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Unification in a commutative theory E may be reduced to solving linear equations in the corre-
sponding semiring S(E) ( Nutt (1988) ). The unification type of E can thus be characterized by al- ~
gebraic properties of S(E). The theory of abelian groups with n commuting homomorphisms cor-
responds to the semiring Z[X,,....X ]. Thus Hilbert’s Basis Theorem can be used to show that
this theory is unitary. But this argument does not yield a unification algorithm. Linear equations
in Z[X,,.. X1 can be solved with the help of Grobner Base methods ~which thus provide the
desired algorithm. The theory of abelian monmds with a homomorphlsm is of type zero ( Baader
(1988) ). This can also be proved by using the fact that the corresponding semiring, namely
N[X], is not noetherian. An other example of a semiring ( even ring ), which is not noetherian,
is the ring Z<X1,...,Xn>, where X, ..., X (n > 1) are non-commuting indeterminates. This
semiring corresponds to the theory of abelian groups with n non-commuting homorriorphisms.
Surprisingly, by construction of a Grobner Base algorithm for right ideals in Z<Xl,...,Xn>, it
can be shown that this theory is unitary unifying.

1. Introduction

E-unification is concerned with solving term equations modulo an equational theory E.
More formally, let E be an equational theory and =g be the equality of terms, induced by

E. An E-unification problem T’ is a finite set of equations < s; = t;; 1 <i < n > where s;

and t; are terms. A substitution 0 is called an E-unifier of I iff s;0 = t,0 for each i, i =1,
., 0. The set of all E-unifiers of I' is denoted by Ug(I).

In general we do not need the set of all E-unifiers. A complete set of E-unifiers, i.c. a set

of E-unifiers from which all E-unifiers may be generated by E-instantiation, is sufficient.

More precisely, we extend =g to Ug(I') and define a quasi-ordering < on Ug(I') by
© =g 0 iff xo =g x0 for all variables x occurring in s, or t.forsomei,i=1,..n,
O <p 0 iff there exists a substitution A such that 6 =g 6 ° A.

In this case ¢ is called an E-instance of 6.
A complete set cCUg(') of E-unifiers of T is defined as

(1) cUg@) c Ug(D),
(2) For all 8 € Ug() there exists 0 € cUg(I) such that 6 <; ©.

1) This research was done while the author was still at the IMMD 1, University Erlangen.






For reasons of efficiency this set should be as small as possible. Thus we are interested
in minimal complete sets of E-unifiers, that means complete sets where two different ele-
ments are not comparable w.r.t. E-instantiation. The unification type of a theory E is de-
fined with reference to the cardinality and existence of minimal complete sets. The theory
E is unitary ( finitary, infinitary ) iff minimal complete sets of E-unifiers always exist
and their cardinality is at most one ( always finite, at least once infinite ). E has unifica-
tion type zero iff there is an E-unification problem without minimal complete set of E-uni-
fiers. If the terms may contain free constants, we talk about unification with constants,
else about unification without constants ( see Baader (1988), Section 7 ). If nothing else
is specified, "unification” means "unification without constants”. For more information
about unification theory and the unification hierarchy consult Sickmann (1988).

Unification in the empty theory ( which is unitary ) plays an important rdle in automated
theorem proving, term rewriting and logic programming. Generalizations to E-unification
usually require that E is finitary ( see e.g. Stickel (1985), Jouannaud-Kirchner (1986) and
Jaffar-Lassez-Maher (1984) ). A finitary theory most used in this context is the theory
of abelian semigroups ( monoids ), i.e. the theory of an associative, commutative binary
operation ( with a neutral element ). Unification algorithms for this theory ( see e.g. Live-
sey-Siekmann (1978), Stickel (1981), Fages (1984), Fortenbacher (1985), Biittner
(1986), Herold (1987) ) make use of the fact that unifiers correspond to solutions of sys-
tems of linear equations in the semiring IN ( see Eilenberg (1974) or Kuich-Salomaa
(1986) for the definition and properties of semirings ). The same phenomenon occurs for
the theory of abelian groups where the semiring is Z ( Lankford-Butler-Brady (1984) )
and for the theory of idempotent abelian monoids where the 2-element boolean semiring
‘Bis used ( Livesey-Siekmann (1978), Baader-Biittner (1988) ).

These three theories belong to the class of commutative theories ( roughly speaking, the-
ories where the finitely generated free objects are direct products of the free objects in
one generator ), which were defined in Baader (1988). In that paper it is shown that con-
stant-free unification in commutative theories is either unitary or of type zero and there
are given sufficient conditions for a commutative theory to be unitary ( resp. finitary w.r.t.
unification with constants ). The above mentioned results for abelian monoids etc. and
some new results ( for abelian monoids with an involution, idempotent abelian monoids
with an involution, abelian groups with an involution, abelian groups of exponent m )
could thus be obtained as corollaries to a general theorem. In Baader (1989) these condi-
tions were modified to algebraic characterizations of unification type unitary for constant-
free unification and type finitary for unification with constants in commutative theories.
An interesting consequence of these characterizations is the fact that commutative theo-
ries are always unitary ( finitary w.r.t. unification with constants ), if the finitely generat-
ed free objects are finite ( Baader (1988) ).

Werner Nutt ( Nutt (1988) ) observed that commutative theories are ( modulo a transla-
tion of the signature ) what he calls monoidal theories and that unification in these theo-
ries may always be reduced to solving linear equations in certain semirings. He pointed
out that the theory of abelian groups with a homomorphism corresponds to the semiring
Z[X]. Thus Hilbert’s Basis Theorem can be used to prove that the theory of abelian
groups with a homomorphism is unitary. But this argument does not yield a unification al-
gorithm. Linear equations in Z[X] can be solved with the help of Grobner Base methods
( see Buchberger (1985) and Section 6 of this paper ), which thus provide the desired al-
gorithm.

The theory of abelian monoids with a homomorphism is of type zero ( Baader (1988) ).
This can also be demonstrated using the fact that the corresponding semiring, namely






IN[X], is not noetherian ( Section 4 ).

Another example of a semiring which is not noetherian is the ring Z<X,Y>, where X, Y
are non-commuting indeterminates. This semiring corresponds to the theory of abelian
groups with two ( non-commuting ) homomorphisms. Surprisingly, by construction of a
Grobner Base algorithm for right ideals in Z<X,Y>, I was able to show that this theory
is unitary unifying. Of course, this result can be extended to an arbitrary, finite number of
non-commuting indeterminates ( Section 8 and 9 ).

2. Commutative Theories

In this section we give a definition of commutative theories, recall some of the properties
derived in Baader (1988) and show how the corresponding semirings may be obtained in
this framework.

An equational theory E defines a variety V(E), i.e. the class of all algebras ( of the given

signature €2 ) which satisfy each identity of E. For any set X of generators, V(E) con-
tains a free algebra over V(E) with generators X, which will be denoted by Fg(X).

Let F(E) be the class of all free algebras F(X) with finite sets X and let C(E) be the
category which has the elements of F(E) as objects and the homomorphisms between
these elements as morphisms. Note that the coproduct of Fg(X) and Fg(Y) in C(E) is
given by Fg(X ©Y) ( where & means disjoint union ). Thus Fg(X) is the coproduct of
the isomorphic objects F(x) forx € X.
LetI' = <s; = t; 1 <1i < n > be an E-unification problem and X be the ( finite ) set of
variables x occurring in some s; or t;. Evidently we can consider the s; and t; as elements
of Fg(X). Since we do not distinguish between =g-equivalent unifiers, any E-unifier of I'
can be regarded as a homomorphism of Fg(X) into F(Y) for some finite set Y ( of vari-
ables ). Let I = { x,, ..., X, } be a set of cardinality n. We define homomorphisms

o, T: Fg(D) - Fg(X) by x,0:=s;and x;T:=t; (i=1,..,n).
Now 8: Fr(X) — Fg(Y) is an E-unifier of I iff x;063 = 50 =td=xadfori=1,..,n,ie.
iff 68 = 13. Thus an E-unification problem can be written as a pair < ¢ = T > of mor-
phisms o, T: Fg(I) = Fg(X) in the category C(E). An E-unifiers of the unification prob-
lem < 6 = T > is a morphism 6 such that 6 = 13.

This categorical reformulation of E-unification ( due to Rydeheard-Burstall (1985) ) al-
lows to characterize the class of commutative theories by properties of the category
C(E) of finitely generated E-free objects: C(E) has to be a semiadditive category ( see
Herrlich-Strecker (1973) and Baader (1988) ). In order to give a more algebraic definition
of commutative theories we need some more notation.

A constant symbol ( i.e. a nullary function symbol ) e € Q is called idempotent in E iff for
any f € Q we have f(e,....€) =g ¢, i.e. in any algebra A € V(E), f(e,....¢) = e holds. Note
that for nullary f this means f =ge.

Let K be a class of algebras ( of signature Q ). An n-ary implicit operation in K is a fam-
ily f = { f4; A € K} of mappings f,: A" - A which is compatible with all homomor-






phisms, i.e. for any homomorphism h: A — B with A, B € K and all 3, .., a, € A,
fa(@g,--aph = fg(ah,...,a h) holds. In the following we omit the index and just write f for

any f,. Obviously an Q-term induces an implicit operation on any class of Q-algebras.

DEFINITION 2.1. An equational theory E is called commutative iff the following holds:
(1) Q contains a constant symbol e, which is idempotent in E.
(2) There is a binary implicit operation % in F(E) such that
(a) The constant ¢ is a neutral element for * in any algebra A € F(E).
(b) For any n-ary function symbol f € Q, any algebra A € F(E) and any s, ..., s, t;
w1y € A we have f(s) * ty,....s; * t) = f(s,....8) # f(ty,...t).

In Baader (1988) the following properties for commutative theories E are shown within a
categorical framework, using well-known results for semiadditive categoncs

(2.2) IF; (@)I =1andF (@) is the zero object of C(E).

(2.3) The implicit operation * of Definition 2.1 is associative and commutative. It induces
a binary operation + on any morphism set hom(Fg(X),Fg(Y)) as follows: Let o, T
Fp(X) = Fg(Y) and s € Fg(X). Then s(0 + 1) := (s0) * (s7).

This operation is also associative and commutative and it distributes with the com-
position of morphisms. The morphism 0: Fg(X) — Fg(Y) defined by x — € for all x

€ X is the zero morphism in hom(Fg(X),Fg(Y)) and it is a neutral element for + on

hom(Fg(X),Fg(Y))

“ (2.4) The coproduct Fg(X OY) of Fp(X) and Fg(Y) is also the product of these objects,
i.e. Fg(X OY) = F(X) x Fg(Y).

(2.5) Consider o: Fg(X) — Fg(Y). Let u, forxe X (p y for y € Y ) be the injections of
the coproduct F(X) ( projections of the product Fg(Y) ). Then © is uniquely deter-
mined by the matrix M = ( u,0p, )xgx,er' For ¢, T: Fg(X) — Fg(Y) and &
Fg(Y) - Fg(Z) we have M, . = M +M,_ and M5 =M - M.

Werner Nutt ( Nutt (1988) ) observed that commutative theories are ( modulo a transla-
tion of the signature ) what he calls monoidal theories and that unification in a monoidal
theory E may be reduced to solving linear equations in a certaln semiring S(E). In our
framework this semiring can be obtained as follows:

Let 1 be an arbitrary set of cardinality 1. Property (2.3) ylelds that hom(Fg(1),F(1))

with addition "+" and composition as multiplication is a semiring, which shall be denoted
by S(E). Any Fg(x) is isomorphic to Fg(1) and for IX| = n, Fg(X) is n-th. power and
copower of Fg(1). Thus, for 6: Fg(X) — Fg(Y), the entries u,0p,, of the IXIxIY]-matrix
MG may all be considered as elements of S(E). Hence all morphisms of C(E) can be writ-

ten as matrices over the semiring S(E). Addition and composition of morphisms corres-
pond to addition and multiplication of matrices over S(E) as stated in (2.5).






We now give some examples of commutative theories, whose unification properties will
be considered in subsequent sections of this paper. In all these examples, the implicit op-
eration is given by a function symbol, which is associative and commutative in the corre-
sponding theory. Additional examples of commutative theories can be found in Baader
(1988).

EXAMPLES 2.6. We consider the following signatures:

X:={-, 1,h}, where- is binary, 1 is nullary and h is unary.

For n20, Q :={- 1, h,,..,h }, where- is binary, 1 is nullary and -! and the h, are

unary.

(1) The theory AMH of abelian monoids with a homomorphism. The signature is X and
AMH:={x-1=x,x-(y-2)=(X-y)-2,X - y=y X,

h(x - y) =h(x) - h(y), h(1) =1 }.
(2) The theory AIMH of idempotent abelian monoids with a homomorphism. The signa-

ture is X and AIMH:=AMH U { x-x=x }.

(3) The theory AGnH of abelian groups with n ( non-commuting ) homomorphisms. We
takesignatureQnanddeﬁneAGnH:={x- l=x,x-(y-2)=(x'y)-zx-y=y-X,
x-x1=1}U{h&x y)=h - hy);1<i<n}.

(4) The theory AGnHC of abelian groups with n commuting homomorphisms. The signa-
ture is Qn and AGnHC := AGnH U { hi(hj(x)) = hj(hi(x)); 1<i<j<n}.

It is easy to see that these theories are commutative. Note that the implicit operation
induced by the term x - y ( for a binary function symbol - ) satisfies 2b of Definition 2.1 for
f=-iff (a-b)-(c-d)=(-c)- (b-d) holds in any algebra A € F(E) and for f=h (for a
unary function symbol h ) iff h(x - y) = h(x) - h(y) holds.

3. Unification in Commutative Theories

In this section we recall the characterizations of unification type unitary ( finitary for unifi-
cation with constants ) for commutative theories given in Baader (1989). As a conse-
quence we derive, that unification in a commutative theory E means solving systems of
linear equations in the semiring S(E). This yields algebraic characterizations of the unifi-
cation types.

THEOREM 3.1. A commutative theory E is unitary iff it satisfies the following condition:
Let y be an arbitrary variable. For any E-unification problem < ¢ =1 > ( where o, T

Fg() » Fg(X) ) there are finitely many E-unifiers o, ..., o Fg(X) — Fg(y) such that
any E-unifier 8: Fg(X) — Fg(y) is representable as

i=r
8= o5,

where A;: Fg(y) — Fg(y) are morphisms.

If we translate morphisms into matrices over S(E), we obtain the following reformulation
of Theorem 3.1:






COROLLARY 3.2. A commutative theory E is unitary iff the corre<;onding semiring
S(E) satisfies the following condition: For any n, m > 1 and any pair M;, M_ of mxn-ma-
trices over S(E) the set
— n, =
UMM, = (x€ SE5Mx =M x )
is a finitely generated right S(E)-semimodule, i.e. there are finitely many x,, ..., X, €
SE)" such that UM_M,) = { x5, + ... + X5 8;, ... 5. € S(E) }.

THEOREM 3.3. Let E be a unitary commutative theory. Then E is finitary w.r.t. unifica-
tion with constants iff the following condition holds:

For any morphism ( of C(E) ) 6: Fp(X) — Fg(Y) there exist finite sets M, N such that:

(1) The elements of M are morphisms : Fg(Y) — F(X) satisfying 8 = 1.

(2) The elements of N = { vy, ..., V; } are morphisms v;: Fg(Y) — Fg(Z,) with dv; = 0.

(3) For any A: Fg(Y) — Fg(X) with 8A = 1 there are 4 € M and morphisms A, ..., A,
( where A;: Fp(Z;) - Fp(X) ) satisfying

}.=,J,+El:;vl>\«l.

The translation of morphisms into matrices over S(E) yields a sufficient condition for E to
be finitary w.r.t. unification with constants.

COROLLARY 3.4. Let E be a unitary commutative theory. Then E is finitary w.r.t. unifi-
cation with constants, if the following condition holds in S(E):

Let A be any mxn-matrices over S(E) and let b be any element of S(E)™. Then the set
M :={ x e S(E); Ax =Db } is a finite union of cosets of the ( finitely generated ) right
S(E)-semimodule N := { x € S(E)"; Ax =0 }, i.e. there exist finitely many m, .., m, €

SE)"suchthat M= {m. +n;ne Nand 1 <i<k}.

Note that the semimodule N is finitely generated, since E is unitary and N = U(A,0),
where 0 is the mxn zero matrix. From Theorem 3.3 we can only deduce, that the condition
of the corollary is sufficient, since in Theorem 3.3 we talk about specific inhomogeneous
equations AX = E, while in Corollary 3.4 the right-hand side of the equation is an arbi-
trary vector b.

Assume that S(E) is a ring and let X, be an arbitrary solution of the inhomogeneous
equation Ax = b. Then any solution y of Ax =b is of the form y = Xy +Z, where z :=y — X,
is a solution of the homogeneous equation Ax = 0. This proves

COROLLARY 3.5. Let E be a unitary commutative theory such that S(E) is a ring. Then
E is unitary w.r.t. unification with constants.






4. A Commutative Theory of Unification Type Zero

In 1972 Plotkin conjectured, that there exists an equational theory E which has unification
type zero. But only in 1983, Fages and Huet constructed the first example of an equation-
al theory of this type. Schmidt-Schau8 (1986) and the present author (1986) showed that
the theory of idempotent semigroups is of unification type zero and in Baader (1987) I
have proved, that almost all varneties of idempotent semigroups are defined by type zero
theories. This provides us with countably many examples of type zero theories, which are
more natural than the original example of Fages and Huet. '

In Baader (1988) it is shown that the theory AIMH of idempotent abelian monoids with a
homomorphism has type zero. The same proof can be used for AMH, the theory of
abelian monoids with a homomorphism, in place of AIMH. This section contains a more
algebraic proof of the fact that AMH has type zero. Since commutative theories are either
unitary or of unification type zero ( Baader (1988), Theorem 6.1 ), it is sufficient to show,
that the semiring S(AMH) does not satisfy the condition of Corollary 3.2.

Let 0: Fpopp(x) = Fppyp(x) be a morphism of C(AMI-I)’._Then there are k 2 0 and a,,

nomial p; = ag + a;X + ... + aka € IN[X]. It is easy to see that pg5 = pyPs and Pgeg =
Po+Pg, Which shows that S(AMH) = IN[X]. '
We consider the linear equation (x) Xxq + XX, =X, + X2x3, which has to be solved by a
vector p = ( Py, Py, P3 ) in (IN[X])3. Obviously, for any n 2 0, the vector p® = ( p{®, pi,
pP)=(1,X +X2+...+ X", X" is a solution of ().

LLEMMA 4.1. There does not exist a solution p of (x) in (IN[X])3 such that pp+p3=1

PROOF. For p; =0 and p3 = 1 we get Xp, = p, + X2, which yields (X - Dp, = X2 in
Z[X]. But X — 1 is not a divisor of X2. The case p; =1 and p3 = 0 leads to a similar con- -
tradiction.

It is easy to see that I} 3 := { p; + p3; There exists p, such that ( p;, p5, p; ) solves
(%) } is an ideal in IN[X]. We know that 1 + X" € I; s foranyn>0and 1 ¢ | SN

LEMMA 4.2.

Anideal I ¢ IN[X] such that 1 + X" € I forany n >0 and 1 ¢ Iis not finitely generated.
PROOF. Evidently 1 + X?=fgforf,ge INIXJor1+X"=f+gforf,ge INIX]\ {0}
impliesf=1org=1.Butle L

PROPOSITION 4.3. The theory AMH has unification type zero.

PROOF. Assume that AMH has not type zero. Then AMH is unitary and, by Corollary
32,I={pe (IN[XD)3; p is a solution of (x) } is a finitely generated right IN[X]-semi-
module. But then Iy 3 = { p; + p3; There exists p, such that ( p;, p,, p3) € I} would also
be finitely generated, which contradicts Lemma 4.2. '

The fact that the set of solutions of the equation (x) is not a finitely generated right semi-






module is not specific for the semiring IN[X]. More general, let S be a semiring which is
not a ring ( that means, that there exists s € S such that forallte S s+ t # 0 ). Then the
right S[X]-semimodule I := { p € (S{X])3; p is a solution of (%) } is not finitely generated
( Baader-Nutt (1989) ).

5. AGnHC-Unification and Hilbert’s Basis Theorem

It is easy to see that S(AGnHC) is isomorphic to the ring Z[X,,..,X ], i.e. the polynomi-
al ring over Z in the ( commuting ) indeterminates X o X . To establish the condition
of Corollary 3.2, we have to consider systems of homogeneous linear equations in Z[X,,
...,Xn], i.e. systems f;x; + ... + fi;x =0 ( i=1, ..., s), where the coefficients fij and the
desired solutions are elements of Z[Xl,...,Xn]. The set of solutions I ¢ (Z[Xl,...,Xn])k

is a Z[X,,...X J-module, which is finitely generated by Hilbert’s Basis Theorem and the

fact that Z is a noetherian ring ( see e.g. Jacobson (1980) ). Thus AGnHC is unitary
w.r.t. unification without constants. Since Z[Xl,...,Xn] is a ring, Corollary 3.5 applies and

we have proved

PROPOSITION 5.1. ( Nutt (1988) )

For any n = 0 the theory AGnHC is unitary and it is also unitary w.r.t. unification with
constants.

This proof of Proposition 5.1 does not yield an AGnHC-unification algorithm, because we
still do not know how to solve linear equations in Z[Xl,...,Xn] effectively. The next sec-

tion describes one possible answer to this problem.

6. Solving Linear Equations in Z[X,,..,X ] using Grobner Bases

Buchberger (1985) describes an effective method, which constructs finitely many genera-
tors of the solutions of a single equation f;x; + ... + fix; = 0, where the f; and the desired

solutions are elements of K[Xl,...,Xn] for a field K. This method may also be used for
Z[Xl,...,Xn] ( see Buchberger (1985) for Grobner Bases of polynomials over Z and

Kandry-Rody-Kapur (1988) for Grobner Bases of polynomials over a euclidean ring ), but
the proof of its correctness becomes more involved. Systems of equations can then be
solved by successive substitution. A more efficient approach to solving systems of equa-
tions is described in Furukawa-Sasaki-Kobayashi (1986), where Grobner base theory is
extended to modules over K[Xl,...,Xn].

First we recall some facts and notations concerning Grobner bases:

(6.1) Admissible term orderings.
Let Tn = { Xll‘l...Xlrfﬂ; k.. k € IN } be the set of all terms ( i.e. monomials with coeffi-

cient 1 ) in Z[Xl,...,Xn]. With respect to multiplication of polynomials, T, is a commuta-






tive monoid ( with neutral element 1 = X(I)Xg ), which is isomorpic to the additive

monoid IN®.

A linear ordering < on T is called compatible iff forallr,s,te T r < s implies rt < st
and it is called admissible iff it is compatible and satisfies 1 < s for all s € T, . It is easy
to see that a compatible linear ordering on T, is admissible iff it is noetherian.

Complete descriptions of all compatible linear orderings have been given by Trevisan
(1953), Zaiceva (1953) and, more recently, by Robbiano (1985) and Martin (1988):

Any compatible linear ordering < on T, is completely determined by a nxs matrix U_ of s
< n orthogonal vectors Uy, ey U € IR? of Q-dimension n as follows: Xll‘l...Xﬁn < Xllll...Xgn iff
the first non-zero element of (h1 - kl, . hn - kn) - U_ is greater than zero.

It is easy to see that the compatible linear ordering < is admissible iff in any row of U_,
the first non-zero entry is greater than zero.

(6.2) Rewriting with polynomials. =
For a polynomial f and a term t which occurs in f, coeff(t f) denotes the coefficient of t in f.
If t does not occur in f, we define coeff(t,f) := 0. Let < be an admissible ordering and let f =

at + g be a polynomial in Z[X,...X ] such that t € T_is the greatest term in f w.r.t. <

and coeff(t,f) = a € Z is the coefficient of t in f. Then t is called head-term of £ (HT(f) ), a
is called head-coefficient of f ( HC(f) ), at is called head-monomial of f ( HM(f) ) and g
= f — HM(f) is called rest of f (R(f) ).

A set F of polynomials induces the following rewrite relation on Z[Xl,...,Xn]:

f —pg iff (1) fcontains a term t with coefficient a.
(2) F contains a polynomial h such that HT(h) = t-s ( for some s € T,)

and IHC(h)I < lal.
(3) g=f-hbs, where a=b-HC(h) + ¢ for 0 <c <[HC(h)l, b,c e Z.

Let _*—)F ( resp. i‘/F ) denote the reflexive, transitive ( resp. transitive ) closu.e of —p It

can be shown ( using a multiset extension of <) that i)F is noetherian. The set F gener-
ates an ideal <F> in Z[Xl,...,Xn] and this ideal induces a congruence = s> Namely f
=_p, g iff f — g e <F>. This congruence is the reflexive, transitive and symmetric closure

of =g ( Bachmair-Buchberger (1980) ).

(6.3) Grobner bases and S-polynomials.
Let I be an ideal in Z[Xl,...,Xn] and B let be a finite set of polynomials. B is a Grébner

base for 1 iff <B>=1and —y is confluent. Since i’B is noetherian, confluence is equiva-

lent to local confluence and this property can be tested with the help of finitely many criti-
cal pairs, which are here called S-polynomials.

Letg, =c;t + R(g,) and g, = ¢ty + R(g,) be elements of B such that ¢; 2 ¢, 20 ( with-
out loss of generality we assume, that the head coefficients of the polynomials in B are
positive ). The S-polynomial S(g,,8,) of g, and g, is defined as follows:
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Let Syt =Syt = lcm(tl,tz) and C;=acy+ b,0<b< C,Scp,a2 1. Then

S(g,-8,) =5,°8; — a5y°8, = b-s;-t; +5.°R(g;) — a5, R(g,).

Now B is a Grobner base iff for every pair of polynomials in B the S-polynomial reduces
to 0 w.r.t. —p.

If B is a Grobner base for the ideal I, then fe Tifff bB 0 and f=; giff f and g reduce to
the same —p-irreducible element. Thus we can decide ideal membership for I, if we have

a Grobner base for I. But a Grobner base can always be constructed, if a finite set of gen-
erators of I ( which always exists by Hilbert’s Basis Theorem ) is given.

(6.4) Buchberger’s algorithm.
Let I be an ideal in Z[Xl,...,X n] and F be a finite set of polynomials such that <F> = 1.

As described in (6.3), we can effectively test whether F is a Grobner base for I. If F is
not a Grobner base, we can extend F by the —p-irreducibles of those S-polynomials,

which do not reduce to 0, and test again. This completion procedure always terminates
with a finite Grobner base for I ( see e.g. Kandry-Rody-Kapur (1988) for more details ).
This termination property is a consequence of Dicksons Lemma ( Dickson (1913) ),
which holds for free commutative monoids, but not for free monoids ( see e.g. Mora
(1985)).

In the sequel, the following notation will be convenient: Let hl’ s hm be elements of
Z[Xl,...,Xn]. We denote the 1xm-matrix (hl,...,hm) by h and the mx1 matrix (hl,...,h m)T
( here T denotes the transpose of matrices ) by |h.

Let (%) fyxy + ... + £x, = f; be an ( inhomogeneous ) linear equation in Z[Xl,...,Xn].

According to Section 3 we have to find one solution for (x) and finitely many generators of
the solutions of the homogeneous equation (xx) f;x; +... + fx.=0.

We first construct a Grobner base B = { 81> -+ Bg } for I:=<{ f;, ..., f_ }>. Since <B> =1,
there exist an rxs-matrix P and an sxr-matrix Q with entries in Z[Xl,...,Xn] such that

fP = g and g-Q = £ This matrices can be obtained as by-products of the Grobner base
construction.

Obviously, () has a solution iff f; € I Hence, if (x) has a solution, then f0 reduces to O
WIt —p. This yields Py~ Pg € Z[Xl,...,Xn] such that g-lp = fO' But then P-lp is a solu-
tion of (x).

We now assume that we already have finitely many generators iZD, ..., 1Z0 of the solu-
tions of the equation (++) gix; + ... + gX = 0. Then Pz, ..., P1z1) are solutions of
(#x), but in general they do not generate all solutions. Let E_ be the rxr identity matrix
and let tD), .., 1 be the columns of the matrix PQ — E,. Since £-(PQ ~ E) = £PQ - £ E,

= g:Q —f=0, these columns are solutions of ().
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LLEMMA 6.5. The finitely many vectors P-Iz(l), e P~Iz(L), It(l), vy 1t® are solutions of
(»%) and they generate all solutions of this equation.

PROOF. Let Iq = (q;...q)" be an arbitrary solution of (+«). Then Qg is a solution of
(++) and thus there are 3y, . 8y € Z[Xl,...,Xn] such that Q-lg = al-lz(l) + ..+ aLIz(L).
Now Ig =PQq - (PQ-E )lq = a, (P1zD) + .. + a, -1z + q 4D+ + q-1t®.

We now show how to solve the equation (++) g1x; + ... +gx;=0,iff B={g,, .., g }isa

Grobner base.
For a set { q;, ..., q } of polynomials the complexity measure BS(q;.....q ) is defined as

follows: Let t := max{ HT(ql), e HT(qs)} and for alli, 1 <1 <5, let a, = coeff(t,qi)
( Note that a, = 0 for HT(qi) <t). Then BS(ql,...,qs) = (Iall +..+ |asl)-t.
Now t is called the term and la, | + ... +la | the coefficient of BS(ql,...,qs). We define

at= BS(ql,...,qs) < BS(ql’,...,qs’) =a’t’ iff t<t’ort=t"anda<a’.
Let S(gi,gj) =58 —as;g = byt + s,R(g;) - a-sj-R(gj) be the S-polynomial of g; and
gj ( see 6.3 ). Since B is a Grobner base, we have S(gi,gj) '*“)B 0. This derivation yields

polynomials w,, ..., w_ such that

k=s
S(gi,gj) = Zk-_-l Wi 8k

and BS(wl-gl,...,ws-gS) = ¢-t’ for some t’ < s; L ifb=0, or BS(wl-gl,...,ws-gs) = b-si-ti, if
b #0.

Now s.-g — as;g; = S(gi,gj) = Wpgy t+ e+ Wog implies Wigy t o + (Wis)g + o
(wj+a-sj)-gi +ot Wego = 0. Thus Iwij = (wl,...,wi—s.,...,w.+a-s.,...,ws)T is a solution of

1 ) J
the equation (++).

LEMMA 6.6. The finitely many vectors Iwij generate all solutions of (++).

PROOF. Let Ip = (p;,..p)" be a solution of (++) and let t = max{ HT(g,p,), ...
HT(gSpS) }. We prove the lemma by induction on BS(g,p;»----&P)- Since glp = 0, there
exist 1, j such that HT(gipi) =t= HT(gjpj) and HC(gipi) and HC(gjpj) have different sign.
Without loss of generality we assume that ¢; := HC(g) 2 HC(gj) = ¢ > 0. Obviously, t
:= HT(g,) and tj = HT(gj) are divisors of t and thus lcm(ti,tj) = st = sjtj divides t, i.e.
there exists r with rs;t, =rs;t. = t.

J]
We now consider the case HC(gpp,) > 0 and HC(gjpj) < 0 ( the other case is similar ).

The vector Iq = (ql,...,qs)T :

BITW 1 - §d) = EiP; + BTW; — BTSp - B0 = B + &FW; + BATS, 1y B = EPg + EIW
If max{ HT(glql), e HT(gsqs) } < t, the lemma is proved by induction, since the term of

=1Ip + r-Iwij is a solution of (++) and we have g,q, = g;p, +

BS has decreased. Otherwise max{ HT(g,q,), ... HT(gq) } =t and we have to calcu-
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late the coefficient of BS(g,q;,-...8,q,)- The triangle inequality yields

BS(g,q;--84) <BS(g{P>--8P; — BTS8Py + gjarsj,...,gsps) +bt,
since BS(glrwl,...,gsrws) = r-b-si-ti =bt(forb>0)or BS(glrwl,...,gsrws) has a term
which is smaller thant (forb=0).
We have lcoeff(t.g;p; — g;rs;)l = Icoeff(t.g;p,)l — ¢; ( since coeff(t,g;p,) = HC(g;p) 2 ¢, 20)
and Icoeff(t,gjp.i + gjarsj)l < lcoeff(t, jpj)l + ac ( since coeff(t, jpj) = HC(gjpj) < 0 and
coeff(t,gjarsj) =ac; > 0). |
Thus BS(g,py:--:&;P; — giTS;-8iP5 + gjarsj,...,gsps') < BS(gp;»--8py) + (acj ~ ¢yt and,
since ¢, = ac; + b, BS(glql,...,gsqS) < BS(g;py>----8py)- This completes the proof of Lem-
ma 6.6 by induction on BS.

Now we have completely described a method to solve linear equations in Z[Xl""’Xn]‘

EXAMPLE 6.7. As an example, consider the equation fx, + fyx, + f3x3 = f, for f, =
x3v72 - x3Y372, f, =X3YZ - XZ%, £, = XY*Z - XYZ and f, = X*Y? - Z.

First, we have to calculate a Grobner base for the Ideal I, generated by fl’ f2 and f3. Let <
be the admissible ordering defined by the matrix

100
M_= | 1 0 1 | (that means: first order by total degree and, within a given degree,
110 order lexicographically with X < Y <Z).

With respect to this ordering, the Buchberger algorithm yields the Grobner base B = { g
8y 83, 84, 85 }, where g, =1f,, g, =13, 8, = x%yz - 72, 84 = Y72 -72 and 8= X272 73,

By keeping track of how the g; are generated in this process, we obtain the transforma-
tion matrix P such that f-P = g and, by reduction of the fJ w.r.t. —p, we get the matrix Q

such that g:Q = £. In our example

00 0 o0 0 01 0
P=[1 0 -X XY _zX-x%Y andQ=| % o &
0 1 Z -YZ+Z Z2+X%¥2-XZ 0 o9

We now determine whether f, € I = <B>, i.e. whether f;; reduces to 0 w.r.t. —p:

= 3 3y 372 _ 3 2~3
f, op fo— 8 XY =XYZ3 - X3Y?Z2 o) £ g XY + g XY?Z =XYZ? - XY?Z? -
fo— g XY + g XY2Z + g, XYZ =XYZ? - XYZ3 =0,
Thus £, = g,-0 + 8,0 + g3-(—XY2’Z) + g4 (XYZ) + gS-XY € <B> =1 and we can use the
transformation matrix P to obtain a solution of the equation f;x, +f,x, + f3x3 = fy

P-(0, 0,-XY?%Z,-XYZ, XY )T = (0, -X2YZ - X*Y?, X327 - x3yz)T.
The next step is to determine the solutions |wij of the equation g,x; +... + 8sXg = 0.

B






S(gl,gz) =g X~ g8yZ= -X2YZ + 72 = -85 and thus g;-(-X) + g,Z + g3i(—1) + 8,0 +
g5-0 = 0. That means Iw, , =(-X,Z,-1,0,0 ).

S(g,.83) = g X-gyY = _X2YZ + YZ2 = -85 — 72 + Y72 = - g3 + g, and thus we get
wy 5 =(-X,0,Y-1,1,0)".

Similar computations yield the other vectors Iwij:

Iw, 4 = (-Z,0,0,XY,0)T, w, 5=(-XY,0,-Z, YZ+Z,Y2)T,
Iwy3=(0,-Z,Y,1,0)T, Iwy 4 =(0,-Z2, 2, X%Y, 0)T,

Iw, 5 =(0,~Z%,0, YZ+Z,Y2)T, 1wy, =(0,0,-Z, X% 1),
|w35=(OO—ZZY)T Iw45=(000—X2+Z Y—I)T

Now we use the transformation matrix P to obtam solutions of the homogeneous equa-
tion f;x; +fx, +fx3 =0:

Piw,; ,=(0,0,0)T, P-lwl’é‘;('p’,fq",jo' )%,
Plw, ,=(0,X°Y?-Z,XY’Z+XYZ)T,  Piw 5=(XY)Piw,,,

= T -
P-lwz,3 =(0,0,0)", P-Iw2,4 = X‘-_P-lw_l’4 ,
(0.0 0T
P-lwz,5 = P'IWI,S_ = (—XY)-P-IWL4 , P-Iw3’4 =( 0, 0,0)", \
Piws g =-Plw, , = X)Plw, 4, Plw, s =Plws s = X)-P:lw, 4. -

The solution P-lw, , = (0, x2y? _ Zz, XY 27 + XYZ )T thus obtained does not generate
all solutions of f,x, +f,x, + f;x; = 0. In addition, we need the columns of the matrix

1 0 0
PQ-E,= X2 0 0
XZ 0 0

All solutions of the homogeneous equation fx, + fyx, + f3x5 = 0 are generated by the
two solutions (0, X2Y2 - Z, -XY?Z + XYZ )T and (-1, -X2, XZ)T.

EXAMPLE 6.8. As a second example, we consider the equation Xx; + Xx, = X, + X2x3

of Section 4, but now we want to solve it in Z[X]. Hence we have to solve the homoge-
neous equation £1x, + %) +£3x3 =0 forf, =X, f, =X -1and f; = —X2. It is easy to see

that <{ f}, f,, f; }> =Z[X] and that B={ g, } forg, = 1 is the correspondmg Grobner_
base. The transformatlon matricesare P=(1,-1,0 )T andQ=(X,X-1, —X2) :
Obviously, the equation g, x, has only the trivial solution x, = 0. Thus the columns of
X-1 X-1 -x?
PQ-E;= | X X X2 |
0 0 -1
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ie. (X-1,-X,0)T and (-X? X2 -1)T, generate all solutions of Xx; ~ Xx, = X, + X?x
in @Z[X))*.

7. AGnH-Unification

It is easy to see that S(AGnH) is isomorphic to the ring Z<X,,....X >, i.e. the polynomi-

al ring over Z in the non-commuting indeterminates X, ..., X_. Unfortunately, for n > 2

this ring is not noetherian ( see Mora (1985) ) and the membership problem for finitely
generated two-sided ideals is undecidable ( Kandry-Rody-Weispfenning (1988) ). For-
tunately, we are not interested in two-sided ideals, but only in right ideal. The solutions
of a homogeneous equation f;x; + ... + £x, = 0 are only closed under right multiplication

and the inhomogeneous equation f;x; + ... + fx, =f, has a solution iff f, is a member of
the right ideal generated by f;, ...., f. Though, for n 2 2, Z<X,,....X > is not even right
noetherian ( i.e. there are right ideals-in-Z<X,,..,X >, which are not finitely generated ),
the set of solutions of a homogeneous equation f;x; + ... + fx. = 0 is a finitely generated
right Z<Xl,...,Xn>-semimodulc and the membership problem for finitely generated right
ideals is decidable in Z<X1,...,Xn> ( see Section 8 and 9 ). This yields

PROPOSITION 7.1. For any n 2 0 the theory AGnH is unitary and it is also unitary
w.r.t. unification with constants. '

8. "Grobner bases" for finitely generated right ideals in Z<X1,...,Xn>

The construction of Grobner bases for finitely generated right ideals in KX X >,
where K is a field, is very easy ( Mora (1985) ). For Z<X1,...,Xn> one has to be more

careful.
The role of terms in the commutative case is now played by words over the alphabet X

= { X}, ..., X }. Let W be the set of these words, i.e. the free monoid generated by .,

and let 1 denote the empty word.
A total ordering < on W__ is called admissible iff the following two conditions hold:

(1) Foralls,t,re W n S<t implies sr < tr ( compatibility with right concatenation ).
(2)Forallse W _theset {te W ;t<s } is finite.

LEMMA 8.1. Let < be an admissible ordering on W_.

(1) < is order-isomorphic to ® and thus noetherian.
@) 1<tforallte Wn\{ 1}.

(3)s=trforr# 1 implies s > t.

Examples of admissible orderings are graded lexicographical orderings and, more general,
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all suffle-compatible total orders ( see Leeb-Pirillo (1988) ). The complete characteriza-
tion of all concatenation-compatible ( resp. right concatenation-compatible ) linear order-
ings is still an open problem.

We now extend admissible orderings to monomials and polynomials.

DEFINITION 8.2. Let < be an admissible ordering on W_.

(Dleta,be Zands,te W, Thenas<bt iff s<t ors tandlal<|b|ors-tand_,

lal = Ibl and a < b. This deﬁnes a well-ordermg on the monomlals of Z<X X >

1, ’
(2) Let f = Za.s and g = Zbt, be two polynomrals ie: elements of Z<X1, ,X >. Then___'_'

we define f< g iff { .. . }<<{

1 1’ 1 1’ o
ing ( see Dershowitz-Manna (1979) ) induced by the ordermg < on monomlals
(3) Let f be a polynomial. We write f = at + R(f) if t is the maxrmal ( wrt <) word in f

(t—-HW(f))andalsthecoefﬁmentoftlnf(a HC(f)) o

(4) For a set F of polynomlals in Z<X1, ,X >, the reductron relatlon l—’F is .deﬁned as in

.}, where << denotes the multlset order-

~ Section 6, 6.3.

For K<X;,....X >, Mora (1985) has descnbed a very easy’ algonthm whrchh'transforms ad, o

finite set F of polynomials into a "Grobner base" ( see Mora""(1985) for the' definition _of S
Grébner bases in this case ): ; : ot T
Start with FO =F. As long as there are polynormal _f g in

“ Fk’ suchj tha

v { g} and continue with F e | m place of F

prefix-ordering ( i.e. for any word r, HW(t) T# HW(g) and HW(g) r ;& HW (f) N
For Z<X,,...,X >, We encounter the followmg problem For f=at + R(f) an d g b T + -
R(g) witht,re W ,a,be Z and lal > Ibl, HW(f) is prefix of HW(g) but the head mono-

mial of g can not be reduced by f. If, in addition, b devides a, it may become necessary to
increase the actual set of polynomials ( see Case 4 below ). Since Drckson S Lemma"ﬂ'
does not hold for free monoids, we have to be very careful “if we want to obtam a term1
nating algorithm. o - s

ALGORITHM 8.3. This is the informal descnbtwn of an algonthm wh1ch transforms a 5
finite set of polynomials { f,, ..., f_ } into a "Grobner base Whlch defi o

ideal. ‘
In the beginning, Fy:={ f, ..., f } and a11 pa1rs of 1ndrce_ are

Assume that Fy_ ( k > 0 ) is already defined. If there is the s zero polynomral 0 in Fk-; we. o
erase it. While there are f :=f, and g := f in F,_such that - -
(1) (4, j ) is not marked and

2)f=at+R(f)andg= btr+R(g)forsomea,beZandtrEW L


http:�.....���
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we do the following:

Casel: r=1.

Without loss of generality we may assume that lal > [bl. Let a = bc + d for some c, d such
that 0 <d < Ibl <{al.

Define f1 :=f—gc=dt+R() - R(g)c and Fk+1 = Fk\ {f}Hud f1 }. We do not have
to mark (1, j ), since f = £, is removed.

Obviously, f, < f and f = f; + g-c. Hence F | generates the same right ideal as F,, but f
is replaced by the smaller polynomial f,.

Case 2. r+# 1 and lal < Ibl.

Letb =ac + d for some ¢, d such that 0 < d <lal <Ibl.

Define g, :=g—fecr=d-tr + R(g) ~R(f)crand F , =(F\{g})u{g }.

Obviously, g, < g, and g = g; + f-:cr. Hence F; generates the same right ideal as F,, but
g is replaced by the smaller polynomial g, .

Case 3. T+ 1, lal > Ibl and Ibl does not devide Ial.

Let a = bc + d for some ¢, d such that 0 < d < |bl < lal. We define g = fr—gc=dtr+
R(f)r — R(g)-c. Since the words occurring in R(f)r and R(g)-c are smaller than tr, we
have HW(g,) = tr, HC(g,) = d and R(g;) = R(f)-r — R(g)-c. Obviously, g, < g, g, € <F,>
and the pair 8 8 satisfies Case 1. Hence we define g, := g — 816, ( where b = dc, +d,,
0<d;<d)andF,:=(F \{gl})u{g,s,} Sinceg,, gy<gandg=g,+g;c,F
generates the same right ideal as Fy, but g is replaced by the two smaller polynomials
g,and g,.

Case 4. r+ 1, lal > |bl and Ibl devides lal, i.e. there exists ¢ such that a = bc.

Define g = fr — g:c = R(f)r - R(g)c. Now g, < g, but since Icl # 1, g can not be re-
presented using g,. We distinguish the following cases:

Case4.1. Thereishe Ujq F, with the property HW(gl) =HW(h).

Case4.1.1. h e F,_and [HC(g,)l <IHC(h)!.

We have g, <h and h may be reduced by g, tosome h; < h ( see Case 1).

Define F, | := ( Fk \N{h})u/{ 8 Iy } and mark (i, j ). F,,; generates the same right
ideal as F,, but h is replaced by the two smaller polynomials g;and h,.

Case4.12. he F, and HC(g,)l 2 HC(h)\.

Then g, may be reduced by h to a smaller polynomial g, ( see Case 1). If g, = 0, Fog=
F, and we mark (i, j ). Otherwise we continue with g, in place of g;.

Case4.1.3. h ¢ F, and there is no polynomial in F, which has HW(h) as head word.

Thus the monomial HC(h)HW(h) has been reduced in some previous step. It is easy to
see, that then HC(h)HW(h) can also be reduced by R If we have [HC(g )l 2 IHC(h),

g, can be reduced and we proceed as in Case 4.1.2.
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Otherwise, i.e. if IHC(g))l < HC(h)I, we define Fk =Ry { g } and mark (i, j).
Case4.2. There is no h € U, F, with the property HW(g,) = HW(h).
In this case we also define Fy _, == F, U { 8, ) and mark (i, ).

This completes the description of Algorithm 8.3. We shall soon show that this algorithm
always terminates with a finite set of polynomials G, whose properties justify the name
Grobner base. But first, we consider an example.

EXAMPLE 8.4. Let f1 = 2abc — bc, f2 = 3ab - 2b, f3 = 5abd — bc and f4 = bc — 5bd be poly-

nomials in Z<a,b,c,d>. We take the graded lexicograpical ordering with a > b > ¢ > d as
admissible ordering (i.e. u <v iff lul <ivl or lul = |vl and u <, v ) and run Algorithm

83 withinpuwt Fjy: ={ [, 10, f3f4}

1) For f, and f, we have Case 3.

Define fy := f,-c — f; = abc — bc and f¢ := f, — £5°2 = be. Now f; is replaced by £, f,, which
y1e1dsF —{ 3, 4, 5,f }Wchavef —f 2+f

2) For f2 and f3 we have Case 2.

Define f7 = f3 - f2-d = 2abd — bc + 2bd and replace f3 by -f.,, which yields F2 = { f2, fy, f5, f6,
£, }. We have f3 =f,+f,d.

3) For f,, and f5 we have Case 4.

Define f = f -C — f -3=bc= f Hence we have Case 4.1.2 and since f6 reduces f8 to 0, F3
=F,= ={f s 5, 6’ f } and the index pair (2,5) is marked.

4) For f, and £, we have Case 3.

Define fg :=f,-d — f, = abd - 4bd + bc and £, , = f, — f-2 = -3bc + 10bd. Now f, is replaced
by f9 and flO' which yields F, = {f. 2 4 I f6’ fo, flO }. We have £, = f10+ 152

5) For f,, and f9 we have Case 4.

Define f11 = f2-d - f9-3 = —-3bc + 10bd. Now HW(fH) = HW(f4) and f, reduces f11 to the
polynomial f,, :=f,, + f,-3 =-5bd ( Case 4.1.2 ). We continue with f,, in place of £, and

have Case 4.2, since bd has not yet occured as head word. Hence Fy :=F, U { f;, } and

(2,5) and (2,9) are already marked.
6) For f, and f we have Case 1.

De:ﬁnef13 =1, —fg=1;, and Fg :=Fs M ) ={f 2 fs: 1
1)) Forf and f10 we have Case 1.

Deﬁncfm —f10+f -3 =10bd and F, ={1, 1 6,f9,f12,f14}.
8) Forf pand f;, we have Case 1.

» g £100 17 -

Since f,, = f12( —2), f;, can be eliminated and we get F8 = { £y, f5, fe> £y, £15 }, where (2,5)
and (2,9) are marked.
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Hence Algorithm 8.3 terminates with G := Fg = { f,, {5, f, fo, {5 }. The elements of G are
g, =1, =3ab-2b, g, :=f; =abc—bc, g5 := fo =bc, g, :=1fy =abd — 4bd + bc and g :=f,,
=-5bd.

LEMMA 8.5.
For any finite input set Fy ={ f, ..., f | } of polynomials, Algorithm 8.3 always terminates.
PROOF. We consider the F,’s as multisets of polynomials, which are ordered by the

multiset ordering << induced by the ordering < on polynomials ( see Definition 8.2 ).
Since < is well-founded, the multiset extension << is also well-founded.

For the Cases 1, 2, 3 and 4.1.1, F, >> F, ;. Case 4.1.2 and the according subcase of
4.1.3 can not occur infinitely often in successive steps, because then g, > g, > g, > ...
would be an infinite descending <-chain. That means, that after finitely many steps g; = 0

or Case 4.1.1, the other subcase of 4.1.3 or Case 4.2 occur.

For the Cases 4.1.3 and 4.2, F _, is larger than F,. But these cases can only occur finite-

ly often during the whole run of the algorithm. First note, that all words t occurring in
some polynomial of some F satisfy t < max{ HW(fl), e HW(fm) }. Since < is admissi-
ble, there are only finitely many words with this property. Hence Case 4.2 can only occur
finitely often. Case 4.1.3 — where a head term, which has disappeared in some former

step, appears again — can only occur finitely often for a certain term, because the absolut
value of the head coefficient gets smaller each time.

Before we can state the next lemma, we have to introduce a new notation ( or rather an
abuse of the usual notation ). Let F be a finite set of polynomials. The expression

f=2

nieF i &
should be interpreted as follows: the a, are monomials in Z<X1""’Xn>’ f is a finite sum

of the polynomials h.-a;, but an element of F may occur more than once in this sum and

each occurrence may have a different coefficient a..

LEMMA 86. lett e W_ be a word and F, be the set of polynomials obtained after
some iterations of Algorithm 8.3. Assume that h is a polynomial and that h = ZhieFk h-a,
for monomials a with HW(hi-ai) < t. Then h = Zhi’ €Fir1 hi’-bi for monomials bi with
HW(h,-b) <t.

PROOF. For the Cases 4.1.3 and 4.2 we have F, c F,,, and thus we can use the given

sum. In Case 1, Fk+1 = (Fk\[ fl)uf f, }and f = f, + g-c. In addition we have g € F
and HW(g) = HW(f) = HW(fl)‘ Thus a term f-aj in the sum h = zhiGFk hi-ai can be

replaced by fl-aj +gca, The other cases can be treated similar.

LEMMA 8.7. Let G be the output of Algorithm 8.3 ( i.e. the actual set Fk, when the al-

gorithm terminates ) and let f = a-t + R(f) and g = b-tr + R(g) be elements of G.






Then the following holds:
(Da=bcforsomece Z,Icl#1andr=1.
(2) The S-polynomial g, := f-r — g-c = R(f)r— R(g)-c can be obtained as a finite sum

8 = ZhieG hya;,
where the a are monomials in Z<X1,...,Xn> and HW(h;ya) < HW(g,) < HW(g) =
HW(f1).
PROOF. Since Algorithm 8.3 has terminated, the index pair corresponding to f and g is
marked. Thus for some k, f and g are in F,_and they are selected by the algorithm.

(1) is satisfied, since only in Case 4 both f and g remainin F| ;.

(2) In Case 4 we have g = fr — g.c = R(f)t — R(g)-c and thus HW(gl) <HW() =

HW(f1) = tr. There is some g; such that g, -’E%Fk g, (see Case 4.1.2 and the first subcase
of 413 )and g, € F, _, or g = 0. Hence HW(g) <HW(g;) and g, = g; + Zhl e Fi h.-a, for
monomials a, with HW(h;-a,) < HW(g,). Lemma 8.6 yields g =g+ Ehi’GFk-f—l hi"bi for
monomials b, with HW(h,’b,) < HW(g,) and since g, € F,; or g; = 0 we have g, =
Ehi"EFk+1 hi."-ci for monomials ¢ with HW(hi'“ci) < HW(gl). By Lemma 8.6, g, can be
represented by such a sum for all F_ with m 2 k+1. Thus we have proved the lemma.

Let F ¢ Z<X1,...,Xn> be a set of polynomials. In the following <F> denotes the right
ideal generated by F

LEMMA 8.8.
Let G be the output of Algorithm 8.3 if started with input F,. Then <G> = <F>.

PROOF. Itis easy to see that, for any k, <F > = <F|_

+1>'

This lemma and the next proposition shows, that it is reasonable to call the result of
Algorithm 8.3 a Grébner base.

PROPOSITION 89. Let G be the output of Algorithm 8.3. Then any f € <G> can be
reduced to 0 w.r.t. —.

PROOF. The proof is similar to the proof of Lemma 2.4 in Mora (1985).

Obviously, f € <G> means f = Zgi cG &9 for some monomials a,. Let t := max{ ...
HW(g;-a) ... }andI:={1i; HW(g;-a) =t }.

Casel. Il =1.

Then HW({) =t and ( for I = { j }andaj=cj-rj(cjeZ,rje W ))HW(E) =t =

HW(gj)-rj and HC(f) = HC(gj)-cj. Hence f can be reduced by g to the smaller polynomial

f=1- ga € <G>. By Induction we get f; _*—)G 0 and thus f —5 f; "E‘>G 0.
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Case2. 11> 1.

Let i, j be two different elements of I and let a, = c;1;, a = CT, (c; c; € Z, I e W ).

Since HW(gi)-ri =t= HW(gj)-rj, either HW(g,) is a prefix of HW(gj) or vice versa. With-

out loss of generality we assume HW(gi) = HW(gj)-r for some r € W_. By Lemma 8.7,

HC(gj) = HC(g,)-c for some c € Z and gT - g¢ = thGG h, b, where HW(h b ) <

HW(g) = HW(g.-r). Hence &1 — &TC = (gj-r - gor; = Ehke G hk'(bkri)’ where

HW(h, (b)) <HW(g) T, =t

Nowf = (gj-r- - g.-r.c)-c. +g;(c; +cc )r +Z j &m3m
Ehke G h,-(bc rl) + g (c; + cc, )r +2 m#ij &m2m yields a representation of f as a

sum, where Il is smaller.

COROLLARY 8.10. The membership problem for finitely generated right ideals in
Z<X,,...X > is decidable.

e
PROOF. letlI=<{f,, .., fm }> be a finitely generated right ideal in Z<X1,...,Xn>. We
apply Algorithm 8.3 to Fy={ f,, ..., f_ } and get a set G of polynomials. Now f € Iiff f can
be reduced to 0 w.r.t. —. If f is —-irreducible, then f € Liff f = 0. Otherwise we can ef-
fectively find some g such that f —; gand f € 1iff g € I. Thus Corollary 8.10 is proved by

induction.

9. Solving Linear Equations in Z<X,,..,X >

In the previous section we have shown, how to compute "Grobner bases" for finitely gen-
erated right ideals in Z<X,,..,X >. In this section these bases are used to solve linear

equations in Z<Xl,...,X o The method is very similar to that described in Section 6.

Let (x) fyx) + ... + fix; = f;, be an (.inhomogeneous ) linear equation in Z<X1,...,Xn>. We
have to find one solution for (x) and finitely many generators of the solutions of the homo-
geneous equation (k) f1x; +... +fx. =0

Let G = { gy, .... & } be the output of Algorithm 8.3. when started with input { fy, ..., f; }.

There exist an rxs-matrix P and an sxr-matrix Q with entries in Z<Xl,...,Xn> such that

f-P = g and g-Q = {. This matrices can be obtained as by-products of Algorithm 8.3.
Obviously, () has a solution iff f0 e <{ f;, .., f. }> = <G>. Hence, if () has a solution,

Proposition 8.9 implies that f; reduces to 0 w.r.t —. This yields p;, ..., p; € Z[Xl,...,Xn]
such that g-lp = f,. But then P-lp is a solution of (x).

We now assume that we already have finitely many generators Iz(l), woer 1) Of the set of
solutions of the equation

(+4) g1x1 + .. + g8x = 0.
As in Section 6 one can show
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LEMMA 9.1. The vectors Piz{), .., P1z) and the columns of the matrix PQ — E_are

solutions of (xx) and they generate all solutions of this equation.

We now show how to compute the finitely many generators of the solutions of (++).
If there do not exist i, j (i # j ) such that HW(g) = HW(gj)-r for somer e Wn, the equa-

tion (++) has no nontrivial solutions. Otherwise, let i, j (i # j ) be indices, such that
HW(g) = HW(gj)-r forsomere W .
By Lemma 8.7, HC(gj) = HC(g,)-c for some c & Z,r#1and

k=r
BT &€= 28y

for polynomials h, e Z<X P Xy with HW(g, h) < HW(gi). Obviously, hi has to be 0.

If we define q, :=h, fork#1i,j,q;:=h; +c=cand q; = hj —1, then lqij = (@goeens qs)T is a

solution of (++).

LEMMA 9.2. The finitely many vectors Iqij generate all solutions of (++).
PROOF. letlp = (pl,...,ps)T be a nontrivial solution of (++). The complexity of such a

solution is given by ( t, o ), where t := max{ HW(g,p); 1 <i<s }anda:=1{i;1<i<s
and HW(gp) =t }. '

Since g-lp = 0 and Ip is not trivial, o has to be greater than 1. Hence there existi, j (i#j)
such that HW(g)HW(p) =t = HW(gj)HW(pj). Without loss of generality we assume

that HW(gj) is a prefix of HW(gi). Thus HW(gi) = HW(gj)-r and HC(gj) = HC(gi)-c for
somere W andce Zand HW(pj) =rHW(p,). Let ¢, :=HC(p,) and ¢ = HC(pj).

The vector lqij’ which was defined above, is a solution of (++). We define a new solution
(P> P s’)T =Ilp’:=1Ip+ Iqij-chW(pi) and show that it has smaller complexity than Ip.
To that purpose we have to consider the words HW(g, p, ') forallk, 1 <k <s.

CASE 1. k#1,].

We have gp’ = gPp,+ gkhijHW(Pi) and HW(g -h ) <HW(g,). This implies that
HW(gkhkchW(pi)) < HW(g)HW(p,) =t. Thus HW(g,p,") = t, if HW(gp,) = t, and

otherwise, HW (g, p,’) <t.

Case2. k=1. ﬁ

We have gp;’” = g;p; + gicchW(pi). Hence HW(g;p;") =tif ¢, + cc; # 0 and HW (gp,) <t
ifc, + cc; = 0.

Case3. k=].

gjpj’ = &P; + gjhjchw(Pi) - gjrchW(pi)
=HC(gyc;t + R(g;py) + gihycHW(py) — HC(g)cHW (g)rHW (p)) — R(gre;HW (p)
= R(gjpj) + gjhjchw(pi) - R(gj)erHW(Pi): since tHW(p,) = HW(gj).

This shows that HW(gjpj’) <t.
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Thus we have seen thzt the complexity of the solution Ip’ is smaller th:n the complexity
of Ip and the lemma is proved by induction.

EXAMPLE 9.3. As an example we consider the homogeneous linear equation fx) + ..+
f 4X4 = 0 in Z<a,b,c,d> for the polynomials f1 = 2abc - be, f2 = 3ab — 2b, f3 = 5abd — bc and
f, = bc — 5bd of Example 8.4.

We have seen that Algorithm 8.3 terminates with G = { g;, g, &3, &4, 85 }, Where g, =
3ab — 2b, g, = abc - bc, g; = be, g, = abd — 4bd + be and g4 = —5bd. The transformation
matrices P, Q such that fP=gand gQ=fare

g [1) g g 0O -1 3 0O O
Q= |1 0o =3 1 and P=|1 © ~2 2d -5

0 0 2 0 0 0 0 -1 3

0 0 o 1 0o 0 0 0 3

All solutions of the equation 81X+ o+ EXg = 0 are generated by lq, 2 and Iq1,4:

(1) g,c— g3 = g and thusIq , = (~¢, 3, 1,0,0)T.

(2)gd—g3=1, =, 1,3 =1, +1,)3 =1,2) +£(3) = g5-(2) + g5(-3)
and thus Iq, , = (-4, 0,-3, 3,2 ).

We now apply P, to get the corresponding solutions of f;x, + ... + f,x, =0:

Plg, ,=(0,0,0,0)T and Pig, , = (-9, 6c +15d,-9,6)T .

0 o0 -9 3
. . 0 0 6c¢+15d —2¢c-5d
The matrix PQ—E4 is 0 0 9 3 A
0 0 -6 2

This yields the new solution ( 3, ~2c-5d, 3, 2 )" and since I, , = ( 3, —2c-54, 3, 2 )T(-3),

the solution ( 3, -2c-5d, 3, 2 )T generates all solutions of flxl + ..+ f WXy = 0 in
Z<a,b,c,d>.

10. Conclusion

The categorical reformulation of E-unification allows to characterize the class of commu-
tative theories by properties of the category C(E) of finitely generated E-free objects:
C(E) has to be a semiadditive category. The definition of semiadditive categories pro-
vides an algebraic structure on the morphism sets, which can be used to obtain algebraic
characterizations of the unification types. This shows the connection between unification
in commutative theories and equation solving in linear algebra. The very common syntac-
tic approach to equational unification, which only uses the defining axioms, is thus
replaced by a more semantic approach, which works with algebraic properties of the
defined algebras.






Hence unification algorithms for the commutative theory AGnHC, i.e. the theory of
abelian groups with n commuting homomorphisms, can be derived with the help of well-
known algebraic methods ( e.g. Grobner Base algorithms ) to solve linear equations in
Z[X,,....X,]. In order to obtain a unification algorithm for the theory AGnH of abelian

groups with n non-commuting homomorphisms, we developed a Grobner base algorithm
for the ring Z<X1, ,X > of polynomials over Z in n non—commuung mdetermmates

Since Dicksons Lemma ( Dickson (1913) ), whlch is used for Z[Xl, ,X ] to _prove. terml-'
nation of the Grobner Base algonthm does not hold for Z<X ,X > we had to be very -

careful to obtain a terrmnatmg algonthm Asi in the commutatwe case, the performance of
the algorithm depends on the choice of the admissible ordermg ‘Hence it would be inter-
esting to have a complete charactenzatlon of all adrmss1ble ordenngs for Z<X1, ,X >,
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