions can be summarized as:

• We take the first step to audit the privacy risks of multi-exit networks through
the lens of membership inference attacks.

• Our empirical evaluation shows that the multi-exit networks are less vulnerable
to member inference, and the exit information is highly correlated with the attack
performance.

• We propose a hybrid attack that exploits the exit information to improve the
attack performance of membership inference.

• We evaluate the membership leakage threat caused by the proposed hybrid attack
under three different adversarial setups, ultimately arriving at a model-free and
data-free adversary, which further enlarges the scope of the hybrid attack.

• We propose TimeGuard to mitigate privacy risks stemming from our attack and
empirically evaluate its effectiveness.
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4.1.2 Organization

The rest of the chapter is organized as follows. In Section 4.2, we conduct a com-
prehensive measurement of the vulnerability of multi-exit networks to membership
inference. Section 4.3, Section 3.2.5, and Section 3.3.4 present the threat models, attack
methodologies, and evaluations of our proposed hybrid attack under different types of
adversaries, respectively. In Section 4.6, we introduce the defense mechanism. Finally,
Section 4.7 concludes the chapter.

4.2 Quantifying Membership Leakage Risks

In this section, we quantify the privacy risks of multi-exit networks through the lens
of membership inference attacks. We start by defining the threat model. Then, we
describe the attack methodology. Finally, we present the evaluation results. Note that
our goal here is not to propose a novel membership inference attack. Instead, we aim
to quantify the membership leakages of multi-exit networks. Therefore, we follow the
existing attacks and their threat models.

4.2.1 Threat Model

Here, we outline the threat models considered in this work. There are three existing
categories of scenarios, i.e., white-box scenario, black-box scenario, and label-only
scenario.

Given a target model, we assume the adversary has an auxiliary dataset (namely
shadow dataset) that comes from the same distribution as the target model’s training
set. The shadow dataset is used to train a shadow model, the goal of which is to
mimic the behavior of the target model to perform the attack. Furthermore, we assume
the shadow model has the same architecture as the target model following previous
works [94, 76, 124, 116, 78, 128, P1]. In particular, the exit placements of the shadow
multi-exit model are also the same as that of the target multi-exit model.

4.2.2 Attack Methodologies

We leverage existing membership inference attacks, which are designed for vanilla ML
models, to multi-exit models. More specifically, for three different scenarios, we consider
three representative attacks, namely gradient-based attacks [94, 76] in the white-box
scenario, score-based attacks [124, 116, 78, 128] in the black-box scenario, and label-only
attacks [P1, 34] in the label-only scenario.
Gradient-based Attacks. In gradient-based attacks [94, 76], the adversary obtains
all adversarial knowledge and has full access to the target model. This means for any
data sample x, the adversary not only obtains the prediction (score and label) but also
knows the intermediate computations (features and gradients) of x on the target model.
Given a shadow dataset Dshadow, the adversary first splits it into two disjoint sets,
i.e., shadow training set Dtrain

shadow and shadow testing set Dtest
shadow. Then the adversary

queries the shadow model S on each data sample x from Dtrain
shadow, and computes the

prediction score, the feature of the second to the last layer, the loss in a forward pass,
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and the gradient of the loss with respect to the last layer’s parameters in the backward
pass. These computations, in addition to the one-hot encoding of the true label, are
concatenated into a flat vector and labeled as a member if x is in the shadow training
set Dtrain

shadow, otherwise labeled as a non-member. In this way, the adversary can derive
all data samples of Dshadow as an attack training data set. With the attack training
dataset, the adversary then trains the attack model, which is a binary classifier. Once
the attack model is trained, the adversary can perform the attack to query the target
model T to differentiate members and nonmembers of the target dataset Dtarget.

Score-based Attacks. Score-based attacks [124, 116, 78, 128] need to train the
shadow model as well. Unlike gradient-based attacks, score-based attacks do not require
intermediate features or gradients of the target model, but only access to the output
scores of the model. The adversary also derives the attack training dataset by querying
the shadow model using the shadow training dataset (labeled as members) and the
shadow test dataset (labeled as non-members). The adversary can then use the attack
training set to construct an attack model.

Label-only Attacks.. Label-only attacks [P1, 34] consider a more restricted scenario
where the target model only exposes the predicted label instead of intermediate features
or gradients, or even output scores. Thus, label-only attacks solely rely on the target
model’s predicated label as their attack model’s input. Similar to previous attacks,
this attack requires the adversary to train a shadow model. The adversary queries the
target model on a data sample and perturbs it to change the model’s predicted labels.
Then, the adversary measures the magnitude of the perturbation and considers the data
samples as members if their magnitude is greater than a predefined threshold, which
can be derived by perturbing the shadow dataset on the shadow model.

4.2.3 Experimental Settings

Datasets. We consider six benchmark datasets of different tasks, sizes and complexity
to conduct our experiments. Concretely, we adopt three computer vision tasks, namely
CIFAR-10 [1], CIFAR-100 [1], TinyImageNet [4], and three non-computer vision tasks,
namely Purchases [6], Locations [7] and Texas [8]. In particular, the latter three datasets
are privacy-sensitive: Purchases relate to shopping preferences, Locations relate to social
connections, and Texas relate to health status. Details of all six datasets can be found
in Section 2.4.

Datasets Configuration. For a given dataset D, we randomly split it into four
disjoint equal parts: Dtrain

target, Dtest
target, Dtrain

shadow, and Dtest
shadow. We use Dtrain

target to train the
target model T and treat it as the members of the target model. We treat Dtest

target as
the non-members of the target model. Similarly, we use Dtrain

shadow to train the shadow
model S and treat it as the members of the shadow model. We again treat Dtest

shadow as
the non-members of the shadow model. We feed all Dtrain

shadow and Dtest
shadow to the shadow

model to create an attack training dataset to train the attack models.

Attack Model. Here we establish three types of attack models and each type for one
attack.
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• Gradient-based. This attack has five inputs for the attack model, like the
one used by Nasr et al. [94], including the target sample’s prediction score, the
feature of the second to last layer, classification loss, gradients of the last layer’s
parameters, and one-hot encoding of its true label. Each input is fed into a
different MLP (2 or 3 layers), and the resulting embeddings are concatenated
together as one vector to a 4-layer MLP.

• Score-based. The score-based attack utilizes the predicted score as input to the
attack model, which is constructed as a 4-layer MLP with one input component.

• Label-only.. Here, the attack model is not a specific MLP but a decision function
that measures the magnitude of the perturbation and considers data samples as
members if their magnitude is larger than a predefined threshold, which can be
derived by perturbing the shadow dataset on the shadow model.

Target Model (Multi-Exit Model). For computer vision tasks, we adopt four
popular architectures as the backbone to construct multi-exit models, including VGG-
16 [125], ResNet-56 [50], MobileNetV2 [117], and WideResNet-32 [151]. For non-
computer vision tasks, we designed four 18-layer fully connected networks (FCN-18)
with different numbers of hidden neural units (1024, 2048, 3072, 4096), named FCN-
18-1/2/3/4 throughout the work. For the exit placement, we follow the principle of
Kaya et al. [72] by attaching an additional lightweight classifier (2- or 3-layer MLP) as
an exit, i.e., exit placements are restricted to be at the output of individual network
blocks, following an approximately equidistant workload distribution. In particular, for
each backbone model, we construct 5 different target models with the number of exits
varying from 2 to 6. Note that here we consider the backbone model’s own classifier as
the final exit point and count it in the total number of exits. For early-exit threshold
τ (0 ≤ τ ≤ 1), we manually search for suitable τ value (among 0 to 1 in 0.05 steps)
that achieve the same or similar classification performance as vanilla (backbone) models
while gaining lower computational cost. To evaluate computational cost, we calculate
the number of mathematical operations (denoted as ops) in the feedforward pass process
by averaging over 10,000 images. The early-exit threshold we set for multi-exit models
can be found in Appendix Table A.2 and Table A.3.

Baseline (Vanilla Model). To fully understand the membership leakages of multi-exit
models, we further use the vanilla model as the baseline model. We train eight models
from scratch for all datasets, including both computer vision and non-computer vision
models. In all cases, including vanilla and multi-exit models, we adopt cross-entropy as
the loss function and Adam as the optimizer, and train them for 100 epochs. Our code
is implemented in Python 3.8 and PyTorch 1.8.1 and runs on an NVIDIA HGX-A100
server with Ubuntu 18.04.

Metric. Following previous work, we adopt the accuracy, i.e., attack success rate
(denoted as ASR) through the work, as the attack model’s training and testing datasets
are both balanced with respect to membership distribution. Note that we average the
performance of different multi-exit models with the number of exits varying from 2 to 6
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Figure 4.1: The performance of original classification tasks and computational costs
for both vanilla and multi-exit models. Computer vision tasks are on VGG-16, and
non-computer vision tasks are on FCN-18-1.

and report the mean and standard deviation. Besides, our evaluation adopts different
datasets, architectures, and attack methods, which inevitably lead to a wide variety of
results.

4.2.4 Evaluation

Classification Accuracy and Computational Cost. We first show the performance
of vanilla and multi-exit models on their original classification tasks and computational
costs in Figure 4.1. See more results of other morels in our peer-review publication [P2].
We observe that the multi-exit model performs at least on par with the vanilla model
on the classification task, but is much better in terms of computational cost. For
instance, the multi-exit VGG-16 trained on CIFAR-10 achieves 80.558% accuracy, which
is better than the 80.04% accuracy of vanilla VGG-16. As for the computational cost,
the multi-exit VGG-16 achieves 0.3125 Gops while the vanilla model achieves 0.6283
Gops.

Attack ASR Score. Regarding membership inference against vanilla and multi-exit
models, we report ASR score on all datasets and model architectures in Figure 4.2. We
can observe that all the multi-exit models have lower ASR than the vanilla models. For
example, score-based ASR on vanilla VGG-16 trained on CIFAR-100 is 0.8738, while the
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Figure 4.2: The attack performance of original membership inference attacks against
vanilla and multi-exit models. Computer vision tasks are on VGG-16, and non-computer
vision tasks are on FCN-18-1.

mean ASR on multi-exit VGG-16 is only 0.5914. Label-only ASR on vanilla FCN-18-1
trained on Locations is 0.8866, while the mean ASR on multi-exit VGG-16 is 0.7831.
However, these results may lead to premature claims of privacy. Section 4.3 presents
that the membership leakage risks stemming from our hybrid attack are much more
severe than shown by existing attacks.

Overfitting Level. Here, we delve more deeply into the reasons for the less vulnerability
of multi-exit models. As almost all previous works [116, 124, P1, 128, 78, 52, 146, 93]
claim that the overfitting level is the main factor contributing to the vulnerability of the
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Figure 4.3: Comparison of overfitting levels between vanilla and multi-exit model. Note
that 1 exit represents the vanilla model, and 2-6 exits represent different multi-exit
models.

model to membership inference, i.e., a lower overfitting level leads to less vulnerability to
membership inference. Here, we also relate this to the different overfitting levels of ML
models. The overfitting level of a given model is measured by calculating the difference
between its training accuracy and testing accuracy, i.e., subtracting testing accuracy
from training accuracy, which is adopted by previous works. In Figure 4.3, however, we
see that the overfitting level of multi-exit models remains almost the same compared to
the vanilla model, especially in VGG-16 and WideResNet-32 trained CIFAR-10 dataset.

This observation which is contradictory to the previous conclusion inspires us to
rethink the relationship between overfitting levels and vulnerability to membership
inference. More precisely, we argue that the current calculation, i.e., subtracting test
accuracy from training accuracy, is not the best way to characterize overfitting level,
which leads to no strong correlation between overfitting level and vulnerability to
membership inference, at least for multi-exit models.

Loss Distribution. To find a more appropriate way to characterize the overfitting level
and also to further investigate why the multi-exit model is less vulnerable to membership
inference, we analyze the loss distribution between members and non-members in both
vanilla and multi-exit models. Due to space limitations, we only show the results of
VGG-16 trained on the CIFAR-10 dataset in Figure 4.4. A clear trend is that compared
to the vanilla VGG-16, the multi-exit VGG-16 has a much lower divergence between
the classification loss (cross-entropy) for members and non-members, especially the
classification loss of members becomes larger. Note that in Figure 4.3a, the overfitting
level calculated by subtracting test accuracy from training accuracy is almost the same
between vanilla and multi-exit VGG-16 trained on CIFAR-10.

Based on the above observation, we believe that calculating the divergence between
the loss distribution of members and non-members can better characterize the overfitting
level. More concretely, we leverage Jensen-Shannon (denoted as JS) divergence, a widely
used metric, to measure the distance of two probability distributions [45]. In Figure 4.5,
we display JS divergence between the classification loss of members and non-members
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Figure 4.4: The loss distribution of original classification tasks for member and non-
member samples between the vanilla VGG-16 and the 4-Exit VGG-16 on CIFAR-10.
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Figure 4.5: Comparison of JS divergence between vanilla and multi-exit models. Note
that 1 exit represents the vanilla model and 2-6 exits represent different multi-exit models.

with respect to the number of exits. We can see that the JS divergence of multi-
exit models is clearly lower than that of vanilla models. These results show that JS
divergence is indeed a better way to characterize the overfitting level, compared to
subtracting test accuracy from training accuracy.

Effects of the Number of Exits. We further investigate the effects of the number
of exits attached to the backbone models. More interestingly, in Figure 4.5, we can also
find the model with more number of exits leads to lower divergence. This indicates that
the number of exits is negatively correlated to the vulnerability to membership leakages.
The reason is that more exits attached to the backbone model mean that more data
samples leave the earlier exit points than the final exit points, which makes the model
less likely to be overfitted.

Effects of the Depth of Exits. Here we investigate the effects of the depth of exits
attached to the backbone models. Given a backbone model with 6 exits, we use the exit
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Figure 4.6: The JS divergence of classification loss with respect to the depth of exits.
The x-axis represents the depth of exit. The y-axis represents the JS divergence.

index (from 0 to 5) to represent the depth of exits. We calculate the JS divergence for
members and non-members of each exit point separately. As shown in Figure 4.6, we can
see that the JS divergence increases with the depth of exit. These results indicate that
the depth of exits is positively correlated to the vulnerability to membership leakages,
i.e., the samples leaving from deeper exit points were easier to distinguish between
members and non-members. The reason for this observation is that deeper exit points
imply higher capacity models, which are more likely to be overfitted to the training set.

4.3 Hybrid Membership Inference Attack with Exit Informa-
tion (Adversary 1)

After quantifying membership leakages of multi-exit models, we conclude that the
multi-exit models are less vulnerable to membership leakages, and, more interestingly,
we find that exit information is highly correlated with attack performance. The latter
motivates us to present a new research question: Can extra exit information (number
and depth) of the multi-exit model leak more membership information about the training
set?. Before answering the above research question, more importantly, we need to answer
these two-step questions first:

• how to obtain the exit information of target multi-exit models, especially in
black-box and label-only scenarios.

• how to leverage the exit information to improve existing membership inference
attacks.

In the next section, we propose a novel hybrid attack that first steals exit information
and then exploits the exit information as new knowledge for the adversary. In particular,
we study three different scenarios for hybrid attacks by starting with some strong
assumptions and gradually relaxing them to show that far more broadly applicable
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attack scenarios are possible. Next, we describe our first adversary considered for
leveraging exit information to mount membership inference attacks.

4.3.1 Threat Model

For this adversary, we mainly make a strong assumption about the adversary’s knowledge.
We assume that the adversary has direct access to exit information, i.e., exit depth.
More concretely, given a data sample and a 6-exit model, the model outputs not only
predictions (score or label) but also exit information, e.g., predictions from the first exit
point (exit 0 ) or the sixth exit point (exit 5 ). Note that, here we directly consider the
exit index as the exit depth. exit 0 means the shortest path from the entry point to the
first exit, while exit 5 means the longest path from the entry point to the final exit.

In addition, we make the same assumptions for other settings, such as data knowledge,
training knowledge, model knowledge, and output knowledge. For example, in the
gradient-based attack, we keep the assumption unchanged that the adversary has access
to the intermediate computations of the target model.

4.3.2 Attack Methodology

The attack methodology is organized into two stages: hyperparameter stealing and
enhanced membership inference.
Hyperparameter Stealing. The adversary first queries the target model using a large
number of data samples, which can come from the shadow dataset or random data
samples collected from the Internet. They then count all exit indexes and sort them
from smallest to largest. Thus, the largest index implies the number of exits attached
to the backbone model.
Enhanced Membership Inference. According to the two different types of attack models
used in existing attacks, we propose different methods for each attack model to exploit
the exit information.

• MLP Attack Model. In gradient-based and score-based attacks using MLP as
the attack model, given the exit information (number and depth), the adversary
first converts it to a one-hot encoding, which is the same as the one-hot encoding
of the true label used in the gradient-based attack. They then provide the one-hot
encoding of the exit information and other existing information to the attack
model.

• Decision Function. In the original label-only attack, the adversary measures
the magnitude of the perturbation and treats the data samples as members if their
magnitude is larger than a predefined threshold. Here, instead of performing the
above operation directly on all data samples, the adversary first separates the data
samples according to their exit depths and then performs the above operation to
distinguish members and non-members of each exit depth. The thresholds are also
derived in this way on the shadow model. Note that label-only attack proceeds
directly to the second stage without the hyperparameter stealing stage, because
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Figure 4.7: The attack performance of different membership inference attacks on all
datasets. The blue and green bars indicate the original attack on the vanilla and
multi-exit models, while the red bar indicates our hybrid attack on the multi-exit model.
Computer vision tasks are on VGG-16, and non-computer vision tasks are on FCN-18-1.

the adversary does not need to generate one-hot encoding based on the exit depth
and number.

In addition, all other attack steps are the same as those used in original attacks, such
as shadow model training and attack training dataset building.
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Figure 4.8: Proportion of non-members in all samples leaving at each exit.

4.3.3 Evaluation

Experimental Setup. The adversary has six inputs and two inputs for the attack
models in the gradient-based and score-based attacks, respectively, where the extra
one is the one-hot encoding of the exit depths. Thus the new attack model has one
more input component. For the evaluation metric, we again use the attack success
rate (denoted as ASR). Note that in label-only attacks, we average ASR scores across
all exit depths, as ASR is independent of exit depths. Besides that, we use the same
experimental setup as presented in Section 4.2.3, such as the datasets, multi-exit model
structures, and training settings.
Results. Figure 4.7 depicts the original and hybrid attacks’ performance. See more
results in our peer-review publication [P2]. Note that we also average the performance
of multi-exit models with the number of exits varying from 2 to 6 and report the mean
and standard deviation. Encouragingly, we can observe that hybrid attacks achieve
clearly higher ASR scores than original attacks, regardless of datasets, architectures,
and attack types. These results convincingly demonstrate that extra exit information of
the multi-exit model leaks more membership information about the training set than
the original information.

More interestingly, we also find that compared with gradient-based attacks, the extra
exit information used in score-based and label-only attacks can significantly improve the
performance of the original attacks. Recall that gradient-based attacks are applicable in
white-box scenarios. This indicates that the original gradient-based attack has already
exploited almost all the information and thus can achieve the attack performance close
to the upper bound. Therefore, in gradient-based attacks, extra exit information can
not lead to much higher attack performance gains. In contrast, we can observe that
in label-only attacks, extra exit information leads to much higher attack performance
gains.

The above results fully demonstrate the efficacy of our hybrid attack. Here, we
delve more deeply into the reasons for the success. Our insight is that the exit depth
is a critical indicator for membership inference. Figure 4.8 shows the proportion of
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Figure 4.9: The attack performance of different membership inference attacks against
vanilla and multi-exit models. The blue and green bars indicate the original attack on
the vanilla and multi-exit models, while the red and purple bars indicate our hybrid at-
tack on the multi-exit model. Computer vision tasks are on VGG-16, and non-computer
vision tasks are on FCN-18-1.

non-members in all samples leaving at each exit. We can see that members tend to exit
early, while non-members tend to exit late. In other words, the later exit depth itself
indicates that the samples leaving here are likely to be non-members, in contrast to early
exits where the samples are likely to be members. Recall that Figure 4.6 shows that the
JS divergence of late exits is much larger than early exits, which further contributes to
our hybrid attack. Such separability of members/non-members in terms of exit depth
guarantees the efficacy of our hybrid attack.

4.4 Hybrid Membership Inference Attack without Exit Infor-
mation (Adversary 2)

In this section, we relax the assumption that the adversary has direct access to exit
information. We start by explaining the threat model, then describe the adversary’s
attack methodology. In the end, we present a comprehensive experimental evaluation.

57



CHAPTER 4. AUDITING MEMBERSHIP LEAKAGE OF MULTI-EXIT NETWORKS

0 1 2 3 4 5
Ground Truth Index of Exits (Depth)

2

4

6

8

10

12

In
fe

re
nc

e
T

im
e

(m
ill

is
ec

on
ds

)

(a) 6-Exit ResNet-56

2.5 5.0 7.5 10.0 12.5
Inference Time (milliseconds)

10−6

10−5

10−4

10−3

10−2

10−1

100

D
en

si
ty

(b) 6-Exit ResNet-56

Figure 4.10: The inference time with respect to the ground truth index of exit (a), and
the density estimation by KDE based on inference time (b). They are both obtained
from the same model, i.e., 6-exit ResNet-56 trained on CIFAR-100.

Table 4.1: The prediction accuracy of exit depths when we run 4 models simultaneously,
each on a single GPU. We average the performance with the number of exits varying
from 2 to 6 and report the mean and stand deviations.

Target Model CIFAR-10 CIFAR-100 TinyImageNet
VGG 0.9998±2e-4 0.9999±1e-5 0.9999±1e-4

ResNet 0.9999±2e-5 1.0±0.0 1.0±0.0
MobileNet 0.9998±8e-5 1.0±0.0 0.9998±2e-4

WideResNet 0.9996±2e-7 0.9999±1e-5 0.9999±1e-5

4.4.1 Threat Model

Different from the threat model in Section 4.3, we remove the assumption that the
adversary has direct access to exit information, i.e., exit depth. This largely reduces
the attack capabilities of the adversary. Given a data sample, the multi-exit model
gives a prediction that includes only the score or label and does not include any exit
information. This is a more realistic but also more challenging scenario. Note that we
only focus on score-based and label-only attacks, as in this scenario it is unlikely the
adversary can obtain gradients or features of target models.

4.4.2 Attack Methodology

Recall that the goal of multi-exit models is to reduce computational costs by allowing
data samples to be predicted and to exit at an early layer. Therefore, the inference
time for data samples inevitably varies with the depth of the exit, i.e., data samples
leaving deeper exit points imply longer inference times, as shown in Figure 4.10a. This
renders us a new perspective to determine the exit information, i.e., the magnitude of
inference time actually represents the different exit depths. We refer to this method as
time-based hyperparameter stealing.

The adversary first queries the target multi-exit model using a large number of data
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samples and records the inference time of these samples. These query samples can come
from the shadow dataset, or random data collected from the Internet or any source.
The adversary then sorts all recorded inference time as a one-dimensional array. Note
that a longer inference time indicates a deeper exit point. Thus the adversary can
partition this one-dimensional array into different clusters. Here we leverage Kernel
Density Estimation (KDE)[111], an unsupervised statistical method for clustering one-
dimensional data. Figure 4.10b shows a set of records of inference time, and we can
see that KDE fits these records with a smoothed line. Then, several minima of the
smoothed line can be used to partition them into different clusters. Thus the number
of clusters means the number of exits attached to the target model, and the index of
each cluster means the exit depth. The reason why we adopt KDE is that we want
to cluster one-dimensional arrays (i.e., recorded time), for which KDE is well suited,
while other popular techniques such as K-means [84], kNN [91] and DBSCAN [41] are
multidimensional clustering algorithms.

4.4.3 Evaluation

Experimental Setup. We use all the same setups as presented in Section 4.2.3, such
as the attack model design and evaluation metric. All experiments are conducted on an
NVIDIA HGX-A100 server with 4-GPU deployed. We run 4 models simultaneously at
a time, each on a single GPU. Practically, in order to get a stable inference time, we
calculate the inference time by averaging the time of each sample 10 times.

Results. First, we report the prediction accuracy of exit depth overall datasets and
model architectures in Table 4.1. As we can see, our proposed time-based hyperparameter
stealing can achieve almost 100% accuracy. This indicates that the magnitude of inference
time indeed can represent the exit depth, i.e., a longer inference time represents a deeper
exit point and vice versa. Consequently, we can observe that our two adversaries achieve
very similar performance for all datasets and model architectures in Figure 4.9. These
results clearly demonstrate our hybrid attacks are very broadly applicable.

Next, we focus on the practicality of our hybrid attack against remotely deployed
models, i.e., Machine Learning as a Service (MLaaS). This is a more challenging
scenario where the communication channel can be very noisy. To simulate the complex
communication channel, we assume that the noise z in the channel follows Gaussian
distribution N (µ, σ2). More specifically, we first measure the clean inference time t,
then sample the noise z from N (µ, σ2), and finally obtain the noisy inference time
t′ = t + z(z > 0). Here, the z > 0 is to ensure that the noisy inference time t′ is larger
than the clean inference time t. To obtain a stable inference time, we propose a simple
method that computes the inference time by averaging the noisy inference time 10 or
more times, i.e., querying the remote model multiple times for each sample. Figure 4.11
shows the prediction and attack performance under the effect of variance σ of noise
and query numbers for each sample. We can see that the highest prediction accuracy
and ASR scores can be achieved if the number of queries is large enough, i.e., multiple
queries can indeed eliminate the effect of noise. Furthermore, as shown in Figure 4.11a,
we can find that even if the prediction accuracy of the exit depth drops by more than
30%, it still leads to high attack ASR scores.
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Figure 4.11: The exit prediction and attack performance under the effect of query
numbers N and standard deviation σ. The model is WideResNet-32 trained on TinyIma-
geNet.

Furthermore, we delve more deeply into the lower bound of query numbers that can
guarantee high attack performance. Consider the noise follows N (µ, σ2), and two clean
inference time t1 and t2 from two adjacent exits exit #1 and exit #2, respectively. Thus,
the noisy inference time t′ actually follows N (t+µ, σ2). The research question now is how
many query numbers can guarantee the averaged noisy inference time t̄′

1 and t̄′
2 can be

distinguished with high confidence. Here, we leverage Z-Test [9], a statistical technique,
to determine whether two population means t̄′

1 and t̄′
2 are significantly different. To

this end, we first query the target model with one certain sample many times (typically
more than 100 times) to estimate the standard deviation σ. Then we calculate the
Z-Score by the following formula:

Z = t̄′
1 − t̄′

2√
σ2

n1
+ σ2

n2

= (t1 + µ) − (t2 + µ)√
σ2

N + σ2

N

= (t1 − t2)
σ

√
2
N

(4.1)

where n1 and n2 represent the query numbers for t̄′
1 and t̄′

2, and we consider the same
query numbers N for all samples, i.e., n1 = n2 = N . Besides, as Figure 4.10 shows,
we consider the minimal time difference (ms) between two adjacent exit |t1 − t2| ∈
{3, 5, 7, 9, 11}. To satisfy p ⩽ 0.05, i.e., the average noise inference time t̄′

1 and t̄′
2 can

be distinguished with more than 95% confidence, we should ensure that |Z| ⩾ 1.96.1
Thus we can derive the relationship between N and σ as shown in Figure 4.12. Given
|t1 − t2| and σ, the corresponding N denotes the lower bound of query numbers that
can guarantee to divide two adjacent exits with more than 95% confidence. Recall that
as shown in Figure 4.11a, even if the prediction accuracy of the exit depth drops by
more than 30%, it still leads to a high attack ASR score, so the lower bound on the
number of queries can also lead to high attack ASR score.

1https://pro.arcgis.com/en/pro-app/2.8/tool-reference/spatial-statistics/
what-is-a-z-score-what-is-a-p-value.htm
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Figure 4.12: The relationship between query numbers N and standard deviation σ. The
y-axis N denotes the lower bound of query numbers that can guarantee to divide two
adjacent exits t1 and t2 with more than 95% confidence.

4.5 Model and Dataset Independent Hybrid Membership
Inference Attack without Exit Information (Adversary 3)

Previous work [116, 124, P1, 128, 78, 52] has focused on the setup where the adversary
trains a shadow model with the same architecture as the target model. Here, we have
to ask Does the same exit placement and the same architectural model lead to attack
performance gains?. Therefore, here we investigate whether the exit information still
leaks more membership information when we relax this assumption. In addition, we
also investigate the effect of the shadow dataset when we relax the assumption that the
shadow dataset and target dataset are identically distributed. In the following, we start
with the threat model description. Then, we list the attack methodology. In the end,
we present the evaluation results.

4.5.1 Threat Model

To challenge our hybrid attack, we remove the assumption that the adversary can build
a shadow model with the same architecture and exit placement as the target model,
which largely reduces the attack capabilities of the adversary. In addition, we perform
the evaluation of the gain of the exit to attack performance by relaxing the assumption
that the shadow and target datasets are identically distributed.

4.5.2 Attack Methodology

The strategy of the third adversary is very similar to the second adversary. The only
difference is that the third adversary uses a shadow model with a different architecture
from the target model, which further inevitably leads to a different exit placement
between shadow and target models. For example, given a target model ResNet-56 with
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Figure 4.13: The attack performance when the shadow model has different architecture
compared to the target model. These computer vision models (a and b) are trained on
CIFAR-100, and these non-computer vision models (c and d) are trained on Purchases.

6 exits, the adversary can only train a different model, like VGG-16 with 6 exits, to
perform membership inference. In this case, the placement of these 6 exits attached to
the backbone model is different between ResNet-56 and VGG-16.

To relax the assumption on the same distribution between the shadow and target
datasets, we use different datasets, e.g., CIFAR-10 as the target dataset and TinyIma-
geNet as the shadow dataset, to launch our hybrid attack.

4.5.3 Evaluation

Experimental Setup. We use the same settings as described in Section 4.4.

Results. Figure 4.13 shows the attack performance when the shadow models are
constructed by different architectures as the target models. First, we observe that the
attack performance remains almost the same in both the original attack and hybrid
attack, respectively. More encouragingly, we can also find that the attack performance
of our hybrid attack is clearly higher than that of the original attack. For instance,
when the target model is WideResNet-32 and the shadow model is VGG-16, the ASR
score of our hybrid attack is 0.7935, while that of the original attack is only 0.7205.
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Figure 4.14: The attack performance when the shadow dataset comes from different
distributions of the target dataset. The computer vision model (a and b) we used is
MobileNet, and the non-computer vision model (c and d) we used is FCN-18-1.

Such observation indicates that we can relax the assumption that the shadow model
has the same model architecture and exit placement as the target model.

Furthermore, we also investigate whether we can relax another assumption of the
same distribution between the shadow dataset and the target dataset. Figure 4.14 shows
the attack performance when the shadow dataset is distributed differently from the
target dataset. We observe that the performance of our hybrid attack is still better
than the original attack even when the target and shadow datasets are different. Such
observation hints that we can also relax the assumption of a same-distribution shadow
dataset.

In conclusion, we show that adversary 3 can free the attacker from knowing the
target model (especially exit placements) and target dataset, which further enlarges the
scope of the hybrid attack. These results convincingly show that the corresponding risks
are much more severe under the threats caused by our hybrid attack. Furthermore, the
fact that privacy risks are much more severe shown by our hybrid attacks would hinder
the process of green AI that aims at fast inference and energy-efficient computing.
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4.6 Defense

In this section, we explore the possible defense and empirically conduct the evaluation.
Recall that the adversary determines the exit depths by observing the different magnitude
of inference time, thus the intuition of our defense is to hide the difference in inference
time for different exit points. We name our defense TimeGuard.
TimeGuard. The key point is that the multi-exit networks delays giving predictions,
rather than giving them immediately. One simple but naive defense mechanism is
delaying giving predictions to the maximum inference time, i.e., a sample passes forward
through all the layers of the model, acting like a vanilla model without any exit inserted.
This behavior will make it impossible for the adversary to determine the exit information
by observing inference time. However, this mechanism preserves privacy perfectly but
is less efficient because it destroys one of the core ideas of multi-exit networks, which is
to reduce the inference time for certain samples.

To achieve a better trade-off between privacy and efficiency, here we propose a novel
mechanism for TimeGuard with high efficiency. See Figure 4.15 for an illustration of
TimeGuard working on a 3-exit network. More concretely, consider the clean inference
time t of one certain exit, thus the delay inference times of all the samples leave at this
exit follow the right part of Gaussian distribution N (t, σ2). See algorithm of TimeGuard
in Algorithm 3.

Algorithm 3: TimeGuard with high efficiency.
Input: a data sample x, standard deviation σ, multi-exit model M, a secret

global seed S.
Output: delay time t′ for x.

1 calculate hash h by Hash(x); /* Hash(x) is Sha512 or ImageHash
for non-images or images. */

2 set random seed by random.seed(HKDF(h, S)); /* the seed of Gaussian
noise is secret */

3 sample Gaussian noise I by random.normal(t, σ2, size=1); /* I is unique
and repetitive for x */

4 observe the exit depth where x leaves by feeding x to M;
5 obtain clean inference time t of the exit;
6 calculate delay time t′ = t + |t − I| ;
7 return delay time t′;

Here, we leverage ImageHash [10] or Sha512 [35] to calculate the unique hash h,
and leverage HKDF [75] to generate the secret seed for Gaussian noise. In other words,
we can obtain a fixed delay inference time t′ for x since the hash h is unique (line 1)
regardless of the number of queries. Thus, multiple queries on a data sample always
give us the same delayed inference time, which is different from the scenario of noise
variance reduction.

To further investigate the trade-off between privacy and efficiency under the influence
of the standard deviation, we report attack performance and averaged inference time of
each sample by varying the standard deviation in Figure 4.16. We can observe that as
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Figure 4.15: An illustration of how TimeGuard works on a multi-exit network with 3 exits.
The y-axis represents the density of samples leaving at a certain delaytime among all
samples at the same exit. These delaytimes follow the right part of Gaussian distribution
N (t, σ2).
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Figure 4.16: The attack performance and TimeGuard’s efficiency under the effect of
standard deviation used in TimeGuard. Here, WRNet means WideResNet.

the standard deviation increases, the ASR score decreases, while the averaged inference
time increases. Since the ASR score of the original attack is the lower bound of the
attack performance in both the original and hybrid attacks, the intersection of the two
blue lines shown in Figure 4.16 is the best defense scenario for the model. In other words,
the corresponding standard deviation is the optimal setting for TimeGuard, which not
only reduces the ASR score to the lower bound but also maintains fast inference.

4.7 Conclusion

In this work, we take the first step to audit the privacy risk of multi-exit networks
through the lens of membership inference. We conduct extensive experiments and find
that multi-exit networks are less susceptible to membership leakage and that exits
(number and depth) are highly correlated with attack performance. We further propose
a hybrid attack to improve the performance of existing membership inference attacks
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by using exit information as new adversary knowledge. We investigate three different
adversarial settings for different adversary knowledge and end up with a model-free
and data-free adversary, which shows that our hybrid attack is broadly applicable and
thus the corresponding risk is much more severe than that shown by existing attacks.
Finally, we present a simple but effective defense mechanism called TimeGuard and
empirically evaluate its effectiveness.
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Figure 5.1: An illustration of GAN inversion and latent code manipulation, as well as a
high-level overview of UnGANable.

5.1 Introduction

The rapid development and widespread use of machine learning have greatly contributed
to the growth of artificial intelligence generated content (AIGC) [45, 71, 103, 105, 109].
By enabling the production of multimedia content of superior quality, AIGC has opened
new avenues for innovative applications in various fields, such as the creative arts,
advertising, filmmaking, and video games.

While AIGC is promising, it is also vulnerable to being exploited for data privacy
violations [141, 37, 160, 122, 63, 48, 123, 149, 99, 31, 44, 32]. Adversaries can abuse
AIGC to compromise data privacy, and the most representative privacy risk is visual
misinformation through deepfake technology, which is based on machine learning and
especially, generative models such as Generative Adversarial Networks (GANs) [45]. For
instance, malicious editing of face images based on GAN-based face manipulation [141,
160, 122, 63, 48] can create false impressions, deceive people, or even trick biometric
systems. Therefore, heavy concerns about such privacy risks are raised, and we believe
that individuals need tools to protect their facial images from being abused by malicious
manipulators.

To leverage GANs to manipulate facial images, the manipulator/adversary needs to
perform a two-step operation. The first step is GAN inversion [159, 14, 15, 158, 21,
139] which inverts a victim’s facial image to a latent code. The second step is latent
code manipulation [141, 160, 122, 63, 48, 123, 149, 99, 31, 44] which manipulates the
latent code to get the modified image, such as adding a pair of glasses on the victim’s
face. See Figure 5.1 for an illustration of the two-step operation.

5.1.1 Contributions

In this chapter, we propose the first defense system, namely UnGANable, against GANs-
inversion-based face manipulation. In particular, UnGANable focuses on defending
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against GAN inversion. Once an image is successfully inverted to its accurate latent
code, it is extremely hard (if not possible) to defend the following manipulation step as
the adversary can perform any operation on the latent code. Therefore, we believe the
most effective defense is to reduce the performance of GAN inversion - the adversary
can only obtain an inaccurate latent code that is far from the accurate one, thus the
following latent code manipulation step will not achieve the ideal result. See Figure 5.1
for an illustration of our defense.

UnGANable searches for cloaked images in the image space which are indistinguish-
able from the target images but can cause the adversary’s GAN inversion to obtain
an inaccurate latent code. In this way, any individual can use UnGANable to protect
their images by sharing only the cloaked images online. Further, we focus on two
state-of-the-art GAN inversion techniques, i.e., optimization-based inversion [14, 15] and
hybrid inversion [159, 158, 139], and consider five scenarios to characterize the defender’s
background knowledge along multiple dimensions. By considering what knowledge the
defender has, we obtain a taxonomy of five different types of methods (called “cloaks”
throughout the chapter) to disenable GAN inversion. More concretely, two cloaks are
designed against optimization-based inversion, while the other three cloaks are designed
against hybrid inversion.

We evaluate all our five cloaks on four popular GAN models that are constructed on
two benchmark face datasets of different sizes and complexity. Extensive experiments
show that UnGANable in general achieves remarkable performance with respect to
both effectiveness and utility. We also conduct a comparison of our UnGANable with
thirteen baseline image distortion methods. The results show that our defenses can
outperform all these methods. We also explore four adaptive adversaries to bypass
UnGANable and conduct sophisticated studies. Empirical results show that Spatial
Smoothing [11] and more iterations of inversion are slightly effective.

In summary, we make the following contributions.
• We take the first step towards defending against malicious face manipulation

by proposing UnGANable, a system that can jeopardize the process of GAN
inversion.

• We consider five scenarios to comprehensively characterize a defender’s background
knowledge along multiple dimensions, and propose five different defenses for
each scenario. Extensive evaluations on four popular GAN models show that
UnGANable can achieve remarkable performance with respect to both effectiveness
and utility.

• We conduct a comparison of our defenses with thirteen baseline image distortion
methods. The results show that our defenses can outperform all these methods.

• We further explore four adaptive adversaries to bypass UnGANable and show that
some of them are slightly effective.

5.1.2 Organization

The rest of this chapter is organized as follows. In Section 5.2, we present the overview
of our defense. We present the defense methodologies and evaluations for optimization-
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based inversion and hybrid inversion in Section 5.3 and Section 5.4, respectively. In
Section 5.4, Next, we present the evaluation of our defenses on real images in Section 5.5
and the possible adaptive adversaries in Section 5.6. Finally, we discuss the limitation
in Section 5.7 and conclude the chapter in Section 5.8.

5.2 Overview of Defense

In this section, we provide an overview of UnGANable.

5.2.1 Intuition

We derive the intuition behind our UnGANable from the basic pipeline of how inversion
works. Since the optimization-based inversion is part of the hybrid inversion, here we
focus only on the former. As described in Section 2.3, the inversion employs a loss
function that is a weighted combination of the perceptual loss [68] and the pixel-wise
MSE loss, to guide the optimization into the correct region of the latent space. This
methodology leads to the following observations.

• The pixel-wise MSE loss works in the pixel space, i.e., the image space.

• The perceptual loss measures the similarity of features extracted from different
images using a pretrained model, which works in the feature space.

• The optimization aims to search for the optimal latent code, which works in the
latent space.

Thus, GAN inversion actually works in at least three spaces, i.e., the image space,
the feature space, and the latent space. These observations motivate our UnGANable,
which aims to maximize deviations in both latent and feature spaces with the cloaked
images, meanwhile maintaining the image indistinguishable in the image space.

5.2.2 Threat Model

The goal of the face manipulator (i.e., adversary) is to manipulate the face without any
authorization from the owner of the face image to serve its purposes, such as violating
individual privacy or even misleading political opinions, The face manipulator could
be a commercial company or even an individual. We assume the face manipulator has
access to advanced GANs (e.g., via GitHub) and can apply two advanced GAN inversion
techniques, namely optimization-based inversion and hybrid inversion, to invert the
images into the latent space. These two inversion methods are shown in Figure 2.2.

5.2.3 System Model

Any user (also called defender) can use UnGANable to search for cloaked images, which
are around the target images in the image space. The design goals for these cloaks are:

• cloaked images should be indistinguishable from the target images;

71



CHAPTER 5. DEFENDING AGAINST GAN-BASED FACE MANIPULATION

Table 5.1: An overview of assumptions. “✓” means the defender needs the knowledge
and “-” indicates the knowledge is not necessary. “Target” means the adversary-
controlled entities, and “Shadow” means the defender-built entities locally.

Inversion Category Cloaks Target Shadow Target Shadow Feature Inversion
Generator Generator Encoder Encoder Extractor Technique

Optimization-based White-box ✓ - - ✓ ✓ ✓

Black-box - - - - ✓ -

Hybrid
White-box - - ✓ - ✓ -
Gray-box - ✓ - ✓ ✓ -
Black-box - - - - ✓ -

• when inverting the cloaked image, the adversary can only get a misleading latent
code, which is far from its accurate one in the latent space (see Equation 5.1).

Generally, UnGANable aims to maximize the deviations in the latent space and feature
space, while keeping the images indistinguishable in image space. Therefore, the
challenge for UnGANable is to obtain the representation in each space. To this end, we
make different assumptions for UnGANable in different scenarios where UnGANable
can use different methods to search for invisible images. The overview of background
knowledge is introduced in Table 5.1

5.3 Defending Against Optimization-based Inversion

In this section, we present UnGANable against the first type of GAN inversion, i.e.,
optimization-based inversion.

5.3.1 Defender’s Knowledge

For optimization-based inversion, we consider two different scenarios to characterize a
defender’s background knowledge.

White-Box (Cloak v0). To maximize the deviation in the latent space, a defender
has white-box access to the target generator Gt, and knows the adversary’s inversion
techniques Io, thus he/she can obtain the accurate latent code of the original image.
Besides, the defender trains a shadow encoder Es to embed interim cloaked images
to obtain the cloaked latent code. Then, the adversary can maximize the deviation
between them. To maximize deviation in the feature space, we further assume that the
defender has access to a feature extractor F , which can map both the original image
and the cloaked image to feature space. Here, the feature extractor can be different
from the feature extractor used in the perceptual loss.

Black-Box (Cloak v1). In this scenario, we assume the defender has no knowledge
of the target generator or inversion techniques. Here, the defender only has access to a
feature extractor F .
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Figure 5.2: An illustration of white-box (Cloak v0) and black-box (Cloak v1) defenses
against optimization-based inversion.

5.3.2 Methodologies

From a high-level overview, the defense can be divided into three simultaneous compo-
nents, namely maximizing latent deviation, maximizing feature deviation, and searching
for cloaked images in the image space. The algorithms are in Appendix Algorithm 4
and Algorithm 7.
White-Box (Cloak v0). The defender first leverages optimization-based inversion Io
to invert a target image x to obtain its exact latent code Io(x).1 For maximizing latent
deviation, the defender needs to build an end-to-end model, namely shadow encoder Es,
to invert the cloaked image x̂ of each step to obtain its latent code.2 To train Es, as
shown in the pink part of Figure 5.2, the defender leverages the target generator Gt to
create a dataset of generated images Gt(z) and their latent codes z, then minimize a
similarity reconstruction loss Lrec between these latent codes Es

(
Gt(z)

)
and z.

Lrec = −Lcos
(
Es

(
Gt(z)

)
, z

)
+ Lmse

(
Es

(
Gt(z)

)
, z

)
(5.1)

where both Lcos and Lmse measure the element-wise similarity of latent codes. Here,
Lcos is cosine similarity loss, and Lmse is MSE similarity loss.

1This process requires white-box access to the target generator Gt, as shown in Figure 2.2.
2The reason is that when iteratively searching in the image space, the defender needs to compute the

cloaked image’s gradient of each step with respect to the latent deviation by backpropagation, which is
intractable through optimization-based inversion. The optimization-based inversion is just an inverted
process, not an end-to-end model.
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Table 5.2: Target GANs, datasets, and resolutions used to evaluate defense perfor-
mance.

Model Zoo Z dims Dataset Resolution
DCGAN (2016)[104] 100 CelebA [83] 64×64
WGAN (2017)[46] 128 CelebA [83] 128×128

StyleGANv1 (2019)[70] 512 FFHQ [70, 71] 256×256
StyleGANv2 (2020)[71] 512 FFHQ [70, 71] 256×256

For maximizing feature deviation, the defender uses a third-party pre-trained model
(e.g., via GitHub) as the feature extractor F to obtain the features F (x) and F (x̂).
Once the defender obtains Io(x), Es and F , the defender iteratively searches for x̂ in
the image space by modifying x, to maximize the latent and feature deviations between
x and x̂.

maxx̂ κ
(
Lrec

(
Es(x̂), Io(x)

))
+ (1 − κ)

(
Lrec

(
F (x̂), F (x)

))
s.t. |x̂ − x|∞ < ϵ

κ ∈ [0, 1]
where Lrec(.) introduced in Equation 5.1 measures the element-wise similarity of two
feature vectors or latent vectors, |x̂ − x|∞ measures the distance between x̂ and x, ε
is the distance budget in image space, and κ is a trade-off hyper-parameter between
latent and feature spaces.
Black-Box (Cloak v1). The defender can only produce significant alterations to
images’ feature space, i.e., searching for x̂ in the image space by modifying x, to
maximize the feature deviation between x̂ and x.

maxx̂ Lrec(F (x̂), F (x))
s.t. |x̂ − x|∞ < ϵ

5.3.3 Experimental Setup

GAN Models and Datasets. Without losing representativeness, we focus on four
generative applications in recent years - DCGAN [104], WGAN [46], StyleGANv1 [70],
and StyleGANv2 [71]. These GAN models are built with different architectures, losses
and training schemes. Each generation application benchmarks its own dataset. As
summarized in Table 5.2, we considered two benchmark datasets of different sizes and
complexities, including CelebA [83] and FFHQ [70, 71], to construct different GAN
models. Details of datasets can be found in Section 2.4.
Manipulator/Adversary. For face manipulator/adversary, we follow the original
configurations of optimization-based inversion (Image2StyleGAN [14]). More specifi-
cally, we set up 500 iterations for the optimization step of inversion. In addition, we
use perceptual loss and pixel-level MSE loss to reconstruct the target image in the
optimization step. Though StyleGANv1 [70] and StyleGANv2 [71] also work on w space
that is converted from z space, z space is applicable to all GAN models, thus we only
consider z space in this work.
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Defender. For the defender, we use a random initialized ResNet-18 [50] as the shadow
encoder Es in the white-box scenario (Cloak v0). Besides, for both white- and black-box
scenarios (Cloak v0/v1), we adopt the easy-to-download, widely-used, and pre-trained
ResNet-18 as the feature extractor. Further, we set up 500 iterations to iteratively
search for the cloaked image in the image space by modifying the target image.

Target Samples. We first evaluate UnGANable on generated images from each GAN
model. The reason is that, as stated in previous works [14, 15, 158], and also shown in
our experimental results, the generated images are more easily inverted into accurate
latent codes. In other words, in the competition between attackers and defenders, we
actually make a very strong advantageous assumption for the former. We investigate
whether UnGANable can achieve acceptable or superior performance in such a worst-
case scenario. Thus, for each GAN model, we evaluate the performance of UnGANable
on 500 randomly selected generated images that can be successfully reconstructed.

Evaluation Metrics. For evaluation metrics, we consider two perspectives: effective-
ness and utility. Effectiveness measures the extent to which UnGANable jeopardizes
the GAN inversion process. Given a target image, the sign of successful defense is a
change in the identity of the reconstructed image, as shown in Figure 5.1. The reason
is that once the identity of the reconstructed image changes, the defender no longer
cares about the manipulation of the reconstructed image because the reconstructed
image does not belong to the defender. To this end, we use Matching Rate to evaluate
effectiveness:

Matching Rate = #successful reconstructed images
#total images

Therefore, the lower the matching rate is, which means the more reconstructed images
with changed identity, the better effectiveness UnGANable achieves. In our implemen-
tation, we utilize a popular open-source face verification/comparison tool FaceNet [118]
to compute the defense success rate. Given the embedding distance of a pair of two face
images, a pre-calibrated threshold is used to determine the classification of same and
different, i.e., the two face images belong to the same person if the embedding distance
is less than the threshold, otherwise different person. See more details on threshold
selection in our technical report [81].

Utility measures whether the cloaked images searched by UnGANable is indistin-
guishable from the target images. To measure the utility, we use a variety of most
widely-used similarity metrics, including mean squared error (MSE), structural similarity
(SSIM) [138], and peak signal-to-noise ratio (PSNR). Here, the lower the MSE is, the
higher the SSIM and PSNR are, then the better utility UnGANable achieves. More
details about these metrics are presented in our technical report [81].

5.3.4 Evaluation

Effectiveness Performance. In our UnGANable, we adopt a budget ε to limit
distance between the cloaked and target image, aiming to ensure that the cloaked image
is indistinguishable from the target image. Here, we first investigate the effectiveness
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Figure 5.3: The effectiveness performance of Cloak v0/v1.

Table 5.3: Some visual examples of reconstructed images based on StyleGANv2. The
defense method is Cloak v1.

Target Image No cloak ε-1 ε-3 ε-5 ε-7 ε-9

of UnGANable by reporting matching rate under the effects of the distance budget
ε. More concretely, we set 10 different distance budgets ε-0, ε-1, ... , ε-9 (uniformly
ranging from 0.01 to 0.07 for DCGAN and WGAN, and from 0.01 to 0.1 for StyleGANv1
and StyleGANv2.3). Under each distance budgets, we perform grid search to find the
optimum trade-off hyper-parameter κ. The exact settings for ε and κ can be found in
our technical report [81].

Figure 5.3 depicts the effectiveness performance of Cloak v0 and Cloak v1 (More
results on DCGAN and WGAN in our technical report [81]). As we can see, with
the increase of the budget ε, both Cloak v0 and Cloak v1 can significantly reduce the
matching rate. For example, in Figure 5.3 (Cloak v0, StyleGANv2), the matching rate of
ε-0 is 0.86, and that of ε-9 is 0.156, which drops sharply. These results imply that if we
set a relatively high distance budget, UnGANable can achieve significant effectiveness
against optimization-based inversion.

Besides the above quantitative results, we further provide random qualitative exam-
ples to demonstrate the effectiveness of UnGANable performed on StyleGANv2. As

3We conducted a pre-experiment and showed that only a small distance can jeopardize DCGAN and
WGAN inversions, so we set the maximum magnitude of the distance budget to 0.07 for DCGAN and
WGAN, and 0.1 for StyleGANv1/v2.
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Table 5.4: Some visual examples of cloaked images searched by Cloak v1 performed
on StyleGANv2 under different perturbation budgets.

Target Image ε-1 ε-5 ε-9

Table 5.5: The utility performance of UnGANable against optimization-based inversion.

Budget Metric Cloak v0 Cloak v1 Budget Metric Cloak v0 Cloak v1

ε-1
MSE 7.3e-05 7.2e-05

ε-7
MSE 0.0010 0.0014

SSIM 0.9889 0.9891 SSIM 0.8802 0.8431
PSNR 41.376 41.408 PSNR 30.118 28.532

ε-3
MSE 0.0003 0.0003

ε-9
MSE 0.0014 0.0022

SSIM 0.9612 0.962 SSIM 0.8347 0.7820
PSNR 35.684 35.716 PSNR 28.423 26.637

ε-5
MSE 0.0006 0.0006
SSIM 0.9228 0.9245
PSNR 32.419 32.455

shown in Table 5.3, we can observe that as ε increases, more and more facial attributes
cannot be successfully reconstructed. The difference between the reconstructed image
and the target image becomes more extensive, which implies the effectiveness is getting
better.

Utility Performance. To evaluate the utility performance, we first quantitatively
report a variety of similarity metrics (MSE/SSIM/PSNR) in Table 5.5. Typically, a
SSIM value greater than 0.9 or a PSNR greater than 35 means a good quality of cloaked
images. To elaborate more on utility performance, we show in Table 5.4 some qualitative
samples of cloaked images searched by UnGANable performed on StyleGANv2. We can
observe that when distance budget is set as ε-1 (0.02) and ε-3 (0.04), which represents a
completely imperceptible perturbation, UnGANable can achieve acceptable effectiveness
performance (see qualitative reconstructed examples in Table 5.3). In addition, we
acknowledge that some perturbations are perceptible to our naked eye when the distance
budget is set to ε-7 (0.08) or ε-9 (0.1). But note that these visual results are performed on
the images generated by their corresponding GAN models. In the following Section 5.5,
we further conduct experiments on real images. It is encouraging that UnGANable can
apply a much lower distance budget to obtain excellent effectiveness performance while
guaranteeing the visual quality of the cloaked image.

The Effect of Latent/Feature Deviation. We further investigate the effect of
latent/feature deviation on the performance of UnGANable. In the white-box scenario
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Table 5.6: Visual examples of different baseline distortion methods.

Target Image ShearX ShearY TranslateX TranslateY Rotate Brightness

Color Contrast Solarize CenterCrop GaussianBlur GaussianNoise Compress

(Cloak v0), UnGANable searches for the cloaked images which can maximize both
latent and feature deviations, while in the black-box scenario (Cloak v1) only feature
deviations are maximized. As shown in Figure 5.3, we can obverse that Cloak v0
achieves better effectiveness performance than Cloak v1 under each distance budget.
However, we cannot prematurely claim that Cloak v0 is better because we need to
consider whether Cloak v0 is at least as good as Cloak v1 in terms of utility performance.
Table 5.5 reports the utility performance of UnGANable on the StyleGANv2. First, we
can observe that Cloak v0 performs at least on par with Cloak v1 under budget ε-1,
ε-3, and ε-5. More encouragingly, under budget ε-7 and ε-9, Cloak v0 achieves better
utility performance than Cloak v1. These results show that Cloak v0 outperforms Cloak
v1 in terms of both effectiveness and utility, and convincingly demonstrate that the
additional latent deviation we introduce for Cloak v0 does improve performance.

Comparison with Baselines. To elaborate on UnGANable’s performance in a
more convincing manner, we compare UnGANable extensively with thirteen baseline
distortion methods, as shown in Table 5.6. For each baseline method, we evaluate both
effectiveness and utility performance with a wide variety of different magnitudes of
the budget. More detailed descriptions of each method are presented in our technical
report [81]. Figure 5.4 displays the relationship between each baseline method’s matching
rate and MSE/SSIM/PSNR score (see more results in our technical report [81]). Thus,
we can make the following observations.

First, as the budget increases (i.e., MSE becomes larger and SSIM/PSNR becomes
smaller), all baseline methods can significantly reduce the matching rate, meaning that
baseline methods that work only in image space can also achieve good effectiveness
performance.

More encouragingly, the plot also clearly indicates the benefits of latent and feature
deviations: among baseline methods with similar utility performance levels (similar
MSE/SSIM/PSNR), our Cloak v0 and Cloak v1 consistently achieve better effectiveness
(lower matching rate), as they benefit from maximizing latent and feature deviations.
In other words, searching for cloaked images to maximize latent and feature deviations
can further disenable GAN inversions at nearly no cost in utility. Another interesting
finding is that when UnGANable is not an option, GaussianNoise, GaussianBulr, and
JPEGCompression appear to perform better.
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Figure 5.4: Comparison between all baseline methods and Cloak v0/v1 on generated
images and StyleGANv2. The different points of each method represent different
budgets.

5.4 Defending Against Hybrid Inversion

We now present UnGANable against the second GAN inversion technique, i.e., hybrid
inversion.

5.4.1 Defender’s Knowledge

For hybrid inversion, we consider three different scenarios to characterize a defender’s
background knowledge. The algorithms are in Appendix Algorithm 5, Algorithm 6 and
Algorithm 7.

White-Box (Cloak v2). Hybrid inversion adopts an encoder to provide a better
initialization z for the following optimization step. Here, we assume that a defender
has complete knowledge of the target encoder Et to mislead the encoder, i.e., provide a
worse initialization latent code z for the optimization. We give a quantitative illustration
of this intuition in Section 5.4.2. Besides that, we also assume that the defender has
access to a feature extractor F . Note that the defender does not need to have white-box
access to the target generator Gt due to the design of this defense (see Section 5.4.2 for
more details).

Grey-Box (Cloak v3). Here, we relax the assumption that the defender has complete
knowledge of the target encoder Et. In particular, we assume that the defender can
send many queries to the target encoder Et and train a shadow encoder Es to mimic the
behavior of the target encoder Et, and relies on the shadow encoder to act as the target
encoder. Besides that, we assume that the defender has access to a feature extractor F
for feature deviation.

Black-Box (Cloak v4). Here, we assume the defender has no knowledge of the
adversary’s generator or encoder. Here, the defender only has access to a feature
extractor F .
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Figure 5.5: The loss trend under the effect of different initialization for optimization.

5.4.2 Methodologies

Here the defenses are also divided into three simultaneous components, namely maxi-
mizing latent deviation, maximizing feature deviation, and searching for cloaked images
in the image space. In particular, we introduce a new novel method to maximize the
latent deviation.

New Perspective of Latent Deviation. As aforementioned in Section 2.3, an
important issue for optimization-based inversion is initialization. Recent research [69,
24, 70, 104] shows that using different initializations leads to a significant perceptual
difference in generated images. Here, we conduct a pre-experiment on using different
initializations to perform the optimization-based inversion, including Gaussian, zeros,
etc (see [12] for each distribution). In particular, hybrid inversion adopts an encoder to
provide initialization for optimization.

Figure 5.5 shows the trend of perceptual and MSE loss, respectively. First, the
encoder indeed provides better initialization, which leads to better initial and final
performance. Second, the trend of loss remains constant when the initialization is set
to zero, which means it is quite difficult to invert the target image into the latent space.
This observation suggests a new perspective on the latent deviation – misleading the
encoder to provide zero initialization, or close to zero. In other words, our defense’s
goal against hybrid inversion should be to force the output of the encoder to zero. This
is actually a special case of maximizing latent deviation, which provides the movement
direction of the cloaked image in the latent space, i.e., towards zero.

White-Box (Cloak v2). In this scenario, we assume that the defender has full
knowledge of the target encoder Et, as well as an additional feature extractor F . As
shown in the green part of Figure 5.6, the defender iteratively searches for x̂ in the
image space by modifying x, in order to minimize the deviation between Et(x̂) and zero,
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Figure 5.6: An illustration of white-box (Cloak v2), grey-box (Cloak v3) and black-box
(Cloak v4) UnGANable against hybrid inversion.

and maximize the deviation between F (x̂) and F (x).

maxx̂ κ
(

− Lrec
(
Et(x̂), 0

))
+ (1 − κ)

(
Lrec

(
F (x̂), F (x)

))
s.t. |x̂ − x|∞ < ϵ

κ ∈ [0, 1]

Grey-Box (Cloak v3). Here, we relax the assumption that the defender has complete
knowledge of the target encoder Et. The defender needs to build a shadow encoder Es
to match the predictions of Et, i.e., find the shadow encoder’s parameters that minimize
the probability of errors between the shadow and target predictions.

As shown in the pink part of Figure 5.6, the defender builds a shadow generator Gs
which is responsible for crafting some input images, and Es serves as a discriminator
while being trained to match the target encoder’s predictions on these images. In
this setting, the two adversaries are Es and Gs, which try to minimize and maximize
the deviation between Es and Et respectively. Then, shadow encoder Es becomes a
functionally equivalent copy of target encoder Et.

Finally, the defender iteratively searches for x̂ in the image space by modifying x,
in order to minimize the deviation between Es(x̂) and zero and maximize the deviation
between F (x̂) and F (x).

maxx̂ κ
(

− Lrec
(
Es(x̂), 0

))
+ (1 − κ)

(
Lrec

(
F (x̂), F (x)

))
s.t. |x̂ − x|∞ < ϵ

κ ∈ [0, 1]
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Figure 5.7: The effectiveness performance of Cloak v2, Cloak v3 and Cloak v4.

Black-Box (Cloak v4). In this scenario, the defender has no knowledge of the target
generator or target encoder or inversion techniques. The defender can only search for x̂
in the image space by modifying x, to maximize the feature deviation between x̂ and x.

maxx̂ Lrec(F (x̂), F (x))
s.t. |x̂ − x|∞ < ϵ

5.4.3 Experimental Setup

For the manipulator/adversary, we follow the configurations of hybrid inversion (Zhu et
al. [158]). Here, we again only consider the z space for all GAN models. We set up 100
iterations for the optimization step of inversion, and use perceptual loss and pixel-level
MSE loss to reconstruct the target image in the optimization step.

As a defender, for Cloak v3, we build the shadow generator by using 1 linear
layer to accept Gaussian noise, followed by five convolutional layers and five Batch
Normalization [61] layers. Furthermore, we again use a random initialized ResNet-18 as
the shadow encoder. For all Cloaks (v2/v3/v4), we again use a pretrained ResNet-18 [50]
as the feature extractor. Besides, we fix the number of iterations as 500, to search for
cloaked images. In addition, all other experimental settings are the same as described
in Section 5.3.3.

5.4.4 Evaluation

Effectiveness Performance. To evaluate the effectiveness performance quantitatively,
we use the same evaluation setup as presented in Section 5.3.4. Figure 5.7 depicts
the effectiveness performance of Cloak v2/v3/v4. First, we again observe that as the
budget increases, all Cloak v2/v3/v4 can significantly reduce the matching rate. These
results indeed imply that UnGANable can achieve significant effectiveness against hybrid
inversion. For qualitative results, the same perturbation budget will lead to similar
reconstructed results, as shown in Table 5.3.
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Figure 5.8: Comparison between all baseline methods and Cloak v2/v3/v4 on gener-
ated images and StyleGANv2. The different points of each method represent different
budgets.

Utility Performance. Similarly, since we set the same distance budgets as adopted
against optimization-based inversion, thus for the same perturbation budget will lead
to similar quantitative and qualitative utility performance, as shown in Table 5.3 and
Table 5.5.
The Effect of Latent/Feature Deviation. In Figure 5.7a and Figure 5.7b, we can
observe that searching for cloaked images to mislead the target encoder controlled by
the adversary (Cloak v2) leads to much better effectiveness performance. Furthermore,
the larger the distance budget, the larger the gap between Cloak v2 and both Cloak
v3 and Cloak v4, reflecting the fact that zero initialization can significantly jeopardize
the process of GAN inversion. This convincingly verifies our new perspective of latent
deviation–misleading the adversary’s encoder to provide zero initialization, or close to
zero.
Comparison with Baselines. We compare UnGANable extensively with thirteen
baseline methods, as shown in Table 5.6. We use the same experimental setup as
described in Section 5.3.4, such as the perturbation budget setting strategy and the result
reporting metrics. We report comparisons between baseline methods and UnGANable
in Figure 5.8, and we can make similar observations as mentioned in Section 5.3.4. Here,
we again emphasize that Cloak v2/v3/v4 achieves consistently better effectiveness (lower
matching rate) and utility (lower MSE, higher SSIM and PSNR) performance than all
baselines.

5.5 Evaluation on Real Images

To elaborate on UnGANable’s performance, here we investigate the performance of
UnGANable on real facial images. Concretely, we consider the strictest setting in
which the defender has no knowledge of the adversary-controlled entities. Thus, we
only consider the black-box scenario against optimization-based and hybrid inversion,
i.e., Cloak v1 and Cloak v4. In addition, the adversary-controlled GAN model is the
state-of-the-art deepfake generative model StyleGANv2. We collect 200 real images
from the FFHQ dataset, and these images are the most successfully inverted into the
latent space among the whole FFHQ dataset.
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Figure 5.9: The effectiveness performance of Cloak v1/v4 on generated and real
images, respectively.

Effectiveness Performance. We first present the effectiveness performance of
UnGANable. We use the same evaluation setup as presented in Section 5.3.4. We set 5
different distance budgets ε-0/1/2/3/4, the same as adopted in previous evaluations.
Figure 5.9 depicts the effectiveness performance of Cloak v1 and Cloak v4. First,
we again observe that as the budget ε increases, both Cloak v1 and Cloak v4 can
significantly reduce the matching rate. Then we can see that the matching rate of Cloak
v4 is clearly higher than that of Cloak v1, which verifies that the encoder of hybrid
inversion indeed leads to better reconstruction performance.

What is more encouraging is that UnGANable can achieve better effectiveness
performance compared to that on generated images. For example, when the distance
budget is set as ε-4 (0.05), the matching rate of Cloak v1/v4 on the real image is
about 0.072/0.191, while that on the generated image is about 0.474/0.606. The results
clearly show that UnGANable can apply a much lower perturbation budget to obtain
better effectiveness performance, and this lower distance budget further benefits utility
performance.

Utility Performance. For utility performance, we conduct the evaluations both
quantitatively and qualitatively. We first quantitatively report various similarity metrics
(MSE/SSIM/PSNR) in Table 5.7. Generally, SSIM values of 0.97, 0.98, and 0.99 imply
the excellent visual quality of the cloaked images. We then show in Table 5.8 some
qualitative samples of cloaked images. We can observe that when the distance budget is
set as ε-4 (0.05), which represents a completely imperceptible perturbation, UnGANable
can achieve remarkable effectiveness performance (see matching rate in Figure 5.9b).
Therefore, we claim that UnGANable provides acceptable protection for real images by
much lower distance budgets and still yields good effectiveness and utility performance.

Comparison with Baselines. We then compare UnGANable extensively with
thirteen baseline distortion methods, as shown in Table 5.6. For each baseline method,
we evaluate both effectiveness and utility performance with a wide variety of different
magnitudes of the budget. Figure 5.11 displays the compassion between baseline
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Table 5.7: The quantitative utility performance of UnGANable under Cloak v1/v4.

Budget Metric Cloak v1 Cloak v4 Budget Metric Cloak v1 Cloak v4

ε-0
MSE 1.9e-05 1.9e-05

ε-3
MSE 0.0003 0.0002

SSIM 0.9968 0.9969 SSIM 0.9606 0.967
PSNR 47.205 47.210 PSNR 35.783 35.783

ε-1
MSE 7.1e-05 7.2e-05

ε-4
MSE 0.0004 0.0004

SSIM 0.9887 0.9887 SSIM 0.9422 0.9423
PSNR 41.473 41.473 PSNR 33.983 33.982

ε-2
MSE 0.0002 0.0002
SSIM 0.9764 0.9764
PSNR 38.144 38.145

Table 5.8: Some visual examples of cloaked real images searched by Cloak v4 per-
formed on StyleGANv2.

Target Image ε-0 ε-2 ε-4

methods and Cloak v1/v4, respectively (see more results of MSE/SSIM in our technical
report [81]). Thus, we can make the same observations as UnGANable on generated
images, i.e., our Cloak v1/v4 of UnGANable achieves consistently better effectiveness
(lower matching rate) and utility (lower MSE, higher SSIM, and PSNR) performance
compared to all baseline methods.

5.6 Possible Adaptive Adversary

Here, we explore four possible adaptive adversaries and empirically evaluate the perfor-
mance of UnGANable on real facial images. We conduct extensive experiments under
the black-box scenario against optimization-based and hybrid inversion, i.e., Cloak v1
and Cloak v4. Note that for the purpose of straightforward comparisons, we average the
performance of UnGANable with a varying number of distance budgets, i.e., ε-0/1/2/3.

Cloak Overwriting. This adaptive adversary aims to disturb the cloaks, i.e., the
imperceptible perturbation searched by UnGANable. The adversary samples random
noise from a Gaussian distribution N (µ, σ2) to overwrite the cloaks.

We report the matching rate by varying the standard deviation σ (set µ as 0 for
simplicity) in Figure 5.10a (see more results of Cloak v1 in our technical report [81]).
We can observe that as the standard deviation increases, the matching rate of cloak
overwriting is significantly reduced. The reason is that the cloak overwriting actually
introduces more noise in the image space on top of the imperceptible noise searched by

85



CHAPTER 5. DEFENDING AGAINST GAN-BASED FACE MANIPULATION

0.000 0.002 0.004 0.006
Standard deviation σ

0.00

0.10

0.20
M

at
ch

in
g

R
at

e

Overwriting

Cloak v4

(a) Cloak Overwriting

0 2 4 6 8 10
Filter Width

0.00

0.10

0.20

M
at

ch
in

g
R

at
e

Spatial Smoothing

Cloak v4

(b) Cloak Purification

0 1000 2000 3000 4000 5000
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

M
at

ch
in

g
R

at
e

Cloak v1

Cloak v4

(c) More Iterations

0 10000 20000 30000
The Size of Cloaked Images

0.00

0.10

0.20
M

at
ch

in
g

R
at

e

Encoder Enhancement

Cloak v4

(d) Encoder Enhancement

Figure 5.10: The effectiveness performance of UnGANable (Cloak v4) on real images
under the effect of four possible adaptive adversaries.

the UnGANable, which further jeopardizes the GAN inversion process. These results
indicate that cloak overwriting is not an applicable adaptive strategy for adversaries.

Cloak Purification. This adaptive adversary aims to remove or purify the cloaks
searched by UnGANable. As aforementioned, these cloaks actually are the imperceptible
noise added to the images. Thus, we consider one of the most wide-used and easy-to-
apply image noise reduction mechanisms, i.e., Spatial Smoothing [11]. Spatial Smoothing
means that pixel values are averaged with their neighboring pixel values with a low-pass
filter, leading to the sharp "edges" of the image becoming blurred and the spatial
correlation within the data becoming more apparent.

We report the matching rate by varying the filter widths of Spatial Spatial in
Figure 5.10b (see more results of Cloak v1 in our technical report [81]). We can clearly
observe that the matching rate increases at first and then decreases. These results
indicate that Spatial Smoothing indeed can purify the imperceptible noise added by
UnGANable to some extent. We should also note that even the optimal setting for
Spatial Smoothing can only lead to a slightly increased matching rate, and they all drop
further sharply when the filter width is very large, as the Spatial Smoothing destroys
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Figure 5.11: Comparison between all baseline methods and Cloak v1/v4 on real images.
The different points of each method represent different budgets.

the pixel space of the original image. This observation implies that Spatial Smoothing
is only a slightly effective adaptive strategy to reduce the jeopardy of UnGANable to
GAN inversions.

More Iterations of Inversion. This adaptive adversary has significant computational
resources to perform many optimization iterations to increase the matching rate. More
specifically, we vary the number of optimization iterations from 0 to 5000 for both
optimization-based and hybrid inversions. Note that the default settings for the number
of iterations are 500 and 100 for optimization-based inversion and hybrid inversion,
respectively.

Figure 5.10c shows the matching rate of UnGANable under the effect of numbers of
iterations. As expected, we can find that the matching rate increases with the number of
optimization iterations. Specifically, the matching rate increases sharply up to 1000/100
iterations and continues to increase slowly afterward. These results clearly demonstrate
that more iterations of inversion indeed can reduce the jeopardy of UnGANable to
GAN inversions. We should also note that a larger number of iterations (even up to
5000) does not lead to great effects but is a huge cost in terms of resource usage.

Encoder Enhancement. We further consider another adaptive adversary where the
adversary retrains the encoder to be more robust to imperceptible noise searched by
UnGANable. More concretely, we assume that the adversary can collect a large number
of cloaked images from crawler-accessible websites or social media. We consider various
numbers of cloaked images from 5k to 35k that an adversary can collect. Note that
the number of images in the full FFHQ dataset used to train StyleGANv2 is only 70k.
Then the adversary retrains the encoder with a mixed set of original clean images and
collected cloaked images.

Since the encoder is only employed for hybrid inversion, we only consider here
Cloak v4, the black-box setting against hybrid inversion, for evaluation. Figure 5.10d
reports the matching rate under the effect of the different numbers of cloaked images
collected by the adversary. We can observe that the matching rate decreases slightly
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with increasing cloaked images, which means that retraining the encoder increases the
jeopardy of UnGANable to GAN inversion. In a nutshell, encoder enhancement is not
an applicable adaptive strategy for adversaries to reduce the jeopardy of UnGANable
to GAN inversions.

5.7 Limitation

There are two major paradigms for image manipulation: GAN-inversion-based and
image-translation-based. The latter, represented by StarGANv2 [33] and AttGAN [53],
transforms an image from the source domain to the target domain without the GAN-
inversion process. Therefore, our proposed UnGANable is not applicable to image-
translation-based manipulation, as the key idea of UnGANable is to jeopardize the
process of GAN inversion. Moreover, we emphasize here that GAN-inversion-based and
image-translation-based are two orthogonal image manipulation techniques. Considering
that the defense against the latter has been well studied [113, 145, 59, 80], the defense
against GAN-inversion-based is still an open research problem. Our work is therefore
well-motivated to complete this puzzle map.

Moreover, except for z space we consider in this work, recent works [158, 14, 15, 133,
71, 100, 18, 136, 39] also works on w space, which is transformed from z space, leading
to a better inversion performance. We leave the in-depth exploration of a more efficient
UnGANable against w space for future work.

5.8 Conclusion

In this chapter, we take the first step towards defending against GAN-based face
manipulation by proposing UnGANable, a system that can jeopardize the process of
GAN inversion. We consider two advanced GAN inversions: optimization-based and
hybrid inversions, as well as five scenarios to comprehensively characterize the defender’s
background knowledge in multiple dimensions. We extensively evaluate UnGANable on
four popular GAN models built on two benchmark face datasets of different sizes and
complexity. The results show that UnGANable can achieve remarkable performance
with respect to both effectiveness and utility. We further conduct a comparison of
UnGANable with thirteen image distortion methods as well as Fawkes, and the results
show that UnGANable generally outperforms all these methods. In addition, we explore
four possible adaptive adversaries against UnGANable, and empirical evaluation shows
that Spatial Smoothing and more inversion iterations are slightly effective.
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6.1. PRIVACY RISKS OF MACHINE LEARNING MODELS

In this chapter, we survey the areas most relevant to our work. We first review
the vulnerability of ML models to privacy risks. Then, we present the abuse of ML
models leading to privacy risks. Finally, we briefly describe some privacy-preserving
mechanisms for ML models.

6.1 Privacy Risks of Machine Learning Models

Privacy risks of ML models refer to the vulnerability of ML models to privacy risks.
Specifically, they refer to inferring/stealing/reconstructing sensitive information from
machine learning models. We now briefly review some well-known privacy risks inherent
in machine learning models.

6.1.1 Membership Inference

Currently, membership inference is one of the major methods to evaluate privacy risks of
machine learning models [124, 146, 49, 116, 94, 129, 76, 51]. Shokri et al. [124] propose
the first membership inference attack against ML models. They build a series of attack
models on a dataset that comprises various shadow models’ outputs. These attack
models take the target model’s posterior as input and estimate whether it is a member
or not. Then, by gradually loosening the assumption established by Shokri et al. [124],
Salem et al. [116] propose a more general method, i.e., model and data-independent
membership inference attack. Nasr et al. [94] later emphasize the privacy issue in
centralized and federated learning situations and conduct comprehensive experiments
in black-and-white-box scenarios. Song et al. [129] investigate the correlation between
adversarial examples and the privacy risk of membership inference attacks. Li and
Zhang [P1] and Choquette-Choo et al. [34] propose the label-only membership inference
attack by changing the target model’s predicted labels, then measuring the magnitude
of the noise added on the input. They consider samples as members if the noise is larger
than the predefined threshold.

6.1.2 Attribute Inference

Attribute inference (also called property inference) is another major type of privacy
attack against ML models. In this attack, the goal of the adversary is to determine some
private attributes of a given data sample by observing the representation generated
by the target model [89, 127]. Melis et al. [89] present the first attribute inference
attack against machine learning with a focus on federated learning. Language models,
according to Song and Raghunathan [126], are also vulnerable to attribute inference
assaults. Song and Shmatikov [127] confirm that attribute inference attacks are effective
against another training paradigm, called model partitioning. Furthermore, they show
evidence that the reason behind the success of attribute inference attacks is due to the
overbearing behavior of ML models.
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6.1.3 Model Inversion

Model inversion attack is another major privacy attack in which an adversary aims to
reconstruct the data sample used to train an ML model [43, 42, 56, 26, 153]. This attack
can cause serious privacy risks as it allows the adversary to extract private information
about individuals, such as medical records or financial transactions. Model inversion
attacks have received significant attention in recent years, and a large body of studies
has shown that even highly complex ML models are vulnerable to these attacks. As
a result, defending against model inversion attacks has become an important research
topic in privacy-preserving machine learning.

6.2 Privacy Risks by Machine Learning Models

Privacy risks by ML models refer to those caused by abusing ML models. We here review
two representative cases of abuse of ML models that lead to privacy risks: unauthorized
collection of individual data and unauthorized manipulation of individual data.

6.2.1 Unauthorized Collection of Individual Data

The success of ML models is typically dependent on large training datasets. Companies
and organizations frequently gather vast data from many sources, such as social media,
to train accurate ML models. Yet, the extensive collection and use of personal data
without the required authorization or agreement could result in major privacy concerns
[16].

6.2.2 Unauthorized Manipulation of Individual Data

As machine learning techniques are increasingly used in various applications, there is
growing concerned about the potential for unauthorized manipulation of individual
data. In particular, the emergence of deepfake technology has raised concerns about
the potential for unauthorized manipulation of individual data. Deepfakes that leverage
ML models to produce real and convincing synthetic media content, e.g., videos and
images, reflecting the events or individuals that have never occurred. The technology,
however, is shown to be used for malicious purposes, such as spreading false information
or creating false images of individuals for their malicious purposes.

In chapter 5, we investigate how to defend a representative deepfake application,
Facial Manipulation, which modifies the facial attributes of a victim in an image, e.g.,
changing her age or hair color. Typically, there are two types of deepfake face manipula-
tion techniques, one is GAN-inversion-based, and another is image-translation-based. In
the former, to leverage GANs to manipulate facial images, the manipulator/adversary
needs to perform a two-step operation. The first step is GAN inversion [159, 14, 15,
158, 21, 139] which inverts a victim’s facial image to a latent code. The second step is
latent code manipulation [141, 160, 122, 63, 48, 123, 149, 99, 31, 44] which manipulates
the latent code to get the modified image, such as adding a pair of glasses on the
victim’s face. Image-to-Image Translations (I2I), represented by StarGANv2 [33] and
AttGAN [53], have received increasing attention in recent years. More concretely, I2I
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builds an end-to-end neural network as the backbone to translate source images into
the target domain with many aligned image pairs for training. I2I uses the backbone
network to accept the target image and output a new style without the GAN-inversion
process when editing images.

6.3 Privacy-Preserving Machine Learning Models

To mitigate the threat of privacy risks, a large body of defense mechanisms has been
proposed in the literature.

6.3.1 Privacy-Preserving Techniques for the Vulnerability of ML Models

Researchers have proposed to improve privacy against membership inference via different
types of generalization enhancement. For example, Shokri et al. [124] adopted L2
regularization with a polynomial in the model’s loss function to penalize large parameters.
Salem et al. [116] demonstrated two effective methods of defending MI attacks: dropout
and model stacking. Nasr et al. [93] introduced a defensive confidence score membership
classifier in a min-max game mechanism to train models with membership privacy,
namely adversarial regularization. Other existing generalization enhancement methods
can be used to mitigate membership leakages, such as L1 regularization and data
augmentation. Another direction is privacy enhancement. Many differential privacy-
based defenses [28, 40, 62] involve clipping and adding noise to instance-level gradients
and are designed to train a model to prevent it from memorizing training data or being
susceptible to membership leakage. Shokri et al. [124] designed a differential privacy
method for collaborative learning of DNNs. As for confidence score alteration, Jia et
al. [66] introduce MemGuard, the first defense with formal utility-loss guarantees against
membership inference. The basic idea behind this work is to add carefully crafted noise
to the confidence scores of an ML model to mislead the membership classifier. Yang et
al. [143] also propose a similar defense in this direction.

Raval et al. [108] propose Olympus as a defense against attribute inference. Olympus
uses an adversarial classifier to infer sensitive attributes. Then it uses adversarial
training to optimize the model against the adversarial classifier to maintain the model’s
utility while safeguarding the sensitive attributes of the sample. Jia and Gong [65] later
propose AttriGuard.

This defense uses modified evasive attack techniques to provide an adversarial
example for each possible value of the sensitive characteristic. The new representation is
then selected after a sensitive attribute value is sampled using a probability distribution.
The related adversarial example found in the first phase is then used as the basis for the
sample. Song and Shmatikov [127] designed a joint training defense that iteratively trains
the model and adversarial classifier to obstruct the embedding of sensitive information.

To defend against model inversion attacks, The Mutual Information Regularization-
based Defense (MID), proposed by Wang et al. [137], presents a theoretical perspective
on the finite efficacy of differential privacy approaches. There are also many works that
concentrate on decreasing the link between input and output by purifying the output
confidence scores to defend against the black box setup [115, 43, 143].
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6.3.2 Privacy-Preserving Techniques Against the Abuse of ML Models

There are multiple works against privacy risks caused by the abuse of ML models. To
prevent the unauthorized collection of individual data, Shan et al. [120] proposed Fawkes,
one of the most representative efforts to protect individual privacy. By purposefully
introducing undetectable alterations to the images, it promises to safeguard users’ photos
from illegal access and exploitation. Besides, other researchers [142, 107] have also
proposed different techniques to protect data privacy and prevent misuse, highlighting
the growing concern over these issues.

Since unauthorized manipulation of individual data poses a significant threat to
personal privacy and even political security, it is critical to develop countermeasures
against it. Many defenses have been proposed to mitigate this risk, and these defenses
can be broadly divided into two categories: detection [79, 112, 17, 156, 88, 95] and
disrupting I2I [113, 145, 59, 80]. However, the former defense is designed passively to
detect whether face images have been tampered with after wide propagation. The latter
defense can only mitigate image-translation-based face manipulation by spoofing the
backbone network. However, there is still no approach to defend against GAN-inversion-
based face manipulation in a proactive manner. In chapter 5, we propose UnGANable
of initiative defense to degrade the performance of GAN inversion, which is an essential
step for subsequent face manipulation.
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Over the past decade, machine learning (ML) has made remarkable advancements
and has been utilized extensively in various domains. However, despite their widespread
use and popularity, machine learning models are also prone to pose various privacy
risks.

In this dissertation, we investigate the privacy risks of machine learning models from
two perspectives. The first one is the vulnerability of ML models to privacy risks, and the
second one is the abuse of ML models that leads to privacy risks. To study the former,
we conduct two works focusing on one of the most severe privacy attacks against ML
models, i.e., membership inference attacks. More concretely, chapter 3 proposes label-
only membership inference attacks and demonstrates that machine learning models are
vulnerable to membership leakage in the label-only scenario. In chapter 4, we perform
the first privacy analysis of multi-exit networks through the lens of membership leakages,
i.e., revealing that multi-exit networks are less vulnerable to membership leakage. We
further propose a more powerful membership inference attack called hybrid attack.
To study the latter, chapter 5 proposes the first defense system, namely UnGANable,
against GAN-based face manipulation by adding imperceptible perturbation on the face
images.

Our works presented in this dissertation led to three peer-reviewed publications [P1,
P2, P3], each investigating one perspective of privacy risks of machine learning models.

Our first work [P1] explores membership inference attacks against machine learning
models. The success of existing membership inference attacks is that they rely on the
confidence scores returned by the target machine learning models. However, these score-
based attacks can be trivially mitigated if the model only exposes the predicted label
instead of confidence scores. In chapter 3, we focus on a new category of membership
inference attacks that have so far received fairly little attention, namely label-only
membership inference attacks. We relax the assumption that the adversary has access
to the target model’s confidence score, but can solely rely on the final decision of
the target model, i.e., the top-1 predicted label. We design two different label-only
membership inference attacks under different scenarios, namely transfer-based attack
and boundary-based attack. In the transfer-based attack, the adversary first builds a
local model to mimic the target model by querying the target model in a manner analog
to a cryptographic oracle and then launches existing membership inference attacks
against the local model. In the boundary-based attack, The adversary queries the
target model on a data sample and perturbs it to change the model’s predicted labels.
Then, the adversary measures the magnitude of the perturbation and considers the data
samples as members if their magnitude is greater than a predefined threshold. Empirical
evaluation shows that our label-only attacks can achieve remarkable performance and
even outperform the previous score-based attacks in some cases. Further, we evaluate
multiple defense mechanisms against our label-only attacks and show that our two
attacks can bypass most defenses.

Our second work [P2] explores the vulnerability of multi-exit networks to membership
inference attacks. The key design of multi-exit networks is endowing a backbone model
with early exits, allowing the predictions to exit from the intermediate layers of the
model. In chapter 4, we first leverage the existing attack methodologies, namely gradient-
based, score-based, and label-only attacks, to audit the membership leakage risks of
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multi-exit networks. Our extensive experiments demonstrate that multi-exit networks
are less vulnerable to membership leakage than normal models. Furthermore, our study
shows that exit information of multi-exit networks has a strong correlation with attack
performance. Based on this observation, we propose hybrid attack that exploits exit
information as new adversary knowledge to improve the performance of existing member
inference attacks. We evaluate our hybrid attack in three different adversarial settings,
yielding a model-free and data-free adversary, demonstrating the broad applicability and
severe risk compared to existing attacks. Finally, we introduce a simple but effective
defense mechanism called TimeGuard and evaluate its effectiveness through empirical
experiments.

Different the above two works explore the privacy risks of machine learning models,
i.e., models leak sensitive information itself. In our final work [P3], we focus on the
privacy risks caused by abusing machine learning models, namely GAN-based Facial
Manipulation. This technique is one of the most representative deepfake applications
that modify the facial attributes of a victim in an image, e.g., changing her age or hair
color. Specially, we focus on reducing the performance of GAN inversion and propose
the first defense mechanism, called UnGANable, which is targeted at jeopardizing GAN
inversion. We consider five scenarios to comprehensively characterize a defender’s
background knowledge along multiple dimensions and propose five different defenses
for each scenario. Comprehensive analyses of four well-known GAN models reveal
that the UnGANable achieves outstanding performance in terms of both efficacy and
utility. We conduct a comparison and show that our defense can outperform all thirteen
baseline image distortion methods. We further explore four adaptive adversaries to
bypass UnGANable and show that some of them are slightly effective.

Future Research Directions. This dissertation provides some insights into the
privacy risks of machine learning models from two perspectives: the vulnerability of
ML models and the abuse of ML models. We now discuss possible directions for future
work.

In chapter 3, we propose label-only membership inference attacks against machine
learning models. As a new type of attack, one possible direction is to evaluate their
practicality. For example, in our boundary-based label-only membership inference attack,
we utilize adversarial attacks, e.g., HopSkipJump and QEBA, to add the adversarial
noise on the input sample to mislead the target model. However, these adversarial
noises typically require many times of queries, as shown in Figure 3.9. In the real world,
the adversary typically cannot query the target model many times which would raise
suspicion of the victim model owner. So, how to launch a successful attack with an
acceptable number of queries? We believe this would be an interesting and challenging
research question. One possible solution is that we can add noise to mislead the target
model using different image distortion methods such as GaussianBlur, GaussianNoise,
JPEGCompression, etc., which may provide new insights into this research direction.

In chapter 4, we take the first step to audit the privacy risks of multi-exit networks
through the lens of membership inference attacks. We reveal that the multi-exit networks
are less susceptible to membership leakage. Further, we further propose a hybrid attack
to improve the performance of membership inference attacks by using exit information
as new adversary knowledge. Inspired by these observations, another possible research
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direction that is worthwhile to study is “How vulnerable are other new design forms of
neural networks to privacy risks (e.g., membership inference attacks)?” For instance,
many new forms of neural networks have been proposed in recent years, such as masked
image modeling [38, 140, 157, 57] and prompt-based learning [155, 144, 67]. Current
various designs of new forms of neural networks are only taken into consideration to
obtain the greatest performance of their primary purpose, the privacy risks resulting
from them have never been examined. We, therefore, believe that this is a research
direction worth investigating.

In chapter 5, we take the first step towards defending against malicious face ma-
nipulation by reducing the performance of GAN inversion - the adversary can only
obtain an inaccurate latent code that is far from the accurate one, thus the following
latent code manipulation step will not achieve the ideal result. As we mentioned before,
all GAN models considered in this dissertation work on latent code z space, thus we
only consider how to mislead the GAN model in the z space. Recent works of face
manipulation [158, 14, 15, 133, 71, 100, 18, 136, 39] also works on w space, which is
transformed from z space, leading to a better inversion performance. Thus, we think
this is another challenging and meaningful research direction. One possible solution is
to apply the defense methodologies proposed in this chapter, as there is no fundamental
difference between z space and w space. For more efficient defense against w space, we
leave the in-depth exploration for future work.
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Table A.1: Dataset splitting strategy. Dtrain is used to train the target model and serves
as the members, while the other Dtest serves as the non-members. Dshadow is used to
train the shadow model after relabelled by the target model.

Target CIFAR10 CIFAR100 GTSRB Face
Model Dtrain Dtest Dtrain Dtest Dtrain Dtest Dtrain Dtest

M-0 3000 1000 7000 1000 600 500 350 100
M-1 2000 1000 6000 1000 500 500 300 100
M-2 1500 1000 5000 1000 400 500 250 100
M-3 1000 1000 4000 1000 300 500 200 100
M-4 500 1000 3000 1000 200 500 150 100
M-5 100 1000 2000 1000 100 500 100 100

Shadow Dshadow
Model 46000 42000 38109 1417

Table A.2: The threshold τ set for computer vision tasks.

Dataset Exit Model Architecture
Number VGG ResNet MobileNet WideResNet

CIFAR-10

2 0.9 0.7 0.6 0.85
3 0.9 0.7 0.6 0.85
4 0.9 0.7 0.6 0.85
5 0.9 0.7 0.6 0.85
6 0.9 0.7 0.6 0.85

CIFAR-100

2 0.2 0.3 0.4 0.8
3 0.2 0.3 0.4 0.8
4 0.2 0.3 0.4 0.8
5 0.2 0.3 0.4 0.8
6 0.2 0.3 0.4 0.8

TinyImageNet

2 0.4 0.25 0.55 0.85
3 0.4 0.25 0.55 0.85
4 0.4 0.25 0.55 0.85
5 0.4 0.25 0.55 0.85
6 0.4 0.25 0.55 0.85

Table A.3: The threshold τ set for non-computer vision tasks.

Dataset Exit Model Architecture
Number FCN-18-1 FCN-18-2 FCN-18-3 FCN-18-4

Purchases 2/3/4/5/6 0.7 0.7 0.7 0.7
Locations 2/3/4/5/6 0.5 0.5 0.5 0.5

Texas 2/3/4/5/6 0.7 0.7 0.7 0.7
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Algorithm 4: Cloaking facial image of Cloak-0
Input: A target image x to cloak; a pre-trained target generator Gt(·); a

shadow encoder Es(·); a pre-trained ResNet feature extractor F ; cosine
similarity Lcos(·, ·); MSE similarity Lmse(·, ·); minibatch m;
perturbation budget ε; trade-off κ.

Output: The trained shadow encoder Es and the cloaked image x̂.
1 Initialize Lrec(·, ·) = −Lcos(·, ·) + Lmse(·, ·);
2 for number of training iterations do
3 sample a minibatch of latent codes z′ ∈ N (0, 1);
4 minΘEs Lrec

(
Es

(
Gt(z

′))
)
, z′

)
5 end
6 Initialize xt = optimization-based inversion(x);
7 Initialize δ ∈ N (0, 1) and |δ|∞ < ϵ;
8 Initialize κ;
9 for number of optimized iterations do

10 maxδ κ
(
Lrec

(
Es(x + δ), xt

))
+ (1 − κ)

(
Lrec

(
F (x + δ), F (x)

))
;

11 clip δ for |δ|∞ < ϵ;
12 clip x + δ for x + δ ∈ [0, 1];
13 end
14 x̂ = x + δ;
15 return Es, x̂

Algorithm 5: Cloaking facial image of Cloak-2
Input: A target image x to cloak; a pre-trained target encoder Et(·); a

pre-trained ResNet feature extractor F ; cosine similarity Lcos(·, ·); MSE
similarity Lmse(·, ·); perturbation budget ε; trade-off κ.

Output: The cloaked image x̂.
1 Initialize Lrec(·, ·) = −Lcos(·, ·) + Lmse(·, ·);
2 Initialize δ ∈ N (0, 1) and |δ|∞ < ϵ;
3 Initialize κ;
4 for number of optimized iterations do
5 maxδ κ

(
− Lrec

(
Et(x + δ), 0

))
+ (1 − κ)

(
Lrec

(
F (x + δ), F (x)

))
;

6 clip δ for |δ|∞ < ϵ;
7 clip x + δ for x + δ ∈ [0, 1];
8 end
9 x̂ = x + δ;

10 return x̂
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Algorithm 6: Cloaking facial image of Cloak-3
Input: A target image x to cloak; a pre-trained target encoder Et(·); a shadow

encoder Es; a shadow generator Gs; a pre-trained ResNet feature
extractor F ; cosine similarity Lcos(·, ·); MSE similarity Lmse(·, ·);
perturbation budget ε; trade-off κ.

Output: The trained shadow encoder Es, the trained shadow generator Gs and
the cloaked image x̂.

1 Initialize Lrec(·, ·) = −Lcos(·, ·) + Lmse(·, ·);
2 for number of training iterations do
3 sample a minibatch of latent codes z′ ∈ N (0, 1);
4 minΘEs Lrec

(
Es

(
Gs(z

′))
)
, z′

)
;

5 maxΘGs Lrec
(
Es

(
Gs(z

′))
)
, z′

)
;

6 end
7 Initialize δ ∈ N (0, 1) and |δ|∞ < ϵ;
8 Initialize κ;
9 for number of optimized iterations do

10 maxδ κ
(

− Lrec
(
Es(x + δ), 0

))
+ (1 − κ)

(
Lrec

(
F (x + δ), F (x)

))
;

11 clip δ for |δ|∞ < ϵ;
12 clip x + δ for x + δ ∈ [0, 1];
13 end
14 x̂ = x + δ;
15 return Es, Gs, x̂

Algorithm 7: Cloaking facial image of Cloak-1/4
Input: A target image x to cloak; a pre-trained ResNet feature extractor F ;

cosine similarity Lcos(·, ·); MSE similarity Lmse(·, ·); perturbation
budget ε.

Output: The cloaked image x̂.
1 Initialize Lrec(·, ·) = −Lcos(·, ·) + Lmse(·, ·);
2 Initialize δ ∈ N (0, 1) and |δ|∞ < ϵ;
3 for number of optimized iterations do
4 maxδ Lrec

(
F (x + δ), F (x)

)
;

5 clip δ for |δ|∞ < ϵ;
6 clip x + δ for x + δ ∈ [0, 1];
7 end
8 x̂ = x + δ;
9 return x̂
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