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1  |   INTRODUCTION

The power of intraocular lenses (IOL) is currently calcu-
lated either using empirical formulae, with ‘theoretical-
optical formulae’ based on linear Gaussian optics 
including empirical elements or deep learning structures, 
or using full aperture raytracing (Hoffer & Savini, 2020; 
Wendelstein et al.,  2021). By inversion of these calcula-
tion concepts, the postoperative refraction at the spec-
tacle plane can be predicted if the IOL power (PIOL) is 

known. With the first empirical formulae published in 
the early eighties, the PIOL for emmetropisation is de-
rived from the corneal power (calculated from the corneal 
radius using a keratometer index of 1.3375), axial length 
(AL) and a formula constant (A), which adapts the for-
mula to a specific lens design, characteristics of the study 
population, or to a particular surgical technique (Hoffer 
& Savini, 2020). In contrast to this simplistic regression 
formula, several theoretical-optical formulae have been 
published based on a pseudophakic eye model, in which 
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Abstract
Purpose: To investigate particle swarm optimisation (PSO) as a modern purely 
data driven non-linear iterative strategy for lens formula constant optimisation 
in intraocular lens power calculation.
Methods: A PSO algorithm was implemented for optimising the root mean squared 
formula prediction error (rmsPE, defined as achieved refraction minus predicted 
refraction) for the Castrop formula in a dataset of N = 888 cataractous eyes with 
implantation of the Hoya Vivinex hydrophobic acrylic aspheric lens. The hyperpa-
rameters were set to inertia: 0.8, accelerations c1 = c2 = 0.1. The algorithm was ini-
tialised with NP = 100 particles having random positions and velocities within the 
box constraints of the constant triplet parameter space C = 0.25 to 0.45, H = −0.25 
to 0.25 and R = −0.25 to 0.25. The performance of the algorithm was compared 
to classical gradient-based Trust-Region-Reflective and Interior-Point algorithms.
Results: The PSO algorithm showed fast and stable convergence after 37 it-
erations. The rmsPE reduced systematically to 0.3440 diopters (D). With 
further iterations the scatter of the particle positions in the swarm decreased 
but without further reduction of rmsPE. The final constant triplet was 
C/H/R = 0.2982/0.2497/0.1435. The Trust-Region-Reflective/Interior-Point algo-
rithms showed convergence after 27/17 iterations, respectively, resulting in for-
mula constant triplets C/H/R = 0.2982/0.2496/0.1436 and 0.2982/0.2495/0.1436, 
both with the same rmsPE as the PSO algorithm (rmsPE = 0.3440 D).
Conclusion: The PSO appears to be a powerful adaptive nonlinear iteration al-
gorithm for formula constant optimisation even in formulae with more than 1 
constant. It acts independently of an analytical or numerical gradient and is in 
general able to search for the best solution even with multiple local minima of 
the target function.
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the IOL power for emmetropisation is based on: the AL, 
the corneal power calculated from corneal curvature with 
a keratometer index, other optional biometric measures 
such as anterior chamber depth (ACD, measured from 
the corneal epithelium to the front apex of the lens), cen-
tral thickness of the cornea (CCT) or the crystalline lens 
(LT), the horizontal corneal diameter (CD), the age or 
gender of the patient and one or more formula constants 
which again adapt the generally defined formula to the 
specific lens design (Aristodemou et al.,  2011; Hoffer & 
Savini,  2020; Schröder et al.,  2016; Zhang et al.,  2019). 
The classical calculation concepts use formula con-
stants A (SRK/T formula, Retzlaff et al., 1990), person-
alised anterior chamber depth pACD (Hoffer Q formula, 
Hoffer, 1981; Hoffer, 1993; Hoffer, 2007; Hoffer QST for-
mula, Taroni et al.,  2023), surgeon factor SF (Holladay 
1 formula, Holladay et al., 1988), constant triplets a0/a1/
a2 (Haigis formula, Haigis et al., 2000) or constant trip-
lets C/H/R (Castrop formula) (Langenbucher et al., 2022; 
Langenbucher, Szentmáry, Cayless, Müller, et al.,  2021; 
Wendelstein et al., 2021). All of these theoretical optical 
formulae are restricted to linear Gaussian optics (paraxial 
optics) using a pseudophakic model eye with three refrac-
tive surfaces (spectacle correction, thin lens cornea and 
thin lens IOL) or with four refractive surfaces (spectacle 
correction, thick lens cornea with front and back surface 
and thin lens IOL). Where the full design data of the IOL 
and the material refractive index is known for each power, 
such formulae could also be upgraded to a 5 surface pseu-
dophakic eye model with the IOL considered as thick lens 
(Langenbucher et al.,  2022). The prediction of the axial 
position of the thin IOL implant (effective lens position, 
ELP) is always performed empirically using the formula 
constant (Olsen & Hoffmann, 2014). Over the last 2 de-
cades, most of the newly developed IOL calculation con-
cepts such as the Holladay 2, the Barrett, Kane, T2, K6 
or DGS formula have remained undisclosed and unpub-
lished by the formula authors, and therefore the benefits 
or drawbacks over the classical published formulae can-
not be verified in a general case (Wendelstein et al., 2021).

When a new IOL model is launched to the market, 
formula constants are estimated before launch and 
then optimised in a validation cycle involving a suf-
ficient number of treated eyes. For that purpose, the 
biometric measures before cataract surgery, the IOLP 
of the implanted lens, and the refractive outcome typi-
cally 2–6 months after cataract surgery are documented 
(Langenbucher et al.,  2022; Langenbucher, Szentmáry, 
Cayless, Müller, et al.,  2021; Schröder et al.,  2016). In 
simple formulae with only 1 constant, reformulation 
and solving for the formula constant can generate an 
‘optimal’ individual constant which maps the biomet-
ric data and the IOLP to the refractive outcome. If sta-
tistical metrics of all the individual constants (such as 
the mean or median) are used as the optimised constant 
this does not necessarily produce the best refractive out-
come. In addition, this strategy cannot be used in formu-
lae with more than 1 constant (Aristodemou et al., 2011; 
Langenbucher, Szentmáry, Cayless, Müller, et al., 2021). 
The classical engineering optimisation method in 
those situations involves using nonlinear iterative 
techniques such as Gauss-Newton, Gradient descent, 

Levenberg–Marquardt, Trust-Region/Interior Point or 
direct line search algorithms to extract the set of for-
mula constants (Boyd & Vandenberghe, 2004; Coleman 
& Li,  1994; Conn et al.,  2000; Dikin,  1967; Kanzow 
et al.,  2004; Karmarkar,  1984; Press et al.,  2007). The 
major benefit of such nonlinear optimisation techniques 
is that – in contrast to the simple formula inversion – it 
is possible to minimise any target criterion such as the 
root-mean-squared refractive prediction error (rmsPE, 
defined as achieved refraction minus predicted refrac-
tion), which is the most relevant parameter for both sur-
geon and the patient. However, most of these nonlinear 
algorithms require the Jacobian or even the Hessian 
matrix (Boyd & Vandenberghe,  2004; Dikin,  1967; 
Kanzow et al., 2004) which might be difficult to derive. 
Furthermore, dealing with box constraints or linear 
equality or inequality constraints for the formula con-
stant space might not be supported in those algorithms.

The purpose of this paper is to present the implementa-
tion and application of the particle swarm optimisation 
method (PSO, Kennedy & Eberhart,  1995) as a purely 
data driven nonlinear iterative optimisation strategy not 
requiring the definition of a Jacobian or Hessian matrix, 
and able to search for the minimum of the target func-
tion within boundaries of our formula constant parame-
ter space. This PSO optimisation has been implemented 
using the Castrop formula (which has a constant triplet) 
as a test case. Using a large clinical data set with N = 888 
eyes treated with an IOL, the results were compared to 
two classical optimisation methods in order to investi-
gate the performance in terms of final solution and con-
vergence behaviour.

2  |   M ATERI A LS A N D M ETHODS

2.1  |  Data set for formula constant 
optimisation

In this retrospective study, we analysed a data set con-
taining measurements from 888 eyes from a cataract 
population from Augen-und Laserklinik Castrop-
Rauxel, Castrop-Rauxel, Germany, which was trans-
ferred to us (490 right eyes and 398 left eyes; 495 female 
and 392 male). The mean age was 71.2 ± 9.1 years (median: 
71 years, range: 47–91 years). The local ethics commit-
tee (Ärztekammer des Saarlandes, registration number 
157/21) provided a waiver for this study, meaning that in-
formed patient consent was not required. The data were 
transferred to us in an anonymised fashion, precluding 
back tracing of the patient. The anonymised data con-
tained preoperative biometric data derived with the 
IOLMaster 700 (Carl-Zeiss-Meditec, Jena, Germany) in-
cluding AL, CCT, ACD measured from the corneal front 
apex to the anterior apex of the crystalline lens, LT, cor-
neal front surface radius measured in the flat (R1) and in 
the steep meridian (R2) and corneal back surface radius 
in the flat (Rp1) and in the steep (Rp2) meridian. In all 
cases, a Vivinex 1 piece hydrophobic aspherical (aber-
ration correcting) monofocal intraocular lens (Hoya 
Surgical Optics, Singapore) was inserted. In addition, 
the refractive power of the inserted lens PIOL and the 
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postoperative refraction (sphere and cylinder) 5–12 weeks 
after cataract surgery were measured by an experienced 
optometrist and recorded in the data set. The data set 
included only data with a postoperative Snellen decimal 
visual acuity of 0.8 (20/25 Snellen lines) or higher, to en-
sure reliable postoperative refraction. The descriptive 
data on pre-cataract biometry, PIOL and postoperative 
refraction are summarised in Table 1.

The anonymised Excel data (.xlsx-format) was im-
ported into MATLAB to Matlab (Matlab 2019b, 
MathWorks, Natick, USA) for further processing.

2.2  |  Preprocessing of the data

Custom software was written in Matlab. The patient age 
was derived from the date of cataract surgery and date of 
birth. The mean corneal front and back surface radius of 
curvature Rmean was calculated as Rm = 0.5·(R1 + R2) 
and Rpm = 0.5·(Rp1 + Rp2). As an example, we decided 
to use the Castrop lens power calculation formula. This 
is a modern IOL calculation concept based on a pseu-
dophakic model eye with four surfaces and three formula 
constants (a constant triplet with C, H, and R). The for-
mula has been fully disclosed in 2021 by (Langenbucher, 
Szentmáry, Cayless, Weisensee, et al., 2021; Wendelstein 
et al., 2021) and uses a sum of segments correction for the 
AL according to Cooke (Cooke & Cooke, 2019a, 2019b).

2.3  |  Formula constant optimisation

For the PSO optimisation, the rmsPE was used as the 
target criterion. An internal function code was pro-
grammed to calculate the rmsPE for the input param-
eters AL, CCT, ACD, LT, Rm and Rpm as function of 
the formula constants C, H and R. As box constraints 
we used 0.25/0.25/−0.25 as lower boundaries and 
0.45/0.25/0.25 as upper boundaries for C/H/R, respec-
tively. The PSO algorithm was initialised by setting 
the total number of particles to Np = 100, and the posi-
tions of the particles in the C/H/R volume were selected 
to be uniformly distributed within the box constraints 
using random generators (Kennedy & Eberhart,  1995; 
Pedersen & Chipperfield,  2010; Shi & Eberhart, 1998). 
The starting velocities of the particles were chosen to be 
randomly distributed in the parameter space with the 

maximum velocity in C, H and R direction being 5% of 
the entire parameter ranges in C, H and R (upper minus 
lower boundaries of the box constraints). The number of 
iterations was restricted to Nit = 100, and the acceleration 
coefficients or trust parameters c1 (personal acceleration 
coefficient) and c2 (social acceleration coefficient) were 
both set to 0.1 (Eberhart & Shi,  2000; Mezura-Montes 
& Coello Coello, 2011; Pedersen, 2010). The c1 expresses 
how much confidence a particle has in itself, whereas 
c2 expresses how much confidence a particle has in its 
neighbours. Both acceleration coefficients c1 and c2, to-
gether with the random vectors r1 and r2, control the sto-
chastic influence of the cognitive and social components 
on the overall velocity of the particles in the swarm. The 
initial inertia was set to w = 0.8 and the damping ratio for 
the inertia was set to 1.0 (Eberhart & Shi, 2000; Pedersen 
& Chipperfield, 2010; Wang et al., 2013).

The following section gives a brief description of the 
most relevant steps in the PSO algorithm:

	 1.	 Specify the hyperparameters Nit, Np, c1, c2, w and 
boundaries of the box constraints,

	2.	 Generate an initial population: For initialisation in 
the 0th iteration, we define i  =  1:Np particles with 
(uniformly distributed) random positions Pi within 
the box constraints volume and with initial particle 
velocities Vi at random (random direction and veloc-
ity within the velocity constraints),

	3.	 Update position of the particles: For the kth iteration, 
the positions of all NP particles (k  =  0–Nit) are up-
dated to Pi(k + 1) = Pi(k) + Vi(k + 1)

	4.	 Enforce the boundaries for the position. If Pi(k + 1) is 
outside a boundaries with one or more vector com-
ponents, we set this vector component back to this 
boundary.

	5.	 Update velocity of the particles: At the same 
time, the velocities of all particles are updated to 
Vi(k +  1)  =  w·Vi(k) + c1·r1·(pbesti-Pi(k)) + c2·r2·(gbest-
Pi(k)), where pbesti refers to the best position of 
particle i in terms of minimal target function for all 
iterations from 0 to k and gbest refers to the best po-
sition for all particles in the neighbourhood (e.g. the 
entire swarm) in terms of minimal target function.

	6.	 Enforce the boundaries for the velocities: If one or 
more boundary conditions for the position Pi(k + 1) 
have been enforced in step 4, the corresponding com-
ponent or components of the velocity Vi(k + 1) are set 

TA B L E  1   Descriptive statistics of the dataset with mean, standard deviation (SD), median, and the lower (quantile 2.5%) and upper 
(quantile 97.5%) boundary of the 95% confidence interval.

N = 888 AL in mm CCT in mm ACD in mm LT in mm Rm in mm Rpm in mm
PIOL in 
diopters

SEQ in 
diopters

Mean 24.0980 0.5589 3.1864 4.6176 7.7666 6.5316 20.6222 −0.5612

SD 1.40721 0.0361 0.4081 0.4568 0.2682 0.2256 3.7318 0.9236

Median 23.9026 0.5587 3.1848 4.5929 7.7654 6.5307 21.0000 −0.2500

Quantile 2.5% 21.6757 0.4891 2.3720 3.7333 7.2702 6.1143 12.0000 −2.2500

Quantile 97.5% 27.3514 0.6258 3.9435 5.5192 8.3029 6.9824 27.5000 0.5000

Note: AL refers to the axial length, CCT to the central corneal thickness, ACD to the external phakic anterior chamber depth measured from the corneal front 
apex to the front apex of the crystalline lens, LT to the central thickness of the crystalline lens, Rm and Rpm (mean of the flat and steep meridian each) to the 
mean radius of curvature for the corneal front and back surface, PIOL to the refractive power of the intraocular lens implant, and SEQ to the spherical equivalent 
power achieved 5–12 weeks after cataract surgery.
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to 0 to prevent movement of the particle outside the 
boundary in the next iteration,

	 7.	 Evaluate the fitness of the particles: The target func-
tion for all particle positions Pi(k + 1) is derived,

	8.	 (pbesti-Pi(k)) refers to the vector of the actual position 
of the ith particle in the swarm to the best position of 
this particle explored in the history, and (gbest-Pi(k)) 
to the vector of the actual position of the ith particle 
to the position of the particle which showed the best 
overall performance in the history,

	 9.	 Update pbesti and gbest after each iteration, update 
hyperparameters (inertia w, c1, c2)

	10.	 If iteration converged: exit, else: loop back to step 3.

The iteration is stopped when at least one of the fol-
lowing criteria is met: number of iterations reaches Nit, 
the relative change in the target function rmsPE over the 
last 5 iterations is less than 1e−8 or the standard deviation 
(SD) of particle swarm positions Pi is below a threshold 
of 1e-4 for the last 5 iterations for each vector component 
(Pedersen,  2010; Pedersen & Chipperfield,  2010; Wang 
et al., 2013).

As one reference, we used the Trust Region 
Reflective nonlinear iterative optimisation algorithm, 
which minimises the sum of squared prediction errors 
in a set of nonlinear equations (equivalent to minimis-
ing the rmsPE). This algorithm was implemented as a 
gradient-based algorithm (the target function included 
the calculation of the prediction error as well as the 
gradient/Jacobian of the prediction error with respect 
to the formula constants C, H and R). The maximum 
number of iterations was again set to Nit  = 100, and 
the optimality tolerance was set to 1e−8 (Coleman & 
Li, 1994; Conn et al., 2000).

As another reference, we used the Interior Point non-
linear iterative optimisation algorithm, which searches 
for the minimum of a nonlinear target function. The 
rmsPE calculated over all N clinical cases was used as 
the target function. This algorithm was implemented 
using finite differences (with finite differences step size 
of 1e−10) instead of providing the analytical gradient/
Jacobian, since the rms operation in the target func-
tion is extremely difficult to implement analytically. 
The maximum number of iterations was again set to 
Nit  = 100, and the optimality tolerance was set to 1e−8 
(Press et al., 2007).

For both reference algorithms, the same box con-
straints were used as in the PSO algorithm (Mezura-
Montes & Coello Coello, 2011). For the PSO algorithm, 
the plot of the particle positions together with the par-
ticle velocities is shown as initialisation and after 10, 20 
and 30 iterations. In addition, the convergence perfor-
mance is shown using two graphs showing the rmsPE 
over iteration and the SD of the particle position scat-
ter over iteration for each vector component C, H and 
R. For comparison of the performance of the PSO al-
gorithm to the Trust-Region-Reflective (Coleman & 
Li, 1994; Conn et al., 2000) and the Interior Point algo-
rithm (Press et al., 2007), the final results for the con-
stant triplets together with the rmsPE are provided. In 
addition, the number of iterations and function evalu-
ations is listed.

3  |   RESU LTS

The effect of the hyperparameters for the PSO on the 
convergence behaviour was tested in a pilot experiment, 
where we identified accelerations c1 = 0.1 and c2 = 0.1 to-
gether with inertia of w = 0.8 as a good compromise be-
tween fast and stable/robust convergence. Several sets of 
hyperparameters were tested with several positions and 
velocities for initialisation.

Table  2 shows the convergence performance for the 
PSO and for the 2 reference algorithms under test. All 
three algorithms showed fast and stable convergence 
after a couple of iterations. The PSO required 37 itera-
tions for reaching the lowest value of the target function 
rmsPE  =  0.3440 diopters (D). With the NP  = 100 parti-
cles in the swarm, 100 evaluations of the target functions 
were required for each iteration. The PSO algorithm 
stopped on the first optimality criterion, which means 
that the rmsPE did not show a further decrease. The 
final formula constants were C = 0.2982, H = 0.2497 and 
R = 0.1435, respectively. Figure 1 shows the situation of 
the PSO algorithm for the first iteration (initialisation) 
as well as for the situation after 10, 20 and 30 iterations. 
In the 3D plot, the positions of the NP = 100 particles in 
the particle swarm (blue dot markers) and the actual ve-
locities (red lines) are displayed. The initial position and 
the best position of each particle (history of all iterations 
from 1 to i) are indicated by green and cyan dot markers, 
respectively. The respective value of the target function 
rmsPE as evaluated for the best particle in the swarm at 
iteration i is provided in the header of the graphs.

Figure  2 shows the convergence performance of the 
PSO algorithm. For that purpose, the iterations were 
continued to the maximum number (Nit = 100) in spite of 
one of the stop criteria (first-order optimality) having al-
ready been reached after 37 iterations. On the left graph, 
the target function rmsPE is plotted against the number 
of iterations. We see from the graph that the target func-
tion systematically decreases from the initialisation to 
iteration 37 and subsequently does not show any further 
decrease in rmsPE. On the right graph, the standard de-
viation of the particle scatter is shown for all three com-
ponents of the parameter space C, H and R. As can be 
seen from the graph, the particle concentration increases 
(standard deviation decreases) for all three components 
even after reaching the stop criterion (iteration 37), but 
this further concentration of the particles does not fur-
ther decrease the rmsPE, meaning that the position of 
the particle with the best performance in the swarm does 
not move further.

The Trust-Region-Reflective algorithm (designed to 
minimise the sum of squared prediction errors in the 
dataset with N  =  888 eyes) and the Interior-Point al-
gorithm (designed to search for the lowest value of the 
function rmsPE = f(C, H, R)) both showed a fast and sta-
ble convergence. The Trust-Region-Reflective algorithm 
stopped after 27 iterations and 28 function evaluations, 
whereas the Interior-Point algorithm required only 17 
iterations. In the Trust-Region-Reflective algorithm for 
each function evaluation the gradient with respect to C, H 
and R was derived algebraically, whereas in the Interior-
Point algorithm the gradient was derived numerically by 
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evaluating the target function at small variations of C, H, 
and R (finite differences). The final results of both algo-
rithms used as reference were quite similar (C = 0.2982, 

H =  0.2496, R =  0.1436 for the Trust-Region-Reflective 
versus C = 0.2982, H = 0.2495, R = 0.1436 for the Interior-
Point algorithm). The final iteration values for rmsPE 

TA B L E  2   Comparisons of the Particle Swarm Optimisation with the classical Trust-Region-Reflective algorithm (gradient supported) and 
the Interior-Point algorithm based on finite differences (numerical derivation of the gradient).

N = 888 Particle swarm optimisation Trust-region-reflective Interior-point

Number of iterations 37 27 17

Number of function evaluations 37·NP = 3700 28 74·7 = 518

Number of gradient calculations % 28 %

Iteration stopped for First order optimality Step size First order 
optimality

Final rmsPE in diopters 0.3440 0.3440 0.3440

Castrop formula constants

C 0.2982 0.2982 0.2982

H 0.2497 0.2496 0.2495

R 0.1435 0.1436 0.1436

Note: The Particle Swarm optimisation requires the most evaluations of the target function, mostly due to the large number of particles NP = 100 in the swarm. In 
contrast, for the Trust-Region-Reflective algorithm for each function evaluation the respective gradient was evaluated with respect to C, H, and R. At the end, 
both the formula constants and the target function rmsPE showed no noticeable variations between the three algorithms.

F I G U R E  1   3D plot with the positions of the NP = 100 particles in the particle swarm (blue dots) and the actual velocities (red lines) for the 
Particle Swarm Optimisation. The upper left graph refers to the initial state (first iteration), and the upper right, lower left, and lower right 
graphs to the situation after 10, 20, and 30 iterations respectively. The initial positions and the best position of each particle (history of all 
iterations from 1 to i) are plotted with green dots and cyan dots respectively. The corresponding value of the target function rmsPE (in diopters 
(D)) evaluated for the best particle in the swarm is provided in the header of the graphs.

 17553768, 2023, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/aos.15664 by U

niversitaet D
es Saarlandes, W

iley O
nline L

ibrary on [16/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



780  |      LANGENBUCHER et al.

produced by both algorithms were identical to the result 
from the PSO algorithm (rmsPE = 0.3440 D).

4  |   DISCUSSION

Classical iterative nonlinear algorithms such as the Gauss-
Newton, gradient descent methods, direct line search or 
combinations are very popular, especially in engineering 
and modelling (Boyd & Vandenberghe, 2004; Dikin, 1967; 
Kanzow et al., 2004; Karmarkar, 1984). Where the sum 
of squared prediction errors is required to be minimised 
in a system of nonlinear equations, algorithms such as 
the Levenberg–Marquardt (Kanzow et al.,  2004) or the 
Trust-Region-Reflective algorithms (Conn et al.,  2000) 
are used, as the Gauss-Newton algorithm may show 
problems with its robustness (Coleman & Li, 1994). For 
such equation systems the analytical gradient or Jacobian 
matrix may be provided to support the algorithm in fast 
convergence. In contrast, if searching for a minimum 
in a single nonlinear function, algorithms such as the 
Interior-Point (Press et al., 2007), Active-Set or SQP al-
gorithm may be a good choice. However, here all N non-
linear equations are condensed into a single equation (e.g. 
rmsPE = rms(PE1…PEN)) with a highly nonlinear opera-
tion, and consequently, the analytic gradient of this equa-
tion may be very complex. Therefore, the Interior-Point 

algorithm (Press et al., 2007) was not implemented using 
the analytical gradient, but instead by calculating the nu-
merical gradient using finite differences.

In this paper, we implemented a very modern iterative 
algorithm which was first established in 1995 in artificial 
intelligence and deep learning applications by (Kennedy 
& Eberhart,  1995). PSO is a simple and computational 
efficient technique which remodels the natural phenom-
enon of swarm behaviour of animals such as birds or 
fishes where parameters such as velocity and acceleration 
of the individual particle are affected by the correspond-
ing parameters of the neighbours (Eberhart & Shi, 2000; 
Pedersen & Chipperfield, 2010; Shi & Eberhart, 1998). In 
contrast to algorithms such the Levenberg–Marquardt 
which are basically unconstrained, the PSO is typi-
cally boundary constrained (Mezura-Montes & Coello 
Coello, 2011) and does not deal with a 1st or 2nd deriv-
ative (gradient/Jacobian or Hessian). This self-adaptive 
algorithm is perfectly suited to large scale optimisation 
problems and is able to handle noisy data, even in cases 
with more than one function minimum. The major ad-
vantage is that it can be used in situations where the lens 
power calculation formula is provided only as a ‘Black 
box’ function with biometric measures and the lens power 
as input and the predicted refraction as output. It is also 
memory-based which means that for each particle all the 
previous positions and target function evaluations are 

F I G U R E  2   On the left graph the target function rmsPE (in diopters, (D)) is plotted as a function of iterations. To show the convergence 
properties of the Particle Swarm Optimisation algorithm, the iteration was continued to the maximum number of iterations (Nit = 100) even 
though the stopping criteria were fulfilled after 37 iterations. On the right graph the standard deviation of the particle scatter is shown for all 
three components of the parameter space C, H, and R. As can be seen from the graph, the particle concentration increases (standard deviation 
decreases) even after reaching the stopping criterion, but this further concentration of the particles does not change the target function, 
meaning that the position of the particle with the best performance in the swarm does not move further.
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stored (Pedersen & Chipperfield, 2010). In each iteration, 
the position of all particles with the best performance over 
all previous iterations in addition to the particle with the 
best performance ever in the swarm has to be identified 
(Eberhart & Shi, 2000; Shi & Eberhart 1998), and this af-
fects the velocity of all the other particles. In this context, 
the inertia (Wang et al., 2013) refers to the memory of the 
previous velocity vector (flight direction), the acceleration 
parameter c1 to the cognitive component which is affected 
by the position of this particle in previous iterations, and 
c2 to the social component which is affected by the perfor-
mance of the neighbour particles (Pedersen, 2010) with r1 
and r2 being stochastic vectors. With c1 = c2 = 0 particles 
keep flying at their current speed until they hit a bound-
ary of the search space (assuming no inertia). If c1 = c2, 
particles are attracted towards the average. While most 
applications use c1 = c2, the ratio between these constants 
is problem-dependent. If c1 >> c2, each particle is much 
more attracted to its own personal best position, result-
ing in excessive wandering. On the other hand, if c2 >> c1, 
particles are more strongly attracted to the global best 
position, causing particles to rush prematurely towards 
optima. The inertia parameter w in the PSO controls the 
tendency of the particles to keep their previous direc-
tion (Wang et al., 2013). For w > 1, the velocity increases 
whereas for 0 < w < 1 the velocity decreases. Inertia is typi-
cally adjusted with each iteration according to a dumping 
factor (Liu et al.,  2017) and the general condition of all 
particles in the swarm.

From our results, we can see that the PSO performs 
quite well, but that it requires more iterations compared 
to both gradient based algorithms used as reference. The 
benefit of the PSO in this context is that no gradient is 
required for this algorithm (neither an analytic nor a nu-
merical gradient) and that according to the literature it 
deals perfectly with noisy data or a target function which 
has multiple (local) minima (Eberhart & Shi,  2000; 
Kennedy & Eberhart,  1995; Shi & Eberhart, 1998). We 
believe that further optimising the hyperparameters 
could even speed up the convergence behaviour, and that 
a reduction of the number of particles would significantly 
improve the calculation efficiency (Pedersen, 2010).

The character of the present paper is mostly a pilot 
study, which introduces a modern nonlinear iterative 
and fully data-driven optimisation technique adopted 
from natural phenomena to the problem of formula 
constant optimisation, which (to our knowledge) has 
not been described in the past. We used a large dataset 
containing all biometric data together with the power 
of the implanted intraocular lens and the postoper-
ative refraction, to show the applicability of this tech-
nique for the example of a modern IOL calculation 
formula (the Castrop formula). We chose the Castrop 
formula (Langenbucher, Szentmáry, Cayless, Weisensee, 
et al.,  2021; Wendelstein et al.,  2021) as it is one of the 
more complex paraxial calculation strategies based on 
a 4 surface pseudophakic model eye and a triplet of for-
mula constants. Whereas in disclosed formulae with one 
constant the constant optimisation could be performed 
in a very simplistic manner, optimisation of constant sets 
(formulae with more than 1 constant) could be a chal-
lenge. We have shown (both in this study and in several 

previous experiments not reported in this paper) that the 
PSO algorithm always showed a stable convergence and 
generates the same formula constants as classical non-
linear iterative optimisation techniques. With the PSO 
algorithm we ultimately achieved the same performance 
as with the classical optimisation techniques.

However, our study has some limitations: first, we 
did not systematically optimise the hyperparameters 
Nit, NP, c1, c2 and w for our implementation. Instead, 
we performed several hundreds of trials with different 
sets of the hyperparameters and found that the combina-
tion of parameters as recommended in some papers on 
PSO showed a good performance (Pedersen, 2010; Wang 
et al., 2013). In all of our tests, the algorithm converged 
much earlier than 100 iterations. We feel that the PSO 
even performs well with a lower number of particles in 
the swarm, but this reduction of the swarm size could 
increase the number of iterations necessary for conver-
gence. And last but not least, we have not yet tested the 
PSO algorithm with other datasets or other IOL power 
calculation formulae. Such tests are, however, planned 
for the upcoming months.

In conclusion, we presented Particle Swarm 
Optimisation as a modern purely data-driven adaptive 
iterative nonlinear optimisation strategy which applies 
the concept of the natural phenomenon of a swarm be-
haviour (e.g. of birds or fishes) to the problem of formula 
constant optimisation in cataract surgery. This algo-
rithm starts with multiple particles with positions and 
velocities at random, and evaluates the target function at 
all positions of the individual swarm particles for all it-
erations to adapt the velocities and accelerations of each 
particle in each iteration. The algorithm showed a proper 
performance in terms of fast and stable convergence, and 
the final result was identical to the result of two classi-
cal gradient based algorithms used as reference. Further 
experiments with other datasets and other formulae are 
required to underline the potential of this algorithm.
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