
REAL-TIME EXECUTION MANAGEMENT

IN THE ROS 2 FRAMEWORK

Tobias Stark (né Blaß)

Dissertation zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften (Dr. Ing.)

an der Fakultät für Mathematik und Informatik
der Universität des Saarlandes

Saarbrücken, 2022

Dekan:
Univ.-Prof. Dr. Jürgen Steimle

Prüfungsausschuss:
Prof. Dr. Jan Reineke (Vorsitz)
Dr. Björn Brandenburg (Berichterstatter)
Prof. Dr. Martina Maggio (Berichterstatter)
Prof. Dr.-Ing. Rolf Ernst (Berichterstatter)
Dr. Hadar Frenkel (Beisitzer)

Tag des Kolloquiums: 04.07.2023

Textfassung vom 02.08.2023
Copyright © 2023 Tobias Stark

ii

Abstract

Over the past decade, the ROS ecosystem has emerged as the most popular repository of open-
source robotics software. As a result, many robots rely on ROS-based software to make timing-
critical decisions in real time. However, there is little evidence that real-time theory is used
to analytically bound or control the worst-case response time in ROS components. The recent
transition to ROS 2, the next generation of the ROS framework, has not changed the situation,
even though ROS 2 explicitly aims to improve support for real-time control [52].

This dissertation identifies three main hurdles to adopt real-time theory in the context of ROS 2:
first, the complex and non-obvious timing effects introduced by the ROS 2 framework; second,
the expertise required to use real-time scheduling mechanisms correctly; and third, the inherent
unpredictability of typical robotics workloads, which defy static provisioning.

These hurdles are overcome in two steps. First, the dissertation introduces a timing model for
ROS 2 applications that accounts for the framework’s implicit timing effects. Based on this model,
a response-time analysis is developed that allows robotics developers to bound the worst-case
response time of individual components and multi-component processing chains.

However, modeling and provisioning ROS 2 systems remains a cumbersome and error-prone
task. In a second step, the dissertation hence proposes ROS-Llama, an automatic latency manager
for ROS 2. ROS-Llama automatically controls the latency of a ROS 2 system through real-time
scheduling, while requiring only little effort and no real-time scheduling expertise by the user. It
runs in parallel with the deployed application and can therefore measure all required information
without user involvement and adapt to changes at runtime. As part of ROS-Llama’s design, the
dissertation discusses the conceptual and practical challenges in developing such an automatic
tool, identifying relevant properties of ROS 2 and essential requirements of the robotics domain.

Experiments on a mobile robot demonstrate the effectiveness of the timing model and the
response-time analysis in real-world settings. They further confirm the viability of the ROS-Llama
approach and show that ROS-Llama reduces the maximum observed latency under load compared
to the default Linux scheduler.

iii

Kurzzusammenfassung

In den letzten zehn Jahren hat sich ROS und das ROS-Software-Ökosystem zur populärsten
Quelle von Open-Source Robotik-Software entwickelt. Viele Roboter verwenden daher ROS-
basierte Softwarekomponenten um zeitkritische Entscheidungen zu treffen. Trotzdem gibt es
kaum Indizien, dass die Reaktionszeit solcher Komponenten durch Echtzeittheorie bestimmt
oder kontrolliert wird. Die Migration zur nächsten Generation des Frameworks, ROS 2, hat
an dieser Tatsache nichts geändert, obwohl ROS 2 mit dem expliziten Ziel entwickelt wurde,
Echtzeitsoftware besser zu unterstützen [52].

In dieser Dissertation werden drei Hürden identifiziert, die der Anwendung von Echtzeittheorie
auf ROS-Systeme im Wege stehen. Erstens, die komplexen und versteckten Effekte, die das
Framework selbst auf die Laufzeit von ROS-Komponenten hat; zweitens, die Expertise die ein
Entwickler bräuchte, um Echtzeit-Schedulingverfahren korrekt zu verwenden; und drittens, die
inhärente Unvorhersehbarkeit und Dynamik typischer Robotik-Anwendungen.

Diese Hürden werden in zwei Schritten addressiert: zunächst definiert die Dissertation ein
Laufzeitmodell für ROS 2-Anwendungen, das die impliziten Effekte des Frameworks beschreibt.
Basierend auf diesem Modell definiert die Dissertation eine Antwortzeitanalyse (response-
time analysis), mithilfe derer Entwickler eine obere Schranke auf die maximale Reaktion-
szeit bestimmen können. Die Analyse kann sowohl auf einzelne Komponenten als auch auf
komponentenübergreifende Reaktionsketten angewendet werden.

Trotz dieser Verbesserungen bleibt es schwierig und fehleranfällig, ROS 2-Systeme korrekt
zu modellieren und die Komponenten sinnvoll mit Ressourcen zu versehen. Dieses Problem
wird mit der Entwicklung von ROS-Llama addressiert, einem automatischen Latenzmanager
für ROS 2. ROS-Llama kontrolliert vollautomatisch die Latenz zeitkritischer Komponenten
und Reaktionsketten. Es konfiguriert den Echtzeitscheduler des Betriebssystems und teilt den
Komponenten Rechenzeit zu, ohne sich auf manuelle Interventionen oder sonstige Expertise
des Benutzers zu verlassen. Dazu läuft es parallel zur verwalteten Anwendung und misst die
benötigten Informationen zur Laufzeit. Mithilfe der gemessenen Parameter passt sich ROS-Llama
automatisch an dynamische Änderungen im System an. Als Teil der Diskussion zu ROS-Llama
werden die konzeptuellen und praktischen Herausforderungen eines solchen voll-automatisierten
Werkzeugs diskutiert. Dabei werden relevante Eigenschaften von ROS 2 sowie die wichtigsten
Anforderungen auf Seite der Robotik-Entwickler identifiziert.

Experimente an einem selbstfahrenden Roboter demonstrieren die Effektivität des Laufzeit-
modells und der Antwortzeitanalyse in realistischen Situationen. Sie bestätigen außerdem die
praktische Machbarkeit des ROS-Llama-Ansatzes und zeigen, dass ROS-Llama die beobachtete
Latenz unter Last besser reduzieren kann als der in Linux mitgelieferte Standard-Scheduler.

v

Acknowledgements

First and foremost, I want to thank my academic advisor, Björn B. Brandenburg, for teaching and
guiding me on the path toward this PhD. I learned a lot over the years and am highly grateful for
your patience and time.

Second, I thank Robert Bosch GmbH for funding my PhD and giving me the opportunity to do
my research in an industrial and applied context. Most of all, my thanks go to my group leader
Dirk Ziegenbein and my advisors, Arne Hamann and Ralph Lange. You always managed to carve
time for me out of your very busy schedules, and your willingness to share your experience and
perspectives with me helped me out a great deal during this PhD.

Third, I would like to thank Rolf Ernst and Martina Maggio for reviewing this dissertation.
My PhD would not have been the same if it weren’t for my colleagues at Bosch Corporate

Research. I particularly want to thank Ingo Lütkebohle and Jan Staschulat for helping me to
understand robotics software engineering better.

Thanks also to my fellow students at Max Planck Institute, particularly my office mate Felix
and the members of the real-time systems group: Arpan, Cédric, Georg, Marco, Marco, and
Sergey. I especially want to thank Manohar Vanga for sharing his experience and always having
an open ear for my concerns.

Further thanks go to Daniel Casini for being an experienced and highly effective co-author
over these years. Your hands-on teaching on how to turn a research idea into a finished paper has
helped me a great deal.

Special thanks also go to Sergey Bozhko, Tina Jung, Marco Perronet, and Kathrin Stark for
reading earlier drafts of this thesis. Your advice has greatly improved this work.

Further, a big thanks to my family and friends. Thank you for pub quizzes, Staden barbecues,
board game nights, vacations; in short: countless hours of fun, both online and in person. Thank
you for supporting me through all these years.

Finally, I want to thank my wife, Kathrin, for her never-ending love and support. You’ve
cheered me up when I was down and pushed me forward when I was tempted to give up, despite
the ocean between us.

vii

Publications

Parts of this dissertation have previously appeared in the following publications:

[27] Daniel Casini, Tobias Blaß, Ingo Lütkebohle, and Björn B. Brandenburg. Response-Time
Analysis of ROS 2 Processing Chains Under Reservation-Based Scheduling. In Proceedings
of the 31st Euromicro Conference on Real-Time Systems (ECRTS), pages 6:1–6:23, 2019

[14] Tobias Blaß, Arne Hamann, Ralph Lange, Dirk Ziegenbein, and Björn B. Brandenburg.
Automatic Latency Management for ROS 2: Benefits, Challenges, and Open Problems.
In Proceedings of the 27th IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 264–277, 2021

[13] Tobias Blaß, Daniel Casini, Sergey Bozhko, and Björn B. Brandenburg. A ROS 2 Response-
Time Analysis Exploiting Starvation Freedom and Execution-Time Variance. In Proceed-
ings of the 42nd Real-time Systems Symposium (RTSS), pages 41–53, 2021

ix

Contents

1 Introduction 1
1.1 Why ROS 2? . 3
1.2 Contributions . 4
1.3 Organization . 6

2 Background 7
2.1 The ROS Framework . 7

2.1.1 Execution Model . 9
2.1.2 Implementation . 10

2.2 Real-Time Scheduling . 11
2.2.1 The Sporadic Real-Time Task Model 12
2.2.2 Resource Reservations . 14
2.2.3 Multiprocessor Scheduling . 16
2.2.4 Thread Scheduling in Linux . 17

2.3 Techniques for Response-Time Analysis . 19
2.3.1 Supply and Demand . 19
2.3.2 The Busy-Window Principle . 21
2.3.3 Compositional Performance Analysis 24

2.4 Related Work . 25

3 A Timing Model of ROS Applications 33
3.1 The ROS Executor . 33

3.1.1 The Algorithm . 34
3.1.2 Model Validation . 36

3.2 System Model . 39
3.2.1 The ROS Executor . 40
3.2.2 The Callback Instance Lifecycle . 41
3.2.3 Event Sources . 42
3.2.4 Execution-Time Model . 44
3.2.5 Callback Graph . 47
3.2.6 Processing Chains . 48

3.3 Summary . 49

4 A Response-Time Analysis for ROS 51
4.1 Activation-Curve Propagation . 52
4.2 Round-Robin Approach . 54

4.2.1 Interference Bounds . 55

xi

Contents

4.2.2 Response-Time Bound . 58
4.2.3 Eliminating ωye . 61

4.3 Busy-Window Approach . 67
4.3.1 Response-Time Bound . 71
4.3.2 The Search Space for the Activation Offset ta 73
4.3.3 Combined Analysis . 75

4.4 Summary . 75

5 An Automatic Latency Manager for ROS 77
5.1 Requirements and Constraints . 80
5.2 The ROS-Llama Approach . 83
5.3 Model Extractor . 85

5.3.1 Transmitting Trace Events . 86
5.3.2 Tracepoints . 88
5.3.3 Recognizing Callback Instances . 88
5.3.4 Measuring Callback Properties . 98
5.3.5 Detecting Initialization Phases . 105
5.3.6 Data Aging . 108

5.4 Budget Manager . 111
5.4.1 Scheduling Strategy . 112
5.4.2 Budgeting Heuristic . 115

5.5 Summary . 119

6 Evaluation 121
6.1 Evaluation Platform . 122

6.1.1 ROS Components . 123
6.1.2 Processing Chains . 124

6.2 Response-Time Analysis . 126
6.3 Automatic Latency Management . 130

6.3.1 Latency Goal Compliance . 132
6.3.2 ROS-Llama Runtime Costs . 137
6.3.3 Unpredictable Middleware Implementation 138

6.4 Tuning the Reservation Period . 139
6.5 Data Aging . 142

6.5.1 Spiking Workloads . 145
6.5.2 Fluctuating Workloads . 146
6.5.3 Oscillating Workloads . 149
6.5.4 Summary . 155

7 Conclusion 157
7.1 Summary of Results . 157

7.1.1 Modeling the ROS framework . 158
7.1.2 Response-time Analysis . 159
7.1.3 Automatic Latency Management . 160

xii

Contents

7.2 Future Work . 162
7.2.1 Towards a Well-Behaved Middleware 163
7.2.2 Addressing Limitations in Linux . 164
7.2.3 Model Extensions . 166
7.2.4 Improving the Budget Management 169
7.2.5 Below-Worst-Case Provisioning through Probabilistic Analysis 169
7.2.6 Automatic Data Aging . 170

7.3 Closing Remarks . 171

A List of Tracepoints 173

Bibliography 175

xiii

List of Figures

2.1 The multi-layered ROS architecture. 10
2.2 Bounded delay in CBS reservations. 21
2.3 The busy window of a job Ji,j . 22

3.1 The executor scheduling algorithm. 35
3.2 Gantt-Chart of the scheduler validation test for ROS 2 “Dashing Diademata”. . 37
3.3 Gantt-Chart of the scheduler validation test for ROS 2 “Foxy Fitzroy”. 38
3.4 Lifecycle of a polled and a privileged callback. 41
3.5 Implementation of time-triggered workloads with rate objects and timer callbacks. 43
3.6 Observed per-invocation times of the /tf callback in the amcl component, and

the effect of modeling the callback as an execution-time curve. 44
3.7 A simple callback graph of five callbacks. 48

5.1 Overview of ROS-Llama. 84
5.2 The trace event communication infrastructure. 86
5.3 Suspension protocol added to the Feather-Trace implementation. 87
5.4 List of tracepoints in rcl and rclcpp. 89
5.5 Definition of a subscription and a timer callback using the ROS callback API. . 90
5.6 The trace events emitted by the example in Listing 5.5. 90
5.7 Example of a periodic event source. 92
5.8 The trace events emitted by the periodic event source in Listing 5.7. 93
5.9 Example of a data-driven event source. 94
5.10 The trace events emitted by the data-driven event source in Listing 5.9. 95
5.11 Possible transitions between thread types. 97
5.12 Argument offset in δmin curves. 102
5.13 The dwb controller (simplified). 107

6.1 The Turtlebot 3 “Burger”, our evaluation platform. 123
6.2 Configured processing chains in reverse degradation order. 124
6.3 Synthetic evaluation setup. 127
6.4 Response-time bound of the chain (synthetic workload). 127
6.5 Response-time bound of callbacks compared to the proposed analysis. 128
6.6 Response-time bound of callbacks modeled with scalar WCETs compared to

execution-time curves. 130
6.7 Number of goal violations per chain. 132
6.8 CDFs of the latency of the pilot chains, separated by phase. 133
6.9 CDFs of the latency of the odometry-loc chains, separated by phase. 136
6.10 CDFs of the transmission delay in the odometry-loc chain, separated by phase. . 136

xv

List of Figures

6.11 Average ROS-Llama overhead by component per phase. 137
6.12 Observed response time under various periods. 141
6.13 Supply-bound functions for two reservations with the same bandwidth but differ-

ent periods. 141
6.14 Consumed processor time per invocation for the four scenarios. 143
6.15 Data-aging performance on the spiking workload. 145
6.16 Data-aging performance on the fluctuating workload. 147
6.17 Effect of safety margins under the fluctuating workload. 147
6.18 Effect of trigger thresholds under the fluctuating workload. 149
6.19 Data-aging performance on the oscillating workload with a 0% safety margin. . 151
6.20 Data-aging performance on the oscillating workload with a 5% safety margin. . 151
6.21 Effect of safety margins under the slowly oscillating workload. 152
6.22 Effect of trigger thresholds under the slowly oscillating workload. 154

A.1 Locations of the tracepoints in rcl and rclcpp. 173

xvi

1 Introduction

Robots continuously interact with their environment. The correctness of a robot’s control software

therefore depends not only on whether the robot makes the right decision but also on whether it

makes the decision quickly enough. Such a timing constraint is known as a real-time constraint.

One example of a common computation with real-time constraints is obstacle detection, an

essential part of any mobile robot. When a robot perceives an obstacle in its path, it has limited

time to identify the obstacle, plan a new course, and put the plan into action. Taking too long

to compute the plan may lead to unwanted behavior like jerky movements, frequent emergency

braking, or even collisions.

A similar situation occurs in the control of robotic arms [109, pp. 153 ff.]. To pick up an object,

the robot needs to first locate the target and plan a suitable arm movement. While the movement

is ongoing, the robot needs to continuously monitor the situation and react to any contingencies

such as imprecise arm movements or changes in the environment. Failure to correct for these

changes in time will leave the arm in the wrong position or force sudden and jerky corrections.

Real-time requirements are hardly unique to robots, and methods to control and predict worst-

case software latency have been the subject of real-time systems research for about fifty years [71].

The required real-time schedulers are widely available, not only in special-purpose real-time

operating systems but also in general-purpose operating systems like Linux. In principle, the

tools to ensure that robots adhere to their real-time requirements are readily available.

Unfortunately, those tools turn out to be extremely difficult to apply in the robotics context.

A major reason is that many robots are developed with frameworks such as ROS 2 to simplify

1

CHAPTER 1. INTRODUCTION

and speed up development. ROS 2 abstracts away tedious low-level details and provides a

portable high-level API that is designed with common robotics issues in mind. Most importantly,

it provides a module system that gives developers access to a large ecosystem of third-party

packages with ready-made solutions to many robotics problems. The advantages are numerous

and easy to see. For instance, why painstakingly develop a new navigation subsystem if a complete

navigation stack with multiple state-of-the-art path-planning algorithms and 3-D visualization

support is just one download away?

Unfortunately, many of the design decisions that make robotics frameworks so useful also

make it difficult to apply established real-time techniques. By abstracting from low-level details,

frameworks complicate and obfuscate the timing behavior of the application. For example,

ROS 2 multiplexes independent message handlers onto shared executor threads using custom

scheduling policies. Consequently, applications running on top of the framework are subject to

the scheduling decisions of the underlying operating system and the framework, with complex

and interdependent effects on timing.

In this dissertation, we bridge this gap and make established real-time techniques applicable

to ROS 2 systems. We describe the timing behavior of the ROS 2 framework and develop a

response-time analysis that computes safe upper bounds on software latency in the system.

Although such techniques make it possible to control and bound software latency, apply-

ing them requires significant expertise and effort. The extensive modeling effort required by

traditional real-time techniques proves particularly onerous once third-party modules are involved.

To address these issues, we propose ROS-Llama, an automatic latency manager for ROS 2

that automatically enforces real-time constraints based on a simple specification of latency goals,

which can be written with little effort and expertise. ROS-Llama autonomously extracts a system

model at runtime and uses it to configure the system’s real-time scheduler such that the user’s

latency goals are fulfilled.

2

1.1. WHY ROS 2?

1.1 Why ROS 2?

Among the various robotics frameworks available today (surveyed in Section 2.4), this dissertation

focuses exclusively on ROS 2. There are two major reasons for this decision: its popularity, and

its explicit goal to support timing-sensitive workloads.

Popularity. First released in 2007, ROS 1 [97] has become extremely popular in academia and

industry. The ROS website lists over 150 different robots that have been built with ROS [49],

the community metrics indicate tens of thousands of developers worldwide [43], and the initial

paper [97] has been cited over 8,850 times according to Google Scholar.

However, after over a decade of development and in the face of increasingly demanding

applications, it became clear to the ROS community that the framework is held back by several

long-standing shortcomings and architectural limitations that cannot be rectified in a backward-

compatible manner. This motivated the development of ROS 2, a complete refactoring of ROS

that puts the successful concept onto a modernized and improved foundation.

In the four years since its first release, ROS 2 has firmly established itself as the future of

ROS. It is backed by many major robotics companies [47] and Open Robotics, the organization

maintaining the ROS framework, announced in 2020 that they will cease development of ROS 1

and focus their attention on ROS 2 exclusively [48].

Commitment to real-time support. One of the major improvements of ROS 2 compared to

ROS 1 is improved support for real-time control [52]. Toward this goal, the core ROS libraries

allocate memory only through user-provided allocators and avoid memory allocations altogether

on critical paths. This improves determinism, as memory allocations are a major source of

unpredictable delays.

ROS 2 further implements node communication through the real-time-capable DDS [84]

middleware. Although none of these implementation changes guarantees timing predictability on

its own, they are all necessary steps towards enabling users to write real-time software with ROS.

3

CHAPTER 1. INTRODUCTION

In this dissertation, we therefore do not consider ROS 1 and focus on ROS 2 only. Unless

specified otherwise, we use the term ROS hereafter to refer to ROS 2 version “Foxy Fitzroy”,

released in June 2020, which is the long-term support version at the time of writing.

The decision to focus exclusively on the ROS framework might seem surprising considering

the various challenges and obstacles described so far, and even more so as various additional

challenges become apparent throughout this dissertation. Would it not be easier to give up on

compatibility with mainstream ROS and extend it with well-known techniques from real-time

systems research? Would it not be more effective to build a new framework that is explicitly

designed for easy and reliable real-time support?

We believe that breaking compatibility with ROS is not an effective way to bring improved real-

time support to robotics software. Even though more predictable and real-time friendly robotics

frameworks are freely available, for example Orocos [22] and Fawkes [82], and even though

many of those frameworks are older than ROS, none of them has ever found the overwhelming

popularity that ROS enjoys. We consider this strong evidence that the robotics community

is unwilling to switch away from ROS just for the promise of better real-time support. In

this dissertation, we therefore take the existing ROS design and implementation as a given

and investigate ways to apply real-time systems principles within the constraints of the ROS

framework.

1.2 Contributions

This dissertation makes three main contributions:

A timing model of ROS applications. As already alluded to, ROS hides various details on

how ROS applications are executed behind an abstraction layer. It encourages an event-driven

design style, which gives rise to data dependencies and potentially long processing chains. The

event handlers, called callbacks, are multiplexed onto shared threads using custom scheduling

4

1.2. CONTRIBUTIONS

policies. As a result, it is extremely difficult for developers to anticipate, or even just understand,

the timing of processing chains that cross multiple, loosely coupled components, many of which

are developed by independent developers all around the world.

In this dissertation, we provide a detailed description of the timing behavior and the callback

scheduling policies of the ROS implementation. To ensure the correctness of these findings, we

provide an automated model validator that confirms our assessment.

Based on the description of the ROS timing behavior, we then define a real-time task model of

ROS applications. The model represents the application as a graph of communicating callbacks.

As the evaluation shows, the model is expressive enough to represent real-world ROS packages,

but also simple enough to allow for response-time analysis.

A response-time analysis for ROS. The complex interactions between ROS and the

operating system, the event-driven development style, and the extensive use of third-party

components make it difficult for developers to predict the timing behavior of their application.

In this dissertation, we develop a response-time analysis that computes a safe upper bound

on the worst-case delay between activation and completion of individual callbacks or entire

chains of callbacks. The analysis automatically accounts for the properties and quirks of the ROS

implementation. Since it is defined using the supply bound abstraction [118], it is compatible

with common real-time schedulers, including all real-time schedulers supported in Linux.

The analysis combines a traditional busy-window analysis (e.g., [16, 21, 58, 61, 86, 87, 105], to

name a few examples) with a novel analysis approach that relies on the round-robin-like behavior

of the callback scheduler. It further contains an optimized analysis for communication within the

same thread that reduces the pessimism for intra-executor callback chains.

An automatic latency manager for ROS. The specific requirements of ROS in particular,

and the robotics domain in general, make it difficult or even impossible to apply ahead-of-time

response-time analysis to ROS systems in practice.

In this dissertation, we identify nine requirements that a practical solution to the ROS latency

5

CHAPTER 1. INTRODUCTION

control problem needs to fulfill. Briefly, a solution needs to work with unmodified ROS workloads;

it must be able to intentionally provision the system below worst-case requirements and ensure

controlled degradation if system resources turn out to be insufficient; and finally, it must require

little expertise and effort from the user.

To address these requirements we propose ROS-Llama, the ROS live latency manager. ROS-

Llama allows users to control the worst-case latency of their ROS system based on a simple,

declarative configuration that can be specified with little effort and without real-time expertise.

ROS-Llama runs alongside the managed system and periodically extracts a ROS timing model

from the running application. The extracted model is then used to identify a suitable scheduler

configuration, and to validate that the configuration ensures the user’s latency goals. An evaluation

on a ROS robot using popular ROS packages confirms that ROS-Llama controls the timeliness of

the evaluation workload better than comparable approaches.

1.3 Organization

The remainder of this dissertation is organized as follows: Chapter 2 reviews the background on

ROS, real-time scheduling, and timing analysis, followed by a discussion of related work.

Chapter 3 then describes the timing behavior of the ROS framework and defines the real-time

model of ROS applications. This model is used in Chapter 4 to define a response-time analysis.

Chapter 5 presents the automatic latency manager ROS-Llama. It first discusses the case for

automatic latency management and lists the requirements an automatic latency manager must

fulfill. It then describes the timing model extractor, the scheduling strategy, and the budget

manager that computes the scheduling parameters.

Chapter 6 reports the results of our evaluation, which uses both synthetic and real workloads

to judge the practical effectiveness and applicability of our contributions. Finally, Chapter 7

summarizes the dissertation and discusses potential future work.

6

2 Background

This chapter first reviews some essential background, covering the ROS framework (Section 2.1),

real-time scheduling (Section 2.2), and response-time analysis (Section 2.3). Finally, Section 2.4

discusses related work and gives a historical perspective.

2.1 The ROS Framework

A typical ROS system comprises multiple small and self-contained modules called nodes. Similar

to an object in an object-oriented programming language, a node encapsulates an opaque inner

implementation through a compact external interface. In ROS, this external interface is built on

top of three primitives: topics, services, and timers.

Topics follow the publish-subscribe paradigm [85]: a node that seeks to share a piece of

information with the rest of the system publishes a message to a topic. The message is then

broadcasted to all nodes subscribed to that topic. Each topic is identified by a unique name. For

example, consider a node that estimates the robot’s current position and orientation (also known

as the robot’s pose). The node publishes each new estimate on the /pose topic. Any other node

that needs to know the robot’s pose then subscribes to the /pose topic and is notified whenever

a new pose estimate is available.

The main advantage of the publish-subscribe paradigm is that it decouples producers and

consumers. Both producers and consumers can be added, removed, or replaced without any

changes to the rest of the system.

Services follow the remote procedure call paradigm: one node requests a service from another

7

CHAPTER 2. BACKGROUND

node and receives a reply when the request completes. As an example, a map management node

might offer a service called /load map that loads a prerecorded map from disk and reports the

success or failure of the operation to the caller.

Finally, timers allow a node to trigger itself periodically. For example, a node interacting with

a hardware sensor might use a timer to periodically poll an external sensor.

On top of the three basic primitives, ROS provides standardized interfaces for common use

cases. These include standardized parameter management, support for long-running operations

through action servers, and standardized lifecycle management.

ROS parameters are a standardized way to expose a node’s configuration parameters to the

rest of the ROS system. Nodes participating in this mechanism declare their parameters during

initialization. The built-in parameters library then automatically creates a set of parameter-related

services. Other nodes can use these services to query and update parameters, for example as part

of an interactive configuration tool or a central configuration management system.

Action servers are a kind of remote procedure call that is optimized for long-running operations.

Like a regular service, an action server is invoked by some node and returns a reply when it

completes. In addition, the server can provide status updates or other intermediate results to

their callers through a feedback topic. For example, a navigation component might provide a

/navigate to goal action. As the robot moves, the navigation action can use the feedback

topic to regularly notify its caller about the estimated distance and time to arrival. Furthermore,

action servers provide a way to cancel or preempt an action before it is complete. Internally,

action servers are implemented as a set of topics, timers, and services.

Finally, lifecycle management is an optional extension of regular ROS nodes. It enables a

more structured and synchronized initialization- and reconfiguration process. A so-called lifecycle

node can be in one of four states: unconfigured, inactive, active, or shut-down. Other nodes, for

example a central orchestration node, use a per-node ROS service to order state transitions.

As these three examples show, the ROS communication primitives are simple but versatile tools

that can be used to build complex and expressive interfaces. While this dissertation considers

8

2.1. THE ROS FRAMEWORK

only the three ROS primitives (services, topics, and timers), it is worth remembering that this

covers not only explicit uses of the ROS communication primitives but also implicit uses like the

ROS standard interfaces discussed above.

2.1.1 Execution Model

ROS nodes do not have an explicit control flow. Instead they provide callback functions (or

callbacks for short) that are invoked whenever an event of interest occurs. For example, each

subscription is associated with a subscription callback, which is invoked whenever a new message

is published to the subscribed topic. Each service is associated with a service handler callback,

which is triggered on each service request. Even waiting for service replies is facilitated through

callbacks: the caller provides a client callback as part of the service request, which is triggered

asynchronously when the reply arrives.

The callbacks are executed by an executor thread (or executor for short). The executor is

responsible for monitoring the timers and communication primitives of its assigned nodes. Once

an event of interest occurs, the executor runs the callback assigned to this event. This event-

handling loop is referred to as spinning. An executor thread may be responsible for more than

one node, but each node belongs to only one executor.

Due to this event-based design, the callback execution order is determined by the executor, not

the developer. The executor’s implementation thus significantly impacts the timing behavior of

the system. Out of the box, ROS provides two executors: a single-threaded implementation and a

multi-threaded implementation. Furthermore, ROS allows users to implement custom executors.

In this dissertation, we consider only the single-threaded executor, which we discuss in more

detail in Section 3.1.

Although nodes are the preferred way to implement ROS modules, it is sometimes more

convenient to keep control of the execution flow. A blocking read from a device file, for example,

cannot be implemented as a ROS callback without blocking the entire executor indefinitely. ROS

therefore allows arbitrary threads to interact with the ROS communication facilities, albeit in

9

CHAPTER 2. BACKGROUND

RO
S

Fr
a

m
e

w
o

rk
O

S Linux/Windows/OS X

Client Libraries rclcpprclpy

Client Abstraction Layer rcl

Middleware Abstraction Layer rmw

DDS Intra-process APIMiddlewares

Figure 2.1: The multi-layered ROS architecture.

a limited way. Specifically, non-executor threads can publish to topics but cannot receive any

messages themselves.

2.1.2 Implementation

The ROS implementation is split into multiple layers of abstraction, which are visualized in

Figure 2.1. The top layer contains the API for ROS users. Because ROS supports nodes

implemented in different programming languages, each supported programming language requires

a separate language-specific API. The ROS project officially supports C++ and Python, with

community-provided support for numerous other languages. Below the surface, these libraries use

a common system model provided by the rcl library. This ensures consistent behavior between

the languages and reduces code duplication.

Despite this unified implementation, some parts of the ROS system are allowed to differ

between languages. In particular, client libraries have a lot of freedom in implementing the

execution model, which allows them to represent the callback mechanism in the most natural

way in each language. A language with coroutines, for example, might allow coroutines as event

handlers instead of callbacks. This dissertation focuses on the C++ interface, which we presently

consider the most suitable choice for time-sensitive applications.

ROS does not implement inter-node communication by itself. Instead, it relies on a communi-

cation middleware to communicate between threads. To allow users to choose this middleware

freely, ROS abstracts from the underlying implementation through the rmw layer. The rmw

10

2.2. REAL-TIME SCHEDULING

API specifies a small set of communication primitives that are used to implement the rcl layer.

Each middleware implementation needs an adapter to translate between the rmw API and the

middleware’s API. As of now, each of the officially supported rmw adapters targets one of the

various implementations of the Data Distribution Service (DDS) [84], an industry standard for

network-transparent data distribution in real-time systems.

It is outside the scope of this dissertation to investigate, describe, and model DDS. We therefore

do not assume any particular middleware. Instead, we assume that the middleware fulfills three

properties, which we refer to as the basic middleware requirements. The requirements are:

1. Reliable communication. Within the boundaries of a shared-memory system, the middle-

ware neither loses nor re-orders any messages.

2. Executors dominate latency. Within the boundaries of a shared-memory system, if the

middleware is not starved, middleware-induced communication delays do not form a

bottleneck (relative to the delay attributable to executors).

3. Read your own writes. Any thread that publishes and subscribes to the same topic always

observes its own messages immediately after publication.

Apart from the impact of the ROS implementation, the timing behavior of a ROS application

is also affected by the timing behavior and the scheduling policies of the underlying operating

system (OS). While ROS supports various operating systems—Windows, MacOS, and Linux—

this dissertation focuses exclusively on Linux, which we consider the most suitable choice

for real-time applications among the three options. In preparation, the next section provides

background on real-time scheduling theory and its application to Linux systems.

2.2 Real-Time Scheduling

The purpose of the operating system’s thread scheduler (or OS scheduler for short) is to execute

the runnable OS threads on the available processor cores. In the (typical) case where there are

11

CHAPTER 2. BACKGROUND

more runnable threads than processor cores, the scheduler thus has to choose which thread to

run. In a dynamic system like Linux, this decision must necessarily be made at runtime. An OS

scheduler can thus be seen as an online algorithm that takes a list of runnable threads and a fixed

number of cores as input and outputs for each time t which of the runnable threads runs on each

core.

From a real-time perspective, the most important effect of the OS scheduler is that it determines

the order in which threads run on the processor cores. This order impacts the timeliness of the

computations performed by these threads. As a result, the real-time community has developed and

studied various real-time schedulers, i.e., schedulers that exhibit a predictable worst-case behavior

and are amenable to ahead-of-time analysis. Since some of these schedulers are implemented in

Linux, they are an essential part of understanding and shaping the worst-case latency of ROS

systems.

2.2.1 The Sporadic Real-Time Task Model

We begin with a brief introduction to real-time systems theory. Real-time systems theory abstracts

from concrete operating system threads and discusses abstract tasks instead.1 While there are

many task and system models of varying complexity and sophistication in the literature, this

introduction focuses on one of the simplest task models, the sporadic task model [79]. For now

we further assume one of the simplest system models, the uniprocessor system, which models a

single processor core that runs a single task at a time.

The sporadic task model represents a system as a set of tasks. Each task is triggered by some

external event and reacts to each event by activating a job. A task τi is characterized by three

parameters: a worst-case execution time (WCET) Ci, a relative deadline Di, and a minimum

inter-arrival time Ti. The WCET is an upper bound on the processor time needed by each job of

τi. The relative deadline represents the task’s timing constraint: a job of τi that is activated at

time t must complete by time t+Di. The time t+Di is also known as the absolute deadline of

1In Linux kernel jargon, the words task and thread are used interchangeably. In this dissertation, task refers to the
abstract tasks of real-time theory and thread to the concrete Linux implementation.

12

2.2. REAL-TIME SCHEDULING

the job. The time between activation and completion of a job is called the response time of the job.

The longest possible response time experienced by a job of τi is called the worst-case response

time of τi. Finally, the minimum inter-arrival time Ti lower-bounds the separation between two

consecutive activations of τi. Throughout this dissertation we assume a discrete time model

wherein all time parameters are integer multiples of a time unit ε , 1 (e.g., a processor cycle).

A useful derived metric is the utilization ui of τi, which is defined as the ratio Ci
Ti

. Intuitively, ui

measures the fraction of a processor’s total capacity that may be consumed by τi in the long run.

For example, a task with utilization 0.5 consumes up to 50% of the compute capacity provided by

one core.

The principal objective of a real-time scheduler is to ensure that all jobs finish before their

absolute deadline under all circumstances, i.e., to guarantee that the worst-case response time

of each task is no larger than its relative deadline. If this condition is fulfilled, a task set is

schedulable under the scheduling algorithm.

One of the most commonly implemented real-time scheduling algorithms is the fixed-priority

(FP) algorithm. Under fixed-priority scheduling, each task is assigned a numeric priority, and

each job inherits the priority of its task. At any time, the scheduler runs the job with the highest

priority. Another common real-time scheduling algorithm is the earliest-deadline-first (EDF)

algorithm, which always runs the job with the earliest absolute deadline.

For many scheduling algorithms, including FP and EDF, the schedulability of a task set can be

established with a so-called schedulability test, an algorithm that receives the task set as input

and decides whether the task set is definitely schedulable or potentially unschedulable.

One approach to determine whether a task set fulfills all its timing constraints is to find an

explicit upper bound on the worst-case response time of each task. An algorithm computing such

an upper bound is called a response-time analysis. Since response-time analyses report explicit

timing bounds instead of just a binary decision, they are particularly useful in more open contexts

where not all tasks have clear deadlines or where timing constraints extend over chains of multiple

tasks. We will discuss techniques for response-time analysis in more detail in Section 2.3.

13

CHAPTER 2. BACKGROUND

2.2.2 Resource Reservations

The guarantees provided by response-time analyses and schedulability tests are only valid if all

tasks behave as described by the model. As soon as a single task deviates from the model, for

example by running for more than its assumed WCET, the schedulability guarantees no longer

hold. In practice, this fragility is a significant limitation. Allowing errors in one subsystem

to induce timing errors in nominally independent subsystems forces developers to vet every

component with the vigor and reliability required for the most critical component. For larger

systems, this is extremely expensive and makes it difficult to integrate third-party components

into the system.

To address this problem, it is desirable to provide timing isolation between independent tasks.

Timing isolation between two tasks τi and τj means that the worst-case response time of τi does

not depend on the properties of τj and vice versa. An error in τi’s specification therefore does not

jeopardize the timing guarantees for τj .

A classic OS-level abstraction to achieve timing isolation is the resource reservation [77]. A

resource reservation limits interference between tasks by limiting their resource consumption.

Resource reservations are typically implemented as a second-level scheduler called a reservation

server. Once a task is assigned to a reservation server, its jobs are no longer scheduled directly by

the OS scheduler. Instead, the OS scheduler schedules the reservation server, and the reservation

server schedules the jobs of the tasks assigned to it.

Many different reservation algorithms have been designed and developed over the last 30

years [25], with various different features and support for different scheduling algorithms. Of

particular relevance to this dissertation is the Constant Bandwidth Server (CBS) [4, 7, 11], which

is the only reservation server implemented in Linux. A CBS reservation r is characterized by

an execution-time budget budget(r), a period period(r), and a deadline dl(r). The reservation

guarantees to provide its client tasks budget(r) units of execution time in every interval of length

period(r), which are available at most dl(r) time units after the beginning of the period. The

ratio budget(r)
period(r) is also known as the bandwidth bw(r).

14

2.2. REAL-TIME SCHEDULING

It is no accident that the parameters of a CBS reservation are similar to the task parameters in

the sporadic task model. From the point of view of the OS scheduler, a CBS reservation behaves

like a task with WCET budget(r), minimum inter-arrival time period(r), and deadline dl(r).

This property is useful to prove that the servers’ supply guarantees hold: a set of CBS reservations

always fulfill their supply guarantees if and only if the corresponding sporadic task system is

schedulable.

Due to this correspondence, the supply guarantees of a CBS reservation can be verified through

a simple schedulability test. A set of k CBS reservations r1, . . . , rk with implicit deadlines (i.e.

∀ri. dl(ri) = period(ri)) is always schedulable on a uniprocessor as long as the committed

bandwidth is below 100%, i.e.,
∑k

i=1 bw(ri) ≤ 1.

Once the schedulability of the reservations is established, the worst-case response time of the

tasks in one reservation server is independent of interference by tasks in other reservations. The

response-time analysis can analyze each reservation in isolation.

Resource reservations can be divided into hard and soft reservations [99]. A hard reservation

is not allowed to exceed its budget under any circumstances, even if only non-critical background

tasks are waiting for processor time. In contrast, a soft reservation can overrun its budget as

long as this does not prevent any other reservation from receiving its reserved execution time.

The consumed budget is still deducted from the reservation; essentially, the reservation borrows

execution time and pays it back later. As a result, hard reservations provide temporal isolation

within the reservation server itself: the same budget is available during each period, independent

of the behavior of previous periods. In contrast, soft reservations do not provide temporal isolation

within a task: the processor time of a task may be diminished if previous jobs of the same tasks

have overdrawn their budget. In exchange, soft reservations can opportunistically consume

processor time that would otherwise go to less critical tasks and may reduce response times in the

average case.

15

CHAPTER 2. BACKGROUND

2.2.3 Multiprocessor Scheduling

The CBS algorithm was originally built around the uniprocessor EDF scheduling policy [4]. On

multicore systems, this algorithm needs to be adapted to more than one core. There are four gen-

eral approaches to extend uniprocessor policies to multiple processors: The most straightforward

way is partitioned scheduling. Under partitioned scheduling, each task is assigned to exactly

one core, and each core is then scheduled using the uniprocessor scheduling policy. Effectively,

partitioned scheduling treats a system with N cores as N parallel systems with one core each.

Another approach is to adjust the scheduling policy to allocate pending tasks to multiple cores.

For example, a fixed-priority scheduler for N cores runs the N highest-priority jobs, an EDF

scheduler for N cores runs the tasks with the N earliest deadlines, etc. This is known as global

scheduling. An intermediate form between the two is clustered scheduling, where tasks are

partitioned onto multiple clusters, each of which runs a separate multiprocessor scheduler. All

of these options are subsumed by arbitrary-processor-affinities (APA) scheduling, where tasks

are scheduled by a single scheduler, but each task may be restricted to an arbitrary subset of the

available cores.

In this dissertation, we use partitioned scheduling due to its better analyzability and lower

overheads. Brandenburg and Gül [19] showed that partitioned scheduling works well even on

highly utilized systems and therefore recommend it over more complex approaches like global

scheduling.2 In particular, partitioned scheduling retains the uniprocessor schedulability test for

CBS servers: as long as
∑

bw(ri) ≤ 1 holds for each core, the reservations are schedulable.

However, the advantages of partitioned scheduling do not come for free, as it requires users

to map each task or reservation to a core in advance. This is an instance of the bin-packing

problem: each task τi is an item of size ui, each core is a bin of size 1, and tasks need to be

assigned to cores without exceeding the size constraint. Although the bin-packing problem is

NP-complete, Brandenburg and Gül showed that even at 90% utilization, more than 80% of their

(randomly-generated) systems could be partitioned with simple heuristics like first-fit-decreasing

2According to the paper, semi-partitioned scheduling performs even better. Unfortunately, it is not available in Linux.

16

2.2. REAL-TIME SCHEDULING

(FFD) and worst-fit-decreasing (WFD) [64]. In this dissertation, we therefore use these two

heuristics to partition workloads.

Both FFD and WFD are single-pass heuristics: they consider each task only once and make

a final allocation decision before continuing with the next task. Both heuristics proceed in

decreasing order of utilization. Each task is then assigned to the first core with enough capacity

(FFD) or to the worst core, i.e., the core with the largest remaining capacity (WFD).

Since both heuristics only need to perform a few simple utilization comparisons for each task,

they are extremely cheap to compute. We therefore try both heuristics to increase the chances of

finding a feasible mapping.

2.2.4 Thread Scheduling in Linux

The Linux kernel implements six scheduling policies. Three of these, namely SCHED IDLE,

SCHED BATCH, and SCHED OTHER, are variants of the so-called Completely Fair Sched-

uler (CFS), a non-real-time scheduler and the default setting for Linux threads. The other three

policies are real-time schedulers. Two of these, namely SCHED RR and SCHED FIFO, are

variants of fixed-priority scheduling (FP), while SCHED DEADLINE is a resource reservation

scheduler using the CBS algorithm.

The three scheduling classes—CFS, FP, and SCHED DEADLINE—are ordered in a strict

priority hierarchy. The lowest-priority scheduler is CFS, followed by the FP schedulers and finally

SCHED DEADLINE at the top. This means that FP threads always take priority over CFS

threads and SCHED DEADLINE threads always take priority over both CFS and FP threads.

The hierarchy is hardcoded in the kernel and cannot be changed.

CFS. The CFS is the default Linux scheduler. It assigns CPU time to threads such that the

total available processor time is distributed in approximately equal parts to all runnable threads.

Users can skew the distribution towards individual threads by adjusting the weight of a thread, for

example through the nice mechanism.

17

CHAPTER 2. BACKGROUND

Since the CFS policy is not intended for real-time threads and does not provide any scheduling

guarantees, the exact algorithm and the difference between the three CFS variants is not relevant

to this dissertation. More details on CFS can be found in the Linux kernel documentation [1].

FP. Under the fixed-priority scheduler, each thread is assigned a numeric priority. On a

uniprocessor system, the scheduler always runs the highest-priority thread in the system. If two

threads have the same priority, a tie-breaking rule is employed. The two variants use different

tie-breakers: SCHED FIFO prioritizes the thread that entered the runqueue first, i.e., it runs

threads of the same priority in FIFO order. SCHED RR also runs threads in FIFO order but adds

a time-slicing mechanism: once a thread has consumed a (configurable) amount of processor

time, it is descheduled and moved to the end of the FIFO queue. This gives other threads at the

same priority level a chance to run.

SCHED DEADLINE. The SCHED DEADLINE scheduler [39] implements the Hard

Constant Bandwidth Server (H-CBS) algorithm [11]. As described in Section 2.2.2, H-CBS

provides temporal isolation through resource reservations servers. Unlike soft CBS, hard CBS is

unable to opportunistically reroute spare bandwidth between reservations. This shortcoming is

addressed through the GRUB [68] bandwidth reclamation mechanism. Since GRUB improves the

average-case performance and does not affect the worst case, it does not need to be considered in

worst-case analysis.

The SCHED DEADLINE implementation diverges from the theory (i.e., H-CBS) in one

major aspect: SCHED DEADLINE does not implement reservation servers as first-class objects.

Instead, it treats each thread as a separate CBS reservation with a separate budget, period, and

deadline. As a result, it is impossible to share budgets among multiple threads.

Overall, the techniques presented so far all make the timing behavior of the threads more

predictable. In the next section, we discuss some important techniques to exploit this predictability

and bound worst-case response times.

18

2.3. TECHNIQUES FOR RESPONSE-TIME ANALYSIS

2.3 Techniques for Response-Time Analysis

The timing correctness of a real-time system can be proven through a response-time analysis. A

response-time analysis is an algorithm to prove the timing correctness of a system by computing

an upper bound on the response time of a task or chain of tasks (Section 2.2.1).

Although the response-time analyses for various task models differ in important details, they

share common techniques that are applicable to a wide range of systems. In this section, we

discuss three standard techniques that underlie the response-time analysis for ROS systems

introduced in Chapter 4.

First, we describe a technique to abstract from scheduler and task model details with supply-

and request-bound functions (Section 2.3.1). These functions allow a more general analysis

formulation, thereby making the same analysis applicable to multiple scheduler- and task models.

Second, we describe the busy-window principle, a technique to bound a task’s response time

by analyzing a window of time where the tasks’ processor is continuously busy (Section 2.3.2).

And finally, we describe the compositional performance analysis, an efficient response-time

analysis technique for large and interconnected modular systems (Section 2.3.3).

2.3.1 Supply and Demand

Many response-time analyses are general enough to apply to a wide range of task models and

schedulers. No matter whether the scheduler is a fixed-priority scheduler or an EDF scheduler,

and no matter whether the task model uses scalar WCETs or more complex execution-time

models, in many cases the analysis needs to know only two quantities: the amount of processor

time needed to complete a task (the demand), and the amount of processor time available to

execute said task (the supply).

Of particular relevance to a worst-case analysis is the highest possible demand during a

time window and the lowest possible supply during the same time window. This motivates the

abstraction of scheduler and task model details through the request-bound function [9, 118] and

the supply-bound function [108, 118].

19

CHAPTER 2. BACKGROUND

The request-bound function rbf(∆) (also called demand-bound function) of a task τi maps

any duration ∆ to an upper bound on the total processor time consumption of all jobs of τi that

are activated during an arbitrary time interval of length ∆.

For example, a request-bound function for a task τi in the sporadic task model can be defined

based on the WCET Ci and the period Ti as

rbfi(∆) , Ci ·
⌈

∆

Ti

⌉
(request bound for sporadic tasks)

The supply-bound function sbf(∆) of a task τi maps any duration ∆ to a lower bound on the

processor time available to τi during an arbitrary interval of length ∆. The scheduler may supply

processor time at arbitrary times during the interval; τi forfeits any supply that is provided while

τi is not ready to run.

As an example, consider a preemptive fixed-priority scheduler. Let πi denote the priority of

task τi, and assume for simplicity that each task has a unique priority. Then in any window

of length ∆, the processor time available to τi consists of the total supply distributed by the

fixed-priority scheduler (∆), minus the processor time consumed by higher-priority tasks. A

supply-bound function thus can be defined as [118]:

sbfi(∆) , max(0,∆−
∑

{τx | πx≥πi }

rbfx (∆)). (supply bound for FP tasks)

The supply-bound abstraction is particularly useful to describe the supply guarantees of

resource reservations [108]. Due to the temporal isolation property, the supply-bound function of

a reservation depends only on the reservation parameters: budget, deadline, and period.

For example, consider the sbf of a CBS reservation rk with period(k) = dl(k). Following

Shin and Lee [108], we first identify the bounded delay (or blackout window) of the reservation.

The bounded delay describes the longest possible waiting time until the reservation provides the

first processor cycle of supply. Figure 2.2 gives a graphical illustration of this delay for general

resource reservations. The longest possible time without any supply occurs if the budget during

20

2.3. TECHNIQUES FOR RESPONSE-TIME ANALYSIS

budget budget

period0 2·period

Bounded delay (D)

Figure 2.2: Bounded delay in CBS reservations.

one period is provided at the earliest possible time and the budget of the subsequent period is

available at the latest possible time.

Accounting for this blackout window, a supply-bound function for a CBS reservation rk can

be defined as [12]:

sbfk (∆) ,N · budget(rk) + F

where D = 2 · (period(rk)− budget(rk)),

N =

⌊
∆−D

period(rk)

⌋
, and

F = max(0,∆− (N · period(rk) + 2D)).

Intuitively, the term D upper-bounds the bounded delay, N lower-bounds the number of

complete reservation periods within the interval of length ∆ (during which the full budget is

supplied by the reservation), and F lower-bounds the supply by the remaining fractional period.

2.3.2 The Busy-Window Principle

Bounding the worst-case response time of a task τi requires an argument about the worst-case

scenario a job of τi might find itself in. This is commonly done using the busy-window principle

(e.g., [16, 21, 58, 61, 86, 87, 105]). We refer to Bozhko and Brandenburg [16] for a formal

description of the busy-window principle that generalizes to a wide range of schedulers. As a

concrete example, and to provide intuition on how the busy-window principle works, we present

the special case of a simple fixed-priority preemptive scheduler.

21

CHAPTER 2. BACKGROUND

interference

Time

J i , j

A F0

rbfi (A+ε)

rbfx(F)

J i , j

Figure 2.3: The busy window of a job Ji,j . The job is activated at time A and completes at time
F . Self-interfering jobs must be activated in [0, A+ ε), generating rbfi(A+ ε) time
units of interference. Interfering jobs from any other task τx must be activated in
[0, F), generating rbfx (F) time units of interference.

Informally speaking, a busy window is a time window during which the processor is continu-

ously busy. To find a response-time bound for a task τi, the analysis considers an arbitrary job of

τi (called the job under analysis), and considers the busy window surrounding this job (Fig. 2.3).

The busy window starts at time 0 and ends at time t2. At timeA, the job under analysis is released.

The analysis then identifies the equilibrium point F ∈ [0, t2) where the processor time supply is

guaranteed to match the demand. Specifically, F is the point where sbf(|[0, F)|) suffices to run

the job under analysis as well as all jobs that could possibly interfere with it. Since the processor

never idles during a busy window, the job under analysis must be complete by time F .

Definition of the busy window. Let Ji,j denote the j-th job of task τi. Recall from

Section 2.2.1 that the fixed-priority preemptive scheduler requires a priority for each task and

always runs a job of the task with the highest priority. Let πi denote the priority of τi; for

simplicity, we assume that each task has a unique priority.

We say that a job Ji,j is pending at time t if it is activated at or before time t and completes

after time t. If the job is pending at both t and t− ε it is carried in at time t.

A job Ji,j suffers interference from another job Jk,l at time t if Jk,l runs at time t but Ji,j is not

complete at time t. A time instant t is called a quiet time for a job Ji,j if neither Ji,j nor any other

job that may interfere with Ji,j are carried in at t. Finally, an interval [t1, t2) is a busy window for

Ji,j if both t1 and t2 are quiet times for Ji,j , there is no quiet time for Ji,j between t1 and t2, and

Ji,j is activated in [t1, t2).

22

2.3. TECHNIQUES FOR RESPONSE-TIME ANALYSIS

The busy-window analysis. In the fixed-priority preemptive scheduler, an arbitrary job

Ji,j cannot suffer interference from jobs that have lower priority than τi. In any interval

of length ∆, the total processor demand of all jobs interfering with Ji,j is thus bounded by∑
{τx | πx≥πi } rbfx (∆). Now let A be the activation time of Ji,j . Then any positive value F that

satisfies

sbf(F) ≥ rbfi(A+ ε) +
∑

{τx | πx≥πi }

rbfx (F)

is an upper bound for the completion time of Ji,j . The response time of Ji,j is thus bounded

by F − A. As depicted in Fig. 2.3, rbfi(A+ ε) bounds the demand by both Ji,j itself and any

other jobs of τi that are activated before Ji,j’s activation.
∑
{τx | πx≥πi } rbfx (F) bounds the

interference by higher-priority jobs, which can interfere with Ji,j even if they are activated after

time A.

Note that the resulting response-time bound only holds for one particular activation offset A.

To obtain a response-time bound for arbitrary activation offsets, it is necessary to compute the

above bound for all possible offsets. But since there is an unbounded number of such offsets, a

practical analysis needs to constrain the number of offsets to consider. This happens in two steps:

first, the analysis bounds the search space from above by upper-bounding the length of the busy

window. Second, the analysis identifies redundant offsets, i.e., offsets that are guaranteed not to

yield the maximal response time. The resulting search space of non-redundant offsets is finite

and sparse enough to allow for an exhaustive search.

For the fixed-priority scheduler, the length of the busy window (and thus the search space) is

bounded by the least positive value L that satisfies

sbf(L) ≥
∑

{τx | πx≥πi }

rbfx (L).

Within this search space [0, L), any value A for which rbfi(A− ε) = rbfi(A) holds is redundant,

i.e., does not yield a maximal response-time bound [16]. As a result, only offsets in the set

A , {0} ∪ {A | 0 < A < L ∧ rbfi(A− ε) 6= rbfi(A)} need to be considered.

23

CHAPTER 2. BACKGROUND

2.3.3 Compositional Performance Analysis

In the sporadic model, job activation times are independent of the other jobs in the system. This

is not the case in a data-driven system, where some tasks are triggered by the completion of

another job. If jobs of a task τi trigger jobs of another task τj , then the analysis can no longer

consider both independently, even if the two tasks do not interfere with each other: the timing of

τi determines the number of activations of τj .

Compositional performance analysis (CPA) [61] is a method to analyze such systems. It

restores the ability to analyze τi and τj independently by abstracting τi’s impact onto τj through

an event model, usually an activation curve. An activation curve (or arrival curve) maps a duration

∆ to an upper bound on the number of activations of τj that may occur during any interval of

length ∆ [67]. Given this curve, an analysis of τj no longer has to consider τi explicitly.

Isolating the impact of trigger relationships into the activation curve allows CPA to split the

response-time analysis of a complex inter-dependent system into two separate steps: a local

analysis step and an activation curve propagation step. The local analysis operates on each

component individually; it assumes an activation curve for each task as given and computes a

response-time bound for each task based on this activation curve. The activation curve propagation

step operates on the connection between the components; it assumes a response-time bound for

each task as given and computes an activation curve for each task based on this response-time

bound. Overall, each step computes the other step’s input but requires the other step’s output.

CPA resolves this circular dependency by alternating between the two steps in a fixed-point

iteration. The analysis computes a series of response-time bounds (R0
i , R

1
i , . . . , R

n
i) and a series

of activation curves (η0
j , η

1
j , . . . , η

n
j). For any k > 0, the computation of Rki (respectively, ηkj)

uses the result of the previous iteration ηk−1
j (respectively, Rk−1

i); R0
i is initialized as 0, η0

j is

initialized as ηi. Since Rki grows monotonically in k, the computed response-time bounds either

grow without bounds or converge to a fixed point. If the iteration diverges, the analysis fails and

reports that the response time of τi is unbounded. If the iteration converges, the fixed point R∞i is

a response-time bound for τi.

24

2.4. RELATED WORK

Activation curve propagation. We conclude this section by formally defining the activation

curve propagation process. Consider two tasks τi and τj , where each job of τi activates a job of

τj during its runtime. Assume further that τi’s activation curve ηi(∆) and a response-time bound

Ri are known. Activation curve propagation then needs to find an activation curve ηj(∆) such

that ηj(∆) upper-bounds the number of activations of τj in any time interval of length ∆. We

also say that the analysis propagates ηj(∆) from τi to τj .

The propagation mechanism exploits that any job of τi that is activated at a time t must activate

an job of τj before time t + Ri, since Ri is a response-time bound of τi. Thus, the number of

jobs of τj activated in an arbitrary time window [t1, t1 + ∆) is upper-bounded by the number

of jobs of τi activated in the time window (t1 −Ri, t1 + ∆), which is again upper-bounded by

ηi(∆ +Ri − ε).

The activation curve of τj can thus be derived from Ri and ηi [37]:

ηj(∆) , ηi(∆ +Ri − ε). (activation-curve propagation)

An additional propagation delay δ between τi and τj can be incorporated by adding δ to the

response-time bound Ri. If τj may be activated by more than one task, the propagated curves

from each activating task are summed up.

2.4 Related Work

In this section, we review prior work and place the contributions of this dissertation into context.

Alternative ROS executors. Choi et al., Staschulat et al., and Arafat et al. explored alterna-

tive ROS executor designs with improved time-predictability. Choi et al. [30] developed a new

ROS executor called PiCAS that supports explicit prioritization of callbacks. They developed an

automatic priority assignment scheme that prioritizes callbacks and executor threads minimize

chain response times. The priority assignment is complemented by an allocation scheme that

25

CHAPTER 2. BACKGROUND

optimizes the assignment of nodes onto executors and of executors onto processor cores.

As their evaluation shows, the resulting system exhibits much lower observed latency and

response-time bounds for high-priority chains. If the final integrator of a ROS system can

replace all executors and rearrange the nodes at will, their approach provides significant benefits.

However, unlike our work, it is not directly applicable to unmodified systems.

Staschulat et al. [113] developed a new ROS executor called rclc executor that retains the

round-robin aspect of the ROS executor but avoids much of the resulting pessimism by giving the

user much more control over the scheduling. Compared to the default ROS executor, their variant

introduces three main changes. First, it allows users to assign arbitrary priorities to callbacks.

Second, it implements more complex activation conditions for callbacks. The executor can, for

example, be configured to wait until all assigned callbacks have been triggered or until one

particular callback has been triggered. Third, it (optionally) enforces logical execution-time (LET)

semantics [62], in which all communication occurs at pre-defined times to increase predictability.

The extended scheduling mechanisms provided by the rclc executor require explicit configura-

tion by the user. Like PiCAS, the rclc executor is therefore not applicable to unmodified ROS

components.

Finally, concurrent work by Arafat et al. [8] proposed a ROS executor that supports dynamic-

priority scheduling for callbacks and processing chains. The executor uses a ready queue instead

of the default executor’s readySet and schedules waiting callbacks with the EDF scheduling

algorithm. Their results confirm that their scheduler achieves lower average end-to-end latencies

for chains that are assigned a low priority by PiCAS’ priority assignment scheme while achieving

similar latencies for chains that are assigned a high priority by PiCAS’ priority assignment.

Since multiple executors can co-exist in different threads on the same system, it would be

possible to extend ROS-Llama to support alternative executors. Future work could integrate

the additional per-executor response-time analyses into ROS-Llama and extend the executor

implementations with ROS-Llama instrumentation. This is likely straightforward for the PiCAS

executor and the deadline-based executor, as both come with a response-time analysis in their

26

2.4. RELATED WORK

paper that uses a similar analysis technique as the analysis in Chapter 4. Integrating the rclc

executor this way would be more difficult; particularly the more complex activation conditions

would require significant extensions to the model.

Empirical latency measurements. A range of prior work empirically measured control

latency in ROS systems to estimate its applicability to real-time workloads. Park et al. [91]

evaluated the predictability of ROS 2 in comparison to ROS 1. Their experiments focused

exclusively on the jitter and response time of the periodic sensor nodes; the complex and

computation-intensive navigation stack was offloaded to a backend PC. Their results confirm

that the ROS 2 implementation improves timing determinism compared to ROS 1. The results

further demonstrate the importance of timing by showing that the higher timing precision of

ROS 2 directly impacts the path-following precision of the robot.

Gutiérrez et al. [56] also investigated the real-time performance of ROS 2, but focused on the

DDS communication instead. They demonstrated how to reduce the worst-case communication

latency by tuning the implementation-specific real-time settings of three DDS implementations.

Real-time issues have also been studied in the context of ROS 1, e.g. [102, 115]. Since real-time

support has changed significantly between ROS 1 and ROS 2, it is unclear whether these results

still apply.

Latency monitoring. Schlatow [104, Chapter 5] developed a runtime-monitoring system for

ROS 2 and evaluated it on the Autoware.Auto software [44]. Instead of developing a fine-grained

timing model of ROS systems, their runtime monitor observes only the communication layer of

the system and informs the ROS system about any observed latency violations. It is the job of the

ROS component developer to specify an appropriate reaction.

It would be interesting to explore if access to an automatically extracted timing model would

allow for more automated reactions. Alternatively, ROS-Llama might be able to automatically

generate intermediate timing constraints for Schlatow’s monitoring system, potentially allowing

the system to react more promptly to emerging timing issues.

27

CHAPTER 2. BACKGROUND

Response-time analysis for ROS. Concurrently to this dissertation, Tang et al. [116] also

developed a response-time analysis for ROS 2. Compared to this work, their analysis focuses on

finding more precise analysis bounds for the special case of independent linear processing chains.

They further investigate how ROS developers should prioritize their callbacks within each ROS

executor to minimize end-to-end response times. Unfortunately, Tang et al.’s analysis does not

apply to the workloads considered in Chapter 6, which contain branching processing chains and

are therefore incompatible with their linear processing chain assumption.

In more distantly related work, Tang et al. [117] developed an analysis for a ROS-inspired

scheduler that also exhibits a round-robin-like property. As their analysis considers only systems

of independent tasks, it does not transfer easily to the general ROS systems considered herein.

Non-ROS robotics. The real-time needs of robotics workloads have long been a subject of

intense study, with classic papers in this area defining suitable APIs and runtime systems. Better-

known examples include the robotics operating systems HARTIK [23, 24], ETHNOS [94, 95],

and XO/2 [20]. Notably, HARTIK introduced an approach to controlled degradation that is

similar to the one we integrate into ROS-Llama (Chapter 5).

More recent examples usually do not implement a separate operating system kernel, but, similar

to ROS, are frameworks running on general-purpose operating systems like Linux. Examples

include YARP [78], MRPT [31], Orocos [22] and Fawkes [82]. Except for MRPT, which is a cu-

rated collection of libraries rather than a framework, all these frameworks define a communication

mechanism and encourage the integration of third-party components.

In the context of this dissertation, the Orocos and Fawkes frameworks are particularly inter-

esting due to their focus on real-time safety and their approach to execution management. The

Fawkes framework relies mainly on the sense-plan-act pipeline, a cyclic executive that periodi-

cally iterates through a set of 10 stages. Components add callback functions at the appropriate

points in this pipeline. Orocos leaves much more of the callback scheduling to the component

developer and allows them to define the execution order of the callbacks through a state machine.

28

2.4. RELATED WORK

In this dissertation, we focus exclusively on ROS. As discussed in Section 1.1, ROS’s popularity

strongly suggests that the robotics community is unwilling to switch away from ROS just because

of better real-time support. This dissertation therefore focuses on existing ROS applications and

therefore cannot impose a custom API.

Compositional timing analysis. To improve the scalability of timing analysis in distributed

systems, various compositional analysis approaches have been proposed [92]. A compositional

analysis considers the system as a collection of components, each of which is analyzed separately.

Dependencies between components are addressed by propagating event models, which describe

the activation pattern of individual tasks.

The timing analysis in this dissertation is inspired by the compositional performance analysis

(CPA) approach for distributed systems (cf. Section 2.3.3). Since the original proposal by Henia

et al. [61], CPA has received various extensions and improvements over the years; Hofmann et al.

[63] provide an overview over the main developments.

Another compositional approach is real-time calculus (RTC) [118] and its extension modular

performance analysis with RTC (MPA-RTC) [119]. RTC models real-time systems as a set of

performance components connected by supply streams. Each resource receives a supply stream,

consumes a part of it, and outputs the unused part as a residual supply curve. This is used to

model inter-task interference and the effect of schedulers. It further receives a demand stream,

processes some of it, and outputs a delivered computation stream. The interaction between the

supply stream and the demand stream is described through equations adopted from network

calculus [67].

MPA-RTC extends RTC with activation relationships between components. The delivered

computation stream of the activating component is transformed into a stream of discrete activation

events and feeds into the demand stream of the activated component. The resulting network

of supply- and demand streams thus represents both interference and activation relationships

between the components.

29

CHAPTER 2. BACKGROUND

While real-time calculus enables an elegant formulation for some schedulers like preemptive

fixed-priority schedulers, it is not immediately obvious how to extend it to support the ROS

callback scheduler. We therefore opted for the CPA approach instead.

A third compositional approach uses timed automata [60]. Each computational resource and

each communication link is modeled as a timed automaton. Combining the automata for all

resource and communication links in the system yields a network of timed automata, whose

timing properties can be analyzed by a model checker.

While the timed-automata approach produces more precise results than CPA and RTC [92],

it also tends to be more computationally expensive than the other two approaches [92]. Since

ROS-Llama needs to perform timing analysis at runtime, we opted for the CPA approach to avoid

excessive analysis overhead.

Finding reservation parameters. ROS-Llama needs to determine suitable resource reser-

vation parameters for various ROS executors automatically. Although the problem has been

extensively studied before, none of the existing approaches is directly applicable to ROS.

Lipari and Bini [69, 70] considered the relationship between the reservation’s bandwidth and

its period for a set of independent periodic tasks. The challenge in finding suitable parameters is

that there are two objectives to fulfill: a reservation should have a small bandwidth to minimize

the claimed processor utilization but should also have a large period to minimize scheduling

overheads. Unfortunately, these two goals conflict: a larger period usually requires additional

bandwidth to compensate for the larger initial supply delay and vice versa. Lipari and Bini

formulated a joint optimization problem to find the optimal combination of the two parameters.

Unfortunately, their approach is not directly applicable to ROS due to complex interdependencies

in the ROS callback graph, which we will discuss in Section 5.4.2.

Buttazzo and Bini [26] evaluated the benefits of choosing a period that matches the period

of the underlying workload. They considered the scheduling rules of the Constant Bandwidth

Server directly, without using the supply-bound function abstraction. By choosing the right

30

2.4. RELATED WORK

reservation period, the replenishment time of the server was made to coincide with the task arrival

period, which eliminates the bounded delay entirely. The work is not directly applicable to our

analysis since the supply-bound function abstraction cannot exploit the relative timing between

task activations and reservation replenishment. Furthermore, ROS executors serve different

callbacks, which tend to have different activation periods. Nevertheless, future work to adapt this

approach to ROS-specific challenges could significantly reduce the pessimism incurred by the

supply abstraction.

Palopoli and Abeni [88] developed a method to automatically determine a suitable budget for

a set of “legacy applications” (by which the paper means applications that are not structured

as a series of jobs). The budget is chosen and adapted continuously by a feedback controller

that attempts to minimize both the budget and the number of budget overruns. It is therefore

a cheaper and simpler alternative to ROS-Llama’s budget assignment process (Section 5.4.2).

However, since the approach lacks an internal model of the involved threads, it is purely reactive;

unlike ROS-Llama, the feedback controller will necessarily underestimate the required budget

occasionally and therefore continuously runs the risk of exceeding the allowed latency.

Adaptation and graceful degradation. Section 5.1 identifies a set of requirements an

automatic latency manager has to fulfill. Two of the requirements call for unsurprising overloads,

i.e., a pre-defined and controlled graceful degradation process that sacrifices less critical work-

loads in favor of more critical workloads in case of an overload, and support for unpredictable

environments, i.e., a way to adapt to changing behavior and changing demands of the workload.

The general ideas of graceful degradation in the face of transient overload and adaptation

towards changing circumstances have also been explored from many angles in prior work. A

very well-explored approach is the concept of service levels [5, 10, 15, 55, 59, 74, 75, 83], which

relies on application developers to explicitly define different operating modes and a notion of

utility associated with each mode. The service manager can then choose appropriate levels of

service throughout the application by solving a utility maximization problem.

31

CHAPTER 2. BACKGROUND

This dissertation does not consider service levels since we target unmodified ROS workloads,

which generally do not expose multiple operating modes.

Another common adaptation strategy is to rely on feedback-control theory to adjust scheduling

parameters. Prior work has explored approaches to directly control periods [28, 29], QoS-

levels [15, 28, 75, 112], and reservation budgets [5, 6, 38, 41, 89, 90, 107], to name a few. Such

approaches could in principle be transferred to ROS but, to our knowledge, have not yet been

systematically studied in that context.

32

3 A Timing Model of ROS Applications

As the first step towards controlling the worst-case latency of ROS systems, this chapter presents

a timing model for ROS applications. We first identify and describe the scheduling algorithm

used by the ROS executor (Section 3.1). Although this algorithm is crucial to understanding the

order in which callbacks are executed, it was not specified in the ROS documentation prior to

our work1. It therefore had to be reverse-engineered from the implementation. We then develop

a real-time task model for ROS systems (Section 3.2). The model represents a ROS system as

a network of callbacks scheduled by a two-level hierarchical scheduler. The resulting model is

simple enough to allow efficient response-time analysis but comprehensive enough to cover many

real-world ROS packages.

3.1 The ROS Executor

As discussed in Chapter 2, ROS packages consist of a collection of callbacks, which are grouped

into one or more nodes. Each node is assigned to an executor thread, which is responsible for

running the callbacks of its assigned nodes. To do so, the executor continuously monitors the

communications layer for events and invokes the associated callback function whenever an event

occurs. The executor thus functions as a callback scheduler: it runs the runnable callbacks on the

available executor threads and decides which callbacks to run if there are not enough threads to

run them all. Understanding the executor is therefore a crucial step towards understanding the

timing behavior of ROS applications.

1By now, the ROS documentation has been extended with the results in this chapter.

33

CHAPTER 3. A TIMING MODEL OF ROS APPLICATIONS

The ROS C++ library provides its executor in a single-threaded and a multi-threaded variant.

In this dissertation, we focus on the simpler and more predictable single-threaded executor.

The next section (Section 3.1.1) describes the scheduling algorithm used by this single-threaded

executor. Since the algorithm is not specified in the ROS documentation, the description is based

on a careful study of the ROS source code. To confirm the correctness of our description, a

second part validates the observations with an experiment that demonstrates and corroborates the

findings on a concrete example (Section 3.1.2).

3.1.1 The Algorithm

The executor is responsible for taking messages from the input queues of the middleware layer (via

the rcl layer) and executing the corresponding callback. Since it executes callbacks to completion,

it is a non-preemptive scheduler. However, unlike most commonly studied schedulers, it does

not always consider all ready tasks for execution. Instead, it bases its decisions on the readySet,

a cached copy of the set of ready callbacks, which it updates in irregular, execution-dependent

intervals. We refer to callbacks that are subject to the readySet as polled callbacks. Other

callbacks circumvent the readySet; their readiness is checked directly at the source. We refer to

these callbacks as privileged callbacks.

Whether a callback is privileged or polled is determined by the ROS implementation and the

callback’s type. In older ROS versions (up to “Dashing Diademata”), timers are privileged and

all other callbacks are polled. In newer ROS versions (“Eloquent Elusor” and newer), timers have

lost their privileged status and are also polled.

The complete algorithm is depicted in Figure 3.1. If the executor is idle, it updates its readySet.

This is the only step in which the executor interacts with the underlying communication layer. It

then looks for a callback to execute by searching through the five callback categories2. It first

checks whether any of the privileged callbacks are ready. It then searches the readySet for timers,

subscriptions, services, and clients (in this order). Evaluating the queues in a fixed order has the

2The executor blocks if there is nothing to do; this optimization has been omitted for clarity.

34

3.1. THE ROS EXECUTOR

readySet ← { polled callbacks that are ready to run }

s← { priv. callbacks that are ready to run }

s← { polled timers in readySet}

s = ∅

s← { subscriptions in readySet}

s = ∅

s← { services in readySet}

s = ∅

s← { clients in readySet}

s = ∅

s = ∅

cb ← highest-priority callback in s
execute next instance of cb
readySet ← readySet \ {cb}

s 6= ∅

s 6= ∅

s 6= ∅

s 6= ∅

Figure 3.1: The executor scheduling algorithm.

intrinsic effect of assigning each queue a different priority (i.e., the privileged queue is examined

first and has the highest priority, and the client queue is examined last and has the lowest priority).

When a queue is considered, callback instances are examined in callback registration order, i.e.,

the order in which the callbacks were registered with the executor. Consequently, the registration

order represents a second level of priorities. Overall, the pair (callback type, registration time) is

a unique priority for each callback.

Whenever a category has at least one ready callback, the highest-priority one is selected,

executed, and then removed from the readySet. Finally, when the readySet is empty and no

expired timers are left, the executor returns to the idle state and updates the readySet based on

a current snapshot of the communication layer. We refer to the updating of the readySet as a

polling point and to the interval between two polling points as a processing window.

Compared to regular fixed-priority scheduling, this algorithm exhibits a few unusual properties.

First, messages arriving during a processing window are not considered until the next polling

35

CHAPTER 3. A TIMING MODEL OF ROS APPLICATIONS

point, which depends on all remaining callbacks. This leads to priority inversion, as lower-priority

callbacks may implicitly block higher-priority callbacks by delaying the next polling point.

Second, it relies on a ready set instead of the more usual ready list. This means that the

algorithm cannot know how many instances of any polled callback are ready. It therefore

processes at most one instance of any callback per processing window. This aggravates the

priority inversion above, as a backlogged callback might have to wait for multiple processing

windows until it is even considered for scheduling. Effectively, this means that a non-privileged

callback instance might be blocked by multiple instances of the same lower-priority callback.

Third, users cannot freely adjust callback priorities to the application’s needs. Although it is

theoretically possible to control the relative priority within a callback type by registering callbacks

in a particular order, there is no way to change the relative priority between two callbacks of

different types.

Even within a type, the registration order of the callbacks is restricted by the node structure.

When a developer adds a node to an executor, that node’s callbacks are immediately registered

with the executor. The developer can choose the relative order of the nodes and the relative order

of callbacks within a node, but there is no way to register a callback with the executor without

registering all other callbacks of the same node as well.

3.1.2 Model Validation

The above description of the ROS scheduler is based on manual code inspection. In a system as

complex as ROS this is potentially error-prone, as there might be subtle interactions that are easily

overlooked yet change the behavior drastically. Thus, to validate our model, we implemented a

special-purpose ROS node that executes arbitrary-length callbacks in a way that allows inferring

the behavior of the ROS scheduler from the resulting trace.

Specifically, the node is controlled using three topics (H, M, and L), three services (SH, SM,

and SL), and a special-purpose topic to create timers. Note that the chosen names assume that

topics and services are prioritized in registration order; checking that topic H actually has the

36

3.1. THE ROS EXECUTOR

0 1 2 3 4 5 6 7 8 9

H

T0
T1

M
L

T2
T3

SH

SL
SM

T1 T2 T3

PP0 PP1 PP2

Time (seconds)

Figure 3.2: Gantt-Chart of the scheduler validation test for ROS 2 “Dashing Diademata”. At
times T1 and T3, the timers trigger. At time T2, the second batch of service requests
and messages is submitted.

highest priority is part of the model validation. In the following description, time zero refers to

the point in time when the first batch of validation callbacks arrives at the node. The i-th timer is

denoted as ti. For ease of visualization, all callbacks run for 500ms.

Our test first sets up two timers at 200ms (T1) and two timers at 2300ms (T3). It then sends

the message sequence 〈L M H SH SL L M H SH SL〉, waits for 1.5 seconds (T2), and then sends

〈SM SM H〉. The result is visualized in Fig. 3.2 and Fig. 3.3. The former depicts the behavior

in older versions of ROS (here: “Dashing Diademata”), the latter depicts the behavior in newer

versions of ROS (here: “Foxy Fitzroy”). Polling points (PP) are marked with vertical dashed lines.

Note that the test does not report the location of the polling points; rather, they are inferred from

the resulting timing behavior.

Figure 3.2 confirms that the scheduler executes only a single instance of each ready callback,

even if multiple messages have been queued up; this is especially apparent between time 4.5 (PP1)

and 7.5 (PP2), where only one of callback H’s two ready instances is executed. The result of this

round-robin policy is a characteristic staircase pattern.

37

CHAPTER 3. A TIMING MODEL OF ROS APPLICATIONS

0 1 2 3 4 5 6 7 8 9

H
M
L

SH

SL

T0
T1
T2
T3

SM

T1 T2 T3

PP0 PP1 PP2

Time (seconds)

Figure 3.3: Gantt-Chart of the scheduler validation test for ROS 2 “Foxy Fitzroy”. At times T1 and
T3, the timers trigger. At time T2, the second batch of service requests and messages
is submitted.

The experiment also confirms that incoming messages need to wait for a polling point before

the scheduler takes them into account. For example, service SM is activated for the first time at

time 1.5 (T2) but then visibly skipped at time 4. The SM callback eventually runs at time 6.5,

supporting the claim that the executor only learns of SM’s arrival at the polling point PP1.

The timers, however, are not subject to these polling points: both t2 and t3 arrive later than SM

but run before PP1, i.e., during the first processing window.

Figure 3.3 shows the callback execution order for the same activation sequence in newer

ROS versions. The situation of callbacks H and SM looks similar. However, the privileged

status of timers is gone. None of the four timers gets to run during the first processing window.

Instead, the activations at time T2 and T3 are noticed only after the lowest-priority callback of the

first processing window completes at time 2.5 (PP1). Apart from this difference, the callback

ordering is the same as in Fig. 3.2, including the staircase pattern characteristic for a round-robin

scheduling policy.

38

3.2. SYSTEM MODEL

3.2 System Model

Having established ROS executor’s scheduling algorithm, we are now ready to formulate a

real-time task model for ROS systems. We begin with a model for executors only; support for

non-executor threads will be added in Section 3.2.3.

We model a ROS system as a set of callbacks C, each of which activates a potentially infinite

sequence of instances. Each callback ci ∈ C is statically assigned to one of k single-threaded

executors E1, . . . ,Ek; for notational convenience, we let ei denote callback ci’s assigned executor.

We assume a steady-state system (i.e., callbacks neither leave nor join the system at runtime) and

a discrete-time model wherein all time parameters are integer multiples of a basic time unit ε , 1

(e.g., a processor cycle).

We divide the set of all callbacks by type and let Ctmr, Csub, Csrv, and Cclt denote the set

of all timers, subscribers, services, and clients, respectively. Subscribers, services, and clients

collectively form the set of message-driven callbacks Cmsg. We further let Ck denote the subset

of all callbacks assigned to executor Ek, so that for instance Ctmr
k denotes the subset of all timers

assigned to executor Ek. Finally, lpk(ci) and hpk(ci) denote all callbacks in Ck with lower or

higher priority than ci, respectively.

We distinguish between the set of polled callbacks Cpol and the set of privileged callbacks Cprv,

with Cpol ∪ Cprv = C. Polled callbacks are subject to polling points and have to pass through the

readySet; privileged callbacks are exempt from polling points. For ROS versions up to “Dashing

Diademata”, all timers are privileged, i.e., Cprv , Ctmr. Later ROS versions do not have any

privileged callbacks, i.e., Cprv , ∅.

Each callback ci is described by an activation curve ηi(∆). Recall from Section 2.3.3 that an

activation curve upper-bounds the number of activations during an arbitrary interval of length ∆.

For timer callbacks, the activation curve must be given as part of the system specification. For

message-driven callbacks, activation curves can alternatively be derived from the timing behavior

of the messaging callbacks. This derivation process is part of the response-time analysis and will

be discussed in Section 4.1.

39

CHAPTER 3. A TIMING MODEL OF ROS APPLICATIONS

For notational convenience, we define the activation curve for negative arguments as well, with

ηi(∆) = 0 if ∆ < 0. We further stipulate that each callback can be activated, i.e., ηi(ε) > 0.

This does not limit the generality of the model, since a callback that is never activated can be

removed from the model without any effect on the result.

3.2.1 The ROS Executor

Callbacks are executed by their assigned executor, which itself is scheduled by the OS thread

scheduler. The combination of the OS scheduler and the executor thus forms a two-level scheduler

hierarchy. The model abstracts the OS scheduler through a supply-bound function sbfk (∆), which

makes the model compatible with a wide range of OS schedulers (including the three Linux

real-time schedulers). The ROS executor is modeled explicitly as a callback scheduler, which

receives supply from the OS scheduler and distributes it among its callbacks according to the

algorithm described in Section 3.1.

Since it is unwieldy to reason about the executor behavior in algorithmic form, we abstract

from the exact executor algorithm by identifying six properties of any schedule produced by the

executor. The timing model refers only to these properties and is oblivious to any other details of

the scheduler. The properties are as follows:

SQ Sequentiality: Different instances of the same callback are executed in activation order.

NP Non-Preemptiveness: The executor selects a new instance only when the previous instance

has completed.

WC Work-Conservation: The executor never idles if an instance is pending.

PP Polling Points: A polling point occurs when the executor needs to select the next instance to

execute but no sampled instance is available.

SM Sampling: At a polling point, the executor samples up to one instance of each polled

callback in activation order. Instances of privileged callbacks are sampled immediately upon

activation.

40

3.2. SYSTEM MODEL

E1 c1
1

trigger activate sample start complete

δx,2

c2
1 c2

2 E2 c3
1

activate/
sample start

c4
1

complete

Figure 3.4: Lifecycle of a polled callback c2 and a privileged callback c4.

PR Selective prioritization: The executor runs sampled instances (and only sampled instances)

in priority order.

While the algorithm shares the first three properties with a standard non-preemptive fixed-priority

scheduler, the last three properties represent the unique scheduling behavior of the ROS executor.

3.2.2 The Callback Instance Lifecycle

Each callback activates an instance whenever its activation event occurs. For timers, the activation

event is the start of a new period; for message-driven callbacks, the activation event is the arrival

of an activation message. The activation message is either a new publication on the subscribed

topic in the case of subscribers, a service request to the offered service in the case of service

handlers, or a reply to a previous service call in the case of clients. We refer to the k-th instance of

a callback ci as cki . Each instance passes through several phases, which are illustrated in Fig. 3.4.

Conceptually, an instance of a message-driven callback cki is triggered when the activation

message is sent. The activation message may incur a propagation delay while it traverses the

ROS stack and potentially the network. Consequently, the instance cki activates only some time

later when the activation message arrives at ci’s assigned executor ei. Note that even a small

propagation delay may have an outsized effect by forcing cki into the subsequent processing

window. We let δi,j denote an upper bound on the propagation delay between any two callbacks

ci and cj . Based on the read-your-own-writes assumption (Section 2.1.2), we further assume that

there is negligible propagation delay within the same executor, i.e., ei = ej ⇒ δi,j = 0.

Once activated, an instance cki is said to be pending until it completes. If ci is a polled callback

41

CHAPTER 3. A TIMING MODEL OF ROS APPLICATIONS

then cki resides in a middleware buffer after activation until it is sampled by its executor at a future

polling point. Once sampled, cki becomes eligible for execution in the subsequent processing

window. After all higher-priority sampled instances have executed, the executor then selects cki

and runs it until cki completes. Due to the polling-point semantics, there is at most one sampled

instance of a polled callback at a time.

The lifecycle of a polled, message-driven callback instance is illustrated in the top part of

Fig. 3.4, where instance c1
2 is triggered by a message published to c2’s topic. The message suffers

from up to δ1,2 time units of propagation delay and then arrives at E1, where it activates c1
2. It is

then sampled at the next polling point and executes during the subsequent processing window.

A privileged callback’s lifecycle is somewhat simpler since it does not involve a separate

sampling step. There is hence no difference between the time of activation and the time of

sampling. In contrast to polled callbacks, there can be multiple simultaneously sampled instances

of a privileged callback.

The bottom part of Fig. 3.4 illustrates the lifecycle of a privileged timer callback c4. Executor

E2 immediately samples c1
4 upon activation, and, once the current instance c1

3 completes, the

executor selects and starts c1
4 without further delay.

3.2.3 Event Sources

Although the ROS system is built around callbacks and executors, developers may also in-

clude non-executor threads in their systems. These threads communicate over the same ROS

communication primitives but retain full control over their control flow.

There are two main reasons for including non-executor threads in a ROS system. The first is

to react to external hardware. Communicating with devices may require blocking operations,

for example a blocking read from a device file. Such operations cannot be implemented with

executors and callbacks because ROS does not support triggering callbacks based on file state

changes. Component developers usually address this problem by writing a driver thread, which

reads the required data from the device, interprets it, and sends the interpreted result to a topic.

42

3.2. SYSTEM MODEL

1 rclcpp::Rate loop_rate(freq);
2 while (rclcpp::ok()) {
3 . . .
4 loop_rate.sleep()
5 }
6

7

node = create_node()
timer = node->create_wall_timer(

seconds(1.0/freq),
[]() { . . . });

executor.add_node(node);
while (rclcpp::ok())
executor.spin();

Listing 3.5: Implementation of a time-triggered workload using a rate object (left) and a timer
callback (right).

A second reason for avoiding executors stems from convenience rather than necessity. In nodes

that periodically perform a single computation, having to wrap that computation into a timer

callback is inconvenient. Instead, ROS provides so-called rate objects, which allow a thread to

wait for the beginning of the next period.

An example for this use of rate objects can be seen in Listing 3.5. The rate object is initialized

with a period in Line 1 and used to suspend until the next period in Line 4. The effect is that the

computation runs periodically every 1/freq seconds. The same behavior could be achieved with

the node-based solution on the right-hand side, albeit at the cost of more boilerplate code.

Crucially, both threads using rate objects and driver threads conceptually behave like an

executor with a single callback that is activated periodically (in the case of rate objects) or

in arbitrary, device-dependent patterns (in the case of external devices). The model therefore

represents these threads as virtual callbacks called event sources. They are associated with an

activation curve and execution-time demand like any other callback.

In general, modeling an arbitrary thread as a callback would make unwarranted assumptions

about the internal workload scheduling of the event source thread. After all, it seems to imply that

the virtual callback is scheduled by the ROS executor scheduling algorithm. The model avoids

this assumption by mandating that an event source must always be the only callback within its

executor. For a single callback, the executor scheduling policy is equivalent to FIFO scheduling,

which matches the execution order of a sequential workload.

Formally, we denote the set of all event sources by Cevt ⊆ C. Like with timers, the activation

43

CHAPTER 3. A TIMING MODEL OF ROS APPLICATIONS

0 100 200
Callback Instance

0

20

40

Ex
ec

ut
io

n
Ti

m
e

(m
s)

0 10 20 30 40
Consecutive Activations (n)

0

1000

2000

Cu
m

ul
at

iv
e

 D
em

an
d

(m
s)ET + (n)

n ET + (1)

Figure 3.6: Left: 250 observed per-invocation execution times of the /tf callback in the amcl
component. Right: Cumulative demand assumed by the analysis for n consecutive
activations under different execution-time models.

curve of each event source must be specified as part of the model. Since an event source thread

does not run the executor algorithm, it is a privileged callback. However, since an event source

does not share its thread with any other callback, their privilege has no impact on the schedule.

Similarly, its priority is irrelevant and arbitrarily defined as zero.

3.2.4 Execution-Time Model

In most of the real-time systems literature, execution-time requirements are modeled as scalar

WCETs, meaning that the maximum cost per single activation is known, and the joint cost of n

consecutive activations is extrapolated as the product of n and the scalar WCET. While this is

both safe and convenient from an analysis perspective, it can be overly pessimistic for many ROS

applications.

As an example, Fig. 3.6 shows observed execution times of the amcl node’s /tf callback,

which is part of the Navigation 2 package [76]. The callback handles a diverse set of messages,

which leads to varying execution-time demands depending on the content of the message. In the

depicted trace, the maximum observed cost of a single activation was roughly 56 ms. However,

it is apparent that the trace follows a pattern where such expensive activations are rare and far

apart—any two peaks are separated by many “cheap” activations. Thus, assuming that every

instance of the callback requires 56 ms would be horrendously pessimistic.

We therefore model the execution-time needs of each callback ci as a cumulative execution-time

44

3.2. SYSTEM MODEL

curve ETi(n) [98], which bounds the maximum cumulative execution time of any n consecutive

instances of ci. The classic scalar WCET is hence equivalent to ETi(1). The resulting gain in

precision can be seen in the right-hand inset of Fig. 3.6. The ETi(n) curve correctly represents

that any single activation might take up to 56 ms, but also shows that the cumulative execution

time of any 40 consecutive executions never exceeded ETi(40) = 122 ms. For the same number

of activations, the scalar WCET model would predict a cost of 40× ETi(1) = 2240 ms.

Execution-time curves must satisfy one main condition: they need to be super-additive, i.e.,

for any two integers m and n, ETi(m) + ETi(n) ≥ ETi(m+ n).

Execution-time curves are by no means the only model capable of representing multiple kinds

of activation with different execution-time requirements. We choose execution-time curves over

other established models—such as the multi-frame model [80], the recurring real-time task model

[9], or the digraph real-time task model [114]—because execution-time curves can easily be

derived from measurements, without requiring any user inputs. This property will be important

for the model extractor in Chapter 5.

Executor overheads. In addition to the callbacks’ processor demand, the timing model also

needs to account for executor overheads. These overheads turned out to be far from negligible:

we routinely measured worst-case overheads in the range of 1–2 ms.

We are not the first to notice surprisingly large overheads in the current executor implementation,

and the issue was discussed extensively on the ROS Discourse forum [54]. The discussion

suggests that there is a large optimization potential in the executor and that the overhead might be

reduced in the future. However, in its current state, the executor overhead is clearly non-negligible

and needs to be accounted for in the timing model.

We account for this overhead in the execution-time curve through the well-known method

of WCET inflation (see, e.g., Liu [72]). The worst-case execution time or, in this case, the

execution-time curve is inflated with the worst-case overhead. The inflated system can then be

safely analyzed without considering overheads.

45

CHAPTER 3. A TIMING MODEL OF ROS APPLICATIONS

To this end, each executor is associated with an execution-time curve describing its overheads.

We refer to this execution-time curve as the executor’s overhead curve. For any executor Ek, the

overhead curve OTk (n) bounds the worst-case executor overhead required to execute a sequence

of n consecutive callbacks.

The inflated execution-time curve is computed as follows: Let ci be an arbitrary callback with

executor Ek. Let ET raw
i (n) denote the overhead-oblivious execution-time curve of ci. Then the

execution-time curve of ci is defined as

ETi(n) , ET raw
i (n) + OTk (n).

For executors serving more than one callback, the correctness of this method is not entirely

obvious: OTk (n) bounds the overhead of n callback instances consecutively run by Ek, which

might stem from different callbacks. In contrast, ET raw
i (n) bounds the execution time of n

consecutive instances of ci, which do not necessarily run consecutively. However, the inflation

method still overestimates the total processor demand, as the following lemma shows:

Lemma 1. Let σ be an arbitrary sequence of callback instances scheduled by an executor Ek.

For any callback ci, let nk denote the number of instances of ci in σ. Then the total execution-time

cost of σ is upper-bounded by
∑

ci∈Ck
ETi(ni).

Proof. Since Ek only runs instances of callbacks assigned to Ek, any callback cx /∈ Ck does

not appear in σ. We thus only need to consider callbacks in Ck. Let |σ| denote the number

of instances in σ. Then the total execution-time cost of σ is upper-bounded by OTk (|σ|) +∑
ci∈Ck

ET raw
i (ni), i.e., the raw cost of all contained callback instances plus the overhead

incurred by |σ| instances. Due to super-additivity, the overhead can be split into separate terms

for each callback’s contribution, i.e., OTk (|σ|) ≤
∑

ci∈Ck
OTk (ni). Therefore:

OTk (|σ|) +
∑
ci∈Ck

ET raw
i (ni) ≤

∑
ci∈Ck

OTk (ni) +
∑
ci∈Ck

ET raw
i (ni) =

∑
ci∈Ck

ETi(ni)

46

3.2. SYSTEM MODEL

3.2.5 Callback Graph

Callbacks can be triggered by a wide range of trigger events. Some callbacks are triggered

by messages from other callbacks, like topic updates (subscriptions), service requests (service

handlers), or service reply (clients). Other callbacks are triggered periodically (timer callbacks)

or by events outside the ROS framework (event sources).

The timing model abstracts from these details and models the trigger relationships among

callbacks as a directed graph D = {C, E}. An edge (ci, cj) ∈ E encodes that an instance of ci

may trigger one instance of cj at some point during its execution. We say that the instance of cj

is triggered along the edge (ci, cj).

We define the set of predecessors and successors associated with each callback ci as pred(ci) =

{cj ∈ C : ∃ (cj , ci) ∈ E} and succ(ci) = {cj ∈ C : ∃ (ci, cj) ∈ E}, respectively.

If a callback ci has multiple predecessors, it activates an instance whenever any of its predeces-

sors triggers it. This corresponds to what is referred to as OR-activation in prior work [61].

Which of ci’s successors are triggered by one of ci’s instances depends on which predecessor

triggered the instance. Each incoming edge (ch, ci) is associated with a trigger set trish,i ⊆

succ(ci), which specifies the callbacks that may be triggered by any instance of ci triggered along

the (ch, ci) edge.

As an example, consider the callback graph in Fig. 3.7. It consists of two timer callbacks

(c1 and c2). Their activation patterns are described by externally-provided activation curves

derived from the respective timer periods. Each instance of c1 and each instance of c2 potentially

publishes to c3’s topic, which triggers an instance of c3. Each of these triggered instances may

publish to further topics as well, thus potentially triggering instances of c4 and of c5 in the

process.

The two edges leading to c3 are associated with the trigger sets tris1,3 = {c4, c5} and tris2,3 =

{c4}. Any instance of c3 that was triggered by c2 can thus trigger one instance of c4 and one of

c5. If the instance of c3 was triggered by c1, however, it can trigger only an instance of c4.

The trigger set can be used to model an internal computation of c3 that is not visible from the

47

CHAPTER 3. A TIMING MODEL OF ROS APPLICATIONS

timer c1

timer c2

subscription c3

subscription c4

subscription c5

tris1,3 = { c4, c5 }

tris2,3 = { c4 }

Figure 3.7: A simple callback graph of five callbacks.

callback graph alone. For example, c3 might inspect an integer field in each incoming message

and publish to c5 only if the integer is above some threshold. If messages from c2 are always

below the threshold, there is no need to account for an activation of c5 when c3 is activated by

c2. The trigger set describes this underlying property without requiring an explicit model of the

integer field or c3’s internal decision-making.

3.2.6 Processing Chains

In ROS, a single piece of functionality is often realized jointly by the consecutive execution of

multiple callbacks. We refer to such a path through the callback graph as a callback chain. Given

such a chain γi = (cs, . . . , ce), a chain instance γki = (cl1s , . . . , c
lk
e) is a sequence of instances of

the chain callbacks where each instance triggers the next instance in the sequence. The chain

instance activates when its first element activates and completes when its last element completes.

Of particular interest to the analysis are those parts of a chain where multiple consecutive

callbacks are assigned to the same executor. We call such fragments intra-executor subchains (or

subchains for short).

48

3.3. SUMMARY

3.3 Summary

In this chapter, we have defined a timing model for ROS applications. To this end, we first

described the behavior of the ROS callback scheduler and confirmed our observations experimen-

tally (Section 3.1). The described scheduler differs from common real-time schedulers in three

major aspects. First, messages arriving during a processing window are not considered until the

next polling point. The time of the next polling point depends on all remaining callbacks, which

makes the duration of the resulting priority inversion hard to predict. Second, the scheduler runs

at most one instance of each callback during a processing window. This aggravates the priority

inversion, as a backlogged callback might have to wait for multiple processing windows until

it is even considered for scheduling. Third, users cannot freely adjust callback priorities to the

application’s needs. As a result, the callback priorities do not necessarily reflect the true priority

or urgency of their associated workload.

The proposed timing model (Section 3.2) describes this executor behavior in the form of six

scheduler properties. The callbacks in the system are represented as a directed graph whose

edges represent triggering relationships. The activation pattern of each callback is represented

as an activation curve. In the case of message-driven callbacks, the activation curve need not

be specified in the model but can be automatically derived by a response-time analysis. The

execution-time demand of each callback and the overhead induced by each executor is represented

as an execution-time curve.

As we demonstrate in Chapter 6, the proposed timing model is expressive enough to represent

real ROS workloads. In the next chapter, we build upon this model to bound the worst-case

response time of timing-sensitive processing chains.

49

4 A Response-Time Analysis for ROS

Having defined a timing model for ROS, we now turn towards bounding the worst-case latency of

ROS callback chains. We begin by adapting the terminology on response-time analysis introduced

in Section 2.2.1 to the ROS timing model.

The worst-case response time of a callback ci or a chain γi is the largest possible time difference

between activation and completion of any instance of ci (respectively, γi). The response-time

bound R(ci) (respectively, R(γi)) denotes the upper bound on the worst-case response time of ci

(respectively, γi) computed by the analysis.

A callback instance cxi is pending during an interval [t1, t2) if there is an instant t ∈ [t1, t2)

where cxi is pending. cxi suffers interference from another instance cyj at time t if cyj occupies the

shared executor at t and cxi is incomplete at t. Interference is direct if cxi is pending at time t and

indirect if cxi is not yet pending. As a special case, we call interference by prior instances of ci

self-interference. A chain instance suffers interference if any of its callback instances suffers

interference.

Overall, the analysis follows the response-time analysis approach described in Section 2.3:

the analysis alternates between an activation-curve propagation step, which propagates each

callback’s activation pattern to the callback’s successors, and a local analysis step, which analyzes

each executor in isolation to obtain response-time bounds for all callbacks and processing chains

served by that executor. Due to the cyclical dependency between activation curves and response

times, the analysis keeps alternating between the two steps until a fixed point is reached.

We begin with a discussion of the propagation step (Section 4.1). We continue with two local

51

CHAPTER 4. A RESPONSE-TIME ANALYSIS FOR ROS

analysis approaches, one based on the round-robin-like behavior of the ROS executor (Section 4.2)

and one based on the busy-window principle (Section 4.3). Since neither of the two approaches

dominates the other, the final analysis uses a combination of both strategies.

4.1 Activation-Curve Propagation

The activation-curve propagation for ROS systems is similar to the traditional activation model

propagation rule described in Section 2.3.3. Recall that in a task system where a task τj can be

activated by its predecessors pred(τj) with propagation delay δ, τj’s activation curve for any

interval ∆ can be derived as follows (where Ri denotes τi’s response time):

ηj(∆) ,
∑

τi∈pred(τj)

ηi(∆ +Ri + δ − ε) (non-ROS propagation rule)

This propagation mechanism applies almost identically to ROS systems but additionally needs

to account for the trigger set of the edges towards callback ci (cf. Section 3.2.5). An activation

of ci along an edge (ch, ci) should be counted in the propagation rule for cj only if cj is in the

trigger set of the edge. The analysis therefore needs to keep track of which predecessor activated

an instance of ci. To this end, we define the edge activation curve ηi,j(∆), which upper-bounds

the number of instances of cj that are activated along the edge (ci, cj) during a time window of

length ∆.

Definition 1. Let (ci, cj) be an arbitrary edge in the graph. If ci is a message-driven callback,

then the edge activation curve ηi,j(∆) of the edge (ci, cj) is given by

ηi,j(∆) ,
∑

ch∈pred(ci)


ηh,i(∆ +R(ci)− ε+ δi,j) if cj ∈ trish,i

0 otherwise.

52

4.1. ACTIVATION-CURVE PROPAGATION

If ci is not message-driven, then the edge activation curve is given by

ηi,j(∆) , ηi(∆ +R(ci)− ε+ δi,j).

The callback activation curve is then defined in terms of the edge activation curve as follows:

Definition 2. For any message-driven callback cj , the activation curve ηj(∆) is given by

ηj(∆) ,
∑

ci∈pred(cj)

ηi,j(∆)

The following lemma proves the correctness of the edge activation curve. The correctness of

the activation curve then follows as a corollary.

Lemma 2. Let ∆ > 0 and (ci, cj) be an arbitrary edge in the graph. Then at most ηi,j(∆)

instances of cj are activated along the (ci, cj) edge during any interval of length ∆.

Proof. By induction over the edges of the callback graph.

Induction base: If ci is not message-driven, then ηi,j(∆) = ηi(∆ + R(ci) − ε + δi,j). This

corresponds to the traditional activation model propagation rule described in Section 2.3.3.

Induction step: Now assume that ci is message-driven instead. Then each of ci’s instances must

be activated by one of ci’s predecessors. Consider all instances activated by one such predecessor

ch. If cj ∈ trish,i then each activation along (ch, ci) during an arbitrary interval of length ∆

may trigger an instance of cj in the same interval. By the induction hypothesis there are at most

ηh,i(∆) such activations. If cj /∈ trish,i then none of the activations along (ch, ci) triggers an

instance of cj . There are thus 0 such activations.

In conclusion, the case distinction in the definition of ηi,j(∆) (Definition 1) upper-bounds

the number of activations along the (ci, cj) edge that are ultimately triggered by an instance

of ch. Since each instance of ci is activated by exactly one of its predecessors, the sum of

the per-predecessor bound constitutes an overall bound on the number of activations along

(ci, cj).

53

CHAPTER 4. A RESPONSE-TIME ANALYSIS FOR ROS

Corollary 1. Let ∆ > 0, and cj be an arbitrary callback in the graph. Then at most ηj(∆)

instances of cj are activated during any interval of length ∆.

Proof. If cj is not a message-driven callback, then ηj(∆) is provided as part of the model and

bounds the number of activated instances in the time window by definition.

Otherwise, each instance of cj is activated by exactly one of its predecessors. Since each

predecessor ci activates cj at most ηi,j(∆) times during any time interval of length ∆, summing

ηi,j(∆) for all predecessors upper-bounds the number of cj’s activations.

The activation-curve propagation step thus proceeds as follows: whenever a new response-time

bound is computed by the local analysis, the analysis uses Definition 2 to update the activation

curves of all successor callbacks. These updated activation curves are then used for the next

iteration of the local analysis.

4.2 Round-Robin Approach

We now turn to the local analysis step, which computes a response-time bound given fixed

activation curves. The step identifies the shortest time window during which the supply provided

by the executor is guaranteed to exceed the processor time required by the callback or chain under

analysis and its interfering callbacks.

We propose two approaches to identify interfering callbacks. In this section, we discuss the

round-robin approach, which relies on the round-robin-like behavior of the ROS scheduler to

bound interference. Specifically, it exploits that due to Property SM of the ROS callback scheduler,

no more than one instance per polled callback runs in each processing window, independently of

its priority or the number of pending instances.

This scheduling approach enforces a notion of fairness among polled callbacks. Consider two

polled callbacks, c1 and c2. Assume c1 is triggered periodically and has two pending instances,

whereas c2 is triggered in infrequent bursts and has ten pending instances. Due to Property SM,

only two instances of c2 interfere with c1’s two pending instances. A traditional busy-window

54

4.2. ROUND-ROBIN APPROACH

analysis would pessimistically account for ten interfering instances instead. The analysis proposed

in this section improves upon busy-window approaches by bounding the number of processing

windows needed to complete a chain instance.

4.2.1 Interference Bounds

In the following, we exploit Property SM to establish bounds on total interference. As a

preliminary, Lemma 3 bounds the number of pending callback instances in arbitrary time intervals.

Lemma 3. Let ci be any callback. In any interval of length ∆, at most ηi(∆ + R(ci) − ε)

instances of ci are pending.

Proof. Consider an arbitrary interval [t, t + ∆). If ∆ = 0, then the bound holds trivially, so

assume ∆ > 0. Clearly, callback instances activated at or after time t+ ∆ are not pending before

t + ∆. By definition of the response-time bound R(ci), instances of ci activated at or before

t−R(ci) are complete by time t. Thus, only instances activated in (t−R(ci), t+ ∆) are pending

during [t, t+ ∆). The lemma follows since the length of (t−R(ci), t+ ∆) is ∆ +R(ci)− ε.

Next, we introduce a bound that exploits Property SM to bound the number of callback

instances that directly interfere with a callback ci. The bound depends only on ci’s activation

curve and not on the activation curve of the interfering callbacks.

In the following lemmas, let N denote a given upper bound on the number of polling points

in an arbitrary interval [t1, t2). We later show in Lemma 9 how to obtain such a bound N . For

brevity, we let JpK1 denote the indicator function that evaluates to 1 if the predicate p is true and

to 0 otherwise.

Lemma 4. Let ci ∈ Cpol
k and cj ∈ Cpol

k \ {ci}. Let N be a bound on the number of polling

points in Ek during an interval [t1, t2). If an instance of ci completes at time t2, then at most

N + Jcj ∈ hpk(ci)K1 instances of cj run during [t1, t2).

Proof. Consider separately the last polling point before time t2 (called last polling point hereafter),

and the up to N − 1 polling points in [t1, t2) that precede the last polling point (called internal

55

CHAPTER 4. A RESPONSE-TIME ANALYSIS FOR ROS

polling points hereafter). Each of these polling points samples at most one instance of cj

(Property SM). In the case of internal polling points, all such instances run before the next polling

point and thus before t2. In the case of the last polling point, the instance of ci that completes at

t2 is among the sampled instances. During the processing window, the executor Ek runs only

callbacks of higher priority than ci before ci (Property SM). Thus, instances of callbacks in

lpk(ci) run after t2, and instances in hpk(ci) ∪ ci run before t2. There may be further instances

running in [t1, t2) that have been sampled before t1. These instances are all sampled at the same

polling point, namely the last polling point preceding t1 (Property PP). There is thus at most one

such instance per callback (Property SM). Overall, cj executes in [t1, t2) up to N − 1 instances

sampled at internal polling points, at most 1 instance sampled before t1, and, if cj ∈ hpk(ci),

at most 1 instance sampled at the last polling point, for a total of at most N + Jcj ∈ hpk(ci)K1

instances.

Lemmas 3 and 4 bound the number of callbacks that run during an interval in different ways.

The minimum of both bounds is a safe bound, too, as the following corollary notes.

Corollary 2. Let ci ∈ Cpol
k and cj ∈ Cpol

k \ {ci}. Let N be an upper bound on the number of

polling points in Ek during an interval [t1, t2). If an instance of ci completes at time t2, then for

any 0 ≤ ∆ ≤ t2 − t1 at most

min
(
ηj(∆ +R(cj)− ε), N + Jcj ∈ hpk(ci)K1

)
instances of cj run during [t1, t1 + ∆).

Thanks to Corollary 2, we can bound the total amount of direct interference a callback ci

suffers from other callbacks.

Definition 3. For any polled callback ci assigned to Ek, the direct interference bound function

56

4.2. ROUND-ROBIN APPROACH

Ii(∆, N) is given by

Ii(∆, N) ,
∑

cj∈Cprvk

ETj (ηj(∆ +R(cj)− ε)) +
∑

cj∈Cpolk \{ci}

ETj (vj)

with vj = min
(
ηj(∆ +R(cj)− ε), N + Jcj ∈ hpk(ci)K1

)
.

Lemma 5 shows Ii(∆, N) to be sound.

Lemma 5. Let ci ∈ Cpol
k . Let N be an upper bound on the number of polling points in Ek during

an interval [t1, t2). If an instance of ci completes at time t2, then for any 0 ≤ ∆ ≤ t2 − t1,

instances of callbacks in Ck \ ci consume at most Ii(∆, N) units of processor service during

[t1, t1 + ∆).

Proof. First note that, w.r.t. each callback, instances running during [t1, t1+∆) form a consecutive

sequence of instances. Thus, if n instances of an interfering callback cj run during [t1, t1 + ∆),

then their total demand is bounded by ETj (n). In the case of privileged callbacks, the bound

simply exploits that only pending instances can run. Therefore, Lemma 3 yields a bound on

the number of callbacks that may be executed in [t1, t1 + ∆). In the case of polled callbacks,

Corollary 2 shows that vj bounds the number of instances that may run in [t1, t1 + ∆). Since

each callback in Ck is either privileged or polled, Ii(∆, N) bounds the total demand across all

callbacks in Ck \ {ci}.

Next, we bound the direct self-interference caused by earlier instances of the callback under

analysis.

Definition 4. For any ci ∈ Cpol and any duration ∆, the self-interfering instances bound is given

by si i(∆) , max(0, ηi(∆ +R(ci)− ε)− 1).

Lemma 6 shows Definition 4 to be sound.

Lemma 6. Let ci be an arbitrary callback and cxi one of ci’s instances. During any interval

[t1, t1 + ∆) for any ∆ ≥ 0, at most si i(∆) instances directly self-interfere with cxi .

57

CHAPTER 4. A RESPONSE-TIME ANALYSIS FOR ROS

Proof. By Lemma 3, at most ηi(∆ +R(ci)− ε) instances of ci are pending during any interval

of length ∆. If ηi(∆ + R(ci) − ε) = 0, no instance of ci is pending in [t1, t1 + ∆). cxi can

suffer self-interference only if it is pending at some point in [t1, t1 + ∆). There is thus no

self-interference and si i(∆) ≥ 0 is an upper bound.

If ηi(∆+R(ci)−ε) > 0 then ηi(∆+R(ci)−ε) = si i(∆)+1, meaning that at most si i(∆)+1

instances of ci are pending during any interval of length ∆. To suffer direct self-interference, cxi

must be pending at some point in [t1, t1 + ∆). By definition of the response-time bound R(ci),

instances released at or prior to t1 −R(ci) complete by time t1; cxi is hence activated after time

t1 −R(ci). Thus, one of the si i(∆) + 1 pending instances is cxi itself, which implies that at most

si i(∆) instances cause direct self-interference.

4.2.2 Response-Time Bound

With Definitions 3 and 4 in place, we now bound the response time of any given subchain γ =

(cs, . . . , ce) that is assigned to executor Ek and ends in a polled callback ce. Let γa = (cxs , . . . , c
y
e)

be an arbitrary instance of this subchain. Let A denote γa’s activation time and F its completion

time, so that its response time is given by F −A.

As a first step towards a response-time bound, we note that throughout [A,F), at least one

callback of the chain under analysis is pending.

Lemma 7. At any time in [A,F), at least one of the callback instances comprising γa =

(cxs , . . . , c
y
e) is pending.

Proof. Since all callbacks in γa are assigned to Ek and the intra-executor propagation delay is

zero, each callback instance cqi ∈ γa \ c
y
e is still running when its successor cwj ∈ γa is activated,

with cj ∈ succ(ci). Thus, at least one of the callbacks in γa is pending throughout [A,F).

Since at least one callback instance in γa is pending at every polling point during [A,F), each

polling point samples at least one instance of a callback in γ, which implies an upper bound on

the number of polling points.

58

4.2. ROUND-ROBIN APPROACH

Definition 5. For any callback ci, its polling-point bound pp(ci) is defined as pp(ci) , ηi(R(ci))

if ci ∈ Cpol, and simply as pp(ci) , 0 otherwise. For a subchain γ, the aggregate bound pp(γ) is

defined as pp(γ) ,
∑

ci∈γ pp(ci).

Lemmas 8 and 9 prove the correctness of these bounds.

Lemma 8. Let cxi be an arbitrary callback instance. Let ta denote cxi ’s activation time and tf

denote its completion time. There are at most pp(ci) polling points in [ta, tf).

Proof. If ci is not a polled callback, cxi is sampled immediately upon activation. Since a polling

point occurs only if there are no sampled instances (Property PP), there can be no polling point

in [ta, tf). If ci is a polled callback each polling point in [ta, tf) samples one instance of ci

since at least one instance of ci, namely cxi , is pending during the entire interval [ta, tf). The

number of polling points in [ta, tf) is therefore bounded by the number of instances of ci that are

sampled in [ta, tf). The last of these instances is cxi (Property PP), which is pending at ta. Due

to Property SQ, any instance of ci that is sampled at or after ta but before cxi is sampled must be

activated before cxi , which implies that any such instance is also pending at time ta. The number

of polling points in [ta, tf) is thus bounded by the number of instances of ci pending at time ta.

By Lemma 3 with ∆ = ε, at most ηi(R(ci)) instances of ci are pending at time ta (i.e., during

[ta, ta + ε)).

Lemma 9. There are at most pp(γ) polling points in [A,F).

Proof. By Lemma 7, at every time in [A,F) at least one callback of γa is pending. Every polling

point in [A,F) lies thus between activation and completion of at least one of the callbacks of γa

(Property SM). By Lemma 8, pp(ci) bounds the number of polling points between the activation

and the completion of each callback cyi of γa. The sum of the individual polling-point bounds of

the callbacks comprising γ hence yields an upper bound on the total number of polling points

between the activation and completion of γa.

Since γa’s last callback instance cye completes at time F , pp(γ) fulfills the condition on N and

the associated interval [t1, t2) in Lemmas 4 and 5 and Corollary 2.

59

CHAPTER 4. A RESPONSE-TIME ANALYSIS FOR ROS

In the last preparatory step, we observe a simple structural property of self-interference.

Lemma 10. Let cyi , . . . , c
y+n
i be n+ 1 consecutive instances of a callback ci. If the last instance

cy+n
i runs for ωy+n

i time units, then the first n instances demand at most min
(
ETi(n + 1) −

ωy+n
i , ETi(n)

)
time units of processor service.

Proof. As cyi , . . . , c
y+n
i is a sequence of n + 1 consecutive callback instances, their overall

execution time is bounded by ETi(n+ 1). The last element cy+n
i , by assumption, runs for ωy+n

i

time units. The first n elements thus run for at most ETi(n+ 1)− ωy+n
i time units. Similarly,

cyi , . . . , c
y+n−1
i is a sequence of n consecutive callback instances; their total execution time hence

is bounded by ETi(n).

The next two lemmas finally bound the response time F −A by bounding first the start time S

of the last callback instance, and then its completion time F . The start time is a useful stepping

stone because, from this point on, other callbacks can no longer interfere with γa (Property NP).

Using the established interference bounds, Lemma 11 finds the latest point in time where cye ,

the last callback instance of γa, must consume its first unit of supply, which bounds S.

Lemma 11. Let γa be an arbitrary instance of subchain γ, let A denote γa’s activation time, let

cye denote the last callback instance in γa, suppose that cye requires ωye time units of processor

service, and let N , pp(γ). If S∗ is the least positive solution (if any) of the inequality

sbfk (S∗) ≥ ε+ Ie(S
∗, N) + min

(
ETe(sie(S

∗) + 1)− ωye ,ETe(sie(S
∗))
)
,

then cye starts running in [A,A+ S∗).

Proof. By Lemmas 5 and 9, ε+ Ie(S
∗, pp(γ)) strictly exceeds the total direct interference due

to all callbacks in Ck \ {ce}. By Lemma 6, there are at most sie(S∗) directly self-interfering

instances of ce. Since the self-interfering instances are consecutive, the total interference due to

these instances is bounded by Lemma 10 (with n = sie(S
∗)). We now show that cye completes in

[A,A+S∗). Since A is the activation time of γa, by Lemma 7, there is always a pending callback

60

4.2. ROUND-ROBIN APPROACH

instance of γa until cye completes, which implies that the executor does not idle (Property WC).

Since S∗ satisfies the stated inequality, the amount of service supplied by the executor exceeds

the total demand by callback instances directly interfering with cye (either due to other callbacks

or self-interference) by at least ε units of service. It follows that the only instance that can

run while cye is pending without interfering with it is cye itself. Therefore, cye starts running in

[A,A+ S∗).

From S∗, we obtain a bound on the response time of γa.

Theorem 1. Let γa be an arbitrary instance of subchain γ, let A denote γa’s activation time, let

cye denote the last callback instance in γa, and suppose that cye requires ωye time units of processor

service. Let S∗ be defined as in Lemma 11. If R∗ is the least positive solution (if any) of the

inequality

sbfk (R∗) ≥ sbfk (S∗)− ε+ ωye ,

then R∗ is a response-time bound for γ (i.e., F −A ≤ R∗).

Proof. Due to Property NP, a callback instance cannot be interfered with once it starts running.

Recall from Lemma 11 that cye starts running in [A,S∗), and that it suffers at most sbfk (S∗)− ε

time units of direct interference before it starts running. By assumption, cye runs for ωye time units.

Therefore, cye necessarily completes once the executor has provided sbfk (S∗)− ε+ ωye units of

supply. Since R∗ satisfies the stated inequality, the executor provides at least sbfk (S∗)− ε+ ωye

units of supply in [A,A+R∗). Consequently, cye completes in [A,A+R∗) andA+R∗−A = R∗

is a response-time bound for γa. Furthermore, since γa is an arbitrary instance of γ upon which

we have placed no restrictions, R∗ bounds the response time of any instance of γ.

4.2.3 Eliminating ωye

Both S∗ and R∗ in Theorem 1 depend on ωye , the exact runtime of the last component of the chain

under analysis, which is unknown at analysis time. The bound thus cannot be directly applied in a

response-time analysis. While ωye can be trivially bounded by 0 from below and by ETe(1) from

61

CHAPTER 4. A RESPONSE-TIME ANALYSIS FOR ROS

above, such an estimate would be needlessly pessimistic. In the following, we refine Lemma 11

and Theorem 1 to be independent of ωye (hereafter simply referred to as ω).

Since the argument does not depend on details of the interference bounds (and will be reused

in Section 4.3), we consider a more general version of the problem. Let f, g : N→ N be any two

monotonically increasing functions with f(t) > 0 and g(t) ≥ 0 for all t. For a given ω ∈ N such

that 0 ≤ ω ≤ ETe(1), let s(ω) denote the least positive S∗ ∈ N that satisfies

sbfk (S∗)≥f(S∗)+ min(ETe(g(S∗)),ETe(g(S∗) +1)−ω) (4.1)

and let r(ω) denote the least positive R∗ ∈ N that satisfies

sbfk (R∗) ≥ sbfk (s(ω))− ε+ ω. (4.2)

We refer to Ineqs. (4.1) and (4.2) as the defining inequality of s(ω) and r(ω), respectively.

In the following, we derive a bound on maxω≥0 r(ω) for arbitrary f and g that is independent

of ω. This bound is then applied to Lemma 11 and Theorem 1, which are a special case of the

above system of inequalities (with f(x) , ε + Ie(x,N) and g(x) , sie(x)). Our argument

makes use of the following trivial property of supply-bound functions:

Property 1. An executor cannot provide more than ε units of supply in an interval of length ε:

∀x. sbfk (x) ≤ sbfk (x− ε) + ε.

To get started, we establish that s(ω) not only satisfies its defining inequality (Ineq. (4.1)), but

in fact yields an equality. For brevity, let z(S∗) denote the right-hand side of Ineq. (4.1).

Lemma 12. If 0 ≤ ω ≤ ETe(1) and Ineq. (4.1) has a positive solution, then sbfk (s(ω)) =

z(s(ω)).

Proof. By contradiction: suppose sbfk (s(ω)) > z(s(ω)). By Property 1, sbfk (s(ω) − ε) ≥

sbfk (s(ω)) − ε > z(s(ω)) − ε. Since time is discrete, sbfk (s(ω) − ε) > z(s(ω)) − ε implies

sbfk (s(ω) − ε) ≥ z(s(ω)). s(ω) − ε is thus a solution of Ineq. (4.1), too. Since s(ω) is by

62

4.2. ROUND-ROBIN APPROACH

definition the least positive solution of Ineq. (4.1), it follows that s(ω)− ε = 0, which implies

z(s(ω)) = 0 since sbfk (s(ω) − ε) = sbfk (0) = 0. However, as f(s(ω)) > 0, this implies

min(ETe(g(s(ω))),ETe(g(s(ω)) + 1) − ω) < 0, which is impossible since ∀x.ETe(x) ≥ 0

and ω ≤ ETe(1) ≤ ETe(g(s(ω)) + 1).

The next three lemmas characterize s(ω) by identifying a value ωm such that s is constant up

to ωm and monotonically decreasing thereafter. Based on ωm, we then identify the maximum of

r(ω). We begin by establishing monotonicity.

Lemma 13. s(ω) is monotonically decreasing.

Proof. Since ω ∈ N, it suffices to establish s(ω + ε) ≤ s(ω) for any ω ≥ 0. To this end, we

show that S∗ = s(ω) is a solution to the defining inequality of s(ω + ε). Since s(ω + ε) is, by

definition, the least solution to s(ω + ε)’s defining inequality, this implies that s(ω) ≥ s(ω + ε).

f(S∗) + min(ETe(g(S∗)),ETe(g(S∗) + 1)− (ω + ε))

≤f(S∗) + min(ETe(g(S∗)),ETe(g(S∗) + 1)− ω)

=f(s(ω)) + min(ETe(g(s(ω))),ETe(g(s(ω)) + 1)− ω)

≤sbfk (s(ω)) = sbfk (S∗) {Def. s(ω)}

Lemma 13 implies that s is maximized at ω = 0. We next observe that there exists a “tipping

point” such that the minimum term in Ineq. (4.1) resolves to its first argument below the tipping

point and to its second argument otherwise.

Lemma 14. There is an ωm such that

∀ω, ω ≥ ωm ⇔ ETe(g(s(ω))) ≥ ETe(g(s(ω)) + 1)− ω.

Proof. For brevity, we refer to the right-hand side of the stated equivalence as the ωm-criterion.

There is always at least one value that fulfills the ωm-criterion, namely ETe(1), since ETe is

sub-additive (ETe(n) ≥ ETe(n+1)− ETe(1) for any n).

63

CHAPTER 4. A RESPONSE-TIME ANALYSIS FOR ROS

Therefore, there also exists a least value of ω for which the ωm-criterion holds. We now show

that this least value satisfies the stated equivalence: that is, the value of ωm is given by the least ω

for which the ωm-criterion holds.

⇐: follows immediately, since ωm is the least value that satisfies the ωm-criterion.

⇒: We show that ω not fulfilling the ωm-criterion implies ω < ωm. Let ω∗ be a value of

ω for which ETe(g(s(ω∗))) < ETe(g(s(ω∗)) + 1) − ω∗. (If no such ω∗ exists, then ωm = 0

and the claim holds trivially.) Then s(ω∗) fulfills s(ωm)’s defining inequality: by definition of

ω∗ and s(ω∗), we have sbfk (s(ω∗)) ≥ f(s(ω∗))+ETe(g(s(ω∗)), and since ∀x.ETe(g(s(ω∗)) ≥

min(ETe(g(s(ω∗)), x), hence also sbfk (s(ω∗)) ≥ f(s(ω∗))+min(ETe(g(s(ω∗)),ETe(g(s(ω∗))+

1) − ωm)), which is s(ωm)’s defining inequality. Since s(ω∗) is positive and s(ωm) is the

least positive solution of ωm’s defining inequality, this implies s(ω∗) ≥ s(ωm), which implies

ω∗ ≤ ωm since s is monotonically decreasing (Lemma 13). Further, ω∗ 6= ωm since ωm fulfills

the ωm-criterion while ω∗ does not. Therefore, ω∗ < ω.

As a result, s(ω) is a constant function for any ω < ωm, which implies that all values in

[0, ωm) maximize s.

Lemma 15. If 0 ≤ ω < ωm, then s(ω) = s(0).

Proof. If ω<ωm, then ETe(g(s(ω)) + 1)− ω>ETe(g(s(ω))) by Lemma 14. Therefore, s(ω)

is the least positive solution of the inequality sbfk (S∗) ≥ f(S∗) +ETe(g(S∗)), which obviously

does not depend on ω. Since by assumption ωm > 0 (otherwise ω < ωm does not exist since

0 ≤ ω), we have s(ω) = s(0) for 0 ≤ ω < ωm.

Based on Lemmas 12 to 15, we now identify the possible maxima of the r function for

0 ≤ ω ≤ ETe(1).

Lemma 16. argmax0≤ω≤ETe(1) r(ω) ∈ {ωm, ωm − ε}

Proof. We distinguish two cases: ω < ωm and ω ≥ ωm.

64

4.2. ROUND-ROBIN APPROACH

Case 1: If ω < ωm, then s(ω) = s(0) (Lemma 15) and thus sbfk (r(ω)) ≥ sbfk (s(0))− ε+ ω.

Since sbfk is monotonically increasing, r(ω) is hence also monotonically increasing and is thus

maximized if ω is maximized, i.e., at ω = ωm − ε.

Case 2: If ω ≥ ωm, then by Lemma 14 the minimum term in Ineq. (4.1) is equal to ETe(g(s(ω))+

1)− ω. By Lemma 12, Ineq. (4.1) is in fact an equality, which allows us to replace sbfk (s(ω))

with the right-hand side of Ineq. (4.1). Therefore, r(ω) is the least positive value satisfying:

sbfk (r(ω)) ≥ sbfk (s(ω))− ε+ ω

= f(s(ω)) + ETe(g(s(ω)) + 1)− ω − ε+ ω

= f(s(ω)) + ETe(g(s(ω)) + 1)− ε.

r(ω) is thus monotonically increasing in s(ω) (as sbfk , f , g, and ETe are all monotonically

increasing). Since s(ω) is monotonically decreasing (Lemma 13), s(ω) is maximized if ω is

minimized, i.e., at ω = ωm.

Based on the maxima of r(ω), the next lemma provides two simplified inequalities that no

longer depend on ω.

Lemma 17. If S∗ is the least positive solution of

sbfk (S∗) ≥ f(S∗) + ETe(g(S∗)), (4.3)

Ω , ETe(g(S∗) + 1)− ETe(g(S∗)), and R∗ is the least positive solution of

sbfk (R∗) ≥ sbfk (S∗)− ε+ Ω, (4.4)

then R∗ ≥ max0≤ω≤ETe(1) r(ω).

Proof. We first show that S∗ upper-bounds both s(ωm) and, if ωm > 0, s(ωm − ε). If ωm = 0,

then, by Lemma 14, ETe(g(s(ωm))) ≥ ETe(g(s(ωm)) + 1). Since ETe is monotonically

65

CHAPTER 4. A RESPONSE-TIME ANALYSIS FOR ROS

increasing, this implies ETe(g(s(ωm))) = ETe(g(s(ωm)) + 1). As a result, Ineq. (4.3) is

equivalent to the defining inequality of s (Ineq. (4.1)) for ω = ωm and S∗ is therefore equal

to s(ωm). If ωm > 0, Ineq. (4.3) is equivalent to the defining inequality of s (Ineq. (4.1)) for

ω = ωm − ε (Lemma 14), and hence S∗ = s(ωm − ε). As s is monotonically decreasing

(Lemma 13), this implies S∗ ≥ s(ωm).

We now show that Ω ≥ ωm. If ωm = 0, then Ω is trivially an upper bound, so assume ωm > 0

and thus S∗ = s(ωm − ε). By the definition of ωm, it then holds that:

ETe(g(s(ωm − ε))) < ETe(g(s(ωm − ε)) + 1)− (ωm − ε)

⇔ ETe(g(S∗)) < ETe(g(S∗) + 1)− (ωm − ε)

⇔ (ωm − ε) < ETe(g(S∗) + 1)− ETe(g(S∗))

⇔ ωm < ETe(g(S∗) + 1)− ETe(g(S∗)) + ε

⇔ ωm < Ω + ε⇔ ωm ≤ Ω

Finally, we establish that R∗ upper-bounds both r(ωm) and, if ωm > 0, r(ωm − ε) by showing

that R∗ fulfills r’s defining inequality (Ineq. (4.2)) for ω∗ ∈ {ωm, ωm − ε}.

sbfk (R∗) ≥ sbfk (S∗)− ε+ Ω

⇒sbfk (R∗) ≥ sbfk (S∗)− ε+ ω∗ {Ω ≥ ω∗ ≥ ω∗ − ε}

⇒sbfk (R∗) ≥ sbfk (s(ω∗))− ε+ ω∗ {S∗ ≥ s(ω∗)}

Thus, by Lemma 16, R∗ ≥ r(ω) for 0 ≤ ω ≤ ETe(1).

Having solved the general case, we now apply Lemma 17 to the response-time analysis in

Lemma 11 and Theorem 1.

Theorem 2. Let γa be an arbitrary subchain instance. Let A be γa’s activation time, let F be

γa’s completion time, and let cye denote the last callback instance in γa. Let S∗ be the least

66

4.3. BUSY-WINDOW APPROACH

positive solution (if any) of the following inequality.

sbfk (S∗) ≥ ε+ Ie(S
∗, pp(γ)) + ETe(sie(S

∗)) (4.5)

Let Ω , ETe(sie(S
∗) + 1)− ETe(sie(S

∗)), and let R∗ be the least positive solution (if any) of

the following inequality.

sbfk (R∗) ≥ sbfk (S∗)− ε+ Ω (4.6)

Then R∗ is a response-time bound for γ: F −A ≤ R∗.

Proof. Follows from Lemma 17 for f(x) , ε + Ie(x,N) and g(x) , sie(x), Lemma 11, and

Theorem 1.

Since Theorem 2 does not depend on ωye , it is suitable for an a priori response-time analysis.

Specifically, an implementation can find the least solution S∗ through fixed-point iteration and

then compute a response-time bound. If a solution S∗ cannot be found, then Theorem 2 is not

applicable.

Furthermore, since the computation of γa’s response-time depends on other response-time

bounds in a cyclical fashion (e.g., Definitions 3 and 4), another outer fixed-point iteration is

necessary [61] until the response-time bounds for all callbacks have reached a global fixed

point (or until some predefined threshold is exceeded). This process always terminates since the

response-time estimates never decrease during the search.

4.3 Busy-Window Approach

We now integrate the busy-window principle with the preceding analysis. A key benefit of

considering an entire busy window at a time is that it enables more precise callback activation

curves, as we show in this section.

We begin with some preliminary definitions. The definitions are conceptually identical to the

standard terms (cf. Section 2.3.2) but are adapted to the ROS timing model.

67

CHAPTER 4. A RESPONSE-TIME ANALYSIS FOR ROS

We say that a callback instance is carried in at time t if it is pending at both t and t− 1. An

instant t is a quiet time of executor Ek if no instances assigned to Ek are carried-in. An interval

[t1, t2) is a busy window w.r.t. a callback instance cxi if both t1 and t2 are quiet times of cxi ’s

executor, no quiet time of cxi ’s executor occurs between t1 and t2, and cxi is activated in [t1, t2).

Since the propagation delay within executors is zero, all components of a subchain instance γx

share the same busy window. We thus define the busy window of a chain instance γx as the busy

window of its components.

We again refer to the subchain instance under analysis as γa, which is activated at time A and

completes at time F . For simplicity (and w.l.o.g.), we assume that the time axis is normalized

such that γa’s busy window starts at time zero.

Under the busy-window assumption, the analysis can locally improve upon the generic

activation-curve propagation method in Section 4.1 in the special case of intra-executor edges.

The analysis exploits that no instance served by γx’s executor is carried in at time 0. If two

callbacks ci and cj are assigned to γx’s executor, then instances of ci activated before time 0

cannot activate instances of cj at or after time 0.

This insight is captured in the following lemma:

Lemma 18. Let ∆ > 0 and (ci, cj) be an arbitrary edge in the graph. If time 0 is a quiet time

of cj’s executor, and ci and cj are assigned to the same executor, then any instance of cj that is

activated along the (ci, cj) edge during [0,∆) was triggered by an instance of ci that was also

activated in [0,∆).

Proof. Since ci and cj share an executor the propagation delay is zero. Therefore, only instances

of ci that are pending in [0,∆) can trigger an instance of cj during [0,∆).

Since [0,∆) is a busy window of ci’s and cj’s shared executor, no instance of ci is carried in at

time 0. Thus, all instances of ci pending in [0,∆) are also activated in [0,∆).

As a result, the number of instances activated along any intra-executor edge (ci, cj) during

the interval [0,∆) is upper-bounded by the number of instances activated in [0,∆), not those

68

4.3. BUSY-WINDOW APPROACH

activated in [−(R(i)− ε),∆) as assumed by the general edge activation-curve in Definition 1.

Definition 6 defines a specialized edge activation curve exploiting that exploits this property

within γa’s executor and falls back to ηi,j(∆) otherwise.

Definition 6. For any message-driven callback cj assigned to γa’s executor and any predecessor

ci of cj , the busy-window edge activation curve ηbi,j(∆) is given by

ηbi,j(∆) ,
∑

ch∈pred(ci)


ηbh,i(∆) if ei = ej ∧ cj ∈ trish,i

0 if ei = ej ∧ cj /∈ trish,i

ηi,j(∆) otherwise.

If ci is not a message-driven callback, then ηbi,j(∆) , ηi(∆).

The per-callback case is analogous to the general case (Definition 2) but defers to the busy-

window edge activation curve instead of the general edge activation curve.

Definition 7. For a message-driven callback cj assigned to γa’s executor the busy-window

activation curve ηbj(∆) is given by

ηbj(∆) ,
∑

ci∈pred(cj)

ηbi,j(∆).

If cj is not a message-driven callback, then ηbj(∆) , ηj(∆) instead.

The following lemma proves the correctness of the edge activation bound; the correctness of

the callback activation bound follows as a corollary.

Lemma 19. Let ∆ > 0, cj ∈ Ck, and ci ∈ pred(cj). If time 0 is a quiet time of cj’s executor,

then at most ηbi,j(∆) instances of cj are activated along the (ci, cj) edge during [0,∆).

Proof. By induction over the edges in the callback graph.

69

CHAPTER 4. A RESPONSE-TIME ANALYSIS FOR ROS

Induction base: If ci is not message-driven, ηbj(∆) = ηi(∆), which bounds the number of

activations of ci in [0,∆). By Lemma 18, this also upper-bounds the number of activations of cj

along the (ci, cj) edge.

Induction step: Consider any edge (ci, cj). If ci and cj do not share an executor, then ηbi,j(∆) =

ηi,j(∆), which upper-bounds the number of activations along the edge by Lemma 2.

If ci and cj share an executor, then any activation of cj along the (ci, cj) edge during [0,∆)

is triggered by an instance of ci that was activated in [0,∆) (Lemma 18). The remainder of the

argument proceeds analogously to Lemma 2. Each instance of ci activated in [0,∆) is triggered

by one of ci’s predecessors. Consider one such predecessor ch. If cj ∈ trish,i then all of these

activations may trigger an instance of cj . By the induction hypothesis this happens up to ηi,j(∆)

times. If cj /∈ trish,i then none of the activations along (ch, ci) triggers an instance of cj .

In conclusion, the case distinction in the definition of ηbi,j(∆) (Definition 6) upper-bounds

the number of activations along the (ci, cj) edge that were indirectly triggered by an instance

of ch. Since each instance of ci is activated by exactly one of its predecessors, the sum of the

per-predecessor bound constitutes an overall bound on the number of activations along (ci, cj)

during [0,∆).

The correctness of ηbj(∆) follows as a corollary.

Corollary 3. Let ∆ > 0, and cj be an arbitrary callback in the graph. Then at most ηbj(∆)

instances of cj are activated during the interval [0,∆).

Proof. If cj is not message-driven, then ηbj(∆) = ηj(∆), which bounds the number of activations

of cj due to Corollary 1.

If cj is message-driven, then each instance of cj is activated by exactly one of its predecessors.

Since each predecessor ci activates cj at most ηbi,j(∆) times during the time interval, summing

ηbi,j(∆) for all predecessors upper-bounds the number of cj’s activations.

70

4.3. BUSY-WINDOW APPROACH

4.3.1 Response-Time Bound

The improved activation curve replaces ηi in the interference bound to reduce pessimism. In

addition to ∆ (the length of the interval to consider) and N (a bound on the number of polling

points), the function takes cxi ’s activation time ta as a third parameter. It then combines two ways

to bound the number of instances of a polled callback cj during [0,∆). The first way is to bound

all activations in [0,∆) as ηbj(∆), which exploits that the considered interval starts at a quiet time

but does not exploit Property SM. The second way is to bound all activations in [0, ta) as ηbj(ta),

and to then bound the interference in [ta,∆) (i.e., after cxi ’s activation) under consideration of

Property SM.

Definition 8. For any polled callback ci assigned to Ek, the busy-window interference bound is

given by

Ibi (∆, N, ta) ,
∑

cj∈Cprvk

ETj (η
b
j(∆)) +

∑
cj∈Cpolk \{ci}

min


ETj (η

b
j(∆))

ETj (vj)

with vj = ηbj(ta) +N + Jcj ∈ hpk(ci)K1.

Lemma 20 proves the bound to be sound.

Lemma 20. Let ci ∈ Cpol
k . Let ta and tf denote the activation time and completion time of an

instance of ci. Let N upper-bound the number of polling points in Ek during the interval [ta, tf).

If time 0 is a quiet time of Ek, then for any 0 ≤ ∆ ≤ tf , instances of callbacks in Ck \ {ci}

consume at most Ibi (∆, N, ta) units of processor service during [0,∆).

Proof. Since Ibi sums over all callbacks in Ck, it suffices to show that both ηbj(∆) and, in the case

of polled callbacks, vj bound how many instances of each interfering callback cj run during [0,∆).

Since 0 is a quiet time of Ek, the number of callbacks that run during [0,∆) is upper-bounded by

the number of callbacks activated during [0,∆).

71

CHAPTER 4. A RESPONSE-TIME ANALYSIS FOR ROS

By Lemma 19, ηbj(∆) bounds how many instances of cj are activated in the interval [0,∆)

(since, by assumption, time 0 is a quiet time of Ek).

It remains to be shown that vj is a valid upper bound, too. Lemma 19 again shows that ηbj(ta)

bounds how many instances of cj are activated during [0, ta). By Lemma 4 and Corollary 2,

N + Jcj ∈ hpk(ci)K1 upper-bounds the number of instances running in [ta, tf). Their sum

therefore bounds the number of instances running in [0, ta) ∪ [ta, tf) = [0, tf) ⊇ [0,∆).

Analogously to Definition 4, we also define a busy-window-aware self-interference bound

si bi(ta) , ηbi (ta + ε)− 1, using si bi(ta) in place of si i(∆) to leverage the busy-window activation

curve ηbi (∆). Unlike in Definition 4, no max(0, . . .) term is required since ta + ε > 0 and

therefore ηbi (ta + ε) ≥ 1.

Put together, the two new interference bounds yield a result similar to Theorem 2.

Theorem 3. Let γa be an arbitrary instance of subchain γ. Let A denote γa’s activation time, F

its completion time, cye the last callback instance in γa, and ta the activation time of cye . If time 0

is a quiet time of γ’s executor, S∗ is the least positive solution (if any) of

sbfk (S∗) ≥ ε+ Ibe(S
∗, pp(γ), ta) + ETe(si be(ta)),

Ω , ETe(si be(ta) + 1) − ETe(si be(ta)), and F ∗ is the least positive solution (if any) of the

inequality

sbfk (F ∗) ≥ sbfk (S∗)− ε+ Ω,

then F ≤ F ∗ and F ∗ −A is a response-time bound for γ.

Proof. Recall there are at most pp(γ) polling points in [A,F) (Lemma 9), hence also in [ta, F) ⊆

[A,F) (ta ≥ A, since cye is part of γa). Due to Lemma 20, ε+ Ibe(S
∗, pp(γ), ta) hence strictly

exceeds the total interference due to all callbacks in Ck \ {ce} during [0, S∗). Since no instance of

ce is carried in at time 0, si be(ta) bounds the number of instances of ce except cye that are pending

(and hence self-interfering) in [0, ta]. By Lemma 10, the total self-interference is then given

72

4.3. BUSY-WINDOW APPROACH

by min
(
ETe(si be(ta) + 1)−ωye , ETe(si be(ta))

)
, where ωye is cye’s execution cost. Analogously

to the proofs of Lemma 11 and Theorems 1 and 2, the claim then follows via Lemma 17 with

f(x) , ε+Ibe(x, pp(γ), ta) and g(x) , si be(ta).

Theorem 3 yields a response-time bound, namely F ∗ − A, which however depends on two

unknown offsets, A and ta. In the case where γ consists of a single callback, A is equal to ta and

does not need to be considered separately. Otherwise, it suffices to consider A = 0; A does not

influence the computation of F ∗, and A = 0 therefore maximizes the term F ∗ − A. We next

derive a sparse, finite set of offsets that suffice to be considered.

4.3.2 The Search Space for the Activation Offset ta

To start, Lemma 21 derives an upper bound on ta.

Lemma 21. Let ci be an arbitrary callback and let t∗a denote the least positive solution (if any) of

sbfk (t∗a) ≥ ε+ Ibi (t
∗
a, pp(ci), t

∗
a) + ETi(η

b
i (t
∗
a)).

Then any instance of ci is activated strictly less than t∗a time units after the beginning of its busy

window.

Proof. By contradiction: suppose an instance cai is activated at time ta ≥ t∗a. W.l.o.g. let

time 0 denote the start of cai ’s busy window. By Lemma 20, Ibi (t
∗
a, pp(ci), ta) bounds the

total interference that callbacks other than ci impose upon cai during the time window [0, t∗a).

ETi(η
b
i (t
∗
a)) bounds the demand that ci imposes upon cai during [0, t∗a). By the inequality in the

lemma statement, the supply available to callbacks served by Ek during [0, t∗a) then necessarily

exceeds the possible total demand during that time. Since cai is not pending before ta ≥ t∗a, this

implies that the executor must idle at some point during [0, t∗a), i.e., there is a quiet time in (0, t∗a).

Since cai ’s busy window starts at time 0, this implies that cai ’s busy window ends before cai ’s own

activation, which is a contradiction. Therefore, any instance cai activates at most t∗a − ε time units

after the beginning of its busy window.

73

CHAPTER 4. A RESPONSE-TIME ANALYSIS FOR ROS

To obtain a sparse search space, the next lemma identifies that only “steps” in the ηbj bounds

for the callbacks in Ek need to be considered to find a response-time bound.

Lemma 22. Let cxi be an arbitrary instance of ci and let ta denote cxi ’s activation time. If ta > 0,

∀cj ∈ Cpol
k \ {ci} . ηbj(ta) = ηbj(ta − ε), and

ηbi (ta) = ηbi (ta + ε),

then the response-time bound (given by Theorem 3) for γa = 〈cxi 〉 is lower than that for an

instance activated at time ta − ε.

Proof. Let cwi be an instance of ci activated at time ta − ε. We show that Ibj (∆, N, ta) =

Ibj (∆, N, ta − ε) and si bi(ta) = si bi(ta − ε). Hence F ∗ as defined in Theorem 3 (with γ being

the chain consisting of only ci) is the same for cwi and cxi . The lemma follows since F ∗ − ta<

F ∗ − (ta − ε).

In the definition of Ibi (∆, N, ta) only the term ETj (vj) depends on the ta parameter. This

term appears for any cj ∈ Cpol
k \ {ci}. Since for each such cj by assumption ηbj(ta) = ηbj(ta − ε),

it follows that vj is equal for both activation times, ta and ta − ε. Therefore, Ibj (∆, N, ta) =

Ibj (∆, N, ta − ε).

In the definition of si bi(ta), only the term ηbi (ta + ε) depends on ta. Since ηbi (ta + ε) = ηbi (ta)

it follows that si bi(ta) = si bi(ta − ε)

The search space for activation offsets of a callback ci is thus defined as

A , {0}∪{ta < t∗a | ηbi (ta) 6= ηbi (ta + ε) ∨ ∃cj ∈ Cpol
k \{ci} : ηbj(ta) 6= ηbj(ta − ε)}.

The analysis needs to consider only A as possible values of ta. The response-time bound for

the subchain under analysis is then given by the maximum result obtained via Theorem 3 for

each ta ∈ A. If t∗a, or either of the fixed point solutions F ∗ and S∗ for any ta, cannot be found,

then Theorem 3 is not applicable.

74

4.4. SUMMARY

4.3.3 Combined Analysis

Theorems 2 and 3 are independent analyses that should be used jointly: as neither dominates the

other, it is generally advisable to apply both analyses to each subchain and to use the lesser of the

two bounds on a per-subchain basis.

In the derivations of Theorems 2 and 3, no assumptions have been placed on the number of

callbacks in the chain under analysis γ. Both analyses can therefore also be used to bound the

response time of an individual polled callback by interpreting the callback under analysis as

a single-element chain.

4.4 Summary

In this chapter, we have introduced two strategies to bound the worst-case response time of a ROS

callback or processing chain. The first exploits the round-robin-like nature of the ROS executor;

the second uses the busy-window principle. A busy-window-aware activation-curve propagation

rule further improves analysis precision for intra-executor subchains.

The evaluation in Chapter 6 confirms that none of the two approaches dominates the other. The

round-robin approach is more resistant to bursty callbacks but cannot exploit the busy-window

principle. On the other hand, the busy-window approach does exploit the busy-window principle

but yields much more pessimistic estimates if the callback under analysis is interfered with by a

bursty callback. It is therefore advisable to combine both approaches.

75

5 An Automatic Latency Manager for ROS

The response-time analysis described in the previous chapters requires a detailed timing model of

the ROS system to compute response-time bounds. Unfortunately, constructing such a timing

model for ROS systems can be difficult in practice.

A major challenge is that ROS systems are usually not developed by a single person or group.

After all, it is one of the main selling points of ROS that third-party components can be integrated

easily. As a result, the various components comprising a single ROS system are usually developed

in isolation by multiple independent component developers who do not necessarily know (of) each

other. Similarly, the system integrator, who composes the selected components on a deployment

platform with application- and mission-specific logic and “glue code,” usually does not coordinate

closely with the respective component developers.

In such a setup, no single actor has all the information required to perform a response-time

analysis. Real-time analysis presumes in-depth knowledge of many low-level system details

such as the number of concurrent tasks, their activation semantics and functional interactions,

arrival patterns of messages, worst-case execution times, etc. Since ROS components do not

come with a manifest that would provide this kind of information, system integrators would have

to reverse-engineer these details from the components. This is a risky endeavor, considering

how poorly real-time analyses cope with faulty or incomplete information. A single mistake or

oversight while manually reverse-engineering a third-party component for modeling purposes

could silently invalidate the entire effort.

The component developer does not have the required information either. The timing behavior of

77

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

individual components depends too much on the wider system context, which only the integrator

knows. One reason is that many robotics algorithms exhibit vastly varying execution times and

activation patterns that depend on use-case- and platform-specific aspects. For example, consider

a generic object-tracking component that identifies objects in a video stream and infers their

trajectories (e.g., cars in a neighboring lane). The execution time of this functionality depends

on a variety of parameters: the frame rate, resolution, and codec of the video stream as well as

various other parameters related to the specific tracking algorithm. None of these parameters

can be known or fixed upfront by the developer of a generic object-tracking component. Such

use-case-specific information is only known to the integrator building a specific robot, who in turn

is not necessarily an expert in object tracking or real-time systems and thus cannot always predict

the impact of specific configuration choices. The resource demands and real-time behavior of a

component must therefore always be evaluated in the context of its use in a specific deployment,

which is not compatible with the modular reuse of “black box” components that underlies the

popularity of the ROS framework.

Yet even if the integrator were to discuss each component with the respective experts and would

somehow obtain all details necessary for a timing analysis, a second fundamental problem remains:

the resource requirements and performance characteristics of many components inherently depend

on a robot’s dynamic environment and thus vary over time, rendering a static (worst-case) resource

provisioning infeasible.

For instance, consider the object-tracking component again, and suppose the robot also relies on

a landmark-based self-localization component. On the one hand, the object tracker will demand

much more processor time moving through a bustling city than through sparsely populated

countryside. On the other hand, self-localization is likely much easier in a city with its many

recognizable landmarks than in a mostly uniform landscape. To guarantee sufficient resources

in both situations, the system integrator would have to provision the system for bustling cities

consisting of barren countryside.

In robotics, such pessimistic system dimensioning is bound to run into practical limitations.

78

Instead, to remain practical and cost-efficient, robotics systems must be provisioned for the

expected peak joint resource demands, rather than the sum of each component’s individual

peak demands.

In this chapter, we propose to overcome these challenges with an automatic latency manager,

which automatically and dynamically re-provisions the system at runtime. To this end, we present

the ROS Live latency manager (ROS-Llama), an automatic latency manager based on the timing

model and response-time analysis of the previous chapters. ROS-Llama automatically extracts a

timing model from the running system and uses response-time analysis to compute scheduling

parameters that ensure the user’s latency goals are fulfilled.

ROS-Llama allows system integrators to control the worst-case latency of timing-critical

processing chains while avoiding the problems identified above. Its automation allows system

integrators to exploit a detailed and dynamic system timing model, which neither the system

integrator nor individual component developers could provide on their own.

Unlike the system integrator, ROS-Llama does not have to ask the component developer about

intricate system parameters but relies solely on introspection and automatically determines all

required timing model parameters at runtime.

Unlike the component developer, ROS-Llama has a holistic view of the system and measures all

components in their specific context. Consider again an object-tracking component whose timing

behavior depends on application-specific properties of the video stream. The measurements

reflect the one configuration that is actually in use, no matter how many different configurations

and parameters a component supports in principle.

Furthermore, ROS-Llama can dynamically adapt its models and scheduling decisions over

time. Unlike a fixed deployment, it can thus adapt to dynamically-changing environments and

software components.

79

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

5.1 Requirements and Constraints

ROS-Llama’s design is shaped by various implicit and explicit requirements that an automatic

latency manager needs to fulfill. Specifically, we identify the following nine requirements:

(I) Form does not follow function. It is common in the classic real-time literature to

assume that a system’s functionalities and requirements are neatly reflected in its implementation

as a set of executable tasks at the OS level. Correspondingly, central notions such as response

time, priority, and criticality are usually associated with specific tasks, and hence the problem of

ensuring correct timing for a given functionality is implicitly understood to be equivalent to the

problem of properly provisioning the corresponding task.

As should be evident by now, this is far from the case in ROS. Latency-critical functionality is

rarely contained to a single component, cause-effect chains usually extend across many executors

(and hence threads), and shared executors frequently serve multiple chains with vastly different

latency needs and activation patterns.

A latency manager must hence consider ROS systems holistically and cannot provision indi-

vidual tasks, threads, or other OS entities in isolation.

(II) Do no harm. ROS is popular because, empirically, it works well (enough) for many

workloads. By default, ROS relies on Linux’s best-effort CFS scheduler, which requires no

configuration whatsoever. To state the obvious: active latency management should not result in

worse compliance with latency goals than observed under CFS. This, however, is far less trivial

than it sounds since a poorly configured real-time scheduler easily performs much worse than the

default CFS scheduler.

A latency manager should hence be self-aware and refrain from enacting configuration changes

of uncertain benefit.

(III) No exotic kernel patches. Robotics engineers are generally not willing to switch

away from officially supported, “battle-tested” platforms just because of a promise of better

80

5.1. REQUIREMENTS AND CONSTRAINTS

real-time support. The gain in predictability rarely outweighs the lack of tooling, the difficulty in

obtaining support, or the (perceived) lack of code maturity with its implied risks of rare bugs and

untested corner cases. This rules out the use of bespoke patches augmenting a kernel’s real-time

capabilities.

A practical solution is hence limited to the facilities found in a stock Linux kernel (and its

widely used PREEMPT RT variant).

(IV) No universal buy-in. The ROS ecosystem is inherently heterogeneous, and development

proceeds in an asynchronous, agile fashion, marked by frequent component updates. It is hence

not realistic to expect all (or even any) component developers to invest effort into supporting any

particular latency management approach, nor is it reasonable to expect system integrators to fill

in such support where it is lacking.

In particular, this means a practical solution cannot rely on source-level annotations, presuppose

the use of custom APIs, or change how ROS works in fundamental ways.

(V) Ease of adoption. In a similar vein, a latency manager must minimize the upfront config-

uration and continuous maintenance burden incurred by system integrators. This is especially

true given that the baseline choice—the default CFS scheduler—requires no setup at all.

A system integrator usually has a high-level understanding of robot- and mission-specific

end-to-end latency requirements but cannot reasonably be expected to know low-level system

internals such as how the various ROS components interact precisely, how frequently they do

so, how many executors there are, how callbacks are scheduled by the ROS executors, or how

Linux’s real-time scheduling facilities work in detail.

To minimize the barrier to adoption, a practical latency manager should thus rely as much as

possible on dynamic introspection rather than on upfront configuration (or costly static analysis)

and favor configuration by means of declarative goals over mechanism-specific options.

81

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

(VI) Unpredictable environments. A dynamic, introspection-based approach is also ad-

visable due to the inherently uncertain and shifting resource needs in dynamic environments.

Furthermore, latency goals may change as mission profiles evolve and robots adapt their behavior,

which reinforces the need for a high-level, goal-oriented approach.

(VII) Nice-to-have payloads. Closely related to the prior point, it would be naı̈ve and

misguided to assume that a robot is actually equipped with sufficient compute resources to sustain

all software functions in all situations. To the contrary, especially in mobile robots subject to

space, weight, and power (SWaP) constraints, it is not uncommon to include “nice-to-have”

functionalities that should work “most of the time,” but which are not strictly essential and fully

expected to operate at a degraded level (or not at all) when conditions become challenging (e.g.,

mission- but not safety-critical payloads). A practical latency manager must be cognizant of such

intentional under-provisioning of non-critical functionalities.

(VIII) Unsurprising overload behavior. Conversely, it is not out of the ordinary for robots

to experience periods of transient overload. Such periods are the most challenging situations

for an automatic latency manager and necessitate hard choices, as not all latency goals can be

satisfied simultaneously. A practical latency manager must not devolve to erratic decision making

or otherwise unstable behavior under overload. Rather, it should avoid “surprises” by degrading

the latency of cause-effect chains predictably and gracefully.

(IX) Earn your keep. Last but not least, it is worth emphasizing that every processor cycle

spent on the latency manager is a cycle not spent on the workload, especially during periods

of overload. Since, pragmatically speaking, latency issues under CFS can often be attenuated

simply by making additional resources available, it is not a given that the presence of an active

latency manager is actually beneficial in terms of latency goal compliance. In other words, a

latency manager must yield sufficient benefits to compensate for the cost of running it in the first

place. Implementation efficiency and the runtimes of any employed analyses are hence crucial.

82

5.2. THE ROS-LLAMA APPROACH

5.2 The ROS-Llama Approach

Guided by the just-discussed observations and considerations, we designed the ROS Live latency

manager (ROS-Llama). ROS-Llama operates largely automatically and follows a purely declara-

tive configuration approach.

In terms of necessary setup, ROS-Llama requires a latency goal for each cause-effect chain

that the system integrator deems latency-sensitive (i.e., in need of active latency management),

and a degradation order among all latency-sensitive cause-effect chains, which is consulted in

case of transient overload.

Each latency-sensitive cause-effect chain is identified solely by its start- and endpoints. For

example, a user might specify that at most 200 ms may pass between the arrival of a new

measurement at the laser scanner callback and the completion of the callback registering the

detected obstacle in the map. It is ROS-Llama’s responsibility to determine how these callbacks

are connected, how frequently the chain is triggered, how much processor time each callback

requires, and ultimately how the involved threads must be scheduled to achieve the latency goal.

The degradation order allows system integrators to configure a policy for controlled degradation,

which is also defined in terms of processing chains. This addresses the dynamic-environment

requirement (Req. VI), the nice-to-have-payload requirement (Req. VII), and the the unsurprising-

overload-behavior requirement (Req. VIII). If ROS-Llama determines that it cannot guarantee

all latency goals simultaneously, it degrades some chains to best-effort mode. The provided

degradation policy determines the order in which ROS-Llama will provision chains. This

guarantees predictable behavior under overload and allows system integrators to ensure that

critical chains are never degraded to best-effort status in favor of lower-importance chains.

To realize the configured goals, ROS-Llama must solve two main problems. First, it needs to

extract a model of the running ROS system, including all topics, callbacks, executors, resource

needs, etc. Second, it needs to schedule all threads such that the configured latency goals are

satisfied to the extent possible and decide if any chains need to be degraded to best-effort mode.

ROS-Llama’s architecture mirrors this structure and consists of two components, each solving

83

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

Budgets
Periods

ROS System
Model Extractor

(Section 5.3)

Budget Manager
(Section 5.4) Timing Analysis

(Chapter 4)

Linux
SCHED_DEADLINE

Timing Model
(Chapter 3)

Trace Events

Figure 5.1: Overview of ROS-Llama. The model extractor derives a timing model of the ROS
system in a continuous manner and makes it available to the budget manager, which
provisions the executor threads based on a response-time analysis of each cause-effect
chain. Finally, the new budgets are enacted.

one of the problems: a model extractor and a budget manager (Fig. 5.1).

The model extractor (Section 5.3) receives a stream of trace events from the running ROS

threads and uses them to derive a timing model of the running system. To keep up with changing

environments (Req. VI), the model extractor continuously updates the model at runtime. Effec-

tively, the model extractor represents a dynamic ROS system as a series of static systems over

time.

Periodically, the budget manager (Section 5.4) takes a snapshot of this model and com-

putes a new set of scheduling parameters, mainly in the form of budgets and periods for the

SCHED DEADLINE scheduler. In our case study, we chose to recompute the budgets every six

seconds. To find these budgets, the budget manager relies on the response-time analysis defined

in Chapter 4 to predict the impact of the scheduling parameters onto the timing-critical chains.

This way, the budget manager always considers the worst case and anticipates adverse activation

sequences and task interactions before they even occur.

Once computed, the budgets are used to configure the Linux scheduler. Timing-critical ROS

executors are scheduled using the SCHED DEADLINE scheduler, some system threads use the

fixed-priority SCHED RR scheduler, and the remaining threads are scheduled with the default

CFS scheduler.

84

5.3. MODEL EXTRACTOR

5.3 Model Extractor

The model extractor derives a timing model of the running system by observing and measuring the

running ROS threads. The required information is provided by the ROS components themselves

through a tracing mechanism. Since ROS-Llama cannot rely on developers to instrument their

code due to the no-buy-in requirement (Req. IV), the tracing infrastructure is integrated into the

core ROS libraries. As a result, instrumenting an arbitrary (C++-based) ROS component takes

only a simple recompilation and no additional developer involvement.

When an instrumented ROS process initializes, it first establishes a communication channel

with a central model extractor daemon (Section 5.3.1). The channel allows an arbitrary number

of ROS threads to inform the model extractor about any events of interest.

This communication infrastructure is used by eleven ROS-Llama tracepoints in the ROS core

libraries (Section 5.3.2). Whenever one of the tracepoints is triggered, it emits a trace event

containing the name of the tracepoint, a timestamp, and additional tracepoint-specific parameters.

The trace events are then used by the model extractor to find relevant threads in the system,

to recognize which callbacks they serve, and to detect when callback instances start and end

(Section 5.3.3). This allows the model extractor to identify all nodes of the callback graph and to

associate each trace event with a callback instance.

Once a callback instance completes, its trace events are analyzed to derive the edges of the

callback graph as well as activation- and execution-time curves (Section 5.3.4). The result is a

complete timing model of the ROS system that grows increasingly accurate as more and more

trace events are integrated.

In a highly dynamic ROS system, however, relying too much on previous observations can

become a liability as initialization behavior or other non-representative circumstances may come

to dominate the timing model. To accommodate such systems, ROS-Llama applies two heuristics

that detect the end of the initialization phase and other phase changes in the system. Each phase

change allows ROS-Llama to discard measurements taken prior to the change (Section 5.3.5).

In cases where these heuristics do not suffice, ROS-Llama further provides a data aging

85

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

Tracing Interface

ROS Thread

ROS Thread

ROS Thread

Process

Process

Round-Robin
Arbitration

Model
Extractor

Timing
Model

Suspend Flag

Figure 5.2: The trace event communication infrastructure.

mechanism that automatically “ages out” old measurements. While it requires tuning by the

system integrator, it allows the measured timing model to automatically adapt to changing

circumstances based solely on changes in a callback’s execution time (Section 5.3.6).

5.3.1 Transmitting Trace Events

The communication channel between the ROS threads in the system and the central model ex-

tractor daemon needs to satisfy four requirements: first, it needs to support multiple concurrent

writers, which may join and leave over time. Second, it must be efficient enough to transmit

hundreds of messages per second and participant. Third, it must allow for non-blocking writes,

as ROS-Llama’s tracepoints may be triggered during latency-critical situations, where a block-

ing tracepoint would introduce additional latency into the system and violate the do-no-harm

requirement (Req. II). Fourth, it must support blocking reads since the model extractor cannot

anticipate the rate of event arrivals and needs to perform well for both high and low arrival rates.

ROS-Llama’s implementation of such a communication channel (Fig. 5.2) is based on the

Feather-Trace toolkit [17]. When a ROS process initializes, it registers with the model extractor

daemon through a Unix-domain socket and sets up a shared-memory interface. Both sides map a

fixed-size Feather-Trace ring buffer into their address space. In our experiments, the ring buffer

held 1024 fixed-size messages of 256 bytes each. If a process contains multiple ROS threads

86

5.3. MODEL EXTRACTOR

1 read_next_event() {
2 if (a ringbuffer is nonempty) {
3 data = read_from_next_ringbuffer_rr();
4 suspend_flag = 0;
5 return data; }
6 suspend_flag = 1;
7 // Check again, in case a writer raced with our flag change
8 if (a ringbuffer is nonempty) {
9 data = read_from_next_ringbuffer_rr();

10 suspend_flag = 0;
11 return data; }
12 wait_until_unequal(suspend_flag, 1);} // uses the futex syscall
13

14 write_event() {
15 if (buffer_full) {
16 suspend_flag = 0;
17 return fail; }
18 write_event_into_ringbuffer();
19 suspend_flag = 0;
20 return success; }

Listing 5.3: Suspension protocol added to the Feather-Trace implementation.

(e.g., multiple independent executors), those threads share the same ring buffer. Additionally, all

participants—the daemon and all ROS processes in the system—map a shared suspension flag

into their address space to allow for blocking reads by the daemon.

To multiplex between the ROS processes, the extractor daemon cycles through the ring buffers

in a round-robin fashion. Empty buffers are skipped in this process. If all buffers are empty, the

reader suspends until new data becomes available.

Once the reader suspends, it needs to be woken up by one of the writers once new messages

are available. This is where the shared suspension flag comes into play. The flag consists of an

integer stating whether the reader should be sleeping (= 1) or awake (= 0). Writers reset the flag

upon each write; the reader sets the flag to 1 when it suspends.

The full protocol is defined in Listing 5.3. The reader sets the flag to 0 upon a successful read

and to 1 if it finds all buffers empty and intends to suspend (Line 6). To avoid race conditions,

the reader checks the buffers a second time before actually suspending; this ensures that no

writer added a message between the previous check and the setting of the suspend flag. If the

87

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

second check also comes up empty, the reader suspends using the futex-wait operation [51], which

suspends the calling thread until the given memory location deviates from the given reference

value (Line 12). Writers clear the flag upon each completed write, no matter whether the write

succeeded (Line 19) or not (Line 16). The reader thus wakes up when the next message arrives.

To sum up, the described implementation provides a multi-writer, single-reader communication

channel. The instrumented ROS threads use this channel to inform ROS-Llama whenever a

tracepoint is triggered.

5.3.2 Tracepoints

ROS-Llama introduces eleven tracepoints into the ROS core libraries rclcpp and rcl (Fig. 5.4).

The first four tracepoints monitor the ROS executor implementation and report when a callback

is registered, invoked, or completed. Tracepoints 5 and 6 monitor the communication layer to

report when a callback publishes to a topic or sends a service request. Tracepoints 7–9 report

uses of the rate API, which is commonly used to implement periodic activations. A thread using

the rate API is represented as an event source in the callback graph (cf. Section 3.2.3). Finally,

tracepoints 10 and 11 warn ROS-Llama about the use of certain executor functions that are not

supported by the ROS timing model. These tracepoints allow ROS-Llama to detect threads that it

cannot predict reliably and prevents it from provisioning such threads based on false premises.

Whenever the control flow passes a tracepoint, a short trace event—containing the tracepoint

ID, the thread ID of the triggering thread, a timestamp in wall-clock time, a timestamp in CPU-

clock time, and a few tracepoint-specific parameters—is transmitted to a model extractor daemon.

The extractor daemon collects and evaluates the incoming trace data and transforms the stream of

events into a single coherent timing model.

5.3.3 Recognizing Callback Instances

The next stage of the model extractor turns the unstructured stream of trace events into a sequence

of callback instances. To this end, the extractor needs to identify the threads in the system,

88

5.3. MODEL EXTRACTOR

Table 5.4: List of tracepoints in rcl and rclcpp. See Appendix A for details on their location.

Tracepoint Description

1 register-callback A callback is registered with a node.
2 start-callback A callback starts running.
3 end-callback A callback completes.
4 executor-spin An executor thread starts processing callbacks (“spins”).
5 publish A thread publishes to a topic.
6 send-request A thread sends a request to a service.
7 rate::sleep A thread suspends using a rate object.
8 rate::wakeup A thread wakes up after a rate-based suspension.
9 rate::stop A rate object is destroyed.

10 limited-spin An executor thread spins for limited time.
11 spin-until-future-complete Executor thread spins until a future resolves.

recognize which callbacks they serve, and identify when the callback instances begin and end.

A crucial part of this process is to identify the type of each thread. The model extractor

distinguishes four types of threads. The first type is the executor thread, a thread that runs a ROS

executor. The next two types are event source threads, i.e., threads that do not run a ROS executor

but still can be represented in the timing model as an event source callback. Following the two

event-source types described in Section 3.2.3, we distinguish periodic event source threads, which

use the rate mechanism to run periodic workloads and data-driven event source threads, which

use an unobserved mechanism like file-system operations to suspend. Finally, threads may be

unclassifiable, i.e., not representable in the model. To ROS-Llama, such threads are unpredictable

and are monitored to ensure that they do not interact with any timing-sensitive components.

Each type of thread requires a different mechanism to identify callbacks and instance bound-

aries. For each type of thread, ROS-Llama needs separate rules on (a) how to detect that a thread

is of that type, (b) how to identify which callbacks the thread serves and what their relative

priority is, and (c) how to recognize when an instance begins and ends.

In the following, we discuss each type of thread in detail and derive the required rules. We then

discuss how threads can change their classification over time and conclude with a brief discussion

on the limitations and assumptions of the data-driven event source classification.

89

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

1 main() {
2 node1->create_subscription("/topic", subCallback);
3 node2->create_wall_timer(10ms, timerCallback);
4 executor.add_node(node2);
5 executor.add_node(node1);
6 /* end of initialization, begin main loop */
7 executor.spin();
8 }
9

10 subCallback(message) {
11 next_message = process(message)
12 publish("/other-topic", next_message);
13 }
14

15 timerCallback() {
16 ...
17 }

Listing 5.5: Definition of a subscription and a timer callback using the ROS callback API.

register-callback(subscription, node1, /topic, 0x1234)
register-callback(timer, node2, 10ms, 0x1235)

executor-spin([0x1235, 0x1234])

start-callback(0x1234)
publish(/other-topic)
end-callback(0x1234)

Listing 5.6: The trace events emitted by the example in Listing 5.5.

5.3.3.1 Executor Threads

Executor threads explicitly interact with the ROS callback API and are therefore the easiest type

to identify.

Example. Consider the two-callback executor setup in Listing 5.5. The thread first creates two

callbacks (Lines 2 and 3) as part of the two nodes node1 and node2. It then adds both nodes to

the executor executor (Lines 4 and 5) and begins the callback processing loop (Line 7). From

this point on, the thread waits for activations of the two callbacks and runs the corresponding

callbacks as described in Chapter 3.

90

5.3. MODEL EXTRACTOR

To ROS-Llama, the example would appear as the sequence of events in Listing 5.6. The first

two trace events are emitted by Lines 2 and 3. Each register-callback trace event comes with four

parameters: first, the callback type (subscription and timer, respectively); second, the name of the

callback’s node; third, the activation condition, either in the form of a period (timers) or in the

form of an activating topic (message-driven callbacks); and fourth, an identifier, which is used

to refer to the callback from other tracepoints and is derived from the memory address of the

callback in the emitting thread’s address space.

The next trace event, executor-spin, is emitted when the thread begins its callback processing

loop (Line 7). The trace event carries one parameter, a list of callbacks served by this executor in

priority order.1

At this point, the thread starts to process callbacks. When a callback is activated, the executor

implementation emits the start-callback event and runs the callback. The argument identifies

the started callback (here: 0x1234) as the subscription callback registered in line Line 2. As the

callback runs, it publishes to /other-topic (Line 12), which results in a publish trace event.

Finally, the callback completes, causing the executor implementation to emit the end-callback

event.

The example motivates the following general rules for identifying executor threads, their

callbacks, and the boundaries between instances.

Identifying the type. The type of an executor thread can be uniquely identified by the

executor-spin trace event. Since the spin function does not return until the program terminates,

observing an executor-spin guarantees that the thread remains an executor forever. It further

guarantees that the thread exclusively runs the callback scheduler described in Section 3.1.1, as

required by the timing model.

1Technically, it contains the list of nodes registered with the executor and leaves it to ROS-Llama to remember in
which order the callbacks were registered with their nodes. This technical detail is omitted for simplicity.

91

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

1 function() {
2 rclcpp::Rate loop_rate(125ms);
3 while (condition) {
4 data = compute();
5 some_topic->publish(data);
6 loop_rate.sleep()
7 }
8 }

Listing 5.7: Example of a periodic event source.

Identifying the callbacks. The callbacks served by the thread are identified by the arguments

of the executor-spin trace event, which also reports their relative priority. Other callback properties,

for example the callback type and the activation criterion, are specified as part of the earlier

register-callback trace event.

Identifying callback boundaries. Callback instances are delineated by explicit start-

callback and end-callback trace events, which also identify which callback the instance belongs

to.

5.3.3.2 Periodic Event Source Threads

Periodic event sources are slightly harder to recognize, as the event source callback does not use

the ROS callback API and thus does not explicitly register in advance. However, tracepoints

in the rate API still allow ROS-Llama to detect instance boundaries, as the following example

demonstrates.

Example. Consider the periodic event source in Listing 5.7. To recall from Section 3.2.3, the

rate object is initialized with a period, in this example 125 ms (Line 2). Each invocation of the

sleep function (Line 6) then suspends until the beginning of the next 125 ms-period.

To ROS-Llama, the example would appear as the sequence of events in Listing 5.8. As the

periodic event source enters the first iteration of its loop, it first triggers the publish tracepoint

(Line 5). It then reaches the end of the loop where it suspends until the next period, emitting the

92

5.3. MODEL EXTRACTOR

publish(/some_topic)
rate::sleep(125ms)
rate::wakeup()
publish(/some_topic)
rate::sleep(125ms)
rate::wakeup()
...
rate::stop()

Listing 5.8: The trace events emitted by the periodic event source in Listing 5.7.

rate::sleep event in the process (Line 6). At the beginning of the next period, the sleep function

returns and the rate::wakeup event is emitted.

The periodic cycle continues until the condition in Line 3 evaluates to false and the control

flow leaves the function. When the rate object goes out of scope, the rate::stop event is emitted

to mark the end of the loop.

As in the case of executors, the observations in the example allow us to derive general rules:

Identifying the type. The type of an executor thread can be uniquely identified by the

rate::sleep trace event. However, unlike in executor threads, the component developer retains full

control over the control flow and may terminate the periodic loop at any point. In that case, the

rate::stop event informs ROS-Llama that the thread should no longer be considered a periodic

event source.

Identifying the callbacks. An event source thread serves only its event source callback.

Identifying callback boundaries. Callback instances are delineated by explicit rate::wakeup

and rate::sleep trace events, which identify when an instance of the single callback starts and

stops. An instance also ends when the rate::stop event is emitted, which signals that the periodic

loop has ended.

93

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

1 function() {
2 while (condition) {
3 input = read(device_file);
4 data = compute(input);
5 some_topic->publish(data);
6 } }

Listing 5.9: Example of a data-driven event source.

A minor limitation of the thread identification approach is that the first iteration of the loop is

lost. Since the thread is only identified as a periodic event source thread at the first rate::sleep

event (Line 6), the first iteration of the loop—which precedes the sleep event—cannot be measured.

However, losing a single iteration of the loop is unlikely to matter in the long run.

An alternative approach, that does not suffer from this limitation, would be to instrument the

creation of the rclcpp::Rate object (Line 2) instead. However, this runs the risk of including

initialization code that runs after the creation of the rate object but before the start of the periodic

loop into the measurement. We consider the loss of the first iteration an acceptable price to pay if

it prevents initialization workloads from being integrated into the execution-time curve or other

callback properties.

5.3.3.3 Data-Driven Event Source Threads

Data-driven event sources are the hardest type to recognize. Activations and suspensions of

the data-driven event sources do not involve the ROS API and do not emit trace events. As the

following example demonstrates, ROS-Llama therefore needs to rely on heuristics to approximate

instance boundaries.

Example. Consider the data-driven event source in Listing 5.9. The program follows the

typical structure of a device driver thread. The thread waits for some input from the device file

(Line 3), processes the incoming data, and forwards the processed data to a ROS topic (Line 5).

To ROS-Llama, the example would appear as the sequence of events in Listing 5.10. Since

the thread does not interact with the ROS API except for its publications, the model extractor

94

5.3. MODEL EXTRACTOR

publish(/some_topic)
publish(/some_topic)
publish(/some_topic)
...

Listing 5.10: The trace events emitted by the data-driven event source in Listing 5.9.

only observes executions of Line 5. As a consequence, the general rules rely exclusively on the

publish trace event to identify instance boundaries.

Identifying the type. The type of a data-driven event source is determined by elimination:

any thread that emits publish events while being neither an executor nor a periodic event source

is assumed to be a data-driven event source.

Identifying the callbacks. An event source thread serves only its event source callback.

Identifying callback boundaries. From ROS-Llama’s point of view, a data-driven event

source thread emits only publish events. ROS-Llama therefore does not receive any information

on the activation or completion of the instance.

To capture the behavior of data-driven event source threads despite those limitations, ROS-

Llama assumes that each instance completes shortly after the publication. Since data-driven event

sources usually serve as a bridge between an external source and a ROS topic, it is reasonable to

assume that an instance has fulfilled its purpose after publication. The publish event is therefore

treated as the end of an instance and the beginning of the next one.

While this heuristic gives a good estimate of the execution time requirements of the event

source, it does not necessarily capture the activation pattern well. Consider, for example, an event

source that is triggered every 200 ms. Assume that this event source’s first instance completes

after 10 ms while the second instance completes after 150 ms. Then ROS-Llama receives publish

events at time t=10 ms and at time t=350 ms, inferring an inter-arrival time of 340 ms. If the

two instances were swapped, ROS-Llama would receive publish events at time t=150 ms and

95

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

t=210 ms, respectively, and would infer an inter-arrival time of 60 ms. The measurements are

distorted by the event source’s response-time jitter.

Given enough time, such measurement errors lead ROS-Llama to underestimate the true inter-

arrival time since ROS-Llama remembers only the minimal inter-arrival times. In the example

above, ROS-Llama remembers the 60 ms measurement and forgets about the 340 ms measurement,

thereby underestimating the true inter-arrival time by 140 ms. If the data-driven event source

is triggered periodically (like the laser-scanner driver in the evaluation platform in Chapter 6),

the measurement error thus reduces precision but does not compromise the correctness of the

predictions.

Overall, the case of data-driven event sources illustrates that there are limits to the degree of

automation that can be realistically attained. In cases where our heuristic does not suffice, the

developer or system integrator needs to compromise on automation and assist ROS-Llama by

manually adding tracepoints. Such semi-automatic modes of operation would be an interesting

area of future work. In this dissertation, we simply rely on the heuristic presented above, which

works well for the periodically-triggered sensor driver in the evaluation robot.

5.3.3.4 Unclassifiable Threads

Finally, ROS systems may contain threads that cannot be classified as any of the three categories

above. A thread that uses the spin until future complete function, for example, temporarily

behaves as an executor thread until an unrelated blocking operation completes. This operation

cannot be represented in our timing model. If ROS-Llama detects such unsupported behavior, it

classifies the thread as an unclassifiable thread. ROS-Llama still records the publications and

service requests for each unclassifiable thread but does not attempt to extract an execution-time

curve.

The unclassifiable thread is added to the ROS callback graph as a set of opaque senders, one per

topic. Opaque senders have no defined semantics in the timing model; to the analysis, they simply

serve as markers that the callbacks subscribing to these topics and handling these services receive

96

5.3. MODEL EXTRACTOR

unknown

data-driven
event source

periodic
event source

executor

unclassifiable

rate::sleep

publish

rate::stop

rate::sleep

executor-spin

executor-spin

ex
ec

ut
or

-s
pi

n

rate::sleep
suspension events

suspension
events

suspension events

suspension
events

Figure 5.11: Possible transitions between thread types.

requests from an unclassifiable source. This allows ROS-Llama to check that no timing-critical

callback is affected by an unclassifiable thread.

5.3.3.5 Thread Type Transitions

The thread type detection rules leave the question of what happens if a thread triggers the

tracepoint associated with more than one thread type. How is a thread classified that, for example,

first emits a publish event (indicating a data-driven event source) and then invokes an executor-

spin event? To resolve such conflicts, ROS-Llama defines a set of possible transitions between

thread types (Fig. 5.11) that list the ways in which threads can be reclassified over time.

Each thread starts in the unknown state. When ROS-Llama receives the publish, rate::sleep, or

executor-spin event, the thread is reclassified as described in the thread identification rules.

Any thread, independent of its classification, is reclassified as an executor thread if it emits the

executor-spin event. Since the executor implementation takes over the control flow from the code

calling the spin function, any observed behavior prior to the executor-spin event is unlikely to

correctly reflect the thread type.

Similarly, any thread is regarded as unclassifiable if it emits one of the unsupported events

(limited-spin and spin-until-future-complete). An executor thread is also regarded as unclassifiable

if it emits a rate::sleep, as this indicates a suspension within a ROS callback. Once marked

97

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

unclassifiable, a thread can only leave the state through the executor-spin event, which, again,

takes over the control flow of the thread and is therefore strong evidence for a fundamental change

in behavior.

A thread in the data-driven state can be reclassified as a periodic event source if the extractor

observes the rate::sleep event. This commonly happens during initialization, for example if a

thread publishes to a topic during setup before it enters a rate-based periodic loop.

A thread in the periodic event source state is reclassified as unknown if it emits the rate::stop

event, which indicates that the C++ destructor of the rate object has been invoked, i.e., that the

rate object has gone out of scope. This happens, for example, if the rate object was used as an

improvised timeout device during initialization.

5.3.4 Measuring Callback Properties

With the trace stream separated into callback instances, the model extractor can now measure

the required properties of these callback instances. Specifically, three such properties are needed

for the model: the successors in the callback graph, the execution-time curve, and the activation

curve.

5.3.4.1 Identifying Graph Successors

For each callback ci, the model extractor records all topics ci ever published to. When the budget

manager requests a new snapshot, the model extractor creates an edge from ci to any callback

cj subscribing to one of these topics. Each such edge is created with a full trigger set, i.e.,

tris i,j = succ(j). An exception is made for self-activations, which we discuss below.

The model extractor further records all service requests ci makes and, for each request, records

the associated client callback cc. The model extractor then creates an edge from ci to the service

handler cs and a return edge (cs, cc). The trigger set of (ci, cs) is set to (succ(cs) \ Cclt) ∪ {cc},

i.e., all successors of cs except for clients related to other service requests. The return edge (cs, cc)

receives the full trigger set, just like a publication.

98

5.3. MODEL EXTRACTOR

The model extractor chooses a more narrow trigger set if a callback publishes to a topic that it

has itself subscribed to. Although it may seem like such a self-activation serves no purpose, they

do occur in practice, for example in the self-localization component amcl of the ROS navigation

stack.

In short, this component publishes the robot’s estimated position through the widely used

TF coordinate transform library [42], a core ROS library for managing the various coordinate

transformations encountered in robotics applications. However, amcl computes these position

estimates from odometry updates, which are also distributed by TF. The amcl component hence

both subscribes and publishes to the /tf topic. Why does this not trigger an infinite loop? The

answer lies in the content of the messages published on the /tf topic: amcl’s position update is

triggered only by messages updating the odometry coordinate frame. Translations involving any

other coordinate frames, like the position update published by amcl itself, are ignored and can

therefore not trigger a cycle.

In conclusion, while there is no point in intentionally triggering ci from itself, it may well

happen that ci triggers itself as a side effect of triggering other subscribers of the same topic.

To handle such cases, ROS-Llama assumes that no callback intends to activate itself with a

publication and that the developer prevents the apparent self-activation through some other means

(e.g., based on the content of the message like in the TF case). It therefore associates any self-loop

in the graph with an empty trigger set (i.e., tris i,i = ∅).

5.3.4.2 Measuring the Execution-Time Curve

The execution time of the callback is given by the processor time consumed by the thread between

the beginning and the end of a callback instance. To measure the elapsed time, each trace event

contains a timestamp derived from the thread’s CPU-time clock. Linux provides a separate CPU-

time clock for each thread (called CLOCK THREAD CPUTIME ID). The clock advances

only while the thread actively runs on the processor and is paused when the thread is descheduled

from the processor, for example if it is preempted by a higher-priority thread. Deriving the

99

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

Algorithm 1: The execution-time curve update rule.
Input: t: new execution time measurement
Data: W [(−L+ 1) . . . 0]: sliding window of the last L execution times

ET ∗[1 . . . n]: current execution-time curve prefix
Result: t is integrated into W and ET ∗

// Shift the window left and add t
1 W [−len(W) . . .− 1]←W [−len(W) + 1 . . . 0]
2 W [0]← t
// Update the execution-time curve prefix

3 for n from 0 to len(W) do
4 ET ∗[n]← max(ET ∗[n],

∑0
i=n−1W [i])

// Shrink the window back to length L
5 if len(W) > L then discard(W [−L])

execution time measurement from the CPU-time clock thus measures only the raw execution

time and is not distorted by scheduling interference or thread suspensions.

Each instance of a callback contributes one execution-time measurement. The model extractor

aggregates those execution-time measurements over time into a single execution-time curve prefix

ET ∗, as shown in Algorithm 1.

The algorithm considers a sliding window of the last L instances’ execution time (called W).

Each new execution-time measurement t is first added to the window (lines 1–2). Then for each

n, the existing bound is raised if it failed to bound the cumulative execution time of the last n

instances (lines 3–4). Finally, the sliding window is truncated back to L elements again (line 5).

Since the update procedure is applied for each new execution-time measurement, the resulting

execution-time curve upper-bounds the cumulative execution time of all observed n-element

sequences. The value of L compromises between accuracy and overhead: larger values of L

reduce the amount of (pessimistic) extrapolation but are more costly to update and vice versa. In

our experience, L = 64 is long enough to analyze most callbacks without extrapolation but short

enough that curve updates have a reasonable cost.

Execution-time bounds for sequences longer than L are extrapolated from the L-element prefix

using the super-additivity property of execution-time curves. Recall from Section 3.2.4 that

the super-additivity property states that, for any two integers m and n, ETi(m) + ETi(n) ≥

100

5.3. MODEL EXTRACTOR

ETi(m+ n). Using this property, the prefix is extrapolated as follows:

Definition 9. Let ET ∗ denote the measured execution-time curve prefix. The execution-time

curve is then extrapolated as

ET(n) ,


ET ∗[n] n ≤ L

min{ET(n− a) + ET(a) | a ∈ [1, n− 1]} otherwise

The correctness of the extrapolation is shown in the following lemma:

Lemma 23. Let ET ∗ : [0, L] 7→ N be an arbitrary super-additive function. Let ET(n) be

derived from ET ∗ as described in Definition 9. Then ET(n) is super-additive and a (pointwise)

upper bound for any execution-time curve with prefix ET ∗.

Proof. We first show that ET(n) is super-additive by construction. For n ≤ L, this follows

directly from ET ∗’s super-additivity. For n > L, ET(n) is super-additive by definition: for any

set S, minS is less or equal to any member of S. Therefore, min{ET(n − a) + ET(a) | a ∈

[1, n− 1]} is guaranteed to be less or equal to ET(n− a) + ET(a) for all a ∈ [1, n− 1].

We then show that ET(n) upper-bounds any execution-time curve with prefix ET ∗. Let f be

an arbitrary super-additive function with prefix ET ∗. For any n ≤ L, ET(n) is equal to ET ∗(n)

and thus a trivial upper bound for f(n) = ET ∗(n).

Starting from this base case, the remaining n > L are proven by (complete) induction on n:

we show that the induction hypothesis (∀n′ < n. ET(n′) ≥ f(n′)) implies ET(n) ≥ f(n).

ET(n) = min{ET(n− a) + ET(a) | a ∈ [1, n− 1]}

≥ min{f(n− a) + f(a) | a ∈ [1, n− 1]} (induction hypothesis)

≥ min{f(n) | a ∈ [1, n− 1]} (f super-additive)

= f(n)

The recursive extrapolation rule can be efficiently implemented through dynamic programming,

101

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

Timet1 tm tm+n−1

m activations n activations

n+m-1 activations

Figure 5.12: Argument offset in δmin curves.

i.e., by memoizing the values of ET(n− a) and ET(a) during the recursive evaluation.

The execution-time curve measurement mechanism is also used to measure the executor’s

overhead curve. An overhead measurement consists of the CPU clock difference between two

callback instances, i.e., between the end of one and the beginning of the subsequent instance. Each

such measurement is integrated into an overhead-curve prefix for the executor using Algorithm 1,

which is further extrapolated using the super-additivity property if needed.

5.3.4.3 Measuring the Activation Curve

Timers and periodic event sources report their period as part of the register-callback and

rate::sleep trace events, respectively. For these callbacks the activation curve is trivially derived

as η(∆) = d∆/periode. For other callbacks, namely data-driven event sources, the activation curve

needs to be measured from the observed inter-arrival time between callback instances.

The inter-arrival time between two instances is measured using a secondary timestamp carried

by each event. The secondary timestamp is taken from the monotonic wall-time clock (called

CLOCK MONOTONIC in Linux) at the time the event was emitted. The monotonic wall-time

clock counts the wall-clock time elapsed since an unspecified time in the past, usually system

startup. Unlike the CPU-time clock, the wall-time keeps advancing while the thread is suspended.

Like with execution-time curves, an incremental update procedure aggregates the individual

measurements into a single activation curve. Instead of directly measuring this activation curve

η(∆), the tracer records η(∆)’s pseudo-inverse, the minimum inter-arrival curve δmin(n) [101].

δmin(n) maps a number of instances n to the first duration ∆ where η(∆) ≥ n. It thus contains

102

5.3. MODEL EXTRACTOR

Algorithm 2: The activation-curve update rule.
Input: t: new activation time
Data: W [(−L+ 1) . . . 0]: sliding window of the last L activation times

δmin
∗
[1 . . . n]: current execution-time curve prefix

Result: t is integrated into W and δmin
∗

// Shift the window left and add t
1 W [−len(W) . . .− 1]←W [−len(W) + 1 . . . 0]
2 W [0]← t
// Update the curve prefix

3 for n from 0 to len(W) do
4 δmin

∗
[n]← min(δmin

∗
[n],W [0]−W [−n+ 1]

// Shrink the window back to length L
5 if len(W) > L then discard(W [−L])

the same information as η(∆), but allows for a more compact representation and makes it easier

to see the similarities to the execution-time curve measurements.

The minimum inter-arrival-time curve is quasi-sub-additive in the sense that δmin(m) +

δmin(n) ≤ δmin(m+n− 1). The quasi-sub-additivity property allows ROS-Llama to extrapolate

δmin(n) for n > L from the L-element prefix. The reason for the offset of −1 is depicted in

Fig. 5.12: when the inter-arrival time of m+ n− 1 instances is split into the inter-arrival time of

the first m instances and the inter-arrival time of the last n instances, one activation (tm) is part

of both sequences.

Like in the case of the execution-time curve, the extractor maintains a sliding window of the

last L=64 activations of ci and derives a prefix of the activation curve (Algorithm 2).

The algorithm considers a sliding window of the last L activations (called W). Each new

activation time t is first added to the window (lines 1–2). Then for each n, the existing inter-arrival

time bound is lowered if it failed to bound the inter-arrival time of the last n instances (lines 3–4).

Finally, the sliding window is truncated back to L elements again (line 5).

The resulting activation-curve prefix is then extrapolated as follows:

Definition 10. Let δmin
∗

denote the measured activation-curve prefix. The minimum inter-arrival-

103

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

time curve is then extrapolated as

δmin(n) ,


δmin

∗
(n) n ≤ L

max(δmin(n− a+ 1) + δmin(a) | a ∈ [2, n− 1]) otherwise

The correctness of the extrapolation is proven by the following lemma:

Lemma 24. Let δmin
∗

: [1, L] 7→ N be an arbitrary quasi-sub-additive function. Let δmin(n) be

extrapolated from δmin
∗

as described in Definition 10. Then δmin is quasi-sub-additive and a

(pointwise) lower bound for any activation curve with prefix δmin
∗
.

Proof. The argument is analogous to Lemma 23.

We first show that δmin(n) is quasi-sub-additive by construction. For n ≤ L, this follows

directly from δmin
∗
’s quasi-sub-additivity. For n > L, δmin(n) is quasi-sub-additive by definition:

for any set S, maxS is greater or equal to any member of S. Therefore, max({δmin(n − a +

1) + δmin(a) | a ∈ [2, n− 1]}) is guaranteed to be greater or equal to δmin(n− a+ 1) + δmin(a)

for all a ∈ [2, n− 1].

We then show that δmin(n) lower-bounds any activation curve with prefix δmin
∗

Let f be an

arbitrary quasi-sub-additive function with prefix δmin
∗
. For any n ≤ L, δmin(n) is equal to

δmin
∗
(n) and thus a trivial lower bound for f(n) = δmin

∗
(n).

Starting from this base case, the remaining n > L are proven by (complete) induction on n:

we show that the induction hypothesis (∀n′ < n. δmin(n′) ≤ f(n′)) implies δmin(n) ≤ f(n).

δmin(n) = max{δmin(n− a+ 1) + δmin(a) | a ∈ [2, n− 1]}

≤ max{f(n− a+ 1) + f(a) | a ∈ [2, n− 1]} (induction hypothesis)

≤ max{f(n) | a ∈ [2, n− 1]} (f quasi-sub-additive)

= f(n)

Like for execution-time curves, the recursive evaluation rule can be computed efficiently

through dynamic programming.

104

5.3. MODEL EXTRACTOR

Naively applying the above update rule might yield pessimistic results for rarely-occurring

events. Consider an event source that activates five minutes after startup and again one millisecond

later. Extrapolating from just these two cases, the activation curve would predict a new activation

every millisecond, which is unacceptably pessimistic. The fact that it took five minutes until the

first event occurred needs to be incorporated into the activation curve.

ROS-Llama therefore counts the system startup as a zeroth event (i.e., the startup time appears

as t0 in the update rule). In the example above, the activation curve would state that the inter-

arrival time for two events is one millisecond, but the inter-arrival time for three events is 5

minutes + 1 millisecond. This prevents overly pessimistic extrapolation of the arrival curve for

rare events (e.g., interactive commands) and during the initial time window until L events have

been observed. If the event source actually activates frequently, t0 is quickly shifted out of the

sliding window, at which point it no longer affects the result.

To sum up, the model extractor extracts graph edges, execution-time curves, and activation

curves by aggregating measurements over time. It monitors the resulting timing model, which

grows more pessimistic over time as necessary.

While this approach is sufficient for a static system, it can be too pessimistic in a dynamic

system where threads transition through different phases. In the following, we discuss how to

strategically discard existing measurements in this situation.

5.3.5 Detecting Initialization Phases

ROS-Llama’s timing model describes a static system. This keeps the model simple enough to

perform response-time analysis but fails to account for transient states in the system, for example

initialization phases or transitions between different steady states. We call such a change in

the internal state of the thread a phase change, as the thread enters a new phase of its lifecycle.

Measurements taken before a phase change are rarely indicative of behavior after the phase

change and may lead to excessive pessimism.

ROS-Llama attempts to discover phase changes through a set of heuristics. If any of these

105

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

heuristics detects a phase change, ROS-Llama purges the sliding windows, resets the activation-

and execution-time curve estimates to the initial state, and discards all outgoing edges of the

callback. Effectively, all callbacks of the node are reset to their initial state.

In the following, we discuss the two heuristics proposed in this dissertation: the initialization-

topic heuristic and the thread-type-change heuristic.

5.3.5.1 Initialization-Topic Heuristic

As discussed in Section 2.1, ROS comes with standardized interfaces for parameter and lifecycle

management. If ROS-Llama observes activity on the topics and services associated with these

interfaces, it can reasonably assume that the node just underwent a phase change At this point,

past measurements are therefore unlikely to predict future activity.

Specifically, ROS-Llama monitors one topic and one set of services. First, ROS-Llama monitors

the /parameter events topic. The parameter system uses this topic to inform the system

about any changes to the configuration parameters. Any node that publishes to this topic has

recently changed its internal configuration and is therefore assumed to still be initializing.

ROS-Llama further monitors the change state service of the lifecycle management library,

which is offered by every node using the lifecycle mechanism. A request to this service commands

the node to transition between lifecycle states, for example from the inactive state to the active

state. If a node receives such a request, it just entered a new phase in its lifecycle and thus likely

underwent a phase change.

5.3.5.2 Thread-Type-Change Heuristic

The second heuristic monitors changes in the thread type. If, for example, a periodic event source

thread suddenly emits an executor-spin event, it is clear that the behavior of the thread changed

fundamentally. ROS-Llama therefore interprets each thread type change as indicative of a phase

change.

However, there is one scenario where thread type changes do not necessarily indicate a phase

106

5.3. MODEL EXTRACTOR

1 while (true) {
2 wait_for_command();
3 {
4 rclcpp::Rate loop_rate(125ms);
5 while (!arrived) {
6 cmd = compute_vel_cmd();
7 cmd_vel->publish(cmd);
8 loop_rate.sleep()
9 } }

10 cmd_vel->publish(stop_cmd); }

Listing 5.13: The dwb controller (simplified).

change. Consider, for example, the dwb controller node in the ROS navigation stack (see

Listing 5.13 for a simplified representation). The controller waits for navigation commands.

Whenever it receives a command, it enters a rate-based loop. Once the goal is reached, it leaves

the loop again, publishes a stop command to the engine, and waits for the next command.

Over time, this thread oscillates between three thread types. It is classified as a periodic

event source while the robot moves. When the rate loop ends it is reclassified as unknown until

it publishes the stop command and is classified as a data-driven event source. If ROS-Llama

interpreted each transition as a phase transition, the thread would oscillate between the three states

and ROS-Llama would repeatedly discard everything it learned about the involved callbacks.

To avoid this oscillating behavior, ROS-Llama can be configured to classify any such oscillating

thread functions as a periodic event source. In this case, ROS-Llama disables the transition from

the periodic event source state to the unknown state after it has been taken once. Once a thread

enters the periodic event source state for the second time, the rate::stop event no longer induces a

state transition but simply marks the end of the periodic callback instance.

The oscillation suppression mechanism is motivated by the behavior of the dwb controller and

is enabled in our evaluation setup. However, it is not obvious whether this is the right choice

for all workloads. Extending the timing model to represent such oscillating workloads remains

future work.

107

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

5.3.6 Data Aging

Even outside of initialization phases, it is often useful to deliberately disregard earlier measure-

ments. As discussed in the dynamic-environment requirement (Req. VI), ROS-Llama should

adapt to changing demands in execution-time: if an object-tracking component tracks fewer

objects now than it did in the past, it should also receive a lower budget than it did in the past.

More generally speaking, ROS-Llama needs a way to adjust model parameters towards smaller

execution-time bounds and needs to avoid budgeting for past measurements that no longer reflect

the current workload.

Unfortunately, such an adaptation risks unsafe execution-time bounds. Adapting the system to

a low-processor-demand environment involves choosing a budget that ROS-Llama knows to be

insufficient in a previously observed environment. With the information available to ROS-Llama,

any adaptation to reduce demand runs the risk of causing a latency goal violation if demand

suddenly picks up again.

The appropriate trade-off between adaptivity and safety heavily depends on the use case in

question and requires a value judgment by the system integrator. A comprehensive solution for

the problem would need to explore this trade-off across different case studies, which is out of

the scope of this dissertation. However, as a first step towards a more comprehensive solution,

ROS-Llama compromises on the ease-of-adoption requirement (Req. V) and provides a generic

solution that exposes explicit tuning knobs to the user. The solution consists of an extension to

the execution-time curve measuring process, which we call data aging.

The principal goal of data aging is to reduce a callback’s execution-time bounds if the measured

execution times remain significantly below the bound for extended periods of time. A previously

observed high-load situation would thus be “aged out” after the robot spends enough time in a

low-demand setting. An execution-time demand increase, on the other hand, should raise the

execution-time bound immediately. The execution-time curve thus slowly adapts downwards but

immediately adapts upwards.

108

5.3. MODEL EXTRACTOR

The aging mechanism. If data aging is enabled, ROS-Llama tracks the recent processor

demand of each callback ci through a separate short-term execution-time curve ET s
i (n). The

curve is updated and maintained like the regular execution-time curve but is reset periodically.

The short-term curve thus provides an upper bound on the execution-time demand during the

recent past.

The updating mechanism is controlled by four parameters: the merging period T ∈ N≥L, which

determines how frequently the short-term curve is reset, the merging weight α ∈ [0, 1], which

determines how much weight recent measurements should have compared to older measurements,

the trigger threshold G ∈ [0, 1], which determines which ratio between observed execution

time and execution-time bound is considered “significant overestimation”, and the safety margin

S ∈ R, which increases the execution-time bound by a fixed percentage for improved protection

against underestimation.

If the ratio ET s
i (1)/ETi (1) is below G, i.e., if the maximum processor demand of a single

activation during the last interval was significantly lower than indicated by the execution-time

curve, the short-term curve is merged into the regular execution-time curve. The merging process

adjusts ETi(n) downwards by setting it to a point between the previous value of ETi(n) and the

short-term bound ET s
i (n).

The merging process follows the well-known exponentially-weighted moving average (EWMA)

algorithm. The EWMA at time t of a sequence (a0, a1, . . .) is defined as

EWMAt =


a0 t = 0

α · at + (1− α) · EWMAt−1 otherwise

The merging weight α determines how quickly older values are discounted. High values of α

discount older values more rapidly, which makes the EWMA more volatile but quicker to adapt

to changes in the data. Low values of α discount older values more slowly, which leads to slower

but less abrupt changes.

109

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

Overall, the merging process can thus be described as follows:

ET(n)←


ET(n) ET s(1)

ET(1) < G

dα · ET s(n) + (1− α) · ET(n)e otherwise.

Both ET(n) and ET s(n) are defined for all n ∈ [0, L) since L ≤ T . The EWMA is rounded up

after the merge to ensure that ET(n) remains integer.

The following lemma shows that the merging process preserves super-additivity:

Lemma 25. Let f and g be two arbitrary super-additive functions, and 0 ≤ α ≤ 1. Then

h(x) , dα · f(x) + (1− α) · g(x)e

is also super-additive.

Proof. We need to show that ∀x, y. h(x) + h(y) ≥ h(x+ y). Substituting h’s definition yields:

h(x) + h(y)

= dα · f(x) + (1− α) · g(x)e+ dα · f(y) + (1− α) · g(y)e

≥ dα · f(x) + (1− α) · g(x) + α · f(y) + (1− α) · g(y)e

= dα · (f(x) + f(y)) + (1− α)(g(x) + g(y))e

≥ dα · f(x+ y) + (1− α)g(x+ y)e (super-additivity of f and g)

= h(x+ y)

The safety margin. To reduce the risk of underestimating a callback’s execution time, the

safety margin S can be used to add a fixed margin to the execution-time curve. The safety margin

is implemented by multiplying each new execution-time measurement by (1 + S).

At first glance, the safety margin might seem to counteract the purpose of data aging. Wouldn’t

the safety margin increase pessimism compared to the variant without data aging? In mostly-static

systems, where data aging has little positive effect, this is indeed the case. However, in sufficiently

110

5.4. BUDGET MANAGER

dynamic systems, where data aging makes a large difference, the gains from data aging can

more than compensate for the safety margin, while the safety margin significantly reduces the

underestimation risk of the aging mechanism.

The experiments in Section 6.5 show that a safety margin is particularly important if the

workload ramps up slowly, as it allows the execution-time curve to gradually increase over time

without underestimating the observed processor demand in the meantime.

This concludes our discussion of the model extractor. We now turn towards the budget manager,

which regularly requests the extracted model from the model extractor in order to make suitable

scheduling decisions for the system.

5.4 Budget Manager

Recall from Section 5.2 that ROS-Llama consists of two main components: the model extractor,

which derives a model of the running ROS system, and the budget manager, which computes

and applies scheduling parameters to ensure that the targeted latency goals are fulfilled. The

budget manager is further responsible for enforcing the degradation order. It needs to detect if

a latency goal cannot be fulfilled and, if so, needs to proactively degrade chains earlier in the

degradation order to ensure that chains later in the degradation order complete in time. It thereby

fulfills the nice-to-have-payload requirement (Req. VII) and the unsurprising-overload-behavior

requirement (Req. VIII).

The first part of this section (Section 5.4.1) describes the scheduling approach taken by ROS-

Llama. We survey various options to schedule ROS applications on Linux and conclude that the

most suitable solution is to schedule ROS executors as SCHED DEADLINE reservations under

partitioned scheduling. The ROS-Llama infrastructure and several critical non-ROS threads are

isolated on a separate system core.

The second part of this section (Section 5.4.2) describes how the necessary configuration,

namely thread-to-core assignments and reservation parameters, are determined by ROS-Llama.

111

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

5.4.1 Scheduling Strategy

Before taking a detailed look at the budget manager, it is necessary to understand how provisioned

threads are actually scheduled by ROS-Llama. There are three design decisions to make. First,

which Linux scheduler should ROS-Llama use to schedule timing-critical ROS threads? Second,

should ROS-Llama use partitioned scheduling, global scheduling, or something in-between? And

third, how should ROS-Llama schedule non-ROS threads such as kernel threads, middleware

threads, or ROS-Llama’s own threads?

Which scheduler to use? Due to the stock-kernel requirement (Req. III), ROS-Llama

must use one of the schedulers available in Linux: either the default CFS scheduler, or a fixed-

priority scheduler (i.e., the SCHED FIFO or SCHED RR policies), or Linux’s more recent

reservation-based SCHED DEADLINE scheduler.

We choose SCHED DEADLINE as the scheduler for ROS executors. Compared to the other

options, this provides two main advantages: analyzability and containment.

Analyzability means that ROS-Llama can use a response-time analysis to predict the effect

of its provisioning on the worst-case latency of the associated chains.It enables ROS-Llama

to decide with confidence whether a cause-effect chain can be guaranteed, or else needs to be

degraded to best-effort mode in accordance with the do-no-harm requirement (Req. II).

Containment means that a thread experiencing an unexpected surge in processor demand

cannot prevent other threads from receiving their provisioned budget in a timely manner. This

property is beneficial in case of transient overload or when resource demand increases due to

changes in the robot’s environment. It is hence well-aligned with the dynamic-environment

requirement (Req. VI) and the unsurprising-overload-behavior requirement (Req. VIII). In such

situations, containment keeps the system in a stable and predictable state until ROS-Llama

computes a new set of budgets that accounts for the increased execution-time demand.

Of the three available schedulers—CFS, fixed-priority scheduling, and SCHED DEADLINE—

only SCHED DEADLINE guarantees both of these properties.

112

5.4. BUDGET MANAGER

CFS provides a certain degree of containment in that it does not allow any thread to exceed

its “fair” share in the long run. However, the size of the share is hard to predict in advance and

depends on various factors, including the number and weight of other threads in the system. It is

therefore not obvious how to predict the effects of a surge under CFS. Furthermore, CFS provides

no analyzability since no response-time analysis for CFS is known.

The fixed-priority schedulers provide analyzability but no containment. If a thread increases

its processor demand, the supply available to lower-priority threads shrinks by the same amount.

Although there is a mechanism called “real-time group scheduling” [2] that limits the processor

time consumed by all fixed-priority threads collectively, it is far too coarse-grained for our

purposes as it throttles all fixed-priority threads equally, independent of priority.

SCHED DEADLINE provides both analyzability and containment. It allows ROS-Llama to

predict whether the chain goals will be fulfilled (assuming the latest timing model is correct) and

contains any deviations from the timing model to the executor that caused it.

However, these advantages do not apply to degraded chains, i.e., chains that ROS-Llama

cannot provision with enough budget to always reach their latency goal. If ROS-Llama were to

schedule a degraded chain’s threads with SCHED DEADLINE, it would need to deliberately

under-provision them. This turns the containment guarantee provided by the hard reservation

mechanism into a liability, as executors would be throttled prematurely once their budget runs

out, even if enough capacity is available to complete. This violates the do-no-harm requirement

(Req. II). ROS-Llama hence uses CFS to schedule executors that only serve degraded chains,

which lets the degraded chain be served in a best-effort manner rather than risk providing a thread

with an insufficient budget. The chain continues to operate without interruption and may still

complete in time, but ROS-Llama cannot guarantee that it does.

Partitioned or global scheduling? As discussed in Section 2.2.3, Linux provides two

ways to instantiate SCHED DEADLINE on multicore platforms: global scheduling, where the

scheduler migrates threads freely among cores depending on current availability, and partitioned

113

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

scheduling, where each thread is assigned to a specific core on which it remains even when other

cores are idle.

Prior work [19] has shown that partitioned scheduling achieves higher schedulability for

most workloads, i.e., it is much more effective at admitting and guaranteeing reservations

(Section 2.2.3). However, its effectiveness depends heavily on the mapping from tasks to

cores, which places an additional burden on the user, especially in dynamic environments.

Linux avoids this burden by defaulting to global scheduling. ROS-Llama, on the other hand,

has sufficient information to determine a suitable mapping automatically and therefore uses

partitioned scheduling without imposing any additional burden on the system integrator.

How to schedule non-ROS threads? ROS threads are not the only timing-critical threads

in the system. ROS-Llama also needs to account for critical kernel and middleware threads. We

refer to these critical non-ROS threads as system threads. Ensuring that these system threads

receive enough supply is at least as important as supplying the executors: starving the wrong

kernel threads can lead to I/O delays or even to kernel panics. Similarly, starving the middleware

threads may interfere with the communication between callbacks and risks excessive delays.

Since ROS-Llama cannot predict the processor demand of system threads, scheduling them

with SCHED DEADLINE is out of the question. Any misjudgment of the processor demand

for one of these threads would lead to premature throttling once the thread exceeds its budget.

ROS-Llama therefore schedules system threads using the SCHED RR fixed-priority scheduler.

Unfortunately, this makes it impossible to run the system threads on the same core as ROS

threads. In Linux, SCHED DEADLINE threads always take priority over fixed-priority threads

(cf. Section 2.2.4). Any ROS executor, no matter how early in the degradation order, could thus

starve any system thread. ROS-Llama addresses this issue by isolating the system threads on a

separate system core. Kernel threads run at their default priority; middleware threads run at a low

real-time priority. Additionally, the system core runs the ROS-Llama infrastructure, which is not

time-critical and therefore scheduled under CFS. The remaining cores run the ROS threads.

114

5.4. BUDGET MANAGER

Summary. Overall, ROS-Llama schedules ROS systems through a combination of reservation-

based, fixed-priority, and best-effort scheduling. ROS threads, i.e., executors and event sources,

are scheduled with SCHED DEADLINE and are partitioned across all but one of the processor

cores. Timing-critical system threads are scheduled with SCHED RR on a separate system core.

This core also hosts the ROS-Llama infrastructure, which uses the CFS scheduler.

5.4.2 Budgeting Heuristic

Based on the extracted timing model, the budget manager is responsible for finding a scheduler

configuration—a budget and period for each reservation and a feasible mapping of reservations

to cores—that ensures the timely completion of the configured chains. If it cannot find a

configuration that fulfills all latency goals, it must initiate the controlled degradation process and

ensure that the system abides by the configured degradation order.

We begin with the period. As discussed in Section 2.4, a reservation’s period should ideally

be derived from the underlying periodicity of the task. If that is not possible, the period choice

becomes a trade-off: increasing a reservation’s period increases the initial supply delay but

decreases scheduling overheads. Periods should thus be set to the shortest value that still yields

acceptable scheduling overheads.

For ROS-Llama, matching the period to the underlying periodicity of the reservation is not

possible in general because executors do not necessarily have an underlying periodicity. The

callbacks assigned to an executor are often not triggered periodically. Even if they are periodic,

they do not necessarily have the same period: due to the form-deviates-from-function requirement

(Req. I), a single executor often influences multiple independent chains.

ROS-Llama thus simply assigns all reservations a uniform period that is significantly shorter

than the tightest latency goal but sufficiently long to avoid undue context-switching overheads.

Based on experiments taken on our evaluation platform (Section 6.4), we selected a uniform

reservation period of 5 ms. Finding a method to automatically fine-tune the reservation periods to

individual workloads remains future work (cf. Section 7.2.4).

115

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

The budget is chosen based on the worst-case processor demand that may be exhibited by each

thread, as determined by the extracted timing model. ROS-Llama relies on the response-time

analysis presented in Chapter 4 to identify whether a set of budget assignments fulfills the desired

latency goals.

Unfortunately, it is far from obvious how to find a budget assignment that fulfills this test.

Reservation budgets cannot be chosen in isolation but require solving a global co-optimization

problem due to the interconnected nature of the callback graph. The underlying intuition is easy

to see: in a callback chain, the response-time bound of an “upstream” callback determines the

activation jitter of any “downstream” callbacks. Changing the budget of one executor affects the

response-time bounds of all callbacks that it handles and can thus induce changes in demand in

any number of executors serving “downstream” callbacks. This, in turn, affects response-time

bounds in those executors, at which point the propagation effect repeats. Worse, influence cycles

are possible: though each callback chain is cycle-free, it is possible for two executors to be

connected by multiple callback chains in opposite directions.

Arbitrary budget dependencies may thus exist among executors. Optimally solving such a

complex optimization problem would be much too expensive at runtime, especially given the

earn-your-keep requirement (Req. IX). ROS-Llama therefore attempts to find a (non-optimal)

solution with an iterative heuristic search. Developing a more refined or even optimal budget

assignment remains future work (cf. Section 7.2.4).

The search proceeds in multiple rounds, one for each latency goal. Goals are considered in

reverse degradation order. Each round consists of two steps. The heuristic first establishes a

starting point, a budget assignment that guarantees finite response times without necessarily

fulfilling the latency goal. Based on this initial budget, an iterative refinement step repeatedly

increases individual executor budgets until the latency goal is fulfilled.

Step 1: finding a starting point. Algorithm 3 is used to find an initial budget assignment

bw(e) for each executor e that (a) has not received a budget during the previous rounds and (b)

116

5.4. BUDGET MANAGER

Algorithm 3: The initial budget estimate.

1 for all influencing executors e without a budget do
2 needed ←

∑
c served by e rbf (c, horizon)

3 bw(e)← needed
horizon

4 while there is a callback c with unbounded response time do
5 e← executor serving c
6 needed ← rbf (c, horizon)− sbf (e, horizon)
7 if bw(e) = 1 then
8 degrade chain
9 else

10 bw(e)← min(bw(e) + needed
horizon , 1)

11 if no partitioning for budget found then degrade chain

influences the response-time bound of the chain considered during this round. Each such executor

receives an initial budget that reflects the maximum longterm processor demand of each executor.

Since later steps will only add bandwidth but never remove it, the budgeting heuristic attempts

to start the search with budgets that are as low as possible but still ensure finite response-time

bounds.

The algorithm first estimates the executor’s long-term demand by computing the cumulative

demand over a long time interval called the horizon (Line 2). In our case study (Chapter 6),

we arbitrarily chose a horizon of 10 seconds, which exceeded all latency goals and typical

busy-window lengths. To break the aforementioned dependency cycle—actual request-bound

functions depend on the budget of other executors—Line 2 is computed under the simplifying

assumption that all other executors receive 100% budget. Line 3 configures the resulting initial

budget estimate.

Having assigned an initial budget, the algorithm now drops the assumption that other executors

have 100% bandwidth. As a result, some callbacks likely become unschedulable due to increased

jitter effects. To cope, Lines 4 to 10 iteratively increase the bandwidth of the corresponding

executors until the long-term demand at the horizon is met. If this requires bandwidths above

100%, the degradation process is started since it is impossible to guarantee bounded response

times.

117

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

Algorithm 4: The assignment improvement heuristic.

1 res ← set of “upstream” executors that affect response times
2 while chain latency > goal do
3 for e in res do
4 d(e)←

∑
c served by e(RT (c)−RT 100%(c))

5 for e in res by decreasing d(e) do
6 if bw(e) = 1 then
7 remove e from res
8 continue
9 bw(e)← min(bw(e) + 5%, 1)

10 if partitioning for budget found then
11 break
12 remove e from res and restore old value of bw(e)

13 if no candidate found then degrade chain

The degradation process is also started if ROS-Llama cannot find a feasible reservation-to-

processor mapping for the assignment (Line 11).

As discussed in Section 2.2.3, finding such a mapping requires solving a bin-packing problem.

Each core is a bin with a capacity of one, and each reservation is an item with the reservation

bandwidth as weight. ROS-Llama looks for solutions by trying the worst-fit-decreasing (WFD)

and first-fit-decreasing (FFD) heuristics [64], in that order.

Step 2: refining the budget. Based on the initial budget assignment that (barely) achieves

finite response-time bounds, Algorithm 4 refines executor budgets until the processing chain’s

response-time bound no longer exceeds the chain’s configured latency goal (Line 2). To this end,

ROS-Llama relies on what we refer to as the budget-shortage delay heuristic d(e), which is the

total increase in response time attributable to executors having less than 100% bandwidth (Line 4).

Here, RT (c) denotes the actual current response-time bound (Chapter 4), whereas RT 100%(c)

denotes the response-time bound obtained by assuming 100% bandwidth. A large budget-shortage

delay indicates that increasing the budget of this executor is likely to have large positive effects

on response times in the system.

Following this heuristic, ROS-Llama considers the influencing executors in order of their

118

5.5. SUMMARY

shortage delay (Lines 5 to 12). For each executor, the algorithm tries to increase the bandwidth by

a fixed step size (Line 9) until the chain’s latency goal is reached. We chose 5% as a compromise

between the speed of convergence and the quality of the result. If no candidate for a budget

increase can be found while the latency goal remains unmet, the degradation process is started

(Line 13).

5.5 Summary

In this chapter, we presented ROS-Llama, the first automatic latency manager for ROS 2. Its design

has been shaped by a careful analysis of the requirements and constraints of the ROS ecosystem

(Section 5.1). To address these requirements, ROS-Llama operates largely automatically, based on

just a simple and declarative configuration of high-level latency goals and the desired degradation

order in case of overload.

To fulfill these latency goals, ROS-Llama relies on two main components: the model extractor,

described in Section 5.3, and the budget manager, described in Section 5.4.

The model extractor observes the behavior of the running ROS system through a set of

tracepoints in the core ROS libraries (Fig. 5.4). From the stream of events, it derives a timing

model covering both ROS executors and event source threads (Sections 5.3.3 and 5.3.4).

In a dynamic system, the extracted timing model needs to deal with transition phases and

adapt to changes in the workload. The model extractor therefore needs to be able to discard

stale measurements taken during earlier states or transition periods. We proposed two adaptation

heuristics, the initialization-phase heuristic and the data-aging heuristic (Section 5.3.5). The

initialization-phase heuristic requires no configuration and automatically discards initialization

behavior from the model. The much more powerful data-aging heuristic requires tuning by the

user but can adapt to varying execution-time demands in the system.

The model is used by the budget manager to find a suitable scheduler configuration automat-

ically. It schedules ROS executors using the SCHED DEADLINE scheduler while isolating

119

CHAPTER 5. AN AUTOMATIC LATENCY MANAGER FOR ROS

essential system threads onto a separate system core (Section 5.4.1). The required budgets and

core assignments are computed by an iterative budget assignment heuristic (Section 5.4.2).

Overall, ROS-Llama enables users to enforce their desired timing constraints on the system

through real-time scheduling without requiring significant effort or expertise. In the next chapter,

we evaluate the timing analysis and ROS-Llama on a realistic system and demonstrate that the

proposed approach is effective in practice.

120

6 Evaluation

In this chapter, we empirically evaluate the proposed response-time analysis and the ROS-Llama

latency manager. To test both mechanisms under realistic conditions, we chose a Turtlebot 3 robot

running off-the-shelf ROS packages as the main evaluation workload. The evaluation platform is

described in detail in Section 6.1.

We first evaluate the response-time analysis. Since Chapter 4 already proved the correctness

of the analysis, this chapter mainly evaluates the effectiveness of the analysis. Experiments

with a synthetic workload and the realistic Turtlebot workload show that the round-robin and

the busy-window analysis provided precision gains in different settings. We conclude that it is

therefore advisable to combine both approaches in practice.

The experiments further confirm that ROS systems should be modeled using execution-time

curves instead of traditional scalar worst-case execution times: the extracted Turtlebot workload

is unschedulable in a WCET-based model, even if each executor runs on a dedicated CPU core.

In a scaled-down version of the system, where all execution-time demands are reduced to 10% of

their original value, execution-time curves still reduce response-time bounds by up to 75%.

In a second part, we evaluate the automatic latency manager ROS-Llama. The scope and goals

of ROS-Llama make it difficult to prove its properties from first principles. Both correctness and

suitability therefore need to be shown empirically. To this end, the evaluation aims to answer

three main questions: Does ROS-Llama successfully keep the latency of the managed processing

chains below the goal? Does the system degrade gracefully under overload? And finally, does

ROS-Llama achieve these results at acceptable cost?

121

CHAPTER 6. EVALUATION

To answer these questions, Section 6.3 reports on an evaluation of ROS-Llama on the Turtlebot

evaluation platform. The experiment let the robot drive through a repeatable scenario and recorded

the observed response times. The results show that ROS-Llama controlled the latency of timing-

critical chains better than comparable approaches. Although the observed runtime costs were

substantial, ROS-Llama’s improved latency management turned out to be worth the price.

The experiments further exposed that the chosen DDS middleware did not satisfy the implicit

middleware requirements identified in Chapter 2. Our findings suggest that investigating the

system interactions below the ROS level would be a promising next step in this line of work.

We conclude with an evaluation of the parameter choices taken in ROS-Llama. In Section 6.4,

we investigate the effects of using different reservation periods and justify why 5 ms is a good

choice for the fixed period length. We then turn toward the data-aging mechanism and investigate

choices for the four aging parameters. The results demonstrate that the data-aging mechanism,

properly configured, allows ROS-Llama to dynamically adapt to changing workloads while still

providing stable bounds for stable workloads.

6.1 Evaluation Platform

We evaluated the timing model, response-time analysis, and ROS-Llama latency manager on a

Turtlebot 3 “Burger” (Fig. 6.1) controlled by a Raspberry Pi 4B. The Raspberry Pi features an

ARM A72 CPU with four cores clocked at 600 MHz.1 The system ran a standard Linux kernel

with the PREEMPT RT patch (version 4.19.71-rt24-raspi2). The ROS workload ran on ROS 2

“Dashing Diademata” and Eclipse’s Cyclone DDS (version 0.5.1-1). In the “Dashing Diademata”

version, timers are privileged (cf. Section 3.1.1).

1The processor also supports a 1.2 GHz setting. However, this frequency cannot be sustained in continuous operation
due to overheating, quickly leading to unpredictable thermal throttling of the cores. As dynamic frequency scaling
is beyond the scope of this dissertation, we focus on the stable 600 MHz setting.

122

6.1. EVALUATION PLATFORM

Figure 6.1: The Turtlebot 3 “Burger”, our evaluation platform. Picture taken from the Turtlebot 3
e-manual [32].

6.1.1 ROS Components

The Turtlebot ran a workload comprising three open-source ROS components: a set of drivers for

the Turtlebot, the ROS navigation stack, and an object tracker payload.

The Turtlebot drivers are two small packages that provide a ROS interface to the robot’s hard-

ware. They publish any measurements from the laser scanner on the /scan topic and odometry

measurements on the /odom and /tf topics. Furthermore, they provide the /cmd vel topic to

submit velocity commands.

The ROS navigation stack [76] implements generic navigation primitives for wheeled mobile

robots, including navigation planning, path following, self-localization, and cost-map manage-

ment. It is a typical example of a standardized, generic, and reusable component in the ROS

ecosystem that can be integrated into a wide range of robots.

The object tracker [33] follows a number of designated objects through a video sequence

and serves as a typical example of a computationally demanding mission- but not safety-critical

payload. In our setup, we simulated a camera by repeatedly playing the car1 video taken from

the VOT 2018 challenge [65, 66]. The object tracker is tasked with following cars through the

123

CHAPTER 6. EVALUATION

Table 6.2: Configured processing chains in reverse degradation order.

Name Purpose Length Degradation Order Goal (ms)

heartbeat Keep-alive signal 1 (last) 7 100
pilot Navigation & control 2 6 125
odometry-nav Odometry (navigation) 2 5 75
laser-scanner Sensor data acquisition 2 4 150
localization Self-localization 1 3 450
odometry-loc Odometry (localization) 2 2 100
tracker Track objects 2 (first) 1 990

scene. To compensate for the large performance difference between the Raspberry Pi and the

hardware recommended by the package developers (an Intel i7-6700HQ with four cores clocked

at 2.6 Ghz), we downsampled the video to about one frame per second.

There are various tuning parameters to adapt the components to the available computational

resources, physical characteristics of the robot, and navigation precision demands. We used the

default configuration provided with the Turtlebot, except for the period of the local planner in the

navigation stack, which we increased slightly from 100 ms to 125 ms as this proved sufficient

for our scenario and induced less load. The increased period is still well within the supported

parameter range for the planner [50].

6.1.2 Processing Chains

Within the described ROS system, we identified seven timing-critical processing chains. The

chains are listed in Fig. 6.2. The last two columns show the configuration in the experiments.

The heartbeat chain simply manages a watchdog timer with a period of 100 ms that prevents

the hardware from resetting. The first two functional chains are concerned with the movement of

the robot’s wheels. The pilot chain consists of a computation-intensive local planner callback

responsible for computing the next motor command, followed by a shorter callback that encodes

the command for transmission to the electric motor. The 125 ms latency goal ensures the motor

receives the local planner’s command once per period. The odometry-nav chain reports the

measured wheel movements to the planner every 50 ms. We set a latency goal of 75 ms to ensure

124

6.1. EVALUATION PLATFORM

that an odometry update arrives every period, i.e., that the gap between two measurements,

including the sampling delay of up to 50 ms, remains below 125 ms.

The next three chains cover the self-localization of the robot. The localization component

relies on laser scans and an internal map to narrow down plausible estimates of the robot’s current

location. Since the laser moves with the robot, interpreting these scans also requires information

about the robot’s movement and orientation, i.e., odometry. The two inputs are provided by the

laser-scanner and odometry-loc chains. The localization chain covers the merging of the inputs

and the computation of a position estimate.

Ideally, it would not have been necessary to define the localization chain separately, as it

is conceptually just an extension of the laser-scanner and odometry-loc chains. However, the

message filters library used to implement the matching and merging of the inputs does not clearly

expose the conceptual data flow at the callback graph level. The data flow therefore does not

directly correspond to a single ROS callback chain.

To resolve this ambiguity, we configured the localization chain as a separate chain with its

own latency goal. We will revisit the question of how to improve support for utility libraries like

message filters in the discussion on future work (Section 7.2.3).

The localization estimate expires after one second, counting from the time the underlying

laser scan was taken. This imposes a timing constraint on the localization component: once the

localization estimate expires, the robot cannot navigate and performs an emergency stop. We thus

had to arrange for an end-to-end latency of at most one second between the laser scanner and the

final localization callback.

The laser scanner rotates at 5 Hz, allowing it to produce one scan every 200 ms. In practice, we

found that individual scans are occasionally transmitted incompletely by the hardware and cannot

be interpreted. Accounting for such skipped scans yields a worst-case sampling delay of 400 ms,

leaving 600 ms for processing. We assigned 150 ms to the laser scanner chain and 450 ms to

the localization chain. For the odometry, we had to account for an additional 50 ms of sampling

delay, leaving 100 ms for the odometry-loc chain.

125

CHAPTER 6. EVALUATION

Finally, the tracker chain covers the image tracker. The chain covers the (simulated) camera,

which periodically acquires a frame (from disk) and sends it to the /rgb topic, and the tracker,

which follows marked objects and outputs their position in the latest frame. The assigned latency

goal ensures that every frame is processed before the next frame arrives, ensuring that the tracker

does not fall behind under normal conditions. However, the tracker chain is also first in the

degradation order, which reflects that its output is “nice to have” but not essential for the correct

operation of the robot.

We stress that all latency goals derive purely from high-level functional considerations and

hardware properties. They do not depend on detailed knowledge of component or system internals

and would therefore be known to a system integrator.

6.2 Response-Time Analysis

We evaluated the response-time analysis in two case studies: a synthetic callback graph, designed

to assess each analysis’s advantages and disadvantages, and a real-world callback graph, to

evaluate the analyses under realistic conditions. We compared three implementations: The round-

robin analysis in Theorem 2 (RR-only), the busy-window analysis in Theorem 3 (BW-only), and

the combined analysis, which computes the minimum of both approaches (combined-analysis).

Case study 1: synthetic workload. The first case study (Fig. 6.3) consists of a single

executor containing only polled callbacks. One callback, c0, is triggered in bursts of up to b

activations at once. The bursts are separated by at least 10 ms. A second set of callbacks, c1 to cl,

forms an intra-executor chain of length l = 6. Callback c1 is activated by f callbacks located

in the same executor, each with an activation curve that mandates a 10µs distance between any

two activations but 10 ms between any three activations. We call the parameter f the fan-in.

For simplicity, the setup uses scalar WCETs only. The callback c0 has a WCET of 10µs, each

callback in the chain has a WCET of 50µs, and the f predecessor callbacks of c1 have a WCET

of 1µs each. The executor is provisioned with a periodic supply of 700µs every one ms.

126

6.2. RESPONSE-TIME ANALYSIS

𝑐1 𝑐𝑙

𝑐0
𝜂 0 = 𝑏

𝜂 10𝑚𝑠 = 𝑏 + 1

f callbacks l callbacks

……

𝜂 10𝜇𝑠 = 2
𝜂 10𝑚𝑠 = 3

Figure 6.3: Synthetic setup. The chain under analysis is shaded gray.

0 5 10 15 20 25 30

0.8

0.9

1.0

RT
 B

ou
nd

 (m
s)

RR-only
BW-only

(a) By burst length of c0.

1 2 3 4 5 6 7 8 9

1

2

3

RT
 B

ou
nd

 (m
s)

RR-only
BW-only

(b) By fan-in.

Figure 6.4: Response-time bound of the chain (synthetic workload).

The experiment varied two parameters: b, the burst length of c0, and f , the fan-in. As the

parameters varied, we observed the response-time bound of the chain marked in Fig. 6.3.

Figure 6.4a shows the response-time bounds reported by the RR-only and BW-only analyses as

b changes (for a fixed fan-in f=1). Since combined-analysis is simply the minimum of RR-only

and BW-only, it is not shown separately. The plot shows a steadily increasing response-time

bound for BW-only. In contrast, the RR-only bound stays flat after b = 14. At this point, all

processing windows involved in the chain are saturated with instances of c0. Activating more

instances of c0 therefore does not increase the interference suffered by the chain. The results

show the importance of accounting for starvation freedom, as the BW-only analysis significantly

overestimated the interference from c0.

In a second experiment (Fig. 6.4b) we varied f , the fan-in, for a fixed burst length of b=10.

The plot shows that all variants achieved similar bounds at f = 1. As the fan-in increased, the

BW-only response-time bound also increased in reaction to the increased activation rate of the

chain. The RR-only analysis started out similarly but suffered a rapid increase starting at f=5.

At f=9, the RR-only bound was already twice as large as the BW-only bound.

127

CHAPTER 6. EVALUATION

7469/scan
7469/tf

7469/tf-st
atic
7533/scan

7533/tf

7533/tf-st
atic
7556/scan

7556/tf

7556/tf-st
atic

7567/amcl-pose

7567/odom

7577/amcl-pose

7577/amcl-pose

7577/gcm/cm-r

7577/gcm/cm-r

7577/gcm/p-ftpr

7577/gcm/p-ftpr

7577/odom
7577/odom

1

3

5

7

9

11

13

RT
 ra

tio
 v

s.
co

m
bi

ne
d-

an
al

ys
is

RR-only BW-only

Figure 6.5: Response-time bound of callbacks compared to the proposed analysis (lower is better).

Overall, the two experiments show that both analysis approaches, RR-only (Theorem 2) and

BW-only (Theorem 3) excel in different situations. To ensure low response-time bounds in both

situations, it is therefore advisable to try both approaches and take the minimum of the two

bounds.

Case study 2: real workload. In the second case study, we evaluated the analyses on a

callback graph of the Turtlebot evaluation platform, which we extracted using the ROS-Llama

model extractor. Each executor was provisioned with 100% bandwidth.

Figure 6.5 shows the results for the 19 (out of 54) callbacks in the system for which the response-

time bounds are not trivial (e.g., due to lack of interference or extremely sparse activations). Since

the absolute values of the bounds varied heavily between the callbacks, we instead show each

bound as a ratio normalized by the combined-analysis bound. A ratio of 1 (marked by the red

line) indicates that the analysis produced the same bound as the combined analysis; ratios above

one indicate that the analysis produced a higher bound than the combined analysis. Since the

combined-analysis bound is the minimum of the two depicted approaches, one of the two bars is

always at y=1, i.e., equal to combined-analysis.

The figure confirms that the combined analysis improves significantly over both of its con-

stituent approaches. For some callbacks (e.g., 7533/scan), the round-robin analysis produced the

128

6.2. RESPONSE-TIME ANALYSIS

tighter bound, beating the BW-only bound by a factor of 3. In other callbacks (e.g., 7533/tf), the

BW-only analysis proved more effective, beating the RR-only analysis by a factor of 12.

Unsurprisingly, the BW-only analysis showed the greatest benefits in callbacks that are fre-

quently invoked, particularly the various /tf callbacks. Such callbacks need to account for large

amounts of self-interference and therefore do not benefit from the bound on processing windows.

The round-robin analysis primarily benefits callbacks that share an executor with one of the

frequently-invoked callbacks (e.g., the two other callbacks in executor 7533).

The importance of execution-time curves. Analyzing the extracted timing model also

presented an opportunity to evaluate the importance of modeling execution times as execution-

time curves instead of worst-case execution times. To this end, we compared the response-time

bounds produced by the combined analysis to a WCET-only variant. The WCET-only variant

truncated execution-time curves after ET(1) and then extrapolated the curve linearly.

The resulting WCET-based model of the Turtlebot system turned out to be unschedulable.

Even with each reservation receiving a budget of 100%, the analysis did not converge within the

analysis horizon (10 s).

This observation already demonstrates the importance of using execution-time curves. However,

it makes it difficult to quantify the difference between the two models. We therefore scaled down

the execution times in the model linearly until the response-time analysis converged for the

WCET-based system, which happened at a factor of 10%.

Figure 6.6 shows the response-time bound ratio for this downscaled system. Similar to Fig. 6.5,

the combined analysis with execution-time curves serves as a baseline. A bound ratio of y=1

(marked by the red line) indicates that the bounds are equal; a bound ratio above the x-axis

indicates that the execution-time curve variant is better.

The figure shows that execution-time curves improved the response-time bounds by a factor of

10 and more in 2 out of 19 cases, with two more callbacks achieving improvements just slightly

below 2. In the most extreme case (7469/tf), execution-time curves improved the bound by almost

129

CHAPTER 6. EVALUATION

7469/scan
7469/tf

7469/tf-st
atic
7533/scan

7533/tf

7533/tf-st
atic
7556/scan

7556/tf

7556/tf-st
atic

7567/amcl-pose

7567/odom

7577/amcl-pose

7577/amcl-pose

7577/gcm/cm-r

7577/gcm/cm-r

7577/gcm/p-ftpr

7577/gcm/p-ftpr

7577/odom
7577/odom

0

1

2

3

4

RT
 ra

tio
 v

s.
co

m
bi

ne
d-

an
al

ys
is

combined-analysis (wcet)

Figure 6.6: Response-time bound of callbacks modeled with scalar WCETs compared to
execution-time curves (lower is better). Execution times are scaled to 10% of their
original value.

a factor of 4. This callback is therefore likely responsible for the non-convergence of the analysis

at higher scaling factors. Among the other 15 callbacks, four more callbacks improved by a factor

of about 1.5, while the reminder improved by a factor of just slightly above one. Overall, the

experiment confirms that a response-time analysis for ROS systems requires a more sophisticated

execution-time model than scalar worst-case execution times.

6.3 Automatic Latency Management

Having evaluated the response-time analysis, we now turn towards the automatic latency manager

ROS-Llama. This section aims to determine whether ROS-Llama fulfills the requirements in

Section 5.1. Specifically, we aim to answer three main questions: does ROS-Llama ensure that the

latency of the designated time-critical processing chains remains within the latency goal? Does

ROS-Llama ensure the graceful degradation of the system as one of the managed chains starts

consuming more and more computation time? And finally, how much overhead does ROS-Llama

impose?

We answer these questions by letting the evaluation robot drive through a repeatable test

scenario. In the scenario, the Turtlebot patrolled between two fixed locations while tracking a

130

6.3. AUTOMATIC LATENCY MANAGEMENT

number of objects in the video stream. The experiment progressed through three phases: no

load, normal load, and high load. In the first phase, the object tracker did not follow any objects.

In the following phases, the number of objects to track increased to simulate the effects of an

increasingly crowded environment. This increased the execution time of the tracker from a barely

noticeable to an unsustainable load that forced video frames to be discarded. We observed the

impact of this demand increase on the other chains.

Each experiment ran for 150 seconds and was repeated four times. During this time, we

recorded the beginning and the end of the processing chains described above and checked whether

the chain completed in time. The results are compared against two baselines:

Baseline 1: CFS. The first baseline is a standard Linux setup, where threads are scheduled

globally across all four cores using CFS without any of the ROS-Llama infrastructure present.

This is the default ROS setup and arguably the only other available choice that does not require

real-time expertise on behalf of the system integrator and component developers. It provides a

fair baseline with regard to Req. IX (i.e., the question of whether the cost of running ROS-Llama

outweighs its benefits) since it does not incur any of ROS-Llama’s overhead.

Baseline 2: SCHED RR. The second baseline is a primitive variant of ROS-Llama that

does not use response-time analysis. Instead, it schedules latency-critical executors with the

SCHED RR fixed-priority scheduler. It aims for graceful degradation by assigning priori-

ties according to the degradation order, i.e., it prioritizes executor threads serving chains later

in the degradation order over executors serving exclusively chains earlier in the order. This

is arguably the most straightforward approach to implement controlled degradation without

analysis, but still cumbersome and error-prone to realize manually2 as it requires correct identifi-

cation of all callbacks, chains, and threads. We use this baseline to evaluate to what extent the

response-time analysis improves the decisions of ROS-Llama. We use SCHED RR rather than

2That is, without a tool providing automatic introspection capabilities such as those provided by ROS-Llama’s
automatic model extractor.

131

CHAPTER 6. EVALUATION

Figure 6.7: Number of goal violations per chain.

ROS-Llama CFS SCHED RR
violations count violations count violations count

Name

heartbeat 0 7,989 0 7,979 0 7,975
pilot 0 5,712 32 5,480 66 5,429
odometry-nav 0 15,980 0 15,959 105 15,946
laser-scanner 0 3,968 0 3,969 5 3,961
localization 0 3,968 0 3,969 0 3,958
odometry-loc 0 15,980 0 15,959 76 15,946
tracker 211 809 175 808 179 808

SCHED DEADLINE for this baseline because, without analysis, we have no way of assigning

sensible reservation budgets.

6.3.1 Latency Goal Compliance

We first evaluate how well the three system configurations (ROS-Llama, CFS, and SCHED RR)

controlled the latency of the considered chains. Figure 6.7 shows the number of observed chain

completions with end-to-end latency exceeding the configured goal. In all configurations, the

tracker chain exceeded its bound frequently (between 175 and 215 times out of about 800

activations). These violations are expected as a result of the unsustainable load in the last phase.

Controlled degradation should ensure that this overload does not affect the other chains. Still,

under both baselines other chains exceeded their goal latency. The pilot chain violated the latency

goal 32 and 66 times under CFS and SCHED RR, respectively. SCHED RR further led to large

chain violations in the two odometry chains and the laser-scanner chain.

In contrast, ROS-Llama successfully protected the more critical chains from undue interference

by the tracker chain, degrading the system gracefully in the face of the surge.

While there was a notable difference in the total number of completed pilot instances, these

differences were, as far as we can tell, not related to timing issues. The robot’s software

temporarily disables the pilot chain if it cannot find a path to the configured goal. This can happen

132

6.3. AUTOMATIC LATENCY MANAGEMENT

0.00
0.25
0.50
0.75
1.00

Fr
ac

tio
n

x

no load

CFS
SCHED_RR
ROS-Llama

0.00
0.25
0.50
0.75
1.00

Fr
ac

tio
n

x

normal load

0 25 50 75 100 125 150 175 200 225 250
Latency (ms)

0.00
0.25
0.50
0.75
1.00

Fr
ac

tio
n

x

high load

Figure 6.8: CDFs of the latency of the pilot chains, separated by phase. ROS-Llama keeps the tail
latency below the 125 ms goal (dashed line), even under heavy load. Both baselines
exhibit tail latencies in excess of the goal.

due to inaccuracies in self-localization, for example. If the robot finds itself “stuck”, for example

because it believes that the path to the objective is blocked by a perceived obstacle, it can take

some time until the error is corrected.

The latency distribution in detail. To understand the reasons for the observed latency goal

violations, we investigated the affected chains in more detail. Figure 6.8 shows a CDF of the

observed end-to-end latencies in the pilot chain, separated by phase. The dashed vertical line

marks the latency goal: the goal is always met if a curve’s points are all to the left of this line

(i.e., if the observed maximum end-to-end latency does not exceed the chain’s latency goal).

The first observation is that both baselines exceed the latency goal in the worst observed case.

Only ROS-Llama ensures that the pilot chain completes within 125 ms throughout the experiment.

Looking at the results in more detail, we further observe that the CFS curve grows wider as the

load increases, indicating that high-latency results become more prevalent. For example, while

133

CHAPTER 6. EVALUATION

less than 25% of activations exceed 75 ms in the first phase, almost 50% do under high load. In

the last phase, this widening curve also results in higher peak latency, reaching almost 150 ms. In

contrast, the ROS-Llama curve does not visibly change throughout the phases.

These observations demonstrate the risk posed by CFS’s lack of temporal isolation: the non-

essential tracker chain is functionally completely unrelated to the critical pilot chain, but still the

overload experienced in the tracker chain heavily impacted the observed end-to-end latency of

the critical chain, increasing both median and worst observed latency by over 10 ms.

The root cause is that both chains contain computationally intensive callbacks, and hence both

are entitled to an equal share of the available resources under the default CFS timesharing policy.

Oblivious to their respective latency requirements and their relative importance to the robot’s

overall correct operation, CFS has no way of inferring which of the two components it should

prioritize and, as a result, both chains exhibited latency goal violations. Fair sharing of resources,

the core principle underlying CFS, is obviously and demonstrably not the appropriate policy

under transient overload conditions.

As one might hope, the SCHED RR baseline kept latency more stable most of the time.

However, we also observed large outliers in the pilot chain that exceeded the latency goal by over

100 ms. This is surprising given that, according to the degradation order, the pilot chain should

have higher priority than the overloaded tracker chain (the chains do not share any executors).

An even clearer example of this issue is the odometry-loc chain (Fig. 6.9). While both CFS

and ROS-Llama completed the chain within 60 ms at most, the chain suffered latency spikes of

hundreds of milliseconds under SCHED RR.

There are even fewer confounding factors in this case: the chain consists of two callbacks,

neither of which performs heavy computation. The first callback in the chain extracts the position

and state of the wheel joints from the robot hardware and transmits it to the second callback.

The second callback, which is alone in its executor, receives this message, applies a few simple

transformations and transmits the resulting odometry data. In such a simple and low-demand

setup, latency spikes of hundreds of milliseconds should be impossible.

134

6.3. AUTOMATIC LATENCY MANAGEMENT

To further investigate the source of the latency spike, Fig. 6.10 shows the distribution of the

delay between the transmission of the sensor data and the activation of the processing callback.

Since the timestamp marking the start of the chain was taken after the sensor data was published,

the depicted latency underestimates the true latency and might even be negative.

One can observe the same spikes as in the full odometry-loc chain. Yet neither of the two

involved executors can be responsible for this delay. The receiving executor only served a single

callback, which is therefore unaffected by intra-executor interference. The only sampling delay

on the receiver side is thus self-interference. Measurements from the model extractor show that

the receiver callback was not active during the spike, though, which rules out self-interference as

a factor.

The sending executor cannot be at fault either, since the latency depicted in Fig. 6.10 is counted

from a point in time when the message has already been published. The excessive latency spike

therefore has to be the product of the DDS middleware layer.

The cause of the delay is subtle and can be understood as a kind of “collateral damage”:

because the tracker chain was overloaded at real-time priority, it induced a bursty overload also

into the DDS layer, which in turn negatively affected the intra-chain communication delays of the

pilot and odometry-loc chains. The ROS communication layer evidently does not cope well with

overload situations at real-time priority. We will further discuss this phenomenon in Section 6.3.3.

This shows that graceful degradation is essential for ROS systems. ROS-Llama prevents

such DDS overloads by recognizing in advance that the load produced by the tracker chain is

unsustainable and by proactively degrading the overloaded chain before it can harm other chains.

Conclusion. Our case study shows that neither avoiding real-time scheduling altogether (the

default CFS baseline) nor assigning real-time priorities in a “blind”, purely heuristic-driven

manner without a backing analysis (the SCHED RR baseline) leads to satisfactory results.

The CFS baseline performed well for most callbacks but failed to meet the latency goal of the

computation-heavy pilot chain under load. It shared the available supply equally between the

135

CHAPTER 6. EVALUATION

0.00
0.25
0.50
0.75
1.00

Fr
ac

tio
n

x
no load

CFS
SCHED_RR
ROS-Llama

0.00
0.25
0.50
0.75
1.00

Fr
ac

tio
n

x

normal load

25 0 25 50 75 100 125 150 175 200 225 250
Latency (ms)

0.00
0.25
0.50
0.75
1.00

Fr
ac

tio
n

x

high load

Figure 6.9: CDFs of the latency of the odometry-loc chains, separated by phase. ROS-Llama and
the CFS baseline comply with the 100 ms latency goal, whereas the SCHED RR
baseline exhibits a large tail-latency spike.

0.00
0.25
0.50
0.75
1.00

Fr
ac

tio
n

x

no load

CFS
SCHED_RR
ROS-Llama

0.00
0.25
0.50
0.75
1.00

Fr
ac

tio
n

x

normal load

50 25 0 25 50 75 100 125 150
Latency (ms)

0.00
0.25
0.50
0.75
1.00

Fr
ac

tio
n

x

high load

Figure 6.10: CDFs of the transmission delay in the odometry-loc chain, separated by phase. The
delay measurement method underestimates the true delay, and might therefore be
negative.

136

6.3. AUTOMATIC LATENCY MANAGEMENT

Figure 6.11: Average ROS-Llama overhead by component per phase.

Phase No load Medium load High load

Model Extractor (Go) 0.95 sec (51%) 1.11 sec (42%) 1.15 sec (42%)
Model Processing (Python) 0.37 sec (20%) 0.44 sec (17%) 0.46 sec (17%)
Budget Selection (Python) 0.05 sec (3%) 0.11 sec (5%) 0.11 sec (4%)
Timing Analysis (Rust) 0.49 sec (26%) 0.97 sec (37%) 1.00 sec (37%)
Total 1.86 sec (100%) 2.63 sec (100%) 2.71 sec (100%)

pilot and the tracker chains and thereby completed neither chain in time.

ROS-Llama, in contrast, exploited the capabilities offered by Linux’s SCHED DEADLINE

scheduler to isolate the pilot chain from the overloaded tracker chain. It achieved these results with

only little additional effort compared to the CFS baseline and without requiring any expertise in

real-time scheduling: all required information was collected autonomously through introspection

and response-time analysis.

However, the DDS overload observed in the SCHED RR baseline shows that the ROS com-

munication layer may deviate from the basic middleware conditions under overload conditions.

Although ROS-Llama successfully prevented these overloads, the results stress the importance of

selecting a well-behaved communication middleware. We revisit this issue in Section 6.3.3.

6.3.2 ROS-Llama Runtime Costs

ROS-Llama’s memory footprint is negligible relative to the footprint of ROS. In our discussion

of runtime overheads, we hence focus on processor time. Figure 6.11 reports the average per-

invocation cost of ROS-Llama’s components. Each entry shows the processor time in seconds

spent in each component per ROS-Llama activation, averaged over all activations during the

respective phase. The percentage number in parentheses reports how much of the total average

overhead was spent in each individual component. Recall that we configured ROS-Llama to

recompute the budget every six seconds; in total, ROS-Llama as a whole thus consumed 30–45%

of one CPU.

The lower analysis- and budgeting overhead in the first phase results from ROS-Llama op-

137

CHAPTER 6. EVALUATION

portunistically reusing cached budget assignments in a low-load scenario. The model extractor,

which runs continuously alongside the system, accounts for about 40–50% of the total cost

of ROS-Llama. The cost of preparing the timing model for analysis causes about 20% of the

overhead. The remainder of the runtime costs are due to the budget selection process, separated

into the budgeting heuristics (≈5%) and the response-time analysis (≈25–35%).

Conclusion. The results show that ROS-Llama introduces a noticeable overhead. However,

despite this overhead, ROS-Llama ensured better latency goal compliance and more graceful

degradation behavior than the CFS baseline. In other words, ROS-Llama satisfies the earn-your-

keep requirement (Req. IX): it comes with significant costs but provides sufficient benefits to

realize a favorable trade-off between performance and predictability.

In the current prototype, the model extractor causes most of the overhead due to our unoptimized

tracing implementation. Integrating ROS-Llama with a mature tracing system like LTTng [36]

would likely lower the cost of running ROS-Llama.

6.3.3 Unpredictable Middleware Implementation

A surprising discovery during the experiments was that the implementation of the DDS middle-

ware violated some of the basic middleware requirements that we expect from a middleware for

timing-critical communication. Recall the three requirements from Section 2.1.2: (a) communi-

cation is reliable, (b) executors dominate latency, and (c) executors read their own writes. We

observed violations of both (b) and (c).

The first requirement violation we noticed is that messages sometimes get “stuck” in trans-

mission for long periods of time, sometimes over 100 ms. As demonstrated in Section 6.3.1

(Fig. 6.10), the delay cannot have been caused by a lack of supply in the executors but instead

stemmed from the communication layer. The latency was thus not necessarily dominated by the

executors. Since the DDS transmission threads are the highest-priority threads on the system

core, we conjecture that the delay results from shared locks and possibly priority inversion.

138

6.4. TUNING THE RESERVATION PERIOD

A likely cause is the complex interaction among DDS threads and between DDS threads and

the associated executors. These threads all use locks to synchronize access to critical sections in

the DDS implementations. Locks are well-known to cause outsized or even unbounded priority

inversion unless developers keep critical sections short and use appropriate locking protocols.

This leaves ROS-Llama in a conundrum: The limitations in the Linux scheduler force it to isolate

the DDS threads on a separate core, yet the only available lock sharing protocol, the priority

inheritance protocol [106], does not guarantee bounded priority inversion in partitioned multicore

settings [18].

The second requirement violation we noticed is that executors sometimes did not read their

own writes. This behavior has also been observed in concurrent work [116]. Such a delay might

leave space for a quiet time during the execution of an intra-executor chain, which violates an

assumption of the busy-window-aware chain analysis. It further reveals complex and fragile

interactions among the DDS threads, even within a single process.

In summary, it has become apparent that the employed DDS implementation may violate

basic middleware requirements under overload conditions. During those periods, the response-

time analysis may temporarily not apply. To avoid these intermittent losses of latency control,

the system integrator should ensure the robot uses an analyzable and predictable middleware.

Identifying such an implementation among the various middlewares supported by ROS and

identifying and documenting its real-time properties remains future work.

6.4 Tuning the Reservation Period

As described in Chapter 2, a SCHED DEADLINE reservation is characterized by two parame-

ters: the budget and the period. ROS-Llama selects the budget according to the execution-time

needs of the reservation. However, the right choice for the period is less clear. As discussed in

Section 5.4, ROS-Llama therefore chooses a fixed period of 5 ms for all reservations.

Like many other parameters, choosing the right reservation period is a trade-off. On the one

139

CHAPTER 6. EVALUATION

hand, shorter periods reduce the reservation blackout window and guarantee prompter supply

delivery. For example, consider two reservations, ra and rb, with the same bandwidth of 50%

but different periods: ra guarantees a budget of 5 ms every 10 ms, while rb guarantees a budget

of 2.5 ms every 5 ms. Then ra is guaranteed to provide a millisecond of computation time after

11 ms (i.e., sbfa(11 ms) = 1 ms), while rb already supplies a millisecond of budget within 6 ms

(i.e., sbfb(6 ms) = 1 ms). Choosing a shorter period thus strengthens the supply guarantee at no

cost in processor bandwidth.

On the other hand, shorter periods increase scheduling overhead. The shorter the reservation

period, the more frequently the OS scheduler needs to switch between the reservations to fulfill

the supply guarantees. At some point, such overheads become non-negligible. ROS-Llama

thus needs to choose a reservation period that is as short as possible but still entails negligible

overheads.

We evaluated this trade-off on a synthetic ROS model. The system consisted of 10 timers,

each served by a dedicated executor. The executors were all assigned to the same CPU; each

received a bandwidth of 10% while the period varied between 0.1 ms and 10 ms. Figure 6.12

compares the measured response time of the first timer3 as a boxplot. Each box covers the range

between the 25-percentile and the 75-percentile, with the median marked with an orange line.

The whiskers show the minimal and maximal observed response times. The dashed line marks

the response-time bound predicted by the analysis.

The plot shows the two competing effects discussed above. The response-time bound grows

larger as the period increases due to the weakening supply guarantee. Towards shorter periods,

the graph shows the harmful effects of scheduling overhead. Starting with a period length of 2 ms,

such overheads become significant enough that they can no longer be neglected by the response-

time analysis. As a result, the observed response time exceeds the computed bound. ROS-Llama

has to choose a period that stays clear of these short periods to ensure the response-time analysis

remains applicable. We chose 5 ms as the default period; given that 2 ms is the highest period for

3Since the system setup is symmetrical, it makes no difference which timer is measured.

140

6.4. TUNING THE RESERVATION PERIOD

0.1 1 2 3 4 5 6 7 8 9 10
Period length (ms)

0

10

20

30

40

Re
sp

on
se

s t
im

es
 (m

s) RT bound

Figure 6.12: Observed response time under various periods.

0 5 10 15 20 25 30
 (ms)

0

1

2

sb
f(

) (
m

s)

period=7 ms
period=8 ms

Figure 6.13: Supply-bound functions for two reservations with the same bandwidth (10%) but
different periods. The reservation with the longer period has a longer blackout
window but still surpasses the other reservation’s supply in the shaded areas.

which we observed the response time to exceed the bound, this provides a safety margin of 3 ms

(i.e., a factor of 2.5).

Figure 6.12 further hints toward another benefit of a better period choice, as the response-time

bound curve is not monotonic. A period of 8 ms, for example, yields a lower response-time bound

and lower scheduling overheads than a period of 7 ms.

The reason for this effect can be observed in Fig. 6.13, which shows the supply-bound function

for the two reservations. Although the 8 ms-reservation (dashed line) exhibits a longer blackout

window, it guarantees more supply than the 7 ms-reservation for some interval lengths (shaded

in gray). If the worst-case demand of a reservation’s callbacks lies in the space between the

solid and the dashed line during one of those shaded areas, the response-time bound for the

141

CHAPTER 6. EVALUATION

8 ms-reservation will be lower than the response-time bound for the 7 ms-reservation.

These results suggest that ROS-Llama might be able to achieve both lower response-time

bounds and lower scheduling overheads with a more dynamic period assignment scheme. We

will revisit this avenue for future work in Chapter 7.

6.5 Data Aging

Recall from Section 5.3.6 that data aging is configured with four parameters: the merging period

T , the merging weight α, the trigger thresholdG, and the safety margin S. Unfortunately, it is not

obvious how to configure these parameters since the configuration has to strike a balance between

two conflicting goals. On the one hand, an execution-time curve should reliably upper-bound the

processor time consumed by its callback (it should have predictive power). On the other hand, an

execution-time curve should not be overly pessimistic and should gradually adapt to reductions

in execution-time demand (it should be adaptive).

The right balance between predictive power and adaptivity depends on both the workload

and the requirements of the robot. In the current version, ROS-Llama therefore leaves the

configuration of this mechanism to the system integrator. As a first step towards a more automated

solution, this section evaluates how well ROS-Llama’s data-aging mechanism allows the system

integrator to achieve the desired trade-off between the two goals.

Evaluation setup. We evaluated data aging on a synthetic example, consisting of a periodic

event source with period 10 ms and a pre-defined execution-time demand over time. Such a

synthetic benchmark is precisely reproducible and allows us to isolate the effects of data aging

from any external measurement noise or variation in system behavior. It thus serves as an initial

feasibility study for the data aging mechanisms and lays the groundwork for future exploration.

In this evaluation, we consider four execution-time demand patterns for the event source

(Fig. 6.14): a spiking pattern, a fluctuating pattern, a rapidly oscillating pattern, and a slowly

oscillating pattern. Each of the patterns exercises a different aspect of the data-aging mechanism.

142

6.5. DATA AGING

0 20 40 60 80 100 120
Time (s)

0.0

2.5

5.0

7.5

10.0

Ca
llb

ac
k

ex
ec

ut
io

n
tim

e
(m

s)

(a) The spiking workload.

0 20 40 60 80 100 120
Time (s)

0.0

2.5

5.0

7.5

10.0

Ca
llb

ac
k

ex
ec

ut
io

n
tim

e
(m

s)

(b) The fluctuating workload.

0 10 20 30 40 50 60
Time (s)

0.0

2.5

5.0

7.5

10.0

Ca
llb

ac
k

ex
ec

ut
io

n
tim

e
(m

s)

(c) The rapidly oscillating workload (0.1 Hz).

0 10 20 30 40 50 60
Time (s)

0.0

2.5

5.0

7.5

10.0

Ca
llb

ac
k

ex
ec

ut
io

n
tim

e
(m

s)

(d) The slowly oscillating workload (0.05 Hz).

Figure 6.14: Consumed processor time per invocation for the four scenarios.

In the spiking workload, the execution-time demand remained at a fixed level, except for a

brief spike in the beginning, during which the demand doubles. In our evaluation scenario, the

event source busy-waited for approximately one millisecond in each iteration. At some point

(between 1.8 and 2.1 seconds into the experiment), the event source consumed twice as much

computation time and reverted to the original runtime afterward.

A non-adaptive execution-time curve would account for the spike’s peak demand during the

entire experiment. Data aging allows the tracer to discount the spike and gradually revert to the

original bound. The spiking workload thus evaluates how effectively the data-aging mechanism

exploits changes in demand.

In the fluctuating workload, the execution-time demand was drawn from a static distribution.

In our evaluation scenario, the event source drew the execution-time requirements from a Gaussian

distribution with a mean and standard deviation of 1 ms. The execution-time behavior thus

143

CHAPTER 6. EVALUATION

fluctuated between iterations but was drawn from the same distribution throughout the experiment.

Attempting to adapt to temporary and random lulls in the demand would lead to prediction errors.

This workload thus evaluates whether the data-aging mechanism is robust to noise.

The two oscillating workloads combine random noise, which the data-aging mechanism

should not adapt to, with a slowly-changing demand, which the data-aging mechanism should

adapt to. The system integrator should be able to configure ROS-Llama to adapt to the slow,

long-term demand changes but not to any higher-frequency fluctuations.

In both oscillating workloads, the event source drew the execution-time requirement from a

Gaussian distribution with a standard deviation of one millisecond and a time-varying mean. The

mean followed a sine curve that oscillated around the center point 3 ms with an amplitude of

3 ms and a frequency of 0.1 Hz for the rapidly oscillating workload and 0.05 Hz for the slowly

oscillating workload.

We ran each of the workloads for two minutes, corresponding to 12,000 activations. To

ensure that the results depend only on the data-aging parameters, we executed each workload

once, recorded the produced trace stream, and replayed it for each considered set of data-aging

parameters. The tracer thus received the same data every time. In the following, we first evaluate

how the choice of α and T influences the effectiveness of the data-aging mechanism for the

spiking workload (Section 6.5.1). In a second step, we evaluate how those same parameters fare

under the fluctuating workload and demonstrate how the safety margin and the trigger threshold

can be used to prevent overfitting to noise (Section 6.5.2). Finally, we evaluate the parameters

under the oscillating workload. We demonstrate which parameters strike a balance between

exploiting demand changes and protecting against overfitting and explore how well the data-aging

mechanism is able to discriminate between low-frequency demand changes and high-frequency

noise (Section 6.5.3).

144

6.5. DATA AGING

200 400 600 800 1000
Merging period T (activations)

0.2

0.4

0.6

0.8

1.0

Av
g.

 o
ve

re
st

im
at

io
n

(m
s)

(a) Adaptivity.

200 400 600 800 1000
Merging period T (activations)

0

2

4

6

8

10

12

Nu
m

be
r o

f p
re

di
ct

io
n

er
ro

rs

=0
=0.2
=0.4

=0.6
=0.8
=1.0

(b) Predictive power.

Figure 6.15: Data-aging performance on the spiking workload (G=90%, S=0).

6.5.1 Spiking Workloads

In our evaluation of the spiking workload, we evaluated various settings of the two parameters T

and α in terms of their adaptivity and predictive power (Fig. 6.15). G and S are fixed at 90% and

0%, respectively. The case α=0, which disables data aging entirely, serves as a baseline.

The adaptivity (Fig. 6.15a) is measured through the average execution-time overestimation, i.e.,

the average difference between ET(1) and the actual execution time of the instance. Cases where

the actual execution time was higher than ET(1) are counted as zero for this purpose. Successful

adaptation leads to tighter bounds and thus lower average overestimation, while overly timid

adaptation leads to more pessimistic bounds and a higher average overestimation.

The predictive power (Fig. 6.15b) is measured by counting how many callback instances

exceeded the current execution-time bound at the time of their activation. A successful adaptation

should produce as few prediction errors as possible.

Compared to the baseline α = 0, data aging resulted in significantly lower execution-time

overestimation in the spiking workload scenario. The non-adaptive algorithm never recovered

from the spike and overestimated the execution time by the size of the spike (1 ms) during the

entire experiment. In contrast, choosing α=0.8 and T =200 reduced the average overestimation

by 80% without increasing the number of prediction failures.

145

CHAPTER 6. EVALUATION

Further note how both shorter merging intervals and lower merging weights had a similar

effect of reducing overestimation: a merging weight of α= 0.2 at T = 300 yielded a similar

overestimation reduction as a merging weight of α=0.6 at T =700. The reason is easy to see:

every time the short-term curve is merged into the execution-time curve, older measurements are

diluted. Reducing the merging period hence increases the adaptivity unless the merging weight is

reduced to compensate.

The number of prediction errors in the spiking workload was the same as in the non-adaptive

case for most weights. However, for α≥ 0.8 and T = 100, configurations appear to overfit to

random noise in the callback execution times. These settings are clearly too aggressive.

6.5.2 Fluctuating Workloads

Figure 6.16 compares both the adaptivity and predictive power under varying values of α and

T . The adaptivity was again measured through the average overestimation (top row), while the

predictive power was measured through the number of prediction errors (bottom row). We first

consider only S=0%, which is shown in the left column of the figure.

The non-adaptive setting (α=0) achieved an average overestimation close to 3 ms, i.e., three

standard deviations. This is about the expected overestimation for a bound that covers 99.7% of

samples in a normal distribution according to the three-sigma rule [96].

With T ≤600, the data-aging mechanism attempted to adapt to the noise, resulting in lower

overestimation but more prediction errors. With T ≥600, no such adaptation happens; the setting

performs about the same as the non-adaptive setting. A merging period of T =600 thus avoided

overfitting in the fluctuating workload while still reducing the average overestimation by 60–80%

in the spiking workload.

In addition to a longer adaptation period, there are two other parameters that can help to reduce

the number of prediction errors: the safety margin S and the trigger threshold G. We begin with

the safety margin.

146

6.5. DATA AGING

2.6

2.8

3.0

Av
g.

 o
ve

re
st

im
at

io
n

(m
s)

No margin 5% margin

=0
=0.2
=0.4

=0.6
=0.8
=1.0

200 400 600 800 1000
Merging period T (activations)

0

20

40

60

80

Nu
m

be
r o

f p
re

di
ct

io
n

er
ro

rs

200 400 600 800 1000
Merging period T (activations)

Figure 6.16: Data-aging performance on the fluctuating workload (G=90%).

0 5 10 15 20
Safety margin S (percent)

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Av
g.

 o
ve

re
st

im
at

io
n

(m
s)

(a) Adaptivity.

0 5 10 15 20
Safety margin S (percent)

10

20

30

40

Nu
m

be
r o

f p
re

di
ct

io
n

er
ro

rs

T=100
T=200
T=300

T=400
T=500
T=600

(b) Predictive power.

Figure 6.17: Effect of safety margins under the fluctuating workload (G=90%, α=0.4).

147

CHAPTER 6. EVALUATION

Safety margin. The effects of the safety margin (here: S = 5%) are depicted in the right

column of Fig. 6.16. The average overestimation is shifted upwards by about 0.2 ms compared

to the S = 0% setting. The number of prediction errors drops nonlinearly, i.e., more strongly

at shorter merging periods than at longer merging periods. The safety margin thus shifts the

average overestimation by a fixed amount but superlinearly dampens the mispredictions of more

aggressive adaptation policies.

The effect can be observed more closely in Fig. 6.17, which shows the development of the

overestimation and the prediction errors under different safety margins and merging periods for

α= 0.4. The overestimation increases linearly, while the number of mispredictions decreases

more quickly for shorter merging periods than for longer merging periods. However, particularly

for the longer merging periods, there are visible plateaus where increases in the safety margin

do not improve the predictive power (but do increase the average overestimation). For example,

T =500 does not reduce its prediction errors at all between 0.5% and 4.5%.

The experiments also show that it can be better to choose a more aggressive adaptation policy

with a larger safety margin than a less aggressive adaptation policy with a smaller safety margin.

As Fig. 6.16 shows, choosing the parameters α=0.2 and T =200 with a safety margin of S=5%

yields the same adaptivity and predictive power as the non-adaptive α=0 configuration without

a safety margin. The adaptive variant thus performed about equally well on the fluctuating

workload but would perform significantly better on the spiking workload.

Trigger threshold. The second parameter that protects against overfitting is the trigger

threshold G. To compare it to the safety margin, we compare the predictive power and the

adaptivity for a range of merging intervals and trigger thresholds (Fig. 6.18). The gray vertical

line marks the setting G=90% (the setting used in Fig. 6.16) and corresponds to the S=0 setting

in Fig. 6.17.

The results show that the trigger threshold reduced the number of prediction errors significantly

without the increase in overestimation that accompanies the safety margin. For example, a trigger

148

6.5. DATA AGING

50 60 70 80 90 100
Trigger threshold G (percent)

2.6

2.7

2.8

2.9

Av
g.

 o
ve

re
st

im
at

io
n

(m
s)

(a) Adaptivity.

50 60 70 80 90 100
Trigger threshold G (percent)

10

20

30

40

50

Nu
m

be
r o

f p
re

di
ct

io
n

er
ro

rs

T=100
T=200
T=300

T=400
T=500
T=600

(b) Predictive power.

Figure 6.18: Effect of trigger thresholds under the fluctuating workload (S=0, α=0.4).

threshold of 75% reduced the prediction error of the T = 200 and T = 300 configurations to

the level of the T = 600 configuration, which is equal to the non-adaptive error rate (Fig. 6.16).

The trigger threshold thus effectively disabled aging for the fluctuating workload (where it is

ineffective), but kept data aging enabled in the spiking workload (where it is highly beneficial).

Conclusion. For the fluctuating workload, the trigger threshold was more effective than the

safety margin. Both prevented overfitting in the fluctuating workload while still adapting to the

changing demand in the spiking workload, but only the trigger threshold achieved this result

without any additional overestimation. For T =200, a trigger threshold of 75% reduced prediction

errors to the level of the non-adaptive setting without any additional overestimation. To achieve

the same result with a safety margin, a margin of 15% would have been needed (Fig. 6.17), which

would have increased the average overestimation by 10% (0.3 ms).

6.5.3 Oscillating Workloads

So far, we only considered extreme cases: either any form of adaptation was beneficial without any

drawbacks (as in the spiking workload), or it was always harmful (as in the fluctuating workload).

In contrast, the oscillating workloads require a more controlled and targeted adaptation. The

149

CHAPTER 6. EVALUATION

execution-time curve should follow the peaks and troughs of the sine wave to avoid undue

pessimism but should not overfit to the Gaussian noise.

We first compare the adaptivity and predictive power without a safety margin (Fig. 6.19). The

left column shows the rapidly oscillating workload (0.1 Hz) and the right column shows the

slowly oscillating workload (0.05 Hz).

As we can see in the bottom row, all settings caused a large number of prediction errors. Even

in the non-adaptive case, there were about 50 errors, while adaptive configuration settings (i.e.,

T ≤500) caused hundreds of prediction errors. These errors stem from the upwards slope of the

sine wave. Once the bound had been reduced below the peaks of the sine wave, it underestimated

the execution-time demand when the upwards slope arrived. However, since the execution-

time demand grew gradually, each prediction error during the slope only slightly increased the

execution-time estimate. This led to another prediction error shortly thereafter: the estimate kept

lagging behind the processor demand.

The number of mispredictions drops to levels comparable to the non-adaptive setting only at

T =600 for the rapidly oscillating workload and beyond 700 in the slowly oscillating workload.

However, as shown by the top row, the average overestimation reaches the level of the non-

adaptive case as well: choosing T ≥600 is thus equivalent to disabling the data-aging mechanism

entirely.

Safety margin. To address the large number of mispredictions we increased the safety margin

to 5% (Fig. 6.20). We keep the results of the non-adaptive variant without the safety margin as a

baseline, which is depicted as a horizontal dotted line.

The rapidly oscillating workload produced significantly fewer prediction errors with S=5%

than without a safety margin. For α≤0.4, prediction errors were below the non-adaptive baseline.

Even at the highest merging weight α= 1, prediction errors remained below the baseline for

T ≥250.

At the same time, for any T ≤ 600, and particularly for T ≤ 400, the overestimation is still

150

6.5. DATA AGING

1.5

2.0

2.5

3.0

3.5

4.0

Av
g.

 o
ve

re
st

im
at

io
n

(m
s)

Rapidly-oscillating workload (0.1 Hz)

=0
=0.2
=0.4

=0.6
=0.8
=1.0

Slowly-oscillating workload (0.05 Hz)

200 400 600
Merging period T (activations)

0

200

400

600

800

Nu
m

be
r o

f p
re

di
ct

io
n

er
ro

rs

200 400 600
Merging period T (activations)

Figure 6.19: Data-aging performance on the oscillating workload with a 0% safety margin.

2.0

2.5

3.0

3.5

4.0

Av
g.

 o
ve

re
st

im
at

io
n

(m
s)

Rapidly-oscillating workload (0.1 Hz)

=0
=0.2
=0.4

=0.6
=0.8
=1.0

Slowly-oscillating workload (0.05 Hz)

200 400 600
Merging period T (activations)

0

25

50

75

100

125

Nu
m

be
r o

f p
re

di
ct

io
n

er
ro

rs

200 400 600
Merging period T (activations)

Figure 6.20: Data-aging performance on the oscillating workload with a 5% safety margin.

151

CHAPTER 6. EVALUATION

0 5 10 15 20
Safety margin S (percent)

3.0

3.5

4.0

4.5
Av

g.
 o

ve
re

st
im

at
io

n
(m

s)

(a) Adaptivity.

0 5 10 15 20
Safety margin S (percent)

0

100

200

300

400

Nu
m

be
r o

f p
re

di
ct

io
n

er
ro

rs

T=100
T=125
T=150

T=175
T=200
T=225

(b) Predictive power.

Figure 6.21: Effect of safety margins under the slowly oscillating workload (G=90%, α=0.2).

significantly reduced compared to the non-adaptive case, demonstrating that the data-aging

process adapted to the sine wave pattern.

Overall, data aging with the safety margin thus improved upon the baseline in this scenario.

For T =175 and α=0.2, prediction errors remained below 10 while the average overestimation

was reduced by 6% (0.25 ms).

We can conclude that the safety margin allowed ROS-Llama to anticipate demand increases.

Although the execution-time bound was still raised in small steps as the demand slowly increased,

the bound no longer lagged behind the demand but stayed one step ahead.

The improvement is even clearer in the slowly oscillating workload. Here, choosing T =175

and α=0.2 resulted in zero prediction errors and an average overestimation that is 18% (0.75 ms)

below the baseline. Overall, the baseline without safety margins performed worse on both metrics

than all observed configurations with T ≤600.

To observe how sensitive this improvement is to the value of the safety margin, we again

compare the performance of the slowly oscillating workload under various safety margins

(Fig. 6.21). The result shows that the range between 0 and 5% was responsible for the significant

reduction in prediction errors, reducing the number of errors from at least 250 errors to the 0–25

errors observed in Fig. 6.20. However, further increases had only limited benefits.

152

6.5. DATA AGING

Frequency effects. Comparing the two oscillating workloads, it is striking that the slowly

oscillating workload achieved better results along both dimensions, predictive power and adaptiv-

ity, than the rapidly oscillating scenario: data aging seems to perform better for slowly-changing

demand than for quickly-changing demand.

The reason is that the slowly-changing demand exhibits a larger frequency difference between

the long-term processor demand changes and the random noise. To avoid overfitting on the noise,

the model extractor needs to use an adaptation period that is large enough that high-frequency

noise cancels out, as we observed in the case of the fluctuating workload. However, if the

merging interval becomes too large, the low-frequency variation cancels out as well. This turns

the data-aging mechanism ineffective. A smaller frequency difference between the noise and the

demand change hence leaves a smaller range of possible merging intervals.

For example, recall that the experiments on the fluctuating workload showed that a merging

period of T = 600 reliably avoided overfitting. However, this merging period was too long to

capture the 0.1 Hz-fluctuation of the rapidly oscillating workload and therefore did not improve

upon the baseline in that scenario (Fig. 6.19). If the data-aging mechanism has to follow the

rapidly oscillating workload, the system integrator has to compromise on robustness against noise.

A workload that changes more slowly does not have this issue and allows the system integrator to

optimize the merging period for robustness only.

Trigger threshold. In the experiments with the fluctuating workload, the trigger threshold

prevented overfitting at a lower cost in overestimation than the safety margin. To evaluate whether

the results also apply in the oscillating setting, we again compare the adaptation performance

under various trigger thresholds and with α=0.2 (Fig. 6.22). The safety margin was set to 5% in

order to adapt to the slowly-increasing demand on the upwards slopes of the sine curve, which

cannot be addressed by the trigger threshold.

The results show that reducing the trigger threshold improved predictive power for more

aggressive adaptation policies (i.e., shorter merging intervals) but also increased average overesti-

153

CHAPTER 6. EVALUATION

50 60 70 80 90 100
Trigger threshold G (percent)

2.6

2.8

3.0

3.2

3.4

3.6

Av
g.

 o
ve

re
st

im
at

io
n

(m
s)

(a) Adaptivity.

50 60 70 80 90 100
Trigger threshold G (percent)

2

4

6

8

10

Nu
m

be
r o

f p
re

di
ct

io
n

er
ro

rs

T=100
T=125
T=150

T=175
T=200
T=225

(b) Predictive power.

Figure 6.22: Effect of trigger thresholds under the slowly oscillating workload (S=5%, α=0.2).

mation. In some cases, tuning the trigger threshold realized this trade-off more favorably than

other parameters. For example, with a trigger threshold of 80%, the T = 150 setting made the

same number of prediction errors as settings with longer merging periods while providing lower

average overestimation. In other cases, tuning the trigger threshold turns out to be less effective

than tuning the merging period. Reducing the threshold below 80%, for example, increased the

average overestimation of the T =150 setting without any gain in prediction precision relative to

higher merging periods.

All in all, the evaluation shows that there is no clear guideline in which cases the trigger

threshold improves results. Although we can identify individual cases where one configuration is

superior to the other on both adaptivity and predictive power, there is no obvious general rule.

Notably, there are various ranges where a lower trigger threshold did not improve prediction

accuracy at all but increases average overestimation (e.g., T = 125 and G ∈ [60%, 90%], or

T =150 and G ∈ [50%, 80%]). Future work that identifies when such plateaus occur might yield

a more general rule for selecting a suitable trigger threshold.

154

6.5. DATA AGING

6.5.4 Summary

The experiments show that ROS-Llama’s data-aging method significantly improves upon the

non-adaptive execution-time curve measurement. We considered four synthetic workloads with

different properties, which allowed us to observe the effect of the data aging mechanism under

controlled and repeatable circumstances, without distortions from sensor noise or varying system

behavior. For the spiking and the two oscillating workloads, we found configuration settings

that improve upon the non-adaptive baseline on predictive power, adaptivity, or both. For the

fluctuating workload, which cannot possibly benefit from data aging, we found configurations

that perform no worse than the non-adaptive baseline.

Our initial investigation yields some suggestions on how the parameters should be chosen to

address certain workload properties. A workload that is prone to gradual increases should use

a safety margin to reduce prediction errors during the upwards slope. Workloads with highly

varying and noisy execution times should use long merging periods or low trigger thresholds.

Finally, the merging weight α can be used to fine-tune the aggressiveness of the adaptation

mechanism.

Overall, data aging is an effective approach to trade predictive power against adaptivity and vice

versa. The four parameters allow system integrators to adapt to various workloads, in particular

spiking, fluctuating, and oscillating workloads. However, the interaction between the parameters

and the workload is complex, and it is not obvious how a suitable set of parameters could be

found automatically. Automatically finding a suitable configuration for data aging therefore

remains a promising area of future work.

155

7 Conclusion

In this dissertation, we investigated the timing behavior of the ROS framework and proposed

solutions to enforce timing correctness for ROS applications. To this end, we first investigated

the timing behavior of the ROS executor and proposed a real-time model that takes this behavior

into account (Chapter 3). We then developed a response-time analysis for this timing model

(Chapter 4). However, applying response-time analysis to ROS systems is challenging in practice

due to the requirements of the robotics domain and the distributed development style of the ROS

ecosystem. In Chapter 5 we addressed these challenges with ROS-Llama, an automatic latency

manager for ROS that automatically configures real-time scheduling parameters for a ROS system

based on only a simple, declarative specification of latency goals.

In this final chapter, we first summarize the main contributions and results of the thesis and

then conclude with a discussion of future work.

7.1 Summary of Results

This dissertation provides three main contributions. First, it characterizes the timing behavior

of the ROS framework and defines a system model that incorporates these properties. Second,

it defines a response-time analysis to bound the end-to-end response time of processing chains

within this model. Third, it identifies properties of ROS and requirements of the robotics domain

that make it challenging to apply static response-time analysis in practice. To overcome these

challenges, the dissertation then proposes ROS-Llama, an automatic latency manager for ROS

systems. In the following, we briefly recapitulate the main insights and results.

157

CHAPTER 7. CONCLUSION

7.1.1 Modeling the ROS framework

ROS offers a uniform and high-level interface to ROS developers. Unfortunately, this abstraction

obscures the timing behavior of the system. To address this issue, Chapter 3 contains a detailed

description of the ROS framework’s timing behavior. We identify the unusual scheduling

algorithm implemented by the standard ROS executor. To model its effect on the callback

execution order, we identify six basic properties that describe the executor’s behavior.

The analysis of the model reveals that the executor algorithm has changed in subtle ways

over time. More specifically, timers previously enjoyed a privileged status that has been silently

removed in the “Eloquent Elusor” version. Given the continuous developments and improvements

in the ROS infrastructure, such changes are easy to miss. We therefore develop a model validation

tool that automatically verifies the derived scheduler properties by sending a specific sequence of

messages and observing the resulting callback execution order. Using this validation tool, we

confirm the correctness of our characterization for the “Dashing Diademata” and “Foxy Fitzroy”

versions.

Based on these properties, we construct a real-time system model for ROS applications

(Section 3.2). The model represents a ROS system as a directed graph of callbacks. Each

callback is triggered periodically or by an external event and may trigger other callbacks during

its runtime. Each callback is further assigned an executor, which it may share with other callbacks.

Non-executor threads are integrated as virtual callbacks called event sources. As the evaluation

shows, the model is expressive enough to represent real-world ROS packages yet simple enough

to allow for efficient response-time analysis.

To cope with the large execution-time variance prevalent in ROS systems, a callback’s

execution-time demand is described as an execution-time curve instead of the more traditional

worst-case execution time (WCET). Although execution-time curves increase the complexity of

the model and particularly the analysis, the evaluation shows that the results are well worth the

cost. In a realistic ROS callback graph, the more sophisticated execution-time model improves

response times by a factor of up to 60.

158

7.1. SUMMARY OF RESULTS

The evaluation confirms that the model is expressive and accurate enough to model real-world

ROS systems (Section 6.1). However, the evaluation reveals that the implementation of the

communication layer may not behave as a transparent and reliable transport medium under load

(Section 6.3.3). Specifically, we observed message propagation delays even if the sender and

receiver of the message are the same thread and encountered excessive latency spikes in overload

situations. Timing-sensitive ROS systems thus need to ensure that the underlying communication

layer fulfills the basic middleware requirements and provides timely message delivery even under

load.

7.1.2 Response-time Analysis

To predict the timing behavior of ROS applications, Chapter 4 develops a worst-case response

time analysis for the ROS timing model. The analysis improves upon established techniques in

three main areas: support for execution-time curves, a round-robin analysis, and a busy-window

analysis with improved support for intra-executor chains.

Support for execution-time curves. The analysis explicitly supports execution-time

curves instead of scalar WCETs. As part of this support, Section 4.2.3 proves how to exploit

the non-preemptive policy of the ROS executor to reduce the amount of interference to consider.

Compared to WCET-based analyses, this is particularly challenging since execution-time curves

blur the line between the cost of self-interfering instances and the cost of the instance under

analysis itself.

The round-robin approach. Section 4.2 describes a novel analysis to exploit the round-robin

property of the ROS executor. Compared to busy-window-based approaches, the round-robin

bound limits the possible interference by bursty callbacks much more precisely. In the evaluation,

the round-robin bound reduces the response-time bound by a factor of up to 3 compared to the

competing, busy-window-based analysis approach proposed in this dissertation.

159

CHAPTER 7. CONCLUSION

The busy-window approach. Finally, Section 4.3 describes a competing analysis approach

based on the busy-window principle. The main contribution over prior work is an improved

handling of intra-executor chains, which exploits that the callback instances contained in an

intra-executor chain instance share a common busy window. This insight allows for a more

precise activation curve derivation and reduced chain response times.

The evaluation in Section 6.2 shows that neither the round-robin approach nor the busy-window

approach dominates the other. In practice, both approaches should be combined to exploit the

strengths and compensate for the weaknesses of both approaches.

7.1.3 Automatic Latency Management

Applying a response-time analysis to ROS systems is difficult in practice. To bridge the gap

between the two—and make formal response-time analysis not only possible but also practical in

ROS systems—Chapter 5 first identifies the main hurdles and requirements that make response-

time analysis difficult to apply. Based on the resulting nine requirements (Section 5.1), we

conclude that a static provisioning and verification approach is not feasible for common ROS

systems and that a more dynamic and adaptive approach is needed.

To address this challenge, we then propose ROS-Llama, the ROS Live Latency Manager. The

main contribution of ROS-Llama is that it brings real-time scheduling to ROS in a package that is

easy to use. The user provides only a simple and declarative latency goal specification stating

the latency goals and desired degradation order. Crucially, the specification presupposes neither

real-time systems expertise nor a detailed understanding of the system internals.

The implementation of ROS-Llama consists of two main components: a model extractor

that automatically derives a timing model of the running application and a budget manager

that uses the derived timing model to provision the ROS threads in accordance with the latency

specification.

160

7.1. SUMMARY OF RESULTS

The Model Extractor. The implementation of the model extractor and the technical challenges

involved are described in Section 5.3. The extractor is informed of important events, such as

the completion of a callback, by a set of tracepoints in the ROS core libraries. This way, the

extractor can extract a model without requiring any modification to the system under analysis.

The extractor then constructs a timing model of the system based on the stream of trace events.

While regular callbacks can be extracted precisely, the extraction of event sources, which interact

less with the ROS library, requires a few heuristics.

A challenging aspect of model extraction is that the extractor needs to derive a static model for

a dynamic system. To follow and adapt to dynamic changes, Section 5.3.5 describes the heuristics

used by the model extractor to identify phase changes and other reasons to discard previously

collected information.

However, such automatic heuristics are usually not able to follow more implicit changes in

the execution-time demand, for example those caused by changes in the environment. A more

comprehensive solution is provided by the data aging mechanism, which enables ROS-Llama

to slowly phase out existing execution-time measurements if the system behavior demonstrates

significant overestimation.

The evaluation on a set of synthetic workloads (Section 6.5) shows that the proposed data

aging mechanism, properly configured, can significantly reduce overestimation with only minor

effects on the misprediction rate. The data aging parameters allow the user to fine-tune the

mechanism for the intended workload and target different points on the tradeoff between accuracy

and adaptability.

Due to the complexity of the problem and the situation-dependent tradeoff between bound

accuracy and adaptation speed, the data aging mechanism requires manual configuration by the

user, though. Tuning the data aging mechanism automatically or based on only a high-level

declarative specification remains future work.

161

CHAPTER 7. CONCLUSION

The Budget Manager. The ROS-Llama budget manager uses the extracted model to auto-

matically find a set of real-time scheduling parameters for the running system. As described in

Section 5.4, the budget manager uses SCHED DEADLINE in a partitioned configuration to

provision appropriate budgets for the ROS executors. Due to limitations in the Linux scheduler,

critical system threads are isolated on a separate core, which they share with the ROS-Llama

infrastructure.

The appropriate budget for each executor is then derived using response-time analysis. For

each chain, the budget manager first identifies a minimal schedulable set of budgets without

considering the chain latency constraints. It then incrementally increases the budgets until the

chain is guaranteed to fulfill its latency goal. If timeliness cannot be guaranteed this way, the

budget manager degrades the chain and all chains below it in the degradation order to ensure the

continued timeliness of the earlier chains.

The evaluation shows that ROS-Llama successfully controls the end-to-end latency of critical

processing chains and ensures controlled degradation under load. In an experiment with a mobile

robot using three real-world ROS packages, ROS-Llama achieves fewer latency goal violations

than the default CFS system and a criticality-monotonic SCHED RR assignment. Although

ROS-Llama incurs significant costs, the results demonstrate that the benefits outweigh the costs.

7.2 Future Work

The evaluation has demonstrated that the ROS timing model and ROS-Llama are effective ways

to predict and control the worst-case latency of real-world ROS systems. In the following, we

suggest six promising directions to expand further upon these initial results.

The first two suggestions address limitations in the platform layers beneath the ROS framework.

We first reiterate the need to identify a well-behaved middleware (Section 7.2.1). We then point

out four limitations in the Linux kernel that were not obvious to us initially and that hinder

ROS-Llama’s efforts to enforce timing isolation on ROS workloads (Section 7.2.2).

162

7.2. FUTURE WORK

The final four suggestions address improvements in the timing model and ROS-Llama. We

first list a few promising extensions to the timing model that would further expand its scope and

expressiveness (Section 7.2.3). We then suggest potential improvements to ROS-Llama’s budget

manager (Section 7.2.4) and how a stochastic response-time analysis might reduce the inherent

pessimism in the current response-time analysis approach (Section 7.2.5). Finally, we discuss the

next steps towards a more automatic data aging mechanism, which would make ROS-Llama more

adaptive and allow it to exploit changes in the managed workload more aggressively Section 7.2.6.

7.2.1 Towards a Well-Behaved Middleware

The evaluation (Section 6.3) demonstrated that the employed DDS implementation does not fulfill

the basic middleware requirements identified in Section 2.1.2. Although ROS-Llama managed to

prevent the extreme latency spikes observed in the SCHED RR baseline by proactively degrading

the tracker chain, the fact that those latency spikes can happen threatens to undermine timing

isolation between the executors.

The logical step to address this issue is to replace the middleware with another implementation

that does fulfill the basic middleware requirements. The DDS implementation we used in the

evaluation, Cyclone DDS, is under active development and recently integrated the iceoryx [46]

middleware for in-memory communication [45]. It is possible that the middleware limitations

observed in the evaluation are going to be resolved with this change. It is also worth investigating

other DDS vendors and the various non-DDS middlewares supported by ROS.

Still, even with a middleware that fulfills the basic middleware requirements, the timing analysis

treats the middleware as a black box. It therefore cannot account for the numerous Quality-of-

Service (QoS) options offered by DDS; the documentation of one implementation [100] lists

alone 53 parameters affecting, among other things, the number of threads created, the scheduling

priority of several DDS support threads, or the message transmission order.

Modeling the underlying communication infrastructure in more detail would allow ROS-

Llama to make more informed choices towards scheduling the DDS communication threads,

163

CHAPTER 7. CONCLUSION

and might even allow ROS-Llama to automatically select appropriate QoS options depending

on the latency requirement. A good starting point along those lines is prior work on analyzing

implementation-independent QoS options [57, 93].

It is worth noting that such a model would most likely not generalize across DDS implementa-

tions. Although many QoS options are standardized, other aspects like the scheduling policy for

DDS threads are intentionally left aside by the DDS standard as implementation-defined.

7.2.2 Addressing Limitations in Linux

ROS-Llama benefits from Linux’s real-time capabilities to a great extent. The timing isolation

afforded by SCHED DEADLINE is central to ROS-Llama’s approach. Nonetheless, certain

limitations in the Linux kernel posed surprising challenges.

High-latency I/O. In our experiments, we found that laser-scanner and odometry data would

sometimes arrive at the Turtlebot driver threads only after excessive delays. It turned out that

data arriving on USB serial ports traverses the TTY layer, which involves CFS-scheduled

kernel threads (even in a PREEMPT RT kernel) that are easily starved by real-time processes.

Although we were ultimately able to sidestep this problem by forcing Linux’s “unbound kworker

threads” onto the system processor, it serves as a reminder that real-time I/O remains a frequently

overlooked and understudied problem.

Scheduler inversion. SCHED DEADLINE threads always take priority over fixed-priority

threads. This simplifies the analysis but also causes many practical issues. Although the assigned

reservation bandwidths limit this delay somewhat, it can still be substantial (i.e., the maximum

EDF busy-window length). This design is particularly unfortunate since many system-critical

kernel threads (e.g., disk drivers) are scheduled with SCHED FIFO or SCHED RR priorities.

Assigning “too much” bandwidth to reservations can thus starve critical kernel threads and

actually lead to kernel panics. A principled solution might be to introduce “scheduling-class

164

7.2. FUTURE WORK

reservations” that explicitly reserve processor time for SCHED FIFO, SCHED RR, and CFS

in the SCHED DEADLINE schedule.

Soft reservations needed. Mainline Linux presently supports only hard reservations, which

unconditionally cut off a thread that exhausts its reservation’s budget from processor service

until the next replenishment time (cf. Section 2.2.2). This rate-limiting behavior can be highly

problematic: underestimating the required budget even by a minuscule amount results in a

massive latency increase, since once a thread’s under-dimensioned budget runs out, it must wait

even if it could complete if it were a CFS thread. ROS-Llama can therefore use reservations only

if it is certain that the budget suffices for the latency goal. In contrast, soft reservations would

allow under-provisioned threads to receive at least some guaranteed bandwidth and then progress

on a best-effort basis, which would allow ROS-Llama to partially provision degraded chains.

Threads vs. reservations. SCHED DEADLINE ties reservation parameters to individual

threads. It is thus not possible to share a budget among multiple threads, making it exceedingly

inefficient to apply reservations to multi-threaded applications that distribute work dynamically

among threads (e.g., virtually all DDS middlewares). Popular libraries for asynchronous pro-

gramming like boost::asio or the C++ std::async API are also impossible to provision. First-class

reservations supporting multiple client threads would be a relief.

These four limitations should not just be considered in isolation. One example of how these

limitations interact and compound is the scheduling policy for the DDS middleware threads.

Recall that ROS-Llama assigns these threads to a separate core at a fixed priority (Section 5.4.1).

This is far from ideal: scheduling them together with their executor thread would strengthen

timing isolation. However, the lack of first-class reservations prevents ROS-Llama from allocating

a shared budget for the executor and its support threads. ROS-Llama would therefore need to

provision each communication thread individually. However, without a comprehensive model of

the communication thread’s behavior, ROS-Llama has no solid basis for deriving a budget.

165

CHAPTER 7. CONCLUSION

If soft reservations were available, ROS-Llama could simply estimate a budget for the com-

munication threads and correct the estimate over time if needed. However, hard reservations

harshly penalize this kind of trial and error. Under a hard reservation policy, an undersupplied

support thread will be starved of supply until its budget is replenished even if a CFS thread could

continue, leading to unpredictable latency spikes. As a result, ROS-Llama is forced to schedule

communication support threads with SCHED RR.

However, if communication support threads are scheduled with SCHED RR, then they cannot

run on the same core as the ROS executors. Due to the scheduler inversion, a communication

thread would always have a lower priority than any ROS executor. This would not only lead

to massive latency spikes in the communication layer but would also counteract the controlled

degradation mechanism: an executor serving a chain early in the degradation order would take

priority over all communication threads, delaying chains that are later in the degradation order.

Overall, scheduling the communication threads under SCHED RR on a separate system core

remains the only option today.

To sum up, the identified scheduler limitations are not independent but interact in unfortunate

ways. Addressing just one of the identified limitations might already open up a way to circumvent

the remaining limitations in practice.

7.2.3 Model Extensions

The timing model in Chapter 3 is expressive enough to handle real-world ROS components

like the ROS navigation stack (cf. Section 6.1). Nonetheless, given the inevitable complexities

associated with a mature, flexible, and widely used framework, we had to elide certain aspects

of ROS in this dissertation. In the following, we discuss these aspects and highlight promising

directions for future extensions.

Other Executors. This dissertation considers only the single-threaded ROS executor. ROS

also provides a multi-threaded variant of that executor and additionally allows the definition of

166

7.2. FUTURE WORK

arbitrary special-purpose executors. It would be useful to support special-purpose schedulers

tailored to specific robot or real-time needs, for example the rclc executor from the microROS

project [113], the PiCAS executor [30], or the sense-plan-act cyclic executive from the Fawkes

framework [82]. Refer to Section 2.4 for a discussion of these executors.

Message Buffer limits. ROS offers quality-of-service (QoS) options1 to fine-tune the per-

formance and reliability of individual topics. One of these options, called history, concerns the

size of the internal message buffers. Setting the history option to “keep last” with a “depth” of n

allows the middleware to discard all but the latest n messages for this topic.

Such message buffer limits are useful for applications where data loss is acceptable because

later messages supersede earlier messages. Typical examples are laser scanners or position

estimates. In such cases, discarding stale messages (and skipping the computation triggered by

those messages) can reduce the worst-case load without impacting the system’s functionality.

Such communication channels with limited buffers have already been studied in prior work [81];

particularly the special case n = 1 has received significant attention and is also known as register

semantics [40, 73]. Integrating these approaches with our timing model in order to take advantage

of such buffer limits remains future work.

Complex Activation Semantics. In addition to regular callbacks, which are unconditionally

activated upon publication of a message, ROS also provides advanced activation semantics in

the form of message filters. Of particular interest to us are the TF-related message filters, which

are, for example, used in the navigation stack and required us to add the separate localization

chain to the evaluation workload (cf. Section 6.1.2). Conceptually, filters select and combine

multiple incoming data items (from separate messages) into a single message for joint downstream

processing based on complex rules. In terms of expressiveness, they go far beyond classic “and”

activation semantics and may also depend on the contents of to-be-combined messages.

1Each of these options usually corresponds directly to a DDS option of the same name but is defined as part of the
ROS API. In particular, it also applies to non-DDS middlewares.

167

CHAPTER 7. CONCLUSION

In the navigation stack, for instance, the localization component uses message filters to ensure

that the laser scanner callback is only triggered once an odometry measurement is available that

is no older than the latest available laser scan sample. Such complex activation semantics cannot

be represented with current modeling approaches.

In the evaluation, we avoided modeling the message filter semantics by (a) ensuring that no

processing chain spans across the message filter and (b) manually assigning latency goals to the

surrounding chains such that the conceptual data flow (from the laser scanner to self-localization

estimate and from the odometry to the self-localization estimate, respectively) completes in time

even considering worst-case delay in the message filter. However, this approach needs a level of

manual intervention that is at odds with the ease-of-adoption requirement (Req. V).

A fully automatic way to handle message filters and similar utility libraries would most likely

have to extend the timing model to incorporate the complex activation semantics. A promising

path towards this goal would be to integrate the “and” semantics CPA [61] and extend it with

additional constraints on the data age of incoming messages.

Self-Suspending Callbacks. The model assumes that callbacks do not self-suspend, i.e.,

that callbacks run to completion once they start running. This is a reasonable assumption for most

callbacks: a self-suspending callback would block the entire executor, preventing the executor

from running any other callback in the meantime. However, this reasoning does not apply to event

sources or other callbacks that have exclusive use of their executor. Suspending the executor

might also be acceptable if the developer can ensure that the suspension is short. Extending the

model to account for self-suspensions would therefore further increase the model’s applicability.

A particular form of self-suspension that deserves special consideration are suspending service

calls. The ROS core libraries come with a convenient way to invoke service calls in a blocking

fashion (instead of providing a client callback) using the spin until future complete function. The

model extractor can easily monitor the use of this API; it thus provides an ideal starting point to

explore the implications of callback suspensions for ROS-Llama.

168

7.2. FUTURE WORK

7.2.4 Improving the Budget Management

As of now, ROS-Llama’s budget manager provisions all tasks with a fixed period of 5 ms

(Section 5.4.1). However, prior work [26, 69] has shown that matching the period to the expected

workload of the task can significantly improve both average and worst-case response time, as

discussed in Section 2.4. Although the experiments discussed in Section 6.4 demonstrated that

significantly shorter periods introduce unacceptable overheads, it stands to reason that well-chosen

longer periods reduce scheduling overheads and thereby improve system performance.

Another potential area of improvement is the budget assignment. As of now, the budget

manager uses an iterative heuristic to find a suitable set of budgets (cf. Section 5.4.2). The

heuristic is needed to cope with the complex and potentially circular budget dependencies among

executors. Unfortunately, each iteration of the heuristic requires a response-time analysis. The

heuristic therefore needs to compromise on the quality of the budget assignment to reduce the

number of iteration steps required. Examples for such compromises include relying on the budget-

shortage delay to find executors in need of more budget, the greedy budget assignment strategy,

and the choice to consider possible bandwidth assignments only in fixed-size steps. Although the

heuristic works well enough for our purposes, there is likely much room for improvement.

Even if the intra-executor budget dependencies prove an insurmountable obstacle to an optimal

solution, it is unlikely that all executors in the system are involved in a dependency loop. It might

be worthwhile to try optimal but less general budget algorithms first and fall back to the iterative

approach if the dependency loop proves intractable.

7.2.5 Below-Worst-Case Provisioning through Probabilistic Analysis

ROS-Llama assigns its budgets based on the response-time analysis presented in Chapter 4. As

discussed in Chapter 5, this has the advantage of predicting latency issues before they happen and

allows ROS-Llama to be proactive instead of reactive.

However, it also makes ROS-Llama rather pessimistic; the controlled degradation process is

initiated if there is any possibility whatsoever for a chain to miss its latency goal, no matter how

169

CHAPTER 7. CONCLUSION

unlikely. Even worse, a pessimistic response-time bound might trigger the degradation process

even though there is no way for any chain to actually miss its latency goal.

Given that ROS-Llama follows a dynamic, introspection-based approach anyway, and given

the inherent uncertainty in ROS systems and their dynamic environments, it is unnecessary

to provision the system under worst-case assumptions. We would gladly trade some analysis

certainty for much tighter response-time bounds. For example, consider a hypothetical analysis

that replaces the execution-time curve with a traced “probabilistic worst-case execution-time

curve” pET (n), in analogy to the probabilistic WCET concept at the center of much recent

attention [3, 34, 35, 53, 103, 110, 111].

Unfortunately, no such analysis exists so far, and existing stochastic analyses usually focus on

much simpler and more controlled systems than ROS. However, given the inherent uncertainty

in ROS systems and their dynamic environments, we believe there to be much promise in this

direction.

7.2.6 Automatic Data Aging

As the evaluation showed, the data aging mechanism is powerful enough to adapt to a wide

range of (synthetic) workloads (Section 6.5). However, it depends on multiple user-provided

configuration parameters that demand significant expertise from the ROS-Llama user and need to

be fine-tuned to the workload in question. This clearly does not conform to the ease-of-adoption

requirement (Req. V).

To make data aging as easy to use as the remaining ROS-Llama features, ROS-Llama should

configure the mechanism on its own, based on just a declarative specification of the expected

demand variation pattern or even solely based on measurements. However, a better understanding

of the effects of data aging under real-world conditions is needed to select suitable parameters. If

the preliminary results hold up in more realistic settings, future work might be able to identify

the right parameters based on a description of the expected workload pattern or even based on the

observed pattern at runtime.

170

7.3. CLOSING REMARKS

7.3 Closing Remarks

Throughout this work it is apparent that response-time analysis on manually specified timing

models is not a practical method for enforcing real-time constraints in ROS 2-based robots. Key

challenges include the complexity of ROS and ROS applications as well as the system’s dynamic

behavior, which defies static modeling.

ROS-Llama addresses these problems by automatically extracting a timing model of the

running application. This allows modeling only those parts of the application that are actually

used, ignoring components that are not active in the given deployment. It also allows ROS-Llama

to adjust to dynamic changes by continuously updating the extracted model.

We have demonstrated that this approach can simplify the implementation of real-time re-

quirements. With just a simple and declarative goal specification, ROS-Llama managed to

automatically provision our evaluation robot’s navigation stack and driver software such that

the timing goals were fulfilled even during high background loads. When the tracker workload

overwhelmed the system, ROS-Llama automatically degraded the less critical tracer chain in

favor of the more critical navigation chains, ensuring controlled degradation in overload condi-

tions. Although the automation imposes noticeable processor overheads, it stands to reason that

additional compute capacity is cheaper than the developer time that would be needed to fulfill

real-time requirements using traditional approaches.

However, implementing automatic real-time latency management imposes additional con-

straints on the underlying implementation. First, our work uncovered that various timing aspects

of Linux (such as I/O paths) and popular middlewares (such as DDS) are still poorly understood.

Documenting and formally describing the timing behavior of these foundational layers is an

essential part of supporting automatic latency management at the higher layers.

Second, ROS-Llama demonstrates the importance of having real-time primitives that gracefully

deal with uncertainty. Primitives such as hard CBS, which introduces significant performance

cliffs if budgets are even slightly too small, force an automatic latency manager to be extremely

conservative in its predictions. In contrast, more forgiving primitives such as soft CBS allow

171

CHAPTER 7. CONCLUSION

the latency manager to safely choose tighter budgets and require less overprovisioning in the

deployment.

Overall, we see great potential in automatic latency management. Creating and maintaining

up-to-date timing models for complex software systems comes at great expense and is currently

not feasible for all but the most safety-conscious development projects. By eliminating this

requirement and making real-time theory easy to use, automatic latency management has the

potential to vastly expand the applicability of real-time systems theory, particularly in non-safety-

critical systems. We hope that this dissertation provides motivation and a solid base for future

developments in this area.

172

A. List of Tracepoints

Locations of the tracepoints in rcl (version 0.7.5) and rclcpp (version 0.7.9).

Tracepoint Location

1 register-callback src/rcl/publisher.c:185
include/rclcpp/client.hpp:167
include/rclcpp/service.hpp:156,174,194
include/rclcpp/subscription.hpp:109
include/rclcpp/timer.hpp:135

2 start-callback include/rclcpp/any service callback.hpp:88
include/rclcpp/any subscription callback.hpp:157,181,200
include/rclcpp/client.hpp:228
include/rclcpp/timer.hpp:154

3 end-callback include/rclcpp/any service callback.hpp:96
include/rclcpp/any subscription callback.hpp:176,195,216
include/rclcpp/client.hpp:230
include/rclcpp/timer.hpp:155

4 executor-spin src/rclcpp/executors/single threaded executor.cpp:31
5 publish src/rcl/publisher.c:255

src/rcl/publisher.c:290
6 send-request src/rcl/client.c:280
7 rate::sleep include/rclcpp/rate.hpp:59
8 rate::wakeup include/rclcpp/rate.hpp:81,85
9 rate::stop include/rclcpp/rate.hpp:105

10 limited-spin src/rclcpp/executor.cpp:219,249
11 spin-until-future-complete include/rclcpp/executor.hpp:232

173

Bibliography

[1] Linux kernel documentation: CFS scheduler design. https://www.kernel.org/

doc/html/latest/scheduler/sched-design-CFS.html, 2021.

[2] Linux kernel documentation: Real-time group scheduling. https://www.kernel.

org/doc/html/latest/scheduler/sched-rt-group.html, 2021.

[3] Jaume Abella, Damien Hardy, Isabelle Puaut, Eduardo Quinones, and Francisco J. Cazorla.

On the Comparison of Deterministic and Probabilistic WCET Estimation Techniques. In

Proceedings of the 26th Euromicro Conference on Real-Time Systems (ECRTS), pages

266–275, 2014.

[4] Luca Abeni and Giorgio Buttazzo. Integrating multimedia applications in hard real-time

systems. In Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS), pages

4–13, 1998.

[5] Luca Abeni and Giorgio Buttazzo. Adaptive Bandwidth Reservation for Multimedia

Computing. In Proceedings of the 6th International Conference on Real-Time Computing

Systems and Applications (RTCSA), pages 70–77, 1999.

[6] Luca Abeni, Luigi Palopoli, Giuseppe Lipari, and Jonathan Walpole. Analysis of a

Reservation-Based Feedback Scheduler. In Proceedings of the 23rd IEEE Real-Time

Systems Symposium (RTSS), pages 71–80, 2002.

175

https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-rt-group.html
https://www.kernel.org/doc/html/latest/scheduler/sched-rt-group.html

Bibliography

[7] Luca Abeni, Giuseppe Lipari, and Juri Lelli. Constant Bandwidth Server Revisited. ACM

SIGBED Review, 11:19–24, 2015.

[8] Abdullah A. Arafat, Sudharsan Vaidhun, Kurt M. Wilson, Jinghao Sun, and Zhishan Guo.

Response Time Analysis for Dynamic Priority Scheduling in ROS 2. In Proceedings of

the 59th Design Automation Conference (DAC), 2022.

[9] Sanjoy Baruah. A General Model for Recurring Real-Time Tasks. In Proceedings of the

19th IEEE Real-Time Systems Symposium (RTSS), pages 114–122, 1998.

[10] Giuseppe Beccari, Stefano Caselli, and Francesco Zanichelli. A Technique for Adaptive

Scheduling of Soft Real-Time Tasks. Real-Time Systems, 30:187–215, 2005.

[11] Alessandro Biondi, Alessandra Melani, and Marko Bertogna. Hard Constant Bandwidth

Server: Comprehensive Formulation and Critical Scenarios. In Proceedings of the 9th

IEEE International Symposium on Industrial Embedded Systems (SIES), pages 29–37,

2014.

[12] Alessandro Biondi, Giorgio C. Buttazzo, and Marko Bertogna. Schedulability Analysis

of Hierarchical Real-Time Systems under Shared Resources. IEEE Transactions on

Computers, 65:1593–1605, 2015.

[13] Tobias Blaß, Daniel Casini, Sergey Bozhko, and Björn B. Brandenburg. A ROS 2 Response-

Time Analysis Exploiting Starvation Freedom and Execution-Time Variance. In Proceed-

ings of the 42nd Real-time Systems Symposium (RTSS), pages 41–53, 2021.

[14] Tobias Blaß, Arne Hamann, Ralph Lange, Dirk Ziegenbein, and Björn B. Brandenburg.

Automatic Latency Management for ROS 2: Benefits, Challenges, and Open Problems.

In Proceedings of the 27th IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), pages 264–277, 2021.

[15] Aaron Block, Björn B. Brandenburg, James H. Anderson, and Stephen Quint. An Adaptive

176

Bibliography

Framework for Multiprocessor Real-Time Systems. In Proceedings of the 20th Euromicro

Conference on Real-Time Systems (ECRTS), pages 23–33, 2008.

[16] Sergey Bozhko and Björn B. Brandenburg. Abstract Response-Time Analysis: A Formal

Foundation for the Busy-Window Principle. In Proceedings of the 32nd Euromicro

Conference on Real-Time Systems (ECRTS), volume 6, pages 22:1–22:24, 2020.

[17] Björn B. Brandenburg and James H. Anderson. Feather-Trace: A light-weight event tracing

toolkit. Proceedings of the 3rd International Workshop on Operating Systems Platforms

for Embedded Real-Time Applications (OSPERT), pages 19–28, 2007.

[18] Björn B. Brandenburg and Andrea Bastoni. The Case for Migratory Priority Inheritance in

Linux: Bounded Priority Inversions on Multiprocessors. Proceedings of the 14th Real-Time

Linux Workshop (RTLWS), 2012.

[19] Björn B. Brandenburg and Mahircan Gül. Global Scheduling Not Required: Simple,

Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations.

In Proceedings of the 37th IEEE Real-Time Systems Symposium (RTSS), pages 99–110,

2016.

[20] Roberto Brega, Nicola Tomatis, and Kai O. Arras. The Need for Autonomy and Real-

Time in Mobile Robotics: A Case Study of XO/2 and Pygmalion. In Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), volume 2,

pages 1422–1427, 2000.

[21] Reinder J. Bril, Johan J. Lukkien, and Wim F. J. Verhaegh. Worst-Case Response Time

Analysis of Real-Time Tasks under Fixed-Priority Scheduling with Deferred Preemption

Revisited. In Proceedings of the 19th Euromicro Conference on Real-Time Systems

(ECRTS), pages 269–279, 2007.

[22] Herman Bruyninckx. Open Robot Control Software: The OROCOS project. In Proceedings

177

Bibliography

of the IEEE International Conference on Robotics and Automation (ICRA), volume 3,

pages 2523–2528, 2001.

[23] Giorgio Buttazzo. HARTIK: A Real-Time Kernel for Robotics Applications. In Proceed-

ings of the 14th IEEE Real-Time Systems Symposium (RTSS), pages 201–205, 1993.

[24] Giorgio Buttazzo. Real-time Issues in Advanced Robotics Applications. In Proceedings of

the 8th Euromicro Workshop on Real-Time Systems (EMWRTS), pages 133–138, 1996.

[25] Giorgio Buttazzo. Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications. Third edition, 2011.

[26] Giorgio Buttazzo and Enrico Bini. Optimal Dimensioning of a Constant Bandwidth Server.

In Proceedings of the 27th IEEE International Real-Time Systems Symposium (RTSS),

pages 169–177, 2006.

[27] Daniel Casini, Tobias Blaß, Ingo Lütkebohle, and Björn B. Brandenburg. Response-

Time Analysis of ROS 2 Processing Chains Under Reservation-Based Scheduling. In

Proceedings of the 31st Euromicro Conference on Real-Time Systems (ECRTS), pages

6:1–6:23, 2019.

[28] Anton Cervin and Johan Eker. Feedback Scheduling of Control Tasks. In Proceedings of

the 39th IEEE Conference on Decision and Control (CDC), volume 5, pages 4871–4876,

2000.

[29] Anton Cervin, Johan Eker, Bo Bernhardsson, and Karl-Erik Årzén. Feedback–Feedforward

Scheduling of Control Tasks. Real-Time Systems, 23:25–53, 2002.

[30] Hyunjong Choi, Yecheng Xiang, and Hyoseung Kim. PiCAS: New Design of Priority-

Driven Chain-Aware Scheduling for ROS2. In Proceedings of the 27th IEEE Real-Time

and Embedded Technology and Applications Symposium (RTAS), pages 251–263, 2021.

178

Bibliography

[31] Jose Luis Blanco Claraco. Development of Scientific Applications with the Mobile Robot

Programming Toolkit: The MRPT Reference Book. 2010.

[32] ROBOTIS Co. Turtlebot3 e-Manual. https://emanual.robotis.com/docs/

en/platform/turtlebot3/features.

[33] Intel Corporation. ROS 2 Object Analytics. https://github.com/intel/ros2_

object_analytics.

[34] Robert I. Davis and Liliana Cucu-Grosjean. A Survey of Probabilistic Schedulability

Analysis Techniques for Real-Time Systems. LITES: Leibniz Transactions on Embedded

Systems, 6:04:01–04:53, 2019.

[35] Robert I. Davis and Liliana Cucu-Grosjean. A Survey of Probabilistic Timing Analysis

Techniques for Real-Time Systems. LITES: Leibniz Transactions on Embedded Systems,

6:03:01–03:60, 2019.

[36] Mathieu Desnoyers and Michel R. Dagenais. The LTTng Tracer: A low impact per-

formance and behavior monitor for GNU/Linux. In Proceedings of the Ottawa Linux

Symposium, volume 1, pages 209–224, 2006.

[37] Jonas Diemer, Philip Axer, and Rolf Ernst. Compositional Performance Analysis in

Python with pyCPA. Proceedings of the 3rd International Workshop on Analysis Tools

and Methodologies for Embedded Real-Time Systems (WATERS), pages 27–32, 2012.

[38] Eric Eide, Tim Stack, John Regehr, and Jay Lepreau. Dynamic CPU Management for

Real-Time, Middleware-Based Systems. In Proceedings of the 10th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), pages 286–295, 2004.

[39] Dario Faggioli, Fabio Checconi, Michael Trimarchi, and Claudio Scordino. An EDF

scheduling class for the Linux kernel. In Proceedings of the 11th Real-Time Linux

Workshop (RTLWS), pages 1–8, 2009.

179

https://emanual.robotis.com/docs/en/platform/turtlebot3/features
https://emanual.robotis.com/docs/en/platform/turtlebot3/features
https://github.com/intel/ros2_object_analytics
https://github.com/intel/ros2_object_analytics

Bibliography

[40] Nico Feiertag, Kai Richter, Johan Nordlander, and Jan Jonsson. A Compositional Frame-

work for End-to-End Path Delay Calculation of Automotive Systems under Different Path

Semantics. Proceedings of the 1st Workshop on Compositional Theory and Technology for

Real-Time Embedded Systems (CRTS), 2008.

[41] Daniele Fontanelli, Luigi Palopoli, and Luca Greco. Deterministic and Stochastic QoS

Provision for Real-Time Control Systems. In Proceedings of the 17th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), pages 103–112, 2011.

[42] Tully Foote. Tf: The Transform Library. In Proceedings of the 2013 IEEE Conference on

Technologies for Practical Robot Applications (TePRA), pages 1–6, 2013.

[43] Tully Foote. ROS Community Metrics Report. http://download.ros.org/

downloads/metrics/metrics-report-2020-07.pdf, 2020.

[44] Autoware Foundation. Autoware.Auto. Project website: https://www.autoware.

org/autoware-auto, 2021.

[45] Eclipse Foundation. Eclipse Cyclone DDS 0.8.0 Release Announcement.

https://projects.eclipse.org/projects/iot.cyclonedds/

releases/0.8.0-replique, 2021.

[46] Eclipse Foundation. The Iceoryx middleware. Project website: https://iceoryx.

io/v1.0.1/, 2021.

[47] Open Source Robotics Foundation. The ROS2 Technical Steering Committee. https:

//docs.ros.org/en/galactic/Governance.html.

[48] Open Source Robotics Foundation. Noetic Ninjemys: The Last Official ROS 1 Re-

lease. Release announcement: https://www.openrobotics.org/blog/2020/

5/23/noetic-ninjemys-the-last-official-ros-1-release, 2020.

180

http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf
http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf
https://www.autoware.org/autoware-auto
https://www.autoware.org/autoware-auto
https://projects.eclipse.org/projects/iot.cyclonedds/releases/0.8.0-replique
https://projects.eclipse.org/projects/iot.cyclonedds/releases/0.8.0-replique
https://iceoryx.io/v1.0.1/
https://iceoryx.io/v1.0.1/
https://docs.ros.org/en/galactic/Governance.html
https://docs.ros.org/en/galactic/Governance.html
https://www.openrobotics.org/blog/2020/5/23/noetic-ninjemys-the-last-official-ros-1-release
https://www.openrobotics.org/blog/2020/5/23/noetic-ninjemys-the-last-official-ros-1-release

Bibliography

[49] Open Source Robotics Foundation. Overview of robots built with ROS. http://

robots.ros.org, 2021.

[50] Dieter Fox, Wolfram Burgard, and Sebastian Thrun. The Dynamic Window Approach to

Collision Avoidance. IEEE Robotics & Automation Magazine, 4:23–33, 1997.

[51] Hubertus Franke, Rusty Russell, and Matthew Kirkwood. Fuss, Futexes and Furwocks:

Fast Userlevel Locking in Linux. In Proceedings of the Ottawa Linux Symposium, pages

479–495, 2002.

[52] Brian Gerkey. Why ROS 2.0? http://design.ros2.org/articles/why_

ros2.html, 2015.

[53] Nicolas Gobillot, Fabrice Guet, David Doose, Christophe Grand, Charles Lesire, and Luca

Santinelli. Measurement-Based Real-Time Analysis of Robotic Software Architectures.

In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages

3306–3311, 2016.

[54] Ishu Goel. SingleThreadedExecutor creates a high CPU overhead in ROS 2. Dis-

cussion in the ROS 2 Discord forum, https://discourse.ros.org/t/

singlethreadedexecutor-creates-a-high-cpu-overhead-in-ros-2/

10077.

[55] Stefan Groesbrink, Luis Almeida, Mario de Sousa, and Stefan M. Petters. Towards

Certifiable Adaptive Reservations for Hypervisor-Based Virtualization. In Proceedings of

the 19th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),

pages 13–24, 2014.

[56] Carlos San Vicente Gutiérrez, Lander Usategui San Juan, Irati Zamalloa Ugarte,

and Vı́ctor Mayoral Vilches. Towards a Distributed and Real-Time Framework for

Robots: Evaluation of ROS 2.0 Communications for Real-Time Robotic Applications.

arXiv:1809.02595 [cs.RO], 2018.

181

http://robots.ros.org
http://robots.ros.org
http://design.ros2.org/articles/why_ros2.html
http://design.ros2.org/articles/why_ros2.html
https://discourse.ros.org/t/singlethreadedexecutor-creates-a-high-cpu-overhead-in-ros-2/10077
https://discourse.ros.org/t/singlethreadedexecutor-creates-a-high-cpu-overhead-in-ros-2/10077
https://discourse.ros.org/t/singlethreadedexecutor-creates-a-high-cpu-overhead-in-ros-2/10077

Bibliography

[57] Akram Hakiri, Pascal Berthou, Aniruddha S. Gokhale, Douglas C. Schmidt, and Thierry

Gayraud. Supporting End-to-End Quality of Service Properties in OMG Data Distribution

Service Publish/Subscribe Middleware over Wide Area Networks. Journal of Systems and

Software, 86:2574–2593, 2013.

[58] Michael Gonzalez Harbour, Mark H. Klein, and John P. Lehoczky. Fixed priority schedul-

ing periodic tasks with varying execution priority. In Proceedings of the 12th Real-Time

Systems Symposium (RTSS), pages 116–128, 1991.

[59] Houcine Hassan, José Simó, and Alfons Crespo. Flexible Real-Time Mobile Robotic Archi-

tecture based on Behavioural Models. Engineering Applications of Artificial Intelligence,

14:685–702, 2001.

[60] Martijn Hendriks and Marcel Verhoef. Timed Automata Based Analysis of Embedded Sys-

tem Architectures. In Proceedings of the 20th IEEE International Parallel & Distributed

Processing Symposium (IPDPS), pages 8–15, 2006.

[61] Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai Richter, and Rolf Ernst. Sys-

tem Level Performance Analysis - the SymTA/S Approach. IEE Proceedings - Computers

and Digital Techniques, 152:148–166, 2005.

[62] Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch. Giotto: A

Time-Triggered Language for Embedded Programming. In International Workshop on

Embedded Software (EMSOFT), pages 166–184, 2001.

[63] Robin Hofmann, Leonie Ahrendts, and Rolf Ernst. CPA – Compositional Performance

Analysis. In Jürgen Teich and Soonhoi Ha, editors, Handbook of Hardware/Software

Codesign. 2017.

[64] David S. Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis, Massachusetts

Institute of Technology, 1973.

182

Bibliography

[65] Matej Kristan, Jiri Matas, Ales Leonardis, Tomas Vojir, Roman Pflugfelder, Gustavo

Fernandez, Georg Nebehay, Fatih Porikli, and Luka Cehovin. A Novel Performance Eval-

uation Methodology for Single-Target Trackers. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 38:2137–2155, 2016.

[66] Matej Kristan, Ales Leonardis, Jiri Matas, Michael Felsberg, Roman Pfugfelder,

Luka Čehovin Zajc, Tomas Vojir, Goutam Bhat, Alan Lukezic, Abdelrahman Eldesokey,

and Gustavo Fernandez. The sixth visual object tracking VOT2018 challenge results. In

VOT2018 Workshop, 2018.

[67] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Deterministic

Queuing Systems for the Internet, volume 2050 of Lecture Notes in Computer Science.

2001.

[68] Giuseppe Lipari and Sanjoy Baruah. Greedy Reclamation of Unused Bandwidth in

Constant-Bandwidth Servers. In Proceedings of the 12th Euromicro Conference on Real-

Time Systems (ECRTS), pages 193–200, 2000.

[69] Giuseppe Lipari and Enrico Bini. Resource Partitioning among Real-Time Applications.

In Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS), pages

151–158, 2003.

[70] Giuseppe Lipari and Enrico Bini. A Methodology for Designing Hierarchical Scheduling

Systems. Journal of Embedded Computing, 1:9, 2005.

[71] C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment. Journal of the ACM, 20:46–61, 1973.

[72] Jane W. S. Liu. Real-Time Systems. 2000.

[73] Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent

Kesel, Dennis Stampfer, Matthias Lutz, and Christian Schlegel. Combining robotics

183

Bibliography

component-based model-driven development with a model-based performance analysis.

In Proceedings of the 8th IEEE International Conference on Simulation, Modeling, and

Programming for Autonomous Robots (SIMPAR), pages 170–176, 2016.

[74] Chenyang Lu, John A. Stankovic, Tarek F. Abdelzaher, Gang Tao, Sang Hyuk Son, and

Michael Marley. Performance Specifications and Metrics for Adaptive Real-Time Systems.

In Proceedings of the 21st IEEE Real-Time Systems Symposium (RTSS), pages 13–23,

2000.

[75] Chenyang Lu, John A. Stankovic, Sang Hyuk Son, and Gang Tao. Feedback Control

Real-Time Scheduling: Framework, Modeling, and Algorithms. Real-Time Systems, 23:

85–126, 2002.

[76] Steve Macenski, Francisco Martı́n, Ruffin White, and Jonatan Ginés Clavero. The

Marathon 2: A Navigation System. In IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 2718–2725, 2020.

[77] Clifford W. Mercer and Ragunathan Rajkumar. An Interactive Interface and RT-Mach

Support for Monitoring and Controlling Resource Management. In Proceedings of the 1st

Real-Time Technology and Applications Symposium (RTAS), pages 134–139, 1995.

[78] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. YARP: Yet another robot platform.

International Journal of Advanced Robotic Systems, 3:43–48, 2006.

[79] Aloysius K. Mok. Fundamental Design Problems of Distributed Systems for the Hard-

Real-Time Environment. PhD thesis, Massachusetts Institute of Technology (MIT), 1983.

[80] Aloysius K. Mok and Deji Chen. A Multiframe Model for Real-Time Tasks. IEEE

Transactions on Software Engineering, 23:635–645, 1997.

[81] Saad Mubeen, Jukka Mäki-Turja, and Mikael Sjödin. Support for end-to-end response-

time and delay analysis in the industrial tool suite: Issues, experiences and a case study.

Computer Science and Information Systems, 10:453–482, 2013.

184

Bibliography

[82] Tim Niemueller, Alexander Ferrein, Daniel Beck, and Gerhard Lakemeyer. Design

Principles of the Component-Based Robot Software Framework Fawkes. In Proceedings

of the 2nd Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR),

volume 6472, pages 300–311, 2010.

[83] Vladimir Nikolov, Stefan Wesner, Eugen Frasch, and Franz J. Hauck. A Hierarchical

Scheduling Model for Dynamic Soft-Realtime System. Proceedings of the 29th Euromicro

Conference on Real-Time Systems (ECRTS), pages 7:1–7:23, 2017.

[84] Object Management Group. Data Distribution Service (DDS). 2015.

[85] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale Skeen. The Information Bus: An Archi-

tecture for Extensible Distributed Systems. In Proceedings of the 14th ACM Symposium

on Operating Systems Principles (SOSP), pages 58–68, 1993.

[86] José C. Palencia and Michael G. Harbour. Offset-Based Response Time Analysis of Dis-

tributed Systems Scheduled under EDF. In Proceedings of the 15th Euromicro Conference

on Real-Time Systems (ECRTS), pages 3–12, 2003.

[87] José C. Palencia and Michael G. Harbour. Response Time Analysis of EDF Distributed

Real-Time Systems. Journal of Embedded Computing, 1:225–237, 2005.

[88] Luigi Palopoli and Luca Abeni. Legacy Real-Time Applications in a Reservation-Based

System. IEEE Transactions on Industrial Informatics, 5:220–228, 2009.

[89] Luigi Palopoli, Luca Abeni, and Giuseppe Lipari. On the Application of Hybrid Control

to CPU Reservations. In International Workshop on Hybrid Systems: Computation and

Control, pages 389–404, 2003.

[90] Luigi Palopoli, Tommaso Cucinotta, Luca Marzario, and Giuseppe Lipari. AQu-

oSA—Adaptive Quality of Service Architecture. Software: Practice and Experience,

39:1–31, 2009.

185

Bibliography

[91] Jaeho Park, Raimarius Delgado, and Byoung Wook Choi. Real-Time Characteristics of

ROS 2.0 in Multiagent Robot Systems: An Empirical Study. IEEE Access, 8:154637–

154651, 2020.

[92] Simon Perathoner, Ernesto Wandeler, Lothar Thiele, Arne Hamann, Simon Schliecker,

Rafik Henia, Razvan Racu, Rolf Ernst, and Michael G. Harbour. Influence of Different

System Abstractions on the Performance Analysis of Distributed Real-Time Systems. In

Proceedings of the 7th ACM & IEEE International Conference on Embedded Software

(EMSOFT), pages 193–202, 2007.

[93] Héctor Pérez and J. Javier Gutiérrez. Modeling the QoS parameters of DDS for Event-

Driven Real-Time Applications. Journal of Systems and Software, 104:126–140, 2015.

[94] Maurizio Piaggio and Renato Zaccaria. Distributing a Robotic System on a Network: The

ETHNOS Approach. Advanced Robotics, 11:743–758, 1996.

[95] Maurizio Piaggio, Antonio Sgorbissa, and Renato Zaccaria. A Programming Environment

for Real-Time Control of Distributed Multiple Robotic Systems. Advanced Robotics, 14:

75–86, 2000.

[96] Friedrich Pukelsheim. The Three Sigma Rule. The American Statistician, 48:88–91, 1994.

[97] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob

Wheeler, and Andrew Ng. ROS: An open-source Robot Operating System. In ICRA

Workshop on Open Source Software, volume 3, 2009.

[98] Sophie Quinton, Matthias Hanke, and Rolf Ernst. Formal Analysis of Sporadic Overload

in Real-Time Systems. In Design, Automation & Test in Europe Conference & Exhibition

(DATE), pages 515–520, 2012.

[99] Ragunathan Rajkumar, Kanaka Juvva, Anastasio Molano, and Shuichi Oikawa. Resource

Kernels: A Resource-Centric Approach to Real-Time and Multimedia Systems. In Multi-

media Computing and Networking, volume 3310, pages 150–164, 1998.

186

Bibliography

[100] Real-Time Innovations, Inc. RTI Connext DDS – Comprehensive Summary of

QoS Policies. https://community.rti.com/static/documentation/

connext-dds/5.2.0/doc/manuals/connext_dds/RTI_ConnextDDS_

CoreLibraries_QoS_Reference_Guide.pdf, 2015.

[101] Kai Richter. Compositional Scheduling Analysis Using Standard Event Models: The

SymTA/S Approach. PhD thesis, University of Braunschweig - Institute of Technology,

2005.

[102] Yukihiro Saito, Takuya Azumi, Shinpei Kato, and Nobushiko Nishio. Priority and Syn-

chronization Support for ROS. In Proceedings of the 4th IEEE International Conference

on Cyber-Physical Systems, Networks, and Applications (CPSNA), pages 77–82, 2016.

[103] Luca Santinelli, Fabrice Guet, and Jerome Morio. Revising Measurement-Based Prob-

abilistic Timing Analysis. In Proceedings of the 23rd IEEE Real-Time and Embedded

Technology and Applications Symposium (RTAS), pages 199–208, 2017.

[104] Johannes Schlatow. Enabling In-Field Integration in Critical Embedded Systems. PhD

thesis, Braunschweig University of Technology, 2021.

[105] Johannes Schlatow and Rolf Ernst. Response-Time Analysis for Task Chains in Communi-

cating Threads. In Proceedings of the 22nd IEEE Real-Time and Embedded Technology

and Applications Symposium (RTAS), pages 1–10, 2016.

[106] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority Inheritance Protocols: An

approach to real-time synchronization. IEEE Transactions on Computers, 39:1175–1185,

1990.

[107] Nishanth Shankaran, Xenofon D. Koutsoukos, Douglas C. Schmidt, Yuan Xue, and

Chenyang Lu. Hierarchical Control of Multiple Resources in Distributed Real-Time and

Embedded Systems. Real-Time Systems, 39:237–282, 2008.

187

https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/RTI_ConnextDDS_CoreLibraries_QoS_Reference_Guide.pdf
https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/RTI_ConnextDDS_CoreLibraries_QoS_Reference_Guide.pdf
https://community.rti.com/static/documentation/connext-dds/5.2.0/doc/manuals/connext_dds/RTI_ConnextDDS_CoreLibraries_QoS_Reference_Guide.pdf

Bibliography

[108] Insik Shin and Insup Lee. Periodic Resource Model for Compositional Real-Time Guaran-

tees. In Proceedings of the 24th IEEE Real-Time Systems Symposium (RTSS), pages 2–13,

2003.

[109] Bruno Siciliano and Oussama Khatib, editors. Springer Handbook of Robotics. 2008.

[110] Karila Palma Silva, Luis Fernando Arcaro, and Romulo Silva De Oliveira. On Using

GEV or Gumbel Models When Applying EVT for Probabilistic WCET Estimation. In

Proceedings of the 38th IEEE Real-Time Systems Symposium (RTSS), pages 220–230,

2017.

[111] Karila Palma Silva, Luis Fernando Arcaro, Daniel Bristot de Oliveira, and Romulo Silva

de Oliveira. An Empirical Study on the Adequacy of MBPTA for Tasks Executed on

a Complex Computer Architecture with Linux. In Proceedings of the 23rd IEEE Inter-

national Conference on Emerging Technologies and Factory Automation (ETFA), pages

321–328, 2018.

[112] Jack A. Stankovic, Chenyang Lu, Sang Hyuk Son, and Gang Tao. The Case for Feedback

Control Real-Time Scheduling. In Proceedings of the 11th Euromicro Conference on

Real-Time Systems (ECRTS), pages 11–20, 1999.

[113] Jan Staschulat, Ingo Lütkebohle, and Ralph Lange. The rclc Executor: Domain-Specific

Deterministic Scheduling Mechanisms for ROS Applications on Microcontrollers: Work-

in-progress. In Proceedings of the 17th International Conference on Embedded Software

(EMSOFT), pages 18–19, 2020.

[114] Martin Stigge, Pontus Ekberg, Nan Guan, and Wang Yi. The Digraph Real-Time Task

Model. In Proceedings of the 17th IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS), 2011.

[115] Yuhei Suzuki, Takuya Azumi, Shinpei Kato, and Nobuhiko Nishio. Real-Time ROS

Extension on Transparent CPU/GPU Coordination Mechanism. In Proceedings of the

188

Bibliography

21st IEEE International Symposium on Real-Time Distributed Computing (ISORC), pages

184–192, 2018.

[116] Yue Tang, Feng Zhiwei, Nan Guan, Xu Jiang, Mingsong Lv, Qingxu Deng, and Wang

Yi. Response Time Analysis and Priority Assignment of Processing Chains on ROS2

Executors. Proceedings of the 41st IEEE Real-Time Systems Symposium (RTSS), pages

231–243, 2020.

[117] Yue Tang, Nan Guan, Zhiwei Feng, Xu Jiang, and Wang Yi. Response Time Analysis

of Lazy Round Robin. Design, Automation & Test in Europe Conference & Exhibition

(DATE), pages 258–263, 2021.

[118] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-Time Calculus for Schedul-

ing Hard Real-Time Systems. In Proceedings of the IEEE International Symposium on

Circuits and Systems (ISCAS), volume 4, pages 101–104, 2000.

[119] Lothar Thiele, Samarjit Chakraborty, Matthias Gries, Alexander Maxiaguine, and Jonas

Greutert. Embedded Software in Network Processors — Models and Algorithms. In

Proceedings of the 1st International Workshop on Embedded Software (EMSOFT), pages

416–434, 2001.

189

	Introduction
	Why ROS2?
	Contributions
	Organization

	Background
	The ROS Framework
	Execution Model
	Implementation

	Real-Time Scheduling
	The Sporadic Real-Time Task Model
	Resource Reservations
	Multiprocessor Scheduling
	Thread Scheduling in Linux

	Techniques for Response-Time Analysis
	Supply and Demand
	The Busy-Window Principle
	Compositional Performance Analysis

	Related Work

	A Timing Model of ROS Applications
	The ROS Executor
	The Algorithm
	Model Validation

	System Model
	The ROS Executor
	The Callback Instance Lifecycle
	Event Sources
	Execution-Time Model
	Callback Graph
	Processing Chains

	Summary

	A Response-Time Analysis for ROS
	Activation-Curve Propagation
	Round-Robin Approach
	Interference Bounds
	Response-Time Bound
	Eliminating ye

	Busy-Window Approach
	Response-Time Bound
	The Search Space for the Activation Offset ta
	Combined Analysis

	Summary

	An Automatic Latency Manager for ROS
	Requirements and Constraints
	The ROS-Llama Approach
	Model Extractor
	Transmitting Trace Events
	Tracepoints
	Recognizing Callback Instances
	Measuring Callback Properties
	Detecting Initialization Phases
	Data Aging

	Budget Manager
	Scheduling Strategy
	Budgeting Heuristic

	Summary

	Evaluation
	Evaluation Platform
	ROS Components
	Processing Chains

	Response-Time Analysis
	Automatic Latency Management
	Latency Goal Compliance
	ROS-Llama Runtime Costs
	Unpredictable Middleware Implementation

	Tuning the Reservation Period
	Data Aging
	Spiking Workloads
	Fluctuating Workloads
	Oscillating Workloads
	Summary

	Conclusion
	Summary of Results
	Modeling the ROS framework
	Response-time Analysis
	Automatic Latency Management

	Future Work
	Towards a Well-Behaved Middleware
	Addressing Limitations in Linux
	Model Extensions
	Improving the Budget Management
	Below-Worst-Case Provisioning through Probabilistic Analysis
	Automatic Data Aging

	Closing Remarks

	List of Tracepoints
	Bibliography

