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We define E-unification, weak E-unification, E-upper bound, E-lower bound and E-generalization
problems and the corresponding notions of unification, weak unification, upper bound, lower
bound and generalization type of an equationai theory. Most general unifiers, most general weak
unifiers, suprema, infima and most specific generalizers correspond to "weak versions” of well-
known categorical concepts.

The problems are first studied for the empty theory using the restricted instantiation ordering
( i.e., substitutions are compared w.r.t. their behaviour on finite sets of varables ) and the unre-
stricted instantiation ordering ( i.e., substitutions are compared w.r.t. their behaviour on all vari-
ables ). This shows that the unrestricted instantiation ordering should only be used for unifica-
tion. For -the other problems the restricted ordering yields much better results. We shall also
show that there exists an equational theory where unification problems always have most general
unifiers w.r.t. the restricted instantiation ordering but not w.r.t the unrestricted instantiation
ordering. This accounts for the fact that equational unification is mostly done with restricted in-
stantiation. . :

Most general unifiers ( i.e., weak coequalizers ) modulo commutative theories cannot always be
chosen as coequalizers. But we can give algebraic conditions under which this is possible. For the
class of commutative theories there always exist least specific generalizers. That means that all
commutative theories have generalization type "unitary”.

1. Introduction

Unification of terms plays an important role in automated theorem proving, term rewriting
and logic programming. A unification problem is a term equation I' = <'s = t > and a solu-
tion or unifier of I" is a substitution 8 such that s0 = t0. A substitution 0 is an endomor-

phism of the term algebra such that x6 = x for almost all variables x. In their seminal pa-
pers for automated theorem proving and term rewriting, Robinson (1965) and Knuth-Ben-
dix (1967) independently showed that a solvable unification problem I' always has a
most general unifier, i.e., a unifier from which all unifiers may be generated by instantiati-
on. Terms as well as substitutions are ordered w.r.t. instantiation preorderings ( see e.g.
Huet (1980) and Eder (1985) ). In Robinson’s paper and in many subsequent papers on
unification ( e.g. Eder (1985) ) the instantiation preorder < on substitutions is defined by
o < 0 iff there exists a substitution A such that O = oA. This preorder will be called unre-
stricted instantiation ordering in the sequel. In other papers ( e.g. Rydeheard-Burstall
(1986) ) the ordering is restricted to the variables occurring in the unification problem,

i.e., they just require that x8 = xoA for all variables x occurring in some term of the unifi-
cation problem. This preorder will be called restricted instantiation ordering. The fact that
there always exists a most general unifier does not depend on the chosen instantiation
ordering.

In some applications — for example, if we want to compute critical pairs of rewrite rules —
we do not directly have a unification problem, but a weak unification problem: for given

1) This research was done while the author was still at the IMMD 1, University Erlangen.






variables, this can be made to a unification problem. In order to avoid variable renaming,
Eder (1985) has introduced the notion of weak unification. The term s¢ = tt is an upper
bound of s, t in the instantiation lattice of first order terms ( see Huet (1980) ). Two
weakly unifiable terms always have a single most general upper bound u, ie., a term u
which is the supremum of s, t in the instantiation lattice. But this does not mean that the

pair o, T of weak unifiers with s¢ = u = tt is most general. If we take the unrestricted
instantiation ordering, there exist terms s, t which are weakly unifiable but do not have a
most general pair of weak unifiers ( Eder (1985), see also Section 5 ).

A concept closely related to weak unification is generalization of terms: for given terms s,

t we want to find a term g and substitutions o, T with s = g& and t = gt ( see e.g. Plotkin
(1970), Huet (1980) ). The term g is a lower bound of s, t in the instantiation lattice of
first order terms. In this sense weak unification and generalization are duals of each oth-
er. Two terms s, t always have a single least general lower bound g, i.e., an infimum in
the instantiation lattice. Again, this does not imply that the corresponding substitutions
o, T with s = go and t = g7 are least general w.r.t. the unrestricted instantiation ordering.

If unification is generalized to equational unification, most authors ( see e.g. Plotkin
(1972) and Siekmann (1989) ) use the restricted instantiation ordering. In. Section 6 we
shall give an example of an equational theory — namly the theory of commutative, idempo-
tent monoids — where unification problems always have most general unifiers w.r.t. the
restricted instantiation ordering but not w.r.t. the unrestricted instantiation ordering.

Eder (1985) has generalized the notion of supremum ( w.r.t. the unrestricted instantiati-
on ordering ) and weak unification from terms to substitutions. The same can be done for
unification, generalization and infimum.

Now we can consider categories which have term algebras as objects and substitutions
as morphisms. The choice of the appropriate category depends on the instantiation orde-
ring. Unification, weak unification, etc, can thus be expressed in a categorical way. Ryde-
heard-Burstall (1986) used this categorical reformulation of the unification problem to ob-
tain a categorical unification algorithm.

In this paper we shall also use the categorical framework to clarify the connection be-
tween unification, weak unification and generalization and to show the influence of the dif-
ferent instantiation orderings. Unification has something to do with weak coequalizers
and weak unification with weak pushouts, but generalization does not correspond to the
categorical dual concepts of weak equalizers or pullbacks ( see Mac Lane (1971) or Sec-
tion 3 below for the definition of weak limits and colimits ). In order to formulate weak
unification and generalization as duals in the categorical sense, we have to use a different
category ( see Section 3 ). This construction also clarifies the difference between finding
most general pairs of weak unifiers and finding suprema w.r.t. instantiation.

For the unrestricted instantiation ordering, non-trivial most general unifiers are never co-
equalizers in the corresponding category, because they do not satisfy the uniqueness con-
dition which is required for coequalizers but not for weak coequalizers and most general
unifiers. Moreover, this category does not have binary ( weak ) coproducts, which ac-
counts for the problems that arise when weak unification is considered w.r.t. the unre-
stricted instantiation ordering.

If we take the restricted instantiation ordering we can always find most general unifiers
which are coequalizers in the corresponding category. Since this category also has binary
coproducts, pushouts and hence most general weak unifiers can be obtain using a well-
known categorical construction.

The categorical reformulation of equational unification ( with the restricted instantiation
ordering ) was used in Baader (1989a) to derive general results on unification in the






class of commutative theories. In Section 7 we shall show under which conditions most
general unifiers modulo a commutative theory can be chosen as coequalizers.

Generalization of terms and substitutions can also be done modulo an equational theory.
But then terms may have more than one least general lower bound ( see e.g. Pottier
(1989) ). We shall show that in commutative theories a single least general lower bound
always exists.

2. Basic Definitions and Notations

Let Q be a signature, i.e., a set of function symbols with fixed arity, and let V be a count-
able set of variables. For any subset X of V we denote the set of all (3-terms with vari-
ables in X by F(X). This set is the carrier of the free Q-algebra with generators X, which
will also be denoted by F(X). Any mapping of X into an Q-algebra 4 can be uniquely ex-
tended to a homomorphism of F(X) into 4. We write homomorphisms in suffix notation,
i.e., sO _instead of 6(s). Consequently, composition is written from left to right, i.e. 66
means first ¢ and then 0. An endomorphism 0 of F(V) is called substitution iff it has fi-
nite domain, where the domain of 0 is defined as D(0) := { x; X0 #x }.

Let s be a term, 0 be a substitution and X be a subset of V. The set of all variables occur-
ring in s is denoted by V(s). The set { y; There is x € X with y € V(x6) } is denoted by
V(X0).

Let E be a set of identities ( equational theory ) and let =g be the equality of terms, in-
duced by E. The equational theory E defines a variety V(E), i.e. the class of all algebras
(over the given signature € ), which satisfy each identity of E. For any subset X of V
the quotient algebra F(X)/'=E is the E-free Q-algebra with generators X, which is an ele-

ment of V(E) and which will be denoted by FE(X).
The relation =g can be extended to substitutions in the obvious way, namely ¢ =g T iff xo
=g X7 for all variables x € V. Terms and substitutions may be ordered by E-instantiation

orderings. We shall define these orderings on n-tuples ( n 2 1 ) of terms ( resp. substitu-
tions ). For an n-tuple of terms s = (sl,,..,sn), an n-tuple of substitutions ¢ = (Gl,...,O'n)

and a substitution A, let sA := (slk,...,s n?L), OA = (617»,...,0“7\,) and Ag = (lcl,...,lcn).

DEFINITION 2.1. ( E-instantiation preorder on n-tuples )
(1) Lets = (s,....s) and t = (t;,...,t,) be n-tuples of terms. Then we define

s<gt :© There exists a substitution A such that sA = t.

2) Let ¢ = (01,...,Gn) and T = (’cl,...,'cn) be n-tuples of substitutions and let X = (Xl’“"
X ) be an n-tuple of finite subsets of V. We define the restricted E-instantiation pre-
order <p <X> by

O 1<X> & There exists a substitution A such that for all i, 1 <i < n, we have

xcil =g XT; forallx e Xi'
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(3) Leto = (01,...,0n) and T = (1:1,...,1n) be n-tuples of substitutions. We define the unre-
stricted instantiation preorder < by

0 < 1 ¢ There exists an endomorphism A such that gA =p .

We shall omit the index "g" if E is the empty set. For n = 1 we have the usual instantia-
tion preorders ( see e.g. Huet (1980), Eder (1985), Siekmann (1989) ). But n-tuples are
not ordered componentwise w.r.t. the usual instantiation preorder, because we require
the same A for all components. The substitutions which are smaller w.r.t. < are left fac-
tors of the greater ones. For generalization we shall also consider preorders which are
defined by using right factors.

Let < be a preorder, i.c., a reflexive, transitive relation, on a set Q. This preorder defines
an equivalence relation = in the usual way: a=b iff a < b and b < a. Now < induces a par-
tial order on the equivalence classes [a] = { b;a=b } of =by [a] < [b]iffa<b.

A non-empty subset A of Q is a lower set (upper set) iff ae€ A andb <aimpliesbe A
(ae Aanda<bimplies b € A ). The lower set ( upper set ) A is generated by B < A iff
A={ae Q; Thereisbe Bsuchthata<b } (A={ae Q; Thereis b € B such that b <
a } ). Let A be a lower set ( upper set ) which is generated by B. Then B is called a ba-
sis of A iff two different elements of B are not comparable w.r.t. <.

LLEMMA 2.2. Let £ be a preorder on the set Q and let [Q] be the set of all =-classes.
Moreover, let A be an upper set ( lower set ) in Q and let M be the set of all minimal
( maximal ) elements of [A] = { [a];a€ A }.

(1) A has a basis ( wr.t. <on Q) iff M generates [A] (w.r.t. <on [Q] ).
(2)IfBisabasisof Athen M={ [b]; be B }.

(3) If M generates [A] then any set of representatives for M is a basis of A.

PROOF. See Baader (1989), Lemma 2.2 and Proposition 2.3. O

Evidently, the lower set ( upper set ) A may have four possible types:

(1) M generates [A] and is a singleton ( type unitary ).

(2) M generates [A] and is finite ( type finitary ).

(3) M generates [A] and is infinite ( type infinitary ).

(4) A does not have a basis ( type zero ).

These types are ordered as follows: unitary < finitary < infinitary < zero. This will be
used to define unification types, weak unification types, and so on. But first, we have to
define the notions unification, weak unification, generalization, infimum and supremum for
n-tuples of terms. If we want to consider infinite problems then n-tuple must be replaced

by w-tuples ( here w denotes order type of the non-negative integers ).

DEFINITION 2.3. All problems are of the form I' = < s, t >, where s = ($5---Sy) and t
= (t},....t ) are n-tuples of terms.
DletI' =<5, ¢t >g be an E-unification problem. An E-unifier of I' is a substitution ©

such that s6 = tc. The set of all E-unifiers of I" is denoted by Ug (). This set is the

set of solutions of the unification problem.






(2) Let I’ =< s, t > be a weak E-unification problem. A weak E-unifier of I" is a pair of
substitution ¢ = (0'1,0'2) such that 86, =g 10,. The set of all weak E-unifiers of I" is
denoted by W(I'). This set is the set of solutions of the weak unification problem.

(3) Let I' = < s, t > be an E-upper bound problem. An E-upper bound of I is an n-tuple
u of terms such that s <o and t SR The set of all upper bounds of I" is denoted by
UBg(I). This set is the set of solutions of the upper bound problem.

(4) Let I' = < 3, t > be an E-lower bound problem. An E-lower bound of I is an n-tuple
g of terms such that g <p s and g <g t. The set of all E-lower bounds of I' is denoted
by LBL(I). This set is the set of solutions of the lower bound problem.

(5) Let ' = < s, t > be an E-generalization problem. An E-generalizer of I' is a pair of
substitution ¢ = (0,,0,) and an n-tuple g of terms such that g6, = s and g0, = t.
The set of all E-generalizer of I" is denoted-by Gg(I'). This set is the set of solutions

of the generalization problem.
A problem is solvable iff the corresponding set of solutions is not empty. The possible so-
lutions of the problems may be preordered by restricted or unresmctcd E-instantiation
preorders.

(1) Ug@) is a set of substitutions. The set of all substitutions can be preordered by <
( Definition 2.1.3 forn =1 ) or by <E<X>(Deﬁmt10n2 1.2 for n = 1), where X is the

set of all variables occurring in some s, ort; (1= , ).

(2) WE() is a set of pairs of substitutions. The set of all pairs of substitutions can be or-
dered by <E ( Definition 2.1.3 forn = 2 ) or by <g <X1,X2> ( Definition 2.1.2 forn =
2), where X, is the set of all variables occurring in some s (i=1,..,n)and X2 is
the set of all variables occurring in some t, (i=1,...,n).

(3) UBL(I) is a set of n-tuples of terms. The set of all n-tuples of terms can be ordered
by <g (Definition 2.1.1).

(4) LB(T) is a set of n-tuples of terms. The set of all n-tuples of terms can be ordered
by <g (Definition 2.1.1).

(5) The elements of GE(I'.) are of the form (0,g), where G is a pair of substitutions and g

is an n-tuple of terms. Let Q be the set { (g,g); G is a pair of substitutions and g is
an n-tuple of terms }.
(5.1) The unrestricted preorder on Q is defined by

(0,8) <; (07,g°) 1= There exists a substitution A such that 6 =; Ag’ and
g\ =g £
(5.2) The restricted preorder on Q is defined by
(0.8 < (c’,g’) = There exists a substitution A such that gA =g’

and xg =, xAg’ for all variables x occurring in g.






Obviously, the relations g defined in (1) — (4) and (5.1) of the definition are preorders.

In (5.1), the greater pair of substitutions ¢’ is a right factor of the smaller pair 6. The set
X which is used in (5.2) for the restriction depends on the term part g of the smaller tupel

(0,2) and not on the problem I'. Nevertheless, it can be easily shown that the defined re-
lation is a preorder.

LEMMA 24. (1) The sets Ug(I), Wg(I') and UB(T)) are upper sets w.r.t. the corre-

sponding preorders.
(2) The sets LBE(F) and GE(I') are lower sets w.r.t. the corresponding preorders.

Please note that W (I') would not be an upper set w.r.t. the componentwise instantia-

tion ordering which is used in Eder (1985) to compare weak unifiers.

DEFINITION 2.5. ( Types of problems and equational theories )

bound, E-generalization ) problem and let A be the set of solutions of I'. Then A is an up-
per set or lower set w.r.t. the restricted ( unrestricted ) E-instantiation ordering. The re-
stricted (unrestricted ) type of I is defined to be the smallest type of A:
type(I") :=min{ T; A has type T }.
(2) Let E be an equational theory. Then the restricted ( unrestricted ) unification ( weak
unification, upper bound, lower bound, generalization ) type of E is defined as
max{ T; T is the restricted ( unrestricted ) type of a solvable E-unification
( weak E-unification, E-upper bound, E-lower bound, ‘E-_generalization )
problem }.

In the present paper we shall only be interested in the question whether a given problem
or theory is unitary or not. Let I' be a unitary E-unification ( weak E-unification, E-upper
bound, E-lower bound, E-generalization ) problem. Then all solutions of I" can be gener-
ated from a single solution. This solution is unique up to equivalence and is called most
general E-unifier ( most general weak E-unifier, E-supremum, E-infimum, most specific
E-generalizer ) of I'.

Finite E-unification ( weak E-unification, E-upper bound, E-lower bound, E-generaliza-
tion ) problems can be easily formulated in a categorical way, if we use the restricted E-
instantiation ordering. The notions most general E-unifier ( most general weak E-unifier,
E-supremurn, E-infimum, most specific E-generalizer ) correspond to well-known cate-
gorical concepts ( see Section 3 and 4 ). For the unrestricted E-instantiation ordering we
shall also have to consider infinite problems ( see Section 5 ).

If we work with the restricted E-instantiation ordering we do not distinguish between =-

equal substitutions and we are only interested in their behaviour on finite sets of vari-
ables. Hence substitutions can be regarded as morphisms in the following category:

DEFINITION 2.6. The category C (E) is defined as follows:

(1) The objects of C r(E) are the algebras Fy(X) for finite subsets X of V.






(2) The morphisms of Cr(E) are the homomorphisms between these objects.

(3) The corflposition of morphisms is the usual composition of mappings.

For the unrestricted E-instantiation ordering we still do not distinguish between ="

equal substitutions but we are interested in their behaviour on the whole set of variables
V. This yields the category C (E):

DEFINITION 2.7. The category C,(E) is defined as follows:

(1) The only object of C,(E) is the algebra Fg(V).

(2) The morphisms of Cu(E) are all substitutions ( which can be considered as endomor-
phisms of Fx(V) ).

(3) The composition of morphisms is the usual composition of mappings.

3. Categories

Let C be a category and A, B be objects of C. We denote by hom(A,B) the set of mor-
phisms with domain' A and codomain B. Note that composition of morphisms is also writ-
ten from left to right. The identity morphism in hom(A,A) is denoted by 1, or just 1. A
morphism f is called epimorphism iff for any two morphisms g, h the equality fg = fh im-
plies g = h. An isomorphism is an invertible morphism.

We say that the object P is a product of A, B iff there exist morph1sms Pi:P— A py:P

—> B such that for every pair of morphisms f: X — A, g: X — B there is a unique mor-
phism h: X — P such that the product diagram of Figure 3.1 commutes.

FIGURE 3.1
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A product of two objects may not exist, but if it exists it is unique up to isomorphism. We

denote the product of A and B by AxB and call the corresponding morphisms projections.
The dual of the product is the coproduct. An object S is a coproduct of A, B iff there exist

morphisms uy: A — S, uy: B = S such that for every pair of morphisms f: A - X, g: B —
X there is a unique morphism h: S — X such that the coproduct diagram of Figure 4.1

commutes. We denote the coproduct of A and B ( if it exists ) by A+B and call the corre-
sponding morphisms injections. If we do not have uniqueness of the morphism h in the






above definitions we say that we have a weak product ( weak coproduct ). Weak pro-
ducts and coproducts need not be unique up to isomorphism ( see Mac Lane (1971),
Chapter 10, for the definition of weak limits and colimits ). Please note that this notion of
"weak" has nothing to do with the "weak" in "weak unifier”.

Let g, h be morphisms with common domain and codomain. A coequalizer of the parallel
pair g, h is a morphism f such that (1) gf = hf and (2) for any £* with gf* = hf’ there is a uni-
que morphism k such that £ = fk ( see Figure 3.2 ). Obviously, any coequalizer is an epi-
morphism.

FIGURE 3.2
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A pushout of two morphisms g, h with common domain is given by a pair of morphisms f;,
f, such that (1) gf; = hf, and (2) for any pair f, f) with gf; = hf; there is a unique mor-
phism k such that £} =f,k and f}, = f,k.

The dual concepts are called equalizers and pullbacks. If we do not have uniqueness of
the morphism k in the above definitions we say that we have a weak coequalizer ( weak
pushout ).

Pushouts ( weak pushouts ) can be constructed using ( weak ) coproducts and ( weak )
coequalizers ( see e.g. Burstall-Rydeheard (1988) and Proposition 3.8 below ).

Let C be a category. We define the following two derived categories:
(1) The morphism-category Cm has as objects the morphisms of C. For two objects f: A

— B and g: A’ — B’ we define homc  (f.g) = G if A # A’. Otherwise homc_ (f,g) con-

tains all morphisms h: B — B’ of C which satisfy g = th ( see Figure 3.3 ). The composi-
tion of morphisms is the composition in C.

FIGURE 3.3 B B
f /
A B A g
x R
B’ B’
a morphism of Cm a morphism of Cp

(2) The preorder-category Cp has as objects the morphisms of C. For two objects f: A —

B and g: A’ — B’ we define homcp(f,g) = @ iff homg, (f,g) = &. Otherwise homcp(f,g)
contains a unique morphism !¢ o These morphisms are composed in the obvious way, na-

mcly, !f,g!g,h = !f’h.






The following proposition states that ( weak ) pushouts in C correspens to ( weak ) co-
products in C,..

PROPOSITION 3.4. (1) Let f: A — D with the injections u;:B - D, u,: C — D be an
( weak ) coproduct of f;: A — B and f,: A — Cin C_. Then u,, u, is a ( weak) pushout of
f; f2 in C.

(2)Letu1:B - D, u,: C—)Dbea(weak)pushoutoffle—)B andfz:A — CinC
Then f = flu1 = f2u2: A — D with the injections u, u, is a ( weak) coproduct of 'fl, f2 in
C.
Please note that ( weak ) pullbacks in C have nothing to do with ( weak ) products in Co

Weak products in C_ can be used for the categorical description of generalization ( this

was first mentioned in Plotkin (1970), p. 155).
In the category Cp, weak coproduets ( products, ... ) are already coproducts, ( products,

... ). We can define a functor F: Cm - Cp as follows: F is the identity on the objects of
Cm. Let h be a morphism of Cm with domain f: A — B and codomain g: A — C. Then F(h)

=1 . It is easy to see that F preserves products and coproducts.

PROPOSITION 3.5. Let f: A — D with the injections u;: B = D, u,: C = D ( projections
p;:D—B,p);D— C ) be a weak coproduct ( weak product ) of f: A — B and f2: A-C
in Cm. Then f: A — D with the injections F(ul) = !fl P F(u2) = !fz,f ( projections F(pl) =
!f’ﬁ, F(p,) = ! £ ) is a coproduct ( product) of f;: A - Band f,: A — Cin Cp.

REMARK. Let us keep the notations of Proposition 3.5. Taking a coproduct ( product ) f
in Cp instead of Cm has the following meaning in C :

We are not interested in the morphisms u, and u, ( p, and p, ), but only in the morphism
f. Let g, v, and v, (h, q; and g, ) be morphisms such that f,v, = g =f,v, (hq; =f;, hq, =
f, ). Then we only require that there is a morphism k such that g = fk (hk = {), but we do
not require u,k = v, and u,k = v, (kp, =q; and kp, =q, )-

If, however, f (resp. h ) is an epimorphism then u,k = v, and u,k = v, (resp. kp, = q, and
kp, =q, ) is a consequence of g =fk (hk =f).

Unification, weak unification, upper bound, lower bound and generalization problems can
also be defined for categories:

DEFINITION 3.6. Let C be a category and let A, B, C, D be objects of C.
(1) A unification problem in C is a parallel pair of morphisms f, g: A — B and a unifier of
the pair < f, g > is a morphism h: B — C such that fh = gh.
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(2) A weak unification problem in C is a pair of morphisms f: A - B, gt A -5 Cand a
weak unifier of < f, g > is a pair of morphisms h: B — D, k: C — D such that fh = gk.

(3) An upper bound problem in C is a pair of morphisms f: A - B, g: A — C and an upper
bound of < f, g > is a morphism h: A — D such that there exist morphisms k,, k, with
fk, =h and gk, = h.

(4) A lower bound problem in C is a pair of morphisms f: A — B, g: A — C and a lower
bound of <f, g > is a morphism h: A — D such that there exist morphisms k,, k, with

hk, = f and hk, = g.
(5) A generalization problem in C is a pair of morphisms f: A — B, g: A — C and a gener-

alizer of <f, g > is a morphism h: A — D and 2 pair of morphisms k;: D —» B, k,: D -
C such that hk, = f and hk, = g.

The solutions of the problems (1) — (4) are morphisms or pairs of morphisms. We order
morphisms and pairs of morphisms with the following instantiation orderings: .. .. . _

f < £ iff there is a morphism h such that th = f’,
(f,2) < (f£°,g’) iff there is a morphism h such that fh = and gh=g’.
Generalizers are ordered as follows:
(k Kooh) < (ky ,k2 ) iff there is a morphism m such that hm h’, k = mk,’ and
ky=mk,’. | |
As in Section 2, we can now define the type of a problem and the notions most general

unifier ( most general weak unifier, supremum, infimum, most speczﬁc generalzzer ) of
pairs of morphisms in C. -

PROPOSITION 3.7. Let C be a category.

(1) The morphism h is a most general unifier of the parallel pair f, g A - B iff h is a weak
coequalizer of f, g.
(2) The pair of morphisms h: B — D, k: C = D is a most general weak unifier of f: A — B,

g: A — Ciff h, k is a weak pushout of f, g. By Proposition 3.4, this means that fh = gk
with the injections h, k is a weak coproductof f, gin C_.

(3) The morphism h is a supremum of f: A — B, g: A — Ciff h with the injections !, 1o ! gh
is a coproduct of f, g in Cp.

(4) The morphism h is an infimum of f: A — B, g: A — C iff h with the projections !h,t’ !h,g
is a product of f, g in Cp.

(5) h: A — D and the pair of morphisms k;: D — B, k,: D — Cis a most specific general-
izerof f: A — B, g: A — Ciff h with the projections k;, k2 is a weak 1;roduct of f, gin
C

o'
Since weak pushouts can be constructed using weak coequalizers and weak coproducts,
weak unification in C can be reduced to unification in C, prov1ded that C has all weak bin-
ary coproducts. ‘
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PROPOSITION 3.8. Let C be a category such that every pair of objects has a weak co-
product. If all solvable unification problems are unitary then all solvable weak unification
problems are also unitary.

PROOQOF. Let < f, g > with f: A - B, g: A — C be a solvable weak unification problem
and let B+C with the injections up, Uy be a weak coproduct of B, C. We consider the unifi-

cation problem < ful, fu2 >. Let the pair (h,k) be a weak unifier of < f, g >. Then there ex-
ists a morphism m such that um = h and u,m =k ( by the definition of weak coproduct ).
Obviously, m is a unifier of < ful, fu2 >. This shows that < ful, fu2 > is solvable. Let u be
a most general unifier of < ful, fu2 > (i.e., weak coequalizer of ful, fu2 ). It is easy to see
that (ulu,uzu) is a most general weak unifier of < f, g > (i.e., weak pushout of f, g ). O

4, Substitutions with the Restricted J-Instantiation Ordering

Let I’ = < (s,t) > be a D-unification problem and X be the ( finite ) set of variables occur-
ring in some s; or t;. Evidently, we can consider the s; and t; as elements of F(X). Since

we use the restricted instantiation ordering, any QJ-unifier of I" can be regarded as a ho-
momorphism of F(X) into F(Y) for some finite set Y ( of variables ). Let I = { x;, .., x, }

be a set of cardinality n. We define homomorphisms
o, 1. FI) > FX) by x,0:=s;andx;1:=¢; (i=1,..,n).

Now &: F(X) — F(Y) is a unifier of I iff x,68 = 5,8 = ;8 = x;18 fori = 1, ..., n, i.e. iff 63
= 1. Thus a finite term unification problem can be written as a unification problem < o,
T > in the category C (D).

The same holds for the other problems introduced in Definition 2.3 and 3.6. That means
that we can restrict our attention to problems which are given as pairs of morphisms in

Cr(®).
In this section, let C denote the category CI(Q). It is easy to see that a morphism G:

F(X) — F(Y) is an epimorphism of C iff V(Xc) = Y. Hence any morphism ¢: F(X) —
F(Y) can be considered as an epimorphism with domain F(X) and codomain F(V(X0)).
In general, this nice property does not hold if we consider categories C(E) for E # &.

Thé coproduct of two objects F(X), F(Y) of C is given by F(X & Y), where & denotes
disjoint union.

4.1 Unification
It is well-known that a finite, sovable J-unification problem always has a most general
unifier ( even w.r.t. unrestricted instantiation and thus, all the more, w.r.t. restricted in-
stantiation ). That means that any unifiable parallel pair ¢, T: FI) — F(X) of morphisms
in C (D) has a weak coequalizer ( i.e., most general unifier ) y: F(X) — F(Y).

The morphism 7 is a coequalizer of o, T iff V(XY) =Y, i.e.,, iff v is an epimorphism in C.
This shows that not all most general unifiers are coequalizers. But we can always find a






most general unifiers which is a coequalizer: we just consider Y as morphism from F(X)
into F(V(XY)).

4.2 Weak Unification
The category C = CI(Q) has all binary coproducts. Hence, Section 4.1 and Proposition 3.8

imply that a finite, solvable weak Q-unification problem o: F(I) — F(X), t: FI) — F(Y)
always has a most general weak unifier. This most general weak unifier can even be cho-

sen as pushout of o, T, since we have coproducts and coequalizers and not just weak co-
products and coequalizers.

4.3 Upper Bound Problems
Proposition 3.5, 3.7 and Section 4.2 imply that a solvable upper bound problem < o, T >

( where ¢: F(I) » F(X), t: F(I) — F(Y) ) always has a supremum in C, i.e., a coproduct
in Cp. Hence, any pair s, t of n-tuples of terms has a supremum, if it has an upper bound.

4.4 Lower Bound Problems
It is well-known that a pair of terms always has an infimum ( see e.g. Huet (1980) ). Let
8 = (SpeeaSp)y L = (tl,...,tn) be n-tuples of terms and let f be a binary function symbol. We

define s = f(sl,f(sz,...f(sn_l,sn)...)) and t := f(tl,f(tz,...f(tn_l,tn)...)). Then g = (gl,...,gn) is
an infimum of s, tiff g = f(gl,f(gz,...f(gn_l,g n)...)) is an infimum of s, t.

This shows that a pair of ‘morphisms o: F(I) — F(X), t: FI) — F(Y) always has an infi-
mum in C, i.e., a product in Cp.

4.5 Generalization
Obviously, any generalization problem is solvable in C. We shall first show that there ex-
ist objects 0, Tin Cm which do not have a weak product in Cm.

EXAMPLE 4.1. Let the signature consist of the two unary function symbols f and g. We
define o: F(x) — F(u), 1: F(x) = F(v) by

x0 := f(u) and x7T := g(v).
Assume that ¥y F(x) — F(Z) with the projections Ty F(Z) — F(u), Ty F(Z) — F(v) is

a weak product of G, T in Cm.

Obviously, xyr; = f(u) and xyn, = g(v) implies that xy is a variable. Let xy be the vari-
able z and let Z be the set { z, 2, ..., z;, }. We have zr; = f(u), zn, = g(v) and zx, =
si(u), Zm, = ti(v) for terms si(u) and ti(v)‘

Let k > 1 be a positive integer such that fk(u) # si(u) for all i, 1 £1 < m. We consider the
morphisms &: F(x) = F({ y, y; 1 81: F({y,y; ) — F() and o,: F({ y, y; D = FE)

which are defined by
xd =y, y81 = f(u), y82 = g(v) and y181 = fk(u) and y182 = gk(u).

Now 551 =0 ( 882 = 1 ) implies that 51 ( 82 ) can be considered as a morphism of Cm
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with domain & and codomain ¢ ( codomain T ). Since 7Y is a weak product of G, T in Cm ,

there is a morphism A such that A =y, An, = 8, and Am, = 5,.
Evidently, y,A%; = y,8; = fu) and y An, = y,8, = g(u) imply that y A is a variable.
Since zr, = f(u) and k > 1, we get y{A # 2, ie., y;A = z, for some i, 1 <i < m. That means

that |, = ik(u), which is a contradiction.

This does not mean that there exist term generalization problems which do not have
most specific generalizers w.r.t. the restricted instantiation ordering. It only means that C

= C () is not the appropriate category.

Recall that the restricted preorder on Q = { (g,g); O is a pair of substitutions and g is an
n-tuple of terms } was defined by (c.g) <z (o’,g’) <> There exists a substitution A such

that gA =pg’ and xG =, xXAQ’ for all variables x occurring in g ( see Definition 2.3 )

In the example, this means that we only require yAn; = y8, and yAm, = yd,, since V(x3)

={y}
In order to express most specific J-generalizers ( w.r.t. the restricted instantiation or-
dering ) as product in a morphism category we have to take the following subcategory of

C = C(9D): The category C (D) has the same objects as C(&J) but only the epimor-
phisms of C () as morphisms.
Let C’ denote the category C,(J). The results of Section 4.1 — 4.4 also hold with C’ in

place of C, because we can consider any morphism y: F(X) — F(Y) as morphism from

F(X) into F(V(XY)). But note that most general unifiers are now automaticly coequaliz-
ers.

Section 4.4 and the remark after Proposition 3.4 imply that products always exist in C.

This shows that we always have most specific J-generalizers w.r.t. the restricted in-
stantiation ordering.

5. Substitutions with the Unrestricted Instantiation Ordering

We shall now consider the problems of Definition 2.3 for E = & and unrestricted instan-
tiation ordering. In this section let C denote the category Cu(G).

It is easy to see that a morphism ¢ of C is an epimorphism ( in the categorical sense, as
defined in Section 3 ) iff V(Vo) = V. Please note that for an epimorphism ¢ of C the map-
ping ¢ from F(V) into F(V) need not be surjective.

4.1 Unification
Unification of a pair of substitutions corresponds to a finite unification problem for terms.
Let ¢ and T be two morphisms of C. We consider the unification problem

I'(0,7) == < (x0), D(c)uD(t)’ (xT)ye D(o)uD(®)

Obviously, any term unification problem I' can be obtained as I" = I'(c,7) for suitable sub-
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stitutions ©, T. A substitution & ( i.e., a morphism of C ) is a unifier of I'(c,t) iff xod =
x7d for all x € D(6) U D(1). For y ¢ D(0) L D(1) we have yod = yd = y18. This yields

LEMMA 5.1. §is a unifier of I'(o,7) iff 6 is a unifier of 6 and Tin C.

It is well known ( e.g. Robinson (1965), Eder (1985) ) that any solvable unification pro-

blem I" = < s, t > has a most general unifier & ( w.r.t. unrestricted instantiation ) which
satisfies the following properties:

(P1) D) U V(D)) < Vi Where V, is the set of all variables occurring in some s; or
ti(i= 1,..,n).

(P2) 8 is idempotent, i.e., D(8) N V(D(d)d) = D.

Most general unifiers are unique up to =-equivalence ( where = denotes the equivalence
induced by the unrestricted instantiation preorder ). The equivalence relation = can be de-
scribed as follows ( see Eder (1985) ): 6 = t <V> iff there exists a substitution © which
is a permutation of variables and which satisfies 6 = 1x. Obviously, & is an isomorphism
of C.

The next proposition states the connection between most general unifiers and ( weak )
coequalizers.

PROPOSITION 5.2. Let I' = I'(0,1) be a solvable unification problem and let y be a
most general unifier of I".

(1) v is a weak coequalizer ( i.e., most general unifier ) of the paraliel pair o, © in C and
any weak coequalizer of ©, T is a most general unifier of T

(2) yis acoequalizer of ¢, tifand only if 6 = 1.

PROOF. (1) The first part of the proposition is an immediate consequence of Lemma 5.1
and Proposition 3.7.

(2) If ¢ = 1 then vy is an isomorphism and hence a coequalizer. If ¢ # T then any unifier of
I has non-empty domain. Let 8 be a most general unifier of I" which satisfies the Proper-
ties P1 and P2. Then 8 is not an epimorphism because the variables of D(d) are not con-

tained in V(V9). Since y = dxn for an isomorphism &, the morphism v is also not an epi-
morphism. But coequalizers are always epimorphisms. [

The fact that only trivial parallel pairs have coequalizers in C is the first unpleasant fea-
ture of the unrestricted instantiation ordering. It gets even worse if we consider weak uni-
fication.

5.2 Weak Unification and Upper Bound Problems
Since the definition of suprema for n-tuples of terms has nothing to do with restricted or
unrestricted instantiation, Section 4.3 can be used for n-tuples of terms.
But solvable upper bound problems in C need not have suprema.

LEMMA 5.3. Let Y,» ¥, be the substitutions defined by D(y)) = D(Y,) == { x, y, z }
and xy, = yy, = zy; = f(fx.y).2), xv, = yY, = z¥, := {(x,f(y,2)). The upper bound

problem <,, Y, > is solvable, but there does not exist a supremum of ¥;, v, in C.







PROOQF. See Eder (1985), Example 2.7. O

Eder shows that if he restricts himself to idempotent substitutions, i.e., substitutions ¢

such that 60 = o, then every set of such substitutions which has an upper bound has a
supremum. This restriction cannot be used in our categorical framework, since the compo-
sition of idempotent substitutions need not be idempotent ( Eder (1985), p.38 ).

If weak unifiers are compared using the unrestricted instantiation ordering then the fol-
lowing lemma holds.

LEMMA 5.4. A weak unification problem for n-tuples of terms does not have a most ge-
neral pair of weak unifiers ( w.r.t. the unrestricted instantiation ordering ).

PROOF. letT =<5, t> with s = ($15---8) and t = (t;,....t,) be a weak unification pro-
blem and let X be the set of variables occurring in some s; or t.. Assume that ¥, 6 is a

most general pair of weak unifiers of I". For z ¢ X U D(y) U D(8) we have zy = z = z8
and hence zyA = z8A for all substitutions A. Now any pair ¥, 8 with xy’= xy and x&’ =

x0 for x # z and zy’ = x&’ is a pair of weak unifiers of I" which is not an instance of v, d.
Q

This proof depends on the fact that we require a common right factor A to obtain Y and

&’. Nevertheless, we shall use this ordering instead of the componentwise instantiation
ordering for the following reasons:

(1) Instances of weak unifiers should also be weak unifiers.

(2) Most general pairs of weak unifiers would not correspond to pushouts if we used the
componentwise instantiation ordering.

(3) Even with the componentwise instantiation ordering, the terms s = x and t = f(x,y)
have weak unifiers but they do not have a most general pair of weak unifiers ( see Eder
(1985), Example 5.5 ).

To express weak unification of morphisms in C = Cu(Q), we shall in general need infinite

weak unification problems for terms.

Let o, T be a pair of morphisms of C. First, we consider I'(0,7) = < (xo)xeD(G)UD(T),

(xT), D(G)uD() > 2 weak unification problem. Obviously, a pair of substitutions v, &

with oy = 18 is a pair of weak unifiers of I'(5,7), but it is easy to see that the opposite
need not be true. Moreover, a weak unification problem I'(6,t) may be solvable, even if
there are no substitutions ¥, & with oy = 18 ( consider o, T defined by D(c) = { x } =:
D(t) and x0 := {(y), xT := f(f(y)) ). Eder (1985) considers the infinite weak unification
problem

A(0,7) == <(x0), .y (XT), .y >

Obviously, the pair of substitution ¥, & is a weak unifier of A(c,t) iff the pair of mor-
phisms v, 8 is a weak unifier ( i.e., weak pushout ) of 6, Tin C.

In general, weak unification problems for n-tuples of terms cannot be expressed as weak
unification problems in C, since they need not be of the form A(c,1) for substitutions o, 7.

In Section 3 we have seen that weak pushouts in C ( i.e., weak unifiers in C ) correspond
to weak coproducts in Cm. If we are only interested in suprema of substitutions we have
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to consider coproducts in Cp. We have already seen that a solvable upper bound problem
in C need not have a supremum. But even if a supremum in C ( i.e., coproducts in Cp ) ex-

ists, we need not have a weak coproduct in Cm.

PROPOSITION 5.5. There exist substitutions ¢, T which have a coproduct in Cp, but
which do not have a weak coproduct in Cm.

PROOF. Consider the substitutions &, T defined by D(G) := { x }, X0 := y and D(1) :=
{ x, vy }, xt := f(x,y), yt = f(x,y). Eder (1985) shows: T is a supremum of { G, T } in the
set of substitutions, but A(c,t) does not have a most general pair of weak unifiers w.r.t.

the unrestricted componentwise instantiation ordering. Hence A{0,t) does not have a
most general pair of weak unifiers w.r.t. our unrestricted instantiation ordering. Now

Proposition 3.7 yields that the pair ¢, 7 has a coproduct in Cp, but does not have a weak
coproductin C_. a

This subsection shows that the unrestricted instantiation ordering is not well-suited for
handling weak unification. In Section 4.2 we have seen, that the restricted instantiation
ordering yields much better results.

5.3 Generalization and Lower Bound Problems
Since the definition of infima for n-tuples of terms has nothing to do with restricted or un-
restricted instantiation, Section 4.5 can be used for n-tuples of terms.
But lower bound problems in C ( which are always solvable since the identity is a lower
bound for all substitutions ) need not have infima. Before we can show this we have to
prove a technical lemma.

LEMMA 5.6. Let o, T, Yy be substitutions such that Y < ¢ and ¥ < 7. We define Vo=
D(c) L D(1) and V, = V(Vy). Assume that for any A, psuchthat YA =candyp =1
and any x € V; we have XA #xp. Then IV 21V, 1.

PROOF. Assume that IVol < IV,I. Without loss of generality we may even assume that
VO C V,. Otherwise, let W be a subset of v, of cardinality IV and let @ be a substitu-
tion such that 7 is a permutation of variables with Wit = V. Then yr satisfies the as-
sumptions of the lemma and V, c V(v oYm)-

Let z, be an element of V1 \ VO‘ Then zok # ZgP, Zg = 2,0 = zoyk and g = 2T = Z5YP.
Hence z; := z;Y is a variable and z;A = z; = z;p. This implies z, ¢ V, and thus z, ¢ AL
and Z; # 2, Now assume that we have already defined n+1 different variables z,, Zy5 oo
z (n21)suchthatz, ..,z ¢ V,,zy=z, and Zi+17‘ =z, =z ,p. Since z_ ¢ V, we

1 I3

have zYA =z 0 =z =21 =zY. Thus z , := zyis a variable and z_

+1 +17L =7z, =

z,,1P- This implies z _, & V, and thus 2z, # z, For 1 <i < n, zA = z_; # z_ implies

Z,41 ¢Zi.
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By induction, we thus pet that D(y) cannot be finite, which is a contrad, .'~1. U

PROPOSITION 5.7. There exist substitutions ¢, T such that { 6, T } does not have an
infimum in the set of substitutions ( i.e., G, T does not have a product in Cp )

PROOF. Let o, 1T, v;, ¥, be the substitutions defined by

D(0) :=D(1) :=D(y;) :=D(v,) .= { x,y,2 } and

X0 :=yo := 26 = f(f(a,b).f(c,d)), xT := yt := z1 := {(f(b,a),f(d,c)),

Xy, 1= yY, = 2 = £EY),2), X, =YY, = 21, = ££0,2),
where X, y, z are variables, a, b, ¢, d are constants and f is a binary function symbol.
It is easy to see that v, v, are lower bounds of { o, T } in the set of substitutions. As-
sume that the substitution 7y is an infimum of { ¢, T }. Then 7y is an upper bound of { Yy
Y, }, which yields { x, y,.z } < D(Y) and xy = yy = zYy = f(f(q,1).f(s,t)) for terms q, 1, s, t

( see Eder (1985), Example 2.7 ). Since v is also a lower bound of { ¢, T }, the terms q,
I, s, t are pairwise different variables. It can be easily shown that o, T, 7y satisfy the as-
sumptions of Lemma 4.7. Thus I{ x,y, z }I < IV({ x, y, z }¥)l is a contradiction. 1

Eder (1985) has shown that two idempotent substitutions always have an infimum in the

set of idempotent substitutions. The substitutions &, T in the proof of Part (2) of the
proposition are idempotent, but this does not contradict Eder’s result, because the sub-

stitutions v¥,, ¥, are not equivalent to idempotent substitutions.

As in the case of weak unification, the generalization problem for substitutions &, T can in
general only be expressed by the infinite term generalization problem A(c,t) =
< (x0), V,(xt)XEV >. But even finite term generalization problems need not have a

most specific generalizer w.r.t. the unrestricted instantiation ordering.

EXAMPLE 5.8. Let the signature consist of the two unary function symbols f and g. We
define s := f(x) and t := g(x). Assume that the term h with the substitutions Ty, Ty is a
most specific generalizer of < s, t >. Obviously, hr; = f(x) and hm, = g(x) implies that h

is a variable z. Let Z = { z, Zys v 2 } be the set D(m,) v D(r,). We can now continue

as in Example 4.1 to get a contradiction.

We have already seen that lower bound problems in C are always solvable but need not
have infima. But even if an infimum in C ( i.e., product in Cp ) exists, we need not have a

most specific generalizer ( i.e., weak product in Cm )-

PROPOSITION 5.9. There exist substitutions ¢, T which have a product in Cp, but which
do not have a weak product in Cm.

PROOF. Let the signature consist of the two unary function symbols f and g. We define
c,TbyD(cy:={x },x0:=y,D®) ={ x,y }, xt := f(u) and yt := f(u). Evidently, 61 =1
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and thus o is an infimum of { &, T }. This shows that ¢, T have a product in Cp.

Assume that y with the projections m,, 7, is a weak product of 5, T1in C_.

Let k be a positive integer such that fk(u) # VI, for all v € V ( such an integer k exists
since D(x,) is finite ). We consider the substitutions &, 8, and 8, which are defined by
§:=0,D@,) = { x }, x8, :=f(w), D(S,) := { X,y }, y8, := f(u) and x3, := g(u).

Now 83, = & ( 83, = 1) implies that 8, ( 3, ) can be regarded as a morphism of C]n with
domain 8 and codomain ¢ ( codomain T ). Since ¥ is a weak product of ¢, T in Cm , there
is a morphism A such that 6A =, 7\.7t1 = 51 and 7\.71:2 = 52.

Evidently, x?ml =xd, = fk(u) and x7ut2 = x82 = gk(u) implies that x\ is a variable v. But

now Vi, = x?m:l = x51 = fk(u) is a contradiction.

6. The Unification Type of a Theory Depends on the Instantiation Ordering

Until now we have seen that the weak unification ( generalization ) type of a theory de-

pends on the chosen instantiation ordering: the empty theory has weak unification ( gen-

eralization ) type "unitary”" if we use the restricted J-instantiation ordering; with respect

to the unrestricted J-instantiation ordering, the empty theory does not have weak unifi-

cation ( generalization ) type "unitary".

In this section we give an example of an equational theory E which has unification type

"unitary" w.r.t. the restricted E-instantiation ordering, but not wur.t. the unrestricted E-

instantiation ordering.

Let CIM be the theory of commutative idempotent monoids, i.e., the signature consists of

a binary function symbol "+" and a constant symbol "0" and the equational theory is
CIM:={x+0=x,x+y=y+x,x+(y+z)=(x+y)+z,x+x=X }.

Temms s, t are equal w.r.t. CIM iff V(s) = V(t) and s =), O iff V(s) = &.

Since CIM is a commutative theory and the finitely generated CIM-free objects are finite,

CIM has unification type "unitary" w.r.t. the restricted CIM-instantiation ordering

( Baader (1988), see Section 7 of the present paper for the definition of commutative the-

ories ). A unification algorithm can be found in Baader-Biittner (1988).

Lets, tbe terms, ' =<5, t >cmv Pe 2 CIM-unification problem and Vo=V v V@

be the set of all variables occurring in s or t. Assume that the substitution ¢ is a most
general CIM-unifier of I', where "most general" is meant w.r.t. the unrestricted instantia-
tion ordering. We define W, := V(V,0).

From Baader-Biittner (1988) one can easyly derive that there exist CIM-unification
problems such that IW,| > IVl holds. Assume that I" is such a unification problem. With-

out loss of generality we may also assume that Vj < W,. Otherwise, let W be a subset
of W, of cardinality V,, and let T be a substitution such that % is a permutation of vari-
ables with Wr = V. Then on is a most general CIM-unifier of I' which satisfies \r=
V(V,omn).
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Let Xq be an element of WO which is not contained in VO'

LEMMA 6.1. We have X € D(0) and x40 #p, 0

CIM ™

PROOF. (1) Assume X% =cmm Xor We define a substitution T by X1 := X0 for x # X and
Xyt = 0. Since ¢ and T coincide on VO’ 1 is also a CIM-unifier of I'. Hence there exists a
substitution A such that T =cmM oA. Now 0 = x0T =cmm xOO'X =CIM xol shows that Xq €
V(Vol). But Xg € V(V,0) = V(VyD) € V(VT) and © =, oA implies V(V1) =

V(VoA).
(2) Assume x(0 = 0. We define a substitution T by xt := x0 for x # X, and X = z

for some variable z. Since T is a CIM-unifier of I', there exists a substitution A such that
T =cpp OM But x50 =, 0 implies XA =cpp O #opy %ot O

Let x, be an element of V(x;0). The variable x; exists, since x46 #-p; 0 implies V(x,0)
= Q.

LEMMA 6.2. We have x, € W, and hence x; ¢ VO and X # Xy

PROOF. Assume X, € WO' We define 1 by xT := x0 for x # X and XU :=0. Since Tis a
CIM-unifier of T, there exists a substitution A such that T =cIM oA. Now 0 = X0 =CiM
(x0)\ and x; € V(x,0) implies that x;A =cpy 0. Hence x; ¢ V(Vo}), but x, € W, =
V(VOO') =V 01:) cV(V1). O

Now assume that we have already defined n+1 different variables X Xps - X (nz21)

which satisfy the following conditions:
(1) xy € W\,

@) x4 € V(x,0) for alli,0<i<n-1,
(3) x> X5 -+ X1 € D(0) and
4) X5 oor X € W0 and thus Xps oo X € VO'

LEMMA 6.3. We have x_ € D(0) and x & #cm O-

PROOCF. Assume x O =cmm Xp- We define a substitution T by xT := xo for x # x_ and
x,T = 0. As in Lemma 6.1 we get T = oA and xn}. =cpy O- Hence x_ & V(VoA), but
X, € V(xn_lcs) = V(xn_lt).

(2) The proof of the second assertion is same as for Lemma 6.1. (]

Let X0l be an element of Y(xnc).

LEMMA 64. Wehavex_ , ¢ W0 U { b ST }. Hence Xnel is different from Xgp X5 oon

n+l
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X, andx . & V.

PROOF. Assume that X 41 € WO U { X v Xp }. We define xT := x0 for x # x and X,
:= (. Since T is a CIM-unifier of I', there exists a substitution A such that 1 =CIM OA. As
in Lemma 6.2 we can deduce that x_ +17‘ =CIM 0. Hence Xpe1 € V(Vol). For X 41 € W0
we have Xp41 € V(VO(S) = V(VO‘C) < V(V1) and for Xpe1 = % € { Xps woer Xp } we have
Xpe1 € V(xi_lc) = V(xi_l't) cV(Vr). 4

By induction we thus get an infinite chain xg, X, X,, ... of different variables such that x,

e D(o). Hence D(0) can not be finite, which is a contradiction.

Thus there does not exist a most general CIM-unifier of I" ( where "most general” is
meant w.r.t. the unrestricted instantiation ordering ), which shows that CIM does not
have unification type "unitary"” w.r.t. the unrestricted CIM-instantiation ordering.

This accounts for the fact that unification modulo equational theories is mostly done with
restricted instantiation.

7. Unification and Generalization in Commutative Theories

Let E # & be an equational theory. From now on we shall only use the restricted E-in-
stantiation ordering. That means that we work with the category C_(E).

DEFINITION 7.1. (1) A catgory C is semiadditive iff C has a zero object and every pair

of objects has a coproduct which is also a product of these objects ( see Baader (1989a)
or Herrlich-Strecker (1973) for more information about semiadditive categories ).

(2) The theory E is called commutative iff C(E) is a semiadditive category ( see Baader

(1989a) for more information about commutative theories ).

It has been pointed out to me at the Summer Conference on Category Theory and Com-
puter Science 1989 that these theories should be called semiadditive, since the notion
"commutative theory" is already used otherwise. In order to be consistent with Baader
(19892a,1989b) I shall keep the name commutative in this paper. In the following, commu-
tative theories are what we have defined in Definitition 7.1.

Examples of commutative theories are the theory CM of commutative monoids, the theo-
ry CIM of commutative idempotent monoids, the theory AB of abelian groups or the theo-
ry CMH of commutative monoids with a homomorphism ( see Baader (1989a,1989b) ).

Let E be a commutative theory. The morphism ¢: Fg(X) — Fg(Y) of CT(E) is given by

an IXIxIYl-matrix MG with entries from a semiring S(E). The composition of morphisms
corresponds to multiplication of matrices ( see Nutt (1988), Baader (1989b) ).

For the above examples we have S(CM) = IN, S(CIM) is isomorphic to the 2-element
boolean semiring, S(AB) =Z and S(CMH) = IN[X].
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7.1. Unification

The unification type of a commutative theory is either unitary or zero. The theories CM,
CIM and AB are unitary ( Baader (1989a) ) and CMH has type zero ( see Baader
(1989b)). Since C (E) has all binary coproducts, weak E-unification can be reduced to E-

unification ( see Proposition 3.8 ).
Let E be a commutative theory and let G, T: Fg(X) — Fg(Y) be morphisms of C r(E). The

morphism 8: F;(Y) — Fg(Z) is a most general E-unifier ( i.e., weak coequalizer ) of the
parallel pair o, T iff the columns of My generate the right S(E)-semimodule U(MG,MT) =
{xe SE™; M x =M _x ) (see Nutt (1988) and Baader (1988,1989) ).

DEFINITION 7.2. Let S be a semiring and U be a right S-semimodule.
The multiset B = { by, ..., by } is a base of U if and only if

(HU={ biS;+ .+ bS58, 8 € S }and
(2) bys; +... + bys, =bs] +... + b5, implies s; =], ..., § =5;.

PROPOSITION 7.3. Let E be a commutative theory and let 8: F(Y) — Fg(Z) be a
most general E-unifier ( iie., weak coequalizer ) of o, 1: Fg(X) — Fi(Y) in Cr(E). Then
d is a coequalizer of ©, 7 iff the columns of Mgare a base of U(MG,M,C).

PROOF. This is an easy consequence of the definitions of weak coequalizer, coequalizer
and base. 4

Finitely generated right S(E)-semimodules need not have a base.

EXAMPLE 7.3. We consider the theory CM of commutative monoids. Since S(CM) =
IN, morphisms of C(CM) can be written as matrices with entries in IN. Let o, T be mor-
phisms such that Mcy =(2 3 0)and M,c =(0 0 5). The elements of U := U(MG,MT)

can be orderd by the componentwise <-ordering on natural numbers. The semimodule U
is generated by the minimal elements of U\ { O } and any set that generates U must con-

tain these minimal elements. It is easy to see that (5 0 2 )T, (053 )T and (1 1 1 )T

are minimal elements of U\ { 0 }. Since (5 0 2)T1+(0 5 3)T1=(1 1 1)T5, the
semimodule U does not have a base. This shows

PROPOSITION 7.4. There exist morphisms G, T in CI(CM) which have a weak coequal-

izer, but which do not have a coequalizer.

However, if S is a principal ideal domain, then any finitely generated S-module has a
base ( see e.g. Oeljeklaus-Remmert (1974) ). As a consequence we get

PROPOSITION 7.5. Any solvable unification problem < ¢, T > in C (AB) has a coequal-

izer.






7.2. Generalization
Let E be a commutative theory and let C denote the category CI(E). We are now inter-

ested in weak products in C_ . The objects of C  are matrices with entries in S(E). Let A
e SE®®T, B e SE™™ be two objects of C__. A morphism of C,_, with domain A and

codomain B is a matrix C € S(E)™™ such that AC = B.

PROPOSITION 7.6. Any pair of objects A € SE®, B e SEM of C,, has a weak

product.
PROOF. Let a, ..., a, be the columns of A and b, ..., b_ be the columns of B. Let C =

(A B) be the kx(n+m)-matrix with columns ap, e Ay by s bm. We shall show that C is
a weak product of A, B in C_ . The corresponding projections P, P, are defined as follows:

E Z
P, = an“ and P,:= Enxn ,
mxm mxm

Z ) is the mxm ( nxn ) zero matrix and the matrix E .

where the matrix Z XM ( .

(E m) is the nxn ( mxm ) identity matrix. Obviously, CP1 = A and CP2 =B.
Assume that there are matrices D € S(E)PS, Q € S(E)S", Q, € SE)™™ such that

DQ, = A and DQ, = B. We have to find a matrix L € S(E)S™m) ¢ich that DL = C, LP,
= Q1 and LP2 = Q2. Let L := (Q1 QZ) be the sx(n+m) matrix which consists of the col-
umns of Q, followed by the columns of Q,. Now DL = D-(Q; Q,) = (DQ; DQ,) = (A B)
=C,

mxXm

E
LP, =(Q,; Q) {ann ] =QuE n + QZm =Q and analogously LP, = Q,.

This shows that C with the projections Pl, P2 is a weak product of A, B in Cm. W}

Proposition 3.7 and 3.5 together with the above proposition yield

THEOREM 7.7. Any commutative theory E has lower bound and generalization type
"unitary” ( w.r.t. the restricted E-instantiation ordering ).

8. Conclusion

We have seen that Eder’s ( Eder (1985) ) negative results for weak Q-unification can be
avoided by using the restricted instantiation ordering. This is so because the category

C.(@) — which corresponds to the restricted J-instantiation ordering — has all binary co-
products while the category Cu(Q) — which corresponds to the unrestricted J-instantia-

tion ordering — does not have binary coproducts.
Another possibility to avoid this problem would be to use arbitrary endomorphisms in-
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stead of substitutions. The corresponding category — which has F(V) as only object and
all endomorphisms as morphisms — also has binary coproducts. For this category one
gets results which are similar to those of Section 4. But this seems to be only of theoreti-
cal interest because the morphisms need not have finite descriptions.

Section 6 also shows that it is better to use restricted instantiation orderings for unifica-
tion modulo equational theories. )

For the empty theory a most specific generalizer of two terms yields a shorter description
of these terms ( see Ohlbach (1989) ). In Section 7 we have seen that a commutative
theory E has generalization type "unitary”. But in this case a most specific E-generaliz-
er of two terms does not give a shorter description of the terms ( see the proof of Proposi-
tion 7.6 ).

In this paper categories were used to find the correct definitions ( e.g. of the instantiation
ordering on generalizers ) and to clarify the connection between different notions ( such
as unification and weak unification or unification and generalization ), a method which
was also proposed in Goguen (1989). We have seen that most general unifiers corre-
spond to weak coequalizers and not to coequalizers. This is an observation which seems
to have escaped attention until now.
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