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Abstract

Since more than two decades research in interactive theorem proving (ITP) has attracted
growing interest. The primary application domains for ITPs range from hard— and software
verification tools to mathematical tutor systems. To support communication with the user
in an adequate way these systems depend on calculi that allow for the construction of
human understandable and readable proofs. However, most calculi that are used in current
ITPs fall still short of supporting the user in .an optimal way. The reason is that they
enforce the user to construct proofs at a level that is far more detailed than the one that
can be found in human constructed proofs.

Autexier [Aut03] has recently pr0posed a new theorem proving framework that allows
to model different logics and calculi in an uniform way. In CORE, a proof-state is always
represented as a single formula that can be manipulated by the application of replacement
rules that are generated from the logical context of the subformula under transformation.
This approach also facilitates proof construction at the assertion level which is considered
as more closely matching the level at which humans construct proofs (see for instance
[Hua94]). Together with COREs window inference technique this makes CORE a potentially
well suited basis for interactive theorem proving.

This thesis tries to excerpt COREs potential for interactive theorem proving by mapping
important concepts of the established proof system QMEGA to CORE. A task structure is
developed to present the context of a subformula in an intuitive way to the user and to

' assist him in structuring proofs. The development of a method interpreter makes it possible
to specify abstract inference steps declaratively and to encode proof strategies for the use
in CORE. The adaptation of QMEGAS agent-based suggestion mechanism QANTS to CORE
helps the user with the identification of applicable methods and replacement rules.



Zusammenfassung

Interaktives Theorembeweisen hat in den letzten zwei Jahrzehnten zunehmend an Bedeu—
tung gewonnen. Die Anwendungsbereiche von Systemen mit denen sich Beweise interaktiv
führen lassen reichen von der Hard- und Software Verifikation bis zu mathematischen Tutor-
Systemen. Die genannten Anwendungsgebiete machen es erforderlich das der Anwender bei
der Beweisfiihrung adequat untersützt wird. Um eine entsprechende Kommunikation mit
dem Benutzer zu ermöglichen verwenden interaktive Beweissysterne Kalkfile, in denen Be-
weise in einer für den Benutzer nachvollziehbaren Art und Weise, geführt werden können.
Trotzdem kann man noch nicht davon sprechen, dass interaktive Beweiser den Benutzer
optimal unterstützen. Der Hauptrgund hierfür ist, dass die eingesetzten Kalküle automa-
tisch dazu ffihren, dass Beweise auf einer viel detailliertern Ebene geführt werden müssen,
als man typischerweise in einem mathematischen Beweis finden würde.

Autexier [Aut03] hat kürzlich eine neue logische Umgebung für die Beweissuche entwick-
elt, welche es ermöglicht verschiedene Logiken und Kalküle einheitlich zu modellieren. In
CORE “ist ein Beweiszustand immer als eine einzige Formel repräsentiert, welche durch das
Anwenden von Ersetzungsregeln, die aus dem Kontext einer Teilformel abgeleitet werden,
transformiert werden kann. Diese Herangehensweise erleichtert es auch, Beweise auf der
sogenannten Assertion-Ebene (n .  [Huag4]) zu führen, welche allgemein als eine natür-
lichere Ebene für die Beweisführung angesehen wird. Zusammen mit der Window—Inferenz
Technik, die von CORE unterstützt, wird stellt CORE ein System dar das potentiell als eine
verbesserte Grundlage für die interaktive Beweissuche angesehen werden kann.

In dieser Arbeit geht es darum, das Potential von CORE im Hinblick auf die interak—
tive Beweiskonstruktion auszunutzen. Dieses geschieht zum einen dadurch, dass etablierte
Konzepte im Bereich des interaktiven Beweisens5 wie sie auch im Beweis-System QMEGA
verwendet werden3 auf das CORE-System abgebildet  werden.  Desweiteren wird eine Task-
Srukture entwickelt, die es zum einen ermöglicht, den logischen Kontext einer Teilformel
für den Benutzer verständlich aufzubereiten und darzustellen; zum anderen untersützt sie
den Anwender auch darin, Beweise strukturiert zu führen. Der Entwurf eines Methoden-
Interpreters ermöglicht es, abstrakte Beweisschritte zu kodieren und im System anzuwen-
den. Die Anpassung des Vorschlags—Mechanismus QANTS an CORE stellt eine weitere
Unterstützung für den Benutzer bereit, indem sie automatisch Vorschläge über mögliche
Fortsetzungen eines Beweises generiert.
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Chapter 1

Introduction

From the very beginning, automated deduction (or automated theorem proving) was a
key research area within Artificial Intelligence (see for instance [GHL60]). Although the
automatic generation of proofs for mathematical conjectures was a goal in its own right,
automated deduction drew additional importance from the fact that i t  was considered as a
means to automate commonsense reasoning.

While early research on automated deduction was solely interested in fully automated
search for derivations, one can now broadly classify research on automated deduction along
two categories: machine-oriented proof search and human-oriented proof search.

Machine-oriented proof search continues with the tradition of inventing calculi and
search strategies that enable computers to  search efficiently for proofs without requiring
any user-interaction. Research into this direction has lead to the  development of machine-
oriented calculi such as resolution [Rob65], tableaux [Smu68] and matrix [Bib82] proof
search, of which resolution and its derivants are probably the most successful.

Although automated provers that make use of these machine-oriented calculi had some
success in proving previously unproved theorems like Robbins Algebra Conjecture [Mc097]
they are subject to at least two lines of criticism. Firstly, despite being able' to successfully
prove some theorems, the  task of searching for proofs often turned out to  be too complex
to prove even simple theorems. Secondly, because the calculi underlying automated provers
use a machine—oriented representation of the problem, proofs that are returned by these
systemsare hardly readable for humans.

These limits of automated theorem provers have sparked interest in so called interactive
theorem proving. Here, the task of finding a proof is divided between user and computer.
Typically the user has to construct a proof by applying inference rules of a more user
friendly calculus while the computer guarantees the correctness of the so constructed proof.
Some systems go even further and support the user by checking which rules are applicable
in a given proof state or even make suggestions about which rule to apply next [BS99a].

To facilitate communication with the user, interactive theorem provers (ITPs) make use
of calculi that are thought to  better match the human style of reasoning than do calculi that
are developed for fully automated proof search. This enhances the readability of the proofs
produced and facilitates presentation of a proof or proof state to the user. Currently, the
most frequently used calculus is Gentzens natural deduction calculus (ND) or its relative



the sequent calculus [Gen35], or variants of it. For instance, systems like the Carnegie Proof
Tutor, ISABELLE [Pau86] or QMEGA [BCF+97] all use a ND variant as underlying calculus.
Other system, like COQ [BBC+97] are internally based on constructive type theory, but use
an ND calculus for the communication with the user.

However, even with more user—friendly calculi and suggestion mechanisms, such as
QANTS [BSQQa], conducting proofs in an interactive system is still a challenging task.
One reason for this is that although the calculi employed in ITPs aim at supporting a
human—oriented style of reasoning, they still force the user to derive a proof at a much
more fine-grained layer then the one that is usually used by human mathematicians. As
a result, interactively constructed proofs require to perform many calculus intrinsic proof
steps explicitely that occur implicitly in human created proofs. An example is the explicit
decomposition of assertions [Hua94], which is necessary in the sequent and natural deduc-
tion calculus. Humans would immediately focus on the relevant subtask, without having
to extract it by employing lengthy but trivial inference steps. .

These problems have led to attempts to structure the proof search at a more abstract
level which resulted in the development of tactical theorem proving [Mil85] and proof plan-
ning [Bun88]. In tactical theorem proving, proof construction mainly proceeds by the
application of tactics, little programs that transform the proof state by automatically ap-
plying a sequence of inference rules and allow for the encoding of frequently recurring proof
patterns or even human-oriented proof techniques, such as the induction principle, etc. In
proof—planning this procedural encoding of domain-dependent knowledge is augmented by a
declarative specification which makes it possible to use the abstract proof steps as planning
operators (proof methods). However, non of the new paradigms have turned out to be the
ultimate solution (see [Bun02] for a critic on proof-planning, also [BMM+01]).

Autexier [Aut01, Aut03] recently developed the CORE theorem proving system which
was built as a basis for the integration of multiple proof paradigms into one framework.
The system supports a context oriented proof style that is related to ideas of the window
inference technique of {H.893}. The novelty of the system lies in the fact that it does
not make use of a fixed set of calculus rules that are defined over the syntactic structure
of formulas; rather, it allows the user to focus the reasoning process on subformulas of
the overall goal formula. Information contained in the context of the focus is then made
available to the user in form of transformation rules, so called replacement rules, that can be
used to transform the subformula in the current focus without enforcing a decomposition
of the overall formula. One of the advantages of this reasoning style is that it supports
the application of assertions in a more intuitive way. In fact, the stepwise unwrapping of
subgoals is replaced by relocation of the focus and application of replacement rules.

Accordingly, proof search in the new system proceeds by i) placing the focus onto sub-
formulas of the goal formula and ii) applying replacement rules to subformulas in the focus.
Replacement rules are of the form '

7:—+< 'U1,....‚'Un >

where i, vl, . . . , a, are logical formulas. Rules of this form replace a formula i, called the
input of the rule, by a conjunction of formulas o1, . . . ‚vn, the values of the rule.

However, although the system in principle allows for conducting proofs in a more ”nat—
ural’ way than other ITPs, there is still additional work required to make full use of CORES



potential for interactive reasoning. Four issues are particularly evident.

1. In every proof state there is a great number of rules available for transforming the
focused formula, each correSponding to  a particular application direction of an asser-
tion in the  context of the  focus. However, in general, only a fraction of these rules
is applicable in the  respective proof state.  I t  is therefore a problem to identify the
applicable replacement rules amongst all available rules.

2. This also means that when the  user wants to  apply a particular definition or lemma
(assertion) to the subproblem in focus he has no direct access to the assertions in
the  context of that subproblem. In order to  apply an assertion he has to identify
the  particular replacement rule amongst the probably many applicable ones that
corresponds to  the intended application direction of the assertion. Ideally, he could
first select an assertion for application and then concentrate on finding the rule for
the  required application direction of the assertion.

3. Focusing on the apprOpriate subformula often eases the process of proving a theorem
in CORE. Currently, the  system provides no guidance as to where to place the  focus
of the  proof. In particular, the  user is not prevented from switching foci arbitrarily
instead of in a systematic way.

4. At the moment COREs facilities for performing abstract proof steps are insufficient;
i.e. abstract proof steps can only be represented in the  form of programs (so called
tactics), but not in a declarative way (as is for instance the case in the QMEGA
system).

The contribution of this thesis can be divided into three related issues. Firstly, we
develop a datastructure of so called tasks that  make i t  possible to display a subgoal of
a proof together with all assertions available for proving this subgoal to  the user. Tasks
provide explicit access to  the assertions in the  context and will therefore allow us to  first
select an assertion for application and then generate just those replacement rules that realize
the application ' o f  the  assertion. We will see that in many cases i t  is straight forward to
determine which replacement rule is appropriate for application of the chosen assertion.
This means that instead of having to  select one out of all admissible rules for application
we only have to  choose from those replacement rules that realize the  application of the
assertion. Furthermore, we will develop tasks in a way that they resemble the tasks used in
QMEGAS proof planner MULTI [Mei03]. This will make it possible to switch between proof
planning and interactive proof construction within a single proof attempt without having
to change the representation layer.

Secondly, we will be  concerned with developing a notion of a method for the CORE
system. Methods make i t  possible to  encode specific proof—techniques or abbreviations of
frequently occurring subproofs in a declarative language and apply them as a single proof
step in CORE. In fact, the  methods that  we will introduce in this thesis are a uniform
concept which comprises the  concepts of methods and tactics that are used in QMEGA and
can hence also be used as planning operators by a proof-planner as well as for interactive
proof construction. When defining methods we will already make use of the task structure
introduced earlier.



Thirdly, we realize an adaptation of QMEGAS agent—based suggestion mechanism QANTS
[BSQQa] to the new system. In OMEGA this mechanism checks which inference rules (i.e.
calculus rules and tactics) are applicable in a given proof state and suggests the most
promising rules to  the user. QANTS performs its computations in parallel between two
user interactions and is in principle calculus independent. We will adapt this mechanism
to support interactive proof construction in CORE. A main problem in this respect is to
deal with the dynamically generated inference rules.

Although CORE is a higher—order framework it  is treated as a first-order system in this
thesis to  make i t  easier to  present the fundamental aspects. However, all concepts developed
in this thesis scale to the higher-order case.

Accordingly, the  thesis is laid out  as follows. Chapter  2 and Chapter 3 prepare the  ground
on which subsequent chapters are based. Chapter 2 introduces the  basic terminology and in
Chapter 3 we introduce the basic concepts of the  CORE framework. In Chapter 4 we develop
the task-datastructure. This datastructure will serve as a new communication layer on top
of the CORE system which helps us to structure proofs. The then following Chapter5
steps through a sample proof to  demonstrate the  advantages that this  datastructure brings
for interactive proof search. In Chapter6  we will be concerned with defining the  notion
of a proof method for the CORE system. The methods we introduce in this chapter are '
declarative specifications of abstract proof steps. In chapters 7 and 8 we will see how we
can use this declarative specification to  automatically test the applicability of methods in a
given proof state. To perform these tests and to  make suggestions about which method to
apply we will adapt QMEGAS suggestion mechanism QANTS to  CORE. Chapter 8 describes
how this is done, while Chapter 7 introduces the  QANTS mechanism.



Chapter 2

Preliminaries

Although we assume basic familiarity with first-order logic (see for instance [Fit96]), sequent-
and natural deduction calculus [Gen35] as well as tactical theorem proving this chapter
briefly introduces the basic concepts that are used in this thesis. We will begin with fixing
a language £ of first—order logic formulas before introducing the terminology related to the
sequent calculus. This will later turn out to be very useful for the understanding of the
CORE framework which is best explained by comparison to the sequent calculus.

2.1 Syntax of First-Order Logic

When speaking about logical formulas we always assume that they are elements of the
language £ defined below. The basic constructs out of which £ is constructed are the
following

a Countably infinitely many variables.

Countably many wary-predicate symbOls P” ,  Q” ,  R” ,  . . .

)
b) Countably infinitely many constants.

C)

)d Countably many k-ary function symbols f ", g", h'“ , . . .

In general we denote constants as a ,  b, b, . . . and variables as x ,  y, z ,  . . . ( or M , N , . . . when
we are dealing with sets).

We define the terms of our language as all symbols denoting variables and constants as
well as all k + 1-tuples  ( f " ,  t1, . . . , t k )  where the  t i  are again terms. Atomic  formulas are all
n + 1-tuples (P” ,  t1, . . . , tn), where ti are terms and P” is an n-ary predicate symbol. We
display atomic formulas as P( t1 ,  . . . , tn)  and omit the superscript n whenever the arity is
clear from the context. Similarly we display terms (fh,  t1, . . . ‚m)  as f ( t1 ,  . . . ‚%).

We can now define the language £ as follows.

Definition 2.1.1 The set £ is the smallest set for which the following holds:

1 .  All  atomic formulas are in  £ .



2. If .4 is in c, so is 41.4.

3. HA andBare  i n iC thenAAB,AVB andA=>Bare in£ .

4. If a: is  a variable and A E £ then Ex./1 and VscA are in  £ .

In order to  avoid bracketing we give /\ precedence over V and -1 precedence over A. => has
lowest precedence.

Furthermore we will consider as a literal all atomic formulas A and their negation -:A.
We define the  set of subformulas of a formula.

Definition 2.1.2 Let F be a first-order formula from the language £ .  Then the set S F (F)
of all subformulas of F is the smallest set such that :

1. F is in SF(F).

2. If fiG is in SF(F) ,  then G E SF(F) .

3 .  Ha l  A02 ,  G 1 V G 2  or G1 3G2  18 in  SF(F) then 01 ,02  € SF(F) .

4. If VacG or 33:.G is in SF(F) then G € SF(F).

If a formula F is of the form —1G or QxG for Q 6 {E,V} then we call G the major
subformula, of F .  Similarly F and G are the major subformulas of F /\ G ,  F V G and
F=>G.

We will further assume familiarity with the concept of substitution and write F[c/:r] for
denoting that all free occurrences of 3: are replaced by c in F .

2 .2  Term Posit ions

In the subsequent chapters we occasionally need to  make reference to  subformulas inside a
formula. To see how this can be achieved we introduce term positions in two steps. First,
we define what a valid term position is and then we describe which subterm of a. formula is
referenced by a given term position.

Definition 2.2.1 (Valid Term Position) A term position is a possibly empty list of natural
numbers [im . . . , in].

Valid term positions for terms t are the  following.

. If t is a variable or constant then 7r = [] is the only valid term position for t.

o I f t  = f ( t 1 , .  . . ‚ t „ )  and TI}; is a valid term position for ti, i = 1, . . . ‚ n  then [i,m] is a
valid term position for t .

For formulas F E £ the  valid term positions are defined as follows.



If F is an atomic formula, i.e. F = P(t1, . . . ti.) and «7; is a valid term position for ti,
2' = 1, . . . , n then [t, 7g] is a valid term position for F.

. If F = -IG and vr is a valid term position for G then [1,71'] is a valid term position for
F.

. If F : G1 0 G2, o E {A,V,=>} and 7r1,7r2 are valid term positions for G1 and G2
respectively then [1,7r1] and [2, fig] are valid term positions for F.

If F = Qcc.G[;r[ for Q E {V, 3} and 7r is a valid term position for G [cc] then [1, 7r] is a
valid term position for F.

If 7T is a valid term position for F we denote by F|.,.r the subformula (or subterm) referenced
by vr, i.e.

OFÜ=F

. P(t1,...,tk)l[¢] = t1- and f(t1,...,tk)|m : ti for t = 1,...,k, a predicate P and a
function f

. (G1 O G2)I['ia7r] = Gi|7r for 0 € { A‚  V,  =>} and 2: = 1 ,2 .

. Qcc.G[a:]|[1„r] : G[SC]|‚„ if Q E {V1.3}.

For a formula like F = A V (B => Q(g(a)‚ b)) we now have F|[2‚2‚1‚1] = a and Fllll = A.

Using the above definition we introduce F[t].,T as a notation for F|.„ : t, i.e. t occurs
as subterm in F at position 7r. F[t] simply says that there exists a position 7T such that
Fl7T = t. We extend this notation to subformulas S ; i.e. F[S]‚„ means that Flu = S.

2.3 Sequent Calculus

The sequent calculus (SK) was initially defined by Gentzen [Gen35] 1 . However, in this
thesis we follow the definition by Wallen [Wa190]. A sequent is thus defined as an ordered
pair (2, A) of sets of formulas. We use the common notation and represent a sequent as
Z l- A.  Furthermore, Z, A and A, A denote the sets 2 U {A} and A U {A} respectively. We
refer to sequents of the form 2, A l- A, A as initial sequents.

Formulas F E E U A are referred to as sequent formulas (s-formula). Note that a
subformula of an s-formula is not an s—formula of the same sequent.

Sequents are interpreted in the traditional way namely that a model M satisfies a
sequent E l— D if it holds that when M satisfies all formulas in 2 then it also satisfies at
least one formula in A.

1Originally, Gentzen devised the sequent calculus only as a technical aid to deal with the problem of
Cut-Elimination in Natural Deduction.



2 .4  Natural Deduction

In this thesis we do not require a detailed knowledge about the natural deduction calculus
(ND). However, for an introduction to ND we refer to [Fit96]. We will often make reference
to the natural deduction variant of the QMEGA system. In this case we always have in
mind the calculus as defined in [SorOl]. When we have to display proof segments of the ND
calculus we do this in linearized notation as introduced by [And80]. A proof fragment in
the linearized ND calculus is a finite set of proof lines, where each proof line is of the form

LA I- F (R)
In this notation L is a unique label of the proof line, A i- F is a sequent denoting the label
F of the proof line along with a set of local hypothesis A which can be  used to derive F .
R is the justification of the  line and describes how the  line was derived in a proof; i.e. in
QMEGA proof lines can be justified by ND rules, tactics and methods.



Chapter 3

Introducing CORE

Because in this thesis we are concerned with the facilitation of interactive proof construction
in CORE, this chapter gives" an overview over the system." The system itself is rather complex
and is exhaustively described in [Aut03]. However, to keep this thesis self contained we
introduce COREs key characteristics and those aspects that are relevant for this thesis.

The main motivation for the deve10pment of CORE was to provide a uniform frame-
work in which various proof construction paradigms can be integrated and compared. For
instance, CORE already supports procedural (tactical) theorem proving and we will show
in Chapter6 that it is possible to integrate the concept of declarative proof constructors
(methods) to the CORE system. Autexier [Aut03] shows that it is not only possible to
support different proof search paradigms in CORE, but also to emulate different calculi (i.e.
natural deduction and SK). However, we will ignore this feature in the remainder of this
thesis. What is of more importance to us are the following aspects of the CORE system
that make it well suited for interactive theorem proving.

1. CORE facilitates direct reasoning at the assertion level (see [Hua94]) which corre—
sponds to the more abstract level at which humans often justify and communicate
their proofs, as opposed to the very fine grained layer of calculus rule application.

2. CORE makes it possible to transform subformulas by exploiting the ”knowledge" that
is contained in their context. This knowledge is made available as transformation rules
of “the form i a <  p1,. . . ‚fun >. These so called replacement rules are generated from
the context of a formula and can be used to replace an expression i by the expressions
vl, . . . ‚fun, such that the overall formula is transformed into a refined formula. This
style of reasoning does not require to decompose the goal formula or to transform it
into normal form as is necessary in traditional calculi (e.g. resolution and sequent
calculus). As a consequence, a proof state can always be represented as a single
formula which makes it possible to present a proof state in a convenient manner to
the user. ‘

To realize the proof style described above, CORE annotates formulas and subformulas with
proof theoretic information, such as uniform types and polarities. Based on this annota-
tions one can define the concept of a logical context of a formula which is central to the
understanding of the CORE system.
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In sections 3.2 and 3.3 we will introduce the important notions of logical contests and
replacement rules before we describe the  CORE calculus rules in Section 3.5.

3 .1  Proof Theoretic Annotations

We begin with a description of how formulas and subformulas are annotated in CORE which
leads us to  the  notion of signed formulas and indexed formula trees (IFTs)

3 .1 .1  Indexed Formula Trees

The concept of an indexed formula tree (which goes back to  Wallen [Wa190]) is central
to  the understanding of the CORE system. Using indexed formula trees in CORE makes i t
possible to support the contextual reasoning style CORE is aiming at .  Furthermore, they
provide a means to  maintain the goal formula in i ts  entirety, without having to decompose
i t  into sequents or lists of open goals.

Indexed formula trees as defined in [Wa190] are based on the notion of signed formulas
and their annotation with uniform types of Smullyan’s uniform notation [Smu68].

Definit ion 3 .1 .1 .  (Signed Formulas) A signed formula is a pair < A,p  > ,  where A is a '
formula in £ and p 6 {—1,1} the polarity of A. We often write AP for < A,p  > and
sometimes display —1 as —— and 1 as + .

Note that if the polarity of a formula is undefined, as is for instance the case for the
constituents of a negative equation, we indicate the undefined polarity by 0 (e.g. (A0 ©
B0) ‘ ) .

Signed formulas are assigned a uniform type to distinguish between conjunctive formulas
(type oz), disjunctive formulas (type ß), universal formulas (type "y) and existential formu-
las (type 6). Table 3.1—3.3 define the  type of each signed formula as well as how types are
inherited to major subformulas of a signed formula. For the  following we agree to denote by
oa( 11 ,  aäz)?’ a signed formula F of type oz and polarity p. a? are the major subformulas of F
with polarities p,. Formulas of type ß, 7 and ö are denoted in a similar way. To indicate the
type of a formula we frequently attach the  type information to the  leading connective of the
formula, e.g. (A NB B)+. We abbreviate 04(171, cr(F2, . . . , a(F,.,_1, Fn))) as cr(F1, . . . , Pu) and
use a respective notation for ,8. The annotation of signed formulas with types intuitively
describes the ”behavior” of that formula in a sequent calculus derivation. The polarity
(+/-—) of a signed formula is just another representation of the  succedent / antecedent dis-
tinction made by Gentzen [Gen35] with respect to  the sequent calculus. The interpretation
which Wallen [Wa190] has in mind is-simply the following: instead of distinguishing between
formulas in the  antecedent 1" and succedent A by using the sequent symbol l- (i.e. l" I- A ) ,
he simply annotates all formulas that would occur in the  antecedent F of a sequent (after
application of the apprOpriate sequent calculus rules) with a negative polarity (-—), while
formulas that would occur in the succedent are of positive (+)  polarity. The uniform type
of a formula describes whether the  subformulasinto which the formula would be  decom-
posed after application of the  corresponding sequent calculus rule will occur together in  the
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| a 1 on l az |
(AAB)‘ A- B““ F 5 \ ß l j ßz l
(AVB)+ A+ B+ (AAB)+ A+ B+
(A :B)+  A“ B+ (AVB)‘ A“ B-

(—-:A)+ A— (A=>B)‘ A+ 3--
(man'- A+

Table 3.1: Uniform Notation (Propositional Types)

| 5 | 50 l  [ ’ ) / [ fm]
(Vas )+  Far/c]+ (VxF:x])" Fggx/c"
(32:.F_a:_)“' F_x/c]‘ (39:.F_:c])+ Fps/cg+

Table 3.2: Uniform Notation (Quantifiers)

same sequent (i.e. no  split in proof) or will be  parts of different sequents (i.e. the proof
branches). In the former case the formula is assigned the uniform type 0: while in the latter
case it  has uniform type 5 .

As an example consider the formula (A /\ B ) .  Depending on the polarity of the formula,
that is on which side of a sequent i t  occurs, this formula has to be  decomposed through
application of one of the  SK rules

P ,A ,B l—A I‘l—A,A Tl—B,A
1“,A/\Bl—AAL Pl—AAB,A AR (3.1)

When A /\ B occurs on the  right hand side of the sequent i t  has to be  decomposed with
the rule AR (3.1, right) which results in a split of the sequent I‘ f- A /\ B ,  A .  Hence, in case
A /\ B has positive polarity i t  gets assigned type ß . However, if the conjunction occurs on
the left-hand side of a sequent i t  has to be  decomposed with the  rule AL. In this case the
corresponding sequent calculus derivation does not branch. Accordingly A /\ B is of type a
in this case.

Furthermore, the  types ö and 'y are assigned to  formulas with a quantifier as leading
symbol (i.e. formulas of the form Qx.F[:c] with Q 6 {V, 3}). In the SK these formulas have
to be decomposed by application of quantifier elimination rules. Here one generally dis-
tinguishes between rules that impose an Eigenvariable condition on the variable and those
which do  not. Quantified formulas whose decomposition introduces an Eigenvarz’able con-
dition are of type ö, whereas formulas that introduce freely instantiable unbound variables
have type 7 .  In formulas with free variables we will often indicate the type of the variables
by printing the type in superscript (e.g. at").

Signed formulas F can be represented as trees with one node for each subformula of F .
This leads to the notion of an Indexed Formula Tree (IFT) which can be recursively defined
over the structure of F .

Definition 3 .1 .2  (Indexed Formula Tree) Let F be a signed formula. The indexed formula
tree for F is defined as the  smallest tree T for which the  following holds:
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(A  {=> B)”  A0 BO
(5 = t)" s0 iv

Table 3.3: Epsilon Rules

1.  The root of T is  labeled with F .

2. If there is a node n in T that is labeled with a signed formula Mai“, ag?) then n has
children n1, ng that are labeled with 05’1” and ag? respectively.

3. If there is a node n in T that is labeled with a signed formula ß ( f1, 52) then n has
childs nl,  n2 that are labeled with fifl and 552 respectively.

4. If T has a node n that is labeled with a signed formula 7(Q33.F[:c])p for Q 6 {EN}
then it has finitely many childs n l ,  . . . , nm that are labeled with Pkt/x]? for terms ci.
We say that m is the multiplicity of n .

5. If T has a node n that is labeled with a signed formula ö(Qx.F[x])p for Q € {SLV}
then n has exactly one child with label F[xö]p.

The above definition only covers IFTs for formulas in £ which is sufficient for this thesis.
However, [Aut03] defines IFTs in a way that they can also represent formulas of various
modal-logics. We have also left out  (-type formulas (e.g. positive equivalences) because
they do  not occur throughout this thesis.

Nodes of the  tree are also referred to  as occurrences, while the formula associated with
a node is called the label of the occurrence (write label (0) for the label of an occurrence 0).
Because of the close correspondence between a subformula of a formula F and the  subtree
which represents this formula in the IFT for F , we will only distinguish between a node and
its label if this is necessary. In this case we use capital letters 0 to refer to the label of an
occurrence 0.

A sample FVIFT for the formula 3.2 is diSplayed in F igu reF l

( (M /\ N /\ (M /\ N => P1)) =>“ P )+  (3.2)

In the remainder of this thesis we often have to  distinguish between dependent and inde—
pedent nodes in an IFT.

Definition 3 .1 .3  (Dependent Occurrence) Let a be a node in an IFT R .  We say that a
is dependent in tree R if there is a node b in R that is fl—related to a .  Otherwise we call a
an independent occurrence in R.

I t  makes sense to  introduce a partial ordering -< on nodes of an lFT, where n1 < n2 if
the length of the path from the  root to  n l  is smaller then the distance between the root
and ng; i.e. we have n1 -< n2 if n1  i s  an ancestor of n2

Indexed formula trees are used in CORE to  represent the quantifier dependencies of a
proof state in the following way: when we load a goal formula G together with axioms
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Figure F 1: Indexed formula tree for (((M /\ N) /\ (M /\ N => P) )  =>“ P)+. Subscripts of
literals are added for later reference.

A331, . . . ,Axn from which we want to  derive G the system creates an IFT for the signed for-
mula (A5231 A. . .AAxn :? G)+. The system also creates an free variable indexed formula tree
(FVIFT) for the same formula. FVIFT and IFT together represent a CORE proof state where
proof search manipulates the FVIFT while the IFT is used to maintain the dependencies
between quantifiers. The FVIFT can be  easily obtained from an IFT by simply removing
all nodes of type '7 and 5.

3.2  Logical Contexts

A look at the sequent calculus derivation of the sample formula 3.2 illustrates how the
uniform notation describes the "behavior" of the subformulas during the proof.

M,Nl—P2,M M,N|—P2,N A
M‚N‚ .+—P2 M‚N+-P2,M/\N, R

3LM,N,(M/\N:-)I—P2
(MAN)A(M/\N=>.)I—P2=:

‘ R
(MAN)/\(M/\N=>E)=>P2

Figure F 2: Proof of the sample formula in the sequent calculus. Subscripts refer to literals
in F 1

As an example consider the literal Pf in FigureF 1.  The negative polarity indicates
that Pl will be found on the left-hand side in all sequents in which i t  occurs as a sequent
formula. When comparing this with the sequent proof in F igureF  2 one easily sees that
this is indeed the case. Similarly, one can see that the s-formula ((M /\ N )+ => P" ) ;  only
occurs on the left-hand side of sequents. Decomposition of this formula by the =>L rule
splits the sequent into two sequents (as correctly indicated by type ‚B) which contain the
subformulas Pf and N + /\ M + respectively.

This leads to  the notion of a context. Intuitively, all formulas that can occur together in
a sequent belong to the same context. By using uniform notation the context of a formula
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can be  statically determined from the FVIFT; Le. two formulas F and G belong to  the
same context if their first common ancestor node is of type oz in which case we call F and G
(‚v.-related. In case there are multiple ancestors n1. . . . ,nk the  first common ancestor always
refers t o  the  maximal t2- with respect  to —< (i.e. t o  the  lowest node in the  t r ee ) .  In the
example in FigureF2 Pl“ and P; have the first common ancestor (M /\ N /\ (M /\ N =>
P))  =;>Q P)+ of type a and hence belong to the same context. However, Pl“ and N + belong
to different contexts as their first common ancestor (M /\ N =>ß P )“  is of type ß (i.e. we
say they are fi—related). Comparing this to the sample proof (Figure F 2)‚ it is easy to verify
that the s-formulas N + and Pl“ never occur together in a sequent.

3 .3  Replacement Rules

In CORE we use formulas that occur in the  context of a subformula directly as transforma-
tion rules in a proof. As an example we might want to use the implication (M  + /\ N + =>ß
Pf)"  in 3.2 to replace P2+ by the formulas M + and N '". This would transform 3.2 into

((M” A“ N“) /\ (M+ /\ N+ :19 P ‘ ) ‘  =>“ M+ NB N+)+ (3.3)

In a next step we can then use the  literals M ' and N “ to transform M + and N + to  t rne+,
which yields the new overall formula

((M— A“ N") /\ (M+ /\ N+ =>ß P" ) '  #“ true+ /\19 tr'u.e+)+ (3.4)

This corresponds to the aforementioned reasoning at the assertion level, which provides a
more intuitive basis for interactive proof search. In CORE we use the annotation of signed
formulas to generate replacement rules that enable us to perform the transformation steps
we described above. The P]— in the formula (M + /\ N + =>ß Pf)" is a negative occurrence
of the literal 1132+ in the same context. In a resolution or matrix calculus these literals
would correspond'to two resolvents or a connection respectively. We can therefore consider
formulas that are fl-related to Pl“ as subgoals to which we can reduce P; . This reduction
to  subgoals is facilitated in CORE by the definition of an admissible replacement rule.

Definition 3 .3 .1  (Admissible Replacement Rules) Let a be  an occurrence with polarity
p in some FVIFT T.  Then i —>< o1, . . . on > is an admissible replacement rule for a ,  if

1. i is ();-related to a by a first common ancestor c

2. {'01, . . . ,v„}  contains exactly those occurrences that are ‚6 —— related to i and occur
below c (i.e. c —< oi) or, '01 and i are left- and right-hand side of a negative equation
or equivalence and {'02, . . . , vn} are all occurrences that are fi-related to  vl and i and
occur below c.

In particular, this means that a positive (negative) occurrence M + (M  " )  without any ß-
related occurrences implies that M " —> trne+ (M  + —> f else") is an admissible replacement
rule.

Internally the system distinguishes between resolution replacement rules and rewrite
replacement rules. Rewriting replacement rules are all those rules that originate from a
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Figure F3 :  Free variable indexed formula tree for V81, 52.61 g 52 => V33.(:z: E 31 => a: €
52») ;

(negative) equation or equivalence. All other rules are referred to as resolution replacement
rules.

However, not every replacement rule that is admissible for an occurrence @ is also ap-
plicable on that occurrence. Applicable ruies are characterized by the following definition

Definition 3.3.2 (Applicable replacement rules) A replacement rule 7?. = i —>< '01, . . ‚fun >
is applicable for an occurrence 0., if

1 .  there is  a sub—occurrence a,’ of a. such that the label  of a." unifies with i under a
subst i tut ion 0 and

2. if ”R, is a resolution replacement rule, then i and a must be of opposite polarities.

Remark: The definition of admissible replacement rules has the rather unintuitive conse-
quence that  a rule like P“  —>< M FM,  N’JN > can only be used to  replace positive occurrence
with label P+ by MPM and NW ‚ while intuition would suggest that i t  replaces an occur-
rence with negative polarity. When displaying resolution replacement rules we will therefore
always invert the polarity if the  input occurrence; i.e. the above rule would be displayed
as P+  —>< M ”M , NlDN > ;  Using this  notation we display rules in a style that is common in
the field of term-rewriting.

3.4 Replacement Rules and Assertion Application

To illustrate the  relationship between replacement rules and assertion level reasoning let us
consider the assertion (taken from [Hua94])

VSl ,Sg . (S l  Q SQ => V33.(.’II € 51 :}  15 € 32) )  (3 .5 )

and the  corresponding FVIFT (see F igureF3) .  Because we have to  treat 3.5 as an axiom
the signed formula in F igureF  3 is of negative polarity. From this tree we can read of all
admissible replacement rules that are justified by this tree. These are the following

(3? E 81)_ —‘>< (CC € Sg)_ ‚  (S1  Q S2)+

(56 € 52)+  —>< («”C € S1)+‚ (31  £ SWL
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Sb)‘ —>< (3: € 82)“, (x E 81)’ >
82)" —+< (:2: e 81:)» at 6 5'2)‘ >

E 81:> a: E SQ)“ —>< (81 ;  32)“ >
1§S2=>( : r651=>$652) )+—>t rue+

If
) 

m1

1

A careful examination of these rules reveals that they encode all application directions of
the assertion 3.5. Take for example the rule

(31g  Sg )_  —'>< ($7  6 31 => 337 E 52).— >

This corresponds exactly to the following rule for the SK (remember that we apply SK-rules
bottom-up)

A,Vx .x681=>xESg l -E
13,81 g 82 l- 2 (3.6)

where we replace a formula in the antecedent (in Huang [Hua94] we find a ND version of
the rule). In a similar way rule

(.’L‘ € Sg)+  —>< (33 E 51) .+ , (S l  __C_ Sg)+  >

corresponds to  the Opposite application direction of rule 3.6, i.e.

A,Sl g 82 l- 2
A,V;c.:c € 81 => 3: € Sg l- 2 (3.7)

What becomes clear is that replacement rules make it  possible to  apply assertions in a much
more intuitive way as this has to be done in the sequent or natural deduction calculus where
we have to  decompose an assertion in order to  apply it or, alternatively, would have to extend
the caclulus by assertion rules (see [Hua94]), such as 3.6 and 3.7, for every assertion.

Based on the definitions of indexed formulas, contexts and replacement rules we can
now introduce the CORE calculus.

3 .5  The CORE Calculus

A proof state in CORE is represented as a pair < (p, C, > ,  where (,0 is a F VIFT and C, is an
IFT that represents constraints on the instantiations of variables in (p. We prove a formula
go by transforming the initial proof state < (,0, C1, > into a proof state < 90’, CZ, > where (‚0'
is either t rue+ or f a l s e ‘ .

CORE provides 12 rules to  transform a proof state into exactly one new proof state.  This
ensures that a proof state can always be represented as a single formula. The rules that
we make use of in this thesis are (1) the application of a replacement rule to a subformula,
(2) the rule to increase the multiplicity of a variable, (3) the contraction rule and (4) the
cut—rule. When we now consider these rules we restrict our attention to the effect that these
rule have on the FVIFT «p.
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3 .5 .1  Application of Replacement Rules

In Section 3.3 we defined which replacement rules can be  applied to  a given subformula (i.e.
an occurrence). A question that  still needs to be answered is that of how application of a
replacement rule 72 of form 2'9 —>< uf1,...vf,n > affects the proof state. Let us therefore
assume that we want to  apply 7?. to an occurrence ap of an FVIFT T.  In order for the rule
to  be applicable its input  2"? has to  unify with ap under a substitution 0 and it  must hold
that p # q. If this is the  case a? is replaced by a conjunction of the  vfia. This conjunction
is expressed by fi—relating the offer. Because we are dealing with first-order logic the rule as
well as the  subtree below ap do  not contain any elements from a modal logic. The effect of
applying the rule is therefore a replacement of q.JD by a subtree [3(vf10, . . . ‚wind. This effect
is shown graphically in Figure F4 .  The subtree for 2 indicates that the newly introduced
values mo,- will have the same context 2 as up. The situation is slightly different when we

pA ”1 _.„5
a+—+<vh won)  Ü '+ P2 '2 CL M . ’02 ß

P 10Un Un“

Figure F 4: Application of a resolution replacement rule

apply a rewriting replacement rule. Rewriting replacement rules originate from negative
equivalences or equations such as (A0 <=} BO)“ which can be applied in two directions; that
is, to positive and negative occurrences. They are special in the sense that their input '22 as
well as 213101 are of undefined polarity. When applying such a rule the occurrence vl inherits
the polarity from the  application occurrence ap to  which the rule is applied. More precisely,
after application of a rewriting replacement rule we have p l  = p

3 .5 .2  Instantiation o f  Variables

A problem that has not yet been addressed is that of instantiating variables and the related
problem of increasing the multiplicity of variables. We refer to [Aut03] for a detailed treat-
ment of how this is realized in CORE. Here we only sketch how variables are instantiated.

Instantiating a variable 3:7 as in P[:z:'l’] is done in CORE by replacing the node of the
FVIFT for Phil] by a node with the new label Phi/:67], where t is the term with which as"
is instantiated. The same procedure is then recursively applied to  all subnodes of P[a:"’].

Once the at" is instantiated in PLN] it is not possible to instantiate :13"/ in P any further.
However, any complete proof system has to  be able to  instantiate universal variables (7
type variables) more than once. This problem is commonly refered to as ”increasing the
multiplicity" of variables. Each calculus has its own way to deal with this problem. While
in matrix proof search (see for example [Wa190]) one has to  guess a ”maximal” multiplicity
and then copy all literals in advance, the sequent calculus c0pies quantified formulas, before
instantiating them.
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In CORE the mulitplicities of individual variables are increased on demand by copying
all subformulas that contain these variables and a—relate this  copy to the respective source
subformula before renaming the  variable in the copy. As an example FigureF  5 describes
what happens with a subtree for P(:c'7’) /\ 620177) if we increase the multiplicity of sc”.

b)

a) 0:

PW A @”) Pm) /\ ow) >?) /\ gm)
PW QW) PW) om) P(rc””) QM)

Figure F 5: Increasing the multiplicity of x” in P (3:7) /\ Q(:z:"’). a) shows the tree before the
variables are instantiated and b) after the  instantiation was carried out.

3 .5 .3  Contraction

A relatively simple, but yet powerful rule is the so called contraction rule which allows
to copy subtrees of the  FVIFT on demand. Although the need for such a rule might not
be immediately clear i t  will soon turn out that i t  is important with respect to the  task
structure to be described in Chapter 4. For the moment the  need for such a rule shall only
be  motivated by a small example: assume one wants to  prove the  formula

(A‘ V‘9 A“)" =>a A+

and is for some reason restricted to rewrite only the right—hand side of the implication
(this is important when modelling SK or ND derivations in CORE ). Then aplication of
A+ —> A“ which can be generated from any of the A"  yields '

(A-  vß A“)" :>“ —w(A")+
which cannot be proven any more. However, copying A+ before application of the  rule
would have resulted in the formula

(A“ vß .4‘)‘ =>a A+ va ~1(A“)+

which can be proven by generation of A+ —-+ T from the rightmost A‘  and application of
this rule to A+.

The contraction rule makes i t  possible to replace a subtree QC by a subtree which 0:—
relates QC and a copy Q; of i t ;  i.e. QC becomes replaced by 05(QC, Q2).

3 .5 .4  Cut Rule

Sometimes one wants to  do speculative steps during the process of proving a theorem, like
introducing a formula A as a lemma, which is only laterverified. Such speculative steps will
for instance be of major importance when it  comes to  application of tactics and methods
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(see Chapter 6). In CORE, speculative steps are modelled by application of a so called cut-
rule. The cut—rule in CORE is a mapping of the cut—rule as is used in sequent and natural
deduction calculie to-the CORE framework. For the sequent calculus, the cut-rule has the
following or a similar form (see for example [Ga186]):

ZEAA LAEA
X3 ‚__ A Cut(A) (3.8)

which makes it possible to  introduce arbritrary formulas A into the proof as a sort of lemma.
When applying the cut rule one often speaks about "introducing a cut-formula A" .

Out-formulas in CORE have to be introduced with respect to a subformula cp (which
corresponds to  the A in 3.8. Introduction of A over 90 is done by replacing the part of the
FVIFT for (‚o by a new subtree for ß ( a (A ' ‚  cp), a(A+, (p))., m

_ «» \A .- „A+
Figure F6:  Introduction of cut—formula A wrt. (‚0 in CORE.

In the resulting tree MA“ ,  go) corresponds to the sequent EA l- A in 3.8 where we
can use the cut—formula A to derive A. Similarly, the subtree oz(A+, cp) corresponds to the
sequent E f- A, A.  Intuitively this can be  seen as a new obligation to proof A which we can
then safely use as a lemma in the sequent Z ,  A l- A.

3 .6  Window Inference

On t0p of the calculus rules decribed above, CORE supports reasoning with a so called
window inference technique which is based on ideas of [R893]. In this section we describe this
communication layer which makes it possible to focus the reasoning process to  subformulas
of the overall goal. This can be  done by placing a window (focus) on a subtree of the
FVIFT. As a result, the surroundings of this windOw are hidden from the user. However,
this operation does not alter the proof state but  restricts the view on i t  to  a particular
subtree. The context of the active window is made available to the user as a list of the
replacement rules that are admissible for the content of the window.

Autexier [Aut03] shows that the window inference mechanism can be used to structure
proofs in a way that sequent calculus as well as natural deduction proofs can be simulated
in  CORE.

The window inference meachanism of CORE consists of rules to  focus and unfocus certain
subformulas as well as window versions of each of the  CORE calculus rules. I t  is worth
pointing out that these window inference rules do not extend the reasoning capabilities
of CORE. Rather, the window versions of the calculus rules are internally realized purely
based upon the CORE calculus rules and the  rules for opening and closing windows.
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Figure F 7: Sample window structures for the FVIFT for_(P(:c) => Q(:;c) /\ R(a:))+

3.6.1 Opening and closing windows

The two basic window rules are those for opening and closing windows on subformulas
(subtrees). By- applying these operations to an FVIFT we impose a window structure on
this tree. As a window structure for an FVIFT R we understand a partial function fR
from an enumerable set W of window names (e.g. W = N) into the set of subtrees of R.
Intuitively, when opening a new window w on a subtree r in R then we add the tuple (w, r)
to f3. Closing a window is exactly the inverse operation which removes a tuple from flat.
We will depict a window structure fR on an FVIFT R by drawing boxes around subtrees
r for which a window w exists (i.e. if fR(w) = r). FigureF7 (left) shows the FVIFT for
(P(:c) => Q(:z:) /\ R(:z:'))+ after opening windows on (P(:c) => Q(x) A R(:c))+,P(:c)+ and
R(:c)+ respectively. FigureF7 (right) shows the same tree with a new window structure
where the window on R(:r) is closed.

It is useful to impose a partial ordering —<fR on windows w, where w «<fR w’ means that
f (w’) denotes a subtree of f (w). Windows that are maximal with respect to this ordering
are called active windows. These are the windows that can be manipulated by application
of CORE calculus rules. We are now able to define what the subwindows of a window are

Definition 3.6.1 (Subwindows) If w is a window in an FVIFT R then the set of all
subwindows of w is defined as

Subwindows(w) = {w’l'w < w’ and w’ is a window in R}

Windows can be closed, provided that they do not contain any subwindows. Note that
Opening and closing of windows never affects the FVIFT, but rather the ”view” the user
takes on the problem represented by the tree.

3.7 Oracle Rule

When it comes to application of methods we will need to be able to apply abritrary re—
placement rules (i.e. replacement rules that are not admissible). We can perform such
Speculative steps with the help of the cut—rule. Assume we want to simulate application of
the (non-admissible) replacement rule

I a < q m >  mm
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Note that we use uppper case letters to indicate that I and V, are formulas, rather than
occurrences as in replacement rules. We can simulate application of this rule by performing
a cut over (V1 /\ . . . /\ Vn). This replaces the application occurrence i with label label (2') = I
in an FVIFT by the new subtree in FigureF8. We can see that application of the cut
has reduced the goal i to two new subgoals. The subtree a(fl(V1,...,Vn)+,i)+ basically
represents the fact that, instead of proving i we can now also proof all of the V,-. This tree
can therefore be seen as the result of applying 3.9 to i.

The second subtree oa(o:( ’1, . . . , Vn)‘, i)+ encodes the goal to show that I follows from
(V1 /\ . . . /\ V”). A proof of this subgoal therefore warrants the use of 3.9. Note that 3.9 had
been admissible if we have had ((V1 /\ . . . /\ Vn)+ => I)“ somehwere in the context of i.

a(v,,...,v,,)" ß(V1‚...‚Vn)+
_J L _J__v

((VlA.../\V„‚)_=>I)+ (V1A.../\Vn)+V’l

Figure F8: Oracle application I ——>< V1, . . . , V” >.

We can therefore say that application of 3.9 is a speculative proof step as its validity
depends on a proof of the additional goal ((Vi A.  . ./\ Vfi)" => I)+ CORE provides a calculus
rule to apply such speculative proof steps. Rules as in 3.9 are then called oracle rules. When
we apply such an oracle rule we have to distribute the V,- over two sets, conditions (1) and
values V such that CI) ['1 V = (l and <i> U V = {V1, . . . , Vn}. The resulting cut is independent
from the distribution of the V.,-. However, application of the oracle rule will return two
lists of windows. The first list, the so called condition list contains windows on those V,-
in o:(6(V1, . . . , V,,)+, i)+ that belong to the condition set <13. Similarly, the replacement list
contains windows on the V; in the value set V. We will make use of this technical detail
in Section 6.3. To indicate the distribution of the V; over @ and V we frequently display
oracle rules in the form [©] I —>< V1, . . . , Vk >.

3.8 Interactive Theorem Proving with CORE

When using CORE the user currently works with the window inference mechanism. This
means that when we invoke CORE in interactive mode on a goal G with axioms Ar], . . ‚Accn
it assembles an IFT for the formula (Axl, . . . A113,, => G)+ and creates an initial window on
G which is presented to the user. The content of that window can then be altered by
application of the window versions of COREs calculus rules. Typically this will be an
application of a replacement rule. Proof search in CORE is therefore characterized by two
major kinds of choices.

1. The first kind of choice consists of the selection of a subformula in the active window
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Figure F 9: IFT with replacement rules that can be generated from this tree.

on which the user wants to focus the proof search. This kind of choice will be  referred
to as fact—choice.

2. Having focussed the proof search on a window, one of the admissible replacement
rules for that window has to  be selected for application. This will be  referred to as
rule-choice

However, although COREs inference mechanism is in principle well suited for interactive
proof construction, foci— and rule choice still imply some difficulties. Two problems are
particulary salient.

3 .8 .1  Rule Selection

The first of these problems lies in the selection of the appropriate replacement rule for
the manipulation of a window. Typically there are many admissible replacement rules for
every window that one encounters during a proof. Even for rather trivial problems there
are already dozens of admissible rules. The reason for this is twofold.

First, every formula in the context of a window gives rise to the generation of multiple
replacement rules. Intuitively this is due to the fact that there is a replacement rule for
every possible application direction of this formula (if we see the formulas in the context
as a form of assertions). Assume for example that the FVIFT in F igureF9  was available in
the context of 'a window W.  How many admissible replacement rules for W can we obtain
from this tree? I t  is easy to see that each occurrence of this FVIFT can serve as an input
for at least one replacement rule. Because the tree has 5 nodes we obtain 5 replacement
rules that are admissible in W.  This illustrates that for each subformula in the context of
a window we can hence generate at least as many replacement rules as there are nodes in
the tree that represents this formula. Second, the problem is made worse by the fact that
the system currently automatically loads some lemmas such as the transitivity of = and
the induction axiom which are then contained in every FVIFT. Because these lemmas will
be found in the context of every window in a proof, they will cause generation of even more
replacement rules.

Furthermore, as was noted earlier, not every admissible replacement rule is also ap—
plicable. When selecting a replacement rule for application the user first has to identify
the applicable rules amongst all admissible rules. Determining whether a rule is applicabe
means checking whether the input of the rule unifies with a subformula of the current win-
dow. Having identified these applicable rules i t  remains to  select one of these rules for
application along with a subformula. of the focus to which the formula is to be applied.
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It is easy to imagine that this constitutes quite a challenging task when too many

admissible replacement rules are available for a given window.

3 .8 .2  Foci Choice

A further difficulty for proof construction arises from the need to identify subformulas on

which the proof search can be focussed. Because each proof state in CORE simultaeneously
contains all subgoals together with their alternatives it is necessary to identify an apropriate

set of subgoals, on which the proof search can then be focussed.

The two problems outlined in 3.8.1 and 3.8.2 above motivate the need for

o a mechanism that aids the user in structuring the proof search by preventing him
from focussing on arbritrary subformulas.

o a suggestion mechanism that is able to check all replacement rules and tactics for

applicability in a given proof state and makes suggestions to the user about which
rule to apply. '

In the next chapter we will introduce the notion of a task datastructure which can be

used to structure the search for proofs. Later we will see how the multi—agent mechanism

QANTS that is currently used as a suggestion mechanism for the OMEGA theorem prover
was adapted to the CORE system to perform exactly the tasks described above. However,

before being able to make proper use of the mechanism we have to introduce a means to

structure the search for proofs by systematically focussing on certain subformulas.

3.9 Chapter Summary

In this chapter we have seen how CORE uses annotated formulas to realize a contextual

reasoning style. We have also demonstrated how information in the logical context of a

formula can be directly used in a proof in the form of'replacement rules, which offers a

convienient way to apply assertions directly. Finally, we pointed to some inconviniences

of interactive proof construction in CORE. In the next chapter we will introduce a further

communication layer on tOp of the window inference mechanism which tries to overcome

some of these problems.
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Chapter 4

Tasks — Organizing Proof Search

In the  previous section we saw how CORE 3 window inference technique is used in interactive
proof construction. However, we also pointed to some difficulties this still implies for
interactive proof construction. As the main problem we identified the fact that the context
of a window can only be  presented to  the user as a (usually long) list of replacement
rules. The disadvantage of this presentation is that although the user often knows which
assertion he wants to  apply to  the current window, he might not be able to easily identify the
replacement rule that corresponds to  the appropriate application direction of the assertion.
Let us therefore think about how the representation of a window can be  improved to
ease the application of an assertion. Assume that we have a goal-formula of the form
A => BAG, together with the axioms Azul, . . . „ Am”. Let us further assume that the assertion
Vx.Q[x] => B is among these axioms. A convenient way of presenting this situation to  the
user would be to  list the axioms one in each line followed by the  goal formula. This can be
schematically depicted as

F A531 _

(Q[ac"’] “=> B)-
. (4.1)

Assn

(A => B A C)+
Using this representation the formulas in square brackets represent all the information

that is available to  infer the  goal (A => B /\ C)+.  The presentation we have in mind is
therefore related to the one used for proof presentation in the THEOREMA system [PBOZ].
How might a user want to  proceed in this situation? It  seems likely that he would continue
by trying to prove the  goal (B  /\ C)+  with the help of the additional hypothesis A. In fact,
this would result in the new proof situation

[ ASC] _

(opp  ;» B)-
AT (4.2)

. A l
(B /\ C)+
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In a similar fashion the user might then concentrate on proving B+, before coming back
to establishing 0+. This corresponds to a decomposition of the goal (B /\ C)"’ into two
subgoals.

P A331 _ _ 14331 _

(Quué>8r (aé>Br
( A:}:n ’ Aicn ) (4'3)

_ A A _

3+ 0+

The user is then confronted with the first element of the list in 4.3. The second element
represents the (now inactive) subgoal 0+ which has to be tackled after B+ is proven. A
step into the direction of proving B+ might be to apply the assertion (Q[z"’] => B )“ to 3+
and refine the goal B"' to Q[a:"’]+. We would then obtain

'- ALU-1 _ _ ASB 1

(wwsBr (qBr
( A53” , ALU” ) (4-4)

_ A _ _ A l

www w

In this chapter we will develop a datastructure of so called tasks to be able to present
a window together with the assertions in the context of the window as we did in 4.1—
4.4. Furthermore, we will define a set of rules on this datastructure to actually perform
the transformations described above. The rules that operate on this datastructure will
be entirely realized through application of COREs window inference rules; e.g. rules that
realize steps as from 4.1 to 4.2 will go back to the rules for opening new subwindows.
Rules that realize the application of a hypothesis as from 4.3 to 4.4 will basically consist
of the application of a window replacement rule. In this sense the datastructure devised
here introduces a new layer on t0p of the window inference mechanism on which the user
interacts with CORE.

When developing the task datastructure we will pursue the additional aim to employ
tasks also as a datastructure for proof planning. The idea is that tasks provide a common.
interface for automated and interactive reasoning processes. This ideally enables us to
tackle inactive subgoals (such as the 0+ in 4.3) with an automated proof planner or an
automated theorem prover (ATP) in the background, while the user tries to construct a
proof for another subgoal interactively.

The task datastructure that is developed in this chapter will resemble that of a task
in QMEGAS proof planner MULTI [Mei03] and also have much in common with the focus
datastructure that is used by QANTS (see [Sor01]).
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4.1 A Calculus for Tasks

In this section we develop a task datastructure on top of COREs window inference technique.
lntuitively, the tasks that will be introduced below denote subgoals together with all the
formulas that can be used to close this subgoal (all subtrees that are a—related to the goal).
Accordingly a task will simply be defined as a list of windows that all occur in the same
context.

4.1.1 Defini t ion of Tasks

For proof planning it is often useful to attach a certain role to a window which occurs in
a task, e. g. it is often convenient to distinguish between windows that denote axioms and
those that would denote a local hypothesis in a ND proof. For instance in 4.2 we could
label A as a locally introduced hypothesis, while all other windows inside the brackets are
classified as axioms or definitions. This information can be exploited in proof planning and
proof presentation. To be able to do so, we first define the notion of a role and an annotated
window on which the definition of tasks will then be based.

Definition 4.1.1 (Roles)
We fix a finite set R = {Acciom, Definition, Hyp, . . } consisting of unique role specifiers.

Definition 4.1.2 (Annotated Window) An annotated window A is a tuple A = (W, R),
where W is a CORE window and R E R is the role of W.

In the following we will refer to annotated windows simply as windows. Tasks can now
be defined to be sets of annotated windows. To reflect the distinction between axioms (i.e.
everything that occurs in brackets in 4.1) and the goal that we want to derive we will divide
the set of windows of a task into a 9a window and support windows.

However, before we make this intuition formal we transfer the notion of a dependent
occurrence to windows.

Definition 4.1.3 (Conditional Window) Let w be a window on a subformula F in an
FVIFT R. We say that the window w is conditional in R iff the node in R that is labeled
with F is dependent in R. Otherwise we call w unconditional in R.

Definition 4.1.4 (Tasks) Let R be the FVIFT of the current proof state. A task T is
a set of annotated windows T = {w1, . . . ‚w„} for R with exactly one goal window wi,
i € {1, . . . ,n} and support windows {w1, . . .,w,,}\{w,-}, where the following holds if R’ is
the smallest subtree in R that contains all windows in T:

1. the subtrees denoted by the wl, . . . , w,, are a—related between each other.

2. all support windows of T are unconditional in R’,
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We denote tasks T = {1.01, . . .‘,w„,g} with goal window 9 as w1,.. .,wn D 9 or 2 D 9 if we
are not interested in the exact nature of the support windows. Note that‘this notation is
only slightly different to the representation we used at the beginning of the chapter where
we displayed the support windows above the goal window.

Selecting one window as the goal window plays a role when reasoning interactively.
However, the distinction is not a principle one, something that is reflected by the fact
that we will introduce a shift rule that allows us to swap a support window with the goal
windows.

Here we find an important difference to the sequents in the sequent calculus. In the
sequent calculus it is relevant on which side of the sequent an s—formula occurs. In CORE
this information is already encoded in the polarities of each formula. We can therefore
freely exchange the order of windows in a task. This also motivates our decision to define a
task as a set of windows. Also note that a task 2, ap D ag does not necessarily correspond
to an initial sequent in the sequent calculus because the a’s might have the same polarity
(i.e. p = q).

The constraint that no support window of a task must be conditional is important
because the content of support windows will be presented to the user as some directly
available ”knowledge” that can be used to derive the formula in the goal window of the
task. If the content of the support windows would be fi—related to subtrees that lie outside
the respective window, then these trees would automatically become conditions for any
replacement rule that is generated from this window; i.e. the B—related subtrees would
represent implicit ”knowledge" which will be introduced in form of new proof obligations.
This is unwanted for interactive proof construction, as the user might want to be able to
see whether certain formulas in the ”context” are dependent on further formulas, before
applying them in the form of a replacement rule.

As an example consider the formula (D+ =>ß (s = t)“)" :>“ B[s]+. Without the
requirement that support windows must be unconditional we could generate the following
task for the above formula: (s = t)" D B[s]+. _ However, although this task gives the
impression that the equation s = t could be used directly to transform B[s] to B[t], this is
not the case, as s = t is dependent on D+ and hence the replacement rule .3 —>< t, D+ >,
instead of s ——> t has to be used to carry out the transformation.

Because tasks are basically representations of subgoals we next define when a task is
closed.

Definition 4.1.5 (Closed task) A task E D G is closed iff there exists a w 6 E U {G} such
that w denotes a proved subtree; i.e. w is either true+ or f alse" .

An initial problem of deriving a goal G from the axioms Azul, . . . ,Azrn is represented
by the system as an IFT for the signed formula (Azul, . . . , Axn => G)+. When reasoning in
the just defined task structure, each proof starts out with an initial task which contains a
window for the goal formula G as the goal formula and one window for each of the axioms
as supports. This motivates the following definition of an initial task.

Definit ion 4.1.6 (Initial Task) Let G be a formula and Acc“ . . . ,Axn formulas that rep-
resent axioms from which G can be derived. Let further R be an IFT for (Am], . . . , Arrn =>
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G)+, w,- a window on a subtree for Am, and g a window on G then w1‚ . . . ,w„  D g is the
initial task for G.

From now on we will not distinguish anymore between a window and the formula it
contains when we represent tasks. Hence, the initial window for Gwith axioms Ax,- will
be represented as A331, . . . , Asa, D G. Note that this implies that we can encounter tasks
of the form 2,.41", A?” D G. In this case the A?” are syntactically equal formulas that occur
in different windows. However, because we are dealing with windows, rather than formulas
we have to treat the APS as different entities.

We have seen that a task with a goal window of type ß can be split into two tasks by
decomposition of the goal formula (cf. 4.3). Because we always want to keep track about
all tasks that are created during a proof attempt we define the concept of an agenda.

Definition 4.1.7 (Agenda) An agenda is a set of tasks. An initial agenda is an agenda
that contains only the initial task for a goal G.

Tasks on the agenda can be manipulated by decomposition of the goal window (04- or ß—
decomposition), application of a replacement— or oracle rule to the goal formula, closure

‘ of the window on the goal formula or selection of a different goal window (shift). In the
following section we will define a set of rules that allow us to perform exactly these ma-
nipulations. The rules will be of form rule : TASKS —> QTASK 5 . That is, by application
of a rule to a task this task is replaced by zero or more tasks on the agenda. The rules
are shown in Figure F 10 in a declarative notation which resembles that of sequent calculus
rules. Premises of the rules consist of one or more tasks and possibly additional sidecondi—
tions. The conclusion of a rule contains all tasks that replace the premise on the agenda.
In that sense these rules can only be applied in forward direction. We now investigate each
of the rules in turn.

2: D MA“, 13%) 2 D a(APA,BPB )
E, BPB l> APA QR E’APA I> BPB GL

2 [> GfK-“(A"?Dp)

E D A'P "
E D MA“,  3” )

E D APA 2 D BPB ’8
2 D G G" = Parent(G)

E D G" Sabwind0w3(G’) =
E F
flag—g- shift 2 @ close
2 D i-

E,iDv1...E,iDvn

@ Focus —— Close

D <>

apply(i —>< vl, . . . ‚fun >)

Figure F 10: The task manipulation rules.
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4.1.2 a-decomposition

Decomposition of a goal formula of type oz is the simplest of our task manipulation rules. It
realizes the task transformation described in 4.1—4.2. To decompose a formula MA“ , BPB)
it is merely necessary to open new windows on the APA and BPB and then decide which of
the new windows becomes the new goal window. To be able to select either subwindow as
new goal window we define three rules:

.2 D 4.410434) z D MA“, BPB)
z, B“? [> APA QR 2, A“ [> 3305 °“ (4.5)

Z [> a( (_„4)p)
E D .4"0 “ (4.6)

We can see that the decomposition step from 4.1— 4.2 can be realized with rule 041,.

4.1.3 B-decomposition

The rule for decomposition of a goal formula of type ß enables us to perform proof steps
such as the one from task 4.24.3. The rule as it will be defined here is in principle easy.
Decomposition of a task with a goal formula MAP/1,8303) will lead to a split of the task
into two tasks with goal formulas AP“ and B” respectively. Accordingly, the rule for
fi—decomposition looks as follows:

2 D MAM, BPB) ß
E D A “  E D B M  MU

To allow for an unrestricted decomposition of fi—formulas it needs a little more effort when
implementing this rule than was the case with the rules for cue-decomposition. The reason is
that there must be no conditional support windows in a task. That is, after decomposition
of a goal formula 5(G1, G2) the constituents G1 and G2 can only become support windows
if we make them unconditional when applying the B—decomposition. This can be done by
splitting up the goal formula 5(G1, G2) while retaining the context cp around it. We can
achieve this through application of a rule of the form 90(5 (A, B)) —> MMA), 90(8)) which
is described in [Sch77] and[Aut03]. Autexier [Aut03] can show that this Schütte Rule is
admissible in any CORE proof state.

To see why we need the Schütte Rule, consider a task 2, (A /\ B)+ [> (C /\ D)+. An
FVIFT for this task is shown in Figure F11. If we implement the ß-decomposition rule with
the help of the Schütte Rule we not only change the window structure of the FVIFT as we
do with the a—decomposition rule, but we also change the FVIFT itself. For instance, if we
fl-decompose the goal window (C /\ D)+ we obtain the new FVIFT in Figure F 12.

We see that the task 2, (A  /\ B)+ D 0+ corresponds to the minimal FVIFT R1 with
root-node a; and task 2, (A /\ B)+ D D+ is represented by the minimal FVIFT T2 below
ag (cf. FigureF 12). It is important to note that 0+ and D+ are unconditional in the
respective trees R1 and R2. Hence, we can easily make them to support windows of a task.
This will be important in Chapter 4.1.6 when we define the shift-rule.
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__„\ __________
{(A NB B)+ va (o  MBM

Figure F11: FVIFT‘ for the task 2 ,  (A /\ B)+ D (C /\ D)+. Dashed lines indicate existing
but inactive windows.

/5

v/fi: _______ /_?_x _______‚.., { (Cve (A/ \B) )+ l  z: {(Dva(A/\B))+l___ ___ ___ ___,___,___
(AW-3V _ (AW?)+
A! \B+ - A! \B+

Figure F 12: A logical equivalent F VIFT to the one in FigureF 11. This tree would result
from the decomposition of the tree in Figure F 11 if we realize the fi—decomposition with the
help of the Schütte Rule. The left subtree below 011 corresponds to task 2 ,  (A /\ B)+ D 0"”
while the subtree below ag represents task E, (A /\ B)+ D D+.

4.1.4 Larger Decomposit ion Steps

o:— and fi-decomposition steps can be  combined in a macro—rule that allows us to focus
directly on a particular subformula inside the goal window of a task. The uniform types of
the nodes in an FVIFT that occur on a path between the selected subformula and the root
of the goal window uniquely define a sequence of a- and fi-decomposition steps that  need to
be applied in order to  obtain the  chosen formula as a goal window in a single step. Such a
macro—rule gives us great freedom in the  selection of subwindows but simultaneously keeps
track about parallel subgoals that appear as tasks on the  agenda.

4 .1 .5  Focus Close

It  is often necessary to  undo a decomposition of the goal window of a task, which has to be
realized by closing the  focus of the  goal window G and with it ,  all other foci below the  parent
of G. The following focus-close rule provides exactly this functionality. Furthermore, this
rule is also necessary to realize the sideconditions of other rules (e.g. shift, see Section 4.1.6),
which require to  close windows.

2 D G G’ = Parent(G) F _ Cl
z D G’ Subwmdows(G') = @ 0m " 056 (4.8)
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Unfortunately, i t  is not enough to simply close all subwindows below the parent—window
G’ of the window G to which the rule is applied. Because the active subwindows are
constituents of other tasks it is necessary to update the tasks structure on the agenda while
closing subwindows of G’. Closing subwindows recursively while updating the agenda at
the same t ime can be  done relatively straightforward. We have to  treat a- and fi-windows
differently.

1. Windows W of type 5 with subwindows W1,W2 can be simply closed by removing
all tasks from the agenda that contain either W1 or W? as goal window. In fact, W1
and W2 can only occur as goal windows, because they are mutually 5 related and can
hence not occur as support window. Having removed the  respective tasks (if there
are any), W1 and W2 can be closed (recursion) and a new task with goal window W
and the same supports as W1 and W2 have t o  be pushed on the  agenda.

2. Closing windows W of type or with subwindows W1, W2 is only little more complicated.
We can close W by first retrieving the set T Of all tasks from the agenda that contain
both windows (in fact each task contains either both or none of W1, W2). In a second
step the  close rule is applied recursively to  W1 and W2 before W1 and W2 are replaced
by W in all tasks.

4 .1 .6  The Shift rule

The shift rule changes the  goal formula of a task. This is particularly important because
the rules defined here only allow for manipulation of goal windows. Consider for instance a
situation where we have a window on a formula Ap and a window for (A © B)"  amongst
the support windows for a goal G; i.e. Z, (A © B)*,Ap D G. If we now want to apply
A (I) B in a forward step to  AP we have to  make AP the  goal window. To be  able to perform
this transformation of a task we define the shift-rule.

EJ, A D G .—Z, G D A shi f t

Because we realized fi-decomposition with the Schütte—Rule we can be certain that the goal
windows of a task are always unconditional which is a prerequisite for the  above definition
of the  shifierule.

4 .1 .7  Closing tasks

Of course, there must be a way to remove tasks from the agenda in case they are closed
(i.e. one of the windows in the task is proved). This can be done with the following rule
for each <> E {true+,false“}.

Z [> <> Z
@ c 086 (4.9)

which simply removes E D <> from the  agenda.

To be  able to  make use of COREs reasoning capabilities i t  is necessary to augment the
set of rules by additional ones for the  application of replacement and oracle rules to tasks.
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This is particularly important, because method'application will be realized through oracle
rule application as will be elaborated in detail in Chapter  6. Here we introduce the task _
rule for replacement rule application.

4.1.8 Replacement Rule Application

The way tasks are defined, all replacement rules that are admissible for a goal window can
be generated from the support windows of a task. When we now define a rule that allows us
to  apply a replacement rule to a task we have to  make sure that we lose no  ”information”
when we apply the replacement-rule. To see what is meant consider a task of the form

Z,G+, (A+ =>ß B“)“ [> A“

The window on (A+ =>ß B“)“ justifies the admissible replacement rule A“ _} B“. In—
tuitively, application of the  replacement rule to A"  should yield an additional window on
B‘ such that the task that results from application of this rule is E,A‘,G+, (A+ =>l9
B‘) ‘  [> B" ;  i.e application of the rule should not remove A '  from the task. However,
merely applying this rule to A”  would replace A“  by B‘  (see 3.5.1), which would yield
2, CJ”, (A+ =>ß B“)“ [> B". This is not quite what we want. -

The solution to this problem lies in the application of the contraction rule to  the  goal
window. By c0pying the window before application of the replacement rule, we ensure
that no knowledge is "lost”. Accordingly, the rule for application of a replacement rule
R = z' —>< vl, . . .‚fun > looks as follows

El> i
2,2‘ l> vl . . . 2,7: [> a, appzym) (4.10)

The way this rule is defined it  can only be  applied to an occurrence that is the only
content of the goal window of a task; but  not  to  occurrences i inside a goal window (i.e.
G [2]) However, this is no problem as we can always make an 73 in GM the goal window by
application of the macro—rule for a- and ß-decomposition (see Section 4.1.4).

4.2 Tasks vs .  Sequents and ND

When looking at the effects that a- and fi-decompositions have on the  task structure there
are some similarities to the  sequent and natural deduction calculus. The similarities are
particularly striking when we compare the motivating example at the outset of the chapter
with the "corresponding" proof steps in the  ND calculus. In this part of the chapter we will
relate the  task approach introduced above to the  sequent and natural deduction calculus
to work out the differences and commonalities.

Although the  effects of the  a- and ß- decomposition rules we have introduced above
resemble some of the  sequent calculus (i.e. /\ L,  /\ R,  V L,  V R,  => L,  => R)  and natural deduction
calculus rules  (e.g. =>], =>E), there is  an important  difference. While the  rules  in  SK and
natural deduction lead to a real decomposition of the  formula they are applied to, the  a-
decomposition rule merely affect the window structure on the FVIFT. Accordingly, when
we a-decompose the  goal window of a task this only changes the view we take on the  proof
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state, but not the proof state (FVIFT) itself which modifies the IFT. Consider for example
the ND rule

[F]
0 =>

F=>GI

Backward application of this rule decomposes a formula F => G into formulas F and G.
The corresponding task rule is the rule for a—decomposition which, applied to a window
(F => G)+, merely opens a new subwindow on F and G. We can therefore say, that a:—
decomposition in CORE only anticipates the corresponding steps in the SK and natural
deduction calculus and can therefore be seen as a kind of look-ahead on a—decomposition
in these calculi.

It is furthermore worth pointing out that the task structure restricts the set of possible
proofs of a theorem. The reason for this is that using tasks we can only Open and close
windows in a systematic way. This restricts the set of subformulas on which we can focus.
Using the task structure therefore imposes a certain structure on proofs. Autexier [Aut03]
shows that when we restrict the choice for focusing and replacement-rule application even
further it is possible to emulate SK derivations in CORE.

However, the task structure developed here still enables a more flexible reasoning then
does the sequent calculus. For instance, when using the macro-rule for o:— and fi-decomposition
we can perform larger decomposition steps than are possible in the SK.

4.3 Tasks in Interactive Proof Search

The task structure that we introduced in this chapter was developed with respect to two
aims. Firstly, we wanted to be able to present the formulas contained in the context of a
window in a more accessible way then merely as a (possibly long) list of replacement rules.
Secondly, while focusing on subformulas during a proof, we wanted to be able to determine
conjunctive subgoals outside the current focus. This for instance makes it possible to call
automated theorem provers which are encapsulated as concurrent processing threads on
these inactive goals while the user is working interactively on the active goal. We will argue
that both aims have been fulfilled with the implementation of the task structure.

With respect to the issue of presentation, tasks allow us to present a proof situation to
the user in an intuitive way. Instead of listing all replacement rules that can be generated
from the context, the support windows give us access to the assertions which we can list
line by line on top of the screen, followed by the goal window at the bottom (FigureF23,
Appendix). Such a presentation of a task is meant to resemble more the presentation of
proofs in mathematical textbooks, where all available assertions (axioms and definitions,
etc) are listed before the theorem is stated. Individual proof steps on the assertion level
are then generally justified by reference to these assertions.

In a system state where the user is shown the current task he has the following options
to continue the proof. He can either 0:— or 6-decompose the goal window. A second choice is
the application of one of the assertions that are represented by the support windows. This
can be achieved by simply clicking on the respective formula. The system then presents all
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replacement rules that can be generated from the chosen support window. It is then the
choice of the user to identify the replacement rule that encodes the preferred application
direction of the assertion. This is already an improvement to the situation where the user
was presented with all replacement rules that are admissible with respect to the current
window; i.e. the replacement rules generated from all formulas in the context.

However, it is possible to do even better. For many of the rules that can be generated
from a single support window in a task, one can see in advance that they are not applicable in
the goal window. For other rules it is likely that they. do not represent a suitable application
of the formula from which they were generated. As a consequence, the system currently uses
a heuristic to generate only those rules that are likely to represent the intended application
direction of the assertion (see Chapter 5).

In case the user does not know immediately which assertion to apply, he has to fall back
on selection of a promising replacement rule that can be generated from one of the support
windows. Later we will see how the user is supported in this task by the agent-based
suggestion mechanism QANTS which identifies applicable replacement rules and presents
the most promising of these rules to the user. Because each applicable replacement rule
corresponds to an applicable support window we could even exploit this information to
highlight applicable support windows on the interface.

A further reason for the introduction of tasks was to be able to determine conjunctive
goals outside the current focus to which external theorem provers can be applied in the
background as concurrent processes. Tasks also lay the foundation for this aim. The tasks
that are created by application of the rules 4.5—4.10 are constantly maintained on the
agenda. The agenda therefore represents a segmentation of a proof into different subgoals.
In Chapter 8 we will see how the agent architecture QANTS can be used to employ external
reasoning systems in the background to tackle problems encoded by inactive tasks.

4.4 Chapter Summary

In this chapter-we have introduced the task data—structure that allows us to display a
window together with its context in an intuitive way to the user. Furthermore, we have
developed a set of rules to manipulate tasks; e.g. to perform decomposition steps on
the formulas inside particular windows of a task or to apply replacement rules to a task.
By reasoning with this task manipulation rules we automatically keep track about parallel
subgoals which will show up as separate tasks on the agenda. This provides the basis for the
employment of external reasoning systems that try to solve inactive subgoals automatically
in the background of the interactive proof process. In the next chapter we will have a look
at how interactive proof construction proceeds when we reason with the task structure.
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Chapter 5

Tasks — A worked example

In this chapter we make use of the task structure to step through a proof of a simple _
theorem. In doing so we are able to point out the advantages that the task structure
brings for interactive theorem proving as well as putative weaknesses of the approach. In
particular we outline the two major strengths of the task structure. The first being the
intuitive presentation of subgoals together with the axioms and hypothesis that are available
in the context of this subgoal. Secondly, we show how tasks successfully excerpt COREs
potential to ease the application of assertions.

The example theorem that we will consider is the following

Theorem 5.0.1 Let A and B be sets, such that A g B then it also holds that 2’1 g 25.

Let us further assume that we can make use of the axioms 5.1— 5.2. Note that so far
CORE does not provide a way to define concepts other than expressing them as equivalences
or implications. Furthermore, to ease the presentation in this chapter, we assume that the
definitions below are encoded as higher-order formulas with polymorphic types 1.

VMVN.M§N<=>VZ.26M=>ZEN (5.1)

VXVMX 6 2M <=» X g M (5.2)

For the presentation of the proof we assume that a task is presented to the user in a way
similar to how we depicted tasks at the beginning of the previous chapter. This means that
each support window is displayed in one line and the content of the goal window is shown
below the supports. However, as a slight modification we decide to display positive support
windows only if they are not the copy of a goal window that was made before the application
of a replacement rule (cf. Rule 4.10). This decision is motivated by the observation that
we rarely need to use these positive copies. However, we do not get entirely rid of these
support windows as they might be useful for backtracking (Le. they can serve as possible
points to which the user might want to backtrack) and in refutation proofs. The copies
of positive windows are therefore only hidden but can be made available upon request.
Clearly the issue of how to present a task to the user is also related to the development of
an adequate graphical user interface for CORE. It should be possible for the user to choose
between different presentation modes, depending on how he wants to construct the proof.

1In the current implementation they still have to be encoded in a sorted first-order logic.
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Looking at figure F 23 (Appendix) we can see that the presentation of tasks we use in
this chapter is very similar to the way tasks are actually presented in the current GUI of
our system. The sole difference is that the GUI does not yet indicate which polarity goal—
and support windows have. However, this can easily be changed; for instance by coloring
each formula inside a task according to its polarity.

VA,B.A g B => 24 g 25 (5.3)

We can now turn to a proof of our sample theorem. With the goal represented as in 5.3
we obtain the following initial task.

(1) ( M § N ® 2 6 M = > z E N ) _
(2) (XE2M<:X§M)" (5 4)

(A§B=>2A§2B)+

How do we begin our proof ? As a first step, we might want to proof 2’4 g 23 under
the additional hypothesis (A C B)“. We can easily perform this step by applying @-
decomposition to the goal (this is achieved by clicking on the Decompose Goal link 1n Fig.
F 23). The task we obtain IS the expected

(2) ( X e z M a n r
(3) (A € B)“

[(1) ( M Q N c ‘ r z E M é z E N Y

] (5.5)

(2/1 g 23)+

where (A g B)+ occurs as a new support window. We can now apply the definition of
9 (5.5.1) to the goal formula (2‘4 ; 2B)+. In the GUI this is done by clicking on the
corresponding definition. CORE then uses a heuristic (cf. Sec. 5.1) to compute those
replacement rules from the selected formula that are most likely to be the apprOpriate rules
to apply this formula. From the suggested rules the user then has to select the correct rule
and apply it to the goal. In the current situation the heuristic computes the single applicable
rule (i.e. (M g N )+ —>< (z e M => z E N )+ >) which is then applied automatically to
the correct term position. One interaction has taken us to the new task

(1) ( M ’ g N ’ e y e M ’ 3 y e N ’ r
(2) ( X e 2 M a n r
(3) (A _C_ 13)- ' (5.6)

(262A=>zE2B)+

As a result of applying the replacement rule we have obtained the new goal (2 6 2A =>
z € 2B)+ . Note that although the application of the replacement rule has instantiated the
variables M and N in (5.6.1), we now have an uninstantiated version with fresh variable
c0pies M ' and N ' in the supports. (Technically the system has increased the multiplicity
of the equivalence (5.6.1) and a window for the newly created c0py has been added to the
task, while the window on the instantiated version is removed from the task). From now on
we always assume that after application of an assertion we have an uninstantiated version
in the supports, without indicating this explicitely.
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In a next step, we apply the definition of powerset (5.6.2) to the formulas z € 2A and
z E 23 respectively. We do this as before by selecting the corresponding assertion (5.6.2).
In fact we have to repeat the relevant step for each of the two subformulas. Note that after
clicking on the assertion (5.6.2) the system suggests to apply the rule X 6 2M —>< X Q
M > where we merely have to determine the application position, i.e. (2 Q A) or (2 Q B).
When we apply 5.6.2 again we are now presented with two suggestions as how to apply
5.6.2; these are X 6 2M  ——>< X Q M > and X Q M ——>< X 6 2M >. When selecting the
former rule the system automatically applies the rule to the unique application condition.
We obtain the new task

(1) ( M ’ Q N ’ fi y E M ’ s ' y E N ’ r
. (2) ( X e z M e X Q M r
(3) (A QB)” (5.7)

(zQA=>zQB)+

A further a-decomposition results in

(1) (M’gN’cryeM'äg/EN’)“
(2) (X 6 2M <=» X g M)-
(3) (A g B)-
(4) . (z ; Ar (5'8)

"(2: ; B)+
How to proceed ? At this stage, a human mathematician would probably argue that

(2 Q B)+ can be inferred from (5.8.3) and (5.8.4) with the help of a lemma which states
that Q is a transitive relation, which we don’t have at our disposal. Later we will see how
the system can be further developed to suggest to close this goal by application of a method
that corresponds to application of just this lemma. However, currently we are left with no
other choice as to further expand definitions, before we can close the goal. That is, we
basically have to proof the lemma by hand.

We want to apply definition (5.8.1) to (5.8.3), (5.8.4) and the goal. For the goal this
is easy. We simply select (5.8.1) for application. The system heuristically computes a
single correct replacement rule to apply (5.8.1) and hence applies it automatically. Further
application of (5.8.1) to (5.8.3) and (5.8.4) can be achieved by first making (5.8.3)'and
then (5.8.4) the goal formula. On the GUI we do this by using the link Make goal that is
attached to every non—axiom (cf. FigureF23). Internally this link applies the shift-rule.
The task after expansion of (2 Q A)“ and (A Q B)“ is

) ( M ’ Q N ’ fi y E M ’ é y E N ’ V '
) (XE2M<:>XQM)"
) (A93)—
) (ESA)—
) (yEz=>;yEB)+
) ( y € z = > y € A ) —

(yEA=>yEB)‘

Where (5.9.5) and (5.9.6) originates from the expansion of (2 Q B)+ and (2 Q A)”. The
new goal is obtained through application of (5.8.1) to (5.8.3). After making (5.9.5) the goal
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window and a further a decomposition to it  we obtain
' (1) (M 'QN'äyEM’3 'yEN 'Y‘  '

(2') (X62M<=>X;M)—
(3) (A 9 B)“

(4) '(z g A)‘  - |
(5) (y E z ) ‘  (5.10)
(6) (yEz=>yEA)"

JU  weAäyEBY _

@EBV
This goal can now be closed by application of (5.10.7), (5.10.6) and finally (5.10.5) to

the goal. During all this steps the system computes the correct suggestions as to  which
replacement rule realizes the  application of the respective hypothesis so that the user is only
concerned with selecting the  apprOpriate support  window for application. The remaining
proof steps are then '

(1) (1) (1) (1)

(1.3) ** (13-) M (13) M (13) (5.11)

(y E B)+ ' (y E A)+ (y E z)+ true+
We have obtained an agenda with a single task which can be closed and removed from

the agenda by application of the close rule.‘ This concludes our interactive proof of the
theorem.

What does this example illustrate? We can identify three basic advantages that  arise
when we make use of the task structure.

1. The main feature of the task-structure is that although it allows to conduct proofs in
a way that resembles ND style proofs i t  hides the calculus level from the  user. Notice
that instead of applying different ND caclulus rules we can now apply formulas to the
goal window 1n a uniform way.

2. Although the proof steps still resemble the  essential steps in an ND proof, proofs
conducted with the task structure are shorter. For instance, we do not need to  apply
quantifier elimination rules because this is done implicitly by CORE.

3. Tasks allow us to present assertions in an intuitive way to  the user. This is a prereq-
uisite for making use of the facilitated way to  apply these assertions. Together with
the fact that we avoid a branching of the proof when we apply assertions (as would
for instance be the  case when we apply the  =>E rule backwards in ND proofs) this
provides a convenient way to  construct proofs.

Overall, we can see that the  proof above does not  require any logical knowledge about a
certain calculus. Rather the tasks structure enables the  user to  concentrate on the  essential
steps of selecting and applying formulas contained in the  supports of a goal. Although the
application of an assertion still requires to  choose between a number of replacement rules
we have already significantly reduced the number of possible options by concentrating the
computation of replacement rules to a particular assertion. In the next section we will see
how this choice can be further reduced by a simple heuristic.
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5 .1  Computing Replacement Rules

Throughout the chapter we have often mentioned a heuristic that, given a support window
and a goal window, computed those replacement rules that are most likely to  be appropriate
for application of the knowledge contained in the  content of the support window to the goal.
We will now examine this heuristic in more detail. Let us therefore note that the formulas
in the goal and support window each correspond to a subtree of the IFT for the current
problem. We will refer to  the  root node of the support  formula as assertion occurrence and
to  the root node of the  goal formula as goal occurrence. The question is then: how can we
apply the label of the assertion occurrence to the label of the goal occurrence? We begin
with making two observations

1.  We can only apply a replacement rule 72 to a formula F if the input z' of 72 unifies
with a subterm of F .

2. TWO formulas can only unify if their head-symbols are equal.

The heuristic that we will deve10p here will makes use of these facts and tries to find the
minimal occurrence below the assertion occurrence that potentially unifies with an occur-
rence below the goal occurrence. To find such candidates we compare the head symbol of
putative input occurrences with the head symbols of occurrences below the goal occurrence.
This occurrence, if it exists, will then be used as an input for the replacement rule we gener-
ate from the assertion. Note that this input occurrence uniquely determines a replacement
rule if we require that only literals occur as values in the rule. In case there are multiple
occurrences 01, . . . ,on that qualify as, input occurrence we suggest one replacement rule for
each 0,- € min{01, . . . , on}2. The reason for using minimal occurrences is that if 0 < o’ in
an IFT then 0 is likely to  have less ‚($-related occurrences than o’. Accordingly, replacement
rules with minimal input occurrences will tend to have less value occurrences and there-
fore introduce fewer subgoals. We therefore always suggest those rules for application that
introduce the least number of new subgoals. Note that in order to  maintain completeness
the user can always request to  see all replacement rules that can be  obtained from the
particular. support window. '

; (M'ßNW) #6 (w’tM’Y) =>e (xr,N'7)0 MS (U(X,Y),Z‘5),F)+ (5—12]
\ _, \

g (M, N) e (mm/N) =>e (zr,Nr)° g (our, Y) zö)+ F+

Figure F 13: Assertion (left) and goal occurrence (right) for the example mentioned above.
M '7 and N '7 are freely instantiable variables, Z 6 is a 6 type variable and F E £ .

Before we formally present the algorithm, let us first look at an example.We take the
assertion occurrence to be labeled with the already familiar formula M 7 g N7 © 33" E
M7 :> 3:7 € N'V. We assume further that the  goal occurrence is labeled with a formula
(X U Y Q Z5) /\ F .  The lFTs for these formulas are shown in Fig. F 13 (we use prefix

2There  can be  multiple minima, because -< is a partial ordering
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notation to make it easier to identify the head symbols). We can see that the node labeled
with g (M  '7, N “') in the left tree is the minimal occurrence which qualifies as an input for a
replacement rule according to‘the criteria mentioned above; i.e. it has the same head symbol
as the framed occurrence in figure F 13 (right). The replacement rule that is suggested by
the above heuristic therefore is

(M? c No0 —>< (& (scum) =>e (xmvmo >

which is exactly what we need to apply the assertion to the goal (X U Y 9 Z 5) A F.
The algorithm that identifies the possible input occurrences is shown below. Note

that it excludes occurrences with a head symbol in {A, V, =>, -a, @} from the set of input
occurrences. The reason is that the heuristic tries to find the ”characteristic" non-logical
symbol of the assertion from which it tries to generate a replacement rule.

In the algorithm below the function SUBFORMSWITHSYM(S, o) returns a set of all oc-
currences below 0 that are labeled with a formula with head symbol 5. In fact, in the
current implementation it also returns the term position of each such occurrence within
lobel(o), which allows to automatically apply the preferred rule if there is a unique appli-
cation position.

The occurrences that are returned by this algorithm serve as input occurrences of the
replacement rules which realize the application of the assertion.

Algorithm 5.1.1: COMPUTEINPUTOCC(assertocc, goalocc)

5 <— head(label(a.ssertocc))
I <— SubforlithSym(s, label(goa.locc))
ifs e {A,V,-1,=>,<:>}/\I#®

then mmU)
l {q, . . . ,Ck} <— childswssertocc)
e se U,- Compute] nputOcc(c,—, goalocc)

The heuristic can fail in two ways. In some cases, it might not return an appropriate
replacement rule. To maintain completeness the user therefore always has the option to see
all rules for a given assertion to select the correct rule by hand. Secondly, the suggested
rule might not unify with a subformula of the goal. This is possible because we do not
perform a full unification when we try to identify suitable input occurrences. The reason
to avoid full unification however is that we are interested in fast, but shallow computations
that do not keep the user waiting.

It is interesting to remark that we can phrase the problem of finding the apprOpriate
input occurrence for a replacement rule also in more abstract terms in a way that resembles
the term indexing problem (see [SRVOI] for an overview).

More precisely, given a an assertion occurrence 0. and a goal occurrence 0 we are in-
terested in finding the minimal childs a1, . . . , an of a. such that Emi, 0’) holds for a binary
relation R and a child 0’ of the goal occurrence. We have to choose R in a way that if
R(a,,-, 0’) then any replacement rule with input a, can be applied to o’ . Ideally, we choose
R(a.,, o’ ) to hold iff a, and o’ are unifiable and of different polarity. However, we have al—
ready said that we want to avoid unification. To increase the preciseness of our heuristic
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while maintaining efficiency we could extend the  comparison of the  head—symbols of a,- and
0’ to a comparison of all non-variable symbols in a,- and 0 (in [SRVOl] this is also referred
to as outline indexing). We would then have chosen R in a way that is more precise than
the  currently implemented approach, but still not  as computationally expensive as a test
that involves full unification.

Note that we do  not actually index terms to  decrease the search process, but only frame
our problem in terms of term indexing. This allows for a more precise description and also
sets the ground for employment of real term-indexing techniques in future work. However,
note that we would also have to  address the additional complication constituted by the fact
that CORE is a higher-order framework. '

In chapter 8 we show how the  QANTS suggestion mechanism checks for the applicability
of replacement rules by using full unification. To make this possible QANTS will perform
these computations as parallel processes in the  background in order not to postpone the
user interactions.

5.2 _ Summary

In this chapter we have demonstrated the potential that the use of tasks can bring to
interactive proof construction. In particular we have shown that the task datastructure
eases the representation of subgoals together with its context and facilitates the application
of assertions. Furthermore we have seen that  tasks provide a way to  hide admissible but
irrelevant replacement rules from the user. We have also pointed out some open problems.

When stepping through the  proof of theorem 5.0.1 we arrived at a stage where we saw the
need to be  able to  apply larger proof steps (step 5.8). In the next chapter we will formally
develop the notion of a proof-method for the CORE system. Methods will provide a way
to  encode abstract proof steps, such as lemma application or certain domain—specific proof
technique for the use in CORE. We will define methods to operate on the task structure.
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Chapter 6

Interactive Proof Planning in CORE

So far we have seen that proof search in CORE is realized through the application of replace-
ment rules, which are generated from the contextof the current focus. However, although
we have noted that COREs reasoning style facilitates the application of assertions during
a proof, the level of reasoning that is constituted by the application of replacement rules
is often still more detailed than the level at which human mathematicians construct and
communicate proofs. In fact, when looking at proofs in mathematical textbooks, we find
that humans often justify a proof step by application of a certain reasoning pattern, such as
the diagonalization principle, the induction argument or application of a particular lemma.

To be able to  support a more user friendly style of interactive proof construction, the
concept of a tactic was introduced to interactive theorem proving [GMW79, Mi185]. Tradi-
tionally, tactics are understood as programs that execute a sequence of frequently occurring
inference steps automatically. Accordingly, application of a tactic transforms an open goal
into a (possibly empty) list of subgoals. Furthermore, tactics and inference rules can usu-
ally be combined to more complex tactics by so called tacticals such as Repeat, If, Else,
etc. This enables a hierarchical structuring of tactics and the encoding of general proof
strategies. This notion of a tactic is now used in many interactive theorem provers, such
as ISABELLE [Pau94], N UPRL [CAB+86] and others, where the available tactics range from
simple ones which, for example, only apply an inference rule for quantifier elimination re-
peatedly, to  tactics that perform a full fledged proof-search automatically (e.g. the Blast
tactic of the ISABELLE system employs a full matrix search). .

Motivated by the insight that humans plan their proofs at various levels of abstraction,
but not on calculus level, Bundy [Bun88] suggested to augment tactics by pre- and postcon-
ditions to be able to use them as planning operators (methods). This makes i t  possible to
plan proofs automatically at the abstract level represented by the pre- and postconditions
of the methods. The plan returned by a planning algorithm can then be  refined (expanded)
to calculus level by application of the tactics that are associated with each of the methods
that occur in the plan.

In this chapter we develop the  concept of a method for the  CORE system. To do  so,
we first compare the notions of tactics and methods that are used in the QMEGA system.
We will find that the concepts of tactics and methods in QMEGA are not much different.
Based on this insight we set out to devise a concept of a method that can be used for
interactive proof development as well as for proof planning, thus rendering it unnecessary to
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have different modules and datastructures for tactical theorem proving and proof planning.
This will make it easier to Work on the proof interactively as well as with the help of
an automated proof planner. Furthermore, the declarative specification of a method will
enable us to check for applicability of methods with a suggestion mechanism as we will see
in Chapter 7. However, in this thesis, we will not be concerned with devising a planning
algorithm for this methods. Rather we assume that we will use methods to perform abstract
proof steps interactively.1 '

In Chapter 5 we saw the need for the application of the following lemma

VASE“ BSeta CSet-A Q B /\ B Q C 3 A Q C (6.1)

which we will use as an example to illustrate the concepts we introduce in this chapter.

6.1 Tactics and Methods in OMEGA

In QMEGA, tactics are the objects that represent abstract reasoning steps in interactive
proof development, while methods are the corresponding datastructures for automated
proof-planning.

However, in contrast to the traditional understanding of a tactic described above, tactics
in QMEGA not only consist of a program. Instead, tactics are represented by a declarative
and a procedural part. The declarative content specifies sets of premises and conclusions
that have to be matched with proof lines of QMEGAS proof data structure PDS when a
tactic is applied. This declarative part of a tactic thus defines an abstract inference step.
The procedural part of a tactic is essentially an expansion function that is used to translate
the abstract proof step described by the tactic into a sequence of proof steps in QMEGAs

' natural deduction calculus. This expansion function has to be executed at some point
during the proof to show that the abstract proof step performed by the tactic was actually
correct. The expansion function can again make use of other tactics which allows for the
use of multiple abstraction levels.

The declarative part of a tactic in QMEGA can be graphically depicted as

P P1 C ”T(7r1,...7rj)

where T is the name of the inference step. {Ph . . . ,P„} are the premises and C is the
conclusion of the tactic.2. Along with a set of additional parameters {7r1‚. .. ‚'rrj} these
parameters are called the formal arguments of a tactic. Premises and conclusions of a tactic
are described by formula schemes that constrain possible instantiations for this arguments.
Furthermore, the declarative part can also contain a set of arbritrary stdecondtttons3 that
must hold for the tactic to be applicable.

Application of a tactic proceeds in essentially two steps: in the first step the formal
arguments of a tactic have to be matched with proof lines of QMEGAS proof data struc-

1This is what we call Interactive Proof Planning
2In OMEGA it is possible to specify tactics with multiple conclusions, however for the sake of simplicity

we will concentrate on cases with only one conclusion.
3Sideconditions are also referred to as application conditions.
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ture (in case of premises and conclusions). Additional arguments can be instantiated with
appropriate parameters, such as terms, substitutions or term-positions. The mapping of
formal arguments to  actual arguments of a tactic is referred to  as a partial arguments in-
stantiation (PAI) or tactic (method) matching. Each tactic matching determines the  effect
of the particular instantiation of a tactic on the proof state in the sense that each combina-
tion of instantiated and non-instantiated arguments corresponds to a different application
direction of the tactic. We will speak of forward application when some of the premises,
but  not the conclusion of a tactic are instantiated with actual arguments (i.e. proof lines in
the case of QMEGA). Backward application refers to  a situation where the conclusion but
not all premises of a tactic are instantiated 4 .

To see in more detail what the putative instantiations of the  premises and conclusion of a
tactic are, we need to take a closer look at QMEGAS proof datastructure ’PDS [CSOO]. The
main entity of this datastructure are so called proof lines (see Chapter  2). We distinguish
between Open lines that represent open subgoals and closed lines. Tactics and methods use

‘ extra datastructures (foci and tasks respectively) which relate each open line to a subset of
the closed lines that can be  used to  derive the respective open line. One also speaks of the
closed lines that are related to  an open line as support lines for an open line.

When a tactic is applied, the  conclusion of the tactic has to be  instantiated with an
open line, while instantiations of the premises have to  come from the corresponding support
lines for that goal. Note that proof lines can only serve as instantiation for an argument if
their associated formula matches the  formula scheme of the respective argument.

The effect of a partial argument instantiation for a tactic on the  proof state is the
following: non-instantiated premises are introduced to the  PDS as new open lines which
(generally) inherit the supports from the instantiation of the conclusion. Non—instantiated
conclusions become new support nodes, while instantiations of conclusions are removed
from the-list of open lines as they represent closed subgoals.

Methods in QMEGA (cf. [Me198, EM99]) are represented in frame like datastructures
similar to  the original suggestion by [Bun88]. They Show the  same distinction between a
declarative and procedural part that we find for QMEGA tactics.

The declarative content is represented by slots for premises, conclusions, application con-
ditions and declarations. Of main concern are the slots for premises and conclusions which
together provide a logical specification of the  inference step represented by the method.
Premises and conclusions can be annotated by EB and e to  specify the  effect of the  method
on the planning state.  Here 63 means that a premise P labeled with 9 must be  instantiated
with a support line which will be removed from the  support lines of the  respective goal
when the method is applied. A ® premise remains uninstantiated and is introduced as
new open line. Similarly, conclusions annotated with e are removed as open lines while 619
conclusions will be added as supports.

The procedural content of a. method essentially consists of a proof scheme (i.e. a natural
deduction proof segment where the justification of each line can again be  a method) that
can be seen as an instruction of how to  expand the  abstract reasoning step to  less abstract
inference steps and eventually to  calculus level. This again makes it  possible to  structure

4Note  that this definition subsumes the  frequently used notion of sidewards application if we assume
that tactics have only one conclusion.
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methods hierarchically by nesting methods in the procedural part.
Application conditions of a method are decidable predicates that are evaluated when a

method is applied; i.e. a method is only applicable in a given proof state when its application
conditions all evaluate to true. The purpose of application conditions is to enable the user
to encode heuristic knowledge as to  when apply a method, into the planning process. As
an example, take the PeanoInduction method [EM99] of QMEGA. It  tries to close a line
Vn.P(n)  by application of the induction axiom for natural numbers. However, this concrete
instance of the  induction principle requires n to  be  a natural number. The sidecondition of
the method therefore checks whether n is indeed a natural number, before the method is
applied.

As can be seen, tactics and methods in QMEGA differ in other aspects than traditional
tactics and methods. To describe this difference, we have to distinguish between an inference
step and i ts  application directions. An inference step always states that certain conclusions
can be derived from particular premises. However, each inference step can in general be
applied in different directions. In a very broad sense we can therefore say that QMEGA
tactics specify an inference step while QMEGA-methods define an application direction of
an inference step (where the application direction is determined by the 6 ,  EB annotations).

6 .2  Methods in CORE

When we now define methods for the  CORE system we want to  separate the abstract
inference step from the computations necessary to apply this inference step in a particular
direction. In the following we therefore introduce two objects: methods and application
directions. Methods will consist of a declarative description of an inference step, together
with the information common to all application directions of that inference step (e.g. the
expansion function and the formula schemes of the arguments). Application directions
describe computations necessary to apply a method in a particular direction.

The reason for this decision is twofold. Firstly, we note that an inference step with 'n,
arguments can theoretically be applied in 2” — 1 different directions. If we had to define a
different method for each such application direction this would constitute a serious problem
to a user who wants to select a method for application interactively. In OMEGA this problem
can be ignored because methods are generally only used in automated proof planning.
Furthermore, many abstract inference steps used by QMEGAS planner MULTI are only
applied in particular directions anyway. However, the approach that we develop here will be
suited for interactive method application too, because the user only needs to get in contact
with the name and abstract description of the inference step ( i s .  the method), but not
with the  application directions.

Secondly, moving the information that is shared between all application directions of
an inference step to a single object (i.e. a method) removes some redundancy in the
declaration of an inference step, because this information only has to be specified once.
This is for instance the case for the formula schemes of a methods arguments. Because
these formula schemes are identical for each application direction, we want to state them
only once for all application directions.

Before we now formally define methods and application directions for the CORE system
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let us note that the distinction between inference steps and application direction is not
entirely new, but in principle reflects the way tactics are implemented and represented in
QMEGA. '

We now define methods as descriptions of abstract inference steps that can be applied
in different directions via so called application directions.

Definition 6.2.1 (Method) A method is a tuple M = (P, C,A,o, FS, expM) where P
(premises) and C (conclusions) are lists of argument names and C is non-empty. A is a
possibly empty list of additional parameters. FS is a set consisting of one formula scheme
for each argument name in P UC. expM is the expansion function of the method. Finally, 0
is an partial function (called an outline mapping) that maps an K 6 2PUC to an application
direction of M.

Sideconditions that specify when a method is applicable are part of theapplication direc-
tions that are introduced below.

We can represent a method M with argument names P = {p1, . . . , pn}, C = {01, . . . ,Ck}
additional parameters T = { m ,  . . . ,m}  and formula schemes FS = {P1, . . . ,Pn, Cl, . . . ,Ck}
graphically as

p1:P1 pnrpn
( 3 1 : 0 1  6 1 : 2 0 ] ;  M(7T1 ‚_ „ ‚ 7 r l _ )

For a concrete example let us consider a trivial method that encodes the sample lemma 6.2
as a proof method and can hence be used to apply the transitivity of g in a proof.

P111423 p 2 1 B g CczAgC g—TRANS (6.2)

where A, B, C are meta—variables that range over formulas. A g B is therefore a formula
scheme that specifies structural requirements for possible instantiations of the argument
pl. In Section 6.8 we describe how these formula schemes can be declaratively stated in
a method Specification. However, currently formula schemes are still expressed as Lisp-
predicates that test whether a putative instantiation is of a certain syntactical form. Note
that the application of the g-transitivity lemma is a simple inference step that would not
usually be statically encoded as a method. Rather, one would employ this lemma as an
axiom. In general, lemma-application should only be encoded as a method if the application
of the lemma requires some additional (heuristic— or procedural-) knowledge that needs to
be encoded in the Sideconditions or computation functions of a method. An example is
the application of the induction principle which often requires knowledge as to how to find
a well-founded ordering on a given set. However, we will use method 6.2 to illustrate the
basic concepts introduced in this chapter.

Having introduced the concept of a method which enables us to specify abstract inference
steps we still need to make precise the notion of an application direction that represents
the knowledge about how to apply an inference step in a particular direction.

Method application directions realize the different application directions of a method
M in the following way: assume that K g (P U C) is the set containing the arguments of
‚M which become instantiated when a method is matched with a task. Then each such K
corresponds to a different application direction of M. The effect of applying a method in
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that direction is described by the method application direction Dfif‘ to  which K is mapped
by the outline mapping (i.e. 0(K) = DÄ”). Note that if o(K) is undefined for a K then the
respective method cannot be  applied in that direction.

Definit ion 6 .2 .2  (Method Application Direction) A method application direction Dfl" for
a method M = (P,  C ,A ,o ,  FS, exp/M) and a K g P U C is a tuple DM = (SC,  COMP)
where SC is-a set of predicates (called sideconditions) and COMP contains one computation
function ck for each k: in K .

The application direction D? for a given K will first evaluate its sideconditions with
respect to the instantiations < K > of the  arguments K .  If the sideconditions evaluate to
true the  method is considered applicable. For each non-instantiated argument k 6 (P  U
C) \K  there has to be a computation ck in the computations COMP of the corresponding
application direction. Each of this functions ck takes as input the  instantiations of the
parameters K to  compute the instantiation < k > of argument It. Note that in the  following
we agree on the notation that if k is an argument of a method then < k > refers to the
instantiation of k or the result of the computation function for k.

After having applied all computation functions of the application direction, each argu-
ment of a method is instantiated with either a node from the  FVIFT or a term computed
from a computation function. We will then say that the  method has a completed outline.
This completed outline contains all information necessary to  apply a method to a proof
state .

We will later map the completed outline to  a state transformation rule that realizes the
effect of the method application on the  CORE proof state.  However, before considering this
in more detail, i t  is necessary to think about  what i t  means to  instantiate arguments of a
method in CORE.

6.2.1 Method matchings in CORE

We define the notion of a method matching 5 for the  CORE system in a way similar to
the  method matchings (partial argument instantiations) in QMEGA. In the context of the
QMEGA system methods operate on tasks I‘ [> A which are basically sets of proof lines.
Tasks in CORE consists of pointers (windows) to subtrees of the FVIFT. It is therefore
obvious that, as a result of matching a method with a task in CORE, the arguments of the
method should become instantiated with occurrences inside the  windows of the  task. The
matching process itself is a pattern matching process between the formula schemes of the
arguments and the  labels of the occurrences in the windows of a task.

To see Which ocCurrences qualify as valid instantiations for the arguments of a method
notice that we can map a method

p1:P1 p „ :P „
c :C  M

back to an axiom scheme (Pl A“ . . . A B, => C)“ which is available in the context of every
window G (hence the  negative polarity). Annotation of this signed formula with uniform

5In  proof planning this  is also referred to  as an action.
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notation yields (P1+ /\ /\ P; =>f3 C')‘. From this annotated formula one can read of,
that instantiations for the premises Pl, . . . , P... can only be instantiated with occurrences
which have a negative or an ‘undefined polarity (such as equivalences or equations). The
instantiation of the conclusion of a method has to be of positive or undefined polarity.

However, a closer look reveals that there are more constraints on possible instantiations
for the arguments then just the polarity. Looking at putative instantiations for the premises
we see that they must be independent. Intuitively this becomes clear when we consider a
task 2, (A+ =>a B“) [> G. In this situation B' is dependent on A+ that is, if we were to
use B " as an instantiation for the premise of a method the validity of the conclusion would
suddenly depend on the validity of A+.

In the following definition we therefore exclude dependent occurrences from the set of
admissible instantiations for the arguments of amethod. Later this additional constraint
will turn out to be very helpful. ‘

Definition 6.2.3 (Method Matching) Let M = (P, (?,/1,0, FS, exp/c1) be a method and
T = E [> G a task for the current FVIFT R. Furthermore let R’ be the smallest subtree of
R that contains all windows in T. Then a method matching for ‚M with respect to T is a
mapping

match/„ : P U C —> OCCT

where OCCT is the set of all occurrences inside the windows in task T and the following
holds for each p and o with matchM (p) = o:

1. If p 6 P then 0 is independent in R’ and polarity(0) = —.

2. p E C then polaréty(o) = +.

3. If p 6 C then o lies inside the goal window G.

4. If p E P then p lies in any of the windows in E.

5. label (o) matches the formula scheme for argument p.

6. The application direction 0(K) for the set K = {39 € P U C HamatchM (p) = 0} is
defined.

The third condition restricts instantiations of the conclusion of a tactic to occurrences
inside the goal window. This is however no severe restriction. We introduce it only because
it is convenient for interactive method application. For automated proof planning this
additional condition can be ignored or modified.

Note that we will write match M (p) = e for p 6 P U C if matchM (p) is not defined. It is
furthermore worth pointing out that it is sufficient to require that occurrences in the range
of a method matching are unconditional in R’ in order to avoid the unwanted effects we
mentioned earlier. Given a method M with arguments P U C and K g P U C we say that
a method matching matchqz describes the application direction D? : 0 (K) ,  determined
by K iff matchM(k) # 6 for all 79 € K.

Before we can apply a‘method matching matchM to a task we test whether the sidecon-
ditions of the corresponding application direction hold. If this is the case we carry out the
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computation functions of the application direction. By performing this computations we
obtain the instantiations of those arguments that are not already instantiated by matchM .
We thus compute a completed outline for M ,  which we defined formally as follows.

Definition 6.2.4 (Completed Outline)- Let matchM be a method matching for a method
M = (P,C‚A,o,e:cpM) and D? the application direction described by matchM. The

completed outline for matChM is then defined as a function

outlmeäatchM : P U C _) £

Where z b 2< (o) f h ( #. K _ a, e matchM " z' mate M k €
outlmemtchM(k) _ { ckUc) otherwise

and ck is the computation function for k E DAK”.

A completed outline for a method M contains all information that is necessary in order
to apply a method matching to a proof state. Note that a completed outline maps each
argument of a method to a formula in £ and not to occurrences any more as does a method
matching.

To be able to describe how a completed outline affects the task—structure and the under-
lying proof-state we have to distinguish between those formulas in the range of a completed
outline that have been computed from the computation function of an application direction
and those that are labels from argument instantiations. We therefore define two useful sets.

Definition 6.2.5 Let outlineäatchM be a completed outline for a method M with argu-
ments K in P U 0 then we define the sets IM and CM as follows

. IM = {outlmeK (k)|k E K}matchM

. CM = {outlmeäatchM (c)|c € (P U C)\K}

Intuitively, IM is the set of all instantiations of arguments of M and CM is the set of all
values that are computed by the computation functions of the application direction 0(K )
We generalize our notation < . > for method matchings to completed outlines and refer to
outlinefwtchM (a) as < a > for an a. E P U C.

6.3 Proof State Transformation

Having defined what a method matching is and how to obtain a completed outline for it,
we need to think about how such a matching transforms the proof state. We first describe
the changes on an agenda that are caused by the application of a method matching to a
task. Then we specify how we have to change the proof—state (i.e. the FVIFT) in order to
be able to realize these changes.

Let us therefore assume that we want to apply a method matching matchM to a task
T = E D G and that matchM describes a backward application of method M with premises
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p1, . . . , pn and conclusion c. To be able to apply matchM to T we first have to compute the
completed outline outlinefKnmhM for matchM.

We denote with pi] ,  . . ‚pa-k all  those premises that are instantiated by matchM (i.e.
< péj >6  IM).  Because we apply the method backwards we also have < c >6  IM. If
pm, . . . pm are the arguments of M without an instantiation in match M (i.e. < pm >6  CM)
then application of the method matching to T should result in the following effect on the
task structure:  (

2 D G[tr'u,e+].,r
E D < jo“,1 >spokc>pml  ma

k2r><pm>

This means that the  task X3 D G[<  c >]7T is replaced on the agenda by a task where
the instantiation of the conclusion < c > is replaced by true+ in the goal window (i.e.
E D G [true+],r). Furthermore each of the uninstantiated arguments Pu. results in a new
task with < pug > as goal window.

To see how forward application affects a task let the uninstantiated arguments in
matchM be  again denoted by pm. Let furthermore < c > be the instantiation of the
conclusion (remember that we obtained this instantiation from an computation function
because we are dealing with forward application). Then forward application of the  method
should affect the current task as follows 6

rE3r><pm>

2>0M<5  an
2D<pm>

\ E ,<c>  [>G

Here we have added < c > to the supports of our task, while a new task was created for
each of the < pm > .

In order to be able to perform these changes of the task structure we have to change
the CORE proof state (i.e. the  FVIFT) accordingly. Considering backwards application we
have to replace < c > in the FVIFT with <' p1M > ,  . . . , < pm > which have to  be  B-related
between each other. By opening windows on each of the < pm > we can then make them
the  goal windows of new tasks as in 6.3. Note that the necessary transformation of the
FVIFT could in principle be obtained by application of a replacement rule

<c>—><p„1>, . . . ,<pm> ' (6.5)

t o < c > .

For forward application the situation is not  much different. We also want to  introduce
< pm > ,  . . . , < pm > as goal windows of new tasks (cf. 6.4) in order to treat them as new
subgoals. However, we also need to  add < c > to  the  support windows of the  current task.
This means we have to  introduce < c > in a-relation to  the  goal window of the  current
task while < pm >‚ . . . , < pm > have to  be ‚(?—related to < c > .  This effect could again be
realized with the help of a replacement rule.

<p . ,>—><c> ,<pu l> , . . . ,<pu ,>  (6.6)
6Remember  that we only distinguish between forward and back-ward application.



51

Here < p,- > is the instantiation of an arbritrary premise pi. We need this instantiation
only to introduce < c > and the < pm > ,  . . . , < pm. > into the context of G .

The problem we have with rules 6.6 and 6.5 is that they are in general not admissible
in the context denoted by the current task. They represent speculative proof steps which
we have to carry out by application of an oracle-rule. In the following, we will define how
a completed outline for a given method matching can be  mapped onto an oracle-rule. This
oracle—rule we call a State Transformation Rule.

Definition 6.3.1 (State Transformation Rule) If M is a method, outlz’neäatchM a com-
pleted outline for this method and 1M and CM as defined above, then the state transfor-
mation rule TmatchM for this outline is the following:

T _ [ IM\{<c>}]  <c>——>CM i f<c>e IM
matChM _ [IM\{< p >_}] < p >—> CM else

The rule for the  case that < c >€  IM realizes backward application of M while the rule for
the other case corresponds to forward application. Note that in the latter case < 0 >6  CM,
that is < c > occurs on the right-hand side of the oracle rule as required in 6.6. Furthermore
< p > in I M is an arbritrary element from IM which is non-empty because we must have
I M # (D in order for a method to be  applicable. The transformation rule defined here
only works for methods with one conclusion but can easily be  generalized to methods with
multiple conclusions.

The state transformation rules defined above differ from the  rules 6.5 and 6.6 in that the
labels of the instantiated arguments IM appear as conditions in the state transformation
rule while they did not occur in rules 6.5 and 6.6. The reason for this is simply that only
terms that occur in an oracle rule can appear in the proof obligation which is introduced to
warrant application of the oracle rule (cf. Section 3.7). Hence, without these parameters,
the new proof obligation that results from the oracle application would be ( < pu, > ,  . . . , <
put >=>< c >)+, which can in general not be proven.

The separation of instantiated arguments. and uninstantiated arguments into condition
and value part of the oracle, is only technically motivated as will soon become clear. In
principle, any distribution of the  premises over conditions and values would have the same
effect on the FVIFT, as we saw in Section 3.7.

Let us consider the application of the state transformation rule for backward application
in more detail. We consider a method M and a completed outline outlz’neäatchM. Again,
we denote the elements in I M as < pi, > ,  . . . , < Pa > .  Similarly we refer to  elements from
CM as < p“1 > ,  . . . , < pm > .  When we now apply the  corresponding state transformation
rule, we basically perform a cut over

<1vz-1 > A.../\ <p‚;k >/ \<p . „1  > / \ . . . / \<pu ,  >

We have seen in Section 3.7 that this leads to a replacement of the subtree for < c > by
two B—related trees 7; and R .  Let us look at these subtrees in turn.  Because the conclusion
of a method can only be instantiated with a positive occurrence the first subtree is of the
form depicted in F igureF  14 and encodes the replacement of the subgoal < c > by new
subgoals. In Figure F14  we have indicated which of the subgoals are classified as conditions
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R==a(,8(<p,;, >+,...<p,;i>+,<10„‚1 >+ , . . .<p„ ‚_>+)+ ,<c>+)
_,— k V J

Conditions Values

Figure F 14: Result of State Transformation Rule. Occurrences are labeled as conditions
and values as indicated.

and which as values in the  oracle application, If we recall that the conditions < p,“ >+
originate from instantiations < pin >“  of a methods arguments, we can see that we can use
this instantiations < p,;a >“  to  close subgoals in the  condition list immediately. We merely
need to generate a replacement rule < pic >+——> true+ from each of the instantiations
< p,;a >“ .  With these rules we can then close the condition subgoals. The remaining,
simplified subtree is then the following

am; p... >+. . .. <1)... >:>+, < c >+)
Values

This is exactly the replacement of < c > that we wanted (cf. 6.5). By mapping a .
completed outline to  an oracle rule we were thus able to replace a goal < c > with new
subgoals < Pu; >+, . . .  < pm >+.

Now it becomes clear why we distributed the instantiations of the arguments over the
value and condition part of the oracle rule. ' When applying the oracle rule we obtain two
lists. One contains a window on each of the values, the value-list, while the other list contains
windows on the  conditions of the rule and is hence called the condition list. This means
that after application of a state transformation rule we can immediately close all windows
in the condition list with the help of the  replacement rules generated from the  < pic >“ .
Then we merely need to make the windows in the value list the goal windows of new tasks
to obtain exactly the  transformation of the agenda that we described in Section 6.3.

The second subtree that is introduced by the oracle rule represents the proof obligation
that results from the  oracle application. The tree will be  of the form

„+ : o:(oz(< j oa -1> ' , . . .<p„ -1>" ,<p„1  >‘”, . . .  <pu, > ‘ ) ‘ ,<  c >+)+

We refer to the formula represented by this  tree as 77+. Later, we will see how we can define
an expansion function for a method that ,  applied to  77+, closes this goal.

To update the task structure after application of a state transformation rule as described
above, we extend the inference rules for tasks by a rule for oracle application.

EDI
Z,I[>n+,Z,II>R1,...,Z,II>Rn oracze[<1>]I—+v

where {R1, . . . ,Rn}  = (I) U V. This rule is in principle similar to the  apply rule for replace—
ment rule application. The only difference is that the  rule above generates an additional
task 2 ,  G’ I> 77+ which encodes the obligation to  show the validity of the oracle—step.

Note that  we can use this rule also for backward application of a method. If we want
to apply a method to  a window 3 E Z we simply use the shift-rule and make .9 the  goal
window, before we apply the  state transformation with the help of the just defined rule.
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6.4 Sample Method Application

To study how application of a method transforms the FVIFT and the task structure at hand
of a concrete example let us again consider the method Q —TRAN S (see 6.2) which applies
the transitivity of the Q-relation to the task

T = Por): (M g N): (PW) =>ß (N ; OD" r> (M g or (6.7)
A possible FVIFT that is represented by this task is shown in FigureF 15 below. Let us

Figure F 15: FVIFT for task 6.7

now try to apply the method backwards to this task. The first step will consist of the
computation of a method matching for the method Q —TRAN  S . What are the putative
instantiations for the arguments of the method? By definition we have to restrict our
search for instantiations of the conclusion to the positive occurrences in goal window of
the task. Fortunately, we find that the only occurrence in this window (N Q O)+ matches

. the formula scheme (A Q C) for the conclusion. We then have to look for instantiations
of the premises of the method within the support windows. We see that the occurrences
(M Q N )“ and (N Q O)‘ match the formula schemes for pl and p2 respectively. Although
both occurrences have a non-negative polarity, only (M Q N )“ qualifies as an instantiation
of pl. The reason is that that (N  Q 0)” is dependent on P(:r””). Because P(a:"’) occurs
in the same minimal subtree that contains all windows of task T (i.e. the entire tree in
FigureF 15) this is a violation of the requirement we made in the definition of a method
matching and hence (N  Q O)‘ is no valid instantiation for 392. We end up with the method
matching

matchgnTRANg = <  CI (1% Q O ) + , p 1 2 ( M  Q N)_ > ' (6.8)

From this method matching we obtain the following completed outline for M

<a: (M90Lp1 = (MEN) .p2=(N§0)>
Note that we have IM : {(.M Q N), (M Q 0)} and CM = {(N Q 0)} This completed
outline can then be mapped to a state transformation rule. According to definition 6.3.1
we obtain the state transformation rule

((M g N)] (M g 0) —>< (N g 0) > (69)
which can then be applied to < c >=: (M Q O)+. As a result, the occurrence (M Q O)+
in FigureF  15 is replaced by the tree in FigureF 16. We can see that the instantiation of
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(Mom—AG N 9 0 ) "  (MQO)+ (MQN)+ A5 (NQO)+ (MQO)+

Figure F 16: Replacement of (M Q O)+ in FigureF 15 as a result of method application.

the conclusion (M Q O)+ is now replaced by two fi—related subtrees. The right subtree

R -= M ((M g NV: (N ; 0)+) ‚_ (M g 0V)

Condition Va lues

contains new windows for (M Q N )+ and (N  Q O)+ which represent alternative subgoals
to  the instantiation < c > of the conclusion. The left subtree represents the new proof-
obligation

(7+ := (M g N)‘ A“ (N ; 0)- :»a (M 9 0?“ (6-10) .
We first have a look on the windows for the new occurrences (M Q N )+ and (N Q O)+ in R.
The window on the occurrence (M Q N )+ originates from the condition of the oracle-rule.
Because every occurrence in the condition part corresponds to an actual argument of the
method, we can use this instantiation to close the subgoal represented by this occurrence.
In the example, the new occurrence originates from the  instantiation (M Q N )“  of p l  from
which we can construct the rule: (M Q N )+ —> true+ which proves the respective window.

Application of the tactic is completed when the rule (M Q N )+ l—> true+ is applied to
the condition windows. We have then transformed the subtree B into

R' : a(ß(true+, (N  Q Of”), (M Q ON)
H—x

Values

I t  is worthwhile to point out  that the  intermediate step, which closes the  condition window,
is carried out automatically and is hence invisible to the user. The occurrence (N Q O)+
is thus the  only real subgoal that is introduced through application of the method.

Eventually, we have to replace task 6.7 by tasks for subtrees R’ and 77 on the  agenda.
This means that  task 6.7 becomes replaced by

P(t), (M g N)“, (3:5.P(a:) =» (N c OW" D (N g O)+
{ PU“), (M ; IV)—a (Bx-POI?) => (N £ 0 ) “ ) '  [> 77+ }

As we pointed out above, the second task represents the  obligation to  show that the  method
application was indeed a valid step; i.e. we have to  provide a proof of the  lemma encoded by
the method. Currently the system automatically closes this task by applying the  method
expansion function to  it  if this function is specified. Alternatively, one could delay the
expansion of the method or' even abandon it  completely if one is not interested in a proof
of the lemma.
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6.5 Method Expansion

So far, we have defined what a method for the CORE system is and how we apply it to a
given proof state. We have also seen that application of a method

p1:P1 p„:P„
c : C  M

introduces a new proof-obligation
77+1=(<pl >/\.../\<p,, >=><c>)+

with the corresponding task TEXp = E [> (< p1 > /\ . . . /\ < pn, >=>< c >)+ When we look
at the above formula, it becomes clear that although the exact proof-obligation depends
on the actual arguments < p, > and < c >, all proof-obligations that are the result of
applying a particular method will usually share a common overall structure. Since in many
cases methods are abstract proof steps that merely abbreviate a frequently used sequence of
inferences, We can use this sequence of inference steps to close the proof-obligation n+. This
is what we will refer to as method expansion. In other words, for most methods the proof
of the resulting proof-obligation 77+ follows a certain scheme which is known at the time
the method is specified. We will encode this knowledge of how to expand a method (i.e.
closing the resulting proof obligation) in little programs. We so obtain expansion functions
that, applied to the proof—obligation, automatically apply CORE calculus rules to rewrite
the proof-obligation to true+. “

As a simple example let us consider the expansion function of the g —TRAN S method.
We have seen that after application of this method the resulting proof—obligation will be of
the following form

(M 9 N)" Aa (N S 0)" =” (M 9 0)+
_ We can always obtain a proof of this goal by performing the following steps.

1. Search for the definition of _C_ 7 ; i.e (A7 g B'T <=> a: E A7 => :(: 6 B7)“ in the support
windows 2 of task T E x p.

2. Generate the rule (A7 ; B"?)O —>< (:17 E A’Y => 3: € B7) >Ü from this definition.

3. Apply this rule to occurrences (M _C_ N )”, (N g O)“ and (M g 0)“ respectively
which changes the content of the goal window to

(m6M=>.rEN)“/\a(a:€N=>x€O)‘=>a(x€M=>:cEO)+

4. Focus to (:D € O)+.

5. Generate and apply: :2: 6 0+ —>< x E N+ >,:r E N+ —>< a: E M+ >,x E M+ —><
true+ > in turn.

At the moment, we write expansion functions like the one above in COREs tactic speci-
fication language which is basically a Lisp—like language enriched by certain keywords (e.g.
try, fail, . . . ) that facilitate backtracking. This means that the expansion functions we use
are essentially CORE tactics.

7"We have encoded this definition as an assertion which is represented by some part of the FVIFT.
However, although we know that it is contained in a support window of the current task, we do not know
in which.
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6.6 Integration of Automated Reasoners

In OMEGA it is possible to integrate automated reasoning systems such as OTTER [McCQO]
and MACE [Mc094] into the  interactive proof process. To close subgoals automatically
OMEGA provides tactics, such as

p1 :P1  p „ :P . „  p12P1 p „ :P „
c :C  OTTER ‚_ c :C  MACE

that justify a goal C from the premises Pl ,  . . . , Pn by a call to  the first-order theorem prover
OTTER or the prOpositional logic decision procedure MACE. Tactics that incorporate other
external reasoning systems, like TPS or computer algebra systems (CAS) have also been
implemented in the system (see [BBS99] and [Sor01]). Proofs that are found by external
theorem provers are translated to  OMEGAs ND calculus in the expansion of the tactic.

Using the methods that were introduced in this chapter, we can integrate external
reasoning systems into CORE in much the same way. If we extend the method specification
language to allow for the encoding of methods with a flexible number of premises we can
directly encode methods that carry out the  inferences of the tactics above.

However, to realize expansion of these methods would require the adaptation of proof-
and calculus transformation approaches like TRAMP (see [Mei00]) and SAPPER (see [KKSQS]
and [Sor00]) to CORE.

In Chapter8  we will describe how the  suggestion mechanism OANTS can be used to
apply methods that make use of external reasoning provers to inactive tasks on the agenda.
This will enable us to  tackle inactive subproblems with automatic theorem provers in times
when the user remains inactive. '

6 .7  Limitations of the Approach

The concept of a method that was introduced in this chapter roughly resembles the original
concept of a method as suggested by [Bun88] where a method is a specification of an LCF
style tactic. To see why, remember that we carry out the abstract inference step described
by a method through application of a state transformation rule. This rule allows us to
refine a goal to  some subgoals. However, to justify this refinement, the system creates
an additional proof obligation which we close by applying the expansion function of the
method to it .  Since we choose to implement this expansion function as an (LCF style)
CORE tactic we can see a CORE method as a wrapper for a CORE tactic. In the long run
one could envision a different expansion mechanism which makes it  possible to  describe the
expansion of a method in a more declarative way.

However, the methods for the CORE system lack animportant  feature of the OMEGA
methods. In CORE we can only use multiple levels of abstraction in the  specification of a
method if we compose the  expansion tactic out of smaller tactics. In OMEGA we are able to
use other methods in the  expansion of a method. Also, while expansion of OMEGA methods
can be declaratively specified in form of a partial proof fragment, the  expansion mechanism
we have introduced here restricts us to a procedural description of the  expansion. What
needs to  be done at this point is to deveIOp a declarative language for specifying expansions
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in which methods can be  compounded to larger methods. This would basically mean to
introduce methodicals (as defined by [RSOID into our method specification language.

6 .8  Syntax of the Specification Language

Now that we know what a method is in the context of the CORE system, we want to be
able to specify such methods. We therefore introduce a language in which methods can be
specified. This language is based on elements from the languages in which methods and
tactics are specified in QMEGA. I t  aims at using declarative elements for the description of
methods and application directions wherever possible to  increase readability. A complete
specification of the  language for method declaration is given in form of a BNF—grammar in
(Figure F 22, Appendix). 8We will see that the distinction between methods and application
directions is also reflected in the  specification language. Let us first look at how we specify
methods.

6 .8 .1  Specifying Inference Steps

A method (<  inference > )  is specified according to  the following scheme.

< inference > :::: (defmethod < name >
( in < theory > )
(declarations

(type-variables < typevar-list > )
(variables < var—list > )
(methodvars < mvar-list > ) )

_ (parameters < name-list > )
(premises < arg-list > )
(conclusions < arg-list > )
(outline—mappings (<  map-list > ) )
(expansion < name > ) )

Here < name > is the name of the  inference and < theory > is the theory to which the
inference belongs. In the  declarations part of a method we can introduce variables that
will be  visible in all parts of the method declaration as well as in the application directions
that belong to the method. We distinguish between three kinds of variables. Type variables
are variables that range over types. We can use any string (<  name > )  to declare a type
variable:

< typevar-list > : :=: < type-var > | e
[< type-var > < typevar—list >

< type—var > : : :  < name >

In the variables section we introduce variables of a certain type according to the fol—
lowing grammar

8The  language described in  this chapter already allows for the specification of multiple conclusions and
hypothesis for particular premises which is not yet accounted for in our concept of a method.
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<var—1ist> ::= <va r>  I e
I <var>  <var—list>

<var> ::= ( <name> < type>)

Types < type > can be defined according to the scheme below. Note that the < type-list >
construct allows us to specify functional types. For instance the type list (0 N M) describes
the functional type (M —> N)  —> 0. Accordingly, ( a  (0 N M)) specifies a variable @ of type
(M —> N) —> 0. Note that < basetype > comprises all types defined in theory < theory >
and <typevar- l is t>.

< type > : :=  < basetype >
| <  type-var >
I ( < type-list > )

< type-list >::: < type > | e
| <  type > < type-list >

Method variables are variables of arbritrary type that can be  used to store intermediate.
results computed by the computation functions in the application directions of a method.
Types of method variables can be constructed out of simpler types with the  help of type
constructors such as

<constructor> ::= listof I pairof I . . .

. and the following grammar rules

< mvar—list> ::= < mvar > I e
| < mvar > < mvar-list >

< mvar > ::= ( < name > < mvar-type > )
< mvar-type > : :=  < basetype >

I ( < constructor > < mvar-type > )

Currently, listof and pairof are the only predefined type constructors. However, addi-
tional constructors and base-types can be  introduced easily by the user of the  system.

The then following parts of a method declaration introduce the arguments (premises
and conclusions) as well as additional arguments (parameters) of a method.  We can define
any variable declared in the method to be  a parameter by using the < name-list > construct.
Premises and conclusions consist of arguments names together with a declarative description
of the formula scheme < decl_content > for the  respective argument.

<arg-list> ::= <a rg>  I e
I < arg > < arg-list >

< arg > ::= ( < name > < decl_content > )

The declarative description < decl_content > can be any term over the the symbols and
variables that are declared in the method or in the  corresponding theory < theory > .  As an
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example consider the already familiar fOrmula scheme g (A, B) which we would describe
as (subset A B)? assuming that the symbol subset- is defined in < theory) and A and B‘
are variables of type (0  a )  for some type or type variable a.

By using higher-order variables in the declarations of formula-schemes the method in—
terpreter can compute values "of‘non-instantiated arguments by a pattern-matching process.
This pattern matching process subsumes the  computation functions of the application di-
rections of a method that were introduced in Section 6.2..

An important part of the method declaration is the specification of the outline mapping
which is done according to the following part of the grammar 9 where < name> is the name
of the application direction to which a method matching is mapped.

< map—list > := < mapping >
I < mapping > -< map-list >

< mapping > ::= (({existinglnonexisting}*) < name > ) l e

To map a method matching to an application direction we assume that. the  arguments of the
methods are always ordered as follows, where cl ,  . . „ck  are the conclusions of the method,
p1‚. . . , p; are premises and 771, . . . ‘, “fin are the additional parameters:

0 :  [C1 , . . . ,Ck ‚p1 ‚ . . - ‚p l ‚771 : - ° -37 rfl ]

We then use a string m = m] . . . "“t over {existingInaneazistingP of length [OI to describe
a. set of method matcl‘iings as follows: m describes a matching matchM- iii for all i =
1‚_ . . . ‚ |O| the following holds: m = existent iff matchM(a) is defined for the argument a
at position 11‘ in O .

This concludes our description of the specification of methods. We now investigate how
application directions of a method are specified.

6 .8 .2  Application Directions

Application directions (<  appl-dir>) must be specified according to the following grammar

< appl-dir> : :=  (defdirection < name > < name >>
( declarations

(type-variables < name—list >_)
(variables < var-list >)
(methodvars < mvar—list > )  )

(hypothesis < hyp-list > )
(premises < arg—115132 > )
(conclusions < arg-list2> )
(application—conditions < list-of-expr> )
(outline-computations < comp-list > ) )

Here <name>  and <name > correspond to the name of the application direction and the
method to which i t  belongs reSpezctively. The declarations part is. similar to the one used

9Note  the slight abuse of the  notation, where we use a regular expression in the grammar-
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in < inference>. but all variables declared here- are only locally visible to the application
direction. In the hypothesis part

< hyp-list > ::= <“ hyp- > | :‘E
I < hyp > < hyp-list > _

< hyp > ::= ( < name > < deCI-content > :for < name >)

we can introduce hypothesis for some of the methods arguments. In principle, the declara-
tion of hypothesis. is similar to the declarations of arguments in a method. We also specify
a name and a formula scheme fer the hypothesis. However, for each hypothesis that we
introduce we have to give the < name > of the premise to which the hypothesis belongs.
This is done with the help of the :for keyword above.

Next, we need to. define for each argument of the method how an instantiation of this
argument "behaves" in the task to which we apply the method in the respective direction;
i.e. whether the instantiation of the argument should be added or removed from. the task
after application of the method. We do this by pairing each argument name with a sign
8 E {+}  _?  *}  :

<arg-list2> ::= <arg2> [ c
| <arg2> <-arg-1ist2>

<arg2> :.:= (+  <name>  )
| (— <name> )
| (* <name>  )

The semantics of this annotations is the following: arguments labeled with “+"  are added
as new windows to a task after application of the method. Accordingly. in application
directions for backward application we can only label premises with "+"  that do not become
instantiated when applying the method. In appliCation directions that realize forward
applications. only conclusions can be labeled with "+ " .

Exactly the converse is indicated by a "—" label. Arguments with this label are removed
from the task after application of the method. In  general, we annotate conclusions in
backward application directions with "—-". However, i t  might ocassionally make sense to
remove the instantiation of a premise from a task when we apply a method in forward
direction. Consider for example a situation where we apply a method in forward direction
and want to cancel one of the  use-d premises afterwards. This Could for instance be  the
case: when we use a method to simplify a premise 3+  3: + 12' with the help to a: + 1510'. In
this situation we might want to get rid of the initial premise because we now have obtained
an equivalent, but simplified version.

The "*" label causes a default behavior of the argument. Arguments labeled with
"*" must be instantiated in the respective method matching and remain in the task after
application of the  method.

The next. step in the "specification. of' an application direction are the appliCation con-
ditions. Application conditions are arbritrary LISP-expressions that must all evaluate to

1“ In  Such. methods can be  realized by calls to external computer algebra systems-
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true in order for the method to be applicable in that direction. Using application conditions
we can encode local constraints as to when to apply the method in the particular direction
represented by the application direction.

(application-condition < lisp-expr> )

Eventually, outline computations < comp > can be specified to bind methods variables.

Outline computations can be arbritrary LISP expressions that may even return multiple
values. These values will be assigned to the method variables in <val—list>.

< comp-list> ::: <comp> | e
< comp > < comp-list >

< comp > ::= ( < val—list > < lisp-expr >)

6.8.3 Specifying g ——TRAN S

In this section we step through the specification of our already familiar sample method
; —-TRANS to see how the language introduced above is used to specify concrete methods

in CORE. We first define the method that describes the inference step g —TRAN S before
we turn to the specification of the application directions.

Let us start with the declarations part of the method. Because we want to apply the
method to sets of arbritrary type, we declare a type variable aa and variables a, b and c
for sets of type (0 aa) which we will use to describe the formula scheme of our method.

(declarations
(type-variables aa)
(variables (a (o aa)) (b (0 aa)) (c (0 aa))))

Next, we need to introduce the arguments of the method. Our method has three argu-
ments p1, p2 and c and no additional arguments. The formula scheme for the arguments
is given in 6.2. Accordingly, we declare the arguments pl, p2 and c as follows (we assume
that subset is already declared in theory naive-set).

(premises (Pl (subset a b)) (P2 (subset b c)))
(conclusions (C (subset a c)))

What is left to specify are the outline mappings of the method. We want to apply the
method in three directions. Forward (pl and p2, but not c are instantiated) and in two
different backward directions (c and p2 but not pl instantiated, and c and pl but not
p2 instantiated). We do this by introducing the application directions subsettrans-m—f,
subsettrans-m-bl and subsettrans—m—b2 respectively. This yields the outline mapping

(outline—mappings
(((nonexistent existent existent) subsettrans-mwf)
((existent existent nonexistent) subsettrans-m-bl)

((existent nonexistent existent) subsettrans-m-b2)))
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Eventually, we specify the CORE tactic that we use to expand the method.

(expansion,subsettrans—m—exp)

In fact, subse t t rans-m-exp is a CORE tactic that implements the algorithm on page
55. Putting the  pieces together yields the following method specification.

(defmethod subset t rans
( in  naive—set)

(dec la ra t ions
(type—variables aa)
(var iab les  ( a  (0 aa ) )  (b  (0 aa ) )  ( c  (0 aa ) ) )
(parameters ) '
(premises (P1 (subset a b ) )  (P2 (subset b c ) ) )
( conc lus ions  (C ( subse t  a c ) ) )
(outl ine-mappings

( ( (nonex i s t en t  ex i s t en t  ex i s t en t )  subse t t r ans -m-f )
( ( ex i s t en t  ex i s t en t  nonex i s t en t )  subse t t r ans -m—bl )
( ( ex i s t en t  nonexis tent  ex i s t en t )  subsettrans—m—b2)))

(expans ion  subse t t rans-m-exp)
(manual " “)
(help " " ) ) )

We still need to define the application directions for the  method. For this particular
sample method this is rather easy. We only consider the  forward direction. application
directions for the  other directions can be  specified analogously.

Because we do not want to  restrict forward application of the  method we can leave
the application-condition empty (the empty application direction is equivalent to t rue) .
Similarly, we do  not need any additional computations. Hence, we merely need to  annotate
premises and conclusions of the method with + ,  — and * ]  The conclusion c has to  be added
to the support windows of the  task and is labeled accordingly with + .  Because we want
instantiations of the premises to remain in the task after application of the method, we
annotate pl and p2 with *. At the  end, we obtain the  application direction

(de fd i r ec t i on  subse t t rans-m-f
subsettrans—m

(premises (* P1) (* P2))
( conc lus ions  (+ C))
(appl icat ion-condi t ions
)

(outline—computations
)

(manual ” " )
(help ”“))
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6.9 Chapter Summary

In this chapter we started with a comparison of the tactics and methods of the OMEGA
system. We have seen that they have much in common; i.e. they are both declarative
specifications of inference steps. We have therefore argued that these methods and tactics
can in principle be subsumed under a uniform datastructure.

We then introduced a notion of a method for the CORE system which can be used for
interactive as well as for automated proof planning. When we developed the concept of a
method we tried to separate the inference step described by a method from the different
application directions of that inference step. This distinction between a method and its
application directions is also reflected in the specification language that we introduced to
be able to define methods for the use in CORE.

So far we have not been concerned with finding putative instantiations for a methods
arguments. In the remainder of this thesis we will adapt QMEGAS concurrent suggestion
mechanism QANTS to CORE which will then be able to identify methods that are applicable
in a given proof state and also suggest instantiations of the methods arguments. Before
describing how QANTS was modified and adapted to CORE we describe the mechansim in
some detail.
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Chapter 7

The QANTS suggestion mechanism

In the previous chapters we have worked on making the  interactive use of CORE more user-
friendly. We have introduced the concept of tasks to make prOper use of CORES strength
in applying assertions. Furthermore, we introduced methods which enable us to perform
abstract proof steps. However, let us think about how we can further support the  interactive
use of the system. Three issues make interactive proof construction in CORE still difficult.

The first problem is concerned with the application of replacement rules. Having selected
a replacement rule for application, we have to identify the  term position inside the  active
window at which we want to  apply the  rule. When the active window contains a large
formula this can become quite difficult. Furthermore, although the system now heuristically
selects replacement rules for application of a particular assertion (cf. Sec. 5.1) this choice
might sometimes be incorrect. In this case we have to  retreat to  checking all admissible
replacement rules for applicability. We have argued earlier that this can become quite
tedious.

A similar problem holds for methods. Because the number of methods can easily become
large, i t  is difficult to keep track of all methods available in the system, let alone to determine
which of the methods are applicable. This points us directly to the  third problem. Assume
that we have selected a method for application. How do we instantiate the arguments of the
method? Remember that in the case of CORE we do not instantiate methods with proof
lines that  can easily be referenced. Rather, we instantiate arguments with subformulas
inside the windows of a given task. Identification of putative instantiations is hence not
trivial.

This motivates the need for a suggestion mechanism that automatically checks which
methods or replacement rules are applicable in a given proof state and then suggests these
rules and methods for application. Ideally, the mechanism is also able to provide suggestions
of how to  instantiate the arguments of an applicable method. In the OMEGA system this
job is handled by the multi-agent architecture QANTS (see [BSQ8, B800] and [B899b]
for an extension of the  system). This architecture is based on societies of agents which
compute possible argument instantiations for QMEGAS inference rules in the  t ime between
two user interactions. These argument instantiations are then heuristically ordered and
most promising instantiations are dynamically presented to  the user as suggestions about
how to continue the proof.

The QANTS mechanism is in principle calculus independent and it  should therefore be no
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problem to  adapt i t  to the CORE system. In this chapter we will introduce the mechanism
in more detail before the next chapter describes how the mechanism can be adapted to
support interactive reasoning in CORE. ' '

Before turning to the description of the QANTS system it  is necessary to  characterize
the inference rules that can be supported by QANTS.

7 .1  Supported Inference Rules

QANTS computes argument instantiations for inference rules that  consist of premises pl ,  . . . ,pm.
conclusions cl, . . . , cn and possibly additional parameters i n ,  . . . ,wk that are associated with
formula schemes Pl ,  . . . , Pm, and C l ,  . . . , 0,, which constrain possible instantiations of the
arguments. That is, the  inference rules that can be  supported by QANTS are of the following
general form

p1 :P1  pms  72(l
. .  7T

C l : C l . . . C n : C n  3k)

Note that this general form comprises QMEGA tactics and calculus rules as well as the
methods that we introduced for the CORE system in Chapter 6.

It  is typical for this type of inference rules that there are strong syntactical dependen-
cies between the arguments of a rule. These dependencies manifeSt themselfs in two ways:
Firstly, actual argument instantiations for some arguments of a rule put syntactic con-
straints on possible instantiations of other arguments. Secondly, when some arguments are
left uninstantiated, these arguments have to  be computed from already given instantiations
of arguments by a pattern matching process. This is best illustrated by using the =>E rule
of the  QMEGA system as an example. The argument pattern of the =>E rule is the following

191224  p Q I A = > B = >

c :B  E (7.1)

Here one finds the  following syntactical constraints: the argument p l  has to  be  instantiated
with a formula A which is syntactically equal to  the antecedent of the implication A => B
that serves as an instantiation of < 102 > .  A similar dependency holds between the  argument
instantiation < c > for c and the  succedent of p2. Hence, instantiating some arguments of
an inference rule restricts the set of putative instantiations for the remaining arguments.

In QANTS we account for this dependencies by specifying agent societies for each rule.
Each agent in a society is specialized to search for instantiations of one particular argument
of an inference rule by taking into account instantiations of other arguments that are already
present. This has the advantage that the order in which instantiations for these arguments
are provided does not matter,  because it  is possible to specify one agent for each combination
of existing / nonexisting instantiations.

7.1.1 Partial Argument Instantiation (PAI)

The concept of a partial argument instantiation (PAI) is crucial for the understanding of
the QANTS system. When speaking about partial argument instantiations we always have
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in mind a mapping from the arguments of an inference rule to actual instantiations of these
arguments. In general, arguments need to be  only partially instantiated for an inference
rule to be applicable. In this sense, PAIs are exactly the method matchings introduced in
Chapter 6. In the context of the CORE system we agree to use the terms PAI and method
matching synonymously.

The main computational task of QANTS is to compute most complete partial argument
instantiations for each inference rule in a given proof state. Since only rules for which a
non-empty PAI exists are applicable, this already allows us to filter out  rules which cannot
be applied in a given situation.

Computation of partial argument instantiations is done by societies of agents that con-
currently gather information about the current proof state.  These agents work in the
background of the  theorem proving process in the  t ime while the  user remains inactive.

The choice for a concurrent computation model is mainly motivated by two consider—
ations: Firstly, computation of some arguments might involve some undecidable problems
such as higher-order unification. In a sequential computation this could prevent some com-'
putations from being executed. Secondly, some computations might be  computationally less
expensive than others and can therefore be expected to deliver a result earlier in time. The
use of concurrent computations makes i t  possible to present the result of the agents com-
putations dynamically to the user. Argument instantiations that can be  quickly computed
will be  reported immediately to the user while computationally expensive processes deliver
their results with a respective delay. The dynamic presentation of suggestions does not
force the  user to  wait until all computations are finished. Rather he can apply a suggestion
at any time, where the quality of the  suggestions usually improves the more time is given
to the agents. Distribution of computations and the anytime character of the computations
are the main strengths of the QANTS mechanism.

When we now describe the QANTS architecture we do this with respect to  the QMEGA
system to see more clearly where the current implementation has to be changed in order to
support proof construction in CORE.

7 .2  The Architecture

The QANTS mechanism is essentially a three layered blackboard architecture (see Fig-
ureF  21, page 82). At the lowest level, societies of agents concurrently compute PAIs for
the available inference rules. At the  second and third layer these PAIs are then sorted ac-
cording to certain heuristics in order to present only the most promising suggestions (these
are currently the most complete PAIs) to the user.

We now introduce the architecture level by level, starting at the lowest level, at which
the core computations take place.

7.2.1 Argument Agents

The core computations of the QANTS mechanism are executed in parallel by societies of
so called argument agents (depicted in Red in FigureF21) .  One such agent society is
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associated with each inference rule that is supported by the suggestion mechanism. Within
a society, agents c00peratively try to  compute a most complete PAI for the respective
inference rule. To be  able to do so, every argument agent within a society is specialized for
providing instantiations of a particular argument of the  inference rule. Computations of
actual arguments are in general dependent on information contained in already instantiated
arguments. Every argument agent therefore takes a PAI as input and tries to instantiate a
further argument of that PAI. In order to  characterize the  computations performed by the
argument agents we distinguish between three kinds of agents.

The first class of argument agents comprises agents that search the support lines of
QMEGAS proof-data structure for putative instantiations of their associated argument (i.e.
a premise). Those agents are called support agents.

Agents working for conclusions of an inference rule perform their search amongst the
open nodes of the current proof state.  Agents of this type are hence called goal agents.

The computations of the  individual argument agents are a simple search through the
open- and support lines of a proof state.  For every such line an argument agent decides
whether the  formula of this line matches the corresponding scheme of the associated argu—
ment. If a formula matches the formula scheme and does not conflict with already existing
instantiations of other arguments then the corresponding proof line will be suggested as
an instantiation for the respective argument. Technically the  computations are performed
with the help of a Lisp-predicate which has to be  specified for each argument agent. This
predicate will be applied to putative instantiations and returns t rue  if the respective
node is an instantiation for the  corresponding argument. Hence goal and support agents
are also referred to  as predicate agents.

A third kind of argument agents does not search for instantiations of premises or conclu-
sion, but  simply computes instantiations for the additional arguments of an inference rule
(e.g. computation of a most general unifier). These agents will be  called function agents
accordingly and are equipped with a function rather than a predicate.

7 .2 .2  Specifying Argument Agents

Argument agents are the only part of the architecture that has to  be specified by the user.
The remaining components are generated automatically by the  system. Argument agents
are specified in a Lisp-like language. At this point, we provide a brief, informal description
of the language, which is followed by an example for an agent specification.

The keywords s—predicate ,  c -p red ica te  and func t ion  are used to specify the type
of an agent; i.e. s—predicate denotes a support agent While c—predicate introduces a
goal agent. Not surprisingly, function agents are denoted by func t ion .  The remaining
Specification of an agent consists of two parts. The first part defines a dependence, goat and
exclusion set which specify which information must be present in a PAI for the agent to‘ be
applicable on it .  These three sets are the  following:

o Dependence Se t :  Arguments in the  dependence set of an agent have to be already
instantiated in a PAI in order for the  agent to  be  applicable (see above).

o Exclusion Se t :  contains names of all arguments of a command that must not be
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instantiated for the agent to be applicable on the respective PAI.

. Goal Set:  Contains all arguments for which the agent tries to compute an instanti-
ation.

Dependence set, exclusion set and goal set have to be  mutually disjoint. The union of these
sets however has to be  the complete argument set of the inference rule. By specifying these
sets for each argument agent we can make sure that agents only work on PAls which contain
the information that is relevant for their computations. Goal, dependence and exclusion
set are declared with the help of the keywords goa l ,uses  and exclude respectively (cf.
Figure F 17).

The second part of an agent specification is a Lisp—predicate (for goal and support
agents) or function (in the case of function agents) for the agent, which determines the
actual computations performed by the agent.

Sample Agent

As an example of an argument agent let us consider one of the agents that search for an
instantiation of the premise 332 of the =>E rule. Looking at the =>E rule (page 65), we can
see that any instantiation of the argument p2 has to be  an implication line whose succedent
is syntactically equal to  the actual conclusion argument. A definition of an argument agent
that searches for instantiations of the premise p2 is depicted in F igureF  17  below.

(s-predicate ( for  p2)
(u se s  c )
(exclude p l )
(definition (impe-p2.pred p2 c ) ) )

Figure F 17: Specification of a support agent for the => E rule

The depicted agent is applicable on PAIs where the conclusion c (cf. uses-slot) but not
the premises pl and p2 are already instantiated. If the agent finds such a PAI P =<  c :<
c > ,p1  : 6,132 : e > i t  applies the ample-102. pred predicate to  all support lines of < c > .  The
predicate returns true for all those support lines that are labeled with an implication
whose succedent is equal to the already existing instantiation < c > of the conclusion 0.
For every such line the agent returns a copy P’ of P Where p2 is now instantiated with the
respective proof line.

Example: Let us consider a proof state

L1 l- P(:r) => A(:c) (Ax)
L2 l- R => T (Ax)
L3 l- M(a, b) =9 A(x) (Am)
G I- A(:c) (Open)

and an already existing PAI < c : A(x) > for the =>E rule. Our agent further completes
this PAI by suggesting L1 and L3 as instantiations for p2. It  will therefore create two new
PAIs

< c : A(a:),p2 : P(:c) => A(:r) > ,  < c : A(a:),p2 : M(a, b) => A(:c) >
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A complete example of how the agents interact in the computation of PAIs is given below.
Let us first turn to the next layer of the blackboard architecture.

7 .2 .3  Command Blackboard

To enable argument agents to cooperatively compute most complete PAIs the argument
agents for a command must have a means to communicate, i.e. to exchange partial results
(PAls). This is done via so called command blackboards. Agents of an agent society have
access to a command blackboard on which they write the results of their computations.
Furthermore, each argument agent constantly monitors its command blackboard in order
to detect new entries (PAIs) on which it is applicable. Most complete PAIS are therefore
computed as follows. Initially, every command blackboard contains only the empty PAI.
This triggers an initial agent (with an empty dependence set) which extends the empty
suggestion by providing new instantiation for the arguments in its goal set. The resulting
PAIs are then written onto the blackboard where they trigger other agents in turn.

7.2.4 Sample Computation for :3 command

To demonstrate how the argument agents c00peratively compute PAIs for their associated
command, we consider a sample computation for the =>E command. We restrict the exam-
ple to the subset of argument agents that compute PAIs for backward application of the
=>}; rule. To apply the rule backwards we always need an instantiation of the conclusion
c. Hence, the initial agent must have c in his goal set, whilst the dependence set and the
exclusion set are empty. This agent is denoted as A)?” Since this agent works on the
initial (empty) suggestion it does not need to check whether possible instantiations for its
goal-argument syntactically match already existing instantiations of other arguments. Ac-
cordingly, the agent will simply suggest any open node as a possible instantiation for the
conclusion of the associated rule.

Apart from this goal agent, further agents are required to search for appr0priate instan-
tiations of the arguments p1 and p2. This will be done by two agents as follows: One agent
“4%n tries to further complete PAIs where the conclusion, but not pl is instantiated.
This agent has to consider all available support nodes and suggest those nodes as instanti-
ations for p2 that i) are labeled by a formula which is an implication and ii) of which the
succedent term is syntactically equal to the instantiation of c.

A third agent $133132} {} tries to find instantiations for the premise pl. It takes suggestions
(PAIs) with instantiated conclusion and premise p2 and searches for a support node which
is labeled with a formula that matches the already present < c > and < 332 >.

We now study the interplay between this agents at hand of the following proof situation:

L1 l- P(a) (Ax)
L2 F- P(a) => Q (Ax)
L3 l- A => S (Ax)
L4 '- R(x, y) => Q (Aw)
G1 " Q (Open)
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When the suggestion mechanism is initialized, all command blackboards, in particular the
one for the =>E rule contain only the empty PAI <> .  This triggers computation of agents
with an empty dependence set In our example the only agent with an empty dependence
set is “4{}{}' I t  suggests every open goal as an instantiation for the  conclusion c. In the
above example 01 is the only open line so the agent instantiates c with G1 and writes the
PAI < c . Q > onto its command— blackboard.

This in turn will set of agent ‚433%? } which searches the support lines for nodes with
an implication of which the succedent is equal to  the instantiation of c. In our case these
are lines L2 and L4. Hence,  the agent returns the  following extensions of the PAI:  < c .
Q,p2 : P(a)  => Q > and < c : G1 : Q,p2 : R(a:,y) => Q > ,  which are in turn added to the
command blackboard. As a consequence the command blackboard now contains the entries
shown in FigureF  18.

( 1 ) < C Z G 1 2 Q ‚ p 2 I L 2 I P ( C L ) = > Q >

(2)< c : G1 : Q,p2 : L2 : R(a:,y) =>
Q> '
(3)< C :Q  >
(4)<>

Figure F 18: Content of the command blackboard for the =>}; rule

Eventually, Ag i}}{} detects entries (1 ) and (2) in Figure F 18 on which it is applicable.
For the first of the applicable entries (i. e. entry 2 in FigureF 18) it cannot find a support
line whose formula equals the antecedent of line L2. However, the second PAI (entry 1 in
FigureF 18) can be extended by line L1 as instantiation of p1 .Hence  the agent Agfm}
adds a complete PAI: < c : G1 : Q,p1  : L1 : P(a) ,p2  : L2 : P(a‚ ) => Q > to the command
blackboard that now contains the entries depicted in F igureF  19

(0<  c : Gl  : Q,p1 : L1 : P (a ) ,p2  : L2 :)
(
)<c :  G1:  n :  2 : P ( a ) = Q >

3<c :  G1 :  n :  L i :  R ( : r , y ) :Q>

)

Figure F 19: Command Blackboard for =>E rule after all argument agents have finished
their computations.

7.2.5 Command Agents

On top of the layer constituted by the argument agents and command blackboards we find
the  so called command agents (Light Red in FigureFQl) .  One such command agent is
associated with each command blackboard. The job of a command agent is to  monitor its
command blackboard and to order the incoming entries from most to  least promising. The
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heuristic which is used to sort the entries can be declaratively specified and is therefore
easily exchangeable. Currently, command agents prefer more complete PAIs (entries) over
entries with more uninstantiated arguments.

Looking at the sample computation above, the command agent for the =>}; rule would
rate the complete PAI on the blackboard in FigureF 19.

<c1:Q,p1:L1:P(a,),p2:L2:P(a)=>Q>

as most promising and therefore propagate it to the suggestion blackboard.

7.2.6 Suggestion blackboard and suggestion agent

The suggestion agent together with its suggestion blackboard constitutes the highest level in
the three-layered architecture. The purpose of suggestion agent and suggestion blackboard
resembles those of the command agents: the suggestion agent monitors the suggestion
blackboard where the pre—selected suggestions which are computed at the lower layers of the
architecture accumulate. Similarly to the command agents the suggestion agent keeps the
entries on the command blackboard heuristically ordered. Again, those PAIs are preferred
that are most complete. If two entries are equal to that respect, the entry for the inference
rule that is assumed to represent the larger proof step is preferred. To be able to make this
judgments the suggestion agent has some notion of the expansion size of an inference rule
(see [B898]).

The suggestion blackboard is the only blackboard that the user can access directly.
Because this blackboard contains only the ”best” suggestions from each command black—
board, he always finds the most promising suggestions on the suggestion blackboard, with
the highest ranked suggestion at the t0p. He can select entries from the suggestion black-
board for application at any time. When an entry is selected the inference rule associated
with the PAI is applied with the arguments provided by the PAI.

A change of the proof-state (as is for instance caused by the application of a suggestion)
leads to a reset of the whole system. During this reset, all blackboards are erased and
initialized with the empty suggestion. The agents of the mechanism are then able to
compute suggestions for the new proof state

7.3 Chapter Summary

In this chapter we introduced the three layered blackboard architecture QANTS which is
used as a suggestion mechanism in QMEGA. We have seen how agents at the lowest layer
cooperatively compute PAIs for QMEGAS inference rules. These suggestions (PAIs) are then
heuristically sorted before the most promising suggestions are presented to the user. It was
also demonstrated how the argument agents at the lowest layer are specified.

In the remaining chapter we will try to adapt the QANTS mechanism to the CORE
system. The key problem will be to support the dynamically generated replacement rules
for which no agents can be specified in advance.
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Chapter 8

QANTS and CORE

Throughout the previous chapters we have seen that interactive proof construction in CORE
can benefit enormously from a suggestion mechanism that automatically checks for applica-
ble methods and replacement rules and which makes suggestions about which inference step
to apply next. We have introduced the QANTS mechanism which performs these tasks in
the QMEGA system. In this chapter we describe how this mechanism was adapted to  CORE.
To do so we first describe the exact nature of the computations that QANTS has to  perform
in the CORE system—and work out how they differ from corresponding computations for the
OMEGA system. Thereafter we describe the changes of the QANTS system that are implied
by this analysis.

8 .1  Computations

We have already said that we want to support the application of replacement rules and
methods in CORE with the help of QANTS. However, the computations necessary to check
for the applicability of both objects are slightly different. We therefore first analyze the
requirements to support replacement rule application with QANTS before we turn to method
application.

8 .1 .1  Replacement Rules

Adaptation of QANTS to support replacement rule application is more difficult than mere
support of method application. The reason for is that the replacement rules that occur
during a proof attempt are not known in advance and hence, we cannot specify agents
societies for the individual rules. As a first solution of this problem we will devise a generic
rule agent that checks for the  applicability of all admissible replacement rules for a given task
in a sequential manner. Of course one could generalize this approach and specify multiple of
these rule agents such that each agent works for a different class of rules. However, it  does
not seem possible to easily avoid sequential processing when dealing with the  dynamically
generated rules. A possible way out  is alluded to  in [VBAOS] who suggests to employ a
generic agent for every context-formula, which computes suggestions as to  how to apply
the respective formula to the goal.
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The question that concerns us is, what are the computations that the rule agent has to
perform? Given a replacement rule ’R = 2' —+< vi”, . . . , vg" > and a task T == E [> G we are
interested in the following information

1. Are there subterms t1, . . . ,-tk in G on which R is applicable and if so, what are the t,-
? In fact we are interested in the position 7r,- of t,- within G such that t,- = Glm unifies
with t under a substitution ai. This information is in particular sufficient for deciding
whether ’R is applicable wrt. T; i.e. R is applicable if at least one such t,- exists.

2. We know that each uff of R will become the goal window of a new task. However,
if we can already find an unconditional of” in the support windows 2 of T then we
can prove the respective fu? immediately by application of the rule vi." ——> true+ which
we obtain from of“. This is analogous to the closure of the premises of a method in
Chapter 6.

To illustrate the just said, consider a task

62(0)", Ma)“, R(b) ' ‚  (RW) => P(C) ) '  I> 1°(C)+ /\ C266”)+

This somewhat artificial. example is well suited to characterize the computations we are
interested in. What information do we want our rule agent to compute for this task?
First, we are interested in the replacement rules that are applicable to the goal window
P(c:)+ /\ Q(a:7)+ of the task. Amongst others, this is the rule R0 = P(c)+ —>< R(a:'l’)+ >,
which can be applied to P(c)+ at position 7r = [1] in the goal window (cf. 1, above) . We
are then interested in possible instantiations for the value R(ar'l’)+ of rule 720 (cf. 2, above).
Candidate instantiations are R(a)‘ and R(b)'. Here we have arrived at an important
problem. We cannot simply instantiate values 1} of a replacement rule with any occurrence
o that unifies with v. The reason is that we might instantiate variables in other subformulas
in a way that prevents us from deriving our initial goal. With respect to this example we
can observe, that 12(1))" would be the wrong choice for an instantiation of R(x7)+, because
of the variable 3:7 that R(:r”’)+ shares with Q(a:")+. If we were to first apply R0 to P(c)+
and then R(b)+ —> true+ to the newly introduced R(:1:7)+, we would transform our task
into

62(0)", R(a)‘, R(b)’, (R(:z:") : P(c))' [> true+ /\ Q(b)

which we cannot close any more. In short, our problem consists of the following: when
we close some of the subgoals (values) that are introduced by application of a replacement
rule automatically, this corresponds to the execution of further proof steps. Of course, this
might involve a choice as to which proof steps to carry out. A wrong choice will require
backtracking which we want to do as rarely as possible in interactive proof construction.

The problem is obviously related to the unifiers 0,- for values ’0,- of a rule 73 ——>< vl, . . . ‚fun >
and possible instantiations o, for these values. We therefore introduce a untfier selector S.
S is a predicate over substitutions 0,- and we use occurrences o,- as instantiations of values
'0,- of a rule only if S holds for 0,. By using different unifier selectors S we can implement
various heuristics for the selection of value—instantiations. Currently we have chosen S in
a way that S holds for a substitution 0 only if a is empty or or instantiates only variables
that occur nowhere else in the FVIFT for the current proof state. With this choice of S we
have implemented a least commitment strategy and can be certain that we only instantiate
variables automatically if this does not affect the construction of proofs for other subgoals.
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We now introduce the concept of a rule matching 1n analogy to a method matching to
describe the computations that the rule agent has to perform.

Definition 8.1.1 (Rule Matching) Let 7?. = <  U11‚ . . . , 03,1“ > be an admissible replacement
rule for the window G of a task T —— E [> G and S a unifier selector. If R is the smallest
subtree of the current FVIFT that contains all windows in T then the rule matching for R
with respect to T 1s a partial mapping

matchqg : {i, '01, . . . , vn} -—> OCCT

where OCCT is the set of all occurrences inside the windows in E U {G} and the following
conditions hold for matchR.

1. If matchqfi’ip) = 09 then p = 0 or p = q and 0‘3 lies inside G.

2. If matchn (uf 1;) = 09 then

(a) if Pi # 0 then Pa“ # 9-
(b) If p.- = 0 then q 7E p“ where p“ is the polarity of matchRUp).

(c) og is unconditional in R and lies in one of the support windows 2 of T.

3. If ak : unify(match7;(vk),vk) for k = 1, . . . , n and o = unify(match7;(7§),i) then S.
holds for 0 and each of the 03-.i=1,...,n. '

Similarly to method matchings we refer to an o with matchqfivi) = 0 as an instantiation
of v.)- and write < '0.- > =  0. As we did with method matchings we often represent a rule
matching matchR of a rule 7?. as <tz<t>,v1:< v1 >, . . . , < % >>72-

Point 2) of Definition 8.1.1 needs some explanation. We have defined a rule matching in
a way that the instantiations for the values 2).- of a rule 7?. can be used to immediately prove
subgoals that are introduced through application of R. If R is a rewriting replacement rule
then the polarity of 2' and vl is undefined (i.e. 0). However, the subgoal that corresponds to
the value vl will inherit the polarity of the occurrence to which R is applied; i.e. matchnü) .
Therefore instantiations for 111 must be of opposite polarity as matchfiz ) (cf. point 2) in
Definition 8.1.1)

The rule agent that we will add to the QANTS architecture computes all rule matchings
for the rules that are admissible for the goal window of the active task. Because only rules
7?. for which a non-empty rule matching exists are applicable wrt. the active task the rule
agent already filters out non- applicable rules.

8.1.2 Methods

The computations necessary to support the application of methods are much easier de-
scribed than those for replacement rules. We are simply interested in the computation
of method matchings for all methods wrt. to the active task. Method matchings there-
fore play a similar role as the PAls in the QMEGA system. Of course, methods for which
no method matching exists are not applicable. Because QANTS was designed to compute
method matchings (PAIS) we will find that we can easily adapt QANTS argument agents
to compute method matchings for the CORE system (cf. Sec. 8.2.1).



8 .2  Making QANTS safefor CORE

Based on the above analysis we are now ready to  describe the adaptation of the QANTS
mechanism to CORE. To be able to  deal with the dynamically generated replacement
rules for which we want to compute rule matchings we extend QANTS by the rule agent
that we already alluded to. This rule agent is basically a generic argument agent which
computes rule matchings for all replacement rules that are admissible in a given proof
state. Along with the rule agent we add a rule blackboard and a rule command agent to
the architecture (cf. Figure F 21). Rule blackboard and rule command agent correspond to
command blackboards and command agents respectively and will serve a similar purpose.

Method matchings will be  computed with the help of the  already existing architecture.
Because of the close correspondence between method matchings and PAIs as well as between
methods in CORE and tactics in QMEGA this part of the architecture needs only little change
in order to function in the CORE system. -

We now turn to a description of the components of the extended architecture. We begin
with those components that are already present in QANTS and which are now used to
compute method matchings.

8 .2 .1  Argument Agents

The adaptation of the  argument agents to  search for method matchings is rather easy.
When used in conjunction with QMEGA they compute most complete PAIs for the QMEGA
tactics by searching for argument instantiations amongst QMEGAS the  proof lines. Now we
have to  make sure that the search for argument instantiations is performed amongst the
occurrences inside the  windows of the  active task. To make this task accessible to the agents

. we introduce a new global variable active=ktask which always points to the task on the
agenda which the user is currently working for. Because we are still essentially searching
for formulas that fit into a certain formula scheme we can leave the specification language
for argument agents unchanged. Merely the keywords that specify the type of an agent
obtain a different meaning.

s -p red i ca t e :  Support agents try to  instantiate arguments in the premise of a method.
Accordingly they now search amongst the negative occurrences inside the support
windows 2 of the active task.

c—predicate: Goal agents (or conclusion agents) search for instantiations of a conclusion
of a method. This search is now performed amongst the positive occurrences inside
the goal window of the  active task.

func t ion :  Function agents compute arbritrary objects as before.

Looking at the specification of an agent that searches for one of the premises of the g -
TRANS method in CORE, we see that argument agents can indeed be specified as before.
In F igureF20  the predicate t a c=subse t - t r ans .p1  is the  predicate that is applied to all
occurrences in the support windows of the active task and which returns true for all occur-
rences that are labeled with a formula which matches the formula scheme A(g B) for the
parameter p1 .
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(s -pred ica te  ( fo r  p l )
(exclude p2)
(uses  c )
(definition ( t ac=subse t - t r ans .p1  ( :param c )  ( :pa ram p1 ) ) ) )

Figure F 20: Specification of a support agent that searches for possible instantiations of the
argument p l  for the g —TRANS method. The agent is applicable on method matchings
where the conclusion c but not the premise 102 are already instantiated. :param is a keyword
that specifies that only the label of the putative instantiation of p l .

Argument agents compute method matchings in the same cooperative way as they did
for PAIs in the QMEGA system. This cooperation still depends on the command blackboard
that is associated with each agent society.

8.2 .2  Command Agents & Command Blackboards

Command blackboards are still monitored by command agents which function exactly as
before. As was the case in QMEGA the  command agents keep the entries on their associated
command blackboard in a certain order and prOpagate best suggestions to  the suggestion
blackboard. The heuristic that is employed to rank the entries (i.e. method matchings) on
the command blackboard prefers more complete method matchings over method matchings
with fewer instantiated arguments.

Having seen that the adaptation of QANTS for the computation of method matchings
is quite straightforward we now concentrate on describing the extension of the architecture
which enables the mechanism to support application of replacement rules.

8 .3  Supporting Replacement Rule application

We have already argued that because the replacement rules which occur during a proof are
not known at the outset of a proof, we cannot specify agents for these rules in advance. The
solution we have already sketched earlier on in this chapter is to  extend the architecture by
a rule—agent that computes rule matchings in a sequential manner. Of course this is only a
sub-optimal solution because i t  breaks radically with the phiIOSOphy of QANTS to distribute
computations over concurrent processes. The most serious drawback of a serialization of
computations is that if we want to compute rule matchings for replacement rules R1,  . . . ‚Rn
and get stuck at rule 722- because we encounter an und‘ecidable problem (e.g. a higher-order
unification) or a program error then the system might not recover and we cannot process
rules R i“ ,  . . . ‚Rn  any more. To slightly ease this drawback the rule agent excludes all
rules from consideration that contain a higher—order variable (i.e. a variable that ranges
over a function or a statement of type 0). At the moment we can safely do  so because
CORE does not yet provide a higher-order logic input language and we are hence restricted
to work with first-order problems. The only higher-order formulas that might occur during
a proof are some axioms that are automatically loaded (e.g. the  induction axiom and the
transitivity of = )  which are only needed in particular domains anyway. Once the system is
extended we can introduce a second agent or even several additional agents that exclusively
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deal with higher-order rules. The benefit of this decision is that we ensure that at least
all first-order rules are considered by the rule agent without encountering an undecidable
subproblem.

8 .3 .1  The Rule Agent

Like the  argument agents, the rule agent is located at the lowest layer of the architecture.
It has access to the windows of the  active task where it  searches for most complete rule
matchings for all admissible replacement rules that can be generated from the support
windows {um . . . ‚w‚„} = Z of the actual task. However, recall that we can chose one of the
windows to,- to  apply the  formula contained in this  window to the goal window G of the active
task (cf. Chapter 4). In this case the rule agent should restrict its search to rules that can
be obtained from this  particular window. We therefore introduce a second global variable
ac t  ive  *windows which always contains those windows from which we want to generate and
apply rules (that is, i t  contains either 2 or exactly one to,- E E;  i.e active=kwindows always
contains a subset of the supports of the  active task).

On a reset, the  rule agent computes rule matchings as follows. First, i t  generates all
replacement rules from the {ml,  . ; . ,wk} that are denoted by the  active*windows. For
each such rule 72 = ip —>-< 12’1“, . . . ,2)? > and a task T = Z [> G the agent then generates
the  sets

[R = {(oq, 0)|oq inside G,}? = q and to = 0}
‚um q - - . ____Val _ {(oq ,a )  0 made any of ' the E ,  p; 75 q, via o}

and o IS uncondltlonal
for a resolution replacement rule R and

In : {(oq,a)|oq inside G and 2'0 = o}
f {(0‘3 o)  09 inside any of the  E and ’UgCT = 0 and}  i f l  = 1

’ oq is unconditional.
r 1. 09, inside any of \

VU?! : < t he  E

< (0", a ) otherwise2. wa = 0,19; # q,
and o i s  uncon-

\ \ di t ional  J

'Up'€of instantiations [R for the input of ’R and for the values ’0; of R (i.e. VR‘ ). For each
replacement rule with In # @ (i.e. all applicable rules) the rule agent then generates all

possible rule matchings from these sets. To see how let

177;! _{  {(€-‚UH if Vvlz=0
__ ‚€

l/R else

where e represents the  empty instantiation; then each
TLm ——— (wa), (oä1‚al)‚„„(o£*‚ok)) e fixe x W x >< %

gives rise to a rule mapping if S holds for 0 and each of the 0,- and R is a resolution replace-
ment rule. For rewriting replacement rules we have to make the additional requirement that
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p 75 p l  because vl inherits the polarity p from the occurrence to  which it is applied. The
rule matching for ’R that corresponds to  m is < z' : o, v1 : 01, . . . ‚fun : 0,,1 >7z- Note that as
a byproduct of the computation of the [R we obtain the application positions arm for each
rule matching.

For each of the computed rule matchings mamma, the rule agent writes an entry e =
(mmatchqg) on the rule command blackboard. This means that each rule matching is
augmented with information about where to apply the rule in the  goal window of theactive
task. The entries are then further processed by the rule command agent.

8.3.2 The Rule Command Agent

The rule command agent plays a similar role as the command agents. It  monitors the
rule command blackboard and sorts the  entries on this blackboard heuristically. The best
suggestions are then passed on to  the suggestion blackboard. The reason why we need an
extra agent for the  rule blackboard is that the heuristic used by the rule command agent
is slightly different to the heuristics used by the command agents; in fact, the heuristics
can be  declaratively stated and are therefore easily exchanged. By using different types of

command—agents we make it  possible to use distinct sorting criteria for rule— and method—
matchings.

Currently the rule command agent sorts entries 8 = (mmatchn) according to the
number of values in R that are not instantiated by matchqg. Entries with fewer non-
instantiated values are preferred over entries with for a matching with a higher number
of non-instantiated values. More precisely, the rule command agents orders the entries
according to the ordering —<R‚ where

e1 <}; 82 iff I{'ul'n'z,cz,tc:h7;1 (v) : e}| < |{fvlmatchqg2(v) : e}|

for entries 6.- = (m ,  matchm).  Entries that are minimal with respect to  this ordering are
then prepagated to  the suggestion blackboard.

The motivation for this heuristic is that we propagate those rule matchings to the
suggestion blackboard that will introduce the least number of subgoals (recall that each
non-instantiated value v in a rule-matching leads to the introduction of a new task for v).

8.3.3 Suggestion blackboard and Suggestion Agent

The suggestion blackboard is the  place where the  entries from the  command agents and
the  rule command agent accumulate. The suggestion blackboard therefore always contains
suggestions as to  which method or replacement rules can be  applied. Incoming entries
are permanently ordered by the suggestion agent such that the  most promising entries are
always on top of the blackboard. The user can choose an entry for application at any
time. When he selects an entry for application it  is given to an application handle?" which
distinguishes between entries for rule and method matchings.

Entries e = (match  M) for method matchings are simply executed as described in Chap-
ter 6 by using match  M as the  method matching for M.
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When the user chooses an entry e = (7r, matchR) with a rule matching, the application
handler applies rule 'R at position vr to the  goal window G of the active task. This leads to
a replacement of G}, by a subtree

Pi Pi; Pi . Pin
ß( 'U i l l , . . . ,  i kk ,  i k : . : l 7 . "7v7 ;n )

where we already ordered the v,- according to whether they are instantiated in matchR or
not. If v: "1 , . . . ‚vi-t" are the instantiated values of R in match; (i.e. matchflvfi“) 7E e, for
Z = 1, . . . , k) then we can use the  instantiations < vi” >=  ©?” to generate the replacement
rule vi” —+ <> (for <> 6 {true+, f alse‘}) and apply it to v2“. We then obtain the simplified
subtree

p‘  .

‚MQ-rl“, . . . , uff)

Next, a window is opened on each of the  remaining vi” which become the goal windows
of new tasks. Note that we could also create only one new task for the entire formula

p i  i . .flog-ki? , . . . ,vfn") and leave the decomp031t10n to the user.

8 .4  Sample Computation

In this section we go through a sample computation to consider in detail the computations
performed by the rule-agent. The example is constructed to show how valid rule match-
ings are computed and how application of such a rule matching shortcuts multiple basic
reasoning steps. We consider a task

T = E, (AR/") /\ BCE?) => 0 ) " ,  A(y"’)", 3(a)"  l> C+

The support windows of T give rise to a number of replacement rules that are admissible
' for the goal window of the task. Amongst others these are

721 == C+ —>< A(y"’),B(x7)+ >
722 = A(y"’)+ —+ true+
723 = B(a)+ —> true+

These rules are computed by the rule agent when it  encounters the empty suggestion on
the rule command blackboard. For each of these rules the  rule agent then computes the
sets 17.3,. of possible application occurrences inside the  goal window of T .  For our example
these sets are 17;, : {(C/"+, { } ) }  and IR, = @ for z' = 2,3. This means that only rule
721 of the above rules is applicable. In a next step the sets Max?) : {(A(y'7’)'", { } ) }  and
V1553?) = {(B(a)‘,  {a, /ND} are computed by the rule agent. Note that (B(a)‘.{a/a:"’) is
in V7553?) if we assume that the variable :23" occurs nowhere else in the F VIFT.‘ In this case
S (la/1WD holds because of the way we have chosen S. From the sets 17;, , V3597) and V7533?)
we obtain the single rule matching

'rncutchqg1 =<  C+ : C+,A(y"’)+ : A(y7)_,B(x7)+ : B(a)_ >73]

This rule matching gives rise to an entry e : ([], matct )  on the rule command blackboard
which will then be prOpagated to  the suggestion blackboard. If the  user selects entry e for
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application the suggestion agent passes e to the  application handler which applies the rule
R1 to T which leads to  the intermediate task

& (AW) /\ BM) => 0 ' .  AWN-713(0)"  > 5(A(y"’)+a 15’(33”')+)+

The handler then immediately generates the rules A(y7)+ —-> true+ and B (@)+ —> true+
and applies them to the newly introduced occurrences inside the goal window. The task
obtained after application of entry e and a simplification of the goal window then is

E, (A(y'7) /\ B(:r"’) => C‘,A(y'l)‘, B(a.)" [> true+

8.5  Integration of External Reasoners

In the previous chapters we have identified the need to integrate external reasoning systems,
such as automated first-order theorem provers into CORE that try to close inactive tasks
automatically. This can now be  realized by combining the features provided by the task
structure with the  QANTS mechanism.

To be  able to  make use of automated provers X such as OTTER or SPASS we assume
that we have a method ATPX for each of these provers (cf. Section 6.6) that can be used to
justify a goal by a call to such an ATP in the following way. Argument agents for a method
ATPX instantiate the conclusion of the  method with the goal formula of a task. Premises
of the method are instantiated with the  corresponding support formulas. The agents then
invoke the ATP X to see whether the automated reasoner can derive the conclusion from
the premises. If this is the case then the corresponding method matching is passed onto
the suggestion blackboard.

We want to apply methods ATPX to  inactive tasks, but  only if the  system load is
not too high. This might for instance be  the  case when most agents have finished their
computations, but the user has not yet selected a suggestion.

The idea is now to index every task on the  agenda with a natural number i and to
augment all blackboard entries with an index for a task. This index will tell the argument
agents in which task to  search for possible completions of the respective entry (i.e. method—
or rule matching). If, in addition, we give the command agents for the methods ATPX access
to the agenda, we can realize the intended application of external reasoners to inactive tasks
as follows.

On a reset of the suggestion mechanism, all command blackboards are initialized with
the empty suggestion for the active task Ta (Le. (a, <>) ) .  This will set off the  agents to
search for suggestions as to how to apply their corresponding method to the active task.
All command agents can monitor their associated command agents and recognize when
the argument agents have finished their computations. If a command agents for a method
ATPX becomes aware that i ts  argument agents have finished their computations for task
Ta it adds the empty entry (b, <>)  for the next task Tb on the agenda to the blackboard.
This will then cause the argument agent for ATP); to check whether the theorem prover it
works for can close task Tb automatically.

An extension of QANTS in this way would have the effect that if there is a sufficiently
long delay between two user interactions then the  agents try to  close inactive tasks in
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the background of the reasoning process. Successful suggestions as to close an inactive
task automatically will eventually pop up  at the suggestion blackboard along with the
suggestions for the current task.

8 .6  Chapter Summary

In this chapter we have described how the suggestion mechanism QANTS was adapted to
the CORE-system. We have seen that this was straightforward with respect to methods. To
be able to support the application of replacement rules we had to extend the architecture
by a rule—agent.
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Chapter 9

Conclusion & Further Work

In this thesis we were concerned with an extension of the CORE theorem-proving environ-
ment by additional functionality to facilitate interactive proof development. To achieve this
goal we developed a task datastructure on top of COREs window—inference technique. We
further mapped the notion of a proof-method to the CORE system. These methods Operate
on the task structure and make it possible to perfOrm abstract proof steps in CORE.

Furthermore, we adapted QMEGAS suggestion mechanism QANTS to CORE where it
now supports interactive theorem proving by identifying applicable replacement rules and
methods for a given proof state and makes suggestions about which of these inferences to
make next.

When we devised the  methods for CORE we took into account the experience made
with the interactive theorem proving environment OMEGA, where distinct datastructures
are used to apply abstract inference steps in interactive proof construction and automated
proof-planning. We were able to  merge the tactics and methods of the QMEGA system into
a single concept of a method that can now be used in interactive proof development as well
as in proof-planning.

The contribution of this thesis therefore lies in the deveIOpment of a common interface
for interactive theorem proving and automated proof-planning which is constituted by the
tasks and methods that we have introduced.

Together with the adaptation of the QANTS suggestion mechanism we were thus able
to provide evidence for two hypothesis. Firstly, it is claimed that CORE provides a well
suited basis for human—oriented theorem proving. In Chapter 5 we saw that this is indeed
the case if we properly exploit the potential provided by CORE. The implementation of
tasks and methods has shown that by using CORE we are able to  hide many logical details
(such as the quantifier elimination) from the user, while we are at the same time able to
use established concepts like methods in the  theorem proving process.

Secondly, the successful adaptation of QANTS to CORE shows that the agent-based
suggestion mechanism QANTS is indeed calculus independent as claimed in [BSQQb] and
can support proof deve10pment in various interactive theorem proving environments.

However, although we provided an interface on which interactive theorem proving and
automated proof-planning can be  based, there is still a way to  go in order to make CORE
a full fledged interactive theorem proving environment. We now list the  main issues that
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st i l l  have to  be  addressed.

Integration of external reasoning systems Task structure, methods and the QANTS
suggestion mechanism already provide the  basic functionality to  integrate external
reasoning systems into CORE (see Section 6.6 and Section 8.5). In principle it is now
straightforward to invoke such external systems in CORE. A method that uses an au-
tomated reasoning system has to  translate a subproblem (e.g. a task) into the  input
language of an appropriate ATP. It should be almost trivial to develop a translation
module that ,  given a problem in CORE representation (Le. a set of signed formulas),
generates a problem uniform description which can be  used as input to  the mathe-
matical software bus MATHWEB which provides access to a variety of special purpose
reasoning systems. A problem that is more serious concerns the expansion of the
results returned by the  external reasoners (e.g. a proof). Application of inferences
that are justified by the  call to an external system have to be  expanded by translat—
ing the result returned by these systems into CORE proof fragments. This requires
the development or adaptation of entire translation modules, similar to the TRAMP
module [MeiOO] which is used in OMEGA. However, note that in absence of such a
module we can nonetheless make use of external reasoning systems if we trust their
results and ignore the problem of expanding their contributions into a CORE proof
fragment.

Shared variables We have seen throughout the thesis that variables which are shared
between different subformulas might sometimes cause problems, for instance when
we want to  apply external reasoners to a task that contains variables used in other
tasks. This problem requires thorough investigation. A first step into the direction of
a solution would be to  see how techniques used in other systems that deal with this
problem can be used in CORE. For instance it  might be  worth to  pursue a similar
approach as in the  QMEGA system and use a constraint store along with a constraint
solver to  treat the  problem of variable instantiation as a set of constraints.

Automated proof-planning We have completely ignored the problem of automated proof-
planning in this thesis. However, the  task structure together with the  methods that
we have introduced should serve as a basis for the development of an automated
proof-planner for CORE.

User Interface We have seen that although tasks allow us to present a subproblem in
an accessible way to the  user i t  is important that only the information necessary to
continue the proof is shown to  the  user. In fact, the  required information might be
dependent on various variables such as the proof-strategy preferred by the user (e.g.
direct vs. indirect proof), etc.
This issue can be generalized to  the  broader question of how we can design an interface
that takes advantage of COREs novel way to  represent a proof-state and to organize
the reasoning process. Ideally, the development of such an interface should go together
with empirical studies that try to  establish which information is considered as relevant
by the user (or different types of users) in a given proof situation.

Completeness Of course, when we make use of the  task structure introduced in Chapter 4,
it  is important to establish the completeness of the  task manipulation rules. However,
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a formal treatment of this issue would have been clearly out of sc0pe for this thesis
as this would have for instance required a formal definition of the semantics of signed
formulas.

Moreover, although we were only concerned with COREs first-order functionality it is
essentially a higher-order framework. Once i t  is possible to  load higher-order problems
into CORE, any completeness proof has to cover the  higher-order case as well. This
might not even be possible without new techniques to show completeness of higher-
order reasoning frameworks as were only recently prOposed in [BBKOB].

Term Indexing Currently, the  concepts developed in this thesis have only been tested on
rather simple theorems from the  domain of naive set theory. When the system is to
be  used for real—world problems we might be  able to make the  computation processes
more efficient by the employment of real term-indexing techniques as we already
pointed out in Chapter  5. With term-indexing techniques properly implemented it
might for instance be possible to identify applicable replacement rules together with
the application position in a more efficient way. However, we postpone work in this
direction until we can load higher-order problems in CORE. The reason is that when
we use higher-order terms we will encounter new problems, such as how to  deal
with variable head—symbols of terms. The question of how to employ term-indexing
strategies in a higher-order framework is thus a topic on its own.
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Chapter 10

BN F-Grammar

<inference > ::= (defmethod < name >
( in < theory > )
(declarations

(typ e-variables (<  typevar—list > ) )
(variables (<  var-list > ) )
(methodvars (<  mvar—list > ) ) )

(parameters (<  name—list > ))
(premises (<  arg-list > ))
(conclusions (<  arg—list > ))
(outline-mappings (<  map—list > ) )
(expansion < name > ) )

< appl-dir > : : :  (defdirection < name > < name >
(declarations

(type-variables < name-list > )
(variables < var-list > )
(methodvars < mvar-list > ) )

(hypothesis ( <hyp-list> ))
(premises ( <arg2—list> ) )
(conclusions (<arg2—list> ) )
(application—conditions <list-of-expr> )
(out  line-computations (<  comp-list > ) )

<arg- l i s t>  ::.-: <arg$
| <a rg>  <arg—list>

<arg>  :=  ( <name> <decl__content> ) | €

< map-list> ::= < mapping> | e
| < mapping > < map-list >

< mapping > : : :  ({existinglnonexisting}* < name > )
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< mvar-list > ::= < mvar > | e
| < mvar > < mvar—list >

< mvar > ::=: ( < name > < mvar—type > )
< mvar-type > : :=  < basetype >

I ( < constructor > < mvar—type > )

< type > : :=  < basetype >
| <  type-var >
| (<  type-list > )

< type-list >::= < type > | e
| <  type > < type-list >

< typevar—list > ::= < type-var > | €
[< type-var > < typevar—list >

< type-var > : :=  < name >

<constructor> ::= listof | pairof I . . .

(var-list> ::= <var> I e
| <var>  <Var-1ist>

<va r>  ::= ( <name> < type>)

< comp-list > ::= < comp > | e
< comp > < comp-list >

< comp > ::=: ( < val-list > < lisp-expr > )

< val-list > ::::— < name > | €
< name > < val—list >

< hyp-list > ::= < hyp > I e
| < hyp > < hyp-list >

< hyp > ::= ( < name > < decl-content > :for < name > )

<arg-list2> ::= <arg2> | e
| <arg2> <arg-1ist2>

<arg2> ::= (+  <name>)
| (— <name>)
| (* <name>)

< name > = STRING
< theory > : :=  < name >
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< name-list> : :  <name> | e
|<  name > < name-list >

< decl_content > = All terms over all types, variables and function symbols that are
visible at this point. These are all objects that have been declared in either the  theory, the
method or the particular application direction.

<lisp-expr> ::: an arbritrary Lisp-expression

<list-of-expr> : : :<l isp=expr> | e
[ < 1isp—expr> < list—of—expr>

Figure F22: BNF grammar for the method specification language introduced in chapter 6
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