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Unification in a commutative theory E may be reduced to solving linear equations in the corre­
sponding semiring S(E) ( Nutt (1988) ). The unification type of E can thus be characterized by al-' 
gebraic properties of S(E). The theory of abelian groups with n commuting homomorphisms cor­
responds to the semiring Z[Xl'...,xn]. Thus Hilbert's Basis Theorem can be used to show that 

this theory is unitary. But this argument does not yield a unification algorithm. Linear equations 
in Z[XI,...,xn] can be solved with the help of Grobner Base. JJ:.l~~~!._which thus provide the 

desired algorithm. The theory of abelian monoids with a homomorphism is of type zero ( Baader 
(1988) ). This can also be proved by using the fact that the corresponding semiring, namely 
N[X], is not noetherian. An other example of a semiring ( .even ring ), which is not noetherian. 
is the ring Z<XI'...•X >, where Xl' ..., X ( n > 1 ) are non-commuting indetenninates. This n n 

semiring corresponds to the theory of abelian groups with n non-commuting homomorphisms. 
Surprisingly. by construction of a Grobner Base algorithm for right ideals in Z<XI•...,xn>. it 

can be shown that this theory is unitary unifying. 

1. Introduction 

E-unification is concerned with solving tenn equations modulo an equational theory E. 
More fonnally, let E be an equational theory and ~ be the equality of tenns, induced by 

E. An E-unification problem r is a finite set of equations < Si = lj; 1 s: i s: n ~ where Si
 

and 1j are tenns. A substitution 8 is called an E-unifier of riff si8 =E ti8 for each i, i = 1,
 

..., n. The set of all E-unifiers of r is denoted by UE(D.
 

In general we do not need the set of all E-unifiers. A complete set of E-unifiers, Le. a set
 

of E-unifiers from which all E-unifiers may be generated by E-instantiation, is sufficient.
 

More precisely, we extend =E to UE(D and defme a quasi-ordering S:E on UEer) by
 

0' =E 8 iff XO' =E x8 for all variables x occurring in Si or ti for some i, i = 1, ..., n, 

0' S:E 8 iff there exists a substitution A. such that 0' =E 8 0 A.. 

In this case 0' is called an E-instance of 8.
 

A complete set cUE(D ofE-unifiers of r is defined as
 

(1) cUE(D c UE(D, 

(2) For all e E UE(I) there exists 0' E cUE(r) such that e ~ 0'. 

1) This research was done while the author was still at the IMMD 1. University Erlangen. 
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Unification in a commutative theory B may be reduced to solving linear equations in the corre-
sponding semiring S(E) (Nutt (1988) ). The unification type of E can thus be characterized by al-
gebraic properties of S(E). The theory of abelian groups with n commuting homomorphisms cor—
responds to the semiring ZDC1,...,Xn]. Thus Hilbert’s Basis Theorem can be used to show that
this theory is unitary. But this argument does not yield a unification algorithm. Linear equations
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(1988) ). This can also be proved by using the fact that the corresponding semiring, namely
N[X], is not noetherian. An other example of a semiring (even ring ),  which is not noetherian,
is the ring Z<Xl,...,Xn>, where X1, ..., Xn ( n > 1 ) are non-commuting indeterminates. This
semiring corresponds to the theory of abelian groups with n non-commuting homomorphisms.
Surprisingly, by construction of a Gröbner Base algorithm for right ideals in Z<Xl,...,Xn>, it
can be shown that this theory is unitary unifying.

1 .  Introduction

E—unification is concerned with solving term equations modulo an equational theory E.
More formally, let E be an equational theory and =E be the equality of terms, induced by
E. An E-uniflcation problem 1" is a finite set of equations < si = ti; 1 S i S n >E where si
and ti are terms. A substitution 9 is called an E—um'fier of T iff sie =E tie for each i, i = 1,

., n. The set of all E—unifiers of I‘ is  denoted by UE(I').

In general we do not need the set of all E—unifiers. A complete set of E—unifiers, i.e. a set
of E-unifiers from which all E-unifiers may be generated by E-instantiation, is sufficient.

More precisely, we extend :13 to UE(1‘) and define a quasi-ordering -<-E on UE(1") by

0' :15 6 iff x0 =E x6 for all variables x occurring in si or ti for some i ,  i = l ,  ..., n,

6 SE 6 iff there exists a substitution 7t such that 0' =3 9 ° I..

In this case 0' is  called an E—instance of 6.

A complete set cUE(I‘) of E-unifiers of I‘ i s  defined as

(1) cub-(1‘) g U50),
(2) For all 6 e UE(I') there exists 0' e cUE(I‘) such that _6 % 6.

1) This research was done while the author was still at the lMMD 1, University Erlangen.





For reasons of efficiency this set should be as small as possible. Thus we are interested 
in minimal complete sets of E-unifiers, that means complete sets where two different ele­
ments are not comparable w.r.t. E-instantiation. The unification type of a theory E is de­
fined with reference to the cardinality and existence of minimal complete sets. The theory 
E is unitary (finitary, infinitary ) iff minimal complete sets of E-unifiers always exist 
and their cardinality is at most one ( always finite, at least once infinite ). E has unifica­
tion type zero iff there is an E-unification problem without minimal complete set of E-uni­
fiers. If the terms may contain free constants, we talk about unification with constants, 
else about unification without constants ( see Baader (1988), Section 7 ). If nothing else 
is specified, "unification" means "unification without constants". For more information 
about unification theory and the unification hierarchy consult Siekmann (1988). 

Unification in the empty theory ( which is unitary) plays an important rOle in automated 
theorem proving, term rewriting and logic programming. Generalizations to E-unification 
usually require that E is finitary ( see e.g. Stickel (1985), Jouannaud-Kirchner (1986) and 
Jaffar-Lassez-Maher (1984) ). A finitary theory most used in this context is the theory 
of abelian semigroups ( monoids ), i.e. the theory of an associative, commutative binary 
operation ( with a neutral element ). Unification al$<>.r.it~Il1_s for this theory ( see e.g. Live­
sey-Siekmann (1978), Stiekel (1981), Fages (1984), Fortenbacher (1985), Biittner 
(1986), Herold (1987) ) make use of the fact that unifiers correspond to solutions of sys­
tems of linear equations in the semiring IN ( see Eilenberg (1974) or Kuich-Salomaa 
(1986) for the definition and properties of semirings ). The same phenomenon occurs for 
the theory of abelian groups where the semiring is 7l ( Lankford-Butler-Brady (1984) ) 
and for the theory of idempotent abelian monoids where the 2-element boolean semiring 
~is used (Livesey-Siekmann (1978), Baader-Biittner (1988». 

These three theories belong to the class of commutative theories ( roughly speaking, the­
ories where the finitely generated free objects are direct products of the free objects in 
one generator ), which were defined in Baader (1988). In that paper it is shown that con­
stant-free unification in commutative theories is either unitary or of type zero and there 
are given sufficient conditions for a commutative theory to be unitary ( resp. finitary w.r.t. 
unification with constants.). The above mentioned results for abelian monoids etc. and 
some new results ( for abelian monoids with an involution, idempotent abelian monoids 
with an involution, abelian groups with an involution, abelian groups of exponent m ) 
could thus be obtained as corollaries to a general theorem. In Baader (1989) these condi­
tions were modified to algebraic characterizations of unification type unitary for constant­
free unification and type finitary for unification with constants in commutative theories. 
An interesting consequence of these characterizations is the fact that commutative theo­
ries are always unitary ( finitary w.r.t. unification with constants ), if the fmitely generat­
ed free objects are finite (Baader (1988) ). 
Wemer Nutt ( Nun (1988) ) observed that commutative theories are ( modul0 a transla­
tion of the signature ) what he calls monoidal theories and that unification in these theo­
ries may always be reduced to solving linear equations in certain semirings. He pointed 
out that the theory of abelian groups with a homomorphism corresponds to the semiring 
7l[X]. Thus Hilbert's Basis Theorem can be used to prove that the theory of abelian 
groups with a homomorphism is unitary. But this argument does not yield a unification al­
gorithm. Linear equations in 7l[X] can be solved with the help of Grobner Base methods 
( see Buchberger (1985) and Section 6 of this paper ), which thus provide the desired al­

gorithm. 
The theory of abelian monoids with a homomorphism is of type zero ( Baader (1988) ). 
This can also be demonstrated using the fact that the corresponding semiring, namely 

For reasons of efficiency this set should be as small as possible. Thus we are interested
in minimal complete sets of E-unifiers, that means complete sets where two different ele-
ments are not comparable w.r.t. E-instantiation. The unification type of a theory E i s  de-
fined with reference to the cardinality and existence of minimal complete sets. The theory
E is unitary ( finitary, infinitary ) iff minimal complete sets of E-unifiers always exist
and their cardinality is at most one ( always finite, at least once infinite ). E has unifica-
tion type zero iff there i s  an E—unification problem without minimal complete set of E—uni—
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else about unification without constants ( see Baader (1988), Section 7 ). If nothing else
is specified, "unification" means "unification without constants". For more information
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unification with constants). The above mentioned results for abelian monoids etc. and
some new results ( for abelian monoids with an involution, idempotent abelian monoids
with an involution, abelian groups with an involution, abelian groups of exponent m )
could thus be obtained as corollaries to a general theorem. In Baader (1989) these condi-
tions were modified to algebraic characterizations of unification type unitary for constant-
free unification and type finitary for unification with constants in commutative theories.
An interesting consequence of these characterizations is the fact that commutative theo-
ries are always unitary ( finitary w.r.t. unification with constants ), if the finitely generat—
ed free objects are finite (Baader (1988) ).
Werner Nutt ( Nutt (1988) ) observed that commutative theories are ( modulo a transla-
tion of the signature ) what he calls monoidal theories and that unification in these theo-
ries may always be reduced to solving linear equations in certain semirings. He pointed
out that the theory of abelian groups with a homomorphism corresponds to the semiring
Z[X]. Thus Hilbert’s Basis Theorem can be used to prove that the theory of abelian
groups with a homomorphism i s  unitary. But this argument does not yield a unification al-
gorithm. Linear equations in Z[X] can be solved with the help of Gröbner Base methods
( sec Buchberger (1985) and Section 6 of this paper ), which thus provide the desired al-
gorithm.
The theory of abelian monoids with a homomorphism is  of type zero ( Baader (1988) ).
This can also be demonstrated using the fact that the corresponding semiring, namely
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IN[X], is not noetherian ( Section 4 ). 
Another example of a semiring which is not noetherian is the ring 7l<X,Y>, where X, Y 
are non-commuting indetenninates. This semiring corresponds to the theory of abelian 
groups with two ( non-commuting) homomorphisms. Surprisingly, by construction of a 
Grobner Base algorithm for right ideals in 7l<X,Y>, I was able to show that this theory 
is unitary unifying. Of course, this result can be extended to an arbitrary, finite number of 
non-commuting indetenninates ( Section 8 and 9 ). 

2. Commutative Theories 

In this section we give a definition of commutative theories, recall some of the properties 
derived in Baader (1988) and show how the corresponding semirings may be obtained in 
this framework. 
An equational theory E defines a variety V(E), Le. the class of all algebras ( of the given 
signature Q ) which satisfy each identity of E. For any set X of generators, V(E) con­
tains afree algebra over V(E) with generators X, which will be denoted by FE(X). 

Let F(E) be the class of all free algebras FE(X) with finite sets X and let C(E) be the 

category which has the elements of F(E) as objects and the homomorphisms between 

these elements as morphisms. Note that the coproduct of FE(X) and FE(y) in C(E) is 

given by FE(X ~ Y) ( where ~ means disjoint union ). Thus FE(X) is the coproduct of 

the isomorphic objects FE(x) for x E X. 

Let r = < Si = ti; 1 ~ i ~ n >E be an E-unification problem and X be the ( finite ) set of 

variables x occurring in some Si or ti. Evidently we can consider the Si and ~ as elements 

of FE(X). Since we do not distinguish between ~-equivalent unifiers, any E-unifier of r 
can be regarded as a homomorphism of FE(X) into FE(Y) for some finite set Y ( of vari­

abies). Let I = { Xl' ... , x } be a set of cardinality n. We define homomorphisms n 

0', t: FE(I) ~ FE(X) by xiO':= Si and xit := ti (i = 1, ..., n ). 

Now 0: FE(X) ~ FE(Y) is an E-unifier of riff xiO'O = siO = ~O = xitO for i = 1, ... , n, i.e. 

iff 0'0 = to. Thus an E-unification problem can be written as a pair < 0' = t ~ of mor­

phisms 0', t: FE(I) ~ FE(X) in the category C(E). An E-unifiers of the unification prob­

lem < 0' = t >E is amorphism 0 such that 0'0 = to. 

This categorical reformulation of E-unification ( due to Rydeheard-Burstall (1985) ) al­

lows to characterize the class of commutative theories by properties of the category
 
C(E) of fmitely generated E-free objects: C(E) has to be a semiadditive category ( see
 
Herrlich-Strecker (1973) and Baader (1988) ). In order to give a more algebraic definition
 
of commutative theories we need some more notation.
 
A constant symbol ( Le. a nullary function symbol) e E Q is called idempotent in E iff for
 
any f E Q we have f(e, ...,e) =E e, Le. in any algebra A E V(E), f(e,...,e) = e holds. Note
 

that for nullary f this means f ~ e.
 

Let K be a class of algebras ( of signature Q ). An n-ary implicit operation in K is a fam­

ily f = { fA; A E K } of mappings fA: An ~ A which is compatible with all homomor­

IN[X], is  not noetherian ( Section 4 ) .
Another example of a semiring which is not noethen'an i s  the ring Z<X,Y>, where X,  Y
are non-commuting indetenninates. This semiring corresponds to the theory of abelian
groups with two ( non—commuting ) homomorphisms. Surprisingly, by construction of a
Gröbner Base algorithm for right ideals in Z<X,Y>, I was able to show that this theory
is unitary unifying. Of course, this result can be extended to an arbitrary, finite number of
non-commuting indeterminates ( Section 8 and 9 ) .

2. Commutative Theories

In this section we give a definition of commutative theories, recall some of the properties
derived in Baader (1988) and show how the corresponding semirings may be obtained in
this framework.
An equational theory E defines a variety V(E), i.e. the class of all algebras ( of the given
signature Q ) which satisfy each identity of E. For any set X of generators, V(E) con-
tains a free algebra over V(E) with generators X, which will be denoted by FE(X).

Let F(E) be the class of all free algebras FE(X) with finite sets X and let C(E) be the
category which has the elements of F(E) as objects and the homomorphisms between
these elements as morphisms. Note that the coproduct of FE(X) and FE(Y) in C(E) is

given by FE(X DY)  ( where 0 means disjoint union ). Thus F500 i s  the coproduct of

the isomorphic objects FE(x) for x e X.

Let I‘ = < si = ti; 1 S i S n >13 be an E-unification problem and X be the ( finite ) set of
variables x occurring in some Si or ti. Evidently we can consider the Si  and ti as elements

of FE(X). Since we do not distinguish between =E-equiva1ent unifiers, any E—unifier of I‘
can be regarded as a homomorphism of FE(X) into FE(Y) for some finite set Y ( of vari-
ables ) .  Let I = { x l ,  ..., xn } be a set of cardinality n.  We define homomorphisms

0‘, 't: FE(I) —) FE(X) by xio :=  si and xix :=  ti ( i=  l ,  ..., n ) .

Now ö: FE(X) —) FE(Y) i s  an E-unifier of F iff xioö = siö = tiö = xi'cö for i = 1, ..., n,  i.e.

iff 0'5 = 18. Thus an E-unification problem can be written as a pair < 0' = 1: >E of mor-

phisms o, r :  FE(I) —-> FE(X) in the category~C(E). An E-unifiers of the unification prob-

lem < o = ‘C >E is a morphism ö such that 08 = 1:8.
This categorical reformulation of E-unification ( due to Rydeheard-Burstall (1985) ) al—
lows to characterize the class of commutative theories by properties of the category
C(E) of finitely generated E-free objects: C(E) has to be a semiadditive category ( see
Herrlich-Strecker (1973) and Baader (1988) ) .  In order to give a more algebraic definition
of commutative theories we need some more notation.
A constant symbol ( i.e. a nullary function symbol ) e e 9 i s  called idempotent in E iff for
any f e 9 we have f(e,...,e) =E e,  i.e. in any algebra A e V(E), f(e,...,e) = e holds. Note
that for nullary f this means f "‘13 e.

Let K be a class of algebras ( of signature Q ). An n-ary implicit operation in K is a fam-
ily f = ( f A; A e K } of mappings fA: An —) A which i s  compatible with all homomor-





t
 

phisms, Le. for any homomorphism h: A ~ B with A, B E K and all aI' ..., ~ E A, 

fA(al •...,~)h = fB(alh,...,~h) holds. In the following we omit the index and just write f for 

any fA" Obviously an n-term induces an implicit operation on any class of n-algebras. 

DEFINITION 2.1. An equational theory E is called commutative iff the following holds: 

(1) Ucontains a constant symbol e, which is idempotent in E. 

(2) There is a binary implicit operation * in F(E) such that 

(a) The constant e is a neutral element for * in any algebra A E F(E). 

(b) For any n-ary function symbol fen, any algebra A E F(E) and any SI' ... , so' t1, 

..., to E A we have f(s} * t},...,so * ~) = f(sl""'so) * f(t}, ...,~). 

In Baader (1988) the following properties for commutative theories E are shown within a 
categorical framework, using well-known results for semiadditive categones: 

(2.2) IFE(0)1 = 1 and FE(0) is the zero object of C(E). 

(2.3) The implicit operation * of Definition 2.1 is associative and commutative. It induces 

a binary operation + on any morphism set hom(FE(X),FE(Y» as follows: Let a, t: 

FE(X) ~ FE(y). and s E FE(X). Then s(a + t) := (sa) * (st). 

This operation is also associative and commutative and it distributes with the com­
position of morphisms. The morphism 0: FE(X) ~ FE(Y) dermed by x ~ e for all x 

E X is the zero morphism in hom(FE(X),FE(Y» and it is a neutral element for + on 

hom(FE(X),FE(Y)) 

(2.4) The coproduct FE(X ~ Y) of FE(X) and· FE(Y) is also the product of these objects, 

Le. FE(X ~Y) == FE(X) x FE(Y). 

(2.5) Consider a: FE(X) ~ FE(Y). Let Ux for x E X ( Py for y E Y ) be the injections of 

the coproduct FE(X) ( projections of the product FE(Y) ). Then a is uniquely deter­

mined by the matrix Ma = ( uxapy )xeX,yeY· For a, t: FE(X) ~ FE(Y) and 0: 

FE(Y) ~ FE(Z) we have Ma+'t = Ma + M't and Mao = Ma . Mo· 

Wemer Nutt ( Nutt (1988) ) observed that commutative theories are ( modulo a transla­

tion of the signature ) what he calls monoidal theories and that unification in a monoidal
 
theory E may be reduced to solving linear equations in a certain semiring S(E).. In our
 
framework this semiring can be obtained as follows:
 
Let 1 be an arbitrary set of cardinality 1. Property (2.3) yields that hom(FE(l),FE(l»
 

with addition "+" and composition as multiplication is a semiring, which shall be denoted
 
by S(E). Any FE(x) is isomorphic to FE(1) and for IXI .= n, FE(X) is n-th. power and
 

copower of FE(I). Thus, for a: FE(X) ~ FE(Y), the entries uxO'Py of the IXlxlYI-matrix
 

Ma may all be considered as eiements of SCE). Hence all morphisms of C(E) can be writ­


ten as matrices over the semiring SCE). Addition and composition of morphisms corres­

pond to addition and multiplication of matrices over SCE) as stated in (2.5).
 

phisms, i.e. for any homomorphism h: A —-) B with A, B e K and all a l ,  ..., a.rl e A,
f A(a1 , . . . , an )h  = fB(alh,...,anh) holds. In the following we omit the index and just write f for

any fA- Obviously an Q-term induces an implicit operation on any class of Q—algebras.

DEFINITION 2.1. An equational theory E is called commutative iff the following holds:
(1) Qcontains a constant symbol e,  which is  idempotent in  E .

(2) There i s  a binary implicit operation * in F(E) such that

(a) The constant e is a neutral element for * in any algebra A e F(E).

(b) For any n-ary function symbol f e Q, any algebra A e F(E) and any s1, n ,  t l ,

..., t“ e A we have f(sl * t1,...,sn * tn) = f(s1,...,sn) * f(t1‚...,tn).

In Baader (1988) the following properties for commutative theories E are shown within a
categorical framework, using well-known results for semiadditive categories.
(2.2) IF1L:(E)I-— 1 and F I_:(®)' 1s the zero object of C(E). " '
(2.3) The irnplicit operation * of Definition 2.1. 1s associative and commutative. It induces

a binary operation + on any morphism set hom(FE(X),FE(Y)) as follows: Let o, 't:

Fl.-(X) -—) FE(Y )_ and s e FE(X). Then 5(0' + 1:) :=  (so) * (st).
This operation is also associative and commutative and it distributes with the com-
position of morphisms. The morphism O: FE(X) -—> FE(Y) defined by x |_) e for all x
e X i s  the zero morphism in hom(FE(X),FE(Y)) and it is a neutral element for + on
hom<FE<X);FE(Y»-

“ (2.4) The coproduct FE(X OY) of FE(X) and'FE(Y) is also the product of these objects,

i.e. FE(X ÜY) a FE'(X) x FE(Y). _
(2.5) Consider 0': FE(X) —) Fl.—(Y). Let ux for x e X ( py for y 5 Y ) be the injections of

the cOproduct FE(X) ( projections of the product FE(Y) ). Then 0' is  uniquely deter-

mined. by the matrix MG = ( upy )x_e_X,e' For a, 'c: FE(X) —-> FE(Y) and &

FE(Y) —) FE(Z) we have MWc = M6 + MT and M65 = M0, - M8'

Werner Nutt ( Nutt (1988) ) observed that commutative theories are ( modulo a transla—
tion of the signature ) what he calls monoidal theories and that unification in a monoidal
theory B may be reduced to sblving linear equations in a certain semin'ng S(E).. In our
framework this semiring can be obtained as follows:
Let l be an arbitrary set of cardinality 1.  Property (2. 3) yields that hom(FE(1),FE(1))
with addition "+" and composition as multiplication 13 a semiring, which shall be denoted
by S(E). Any FE(x) is isomorphic to FE(1) and for IXI ‘= n ,  FE(X) i s  n-th.power and

copower of FE(1). Thus, for o: FE(X) —> FE(Y) ,  the entries uxopy of the IXIXIYI-matrix
M6 may all be considered as  elements of S(E). Hence all morphisms of C(E) can be writ-
ten as matrices over the semiring S(E). Addition and composition of morphisms corres-
pond to addition and multiplication of matrices over S(E) as stated in (2.5).





We now give some examples of commutative theories, whose unification properties will 
be considered in subsequent sections of this paper. In all these examples, the implicit op­
eration is given by a function symbol, which is associative and commutative in the corre­
sponding theory. Additional examples of commutative theories can be found in Baader 
(1988). 

EXAMPLES 2.6. We consider the following signatures:
 

~:= {., 1, h }, where· is binary, 1 is nullary and h is unary.
 
For n ~ 0, nn:= { ., 1, -1, hp ..., hn }, where· is binary, 1 is nullary and -1 and the hi are
 

unary. 
(1) The theory AMH of abelian monoids with a homomorphism. The signature is ~ and 

AMH := {x· 1 =x, x . (y . z) = (x . y) . z, x . y =y . x,
 
hex . y) = hex) . hey), h(l) = 1 }.
 

(2) The theory AIMH of idempotent abelian monoids with a homomorphism. The signa­
ture is ~ and AIMH := AMH u { x . x = x }. 

(3) The theory AGnH	 of abelian groups with n ( non-commuting ) homomorphisms~W~ 

take signature nn and define AGnH := { x· 1 = x, x· (y. z) = (x . y) . z, x . y = y . x, 

x . x-I = 1 } U { hi(x. y) = hi(x) . hi(y); 1 ~ i ~ n }. 

(4) The theory AGnHC of abelian groups with n commuting homomorphisms. The signa­

ture is nn and AGnHC := AGnH u ( hi(h}x» = h}hi(x»; 1 ~ i < j ~ n }. 

It is easy to see that these theories are commutative. Note that the implicit operation 
induced by the term x . y ( for a binary function symbol . ) satisfies 2b of Definition 2.1 for 
f =. iff (a· b) . (c . d) = (a . c) . (b . d) holds in any algebra A e F(E) and for f = h ( for a 
unary function symbol h ) iff hex . y) =h(x) . hey) holds. 

3. Unification in Commutative Theories 

In this section we recall the characterizations of unification type unitary ( finitary for unifi­
cation with constants ) for commutative theories given in Baader (1989). As a conse­
quence we derive, that unification in a commutative theory E means solving systems of 
linear equations in the semiring SCE). This yields algebraic characterizations of the unifi­
cation types. 

1lIEOREM 3.1. A commutative theory E is unitary iffit satisfies the following condition: 

Let y be an arbitrary variable. For any E-unification problem < a = 't >n (where a, 't: 

FE(I) ~ FE(X) ) there are finitely many E-unifiers (Xl' ..., ~: FE(X) ~ FE(y) such that 

any E-unifier B: FE(X) ~ FE(y) is representable as 

~i=r 
B= ~i=l ~ Ai ' 

where Ai: FE(y) ~ FE(y) are morphisms. 

If we translate morphisms into matrices over SCE), we obtain the following reformulation 
of Theorem 3.1: 

We now give some examples of commutative theories, whose unification properties will
be considered in subsequent sections of this paper. In all these examples, the implicit op-
eration is given by a function symbol, which is associative and commutative in the corre-
sponding theory. Additional examples of commutative theories can be found in Baader
(1988).

EXAMPLES 2.6. We consider the following signatures:
Z:: { -, 1, h} ,  where - is binary, 1 is nullary and h is unary.
For n 2 0, Q“ := { -, 1, 4 ,  hl, hn }, where - is binary, 1 is nullary and -1 and the hi are
unary.
(1) The theory AMH of abelian monoids with a homomorphism. The signature is Z and

AMH:={  x-1=x ,x - (y -z )= (x -y ) - z ,x -y=y-x ,
h(x-y)=h(x)-h(y),h(1)=1 }.

(2) The theory AIMH of idempotent abelian monoids with a homomorphism. The signa-
tureisZandAIMI-I:=AMHU { x -x=x  }.

(3) The theory AGnH of abelian groups with n ( non-commuting ) homomorphismShWe
t akes igna tu reflnanddefineAGnH:={x-  1=x ,x - (y -z )= (x -y ) - z ,x .y=y-x ,

x -x-1 =1 }u  { hi(x-y)=hi(x)-hi(y); 1 Sign }.
(4) The theory AGnHC of abelian groups with n commuting homomorphism. The signa-

ture is Qn and AGnHC := AGnH U [ hi(hj(x)) = hj(hi(x)); ~1 S i < j _<_ n }.

It is easy to see that these theories are commutative. Note that the implicit operation
induced by the term x - y ( for a binary function symbol . ) satisfies 2b of Definition 2.1 for
f= -  iff ( a -b )  - ( c -d )=  (a»c )  - (b -d )ho lds inanya1gebraAe  F(E) and fo r f=h ( fo ra
unary function symbol h ) iff h(x - y) = h(x) - h(y) holds.

3. Unification in Commutative Theories

In this section we recall the characterizations of unification type unitary ( finitary for unifi-
cation with constants ) for commutative theories given in Baader (1989). As a conse-
quence we derive, that unification in a commutative theory E means solving systems of
linear equations in the semiring S(E). This yields algebraic characterizations of the unifi-
cation types.

THEOREM 3.1. A commutative theory E is  unitary iff i t  satisfies the following condition:
Let y be an arbitrary variable. For any E-unification problem < 0' = ': >E ( where O', 1::

FE(I) —-) FE(X) ) there are finitely many E—unifiers a l ,  ..., “r: FE(X) —> FE(y) such that

any E—unifier 8: FE(X) —> FE(y) is  representable as
2i=r

8 : i=l ai "i ’

where hi: FE(y) —> FE(y) are morphisms.

If we translate morphisms into matrices over S(E), we obtain the following reformulau'on
of Theorem 3.1:





COROLLARY 3.2. A commutative theory E is unitary iff the corre;:~onding semiring 

S(E) satisfies the following condition: For any n, m ~ 1 and any pair MO', M't of mxn-ma­

trices over S(E) the set 

U(MO',M't) := { X E S(E)n; MO'X = M'tX } 

is a frnitely generated right S(E)-semimodule, Le. there are frnitely many Xl' ..., Xr E
 

S(E)o such that U(MO',M't) = { Xlsl + ... + ~r; sI' ..., sr E S(E) }.
 

THEOREM 3.3. Let E be a unitary commutative theory. Then E is finitary w.r.t. unifica­

tion with constants iff the following condition holds:
 

For any morphism ( of C(E) ) 8: FE(X) ~ FE(Y) there exist finite sets M, N such that:
 

(1) The elements of M are morphisms Jl: FE(Y) ~ FE(X) satisfying 8Jl = 1. 

(2) The elements ofN = { VI' ..., Vr } are morphisms Vi: FE(Y) ~ FE(~) with 8vi = O. 

(3)	 For any A: FE(Y) ~ FE(X) with 8A = 1 there are Jl E M and morphisms AI' ..., \ 

( where Ai: FE(Zi) ~ FE(X) ) satisfying 

The translation of morphisms into matrices over S(E) yields a sufficient condition for E to 
be finitary w.r.t. unification with constants. 

COROLLARY 3.4. Let E be a unitary commutative theory. Then E is finitary w.r.t. unifi­
cation with constants, if the following condition holds in S(E): 

Let A be any mxn-matrices over S(E) and let Q be any element of S(E)ffi. Then the set 

M := { X E S(E)n; AX = 12 } is a finite union of cosets of the ( finitely generated) right 

S(E)-semimodule N := { X E S(E)n; AX = 0 }, Le. there exist frnitely many m1' ... , m Ek 

S(E)o such that M = { mi + n; n E N and 1 ::; i ::; k }. 

Note that the semimodule N is finitely generated, since E is unitary and N = U(A,O),
 

where 0 is the mxn zero matrix. From Theorem 3.3 we can only deduce, that the condition
 
of the corollary is sufficient, since in Theorem 3.3 we talk about specific inhomogeneous
 
equations AX = E, while in Corollary 3.4 the right-hand side of the equation is an arbi­

trary vector Q.
 

Assume that S(E) is a ring and let ~ be an arbitrary solution of the inhomogeneous
 

equation AX = 12. Then any solution Y.. ofAX = Q is of the form y = ~ + ~, where ~ := y. - ~
 

is a solution of the homogeneous equation AX =O. This proves
 

COROLLARY 3.5. Let E be a unitary commutative theory such that S(E) is a ring. Then
 
E is unitary w.r.t. unification with constants.
 

COROLLARY 3.2. A commutative theory E is unitary iff the corresponding semiring
S(E) satisfies the following condition: For any n, m 2 1 and any pair M6, M1 of mxn-ma-
trices over S(E) the set

U(M6,M¢) := { ‚X. e S(E)“; MG; = M15 }
is a finitely generated right S(E)-semimodule, i.e. there are finitely many g1, gr 6

S(E)n such that UCMGMT) = { 3151  + + l—‘rsr; SP  ..., sr e S(E) }.

THEOREM 3.3. Let E be a unitary commutative theory. Then E is finitary w.r.t. unifica-
tion with constants iff the following condition holds:
For any morphism (o f  C(E) ) ö: FE(X) -—> FE(Y) there exist finite sets M, N such that:

(1) The elements of M are morphisms p.: FE(Y) —> FE(X) satisfying ött = 1.

(2) The elements of N = { v1, ..., vr } are morphisms vi: FE(Y) —-> FE(Zi) with övi = 0.

(3) For any Ä: FE(Y) -—> FE(X) with öl = '1' there are tt ‚& M and morphisms 7L1, ..., kr
( where Xi: FE(Zi) —-> FE(X) ) satisfying

i=r
Ä=u+2 i= lv i7 t i .

The translation of morphisms into matrices over S(E) yields a sufficient condition for E to
be finitary w.r.t. unification with constants.

COROLLARY 3.4. Let E be a unitary commutative theory. Then E is finitary w.r.t. unifi-
cation with constants, if the following condition holds in S(E): „

Let A be any mxn-matrices over S(E) and let b be any element of S(E)m. Then the set
M :=  { ; e S(E)“; A; = h } is a finite union of cosets of the ( finitely generated ) right
S(E)-semimodule N := { g e S(E)“; A3; = O }, i.e. there exist finitely many ml, ..., m e_k

S(E)“suchthatM={mi+n;_r_le Nand lS iSk} .

Note that the semimodule N is finitely generated, since E is unitary and N = U(A,O),
where 0 is the mxn zero matrix. From Theorem 3.3 we can only deduce, that the condition
of the corollary is sufficient, since in Theorem 3.3 we talk about specific inhomogeneous
equations AX = E,  while in Corollary 3.4 the right-hand side of the equation is an arbi-
trary vector h.
Assume that S(E) is a ring and let 50 be an arbitrary solution of the inhomogeneous

equation A; = 1}. Then any solution y of A2; = 9 is of the form y = J—‘O + ;, where ; := y — 50
is  a solution of the homogeneous equation A; = 0. This proves

COROLLARY 3.5. Let E be a unitary commutative theory such that S(E) is a ring. Then
B is unitary w.r.t. unification with constants.
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4. A Commutat~ve Theory of Unification Type Zero 

In 1972 Plotkin conjectured, that there exists an equational theory E which has unification 
type zero. But only in 1983, Fages and Huet constructed the first example of an equation­
al theory of this type. Schmidt-SchauB (1986) and the present author (1986) showed that 
the theory of idempotent semigroups is of unification type zero and in Baader (1987) I 
have proved, that almost all varieties of idempotent semigroups are defined by type zero 
theories. This provides us with countably many examples of type zero theories, which are 
more natural than the original example of Fages and Huet. 
In Baader (1988) it is shown that the theory AIMH of idempotent abelian monoids with a 
homomorphism has type zero. The same proof can be used for AMH, the theory of 
abelian monoids with a homomorphism, in place of AIMH~ This section contains a more 
algebraic proof of the fact that AMH has type zero. Since commutative theories are either 
unitary or of unification type zero ( Baader (1988), Theorem 6.1 ), it is sufficient to show, 
that the semiring S(AMH) does not satisfy the condition of Corollary 3.2. 

Let 0': FAMH(x) ---+ FAMH(x) be a morphism of C(AMH).. Then there are k ..~ 0 and an, 
..., ak E IN such that XO' = xlloh(xat)..•hls(x~). We associate with-themorphismO' the poly.. 

nomial Pcr =an + alX + ... + a~k E IN[X]. It is easy to see that PcrS = Pcr'PS and Pcr+S = 

Pcr+PS, which shows that S(AMH) == IN [X].
 

We consider the linear equation (*) Xx1 + XX2 = x2 + x2x3, which has to be solved by a
 

vector l! = ( PI' P2' P3 ) in (1N[X])3. Obviously, for any n ~ 0, the vector l!(n) = ( p\n), p~n), 

p~n) = ( 1, X + X2 + ... + xn+l, xn) is a solution of (*). 

LEMMA 4.1. There does not exist a solution:Q of (*) in (IN[X])3 such that PI + P3 = 1. 

PROOF. For PI = 0 and P3 = 1 we get XP2 = P2 + X2, which yields (X - 1)P2 = X2 in 

~[X]. But X-I is not a divisor of X2. The case PI = 1 and P3 = 0 leads to a similar con­

tradiction. 

It is easy to see that 11+3 := { PI + P3; There exists P2 such that ( PI' P2' P3 ) solves 

(*) } is an ideal in IN[X]. We know that 1 + Xn E 11+3 for any n ~ 0 and 1 ~ 11+3, 

LEMMA 4.2.
 

An ideal I ~ IN[X] such that 1 + xn E I for any n ~ 0 and 1 ~ I is not finitely generated.
 
PROOF. Evidently 1 + Xn = f·g for f, g E IN[X] or 1 + Xn = f + g for f, g E IN[X] \ { 0 }
 

implies f= 1 or g = 1. But 1 ~ I.
 

PROPOsmON 4.3. The theory AMH has unification type zero.
 

PROOF. Assume that AMH has not type zero. Then AMH is unitary and, by Corollary
 

3.2, ! := { l! E (IN[X])3; l! is a solution of (*) } is a finitely generated right IN[X]-semi­


module. But then 11+3 = { PI + P3; There exists P2 such that (Pl,'P2' P3 ) E ! } would also 

be finitely generated, which contradicts Lemma 4.2. 

The fact that the set of solutions of the equation (*) is not a finitely generated right semi­

4. A Commutative Theory of Unification Type Zero

In 1972 Plotkin conjectured, that there exists an equational theory E which has unification
type zero. But only in 1983, Fages and Huet constructed the first example of an equation-
al theory Of this type. Schmidt-Schauß (1986) and the present author (1986) showed that
the theory of idempotent semigroups is of unification type zero and in Baader (1987) I
have proved, that almost all varieties of idempotent semigroups are defined by type zero
theories. This provides us with countably many examples of type zero theories, which are
more natural than the original example of Fages and Huet. '
In Baader (1988) it is shown that the theory AIMH of idempotent abelian monoids with a
homomorphism has type zero. The same proof can be used for AMH, the theory of
abelian monoids with a homomorphism, in place of A_IMH. This section contains a more
algebraic proof of the fact that AMH has type zero. Since commutative theories are either
unitary or of unification type zero ( Baader (1988), Theorem 6.1 ) ,  it is sufficient to show,
that the semiring S(AMH) does not satisfy the condition of Corollary 3.2.
Let O': FAMHÜ‘) —) FAMHO‘) be a morphism of C(AMI-I)'._'Ihen there are k .2 O and ao,

..., ak & IN such that x0' = x§0h(xal)...h15(x3k}- We-rasisociate with~the~morphism 0' the poly:

nomial Po = a0 + aIX + + ak e |N[X]. It is easy to see that p65 = pops and p6+5 =
po+p5, which shows that S(AMH) 5 |N[X]. '
We consider the linear equation (*) Xxl  + s = x2 + X2x3, which has to be solved by a
vector p = ( pl, p2, p3 ) in (IN [X])3. Obviously, for any n 2 0, the vector 20‘) = ( pg“), pa”),

pg") ) = ( 1, x + X2 + + xn+1, xrl ) is a solution of (*).

LEMMA 4.1. There does not exist a solution I; of (:|:) in (|N[X])3 such that + p3 = l .

PROOF. For P1  = 0 and p3 = 1 we get Xp2 = p2 + X2, which yields (X — 1)p2 = X2 in
Z[X]. But X — l is  not a divisor of X2. The case p l  = 1 and p3 = 0 leads to a similar con- --
tradiction.

It is easy to see that I1+3  := { Pl  + p3; There exists p2 such that ( pl, p2, p3 ) solves
(*) } is an ideal in |N[X]. We know that 1 + X'1 6 11+3 for any n 2 0 and 1 e I l+3 '

LEMMA 4.2.
An ideal I g |N[X] such that l + Xn e I for any n 2 0 and 1 e I is not finitely generated.
PROOF. Evidently 1+Xn =f~gforf, g e |N[X] or 1 +X“=f+gfor f ,  ge  |N[X] \{  0 }
imp l i e s f= lo rg=1 .Bu t1e  I.

PROPOSITION 4.3. The theory AMH has unification type zero.
PROOF. Assume that AMH has not type zero. Then AMH is unitary and, by Corollary
3.2, _I_ := { p e (|N[X])3; p_ is a solution Of (als) } is a finitely generated right |N[X]-semi-
module. But then I l+3  = { p1 + p3; There exists p2 such that ( p1‚—p2‚ p3 ) e 1 } would also

be finitely generated, which contradicts Lemma 4.2. '

The fact that the set of solutions of the equation (*) is not a finitely generated right semi-





module is not specific for the semiring IN[X]. More general, let S be a semiring which is 
not a ring ( that means, that there exists s E S such that for all t E S S + t * 0 ). Then the 
right S[X]-semimodule I := { 11 E (S[X])3; 11 is a solution of (*) } is not finitely generated 

(Baader-Nutt (1989) ). 

S. AGnHC-Unification and Hilbert's Basis Theorem 

It is easy to see that S(AGnHC) is isomorphic to the ring 7l[X1'...,xn]' Le. the polynomi­

al ring over 7l in the ( commuting) indeterminates Xl' ..., X . To establish the condition n
of Corollary 3.2, we have to consider systems of homogeneous linear equations in 7Z[XI, 

... ,xn]' Le. systems fUxI + ... + fkixk = 0 ( i = 1, ..., s ), where the coefficients fij and the 

desired solutions are elements of 7l[Xl'.'.'X ]. The set of solutions ! C (?l[Xl'...,XnDk 
n

is a 7l[Xl,...,Xn]-module, which is finitely generated by Hilbert's Basis Theorem and the 

fact that 7l is a noetherian ring ( see e.g. Jacobson (1980) ). Thus AGhHC is unitary 
w.r.t. unification without constants. Since 7l[Xl'...,xn] is a ring, Corollary 3.5 applies and 

we have proved
 

PROPOsmON 5.1. (Nutt (1988))
 

For any n ~ 0 the theory AGnHC is unitary and it is also unitary w.r.t. unification with
 
constants.
 

This proof of Proposition 5.1 does not yield an AGnHC-unification algorithm, because we
 
still do not know how to solye linear equations in 7l[X1'.'.'Xn] effectively. The next sec­

tion describes one possible answer to this problem.
 

6. Solving Linear Equations in 7l[Xl'''.'X ] using Grobner Bases n

Buchberger (1985) describes an effective method, which constructs finitely many genera­
tors of the solutions of a single equation fIxI + ... + f0k = 0, where the fi and the desired 

solutions are elements of K[Xl" .. 'Xn] for a field K. This method may also be used for 

7l[XI'...,xn] ( see Buchberger (1985) for Grobner Bases of polynomials over 7l and 

Kandry-Rody-Kapur (1988) for Grobner Bases of polynomials over a euclidean ring ), but 
the proof of its correctness becomes more involved. Systems of equations can then be 
solved by successive substitution. A more efficient approach to solving systems of equa­
tions is described in Furukawa-Sasaki-Kobayashi (1986), where Grobner base theory is 
extended to modules over K[Xl""'Xn]. 

First we recall some facts and notations concerning Grobner bases: 

(6.1) Admissible term orderings. 

Let Tn := { X~l ...x~n; kl' ..., ~ E IN} be the set of all terms ( Le. monomials with coeffi­

cient 1 ) in 7l[XI,... ,X ]. With respect to multiplication of polynomials, T is a commuta­n n , 

module is not specific for the semiring |N[X]. More general, let S be a semiring which is
not a ring ( that means, that there exists s e S such that for all t e S s + t at 0 ). Then the
right S[X]-semimodule I := { p e (S[X])3; p_ is  a solution of (ale) } is not finitely generated
(Baader—Nutt (1989) ).

5. AGnHC-Unification and Hilbert’s Basis Theorem

It is easy to see that S(AGnHC) is isomorphic to the ring Z[X1,...,Xn], i.e. the polynomi-

al ring over 2 in the ( commuting ) indeterminates X1, ..., Xn. To establish the condition

of Corollary 3.2, we have to consider systems of homogeneous linear equations in Z[X1,

...,Xn], i.e. systems f l ixl  + + fkixk = O ( i = 1, ..., s ), where the coefficients fü and the

desired solutions are elements of Z[X1,...,Xn]. The set of solutions ; c; (Z[Xl,...,Xn])k

is a Z[X1,...,Xn]-module, which is finitely generated by Hflbert’s Basis Theorem and the
fact that Z is  a noetherian ring ( see e.g.  Jacobson (1980) ) .  'Ihfi’s'AGnHC is unitary
w.r.t. unification Without constants. Since Z[X1‚...‚Xn] is a ring, Corollary 3.5 applies and
we have proved

PROPOSITION 5.1. (Nutt (1988) )
For any n 2 0 the theory AGnHC is unitary and it is also unitary w.r.t. unification with
constants.

This proof of Proposition 5.1 does not yield an AGnHC-unification algorithm, because we
still do not know how to solve linear equations in Z[X1,...,Xn] effectively. The next sec-

tion describes one possible answer to this problem.

6. Solving Linear Equations in Z[X1‚...‚Xn] using Gröbner Bases

Buchberger (1985) describes an effective method, which constructs finitely many genera-
tors of the solutions of a single equation f l x l  + + kk = O, where the fi and the desired

solutions are elements of K[Xl,...,Xn] for a field K. This method may also be used for
Z[X1,...,Xn] ( see Buchberger (1985) for Gröbner Bases of polynomials over I and
Kandry-Rody-Kapur (1988) for Gröbner Bases of polynomials over a euclidean ring ), but
the proof of its correctness becomes more involved. Systems of equations can then be
solved by successive substitution. A more efficient approach to solving systems of equa-
tions is described in Furukawa-Sasaki-Kobayashi (1986), where Gröbner base theory is
extended to modules over K[Xl,...,Xn].

First we recall some facts and notations concerning Gröbner bases:

(6.1) Admissible term orderings.
Let Tn := { Xll‘l...X§“; kl ,  ..., k“ e IN } be the set of all terms ( i.e. monomials with coeffi-

cient 1 ) in Z[X1,...,Xn]. With respect to multiplication of polynomials, Tn is. a commuta-





tive monoid ( with neutral element 1 = xy.. .x~ ), which is isomorpic to the additive 

monoid INn.
 

A linear ordering < on Tn is called compatible iff for all r, s, t E Tn r < s implies rt < st
 

and it is called admissible iff it is compatible and satisfies 1 < s for all SETn. It is easy
 

to see that a compatible linear ordering on Tn is admissible iff it is noetherian.
 

Complete descriptions of all compatible linear orderings have been given by Trevisan
 
(1953), Zaiceva (1953) and, more recently, by Robbiano (1985) and Martin (1988):
 

Any compatible linear ordering < on Tn is completely determined by a nxs matrix U< of s
 

:$; n orthogonal vectors ul' ... , Us E IRn of G)-dimension n as follows: Xfl ...x~n < XYl .. .x~n iff
 

the first non-zero element of (hI - kl , ... , h - kn) . U< is greater than zero.
 n 
It is easy to see that the compatible linear ordering < is admissible iff in any row of U<' 

the first non-zero entry is greater than zero. 

(6.2) Rewriting with polynomials. 
For a polynomial f and a term t which occurs in f, coeff(t,f) denotes the coefficient of tin f.
 
If t does not occur in f, we define coeff(t,f) := O. Let < be an admissible ordering and let f =
 
a·t + g be a polynomial in .7l[Xl'...'Xn] such that t E Tn is the greatest term in f w.r.t. <
 

and coeff(t,f) = a E 7z: is the coefficient of t in f. Then t is called head-term of f ( HT(f) ), a
 
is called head-coefficient of f ( HC(f) ), a·t is called head-monomial of f ( HM(f) ) and g
 
= f - HM(f) is called rest of f ( R(f) ).
 
A set F of polynomials induces the following rewrite relation on.71[X1,... ,xn]:
 

f ~F g iff (1) f contains a term t with coefficient a. 

(2)	 F contains a polynomial h such that HT(h) = t·s ( for some sETn ) 

and IHC(h)1 ~ la!. 

(3) g =f - h·b·s, where a =b·HC(h) + c for O:$; c < IHC(h)l, b, c E 7z:. 

Let -4F ( resp. ±,oF ) denote the reflexive, transitive ( resp. transitive) closlh'e of ~F It 

can be shown ( using a multiset extension of < ) that ±,oF is noetherian. The set F gener­

ates an ideal <F> in ?l[XI,...,X ] and this ideal induces a congruence ==<F>' namely f n

==<F> g iff f - g E <F>. This congruence is the reflexive, transitive and symmetric closure 

of ~F ( Bachmair-Buchberger (1980) ). 

(6.3) Grobner bases and S-polynomials.
 
Let I be an ideal in ?l[Xl'... 'X ] and B let be a finite set of polynomials. B is a Grobner
 n

base for I iff <B> = I and ~B is confluent. Since :4B is noetherian, confluence is equiva­

lent to local confluence and this property can be tested with the help of finitely many criti­

cal pairs, which are here called S-polynomials.
 

Let gl = cftl + R(gl) and g2 =ci~ + R(gz) be elements of B such that Cl ~ C ~ 0 ( with­
z 
out loss of generality we assume, that the head coefficients of the polynomials in B are 
positive ). The S-polynomial S(gl,gZ) of gl and gz is defined as follows: 

tive monoid ( with neutral element 1 = X?..Xg ), which is isomorpic to the additive

monoid IN“.
A linear ordering < on Tn is called compatible iff for all r, s, t 6 Tu r < s implies rt < st

and it is called admissible iff it is compatible and satisfies 1 < s for all s e Tn. It is easy
to see that a compatible linear ordering on Tn is admissible iff it is noetherian.

Complete descriptions of all compatible linear orderings have been given by Trevisan
(1953), Zaiceva (1953) and, more recently, by Robbiano (1985) and Martin (1988):
Any compatible linear ordering < on Tn is completely determined by a nxs matrix U< of s

S n orthogonal vectors u l ,  . . . ,  us 6 IRn of (D-dimension n as follows: Xll‘l...Xfin < X11“...Xgn iff

the first non-zero element of (111 — kl ,  , hn — kn) - U< is greater than zero.

It is easy to see that the compatible linear ordering < is admissible iff in any row of U<,

the first non-zero entry is greater than zero.

(6.2) Rewriting with polynomials. _
For a polynomial f and a term t which occurs in f, coeff(t,f) denotes the coefficient of t in f.
If t does not occur in f, we define coeff(t,f):= 0. Let < be an admissible ordering and let f—=
at  + g be a polynOmial in Z[X1,...,Xn] such that t e Tn is the greatest term in f w.r.t. <

and coeff(t,i) = a e Z is the coefficient of t in f. Then t is called head-term of f ( HT(f) ), a
is called head-coefficient of f ( HC(f) ) ,  a-t is called head-monomial of f ( HM(i) ) and g
= f -HM(f) i s  called rest of f ( R(f) ).
A set F of polynomials induces the following rewrite relation on ZlXP...,Xn]:

f —>F g iff ( l )  f contains a term t with coefficient a.

(2) F contains a polynomial h such that HT(h) = t-s ( for some s 6 TH )

and |HC(h)I s Ial.
(3) g = f— h-b-s, where a = b-HC(h) + c for O S c < IHC(h)l‚ b, c e Z.

LCt 39F ( resp. i)}? ) denote the reflexive, transitive ( resp. transitive ) closure of —>F. It

can be shown ( using a multiset extension of < ) that i)}? is noetherian. The set F gener-

ates an ideal <F> in Z[X1,...,Xn] and this ideal induces a congruence E<F>, namely f

54:) g iff f — g e <F>. This congruence is the reflexive, transitive and symmetric closure

of -—)F ( Bachmair—Buchberger (1980) ).

(6.3) Gro'bner bases and S-polynomials.
Let I be an ideal in Z[X1‚...‚Xn] and B let be a finite set of polynomials. B is a Gröbner

base for I iff <B> = I and —>B is confluent. Since i>B is noetherian, confluence is equiva—
lent to local confluence and this property can be tested with the help of finitely many criti-
cal pairs, which are here called S-polynomials.
Let g]  = cl-t1 + R(g1) and g2 = 02-t2 + R(gz) be elements of B such that c1 Z c2 _>_ 0 ( with-
out loss of generality we assume, that the head coefficients of the polynomials in B are
positive ). The S-polynomial S(g1,g2) of g1 and g2 i s  defined as follows:





Let s!"tl = s2'~ = lcm(tl'~) and cl = a,c2 + b, 0 ~ b < c2 ~ Cl' a ~ 1. Then 

S(gl'g2) := s!"gl - a,s2'g2 =b·s!"tl + s(R(gl) - aosiR(g2)' 

Now B is a Grobner base iff for every pair of polynomials in B the S-polynomial reduces 

to 0 w.r.t. ~B' 

If B is a Grobner base for the ideal I, then f e I iff f ~B 0 and f ~ g iff f and g reduce to 

the same ~B-irreducible element. Thus we can decide ideal membership for I, if we have 

a Grobner base for I. But a Grobner base can always be constructed, if a finite set of gen­
erators of I ( which always exists by Hilberfs Basis Theorem) is given. 

(6.4) Buchberger's algorithm.
 

Let I be an ideal in ~[Xl,...,X ] and F be a finite set of polynomials such that <F> = I.
n
As described in (6.3), we can effectively test whether F is a Grobner base for I. If F is 

not a Grobner base, we can eX~~Il~ :F by the ~F-~ucibles of _tl1Qs~ S-polyno:rnials, 

which do not reduce to 0, and test again. This completion procedure always terminates 
with a finite Grobner base for I ( see e.g. Kandry-Rody-Kapur (1988) for more details ). 
This termination property is a consequence of Dicksons Lemma ( Dickson (1913) ), 
which holds for free commutative monoids, but not for free monoids ( see e.g. Mora 
(1985) ). 

In the sequel, the following notation will be convenient: Let hI' ... , hm be elements of 

~[Xl'...,xn]' We denote the 1xm-matrix (hl'...,h ) by h and the mx1 matrix (hl'...,hm)Tm

( here T denotes the transpose of matrices) by Ih.
 

Let (*) flxl + ... + f~ = fo be an ( inhomogeneous) linear equation in ~[Xl'""Xn]'
 

According to Section 3 we have to fmd one solution for (*) and finitely many generators of
 

the solutions of the homogeneous equation (**) flx l + ... + f~ = O.
 

We first construct a Grobner base B ={gl' ..., gs } for I := <{ f l , ..., fr }>. Since <B> = I,
 

there exist an rxs-matrix P and an sxr-matrix Q with entries in Zl[Xl""'Xn] such that
 

foP = g and g.Q = f. This matrices can be obtained as by-products of the Grobner base
 
construction.
 

Obviously, (*) has.a solution iff fo e I. Hence, if (*) has a solution, then f reduces to 0
 o
w.r.t ~B' This yields Pt' ..., Ps e ~[Xl'""Xn] such that g·lp= fo' But then P·lp is a solu­

tion of (*). 

We now assume that we already have finitely many generators Iz(l), ... , Iz(L) of the solu­

tions of the equation (++) glxl + .., + gsx = O. Then P·lz(l), ..., P·lz(L) are solutions ofs 
(**), but in general they do not generate all solutions. Let Er be the rxr identity matrix 

and let It(1), ..., It(r) be the columns of the matrix PQ - Er' Since f(PQ - Er) = foPQ - fEr 

=.&:.Q - f = Q, these columns are solutions of (**). 
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Let s l - t 1=  $2-t2 = 1cm(tl,t2) and c1 = a-c2 + b ,  O S b < 02 S c l ,  a 2 1 .  Then

S(g1,g2) := sl-g1 — a-sZ-g2 = b-sl-tl + sl-R(g1) — a-s2-R(g2).

Now B is a Gröbner base iff for every pair of polynomials in B the S-polynomial reduces
to O w.r.t. _)B‘

I fB isaGröbnerbasefortheidealI,then f e  I i f f f i>BO and fEIg i f f fandgreduce to

the same ->B-irreducible element. Thus we can decide ideal membership for I, if we have
a Gröbner base for 1. But a Gröbner base can always be constructed, if a finite set of gen-
erators of I ( which always exists by Hilbert’s Basis Theorem ) is given.

(6.4) Buchberger’s algorithm.
Let I be an ideal in Z[X1,...,Xn] and F be a finite set of polynomials such that <B> = I.
As described in (6.3), we can effectively test whether F is a Gröbner base for I. If F is
not a Gröbner base, we can extend F by the eF—üjreducibles ofthgsg S-polynomials,

which do not reduce to O, and test again. This completion procedure always terminates
with a finite Gröbner base for I ( see e.g. KandJy-Rody—Kapur (1988) for more details ).
This termination property is a consequence of Dicksons Lemma ( Dickson (1913) ),
which holds for free commutative monoids, but not for free monoids ( see e.g. Mora
(1985) ).

In the sequel, the following notation will be convenient: Let h l '  ..., hm be elements of

Z[X1‚...‚Xn]. We denote the lxm-matrix (h1‚...‚hm) by h and the mxl matrix (hl,...,hm)T
( here T denotes the transpose of matrices ) by Ih.
Let (*) f1):l + + fr": = f0 be an ( inhomogeneous ) linear equation in Z[X1,...,Xn].

According to Section 3 we have to find one solution for (at:) and finitely many generators of
the solutions of the homogeneous equation (**) flxl + + fr": = 0.

We first construct a Gröbner base B = { g l ,  ..., gs ] for I := <{ f1, ..., fr }>. Since <B> = I,

there exist an rxs-matrix P and an sxr-mattix Q with entries in Z[Xl,...,Xn] such that

f-P = g and g-Q = f. This matrices can be obtained as by-products of the Gröbner base
construction.
Obviously, (*) hasa  solution iff f0 6 1. Hence, if (*) has a solution, then f0 reduces to 0

w.r.t —-)B. This yields Pl ’  ..., ps e Z[Xl,...,Xn] such that g-lp .= fo. But then P-lp is a solu—

tion of (at:).

We now assume that we already have finitely many generators Izm, ..., Iza‘) of the solu-
tions of the equation (++) glx1 + + gsxs = 0. Then P420), ..., P-Iza‘) are solutions of

(**), but in general they do not generate all solutions. Let Er be the r><r identity matrix

and let It“), It“) be the columns of the matrix PQ — Er. Since g-(PQ _ Er) = g-PQ — fi-Er
= g;Q — f = Q, these columns are solutions of (**).





LEMMA 6.5. The finitely many vectors P·lz(1), ..., P.lz(L), It(1), ... , It(r) are solutions of 
(**) and they generate all solutions of this equation. 

PROOF. Let Iq = (ql'... ,qr)T be an arbitrary solution of (**). Then Q·lq is a solution of 

(++) and thus there are aI' ..., aL E 7l[Xl'...,xn] such that Q·lq = a(lz(l) + '" + aLlz(L). 

Now Iq = PQ·lq - (PQ - Er)·lq =a1·(P.lz(1» + .., + aL·(P·lz(L» + ql·lt(l) + ... + qi1t(r). 

We now show how to solve the equation (++) glx1 + .,. + gsxs =0, if B = {gl' ..., gs } is a 

Grobner base.
 
For a set { q1' ..., qs } of polynomials the complexity measure BS(q],...,q) is defined as
 

follows: Let t := max{ HT(q1)' ..., HT(qs)} and for all i, I ~ i ~ s, let ai := cooff(t,qi)
 

( Note that ai = °for HT(qi) < t). Then BS(ql'···,qs) := (Ia11+ ... + lasl).t.
 

Now t is called the tenn and la1' + ... + la ' the coefficient of BS(ql'...,qs)' We define
s

a·t =BS(q1,... ,qs) < BS(ql' ,···,qs') =a' ·t' iff t < t' or t =t' and a < a'. 

Let S(g.,g.) = s.·g· - a·s.·g· = b·s.·t· + sl·R(g.) - a·s.·R(g.) be the S-polynomial of g. and
IJ 11 JJ 11 1 J J 1 

gj ( see 6.3 ). Since B is a Grobner base, we have S(gi,gj) -4B O. This derivation yields 

polynomials wl' ..., ws such that 

k=s 
S(gi,gj) = L k=l wk'gk 

and BS(w(gl'...,ws·g ) = c·t' for some t' < s{ti, if b = 0, or BS(w(gl'... ,ws·g ) = b·s{ti, ifs s

b *0. 
Now sfgi - a,srgj = S(gi,gj) = w(gI + ... + ws'gs implies w(gl + ... + (wCsi)-gi + ... + 

(w/a.sj)·gi + ... + ws'g = 0. Thus IWij := (wl'...,wi-si,... ,w/a.sj,...,ws)T is a solution ofs 
the equation (++). 

LEMMA 6.6. The fmitely many vectors IWij generate all solutions of (++). 

PROOF. Let Ip = (Pl'...,ps)T be a solution of (++) and let t = max{ HT(glPI)' ...,
 

HT(gsps) }. We prove the lemma by induction on BS(glPl'...,gsps)' Since g·lp = 0, there
 

exist i, j such that HT(gjPj) = t =HT(gjPj) and HC(gjPj) and HC(gjPj) have different sign.
 

Without loss of generality.we assume that ci := HC(gj) ~ HC(gj) =: cj > 0. Obviously, tj
 
:= HT(gi) and tj := HT(gj) are divisors of t and thus lcm(ti,tj) = sjtj = sjtj divides 1, Le.
 

there exists r with rsjtj = rsh =t.
 

We now consider the case HC(giPj) > °and HC(gjPj) < 0 ( the other case is similar ).
 

The vector Iq = (ql'...,qs)T := Ip + r.lwij is a solution of (++) and we have glql = gIPl +
 

glrwl , ... , g.q. = g.p. + g.rw. - g.rs., ..., g.q. = g.p. + g.rw. + g.ars., ..., g q = g p + g rw

1 1 1 1 1 1 1 1 J J J J J J J J s s s s s s' 

If max{ HT(glqI)' ..., HT(gsqs) } < t, the lemma is proved by induction, since the tenn of 

BS has decreased. Otherwise max{ HT(gIqI)' ..., HT(gsqs) } = t and we have to calcu­
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LEMMA 6.5 .  The finitely many vectors P-Iza), . . . ,  P-lza‘), Ita),  ..., It“) are solutions of
(**) and they generate all solutions of this equation.

PROOF. Let lq = (q1,...‚qr)T be an arbitrary solution of (**). Then Q-lq is a solution of

(++) and thus there are a l ,  ..., aL e Z[X1,...,Xn] such that Q-Iq = al-Iza) + + ala").

Now lq = PQ-Iq _ (PQ— Er)-Iq = al-(P-lz(1)) + + aL-(P-lzm) + ql-lta) + + qr-ltm.

We now show how to solve the equation (++) glx1 + + gS s = 0, if B = { g1, gs } is a
Gröbner base.
For a set { ql ,  ..., qs } of polynomials the complexity measure BS(qI,...,q‘) is defined as

follows: Let t :=  max{ HT(q1), ..., HT(qs)} and for all i ,  1 S i S s, let ai := coeff(t,qi)

( Note that ai = 0 for HT(qi) < t ). Then BS(q1‚...‚qs) :=  (lall + + las|)-t.

Now t i s  called the term and Iall + + las! the coefficient of BS(ql,...,qs). We define

a t  = BS(ql,...,qs) < BS(q1’,...,qs’) = a’-t’ iff t < t ’  or t = t’ and a < a’.

Let S(gi‚gj) = si-gi — a-sj-gj = b-si-ti + sl-R(gi) — a-sj-R(gj) be the S—polynomial of gi and

gj ( see 6.3 ). Since B i s  a Gröbner base, we have S(gi‚gj) “**)B 0. This derivation yields

polynomials WI, ..., ws such that
2k=s

S(gi‚gj) = k=1 Wk'gk

and BS(wl-g1,...‚ws-gs) = c-t’ for some t’ < si-ti, if b = 0, or BS(w1-gl,...,ws.gs) = b-si-ti, if

b = 0.
Now si-gi — a-sj-gj = S(gi‚gj) = Wl-g1 + + ws-gs implies wl-gl + + (wi—si)-gi + +

(wj+a-sj)-gi + + ws-gs = O. Thus Iwij :=  (w1‚...,wi—si,...,wj+a-sj,...,ws)T is a solution of

the equation (++).

LEMMA 6.6. The finitely many vectors Iwij generate all solutions of (++).

PROOF. Let lp = (pl,...‚ps)T be a solution of (++) and let t = max{ HT(g1p1)‚ ...,

HT(gsps) }. We prove the lemma by induction on BS(glp1,...,gsps). Since g-Ip = 0, there
exist i ,  j such that HT(gipi) = t = HT(gjpj) and HC(gipi) and HC(gi-) have different sign.

Without loss of generality .we assume that ci := HC(gi 2 HC(gj) =: cj > O. Obviously, ti
:=  HT(gi) and tj :=  HT(gj) are divisors of t and thus 1cm(ti,tj) = siti = sjtj divides t, i.e.

there exists I with rsiti = rs.t. = t.
J J

We now consider the case HC(gipi) > 0 and HC(gjpj) < 0 ( the other case is similar ).
The vector Iq = (q1"" ’qs )T  ;: Ip + r—lwij is  a solution of (++) and we have glq1 = glpl  +

glrw 1’ ..., giqi = giPi + girwi _ girsi, ..., nj = nj + gjrwj + gjarsj, ..., gsqs = gsps + gsrws.
If max{ HT(g1ql), ..., HT(gsqs) } < t, the lemma is proved by induction, since the term of
BS has decreased. Otherwise max{ HT(glql),  ..., HT(gsqS) } = t and we have to calcu-





late the coefficient ofBS(gIqI""'~sqs)' The triangle inequality yields 

BS(gIql'···,gsqs) :::; BS(gIPl'···,giPi - glsi'... ,gjPj + gjarsj'..·,gsps) + b·t, 

since BS(gIrw1'...,gsrws) = r·b·s{ti = b·t ( for b > 0 ) or BS(gIrw1'...,gsrws) has a term
 

which is smaller than t (for b = 0).
 

We have Icoeff(t,giPi - glsi)1 = Icoeff(t,giPi)1 - ci ( since coeff(t,giPi) = HC(giPi) ~ ci ~ 0 )
 

and Icoeff(t,gjPj + gjarsj)1 < Icoeff(t,gjPj)1 + aCj ( since coeff(t,gjPj) = HC(gjPj) < 0 and
 

coeff(t,gjarsj) = aCj > 0 ).
 

Thus BS(gIP1'···,giPi - glsi' ,gjPj + gjarsr..,gsps) < BS(gIPl'···,gsps) + (acj - ci)-t and,
 

since ci = a,cj + b, BS(gIQl, ,gsqs) < BS(gIPl'... ,gsp )' This completes the proof of Lem­s
ma 6.6 by induction on BS. 

Now we have completely described a method to solve linear equations in 7l[Xl'...,xn]' 

EXAMPLE 6.7. As an example, consider the equation fIx1 + f2"2 + f3x3 = fO for fO = 

X3YZ2- X3y 3Z2, f = X3yZ - XZ2, f2 =xy2Z - XYZ and f3 = X2y 2 - Z.1 
First, we have to calculate a Grobner base for the Ideal I, generated by f1' f2 and f3. Let < 

be the admissible ordering defined by the matrix 

1 0 0 JM< = 1 0 1 ( that means: first order by total degree and, within a given degree, 
( 1 1 0 order lexicographically with X < Y < Z ). 

With respect to this ordering, the Buchberger algorithm yields the Grobner base B = { gl' 

2 2 2 2 22 3
g2' g3' g4' gs } ' where gl = f2' g2 = f3' g3 = X YZ - Z , g4 = YZ - Z and gs = X Z - Z . 

By keeping track of how the gi are generated in this process, we obtain the transforma­

tion matrix P such that foP = g and, by reduction of the ~ w.r.t. ---7B, we get the matrix Q 

such that ,g.Q = f. In our example 

o o o o o 
P= 1 o -X Xy -ZX-X3Y 

o 1 Z -YZ+Z Z2 + X2yZ _ X2Z 

andQ= 

010 
001 
X 0 0 
000 
000 

We now determine whether foE 1= <B>, Le. whether fOreduces to 0 w.r.t. ---7B: 

fo ---7B fo- gs'XY = XYZ3 - X3y3Z2 ---7B fo- gs'XY + g3'XY2z = XYZ3- xy2Z3 ---7
B 

fo- gs'XY + g3·xy2Z + g4'XYZ = XYZ3- XYZ3 = O. 

Thus fO= gfO + g2'0 + g3'(-XY2z) + g4'(-XYZ) + gsXY E <B> = I and we can use the 

transformation matrix P to obtain a solution of the equation f1x1 + f2x2 + f3x3 =fO:
 

p.( 0, 0, _xy2Z, -XYZ, Xy )T = ( 0, -X2yZ - x4y 2, X3y 2Z _ X3yZ )T.
 

The next step is to determine the solutions IWij of the equation glxl + ... + g5xS = O.
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late the coefficient of BS(glql,...,gsqs). The triangle inequality yields

BS(g1q1‚...‚gsqs) S BS(glpl‚...‚gipi—— girsi‚...,gjpj + gjarsj,...‚gsps) + b-t,

since BS(glrw1,...,gsrws) = rb-si-ti = b-t ( for b > O ) or BS(g1rw1,...,gsrws) has a term

which is smaller than t ( for b = O ) .
We have Icoeff(t‚gipi — girsi)| = Icoeff(t,gipi)| —— ci ( since coeff(t‚gipi) = HC(gipi) 2 ei 2 0 )
and Icoeff(t‚gjpj + g.arsj)l < lcoeff(t,gjpj)l + acj ( since coeff(t,gjpj) = HC(gjpj) < 0 and

J
coeff(t,gjarsj) = acj > 0 ).

Thus BS(g1p1,...‚gipi — girsi‚...‚gjpj + gjarsj,...,gsps') < BS(glp1,...,g§ps) + (acj — ci)-t and,

since ci = a~cj + b,  BS(g1q1,...,gsqs) < BS(g1pl,...,gsps). This completes the proof of Lem-

ma 6.6 by induction on BS.

Now we have completely described a method to solve linear equations in Z[X1‚...‚Xn].

EXAMPLE 6.7. As an example, consider the equation flx1 + f2):2 + f3x3 = fo} for f() =

X3Y22 — X3Y3Z2, fl = X3Yz — X22, f2 = XY2Z _ XYZ and f3 = X2Y2 — z.
First, we have to calculate a Gröbner base for the Ideal I, generated by f1, f2 and fg. Let <

be the admissible ordering defined by the matrix
1 O 0

M< = l O 1 ( that means: first order by total degree and, within a given degree,
l 1 0 order lexicographically with X < Y < Z ).

With respect to this ordering, the Buchberger algorithm yields the Gröbner base B = { gl ,

g2, g3, g4, g5 }, where g1 = f2, g2 = f , g3 = XZYZ — ZZ, g4 = YZ2 — Z2 and g5 = X222— Z3.
By keeping track of how the gi are generated in this process, we obtain the transforma-

tion matrix P such that f-P = g and, by reduction of the fj w.r.t. —) , we get the matrix Q

such that g-Q = £. In our example

0 0 0 0 0 0 1 0
P:  1 0 —X XY —ZX—X3Y andQ= g ig  (1)

0 1 z —YZ+Z ZZ+X2YZ-XZZ 8 g 3

We now determine whether f0 6 I = <B>, i.e. whether f0 reduces to 0 w.r.t. —)B:
_ 3 3 3 2 _ 3 3f0 —>B fo—gS-XY —XYZ —x Y z —>B fo—gs-XY+g3-XYZZ—XYZ —XY2Z —>

f0 _ gs-XY + g3-XYZZ + g4-XYZ = XYz3 _ XYZ3 = o.
Thus f0 = gl-O + g2-O + g3-(—XYZZ) + g4-(—XYZ) + gS-XY e <B> = I and we can use the
transformation matrix P to obtain a solution of the equation f lx1 + f2x2 + f3x3 = fo:

P-( o, o, —XY22, —XYZ‚ XY )T = ( 0, —X2YZ _ X4Y2, X3Y22 _ X3Yz )T.
The next step is to determine the solutions lwij of the equation glx1 + + gsx5 = 0.

B





S(gl,g2) = gfX - g2'Z = _X2yZ + Z2 = -g3 and thus gf(-X) + g2'Z + g3·(-I) + g4'0 +
 

gS'O =O. That means Iwl ,2 =(-X, Z, -1, 0, 0)T.
 

S(gl,g3) =gfX - g3'Y = _X2yZ + YZ2 =-g3 - Z2 + YZ2 = - g3 + g4 and thus we get
 

IWI,3 = ( -X, 0, Y -1, 1,0 )T.
 

Similar computations yield the other vectors IWii
 

IW ,4 = (-Z, 0, 0, XY, 0 )T, Iwl,S = (-XY, 0, -Z, YZ + Z, y 2 )T,
I
 
T I (0 2 --2 T
IW2,3 = (0, -Z, Y, 1,0) , w2,4 = ,-Z ,Z, X Y, 0) ,
 

Iw2,5 = (0, _Z2, 0, YZ + Z, y 2 )T, IW3,4 =(0, 0, -Z, X2, 1 )T,
 

Iw ,S = (0,0, -Z, Z, y)T, Iw4,S = (0,0,0, _X2 + Z, y -1 )T.
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Now we use the transformation matrix P to obtain solutions of the homogeneous -equa­
tion flx l + f2~ + f3x3 = 0: - ­

P.lwl ,2 =(0,0,0 )T, P.lwl,3~-{O;0~O)T, 

P.lwl ,4 = (0, X2y 2 - Z, _xy2Z + XYZ )T, P.lwl,S = (-XY).P.lwl ,4' 

P.lw2,3 = (0,0,0 )T, P.lw2,4 =X.p.lwl ,4' 

P.lw2,S =P.lwl,S. =(-XY}P.lwl ,4' P.lw3,4 =(0,0,0 )T, 

P.lw3,S =-P.lw2,4 =(-X}P.lwl,4' P.lw4,S =P.lw3,S= (-X)-P~lwl,4'-

The solution P.lwl4 = ( 0, X2y 2 - Z, _xy2Z + XYZ )T thus obtained does not generate , ­

all solutions of flXl + f2~ + f3x3 = O. In addition, we need the columns of the matrix­

-1 00 

P.Q-E3 = _X2 0 0 

XZ 0 0 

All solutions of the homogeneous equation flx l + f2~ + _f3x3 = 0 are generated by the 

two solutions (0, X2y 2 - Z, - Xy2Z + XYZ)T and (-1, _X2, XZ )T. 

EXAMPLE 6.8. As a second example, we consider the equation XXI + Xx2 = x2 + x2x3 
of Section 4, but now we want to solve it in 7l[X]. Hence we have to solve the homoge­

neous equation flxl + f2~ + f3x3 ~ 0 for fl = X, f2 =X-I and f3 = _X2. It is easy to see 

that <{ ft' f2, f3 }> =7l[X] and that B = { gl } for gl = 1 is the corresponding Grobner 

base. The transformation matrices are P =( 1, -1,O)T and Q=(X, X-I, _X2 ). 

Obviously, the equation glxI has only the trivial solution Xl =O. Thus the columns of 

X-I X-I _X2 

P'Q-E3 = -X -X X2 , 

o 0 -1 

S(gl,g2) = gl.X _ g2-Z = _x2Yz + 22 = _g3 and thus g1'(—X) + gzz + g3_(_1)  + g4_0 +

350 = 0. That means 1v2 = (—x,  z, —1, 0, 0 )T.

S(gl,g3) = gl-X —- g3-Y = —-X2YZ + Y22 = —g3 — Z2 + YZ2 = — g3 + g4 and thus we get

twL3 = ( —x, 0, Y— 1, 1, 0 )T.

Similar computations yield the other vectors Iwij:

|w14=(_z ‚o ‚o ‚xy ‚0 )T‚  |w15=(_XY‚0‚—‘Z‚YZ+Z‚Y2)T‚
lwl3 =(0,—z, Y, 1, of, |w24 =(0,—zz,z,X2Y, 0)T,
|w25 =(0‚ —zz, 0, YZ+Z, Y2 )T‚ s,4 =(0, 0, -z, X2, 1 )T,

Iw35=(00—Z,ZY)T |w45=(0(L,0—X2+Z Y_1)T
Now we use the transformation matrix P to obtain solutions of the homogeneous equa-
tion flx1 + f2x2 + f3x3=—O. .

P-l2 = ( 0, 0, 0 )T, 11l garniwo'fl,
P-l 4 = ( 0, x21?2 — z, -XY22 + XYZ )T, P-l 5 = (—XY)-P-lw1 4 ,
13-t4 =(0, 0, 0 )T, P.1w2’45f-1w4’4,
P"W2,s = P-Iwu = (_m-IWL4 , P-Iw3,4 =( 0, 0, 0 )T,
P-lw3 S = —P-|w2_ 4=  (-X)-P-l 4 , P-Iw4'5 = P-IW3 5‘ :  (——X)-P:_IW1,4. _--_ _

The solution P--lw1 4 = ( 0, X2Y2— Z, -—XYZZ + XYZ )T thus obtained does not generate
all solutions of f1x1  + fzxz + f3x3: —.0 In addition, we need the columns of the matrix

_1  0 -0
P-Q—E3= —x2 0 0

xz 0 0
All solutions of the homogeneous equation flx1 + f2x2 +_f3x3 = 0 are generated by the

two solutions ( 0, x21!2 — z, —XY2Z + XYZ )T and (—1,—x2, xz )T.

EXAMPLE 6.8. As a second example, we consider the equation Xx] + s = x2 + X7'x3
of Section 4, but now we want to solve it in ZIX]. Hence we have to solve the homoge-
neousequation f1x1+f2f3x2+x3=0 forfl=X,f2=X—1andf3=—X2.Itiseasytosee
that < [ f1 , f2 ,3 f  }>=  ZlX] and 3that B = { g1 } for g1 = 1 is the corresponding Gröbner_

base. The transformation matrices are P :  ( 1, —l, 0 )T and Q= ‚ (  X, X .—_1, —X2 ).

Obviously, the equation glxl has only the trivial solution x1 = 0. Thus the columns of

x—1 x_1  _x2

P-Q—E3 = _x _x x2 ,
0 0 —1





i.e. (X - 1, -X, 0 )T and ( _X2, X2, _1)T, generate all solutions of XXI _. XX2 = x2 + x2x3 
in ~[X])3. 

7. AGnH-Unification 

It is easy to see that S(AGnH) is isomorphic to the ring ll<Xl'."'Xo>' Le. the polynomi­

al ring over II in the non-commuting indeterminates Xl' ..., Xo. Unfortunately, for n ~ 2 

this ring is not noetherian ( see Mora (1985) ) and the membership problem for finitely 
generated two-sided ideals is undecidable ( Kandry-Rody-Weispfenning (1988) ). For­
tunately, we are not interested in two-sided ideals, but only in right ideal. The solutions 
of a homogeneous equation flxl + ... + f~ =0 are only closed under right multiplication 

and the inhomogeneous equation flx l + ... + f~ =fohas a solution iff fo is a member of 

the right ideal generated by fl' ...., fr. Though, for n ~ 2, ll<Xl'..',xo> is not even right 

noetherian ( Le. there are right idealsin71<Xl'0"'Xo>' which are not finitely generated ), 

the set of solutions of a homogeneous equation flxl + ... + fr'Cr = 0 is a finitely generated 

right 7l<X1'... ,xo>-semimodule and the membership problem for finitely generated right 

ideals is decidable in71<Xl'..',xo> (see Section 8 and 9 ).This yields 

PROPOSITION 7.1. For any n ~ 0 the theory AGnH is unitary and it is also unitary 
w.r.t. unification with constants. . 

8. "Grobner bases" for finitely generated right ideals in Z<Xl'...,X > n 

The construction of Grobner bases for finitely generated right ideals in K<Xl'.'.'Xo>' 

where K is a field, is very easy ( Mora (1985) ). For ll<Xl'... ,xo> one has to be more 

careful. 
The rOle of terms in the commutative case is now played by words over the alphabet Lo
 
:= { Xl' ..., Xo }0Let Wo be the set of these words, Le. the free monoid generated by Lo'
 

and let 1 denote the empty word.
 
A total ordering < on Wo is called admissible iff the following two conditions hold:
 

(1) For all s, t, r e Wo s < t implies sr < tr (compatibility with right concatenation ). 

(2) For all s e Wo the set { t e Wo; t < s } is finite. 

LEMMA 8.1. Let < be an admissible ordering on Wo. 

(1) < is order-isomorphic to co and thus noetherian. 
(2) l<tforallte Wo \{ I}. 

(3) s = tr for r '# 1 implies s > 1. 

Examples of admissible orderings are graded lexicographical orderings and, more general, 
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i.e. (x  — 1, —x, 0 )T and ( —x2, x2, —1)T, generate all solutions of Xx1 —- s = x2 + X2x3
in (Z[X])3-

7. AGnH-Unification

It is easy to see that S(AGnH) is isomorphic to the ring Z<Xl,...,Xn>, i.e. the polynomi-

al ring over 2 in the non-commuting indeterminates X1, ..., Xn. Unfortunately, for n 2 2
this ring i s  not noetherian ( see Mora (1985) ) and the membership problem for finitely
generated two—sided ideals i s  undecidable ( Kandry-Rody—Weispfenning (1988) ). For—
tunately, we are not interested in two-sided ideals, but only in right ideal. The solutions
of a homogeneous equation flxl + + fB‘r = 0 are only closed under right multiplication
and the inhomogeneous equation flxl + + fr":- = f() has a solution iff fO is a member of
the right ideal generated by f , „.., fr. Though, for n 2 2, Z<X1‚...,Xn> is not even right
noether-ian ( i.e. there are right idealsfin--—Z<Xl,...‚Xn>‚ which are-not finitely generated ) ,

the set of solutions of a homogeneous equation f lxl  + + frxr = 0 is a finitely generated
right Z<Xl,...,Xn>-semimodule and the membership problem for finitely generated n'ght
ideals is  decidable inZ<Xl,...,Xn> ( see Section 8 and 9 ). This yields

PROPOSITION 7.1. For any n 2 0 the theory AGnH is unitary and it is also unitary
w.r.t. unification with constants. '

8. " Gröbner bases" for finitely generated right ideals in Z<X1‚...,Xn>

The construction of Gröbner bases for finitely generated right ideals in K<Xl,...,Xn>,
where K is a field, is very easy ( Mora (1985) ). For Z<Xl,...,Xn> one has to be more
careful.
The röle of terms in the commutative case is now played by words over the alphabet En

:= { X1, ..., Xn }. Let be the set of these words, i.e. the free monoid generated by Zn,
and let 1 denote the empty word.
A total ordering < on Wn is called admissible iff the following two conditions hold:

(1) For all s ,  t, r e W“ S < t implies sr < tr ( compatibility with right concatenation ).

(2 )Fora l l se  Wntheset  { t e  Wn;t<s  } isfinite.

LEMMA 8.1. Let < be an admissible ordering on W“.

(1) < is order-isomorphic to a) and thus noetherian.
(2) 1< t fo ra11 te  Wn\{  1} .

(3) s = trforraé 1 implies s > t.

Examples of admissible orderings are graded lexicographical orderings and, more general,





1~
 

all suffle-compatible total orders ( see Leeb-Pirillo (1988) ). The complete characteriza­

tion of all concatenation-compatible ( resp. right concatenation-compatible ) linear order­

ings is still an open problem.
 
We now extend admissible orderings to monomials and polynomials.
 

D~FINITION 8.2. Let < be an admissible ordering on Wn' . .' '.' .
 

(1) Let a, bEll and s, t e Wn' Then as < bt iff s < tor s ==tandlal <Jblor s ~ t and. 

lal = Ibl and a < b. This defines a well-ordering cm the mono~alsof71<Xl,..~~icn>' .• 

(2) Let f = ~aisi and g ='~ biti be two polynomials, i.e~ ele~ents of 7Zd1,...,xn>.}'fhen 

we define f < g iff { ... aisi, ..~} « { ... biti, ..: }, where« denotes th~ .multiset order­

ing (see Dershowitz-Manna (1979» induced by th~ oni~rinioe::: on monomials.·· 
(3) Let f be a polynomial. We write f = at + R(t) if tis the maximal ( \v'.r.t: <) word in f 
( t = HW(t) ) and a is the coefficient of t in f ( a=HC(t)r ; .•.•••. •.... .•••.. ..........' '. • 
(4) For a set F of polynomials in 7l<X1""'X >' the ·ti.<lribtt.6n,rel~~on':;;isde~¥,as innS'ectton 6, 6.3. ·''' ·-.'c'··.-,-·.' """'., " .•:. ,. . ......•• ':'C--"'" ,--.- -.- ~- ~---•..­

.•- ',.> 

For K<Xl""'X >, Mora (1985) has described a very ea~yalgoritlun.,whjcbttansf~JJllsan
finite set F of polynomials into a "Grobner base" ( see.Mora(l985rfor·ilie·detWi~o~of 
Grobner bases In this cas~ ): _ -. .;' , .. ':" .,.. . 

Start withFo := F. As :long as ther~ arepolynomia1~f,gjp.Fk~:s~c~th~~J!W(f):~~ipI"e-. 
, .,., ' . '..,. .;', :.', "......', '•. ".,. -C:'··,,'.,':·'D',,'·i:·):':•... 

fix of HW(g), g can be reduced by fto a smalle~ polYn,0rni~g"Detif1~:~k:ti::::Wic\;{.g}) . 
" .~.. . ". c· . 

U { g' } and continue with Fk+I il1 place .ofFk· . ,., '".:' ,;:,:\',' 

This process terminates after fi~itely many. steps ~rid yit?lgs. llfiIlite.setc.J6fp6IY~oWials, 
which generates the same right idealas F and has the fQllo\Ving propertY:" .,'Jy "'" . 
For two different elements f and g ~f G, HW(t) andij\\i(g)a:en9tcPnlP~1l~le'W.u.the 
prefix-ordering ( i.e. for any word r,HW(t)·r"* HW(g) an4 HW(g)~t~HW~9 )."" . 

For 7l<X1'...,xn>' we encounter the following problem:~For f .~ a·t + R(f)apd*=b~t-r +', . 

R(g) with t, r e Wn' a, bell and lal > Ibl, HW(t) is prefix of H\Y(g), but ~~Iiead mono­

mial of g can not be reduced by f. If, in addition, b devides a, it may become necessary.to . 
increase the actual set of polynomials ( see Case 4 below), SinceDi~kson's.~emma 
does not hold for free monoids, we have to be very careful,·if we want'to'obiain'atermi­
nating algorithm. . .. .. 

ALGORITHM 8.3. This is the informal describtion~f ~:algOrithm,Which:'~~fotmsa .' . 

fInite set of polynomials { f l , ..., fro } into a "Grobner b~se", Wllic~d~p;~~stl,1~~~~right 
ideal. .. .. ' "', 

In the beginning, F0 := { f I' ... , fro Jand all pairsof indices are J~~k:ed~,c . . . . 
Assume that Fk ( k ~ 0 ) is already defined. If there is' the' zer~,pol;nomi~~ in'-';k,.:ve. 

erase it. While there are f := fi and g := fj in Fk such that 

(1) (i, j ) is not marked and .. . ..:.. .,' 
(2) f = a·t + R(t) and g = b·tt + R(g) for some a, b ~7Llllld t, reWn' 
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all same-compatible total orders ( see Leeb- Pirillo (1988) ). The complete charactenza-_
tion of all concatenation-compatible ( resp. right concatenation-compatible ) linear order-
ings is still an open problem.
We now extend admissible orderings to monomials and polynomials.

DEFINITION 8.2. Let < be an admissible ordering on W.

( l )Le ta ‚beZands ‚ t e  Wu. Thenas<b t  iff s< t  ors=tandlal<lblors—tand__
Ial= Ibl and a < b. This defines a well—Ordering on the monomials of Z<Xl, ,X >

(2) Let f=  Zaisi and g=  2 t  be two polynomials, i.e: elements o<X1, ,Xn> Then;
we define f < g iff { .  ... } << { . .  ' } ,  where __<<__ denotes the multlset _'__o'r_der—a_i s l ’  bi t i ’  " '

ing ( see Dershowitz-Manna (1979) ) induced by the ordering < on monomials
(3) Let f be  apolynomial. We write f :  at + R(f) i f t ' _1s the maximal ( W.r'.t. < ) word m' f
( t=  HW(f) ) and a is the coefficient of t in  f ( a—— HC(f) ) _ .
(4) For a set F of polynomials 1n Z<X ‚X >, the _ _

' Section6 6. 3. '

Gröbner bases''1n this case ); ::. . . _ _
Start with F0 :  = F. As long as there are polynomial

U { g’ } and continue with'Fk-+1' i n  place of 1""'k_'

prefix-ordering ( 1. e. for any word'r,"HW(f)- r # HW(g) and HW(g) r # HW(f) _

For Z<X1,.. ,Xn.>, we encounter the following problem; 'For f -- ' a - t  + R(f)__ and g b 't--r_ +"__ ' " '
R(g) with t, r e W“, a, b e Z and Ial > Ibl, HW(f) ls prefix of HW(g), but' the head' mono-

mial of g can not be reduced by f. If, in addition, b devides a, it may become necessary to '-
increase the actual set of polynomials ( see Case 4 below ). Since Dickson s___ Lemma";
does not hold for free monoids, we have to be very careful. _=i'f We Want to obtain a_t'ermi-_
nating algorithm. -- «

ALGORITHM 8.  3. Th i s '1s the informal describtion of an’ algorithm Which

finite set of polynomials [ f , ... ‚ fm  } into a "Grobner base," whic de'

ideal. ' ’ __ _.
In the beginning,FO := [ fl, .. ‚'mf }_ and "all pairs of mdices are unmarked.

Assume that Fk ( k > 0 ) is already defined. If there is  th'e'_"' zero polynomi __ .0' 1n
erase it While there are f :  =f i  and g .=—fJ ia such that - '

(1 ) ( i , j ) i snotmarkedand ' '
( 2 ) f=  at+R( f )andg=  b tr+R(g) forsomea ,beZandt ‚reW

Fk, we '  ' "

http:�.....���




we do the following: 

CaseI: r=l.
 
Without loss of generality we may assume that lal ~ Ibl. Let a = bc + d for some c, d such
 

that 0 ~ d < Ibl ~ lal.
 

Define f I := f - g·c = d·t + R(f) - R(g)'c and Fk+l := ( Fk \ { f} ) U { fl }. We do not have
 

to mark ( i, j ), since f = fi is removed. 

Obviously, f l < f and f = f l + g·c. Hence Fk+l generates the same right ideal as Fk , but f
 

is replaced by the smaller polynomial fI.
 

Case 2. r:;l!: 1 and lal ~ Ibl.
 

Let b = ac + d for some c, d such that 0 ~ d < lal ~ Ibl.
 

Define gI := g - f·cr = clotr + R(g) - R(f)-cr and Fk+1 := ( Fk \ { g } ) U { gI }.
 

Obviously, gI < g, and g = gl + f·cr. Hence Fk+I generates the same right ideal as Fk, but
 

g is replaced by the smaller polynomialSr
 
Case 3. r:;l!: 1, lal > Ibl and Ibl does not devide lal.
 

Let a = be + d for some c, d such that 0 < d < Ibl < lal. We defme gI := for - g·c = d·tr +
 

R(f)·r - R(g)-c. Since the words occurring in R(f)·r and R(g)·c are smaller than tr, we
 

have HW(gl) = tt, HC(gl) = d and R(gI) = R(f)·r - R(g)·c. Obviously, gI < g, gI E <Fk> 

and the pair gl' g satisfies Case 1. Hence we define g2 := g - g(c1 ( where b = dCl + d}'
 

o~ d l < d ) and Fk+l := (Fk \ { g } ) U { gl' g2 }. Since gI' g2 < g and g = g2 + g(c, Fk+l
 
generates the same right ideal as Fk, but g is replaced by the two smaller polynomials
 

gland g2·
 

Case 4. r:;l!: I, lal > Ibl and Ibl devides lal, Le. there exists c such that a = bc.
 

Define gl := f·r - g·c = R(f)-r - R(g)-c. Now gI < g, but since IcI :;l!: I, g can not be re­

presented using gl. We distinguish the following cases:
 

Case 4.1. There is h E Ui~ Fi with the property HW(gl) = HW(h). 

Case 4.1.1. he Fk and IHC(gI)1 < IHC(h)1.
 

We have gI < hand h may be reduced by gl to some hI < h (see Case 1 ).
 

Define Fk+l := ( Fk \ { h } ) u { gl' hI } and mark ( i, j ). Fk+I generates the same right
 

ideal as Fk, but h is replaced by the two smaller polynomials gIand hI.
 

Case 4.12. he Fk and IHC(gl)1 ~ IHC(h)1.
 

Then gl may be reduced by h to a smaller polynomial g2 ( see Case 1 ). If g2 = 0, Fk+l :=
 

Fk and we mark ( i, j ). Otherwise we continue with g2 in place of gI.
 

Case 4.1.3. he Fk and there is no polynomial in Fk which has HW(h) as head word.
 

Thus the monomial HC(h)HW(h) has been reduced in some previous step. It is easy to
 

see, that then HC(h)HW(h) can also be reduced by ~Fk. If we have IHC(gl)1 ~ IHC(h)I,
 

gl can be reduced and we proceed as in Case 4.1.2.
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we do the following:

Case 1 : r = 1.
Without loss of generality we may assume that Ial 2 lbl. Let a = bc + d for some c, d such
thatO S d < I'bl s Ial.
Define fl :=  f— g-c = d-t + R(f) — R(g)-c and Fk+1 :=  ( Fk \  { f } ) U { f1 } .  We do not have

to mark ( i ,  j ) ,  since f = fi is  removed.

Obviously, f1 < f and f = f1 + g-c. Hence Fk+1 generates the same right ideal as Fk, but f
is  replaced by the smaller polynomial fr

Case2. rat 1 and Ial $ lbl.
Letb =ac  + dforsomec, d suchthatOSd <|a |  Slbl.
Define g1 := g — f-cr = d-tr + R(g) — R(f)-er and Fk+1 := ( Fk\ { g } ) U { gl ] .

Obviously, g1 < g, and g = g l  + f-cr. Hence Fk+1 generates the same right ideal as Fk, but
g is replaced by the smaller polynomial g1.

Case 3. r # 1 ,  Ial > Ibl and Ibl does not devide Ial.
Let a = bc + d for some c, d such that 0 < d < Ibl < Ial. We define gl  := f-r— g-c = d-tr +
R(f)-r — R(g)-c. Since the words occurring in R(f)-r and R(g)-c are smaller than tr, we

have HW(gl) = tr, HC(gl) = (1 and R(gl) = R(f)-r — R(g)-c. Obviously, g1 < g, gl e <12]?

and the pair g1, g satisfies Case 1. Hence we define g2 := g — gl-cl ( where b = dcl + d1,

OSd1<d)andFk+1:=(Fk \ {g} )U{  g l ,g2} .S inceg1 ,g2<gandg=g2+g1-c ,Fk+ l

generates the same right ideal as Fk' but g is replaced by the two smaller polynomials
gland g2.

Case 4. r = 1,  Ial > lbl and lbl devides Ial, i.e. there exists c such that a = bc.
Define g l  :=  f-r — g-c = R(f)-r — R(g)-c. Now g1 < g, but since c #: 1,  g can not be re-

presented using gl .  We distinguish the following cases:

Case 4.1 . There is h e UiSk Fi with the property HW(gl) = HW(h).

Case 4.1 .] . h e F1: and |HC(gl)l < IHC(h)I.
Wehavegl <handhmaybereducedby g1 to somehl <h(seeCase  1 ).

Define Fk+1 :=  ( Fk \ [ h } ) U { g1, h1 } and mark ( i ,  j ). Fk+1 generates the same right

ideal as Fk, but h is replaced by the two smaller polynomials gland hr

Case 4.1.2. h e Fk and IHC(gl)I 2 IHC(h)I.

Then g l  may be reduced by h to a smaller polynomial g2 ( see Case 1 ). If g2 = 0, Fk +1 :=
Fk and we mark ( i,  j ). Otherwise we continue with g2 in place of gl .

Case 4 .1 .3. h e Fk and there is no polynomial in Fk which has HW(h) as head word.
Thus the monomial HC(h)HW(h) has been reduced in some previous step. It is  easy to
see, that then HC(h)HW(h) can also be reduced by '9Fk' If we have IHC(g1)| 2 lHC(h)|,
g l  can be reduced and we proceed as in Case 4.1.2.





Otherwise, Le. if IHC(gl)1 < IHC(h)l, we define Fk+1 := Fk U { gl } and mark ( i, j ). 

Case 4.2. There is no h E Ui~ Fi with the property HW(gl) =HW(h). 

In this case we also define Fk+1 := Fk u {gl } and mark (i,j). 

This completes the description of Algorithm 8.3. We shall soon show that this algorithm 
always tenninates with a finite set of polynomials G, whose properties justify the name 
Grobner base. But first, we consider an example. 

EXAMPLE 8.4. Let f1 = 2abc - bc, f2 = 3ab - 2b, f3 = 5abd - be and f4 = bc - 5bd be poly­

nomials in 7l<a,b,c,d>. We take the graded lexicograpical ordering with a > b > c > d as 
admissible ordering ( Le. u < v iff lul < Ivl or lul = Ivl and u <lex v ) and run Algorithm 

8.3 with input FO: = {fj ,f2,f3,f4}' 

1) For f1 and f2 we have Case 3. 

Define f := f2·c - = abe - bc and f6 := f1 - f5;2= bc. Now f l is replaced by f ' f6, which s f l s 
yields F I = { f2, f3, f4, f ' f6 }. We have f l =f ·2 + f6.s s
2) For f2 and f3 we have Case 2. 

Define f7 := f3 - f2·d = 2abd - bc + 2bd and replace f3 by f7, which yields F2 = { f2, f4, fS' f6, 

f7 }. We have f3 = f7 + fid. 

3) For f2 and f we have Case 4. S 

Define f =fic - fs·3 =bc =f6. Hence we have Case 4.1.2 and since f6 reduces fS to 0, F3S 
= F2 = { f2, f4, f ' f6, f7 } and the index pair (2,5) is marked. S 

4) For f2 and f7 we have Case 3. 

Define f9 := f2·d - f7 = abd - 4bd + bc and f lO = f7 - f9·2 = -3bc + lObd. Now f7 is replaced 

by f9 and f lO, which yields F4 = { f2, [4' fs' f6, f9, f lO }. We have f7 = f lO + f9·2. 

5) For f2 and f9 we have Case 4. 

Define f ll := f2·d - f9·3 =-3bc + lObd. Now HW(fll) = HW(f4) and f4 reduces fll to the 

polynomial f l2 := f ll + f4·3 =-5bd ( Case 4.1.2 ). We continue with f12 in place of f andll 

have Case 4.2, since bd has not yet occured as head word. Hence FS := F4 u { f12 } and
 

(2,5) and (2,9) are already marked.
 
6) For f4 and f6 we have Case 1.
 

Defme f13 := f4 - f6 = f12 and F6 := Fs\ {f4 } = { f2, fS' f6, f9, f10, f 12 }.
 

7) For f6 and f we have Case 1.
lO 

Define f14 := f lO + f6·3 = lObd and F7 := { f2, fs' f6, f9, f12, f14 }. 

8) For f12 and f 14 we have Case 1. 

Since f 14 = f1i(-2), f 14 can be eliminated and we get FS ={ f2, [5' f6, f9, f12 }, where (2,5) 

and (2,9) are marked. 

"?

Otherwise, i.e. if lHC(g1)I < IHC(h)I, we define Bk+1 :=  Pk U { gl  } and mark ( i ,  j ) .

Case 4.2. There is  no h e Uisk Fi with the property HW(gl) = HW(h).

In this case we also define Fk+1 :=  Pk U { gl  } and mark ( i , j  ).

This completes the description of Algorithm 8.3. We shall soon show that this algorithm
always terminates with a finite set of polynomials G, whose properties justify the name
Gröbner base. But first, we consider an example.

EXAMPLE 8.4. Let f] = 2abc — bc, f2 = 3ab — 2b, f3 = Sabd — bc and f4 = bc — 5bd be poly-
nomials in Z<a,b,c,d>. We take the graded lexicograpical ordering with a > b > c > d as
admissible ordering (i .e.  u < v iff lul < Ivl or lul = lvl and u <lex v ) and run Algorithm
8.3 with input F0 : = {f1‚f2‚f3,f4}.

1) For f1 and f2 we have Case 3.

Define f5 := fz-c - fl = abc —— bc and f6 := f1 — fg—2 "= bc."'Now f1 “is replaced by f5, f6’ which

yields F l  = { f2, f3, f4, fs, f6 }. We have fl = f5-2 + f6‘

2) For f2 and f3 we have Case 2.

Define f.] := f3 — f2-d = 2abd — be + 2bd and replace f3 by f7, which yields P2 = { f2, f4, fs, f6’

f., }.  We have f3 = f7 + fZ-d.

3) For f2 and f5 we have Case 4.

Define f8 = f2-c — f5-3 = bc = f6. Hence we have Case 4.1.2 and since f6 reduces £8 to 0, F3

= 2 = { f2, f4, f5, f6, f., } and the index pair (2,5) is  marked.

4) For f2 and f7 we have Case 3.

Define f9 := f2—d - f7 = abd — 4bd + be and flo = f7 - f9-2 = —3bc + 10bd. Now f7 is replaced

by f9 and flo, which yields F4 = { f2, f4, fs, f6, f9, f10 }. We have f7 = f10 + f9-2.

5) For f2 and f9 we have Case 4.

Define f l l  :=  f2-d — f9-3 = —3bc + 10bd. Now HW(fn) = HW(f4) and f4 reduces f11 to the

polynomial f12 := f11 + f4-3  = —5bd ( Case 4.1.2 ). We continue with f12 in place of fll and

have Case 4.2, since bd has not yet occured as head word. Hence F5 := F4 U { f12 } and
(2,5) and (2,9) are already marked.
6) For f4 and f6 we have Case 1.

7) For f6 and flo we have Case 1 .

Define f14 :=  f10 + f6-3 = 10bd and F7 :=  { f2, fs, f6, f9, f12' f14 }.

8) For f12 and f14 we have Case 1 .

Since fl4 = f12'(—2)’ f14 can be eliminated and we get F8 = { f2, f5, f6, fg, f12 }, where (2,5)

and (2,9) are marked.





Hence Algorithm 8.3 terminates with G := Fg = { f2, fS' f6, f9, f12 }. The elements of G are 

gl := f2 = 3ab - 2b, g2 := f = abc - bc, g3 := f6 = bc, g4 := f9 = abd - 4bd + bc and gs := f12s 
=-5bd. 

LEMMA 8.5.
 
For any finite input set FO={ fl' ..., f } of polynomials, Algorithm 8.3 always terminates.
 m 

PROOF. We consider the Fk's as multisets of polynomials, which are ordered by the
 

multiset ordering « induced by the ordering < on polynomials ( see Definition 8.2 ).
 
Since < is well-founded, the multiset extension« is also well-founded.
 
For the Cases 1, 2, 3 and 4.1.1, Fk » Fk+l" Case 4.1.2 and the according subcase of
 

4.1.3 can not occur infinitely often in successive steps, because then gl > g2 > g3 > ... 

would be an infinite descending <-chain. That means, that after finitely many steps gi = 0 

or Case 4.1.1, the other subcase of 4.1.3 or Case 4.2 occur. 
For the Cases 4.1.3 and 4.2, Fk+1 is larger than Fk. But!!J~~_~_cases can only occur finite­

ly often during the whole run of the algorithm. First note, that all words t occurring in 
some polynomial of some Fk satisfy t ~ max{ HW(f1), ..., HW(f ) }. Since < is admissi­m

ble, there are only finitely many words with this property. Hence Case 4.2 can only occur 
fmitely often. Case 4.1.3 - where a head term, which has disappeared in some former 
step, appears again - can only occur finitely often for a certain term, because the absolut 
value of the head coefficient gets smaller each time. 

Before we can state the next lemma, we have to introduce a new notation ( or rather an 
abuse of the usual notation ). Let F be a fmite set of polynomials. The expression 

f =L hiEF h{ai , 

should be interpreted as follows: the ai are monomials in 7l<X1""'X >, f is a fmite sum n

of the polynomials hfai' but an element of F may occur more than once in this sum and 

each occurrence may have a different coefficient ai. 

LEMMA 8.6. Let t E Wn be a word and Fk be the set of polynomials obtained after 

some iterations of Algorithm 8.3. Assume that h is a polynomial and that h = L 0._ h.·a.h. 
lE.ql; 1 1 

for monomials a. with HW(h.·a.) < 1. Then h = Lh., Fk 1 h.'·b. for monomials b. with 
1 11 lE + 1 1 1 

HW(hi'·bi) < t. 

PROOF. For the Cases 4.1.3 and 4.2 we have Fk c Fk+1 and thus we can use the given 

sum. In Case 1, Fk+1 := (Fk \ { f } ) u { f1 } and f = f1 + g·c. In addition we have g E Fk 
and HW(g) = HW(f) ~ HW(f1). Thus a term f.aj in the sum h = L h{ai can be

hiEFk 

replaced by ffaj + g·caj' The other cases can be treated similar. 

LEMMA 8.7. Let G be the output of Algorithm 8.3 ( Le. the actual set Fk, when the al­

gorithm terminates) and let f =a·t + R(f) and g =b·tr + R(g) be elements of G. 

" !

Hence Algorithm 8 .  3 terminates with G .  :P8  = { f2  fs, f6 ’9 f ,  f12 }. The elements of G are

g1g := f2=3ab— 2b ,g2 := f5=abc— bc, g3 :=86f =bc ,  g4 .:= f9  =abd— 4bd+bcandg5 :=—12f

= —5bd.

LEMMA 8.5.
For any finite input set F0 ={ f , ..., fm } of polynomials, Algorithm 8.3 always temrinates.

PROOF. We consider the Fk’s as multisets of polynomials, which are ordered by the
multiset ordering << induced by the ordering < on polynomials ( see Definition 8.2 ).
Since < is  well-founded, the multiset extension << is also well-founded.
For the Cases 1, 2, 3 and 4.1.1, Fk >> Pk“. Case 4.1.2 and the according subcase of
4.1.3 can not occur infinitely often in successive steps, because then g1 > g2 > g3 >
would be an infinite descending <-chain. That means, that after finitely many steps gi = O
or Case 4.1.1, the other subcase of 4.1.3 or Case 4.2 occur.
For the Cases 4.1.3 and 4.2, Fk+1 is larger than Fk. Butthese_case_s can only occur finite-
ly often during the whole run of the algorithm. First note, that all words t occurring in
some polynomial of some Fk satisfy t S max{ HW(fl), ..., HW(fm) }. Since < is  admissi-

ble, there are only finitely many words with this property. Hence Case 4.2 can only occur
finitely often. Case 4.1.3 — where a head term, which has disappeared in some former
step, appears again - can only occur finitely often for a certain term, because the absolut
value of the head coefficient gets smaller each time.

Before we can state the next lemma, we have to introduce a new notation ( or rather an
abuse of the usual notation ). Let F be a finite set of polynomials. The expression

f :  2 hiEF  hi ai’

should be interpreted as follows: the ai are monomials in Z<X1‚...‚Xn>‚ f is a finite sum

of the polynomials hi-ai, but an element of F may occur more than once in this sum and
each occurrence may have a different coefficient ai.

LEMMA 8.6. Let t e Wn be a word and Fk be the set of polynomials obtained after

some iterations of Algorithm 8.3. Assume that h is a polynomial and that h = Eh ieFk h.--ai

for monomials ai with HW(hi—ai) < t. Then h = Em. eFk+1 hi’-bi for monomials bi with

HW(hi’bi) < t.

PROOF. For the Cases 4.1 3 and 4. 2 we have Fk c Fk+1 and thus we can use the given

sum. InCase l ,  Fk+1 := (Fk  \ [  f }  )U  { f1 }and f=  fl +g- . c  Inadd i t ionwehavege  Fk

and HW(g) = HW(f)>HW(f1) .  Thus a term f-ja in the sum h = zhiiEFkh -ia can be

replaced by fl-aj + g-caj. The other cases can be treated similar.

LEMMA 8.7. Let G be the output of Algorithm 8.3 ( i.e. the actual set Fk, when the al-
gorithm terminates ) and let f = a t  + RG) and g = b-tr + R(g) be elements of G.





Then the following holds: 

(1) a =be for some c E lZ, IcI #. 1 and r #. 1. 

(2) The S-polynomial gl := f·r - g·c = R(f}r - R(g)'c can be obtained as a finite sum 

gl = L hiE G hfai ' 

where the '\ are monomials in lZ<X1,••• ,xn> and HW(h(ai) :c:;; HW(gl) < HW(g) = 
HW(f·r). 

PROOF. Since Algorithm 8.3 has tenninated, the index pair corresponding to f and g is 
marked. Thus for some k, f and g are in Fk and they are selected by the algorithm. 

(1) is satisfied, since only in Case 4 both f and g remain in Fk+l' 

(2) In Case 4 we have gl := f·r - g·c = R(f}r - R(g)-c and thus HW(gl) < HW(g) = 

HW(f·r) = tt. There is some gi such that gl ~Fk gi (see Case 4.1.2 and the first subcase 

of 4.1.3 ) andgiE Fk+1 or gi = O. Hence HW(gi) :c:;; HW(gl) and gl =gi+:;iEFk h(ai for 

monomials ai with HW(h(ai) :c:;; HW(gl)' Lemma 8.6 yield~ gl = gi + ~i'EFk+l hi'·bi for 

monomials bi with HW(h/.bi) ~ HW(gl) and since gi E Fk+1 or gi = 0 we have gl = 

~hi"EFk+l htci for monomials ci with HW(htci) ~ HW(gl)' By Lemma 8.6, gl can be
 

represented by such a sum for all FID with m ~ k+1. Thus we have proved the lemma.
 

Let F ~ lZ<X1,...,xn> be a set of polynomials. In the following <F> denotes the right
 

ideal generated by F
 

LEMMA 8.8.
 

Let G be the output of Algorithm 8.3 if started with input Fo' Then <G> =<FO>'
 

PROOF. It is easy to see that, for any k, <Fk> =<Fk+1>.
 

This lemma and the next proposition shows, that it is reasonable to call the result of
 
Algorithm 8.3 a Grobner base.
 

PROPOsmON 8.9. Let G be the output of Algorithm 8.3. Then any f E <G> can be
 

reduced to 0 w.r.t. ~G'
 

PROOF. The proof is similar to the proof of Lemma 2.4 in Mora (1985).
 

Obviously, f E <G> means f = ~giEG gfai for some monomials ai. Let t := max{
 

HW(g(ai) ... } and 1:= { i; HW(gfai) = t }. 

Case 1. III =1.
 

Then HW(f) = t and ( for I = { j } and aj = cfrj ( cj E lZ, rj E Wn ) ) HW(f) = t =
 
HW(gj).rj and HC(f) = HC(gj)-cj' Hence f can be reduced by gj to the smaller polynomial
 

f1 := f - gfaj E <G>. By Induction we get f} -4GO and thus f ~G f 1 -4GO. 
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Then the following holds:
(1) a=bc fo r somece  Z, IcI == 1 andrat  1.
(2) The S-polynomial g1 :=  f«r-— g-c = R(f)-r— R(g)-c can be obtained as a finite sum

g1 = EhieG “"a'1 1’

where the ai are monomials in Z<X1‚...,Xn> and HW(hi-ai) s HW(g1) < HW(g) =

HW(f-r).
PROOF. Since Algorithm 8.3 has terminated, the index pair corresponding to f and g is
marked. Thus for some k, f and g are in Fk and they are selected by the algorithm.

(1) is satisfied, since only in Case 4 both f and g remain in Fk +1 .

(2) In Case 4 we have g]  := f-r — g~c = R(f)-r — R(g)-c and thus HW(gl) < HW(g) =

HW(f-r) = tr. There is some gi such that gl  **)Fk gi ( see Case 4.1.2 and the first subcase

of 4.1.3 ) andgine Fk+1 or gi = 0. Hence HW(gi) S. HW(g1) and g]  = gi ":|-"ÄhiEFk hi-ai for

monomials ai with HW(hi—ai) S HW(gl). Lemma 8 .6  yields g1 = gi + Zhi'GFkH hi’-bi for

monomials bi with HW(hi’-bi) S HW(g1) and since gi e Fk+1 or gi = 0 we have g1 =
zhi"EFk+1 hi."-ci for monomials ci  with HW(hi"-ci) S HW(gl). By Lemma 8.6, g l  can be

represented by such a sum for all Fm with m 2 k+1. Thus we have proved the lemma.

Let F <; Z<Xl,...,Xn> be a set of polynomials. In the following <F> denotes the right
ideal generated by F

LEMMA 8.8.
Let G be the output of Algorithm 8.3 if started with input F0. Then <G> = <F0>.

PROOF. It is easy to see that, for any k, <Fk> = <Fk+1>'

This lemma and the next proposition shows, that it is reasonable to call the result of
Algorithm 8.3 a Gröbner base.

PROPOSITION 8.9. Let G be the output of Algorithm 8.3. Then any f & <G> can be
reduced to O w.r.t. —>G. .

PROOF. The proof is similar to the proof of Lemma 2.4 in Mora (1985).
Obviously, f & <G> means f = EgieG

HW(gi-ai) } andI  := { i; HW(gi-ai) = t  }.

Case 1. III = 1.
ThenHW(f )= tand ( fo r I={ j}anda j=c j - r j ( c j e  Z , r j e  Wn) )HW(f )= t=

HW(gj)-rj and HC(t) = HC(gj)-cj. Hence f can be reduced by gj to the smaller polynomial

gi-ai for some monomials ai. Let t := max{

f] := f - gl.-aj e <G>. By Induction we get fl $96 0 and thus f —>G fl 396 O.





Case 2. Ill> 1.
 

Let i, j be two different elements of 1 and let ai =crri' aj =cfrj ( ci' cj E ~, ri' rj E Wo ).
 

Since HW(gi)·ri = t = HW(gj).rj, either HW(gi) is a prefix of HW(gj) or vice versa. With­


out loss of generality we assume HW(gi) = HW(g/r for some r E Wo' By Lemma 8.7,
 

HC(gj) = HC(gi)'c for some c E ~ and gfr - grc = ~kEG hk·bk, where HW(hk·bk) <
 

HW(gi) = HW(gfr). Hence gfrj - grric = (gfr - g(c)·ri = ~kEG hk·(bkri), where
 

HW(hk·(bkri)) <HW(gi)-fi = t.
 

Now f =(g.·r. - g.·r.c)-c. + g.·(c. + cc.)r. + 1: .. g ·a
J J 1 1 J 1 1 J 1 m;t:lJ rn rn 
=}'-- G hk·(bkc.r.) + g.·(c. + cc.)r. + 1: .. g·a yields a representation of f as a 

llkE J 1 1 1 J 1 rn;t:lJ rn rn 
sum, where III is smaller. 

COROLLARY 8.10. The membership problem for finitely generated right ideals in 
~<Xl"",Xn> is decidable. 

PROOF. Let I = <{ fl' ... , frn }> be a finitely generated right ideal in ~<XI'...,xn>' We 

apply Algorithm 8.3 to FO={fl' ..., frn } and get a set G of polynomials. Now f E I iff f can 

be reduced to 0 W.f.t. ~G' If f is ~G-irreducible. then f E I iff f = O. Otherwise we can ef­

fectively find some g such that f -7G g and f E I iff g E I. Thus Corollary K10 is proved by 

induction. 

9. Solving Linear Equations in Z<Xl'•..,xn> 

In the previous section we have shown, how to compute "Grobner bases" for finitely gen­

erated right ideals in ~<XI ,...,xo>' In this section these bases are used to solve linear
 

equations in~<xI"",xo>' The method is very similar to that described in Section 6.
 

Let (*) flxl + ... + feXt- = fO be an ( inhomogeneous) linear equation in ~<XI'...,Xo>' We
 

have to find one solution for (*) and finitely many generators of the solutions of the homo­


geneous equation (**) f1Xl + ... + feXr =O.
 

Let G = {gl' 000- gs } be the output of Algorithm 8.3. when started with input { fI, ..., fr }.
 

There exist an rxs-matrix P and an sxr-matrix Q with entries in ~<Xl ,...,Xo> such that
 

fP =i and i·Q =f. This matrices can be obtained as by-products of Algorithm 8.3.
 
Obviously, (*) has a solution iff fO E <{ fI•..., fr }> = <G>. Hence, if (*) has a solution,
 

Proposition 8.9 implies that fo reduces to 0 w.r.t -7G' This yields PI' ..., Ps E ~[Xl' ...,xo]
 

such that g·lp = foe But then P·lp is a solution of (*).
 

We now assume that we already have finitely many generators Iz(1), ..., Iz(L) of the set of
 
solutions of the equation 

As in Section 6 one can show 
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Case 2 .  III > 1 .
Let i ,  j be two different elements of I and let ai =c i - ri, a j=  cj-rj ( ci, cj e Z,  ri, rj e W“ ) .

Since HW(gi)-ri = t = HW(gj)-rj, either HW(gi) is a prefix of HW(gj) or viCe versa. With—

out loss of generality we assume HW(gi) = HW(gj)-r for some r 5 Wfl. By  Lemma 8.7,

HC(gj) = HC(gi)-c for some c e 2 and gj-r — gi-c = t eG  hk-bk, where HW(hk-bk) <

HW(gi = HW(gj-r). Hence gj-rj —— gi-ric = (gj-r — gi-c)-ri = te  G hk-(bkri), where

HW(hk-(bkri)) < HW(gi)-ri = t.
Now f : (gj'fj __ gi'ri°)°°j + gi (ci + ccji)r + 2 $1 J gm-am

= 2t G hk-(bkcjri) + gi (ci + cc.Ji)r + 2 m¢i,j gm-am yields a representation of f as a

sum, where III is  smaller.

COROLLARY 8.10. The membership problem for finitely generated right ideals in
Z<Xl,.. 'n’X>. is  decidable.

PROOF. Let I = <{ f , ..., f }> be a finitely generated right ideal in Z<Xl,...,Xn>. We

apply Algorithm 8.3 to F0 = { f , ..., fm } and get a set G of polynomials. Now f e I iff  f can

be reduced to 0 w.r.t. —-)G. If f is —>G-i1reducible, then f e I iff f = O. Otherwise we can ef-

fectively find some g such that f —)G g and f e I iff g e I. Thus Corollary 8.10 is proved by
induction.

9. Solving Linear Equations in Z<X1,...‚Xn>

In the previous section we have shown, how to compute "Gröbner bases" for finitely gen-
erated right ideals in Z<Xl,...,Xn>. In this section these bases are used to solve linear
equations in Z<X1""’Xn>‘  The method is  very similar to that described in Section 6.

Let (*) f1x1  + + frxr = f() be an ( inhomogeneous ) linear equation in Z<Xl,...,Xn>. We

have to find one solution for (a:) and finitely many generators of the solutions of the homo-
geneous equation (**) flx1 + + frxr = 0.
Let G = [ gl,  gs } be the output of Algorithm 8.3. when started with input [ fl, ..., fr }.

There exist an rxs—matrix P and an sxr—matrix Q with entries in Z<Xl,...,Xn> such that

f-P = g and g-Q = f. This matrices can be obtained as by-products of Algorithm 8.3.
Obviously, (*) has a solution iff f0 6 <{ fl ,  ..., fr }> = <G>. Hence, if (*) has a solution,

Proposition 8.9 implies that f0 reduces to 0 w.r.t —>G. This yields p l ,  ..., ps e Z[X1,...‚Xn]

such that g-lp = f0. But  then P-Ip i s  a solution of (*).

We now assume that we already have finitely many generators lza), ..., Iza‘) of the set of
solutions of the equation

(++)g1x1  + . . .  + gs S = 0.

As in Section 6 one can show





~1 

LEMMA 9.1. The vectors p.(z(1), ... , P·lz(L) and the columns of the matrix PQ - Er are 

solutions of (**) and they generate all solutions of this equation. 

We now show how to compute the finitely many generators of the solutions of (++). 

If there do not exist i, j ( i * j ) such that HW(gi) = HW(gj).r for some re Wn' the equa­

tion (++) has no nontrivial solutions. Otherwise, let i, j ( i :I: j ) be indices, such that 

HW(gi) = HW(gj).r for some re Wn. 

By Lemma 8.7, HC(gj) = HC(gi)-c for some c E Z, r:l: 1 and 

k=r 
gfr- gfc = ~=Igk'hk 

for polynomials hk E Z<Xl'...,Xn> with HW(gk·hk) < HW(gi). Obviously, hi has to be O. 

If we define qk := hk for k:l: i, j, qi := hi + c = c and qj := hj - r, then Iqij := (qI'...' qs)T is a 

solution of (++). ­

LEMMA 9.2. The finitely many vectors Iqjj generate all solutions of (++). 

PROOF. Let Ip = (Pl'...,ps)T be a nontrivial solution of (++). The complexity of such a
 

solution is given by ( t, a ), where t := max{ HW(giPi); 1 :::;; i :::;; s } and a := I{ i; 1 :::;; i :::;; s
 

and HW(giPi) = t }.
 

Since g·lp = 0 and Ip is not trivial, a has to be greater than 1. Hence there exist i, j ( i :I: j )
 
such that HW(gi)HW(Pi) = t = HW(gj)HW(Pj). Without loss of generality we assume
 

that HW(gj) is a prefix of HW(gi). Thus HW(gi) = HW(gj).r and HC(gj) = HC(gi)-c for
 

some r E Wn and c E Z and HW(pj) = r.HW(Pi). Let ci := HC(Pi) and cj := HC(Pj)'
 

The vector Iqij' which was defined above, is a solution of (++). We define a new solution
 

(PI' ,..., ps')T = lp' := Ip + IqifCjHW(Pj) and show that it has smaller complexity than Ip.
 

To that purpose we have to consider the words HW(gkPk') for all k, 1 :::;; k :::;; s.
 

CASE 1. k:l:i,j.
 

We have gkPk' = gkPk + gkhkCjHW(Pi) and HW(gfhk) < HW(gi). This implies that
 

HW(gkhkCjHW(Pi» < HW(gj)HW(Pi) =~ 1. Thus HW(gkPk') = t, if HW(gkPk) = t, and
 

otherwise, HW(gkPk') < 1.
 

Case2. k=i.
 

We have giPi' = giPi + giccjHW(Pi)' Hence HW(giPi') = t if ci + cCj :I: 0 and HW(giPi') < t
 

if c· + cc· =O.
 
1 J 

Case 3. k =j. 
g.p.' =g.p. + g.h.c.HW(p.) - g.rc.HW(p.)
JJ JJ JJJ 1 J J 1
 

= HC(g.)c.t + R(g.p.) + g.h.c.HW(p.) - HC(g.)c.HW(g.)rHW(p.) - R(g.)rc.HW(p.)

JJ JJ JJJ 1 JJ J 1 J J 1 

= R(g.p.) + g.h.c.HW(p.) - R(g.)rc.HW(p.), since rHW(p.) = HW(g.) 
JJ JJJ 1 J J 1 1 J. 

This shows that HW(gjPj') < t. 
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LEMMA 9.1. The vectors P-lza), ..., P-Iza‘) and the columns of the matrix PQ — Er are
solutions of (am) and they generate all solutions of this equation.

We now show how to compute the finitely many generators of the solutions of (++).
If there do not exist i ,  j ( i #: j ) such that HW(gi = HW(gj)-r for some r e W", the equa—

tion (++) has no nontrivial solutions. Otherwise, let i ,  j ( i = j ) be indices, such that
HW(gi) = HW(gj)-r for some re  Wu.

By Lemma 8.7, HC(gj) = HC(gi)—c for some c e Z , r = 1 and
k=r

gj'r _ gi": = zk=1 gk'hk

for polynomials hk e Z<Xl,...‚Xn> with HW(gk-hk) < HW(gi). Obviously, hi has to be 0.

)T'Ifwe define qk := hk for k = i, j, qi := hi + c = c and qj := hj — r, then Iqij := (q1‚..., q is a
S

solution of (++).

LEMMA 9.2. The finitely many vectors lqij generate all solutions of (++).

PROOF. Let Ip = (p1,...,ps)T be a nontrivial solution of (++). The complexity of such a

solutionis given by ( t ,  a ) ,where t  :=max{ HW(gipi; l s iS s  } andoc := I{  i; 1 SiSs

and HW(gipi) = t }. '

Since g—lp = 0 and lp is not trivial, a has to be greater than 1. Hence there exist i, j ( i i j  )
such that HW(gi)HW(pi) = t = HW(gj)HW(pj). Without loss of generality we assume

that HW(gj) is a prefix of HW(gi). Thus HW(gi) = HW(gj)-r and HC(gj) = HC(gi)-c for

some r 6 WII and c e Z and HW(pj) = r-HW(pi). Let ci := HC(pi) and cj := HC(pj).

The vector lqij, which was defined above, is a solution of (++). We define a new solution

(pl’,..., ps’)T = lp’ := Ip + Iqij-cW(pi) and show that it has smaller complexity than Ip.
To that purpose we have to consider the words HW(gkpk’) for all k, 1 5 k S s.

CASE 1. k¢ i , j .
We have gkpk’ = gkpk + gkhkcW(pi) and HW(gk-hk) < HW(gi). This implies that
HW(gkhkcW(pi)) < HW(gi)HW(pi) =»t. Thus HW(gkpk’) = t, if HW(gkpk) = t, and
otherwise, HW(gkpk’) < t.
Case 2 .  k = i. _
We have gipi’ = gipi + gicc-IW(pi). Hence HW(gipi’) = t if ci + ccj {0 and HW(gipi’) < t
if ci + co}- = 0.

Case 3 .  k = j.
nj' = gjpj + gjhjcW(pi) — gjrcW(pi)

= HC(gj)cjt + R(nj) + gjhjcWQJi) — HC(gj)cW(gj)rHW(pi) — R(gj)rcW(pi)
= R(nj) ‘" gjhjcW(pi) _ R(gj)eHW(pi)‚ since rHW(pi) = HW(gj).

This shows that HW(gjpj’) < t.





Thus we have seen th::.t the complexity of the solution lp' is smaller th;:~ the complexity
 
of Ip and the lemma is proved by induction.
 

EXAMPLE 9.3. As an example we consider the homogeneous linear equation f1x1 + ... +
 

f4x4 =0 in Zl<a,b,c,d> for the polynomials f l =2abc - bc, f2 =3ab - 2b, f3 =5abd - bc and
 

f4 =bc - 5bd of Example 8.4.
 

We have seen that Algorithm 8.3 terminates with G = { gl' g2' g3' g4' gs }, where gl =
 
3ab - 2b, g2 =abc - bc, g3 = bc, g4 = abd - 4bd + bc and gs =-5bd. The transformation
 

matrices P, Q such that f·P =g and g.Q =f are o! 

0 1 d 0 
2 0 0 0 

Q= 1 0 -3 1 
0 0 2 0 
0 0 -2 1 

0 -1 3 0 0 

and P = 1 
0 

c 
0 

-2c 
0 

2d 
-1 

-5d 
3 

0 0 0 0 3 

All solutions of the equation glxI + ... + gsx = 0 are generated by Iql,2 and Iqlis 

(1) gfc -gi3 =g3 and thus 1QI,2 =(-c, 3. 1. O. 0)T. 

(2) gfd - g4·3 =fll f4·3 = (f6 + fI2)·3 =fli (-2) + f6(-3) = gs·(-2) + g3(-3) =fl2 - f l2 ­

and thus 1Ql,4 =(-d, 0, -3,3. -2 )T. 

We now apply P, to get the corresponding solutions offlxl + ... + f4x4 = 0: 

P.1QI,2 =(0. O. 0, O)T and P.1QI,4 =(-9, 6c + 15d, -9, -6)T . 

o o -9 3 

The matrix PQ - E4 is 
o 
o 

o 
o 

6c+15d 
-9 

-2c-5d 
3 

o o -6 2 

This yields the new solution ( 3, -2c-5d, 3,2 )T and since 1QI,4 = ( 3, -2c-5d, 3,2 )T·(_3), 

the solution ( 3, -2c-5d, 3, 2 )T generates all solutions of flxl + ... + f4x4 = 0 in 

Zl<a,b,c,d>. 

10. Conclusion 

The categorical reformulation of E-unification allows to characterize the class of commu­
tative theories by properties of the category C(E) of finitely generated E-free objects: 
C(E) has to be a semiadditive category. The definition of semiadditive categories pro­
vides an algebraic structure on the morphism sets, which can be used to obtain algebraic 
characterizations of the unification types. This shows the connection between unification 
in commutative theories and equation solving in linear algebra. The very common syntac­
tic approach to equational unification, which only uses the defining axioms, is thus 
replaced by a more semantic approach, which works with algebraic properties of the 
defined algebras. 
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Thus we have seen that the complexity of the solution Ip’ is smaller than the complexity
of Ip and the lemma is proved by induction.

EXAMPLE 9.3. As an example we consider the homogeneous linear equation flxl + +
f4x4 = 0 in Z<a,b,c,d> for the polynomials f1 = 2abc — bc, f2 = 3ab — 2b, f3 = 5abd — be and

f4 = bc — d of Example 8.4.

We have seen that Algorithm 8.3 terminates with G = ( gl ,  g2, g3, g4, g5 }, where g ]  =
3ab — 2b, g2 = abc — bc, g3 = bc, g4 = abd — 4bd + be and gs = —5bd. The transformation

matrices P, Q such that f-P = g and g-Q = £ are J

d 0g [l) 0 0 o —1 3 o o
Q= 1 0 —3 1 and 1>=1 ° “2° 2‘1 “5d

0 0 2 o ° ° ° ‘1 30 0 _2 1 o o o o 3

A11 solutions of the equation glxl  + + gsx5 = 0 are generated by lql,2 and lql’4:

(1) gl-c --g2-3 = g3 And thus Iq1 ‚_ = (—c, 3, 1, o, o )T.
(2) gl-d — g4-3 = fll = f12 — f4-3 = f12 — (f6 + f12)-3 = f12'('2) + f6(—3) = g5-(—2) + g3(-3)

and thus lqm = ( —d, o, —3, 3, —2 )T.
We now apply P, to get the corresponding solutions of flxl + + f4x4 = O:

P-lqm = (0 ,0 ,0 ,  0F  and 12q4 = (—9, 6c + 15d, —9, —6 )T .—
0 0 —9 3
O 0 6c+15d —-2c—5d
0 0 —9 3 '
O O —6 2

The matrix PQ—E4 is

This yields the new solution ( 3, —Zc—5d, 3, 2 )T and since Iq1 4 = ( 3, —2c-—5d, 3, 2 )T-(—3),

the solution ( 3, —20—5d, 3, 2 )T generates all solutions of :flxl + + f4x4 = O in

Z<a,b,c,d>.

10. Conclusion

The categorical reformulation of E-unification allows to characterize the class of commu-
tative theories by properties of the category C(E) of finitely generated E-free objects:
C(E) has to be a semiadditive category. The definition Of semiadditive categories pro-
vides an algebraic structure on the morphism sets, which can be used to obtain algebraic
characterizations of the unification types. This shows the connection between unification
in commutative theories and equation solving in linear algebra. The very common syntac-
tic approach to equational unification, which only uses the defining axioms, is thus
replaced by a more semantic approach, which works with algebraic properties of the
defined algebras.





Hence unification algorithms for the commutative theory AGnHC, i.e. the theory of 
abelian groups with ncommuting homomorphisms, can be derived with the help of well­
known algebraic methods ( e.g. Grobner Base algorithms ) to solve linear equations in 
7l[Xl'...,xn]' In order to obtain a unification algorithm for the theory AGnH of abelian 

groups with n non-commuting homomorphisms, we developed a Grobner base algorithm 
for the ring 7l<X1""'Xn> of polynomials over 7L. in n non':commuting indeterminates. 

Since Dicksons Lemma ( Dickson (1913) ), which is us~ fo~ 7L.[X1,:..,xn]toprove termi­

nation of the Grobne~ Base algorithm, does not hold for 7l<9'1'."~~>;\Y~ had to be yery . 

careful to obtain. a tenninating algorithm. As in the COIDrrllltative case, the pelformancebf 
the algorithm depends on the choice of the adrn.jssible C>rdering.Hense· ~twould be inter­
esting to have a complete .characterization of all admissibleorderi.ngs ~or 7L.<Xl,...,Xn>. 
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