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Abstract

Optimised design, either for components or materials, is a topic on the rise in
our century. It is strongly linked with the thought of lightweight construction
and resource management. Thus, the aim of this work is to provide a faster
way to optimise the microstructure of mechanical metamaterials utilising ma-
chine learning. An optimisation scheme with neural networks is developed and
experimentally validated on auxetic materials, with their governing property be-
ing a negative Poisson’s ratio. This method consists of multiple steps, beginning
with finding a representative volume element, followed by an investigation of
the design space, creation of a database to train a neural network and finalised
by an optimisation of the structure. Each step is validated by experiments and
corrections to the model are applied if necessary. For the auxetics the aim is
to find the structure with the maximal mass specific energy absorption capacity
and negative as possible Poisson’s ratio. The final optimisation routine is then
transferred to another metamaterial structure, the pentamodes. Here, an inves-
tigation and successful optimisation for maximised damping and stiffness solely
based on simulations is launched. In addition, adaptive sampling is applied in
order to reduce the required number of simulations.



Zusammenfassung

Optimiertes Design, sei es für Bauteile oder Materialien, ist ein Thema, das
in unserem Jahrhundert immer mehr an Bedeutung gewinnt. Es ist eng mit
dem Gedanken des Leichtbaus und des Ressourcenmanagements verbunden. Ziel
dieser Arbeit ist es daher, einen schnellerenWeg zur Optimierung der Mikrostruk-
tur mechanischer Metamaterialien mit Hilfe von maschinellem Lernen zu finden.
Es wird ein Optimierungsverfahren mit neuronalen Netzen entwickelt und ex-
perimentell an auxetischen Materialien validiert, deren maßgebliche Eigenschaft
eine negative Poissonzahl ist. Diese Methode besteht aus mehreren Schritten,
beginnend mit der Suche nach einem repräsentativen Volumenelement, gefolgt
von einer Untersuchung des Designraums, der Erstellung einer Datenbank zum
Trainieren eines neuronalen Netzes und abschließend einer Optimierung der Struk-
tur. Jeder Schritt wird durch Experimente validiert und bei Bedarf werden Kor-
rekturen am Modell vorgenommen. Für die auxetische Struktur ist das Ziel,
die Struktur mit der maximalen massenspezifischen Energieabsorptionskapazität
und einer möglichst negativen Poisson-Zahl zu finden. Die abschließende Opti-
mierungsroutine wird auf eine weitere Metamaterialstruktur, die Pentamodstruk-
turen, übertragen. Hier wird eine Untersuchung und erfolgreiche Optimierung
zur Maximierung von Dämpfung und Steifigkeit allein auf Basis von Simulatio-
nen gestartet. Zusätzlich wird ein adaptives Sampling angewandt, um die Anzahl
der erforderlichen Simulationen zu reduzieren.
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1
Motivation and Introduction

Humanity and thus engineering science today is increasingly confronted with the
demand of stronger, cheaper materials with multi-functionality whilst saving re-
sources. Hence, microstructured materials are of growing interest since porous
materials save resources and mass for lightweight construction in addition to ex-
hibiting other special properties. For example, octett truss structures display a
higher specific stiffness than solid materials. There are also microstructures, such
as auxetic materials, which show unusual properties, in this case a negative Pois-
son’s ratio thereby increasing other properties as well [85]. In combination with
the advances in additive manufacturing technologies, such microstructured mate-
rials can be tailored and optimised for specific tasks not only virtually. Complex
geometries can easily be manufactured and experimented on.

The optimisation and tailoring process can be done with finite element (FE) sim-
ulations either as topology optimisation to find new microstructures with desired
properties or as parametrised optimisation to enhance existing microstructures.
Even though computational resources are fast developing, those optimisation pro-
cesses are computationally costly and the simulation solely based on FE programs
is very time consuming. A remedy is provided through the field of machine learn-
ing (ML). This subfield of artificial intelligence denotes to a class of algorithms
capable of learning arbitrary functions based on data. Thus, ML algorithms can
learn a material behaviour based on a few simulations.

The aim of this work is to optimise an auxetic re-entrant honeycomb structure
and a pentamode structure for energy absorption purposes or vibration damping,
respectively. Each microstructure is parametrised and a feasible geometry space
is investigated. Therefore, combinations of geometry parameters are used to
build up models which were then simulated and the desired properties extracted.
To speed up the optimisation, neural networks were trained to predict the mate-
rial behaviour based on the FE simulations in order to handle the optimisation.
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CHAPTER 1. MOTIVATION AND INTRODUCTION

Thus, only a few simulations were necessary to generate sufficient training data
for the ML algorithm, which is then capable of handling the optimisation process.
For the auxetic structures, the simulations and optimisation were validated with
experiments. Selective laser melting (SLM) was used to manufacture specimens
out of aluminium.

The amount of saved time is directly linked to the amount of FE simulations.
Consequently, another aim was to minimise the number of simulations by in-
troducing adaptive sampling. This means a sampling strategy to evaluate the
feature space during training and find the most critical areas where training data
would have the biggest impact on the quality of the ML predictions.

For a more detailed theoretical background the reader is referred to chapter 2.
There, a short review of ML will be given, followed by a more detailed explana-
tion of neural networks, topolgy optimisation in general, selective laser melting,
mechanical metamaterial structures as well as an overview of design of exper-
iment. Also recent advances especially in the field of material science will be
investigated there.

In chapter 3, the optimisation procedure is developed on the example of auxetic
structures. Starting with the investigation to find the representative volume ele-
ment, followed by a more detailed explanation of the finite element simulations,
the inspection of the design space, the explanation of the neural network train-
ing and finished with the experimental validation of the optimised structure, the
reader is taken through the whole process of the optimisation and the develop-
ment of the procedure.

The optimisation procedure is adapted to pentamode structures in chapter 4.
There, the developed adaptive sampling is utilised. Due to time constraints the
pentamode structures were investigated only with simulations. Within this chap-
ter the simulation setup, the design space investigation, the adaptive sampling
and neural network training, as well as the optimisation is explained in detail.

Chapter 5 summarises all important conclusions and provides a final discussion
for the whole optimisation scheme. It is finalised with an outline of future work.
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2
Theoretical Background

Within this chapter, a broad overview of the theories for the most important con-
cepts used in this work is given. There is no extra chapter on FE method, since it
is a well known simulation method and ABAQUS®was used as a solver software.
In addition, each chapter contains recent advancements in the respective fields.

2.1 Machine learning

Machine learning (ML) as a subfield of artificial intelligence is thought of as a
modern concept, but part of the mathematical foundation is more than a century
old. The method of least squares for example was published by Legendre in 1805
even though Gauss claimed to have discovered it 10 years earlier [133]. How-
ever, this method is the basis for linear regression, which is already a simplistic
machine learning algorithm. To clarify, Machine learning is the term for all al-
gorithms, that are solely based on approximations through data and are capable
of self modification. Whereas, artificial intelligence (AI) is a much broader term
since it envelopes every algorithm that is able to recognise something and make
a conclusion. So e.g. a simple if-else statement would already count as AI but
it does not learn with more data, so it would not be machine learning. Another
prominent term over the recent years is deep learning, which is exclusively re-
served for neural networks and thus is a type of machine learning. Figure 2.1
summarises those connections. So in general ML describes a class of algorithms
capable of learning from data.

The reason why ML gained popularity only recently is simply the technological
advancements in computer science and computational power. Already in the
60’s and 70’s many algorithms, though mostly linear methods, were developed.
But the lack of computational power hindered the study of those, especially the
non-linear models [50].
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Figure 2.1: Classification of prominent terms in relation to artificial intelligence

In the field of mechanical engineering ML concepts are successfully used e.g.
for predicting the surface roughness in wire electrical discharge machining [114].
Brillinger et al. [18] predicted energy consumption for CNC machining to ease the
development of energy efficient machining strategies using tree-based algorithms.
Hennebold et al. [64] employed different ML techniques to predict production
cost of products during an early development stage. They found linear regres-
sion and k-nearest neighbours to produce the most reliable results even though
not much of the final product is known during that stage of development. By
using Gaussian process regression, Tamura et al. [136] were able to optimise the
powder production process for Ni-Co superalloys.

In the context of material design, Xiong et al. [149] improved the accuracy and
stability of empirical models which describe the transformation in shape-memory
alloys. They used generated data by different ML tools to forgo expensive ex-
periments. Generative adversarial networks were utilised by Challapalli et al.
[27] in order to design new lattice structures which are superior to the known
octet truss structure concerning mass and stiffness. The microstructure of poly-
crystalline Galfenol was optimised by Liu et al. [92] by applying different ML
models to refine the search space and for feature selection, thus boosting the FE
simulations. In general, ML concepts are applied in every engineering task either
to replace or to improve conventional methods, hence making simulations faster,
more time efficient or saving the trouble of many expensive experiments.
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The focus of this work is the prediction of material properties with neural net-
works, which is a supervised regression task. Therefore, only this branch of ML
algorithms is investigated in more detail in 2.2.

2.1.1 Basic terminology

To gain a better understanding of the chapters to come, here some basic terminol-
ogy typically encountered when dealing with ML will be explained. First of all,
ML concepts are typically divided into supervised learning, unsupervised learn-
ing and reinforcement learning. Supervised learning tries to predict a relation
between a set of input variables and output variables. Therefore, the training
data must consist of input variables, which are also called features, and known
output variables, also referred to as predictors, targets or target values [113]. In
contrast, unsupervised learning strives to find structure in data and thus has in-
put features with unknown target values. A prominent example for unsupervised
learning is clustering. Reinforcement learning as a third class describing a learn-
ing process through interaction with an environment and receiving rewards or
punishments based on the outcome of an interaction. Learning occurs through
an iterative exploration of the solution space, for example a robot learning to
walk without falling [70].

As mentioned before, for supervised or unsupervised learning there is a so called
training dataset or train set, which consists of all the samples used to adjust
the model parameters, also often called hyper parameters, and thus enables it
to make predictions. There usually exists also a validation dataset and a test
dataset when working with ML. The validation data is used during the training
to check the training process and to hinder an overfitting of the training data.
Training in this case refers to the iteratively adjustment of the hyper parameters
to achieve a better solution according to an error function. The test set is com-
pletely excluded from the modelling process and used to evaluate the final model
performance after all hyper parameter tuning and training is finished. Thereby
it ensures that there is no overfitting of the validation data.

Over- or underfittig are one major issue when working with ML. Overfitting
occurs when the data points of the train set are almost perfectly matched, but
when new data is introduced the predictions made by the model are highly error-
prone (Figure 2.2). This can either happen due to a too complex model or a too
perfect tuning of hyper parameters. When increasing complexity of a model, it
gains flexibility and thus cannot only approximate the general dependencies but
also unwanted details like noise for example. Yet, those details differ for different
samples and when introducing new data, the model predicts badly [52]. The
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other case, a too perfect tuned model, is due to a too long training process. The
algorithm memorises the training data almost perfectly thereby raising expecta-
tions, yet produces bad predictions on new data [15]. In ccontrast, underfitting
happens if the model is not complex enough to capture the dependencies be-
tween features and targets, thereby not being able to fit the training data within
a reasonable error.

In total, overfitting is the more dangerous issue since it is disguised as good per-
formance on the training data. Underfitting shows a general bad performance on
all datasets and is discovered easier. The desired model should thus be complex
enough to fit the overall dependencies but also simple enough not to find too
much details. This choice off model complexity is also often referred to as the
bias-variance trade-off [107]. This means a consistent model performance, even
a bad one, is more desirable than a too good to be true performance which can
not be upheld when applied to new data.

Figure 2.2: Example for overfitting, the linear fit approximates the training data im-

perfectly but can predict the new data with a smaller error than the perfect

but complex fit of the training data.

In this context, there are often the terms generalisation and extrapolation in use.
Generalisation describes the predictive performance on completely new data and
is an indication of how well the trained model predicts on a real world applica-
tion. Extrapolation is the property to give good estimated beyond the trained on
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feature space. Most ML algorithms are only capable of performing well within
the feature space that was covered by the training data.

A further division of the algorithms is the distinction in parametric and non-
parametric. On the one hand, parametric algorithms make initial assumptions
about the form of the function to learn and then only fit their tunable parameters,
which is a fixed number determined by the chosen model. Linear regression or
simple neural networks would be an example for parametric algorithms. On the
other hand, non-parametric algorithms make no assumptions about the mapping
function. They have hyper parameters too, but it is not a fixed number from
the start of the training. An example for this would be the k-nearest neighbours
method, which gives predictions of new data based on the k most similar training
patterns.

Supervised learning is additionally divided into two main tasks, regression and
classification. Regression means learning a mapping function for real valued out-
put variables, e.g. predicting the market values of houses based on their size,
location and building year. So a numerical quantity is learned. Classification
refers to the assignment of a category to an input, e.g. telling if there is a picture
of a cat or a dog. This leads to a discrete target space, where a prediction is
either right or wrong. Most ML algorithms were first developed for classification,
since this is by far the most prominent usage. Afterwards these algorithms were
extended to perform regression tasks as well. Hence, the error metric for classifi-
cation and regression differs. For regression the error needs to evaluate how well
the prediction matched the target while for classification a hit or miss evaluation
is necessary [70, 107, 132, 140].

2.1.2 Error functions

For regression tasks, there is only a handful of viable choices for the error func-
tion since it is not important if the prediction is good but rather how good or
bad a prediction is. So for regression the aim is to minimise the error of the pre-
dictions. The most commonly used metrics are the mean squared error (MSE),
mean absolute error (MAE), the Huber loss, the mean average percentage error
(MAPE) and the coefficient of determination (R2) [52, 107], which were also used
within this work. Below, these metrics are introduced including their advantages
and disadvantages. In all following definitions N is the total number of samples
used to make the predictions, ŷi the predicted target value for the i-th sample
and yi the true target value of the i-th sample.

-7-
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Mean Squared Error

The MSE is the most popular error metric for regression tasks and is given by
[132] as

MSE =
1

N

N∑
i

(ŷi − yi)
2 . (2.1)

The main motivation behind the MSE is to avoid cancellation of single errors
by summing over the squares since a prediction can either be larger or smaller
than the true value. This metric puts a higher penalty on few larger errors
than on many small ones, which makes it sensitive for outliers. However, the
interpretation of the error is difficult because a squared unit does not make sense
often.

Mean Absolute Error

When dealing with datasets with too many outliers, the MAE is often helpful.
It is given by [52] as

MAE =
1

N

N∑
i

|ŷi − yi| . (2.2)

Here, the cancellation is forgone by summing over the absolute of the errors
thereby preserving the original units and thus making it more interpretable.

Huber loss

This is basically a combination of MSE and MAE to use both their advantages
and is given by [52] as

Lδ =

{
1
2
(ŷi − yi)

2 for |ŷi − yi| ≤ δ

δ|ŷi − yi| − 1
2
δ2 otherwise

. (2.3)

The δ parameter controls the piecewise definition or in other words when to use
MAE or MSE.

Mean Average Percentage Error

All metrics presented above have the severe issue of scale dependency. In order
to make those errors scale independent, the absolute error is divided by the
corresponding target value. So the MAPE is given by [69]

MAPE =
1

N

N∑
i

∣∣∣∣ ŷi − yi
ŷi

∣∣∣∣ . (2.4)
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Since it provides a percentage error value, the measure can intuitively be under-
stood. However, if the true values are close or equal to zero, the errors become
arbitrarily high.

Coefficient of Determination

For regression tasks, the measure of the amount of variance in the target varaible
R2 is also a common error metric to estimate the quality of a fit. It is given by
[5]

R2 = 1−
∑N

i=1(yi − ŷi)
2∑N

i=1(yi − y)2
(2.5)

with y being the mean of the whole target vector. Hence, a R2 value of 1 means
the model is the best possible fit since it is able to explain all variance present
in the data. If R2 = 0, then the model is just fitting the mean of the target
vector. There is also the possibility of R2 becoming negative, which happens if
the slopes of predictive model and actual target data have different signs. For
example if the target values are oscillating and the model is capable to predict
these oscillations, but with a phase shift, this would lead to negative R2 scores,
although the model might be satisfactory to the user.

2.2 Neural Networks

Arguably the most prominent example of a ML method are neural networks
(NN). The first idea of this algorithm is from the 1940’s by McCulloch and Pitts
[99]. They proposed a neuron as a switch, thought to loosely mimic the human
brain function [120]. Based on input values from other neurons it calculates
a weighted sum and is then either activated or not. Later those neurons were
also called perceptrons and were proven to be capable of sophisticated pattern
recognition, even if some neuron failed [120]. Nevertheless, Minsky and Papert
[103] proved that only linearly separable problems could be solved with those
perceptrons. Only a few years later these networks of neurons gained the ability
to learn non-linear problems from data through the developement of the error-
backpropagation algorithm [122] and were first applied for machine reading of
texts [127]. Yet, another two decades went by without any noticeable progress
because the necessary computational power was not feasible at that time. Today,
the interest in neural networks, deep learning and computervision has increased
significantly, accelerating the development of new network models and enhancing
the training processes.
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2.2.1 Perceptrons, Neurons and Feed Forward Networks

Before going to artificial neurons, it is worth while to first understand the function
of a so called perceptron developed by Rosenblatt [120]. It takes multiple binary
inputs, applies weights, sums those products up and based on a threshold gives a
single binary output (Figure 2.3). The threshold and the weights are real valued
numbers where the weights represent the importance of single inputs [108].

Figure 2.3: Schematic function of a perceptron with three exemplary inputs xi and

respective weights wi

In other words, the perceptron can be viewed as a decision making tool, that
weighs different input conditions and generates outputs as either yes or no. Now
to develop from perceptron to artificial neuron the threshold or bias is included
in the sum and the hard switch is replaced by an activation function (Figure
2.4). The activation function can basically be any function, yet for multi layered
networks, those function must be non linear [4]. Either with perceptrons or neu-
rons, it is possible to build networks by arranging them in layers and connecting
those. The easiest way is to just start with the first or input layer, then connect
each layer with the following until the last layer or output layer is reached. Every
layer in between input and output is called hidden layer. This architecture is a
fully connected feed forward neural network (Figure 2.4).

There are other possible architectures, such as recurrent or convolutional neural
networks. Recurrent neural networks (RNN) allow also connections to previous
layers or to the same layer. Convolutional neural networks (CNN) are specifically
designed for two or three dimensional data and work with a kernel matrix that
slides along the data grid and performs a matrix multiplication, thus generating
a feature map. The convolution layer is typically followed by a pooling layer
to extract meaningful representations of the data in lower dimensions. Further
information on different network architectures can be found in [4, 52, 57, 108].
Since all networks used in this work are feed forward networks (FNN), only this
type will be explained in more detail.
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Figure 2.4: Schematic of a feed forward neural network with two hidden layers (red),

two input values (green) and one output value (blue). More detailed view

of a single neuron with its functionalities; input values xi, weights wi, bias

b, activation functiona()

In summary, every neuron calculates a real numbered value and also the input
neurons are just real valued numbers. Hence, for any problem that shall be
handled by a FNN, a numerical representation of said problem needs to be found
and implemented.

2.2.2 Activation functions

As indicated before, neurons calculate a so called activation function after the
summation of the inputs, even perceptrons calculate a basic sign function with
0 and 1 as output instead of -1 and 1. The importance of this function be-
comes obvious if we were just leaving it out. Then our network would just be
a large summation of our input variables and would not be able to approximate
any function. Honik et al. [66] proved that in theory it is possible to use just
one large layer of neuron with a non linear activation function to approximate
any complex arbitrary function. Yet, in practical use this would increase the
necessary amount of units in a network drastically and would likely be prone
to extreme overfitting of the problem [4]. The non-linearity condition imposed
on the activation function arises from the fact that a linear activation function
would not provide any gain for multiple layers. The multilayer network would
become redundant and would not perform any better than linear regression with
multiple outputs [3].
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A second condition imposed on the activation is its piecewise differentiability
due to the training with backpropagation. This method is gradient based and
will be explained further in 2.2.3. In theory any function fulfilling those two
conditions would work as an activation, but for practical use there is a certain
amount of carefully designed activation functions because of their other proper-
ties [4]. Four of the most prominent examples are depicted in Figure 2.5.

Figure 2.5: Exemplary activation functions: scaled exponential linear unit (SELU),

rectified linear unit (ReLU), hyperbolic tangent (Tanh) and sigmoid func-

tion (Sig).

The classical activation functions are the sigmoid sig and the hyperbolic tangent
tanh functions [4] given by

sig(x) =
1

1 + e−x
(2.6)

tanh(x) =
e2x − 1

e2x + 1
. (2.7)

The sigmoid function is helpful in creating outputs that can be interpreted as
probabilities. The tanh function is similar to the sigmoid, yet is preferred if
negative outputs are desired and is easier to train due to its larger gradient around
zero. Today however, a number of piecewise linear functions and modifications
thereof have become more popular. The rectified linear unit ReLU and the scaled
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exponential linear unit SELU in Figure 2.5 are given by

ReLU(x) = max(0, x) (2.8)

SELU(x) = λ

{
x if x > 0

αex − α if x ≤ 0
. (2.9)

The ReLU function gained popularity since it is much faster to compute than
a sigmoid or hyperbolic tangent and in practice works well especially in large
neural networks. The SELU function is relatively new and has self normalising
properties if λ ≈ 1.0507 and α ≈ 1.6733 and if the weights are initialised with
a variance of 1/n [78]. Normalisation is important to combat the exploding
or vanishing gradient problem during training, which will be explained in more
detail in 2.2.4.

2.2.3 Training with Backpropagation

When talking about training in context of neural networks, the search for the
best combination of weights and biases is meant. An error function, sometimes
also referred to as loss or cost function, needs to be chosen to evaluate the quality
of the approximation. The cost function therefore is a function of all the weights
and biases within the network and the goal is to find the minimum of this cost
function. Based on that minimisation the weights and biases within the network
are updated to work towards a better approximation. This is usually done using
the backpropagation algorithm which is based on gradient descent and consists
of two steps, the forward pass and the backward pass [4]. In the forward pass the
samples of the training data are passed through the network one by one and an
output is generated with the current set of weights and biases. The prediction
in the output layer is compared to the true target value and its gradient with
respect to the output layer is computed. Now, in the backward pass the gradient
of the cost function is calculated for each neuron starting from the last hidden
layer up to the input layer with respect to the corresponding weights and biases
employing the chain rule. These gradients are used to update the respective
weights and biases by subtracting a fraction of the gradient from the current
value. This fraction is referred to as the learning rate.

The way this works is easiest explained with an example. Let us consider a
simple neural network with one input node, then two hidden layers with one
neuron each and a single output neuron. Starting with the forward pass, one
instance of the training data is passed through the network and the predicted
value is compared to the true target via the cost function C. The derivative of
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C with respect to the weight w and bias b of the output layer is calculated as

∂C

∂w(3)
=

∂z(3)

∂w(3)

∂a(3)

∂z(3)
∂C

∂a(3)
(2.10)

∂C

∂b(3)
=

∂z(3)

∂b(3)
∂a(3)

∂z(3)
∂C

∂a(3)
(2.11)

with

z(i) = w(i)a(i−1) + b(i). (2.12)

Here, a is the value of the activation function, also referred to as the activation,
z is the value of the weighted sum calculated before the activation function is
applied, sometimes called the pre-activation. The upper case indices in brackets
indicate the layer number counted from the input layer onwards starting at 0.
The derivative of C with respect to the activation of the output layer can directly
be calculated from the evaluation of the cost function. The only change is the
first partial derivative in the above expressions when changing from weight to
bias. The partial derivative of a with respect to the pre-activation is calculated
directly from the chosen activation function.

The backward pass then propagates this gradient backwards through the net-
work by calculating the gradient of the cost function with respect to weights and
biases of subsequent layers as

∂C

∂w(2)
=

∂z(2)

∂w(2)

∂a(2)

∂z(2)
∂C

∂a(2)
(2.13)

with

∂C

∂a(2)
=

∂z(3)

∂a(2)
∂a(3)

∂z(3)
∂C

∂a(3)
. (2.14)

The problem in equation 2.13 is, that there is no possibility to calculate the
partial derivative of C with respect to a(2) directly. But as seen in equation
2.14 it is possible to calculate the missing derivative as a function of the later
derivative, which is where the idea of propagating backwards comes in. In more
general terms, these equations can be written as

∂C

∂w(i)
=

∂z(i)

∂w(i)

∂a(i)

∂z(i)
∂C

∂a(i)
(2.15)

∂C

∂b(i)
=

∂z(i)

∂b(i)
∂a(i)

∂z(i)
∂C

∂a(i)
(2.16)

∂C

∂a(i−1)
=

∂z(i)

∂a(i−1)

∂a(i)

∂z(i)
∂C

∂a(i)
(2.17)
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with

∂z(i)

∂w(i)
= a(i−1) and

∂z(i)

∂b(i)
= 1. (2.18)

To transition from single neurons to multiple neurons per layer, only a few more
indices need to be introduced. The activation of the j-th neuron in the i-th layer
is written as a

(i)
j and the activation of the k-th neuron in the previous layer as

a
(i−1)
k . Consequently, the weight connecting both will be written as w

(i)
jk . This

changes the equations to

z
(i)
j =

ni−1∑
k=0

w
(i)
jk a

(i−i)
k + bj, (2.19)

∂C

∂w
(i)
jk

= a
(i−1)
k

∂a
(i)
j

∂z
(i)
j

∂C

∂a
(i)
j

(2.20)

and

∂C

∂a
(i)
j

=

ni+1−1∑
j=0

w
(i+1)
jk

∂a
(i+1)
j

∂z
(i+1)
j

∂C

∂a
(i+1)
j

. (2.21)

ni is the number of neurons in layer i. As mentioned above the calculation of the
respective derivatives for the biases is analogous to the weights. The only major
change when having multiple neurons per layer is the summation in equation 2.21
since the activation in one layer influences the activations of multiple neurons in
the following layer.

For one sample Xm of the training data all those partial derivatives are cal-
culated and put into the gradient vector ∇CXm , thus the total gradient vector
of the training data ∇C is calculated as the average

∇C =
1

m

m∑
i=1

∇CXi
. (2.22)

With the total gradient it would now be possible to update all weights and
biases within the network by subtracting a fraction of the respective gradient
vector entry from the corresponding weight or bias

wi,new = wi,old − η
∂C

∂wi

, (2.23)

bi,new = bi,old − η
∂C

∂bi
(2.24)
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with the learning rate η. Yet, for a large amount of training data this would
be very time consuming and would require a huge amount of memory to store
all gradient vectors. In practice, a stochastic gradient descent (SGD) method
is used. The training dataset is divided into mini batches by randomly picking
samples from the dataset until every sample is used exactly once (Figure 2.6).

Figure 2.6: Example division of training data into mini batches

Then, each mini batch is processed by the backpropagation algorithm to compute
its gradient vector ∇Cx. With the assumption [108]

∇Cx ≈ ∇C (2.25)

the mini batch gives a good estimate for the gradient vector and thus can be
used to update the weights and biases. This procedure is repeated until all mini
batches are processed once, which is then called one training epoch. At that
point, the process is repeated until either the pre-defined number of epochs is
reached or a cancellation criterion is fulfilled. If the gradient descent is viewed as
stepping down a hill into a valley, the stochastic gradient descent is analogue to
taking multiple small steps roughly downhill instead of one large careful chosen
step in the steepest direction. Using mini batches also reduces the generalisation
error [56].

2.2.4 Issues with Gradient Descent

From equation 2.21 it becomes obvious that the calculation of the gradient is
directly linked to the product of weights and the derivatives of the activation
function. In networks with many layers this unfolds due to the chain rule into
a large product term for neurons in the layers close to the input. So, especially
for deep networks this causes instability in the training process, due to either
too large updates, called exploding gradients or negligible small updates, called
vanishing gradients [4]. To better understand this point let us consider a net-
work with many layers and one neuron per layer. Consider further, that each
local derivative is randomly distributed with an expected value of less than one.
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Hence, multiplying those values along the path would lead to an exponential de-
cay of the gradient with growing path length. If the expected value of the local
derivatives were greater than 1, the gradients would grow exponentially. Even
for an expected value equal to 1, the actual distribution could lead to instabil-
ities during training, in other words, for deep neural networks this is a natural
problem [4].

Many solutions to exploding or vanishing gradients have been proposed. For
example the sigmoid activation function is rather problematic due to its gradi-
ent close to 0 especially for highly positive or negative values. Thus, the ReLU
function grew more popular because its gradient is always 1 for positive values.
But there is also the dying ReLU problem if the arguments are negative which
leads to a gradient of 0. Also concepts like an adaptive learning rate and mo-
mentum [37, 77, 155] or the relatively new concept of batch normalisation [72]
were developed as remedies for the gradient problem.

Another quite popular problem with gradient based methods are saddle points,
local minima or flat regions of constant value within the objective function [56].
Empirically, SGD methods seem to escape saddle points rather rapidly though
[57]. As for local minima, the cost function of a neural network is usually a high
dimensional, non-convex function. Hence, there can be an extremely large up
to uncountable infinite number of local minima within a neural networks cost
function. But, most of them are of equivalent cost value, which makes being in a
local minimum not really a problem since all local minima provide roughly equal
solutions [56]. However, they can become an issue if there is one global mini-
mum of significantly smaller cost value than the local minima. Current theories
nonetheless state, that for sufficiently large networks it is not necessary to find
the true global minimum since there is a local minimum with a low enough cost
[34, 57, 123].

2.2.5 The Adam Optimiser

In the previous section, a few remedies or improvements to basic SGD were briefly
named. Since the adaptive moment estimation (Adam) optimisation algorithm
was used in this work, the important concepts will be explained in more detail
below. For mathematical details the reader is referred to the original work of
Kingma and Ba [77]. Adam can effectively be seen as a combination of the un-
published RMSprop [138] and momentum.

The concept of momentum [115] is introduced to the gradient descent method to
accelerate the learning. In its essence, momentum accumulates an exponentially
decaying moving average of past gradients in order to continue moving into their
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direction. In practical terms, a new hyperparameter, the momentum factor γ, is
introduced and the weight update ∆wi,t is now given as

∆wi,t = η
∂C

∂wi

+ γ∆wi,t−1. (2.26)

The momentum factor takes a value between 0 and 1, t indicates the number
of mini batch training steps. This means a fraction of the weight update from
previous mini batch iteration is added to the current weight update with γ mostly
being a default value of 0.9 [56]. For Adam now the previously fixed rates η
and γ become adaptive, meaning the learning rated for different parameters are
computed individually. To this end, Adam uses first and second order moments
of the gradient vector. In this context N-th order momentum means the expected
value of a random variable to the power of N. So first order would be the mean,
second order the uncentered variance.

2.2.6 Parameter Initialisation

The basics of how neural networks function and learn are covered. But the train-
ing in its nature is an iterative process and thus it is mandatory to choose a
starting point. This parameter initialisation can have a huge impact on gener-
alisation of the model and convergence [56]. The choice of initial point is hence
paramount to the success of learning, however there are little to no guidelines on
how to find the best initial point. The only certain property of our initialisation
is the breaking of symmetry between different units. Meaning, two hidden units
with similar activation functions and connections to the same inputs must have
different initial parameters. If they were initialised equally, then a deterministic
learner applied to a deterministic loss and model would constantly update both
units in the same way [56]. Usually, the biases are initialised to heuristically
chosen constants and only the weights are randomly drawn from a Gaussian or
uniform distribution. For the bias this constant is zero most of the time [4].

The scale of the Gaussian distribution for the weight initialisation is rather im-
portant. The weights need to be large enough to transfer information in the
beginning yet small enough not to cause the gradients to explode or the activa-
tion functions to saturate [56]. For example LeCun et al. [88] proposed a scaling
of the distribution according to the number of inputs n to a fully connected layer
to a mean of 0 and a variance of 1/n, which is the necessary initialisation for
a SELU activation function. Sometimes this is also normalised to a variance of
1/
√
n. For Sigmoid or Tanh activations a normalised initialisation proposed by

Glorot and Bengio [54] is often more preferable. They suggested the variance to

be chosen as
√

6
m+n

, where m is the number of outputs of a fully connected layer.
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One major drawback to this kind of initialisation scheme is that the weights
become very small for layers with many neurons in them. To counter this ef-
fect Martens [96] introduced sparse initialisation where each unit has exactly k
non-zero weights. Thereby, the magnitude of the weights is not shrinking with
growing number of inputs and outputs. This imposes a very strong prior though
and can cause large training times since it takes long to shrink too large weights
by SGD. This is especially problematic in maxout units.

2.2.7 Sampling Strategies

Everything discussed above is algorithm specific and the delicate topic of where
the data comes from was omitted so far. But the best ML tool cannot learn
anything with low quality data. There can be diverse issues, such as irrelevant
attributes, missing attributes, redundant attributes, missing values, or noise [81].
Those are all issues with the data quality but are not a concern in this work since
all data used here comes from FE simulations. Hence, a complete parametrised
representation as well as a complete set of results is available for the specific
problem of this work.

Alternatively, the data can have a strong bias, some critical regions in the fea-
ture or the solution space can be extremely under represented or there is just
not enough data to learn from. These issues however, can certainly occur during
the data acquisition of this work and will from now on be referred to as sam-
pling. There are different types of sampling strategies from which three will be
discussed in more detail below.

Random Sampling

The strategy is based on the principle of bootstrapping [137] which is a statistical
resampling method that approximates inference of a distribution by evaluating
some random samples. This means picking a certain number of random choices
from the continuous feature space as samples for the training data. In the context
of this work it would mean choosing for example 100 different parameter sets at
random and perform FE simulations with those parameter sets to acquire 100
training data samples. In any case, a complete random sampling could lead
to a strong clustering effect in the feature space or pulling the same sample
more than once which in turn would lead to either a strong clustering effect or
completely redundant data, respectively. For ML algorithms this would be less
than ideal. Hence, some restrictions are necessary, for example one parameter
instance may occur exactly once which prevents redundant training samples in
the feature space. To further prevent a strong clustering within the feature space,
that happens if many points close to each other would be drawn at random, latin
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hypercube sampling [100] can be applied. Herein, the range of each sampling
variable is subdivided into N equal intervals and then N samples are placed in
a way that there is only one sample per partition. In two dimensions this would
be a square grid placed over the sampling space and then samples are selected
such that only one is in each row and line. This ensures a set of random numbers
to be representative for the variability of a sampling space. Nevertheless, one
downside of this technique is the primary knowledge of how many samples are
necessary since the sub intervals are dependent on that number. For many ML
applications and for neural networks especially, this number is unknown most
times beforehand.

Adaptive Sampling

All sampling methods based on randomisation only take the feature space into
consideration. With the approach of adaptive sampling also the prediction or
solution space is considered. In the context of ML algorithms this means iter-
atively training and evaluating the model performance in order to identify the
regions with the most potential information gain. There are two basic approaches
towards that. First, the feature space is divided into regions for which test data
points are generated to evaluate the predictions. The worst region is identi-
fied and more training data is generated there [14]. Second, identification of
points with the most gain can be achieved through a surrogate model [94]. This
approach is based on the Bayesian global optimisation method [83, 106] which
allows to search for extrema in unknown functions. Thus, it can identify data
points with maximum information gain through a surrogate model constructed
on few initial points. Adaptive sampling in general can reduce the necessary
amount of training data drastically because the ML algorithm only learns with
data that contains the most information [29]. However, this procedure is only vi-
able if data generation with specific features is easy and works best for computer
generated data since there is no real noise [29]. Also a sensible stopping criterion
must be implemented in order to not explore the feature space infinitely [94].

2.2.8 k-Fold Cross Validation

As discussed above the training data and its composition is important to discuss
when machine learning is used. The easiest way to train and evaluate a ML tool
is by splitting all the data just once into train and validation set. Yet, this may
not give a representative estimate of the performance and the data composition
for training might not be ideal. Thus, the data is being randomly split into k
smaller batches of approximately the same size. Then the first batch is used for
validation and the remaining k-1 batches for training. Afterwards, the second
batch is used for validation and the remaining batches for training and so on
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until each of the k batches was used for validation exactly once. This procedure
is called k-fold cross validation or just cross validation (CV). When all splits are
processed, the performance is averaged and a standard deviation is calculated.
Due to this, CV provides a more stable performance measure and more informa-
tion about the models variance [61, 62, 82].

CV can further be a valuable tool when dealing with scarcely available data.
A reasonable estimate of the overall performance without a separate test set is
possible since the risk of overfitting is reduced by validating with data not present
in the current training set and averaging in the end over multiple trained ML tools
while making use of the whole dataset. This makes CV a useful tool when dealing
with scarce data, though it generally should only be used to enhance performance
measures and the split into training, validation and test set, if possible, is always
preferable [62, 82].

2.2.9 Recent Advancements in Material Science

The concept of machine learning can be employed on almost any kind of data.
Also in material science it is used often for segmentation of microscopy or to-
mography images. Durmaz et al. [39] for example applied a U-net structure
to find lath-bainite in complex phase steel. Neural networks are also applied as
enhancements for constitutive models [95, 128]. Other successful applications
include finding new materials [76], speed up optimisation processes [21], model
material damage and predicting defects [1, 45]. Also as a design help for com-
posite materials [2], convolutional neural networks are in use. A relatively new
approach is to incorporate partial differential equations in the learning process of
neural networks [119]. This advancement is able to learn not only based on some
error function but to actually respect laws of physics and thereby gains better
extrapolation properties.

For most cases in material science the scarcity of data is a major issue since
simulations with classical methods are very time consuming or experiments ex-
pansive. Therefore, those networks are mostly designed either to speed up classi-
cal methods or to completely replace them. Yet, working with scarce data poses
other issues since most ML algorithms and especially neural networks usually
need large amounts of data to produce reasonable performance.
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2.3 Topology Optimisation

When talking about materials design, topology optimisation is also important to
discuss. This topic deals with finding an optimal structure under certain bound-
ary conditions, for example finding the stiffest structure with a volume ratio of
0.3 under compressive loading. In combination with FE simulations, there are
different, iterative approaches to go from solid material to the optimised, porous
structure. The first one deletes elements at less stressed areas and adds elements
in highly stressed areas and is called bidirectional evolutionary structural opti-
misation (BESO) [118]. Another possibility is the solid isotropic microstructures
with penalization (SIMP) [121] method in which each finite element is assigned
a density function ranging from 0 to 1. Over the course of the iterations this
density function is adapted in less stressed areas to 0, meaning no material and
in highly stressed areas to 1, meaning full material. A third method is called
level-set [10, 11] and uses shape derivatives for the development of optimal de-
sign.

All the above methods usually start with an area of full material and develop
some porous structure for the design task. If the porous structure is already
known or fixed and just should be optimised for a certain task, there is the possi-
bility to employ a parametrised approach. This means finding sensible geometry
parameters to describe the structure and finding optimal values for those param-
eters [19, 21]. Usually a surrogate model technique is applied to describe the
relation between design target variables and geometry parameters. Then, the
minimum of the surrogate function is determined to take a step towards opti-
mised geometry parameters, which are then simulated for example to determine
the resulting design target variables. The surrogate function is adapted to the
new datapoint and minimised again. This procedure is repeated until a cancel-
lation criterion is met.

For the minimisation of the surrogate function Newton’s method or different
quasi Newton procedures are feasible. Within this work a type of quasi Newton
minimiser originally developed by Broyden [23], Fletscher [47], Goldfarb [55]
and Shanno [129] (BFGS) is used. For all quasi Newton procedures, just the
gradient of the objective function is necessary to calculate and the Hessian is
only approximated. A brief overview how the BFGS algorithm works is given
below and explained in more detail in [109].
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Let us begin with a squared model m which can be viewed as a Taylor expansion
of the scalar objective function f that is given for the iteration step k as

mk(p) = fk +∇fT
k p+

1

2
pTBkp. (2.27)

Here, ∇fT
k is the gradient of the objective function, B is a symmetric, positive

definite n × n matrix which is updated within every iteration step and can be
identified as the Hessian approximation. The search direction p for the next
iteration step of the convex, quadratic model can be written as

pk = −B−1
k ∇fk. (2.28)

Combined with the step size α, the location vector for the next iteration is
calculated as

xk+1 = xk + αkpk (2.29)

and αk is chosen to satisfy the Wolfe condition (equation 2.30).

f(xk + αkpk) ≤ f(xk) + c1∇fT
k pk, (2.30a)

∇f(xk + αkpk)
Tpk ≥ c2∇fT

k pk, (2.30b)

with the constants c chosen to fulfil 0 < c1 < c2 < 1 this condition is used as
step size control and ensures the degradation of the objective function values.
Typical values for the constants are c1 = 10−4 and c2 = 0.9. In order to include
the curvature from the previous step, B is updated. Therefore, a new model for
step k + 1 is constructed as

mk+1(p) = fk+1 +∇fT
k+1p+

1

2
pTBk+1p. (2.31)

A requirement for Bk+1 to carry over the knowledge from the last step, is that
the gradient of mk+1 and the gradient of the objective function f for the current
step k and the next step k + 1 match. Since ∇mk+1(0) is exactly ∇fk+1 and is
thus automatically fulfilled, only the following condition must be met

∇mk+1(−αkpk) = ∇fk+1 − αkBk+1pk = ∇fk (2.32)

⇔ Bk+1αkpk = ∇fk+1 −∇fk (2.33)

For simplicity the vectors

sk = xk+1 − xk = αkpk, yk = ∇fk+1 −∇fk, (2.34)

Bk+1sk = yk (2.35)
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are defined and equation 2.35 has a guaranteed solution if

sTk yk > 0 (2.36)

which is enforced by the Wolfe condition (equation 2.30). With the definition of
the Hessian H as

Hk = B−1
k (2.37)

we obtain

Hk+1yk = sk. (2.38)

This equation is also solvable under the condition from equation 2.36 and has
an infinite number of solutions. Hence, to determine a single solution a further
condition is imposed on Hk,

min
H

∥H−Hk∥ (2.39)

where H is the analytical Hessian. To solve this problem, various matrix norms
can be used, each of which forms the basis of its own quasi Newton method. For
the BFGS method the weighted Frobenius norm is used. This results in,

Hk+1 = (I− bksky
T
k )Hk(I− bkyks

T
k ) + bksks

T
k , (2.40)

with identity matrix I and

bk =
1

yT
k sk

(2.41)

for the updates of the Hessian. Summarising, the BFGS method stepwise is:

� Calculate search direction pk = −Hk∇fk

� Calculate step size αk to satisfy the Wolfe condition (Equation 2.30)

� Calculate location vector xk+1 = xk + αkpk

� Calculate sk and yk (Equation 2.34)

� Update Hk+1 (Equation 2.40)

These steps are repeated until some convergence criterion is fulfilled. The further
development of the BFGS method into the Limited BFGS for Bound Constrained
Routine (L-BFGS-B) by Byrd et al. [25] introduces the possibility of specifying
bounds and constraints for the parameters to be minimised. Furthermore, this
extension reduces the computing time and the required memory capacity is sig-
nificantly reduced.
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2.4 Selective Laser Melting

Additive manufacturing (AM) is a technology on the rise in recent years. From
metals over polymers to ceramics, AM is popular in many fields of materials and
production and thus there exist many different methods [145]. They all have in
common the basic working principle, first a 3D model of the final product needs
to be obtained either by computer aided design (CAD) or 3D reconstruction of
images for example. Second, the surface of the structure is approximated by
triangles thus creating a surface mesh resulting in an STL (surface tessellation
language) file. Last, this STL file is sliced into 2D images so that the printer can
build up the product layer by layer [142]. One possibility for AM in the field of
metals is selective laser melting (SLM) developed in 1998 [101] as a powder bed
fusion technology. A laser melts and thereby fuses together selected regions of
a metal powder bed to create the final product. In the beginning, a thin layer
of metal powder is put on a substrate plate for the first layer. The substrate
plate is lowered and new metal powder is layed on top for the next layer of the
product. Common layer resolution ranges between 20 µm and 100 µm with the
usually used metal powders for SLM nickel, iron and titanium [152]. Aluminium,
as used within this work, has significantly fewer publications and the most com-
monly used alloy in SLM is AlSi10Mg [152]. The resolution is strongly dependent
on the powder size and balanced within this region. Too small particles tend to
agglomerate due to van der Waals forces, while too large particles result in poor
build tolerance and resolution [30]. The fusion process is most times performed
under nitrogen or argon gas atmosphere to protect the heated metal from oxida-
tion.

The laser system for SLM progressed from CO2 (wavelength ≈ 10.6 µm )to
Nd:YAG lasers with a wavelength of ≈ 1.06 µm since most metals have a better
absorptance in this region of the infrared spectrum [152]. Also Yb:YAG fiber
lasers are of increasing interest due to a higher absorption bandwidth to reduce
thermal management requirements for diode lasers, a lower thermal loading per
unit pump power and a longer upper-state lifetime [152]. For detailed informa-
tion on laser sources and working principle the reader is referred to [40].

Apart from the laser medium and the powder there are other important pro-
cess parameters such as the layer thickness, the hatch spacing or the scanning
speed just to name the major ones (Figure 2.7). All those parameters combined
with the absorptance of the powder give the volumetric energy density. The
heat capacity and latent heat are heavily dependent on the material and need to
taken into account when melting occurs. Hence, balling can happen if there is
insufficient energy due to a lack of wetting of the melt with the previous layer
[90]. If the laser power is too high or the scanning speed too slow evaporation
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of the powder material can arise [80]. This can lead to condensation of material
particles on the laser window and thus disrupt the beam. In addition, a poor
hatching space can be responsible for a high porosity since adjacent melts do not
fuse together [32].

Figure 2.7: Schematic of the SLM process with process parameters.

However, for the purpose of this work, SLM was only used to manufacture speci-
mens to validate the simulation results. Hence, there was no deeper investigation
of the SLM process itself. Therefore, the reader is referred to the literature for
deeper insight into SLM and its challenges [67, 116, 147, 152].
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2.5 Metamaterials

Most materials display properties within certain limitations [154] which are also
most often linked by some power law[53]. For applications, the design space of
natural materials is therefore limited and it is desirable to develope materials with
arbitrary properties. Metamaterials are constructed to overcome the boundaries
in materials design and give a higher tailoring potential for applications.

Initially, the term metamaterials was linked to optics and electromagnetism [93],
e.g. for materials with a negative refractive index. Within the last few years
however, the term mechanical metamaterials has emerged [154] and gained in-
terest, even though some basic concepts of those materials are already known for
some decades. This class utilises a hierarchical architecture with effects on the
meso-, mikro- or nanoscale [135], thus it is mostly porous structures. Thereby, a
superior mechanical performance can be achieved and gives rise to many multi-
functional applications. There is no clear definition of the term metamaterial up
to now [75] but most would agree on the somewhat loose definition: ”metamate-
rials are rationally designed composites made of tailored building blocks that are
composed of one or more constituent bulk materials. The metamaterial proper-
ties go beyond those of the ingredient materials, qualitatively or quantitatively.”
[75].

A basic classification of existing mechanical metamaterials can be found in [153]
and is depicted in Figure 2.8. The classification is according to the respective
effect area, whereas an assignment to more than one area is also possible, e.g.
chiral/anti-chiral structures. The subdivision is based on the three elastic con-
stants Young’s modulus, shear modulus and bulk modulus as well as on the
Poisson’s ratio, which classifies mechanical metamaterials according to their fun-
damental mechanics rather than their material class. The class Young’s modulus
describes materials which are either light and strong or have a tunable stiffness.
The materials in the group of shear/bulk modulus share the main characteristic
of being rather hard to compress yet easy to shear since the shear modulus ap-
proaches zero or the compressibility is even negative. The last group, Poisson’s
ratio, gathers materials with a negative to zero or a switchable Poisson’s ratio
also called auxetics. Within this work, two types of mechanical metamaterials,
auxetics and pentamode structures were investigated and are explained in more
detail below.
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Figure 2.8: Possible classification of mechanical metamaterials according to their ef-

fects (adapted from Yu et al. [153])
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2.5.1 Auxetic Structures

These type of structures have the governing property of a negative Poisson’s ratio,
which means they expand perpendicular to a loading direction [85]. Their name
is derived from greek auxetikos which means ’that which tends to increase’[43].
The Poisson’s ratio ν of a structure is defined as

ν = −ε⊥
ε∥

, (2.42)

where ε⊥ is the strain perpendicular to an uniaxial loading direction and ε∥ is
the strain parallel to the loading direction. It can also be expressed through
other elastic constants such as Young’s modulus E, bulk modulus K and shear
modulus G, which are interdependent as [151]

G =
E

2(1 + ν)
, (2.43)

K =
E

3(1− 2ν)
, (2.44)

E =
9KG

3K +G
, (2.45)

ν =
3K − 2G

2(3K + 2G)
. (2.46)

For isotropic material behaviour there are theoretical limits for the Poisson’s ratio
of -1 and 0.5. The upper limit is a result of the assumption of constant volume,
the lower limit results from the positive definition of E and G [28]. This however
only holds if the material at hand is isotropic and the loading is in the elastic
regime of the stress-strain behaviour. A further implication for the measurement
of the Poisson’s ratio is that the experiment should be uniaxial. For anisotropic
materials these theoretical limits do not hold, for example for some polymers,
negative Poisson’s ratios up to -6 were reported [8].

With the negative Poisson’s ration certain properties can be enhanced such as
thermal shock resistance [91], fracture toughness [17, 86] and indentation resis-
tance [9, 84, 87]. This can be attributed partly to the higher shear modulus with
a negative Poisson’s ratio since [28]

G

E
=

1

2(1 + ν)
(2.47)

is given and with a constant E the shear modulus is increased with lower values
of ν. How auxetics work through their microstructure is easiest explained in 2D.
Figure 2.9 depicts three possible micromechanisms, the re-entrant honeycomb
structure (Figure 2.9 a)) [12], the double arrowhead (Figure 2.9 b)) [150] and the

-29-



CHAPTER 2. THEORETICAL BACKGROUND

rotating rigid bodies (Figure 2.9 c)) [60]. There are also chiral lattice structures
which display auxetic behaviour [38, 105, 148, 146]. For more unit cells and a
deper mathematical background the reader is referred to [68, 124].

Figure 2.9: 2D working principle of auxetic structures a) re-entrant honeycomb, b)

double arrowhead, c) rotating rigid bodies

There are several ways to proceed from the 2D to 3D unit cells, the most sim-
plistic being to just extrude the 2D structure in the third dimension. For the
re-entrant honeycomb it is possible to interlock the 2D structure in different
directions [143]. Structures created in this way, however, only show auxetic be-
haviour when loaded perpendicular to the assembly plane. Furthermore, the
behaviour of the 3D structure cannot be modelled from the 2D model [42]. In
order to generate an auxetic behaviour in all three spatial directions, the ide-
alised model of the imprinted polyhedron presented by Lakes [84] can be used.
Here, a 24-sided polyhedron is imprinted inwards at all connecting struts, which
is what happened in the case of the PU foam treated by Lakes [84]. Another
construction method is beam based in combination with an eigenmode analysis
[79]. Here, differently shaped struts are connected at nodal positions, which is
usable for 2D and 3D applications and can even provide novel unit cell geometries.

All those property enhancements make auxetics suitable for many applications
to replace the existing solutions. For example in crash absorber [16, 125] or as
ballsistic blast protection [71, 110, 111]. Also to save resources, a lightweight ap-
proach through truss structures [104], hybrid materials [19] or optimised design
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[20, 21, 22] is of importance. Also within composites either through auxetic fibres
increasing the pull-out resistance [7], or a suitable stacking sequence of the fibre
layers [31, 65] thereby increasing impact resistance and having a more localised
initial damage [6], auxetics can be applied. Further applications are stents and
arterial prosthesis [26] or sport-protective equipment [48].

The first artificially created auxetic material was a polyurethane (PU) foam in
1987 by Lakes [84]. It utilized the re-entrant honeycomb mechanism and was
manufactured from a conventional PU foam through heating above the soften-
ing temperature and triaxial compression. His investigation marked the starting
point of the research into the tailoring potential of auxetics even down to a
molecular level [43]. However, the auxetic effect is not exclusively reserved for
designed metamaterials. Also in nature there are many examples for materials
with a negative Poisson’s ratio such as some forms of animal skin [49, 89, 141]
or different cubic crystal lattices [58].

Recently, multiple investigations of auxetics under dynamic loading were per-
formed [19, 46, 98, 112], since applications as crash absorbers or blast protection
are of interest for the auxetic structures with their superior energy absorption
capacity over conventional metal foams [19]. In addition, a modified auxetic unit
cell with a half strut in their mid was proposed by Bronder et al. [20] to further
increase the energy absorption capacity over normal 3D re-entrant honeycomb
structures. Moreover, auxetic materials can be applied to enhance stretchable
strain sensors. Jiang et al [73] were able to design a piezoresistive sensor which
could stretch up to 98% and was used to detect the radial artery pule of a hu-
man. Wong et al [144] designed and 3D printed an ionogel strain sensor superior
to conventional strain sensors, which was able to extend roughly three times as
much.

2.5.2 Pentamode Structures

A different class of metamaterials called pentamode materials is a part wise result
of the question which elasticity tensors are realisable [102] and the endeavour to
tailor materials with prescribed elasticity tensors through a combination of beams
[131]. The elasticity tensor C is a fourth order tensor with 81 components, which
can be reduced to 21 independent constants for completely anisotrop materials
[13] and it is used to calculate the stress tensor σ from the corresponding strain
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tensor ε. The Voigt notation gives it as a matrix vector product
σ11

σ22

σ33

σ23

σ13

σ12

 =


C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66




ε11
ε22
ε33
2ε23
2ε13
2ε12

 . (2.48)

Hence, the elasticity tensor can be represented as a 6×6 matrix, for which eigen-
values can be calculated. In the special case of pentamode materials, five out of
the six eigenvalues are equal to zero, where the name pentamode is derived from.
Therefore, those materials are ideally incompressible but non resistant to shear
deformation and that is why they are also referred to as metafluids since they
show similar behaviour. Milton et al. [102] proved that every elasticity tensor is
realisable with a composite material with a rigid and non rigid phase. For pen-
tamodes they also proposed the diamond lattice structure out of four biconical
beams (Figure 2.10).

Figure 2.10: Idealised pentamode unit cell with the three geometry parameters h, D

and d

In the modern literature this is the only pentamode structure investigated and
the beam based variants by Sigmund [131] are neglected. The first produced
pentamode structure however, was in 2012 by Kadic et al. [74] with stereo-
lithography since AM technologies were not enough developed in 1995. They
identified three geometry parameters (Figure 2.10) that influence the behaviour.
Ideally, the pentamode structures would have a finite bulk modulus k and a shear
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modulus G equal to zero, which is not feasible because the connecting dots be-
tween the bicones would have to be infinitely small and the material would flow
away immediately [74]. Nevertheless, it was possible to manufacture structures
with a K/G ratio of over 103. An ideal pentamode material would also have a
Poisson’s ratio of 0.5 (Equation 2.46 for G = 0).

Since the first production, a few investigations into the experimental and numeri-
cal study of pentamode materials haven been launched. Either produced by SLM
out of a metal alloys [63] or by 3D printing for polymers [126], the main concern
here is on the one hand the producibility and on the other hand the stability
under compression. Schittny et al. [126] found for small overlap diameters d
and large unit cells the K/G ratio to increase significantly but under compres-
sive load, the resistance to deformation is correspondingly lower. Among other
things, this can be explained by the smaller amount of material in the area of
the point of contact of the struts for small d. Furthermore, it became clear from
the observations that the Poisson’s ratio is directionally dependent.

A proposed application for pentamode materials is a mechanical cloak [24]. This
means that it is possible to use pentamode materials in order to hide objects
within in order to make it impossible to feel the objects geometry. In order to
achive the cloaking, Bückmann et al. [24] used a rigid, hollow cylinder which was
immersed into a pentamode shell produced by direct laser writing and consisted
of two different pentamode structures. Similarly, an underwater acoustic cloak
was developed to scatter acoustic waves and make elliptical objects underwa-
ter undetectable [117]. Moreover, for underwater communications, pentamode
metasurfaces are explored to enhance orbital angular momentum multiplexing
communication [134]. Apart from acoustics, another possible application is as
tunable, seismic isolation devices [44] which were shown to outperform the clas-
sical rubber based isolations.

2.6 Design of Experiment

When conducting experiments, either in simulation or reality, it is often worth
while to utilise some designed testing plans in order to keep the required number
of experiments as small as possible. If it is either one parameter at a time or by
statistical means is strongly dependent on the number of parameters, also called
factors in the context of this topic [130]. An example for such a design is a full
factorial testing plan, which was also employed within this work. Here, each fac-
tor is varied one after the other to establish its impact on the result, also called
the effect. For three factors this would mean eight necessary experiments, which
could be depicted as a cube (Figure 2.11) with the experiments on each corner.
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Figure 2.11: Schematics of a full factorial testing plan with factors A,B and C

This implies linear effects for the factors, if they are only varied between a low
and a high value, also called levels [130]. The six sides of the cubes thus represent
planes of equal level for the respective parameters. Effects are calculated by tak-
ing the mean values of the two levels. The slope of the straight line connecting
these two mean values gives information about the size of the influence on the
effect on the target variable [130]. The full factorial testing plan also offers the
possibility of investigating interactions between the effects. For this purpose, the
prefactors of the levels are multiplied and then the mean values of the different
combinations are calculated [130]. For each interaction plot, two straights result
which, with increasing antiparallelism, represent the growing influence of the in-
teraction. The lower level has a prefactor of -1, the higher level a prefactor of 1.

The simple linear model gives an intuitive understanding of an otherwise complex
problem and can give helpful insight [51]. It is also possible to use more than
two levels and calculate the linear model through interpolation, even though the
model is not exact for non-linear problems [130]. Extrapolation beyond the limits
of the investigated factors is not permissible, since there could be new physical
phenomena [130]. In case of non-linear problems, the level distance could be
decreased, so that linearity within a smaller region of the parameter space gives
still a good estimate [130].
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Auxetics

Within this chapter, modified auxetics based on re-entrant honeycomb structures
are optimised. The goal is to find a structure capable of absorbing as much en-
ergy as possible while having a negative as possible Poisson’s ratio and a low as
possible mass. The modification consists of a supplemented half strut in the cen-
ter of the unit cell (Figure 3.1). In addition, there are five geometry parameters
chosen to describe the unit cell completely.

Figure 3.1: Modified auxetic unit cell with five identified geometry parameters for op-

timisation purposes
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The half strut enhances the energy absorption capacity under compression (Fig-
ure 3.2). Due to reaching contact with the rest of the structure after a certain
deformation, the structure is capable of undergoing higher compressive stresses
compared to a structure without the supplemented half strut. It also maintains
its stiffness for larger deformations.

Figure 3.2: Stress-strain diagrams of two comparable auxetic unit cells; one with an

additional halfstrut (modified) and one without (pure); the modified ver-

sion reaches higher stress values due to contact at a certain point (Bronder

et al [20])

In the following sections, the procedure of optimising the structure is described.
First, a study concerning the representative volume element (RVE) was con-
ducted, then the FE simulations are described to generate a training database.
Afterwards, a full factorial testing plan was used to gain general insight into the
relations of the geometry parameters to the target values. The next section de-
scribes the applied neural networks and the optimisation of the structure and the
last sections concern is the experimental validation of the optimised structure.
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3.1 Size Effect

In order to derive the macro behaviour from simulations of the microstructure,
the question arises: What is the smallest amount of unit cells, that have to be
considered? To find such an RVE seven different specimen types (Figure 3.3) of
the modified auxetics were produced by the institute of production engineering,
Saarland University of Prof. Bähre with an SLM® 125 machine (SLM Solu-
tions Group AG, Lübeck, Germany). All specimens were manufactured out of
AlSi10Mg metal powder (SLM Solutions Group AG, Lübeck, Germany) under
argon atmosphere, subjected to a heat treatment at 300 ◦C for 2 hours and cooled
naturally. The other process parameters are listed in Table 3.1. From 2 × 2 to
6×6 unit cells base area with a height of 3 unit cells were produced. In addition,
for the 3× 3 base area, specimens with a height of 2 and 4 unit cells respectively
were fabricated.

Table 3.1: Process parameters for the SLM manufacturing process; ”total fill”means a

circular fill pattern for the slices.

process parameter [unit] value
laser wave length [nm] 1064
laser Power [W] 250
scan speed [mm s−1] 2000
layer thickness [µm] 30
laser hatch distance [mm] 0.114
scanning strategy: ”total fill”

All specimens were investigated under uniaxial compressive loading on the uni-
versal testing machine ElectroPuls E10000 (Ltd. Instron, Pfungstand, Germany)
and a speckle pattern was applied to evaluate the experiments with digital im-
age correlation (DIC). The experiments were quasi-static with a strain rate of
0.003 s−1. For the purpose of DIC, every experiment was observed with a 9 mega-
pixels CCD (charged coupled device) camera (Manta G-917B, Allied Visions
Technologies GmbH, Puchheim, Germany) and the software ISTERA4D® (Dan-
tec Dynamics, Skovlunde, Denmark) was utilised. The trigger for image acqui-
sition was linked to the testing machine so as to take one image every 0.5% strain.
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Figure 3.3: Seven different types of specimens for the RVE study; speckle pattern

applied for DIC measurements
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Figure 3.4: Schematic of a stress-strain diagram typical for open porous structures with

commonly used terms: plastic collapse stress (PCS), plateau stress (PS),

compation point (CP) and energy absorption capacity (EAC) marked as

green area.

A typical resulting stress-strain diagram for compression is depicted in Figure
3.4 with the commonly used terms. It is similar for foams and other porous ma-
terials. There is a pseudo elastic regime before the plastic collapse point, which
can be identified as an initial stiffness. The regime of constant stress after the
collapse of the first porous layer is called the plateau phase, which is followed
by the compaction when all layers are collapsed and the structure is essentially
bulk material. The area under the stress-strain diagram is identified as the en-
ergy absorption capacity (EAC) or in case of mass normalised stresses as a mass
specific EAC.

Each type of specimen was produced thrice, so the stress-strain diagrams (Fig-
ure 3.5) are mean values of three experiments. For all specimens, there is no
significant change for plastic collapse stress (PCS), plateau stress (PS) (Figure
3.6) or stiffness before PCS. Most curiously, the PCS is lowest for the 6 × 6
specimens and highest for the 2× 2 specimens with a difference of 1.5MPa. Yet,
all stress-strain diagrams are within the scatter range of the single experiments,
thus leading to the conclusion that 3 unit cells in every direction is sufficient
for the simulation. The PCS might get overestimated but only within a small
margin of error. Also for the PS, the 3× 3× 3 can be regarded as the RVE. In
addition, everything larger only extends the simulation time significantly with-
out much further information gain. According to the size effect experiments,
smaller volumes might also be possible, but then no unit cell would be within
the volume, which could eventually lead to too many surface effects and a slight
overestimation of the stress-strain behaviour.
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Figure 3.5: Mean stress-strain diagrams of three specimens each for the respective size

effect experiments.

Figure 3.6: Resulting mean plastic collapse stress (PCS) and plateau stress for the size

effect experiments; the small deviations within the error regime confirm

the choice of the RVE
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3.2 FE Simulations

Since the size effect experiments resulted in an RVE with 3×3×3 unit cells, the
simulations were set up accordingly. The compression test was simulated using
displacement controlled rigid bodies, similar to the experimental setup (Figure
3.7). The lower plate acted as a force sensor fixed in space, while the upper plate
was responsible for the deformation. The contact between plates and specimen
was simulated as coulomb friction with a 0.1 friction penalty coefficient through
ABAQUS® general contact, which enforces the contact constraints by detecting
node-into-face and edge-into-edge penetrations with a pure master-slave proce-
dure.

Figure 3.7: Setup of the simulations for the compression experiments of the modified

auxetics.

Due to the complex geometry, the model was meshed with quadratic, tetrahedral
C3D10M elements. The M here marks a modification of the classical tetrahedral
element, meaning three additional displacement variables [33]. This makes those
elements more accurate for contact simulations especially when using the explicit
solver, which was employed for all simulations. The model was built by multiply-
ing the parametrised unit cell (Figure 3.1) three times in all spatial directions.
Thus, after the simulation is finished, the set of geometry parameters is linked to
a mass specific stress-strain behaviour and a Poisson’s ratio, which are the two
optimisation targets. In order to save computational time, all simulations were
done until 0.33 compressive strain, which is well after the PCS and within the
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PS. The plateau is approximated as almost constant, so 0.33 strain gives a good
estimate of the plateau and only neglects the compaction phase.

In order to calibrate the elasto-plastic material model for the simulations, ten-
sile tests on dog-bone specimens according to DIN EN ISO 6892-1 [36] were
performed. The experimental setup is essentially the same as for the size ef-
fect specimens. For comparability, these specimens were also manufactured with
SLM by the institute of production engineering of Prof. Bähre, yet initially with
different production parameters. This will later lead to discrepancies between
simulations and experiments. Therefore, new tensile specimens were produced
with the same manufacturing parameters as the modified auxetic specimens (Fig-
ure 3.8). The corrected material model though was only used for the validation
simulation of the optimised structure, since all other simulations for the network
training were already done. Even though error prone, the optimisation can still
be regarded as valid because the error in all training data is the same, which still
gives good qualitative results.

Figure 3.8: Comparison of dog-bone tensile specimens for material model calibration;

DIC images of one tensile test with points marked on the stress-strain curve

(Bronder et al. [21])

The Young’s modulus was only slightly corrected from 62.2GPa to 58.8GPa.
Within the plastic region there is a larger difference and hence 38 new points for
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a plastic table were extracted from the stress-strain diagram. The diagrams in
Figure 3.8 are the mean values of three experiments each, with almost no devi-
ation, which hints to a good reproducibility of the SLM process. This can also
be seen in the comparison of the first batch of dog-bone specimens (Figure 3.9)
where the single experiments of the same specimens have only a small scattering.
Here, also the angle between specimens and the substrate plate was investigated
since the struts of the auxetics are also not all in the same direction and the spec-
imens itself were also manufactured in a tilted fashion. The specimens laying flat
on the substrate plate (0°) behaved more brittle and were the weakest. But, all
three directions do not deviate far from each other, with the 45° specimens being
the strongest. This lead to the decision to produce all later specimens in a way
that most struts had a 45° angle between itself and the substrate plate. In the
DIC measurement (Figure 3.8) it becomes visible, that the strain is uniformly
distributed over the whole specimens, meaning there are no large manufacturing
errors. Those would have been visible as a strong localisation of the strain in one
region.

Figure 3.9: Stress-strain results of the first dog-bone specimen batch to calibrate the

material model; 0°, 45° and 90° describe the angle between specimen and

substrate plate in the SLM process; 0° means the specimens were flat on

the substrate plate (Bronder et al. [22])
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The simulation build up the database for the subsequent neural network training
and optimisation process. Also an inspection of the later design space in form
of a full factorial testing plan was performed commencing with simulations and
followed by experimental validation of the results.

3.3 Full factorial testing Plan

Exploration of the design space was performed with a full factorial testing plan
in simulation and experiment for three out of five geometry parameters. The
parameters waist, size and strut thickness (Figure 3.1) were investigated while
keeping the re-entrant angle and gap between half strut and unit cell constant.
The three selected parameters were deemed the most influential ones and were
varied between a maximum (1) and a minimum (-1) value. In addition, since the
number of necessary specimens is 2n, with n being the number of parameters,
only three parameters were selected to keep the number of specimens within
reason. The boundaries (Table 3.2) of the design space were chosen because
of the production restrictions of the SLM machine. The maximal values were
the largest specimens possible to manufacture while the minimum values were
the smallest sensible measurements. Smaller parameters would either have lead
to too fragile structures or reached the boundaries of the manufacturing accuracy.

Table 3.2: Minimum and maximum values for the geometry parameters varied within

the full factorial testing plan (Bronder et al.[22])

waist[mm] strut thickness [mm] size [mm]
min (-1) 0.5 0.5 7
max (1) 1.5 1.5 20

In total, this leads to eight different types of specimens which can be depicted as
a cube (Figure 3.10). These structures were simulated according to the method
described in section 3.2 and produced with SLM in the same fashion as the spec-
imens in section 3.1 with the only difference of the scanning strategy. Specimens
with the minimum strut thickness of 0.5mm were produced with total fill, while
specimens with the maximum strut thickness of 1.5mm utilised hatch which
means stripes as a fill pattern. This was more beneficial for the thicker struts
since it produced better surface qualities.
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Figure 3.10: Unit cell structure of the eight resulting specimen types in factorial space,

with 1 and -1 meaning the max and min value of the geometry parameters,

respectively (Bronder et al. [22]).

The produced specimens, again by the institute of production engineering, Saar-
land University of Prof. Bähre, (Figure 3.11) were all measured (Table 3.3) and
subjected to compression experiments with the same machine and camera equip-
ment as the size effect experiments in section 3.1. Also the DIC was performed
with ISTRAD4D® to evaluate the strains and Poisson’s ratio. Due to the fric-
tion on the boundary of the specimens, the Poisson’s ratios were only evaluated
in the middle layer of the specimens.
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Figure 3.11: All eight types of specimens produces with SLM; 1 and -1 meaning the

max and min value of the geometry parameters, respectively (Bronder et

al. [22])

Table 3.3: Mean measures and mass of the manufactured specimens per type; geometry

parameters waist(w), strut thickness (st) and size (s)

w [mm] st [mm] s [mm] length [mm] width [mm] height [mm] mass [g]

small

0.5 0.5 7 22.3 22.4 33.4 3.85
1.5 0.5 7 24.0 24.1 34.5 17.36
1.5 1.5 7 24.2 24.5 34.3 26.93
0.5 1.5 7 24.2 24.6 34.5 14.66

large

0.5 0.5 20 61.6 61.7 94.1 11.27
1.5 0.5 20 63.0 63.1 93.3 48.55
1.5 1.5 20 63.4 63.5 93.3 97.82
0.5 1.5 20 63.2 63.7 95.2 42.89
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3.3.1 Simulation Results

The stress-strain behaviour for the eight different unit cells is extracted from the
simulations (Figure 3.12) and already shows the huge potential within the small
subset of geometry space. There is a wide range of maximum stresses and thus a
large variety and optimisation potential for the EAC. The calculated mass spe-
cific EAC to incorporate the lightweight goal and the resulting Poisson’s ratios
are listed in table 3.4. With the aim of achieving a good compromise between
EAC and Poisson’s ratio in mind, a small structure with waisted struts yields
the best result (Table 3.4 green). Apart from the large variety of EACs, also
the Poisson’s ratio is widely adjustable even in this small fraction of possible
geometries. The large structures display a large auxetic effect, yet a low mass
specific EAC, whereas the small structures all provide a significantly higher EAC.

Figure 3.12: Stress-strain diagrams for the eight different specimens extracted from

the simulation of compression experiments; respective unit cells on the

right (Bronder et al. [22])

With linear approximation, the effects of the single parameters on the target val-
ues can be visualised (Figure 3.13 a)). The geometry parameters have directly
opposing impacts on the target variable since the goal is to maximise the EAC
while having a large as possible auxetic effect. The slope of the straight line
between min(-1) and max(1) value measures the strength of the impact, thus
showing the size to have the strongest influence, followed by waist and strut
thickness. Moreover, increasing the unit cell size has the opposite effect on EAC
and Poisson’s ratio compared to waist and strut thickness. In order to find one
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Table 3.4: Calculated mass specific energy absorption capacity EAC and Poisson’s

ratio ν from the simulations. 1 and -1 denote to the max and min value of

the three geometry parameters waist, strut thickness and size, respectively.

Green marked is the best compromise for both target values (Bronder et al.

[22]).

parameter level EAC [mJmm−3 g−1] ν [-]

small

-1-1-1 0.2199 -0.33
1-1-1 0.8933 0.03
1 1-1 1.8009 0.01
-1 1-1 0.5941 -0.45

large

-1-1 1 0.0030 -0.64
1-1 1 0.0024 -0.67
1 1 1 0.0026 -0.44
-1 1 1 0.0188 -0.41

single optimisation goal, the product of EAC and Poisson’s ratio was chosen as
a first simple approach (Figure 3.13 b)). Curiously, the waist has the largest
impact here, followed by size and strut thickness. The tendencies, nonetheless,
are the same as for the single target values.

The evaluation of the interactions between the parameters only yields the size and
waist to have the strongest interaction. This however, is clear a priori since these
two parameters have the biggest influence on both target variables. Hence, there
is no further information gain from the interaction plots what cannot already be
concluded from the effect diagrams.
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Figure 3.13: a) Effect plots of the geometry parameters on the energy absorption ca-

pacity E and the Poisson’s ratio ν. The optimization of E is opposing

the optimization of the Poisson’s ratio; b) effect plots of the product E·ν
(Bronder et al. [22]).

3.3.2 Compression Experiments Results

The comparison between simulation and experiment (Figure 3.14) yields a good
accordance for the two in the pseudo-elastic regime before the plastic collapse
peak. Afterwards there is a larger discrepancy because of the wrongly calibrated
material model as mentioned in section 3.2. However, the simulations still give
valuable insight into the general behaviour of the structures. Noticeable is the
increase in the PCS for the smaller structures compared to the larger ones. For
the structures with straight struts it is only an increase by a factor of approxi-
mately 14, the structures with waist and belly increase their PCS by a factor of
approximately 50.

An additional reason for the discrepancies between simulation and experiment is
a shearing-off during plastic deformation instead of collapsing in a straight fash-
ion as was the case within the simulations (Figure 3.15). This is more dominant
for the large structures since this shearing is a result of a bending dominated
deformation mechanism. As a result the half strut does not reach contact at all
and loses its functionality. Therefore, the small structures show better accor-
dance for simulation and experiment. This behaviour is another reason why the
Poisson’s ratio was only calculated and compared before the first collapse of the
structures.
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Table 3.5: Experimental (exp) and simulated (sim) Poisson’s ratio ν and energy ab-

sorption capacity E up to 5% strain for the eight parameter sets, with their

respective errors e. -1 and 1 represent the min and max value of the three

geometry parameters waist, strut thickness and size, respectively. Marked

in green is the best compromise solution for the experiment, which is the

same as for the simulations (Bronder et al. [22]).

νexp [-] νsim [-] eν [-] Eexp [mJmm−3] Esim [mJmm−3] eE [-]

small

-1-1-1 -0.40 -0.33 0.175 0.137 0.201 0.31
1-1-1 0.13 0.03 0.76 1.564 1.456 0.07
1 1-1 0.16 0.01 0.94 3.443 3.246 0.06
-1 1-1 -0.22 -0.45 1.05 0.313 0.529 0.41

large

-1-1 1 -0.51 -0.64 0.25 0.002 0.007 0.71
1-1 1 -0.40 -0.67 0.68 0.009 0.022 0.59
1 1 1 -0.36 -0.44 0.22 0.141 0.249 0.43
-1 1 1 -0.34 -0.41 0.21 0.013 0.029 0.55

The simulations of the large structures (Figure 3.14e)-h)) further display an os-
cillation behaviour after the PCS not visible in the experiments. This is a result
of the contact of half strut and structure during the deformation. After contact a
slipping occurs which leads to these oscillations. Since there is less space within
the smaller structures (Figure 3.14 a)-d)) and the half strut is shorter, there is
no slipping and sudden collapse possible, hence no oscillations.

Table 3.5 compares the resulting Poisson’s ratio and EAC for experiment and
simulation. For the larger structures the simulations overestimate the negative
Poisson’s ratio while they underestimate it for the smaller structures with the
only exception being the structure with waisted struts (-1 1-1). Yet, the overall
tendencies are similar. As already visible from the stress-strain diagrams, the
EAC up to 5% strain are a better match for the small structures. The area was
only calculated this far because the small structure with thick struts (1 1-1) could
experimentally only be evaluated until this compressive strain. The experiments
further validate the small structure with waisted struts to be the best compromise
solution for EAC and negative Poisson’s ratio. Thus, the experiments verified
the overall tendencies, meaning the simulations are applicable for an optimisation
task. They give good estimates of the qualitative behaviour and influence of the
parameters.
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Figure 3.14: Stress-strain diagrams of the simulations compared to the experiments.

All experimental curves are the mean value of three experiments. The

geometry parameters are according to table 3.2. The small structures are

on the left (a)-d)) and the large structures on the right (e)-h)) (Bronder

et al. [22]).
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Figure 3.15: Comparison of the deformation behaviour between simulation and experi-

ment for specific global strains ε on the example of the large structure with

all geometry parameters on maximum level (1 1 1); differing deformation

mechanism of simulation and experiment becomes apparent (Bronder et

al. [22])
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3.4 Network Training and Optimisation

After the investigation of the design space and the generation of some initial
training data points within these boundaries, different ML algorithms were in-
vestigated in the master thesis of Sergej Grednev [59], which resulted in neural
networks to be the best approach for the given task. Especially for predicting
stress-strain curves, they were superior compared to support vector machines,
k-nearest neighbours or decision tree based approaches such as boosting.

3.4.1 Neural Network Architecture and Training Process

For the implementation of the neural networks the application programming in-
terface (API) Tensorflow with Keras was used. The training data was generated
in the same fashion as described in 3.2. Since some investigations were launched
in parallel, the sampling of the training data is not entirely random. An adap-
tive sampling algorithm was developed by Janis Mathieu [97] during his master
seminar, which showed the adaptive sampling algorithm to reach a lower gen-
eralisation error with fewer training examples. Therefore, the training data for
the final optimisation here is sampled as a combination of random sampling and
adaptive sampling.

Two different feed forward neural networks were designed for the two targets
stress-strain behaviour and Poisson’s ratio ν. For the stress-strain relation, a
subsampling approach was used, meaning the network had 201 output nodes,
each predicting the stress at a certain strain. Since the simulations yielded 1001
stress-strain pairs, a data reduction was used because it is easier for the net-
work to predict fewer values and hence this is called subsampling. As input for
both networks solely the five geometry parameters were used. For predicting the
stress-strain behaviour four hidden layers, in order 30, 50, 100 and 200 neurons
per layer , were found to give a good approximation. As for the prediction of
the Poisson’s ratio a network with a total of nine hidden layers, five with 40 and
four with 20 neurons per layer was found to give good estimates of the single
output value. All neurons used the SELU activation function because of its self-
normalising properties and thus the networks were initialised with lecun-normal.
The stress-strain network was trained with Huber loss while the Poisson’s ratio
network was trained with the MAPE.

The suitable networks were established through gradually increasing the number
of layers and neurons per layer starting from just two hidden layers with 50 neu-
rons each. The final training was done on 179 simulations with four fold cross
validation which means that only 80% of the available data was used for training
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Figure 3.16: Exemplary test stress-strain diagrams of the trained neural network con-

firming the good predictions; left is the test data with the largest predic-

tion error on the test dataset

10% for validation and 10% for testing. Thus all data was shuffled four times
and split accordingly, resulting in 4 different data compilations to minimise the
influence of the data selection on the training. Yet, there is no way to guaran-
tee that those are the best achievable networks for the task, they are only one
possibility within an acceptable margin of error on the test data. The validation
data was used for early stopping to prevent overfitting.

As mentioned above, in general it is easier to predict fewer numerical values.
Hence why not predict the EAC directly instead of the whole stress-strain be-
haviour? Firstly, the stress-strain behaviour can directly be compared with the
compression experiments and gives a better understanding of the material be-
haviour in general. Secondly, it would additionally be possible to evaluate stiff-
ness, PCS and plateau stress from the stress-strain behaviour and utilise them for
further investigations. And thirdly, for a homogenisation approach it is manda-
tory to know the material behaviour, e.g. the stress under certain compressions.
Hence, the trained neural network can later be used to model the homogenised
material behaviour.

From the four-fold cross validation resulted four trained networks, whose perfor-
mance was evaluated on the test data and the network with the smallest test
error, a MSE of 0.107 or Huber 0.051, was selected. Exemplary stress-strain
predictions of the selected network (Figure 3.16) confirm that the predictions
give a good approximation of the simulations. Even the worst prediction (Figure
3.16 leaft) is still acceptable to extract a material behaviour and gives a good
estimate of the EAC, since the area under the curves do not differ as much.
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Figure 3.17: Predicted over target value of the test data for a) mass specific energy

absorption capacity and b) Poisson’s ratio; orange is the straight for a

perfect match of both

The good accuracy for both networks becomes also visible when comparing the
predictions for both target values to the labels of the test data set (Figure 3.17).
The mass specific EAC in Figure 3.17 a)) is calculated from the predicted mass
specific stress-strain diagrams. The area is integrated numerically using Simp-
son’s rule [35]. The final network can then be used to optimise the structure.

3.4.2 Optimising the Structure

Finding the best structure in the case of the auxetics means a high as possible
mass specific EAC with a small as possible Poisson’s ratio, which boils down
to a minimisation problem. To that end, the quasi Newton procedure L-BFGS-
B, implemented in the python library scipy, was utilised in combination with a
surrogate model technique. A multidimensional, quadratic polynomial function
of the form

T =ax0 + bx2
0 + cx1 + dx2

1 + ex2 + fx2
2

+ gx3 + hx2
3 + ix4 + jx2

4 + kx0x1x2x3x4 + l
(3.1)

was fitted by the method of least squares to the existing data. Here, T is the
optimisation target, which is the product of mass specific EAC and Poisson’s
ratio, x is the geometry parameter vector and a to l are curve fitting parameters.
The product of EAC and Poisson’s ratio as minimisation target was chosen since
this value must be as negative as possible. The EAC itself is always positive
while the Poisson’s ratio should be negative and by multiplication the product
of the two becomes larger with increasing magnitudes.

-55-



CHAPTER 3. AUXETICS

The minimisation results in a new set of geometry parameters, for which the
neural networks approximate Poisson’s ratio and EAC. This in turn extends the
already existing database of geometry parameters to target variables list, which is
then refitted to the surrogate model. The newly adapted model is then minimised
again and in turn results in a new set of geometry parameters. This procedure
is repeated until a previously set cancellation criterion is fulfilled, e.g. difference
between target values of current and previous step is below 0.1% (Figure 3.18).
In this way, it is possible to incorporate the whole minimisation history and use
the set of simulations already existent for the optimisation.

After multiple runs of the optimisation algorithm from different starting points
one final set of geometry parameters emerged (Figure 3.19 table). Those were
subjected to a FE simulation in order to validate the approximation of the neural
network. The good accordance of network prediction and simulation for stress-
strain behaviour and Poisson’s ratio (Figure 3.18) verifies the optimisation. Now,
only the experimental validation of the optimisation is still pending.
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Figure 3.18: Schematic of the optimisation routine
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Figure 3.19: Stress-strain diagrams of the optimised structure for neural network pre-

diction and validation simulation; additional table with the optimised

values of the geometry parameters

3.5 Experimental Validation

To investigate the optimised structure, a set of three specimens was produced
by SLM at the institute of production engineering, Saarland University of Prof.
Bähre with the same production parameters as the specimens in section 3.1
(Figure 3.20). All specimens were subjected to compression experiments with
the same experiential equipment and setup as all previous compression experi-
ments. The resulting stress-strain behaviour is compared to the results of the
validation simulation (Figure 3.21). The large discrepancy between simulation
and experiment is due to the wrongly calibrated material model discussed in sec-
tion 3.2. With the recalibrated elastic-plastic model, experiments and simulation
are a much better match.

The still remaining mismatch is a combined result of a deviating failure mech-
anism (Figure 3.22), a non perfect manufacturing and the exclusion of material
failure. During the simulations the auxetic structures failed in the middle layer
whilst during the experiments the topmost struts were bending and buckling.
Since the main structure stayed undamaged, it could not bear the load to its
fullest and was rendered weaker as predicted. Hence, also the Poisson’s ratio is
different. In addition, SLM is a process still to be perfected and under heavy
investigation. The predicted mass of the ABAQUS® with 6.98 g differs from
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Figure 3.20: FE model left and SLM specimen right of the optimised structure; a black

and white speckle pattern is applied to perform DIC (Bronder et al. [21])

the specimens with only 6.82 g. This deviation of 2.3% hints to either deviat-
ing dimensions, small pores or pre-existing damage within the structures, which
all could potentially lead to an earlier failure. Also the inclusion of damage in
the material model can potentially improve the accuracy of the simulations, but
leads to increased simulation times. This was researched in the master thesis
of Alexander Engel [41]. Nevertheless, the validation of the optimisation was
successful. Also the mass specific EAC of 0.19mJmm−3 g−1 for the experiments
matched the 0.22mJmm−3 g−1 for the simulations closely.
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Figure 3.21: Stress-strain diagram comparing the experimental results as mean of three

compression experiments with the simulations of the optimised structure

Figure 3.22: Comparison of deformation during compression of simulation and exper-

iment for different global strains
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3.6 Main Results

This chapter dealt with the optimisation of a modified 3D auxetic re-entrant
honeycomb structure and the development of an optimisation routine. The key
findings are briefly summarised within this section.

� The modified version of the auxetic unit cells keeps its stiffness for larger
deformations and is able to withstand higher stresses and thus has an en-
hanced EAC

� The RVE was established to be 3 × 3 × 3 unit cells through an experimen-
tal investigation on size effects. The PCS and PS for this specimen type
was well within the deviation of the single experiments and gives a good
estimate of a global behaviour while preserving a small as possible modle
to reduce simulation time.

� A full factorial testing plan was established to investigate the design space
for three out of five geometry parameters. The two main targets, nega-
tive as possible Poisson’s ratio and high as possible mass specific energy
absorption capacity are contradictory to each other. Thus, a compromise
solution must be found which is achieved through an optimisation of the
product term of both targets.

� The simulative investigation was confirmed by experiments and lead to a
recalibration of the material model to counter the discrepancies between
simulation and experiment.

� Multiple neural networks were trained and validated to predict either the
stress-strain behaviour or the Poisson’s ratio based on geometry parameter
composition. The ones with the best performance were picked to perform a
structural optimisation of the modified 3D re-entrant honeycomb auxetics.

� Through the combination of the neural networks and a surrogate model
technique with a multidimensional quadratic function, the structure for
the auxetics was optimised and resulted in a small structure with waisted
struts. This compromise solution was again subjected to experimental test-
ing and validated the results from the simulations. Also the simulations
validated the neural network predictions and hence the optimisation itself.

� All those steps together give a new optimisation scheme, which can be
utilised for arbitrary structures. The only requirement is some kind of
numerical representation which is simple and yet complete in describing
the structure and the design possibilities.
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4
Pentamode

This chapter deals with optimising pentamode structures to improve their damp-
ing capabilities. The optimisation procedure, developed on the auxetic structures
(Figure 3.18) is transferred to the pentamode structures. The general aim is to
optimise the damping for transversal deformations while keeping the mass as
small as possible and preserving a structural stability, so axial forces do not
crush the structures. A possible application could be protective devices for seis-
mic activities as postulated in [44]. To that end, four geometry parameters strut
length, angle, middle and connection (Figure 4.1) describing the geometry were
identified. One pentamode unit cell is composed of four bases. The only expan-
sion to the structure described in the literature from 2.5.2 is the introduction of
the angle.

Figure 4.1: Schematic of the pentamode structure; left is the base with the four iden-

tified geometry parameters; right is an assembled unit cell
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In this chapter an overview of the simulation setup is given, followed by the
investigation of the design space and training the neural network with adaptive
sampling. Finally, the pentamode structure is optimised with regard to the
mass specific damping. Since a new set of simulations is needed to calculate
the structural stability, this was only carried out for the initial investigation
of the design space due to time constraints, but will be the subject of future
investigations. Also the experimental investigation was omitted because of the
lack of time. So all the results presented within this chapter are purely the result
of simulations, specimen production and testing will be done in the future.

4.1 Simulations

The FE simulations were all done with the ABAQUS® explicit solver on models
composed out of four unit cells. The structure was placed between two rigid
plates, similar to the auxetic specimens. For the damping simulations the upper
plate was rotated oscillating around the longitudinal axis ± 10◦ with a frequency
of 2.5Hz in order to mimic vibrations (Figure 4.2 a)). As for the structural stabil-
ity simulations, the pentamode structure was compressed under uniaxial loading
until 33% strain (Figure 4.2 b)). The frequency can be regarded as another tai-
loring parameter but was left constant for the following investigations in order
to reduce the number of features for a first inspection of the design space. The
2.5Hz were chosen because they fit into the frequency range of most earthquakes
which is between 0.1Hz and 10Hz [139] and has a deformation speed which is
feasible to simulate within a reasonable time frame. The lower plate is fixed in
space and serves as a sensor, measuring the reaction forces and moments in both
simulations. A tie constraint is used in the vibration simulations to bind the clos-
est nodes to the movement of the respective plate and thus make the simulation
as close as possible to an achievable experimental setup. For the compression
simulations a contact formulation similar to the one for the auxetics in section
3.2 is implemented also with a friction coefficient of 0.1. Here, it is also expanded
with a hard contact in normal direction to minimise surface penetrations, since
the contact geometry of the pentamode structures is more complex.

Because of the complex geometry, the structure was meshed utilising tetrahe-
drons and since a fine mesh was required, linear elements (C3D4) were used.
They provide enough accuracy and keep the simulation time within a practi-
cable measure. Quadratic elements would have an estimated simulation time
of over 120 days for just one structure and a coarser mesh would give insuffi-
cient results or would not represent the geometry correctly, especially for small
joints. Again, the recalibrated SLM AlSi10Mg material model from section 3.2
as an elastic-plastic model was employed, since the specimens were planned to be
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Figure 4.2: Setup of the simulations for the pentamode structure, a) vibration simu-

lations with rotation L b) compression simulations for structural stability

with displacement u; the lower plate fixed in space measures the reaction

moments and forces in both simulations

manufactured on the same SLM machine. Also, the oscillation simulations had to
be done until 4 s, since there was a transient response to the oscillations (Figure
4.3). Meaning, the mechanical wave needs a certain amount of time to stabilise
the forced oscillation within the structure. This however, is not only linked to
the specimen dimension, since for some specimens the transient response time is
almost zero. But since there are specimens with a longer time period, the mea-
sure for the damping is the area under the curve of moments after 2 s. This is
called action (S) and is a measure for the change of a system over time with the
unit Joule-second. The action is smaller the better the damping. From the first
inspection of the simulation result also a phase shift between oscillation input
and reaction moment becomes apparent. It is represented by the time shift of
the respective minima and maxima of the forced oscillation at the top and the
reaction moment at the bottom. Nevertheless, this has no direct impact on the
damping properties of the structures.

The compression simulations resulted in the usual stress-strain relations, from
which a structural stiffness is obtainable. This however, is not the Young’s
modulus, which would have to be measured from an unloading of the structure.
For porous structures there exists only a pseudo-elastic regime, which is due to
minor plastic deformations already happening during this loading stage. Thus, to
gain the purely elastic information, an unloading step during the pseudo-elastic
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deformation stage would be necessary. Even so, this unloading is omitted for the
simulations, since the structural stiffness is sufficient to evaluate the stability and
an additional simulation step would only lead to prolonged simulation times.

Figure 4.3: Reaction moment for the oscillating simulations on the pentamode struc-

tures; the area filled in red under the moment curve after 2 s was evaluated

for the damping purposes

4.2 Investigation of the Design Space

In order to gain a deeper understanding of the design space and to explore its
limits, a simulative investigation again with a 23-full factorial testing plan was
utilised. Therefore, the parameters strut length, middle and connection were
varied between an minimum (-1) and maximum (1) value (Table 4.1). Hence,
this resulted in eight different geometries (Figure 4.4) to be simulated with the
parameter angle kept constant at 109.4◦. This angle was chosen since it is the
tetrahedral angle which is proposed in literature [102] for pentamode structures
as they are based on diamond structures. The respective min and max values
of the parameters were chosen according to the production constraints of the
SLM machine used to produce all auxetic specimens. Smaller parameters, es-
pecially for connection and middle would have caused severe problems with the
resolution of the SLM machine, whereas a factor of ten for min to max value
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Table 4.1: Minimum and maximum values for the geometry parameters varied within

the full factorial testing plan of the pentamode structures

middle [mm] connection [mm] strut length [mm]
min (-1) 0.25 0.24 6
max (1) 2.5 2.4 12

was deemed large enough for this investigation. The strut length minimum was
chosen in order to still generate sensible structures for the max values of the
other two geometry parameter. The max strut length here is restricted due to
the design space of the SLM machine. Also to avoid meshing problems with the
ABAQUS® meshing tool, connection and middle have slightly different values
for their respective min and max values.

Figure 4.4: Eight resulting structures in the factorial space for the three varied geom-

etry parameters middle, connection and strut length; 1 and -1 describe the

respective parameter level; additional rotated view for the smaller struc-

tures with at least one parameter on max level for better visibility

For the vibration analysis there is a huge range of achievable moments (Figure
4.5 b)) only by adjusting the chosen three geometry parameters. Hence, also a
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good damping is already possible within the chosen confinements of the geometry
space. In this case a small reaction moment indicates good damping capabilities.
Figure 4.5 c) shows the large variety of resulting actions with a range of roughly
10 000mJ s for the eight different structures. For the damping there is already
a clear trend to structures with longer struts and thus larger structures visible,
since their action with one exception is much smaller. It is also apparent, that
structures with small connection points display a better damping (Figure 4.5
structures 1, 2, 5 and 6). Structure 8 also displays a significantly lower action
even though its connection parameter is on max level. This is due to the fact,
that the middle parameter is minimal and serves as new joints. For structure
4 this effect is not visible because the struts are too small and the connecting
spheres touch directly.

Figure 4.5: a) Structure numbering in factorial space, b) resulting reaction moments

for all eight structures, c) calculated actions for the eight structures; smaller

reaction moments result in a smaller action and thus a better damping
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In addition, the transient response time and the phase shift is significantly lower
for some parameter combinations (Figure 4.6). However, for the phase shift there
is no clear distinction between small and large structures. Only the small struc-
ture with the other two parameters on max level has by far the smallest phase
shift. Otherwise, the phase shift has no technical effect, since on the one hand it
signifies a delayed response of the structure, but on the other hand this delay is
in the range 0.15 s which is also almost instant.

Figure 4.6: Evaluated phase shift for all eight different specimen types of the full fac-

torial testing plan

The mass specific stiffness (E/m) and the yield strength (Rp0.2) were evaluated
with the compression simulation setup from the resulting stress-strain diagrams
(Figure 4.7) in order to gain insight into the structural stability. There is a very
large difference in scale for the stress-strain behaviour visible with the structures
3 and 4 being the ones capable to withstand the most stress, yet also being the
ones with by far the worst damping capabilities. For structure 6 no yield strength
could be evaluated since simulating this structure had many issues with meshing
and finally only produced reasonable results only up to 4% strain, which was
just enough to evaluate a stiffness. Thus, for the effects discussed below, only
the stiffness was taken into account. The resulting values are listed in Table 4.2.
There is a clear trend to a higher mass specific stiffness for the smaller structures
visible. This is caused by a significantly lower mass for the smaller structures and
also a much higher unnormalised stiffness in case of structures 3 and 4 due to their
packing factor. The shorter struts which are less prone to bending are another
factor for the higher mass specific stiffness compared to the larger structures. In
addition, a higher mass specific stiffness is an indicator for a higher yield strength.

-69-



CHAPTER 4. PENTAMODE

Figure 4.7: Stress-strain diagram for the eight specimens of the full factorial testing

plan

The resulting effects of the three varied parameters (Figure 4.8 a)) again display
the necessity to find a compromise since the two parameters connection and strut
length influence the optimisation targets in opposing ways. A small connection
gives a low action yet a small mass specific stiffness, where a small strut length
results in a higher action but also a higher mass specific stiffness. The cause
for this is the diameter of the joints of the single structural elements. For small
joints, the mechanical wave transmission is hindered since the shear modulus is
lower but the structure is rendered much weaker. This is also apparent from
the yield strength (Table 4.2 structures 1, 2, 5). The small middle parameter of
structure 8 again acts as the new joints with a small diameter and thus renders
this structure much weaker.

Only the parameter middle gives a clear trend to structures with a small middle
parameter to fulfil both optimisation targets since it maximises the mass specific
stiffness and gives the lowest action. Yet, the middle parameter shows this trend
only for the mass specific values, the unnormalised stiffness has also the opposing
trend for the middle parameter (Figure 4.8 b)). The trend reversal is due to a
high reduction in mass for small struts, so lightweight construction as a third
optimisation goal has a huge impact on this parameter. Otherwise, for the mass
specific stiffness the strut length shows the largest effect whereas connection has
the largest effect on the action. For the action and the stiffness, strut length and
middle are the least important parameter, respectively.
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As connection and middle are the two most influential parameters to adjust the
action, those two have also the largest interaction. With respect to the mass
specific stiffness, the largest interaction is between connection and strut length
since those two have the largest effect on that. From this however, no clear de-
sign guideline can be deduced since all three parameters have a strong influence
on each other. The only insight from the interaction is that middle and strut
length can be adjust almost independently concerning the stiffness.

Table 4.2: Resulting action (S), mass specific stiffness (E/m) and yield strength (Rp0.2)

for the eight different specimens of the full factorial testing plan with the

best compromise solution so far marked in green; 1 and -1 denote to the

max and min value of the three geometry parameters middle, connection

and strut thickness, respectively; for structure 6 no yield point could be

evaluated since the simulation ran only up to 4% strain

number parameter level S [mJs] E/m [MPa/g] Rp0.2 [MPa]

small

1 -1-1-1 549.35 2.33 0.027
2 1-1-1 8288.66 3.35 0.486
3 1 1-1 279002.99 52.07 29.036
4 -1 1-1 217390.21 28.62 24.705

large

5 -1-1 1 51.96 0.08 0.003
6 1-1 1 302.60 0.02 -
7 1 1 1 318111.12 4.39 4.716
8 -1 1 1 3709.94 0.13 0.031

For the full factorial testing plan a good compromise solution is yielded by the
smallest structure with all parameters on minimum (Table 4.2 green). As a pro-
posed optimisation target the quotient of stiffness and action is used and the
compromise was selected according to the largest quotient. Maximising this quo-
tient means minimising the action, and thus perfecting the damping, since it is
the denominator and at the same time maximising the mass specific stiffness since
it is the numerator. The effects for this quotient (Figure 4.8 b)) also confirm the
chosen compromise structure since it gets maximised for all three parameters on
their respective lowest level. This measure, though, is not ideal due to the large
difference in scale which is roughly 104 from smallest action to largest action and
103 for the mass specific stiffness. But as a first approximation this quotient can
be regarded as a good initial measure. It might be desirable for a final optimi-
sation to use weights for the two targets to give them a different importance,
resulting then in a scaling of the quotient. The quotient also does not consider
the yield strength, which for the compromise structure is the second lowest of
all structures where it could be evaluated. Thus, while structure 1 may be the
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best compromise in terms of this quotient, the actual applicability is questionable
since a yield strength of 0.027MPa might be too low for load bearing technical
applications.

Figure 4.8: Effect plot of the three parameters a) on the two targets action and mass

specific stiffness with direction of desired optimisation, b) on unnormalised

stiffness and proposed optimisation quotient

The deformation behaviour on the example of structure 1 under oscillation and
compression shows maximised stresses in the connection points of the base struc-
tures (Figure 4.9) and is representative for all structures. The computed Mieses
stresses on the surface are, with 280.5MPa within the joints, equal the ulti-
mate tensile strength of the SLM aluminium (Figure 3.8). This is an indication,
that the structure will potentially fail at the joints already during the first few
oscillations. Since the simulations do not include damage, this is necessary to
evaluate with experiments. Furthermore, the stresses along the struts is signifi-
cantly lower, even almost zero in the middle of the strut. Thus, the deformation
mechanism is not dominated by a bending of single struts as it is for other porous
structures. So the main stability issues arise from the connector points.
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Figure 4.9: Deformation behaviour of structure 1 for rotation and compression at dif-

ferent times or global strains, respectively; for better visibility the images

are zoomed in on one structural joint

4.3 Neural Network Training

After the initial investigation, a neural network is trained with adaptive sam-
pling. The sampling algorithm was developed by Janis Mathieu [97] during his
master seminar under supervision of Stefan Bronder. He showed for the auxetic
data, that the adaptive sampling converges faster to lower test errors for trained
neutral network compared to latin hypercube sampling or complete random sam-
pling. Therefore, the adaptive sampling was employed here to keep the number
of necessary simulations to a minimum.

In order to keep the consistency, the geometry parameter angle was also neglected
for the training and optimisation. It also has a minor influence on the resulting
action when varied between 90◦ and 130◦ (Figure 4.10) as an investigation for
different angle on otherwise the best compromise structure from the previous
section displays. There is no noteworthy change in the behaviour of the reaction
moment when varying the angle (Figure 4.10 a)). The apparent best choice for
angle seems to be around 100◦, but the resulting action is only slightly lower
than the one for the chosen 109.4◦ (Figure 4.10 b)). Hence, the optimisation
potential concerning this geometry parameter is not significant. Moreover, this
kept the necessary time to a minimum because it requires less simulations. If the
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Figure 4.10: a) reaction moments for different values of the geometry parameter angle,

b) resulting actions for different values of the geometry parameter angle;

all other geometry parameters were chosen according to structure 1 from

the previous design space investigation

parameter angle were considered, eight additional simulations each for the initial
and testing data would have been necessary. Also one extra feature would have
to be considered, which usually increases the total number of required training
data to give good predictions for the neural network. Thus, the time save by ne-
glecting angle is justified due to its small optimisation potential within a range
of 50◦ and the probable best choice being around the selected 109.4◦.

The eight structures from the previous section serve as a starting point for initial
training of the adaptive sampling. Another eight simulations within the design
space are necessary as initial testing points for the adaptive sampler. Since
three geometry parameters are adapted, the design space is still displayable as
a cuboid, with the initial training data points on the edges and the testing data
within the volume (Figure 4.11 initial step). Testing data outside the cuboid are
not necessary to study, since it determines the design space of the SLM machine.

The sampling algorithm identifies the worst and second worst regions by evalu-
ating the MAPE on the testing data. It then requests two additional datasets
within those regions to further commence the training. The two worst test points
are added to the training data as well as one of the generated points within this
region, the other generated point serves as a new test point for the region. In
this way, the design space is always divided into eight test regions, which are
iteratively explored and the information gain from new training points is max-
imised (Figure 4.11 3rd step and 6th step).
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Figure 4.11: Initial training configuration and configuration after three and six training

iterations of the adaptive sampling algorithm in the 3D design space; blue

x are the training data points, red dots are the test data points

The network architecture was chosen based on the initial 16 simulations, eight
from the design space investigation and further eight as the initial test data.
Again, the number of hidden layers and neurons per layer were iteratively in-
creased starting from two layers with 10 neurons each. As a result, a network
with nine hidden layers, five with 40 neurons and four with 20 neurons per layer,
emerged as best performing for the existing data. The SELU activation with the
corresponding lecun initialiser was utilised for the network in order to benefit
from the self normalising properties. The network in this case is only predicting
the resulting action of a geometry parameters combination, thus it predicts only
one numerical value, which is relevant for the optimisation.

The network architecture was not reevaluated during the training iterations of
the adaptive sampler so as to not introduce more hyperparameters and to keep
the adaptive sampling consistent, because with changing network architecture the
data composition would also be prone to change. One adaptive sampling iteration
consists of initialising, training and evaluating the network and then requesting
the new data. With the procedure described above, in each iteration four new
datasets are added to the training database. After a total of eight training
iterations the average test error has reached an acceptable margin of error of
6.82% (Figure 4.12 a)). Hence, there were only 36 simulations necessary to reach
an average test error below 10% for predicting the action of the structure. Even
though the MAPE is reported here, since it gives a more intuitive understanding
and the difference in scale for the target variable are significant, for the training
the Huber loss was utilised. This is due to the larger values of this loss and thus
the larger gradients, which should speed up the training process.
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Figure 4.12: a) average test error over the adaptive sampling iterations for the pen-

tamode structures, with each iteration four new datasets are added to

the training data; b) predicted over target value of the action for three

validation datasets, orange is the straight for a perfect match of both

The finial network for the optimisation was trained on all 44 datasets existent so
far to make the best possible use of the available data. As a means to prevent
overfitting, three additional simulations on random geometry parameters were
done which were used as validation data to introduce an early stopping to the
training. Thus the final network for the optimisation achieved a MAPE on the
validation data of roughly 7% (Figure 4.12 b)).

4.4 Optimising the Damping

To find the structure with the best damping capabilities, the surrogate optimi-
sation scheme introduced for the auxetic structures in section 3.4.2 was used.
Since there was no preexisting assumption for the surrogate model for the penta-
mode structures, different polynomial functions were tried out on the simulation
data and the fit quality was evaluated using the R2 score. Models of up to fifth
order and different quadratic models were evaluated during this stage. Linear
models were neglected because they would be too simplistic and always lead to
a minimum on the border of the design space. For the data at hand the function

S = ax0 + bx2
0 + cx1 + dx2

1 + ex2 + fx2
2 + gx0x1x2 + h (4.1)

provided the best fit with R2 ≈ 0.85. The parameters a to h are curve fitting
parameters, S is the target variable, in this case the action and x = (x0, x1, x2)
is the feature vector with the three geometry parameters to be optimised. Curi-
ously, this surrogate model is similar to the one for the auxetic structures. Hence,
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it might be possible that a quadratic surrogate model is applicable for multiple
porous structures assembled periodically from a parametrised unit cell.

The multidimensional minimisation is also sensitive to the choice of the start-
ing point. Therefore, ten different starting points within the design space were
selected at random. After the ten minimisations, the one yielding the lowest
action was selected as the global minimum. This resulted in a structure with
minimal connection and middle and almost maximal strut length (Figure 4.13).
The predicted value from the network with 84.29mJ s differs only slightly from
the value calculated from the simulation with 86mJ s, which amounts to a 2%
error.

Figure 4.13: Resulting reaction moment over time for the damping optimised structure

with corresponding unit cell, geometry parameters and calculated action

S

For further evaluation, a compression experiment on the optimised structure was
simulated. As already expected from the results of the design space investigation,
this structures displays a very low stiffness of 0.06MPa (Figure 4.14). Even
though this structures has a very small estimated mass of 0.74 g, the mass specific
stiffness is still low with 0.08MPa g−1. From the images at two different global
strains it becomes apparent, that again the main deformation happens within

-77-



CHAPTER 4. PENTAMODE

the joints of the structure and not due to a bending of single struts. The pseudo-
elastic behaviour is also visible within those structures because there are already
plastic deformations within the joints even in the first, linear deformation regime
of the pentamode structures. Thus, the structure even though it displays a high
damping, an application within a technical product might prove difficult and is
strongly dependent on the applied load. This once again shows the necessity of a
compromise solution as well as the clear definition of the application requirements
and thereby a clear definition of the optimisation targets and constraints.

Figure 4.14: Stress-strain curve of the optimised structure with linear fit to evaluate

the stiffness E and compression states 1 and 2 for two different global

strains
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4.5 Summarised Findings

This chapter was dedicated to the optimisation of the damping properties of
pentamode structures. The investigation purely with simulations resulted in the
following key aspects.

� Designing a pentamode structure with perfect damping and yet enough
structural stiffness to keep its structural integrity is difficult because the
targets require contrasting geometry parameters. Again, it is important to
find a compromise solution similar as for the auxetics.

� The design space investigation displays the huge potential for these struc-
tures even when only three out of four identified geometry parameters were
varied.

� For the mass specific stiffness, the influence of the middle parameter on
the optimisation is aligned for both target values.

� The parameter connection is the most influential one for the optimisation
of the damping, yet is also responsible for the structural stability. Small
connector points renders the resulting structure weaker.

� The smallest possible structure within the chosen design space yields the
best compromise for an unweighted quotient of mass specific stiffness and
action.

� The parameter angle has a negligible influence on the damping properties
of the pentamode structures.

� A neural network was trained using adaptive sampling. Thus, the amount
of necessary simulations was kept very low with only 44 in total and already
achieved a MAPE of roughly 7% for prediction the action.

� The resulting structure only optimised for the damping capabilities is al-
most identical to structure 5 from the design space investigation and has a
comparable action. It only has slightly shorter struts.
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5
Final Thoughts and Discussion

5.1 Conclusion

The aim of this work was to establish a new and faster method to optimise mi-
crostructures without the extensive need of experiments and simulations. The
basic concept, utilising and combining machine learning techniques, has already
been employed in many fields of engineering and was also successfully imple-
mented for this task. It provides a means to replace simulations or experiments
by simply predicting the desired properties. Therefore, the time saved is directly
linked with either the number of simulations, their duration, the time for speci-
men production, the time necessary for the experiments and their evaluation or
a combination of the above.

The work flow was established and perfected on the example of modified 3D
re-entrant honeycomb auxetic structures with five identified geometry parame-
ters to describe the unit cell. There is of course the possibility to introduce even
more parameters but for the sake of simplicity some symmetries within the cells
were assumed. The superiority of the modified auxetics over the unmodified 3D
unit cell was demonstrated on one example. The modified version is capable of
withstanding larger deformation without losing its stiffness and thus has also a
higher PCS and plateau compared to the purely auxetic unit cell. This enhances
also the EAC and makes the structure more stable after an initial deformation
which can become of more interest when there is a small crash and the structure
is still usable for its protective properties.

Since finding a representative volume element is an especially difficult topic for
cellular materials a first investigation was launched in order to find the RVE
for the auxetics at hand. Even though the PCS and PS seem more stable for
structures with at least 5 × 5 × 3 unit cells, the chose RVE of 3 × 3 × 3 unit
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cells still gives a good approximation of the macroscopic behaviour and is within
the variance of the single experiments. The larger RVE is also not feasible for
simulations on the micostructural scale. Even with the smaller RVE one FE
simulation of the microstructure can have well above 106 elements and hence a
simulation time ranging from 24 to 96 hours for just one simulations. From this,
it becomes directly apparent that an optimisation of the structure, which would
require a large amount of simulations would take a few months. For example if
all five geometry parameters were considered and each parameter was just inves-
tigated at three levels, it would already require 243 simulations for a full factorial
evaluation, which would amount to at least 243 days just for all simulations to
finish. If parallelisation were applied and 5 simulations could be run at once, this
would still be approximately 50 days. Also this is still a very coarse grid and
would only give some insight into the design space, especially if this space is not
strongly confined or the behaviour for the parameters is not quadratic.

Yet, a full factorial design space investigation nevertheless can give valuable in-
sight into the design space. Even if the assumprion of linearity is not necessarily
given, some tendencies for the behaviour can be extracted and also particularly
if the design target consists of multiple objectives on which the parameters have
contrasting influence. For the auxetics the minimisation of the Poisson’s ratio
and the maximisation of the mass specific energy absorption capacity proved to
be opposing to each other. Therefore, a compromise solution needed to be found
and the optimisation target formulated accordingly as the product of both. Ad-
ditionally, for simulations during this step of the optimisation it is easily possible
to perform experiments to either validate the simulations or find errors with
either the setup or the material model. In particular, specimens produced by
additive manufacturing can prove to have different material parameters, which
are strongly dependent on the procedure itself. Although, the SLM specimens
showed little variance within the produced batches, a small change in produc-
tion however, changed the material properties extensively. Another reason for
discrepancies between experiment and simulations is on the one hand a different
deformation mechanism in simulation and experiment and on the other hand
the neglect of damage for the simulations, which occurs during the compression
experiments.

As mentioned, the FE simulations have high durations and thus saving numbers
of simulations means saving time and cost for later production of such struc-
tures. ML algorithms and in the case of this work neural networks are capable
of making predictions within the fraction of a second. Consequently, only a few
simulations can be used to train a neural network to predict the desired outcome
and use this network for the optimisation instead of simulating every parameter
combination. At this point, the numerical representation of the microstructure
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becomes important. It is desirable to achieve a complete representation with as
few features as possible since the less features the less training data is required by
the neural network to learn an acceptable approximation of the correlations be-
tween features and target. Then again, the representation needs to allow enough
variance in the model and nor confine the structure too strongly so there is a real
possibility for optimisation potential to be used. Always with the ulterior motive
of keeping the number of simulations as low as possible, different data sampling
strategies were investigated on the auxetic structures, which at the end lead to
178 simulations that were used for the training of the neural network and the
final optimisation. Nevertheless, Bronder et al. [21] showed that 88 simulations
are already sufficient to reach an optimised structure. This means a reduction of
155 simulations compared to the full factorial design with 5 parameters on 3 lev-
els each, so a total time save of roughly 155 days or with 5 simulations running in
parallel 31 days. Of course, the neural network training is also a time consuming
process, but even with a four-fold cross validation this takes only approximately
one day. So its over a month of time saved to find an optimised structure for the
auxetics.

The optimisation itself is handled by a quasi newton procedure, which is respon-
sible for finding minima in multidimensional polynomials. Therefore, a surrogate
model function is fitted to the relation between geometry parameters and opti-
misation target values. This can be regarded as another, very basic kind of ML
tool, which makes the whole optimisation procedure a combination of different
ML algorithms. The question, why not use the neural network output directly
for minimisation may arise, since a multidimensional polynomial curve fit pro-
duces again some error. First, the surrogate model presents the opportunity to
incorporate the already existing simulation data, which in this case is regarded
as the ground truth and thus has no error for this purpose. Second, minimis-
ing a polynomial function, which can be selected according to the R2 value can
also provide a more intuitive understanding of the data and the correlation be-
tween geometry parameters and target values. Third, the error of the curve fit
is well within the manufacturing tolerance of the SLM procedure. So it is more
beneficial to reuse the simulation data and make a small error with the curve
fitting than neglecting this data and only use the network predictions which are
also prone to errors. Also this technique can potentially lessen the iterations to
reach a minimum and since the polynomial in this case was quadratic, the found
minimum is, with a high probability, the global minimum within the design space.

The prediction of the two trained neural networks, the one for the stress-strain
behaviour and the other one for the Poisson’s ratio, were validated with a simula-
tion and were found to give a very close match to the values from the simulation.
Unfortunately, the material model for the simulations on which the networks
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were trained on needed correction, so the simulation data was not a good match
for the actual experiments and a complete do over of the simulations would have
consumed too much time. However, the optimisation is still valid since the error
for all simulations within the material model is constant. After a recalibration
with new tensile specimens, the experiments and simulations were a much better
match. So even if the ground truth data for the network training was faulty, the
established optimisation procedure was validated to yield good results within a
much smaller time frame than without ML tools.

The whole optimisation procedure was then transferred to another metamaterial
structure, the pentamodes. The primary objective with these structures is to
maximise the damping capabilities for transverse waves while providing enough
stiffness to keep the structural integrity. The damping capabilities in this case
was measured as the action, which is the integrated area under the reaction
moments measured on the bottom of the structure while an oscillation is in-
duced on the topside. Due to time constraints, the pentamode investigation was
done purely with simulations, which is why the RVE was just assumed to be
of 2 × 2 × 2 unit cells. But as one unit cell consists of four pentamode base
structures, this was deemed a sufficient size, which can still be simulated within
a feasible time window. The complex structure, especially the very small joints
need a fine mesh, which lead to element numbers well above 106. This fine mesh
and the simulation duration were the reasons why those structures were meshed
using linear elements.

In order to optimise both targets, damping and structural stability, two differ-
ent deformation modes of the pentamode structures need to be investigated,
which means two different types of simulations. Again, due to time constraints,
only the dataset to train a neural network for the prediction of the damping
was done. This means avoiding the necessary compression simulations to train
a neural network to predict the mass specific stiffness and yield strength. The
full factorial investigation of the design space however, was performed on both
deformation modes, rotation and compression. Surprisingly, not all parameters
are of contrasting influence on the optimisation for the two targets action and
mass specific stiffness. Nevertheless, this is only true in case of the mass specific
stiffness, since the amount of mass reduction is significant when the middle pa-
rameter of these structures is small. This means the third governing objective
for almost all constructions, reducing mass and used material, has a significant
influence on the optimisation of these structures, where for auxetics it had only
a peripheral role but did not change the behaviour towards one of the geometry
parameters. The yield strength as yet another optimisation target can also be
considered, but since a higher mass specific stiffness leads to an increased yield
strength, optimising the stiffness should be sufficient and the yield strength can
be applied in case there are constraints with certain applications.
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Further, the investigation of the design space makes the necessity of a compro-
mise solution apparent since the behaviour of the other two geometry parameters
has a contrasting influence on the optimisation for the two targets action and
mass specific stiffness. The maximisation of the quotient of stiffness and action
is a first viable measure since smaller actions and larger stiffnesses lead to a
growing quotient. Meanwhile, a more sophisticated measure, such as a weighted
quotient might be necessary to compensate for the large scale differences between
the minimal and maximal action.

Starting from the outer edges of the design space, a neural network was de-
signed to predict the action of the structures based on their geometry parameter
composition for the three parameters middle, connection and strut length. The
adaptive learning scheme, developed on the auxetics was used and achieved good
prediction results with just 44 simulations in total. Here, one simulation of a
structure took about 24 to 48 hours with just a few exceptions that were faster.
So in total the simulations needed approximately 11 days with four simulations
running in parallel. Compared to a full factorial design with only these three
parameters on four levels 64 simulations would be required, which already saves
20 simulations with the neural network approach. Moreover, the structures are
not easy to mesh and hence each non necessary simulation also prevents possible
meshing and calculation problems. This is especially true for the compression
simulations, which also suffered sometimes from dynamic influences, which had
to be remedied by increasing the virtual deformation time or reducing the total
amount of deformation for some structures of the full factorial design. Thus,
saving simulations in this case means not only a time save of a day per four
simulations but also reduces possible complications with the simulations of the
structures.

The optimisation, at least for the damping was successful, yet the result was
already obvious from the design space investigation. The largest structure with
the minimal connection and middle parameter has the smallest action, and the
optimisation with the neural network yielded almost the same structure. The
discrepancy can be regarded as a result of the curve fit to the multidimensional
polynomial, which produces some small error in the approximation. Yet, the
tendency is clear and the neural network prediction and validation simulation
are in good accordance. Therefore, the optimisation scheme was successfully
transferred to the pentamode structures.

-85-



CHAPTER 5. FINAL THOUGHTS AND DISCUSSION

5.2 Future Work

Optimisation of microstructures is ongoing research and even though the result-
ing scheme works successfully there are still many more angles and investiga-
tions to consider. For the auxetics the next step is investigating the behaviour
under dynamic loading, which was already partly begun in [46] and introduc-
ing damage behaviour to the simulations. Towards that end, the master thesis
of Alexander Engel [41] already provides a cornerstone. Utilising macroscopic
tensile specimens to identify parameters for a damage model was proven to not
work. Therefore, microtensile experiments are necessary to identify the damage
parameters for the struts in the auxetic structures.

Also, when considering the design aspect of larger components, a homogenised
material model for the auxetics is necessary, where neural networks could easily
be applied. Therefore, other loading modes need to be investigated, especially
multiaxial loading cases or yield surfaces. Yet, it is easily possible to train and
use a neural network to predict material behaviour of a homogenised material
model instead of trying to describe the model with phenomenological equations
which also might be next to impossible in the case of complex microstructures.

Another important consideration is the change of the base material. All in-
vestigations presented in this work were done on the assumption of specimens
produced out of AlMg10Si powder on an SLM machine. So the question what
happens when the metal or even the material class is changed is important to
study. Leading to the following exemplary research questions that might arise
and which are another step towards a homogenised material model:

� If the metallic powder is changed, what happens to the structural proper-
ties?

� Can simply some sort of scaling factor be applied?

� How important for the overall behaviour is the structure and how important
the base material?

� What happens when the material class is changed to polymers, ceramics
or hybrid materials?

� If it is just a matter of a scaling factor when exchanging for example the
metallic powder, would it be possible to predict the behaviour of the struc-
tures based on macroscopic material properties such as Young’s modulus
in advance without actually producing the structures?
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Moving on to the future work concerning the pentamode structures, there is still
a lot more ground to cover. First, an experimental investigation of the design
space and the RVE need to be launched in order to validate the results obtained
from the simulations. Second, a neural network needs to be trained to predict
the mass specific stiffnesses in order to finalise the optimisation, which in turn
needs to be verified by experiments. Third, the current investigation includes
only three out of the four identified geometry parameters. Thus, an investiga-
tion on the influence of the angle between the struts is required. Fourth, it is of
interest to study the behaviour under different stimulation frequencies since this
is also a parameter of concern to a potential user.

All the above are just direct consequences of the time constraint and are neces-
sary steps to achieve comparability with the investigation of the auxetics. But
to take the idea further, again the investigation of different base materials is the
next large step towards an applicable model. Also the influence of damage is im-
portant to examine, especially for a long term use as a dampening module that
is subject to many load cycles. So the longevity, the resulting degradations of
the material behaviour, if any and the connected degradation of the dampening
properties and structural stability need to be investigated. Also implementing
damage into the compression simulations might be necessary, if the experiments
yield results that differ largely from the simulations. As the pentamode struc-
tures are thought of as a mechanical dampening module within this work, it is
also of interest to study the behaviour under combined oscillating loading cases
of compressive and transversal waves for example.

Finally, an optimised pentamode structure for stiffness and damping, which is
experimentally validated, provides a good starting structure for the further in-
vestigations of longevity, different materials and such. The same applies to the
optimised version of the modified auxetics. Both structures provide a sensible
initial point for an all encompassing study of the structures.
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of Hopkinson bar experiments using multiple digital image correlation soft-
ware tools. In Proceedings of the 17th Youth Symposium on Experimental
Solid Mechanics, YSESM (pp. 1-5).

3. S. Bronder, S. Diebels, & A. Jung (2021). Neural networks for structural
optimisation of mechanical metamaterials. PAMM, 20(1), e202000238.

4. T. F́ıla, P. Koudelka, J. Falta, P. Zlámal, V. Rada, M. Adorna, S. Bron-
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