
Sebastian Biewer

Software Doping – Theory and Detection

Software Doping
Theory and Detection

Dissertation submitted towards the degree Doctor of Engineering (Dr.-Ing.) of the

Faculty of Mathematics and Computer Science of Saarland University

Sebastian Biewer

Saarbrücken, 2023

Date of the colloquium: 25 May 2023

Dean of the faculty: Prof. Dr. Jürgen Steimle

Chair of the committee: Prof. Dr. Verena Wolf

Examination Board: Prof. Dr. Holger Hermanns
Prof. Dr. Pedro D’Argenio
Prof. Dr. Gerardo Schneider

Academic assistant: Dr. Andreas Schmidt

Bibliografische Information der Deutschen Nationalbibliothek:
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deut-
schen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet
über https://dnb.dnb.de abrufbar.

© 2023 Sebastian Biewer

https://dnb.dnb.de

Dedicated to the memory of

Felix
2018 – 2022

Auch wenn du nicht mehr bei uns bist, lebst du durch all die Spuren, die du hin-
terlassen hast weiter. In den knapp fünf Jahren auf dieser Welt hast du bei sehr
vielen Menschen Spuren hinterlassen. Wir werden dich immer in Erinnerung
behalten und bei jedem Familientreffen an dich denken.

Meine Gedanken sind auch bei deinen Eltern, Carina und Simon, die so un-
fassbar stark sind und sich um deine drei Geschwister Carlotta, Leo und Paul
genauso liebevoll kümmern, wie sie sich um dich gekümmert haben.

Sie haben das Symbol der Kerze gewählt, um sich von dir zu verabschieden und
an dich zu denken. Jede Kopie dieser Dissertation enthält eine Kerze, die für
dich brennt. In jeder Kopie dieser Dissertation hinterlässt du eine weitere Spur.

Acknowledgements

This endeavour would not have been possible without my supervisor Holger
Hermanns. It is a top priority for you to care for everyone at the chair, to listen
to our wishes, and to find solutions for our problems. You were supporting me
in many ways: you shared your scientific advice in many situations, you bought
a (private) car for emissions tests (that turned out to be a real polluter), and
much more. It was a great joy to have so many social events with you and the
other Dependables, which also made the work at our chair so enjoyable. Thank
you very much! I am also extremely grateful to Pedro D’Argenio for agreeing to
review this thesis and for becoming an important advisor at the beginning of my
PhD time. You taught me many things that became important during my PhD
time! Many thanks also go to Gerardo Schneider, who kindly agreed to review
this thesis.
I want to thank Sarah Sterz, who provided ethically sound justifications for

many stupid things we did (at least that is how I see it). Most important, I am
very grateful for the close friendship that we developed during the pandemic!
Thank you very much, Sabine Nermerich and Christa Schäfer. You are/were
the defence line against the central administration of the university. I am also
grateful that we successfully stole Florian Schießl from a bicycle fair to become
the master of our technical infrastructure. During the pandemic, I very much
appreciated that you regularly came to university when nobody else did, which
made my working days significantly more social. I still try to understand how
Felix Freiberger can know so many things – be it nasty details of the examination
regulations, the safety architecture of roller coasters, or the rights of owners of
bee swarms that decided to relocate. Thank you very much for sharing all of this
knowledge! I am also thankful to Gregory Stock, who was always ready to help,
in particular regarding technical problems. Michaela Klauck became particularly
important whenever social events or trips had to be organised. While everyone
else desperately suffered from acute procrastination, you did the organisation
with ease. Thank you very much! Many thanks also to Maximilian Köhl, with
whom I had many important conversations about coffee and the perfect way to
brew it. Unfortunately, our master plan to buy a very expensive coffee machine
and to hire a student who becomes our personal barista was never put into action.
Special thanks also go to Lena Becker, in particular for her great services as a
supervision tutor for Programming 1 before she became a Dependable. Thanks

must also go to Kevin Baum for a lot of very valuable insights into topics beyond
the computer science horizon.
I also want to thank all the other Dependables with whom I had a very

good time at the chair: Alexander Graf-Brill, Andreas Schmidt, Daniel Stan,
Gereon Fox, Gilles Nies, Hassan Hatefi, Juan Fraire, Vahid Hashemi, and Yuliya
Butkova. I had many great projects and papers with a lot of talented people.
Many thanks to Rayna Dimitrova, Maciej Gazda, Mohammad Mousavi, Yannik
Schnitzer, Maximilian Schwenger, Bernd Finkbeiner, Sebastian Holler, Michael
Fries, Thomas Heinze, and Gilles Barthe. Thanks also go to Evelyn Kraska and
Sabine Lessel for their administrative support.

I also want to thank all my friends that made my time in Saarbrücken so great.
Thank you Noemi, for letting me move into your WG when I needed a room and
thanks for all the great pastries! I also want to thank Jana; you helped me to
survive the lockdowns during the pandemic. Thanks also must go to Nikolai for
being a great office mate. Thanks for so many things to Norine, Chris, Yannick,
Kathrin, Caro, Fabian, Nicolas, Jan, Paul, and many more! Special thanks go
to Clara. You gave me insights into a world I did not know and you were always
there for me when I needed help!

Finally, I also want to thank my family; I will do so in German. Zuerst möchte
ich meinen Eltern, Gaby und Thomas danken, die nie Zweifel daran hatten, dass
ich da hinkomme, wo ich jetzt bin. Ihr habt mir die Unterstützung gegeben, die
ihr euch für euch selbst gewünscht hättet, vielen Dank dafür! Danke auch an
meine Schwestern, Anna und Franziska, natürlich auch an Jakob und Jonah, an
meine Omas Renate und Ursula und an Isi und Onki. Besonderer Dank geht auch
an Armin und Jürgen. Einen großen Einfluss hatten meine Opas Roman und
Matthias, die mich oft in ihre Werkstatt mitgenommen haben, mir grundlegende
praktische Dinge beigebracht haben und mein Interesse für Naturwissenschaften
geweckt haben. Ich bin euch sehr dankbar, auch wenn ich euch das nicht mehr
persönlich sagen kann.

Abstract

Software is doped if it contains a hidden functionality that is intentionally in-
cluded by the manufacturer and is not in the interest of the user or society. This
thesis complements this informal definition by a set of formal cleanness defini-
tions that characterise the absence of software doping. These definitions reflect
common expectations on clean software behaviour and are applicable to many
types of software, from printers to cars to discriminatory AI systems. We use
these definitions to propose white-box and black-box analysis techniques to de-
tect software doping. In particular, we present a provably correct, model-based
testing algorithm that is intertwined with a probabilistic-falsification-based test
input selection technique. We identify and explain how to overcome the chal-
lenges that are specific to real-world software doping tests and analyses.
The most prominent example of software doping in recent years is the Diesel

Emissions Scandal. We demonstrate the strength of our cleanness definitions
and analysis techniques by applying them to emission cleaning systems of diesel
cars. All our car related research is unified in a Car Data Platform. The mobile
app LolaDrives is one building block of this platform; it supports conducting
real-driving emissions tests and provides feedback to the user in how far a trip
satisfies driving conditions that are defined by official regulations.

Zusammenfassung

Software ist gedopt wenn sie eine versteckte Funktionalität enthält, die vom
Hersteller beabsichtigt ist und deren Existenz nicht im Interesse des Benutzers
oder der Gesellschaft ist. Die vorliegende Arbeit ergänzt diese nicht formale
Definition um eine Menge von Cleanness-Definitionen, die die Abwesenheit von
Software Doping charakterisieren. Diese Definitionen spiegeln allgemeine Er-
wartungen an ”sauberes” Softwareverhalten wider und sie sind auf viele Arten
von Software anwendbar, vom Drucker über Autos bis hin zu diskriminierenden
KI-Systemen. Wir verwenden diese Definitionen um sowohl white-box, als auch
black-box Analyseverfahren zur Verfügung zu stellen, die in der Lage sind Soft-
ware Doping zu erkennen. Insbesondere stellen wir einen korrekt bewiesenen
Algorithmus für modellbasierte Tests vor, der eng verflochten ist mit einer Test-
Input-Generierung basierend auf einer Probabilistic-Falsification-Technik. Wir
identifizieren Hürden hinsichtlich Software-Doping-Tests in der echten Welt und
erklären, wie diese bewältigt werden können.
Das bekannteste Beispiel für Software Doping in den letzten Jahren ist der

Diesel-Abgasskandal. Wir demonstrieren die Fähigkeiten unserer Cleanness-
Definitionen und Analyseverfahren, indem wir diese auf Abgasreinigungssys-
tem von Dieselfahrzeugen anwenden. Unsere gesamte auto-basierte Forschung
kommt in der Car Data Platform zusammen. Die mobile App LolaDrives ist ei-
ne Kernkomponente dieser Plattform; sie unterstützt bei der Durchführung von
Abgasmessungen auf der Straße und gibt dem Fahrer Feedback inwiefern eine
Fahrt den offiziellen Anforderungen der EU-Norm der Real-Driving Emissions
entspricht.

Contents

1 Introduction 1
1.1 Contributions of this Thesis . 2
1.2 Organisation of the Thesis . 6

2 Preliminaries 9
2.1 Sets, Functions, and Distances 9
2.2 Traces . 10
2.3 Labelled Transition Systems & Model-Based Conformance Tests 12
2.4 Conformance Relations . 15
2.5 Hyperproperties & Self-composition 16
2.6 Temporal Logics . 18

2.6.1 HyperLTL . 18
2.6.2 STL . 20
2.6.3 Probabilistic Falsification 20
2.6.4 HyperSTL* . 22

2.7 Diesel Emissions . 23
2.8 Runtime Monitoring for Real Driving Emissions 26

2.8.1 rtlola . 27
2.8.2 From Regulation to Specification 29

3 Notions of Software Doping 35
3.1 Sequential Programs . 36

3.1.1 Strict cleanness . 37
3.1.2 Robust cleanness . 42
3.1.3 Func-cleanness . 54

3.2 Reactive Systems . 60
3.2.1 Strict cleanness . 61
3.2.2 Robust cleanness . 63
3.2.3 Func-cleanness . 73
3.2.4 Past-Forgetful Distance Functions & Trace Integrity . . . 79

3.3 Mixed Input-Output Systems . 82
3.3.1 Robust cleanness . 85
3.3.2 Func-cleanness . 89
3.3.3 Trace Integrity . 89

3.4 Hybrid Systems . 90
3.4.1 Conformance-Based Cleanness 94
3.4.2 Synchronised Retiming . 100

3.5 Summary . 104
3.6 Related Work & Contributions 104

4 Model-Aware Software Doping Analysis 109
4.1 Analysis through self-composition 109
4.2 HyperLTL . 114

4.2.1 Experimental Results . 123
4.3 Related Work & Contributions 125

5 Model-Agnostic Software Doping Analysis 127
5.1 Cleanness of Labelled Transition Systems 127
5.2 Reference Implementation for Robust Cleanness 131
5.3 Model-Based Doping Tests . 139
5.4 HyperSTL . 146
5.5 An Integrated Testing Approach 160
5.6 Related Work & Contributions 161

6 Hands-On: Diesel Doping Tests 163
6.1 Model-Based Testing in Practice 163

6.1.1 The Volkswagen Case . 164
6.1.2 The Nissan Case . 167

6.2 Conformance-Based Testing in Practice 169
6.3 Car Data Platform and LolaDrives 180

6.3.1 LolaDrives . 181
6.3.2 Technical Setup . 184
6.3.3 Demonstration . 186

6.4 cdp-Based Test Input Selection 189
6.5 Related Work & Contributions 193

7 Conclusion & Future Work 195
7.1 Summary . 195
7.2 Future Work . 197
7.3 Effective Human Oversight with Func-Cleanness 198

7.3.1 Individual Fairness . 200
7.3.2 Fairness Monitoring . 203

Bibliography 209

1 Introduction

Should we trust software manufacturers? Sociology defines trust as “the will-
ingness of a party to be vulnerable to the actions of another party based on
the expectation that the other will perform a particular action important to the
trustor, irrespective of the ability to monitor or control that other party.” [89]
Thus, having trust into a software manufacturer translates to the willingness of
the software licensee or society to be vulnerable to the actions of the software
manufacturer.
Whether or not to trust another party depends largely on the extent of the

vulnerability one is willing to accept. We, as individuals and as society, become
increasingly vulnerable, because software becomes ubiquitous in ever more do-
mains of our daily lives. People increasingly use digital personal assistants like
smart phones [112], smart watches [59], and smart speakers [111]. The Inter-
net of Things [135] puts software in devices like refrigerators, stoves, and other
kitchen devices. Heating systems, smart lighting systems, home video surveil-
lance systems, smart door bells are only a few examples for a trend that adds
computing power and software in ever more things of daily life.
Software also becomes increasingly important in sensitive areas like health

care, banking, and critical infrastructure like power plant control, power grid
management or automated agriculture [73]. In the automotive sector, cars are
nowadays equipped with a variety of advanced driver-assistance systems up to
fully autonomous driving; electric vehicles need a comprehensive software to
coordinate the electrical engine, the battery and the cooling system of the car [28]
and cars with combustion engines need specialised software for the cleaning of
emissions to meet the strict requirements that are enforced by law [118]. Lastly,
the avionic sector is increasingly relying on software; aircraft control software and
flight control software [114] are only two examples. These are several examples
where a lot is at stake; we are more vulnerable in these domains, because our
health, life or wealth is at risk.
Examples of breaches of trust are numerous. The most severe in recent history

is a fault in the design of the Maneuvering Characteristics Augmentation Sys-
tem (MCAS) of Boeing 737 MAX aircrafts, which caused two plane crashes and,
altogether, 346 casualties [134]. Later, it turned out that not only the MCAS
system was flawed, but also other parts of the aircraft control system [79]. This
was a massive breach of trust. In this thesis I will particularly focus on two

2 1 Introduction

elements of trust [97, Table 2.1]: benevolence trust involves trust in the benev-
olence of the manufacturer, and in particular trust in the lack of opportunism
and egoism. Competence trust involves trust in skills of the manufacturer and
the ability to use the technology necessary to build a software. Clearly, Boeing
breached competence trust. In general, every unintended software fault – re-
gardless of the severity of the consequences – can be considered as a breach of
competence trust.

A breach of trust that is fundamentally different from the Boeing case is the
Diesel Emissions Scandal. In 2014 and 2015, the US environmental protection
agency discovered that several cars manufactured by Volkswagen were shipped
with tampered emission cleaning systems [131]. These systems contained defeat
devices that were able to tell emissions tests and real driving apart [40, 47]. Dur-
ing the emissions tests the cars were set to comply to the regulations, while on
the road the behaviour was optimised for parameters other than clean emissions.
Later, it turned out that not only Volkswagen cars showed such fraudulent be-
haviour, but also cars by other manufacturers [51]. In the end, millions of cars
were affected and had to be recalled [93]. Notably, the problem was the software
of the car, rather than the hardware.

The Diesel Scandal was a massive breach of benevolence trust. The actions
that the car owner and society reasonably (and well-known to the manufacturer)
expect from the car manufacturer and its actual actions were contradictory. Car
owners and society were badly vulnerable – the damage caused by this behaviour
was immense. Nitric oxides are toxic gases that cause human diseases [122].
Owners of diesel cars suffered from driving bans [5] and a loss in value of their
cars [126]. From a computer science view, the emission cleaning malfunction is
not a bug, because it is intended by the software manufacturer. In recent work
by Barthe et al. [11], such behaviour has been called software doping. A bug is
a breach of competence trust, while software doping is a breach of benevolence
trust. Technically, the difference between software doping and ordinary bugs
is threefold: (1) Only for the former there is a basic mismatch in intentions
about what the software should do. (2) While a bug is most often rooted in
a small coding error, software doping can occupy a considerable portion of the
implementation. (3) Bugs can potentially be detected during production by the
manufacturer, whereas software doping by its nature can – if at all – only be
discovered after production, by the other party facing the final product.

1.1 Contributions of this Thesis

At the core of this thesis is the concept of software cleanness. If a software
violates a cleanness definition, then we will say that it is doped (w.r.t. this

1.1 Contributions of this Thesis 3

particular cleanness notion). We first provide multiple cleanness definitions, each
fitting a multitude of types of software it can be applied to. Based on these, we
develop analysis techniques to detect violations of cleanness – and, therefore, the
presence software doping. We propose techniques that assume knowledge about
the internals of the system (i.e., white-box analyses) and techniques that do not
need such knowledge (i.e., black-box analyses). Every technique is backed by
formal foundations and is demonstrated using a concrete example.
For black-box techniques, it is important that our cleanness definitions reason

about the observations of the system. That is, they do not make any assumptions
regarding how the system works internally to produce the observed behaviour.
This is an important characteristic of these definitions, because they are sup-
posed to provide software licensees, users or society – irrespective of whether
they trust the manufacturer – a way to check for undesired behaviour. Notably,
software is almost always licensed. While the difference between licensing and
buying a software is subtle for the user of the software, it makes a huge difference
regarding the analysis of it. License agreements typically hinder the licensee from
an inspection of the internals of the software. For example, the de-compilation
of the executable binary file is typically forbidden in such agreements.
An important aspect of trust are the expectations of the software licensees (or

society) on the manufacturer. Many expectations that are ethically or morally
justifiable may not be justifiable juridically. Hence, a breach of trust does not
always imply a breach of law. For cars there is relatively strict law defining
what a car is allowed to do and what is forbidden (and this law has been tight-
ened after the Diesel Scandal). There are other types of software to which spe-
cialised law applies, e.g., fully automatic decision making based on personalised
data [123, 39]. However, the pervasive nature of software makes it impossible to
enforce precise regulations for every possible software. Even for software that
is regulated, not every possible behaviour is covered by the regulation. In case
of the Diesel Emissions Scandal, the emissions were measured only for a single
test cycle; the speed trajectory of this test cycle was specified in the regulation.
The cleanness definitions in this thesis are designed in such a way that they
seamlessly define requirements on system behaviours that have been left out by
the regulation (but taking the regulated behaviour into account).
Our running and most motivating example is the Diesel Emissions Scandal;

most demonstration use cases are strongly related to it. Nevertheless, we em-
phasise that the cleanness definitions and analysis techniques presented in this
thesis can be applied to many types of systems.

Example 1.1. To get permission to sell a new car model in the European Union
(and in many other countries) the manufacturer must prove that this car model
complies to certain effective regulations. For example, car manufacturers have
to do tests on a chassis dynamometer under precisely defined conditions (in-

4 1 Introduction

cluding details like ambient air temperature, etc.). The car has to follow a
(single) predefined speed trajectory, which is called test cycle. While the car
is driven according to this test cycle, several characteristics of the car are mea-
sured; for example, the fuel consumption and the amount of nitric oxides and
other emissions that leave the exhaust pipe of the car. In 2014, before the Diesel
Emissions Scandal surfaced, the car had to follow the New European Driving
Cycle (NEDC) [124], which is depicted in Figure 2.2 on page 24.
One of the cleanness notions I will present is robust cleanness. Intuitively, in

the context of car admissions, the emission cleaning system of a car is robustly
clean if test cycles that are similar to the NEDC lead to amounts of nitric
oxide emissions that are not vastly different from the amount emitted during
the NEDC. For example, if a car emits an average of 80mg/km of nitric oxides
while driving the NEDC, but it emits on average 240mg/km when driving the
NEDC constantly 5 km/h slower, then this would be considered as a violation
of robust cleanness. While the input deviation is small (at most 5 km/h), the
output deviation is extreme (three times the NEDC emissions).
Obviously, robust cleanness adds constraints on the outputs of a car (e.g., the

amount of emitted nitric oxides) for inputs that are not covered by the official
regulation (i.e., test cycles other than the NEDC). Still, the outputs measured
for the NEDC, which is part of the official regulation, have influence on the ad-
ditional constraints imposed by robust cleanness. Thus, robust cleanness defines
restrictions that seamlessly extend the requirements imposed by the regulation.

In this thesis I will navigate along two dimensions: a stakeholder dimen-
sion and a level-of-abstraction dimension. The level-of-abstraction dimension
is bounded by a foundational (or abstract) perspective on software doping on
the one end, and a practical (or applied) perspective on the other end. The
thesis begins with the foundational perspective; it provides the cleanness defi-
nitions and compares the different variants of cleanness. It presents definitions
for different computational models; in particular sequential programs, reactive
systems and hybrid systems. Some of the cleanness notions can express the
same class of cleanness in different ways; we prove their equivalences in these
cases. We then move closer towards the practical perspective by proposing a
formal foundation for doping tests. We use a model-based testing theory to con-
struct an algorithm that is able to propose test cases. We continue by discussing
the practical challenges regarding this theoretical test generation algorithm and
demonstrate how the main ideas can be used to arrive at an executable imple-
mentation. Finally, we present actual doping tests; most interestingly emissions
tests that we executed with a real car on a chassis dynamometer.
The stakeholder dimension along which this thesis navigates ranges from a

manufacturer’s perspective on software doping towards a research perspective

1.1 Contributions of this Thesis 5

further to a layperson’s perspective. A manufacturer has full access to the
internals and externals of a system. Thus, they are able to verify for the whole
input space the absence of software doping w.r.t. a suitable notion of cleanness.

If there is reason to mistrust the manufacturer, software-driven systems can
be analysed by researchers, NGOs and alike, which constitute a completely dif-
ferent user group along the stakeholder dimension. Such third parties typically
do not have (enough) knowledge about the internals of a system to use exhaus-
tive verification techniques. The analyses can solely base on observations of
the system, i.e., the available analyses are model-agnostic. This restriction has
certain drawbacks. Most of the cleanness definitions in this thesis are based
on the comparison of two execution traces of a system. For example, for ro-
bust cleanness (from the above example) a standard execution of a system (e.g.,
the NEDC test) must be compared to non-standard executions of the system.
In the presence of nondeterminism it might even become necessary to consider
infinitely many trajectories at the same time. Properties over multiple traces
are called hyperproperties [35]. In this respect, expressing robust cleanness as
a hyperproperty needs both universal and existential quantifications of system
trajectories. Formulas containing only one type of quantifiers can be analysed
efficiently, e.g., using model-checking techniques, but checking properties with
alternating quantifiers is known to be computationally hard [34, 57]. Moreover,
testing of such problems is in general not possible. Assume, for example, a prop-
erty requiring for a (nondeterministic) system that for every input i, there exists
the output o = i, i.e., one of the system’s possible behaviours computes the
identity function. For black-box systems with infinitely large input and output
domains the property can neither be verified nor falsified through testing. In
order to verify the property, it is necessary to iterate over the infinite input set.
For falsification one must show that for some i the system cannot produce i as
output. However, due to nondeterminism, not observing an output in finitely
many trials does not rule out that this output can indeed be generated. A large
fraction of the contents of this thesis focusses on model-agnostic software doping
analyses.

Regarding the stakeholder dimension along which this thesis is aligned, the
testing-based approaches above are located between the manufacturer and the
layperson ends. Using the testing techniques still requires a solid understand-
ing of the theoretical concepts and proper adjustments to apply it to concrete
systems. Continuing along the stakeholder dimension, the thesis presents a tool
for laypersons to detect software doping without detailed knowledge about the
verification techniques inside this tool. To provide such a tool and to hide
the formal verification interface from the layperson, we had to instantiate the
analysis framework for a concrete use case; we chose the cleanness of emission
cleaning systems in diesel cars. I will demonstrate a mobile phone application

6 1 Introduction

called LolaDrives that allows laypersons to conduct diesel emissions tests without
expensive equipment.

If the reader decides to mistrust a certain software manufacturer, then this
thesis provides a multitude of techniques to initiate an investigation on undesired
software functionality, i.e., investigations on software doping. The largest part of
this thesis is applicable to any kind of software. Still, motivated by the impudent
past actions of various car manufacturers, a significant part covers the doping
of emission cleaning systems in diesel cars.

1.2 Organisation of the Thesis

The contents in this thesis are based on the following publications.

[42] Pedro R. D’Argenio, Gilles Barthe, Sebastian Biewer, Bernd Finkbeiner,
and Holger Hermanns. Is your software on dope? - Formal analysis of
surreptitiously “enhanced” programs. In Hongseok Yang, editor, Pro-
gramming Languages and Systems - 26th European Symposium on Pro-
gramming, ESOP 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings, volume 10201 of Lecture Notes in Computer Sci-
ence, pages 83–110. Springer, 2017. doi: 10.1007/978-3-662-54434-1 4.

[17] Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns. Doping
tests for cyber-physical systems. In David Parker and Verena Wolf, editors,
Quantitative Evaluation of Systems, 16th International Conference, QEST
2019, Glasgow, UK, September 10-12, 2019, Proceedings, volume 11785
of Lecture Notes in Computer Science, pages 313–331. Springer, 2019.
doi: 10.1007/978-3-030-30281-8 18.

[18] Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns. Doping
tests for cyber-physical systems. ACM Trans. Model. Comput. Simul.,
31(3):16:1–16:27, 2021. doi: 10.1145/3449354.

[46] Rayna Dimitrova, Maciej Gazda, Mohammad Reza Mousavi, Sebastian
Biewer, and Holger Hermanns. Conformance-based doping detection for
cyber-physical systems. In Alexey Gotsman and Ana Sokolova, editors,
Formal Techniques for Distributed Objects, Components, and Systems -
40th IFIP WG 6.1 International Conference, FORTE 2020, Held as Part
of the 15th International Federated Conference on Distributed Computing

https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/978-3-030-30281-8_18
https://doi.org/10.1145/3449354

1.2 Organisation of the Thesis 7

Techniques, DisCoTec 2020, Valletta, Malta, June 15-19, 2020, Proceed-
ings, volume 12136 of Lecture Notes in Computer Science, pages 59–77.
Springer, 2020. doi: 10.1007/978-3-030-50086-3 4.

[20] Sebastian Biewer, Rayna Dimitrova, Michael Fries, Maciej Gazda, Thomas
Heinze, Holger Hermanns, and Mohammad Reza Mousavi. Conformance
relations and hyperproperties for doping detection in time and space. Log.
Methods Comput. Sci., 18(1), 2022. doi: 10.46298/lmcs-18(1:14)2022.

[21] Sebastian Biewer, Bernd Finkbeiner, Holger Hermanns, Maximilian A.
Köhl, Yannik Schnitzer, and Maximilian Schwenger. rtlola on board:
Testing real driving emissions on your phone. In Jan Friso Groote and
Kim Guldstrand Larsen, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems - 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27
- April 1, 2021, Proceedings, Part II, volume 12652 of Lecture Notes in
Computer Science, pages 365–372. Springer, 2021. doi: 10.1007/978-3-030-

72013-1 20.

[22] Sebastian Biewer, Bernd Finkbeiner, Holger Hermanns, Maximilian A.
Köhl, Yannik Schnitzer, and Maximilian Schwenger. On the road with
rtlola: Testing real driving emissions on your phone. Int. J. Softw.
Tools Technol. Transf., 2023. doi:10.1007/s10009-022-00689-5.

[25] Sebastian Biewer and Holger Hermanns. On the detection of doped soft-
ware by falsification. In Einar Broch Johnsen and Manuel Wimmer, ed-
itors, Fundamental Approaches to Software Engineering - 25th Interna-
tional Conference, FASE 2022, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2022, Munich, Ger-
many, April 2-7, 2022, Proceedings, volume 13241 of Lecture Notes in
Computer Science, pages 71–91. Springer, 2022. doi: 10.1007/978-3-030-

99429-7 4.

The concrete structure of the thesis is summarised below.

Chapter 2 This chapter contains the background information on which the re-
maining chapters build on.

Chapter 3 This chapter presents a collection of cleanness definitions targeted
for different execution models (e.g., sequential programs, reactive systems,
hybrid systems, etc.) and contexts with different structural requirements

https://doi.org/10.1007/978-3-030-50086-3_4
https://doi.org/10.46298/lmcs-18(1:14)2022
https://doi.org/10.1007/978-3-030-72013-1_20
https://doi.org/10.1007/978-3-030-72013-1_20
https://doi.org/10.1007/s10009-022-00689-5
https://doi.org/10.1007/978-3-030-99429-7_4
https://doi.org/10.1007/978-3-030-99429-7_4

8 1 Introduction

concerning system cleanness. We discuss the differences between the dif-
ferent definitions and, where appropriate, identify the circumstances under
which cleanness definitions are equivalent.

Chapter 4 In this chapter we demonstrate how existing verification techniques
can be adapted for software doping analysis. The internals of the analysed
systems must be known. For sequential programs we use a verification tech-
nique based on self-composition that allows to (manually) prove cleanness
of programs. For reactive systems, we propose HyperLTL formulas that
allow model-checkers to automatically perform cleanness analyses.

Chapter 5 This chapter develops analysis techniques for cases in which knowl-
edge about the internals of a system is unavailable. We model a largest
implementation that satisfies robust cleanness and prove that this model
can be instantiated into a model-based testing framework. To generate
promising test inputs, the chapter demonstrates how to combine a proba-
bilistic falsification approach with the model-based testing approach. Lim-
itations (caused by the model agnosticism and by the fact that cleanness
is a hyperproperty) are clearly highlighted and discussed.

Chapter 6 The theoretical results are applied to the Diesel Emissions Scandal.
We use the Volkswagen defeat device to demonstrate how our cleanness
definitions easily detect the Volkswagen doping. Without further knowl-
edge about the internals of the software running inside a Nissan car, we
successfully use the model-based testing technique to uncover software dop-
ing in this car. We use the same car to demonstrate why cleanness notions
that explicitly include time reasoning are important. As a supplement to
our formal cleanness-based software doping characterisation, we take up
Real-Driving Emissions (rde) tests as a regulation-defined software doping
characterisation. We demonstrate the mobile application LolaDrives and
explain how it is integrated into a Car Data Platform that serves as an
interface between rde-based emissions tests and cleanness-based emissions
tests.

Chapter 7 This chapter provides a summary of the contents in this thesis, pos-
sible future work, and a preview on an interdisciplinary ongoing research
project that is related to software doping analysis.

2 Preliminaries

2.1 Sets, Functions, and Distances

In this thesis, we will regularly refer to the natural numbers N, the real numbers
R and the set of Boolean values B = {true, false}. In some contexts, we use
the symbol ⊤ for true and ⊥ for false. The set of extended real numbers R :=
R ∪ {−∞,∞} contains the regular real numbers but also includes positive and
negative infinity [102, Chapter 1]. Infinity is integrated into the order of real
numbers (e.g., as defined by Rudin [104, Chapter 1]) such that for all x ∈ R it
holds that x ≥ −∞ and x ≤ ∞. Further variations of R are the set of non-
negative real numbers R≥0 := {x ∈ R | x ≥ 0}, and the set of non-negative
extended real numbers R≥0 := {x ∈ R | x ≥ 0}. We denote by N+ the set
N \ {0}, i.e., the natural numbers without zero.

For a finite set S = {s1, . . . , sn} we denote by |S| the number of elements in S,
i.e., |S| = n. For a set S with infinitely many elements, we define |S| =∞. For a
positive natural number n and a set S, we denote by Sn the (n−1) cross-product
of S with itself, i.e., Sn := {(s1, . . . , sn) | ∀1 ≤ i ≤ n. si ∈ S}. We denote by 2S

the power set of S, i.e., 2S = {T | T ⊆ S}.
A function f : A → B assigns to every value a ∈ A exactly one value b =

f(a) ∈ B. We call A the domain of f , denoted dom(f), and B the codomain of
f , denoted cod(f). f is injective if and only if for all a1, a2 ∈ A, f(a1) = f(a2)
implies that a1 = a2. f is surjective if and only if for every b ∈ B, there is
some a ∈ A, such that b = f(a). f is bijective if and only if f is injective and
surjective. The restriction f |A′ of f to a smaller domain A′ ⊆ A is the function
f ′ : A′ → B with f ′(a) := f(a). If f is bijective, then the inverse of f is the
function f−1 : B → A that satisfies f−1(b) = a if and only if f(a) = b. For some
function g : B → C, h = g ◦ f is the function composition of f and g resulting
in a new function h : A→ C, where h(x) = g(f(x)).

Let S be a set, and R = S×S a binary relation on S. R is reflexive if and only
if for every x ∈ S, (x, x) ∈ R. R is symmetric if and only if for every x, y ∈ S,
it holds that (x, y) ∈ R if and only if (y, x) ∈ R.
Let R ⊆ R be a subset of the extended real numbers. Based on Rudin [104,

Chapter 1], a value b ∈ R is an upper bound of R if and only if x ≤ b for all
x ∈ R. If and only if such a b exists, R is bounded above. Similarly, a value b ∈ R

10 2 Preliminaries

is a lower bound of R if and only if b ≤ x for all x ∈ R. If and only if such a b
exists, R is bounded below.
Let b ∈ R be an upper bound for a set R ⊆ R. b is the least upper bound

or supremum of R if and only if for every upper bound b′ ∈ R of R it holds
that b ≤ b′. If b is the supremum of R, we write b = supR. Analogously, let
b ∈ R be a lower bound for a set R ⊆ R. b is the greatest lower bound or
infimum of R if and only if for every lower bound b′ ∈ R of R it holds that
b ≥ b′. If b is the infimum of R, we write b = inf R. Notice that sup∅ = −∞
and inf ∅ = ∞ [102]. Let C be a set, P be a predicate over values in C and
f a function from C to R≥0. For the expression sup{f(x) | x ∈ C ∧ P (x)} we
also use the abbreviated notation supP (x) f(x). Similarly, we write infP (x) f(x)
instead of inf{f(x) | x ∈ C ∧ P (x)}.
We say that a function d : A × A → R is a distance function1 if and only if

for all a ∈ A, d(a, a) = 0 and for all a, b ∈ A, d(a, b) ≥ 0 and d(a, b) = d(b, a).
The Hausdorff distance

H(d)(A,B) := max{supa∈A infb∈B d(a, b), supb∈B infa∈A d(a, b)}

defines a distance between two sets A and B based on a distance function d on
the elements of the sets.

2.2 Traces

A trace describes an execution of a system as a sequence of observations during
such an execution. Formally, a trace is defined over a set of observations or
symbols – the trace is a sequence of symbols that must be in this set. Let X
be a set of symbols. A finite trace over X is a finite sequence t = x1 x2 · · ·xn,
where xi ∈ X for all 1 ≤ x ≤ n. The length of t is n, denoted |t| = n. The set
X∗ is the set of all finite traces over X. An infinite trace over X is an infinite
sequence t = x1 x2 x3 · · · , where xi ∈ X for all i ∈ N+. We say that the length
of t is infinite and write |t| =∞. The set Xω is the set of all infinite traces over
X. We denote the empty trace, i.e., a trace that contains no symbol, by ϵ and
say that its length is zero, denoted |ϵ| = 0. A trace over X is the empty trace, a
finite trace over X or an infinite trace over X. Let t1 = x1 x2 · · · xn be a finite
trace and t2 = y1 y2 · · · an infinite trace. Then the concatenation of t1 and t2
is defined by t1 · t2 := x1 x2 · · · xn y1 y2 · · · .
Let k ∈ N+ be an index and let t be an infinite trace over X with t =

x1 x2 x3 · · · , or a finite trace over X with t = x1 x2 · · ·xn and n ≥ k. The kth
1This definition of a distance function is a combination of pseudometrics and semimetrics: d

is allowed to assign a zero distance to non-identical values in A and it does not require the
triangle inequality.

2.2 Traces 11

projection of t is the operation t[k] := xk, which returns the kth symbol in the
sequence. The k-prefix of t is defined as t[..k] := x1 x2 · · ·xk and returns all
symbols in the sequence up to and including the kth symbol. The prefix t[..k]
is a finite trace of length k. The zero-prefix t[..0] is the empty trace ϵ. The
k-suffix of t is defined as t[k..] := xk xk+1 · · · and returns all symbols in the
sequence from and including the kth symbol. The suffix of a trace t is infinite
if and only if t is an infinite trace. For a set T of traces over X, each with
length of at least k, the set T [..k] contains the k-prefixes of all traces in T , i.e.,
T [..k] := {t[..k] | t ∈ T}. Similarly, T [k..] contains the k-suffixes of all traces in
T , i.e., T [k..] := {t[k..] | t ∈ T}.

Let x ∈ X. We denote by xω the infinite trace x x x · · · that consists of only
x symbols. Let Y be a second set of symbols and let TX ⊆ Xω, TY ⊆ Y ω be sets
of infinite traces over X, respectively Y . We denote by TX ×ω TY the product
construction for infinite traces on the level of the individual symbols and call
the result traces of pairs over TX and TY . That is,

TX ×ω TY := {t ∈ (X × Y)ω | ∃tX ∈TX , tY ∈TY . ∀k∈N+. t[k] = (tX [k], tY [k])}.

Moreover, for reasons of convenience, we introduce trace-pair-equality, which
equates traces of pairs with pairs of traces. Concretely, let t ∈ (X × Y)ω be a
trace of pairs and (tX , tY) ∈ Xω × Y ω be a pair of traces. Then we say that
t = (tX , tY) if and only if for every k ∈ N+, t[k] = (tX [k], tY [k]).

To represent traces over continuous time domains, we use generalised timed
traces (GTTs) [61]. Such a trace is a function with a discrete or continuous
domain – which is called time domain – that maps time points to values. In
contrast, the discrete traces presented above are sequences of values that have
as an implicit time domain the positions k in the trace; the set of positions
are represented by the positive natural numbers (for infinite traces) or a subset
thereof (for finite traces). Formally, a generalised timed trace is a function
µ : T → X such that T ⊆ R≥0. We call dom(µ) = T the time domain of µ and
cod(µ) = X the value domain of µ. Xϑ is the set of all generalised timed traces
with value domain X.

Let µ : T → X be a GTT and t ∈ T a point in time. The t-prefix of µ is defined
as µ but with the time domain restricted to T ∩ [0, t], i.e., µ[..t] := µ|T ∩[0,t].
Likewise, for s, t ∈ T with s ≤ t, the s-t-infix of µ is defined as µ but with the
time domain restricted to T ∩ [s, t], i.e., µ[s..t] := µ|T ∩[s,t].

12 2 Preliminaries

2.3 Labelled Transition Systems & Model-Based
Conformance Tests

In Chapter 5 we will instantiate a model-based conformance testing framework.
There, specifications are modelled as labelled transition systems (LTS) that ex-
plicitly distinguish between input and output transitions. A special instance of
these LTS are input-output transition systems, which are LTS that are input
enabled [121]. For ease of presentation, we do not consider internal transitions.

Definition 2.1. A labelled transition system (LTS) with inputs and outputs
L = ⟨Q, In,Out,→, qinit⟩ is a five-tuple where (i) Q is a (possibly uncountable)
non-empty set of states; (ii) In and Out are disjunct (possibly uncountable)
sets of input labels, respectively output labels, i.e., In ∩ Out = ∅; (iii) with
L = In ∪ Out, → ⊆ Q× L×Q is the transition relation; (iv) qinit ∈ Q is the

initial state. Instead of (q, a, q′) ∈→ we write q
a−→ q′. An LTS is an input-output

transition system (IOTS) if it is input-enabled in any state, i.e., for all q ∈ Q
and a ∈ In there is some q′ ∈ Q such that q

a−→ q′. An LTS (or IOTS) is finite
if Q and → are finite. It is deterministic if for every q, q1, q2 ∈ Q and a ∈ L,
q

a−→ q1 and q
a−→ q2 imply that q1 = q2.

A finite path p in a labelled transition system L = ⟨Q, In,Out,→, qinit⟩ is a

sequence q1a1q2a2 · · · an−1qn with qi
ai−→ qi+1 for all 1 ≤ i < n. We denote as

last(p) the last state occurring in p, i.e., last(p) = qn. An infinite path p in L

is a sequence q1a1q2a2 . . . with qi
ai−→ qi+1 for all i ∈ N+. Let paths∗(q) and

pathsω(q) be the sets of all finite and infinite paths of L beginning in state q, re-
spectively. If q = qinit, we also write paths∗(L) (pathsω(L)) instead of paths∗(qinit)
(pathsω(qinit)). A finite trace σ = a1a2 · · · an over (In ∪ Out) is a finite trace of
L beginning in q1 ∈ Q, if there is a finite path q1a1q2a2 . . . anqn+1 ∈ paths∗(q1).
We denote as last(σ) the last action label occurring in σ, i.e., last(σ) = an. An
infinite trace of L beginning in q1 ∈ Q is an infinite trace a1a2 · · · over (In∪Out)
such that there is an infinite path q1a1q2a2 . . . ∈ pathsω(q1). If p is a path, we
let trace(p) denote the trace induced by p. For states q ∈ Q, let traces∗(q) and
tracesω(q) be the set of all finite and, respectively, infinite traces beginning in
q, and let traces∗(L) = traces∗(qinit) and tracesω(L) = tracesω(qinit). We will use
L1 ⊆ L2 to denote that tracesω(L1) ⊆ tracesω(L2).
A state q ∈ Q is reachable from state q1 ∈ Q if there exists a path q1a1 . . . anq ∈

paths∗(q1). A state q ∈ Q is reachable in L if q is reachable from state qinit. A
non-empty setQ′ ⊆ Q of states constitutes a cycle if every state inQ′ is reachable
from every other state in Q′ via a path that induces a non-empty trace. A cycle
Q′ is reachable from a state q ∈ Q if any of the states in Q′ is reachable from q.
Q′ is reachable in L if it is reachable from state qinit.

2.3 Labelled Transition Systems & Model-Based Conformance Tests 13

We will rely on the model-based testing framework by Jan Tretmans [119,
120, 121]; in particular, we will use the input-output conformance (ioco) notion.
In this setting, it is assumed that the implemented system under test (IUT) I
can be modelled as an IOTS while the specification of the required behaviour is
given in terms of an LTS Spec.
For the conformance check, it is necessary to explicitly indicate when the sys-

tem does not produce an output, i.e., when the system is quiescent. In practice,
an implementation can observe quiescence by means of a timeout mechanism.
In LTS a state is quiescent whenever it cannot proceed autonomously, i.e., it
cannot produce an output; we use a distinct label δ to indicate quiescence as
part of the model. This label is typically included in the set of outputs. Given a
set of outputs Out, the set Outδ := Out ∪ {δ} is this output set with quiescence
included.
In specifications, δ-transitions are often modelled as self-loops back to the

quiescent state. These self-loops are added to all quiescent states of an LTS
when applying the quiescence closure to it.

Definition 2.2. Let L = ⟨Q, In,Out,→, qinit⟩ be an LTS. The quiescence closure
(or δ-closure) of L is the LTS Lδ := ⟨Q, In,Outδ,→δ, qinit⟩ with →δ := → ∪
{s δ−→δ s | ∀o ∈ Out, t ∈ Q : s ̸o−→ t}. The suspension traces of L is the set
traces∗(Lδ) of finite traces of the quiescence closure of L.

To define ioco, we need the following LTS specific definitions. Let L =
⟨Q, In,Out,→, qinit⟩ be an LTS, σ = a1 a2 . . . an ∈ traces∗(L) a trace in L, and
Q′ ⊆ Q a subset of the state space of L. The set L after σ is defined as {qn+1 |
q1a1q2a2 . . . anqn+1 ∈ paths∗(L)} and Q′ after a as {q′ | ∃q ∈ Q′ : q

a−→ q′}. For

a state q, let out(q) = {o ∈ Out | ∃q′ : q o−→ q′} and for a set of states Q′, let
out(Q′) =

⋃
q∈Q′ out(q).

The idea behind ioco is that any output produced by the IUT I must have
been foreseen by its specification Spec, and moreover, any input of I not foreseen
by Spec may introduce new functionality. This is captured by the following
definition.

Definition 2.3. For every IUT I and specification Spec, I ioco Spec holds if and
only if for all σ ∈ traces∗(Specδ) it holds that out(Iδ after σ) ⊆ out(Specδ after σ).

The base principle of conformance testing now is to assess by means of testing
whether the IUT conforms to its specification w.r.t. ioco. Tretmans defines test
cases as LTS. These LTS are described by means of a basic process algebra [121].
A process is a term defined in the language P given by

p ::=
∑

z∈Z az; pz | A

14 2 Preliminaries

where Z is an index set, each az is a label, each pz is a process, and A belongs
to a set of constants called process names, which in turn can be defined by
equations of the form A := p. (Following [121], we use the semicolon as action
prefix operator.) We write

∑
z∈Z1

az; pz +
∑

z∈Z2
az; pz for

∑
z∈Z1∪Z2

az; pz. A
process has semantics in terms of LTS in the usual way: the set of states is
the set of all possible processes and the transitions are defined according to the
following rules.

∑
z∈Z az; pz

az−→ pz
p

a−→ p′

A
a−→ p′

A := p

A test case t for an implementation with inputs in In and outputs in Out is
defined as a deterministic LTS. Let t0 be the initial state of t. t has the following
restrictions: (i) from t0, any of the special processes pass and fail can be reached,
where pass ̸= fail, and they are defined by pass :=

∑
{a;pass | a ∈ Outδ} and

fail :=
∑
{a; fail | a ∈ Outδ}, (ii) t has no reachable cycles except those of pass

and fail, and (iii) for any state q reachable from t0, the set {a | q
a−→ q′} contains

the whole set Out of outputs, and also contains either exactly one input or δ
(but not both). A test suite is a set of test cases, a test run of a test case t
with an IUT I is an experiment where the test case supplies inputs to the IUT
while observing the outputs of the IUT or the absence of them [121]. This can
be captured by parallel composition according to the following transition rule:

q
a−→ q′ p

a−→ p′ a ∈ In ∪ Outδ

q ∥ p a−→ q′ ∥ p′

Let p0 be the initial state of I. The IUT I passes the test case t, notation
I passes t, if and only if there is no state p such that a state fail ∥ p is reachable
from t0 ∥ p0. Given a test suite T , we write I passes T whenever I passes t for
all t ∈ T .
A test case can be generated by the algorithm TG shown below. Argument

S is a subset of the state space of the specification LTS Spec. The algorithm
nondeterministically returns a process, which induces a deterministic LTS. We
write t ∈ TG(S) to denote that t is one of the processes that can be generated
by an execution of TG(S).
TG(S) := choose nondeterministically one of the following processes:

1. pass
2. i; ti where i ∈ In, S after i ̸= ∅ and ti ∈ TG(S after i)

+
∑
{o; fail | o ∈ Out ∧ o /∈ out(S)}

+
∑
{oj ; toj | oj ∈ Out ∧ oj ∈ out(S)},

where for each oj , toj ∈ TG(S after oj)

2.4 Conformance Relations 15

3.
∑
{o; fail | o ∈ Out ∪ {δ} ∧ o /∈ out(S)}

+
∑
{oj ; toj | oj ∈ Out ∪ {δ} ∧ oj ∈ out(S)},

where for each oj , toj ∈ TG(S after oj)

Given a specification Spec with initial state s0, TG({s0}) generates a test suite
for Spec. The first possible option in the algorithm states that at any moment
the test process can stop indicating that the execution up to this point has been
satisfactory. The second option may exercise input i and continue with test ti.
Alternatively it can accept any possible output. If the output is not included in
the specification, the test fails. If instead the output is considered, it is accepted
and the testing process continues. The third option is similar to the previous
one except that it considers the possibility of quiescence instead of inputs. When
the absence of an output (i.e., label δ) is observed, the test fails if quiescence
is not accepted and otherwise continues with the selected execution. TG can
produce a (possibly infinitely large) test suite T , for which a system I passes T
if I ioco Spec and, conversely, I ioco Spec if IpassesT . The former property is
called soundness and the latter is called exhaustiveness. A test suite is complete,
if and only if it is both sound and exhaustive. We refer to the original work of
Tretmans [120, 121] for more details and intuitions about ioco, P and TG.

2.4 Conformance Relations

Input-output conformance is a convenient vehicle to check whether interacting
discrete state systems adhere to some specification. For continuous systems
(such as, for example, cyber-physical systems), input-output conformance is not
sufficient, because it is not suitable to check conformance regarding the timing
behaviour of a system. To explicitly consider time, we here use generalised
timed traces (cf. Section 2.2) to define conformance relations. A straightforward
conformance notion considers two GTTs as conformant if at every time instant
the distance between the values of the individual traces is below some fixed
threshold ϵ.

Definition 2.4. Let µ1 : T1 → X and µ2 : T2 → X be two GTTs with time
domains T1 and T2. Furthermore, let d : X ×X → R≥0 be a distance function
on X and ϵ ∈ R≥0 be a threshold for tolerated deviations of values. Then, µ1

and µ2 are trace conformant with d and ϵ, denoted TraceConfd,ϵ(µ1, µ2), if and
only if T1 = T2 and for all t ∈ T1 it holds that d(µ1(t), µ2(t)) ≤ ϵ.

More advanced conformance notions (based on [4, 81]) use the explicit oc-
curence of time in GTTs to consider two traces with certain time shifts as con-
formant. We present two conformance notions that will be relevant in this thesis.

16 2 Preliminaries

Both are parametrised by a value threshold ϵ ∈ R and a time threshold τ ∈ R.
Hybrid conformance relates two GTTs as conformant, whenever the two traces
can be shifted by up to τ on the time axis, such that, after such a retiming,
at every time instant the distance between the values of the individual traces
is below ϵ. Notably, hybrid conformance allows at every time t to move along
the time axis independent of the retiming before t. Skorokhod conformance is
stricter in that sense. It considers a retiming function r that describes for the full
time domain how to move along the time axis. To prevent the aforementioned
characteristic of hybrid conformance, Skorokhod conformance requires r to be a
strictly increasing continuous bijection.

Definition 2.5. Let µ1 : T1 → X and µ2 : T2 → X be two GTTs with time
domains T1 and T2. Furthermore, let d : X ×X → R≥0 be a distance function
on X, ϵ ∈ R≥0 be a threshold for tolerated deviations of values, and τ ∈ R≥0 a
threshold for tolerated time deviations. Then, µ1 and µ2 are

a) hybrid conformant with d, τ and ϵ, denoted HybridConfd,τ,ϵ(µ1, µ2), if and
only if

• ∀t1 ∈ T1.∃t2 ∈ T2. |t2 − t1| ≤ τ ∧ d(µ2(t2), µ1(t1)) ≤ ϵ and
• ∀t2 ∈ T2.∃t1 ∈ T1. |t1 − t2| ≤ τ ∧ d(µ1(t1), µ2(t2)) ≤ ϵ

b) Skorokhod conformant with d, τ and ϵ, denoted SkorConfd,τ,ϵ(µ1, µ2), if and
only if T1 and T2 are intervals and there is a strictly increasing continuous
bijection r : T1 → T2, called retiming, such that

• for all t ∈ T1, |r(t)− t| ≤ τ , and
• for all t ∈ T1, d(µ1(t), µ2(r(t))) ≤ ϵ.

We write Conf1 ⊑ Conf2 whenever for all µ1 : T1 → X and µ2 : T2 → X,
we have that Conf1(µ1, µ2)⇒ Conf2(µ1, µ2). We write Conf1 ⊏ Conf2 whenever
Conf1 ⊑ Conf2 and ¬Conf2 ⊑ Conf1.

2.5 Hyperproperties & Self-composition

The formal characterisations of software doping we present in this thesis reason
about multiple execution traces simultaneously. That is, we cannot in general
express these characterisations as predicates over single traces, but we can ex-
press them as predicates over sets of traces. The former are typically called trace
properties, while the latter are hyperproperties [35].

In this section we consider a fragment of hyperproperties that can be charac-
terised by predicates that reason over two traces. Such properties can be checked

2.5 Hyperproperties & Self-composition 17

using a self-composition technique by Barthe et al. [12]. We recapitulate this
technique in a simplified form.

To model programs, let a function η : Var→ Val, mapping variables to values,
be a state2. We denote by P a program – without putting any constraints
on how this program is represented. We assume that the semantics of P is
represented by a state transformer, i.e., a function ⇓, where (P, η) ⇓ η′ denotes
that a program P initially takes values according to η and terminates in state
η′. (P, η) ⇓ ⊥ indicates that the program P does not terminate for initial state
η. For convenience, we denote by η |= ϕ that a predicate ϕ holds on a state η.
Further, we assume that the behaviour of programs is deterministic. That is,
whenever (P, η) ⇓ η1 and (P, η) ⇓ η2, then η1 = η2 (where η1 and η2 may be
either a state or ⊥).
Barthe et al. assume indistinguishability criteria, which are binary relations of

states. In this thesis, we consider a binary relation I ∈ (Var→ Val)×(Var→ Val)
as an indistinguishability criterion; (η1, η2) ∈ I corresponds to the notion η1 ∼I

id

η2 in the original work. Two states η1, η2 : Var → Val are I-indistinguishable
if and only if (η1, η2) ∈ I. For two indistinguishability criteria I (for initial
states) and I ′ (for terminal states), a program P is termination-sensitive (TS)
(I, I ′)-secure if and only if for all states η1, η2 with (η1, η2) ∈ I, and every
state η′1 it holds that if (P, η1) ⇓ η′1, then there is some state η′2, such that
(P, η2) ⇓ η′2 and (η′1, η

′
2) ∈ I ′ [12, Definition 1]. This characterisation reasons

along two independent executions of the program (thus, it belongs to the class
of hyperproperties). Barthe et al. reformulate this characterisation by means
of composition of P with a copy of itself where all variables are renamed to
fresh variables. With this characterisation it becomes possible to reason along
the execution of a single program. Concretely, let x⃗ denote the vector of all
variables in P. Then, we denote by P[x⃗/x⃗′] that every occurrence of a variable
x in P is substituted by a fresh variable x′ (that w.l.o.g. is not in x⃗). Thus, we
denote the above mentioned self-composition by P;P[x⃗/x⃗′]. Similarly, the states
on which the program operates must be composed. We define the composition
of two states η1 and η2, denoted η = η1 ⊕ η2, as η(x) = η1(x) if x ∈ x⃗ and
η(x′) = η2(x) if x′ ∈ x⃗′. With this, P is TS (I, I ′)-secure if and only if for all
states η1, η2 with (η1, η2) ∈ I, and every state η′1 it holds that if (P, η1) ⇓ η′1, then
there is some state η′2, such that (P;P[x⃗/x⃗′], η1⊕ η2) ⇓ η′1⊕ η′2 and (η′1, η

′
2) ∈ I ′.

Termination-sensitive (I, I ′)-security of a concrete program P can be proven
using Dijkstra’s weakest (conservative) precondition. The term wp(P, Q) denotes
the weakest precondition [45] for a predicate Q and program P. The equations
to deduce the weakest precondition are shown in Figure 2.1. wp is sound and
complete in the sense that some predicate R implies the weakest precondition

2We remark that Barthe et al. model states as tuples and call it ‘memory’.

18 2 Preliminaries

wp(x := e,Q) = Q[e/x]

wp(if b then P1 else P2 end if, Q) = b⇒ wp(P1, Q) ∧ ¬b⇒ wp(P2, Q)

wp(P1;P2, Q) = wp(P1,wp(P2, Q))

wp(while b do S end do, Q) = ∃k : k ≥ 0 : Hk(Q)

where H0(Q) = ¬b ∧Q and Hk+1(Q) = (b ∧ wp(P, Hk(Q))) ∨H0(Q)

Figure 2.1: Equations for the wp calculus

wp(P, Q) if and only if for any initial state η that satisfies R (i.e., η |= R),
there exists some state η′, such that (P, η) ⇓ η′ and η′ |= Q [12, Equation (4)].
In particular, wp(P, true) denotes the weakest precondition for program P to
terminate. To apply wp reasoning to (I, I ′)-security, the indistinguishability
criteria must be transformed into first-order predicates. Barthe et al. denote by
I(I) the first-order predicate that represents I using the variables occurring in
the (self-composition of the) program P. Thus, for two states η1 and η2, it must
hold that η1⊕ η2 |= I(I) if and only if (η1, η2) ∈ I. Finally, we get the following
proposition [12, Proposition 3]:

Proposition 2.6. Let P be a program, x⃗ be a vector of all variables occurring
in P, and I, I ′ two indistinguishability criteria. Then P is termination-sensitive
(I, I ′)-secure if and only if I(I) ∧ wp(P, true)⇒ wp(P;P[x⃗/x⃗′], I(I ′)).

2.6 Temporal Logics

We will characterise notions of cleanness using temporal logics. Depending on
the concrete cleanness definition, we need one of the logics that we recap in this
section.

2.6.1 HyperLTL

HyperLTL [34] is a temporal logic for the specification of hyperproperties of re-
active systems. HyperLTL extends linear-time temporal logic (LTL) with trace
quantifiers and trace variables, which allow the logic to refer to multiple traces
at the same time. It is more expressive than the framework presented in Sec-
tion 2.5. We refer to the work by Coenen et al. [37] for a comparison of the
expressiveness of HyperLTL and other logics. The problem of model checking a
HyperLTL formula over a finite-state model is decidable [57]. In the following,

2.6 Temporal Logics 19

we interpret a program as a set C ⊆ (2AP)ω of infinite traces over a set AP of
atomic propositions.

Let π be a trace variable from a set V of trace variables. A HyperLTL formula
is defined by the following grammar:

ψ :: = ∃π. ψ | ∀π. ψ | ϕ
ϕ :: = aπ | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕU ϕ (2.1)

The quantifiers ∃ and ∀ quantify existentially and universally, respectively, over
the set of traces. For example, the formula ∀π.∃π′. ϕ means that for every trace
π there exists another trace π′ such that ϕ holds over the pair of traces. If
no universal quantifier occurs in the scope of an existential quantifier, and no
existential quantifiers occurs in the scope of a universal quantifier, we call the
formula alternation-free. In order to refer to the values of the atomic propositions
in the different traces, the atomic propositions are indexed with trace variables:
for some atomic proposition a ∈ AP and some trace variable π ∈ V, aπ states
that a holds in the initial position of trace π. The temporal operators and
Boolean connectives are interpreted as usual. In particular, Xϕ means that
ϕ holds in the next state of every trace under consideration. Likewise, ϕU ϕ′
means that ϕ′ eventually holds in every trace under consideration at the same
point in time, provided ϕ holds in every previous instant in all such traces. We
also use the standard derived operators: ϕ ≡ trueU ϕ, ϕ ≡ ¬ ¬ϕ, and
ϕW ϕ′ ≡ ϕU ϕ′ ∨ ϕ.

A trace assignment is a partial function Π : V → (2AP)ω that assigns traces to
variables. Let Π[π := t] denote the same function as Π except that π is mapped to
the trace t. The trace assignment suffix Π[k..] is defined by Π[k..](π) = Π(π)[k..].
By Π |=C ψ we mean that formula ψ is satisfied by the program C under the
trace assignment Π. Satisfaction is recursively defined as follows.

Π |=C ∃π. ψ iff Π[π := t] |=C ψ for some t ∈ C
Π |=C ∀π. ψ iff Π[π := t] |=C ψ for every t ∈ C
Π |=C aπ iff a ∈ Π(π)[0]
Π |=C ¬ϕ iff Π ̸|=C ϕ
Π |=C ϕ1 ∨ ϕ2 iff Π |=C ϕ1 or Π |=C ϕ2
Π |=C Xϕ iff Π[1..] |=C ϕ
Π |=C ϕ1 U ϕ2 iff there exists k ≥ 0 s.t. Π[k..] |=C ϕ2 and

for all 0 ≤ j < k,Π[j..] |=C ϕ1

We say that a program C satisfies a HyperLTL formula ψ if it is satisfied under
the empty trace assignment, that is, if ∅ |=C ψ.

20 2 Preliminaries

2.6.2 STL

LTL enables reasoning over traces σ ∈ (2AP)
ω
which are of discrete nature with

respect to the time domain they represent. With each literal in the trace repre-
senting a time step, σ can equivalently be viewed as a function N → 2AP. One
variation of LTL is Signal Temporal Logic (STL) [48, 87], which instead is used
for reasoning over real-valued signals that may change in value along an under-
lying time domain. A signal is a function s : T → R where T is the time domain.
Thus, a signal is a generalised timed trace with value domain R. This can be
lifted to multi-dimensional signals w(t) = (s1(t), . . . , sn(t)), mapping each time
point to some element of Rn. We refer to such a w : T → Rn as a (discrete-time
or continuous-time) trace of width n in the sequel. Thus, a multi-dimensional
signal is a GTT with value domain Rn.
STL formulas can express properties of systems that are defined as sets M ⊆

(T → Rn) of traces of some fixed width n, basically by making the atomic
properties refer to booleanizations of the signal values. The syntax of the variant
of STL that we use in this paper is as follows, where f ∈ Rn → R:

ϕ :: = ⊤ | f > 0 | ¬ϕ | ϕ ∧ ϕ | ϕU ϕ .

STL replaces atomic propositions by threshold predicates of the form f > 0,
which hold if and only if function f applied to the signal values at the current
time returns a positive value. The Boolean operators and the Until operator U
are very similar to those of HyperLTL. The Next operator X is not part of STL,
because “next” is without precise meaning in continuous time. The definitions
of the derived operators , and W are the same as for HyperLTL. Formally,
the Boolean semantics of an STL formula ϕ at time point t ∈ T for a trace
w = (s1, . . . , sn) is defined inductively:

w, t |= ⊤
w, t |= f > 0 iff f(s1(t), . . . , sn(t)) > 0

w, t |= ¬ϕ iff w, t ̸|= ϕ

w, t |= ϕ ∧ ψ iff w, t |= ϕ and w, t |= ψ

w, t |= ϕU ψ iff exists t′ ≥ t s.t. w, t′ |= ψ and for all t′′ ∈ [t, t′), w, t′′ |= ϕ

A system M satisfies a formula ϕ, denoted M |= ϕ, if and only if for every w ∈ M
it holds that w, 0 |= ϕ.

2.6.3 Probabilistic Falsification

Given a temporal logic formula, we will aim at finding a trace that violates the
formula. This process is called falsification – the goal is to falsify a formula. A

2.6 Temporal Logics 21

technique that has been proved useful to falsify STL formulas is called probabilis-
tic falsification [2, 95]. This technique assumes a robustness estimate function
R that guides the falsification process. R must satisfy two important condi-
tions: whenever, for some trace w, R(w) > 0 the property that is supposed to
be falsified must be satisfied for w, and whenever R(w) < 0, it must be violated.
To this end, STL has been extended by a quantitative semantics [48, 2, 54]:

ρ(⊤, w, t) = ∞
ρ(f > 0, w, t) = f(s1(t), . . . , sn(t))

ρ(¬ϕ,w, t) = −ρ(ϕ,w, t)
ρ(ϕ ∧ ψ,w, t) = min(ρ(ϕ,w, t), ρ(ψ,w, t))

ρ(ϕU ψ,w, t) = supt′≥t min{ρ(ψ,w, t′), inft′′∈[t,t′)ρ(ϕ,w, t
′′)}

Indeed, this semantics induces a robustness estimate; whenever ρ(ϕ,w, t) ̸= 0,
its sign indicates whether w, t |= ϕ holds in the Boolean semantics. For any
STL formula ϕ, trace w and time t, if ρ(ϕ,w, t) > 0, then w, t |= ϕ holds, and if
ρ(ϕ,w, t) < 0, then w, t |= ϕ does not hold.
We remark that in this thesis, we restrict the Until operator to be untimed,

i.e., instead of allowing U [a,b] for arbitrary bounds a, b ∈ R≥0, we enforce a = 0
and b =∞. With only the untimed Until operator, the continuous and Boolean
semantics coincide [54].

Algorithm 2.1 Monte-Carlo falsification

Input: w: Initial trace, R: Robustness
function, PS: Proposal Scheme

Output: w ∈ M
1: while R(w) > 0 do
2: w′ ← PS(w)
3: α← exp(−β(R(w′)−R(w)))
4: r ← UniformRandomReal(0, 1)
5: if r ≤ α then
6: w ← w′

7: end if
8: end while

The robustness of an STL for-
mula ϕ is its quantitative value
at time 0, that is, Rϕ(w) :=
ρ(ϕ,w, 0). Falsifying a formula
ϕ for a system M boils down to
a search problem with the goal
condition Rϕ(w) < 0. Success-
ful falsification algorithms solve
this problem by understanding
it as the optimisation prob-
lem minimisew∈MRϕ(w). Algo-
rithm 2.1 [2, 95] sketches an al-
gorithm for Monte-Carlo Markov
Chain falsification, which is
based on acceptance-rejection
sampling [32]. We depict a version of the algorithm that works on system traces
instead of an input space. An input to the algorithm is an initial trace w to-
gether with a computable robustness function R. Robustness computation for
finite timed traces of simulations of a system has been discussed in the litera-
ture [48, 54]; we omit this discussion here. The third input PS is a proposal

22 2 Preliminaries

scheme that proposes a new trace to the algorithm based on the previous one
(line 2). The parameter β (used in line 3) can be adjusted during the search and
is a means to avoid being trapped in local minima (and, thus, preventing to find
a global minimum). Any two traces w and w′ ∈ M with robustness values R(w)
and R(w′) are sampled with probability proportional to e−βR(w)

e−βR(w′) (lines 3-6).
The algorithm seeks to minimise R over the system’s traces M, and terminates
when it finds a trace with a negative robustness value, i.e., a trace that violates
the STL property from which R is derived.

2.6.4 HyperSTL*

An extension of STL is STL* [27], which enables reasoning about signal values
at different time points. To this end, STL* introduces a new operator ∗iφ
that freezes the signal values at the current time and makes them accessible to
predicates in φ so that they can compare the current signal values to the frozen
signal values. For example, the formula [0,10] ∗1[(x∗1 > x)] is satisifed for
traces, where in the initial ten time units signal x has its global maximum, i.e.,
all future values of x are smaller than the frozen value x∗1 .
Recently, STL* was extended to HyperSTL* to express hyperproperties. The

extension follows conceptually the extension of LTL to HyperLTL, i.e., trace
quantifiers are added to the syntax and trace variables are added to the in-
dex of signal variables. This extension was proposed in our LMCS paper [20];
HyperSTL* was primarily developed by co-author Rayna Dimitrova.
The syntax of HyperSTL* formulas is defined by the following grammar.

ψ ::= ∃π.ψ | ∀π.ψ | ϕ,
φ ::= α | ⊤ | ¬ϕ | ϕ ∨ ϕ | ϕUJ ϕ | ϕSJ ϕ | ∗i ϕ

There are several differences to HyperLTL in Section 2.6.1. The freeze operator
∗i has the same meaning as in STL*. The until operator U has an index J
that allows to specify in which time frame the right operand of U must hold.
HyperLTL and our (simplified) syntax of STL implicitly assume J = [0,∞). The
since operator S is the counterpart of U to reason about the past. That is, the
right operand was satisfied previously (in time window J) and after that, the left
operand has always been satisfied until now. Lastly, α is an atomic predicate
over the current and all frozen signals.
The derived operators and inherit the time window J from the until

operator; J ϕ is defined as ⊤UJ ϕ and J ϕ is defined as ¬ J ¬ϕ. Similar
derived operators exist for the past. J ϕ is defined as ⊤SJ ϕ and J ϕ as
¬ J ¬ϕ. We refer to the original papers for the full definitions of STL* [27] and
HyperSTL* [20, Section 6].

2.7 Diesel Emissions 23

Hybrid Conformance Dimitrova developed HyperSTL* characterisations for hy-
brid conformance, trace conformance and Skorokhod conformance (cf. Defini-
tions 2.4 and 2.5)3 [20].
We will later use her characterisation of hybrid conformance. Let π1 and π2 be

two trace variables, and let τ and ϵ be non-negative rational constants. We can
express hybrid conformance for the signals in vector x⃗ w.r.t. a distance function
d and thresholds τ and ϵ, i.e., HybridConfd,τ,ϵ, as follows:

φHybridConf
d,τ,ϵ =

(
∗1
(

[0,τ] d(x⃗π2
, x⃗∗1

π1
) ≤ ϵ ∨ [0,τ] d(x⃗π2

, x⃗∗1
π1
) ≤ ϵ

))
∧(

∗2
(

[0,τ] d(x⃗π1
, x⃗∗2

π2
) ≤ ϵ ∨ [0,τ] d(x⃗π1

, x⃗∗2
π2
) ≤ ϵ

))
(2.2)

where d(x⃗, x⃗′) is an arithmetic expression characterizing the distance function d.
Note that the trace variables π1 and π2 are not quantified; the formula is meant
to be a sub-formula in a larger formula.
Intuitively, the formula states that for every time point on the trace described

by π1 it holds that within τ time units in the past or in the future, there exists
a point on the trace described by π2 where the value is ϵ-close to the value of π1
at the current time point, and symmetrically for the other direction with traces
π1 and π2 swapped.

2.7 Diesel Emissions

New car models must pass a homologation process before they are legally al-
lowed to be be sold to customers. This process has two purposes. First, it is
meant to evaluate key figures of the car model that allow customers to estimate
the ecological and economic footprint of the car. In particular, these numbers
provide reference values for the emissions and the fuel consumption of the car.
Obviously, it is important that these numbers for different cars are comparable,
so that the consumer is able to compare two cars w.r.t. to ecological and eco-
nomic footprints. To ensure this comparability, all cars are tested under equal,
precisely defined conditions.
Part of these conditions is a test cycle that the car has to drive on a chassis

dynamometer while emissions and fuel consumption are measured. For example,
the New European Driving Cycle (NEDC) [124] is one of these cycles; it is
depicted in Figure 2.2. The NEDC consists of four repetitions of an elementary
urban driving cycle (UDC) followed by one extra urban driving cycle (EUDC).

3She also developed HyperSTL* characterisations for the conformance-based cleanness no-
tions that will be introduced in Section 3.4 of this thesis.

24 2 Preliminaries

0 200 400 600 800 1,000 1,180
0

32

70

100

120

Time [s]

S
p
ee
d
[k

m h
]

Figure 2.2: NEDC speed profile.

Each test run is preceded by a preconditioning phase (PreCon), in which three
EUDCs are driven consecutively. Between PreCon and the test, the vehicle has to
cool down for 6 to 36 hours at an ambient temperature between 20 and 30 degrees
Celsius. In the EU, the NEDC test cycle has recently been superseded by the
improved Worldwide harmonized Light-duty vehicles Test Cycles (WLTC) [118].

The second purpose of the homologation process is to enforce ecological re-
quirements that are necessary to protect the environment and the health of
humans and animals. These requirements are tightened regularly. Typically,
a requirement is defined by a threshold for the amount of a certain substance
that is emitted by the car; tightening of a requirement typically manifests in the
threshold being decreased.

To easily comprehend under which requirements a car passed the homologation
process, the EU uses terms like “Euro 5” or “Euro 6b” to refer to a particular
test cycle or a combination of thresholds. Of particular importance in this thesis
are the norms Euro 6b, Euro 6d-temp and Euro 6d. Euro 6b entails the
NEDC, while Euro 6d-temp and Euro 6d use the newer WLTC. Also, there
are subtle differences regarding the thresholds for nitric oxides (NO and NO2;
we will use NOx to refer to both simultaneously). Under lab conditions, i.e.,
when the car is tested on a chassis dynamometer with the standard test cycle,
all of the three norms define a threshold of 80mg/km. The thresholds differ
under real driving conditions: Euro 6b does not define a threshold for real-
driving conditions; Euro 6d-temp defines a threshold of 168mg/km and Euro
6d defines a threshold of 120mg/km.

The EU regulation [118] also defines the precise conditions for real-world tests,

2.7 Diesel Emissions 25

Urban Rural Motorway

Ratio Range [%] [29, 44] [23, 43] [23, 43]

Speed Range [km/h] [0, 60]]60, 90]]90, 160]

Distance [km] ≥ 16 ≥ 16 ≥ 16

Additional
Constraints

stop percentage
between 6% and
30% of urban
time; average
velocity in range
[15, 40]km/h

> 100km/h for at
least 5mins

Temperature [K] moderate: [273, 303]; extended: [266, 273[or]303, 308]

Relative Altitude [m] start and end point altitudes must not differ by more
than 100

Absolute Altitude [m] moderate: < 700; extended:]700, 1300]

Speed Limit [km/h] 145 (]145,160] for at most 3% of motorway time)

Table 2.1: Some constraints for the three modes of rde tests [70].

which must be driven on public roads, under usual traffic conditions, and for
which the above thresholds apply. In the regulation, these tests are called Real-
Driving Emissions (RDE) tests. The RDE requirements put constraints on the
allowed routes, speeds and altitudes, and also the trip dynamics, that is, how
sharp the car must be accelerated and decelerated. For example, RDE tests must
comprise three modes: the urban, the rural, and the motorway mode covering
different speed ranges and each making up approximately one third of the total
trip distance. Table 2.1 provides an overview of the constraints for all three
modes. We provide more details for these requirements in Section 2.8.2.

Also part of governmental regulations is the obligation to equip every car
(powered by a combustion engine) with an On-Board Diagnostics (obd) inter-
face [117] to obtain diagnostic real-time data. obd is based on the the CAN-
based protocol, which is query-answer based. Every sensor has a unique pa-
rameter id (pid) and the current value for a pid can be queried any time. The
amount of data offered through obd depends on the type of engine, emission
cleaning system and other components of the car, and company policies defining
the degree of transparency a manufacturer is willing to offer.

In an official rde test, a calibrated portable emissions measurement system
(PEMS) is connected to the car’s exhaust pipe and to the obd interface. It mea-
sures the amount of several gases and particles emitted by the car, and combines
this information with the information received from the obd interface. The costs

26 2 Preliminaries

of a PEMS are in the order of ¤250,000. However, there are several minimal
combinations of obd data which can be combined to get a good approximation
of emitted gases. Köhl et al. [82] successfully performed rde tests with an Audi
A7 solely using obd data.

The Diesel Scandal In 2015, the Diesel Emissions Scandal unveiled an uncom-
fortable truth about the work of many car manufacturers. Millions of diesel
powered passenger cars were equipped with tampered emission cleaning sys-
tems; during official test situations they performed commendably, but in real
driving situations they excessively polluted the environment most of the time.
Among the early discoveries and most severe cases is Volkswagen. Their cars
were equipped with engine control units provably [3, 40] containing software
components to detect whether the car is undergoing an official emissions test
according to the, then effective, admission regulations. These regulations [124]
were still using the NEDC test cycle, which has the weakness of enforcing a
very unnatural driving pattern largely containing constant speed phases and
repeating patterns. Thus, it was easily possible to be detected.
One of the first who understood what happened inside the 2015 affected Volk-

swagen cars was Felix Domke [47], who is associated with the Chaos Computer
Club. His findings have also been published in a scientific contribution [40]. To
defeat the regulations, the VW systems contain (as part of obfuscated code) pairs
of piecewise linear functions that delineate certain regions in the time-distance
domain. Figure 2.3 shows one of these pairs. The region of interest is the white
region enclosed by the grey areas, confined by the function pair. The dark line
inside this region represents the distance over time a car travels according to
the NEDC test cycle. The logic of the emissions cleaning system is set up such
that whenever the distance travelled stays within the white region (as it is the
case for the NEDC itself) the emission cleaning is carried out as efficiently as
possible. However, once a grey area is touched or entered, the effectiveness of
the cleaning system is reduced significantly [40], and stays like that until engine
restart.

2.8 Runtime Monitoring for Real Driving Emissions

As explained in Section 2.7, real driving emissions test became part of the official
emissions regulation in the European Union. A specification document [118]
spells out precise preconditions a trip, i.e., a trajectory driven with a car, has
to satisfy in order to count as a valid rde test (some of the preconditions are
shown in Table 2.1). This specification document consists largely of prose, so,
from an informatics perspective, the specification is informal. Köhl et al. [82]

2.8 Runtime Monitoring for Real Driving Emissions 27

0 200 400 600 800 1,000 1,200
0

5

10

13

Time Since Engine Started [s]

T
ot
a
l
D
is
ta
n
ce

T
ra
v
el
le
d
[k
m
]

Figure 2.3: White region is encoded by a pair of piecewise linear functions found
in several Volkswagen ECUs. Black line represents the distance trav-
elled when following the NEDC speed profile on a chassis dynamome-
ter.

formalised this specification using the specification language rtlola (named
after the eponymous monitoring framework). The subsequent content in this
section is largely taken word-by-word from [22].

2.8.1 rtlola

rtlola [55, 15] is a stream-based specification language for real-time proper-
ties. An rtlola specification is a collection of input stream, output stream,
and trigger declarations. Input streams represent data sources such as sensors
or information retrieved over the obd interface. Each output stream declaration
details how to filter and refine input data to obtain relevant statistical informa-
tion. Trigger declarations use this information to indicate when the system under
observation reaches an undesired state such as a violation of a safety margin or
a transgression of the permitted NOx emission.

The rtlola toolkit generates a monitor for a given specification. The mon-
itor receives input data from the system. This data may be asynchronous, i.e.,
different input sources can produce data at different points in time. Upon re-
ception, the monitor computes output stream values and checks for satisfaction

28 2 Preliminaries

of trigger conditions. The result can then be fed back to the system or displayed
to the user.
The rtlola language can most easily be understood by example. Consider

the following specification:

input velocity: Float32

output is_urban: Bool := velocity ≤ 60

The specification consists of one input stream and one output stream. The input
stream carries the velocity of the system in km/h as a 32-bit wide floating point
number. Let us consider the system to operate in an urban environment when
its velocity is below 60 km/h. To this end, the boolean output stream is_urban

indicates exactly this condition.
To extend the specification, suppose the system is not allowed to travel more

than 10 km in an urban environment within 20min. In this case, the specification
can be extended by two output streams and a trigger:

output urban_velo :=

if is_urban then velocity else 0.0

output urban_dist @10Hz :=

urban_velo.aggregate(over: 20min, using: integral)

trigger urban_dist > 10

"Travelled more than 10km in urban env."

The first stream, urban_velo, carries the velocity of the system provided it
operates in an urban environment, or zero otherwise. The second one integrates
the urban velocity for 20min to compute the distance travelled as a sliding win-
dow aggregation. Notice the annotation @10Hz, which transforms the stream
into a periodic one. This prompts the monitor to compute the output stream
only 10 times a second and is mandatory for streams with a sliding window
aggregation operation such as the integral. This mandate allows the monitor
to employ an efficient algorithm for aggregation [84]. In particular, if the ag-
gregation additionally is a list homomorphism, the monitor does not have to
store input values received within the time frame. This reduces the memory
footprint of the monitor drastically. Details can be found in earlier work on
rtlola [15, 109].
Other output streams are event-based, i.e., they are computed when the mon-

itor receives new input values. However, some streams depend on more than
one input stream. When the monitor receives only an update for a subset of
input streams due to asynchrony, it re-computes the output streams for which
all relevant inputs were updated. Since the urban_velo stream only depends on
velocity, it will be evaluated upon every reception of this input.
To finalize the example, the trigger declaration states that the urban_dist

should remain below 10. Specifiers may provide a human-readable explanation

2.8 Runtime Monitoring for Real Driving Emissions 29

after the condition. This string can then be displayed to users.

2.8.2 From Regulation to Specification

The rde regulation has been issued by the European Commission [118] to make
exhaust emissions tests more realistic. To this end, it meticulously describes
conditions a trip driven on public roads has to satisfy in order to count as a
valid rde test. The regulation itself mostly relies on natural language, however,
as we shall demonstrate, the individual conditions translate naturally into a
stream-based specification language such as rtlola. We give an overview over
how the informal regulation can be specified using rtlola. The full specification
is available online.4 It was first proposed by Köhl et al. [82] and was further
improved in our STTT paper [22].
Some of the rde conditions apply universally, e.g., the ambient temperature

must range between 273K and 303K throughout the whole trip. For others, the
rde regulation differentiates between three modes characterized by the speed
of the car: urban, rural, and motorway. Table 2.1 shows an overview over both
the universal conditions and the conditions for the individual modes. Driving
in each mode can be interrupted by short periods of driving in another mode,
e.g., when changing the motorway the data collected by virtue of the driving
speed may count towards the rural or urban environment. While modes may be
interrupted, each one needs to occupy a specific share of the total distance.

The Three Modes. To identify the mode a given data record belongs to, we
introduce a boolean stream for each mode being true if and only if the speed of
the car is in the respective range as required for the given mode. For instance,
for the rural segment:

output is_rural := (60.0 < v) && (v <= 90.0)

This directly reflects §6.3 of the regulation [118, ANNEX IIIA] which says: “Ru-
ral operation is characterised by vehicle speeds higher than 60 and lower than
or equal to 90 km/h.” Note that in contrast to other EU regulations, such as
domestic market trade laws, the rde regulation lends itself well to formalization
as it clearly defines rde tests in terms of mathematical concepts. The whole
regulation assumes that records of test data come in synchronously at a fixed fre-
quency of at least 1Hz. Hence, the stream-based specification language rtlola
is a perfect fit for the formalization.
For each of the modes it is required to determine the distance driven in that

mode. The ratio dm/d of the distance dm driven in a given mode m and the

4https://www.loladrives.app/scientific-background/

https://www.loladrives.app/scientific-background/

30 2 Preliminaries

distance driven overall d needs to be within a specific interval for each mode (see
Table 2.1 and §6.6 of the regulation [118, ANNEX IIIA]): “The trip shall consist
of approximately 34% urban, 33% rural and 33% motorway driving classified
by speed as described in points 6.3 to 6.5 above. ‘Approximately’ shall mean
the interval of ±10 percentage points around the stated percentages. The urban
driving shall however never be less than 29% of the total trip distance.” So, we
define a stream for the total distance d:

output Dd := v / 3.6 * 1.0

output d @1Hz := Dd.aggregate(over: 2h, using: sum)

Here Dd is the distance driven since the last data record. Assuming that data is
provided with a fixed frequency of 1Hz, we calculate the distance in m from the
velocity v in km/h by dividing by 3.6 to obtain m/s and then multiplying the
result with 1.0 s. To obtain the total distance d, we use rtlola’s aggregation
functions and simply take the sum of Dd over the last 2 h, i.e., the maximal
duration of a test.
Obtaining the distance travelled in a specific mode is also straightforward:

Remember that we have a boolean stream for each of the modes. We first define
an auxiliary stream for each mode whose value is Dd when the car is in the
respective mode and 0 otherwise. For instance, for the rural mode, we define
r_d_a:

output r_d_a := if is_rural then Dd else 0.0

Using aggregation functions again, we obtain the distance travelled in the rural
mode with:

output r_d @1Hz := r_d_a.aggregate(

over: 2h, using: sum

)

So, §6.6 of the rde regulation translates in part to the following condition for
the rural mode:

0.23 <= (if d > 0.0 then r_d / d else 0.0)

&& (if d > 0.0 then r_d / d else 0.0) <= 0.43

Doing this for all the other modes enables us to compute whether the ratio
condition defined in §6.6 is satisfied or not. Analogously to the distance ratios,
one defines streams for the remaining conditions.

Driving Dynamics. A more complex part of the rde regulation5 concerns the
driving dynamics. The intuition is simple: Too aggressive driving leads to highly

5See Appendix 7a of ANNEX IIIA [118].

2.8 Runtime Monitoring for Real Driving Emissions 31

increased emissions, hence, at least for testing, it would not be fair for the man-
ufacturer to have their car evaluated based on unrealistically aggressive driving.
Likewise, too restrained driving is unrealistic as well. Hence, the rde regula-
tion specifies lower and upper bounds on the driving dynamics. The driving
dynamics is defined as the product of speed and acceleration:

output dyn := v * a / 3.6

v is the speed in km/h and a the acceleration in m/s2. The resulting stream
dyn captures the dynamics in m2/s3. For an analysis of the dynamics in a
rural environment, the r_dyn stream mirrors dyn besides discarding values not
acquired in a rural environment.
The requirements for the lower bound of the dynamics consider the relative

positive acceleration (RPA). The RPA is the sum of the positive values of the
dynamics. The regulation defines a dynamics dyn = va

3.6 as positive, if the ac-
celeration a is at least to 0.1m/s2. As shown below, our rtlola specifications
computes the RPA by first generating an output stream rpa_va that copies dyn
but replaces all values computed with a non-positive acceleration by zero. An
output stream rpa_agg computes the sum of these values, and output stream
rpa computes the RPA by dividing this sum by the length of the trip. The spec-
ification snippet below shows the computation of the RPA for the rural mode
(hence, each stream name is prefixed with r_):

output r_rpa_va :=

if a >= 0.1 && is_rural then dyn else 0.0

output r_rpa_agg := r_rpa_va.aggregate(

over_discrete: 7200, using: sum

).defaults(to: 0.0)

output r_rpa := if r_d > 0 then r_rpa_agg

/ r_d else 0.0

The threshold for the RPA depends on the average velocity. If vavg is the average
velocity, then the regulation requires that the RPA is above−0.0016·vavg+0.1755
if vavg ≤ 94.05 and above 0.025 otherwise.
The requirements for the upper bound for the dynamics consider the 95th

percentile of the dynamics values. The following specification snippet shows the
computation of the 95th percentile for the parts of the rde test that belong to
the rural mode:

output r_pctl_dyn @1Hz := r_dyn.aggregate(

over_discrete: 7200, using: pctl95

).defaults(to: 0.0)

The percentile aggregation is computed for up to 7200 time steps, i.e., for a
duration of 2 h given the (regulation enforced) fixed frequency of 1Hz. The

32 2 Preliminaries

computation uses the values of the rural dynamics output stream r_dyn. Anal-
ogous streams u_pctl_dyn and m_pctl_dyn are constructed for the urban and,
respectively, motorway mode. As for the RPA, the concrete threshold depends
on the average velocity vavg : the 95th percentile of the dynamics must not
be greater than 0.136 · vavg + 14.44 if vavg ≤ 74.6 km/h and no greater than
0.0742 · vavg + 18.966 otherwise.
We can now encode the validity of the (rural) dynamics as a boolean stream:

output r_is_dynamics_valid :=

(if r_avg_v <= 94.05 then

r_rpa > (-0.0016 * r_avg_v + 0.1755)

else

r_rpa > 0.025)

&&

(if r_avg_v <= 74.6 then

r_pctl_dyn <= (0.136 * r_avg_v + 14.44)

else

r_pctl_dyn <= (0.0742 * r_avg_v + 18.966))

Checking Emissions. After establishing that a trip is indeed valid according to
the conditions of the rde regulation, the exhaust emissions have to be checked.
If a trip is not valid, the emissions are irrelevant and the test has to be repeated.
To calculate the emissions, one first needs the Exhaust Mass Flow (EMF), i.e.,
the mass of exhaust gas emitted per time unit. Based on the EMF in g/s and
the measured particles per million one can then compute the emissions in g/s.
From this, the amount of NOx emission in g/km can be computed by dividing
the total amount of NOx (in gram) emitted during the test by the total trip
length. For NOx and diesel fuel the respective equations are:

output nox_mass_flow :=

exhaust_mass_flowp * 0.001586 * nox_ppmp

output nox_mass_aggregated :=

nox_mass_flow.aggregate(over: 2h, using: sum)

output nox_per_kilometer :=

if d > 0.0 then

nox_mass_aggregated / (d / 1000.0)

else

0.0

Appendix 4 of the rde regulation provides a table of factors for computing the
emissions. For NOx and diesel fuel the necessary factor is 0.001586.
It remains to sum up all the emitted gases over the whole trip in order to

calculate the amount of gases emitted per kilometre. For each of the gases, we

2.8 Runtime Monitoring for Real Driving Emissions 33

introduce a stream indicating whether the limit for the respective gas has been
exceeded:

output nox_exceeded :=

nox_per_kilometer > 0.168

The exact threshold, here 168mg/km, depends on the emission class of the
vehicle.
Finally, we use a trigger to indicate when the trip is valid but the emission

limits have been exceeded constituting a violation of the rde regulation, i.e., that
the vehicle did not pass the test. The boolean output stream is_valid_test

is a conjunction of boolean streams such as r_is_dynamics_valid that must
necessarily be true for a regulation conforming rde test.

trigger is_valid_test && nox_exceeded

As soon as the condition is violated, the trigger goes of notifying the user of the
violation.

3 Notions of Software Doping

Barthe et al. [11] proposed an informal characterisation of doped software sys-
tems: a system is doped, if it intentionally “has included a hidden functionality
[. . .] against the interest of society or of the software licensee” [11]. This def-
inition contains three requirements that are sufficient for software doping: 1)
the software exhibits a behaviour that is not in the interest of a user or society,
2) the existence of this behaviour is hidden or concealed, and 3) this was done
intentionally by the manufacturer. While this seems to be a reasonable charac-
terisation for the doping of software, it remains unclear how it can be formally
analysed.
Reasoning about the intentions of a manufacturer is effectively reasoning about

the intentions of a legal or actual person from whom originates the intention,
which is a task that is located in law enforcement rather than computer science.
Whether a functionality is hidden or concealed depends on the documentation
of the software. The line between documentations that document a functional-
ity and those that do not is fuzzy. Unless the functionality is doubtlessly not
mentioned in the documentation, determining on which side of this line a doc-
umentation is, falls into research fields of other disciplines, too. Fortunately,
regarding the first of the above requirements, formally defining what a software
is supposed to do is a standard task in computer science. It only remains the
question how to generally express, in a formal way, that a software is working in
the interest of a user or society. We slightly rephrase this requirement and will
ask instead for a definition that ensures that a system meets the expectations of a
user or society regarding a software’s behaviour. This is also in accordance with
the definition of trust in Chapter 1. If a software behaves as expected, we will
say that it is clean. Deliberately ignoring the intentionality and the concealment
requirement above, we will say that a program or system is doped whenever it
is not clean. This chapter proposes several cleanness definitions that represent
different, general types of expectations of how a trustworthy program or system
should behave.

A program or a system must be representable by a suitable type of compu-
tation model. The computation models introduced in Chapter 2 are relatively
specific, because they are accompanied by a suitable analysis technique. In
this chapter, we take a more general view on computation models that takes

36 3 Notions of Software Doping

an observation-based perspective on programs rather than a computation-based
one. That is, we consider programs and systems as functions that receive inputs
and produce outputs; how an output is computed is irrelevant. For example, the
state transformers in Section 2.5 come with certain technical details, such as the
existence of states and variables that can occur in programs. Essentially, state
transformers represent sequential programs, i.e., programs that receive single in-
puts and produce single outputs. A simpler representation of such programs
are plain functions from inputs to outputs. Due to the absence of details about
how the program computes outputs, cleanness definitions for this representation
become more comprehensible. Yet, they are also applicable to more concrete
modelling formalisms for sequential programs.

Although the representation of sequential programs as functions is very gen-
eral, it is insufficient to define cleanness for reactive systems, i.e., systems that
continually receive inputs and produce outputs. Hence, we will dedicate a sepa-
rate part of this chapter to reactive systems. In fact, we will distinguish between
three conceptually different types of reactive systems. One very common rep-
resentation of reactive systems considers a discrete time domain where at every
step one input is consumed and one output is produced. Sometimes, though,
this strong coupling of inputs and outputs is not desirable; in such cases a model
that we call mixed-IO system may be more suitable, which allows an arbitrary
alternation between inputs and outputs. Finally, if the exact time at which in-
teractions with the system take place is relevant to decide whether the system
behaves cleanly, then it is more suitable to assume a hybrid systems computation
model. A simple representation of hybrid systems are functions that map gener-
alised timed traces of input values to generalised timed traces of output values
(cf. Section 2.2). We provide additional details for the different computation
models in the subsequent sections.

Another detail that is relevant for the choice of a cleanness notion is whether
a program is parametrised. By using parameters it is possible to distinguish
different configurations of a program [36]. We will propose cleanness definitions
for parametrised and non-parametrised programs and systems.

3.1 Sequential Programs

A nondeterministic sequential program P : In → 2Out is a function P mapping
inputs from a set In to outputs from a set Out. Because P may be nondetermin-
istic, it returns a set of outputs. A program P is deterministic, if for every input
it returns exactly one output, i.e., for all i ∈ In, |P(i)| = 1. In this case, we may
also write P : In → Out. A parametrised nondeterministic sequential program
is a function P+ : Param → In → 2Out, where Param is a set of parameters each

3.1 Sequential Programs 37

enabling a particular instance (or configuration) of the program P+. For some
parameter p ∈ Param, the program instance P+(p) maps inputs from a set In to
outputs from a set Out. As for non-parametrised programs we call P+ determin-
istic if and only if for all p ∈ Param and i ∈ In, |P+(p)(i)| = 1, in which case we
also write P+ : Param→ In→ Out.
The choice of whether a program is modelled as a parametrised or non-

parametrised program is only a matter of style; both notions are equally ex-
pressive. To allow switching between both notions, we explicate how they can
encode each other. Let P+ : Param → In → 2Out be a parametrised nonde-
terministic sequential program. Then, with the input set In′ := Param × In
combining the parameters and inputs of P+ in pairs, the non-parametrised pro-
gram P : In′ → 2Out with P(p, i) := P+(p)(i) encodes P+. We denote this by
P+ ↪→ P. The converse direction – the encoding of a non-parametrised program
with a parametrised program – can be achieved in two ways. Let P : In → 2Out

be a non-parametrised nondeterministic sequential program. The most intu-
itive approach to encode P is to use a single default parameter def . Taking
Param = {def } eliminates the option to use a variant of a program other than
the “default” one (that is implicitly given by the non-parametrised program).
In this case, the inputs to the encoding program P+ : Param → In → 2Out are
passed unalteredly to the encoded program, i.e., P+(def)(i) := P(i). We say
that P+ encodes P and denote this by P ↪→ P+. Alternatively, the roles of pa-
rameters and inputs may be switched: The set of parameters is defined as the
inputs to P, i.e., Param = In, and there is only a single default input def that
P+ accepts, i.e., In+ = {def }. P is then encoded by a parametrised program
P+ : Param → In+ → 2Out, where the inputs are passed as parameters to P+
and forwarded to the original non-parametrised program: P+(i)(def) := P(i). We
denote this encoding by P ↪→Param P+ explicitly indicating that the inputs are
encoded by parameters. While the former kind of encoding appears to be the
natural choice for encodings, we will later see that only the latter encoding is
able to preserve cleanness properties.

In the remainder of this section, if not stated otherwise, we use the names
Param, In and Out for the sets of parameters, inputs and outputs, respectively.
Further, we use P to denote non-parametrised sequential programs and P+ for
parametrised sequential programs. If not stated otherwise, we assume that P is a
function of type In→ 2Out and that P+ is a function of type Param→ In→ 2Out.

3.1.1 Strict cleanness

The abstract implementations of a printer shown in Figures 3.1 and 3.2 are
examples for parametrised programs.
The program Printer in Figure 3.1 is parametrised by the information on the

38 3 Notions of Software Doping

procedure Printer(cartridge)
if type(cartridge) ∈ Compatible
then

read(document)
print(stdout,document)

else
turnOn(alert led)

end if
end procedure

Figure 3.1: A simple printer

procedure Printer(cartridge)
if brand(cartridge) = my-brand
then

read(document)
print(stdout,document)

else
turnOn(alert led)

end if
end procedure

Figure 3.2: A doped printer

ink or toner cartridge with which it is being used. Before printing a document,
it checks if the cartridge is compatible. For incompatible cartridges, the printer
turns on an error LED, and for compatible cartridges, the printer receives a
document as an input and prints it. The printed pages of the document are the
output. Figure 3.2 shows a doped variant of the printer. Instead of checking if
the cartridge is compatible, it prints documents only if the cartridge is a cartridge
sold by the printer manufacturer. The manufacturer of the printer apparently
has manipulated the software to favour its own cartridges.
Intuitively, we would expect from a clean printer that when comparing two

compatible cartridges p1 and p2 and printing with both the same document i,
that the output is the same for both, i.e., Printer(p1)(i) = Printer(p2)(i).
There are a few deliberations regarding the definition of cleanness that are par-
ticularly worth to mention:

1. A cleanness definition shall be based on events accessible to an external
observer, i.e., it is based on the parameter-input-output behaviour of a
program. From the program itself it is only known that it can be modelled
as a function. Internals of the function are unknown.

2. The definition shall consider that not every pair of parameters is compara-
ble. In the example of the printer, only cartridge parameters that are com-
patible with the printer shall be compared with each other. Assuming a set
Compatible ⊆ Param of cartridge parameters compatible with the printer,
the definition must be flexible enough to restrict p1 and p2 to be parameters
from Compatible. In a more general case, it may also be necessary to com-
pare compatible black-cartridges with each other and compatible colour-
cartridges with each other, but without comparing a compatible black- and
a compatible colour-cartridge. Hence, to reason about cleanness we will
work with a binary relation ≈P that relates all combinations of parameters
that are supposed to be compared with each other. This relation must be
reflexive and symmetric. For the printer example, we would hence define

3.1 Sequential Programs 39

the comparability relation of cartridge parameters such that p1 ≈P p2 if
and only if p1 ∈ Compatible and p2 ∈ Compatible. The distinction between
black- and colour-cartridges can be formulated as p1 ≈P p2 if and only if
p1 ∈ BlackCompatible and p2 ∈ BlackCompatible or p1 ∈ ColourCompatible
and p2 ∈ ColourCompatible (assuming that BlackCompatible ⊆ Param rep-
resents all compatible black-cartridges and ColourCompatible ⊆ Param rep-
resents all compatible colour-cartridges). With this definition, pairs con-
sisting of a compatible black-cartridge and a compatible colour-cartridge
would indeed not occur in ≈P.

3. Finally, it is important that the cleanness definition shall not hinder the
manufacturer to be innovative. For example, assume that the printer man-
ufacturer provides an extra functionality that requires specialised hardware
in the printer and the cartridge. Documents using the new feature are en-
coded in a new data format (we could compare this to the introduction
of the postscript language when standard printing was based on dots or
ASCII code). Figure 3.3 sketches the software of such a printer. While the
printer prints all documents in the standard format with all compatible
cartridges, documents in the new format require the specialised cartridge
with the additional hardware. For such a printer, the requirement that
compatible cartridges produce the same output for identical inputs would
be violated for inputs that represent documents in the new file format.
Hence, reasoning about cleanness shall concentrate only on a meaningful
set of standard inputs StdIn ⊆ In. In case of the printer example, only
documents with the standard file format are relevant, documents in the
new file format should not be considered.

As the above list of thoughts suggests, the concrete application of a cleanness
property is influenced by contextual information – e.g., a characterisation of
which pairs of parameters should be considered, or the set of standard inputs
StdIn. All cleanness notions in this chapter are defined w.r.t. a formal contract
that specifies a context-dependent cleanness configuration. Definition 3.1 shows
the first cleanness definition for sequential programs, called strict cleanness. It
is similar to the idea presented above: For all pairs of parameters that shall be
checked, every standard input i ∈ StdIn must result in the same outputs. Hence,
the contract w.r.t. which strict cleanness is checked contains a reflexive and
symmetric binary relation ≈P determining the pairs of comparable parameters,
and the set StdIn of standard inputs. We represent contracts as tuples; a strict
cleanness contract is a tuple of the form ⟨≈P,StdIn⟩.

Definition 3.1. A parametrised nondeterministic sequential program P+ is strict-
ly clean w.r.t. contract C = ⟨≈P,StdIn⟩, if for all pairs of parameters p, p′ ∈

40 3 Notions of Software Doping

Param with p ≈P p′ and input i ∈ StdIn, it holds that P+(p)(i) = P+(p
′)(i).1

procedure Printer(cartridge)
if type(cartridge) ∈ Compatible then

read(document)
if (¬newType(document)

∨ supportsNewType(cartridge))
then

print(stdout,document)
else

turnOn(alert led)
end if

else
turnOn(alert signal)

end if
end procedure

Figure 3.3: An innovative printer.

The comparability relation for
parameters in the contract is a
powerful tool to restrict the com-
bination of parameters that is
supposed to be checked for clean-
ness. For example, we imag-
ine that it is a common use-case
to check cleanness within pair-
wise disjunct sets of parameters
P1, . . . , Pn ⊆ Param. This can be
encoded by the parameter com-
parability relation p ≈P p′ :=
p ∈ P1 ∧ p′ ∈ P1, or . . . , or
p ∈ Pn ∧ p′ ∈ Pn. We remark
that with this definition of ≈P,
any combination of parameters where both parameters are not part of any of
the groups is not considered (i.e., there is no implicit group for parameters that
are not contained in any of the groups P1 to Pn). The parameter comparability
relation is also powerful enough to encode that all variants of a program shall
be compared to a reference implementation that serves as a specification. If the
reference implementation is represented by a parameter pref, then the parameter
comparability relation defined as p1 ≈P p2 := p1 = pref ∨ p2 = pref enforces that
all program variants P+(p) (i.e., for all p ∈ Param) are compared to the reference
implementation P+(pref).
In many cases, program parametrisation is not needed and the parameter nota-

tion causes unnecessary clutter during reasoning about cleanness. For such cases,
Definition 3.2 defines an alternative of strict cleanness for non-parametrised pro-
grams. Instead of using the comparability relation ≈P, the definition weakens
the constraints for inputs. For non-parametrised programs, the outputs con-
sidered for comparison are not necessarily the outputs for identical inputs, but
instead it suffices that the inputs are comparable according to a ≈I relation over
inputs. As ≈P, ≈I must be a binary relation that is reflexive and symmetric.
Thus, strict cleanness is defined w.r.t. a contract ⟨StdIn,≈I⟩ that contains the
input comparability relation instead of the parameter comparability relation.

Definition 3.2. A non-parametrised nondeterministic sequential program P is
strictly clean w.r.t. contract C = ⟨StdIn,≈I⟩, if for all pairs of standard inputs
i, i′ ∈ StdIn with i ≈I i

′, it holds that P(i) = P(i′).

1I use a more general notion than D’Argenio et al. [42]; for the original definition with
parameters of interest PIntrs, define p ≈P p′ if and only if p ∈ PIntrs ∧ p′ ∈ PIntrs.

3.1 Sequential Programs 41

As mentioned above, choosing between parametrised and non-parametrised
programs is a matter of style. Although the two variants of strict cleanness
allow different kinds of configuration (via their contracts), they still are equally
expressive, as Propositions 3.3 and 3.4 show.

Proposition 3.3. Let P+ : Param→ In+ → 2Out be a parametrised nondetermin-
istic sequential program and P : In̸+ → 2Out the non-parametrised nondeterminis-
tic sequential program that encodes P+, i.e., P+ ↪→ P and In̸+ = Param× In+. Fur-
ther, let C+ = ⟨≈P,StdIn+⟩ and C = ⟨StdIn̸+,≈I⟩ be contracts with StdIn+ ⊆ In+,
StdIn̸+ = Param × StdIn+ and (p, i) ≈I (p

′, i′) if and only if p ≈P p′ and i = i′.
Then, P+ is strictly clean w.r.t. C+ if and only if P is strictly clean w.r.t. C.

Proof. By definition of strict cleanness, P is strictly clean w.r.t. C if and only
if for all (p1, i1), (p2, i2) ∈ Param × StdIn it holds that (p1, i1) ≈I (p2, i2) implies
P(p1, i1) = P(p2, i2). From the definition of ≈I and from P+ ↪→ P we can replace
the implication with the equivalent implication that p1 ≈P p2 and i1 = i2 imply
P+(p1)(i1) = P+(p2)(i2). By unwinding the pair notation and syntactically apply-
ing the equality of i1 and i2, it is equivalent to say that for all p1, p2 ∈ Param and
for all i ∈ StdIn, p1 ≈P p2 implies P+(p1)(i) = P+(p2)(i), which is the definition of
P+ being strictly clean w.r.t. C+.

A similar statement for an encoding P ↪→ P+ (where inputs to P are modelled
as inputs to P+) does not hold. Strict cleanness of non-parametrised programs
relates inputs as comparable by means of the ≈I relation. Strict cleanness of
parametrised programs, however, only relates parameters using a ≈P relation,
while it requires inputs to be identical. If, however, P+ accepts inputs to P as
parameters for encodings (i.e., when using the encoding P ↪→Param P+), every
strict cleanness contract for non-parametrised programs can be translated to an
equivalent contract for the parametrised encoding. This is what the following
proposition shows.

Proposition 3.4. Let P : In → 2Out be a non-parametrised nondeterministic
sequential program and let P+ : In → {def } → 2Out be the parametrised nonde-
terministic sequential program that encodes P using parameters as inputs, i.e.,
P ↪→Param P+. Further, let C = ⟨StdIn,≈I⟩ and C+ = ⟨≈P, {def }⟩ be contracts
with StdIn ⊆ In and such that for every i1, i2 ∈ In, i1 ≈P i2 if and only if i1 ∈ StdIn
and i2 ∈ StdIn and i1 ≈I i2. Then, P is strictly clean w.r.t. C if and only if P+ is
strictly clean w.r.t. C+.

Proof. By definition of strict cleanness, P+ is strictly clean w.r.t. C+ if and only
if for all i, i′ ∈ In and for all i′′ ∈ {def } it holds that i ≈P i′ implies P+(i)(i

′′) =
P+(i

′)(i′′). Applying the definition of ≈P and replacing i′′ by the only value
def over which i′′ is quantified, we get the equivalent statement that for all

42 3 Notions of Software Doping

procedure EmissionControl()
read(throttle)
def dose := SCRModel(throttle)
NOx := throttle3 / (2 · def dose)

end procedure

Figure 3.4: Simple emission control

procedure EmissionControl()
read(throttle)
if throttle ∈ ThrottleTestValues then

def dose := SCRModel(throttle)
else

def dose := altSCRModel(throttle)
end if
NOx := throttle3 / (2 · def dose)

end procedure

Figure 3.5: Doped emission control

i, i′ ∈ In, if i ∈ StdIn and i′ ∈ StdIn and i ≈I i
′, then P+(i)(def) = P+(i

′)(def).
With P ↪→Param P+ and notational changes, it is equivalent to say that for all
i, i′ ∈ StdIn, i ≈I i

′ implies P(i) = P(i′), which is the definition of P being strictly
clean w.r.t. C.

3.1.2 Robust cleanness

Both variants of strict cleanness put restrictions on a program only for param-
eter combinations and standard inputs that are defined by the contract w.r.t.
which cleanness is checked. For pairs of parameters p1, p2 with p1 ̸≈P p2 or for
inputs i ̸∈ StdIn, the program is immediately deemed clean. This view results
too mild in some cases where the change of behaviour of a program between
a standard input and a non-standard but yet not-so-different input is extreme.
The definition of robust cleanness overcomes this problem. While strict clean-
ness requires identical outputs for identical inputs and comparable parameters,
robust cleanness expands the idea of cleanness beyond standard inputs. Concep-
tually, robust cleanness requires that for all pairs of comparable parameters and
for every combination of a standard input and a similar (possibly non-standard)
input, also the sets of outputs must be similar.

Example 3.5. Consider the electronic control unit (ECU) of a diesel vehicle, in
particular its exhaust emission control module. Modern diesel cars use a selective
catalytic reduction (SCR) system to reduce the amount of nitric oxides. Such
systems inject a certain amount of an aqueous urea solution (also called diesel
exhaust fluid or DEF) into the exhaust stream in order to lower nitric oxides
(NOx) emissions. We simplify this control problem to a minimal toy example.
Figure 3.4 shows a program that reads the throttle position as an input and
calculates the dose of DEF (stored in def dose) that should be injected into
the exhaust stream to reduce the NOx emission. The last line of the program
precisely models the NOx emission by storing it in the output variable NOx after
a (made up) calculation directly depending on the throttle value and inversely

3.1 Sequential Programs 43

depending on the def dose.

The Diesel Emissions Scandal arose precisely because emission cleaning soft-
ware was instrumented so that it works as expected [47] only if operating in
or very close to the lab testing conditions. For our simplified example, this be-
haviour is exemplified by the algorithm in Figure 3.5. There, the lab conditions
are represented by the set ThrottleTestValues. If we define StdIn to be the set
ThrottleTestValues, then the doped emission control system trivially meets the
characterisation of clean given in Definition 3.2. However, this unit is intention-
ally programmed to defy the regulations when being unobserved and hence it falls
directly within our intuition of what a doped software is. Let SCRModel(x) =
x2, altSCRModel(x) = x and ThrottleTestValues = StdIn = (0, 1]. Then the
doped program would at input 1 switch from a linear dependency between throt-
tle and NOx value to a quadratic dependency (i.e., from NOx := throttle / 2 to
NOx := throttle2 / 2). Thus, by allowing to compare the behaviour for standard
inputs with the behaviour for non-standard inputs it would be possible to de-
tect the drastic increase of emissions beyond input 1, and thus the doping in
Figure 3.5.

Instead of reasoning via an abstract concept of “similarity” we use distance
functions and distance thresholds to concretise similarity. A cleanness contract
for robust cleanness contains a distance function dIn : In×In→ R≥0 for inputs and
dOut : Out× Out→ R≥0 for outputs. These distance functions must assign zero
distance to identical values and must be symmetric. That is, d : X×X → R≥0 is
a distance function if and only if for every a, b ∈ X it holds that d(a, a) = 0 and
d(a, b) = d(b, a). The cleanness contract further contains distance thresholds
κi ∈ R≥0 and κo ∈ R≥0. Then, two inputs i1 and i2 are “similar” if and only if
dIn(i1, i2) ≤ κi, and analogously, two outputs o1 and o2 are “similar” if and only
if dOut(o1, o2) ≤ κo. For nondeterministic programs we measure the distance
between sets of outputs using the Hausdorff distance (cf. Section 2.1) based on
dOut.

Definition 3.6. A parametrised nondeterministic sequential program P+ is ro-
bustly clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ if for all pairs of pa-
rameters p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, and input i′ ∈ In,
if dIn(i, i

′) ≤ κi, then H(dOut)(P+(p)(i),P+(p
′)(i′)) ≤ κo.

In contrast to strict cleanness, robust cleanness does not require i′ to be a
standard input from StdIn; all inputs that are at most κi away from a standard
input i are considered. In such a case, the outputs produced by i′ need to
be within a κo distance of the outputs produced by i. Nevertheless, robust
cleanness is a generalisation of strict cleanness. Strict cleanness w.r.t. ⟨≈P,StdIn⟩
is equivalent to robust cleanness w.r.t. ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ if dIn(i, i) = 0

44 3 Notions of Software Doping

and dIn(i, i
′) = ∞ for i ̸= i′, dOut(o, o) = 0 and dOut(o, o

′) = ∞ for o ̸= o′ and
κi = κo = 0.
Notice that for deterministic programs, the Hausdorff distance in Defini-

tion 3.6 can be safely replaced by the distance dOut on single outputs, i.e., by
dOut(P+(p)(i),P+(p

′)(i′)) ≤ κo. In the nondeterministic case, if the Hausdorff dis-
tance exceeds the κo threshold, then this can be fixed by either removing an
output from one of the output sets such that this set becomes smaller and all
outputs in this set are at most κo away from the other set. Or by adding an
output to the other set – and thus by making this set larger – such that the
distance between the two sets shrinks. This becomes particularly interesting in
situations where it can be assumed that the standard behaviour is correct; that
is, we consider robust cleanness as a specification for inputs that are not in StdIn
and assume that the outputs for inputs in StdIn are correct. This may be the
case, for example, because the correctness for inputs in StdIn has been carefully
validated or is constrained by external specifications or legal regulations. Un-
der this assumption, and thus with a focus on the non-standard behaviour, a
violation of the Hausdorff distance requirement must be fixed by either adding
or removing outputs from P+(p

′)(i′), because we assume that P+(p)(i) is correct.
We identify two “sub-constraints” that are induced by the Hausdorff distance
requirement and that relate to how a cleanness violation must be fixed. One of
these sub-constraints defines a minimum set of outputs that must be contained
in P+(p

′)(i′), while the other sub-constraint defines a maximum set of outputs
that may be contained in P+(p

′)(i′). We will call the former a lower-bound prop-
erty on P+(p

′)(i′) and the other one an upper-bound property. They are defined
below as l-robust cleanness and u-robust cleanness.

Definition 3.7. A parametrised nondeterministic sequential program P+ is l-rob-
ustly clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ if for all pairs of pa-
rameters p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, and input i′ ∈ In,
if dIn(i, i

′) ≤ κi, then for all o ∈ P+(p)(i), there exists o′ ∈ P+(p
′)(i′), such that

dOut(o, o
′) ≤ κo.

Assuming that P+(p)(i) is fixed, l-robust cleanness enforces that P+(p
′)(i′) con-

tains enough outputs, such that for every “standard output” o ∈ P+(p)(i), there
is a counter-part o′ ∈ P+(p

′)(i′) that is at most κo away from o. Effectively,
l-robust cleanness enforces that no program behaviour observable for a standard
input disappears under execution of a similar non-standard input.

Definition 3.8. A parametrised nondeterministic sequential program P+ is u-rob-
ustly clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ if for all pairs of pa-
rameters p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, and input i′ ∈ In,
if dIn(i, i

′) ≤ κi, then for all o′ ∈ P+(p
′)(i′), there exists o ∈ P+(p)(i), such that

dOut(o, o
′) ≤ κo.

3.1 Sequential Programs 45

Again assuming that P+(p)(i) is fixed, u-robust cleanness enforces that the
existence of every non-standard output o′ ∈ P+(p

′)(i′) can be justified by a stan-
dard output o ∈ P+(p)(i) that is at most κo away from o′. Thus, a u-robustly
clean program cannot introduce a behaviour that is far away from the standard
behaviour.
The conjunction of l-robust cleanness and u-robust cleanness is in many cases

(but not for certain corner cases, as we will see) equivalent to robust clean-
ness. In the following, we denote the (Boolean) conjunction of l-robust cleanness
and u-robust cleanness as quantifier-based robust cleanness and Definition 3.6 as
Hausdorff-based robust cleanness. While quantifier-based robust cleanness al-
ways implies Hausdorff-based robust cleanness, there are corner cases in which
the inverse implication does not hold.

Proposition 3.9. Let P+ be a parametrised nondeterministic sequential pro-
gram and C = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ a contract for robust cleanness. If P+
is l-robustly clean w.r.t. C and P+ is u-robustly clean w.r.t. C, then P+ is robustly
clean w.r.t. C.

The proof of this proposition requires to establish that all values in a set being
smaller or equal to κ is equivalent to the supremum of this set being smaller or
equal to κ and, similarly, that a set containing a value that is smaller or equal
to κ is equivalent to the infimum of that set being smaller or equal to κ. This is
what Lemmas 3.10 to 3.12 show.

Lemma 3.10. For every threshold κ ∈ R, set A and function f : A → R, if
f(a) ≤ κ holds for all a ∈ A, then sup{f(a) | a ∈ A} ≤ κ.

Proof. Let S denote the set {f(a) | a ∈ A}. If A is empty, then S is empty;
hence supS = −∞, which is less or equal to every κ ∈ R. If A is non-empty,
S is a non-empty subset of R. Then, the supremum of S exists and is the least
upper bound of S [102]; let t ∈ R be the least upper bound of S. t is an upper
bound of S if for all e ∈ S, t ≥ e. For S, this is equivalent to t ≥ f(a) for all
a ∈ A. To be the least upper bound, all upper bounds of S (i.e., all z ∈ R with
∀a′ ∈ A. z ≥ f(a′)) must be greater or equal to t. From ∀a ∈ A. κ ≥ f(a) we
know that κ is an upper bound of S. Because t is the least upper bound, it must
be that t ≤ κ.

Lemma 3.11. For every threshold κ ∈ R, set B and function f : B → R, if
there exists some b ∈ B with f(b) ≤ κ, then inf{f(b) | b ∈ B} ≤ κ.

Proof. Let S denote the set {f(b) | b ∈ B}. Since there exists some b ∈ B, B
is not empty – and neither is S. S is a non-empty subset of the extended real
numbers R, hence, by definition, the infimum of S exists and is the greatest lower

46 3 Notions of Software Doping

bound of S; let t ∈ R be the greatest lower bound of S. t is a lower bound of S
if for all e ∈ S, t ≤ e. For S, this is equivalent to t ≤ f(b′) for all b′ ∈ B. Hence,
we now that in particular f(b) is greater than or equal to t. With κ ≥ f(b), we
get that κ ≥ t.

In the next Lemma, we combine the two Lemmas above to reason about the
composition of supremum and infimum.

Lemma 3.12. For every threshold κ ∈ R, all sets A and B and every function
f : A × B → R, if for all a ∈ A, there exists some b ∈ B such that f(a, b) ≤ κ,
then supa∈A infb∈B f(a, b) ≤ κ.

Proof. Assume ∀a ∈ A. ∃b ∈ B. f(a, b) ≤ κ. With Lemma 3.11 we get that
∀a ∈ A. infb∈B f(a, b) ≤ κ. We rewrite this to ∀a ∈ A. f1(a) ≤ κ, where f1
is the function defined as f1(a) = infb∈B f(a, b). Applying Lemma 3.10, we get
that supa∈A f1(a) ≤ κ. Finally, by replacing f1 with its definition, we get that
supa∈A infb∈B f(a, b) ≤ κ.

With these Lemmas, we are able to prove Proposition 3.9.

Proof of Proposition 3.9. Let p, p′ ∈ Param with p ≈P p′, i ∈ StdIn, i′ ∈ In, and
dIn(i, i

′) ≤ κi. It suffices to show that ∀o ∈ P+(p)(i). ∃o′ ∈ P+(p
′)(i′). dOut(o, o

′) ≤
κo (l-robust cleanness) and ∀o′ ∈ P+(p

′)(i′). ∃o ∈ P+(p)(i). dOut(o, o
′) ≤ κo (u-

robust cleanness) implies H(dOut)(P+(p)(i),P+(p
′)(i′)) ≤ κo. For l-robust clean-

ness we get with Lemma 3.12 that supo∈P+(p)(i) info′∈P+(p′)(i′) dOut(o, o
′) ≤ κo, and

for u-robust cleanness that supo′∈P+(p′)(i′) info∈P+(p)(i) dOut(o, o
′) ≤ κo. As both

sup-inf-combinations are less or equal to κo, also the maximum of both is less
or equal to κo. Hence, H(dOut)(P+(p)(i),P+(p

′)(i′)) ≤ κo.

A proposition complementary to Proposition 3.9 where Hausdorff-based robust
cleanness implies quantifier-based robust cleanness does not hold in general.2

To illustrate that, assume that the inverse of Lemma 3.12 holds, i.e., that for
any two sets A,B ⊆ R and function f it holds that supa∈A infb∈B f(a, b) ≤ κ
implies that for every a ∈ A, there exists some b ∈ B, such that f(a, b) ≤ κ.
A counter-example to this claim is the following. Let A = (−1, 0] ⊆ R be the
interval between −1 and 0, where 0 is in A, but −1 is not in A. Further, let
B = (−2,−1) ⊆ R be the open interval between −1 and −2, let f(a, b) = |a− b|
be a distance function between values from A and B, and let κ = 1. Obviously,
the value in A that has the largest distance to any value in B is 0. It is easy to
see that infb∈B f(0, b) is 1. Thus, supa∈A infb∈B f(a, b) ≤ 1 holds. Now, assume
a = 0 ∈ A. According to the claim above, there must exist some b ∈ B, such

2Notably, the opposite has been claimed in previous work [17, 18], hence I elaborate on this
in more detail.

3.1 Sequential Programs 47

that f(0, b) ≤ 1. However, whatever value in B we pick, f(0, b) is always greater
than 1.
Still, an implication such as the one in the counter-example does hold for

stronger versions of robust cleanness where the “smaller-or-equal” comparison
is replaced by a strict “smaller” comparison. Hence, we propose the following
proposition as a complement to Proposition 3.9, where output distances must
be strictly smaller than κo.

Proposition 3.13. Let P+ be a parametrised nondeterministic sequential pro-
gram and C = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ a contract for robust cleanness. For all
pairs of parameters p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, and
input i′ ∈ In with dIn(i, i

′) ≤ κi, it holds that if H(dOut)(P+(p)(i),P+(p
′)(i′)) < κo,

then the following two propositions hold:

1. for all o ∈ P+(p)(i), there exists o′ ∈ P+(p
′)(i′) such that dOut(o, o

′) < κo

2. for all o′ ∈ P+(p
′)(i′), there exists o ∈ P+(p)(i) such that dOut(o, o

′) < κo.

Before we prove Proposition 3.13, we first give Lemmas similar to Lemmas 3.10
to 3.12 that establish a relationship between universal quantification and supre-
mum and between existential quantification and infimum.

Lemma 3.14. For every threshold κ ∈ R, set A and function f : A → R, if
sup{f(a) | a ∈ A} < κ, then it holds for all a ∈ A that f(a) < κ.

Proof. If A is empty, then the Lemma trivially holds. Otherwise, let S denote
the set {f(a) | a ∈ A}. S is a non-empty subset of the extend real numbers R.
By definition, the supremum of S exists and is the least upper bound of S; let
t ∈ R be the least upper bound of S. t is an upper bound of S if for all e ∈ S,
e ≤ t. For S, this is equivalent to f(a) ≤ t for all a ∈ A. Since t < κ, it also
holds that f(a) < κ for all a ∈ A.

Lemma 3.15. For every threshold κ ∈ R, set B and function f : B → R, if
inf{f(b) | b ∈ B} < κ, then there exists some b ∈ B with f(b) < κ.

Proof. Let S denote the set {f(b) | b ∈ B}. First, assume that B is the empty
set. Then S is empty and inf S =∞. However, this violates the assumption that
inf S < κ, because ∞ ≮ κ for all κ ∈ R. Hence, B must be non-empty, and S is
non-empty, too. Thus, the infimum of S exists and is the greatest lower bound of
S; let t ∈ R be this greatest lower bound. t is a lower bound of S if for all e ∈ S,
t ≤ e. For S, this is equivalent to t ≤ f(b′) for all b′ ∈ B. To be the greatest
lower bound, all lower bounds of S (i.e., all z ∈ R with ∀b′ ∈ B. z ≤ f(b′))
must be smaller or equal to t. We continue by proving the contraposition of the
proposition, i.e., we show that t ≥ κ under the assumption that f(b) ≥ κ for all

48 3 Notions of Software Doping

b ∈ B. From this assumption, we get that κ is a lower bound of S. Since t is
the greatest lower bound of S, it must be that t ≥ κ.

Lemma 3.16. For every κ ∈ R, all sets A and B and function f : A×B → R,
if supa∈A infb∈B f(a, b) < κ, then for all a ∈ A, there exists some b ∈ B such
that f(a, b) < κ.

Proof. Let f ′(a) := infb∈B f(a, b) be the function mapping elements in A to the
infimum of {f(a, b) | b ∈ B}. Hence, supa∈A f

′(a) < κ. With Lemma 3.14 we get
that f ′(a) < κ for all a ∈ A. Next, let fa(b) := f(a, b) be the family of functions,
where a concrete a ∈ A is fixed and passed to f with a value b ∈ B provided
as an argument to fa. By using the definitions of f ′ and fa, we get that for all
a ∈ A, infb∈B fa(b) < κ. With Lemma 3.15 we get that for all a ∈ A, there
exists some b ∈ B such that fa(b) < κ. Replacing fa(b) with f(a, b) concludes
the proof.

Proof of Proposition 3.13. It suffices to show that H(dOut)(P+(p)(i),P+(p
′)(i′)) <

κo implies that ∀o ∈ P+(p)(i). ∃o′ ∈ P+(p
′)(i′). dOut(o, o

′) < κo (l-robust clean-
ness) and ∀o′ ∈ P+(p

′)(i′). ∃o ∈ P+(p)(i). dOut(o, o
′) < κo (u-robust clean-

ness). By unrolling the definition of the Hausdorff distance and maximum
function, we get that supo∈P+(p)(i) info′∈P+(p′)(i′) dOut(o, o

′) < κo holds and that
supo′∈P+(p′)(i′) info∈P+(p)(i) dOut(o, o

′) < κo holds. From the former, we get l-robust
cleanness with Lemma 3.16, and from the latter and Lemma 3.16 we obtain u-
robust cleanness.

As Propositions 3.9 and 3.13 demonstrate, Hausdorff-based robust cleanness
and quantifier-based robust cleanness are conceptually equivalent, but when in-
finite sets are involved, it matters whether distances are compared using the
≤-operator or the <-operator. In the remainder of this thesis, we will call such
mutual implications as obtained from Propositions 3.9 and 3.13 almost equiv-
alence; i.e., we say that Hausdorff-based robust cleanness and quantifier-based
robust cleanness are almost equivalent. The peculiarity of the two notions of
robust cleanness being only almost, but not exactly equivalent is a theoretical
artefact; if the set of outputs of P+ is finite, then also the set of distances between
all combinations of outputs is finite and the supremum and infimum are iden-
tical to the maximum and, respectively, minimum element of the set of output
distances.

We will now turn to robust cleanness of non-parametrised programs and first
provide a non-parametrised variant of Hausdorff-based robust cleanness.

3.1 Sequential Programs 49

Definition 3.17. A non-parametrised nondeterministic sequential program P
is robustly clean w.r.t. contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if for every standard
input i ∈ StdIn and input i′ ∈ In, if dIn(i, i

′) ≤ κi, then H(dOut)(P(i),P(i
′)) ≤ κo.

Robust cleanness contracts for non-parametrised programs do not contain the
parameter comparability relation ≈P. While for strict cleanness we compensated
for that by adding an input comparability relation ≈I, for robust cleanness it is
already possible to define input comparability by means of dIn and κi. As we
will see next, this suffices to show that robust cleanness for parametrised and
robust cleanness for non-parametrised programs are equally expressive.
The encoding of robust cleanness of non-parametrised programs with its pa-

rametrised counterpart is straightforward:

Proposition 3.18. Let P : In → 2Out be a non-parametrised nondeterminis-
tic sequential program and let P+ : {def } → In → 2Out be the parametrised
nondeterministic sequential program that encodes P, i.e., P ↪→ P+. Further, let
C = ⟨StdIn, dIn, dOut, κi, κo⟩ and C+ = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ be contracts,
where StdIn ⊆ In, def ≈P def and StdIn, dIn, dOut, κi, κo are identical in both
contracts. Then, P is robustly clean w.r.t. C if and only if P+ is robustly clean
w.r.t. C+.

Proof. We first assume that P is robustly clean w.r.t. C to show that P+ is
robustly clean w.r.t. C+. For this, let p = p′ = def , i ∈ StdIn and i′ ∈ In
with dIn(i, i

′) ≤ κi. With these assumptions, we get from robust cleanness
of P that H(dOut)(P(i),P(i

′)) ≤ κo. By definition of P+, this is equivalent to
H(dOut)(P+(p)(i),P+(p)(i

′)) ≤ κo, so P+ is robustly clean w.r.t. C+.
Conversely, we assume that P+ is robustly clean w.r.t. C+ to show that P is

robustly clean w.r.t. C. For this, let i ∈ StdIn and i′ ∈ In with dIn(i, i
′) ≤ κi.

With these assumptions, we get from def ≈P def and robust cleanness of P+
that H(dOut)(P+(def)(i),P+(def)(i

′)) ≤ κo. By definition of P+, this is equivalent
to H(dOut)(P(i),P(i

′)) ≤ κo, which concludes the proof.

Encoding robust cleanness for a parametrised program P+ : Param → In+ →
2Out with robust cleanness for the non-parametrised program P : In̸+ → 2Out

that encodes P+ requires a non-trivial construction of the contract for cleanness
of P. As for strict cleanness, we encode parameters Param and inputs In+ to
P+ as inputs In̸+ = Param × In+ to P that are pairs containing a parameter
and an input. The parameter comparability relation ≈P is encoded using the
input distance function and threshold. Equation (3.1) shows the input distance

function ♯d
(κi,≈P)
In that is parametrised by κi and ≈P, and the corresponding

distance threshold ♭κi that is parametrised by κi. If the parameters encoded by

the P-inputs passed to ♯d
(κi,≈P)
In are not in the ≈P relation, then the distance

50 3 Notions of Software Doping

between the P-inputs is infinite. Notice that ♭κi is never infinite; hence, in this
case, the input distance is always greater than the distance threshold, so for
this combination of parameters, robust cleanness is trivially satisfied. If the
encoded parameters are in the ≈P relation, then it is necessary to distinguish
between the case whether κi is infinity or not. If it is infinity, then the original
robust cleanness of P+ considered every combination of inputs as relevant for the
cleanness evaluation, as the distance between every combination of inputs is less
or equal to infinity. Hence, we reflect this case by assigning distance zero to all

combinations of inputs in ♯d
(κi,≈P)
In and by defining zero as the distance threshold

♭κi. Finally, in the case that κi is not infinity, ♯d
(κi,≈P)
In is identical to the original

dIn for the P+-inputs and ♭κi is identical to κi. We remark that ♯d
(κi,≈P)
In is a valid

distance function; it is easy to see that for all i, i′ ∈ In̸+, ♯d
(κi,≈P)
In (i, i) = 0 and

♯d
(κi,≈P)
In (i, i′) = ♯d

(κi,≈P)
In (i′, i).

♯d
(κi,≈P)
In ((p, i), (p′, i′)) :=


dIn(i, i

′) if κi ̸=∞ and p ≈P p′

0 if κi =∞ and p ≈P p′

∞ otherwise,

and

♭κi :=

{
κi if κi ̸=∞
0 otherwise.

(3.1)

Proposition 3.19. Let P+ : Param → In+ → 2Out be a parametrised nonde-
terministic sequential program and let P : In̸+ → 2Out be the non-parametrised
program that encodes P+, i.e., P+ ↪→ P and In̸+ = Param × In+. Further, let
C+ = ⟨≈P,StdIn+, dIn, dOut, κi, κo⟩ and C = ⟨StdIn̸+, d′In, dOut, ♭κi, κo⟩ be contracts

with StdIn̸+ = Param × StdIn+ and d′In = ♯d
(κi,≈P)
In . Then, P+ is robustly clean

w.r.t. C+ if and only if P is robustly clean w.r.t. C.

Proof. We prove both directions of the if-and-only-if separately. First, we assume
that P is robustly clean w.r.t. C to show that P+ is robustly clean w.r.t. C+. Hence,
let p and p′ be parameters with p ≈P p′, i ∈ StdIn+ and i′ ∈ In+ with dIn(i, i

′) ≤ κi.
Now, let î = (p, i) and î′ = (p′, i′) be pairs of the given parameters and inputs. î
is a standard input in StdIn̸+, because i is a standard input in StdIn+. We first
consider the case that κi ̸= ∞. Then, ♭κi = κi and we get from the definition
of d′In, κi ̸= ∞ and p ≈P p′ that d′In(̂i, î

′) = dIn(i, i
′). Since dIn(i, i

′) ≤ κi, it is

also that d′In(̂i, î
′) ≤ ♭κi. In the case that κi = ∞, we know that ♭κi = 0 and,

from the definition of d′In, κi = ∞ and p ≈P p′, that d′In(̂i, î
′) = 0 and hence,

d′In(̂i, î
′) ≤ ♭κi. Since in both cases d′In(̂i, î

′) ≤ ♭κi, we get from robust cleanness

3.1 Sequential Programs 51

of P that H(dOut)
(
P
(
(p, i)

)
,P
(
(p′, i′)

))
≤ κo. From the definition of P+, we get

that H(dOut)
(
P+(p)(i),P(p

′)(i′)
)
≤ κo, which proves that P+ is robustly clean.

Next, we assume that P+ is robustly clean w.r.t. C+ to show that P is robustly
clean w.r.t. C. For this, let î = (p, i) ∈ StdIn̸+ be a standard input of P, i.e.,

p ∈ Param and i ∈ StdIn+, and let î′ = (p′, i′) ∈ In̸+ be an input of P. We may

assume that d′In(̂i, î
′) ≤ ♭κi. In the case that κi ̸= ∞, ♭κi = κi and we can infer

that d′In(̂i, î
′) <∞. From this and the definition of d′In, we conclude that p ≈P p′

and d′In(̂i, î
′) = dIn(i, i

′). Since d′In(̂i, î
′) ≤ ♭κi, it is that dIn(i, i

′) ≤ κi. If it is the

case that κi =∞, then ♭κi = 0; from d′In(̂i, î
′) ≤ ♭κi we can infer that d′In(̂i, î

′) = 0,
which, for κi =∞, is the case only if p ≈P p′. As κi =∞, dIn(i, i

′) ≤ κi is trivially
satisfied. Since in both cases, we have that p ≈P p′ and dIn(i, i

′) ≤ κi, we get
from robust cleanness of P+ that H(dOut)

(
P+(p)(i),P(p

′)(i′)
)
≤ κo. Rewriting this

with the definition of P, we get H(dOut)
(
P
(
(p, i)

)
,P
(
(p′, i′)

))
≤ κo, proving that

P is robustly clean.

Definitions 3.20 and 3.21 define l-robust cleanness and u-robust cleanness for
non-parametrised programs.

Definition 3.20. A non-parametrised nondeterministic sequential program P is
l-robustly clean w.r.t. contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if for every standard
input i ∈ StdIn and input i′ ∈ In, if dIn(i, i

′) ≤ κi, then for all o ∈ P(i), there
exists o′ ∈ P(i′), such that dOut(o, o

′) ≤ κo.

Definition 3.21. A non-parametrised nondeterministic sequential program P is
u-robustly clean w.r.t. contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if for every standard
input i ∈ StdIn and input i′ ∈ In, if dIn(i, i

′) ≤ κi, then for all o′ ∈ P(i′), there
exists o ∈ P(i), such that dOut(o, o

′) ≤ κo.

The definitions provide the same expressiveness as their corresponding coun-
terpart from Definitions 3.7 and 3.8 for parametrised programs. For l-robust
cleanness, this is shown in Propositions 3.22 and 3.23, in a way analogue to
Propositions 3.18 and 3.19.

Proposition 3.22. Let P : In → 2Out be a non-parametrised nondeterminis-
tic sequential program and let P+ : {def } → In → 2Out be the parametrised
nondeterministic sequential program that encodes P, i.e., P ↪→ P+. Further,
let C = ⟨StdIn, dIn, dOut, κi, κo⟩ and C+ = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ be contracts,
where def ≈P def and StdIn, dIn, dOut, κi, κo are identical in both contracts. Then,
P is l-robustly clean w.r.t. C if and only if P+ is l-robustly clean w.r.t. C+.

Proof. We first assume that P is l-robustly clean w.r.t. C to show that P+ is
l-robustly clean w.r.t. C+. For this, let p = p′ = def , i ∈ StdIn and i′ ∈ In

52 3 Notions of Software Doping

with dIn(i, i
′) ≤ κi. With these assumptions, we get from l-robust cleanness of P

that for all o ∈ P(i) there exists some o′ ∈ P(i′), such that dOut(o, o
′) ≤ κo. By

definition of P+, it is equivalent to say that for all o ∈ P+(p)(i) there exists some
o′ ∈ P+(p

′)(i′), such that dOut(o, o
′) ≤ κo, so P+ is l-robustly clean w.r.t. C+.

Conversely, we assume that P+ is l-robustly clean w.r.t. C+ to show that P is
l-robustly clean w.r.t. C. For this, let i ∈ StdIn and i′ ∈ In with dIn(i, i

′) ≤ κi.
With these assumptions and with def ≈P def , we get from l-robust cleanness of
P+ that for all o ∈ P+(p)(i) there exists some o′ ∈ P+(p

′)(i′), such that dOut(o, o
′) ≤

κo. By definition of P+, this is equivalent to saying that for all o ∈ P(i) there
exists some o′ ∈ P(i′), such that dOut(o, o

′) ≤ κo, which concludes the proof.

Proposition 3.23. Let P+ : Param → In → 2Out be a parametrised nonde-
terministic sequential program and let P : Param × In → 2Out be the non-
parametrised program that encodes P+, i.e., P+ ↪→ P. Further, let the tuples
C+ = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ and C = ⟨Param × StdIn, d′In, dOut, ♭κi, κo⟩ be
contracts with d′In = ♯d

(κi,≈P)
In . Then, P+ is l-robustly clean w.r.t. C+ if and only

if P is l-robustly clean w.r.t. C.

Proof. The proof is conceptually the same as for Proposition 3.19. The difference
is only at the end of each of the subproofs for the implications making up the if-
and-only-if. For the implication from l-robust cleanness of P to l-robust cleanness
of P+, we get from the l-robust cleanness of P that for all o ∈ P

(
(p, i)

)
, there

exists some o′ ∈ P
(
(p′, i′)

)
, such that dOut(o, o

′) ≤ κo. From the definition of
P, we get that for all o ∈ P+(p)(i), there exists some o′ ∈ P+(p

′)(i′), such that
dOut(o, o

′) ≤ κo, which proves that P+ is l-robustly clean w.r.t. C+. For the inverse
implication, in the last proof step we can infer from l-robust cleanness of P+ that
for all o ∈ P+(p)(i), there exists some o′ ∈ P+(p

′)(i′), such that dOut(o, o
′) ≤ κo.

Rewriting this with the definition of P, we get that for all o ∈ P
(
(p, i)

)
, there

exists some o′ ∈ P
(
(p′, i′)

)
, such that dOut(o, o

′) ≤ κo, proving that P is l-robustly
clean w.r.t. C.

Likewise, there are propositions for u-robust cleanness, which we omit here;
the changes are mostly of syntactic nature.
The relationship between Hausdorff-based robust cleanness and quantifier-

based cleanness that Propositions 3.9 and 3.13 establish for parametrised pro-
grams also holds for non-parametrised programs, as the following propositions
show.

Proposition 3.24. Let P be a non-parametrised nondeterministic sequential
program and C = ⟨StdIn, dIn, dOut, κi, κo⟩ a contract for robust cleanness. If P is
l-robustly clean w.r.t. C and P is u-robustly clean w.r.t. C, then P is robustly
clean w.r.t. C.

3.1 Sequential Programs 53

Proof. Let i ∈ StdIn, i′ ∈ In, and dIn(i, i
′) ≤ κi. Then, it suffices to show that

∀o ∈ P(i). ∃o′ ∈ P(i′). dOut(o, o
′) ≤ κo (l-robust cleanness) and ∀o′ ∈ P(i′). ∃o ∈

P(i). dOut(o, o
′) ≤ κo (u-robust cleanness) implies H(dOut)(P(i),P(i

′)) ≤ κo. For
l-robust cleanness we get with Lemma 3.12 that supo∈P(i) info′∈P(i′) dOut(o, o

′) ≤
κo, and for u-robust cleanness that supo′∈P(i′) info∈P(i) dOut(o, o

′) ≤ κo. As both
sup-inf-combinations are less or equal to κo, also the maximum of both is less
or equal to κo. Hence, H(dOut)(P(i),P(i

′)) ≤ κo.

Proposition 3.25. Let P be a non-parametrised nondeterministic sequential
program and C = ⟨StdIn, dIn, dOut, κi, κo⟩ a contract for robust cleanness. Then,
for every standard input i ∈ StdIn, and input i′ ∈ In with dIn(i, i

′) ≤ κi, it holds
that if H(dOut)(P(i),P(i

′)) < κo, then

1. for all o ∈ P(i), there exists o′ ∈ P(i′), such that dOut(o, o
′) < κo and

2. for all o′ ∈ P(i′), there exists o ∈ P(i), such that dOut(o, o
′) < κo.

Proof. To prove the proposition, it suffices to show that H(dOut)(P(i),P(i
′)) <

κo implies that ∀o ∈ P(i). ∃o′ ∈ P(i′). dOut(o, o
′) < κo (l-robust cleanness)

and ∀o′ ∈ P(i′). ∃o ∈ P(i). dOut(o, o
′) < κo (u-robust cleanness). By unrolling

the definition of the Hausdorff distance and maximum function, we get that
supo∈P(i) info′∈P(i′) dOut(o, o

′) < κo holds and that supo′∈P(i′) info∈P(i) dOut(o, o
′) <

κo holds. From the former, we get l-robust cleanness with Lemma 3.16, and from
the latter and Lemma 3.16 we obtain u-robust cleanness.

Example 3.26. The doped cleaning emission in Figure 3.5 can be shown to be
doped using robust cleanness. Since this program is not parametrised, we use
Definition 3.17 for non-parametrised programs. Assume that the input set, i.e.,
the values that can be assigned to variable throttle, is In = (0, 2]. For the
contract w.r.t. which we check robust cleanness, we take StdIn = (0, 1] (equal
to ThrottleTestValues), κi = 2 and κo = 1. As distance functions dIn and dOut

we take the absolute values of the differences of the values of throttle and NOx,
respectively. The program in Figure 3.4 is robustly clean w.r.t. this contract,
while the program in Figure 3.5 is not.

Robust cleanness requires programs to behave in a reasonable way for all
inputs that are in a κi distance from any of the standard inputs in StdIn. For all
other inputs, there are no requirements. This is useful for programs where inputs
beyond the κi threshold describe situations where cleanness of the program is
sacrificed in favour of other, for example safety, properties, when there is a
consensus that such sacrifices are justifiable. For instance, a smart battery may
stop accepting charge if the current emitted by a standardised but foreign charger
is higher than “reasonable” (i.e. than the tolerance values); however, it may still

54 3 Notions of Software Doping

proceed in case it is dealing with a charger of the same brand for which it may
know that it can resort to a customised protocol allowing ultra-fast charging in
a safe manner.
To capture cleanness over the whole input domain, we introduce a third notion

of cleanness called func-cleanness.

3.1.3 Func-cleanness

Similar to robust cleanness, contracts for func-cleanness specify comparability of
parameters by a binary relation ≈P, they specify a set of standard inputs StdIn,
and distance functions for inputs dIn and outputs dOut. Instead of using constant
thresholds κi to restrict the input space to be considered for output analysis
and κo to enforce reasonable amount of variation between outputs, contracts for
func-cleanness contain a function f : R≥0 → R≥0 that constrains the amount
of variation between outputs dynamically under consideration of the distance
between the inputs producing the outputs. For two inputs i and i′, function f
defines an output threshold given the distance between i and i′:

Definition 3.27. A parametrised nondeterministic sequential program P+ is
func-clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, f⟩ if for all pairs of param-
eters p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn and input i′ ∈ In,
H(dOut)(P+(p)(i),P+(p

′)(i′)) ≤ f(dIn(i, i′)).

Like for Definition 3.6 of robust cleanness, the definition of func-cleanness does
not require the second i′ to be in StdIn. Since f can map into ∞, it is possible
to allow outputs to be arbitrarily far away from each other if the corresponding
inputs are a certain distance away from each other. In particular, this makes
func-cleanness strictly more general than robust cleanness: a robust cleanness
contract ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ is equivalent to a the func-cleanness contract
⟨≈P,StdIn, dIn, dOut, f⟩ with f(x) = κo whenever x ≤ κi and f(x) =∞ otherwise.
Notably, if P+ is deterministic, we may replace H(dOut)(P+(p)(i),P+(p

′)(i′)) ≤
f(dIn(i, i

′)) with dOut(P+(p)(i),P+(p
′)(i′)) ≤ f(dIn(i, i′)) in Definition 3.27.

As discussed on page 44, the Hausdorff distance entails two sub-constraints
that can be related to a lower-bound and upper-bound requirement for non-
standard behaviour. Accordingly, Definitions 3.28 and 3.29 explicitly define
these two constraints as l-func-cleanness and u-func-cleanness.

Definition 3.28. A parametrised nondeterministic sequential program P+ is l-
func-clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, f⟩ if for all pairs of parameters
p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, and input i′ ∈ In, for all
o ∈ P+(p)(i), there exists o′ ∈ P+(p

′)(i′), such that dOut(o, o
′) ≤ f(dIn(i, i′)).

3.1 Sequential Programs 55

Definition 3.29. A parametrised nondeterministic sequential program P+ is u-
func-clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, f⟩ if for all pairs of parameters
p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, and input i′ ∈ In, for all
o′ ∈ P+(p

′)(i′), there exists o ∈ P+(p)(i), such that dOut(o, o
′) ≤ f(dIn(i, i′)).

As we did for robust cleanness, we denote the conjunction of Definitions 3.28
and 3.29 as quantifier-based func-cleanness and Definition 3.27 as Hausdorff-
based func-cleanness. Also in the case of func-cleanness, the quantifier-based
and the Hausdorff-based definitions are almost equivalent, i.e., they coincide
except for some corner cases. This is established formally in Propositions 3.30
and 3.31.

Proposition 3.30. Let P+ be a parametrised nondeterministic sequential pro-
gram and C = ⟨≈P,StdIn, dIn, dOut, f⟩ a contract for func-cleanness. If P+ is
l-func-clean w.r.t. C and P+ is u-func-clean w.r.t. C, then P+ is func-clean w.r.t.
C.

Proof. Let p, p′ ∈ Param with p ≈P p′, i ∈ StdIn and i′ ∈ In. In the fol-
lowing, let κ = f(dIn(i, i

′)). Then, it suffices to show that the conjunction
of ∀o ∈ P+(p)(i). ∃o′ ∈ P+(p

′)(i′). dOut(o, o
′) ≤ κ (l-func-cleanness) and ∀o′ ∈

P+(p
′)(i′). ∃o ∈ P+(p)(i). dOut(o, o

′) ≤ κ (u-func-cleanness) implies the inequality
H(dOut)(P+(p)(i),P+(p

′)(i′)) ≤ κ. For l-func-cleanness we get with Lemma 3.12
that supo∈P+(p)(i) info′∈P+(p′)(i′) dOut(o, o

′) ≤ κ. Similarly, we use Lemma 3.12 to
get for u-func-cleanness that supo′∈P+(p′)(i′) info∈P+(p)(i) dOut(o, o

′) ≤ κ. As both
sup-inf-combinations are less or equal to κ, also the maximum of both is less or
equal to κ. Hence, H(dOut)(P+(p)(i),P+(p

′)(i′)) ≤ κ = f(dIn(i, i
′)).

Proposition 3.31 shows the inverse direction of the implication in Proposi-
tion 3.30, expect that all smaller-equal comparisons are replaced by strict smaller
comparisons.

Proposition 3.31. Let P+ be a parametrised nondeterministic sequential pro-
gram and C = ⟨≈P,StdIn, dIn, dOut, f⟩ a contract for func-cleanness. Then, for
all pairs of parameters p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn and
input i′ ∈ In, H(dOut)(P+(p)(i),P+(p

′)(i′)) < f(dIn(i, i
′)) implies that

1. for all o ∈ P+(p)(i), there exists o′ ∈ P+(p
′)(i′), such that dOut(o, o

′) <
f(dIn(i, i

′)) and

2. for all o′ ∈ P+(p
′)(i′), there exists o ∈ P+(p)(i), such that dOut(o, o

′) <
f(dIn(i, i

′)).

Proof. Let p, p′ ∈ Param with p ≈P p′, i ∈ StdIn and i′ ∈ In. In the following, let
κ = f(dIn(i, i

′)). Then, it suffices to show that H(dOut)(P+(p)(i),P+(p
′)(i′)) < κ

56 3 Notions of Software Doping

implies that ∀o ∈ P+(p)(i). ∃o′ ∈ P+(p
′)(i′). dOut(o, o

′) < κ (l-func-cleanness)
and ∀o′ ∈ P+(p

′)(i′). ∃o ∈ P+(p)(i). dOut(o, o
′) < κ (u-func-cleanness). By un-

rolling the definition of the Hausdorff distance and the definition of the max-
imum function, we get that supo∈P+(p)(i) info′∈P+(p′)(i′) dOut(o, o

′) < κ holds and
that supo′∈P+(p′)(i′) info∈P+(p)(i) dOut(o, o

′) < κ holds. From the former, we get l-
func-cleanness with Lemma 3.16, and from the latter and Lemma 3.16 we obtain
u-func-cleanness.

Analogue to strict cleanness and robust cleanness, we provide func-cleanness
definitions for non-parametrised programs.

Definition 3.32. A non-parametrised nondeterministic sequential program P
is func-clean w.r.t. contract C = ⟨StdIn, dIn, dOut, f⟩ if for every standard input
i ∈ StdIn and input i′ ∈ In, H(dOut)(P(i),P(i

′)) ≤ f(dIn(i, i′)).

As explained earlier, non-parametrised programs can be encoded by parametr-
ised ones. The following proposition shows that func-cleanness for parametrised
programs is able to encode func-cleanness for non-parametrised programs.

Proposition 3.33. Let P : In → 2Out be a non-parametrised nondeterminis-
tic sequential program and let P+ : {def } → In → 2Out be the parametrised
nondeterministic sequential program that encodes P, i.e., P ↪→ P+. Further,
let C = ⟨StdIn, dIn, dOut, f⟩ and C+ = ⟨≈P,StdIn, dIn, dOut, f⟩ be contracts, where
def ≈P def and StdIn, dIn, dOut, f are identical in both contracts. Then, P is
func-clean w.r.t. C if and only if P+ is func-clean w.r.t. C+.

Proof. We first assume that P is func-clean w.r.t. C to show that P+ is func-
clean w.r.t. C+. For this, let p = p′ = def , i ∈ StdIn and i′ ∈ In. With
these assumptions, we get from func-cleanness of P that H(dOut)(P(i),P(i

′)) ≤
f(dIn(i, i

′)). By definition of P+, this is equivalent to H(dOut)(P+(p)(i),P+(p)(i
′)) ≤

f(dIn(i, i
′)), so P+ is robustly clean w.r.t. C+.

Conversely, we assume that P+ is func-clean w.r.t. C+ to show that P is func-
clean w.r.t. C. For this, let i ∈ StdIn and i′ ∈ In. With these assumptions, we get
from def ≈P def and func-cleanness of P+ that H(dOut)(P+(def)(i),P+(def)(i

′)) ≤
f(dIn(i, i

′)). By definition of P+, this is equivalent to H(dOut)(P(i),P(i
′)) ≤

f(dIn(i, i
′)), which concludes the proof.

Conversely, func-cleanness for non-parametrised programs is able to encode
func-cleanness for parametrised programs. As it was the case for robust clean-
ness, the cleanness contract for this encoding is not straightforward. Again, the
contract requires a special input distance function and a customised function f .

Equation (3.2) shows both. The input distance function ♯d
(f,≈P)
In is parametrised

3.1 Sequential Programs 57

with the function f and the comparability relation ≈P from the cleanness con-

tract for P+. As it is the case for ♯d
(κi,≈P)
In in Equation (3.1), the inputs to

the distance function are pairs (p, i), (p′, i′), each combining a parameter and
an input to the parametrised program P+. The distance function distinguishes
whether the two parameters p and p′ are in the ≈P-relation. If they are not in
the relation, the distance between the corresponding outputs may be arbitrary

large. Thus, in this case ♯d
(f,≈P)
In defines the input distance to be infinite and

function ♭f passes this value through to make it the upper bound for the output
distance. So, the distance between outputs must be smaller or equal to infinity;
i.e., it may be arbitrarily large. If p and p′ are in the ≈P-relation, the case dis-

tinction continues on whether the inputs i and i′ are equal. If they are, ♯d
(f,≈P)
In

returns zero, and ♭f(0) returns f(0). If i and i′ are unequal, then ♯d
(f,≈P)
In returns

f(dIn(i, i
′)) + 1. Since this is always larger than zero, ♭f(♯d

(f,≈P)
In ((p, i), (p′, i′)))

is equal to f(dIn(i, i
′)) and, hence, forwarding the output threshold originally in-

tended by the contract for P+. Notice that the distinction between the first and

the second case in ♯d
(f,≈P)
In is necessary, because ♭f(♯d

(f,≈P)
In ((p, i), (p, i))) must be

equal to zero for ♯d
(f,≈P)
In to qualify as a distance function. We can also not use

dIn(i, i
′) in the second case, because this may return infinity, in which case ♭f is

not able to distinguish between an infinite input distance and infinity caused by

non-matching parameters in case three of ♯d
(f,≈P)
In . This would cause an incorrect

cleanness verdict if f does not return infinity for infinite input distances. Also

notice, that the symmetry property for ♯d
(f,≈P)
In is satisfied; thus, ♯d

(f,≈P)
In is a

valid distance function.

♯d
(f,≈P)
In

(
(p, i), (p′, i′)

)
:=


0 if p ≈P p′ and i = i′

f(dIn(i, i
′)) + 1 if p ≈P p′ and i ̸= i′

∞ otherwise,

and

♭f(x) :=

{
f(0) if x = 0

x− 1 otherwise.
(3.2)

The following proposition shows how ♯d
(f,≈P)
In and ♭f can be used in a contract

for func-cleanness of a non-parametrised program to encode func-cleanness of a
parametrised program.

Proposition 3.34. Let P+ : Param→ In+ → 2Out be a parametrised program and
P : In̸+ → 2Out the non-parametrised program with In̸+ = Param×In+ and P+ ↪→ P,
and let C+ = ⟨≈P,StdIn+, dIn, dOut, f⟩ be a contract for parametrised programs
and C = ⟨StdIn̸+, d′In, dOut, ♭f⟩ a contract for non-parametrised programs, with

58 3 Notions of Software Doping

StdIn̸+ = Param × StdIn+ and d′In = ♯d
(f,≈P)
In . Then, P+ is func-clean w.r.t. C+ if

and only if P is func-clean w.r.t. C.

Proof. We first prove that func-cleanness of P+ w.r.t. C+ implies func-cleanness
of P w.r.t. C. For this let (p, i) ∈ StdIn̸+ be a standard input of P and (p′, i′) ∈ In̸+
a regular input. Hence, p, p′ ∈ Param, i ∈ StdIn+ and i′ ∈ In+. We distinguish
three cases.

• For the first case, assume p ≈P p′ and i = i′. Then, we get from func-
cleanness of P+ that H(dOut)(P+(p)(i),P+(p

′)(i′)) ≤ f(dIn(i, i
′)). Since i = i′,

dIn(i, i
′) = 0. By definition of d′In, d

′
In((p, i), (p

′, i′)) = 0 and hence, by def-
inition of ♭f , ♭f(d′In((p, i), (p

′, i′))) = f(0) = f(dIn(i, i
′)). Finally, by using

the definition of P, we get H(dOut)(P(p, i),P(p
′, i′)) ≤ ♭f(d′In((p, i), (p′, i′))),

proving that P is func-clean w.r.t. C.

• Next, assume p ≈P p′ and i ̸= i′. Then, we get from func-cleanness of
P+ that H(dOut)(P+(p)(i),P+(p

′)(i′)) ≤ f(dIn(i, i
′)). By definition of P, this

is equivalent to H(dOut)(P(p, i),P(p
′, i′)) ≤ f(dIn(i, i

′)). Using arithmetic
operations, we get f(dIn(i, i

′)) = f(dIn(i, i
′)) + 1− 1 = d′In((p, i), (p

′, i′))− 1.
Finally, since d′In((p, i), (p

′, i′)) is always greater than zero, this is equal to
♭f
(
d′In((p, i), (p

′, i′))
)
, which proves that P is func-clean w.r.t. C.

• If we, conversely, assume that p ̸≈P p′, then, by definition of d′In, it suf-
fices to show that H(dOut)(P(p, i),P(p

′, i′)) ≤ ∞, which is always satisfied
regardless of the arguments of the Hausdorff distance.

To prove the inverse implication, that func-cleanness of P+ w.r.t. C+ follows
from func-cleanness of P w.r.t. C, let p, p′ ∈ Param be parameters with p ≈P

p′, i ∈ StdIn+ a standard input and i′ ∈ In+ a regular input of P+. Noticing
that (p, i) ∈ StdIn̸+ is a standard input of P and that (p′, i′) ∈ In̸+ is a regular
input of P, it follows from func-cleanness of P that H(dOut)(P(p, i),P(p

′, i′)) ≤
♭f
(
d′In((p, i), (p

′, i′))
)
. Because we know that p ≈P p′, we can infer either, in case

i = i′, that ♭f
(
d′In((p, i), (p

′, i′))
)
= ♭f(0) = f(0) = f(dIn(i, i

′)), or, in case i ̸= i′,

that ♭f
(
d′In((p, i), (p

′, i′))
)
= ♭f

(
f(dIn(i, i

′)) + 1
)
, which is equal to f(dIn(i, i

′)),
because dIn(i, i

′)) + 1 is always greater than 0. By using this and by applying
the definition of P, we get that H(dOut)(P+(p)(i),P+(p

′)(i′)) ≤ f(dIn(i, i
′)), which

concludes the proof.

Analogue to l-func-cleanness and u-func-cleanness for parametrised programs,
there are quantifier-based concepts of lower and upper bounds of non-standard
behaviour for non-parametrised programs.

Definition 3.35. A non-parametrised nondeterministic sequential program P
is l-func-clean w.r.t. contract C = ⟨StdIn, dIn, dOut, f⟩ if for every standard input

3.1 Sequential Programs 59

i ∈ StdIn and input i′ ∈ In, it holds that for all o ∈ P(i), there exists o′ ∈ P(i′),
such that dOut(o, o

′) ≤ f(dIn(i, i′)).

Definition 3.36. A non-parametrised nondeterministic sequential program P
is u-func-clean w.r.t. contract C = ⟨StdIn, dIn, dOut, f⟩ if for every standard input
i ∈ StdIn and input i′ ∈ In, it holds that for all o′ ∈ P(i′), there exists o ∈ P(i),
such that dOut(o, o

′) ≤ f(dIn(i, i′)).

The following Propositions 3.37 and 3.38 show that also for non-parametrised
programs the quantifier-based notion of cleanness given by the conjunction of
Definitions 3.35 and 3.36 is almost equivalent to the Hausdorff-based func-
cleanness.

Proposition 3.37. Let P : In → 2Out be a non-parametrised nondeterministic
sequential program and C = ⟨StdIn, dIn, dOut, f⟩ a contract for func-cleanness. If
P is l-func-clean w.r.t. C and P is u-func-clean w.r.t. C, then P is func-clean w.r.t.
C.

Proof. Let i ∈ StdIn, i′ ∈ In, and κ = f(dIn(i, i
′)). Then, it suffices to show that

∀o ∈ P(i). ∃o′ ∈ P(i′). dOut(o, o
′) ≤ κ (l-func-cleanness) and ∀o′ ∈ P(i′). ∃o ∈

P(i). dOut(o, o
′) ≤ κ (u-func-cleanness) imply H(dOut)(P(i),P(i

′)) ≤ κ. For l-
func-cleanness we get with Lemma 3.12 that supo∈P(i) info′∈P(i′) dOut(o, o

′) ≤ κ,
and for u-func-cleanness that supo′∈P(i′) info∈P(i) dOut(o, o

′) ≤ κ. As both sup-
inf-combinations are less or equal to κ, also the maximum of both is less or equal
to κ. Hence, H(dOut)(P(i),P(i

′)) ≤ κ = f(dIn(i, i
′)).

Proposition 3.38. Let P be a non-parametrised nondeterministic sequential
program and C = ⟨StdIn, dIn, dOut, f⟩ a contract for func-cleanness. Then, for
every standard input i ∈ StdIn and input i′ ∈ In, H(dOut)(P(i),P(i

′)) < f(dIn(i, i
′))

implies that the following two proposition holds:

1. for all o ∈ P(i), there exists o′ ∈ P(i′) such that dOut(o, o
′) < f(dIn(i, i

′)),

2. for all o′ ∈ P(i′), there exists o ∈ P(i) such that dOut(o, o
′) < f(dIn(i, i

′)).

Proof. Let i ∈ StdIn, i′ ∈ In and κ = f(dIn(i, i
′)). Then, it suffices to show

that H(dOut)(P(i),P(i
′)) < κ implies that ∀o ∈ P(i). ∃o′ ∈ P(i′). dOut(o, o

′) < κ
(l-func-cleanness) and ∀o′ ∈ P(i′). ∃o ∈ P(i). dOut(o, o

′) < κ (u-func-cleanness).
By unrolling the definition of the Hausdorff distance and the definition of the
maximum function, we get that supo∈P(i) info′∈P(i′) dOut(o, o

′) < κ holds and
that supo′∈P(i′) info∈P(i) dOut(o, o

′) < κ holds. From the former, we get l-func-
cleanness with Lemma 3.16, and from the latter and Lemma 3.16 we obtain
u-func-cleanness.

60 3 Notions of Software Doping

Example 3.39. For the example of the emission control system in Figures 3.4
and 3.5 take the same cleanness contract as in Example 3.26, but where κi and
κo are replaced by f(x) = x/2. Then the program in Figure 3.4 is func-clean
w.r.t. this adapted contract, while the program in Figure 3.5 is not.

3.2 Reactive Systems

We illustrated in Examples 3.26 and 3.39 for sequential programs how robust
cleanness and func-cleanness can put requirements on a car beyond a well-tested
set of inputs (which we call standard inputs). In these examples, the input is the
position of the throttle and the set of standard inputs a set ThrottleTestValues.
The output is the amount of NOx emitted by the car. Obviously, these exam-
ples are toy examples – the real NOx result is a complex chemical reaction that
depends on more inputs than just the position of the throttle. Another aspect
that is currently off reality is the assumption that the engine and the emission
cleaning system are sequential programs. In fact, these systems are inherently
reactive. A proper modelling of the car would reflect that the car is in a certain
state containing the current speed, the engine temperature, the position of the
camshafts, etc. In particular, the selective catalytic reduction emission cleaning
system uses a combination of the amount of NOx measured before the emission
cleaning, the amount of DEF injected in the exhaust stream in a previous time
instant and the amount of remaining NOx in the exhaust stream after this in-
jection. Such reactive behaviour cannot be captured by the definitions of strict
cleanness, robust cleanness or func-cleanness in the previous section. Hence,
in this section we will extend the definitions to make these cleanness concepts
applicable to reactive systems.

We consider a parameterised reactive system as a function S+ : Param→ Inω →
2(Outω) and a non-parametrised reactive system as S : Inω → 2(Outω), so that any
instance of the system reacts to the k-th input in the input sequence producing
the k-th output in each respective output sequence. Thus, each instance of
the system can be seen, for instance, as a (non-deterministic) Mealy or Moore
machine. Similar to sequential programs, parametrised and non-parametrised
reactive systems can encode each other. Let S+ : Param → Inω+ → 2(Outω) be
a parametrised system. Then, with In̸+ = Param × In+, the non-parametrised

system S : Inω̸+ → 2(Outω) with S((p, i)) := S+(p[0])(i) encodes S+, denoted S+ ↪→ S.

Conversely, let S : Inω → 2(Outω) be a non-parametrised reactive system. S can
be encoded by the parametrised reactive system S+ : {def } → Inω → 2(Outω)

with S+(def)(i) := S(i), denoted S ↪→ S+.
In the remainder of this section, we use S to denote non-parametrised reactive

systems and S+ for parametrised reactive systems. If not stated otherwise, we

3.2 Reactive Systems 61

assume that S is a function of type Inω → 2(Outω) and that S+ is a function of
type Param→ Inω → 2(Outω).

3.2.1 Strict cleanness

For cleanness contracts, we require that StdIn ⊆ Inω. The definitions of strict
cleanness for reactive systems strongly resemble strict cleanness for sequential
programs defined in Definitions 3.1 and 3.2.

Definition 3.40. A parametrised nondeterministic reactive system S+ is strictly
clean w.r.t. contract C = ⟨≈P,StdIn⟩, if for all pairs of parameters p, p′ ∈ Param
with p ≈P p′ and every standard input i ∈ StdIn, it holds that S+(p)(i) = S+(p

′)(i).

As for sequential programs, strict cleanness considers pairs of parameters that
are in a parameter comparability relation ≈P. For an arbitrary infinitely long
input sequence i ∈ StdIn that is considered a standard input, both instantiations
S+(p) and S+(p

′) of the system must produce the same set of outputs for i. The
relation ≈P and set StdIn make up the cleanness contract.
In cases where the behaviour of a system can be better modelled without

the distinction between inputs and parameters, we provide a definition for non-
parametrised systems.

Definition 3.41. A non-parametrised nondeterministic reactive system S is
strictly clean w.r.t. contract C = ⟨StdIn,≈I⟩, if for all pairs of inputs i, i′ ∈ StdIn
with i ≈I i

′, it holds that S(i) = S(i′).

This definition is also very similar to its sequential-program counterpart. In-
stead of a parameter relation ≈P, contracts for the non-parametrised strict clean-
ness define comparability for inputs by means of a relation ≈I. Strict cleanness
enforces for two arbitrary standard inputs (i.e., infinitely long sequences of in-
put symbols, where both sequences come from set StdIn) in this relation that
the system produces the same set of outputs.
The parametrised and the non-parametrised variant of strict cleanness are

equally expressive. We show in Propositions 3.42 and 3.43 contracts that en-
code each other assuming that the systems encode each other according to the
↪→-definition. We remark that we will use the operator ×ω, which builds the
component-wise cross product of infinite traces. Also, we will in the following
silently convert pairs of traces into traces of pairs and vice versa. We refer to
Section 2.1 for the formal details.

Proposition 3.42. Let S+ : Param → Inω+ → 2(Outω) be a parametrised nonde-

terministic reactive system and S : Inω̸+ → 2(Outω) the non-parametrised nondeter-
ministic reactive system that encodes S+, i.e., S+ ↪→ S and In̸+ = Param×In+. Fur-
ther, let C+ = ⟨≈P,StdIn+⟩ and C = ⟨StdIn̸+,≈I⟩ be contracts with StdIn+ ⊆ Inω+ ,

62 3 Notions of Software Doping

StdIn̸+ = Paramω ×ω StdIn+ and (p, i) ≈I (p
′, i′) if and only if p[0] ≈P p′[0] and

i = i′. Then, S+ is strictly clean w.r.t. C+ if and only if S is strictly clean w.r.t.
C.

Proof. We prove the two directions of the equivalence separately. First, assume
strict cleanness of S+. To prove strict cleanness of S, let (p1, i1), (p2, i2) ∈ StdIn̸+.
Hence p1, p2 ∈ Paramω and i1, i2 ∈ StdIn+. Further, we may assume that
(p1, i1) ≈I (p2, i2). We must show that S(p1, i1) = S(p2, i2). Since S+ ↪→ S, this is
equivalent to showing that S+(p1[0])(i1) = S+(p2[0])(i2). As S+ is strictly clean, it
suffices to show that p1[0] ≈P p2[0] and i1 = i2 which follows immediately from
(p1, i1) ≈I (p2, i2) with the definition of ≈I.
For the inverse implication, assume strict cleanness of S to prove strict clean-

ness of S+. Let p1, p2 ∈ Param with p1 ≈P p2, and i ∈ StdIn+. Then, we must
show that S+(p1)(i) = S+(p2)(i), or equivalently that S+(p

ω
1 [0])(i) = S+(p

ω
2 [0])(i)

which, by definition of S+ ↪→ S, is equivalent to S(pω1 , i) = S(pω2 , i). Since S
is strictly clean, it suffices to show that (pω1 , i) ≈I (p

ω
2 , i), i.e., according to the

definition of ≈I, that i = i (which is obviously true) and that pω1 [0] ≈P pω2 [0].
The latter is equivalent to p1 ≈P p2 for which we know from the assumptions of
strict cleanness of S+ that it holds.

Next, we show that every non-parametrised system S can be encoded by some
parametrised system S+, and at the same time that strict cleanness for a contract
for non-parametrised systems can be encoded by some contract for parametrised
systems. To this end, we use an encoding technique similar to ↪→Param for se-
quential programs (cf. Section 3.1). The inputs that would be passed to S will
be passed as parameters to the encoding system S+. The inputs to S+ are irrele-
vant for the behaviour of S+, so the set of inputs contains only a single “default”
trace. The details are given in the following proposition.

Proposition 3.43. Let S : Inω̸+ → 2(Outω) be a non-parametrised nondetermin-
istic reactive system. To encode S with a parametrised system, let Param = Inω̸+
and S+ : Param→ {def }ω → 2(Outω) the parametrised nondeterministic reactive
system with S+(i)(def

ω) := S(i). Further, let C = ⟨StdIn̸+,≈I⟩ and C+ = ⟨≈P,
StdIn+⟩ be contracts with StdIn̸+ ⊆ Inω̸+ , StdIn+ = {def }ω and i1 ≈P i2 if and only
if i1 ∈ StdIn̸+ and i2 ∈ StdIn̸+ and i1 ≈I i2. Then, S is strictly clean w.r.t. C if and
only if S+ is strictly clean w.r.t. C+.

Proof. We prove the two implications underneath the equivalence separately.
First, we assume strict cleanness of S to show strict cleanness of S+. Hence,
let i1, i2 ∈ Param(= In̸+) with i1 ≈P i2. Further, let i3 ∈ StdIn+ = {def }ω, i.e.,
i3 = def ω. We must show that S+(i1)(def

ω) = S+(i2)(def
ω). By definition of S+,

this is equivalent to S(i1) = S(i2). Using strict cleanness of S, it suffices to show

3.2 Reactive Systems 63

that i1, i2 ∈ StdIn̸+ and i1 ≈I i2. This follows from the assumption that i1 ≈P i2
and the definition of ≈P.
For the inverse implication, we must show that under the assumption that

S+ is strictly clean, also S is strictly clean. For this, let i1, i2 ∈ StdIn̸+ with
i1 ≈I i2. We must show S(i1) = S(i2), which is, according to the definition of
S+, equivalent to S+(i1)(def

ω) = S+(i2)(def
ω). From strict cleanness of S+, we

know that this is the case if i1, i2 ∈ Param = Inω (which is obviously true) and if
i1 ≈P i2. By definition of ≈P, i1 ≈P i2 holds if i1, i2 ∈ StdIn̸+ and i1 ≈I i2. Both
conditions hold by assumption.

3.2.2 Robust cleanness

The strict cleanness definitions adapted for reactive systems are conceptually
identical to their counterparts for sequential programs; roughly, the only changes
are “type changes” to replace single values with infinite sequences of values. For
robust cleanness, such minimal changes would cause a very undesired side effect.
Suppose two input sequences in Inω that only differ by a single input in some late
k-th position. Assume that this difference causes the inputs to have a quantified
distance of more than κi. Now the program under study may become clean even
if the respective outputs differ enormously at an early k′-th position (k′ < k).
Notice that there is no justification for such early difference on the output, since
the input sequences are the same up to position k′.
In fact, we notice that the property of being clean should be of a safety nature:

if there is a point in a pair of executions in which the system is detected to be
doped, there should be no extension of such executions that can correct it and
make the system clean. In the observation above, the k′-th prefix of the trace
should be considered the bad prefix and the system deemed as doped.
Therefore, we consider distances on finite traces: dIn : (In∗ × In∗) → R≥0

and dOut : (Out
∗ × Out∗) → R≥0. With these, we provide definitions of robust

cleanness on reactive systems that ensure for any k ∈ N that, as long as all j-th
prefixes of a given input sequence, with j ≤ k, are within κi distance, the k-th
prefixes of the output sequence are within κo distance.

Definition 3.44. A parametrised nondeterministic reactive system S+ is ro-
bustly clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ if for all pairs of pa-
rameters p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, input i′ ∈ Inω

and index k ∈ N, it holds whenever dIn(i[..j], i
′[..j]) ≤ κi for all j ≤ k, that

H(dOut)(S+(p)(i)[..k],S+(p
′)(i′)[..k]) ≤ κo.

By having as precondition that dIn(i[..j], i
′[..j]) ≤ κi for all j ≤ k, this defini-

tion considers the fact that once one instance of the system deviates too much
from the normal behaviour (i.e., beyond κi distance at the input), this instance

64 3 Notions of Software Doping

is not obliged any longer to meet (within κo distance) the output, even if later
inputs get closer again. This enables robustly clean systems to stop if an input
outside the standard domain may result harmful for the system. Also, notice
that, by considering the conditions through all k-th prefixes the definition en-
compasses the safety nature of robust cleanness.
The conceptual idea of lower and upper bounds for non-standard behaviour

(cf. page 44) can also be applied to reactive systems. The following definitions
define l-robust cleanness and u-robust cleanness for reactive systems.

Definition 3.45. A parametrised nondeterministic reactive system S+ is l-rob-
ustly clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ if for every pair of
parameters p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, input i′ ∈ Inω,
and index k ∈ N, it holds whenever dIn(i[..j], i

′[..j]) ≤ κi for all j ≤ k, that for
all o ∈ S+(p)(i), there exists o′ ∈ S+(p

′)(i′), such that dOut(o[..k], o
′[..k]) ≤ κo.

Definition 3.46. A parametrised nondeterministic reactive system S+ is u-rob-
ustly clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ if for every pair of
parameters p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, input i′ ∈ Inω,
and index k ∈ N, it holds whenever dIn(i[..j], i

′[..j]) ≤ κi for all j ≤ k, that for
all o′ ∈ S+(p

′)(i′), there exists o ∈ S+(p)(i), such that dOut(o[..k], o
′[..k]) ≤ κo.

As we did for sequential programs, we assemble a quantifier-based variant of
robust cleanness by taking the conjunction of l-robust cleanness and u-robust
cleanness. The following propositions show that this variant is almost equivalent
(in the same spirit as in Section 3.1) to the Hausdorff-based variant.

Proposition 3.47. Let S+ be a parametrised nondeterministic reactive system
and C = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ a contract for robust cleanness. If S+ is l-rob-
ustly clean w.r.t. C and S+ is u-robustly clean w.r.t. C, then S+ is robustly clean
w.r.t. C.

Proof. Let p, p′ ∈ Param with p ≈P p′, i ∈ StdIn, i′ ∈ Inω and k ∈ N. Assume
that for all j ≤ k, dIn(i[..j], i′[..j]) ≤ κi. To prove robust cleanness, we must show
that H(dOut)(S+(p)(i)[..k],S+(p

′)(i′)[..k]) ≤ κo. After unrolling the definition of
the Hausdorff distance, we need to show that the maximum of supo∈S+(p)(i)[..k]

info′∈S+(p′)(i′)[..k] dOut(o, o
′) and supo′∈S+(p′)(i′)[..k] info∈S+(p)(i)[..k] dOut(o, o

′) is less
or equal than κo. Simple logical operations transform the proof goal into the con-
junction of supo∈S+(p)(i) info′∈S+(p′)(i′) dOut(o[..k], o

′[..k]) ≤ κo and supo′∈S+(p′)(i′)

info∈S+(p)(i) dOut(o[..k], o
′[..k]) ≤ κo. With Lemma 3.12, it suffices to show that

∀o ∈ S+(p)(i). ∃o′ ∈ S+(p
′)(i′). dOut(o[..k], o

′[..k]) ≤ κo and ∀o′ ∈ S+(p
′)(i′). ∃o ∈

S+(p)(i). dOut(o[..k], o
′[..k]) ≤ κo. The first conjunct follows immediately from l-

robust cleanness of S+ for p, p′, i and i′, and similarly, the second conjunct follows
from u-robust cleanness.

3.2 Reactive Systems 65

Proposition 3.48. Let S+ be a parametrised nondeterministic reactive system
and C = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ a contract for robust cleanness. Then, for
every pair of parameters p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn,
input i′ ∈ Inω, and index k ∈ N, H(dOut)(S+(p)(i)[..k],S+(p

′)(i′)[..k]) < κo implies
that

1. for all o ∈ S+(p)(i), there exists o′ ∈ S+(p
′)(i′),

such that dOut(o[..k], o
′[..k]) < κo and

2. for all o′ ∈ S+(p
′)(i′), there exists o ∈ S+(p)(i),

such that dOut(o[..k], o
′[..k]) < κo.

Proof. Let p, p′ ∈ Param, i ∈ StdIn, i′ ∈ Inω and k ∈ N. We may assume that
H(dOut)(S+(p)(i)[..k],S+(p

′)(i′)[..k]) < κo. We must show that the inequalities
∀o ∈ S+(p)(i). ∃o′ ∈ S+(p

′)(i′). dOut(o[..k], o
′[..k]) < κo and ∀o′ ∈ S+(p

′)(i′). ∃o ∈
S+(p)(i). dOut(o[..k], o

′[..k]) < κo hold. Using Lemma 3.16, we may equivalently
show that supo∈S+(p)(i) info′∈S+(p′)(i′) dOut(o[..k], o

′[..k]) < κo and supo′∈S+(p′)(i′)

info∈S+(p)(i) dOut(o[..k], o
′[..k]) < κo. With simple logical operation, this can

be transformed into the equivalent proposition constraining the maximum of
supo∈S+(p)(i)[..k] info′∈S+(p′)(i′)[..k] dOut(o, o

′) and supo′∈S+(p′)(i′)[..k] info∈S+(p)(i)[..k]

dOut(o, o
′) to be smaller than κo. By the definition of the Hausdorff distance,

this is equivalent to H(dOut)(S+(p)(i)[..k],S+(p
′)(i′)[..k]) < κo, which we assumed

at the beginning of the proof.

For systems in which parameters do not occur we provide alternative robust
cleanness definitions for non-parametrised systems.

Definition 3.49. A non-parametrised nondeterministic reactive system S is
robustly clean w.r.t. contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if for every standard
input i ∈ StdIn, input i′ ∈ Inω and index k ∈ N, if dIn(i[..j], i′[..j]) ≤ κi for all
j ≤ k, then H(dOut)(S(i)[..k],S(i

′)[..k]) ≤ κo.

Example 3.50. A slightly more realistic version of the emission control system
than the one in Figure 3.4 is given in Figure 3.6. It is a closed loop where the
calculation of the DEF dosage also depends on the previous reading of NOx.
Moreover, the DEF dosage affects the amount of NOx emissions nondetermin-
istically. The program models a margin of error on the NOx emission, which
is represented by the factor λ in the nondeterministic assignment of variable
NOx in the penultimate line within the loop. This nondeterministic assignment
is an (admittedly unrealistic) abstraction of the chemical reaction between the
exhaust gases and the DEF dosage.
The doped version of the emission control system instrumenting the cheating

hack is shown in Figure 3.7. Both emission cleaning systems use constant λ = 0.1

66 3 Notions of Software Doping

procedure EmissionControl()
NOx := 0
loop

read(throttle)
def dose := SCRModel(throttle,NOx)

NOx :∈
[
(1− λ) throttle3

2·def dose , (1 + λ) throttle3

2·def dose

]
output(NOx)

end loop
end procedure

Figure 3.6: Emission control (reactive).

and a function SCRModel that models the amount of DEF that the SCR
injects into the exhaust stream. The cheating version of the emission cleaning
system switches to an “alternative” SCR system if the throttle inputs are not
in the throttle test values set. We use the same ThrottleTestValues = (0, 1] as in
Section 3.1. The SCR models are given by the functions

SCRModel(x, n) =

{
x2 if 2 · n ≤ x
(1 + λ) · x2 otherwise

and

altSCRModel(x, n) = x.

altSCRModel ignores the feedback of the NOx emission resulting in the same
altSCRModel as in Example 3.5. We also take In = (0, 2] (recall that these are
the values that variable throttle takes). The idea of the feedback in SCRModel
is that if the previous emission was higher than expected with the planned
current dosage, then the actual current dosage is an extra λ portion above the
planned dosage. For the contract w.r.t. which we analyse robust cleanness, let
StdIn = (0, 1]ω and define dIn(i, i

′) = |last(i)− last(i′)| and similarly dOut(o, o
′) =

|last(o)− last(o′)|, where last(t) is the last element of the finite trace t. We take
κi = 2 and κo = 1.1. (κo needs to be a little larger than in Example 3.26 due
to the nondeterministic assignment to NOx.) With this contract, the system in
Figure 3.6 satisfies robust cleanness and the system in Figure 3.7 violates it.

As it was the case for sequential programs, robust cleanness for non-param-
etrised systems is equally expressive as for parametrised systems. To show this,
Propositions 3.51 and 3.52 provide a contract for a parametrised system that
encodes a non-parametrised one, and vice versa.

3.2 Reactive Systems 67

procedure EmissionControl()
NOx := 0
loop

read(throttle)
if throttle ∈ ThrottleTestValues then

def dose := SCRModel(throttle,NOx)
else

def dose := altSCRModel(throttle,NOx)
end if

NOx :∈
[
(1− λ) throttle3

2·def dose , (1 + λ) throttle3

2·def dose

]
output(NOx)

end loop
end procedure

Figure 3.7: Doped emission control (reactive)

Proposition 3.51. Let S : Inω → 2(Outω) be a non-parametrised nondetermin-
istic reactive system and let S+ : {def } → Inω → 2(Outω) be the parametrised
nondeterministic reactive system that encodes S, i.e., S ↪→ S+. Further, let
C = ⟨StdIn, dIn, dOut, κi, κo⟩ and C+ = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ be contracts,
where def ≈P def and StdIn, dIn, dOut, κi, κo are identical in both contracts. Then,
S is robustly clean w.r.t. C if and only if S+ is robustly clean w.r.t. C+.

Proof. We prove the equivalence by separately proving the two underlying im-
plications. First, let S be robustly clean; we must show that S+ is robustly clean.
For this, let p, p′ ∈ {def } with p ≈P p′, i.e., p = p′ = def , let i ∈ StdIn, i′ ∈ Inω

and k ∈ N. We may assume that ∀j ≤ k. dIn(i[..j], i
′[..j]) ≤ κi and must show

that H(dOut)(S+(def)(i)[..k],S+(def)(i
′)[..k]) ≤ κo. From S ↪→ S+, we know that

this is equivalent to showing that H(dOut)(S(i)[..k],S(i
′)[..k]) ≤ κo. With the

above assumptions, this follows immediately from robust cleanness of S.
For the inverse implication, assume robust cleanness of S+, to show that S is

robustly clean. Let i ∈ StdIn, i′ ∈ Inω and k ∈ N. We may assume that ∀j ≤
k. dIn(i[..j], i

′[..j]) ≤ κi and need to show that H(dOut)(S(i)[..k],S(i
′)[..k]) ≤ κo.

This is equivalent to H(dOut)(S+(def)(i)[..k],S+(def)(i
′)[..k]) ≤ κo, since S ↪→ S+.

With the all the assumptions above, and that by definition def ≈P def , the
inequality follows from S+’s robust cleanness.

The inverse encoding (again) requires a more elaborate contract for the non-
parametrised system encoding the parametrised one. We adjust the input dis-

tance function ♯d
(κi,≈P)
In from Equation (3.1) to reactive systems (and leave the

68 3 Notions of Software Doping

definition of ♭κi unchanged). The main difference is that the conditions for cases
1 and 2 use p[0] (and p′[0]) instead of p (and p′). We remark that this change

keeps the reflexivity and symmetry of ♯d
(κi,≈P)
In intact. Thus, ♯d

(κi,≈P)
In is still a

valid distance function.

♯d
(κi,≈P)
In ((p, i), (p′, i′)) :=


dIn(i, i

′) if κi ̸=∞ and p[0] ≈P p′[0]

0 if κi =∞ and p[0] ≈P p′[0]

∞ otherwise,

(3.3)

The following proposition specifies for a parametrised system and a robust
cleanness contract, the cleanness contract for the non-parametrised system that
encodes the parametrised on.

Proposition 3.52. Let S+ : Param → Inω+ → 2(Outω) be a parametrised nonde-

terministic reactive system and let S : Inω̸+ → 2(Outω), with In̸+ = Param × In+,
be the non-parametrised system that encodes S+, i.e., S+ ↪→ S. Further, let
C+ = ⟨≈P,StdIn+, dIn, dOut, κi, κo⟩ and C = ⟨StdIn̸+, d′In, dOut, ♭κi, κo⟩ be contracts

with StdIn̸+ = Paramω ×ω StdIn+ and d′In = ♯d
(κi,≈P)
In . Then, S+ is robustly clean

w.r.t. C+ if and only if S is robustly clean w.r.t. C.

The proof of this proposition involves many steps that are shared by simi-
lar proofs, e.g., proofs that show that l-robust cleanness for parametrised and
non-parametrised systems are equally expressive. These shared proof steps are
captured in the proof of the following lemma.

Lemma 3.53. Let Param be a set of parameters, In+ a set of input symbols
and StdIn+ ⊆ Inω+ a set of standard inputs. Derived from these, let In̸+ :=
Param × In+ be another set of input symbols and StdIn̸+ := Paramω ×ω StdIn+
a set of standard inputs. Further, let ≈P be a parameter comparability re-
lation, dIn : In∗+ × In∗+ → R≥0 an input distance function and κi ∈ R≥0 an
input distance threshold. Finally, let V and W be two predicates for which
it holds for all p1, p2 ∈ Paramω, i1 ∈ StdIn+, i2 ∈ Inω+ and index k ∈ N that
V (p1[0], p2[0], i1, i2, k) ⇔ W (p1, p2, i1, i2, k). Then, the following statements are
equivalent:

1. For all p1, p2 ∈ Param with p1 ≈P p2, i1 ∈ StdIn+, i2 ∈ Inω+ , and index
k ∈ N, if dIn(i1[..j], i2[..j]) ≤ κi for all j ≤ k, then V (p1, p2, i1, i2, k).

2. For all î1 ∈ StdIn̸+, î2 ∈ Inω̸+ , and index k ∈ N, if for all j ≤ k it holds that

♯d
(κi,≈P)
In (̂i1[..j], î2[..j]) ≤ ♭κi, then there exist p1, p2 ∈ Paramω, i1 ∈ StdIn+,

and i2 ∈ Inω+ , such that î1 = (p1, i1), î2 = (p2, i2), and W (p1, p2, i1, i2, k).

3.2 Reactive Systems 69

Proof. We prove both directions of the equivalence separately. First, we show
that statement 1 implies statement 2. For this, let î1 ∈ StdIn̸+, î2 ∈ Inω̸+ and

k ∈ N. We may assume that ∀j ≤ k. ♯d
(κi,≈P)
In (̂i1[..j], î2[..j]) ≤ ♭κi. Then, we

first conclude from the definition of StdIn̸+ and In̸+, that there exist p1, p2 ∈
Paramω, i1 ∈ StdIn+ and i2 ∈ Inω+ , such that î1 = (p1, i1), î2 = (p2, i2). It
remains to show that W (p1, p2, i1, i2, k). With the equivalence of W and V
from the assumptions, we may equivalently show that V (p1[0], p2[0], i1, i2, k).
Applying statement 1, it suffices to show that i) p1[0] ≈P p2[0] and ii) ∀j ≤
k. dIn(i1[..j], i2[..j]) ≤ κi. We continue by case distinction on whether κi is ∞.
First, assume κi ̸= ∞. Then, by definition of ♭, ♭κi = κi. As ♭κi < ∞, we

know that ∀j ≤ k. ♯d(κi,≈P)
In (̂i1[..j], î2[..j]) <∞. Using the trace-pair-equality (cf.

Section 2.2) we get that ∀j ≤ k. ♯d
(κi,≈P)
In ((p1[..j], i1[..j]), (p2[..j], i2[..j])) < ∞.

We can infer that the input distance is given by the first case of the defini-

tion of ♯d
(κi,≈P)
In : it cannot be the second case, because κi ̸= ∞ and cannot

be the third case, because the input distance is smaller than ∞. Hence, we

get that ∀j ≤ k. ♯d
(κi,≈P)
In ((p1[..j], i1[..j]), (p2[..j], i2[..j])) = dIn(i1[..j], i2[..j]) and

p1[..j][0] ≈P p2[..j][0], i.e., p1[0] ≈P p2[0], as we were required to show. In the
other case in which κi = ∞, precondition ii) is immediately satisfied, because
every value in R≥0 is less or equal to ∞. To prove condition i), observe that

♭κi = 0. Hence, it is the case that ∀j ≤ k. ♯d
(κi,≈P)
In (̂i1[..j], î2[..j]) ≤ 0, i.e.,

∀j ≤ k. ♯d
(κi,≈P)
In ((p1[..j], i1[..j]), (p2[..j], i2[..j])) ≤ 0. Similar to before, we can

infer that in this case the input distance is determined by the second case of

♯d
(κi,≈P)
In . Hence, we also infer that ∀j ≤ k. p1[..j][0] ≈P p2[..j][0] and hence

p1[0] ≈P p2[0].

To show the inverse implication, that statement 2 implies statement 1, let
p1, p2 ∈ Param with p1 ≈P p2, i1 ∈ StdIn+, i2 ∈ Inω+ and k ∈ N. We may assume
that ∀j ≤ k. dIn(i1[..j], i2[..j]) ≤ κi and must show V (p1, p2, i1, i2, k). This is
equivalent to V (pω1 [0], p

ω
2 [0], i1, i2, k), because pω1 [0] = p1 and pω2 [0] = p2. With

the equivalence of W and V from the assumptions, we may equivalently show
that W (pω1 , p

ω
2 , i1, i2, k). Using statement 2, it suffices to show that i) (pω1 , i1) ∈

StdIn̸+, ii) (pω2 , i2) ∈ Inω̸+ , and iii) ∀j ≤ k. ♯d
(κi,≈P)
In ((pω1 , i1)[..j], (p

ω
2 , i2)[..j]) ≤

♭κi. The first premise follows from the definition of StdIn̸+, p
ω
1 ∈ Paramω and

i1 ∈ StdIn+. Similarly, the second premise follows from the definition of In̸+,
pω2 ∈ Paramω and i2 ∈ Inω+ . To prove the third premise, we must identify which

of the three cases of ♯d
(κi,≈P)
In is responsible for the input distance. For this,

first observe that since p1 ≈P p2 it also holds that pω1 [0] ≈P pω2 [0]. We continue
depending on whether κi is infinity. First, let κi ̸=∞. Then, ♭κi = κi and the first

case of ♯d
(κi,≈P)
In applies, i.e., ∀j ≤ k. ♯d(κi,≈P)

In ((pω1 [..j], i1[..j]), (p
ω
2 [..j], i2[..j])) ≤ κi

if and only if ∀j ≤ k. dIn(i1[..j], i2[..j]) ≤ κi, which holds by assumption. In the

70 3 Notions of Software Doping

other case that κi = ∞, we get that ♭κi = 0 and the second case of ♯d
(κi,≈P)
In

applies, i.e., by definition, ∀j ≤ k. ♯d
(κi,≈P)
In ((pω1 [..j], i1[..j]), (p

ω
2 [..j], i2[..j])) = 0.

We conclude the proof by acknowledging that 0 ≤ 0 is a tautology.

With the above lemma, only a single step of reasoning remains for the proof
of Proposition 3.52.

Proof of Proposition 3.52. With Lemma 3.53, it suffices to show for all p1, p2 ∈
Paramω, i1 ∈ StdIn+, i1 ∈ Inω+ and index k ∈ N that

H(dOut)(S+(p1[0])(i1)[..k],S+(p2[0])(i2)[..k]) ≤ κo if and only if

H(dOut)(S(p1, i1)[..k],S(p2, i2)[..k]) ≤ κo.

This follows directly from S+ ↪→ S.

Next, we provide for non-parametrised systems the quantifier-based definitions
for the lower and upper bound interpretation of robust cleanness.

Definition 3.54. A non-parametrised nondeterministic reactive system S is
l-robustly clean w.r.t. contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if for every standard
input i ∈ StdIn, input i′ ∈ Inω and k ∈ N, if dIn(i[..j], i′[..j]) ≤ κi for all j ≤ k,
then for all o ∈ S(i), there exists o′ ∈ S(i′), such that dOut(o[..k], o

′[..k]) ≤ κo.

Definition 3.55. A non-parametrised nondeterministic reactive system S is
u-robustly clean w.r.t. contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if for every standard
input i ∈ StdIn, input i′ ∈ Inω and k ∈ N, if dIn(i[..j], i′[..j]) ≤ κi for all j ≤ k,
then for all o′ ∈ S(i′), there exists o ∈ S(i), such that dOut(o[..k], o

′[..k]) ≤ κo.

We show that l-robust cleanness for parametrised and non-parametrised sys-
tems are equally expressive; the proofs follow the same structure as those for
robust cleanness.

Proposition 3.56. Let S : Inω → 2(Outω) be a non-parametrised nondetermin-
istic reactive system and let S+ : {def } → Inω → 2(Outω) be the parametrised
nondeterministic reactive system that encodes S, i.e., S ↪→ S+. Further, let
C = ⟨StdIn, dIn, dOut, κi, κo⟩ and C+ = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ be contracts,
where def ≈P def and StdIn, dIn, dOut, κi, κo are identical in both contracts. Then,
S is l-robustly clean w.r.t. C if and only if S+ is l-robustly clean w.r.t. C+.

Proof. We prove the equivalence by separately proving the two underlying im-
plications. First, let S be l-robustly clean; we must show that S+ is l-robustly
clean. For this, let p, p′ ∈ {def } with p ≈P p′, i.e., p = p′ = def , let i ∈ StdIn,
i′ ∈ Inω and k ∈ N. We may assume that ∀j ≤ k. dIn(i[..j], i

′[..j]) ≤ κi and

3.2 Reactive Systems 71

must show that ∀o ∈ S+(def)(i). ∃o′ ∈ S+(def)(i
′). dOut(o[..k], o

′[..k]) ≤ κo. From
S ↪→ S+, we know that this is equivalent to showing that ∀o ∈ S(i). ∃o′ ∈
S(i′). dOut(o[..k], o

′[..k]) ≤ κo. With the above assumptions, this follows from
l-robust cleanness of S.
For the inverse implication, assume l-robust cleanness of S+, to show that

S is l-robustly clean. Let i ∈ StdIn, i′ ∈ Inω and k ∈ N. We may assume
that ∀j ≤ k. dIn(i[..j], i

′[..j]) ≤ κi and need to show that ∀o ∈ S(i). ∃o′ ∈
S(i′). dOut(o[..k], o

′[..k]) ≤ κo. This is equivalent to ∀o ∈ S+(def)(i). ∃o′ ∈
S+(def)(i

′). dOut(o[..k], o
′[..k]) ≤ κo, since S ↪→ S+. With the all the assumptions

above, and that by definition def ≈P def , the inequality follows from S+’s l-
robust cleanness.

Proposition 3.57. Let S+ : Param → Inω+ → 2(Outω) be a parametrised nonde-

terministic reactive system and let S : Inω̸+ → 2(Outω), with In̸+ = Param × In+,
be the non-parametrised system that encodes S+, i.e., S+ ↪→ S. Further, let
C+ = ⟨≈P,StdIn+, dIn, dOut, κi, κo⟩ and C = ⟨StdIn̸+, d′In, dOut, ♭κi, κo⟩ be contracts

with StdIn̸+ = Paramω ×ω StdIn+ and d′In = ♯d
(κi,≈P)
In . Then, S+ is l-robustly clean

w.r.t. C+ if and only if S is l-robustly clean w.r.t. C.

Proof. With Lemma 3.53, it suffices to show that for all p1, p2 ∈ Paramω, i1 ∈
StdIn+, i1 ∈ Inω+ and index k ∈ N that

∀o1 ∈ S+(p1[0])(i1). ∃o2 ∈ S+(p2[0])(i2). dOut(o1[..k], o2[..k]) ≤ κo if and only if

∀o1 ∈ S(p1, i1). ∃o2 ∈ S(p2, i2). dOut(o1[..k], o2[..k]) ≤ κo.

This follows from S+ ↪→ S.

A similar proposition holds for u-robust cleanness; we omit the propositions
and proofs here.
Unsurprisingly, the quantifier-based and the Hausdorff-based variants of ro-

bust cleanness are almost equivalent also for non-parametrised reactive systems,
as the following two propositions show.

Proposition 3.58. Let S : Inω → 2(Outω) be a non-parametrised nondeter-
ministic reactive system and C = ⟨StdIn, dIn, dOut, κi, κo⟩ a contract for robust
cleanness. If S is l-robustly clean w.r.t. C and S is u-robustly clean w.r.t. C, then
S is robustly clean w.r.t. C.

Proof. To show robust cleanness for S, let i ∈ StdIn, i′ ∈ Inω and k ∈ N
and assume that for all j ≤ k, dIn(i[..j], i

′[..j]) ≤ κi. We must show that
H(dOut)(S(i)[..k],S(i

′)[..k]) ≤ κo. After unrolling the definition of the Haus-
dorff distance, we need to show that the maximum of supo∈S(i)[..k] info′∈S(i′)[..k]

dOut(o, o
′) and supo′∈S(i′)[..k] info∈S(i)[..k] dOut(o, o

′) is less or equal than κo. Simple

72 3 Notions of Software Doping

logical operations transform the proof obligation to the conjunction of supo∈S(i)

info′∈S(i′) dOut(o[..k], o
′[..k]) ≤ κo and supo′∈S(i′) info∈S(i) dOut(o[..k], o

′[..k]) ≤ κo.
With Lemma 3.12, it suffices to show that the conjunction of ∀o ∈ S(i). ∃o′ ∈
S(i′). dOut(o[..k], o

′[..k]) ≤ κo and ∀o′ ∈ S(i′). ∃o ∈ S(i). dOut(o[..k], o
′[..k]) ≤ κo

holds. The first conjunct follows immediately from l-robust cleanness of S for
i and i′, and similarly, the second conjunct follows from u-robust cleanness of
S.

Proposition 3.59. Let S : Inω → 2(Outω) be a non-parametrised nondeter-
ministic reactive system and C = ⟨StdIn, dIn, dOut, κi, κo⟩ a contract for robust
cleanness. For every standard input i ∈ StdIn, input i′ ∈ Inω and index k ∈ N, if
dIn(i[..j], i

′[..j]) ≤ κi for all j ≤ k, then H(dOut)(S(i)[..k],S(i
′)[..k]) < κo implies

that

1. for all o ∈ S(i), there exists o′ ∈ S(i′) such that dOut(o[..k], o
′[..k]) < κo and

2. for all o′ ∈ S(i′), there exists o ∈ S(i) such that dOut(o[..k], o
′[..k]) < κo.

Proof. Let i ∈ StdIn, i′ ∈ Inω and k ∈ N. Assume that dIn(i[..j], i
′[..j]) ≤

κi for all j ≤ k, and that H(dOut)(S(i)[..k],S(i
′)[..k]) < κo. We must show

that ∀o ∈ S(i). ∃o′ ∈ S(i′). dOut(o[..k], o
′[..k]) < κo and ∀o′ ∈ S(i′). ∃o ∈

S(i). dOut(o[..k], o
′[..k]) < κo. Using Lemma 3.16, we may equivalently show

that the conjunction of supo∈S(i) info′∈S(i′) dOut(o[..k], o
′[..k]) < κo and supo′∈S(i′)

info∈S(i) dOut(o[..k], o
′[..k]) < κo holds. With simple logical operations, this con-

junction can be transformed into the equivalent proposition constraining the
maximum of supo∈S(i)[..k] info′∈S(i′)[..k] dOut(o, o

′) and supo′∈S(i′)[..k] info∈S(i)[..k]

dOut(o, o
′) to be smaller than κo. This is exactly what the assumed Hausdorff

distance defines, hence, the proposition holds.

The flavours of definitions of robust cleanness presented in this section – be
it for parametrised or non-parametrised systems, Hausdorff-based or quantifier-
based – develop further the definitions from Section 3.1 for sequential programs
to definitions for reactive systems. While the structure of this section is very
similar to that in Section 3.1, the definitions have one particular noteworthy
distinguishing peculiarity: the (infinitely long) input and output sequences of
the system are not handled as opaque values, but the reasoning is based on
a reasoning about finite prefixes of these sequences. This gives the definitions
their safety character – once robust cleanness is violated at some index k, this
violation cannot be recovered at a later index. For inputs, this concept has to
be taken one step further. Once two input prefixes cross the κi threshold, the
cleanness constraint on the corresponding outputs is dropped, and, in fact, it is
dropped also for all continuations of these prefixes.

3.2 Reactive Systems 73

3.2.3 Func-cleanness

As we did for sequential programs, we will now further generalise robust clean-
ness to func-cleanness. Behind func-cleanness is a function f : R≥0 → R≥0 that,
given a distance between inputs, provides a threshold for the distance of the out-
puts belonging to these inputs. For reactive systems this remains unchanged.

Definition 3.60. A parametrised nondeterministic reactive system S+ is func-
clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, f⟩ if for all pairs of parameters
p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, input i′ ∈ Inω and k ∈ N,
H(dOut)(S+(p)(i)[..k],S+(p

′)(i′)[..k]) ≤ f(dIn(i[..k], i′[..k])).

Like for robust cleanness, the definition of func-cleanness also considers dis-
tances on prefixes to ensure that major differences in late inputs do not impact
differences of early outputs, capturing also the safety nature of the property.
To work towards a quantifier-based variant of func-cleanness, the following

definitions spell out the lower and upper bound interpretations related to func-
cleanness.

Definition 3.61. A parametrised nondeterministic reactive system S+ is l-func-
clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, f⟩ if for all pairs of parameters
p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, input i′ ∈ Inω and k ∈ N,
for all o ∈ S+(p)(i), there exists o′ ∈ S+(p

′)(i′), such that dOut(o[..k], o
′[..k]) ≤

f(dIn(i[..k], i
′[..k])).

Definition 3.62. A parametrised nondeterministic reactive system S+ is u-func-
clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, f⟩ if for all pairs of parameters
p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, input i′ ∈ Inω and k ∈ N,
for all o′ ∈ S+(p

′)(i′), there exists o ∈ S+(p)(i), such that dOut(o[..k], o
′[..k]) ≤

f(dIn(i[..k], i
′[..k])).

We define the quantifier-based variant of func-cleanness as the conjunction of
l-func-cleanness and u-func-cleanness and show in the following propositions its
almost-equivalence to the Hausdorff-based definition.

Proposition 3.63. Let S+ : Param → Inω → 2(Outω) be a parametrised nonde-
terministic reactive system and C = ⟨≈P,StdIn, dIn, dOut, f⟩ a contract for func-
cleanness. If S+ is l-func-clean w.r.t. C and S+ is u-func-clean w.r.t. C, then S+ is
func-clean w.r.t. C.

Proof. Let p, p′ ∈ Param with p ≈P p′, i ∈ StdIn, i′ ∈ Inω and k ∈ N. In
the following, let κ = f(dIn(i[..k], i

′[..k])). Then, it suffices to show that ∀o ∈
S+(p)(i). ∃o′ ∈ S+(p

′)(i′). dOut(o[..k], o
′[..k]) ≤ κ (l-func-cleanness) and ∀o′ ∈

S+(p
′)(i′). ∃o ∈ S+(p)(i). dOut(o[..k], o

′[..k]) ≤ κ (u-func-cleanness) implies that

74 3 Notions of Software Doping

H(dOut)(S+(p)(i)[..k],S+(p
′)(i′)[..k]) ≤ κ. We use Lemma 3.12 to get from l-func-

cleanness that supo∈S+(p)(i) info′∈S+(p′)(i′) dOut(o[..k], o
′[..k]) ≤ κ, and from u-func-

cleanness that supo′∈S+(p′)(i′) info∈S+(p)(i) dOut(o[..k], o
′[..k]) ≤ κ. It is easy to see

that it is equivalent to enforce the maximum of supo∈S+(p)(i)[..k] info′∈S+(p′)(i′)[..k]

dOut(o, o
′) and supo′∈S+(p′)(i′)[..k] info∈S+(p)(i)[..k] dOut(o, o

′) to be less or equal to
κ. Hence, H(dOut)(S+(p)(i)[..k],S+(p

′)(i′)[..k]) ≤ κ = f(dIn(i[..k], i
′[..k])).

Proposition 3.64. Let S+ : Param → Inω → 2(Outω) be a parametrised nonde-
terministic reactive system and C = ⟨≈P,StdIn, dIn, dOut, f⟩ a contract for func-
cleanness. Then, for all pairs of parameters p, p′ ∈ Param with p ≈P p′, standard
input i ∈ StdIn, input i′ ∈ Inω and k ∈ N, H(dOut)(S+(p)(i)[..k],S+(p

′)(i′)[..k]) <
f(dIn(i[..k], i

′[..k])) implies that

1. for all o ∈ S+(p)(i), there exists o
′ ∈ S+(p

′)(i′), such that dOut(o[..k], o
′[..k]) <

f(dIn(i[..k], i
′[..k])) and

2. for all o′ ∈ S+(p
′)(i′), there exists o ∈ S+(p)(i), such that dOut(o[..k], o

′[..k]) <
f(dIn(i[..k], i

′[..k])).

Proof. Let p, p′ ∈ Param with p ≈P p′, i ∈ StdIn, i′ ∈ Inω and k ∈ N. In the
following, let κ = f(dIn(i[..k], i

′[..k])). Then, it suffices to show that the inequal-
ity H(dOut)(S+(p)(i)[..k],S+(p

′)(i′)[..k]) < κ implies that ∀o ∈ S+(p)(i). ∃o′ ∈
S+(p

′)(i′). dOut(o[..k], o
′[..k]) < κ (l-func-cleanness) and ∀o′ ∈ S+(p

′)(i′). ∃o ∈
S+(p)(i). dOut(o[..k], o

′[..k]) < κ (u-func-cleanness). By definition of the Haus-
dorff distance, the maximum of supo∈S+(p)(i)[..k] info′∈S+(p′)(i′)[..k] dOut(o, o

′) and
supo′∈S+(p′)(i′)[..k] info∈S+(p)(i)[..k] dOut(o, o

′) is smaller than κ. This is equivalent
to the conjunction that supo∈S+(p)(i) info′∈S+(p′)(i′) dOut(o[..k], o

′[..k]) < κ and
supo′∈S+(p′)(i′) info∈S+(p)(i) dOut(o[..k], o

′[..k]) < κ. From the former, we get l-
func-cleanness with Lemma 3.16, and from the latter and Lemma 3.16 we obtain
u-func-cleanness.

For reactive systems that can better be modelled without parameters, we
define func-cleanness for non-parametrised systems below.

Definition 3.65. A non-parametrised nondeterministic reactive system S is
func-clean w.r.t. contract C = ⟨StdIn, dIn, dOut, f⟩ if for every standard input i ∈
StdIn, input i′ ∈ Inω and k ∈ N, H(dOut)(S(i)[..k],S(i

′)[..k]) ≤ f(dIn(i[..k], i′[..k])).

Example 3.66. The emissions control systems from Figures 3.6 and 3.7 are non-
parametrised systems. Hence, func-cleanness from Definition 3.65 can be applied
to these examples. For a contract, we can take the same StdIn, dIn and dOut

as proposed in Example 3.50 for the robust cleanness contract. For f in the
contract, one suitable choice is f(x) = x/2 + 0.3. Notice that using the same

3.2 Reactive Systems 75

function f as in Example 3.39 for sequential programs would not be a good choice
here, because of the nondeterminism in the output in the reactive variant of the
emission control system. As expected, the system in Figure 3.6 is func-clean
w.r.t. this contract; the system in Figure 3.7 violates func-cleanness.

In the following two propositions, we will prove that func-cleanness for pa-
rametrised systems and non-parametrised ones are equally expressive. We start
with the easier direction showing how non-parametrised func-cleanness maps to
parametrised func-cleanness.

Proposition 3.67. Let S : Inω → 2(Outω) be a non-parametrised nondetermin-
istic reactive system and let S+ : {def } → Inω → 2(Outω) be the parametrised
nondeterministic reactive system that encodes S, i.e., S ↪→ S+. Further, let
C = ⟨StdIn, dIn, dOut, f⟩ and C+ = ⟨≈P,StdIn, dIn, dOut, f⟩ be contracts, where
def ≈P def and StdIn, dIn, dOut, f are identical in both contracts. Then, S is
func-clean w.r.t. C if and only if S+ is func-clean w.r.t. C+.

Proof. We first assume that S is func-clean w.r.t. C to show that S+ is func-clean
w.r.t. C+. For this, let p = p′ = def , i ∈ StdIn, i′ ∈ Inω and k ∈ N. With these
assumptions, we get from func-cleanness of S that H(dOut)(S(i)[..k],S(i

′)[..k]) ≤
f(dIn(i[..k], i

′[..k])). By definition of S+ as given by S ↪→ S+, this is equivalent
to the inequalityH(dOut)(S+(def)(i)[..k],S+(def)(i

′)[..k]) ≤ f(dIn(i[..k], i′[..k])), so
S+ is robustly clean w.r.t. C+.
Conversely, we assume that S+ is func-clean w.r.t. C+ to show that S is func-

clean w.r.t. C. Let i ∈ StdIn, i′ ∈ Inω and k ∈ N. By definition, def ≈P def .
We get from func-cleanness of S+ that H(dOut)(S+(def)(i)[..k],S+(def)(i

′)[..k]) ≤
f(dIn(i[..k], i

′[..k])). By definition of S+ as given by S ↪→ S+, this is equivalent to
H(dOut)(S(i)[..k],S(i

′)[..k]) ≤ f(dIn(i[..k], i′[..k])), which concludes the proof.

As for sequential programs, the inverse encoding step requires a more so-
phisticated contract for the cleanness of the non-parametrised system. Below

is the input distance function ♯d
(f,≈P)
In , which is very similar to its counterpart

for sequential programs in Equation (3.2). The only difference between the two
definitions is that for reactive systems we must access the first symbol from the
parameter traces p and p′. We remark that this change keeps the reflexivity and

symmetry of ♯d
(f,≈P)
In intact. Thus, ♯d

(f,≈P)
In is still a valid distance function.

♯d
(f,≈P)
In

(
(p, i), (p′, i′)

)
:=


0 if p[0] ≈P p′[0] and i = i′

f(dIn(i, i
′)) + 1 if p[0] ≈P p′[0] and i ̸= i′

∞ otherwise,

(3.4)

76 3 Notions of Software Doping

Leaving the definition of ♭f unchanged, we can now construct func-cleanness
contracts for non-parametrised systems that encode func-cleanness contracts for
parametrised systems.

Proposition 3.68. Let S+ : Param → Inω+ → 2(Outω) be a parametrised sys-

tem and S : Inω̸+ → 2(Outω), with In̸+ = Param × In+, the non-parametrised
system such that S+ ↪→ S. Further, let C+ = ⟨≈P,StdIn+, dIn, dOut, f⟩ be a
contract for parametrised systems and C = ⟨StdIn̸+, d′In, dOut, ♭f⟩ a contract for

non-parametrised systems, where StdIn̸+ = Paramω ×ω StdIn+ and d′In = ♯d
(f,≈P)
In .

Then, S+ is func-clean w.r.t. C+ if and only if S is func-clean w.r.t. C.

Proof. We first show that if S+ is func-clean w.r.t. C+, then S is func-clean w.r.t.
C. Hence, let (p1, i1) ∈ StdIn̸+, (p2, i2) ∈ Inω̸+ and k ∈ N. From the definitions of
StdIn̸+ and In̸+ we get that p1, p2 ∈ Paramω, i1 ∈ StdIn+ and i2 ∈ Inω+ . We must
show that H(dOut)(S(p1, i1)[..k],S(p2, i2)[..k]) ≤ ♭f(d′In((p1, i1)[..k], (p2, i2)[..k])).
Applying the definition of S as given by S+ ↪→ S, it suffices to show that
H(dOut)(S+(p1[0])(i1)[..k], S+(p2[0])(i2)[..k]) ≤ ♭f(d′In((p1, i1)[..k], (p2, i2)[..k])).

We distinguish three cases, analogue to the cases of the definition of ♯d
(f,≈P)
In :

• Case p1[..k][0] ≈P p2[..k][0] and i1[..k] = i2[..k]: Then, dIn(i1[..k], i2[..k]) = 0

and, by definition of ♯d
(f,≈P)
In , d′In((p1, i1)[..k], (p2, i2)[..k]) = 0. Since by def-

inition ♭f(0) = f(0), ♭f(d′In((p1, i1)[..k], (p2, i2)[..k])) = f(dIn(i1[..k], i2[..k]))
and it suffices to show that H(dOut)(S+(p1[0])(i1)[..k],S+(p2[0])(i2)[..k]) ≤
f(dIn(i1[..k], i2[..k])). This follows from func-cleanness of S+.

• Case p1[..k][0] ≈P p2[..k][0] and i1[..k] ̸= i2[..k]: Then, by definition of

♯d
(f,≈P)
In , d′In((p1, i1)[..k], (p2, i2)[..k]) = f(dIn(i1[..k], i2[..k])) + 1, which is

always larger than 0. Since d′In is always larger than 0 in this case,
we get from the definition of ♭f that ♭f(d′In((p1, i1)[..k], (p2, i2)[..k])) =
f(dIn(i1[..k], i2[..k]))+1−1, which is equal to f(dIn(i1[..k], i2[..k])). Hence, it
suffices to show that H(dOut)(S+(p1[0])(i1)[..k],S+(p2[0])(i2)[..k]) is smaller
or equal to f(dIn(i1[..k], i2[..k])), which follows from func-cleanness of S+.

• Case p1[..k][0] ̸≈P p2[..k][0]: The, we get from the definition of ♯d
(f,≈P)
In

that d′In((p1, i1)[..k], (p2, i2)[..k]) = ∞ and, by definition of ♭f and since
∞ > 0, ♭f(d′In((p1, i1)[..k], (p2, i2)[..k])) = ∞. Hence, it suffices to show
that H(dOut)(S+(p1[0])(i1)[..k],S+(p2[0])(i2)[..k]) ≤ ∞, which is always the
case.

It remains to show that if S is func-clean w.r.t. C, then S+ is func-clean
w.r.t. C+. Let p1, p2 ∈ Param with p1 ≈P p2, i1 ∈ StdIn+, i2 ∈ Inω+ and
k ∈ N. Then, we must show that H(dOut)(S+(p1)(i1)[..k],S+(p2)(i2)[..k]) ≤

3.2 Reactive Systems 77

f(dIn(i1[..k], i2[..k])). Notice that pω1 [0] = p1 and pω2 [0] = p2, so, with the
definition of S as given by the encoding S+ ↪→ S, it suffices to show that
H(dOut)(S(p

ω
1 , i1)[..k],S(p

ω
2 , i2)[..k]) ≤ f(dIn(i1[..k], i2[..k])). From p1 ≈P p2 it

follows that pω1 [0] ≈P pω2 [0]. We distinguish on whether i1[..k] = i2[..k]. If
i1[..k] and i2[..k] are equal, then, by definition of dIn, d(dIn(i1[..k], i2[..k])) = 0,

and, by definition of ♯d
(f,≈P)
In , d′In((p

ω
1 , i1)[..k], (p

ω
2 , i2)[..k]) = 0. Moreover, us-

ing the definition of ♭f , we get that f(dIn(i1[..k], i2[..k])) = f(0) = ♭f(0) =
♭f(d′In((p

ω
1 , i1)[..k], (p

ω
2 , i2)[..k])). In the other case that i1[..k] ̸= i2[..k], we simi-

larly use the definitions of ♯d
(f,≈P)
In and ♭f to conclude that f(dIn(i1[..k], i2[..k])) =

f(dIn(i1[..k], i2[..k])) + 1− 1 = d′In((p
ω
1 , i1)[..k], (p

ω
2 , i2)[..k])− 1, which is equal to

♭f(d′In((p
ω
1 , i1)[..k], (p

ω
2 , i2)[..k])). Hence, in both cases, it suffices to show that

H(dOut)(S(p
ω
1 , i1)[..k],S(p

ω
2 , i2)[..k]) ≤ ♭f(d′In((pω1 , i1)[..k], (pω2 , i2)[..k])), which fol-

lows from func-cleanness of S for standard input (pω1 , i1) and input (pω2 , i2).

Below we provide func-cleanness-related quantifier-based definitions for lower
and upper bound constraints on non-standard behaviour.

Definition 3.69. A non-parametrised nondeterministic reactive system S is l-
func-clean w.r.t. contract C = ⟨StdIn, dIn, dOut, f⟩ if for every standard input
i ∈ StdIn, input i′ ∈ Inω and index k ∈ N, it holds that for all o ∈ S(i), there
exists o′ ∈ S(i′), such that dOut(o[..k], o

′[..k]) ≤ f(dIn(i[..k], i′[..k])).

Definition 3.70. A non-parametrised nondeterministic reactive system S is u-
func-clean w.r.t. contract C = ⟨StdIn, dIn, dOut, f⟩ if for every standard input
i ∈ StdIn, input i′ ∈ Inω and index k ∈ N, it holds that for all o′ ∈ S(i′), there
exists o ∈ S(i), such that dOut(o[..k], o

′[..k]) ≤ f(dIn(i[..k], i′[..k])).

We remark that l-func-cleanness and u-func-cleanness for non-parametrised
systems is as expressive as their counterparts for parametrised systems. This
can be shown formally in a way similar to Propositions 3.67 and 3.68. We omit
the propositions and proofs.
As expected, composing the above two definitions into a conjunction yields a

quantifier-based formulation of func-cleanness that is almost equivalent to the
Hausdorff-based one, as shown in the following two propositions.

Proposition 3.71. Let S : Inω → 2(Outω) be a non-parametrised nondetermin-
istic reactive system and C = ⟨StdIn, dIn, dOut, f⟩ a contract for func-cleanness.
If S is l-func-clean w.r.t. C and S is u-func-clean w.r.t. C, then S is func-clean
w.r.t. C.

Proof. Let i ∈ StdIn, i′ ∈ Inω and k ∈ N. Also, let κ = f(dIn(i[..k], i
′[..k])).

Then, it suffices to show that ∀o ∈ S(i). ∃o′ ∈ S(i′). dOut(o[..k], o
′[..k]) ≤ κ

78 3 Notions of Software Doping

(l-func-cleanness) and ∀o′ ∈ S(i′). ∃o ∈ S(i). dOut(o[..k], o
′[..k]) ≤ κ (u-func-

cleanness) implies thatH(dOut)(S(i)[..k],S(i
′)[..k]) ≤ κ. With Lemma 3.12 we get

from l-func-cleanness that supo∈S(i) info′∈S(i′) dOut(o[..k], o
′[..k]) ≤ κ, and from u-

func-cleanness that supo′∈S(i′) info∈S(i) dOut(o[..k], o
′[..k]) ≤ κ. It is easy to see

that this is equivalent to the maximum of supo∈S(i)[..k] info′∈S(i′)[..k] dOut(o, o
′)

and supo′∈S(i′)[..k] info∈S(i)[..k] dOut(o, o
′) being less or equal to κ. Hence, we can

conclude that H(dOut)(S(i)[..k],S(i
′)[..k]) ≤ κ = f(dIn(i[..k], i

′[..k])).

Proposition 3.72. Let S : Inω → 2(Outω) be a non-parametrised nondetermin-
istic reactive system and C = ⟨StdIn, dIn, dOut, f⟩ a contract for func-cleanness.
Then, for every standard input i ∈ StdIn, input i′ ∈ Inω and index k ∈ N,
H(dOut)(S(i)[..k],S(i

′)[..k]) < f(dIn(i[..k], i
′[..k])) implies that

1. for all o ∈ S(i), there exists o′ ∈ S(i′) such that dOut(o[..k], o
′[..k]) <

f(dIn(i[..k], i
′[..k])) and

2. for all o′ ∈ S(i′), there exists o ∈ S(i) such that dOut(o[..k], o
′[..k]) <

f(dIn(i[..k], i
′[..k])).

Proof. Let i ∈ StdIn, i′ ∈ Inω and k ∈ N. Also, let κ = f(dIn(i[..k], i
′[..k])).

Then, it suffices to show that H(dOut)(S(i)[..k],S(i
′)[..k]) < κ implies that ∀o ∈

S(i). ∃o′ ∈ S(i′). dOut(o[..k], o
′[..k]) < κ (l-func-cleanness) and ∀o′ ∈ S(i′). ∃o ∈

S(i). dOut(o[..k], o
′[..k]) < κ (u-func-cleanness). From the definition of the Haus-

dorff distance, we get that the maximum of supo∈S(i)[..k] info′∈S(i′)[..k] dOut(o, o
′)

and supo′∈S(i′)[..k] info∈S(i)[..k] dOut(o, o
′) is smaller than κ. This is equivalent

to the conjunction of the inequalities supo∈S(i) info′∈S(i′) dOut(o[..k], o
′[..k]) ≤ κ

and supo′∈S(i′) info∈S(i) dOut(o[..k], o
′[..k]) ≤ κ. From the former, we get l-func-

cleanness with Lemma 3.16, and from the latter and Lemma 3.16 we obtain
u-func-cleanness.

In Section 3.1.3 about func-cleanness for sequential programs we remarked
that func-cleanness is strictly more general than robust cleanness. We substan-
tiated this claim by providing a function f (parametrised by κi and κo) that,
with unchanged ≈P, StdIn, dIn and dOut, forms a contract that implements robust
cleanness in the framework of func-cleanness. With respect to reactive systems,
it is still the case that func-cleanness is strictly more general than robust clean-
ness. To model a contract for func-cleanness that proves this, it is, however,
necessary to replace the input distance function by a function that, instead of

3.2 Reactive Systems 79

producing actual distance values, encodes “messages” for the function f :

dnewIn (i[..k], i′[..k]) =


0 if i[..k] = i′[..k]

1 if i ∈ StdIn or i′ ∈ StdIn, i[..k] ̸= i′[..k]

and dIn(i[..j], i
′[..j]) ≤ κi for all 0 ≤ j ≤ k

2 otherwise

Roughly speaking, if two input prefixes passed to this new input distance func-
tion are supposed to be considered for an output check, then the result is zero or
one. Otherwise, the result is two. Hence, all the function f must do is to return
κo if x ≤ 1 and to return ∞ (to effectively disable the output check) otherwise.

3.2.4 Past-Forgetful Distance Functions & Trace Integrity

The distance functions used for robust cleanness and func-cleanness above de-
fine distances between finite prefixes of traces. In some situations it is prefer-
able to use distance functions that do only consider the distance between the
last symbols of two traces instead of considering the full traces. We call this
property past-forgetful. A distance function d : X∗ × X∗ → R≥0 is past-
forgetful if and only if for every non-empty traces x1, x2 ∈ X∗ it holds that
d(x1, x2) = d(last(x1), last(x2)). When such distance functions are used with
the cleanness definitions proposed in Section 3.2 this opens an opportunity to
effectively circumvent the restrictions imposed by these definitions.

Example 3.73. Consider a reactive system S : Rω → 2(R
ω) and two inputs i1 and

i2 from Rω. Assume that S(i1) produces two outputs o1 = 1100 1 100 1 100 · · ·
and o′1 = 100 1 100 1 100 1 · · · . and that S(i2) produces three outputs o2 =
11 100 1 1 100 1 1 100 · · · , o′2 = 1100 1 1 100 1 · · · and o′′2 = 100 1 1 100 1 1 · · · .
That is, the outputs for i1 are all possible traces for which the output symbols
1 and 100 alternate in every step, and the outputs to i2 are all possibilities to
repeatedly have twice the symbol 1 followed by one symbol 100. Consider a
contract with StdIn = {i1}, past-forgetful output distance function dOut(t1, t2) =
|last(t1)− last(t2)| and κo = 0. Further assume that dIn and κi are defined such
that dIn(i1, i2) ≤ κi. Then, for inputs i1 and i2 S is l-robustly clean: We have to
show for some index k ∈ N and non-standard output o ∈ S(i2) that there exists
some o′ ∈ S(i1) such that |o[k]− o′[k]| = 0. Assume o = o2 (the argument is
analogue for o′2 and o′′2). Depending on the concrete k, o2[k] is either 1 or 100.
Observe that o1[k] = 1∨o′1[k] = 1 and o1[k] = 100∨o′1[k] = 100, i.e., exactly one
of the two outputs in S(i1) exhibits 1 and exactly one exhibits 100 at position
k. Thus, |o2[k]− o′[k]| = 0 holds for either o′ = o1 or o′ = o′1. More precisely,
l-robust cleanness can be satisfied for S, i1, i2 and o2 by choosing alternately o1

80 3 Notions of Software Doping

and o′1 for o′. However, there does not exist a single output o′ in S(i1) such that
|o[k]− o′[k]| = 0 holds at all positions k.

The above example demonstrates that l-robust cleanness does not have a char-
acteristic that we call trace integrity. Intuitively, from a clean program we expect
that for every o ∈ S(i) there exists an output o′ ∈ S(i′) such that at every position
k, the distance between o and o′ is at most κo. Example 3.73 shows an extreme
case in which trace integrity is violated. This problem occurs if the distance
functions are past-forgetful. For history-aware distance functions it can some-
times be circumvented. Definition 3.74 proposes a variant of l-robust cleanness
(Definition 3.45) that satisfies trace integrity (i.e., which is trace integral).

Definition 3.74. A parametrised nondeterministic reactive system S+ is trace
integral l-robustly clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ if for every
pair of parameters p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, input
i′ ∈ Inω, and output o ∈ S+(p)(i), there exists o′ ∈ S+(p

′)(i′), such that for every
index k ∈ N, if dIn(i[..j], i′[..j]) ≤ κi for all j ≤ k, then dOut(o[..k], o

′[..k]) ≤ κo.

The change to Definition 3.45 is subtle: effectively, we switched the order of
the ∀o ∈ P+(p)(i).∃o′ ∈ P+(p

′)(i′) and the ∀k ∈ N quantifications.
The problem depicted in Example 3.73 for l-robust cleanness can easily be

adapted to show that u-robust cleanness suffers from the same problem. Hence,
Definition 3.75 shows a trace integral variant of u-robust cleanness (as defined
in Definition 3.46).

Definition 3.75. A parametrised nondeterministic reactive system S+ is trace
integral u-robustly clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ if for ev-
ery pair of parameters p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, input
i′ ∈ Inω, and output o′ ∈ S+(p

′)(i′), there exists o ∈ S+(p)(i), such that for every
index k ∈ N, if dIn(i[..j], i′[..j]) ≤ κi for all j ≤ k, then dOut(o[..k], o

′[..k]) ≤ κo.

Despite the potential lack of trace integrity, we favour robust cleanness as
defined in Definitions 3.44 and 3.49 over their trace integral variants, because
the latter can not be expressed using the Hausdorff distance. Consequently, we
consider the conjunction of Definitions 3.74 and 3.75 as the default (and only)
definition for trace integral robust cleanness.

Definition 3.76. A parametrised nondeterministic reactive system S+ is trace
integral robustly clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ if and only
if S+ is trace integral l-robustly clean w.r.t. C and S+ is trace integral u-robustly
clean w.r.t. C.

For completeness, we also provide the the non-parametrised variants of the
trace integral definitions.

3.2 Reactive Systems 81

Definition 3.77. A non-parametrised nondeterministic reactive system S is
trace integral l-robustly clean w.r.t. contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if for
every standard input i ∈ StdIn, input i′ ∈ Inω, and output o ∈ S(i), there exists
o′ ∈ S(i′), such that for every index k ∈ N, if dIn(i[..j], i′[..j]) ≤ κi for all j ≤ k,
then dOut(o[..k], o

′[..k]) ≤ κo.

Definition 3.78. A non-parametrised nondeterministic reactive system S is
trace integral u-robustly clean w.r.t. contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if for
every standard input i ∈ StdIn, input i′ ∈ Inω, and output o′ ∈ S(i′), there exists
o ∈ S(i), such that for every index k ∈ N, if dIn(i[..j], i′[..j]) ≤ κi for all j ≤ k,
then dOut(o[..k], o

′[..k]) ≤ κo.

Definition 3.79. A non-parametrised nondeterministic reactive system S is
trace integral robustly clean w.r.t. contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if and
only if S is trace integral l-robustly clean w.r.t. C and S is trace integral u-rob-
ustly clean w.r.t. C.

Func-cleanness suffers from a loss of trace integrity when past-forgetful dis-
tance functions are being used, too. Hence, below we define trace integral vari-
ants of Definitions 3.60 to 3.62, 3.65, 3.69 and 3.70.

Definition 3.80. A parametrised nondeterministic reactive system S+ is trace
integral l-func-clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, f⟩ if for all pairs of
parameters p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, input i′ ∈ Inω

and output o ∈ S+(p)(i), there exists o′ ∈ S+(p
′)(i′), such that for every k ∈ N,

dOut(o[..k], o
′[..k]) ≤ f(dIn(i[..k], i′[..k])).

Definition 3.81. A parametrised nondeterministic reactive system S+ is trace
integral u-func-clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, f⟩ if for all pairs of
parameters p, p′ ∈ Param with p ≈P p′, standard input i ∈ StdIn, input i′ ∈ Inω

and output o′ ∈ S+(p
′)(i′), there exists o ∈ S+(p)(i), such that for every k ∈ N,

dOut(o[..k], o
′[..k]) ≤ f(dIn(i[..k], i′[..k])).

Definition 3.82. A parametrised nondeterministic reactive system S+ is trace
integral func-clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, f⟩ if and only if S+ is
trace integral l-func-clean w.r.t. C and S+ is trace integral u-func-clean w.r.t. C.

Finally, trace integral func-cleanness for non-parametrised programs is defined
below.

Definition 3.83. A non-parametrised nondeterministic reactive system S is
trace integral l-func-clean w.r.t. contract C = ⟨StdIn, dIn, dOut, f⟩ if for every
standard input i ∈ StdIn, input i′ ∈ Inω and output o ∈ S(i), there exists o′ ∈
S(i′), such that for every k ∈ N, dOut(o[..k], o

′[..k]) ≤ f(dIn(i[..k], i′[..k])).

82 3 Notions of Software Doping

Definition 3.84. A non-parametrised nondeterministic reactive system S is
trace integral u-func-clean w.r.t. contract C = ⟨StdIn, dIn, dOut, f⟩ if for every
standard input i ∈ StdIn, input i′ ∈ Inω and output o′ ∈ S(i′), there exists
o ∈ S(i), such that for every k ∈ N, dOut(o[..k], o

′[..k]) ≤ f(dIn(i[..k], i′[..k])).

Definition 3.85. A non-parametrised nondeterministic reactive system S is
trace integral func-clean w.r.t. contract C = ⟨StdIn, dIn, dOut, f⟩ if and only if S is
trace integral l-func-clean w.r.t. C and S is trace integral u-func-clean w.r.t. C.

3.3 Mixed Input-Output Systems

The cleanness analysis of reactive systems in Section 3.2 assumes that the system
is modelled as a function that transforms an infinite sequence of inputs i into an
infinite sequence of outputs o, where at every index k ∈ N+, o[k] is the output
for input i[k] (possibly considering also inputs and outputs at indices smaller
than k for the computation of o[k]). In other words, the events “receiving an
input” and “producing an output” are in fact considered as a single event where
receiving an input and producing the output is an atomic step. While this view
is a simplification of a real system (e.g., during the execution of a program
such as the one in Figure 3.6 there is a delay between reading the input and
finishing the computation of the output), it is very suitable for many different
types of verification and analysis techniques. In particular, popular modelling
formalisms, like finite state transducers, encourage to think in terms of this
abstraction. Most verification or analysis results based on this abstraction are
valid, because the properties that are being checked are time insensitive. That is,
for the analysis it is irrelevant whether an output was produced a few milliseconds
earlier or later – what is important is that the output produced is a reaction to
the input received.
In this section we propose a generalisation of this strict requirement that

every input must have a corresponding output. We propose mixed input-output
systems (or short mixed-IO systems) that are flexible enough to describe that at
any time the system may receive an input or produce an output without putting
any constraints on the order in which inputs and outputs occur. For an input
domain In and an output domain Out, a mixed-IO system L is defined by the
set of all (infinitely long) input-output sequences that can be generated by the
system. Hence, formally, L ⊆ (In ∪ Out)ω. Mixed-IO systems can, for example,
be modelled by any kind of labelled automata – where the traces of (accepting)
runs of the automaton determine the set of input-output sequences of the system
being modelled. We call the input-output sequences in L also traces. Concretely,
in Section 5.1 we will use labelled transition systems to model the observable
behaviour of cyber-physical systems.

3.3 Mixed Input-Output Systems 83

The programs and systems in the previous sections are modelled as (total)
functions. Hence, these models implicitly required that the systems respond to
any possible input. This property is called input enabled. A mixed-IO system
L is input enabled, if for every σ ∈ L, every k ∈ N, and every input symbol
i ∈ In, there exists a trace σ′ ∈ L such that σ[..k] = σ′[..k] and σ′[k + 1] = i,
i.e., at any time, L must accept any possible input symbol from its environment.
Notice that in contrast to the function-based definitions of reactive systems in
Section 3.2, it is possible to define mixed-IO systems that are not input enabled.

Similar to input-enabledness is output-enabledness. L is output enabled, if for
every σ ∈ L and every k ∈ N, there exists a trace σ′ ∈ L such that σ[..k] = σ′[..k]
and σ′[k + 1] ∈ Out, i.e., at any time, L must be able to produce at least one
output symbol. In the remainder of this section, we will only consider mixed-IO
systems that are input and output enabled.

The mixed-IO system modelling approach is meant to represent black-box
systems based on observations of the system behaviour.

Example 3.86. To illustrate mixed-IO systems, we consider the behaviour of a
printer. In particular, we consider its behaviour not only for a single printing
job, but for all jobs it receives after it turns on. Thus, we consider it as a
reactive system. Our observations about the printer are as follows. The inputs
to the printer are documents that shall be printed. We can send arbitrary many
documents to the printer. After receiving a document, it is printed and appears
in the output tray. The “output” of the printer is the printed document we
remove from the output tray. The printed documents appear in the output tray
in the same order in which the documents were sent to the printer. As long as a
document appears in the output tray after it was sent to the printer, there are
no restrictions on the order of sending documents to the printer and removing
print-outs from the tray. Thus, if we consider five documents i1 to i5 and their
print-outs o1 to o5, a valid trace of the above printer is i1 o1 i2 o2 i3 o3 i4 o4 i5 o5,
i.e., after a document is printed, we remove it from the output tray before the
next document is sent to the printer. Alternatively, a valid trace of the printer
is i1 i2 i3 i4 i5 o1 o2 o3 o4 o5, i.e., first, all documents are sent to the printer and
then all print-outs are removed from the output tray. Obviously, this printer is
input-enabled, because new documents can be sent to the printer at any time. To
make it output enabled, we introduce the additional output symbol δ (inspired
by quiescence as used for model-based conformance tests, cf. Section 2.3) to
denote that the output tray is empty and we cannot remove a print-out. So, if
we attempt to remove two print-outs from the tray after only one input was sent
to the printer, we would observe the trace i1 o1 δ i2 o2 δ i3 o3 δ i4 o4 δ i5 o5 δ.

The example highlights a few traces that a mixed-IO model of the printer can
generate, but it does not provide a full model of the printer, i.e., it does not

84 3 Notions of Software Doping

provide the set of all traces the printer can generate. Motivated by the above
mentioned observer perspective we take on mixed-IO systems, we will operate
under the assumption that a system can be modelled as a (input- and output-
enabled) mixed-IO system without necessarily knowing the (full) model. We will
explain in Section 5.3 how mixed-IO system models are used to facilitate testing-
based cleanness analyses. On the theoretical level, we will use the assumption
that the model is fully known; this is necessary to reason about the correctness
of the testing approach. In practice, it suffices to know only those parts of the
system that are relevant to conduct a particular test case.

Example 3.87. We take up the example of manipulated diesel emission cleaning
systems from the previous sections. From an external observer perspective it
is common to consider the speed of a car as the input symbols to the system.
Hence, an input to the system is a speed trajectory. Such a speed trajectory
is called test cycle. As a standard input, we consider the NEDC test cycle (cf.
Section 2.7). While driving the car, there are complex physical and chemical
processes happening that influence the amount of NOx in the exhaust stream
of the car. Thus, when comparing an NEDC drive and a second test drive,
checking the emissions with a high frequency (e.g., every second) could easily
lead to false accusations of doping. Convincing test results are achieved if the
(average of the) emissions are compared only at the very end of the test. In this
case, the standard behaviour would be a trace of 1180 inputs (representing the
NEDC) followed by a single output (representing the average amount of NOx).
This is one trace of the car we know and that is also necessary to know to
evaluate a cleanness test. When conducting a cleanness test, we obtain a second
trace consisting of 1180 inputs (different to the NEDC) and one output value
at the end. To evaluate the outcome of the test, only these two traces must be
compared; the behaviour of the car beyond these two traces is not relevant and
does not need to be known.3

In general, every reactive system modelled as a function S : Inω → 2(Outω) can
also be modelled as a mixed-IO system. Given a reactive system S, an input
i ∈ Inω and the output o ∈ S(i), the mixed-IO trace that best describes this
behaviour of S is the strictly alternating trace i[0] o[0] i[1] o[1] · · · . This trace
reflects S’s property that the kth output symbol in o corresponds to the kth
input symbol in i. We say that a trace σ ∈ (In ∪ Out)ω is strictly alternating
(for) input i and output o if and only if σ[2k − 1] = i[k] and σ[2k] = o[k] for all
k ∈ N+. A mixed-IO system L ⊆ (In∪Out)ω is consistent with a reactive system
S if for all i ∈ Inω, o ∈ Outω and every σ ∈ (In∪Out)ω that is strictly alternating
input i and output o, it is the case that o ∈ S(i) if and only if σ ∈ L.

3This is the case, if the car is a deterministic system. For nondeterministic systems, we refer
to Chapter 6 for more details.

3.3 Mixed Input-Output Systems 85

To capture the notion of cleanness in the context of mixed-IO systems, we
provide two projections of a trace that transform it into a trace that only contains
input information or, respectively, output information. To do this, we extend
the set of labels by adding the input –i that indicates that in the respective step
some output was produced (but masking the precise output), and the output
–o that indicates that in this step some (masked) input was given. Projection
on inputs ↓i : (In ∪ Out)ω → (In ∪ {–i})ω and projection on outputs ↓o : (In ∪
Out)ω → (Out ∪ {–o})ω are defined for all traces σ ∈ (In ∪ Out)ω and k ∈ N+

as follows: σ↓i[k] := if σ[k] ∈ In then σ[k] else –i and similarly σ↓o[k] :=
if σ[k] ∈ Out then σ[k] else –o. They are lifted to sets of traces in the usual
elementwise way.
We call the set In∪{–i} extended input set and Out∪{–o} extended output set.

We consider strict alternation also for traces over extended input, respectively,
output sets. A trace σ ∈ (In∪{–i})ω is strictly alternating for input i if and only if
σ[2k−1] = i[k] and σ[2k] = –i for all k ∈ N+. Similarly, a trace σ ∈ (Out∪{–o})ω
is strictly alternating for output o if and only if σ[2k − 1] = –o and σ[2k] = o[k]
for all k ∈ N+.
For the cleanness contracts, the distance functions dIn and dOut apply on the

extended input, respectively, output set, i.e. they are distance functions (In ∪
{–i})∗ × (In ∪ {–i})∗ → R≥0 and, respectively, (Out ∪ {–o})∗ × (Out ∪ {–o})∗ →
R≥0. The set of standard inputs is a subset of the set of infinite traces over
the extended input set, i.e., StdIn ⊆ (In ∪ {–i})ω. For the definition of robust
cleanness, it is necessary to get for a mixed-IO system L ⊆ (In∪Out)ω and a set of
standard inputs StdIn ⊆ (In ∪ {–i})ω the set L(StdIn) := {σ ∈ L | σ↓i ∈ StdIn} of
all traces in L with the same input as any trace in StdIn. In other words, L(StdIn)
replaces all occurrences of –i in a trace σ ∈ StdIn with a real (unmasked) output
such that the resulting trace after the replacements is a trace in L.

3.3.1 Robust cleanness

The notions of l-robust cleanness, u-robust cleanness and robust cleanness for
(non-parametrised) reactive systems from Section 3.2.2 can be adapted for mixed-
IO systems. We first give a definition for l-robust cleanness.

Definition 3.88. A mixed-IO system L ⊆ (In ∪ Out)ω is l-robustly clean w.r.t.
contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if and only if for all σ ∈ L(StdIn), σ′ ∈ L and
k ∈ N, if dIn(σ[..j]↓i, σ′[..j]↓i) ≤ κi for all j ≤ k, then there exists σ′′ ∈ L, such
that σ′↓i = σ′′↓i and dOut(σ[..k]↓o, σ′′[..k]↓o) ≤ κo.

The main difference to Definition 3.54 is that the quantifications of inputs and
outputs is replaced by quantifications of traces. In the definition above, the uni-
versal quantification of σ implicitly universally quantifies a standard input i and

86 3 Notions of Software Doping

a corresponding output o, trace σ′ implicitly quantifies a non-standard input i′,
and the existential quantification of σ′′ implicitly quantifies an output o′ corre-
sponding to input i′ (because σ′↓i = σ′′↓i). To compute distances between inputs
and outputs, the respective projections of the traces are given to the distance
functions dIn and dOut. Effectively, dIn compares i and i′ and dOut compares o
and o′ – analogue to Definition 3.54.
The following proposition shows that this definition of l-robust cleanness is at

least as expressive as l-robust cleanness for reactive systems.

Proposition 3.89. Let S : Inω → 2(Outω) be a reactive system, C = ⟨StdIn, dIn,
dOut, κi, κo⟩ a contract for robust cleanness, and L ⊆ (In ∪ Out)ω a mixed-IO
system that is consistent with S. Further, let C′ = ⟨StdIn′, d′In, d′Out, 0, 0⟩ be a
robust cleanness contract with

StdIn′ = {σ ∈ (In ∪ {–i}) | ∃i ∈ StdIn. σ is strictly alternating for i},

d′In(σ1, σ2) =


0 if σ1 is strictly alternating for input i1 and

σ2 is strictly alternating for input i2 and

dIn(i1, i2) ≤ κi
1 otherwise, and

d′Out(σ1, σ2) =


0 if σ1 is strictly alternating for output o1 and

σ2 is strictly alternating for output o2

dOut(o1, o2) ≤ κo
1 otherwise.

Then, S is l-robustly clean w.r.t. C if and only if L is l-robustly clean w.r.t. C′.
Proof. We use the following facts about strictly alternating traces (each easy to
prove; hence we omit the proofs):

(i) For every (finite or infinite) trace σ ∈ (In ∪ Out)∗ ∪ (In ∪ Out)ω, if σ↓i is
strictly alternating for some input i, then σ is strictly alternating for i and
some output o.

(ii) For every mixed-IO system L ⊆ (In∪Out)ω and finite trace σ ∈ (In∪Out)∗,
if σ is strictly alternating for some i and o, then there exists some infinite
suffix σ′ ∈ (In ∪ Out)ω, such that σ · σ′ is strictly alternating for some i′

and o′, and σ · σ′ ∈ L. (Follows from input- and output-enabledness of
mixed-IO systems.)

(iii) For all infinite traces σ1, σ2 ∈ (In ∪ Out)ω, inputs i1, i2 ∈ Inω, outputs
o1, o2 ∈ Outω, and indices k, k1, k2, k3, k4 ∈ N, if σ1[..k] is strictly alternat-
ing for i1[..k1] and o1[..k2], and σ2[..k] is strictly alternating for i2[..k3] and
o2[..k4], then k1 = k3 and k2 = k4.

3.3 Mixed Input-Output Systems 87

(iv) For any two infinite traces σ1, σ2 ∈ (In ∪ Out)ω and inputs i1, i2 ∈ Inω, if
σ1↓i is strictly alternating for i1 and σ2↓i is strictly alternating for i2, then
i1 = i2 if and only if σ1↓i = σ2↓i.

(v) For every infinite input projection σ ∈ (In∪{–i})ω, input i ∈ Inω and k ∈ N,
if σ is strictly alternating for i, then σ[..k] is strictly alternating for i[..

⌈
k
2

⌉
].

To prove the equivalence of the proposition, we show the two underlying
implications separately. We first show that l-robust cleanness of S implies
l-robust cleanness of L. Let σ1 ∈ L(StdIn′), σ2 ∈ L, k ∈ N, and assume
that d′In(σ1[..j]↓i, σ2[..j]↓i) ≤ 0 for all j ≤ k. By definition of L(StdIn), we
know that σ1 ∈ L and that σ1↓i ∈ StdIn′ constitutes a standard input. From
d′In(σ1[..k]↓i, σ2[..k]↓i) = 0 we can infer that σ1[..k]↓i is strictly alternating for
some input i′1, that σ2[..k]↓i is strictly alternating for some input i′2, and that
dIn(i

′
1[..j], i

′
2[..j]) ≤ κi for all j ≤ |i′2| (*). Using Fact (i), we get an output o′2

such that σ2[..k] is strictly alternating for i′2 and o′2; using Fact (ii), we get a
trace σ′

2 ∈ L, such that σ′
2[..k] = σ2[..k] and σ

′
2 is strictly alternating for some

i2 and o2. (Note that σ2 is not necessarily strictly alternating beyond index
k.) Since σ1↓i ∈ StdIn′, we know that σ1↓i is strictly alternating for some input
i1 ∈ StdIn, and thus, according to Fact (i), σ1 is strictly alternating for i1 and
some output o1. Since L is consistent with S, and σ1 and σ′

2 are strictly alter-
nating and traces in L, we can infer that o1 ∈ S(i1) and that o2 ∈ S(i2). Let
ki = |i′2| and ko = |o′2|. It is easy to verify that i1[..ki] = i′1 and i2[..ki] = i′2.
Notice that strictly alternating traces have at least as many input symbols as
output symbols, hence, ko ≤ ki. Thus, (*) and the definition of d′In imply that
dIn(i1[..j], i2[..j]) ≤ κi for all j ≤ ko. From l-robust cleanness of S, we get for i1, i2,
ko and the above inequality, that for o1 ∈ S(i1), there exists some o3 ∈ S(i2),
such that dOut(o1[..ko], o3[..ko]) ≤ κo. Let σ3 be a trace such that it is strictly
alternating for i2 and o3. Since o3 ∈ S(i2) and L is consistent with S, σ3 ∈ L.
Using Fact (iii), we can infer that σ3[..k] is strictly alternating for i2[..ki] and
o3[..ko]. Hence, σ3[..k]↓o is strictly alternating for o3[..ko]. By the definition of
d′Out, d

′
Out(σ1[..k]↓o, σ3[..k]↓o) = 0. We argue using Fact (iv) that σ2↓i = σ3↓i.

This proves that L is l-robustly clean w.r.t. C′.
To prove that l-robust cleanness of L implies l-robust cleanness of S, let i ∈

StdIn, i′ ∈ Inω, k ∈ N, o ∈ S(i), and assume that dIn(i[..j], i
′[..j]) ≤ κi for all j ≤ k

(**). Let σ1 ∈ (In ∪ Out)ω be the trace that is strictly alternating for i and
o. Since o ∈ S(i) and L consistent with S, σ1 ∈ L. Moreover, σ1↓i ∈ StdIn′,
because σ1↓i is strictly alternating for i and i ∈ StdIn. Let σ2 ∈ L be a second
trace such that σ2 is strictly alternating for i′ and some ô. Notice that such
a trace exists, because L is input- and output-enabled. Next, we want to use
l-robust cleanness of L with σ1, σ2 and 2k. Thus, we have to show that for every
j ≤ 2k, d′In(σ1[..j]↓i, σ2[..j]↓i) ≤ 0; we do this by showing that all conditions of

88 3 Notions of Software Doping

the first case of the definition of d′In are satisfied. Using Fact (v), we get that
σ1[..j]↓i is strictly alternating for i[..

⌈
j
2

⌉
] and that σ2[..j]↓i is strictly alternating

for i′[..
⌈
j
2

⌉
]. Hence, to satisfy the first case of the definition of d′In, it must be

that dIn(i[..
⌈
j
2

⌉
], i′[..

⌈
j
2

⌉
]) ≤ κi. Since j ≤ 2k, and thus

⌈
j
2

⌉
≤ k, this follows

from (**). Now, we get from l-robust cleanness of L a trace σ3 ∈ L, such
that σ2↓i = σ3↓i and d′Out(σ1[..2k]↓o, σ2[..2k]↓o) ≤ 0. From σ2↓i = σ3↓i follows
with Facts (iv) and (i) that σ3 is strictly alternating for i′ and some output
o′. Since σ3 ∈ L and since L is consistent with S, o′ ∈ S(i′). To prove l-
robust cleanness of S it remains to show that dOut(o[..k], o

′[..k]) ≤ κo. It is easy
to verify that, since σ1 is strictly alternating for i and o, σ1[..2k]↓o is strictly
alternating for o[..k]. Similarly, σ3[..2k]↓o is strictly alternating for o′[..k]. Hence,
it follows from d′Out(σ1[..2k]↓o, σ2[..2k]↓o) = 0 and the definition of d′Out that
indeed dOut(o[..k], o

′[..k]) ≤ κo.

Notably, L in Proposition 3.89 is required to be consistent with S, but be-
yond that, the traces in L are not specified. This demonstrates the strength
of mixed-IO systems to operate with only partial knowledge about the system.
In Proposition 3.89 we only need those traces of L that are strictly alternating,
because these are the only traces that are relevant for robust cleanness w.r.t. C′.
The definition of u-robust cleanness is analogue to the definition of l-robust

cleanness:

Definition 3.90. A mixed-IO system L ⊆ (In ∪Out)ω is u-robustly clean w.r.t.
contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if and only if for all σ ∈ L(StdIn), σ′ ∈ L and
k ∈ N, if dIn(σ[..j]↓i, σ′[..j]↓i) ≤ κi for all j ≤ k, then there exists σ′′ ∈ L, such
that σ↓i = σ′′↓i and dOut(σ

′[..k]↓o, σ′′[..k]↓o) ≤ κo.

A proposition for u-robust cleanness analogue to Proposition 3.89 can be
stated and proven very similar. We omit this proposition.
In Section 3.2, we defined robust cleanness using the Hausdorff distance and

showed that a quantifier-based definition of robust cleanness (using the conjunc-
tion of l-robust cleanness and u-robust cleanness) is almost equivalent to it. The
relation between robust cleanness, l-robust cleanness and u-robust cleanness for
mixed-IO systems will become more important later (in Chapter 5). To have
a “full” equivalence between robust cleanness and the conjunction of l-robust
cleanness and u-robust cleanness instead of only an almost equivalence, we use
the quantifier-based notion of robust cleanness as the default one for mixed-IO
systems.

Definition 3.91. A mixed-IO system L ⊆ (In ∪ Out)ω is robustly clean w.r.t.
contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if and only if for all σ ∈ L(StdIn), σ′ ∈ L and
k ∈ N, if dIn(σ[..j]↓i, σ′[..j]↓i) ≤ κi for all j ≤ k, then

3.3 Mixed Input-Output Systems 89

1. there exists σ′′∈ L, such that σ′↓i = σ′′↓i and dOut(σ[..k]↓o, σ′′[..k]↓o) ≤ κo,

2. there exists σ′′∈ L, such that σ↓i = σ′′↓i and dOut(σ
′[..k]↓o, σ′′[..k]↓o) ≤ κo.

3.3.2 Func-cleanness

The adaptations of the family of func-cleanness definitions from Section 3.2.3
for mixed-IO systems are analogue to those of robust cleanness.

Definition 3.92. A mixed-IO system L ⊆ (In ∪ Out)ω is l-func-clean w.r.t.
contract C = ⟨StdIn, dIn, dOut, f⟩ if and only if for all σ ∈ L(StdIn), σ′ ∈ L and
k ∈ N, there exists σ′′ ∈ L, such that σ′↓i = σ′′↓i and dOut(σ[..k]↓o, σ′′[..k]↓o) ≤
f(dIn(σ[..k]↓i, σ′[..k]↓i)).

Definition 3.93. A mixed-IO system L ⊆ (In ∪ Out)ω is u-func-clean w.r.t.
contract C = ⟨StdIn, dIn, dOut, f⟩ if and only if for all σ ∈ L(StdIn), σ′ ∈ L and
k ∈ N, there exists σ′′ ∈ L, such that σ↓i = σ′′↓i and dOut(σ

′[..k]↓o, σ′′[..k]↓o) ≤
f(dIn(σ[..k]↓i, σ′[..k]↓i)).

Definition 3.94. A mixed-IO system L ⊆ (In ∪ Out)ω is func-clean w.r.t. con-
tract C = ⟨StdIn, dIn, dOut, f⟩ if and only if for all σ ∈ L(StdIn), σ′ ∈ L and
k ∈ N,

1. there exists σ′′ ∈ L, such that σ′↓i = σ′′↓i and dOut(σ[..k]↓o, σ′′[..k]↓o) ≤
f(dIn(σ[..k]↓i, σ′[..k]↓i)), and

2. there exists σ′′ ∈ L, such that σ↓i = σ′′↓i and dOut(σ
′[..k]↓o, σ′′[..k]↓o) ≤

f(dIn(σ[..k]↓i, σ′[..k]↓i)).

3.3.3 Trace Integrity

As discussed in Section 3.2.4, it is sometimes recommended to use trace integral
variants of robust or func-cleanness, in particular for contracts that entail past-
forgetful distance functions. Below, we enumerate the trace integral cleanness
variants for mixed-IO systems.

Definition 3.95. A mixed-IO system L ⊆ (In∪Out)ω is trace integral l-robustly
clean w.r.t. contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if and only if for all σ ∈ L(StdIn)
and σ′ ∈ L, there exists σ′′ ∈ L, such that σ′↓i = σ′′↓i and for every k ∈ N, if
dIn(σ[..j]↓i, σ′[..j]↓i) ≤ κi for all j ≤ k, then dOut(σ[..k]↓o, σ′′[..k]↓o) ≤ κo.

Definition 3.96. A mixed-IO system L ⊆ (In∪Out)ω is trace integral u-robustly
clean w.r.t. contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if and only if for all σ ∈ L(StdIn)
and σ′ ∈ L there exists σ′′ ∈ L, such that σ↓i = σ′′↓i and for every k ∈ N, if
dIn(σ[..j]↓i, σ′[..j]↓i) ≤ κi for all j ≤ k, then dOut(σ

′[..k]↓o, σ′′[..k]↓o) ≤ κo.

90 3 Notions of Software Doping

Definition 3.97. A mixed-IO system L ⊆ (In ∪ Out)ω is trace integral robustly
clean w.r.t. contract C = ⟨StdIn, dIn, dOut, κi, κo⟩ if and only if L is trace integral
l-robust cleanness w.r.t. C and L is trace integral u-robustly clean w.r.t. C.

The trace integral variants of func-cleanness for mixed-IO systems are given
below.

Definition 3.98. A mixed-IO system L ⊆ (In ∪ Out)ω is trace integral l-func-
clean w.r.t. contract C = ⟨StdIn, dIn, dOut, f⟩ if and only if for all σ ∈ L(StdIn)
and σ′ ∈ L, there exists σ′′ ∈ L with σ′↓i = σ′′↓i, such that for every k ∈ N, it
holds that dOut(σ[..k]↓o, σ′′[..k]↓o) ≤ f(dIn(σ[..k]↓i, σ′[..k]↓i)).

Definition 3.99. A mixed-IO system L ⊆ (In ∪ Out)ω is trace integral u-func-
clean w.r.t. contract C = ⟨StdIn, dIn, dOut, f⟩ if and only if for all σ ∈ L(StdIn)
and σ′ ∈ L, there exists σ′′ ∈ L with σ↓i = σ′′↓i, such that for every index k ∈ N,
it holds that dOut(σ

′[..k]↓o, σ′′[..k]↓o) ≤ f(dIn(σ[..k]↓i, σ′[..k]↓i)).

Definition 3.100. A mixed-IO system L ⊆ (In ∪ Out)ω is trace integral func-
clean w.r.t. contract C = ⟨StdIn, dIn, dOut, f⟩ if and only if L is trace integral
l-func-clean w.r.t. C and L is trace integral u-func-clean w.r.t. C.

3.4 Hybrid Systems

Sequential programs, reactive systems and mixed-IO systems presented in Sec-
tions 3.1 to 3.3 describe discrete systems; the exact time at which an input or
output occurs is not explicitly modelled. Still, these models encode implicit
timing information about the relative times when inputs or outputs occur. For
reactive systems it is a requirement that after receiving the kth input symbol
and before receiving the k+1th input symbol the system produces the kth out-
put. This was relaxed for mixed-IO system models, which provide the freedom
to specify the order in which inputs are received and outputs are produced.

For some systems it is indispensable to explicitly model the time when some
interaction with the system takes place. For example, systems that are typically
called hybrid systems have dynamic components, where the time at which an
input is received or an output is computed plays an important role for the
output value. To explicitly consider time in execution traces of a system we will
use generalised timed traces (cf. Section 2.2). The GTTs provide an elegant
way to model hybrid systems from a black-box perspective. In this thesis, a

hybrid system is a function H : Inϑ → 2(Outϑ) such that for all µ ∈ Inϑ and all
µ′ ∈ H(µ) it holds that dom(µ′) = dom(µ). H gets a GTT with value domain In
and non-deterministically produces a GTT with value domain Out and with the

3.4 Hybrid Systems 91

same time domain as the input GTT. If H is deterministic, we may also write
H : Inϑ → Outϑ.
Recall that the time domain of GTTs may be discrete or continuous. Hence,

hybrid systems are a generalisation of reactive systems. An infinite sequence of
inputs i ∈ Inω can be represented by a GTT µi : N → In with µi(k) := i[k + 1]
for all k ∈ N. That is, the time domain of the GTT is the set of natural
numbers and every natural number represents a position in trace i. A reactive
(non-parametrised) system S can be encoded by a hybrid system H that maps
every input GTT constructed from i ∈ Inω to the set of output GTTs that are
constructed from S(i). Formally, such a encoding hybrid system must satisfy
H(µi) = {µ : N→ Out | ∃o ∈ S(i). ∀k ∈ N. µ(k) = o[k]} if µi is constructed from
i ∈ Inω.
The cleanness definitions for non-parametrised reactive systems can be ad-

justed for hybrid systems. We show for robust cleanness the major changes for
such an adaptation. The cleanness contract for robust cleanness of hybrid sys-
tems consists of a set of standard inputs StdIn ⊆ Inϑ. As for reactive systems, this
set is a subset of input traces. In light of potentially continuous time domains
and possible retimings of traces (which we will explore later), we consider dis-
tance functions that are past-forgetful, i.e., distances function dIn : In× In→ R≥0

and dOut : Out × Out → R≥0 that compute distances only between single input
symbols, respectively output symbols. The threshold values κi and κo are values
from the extended reals. For such cleanness contracts, we propose the following
quantifier-based definition.

Definition 3.101. A hybrid system H : Inϑ → 2(Outϑ) is robustly clean w.r.t.
contract C = ⟨StdIn, dIn, dOut, κi, κo⟩, if for every standard input i ∈ StdIn, i′ ∈ Inϑ

and every time t ∈ dom(i) ∪ dom(i′), if TraceConfdIn,κi(i[..t
′], i′[..t′]) for all t′ ≤ t,

then the following two statements hold:

1. for every o ∈ H(i), there exists o′ ∈ H(i′), s.t. TraceConfdOut,κo(o[..t], o
′[..t]),

2. for every o′ ∈ H(i′), there exists o ∈ H(i), s.t. TraceConfdOut,κo(o[..t], o
′[..t]).

The definition compares every standard input i ∈ StdIn with every, potentially
non-standard, input i′ ∈ Inϑ. As for reactive systems, robust cleanness checks all
prefixes of the traces by universally quantifying t to satisfy the safety character-
istic as discussed in Section 3.2. For generalised timed traces with a potentially
continuous time domain, robust cleanness quantifies over all points of time that
occur in the time domain of i or of i′ (and hence o and o′). Instead of applying
dIn and κi or dOut and κo directly to the trace prefixes, robust cleanness uses the
trace conformance predicate TraceConf (cf. Section 2.4). The trace conformance
enforces that the time domains of two traces are identical and that at every

92 3 Notions of Software Doping

time the distance of the input (or output) symbols does not exceed the input
(or output) threshold κi (or κo). Hence, although robust cleanness does not
require that dom(i) = dom(i′), the trace conformance condition on the inputs
ensures that traces where dom(i) ̸= dom(i′) are immediately deemed clean. If
dom(i) = dom(i′) and if at all times in the inputs’ time domain the distance
between the input symbols is less or equal to κi, then the outputs for these in-
puts must be trace conformant, too. Since the definition shall be applicable to
nondeterministic systems, the output trace conformance check is resolved by a
quantification that is analogue to that of l-robust cleanness and u-robust clean-
ness for reactive systems. Notice that using a Hausdorff-based comparison is not
possible, because the output distance constraint is hidden inside the TraceConf
predicate.

Although hybrid systems can encode reactive systems, robust cleanness of hy-
brid systems can, in general, not encode robust cleanness of reactive systems,
because the former requires past-forgetful distance functions and the latter does
not. For reactive systems cleanness contracts with past-forgetful distance func-
tions, robust cleanness of hybrid systems is equivalent to the quantifier-based
definition of robust cleanness for reactive systems. Hence, in this case, robust
cleanness of hybrid systems is almost equivalent to robust cleanness of reactive
systems.

The definition of hybrid systems above is based on the traces that the system
can generate rather than a model that describes the internals of the system.
Thus, the system is considered to be a black-box and its analysis can rely only
on the observed traces. Observing a system comes with the disadvantage that the
time information of a trace is typically imprecise. Reasons for this imprecision
are numerous. For example, the start of a test and the start of a recording may
be off sync if the tester and the recorder are independent systems. Also, some
systems require a human to pass the inputs to the system, but the human passes
it with a certain delay or ahead of the scheduled time, et cetera. We make this
problem more concrete in the following example.

Example 3.102. We take up the example of manipulated diesel emission cleaning
systems from the previous sections using speed trajectories as inputs to the
system. Figure 3.8.(a) shows two speed trajectories. The black solid line depicts
an input trajectory ist that we assume to be a standard input. The red dashed
line represents a trajectory idev that is defined for the purpose of doing a robust
cleanness test: the distance between the individual speed values of ist and idev is
always at most κi large. During the actual test execution a human driver tries to
follow the trajectory idev , but they can only manage to drive it with a small delay.
In subfigure (b) the red dashed line shows a recording of this drive; it is slightly

3.4 Hybrid Systems 93

ist
idev

ist
iddev

o(ist)

o(iddev)

o'(ist)

o'(iddev)

(a) (b) (c) (d) t

em(mg)v(km/h)

t

v(km/h)

t t

em(mg)

t0 t0

Figure 3.8: Specified (a) and actual (b) speed trajectories and emission footprints
obtained from different (fictitious) vehicles (c) and (d).

shifted to the right. We denote this shifted trajectory as iddev . Subfigures (c)
and (d) show how the outputs for ist and iddev could look like (for two distinct
fictitious cars). The output symbols represent the absolute amount of emissions
that a car emits. The (identical) black solid lines show the emissions for ist and
the red dashed lines show the emissions for iddev . The problem that this example
shall make aware of is the following. Intuitively, the difference between ist and
iddev is small. However, the input comparison inside the definition of robust
cleanness dismisses the pair of inputs, because the value difference is often above
the κi threshold. For example, |ist(t0)− iddev (t0)| > κi. The outputs for ist and
iddev deviate vastly from each other, so intuitively, we would say that the system
producing these outputs is doped. Assuming that our intuitions are correct,
this is an example for a false negative verdict of doping analysis, because robust
cleanness would label this case as clean behaviour although it is doped.

The example demonstrates that not accounting for timing disturbances when
relating input trajectories can result in false negatives in doping detection. Du-
ally, using the traditional comparison for output traces can result in false posi-
tives by requiring overly strict matching of outputs.
The above example motivates the need to account for timing deviations in

trajectories. Intuitively, for input trajectories this relaxation results in consid-
ering more traces as conforming, and thus enforcing more comparisons when
checking if a system is clean. For output trajectories this means relaxing the
conformance requirement by considering two output sequences as conforming
even if their values are not perfectly aligned in time.
A relaxation that solves the problem explained in Example 3.102 is a replace-

ment of trace conformance in Definition 3.101 by hybrid conformance.

Example 3.103. In Example 3.102 the input trajectories ist and idev are trace
conformant for ϵ = κi and dIn(v1, v2) = |v1 − v2|. For ist and iddev this is not
the case, because of the time shift by time τi to the right. However, ist and iddev

94 3 Notions of Software Doping

are hybrid conformant for dIn, κi and τi, because hybrid conformance allows to
shift iddev back to the left such that it is identical to idev . Hence, when replacing
TraceConfdIn,κi by HybridConfdIn,κi,τi , the instance of software doping manifesting
in Figure 3.8.(c) is correctly detected.

Still, hybrid conformance is not in every situation the best conformance notion.
For example, hybrid conformance does not preserve the order in which events
occur, which can turn it into a too lax requirement, as the following examples
demonstrates.

Example 3.104. Based on Example 3.103, assume a cleanness definition that is
like Definition 3.101, but where HybridConfdIn,κi,τi replaces TraceConfdIn,κi for in-
puts, and similarly, where hybrid conformance HybridConfdOut,κo,τo replaces trace
conformance TraceConfdOut,κo for outputs. Observe that now the outputs ob-
tained from the second fictitious car in Figure 3.8.(d) are hybrid conformant
and that this behaviour is classified as clean. However, the output for iddev is
clearly suspicious, as the outputs for ist and iddev are reversed. This motivates
considering conformance notions that require retimings to be order-preserving.
Indeed, using Skorokhod conformance we can detect that the system is doped.
That is, when replacing TraceConfdIn,κi with SkorConfdIn,κi,τi and TraceConfdOut,κo

with SkorConfdOut,κo,τo , the doping in Figure 3.8.(d) is detected.

The above examples show that in order to be useful in a diverse set of applica-
tions, a software cleanness theory should allow for using a variety of conformance
notions.

3.4.1 Conformance-Based Cleanness

To support more than hybrid conformance or Skorokhod conformance in clean-
ness definitions, we provide a generic framework to express conformance notions.
A conformance notion may allow variations in time and variations in values in a
controlled way. To control value variations we keep the established combination
of a distance function and a distance threshold up to which two values may devi-
ate from each other. For time variations we introduce the concept of retimings.
In its general form a retiming is a pair of functions between two time domains.
Intuitively, given two GTTs, a retiming will define a mapping from time points
in each of the traces to time points in the other trace. Note that in general the
mappings are not required to be injective; this way we can cater for notions of
conformance allowing for the so-called local disorder phenomenon (in particular
hybrid conformance – see Proposition 3.108).

Definition 3.105. Let T1, T2 ⊆ R≥0 be two time domains. A retiming is a pair
(r1, r2), where r1 : T1 → T2 and r2 : T2 → T1. We denote the set of all retimings
between T1 and T2 with R(T1, T2).

3.4 Hybrid Systems 95

Retiming is explicitly present in the definition of Skorokhod conformance.
There, each Skorokhod retiming is required to be a strictly increasing continuous
bijection. We can express a Skorokhod retiming r as an instance of our definition
as the pair (r, r−1). The concept of retimings is also general enough to define
hybrid conformance. When working with retimings, it may be convenient to
work with whole classes of retimings (e.g., the class of all Skorokhod retimings).
Hence, we will use the term family of retimings to denote a set of retimings that
are related.
For convenience, we define two standard operations to filter the retimings in

a family of retimings Ret. One operation constraints Ret by applying a time
threshold τ ; the subset Retτ of Ret contains only functions that shift time by
at most τ time units. The second operation reduces a family of retimings to
those retimings that are applicable to two concrete time domains T1 and T2:
Ret(T1, T2) is a subset of Ret that contains only retimings that map between T1
and T2.

Definition 3.106. Let Ret be a family of retimings. Then,

Retτ := {(r1, r2) ∈ Ret | ∀t ∈ dom(ri) : |ri(t)− t| ≤ τ (i = 1, 2)},
Ret(T1, T2) := Ret ∩R(T1, T2).

This leads to a generic notion of conformance associated with a family of
retimings Ret, a distance function d, a time threshold τ and a value threshold ϵ.

Definition 3.107. A conformance notion with distance function d : X ×X →
R≥0, time threshold τ ∈ R≥0 and value threshold ϵ ∈ R≥0 induced by the

family of retimings Ret is a predicate Conf Retd,τ,ϵ on pairs of GTTs such that, for
µ1 : T1 → X, µ2 : T2 → X:

Conf Retd,τ,ϵ(µ1, µ2) :⇔ ∃(r1, r2) ∈ Retτ (T1, T2). ∀t ∈ T1. d(µ1(t), µ2 ◦ r1(t)) ≤ ϵ
∧ ∀t ∈ T2. d(µ2(t), µ1 ◦ r2(t)) ≤ ϵ.

Notice that if τ =∞, then Conf Retd,∞,ϵ is a conformance notion with unbounded4

time deviation.
Using the above definition, we can easily express the specific notions of con-

formance we used in the previous examples by selecting a suitable family of
retimings.

Proposition 3.108. Let d : X ×X → R≥0 be a distance function, τ ∈ R≥0 be
a time threshold, and ϵ ∈ R≥0 a value threshold. Then, the conformance notions
induced by the retimings below are equivalent to the corresponding conformance
notions from Definitions 2.4 and 2.5 in Section 2.4.

4It is not bounded explicitly; Ret may, of course, define arbitrary bounds on the time devia-
tion.

96 3 Notions of Software Doping

• Let Retid = {(id, id) | id : T → T is the identity on some T ⊆ R≥0} be
the family of retimings containing only identity functions. Then, for every
µ1 : T1 → X and µ2 : T2 → X, it holds that Conf Retidd,0,ϵ(µ1, µ2) if and only if
TraceConfd,ϵ(µ1, µ2).

• Let Retsk = {(r, r−1) | r is a strictly increasing continuous bijection}. For
every µ1 : T1 → X and µ2 : T2 → X, it holds that Conf Retskd,τ,ϵ (µ1, µ2) if and
only if SkorConfd,τ,ϵ(µ1, µ2).

• Let Rethy = {(r1, r2) ∈ (T1 → T2)×(T2 → T1) | T1, T2 ⊆ R≥0} be the family
of arbitrary retimings. Then, for every µ1 : T1 → X and µ2 : T2 → X, it

holds that Conf
Rethy
d,τ,ϵ (µ1, µ2) if and only if HybridConfd,τ,ϵ(µ1, µ2).

Definition 3.107 also enables us to define other notions of conformance, such
as, for instance a “shift conformance”, which, intuitively, shifts all time points
by a given constant c ∈ R. Such a conformance notion would be constructed
from the family of retimings Retc = {(r, r−1) | r(t) = t+ c}.

Next, we define a generic notion of cleanness, parametrised by conformance
predicates for the input and for the output traces. Instantiating these predicates
with existing or new conformance notions, yields different conformance-based
notions of cleanness that can capture a variety of cleanness specifications.
As already sketched in Examples 3.103 and 3.104, we can obtain a new type

of cleanness definition by replacing trace conformance in Definition 3.101 by dif-
ferent conformance notions. Intuitively, we will extend robust cleanness from
“small input changes imply reasonable output changes” to conf-cleanness that
enforces that “small input changes under small time variations imply reason-
able output changes under reasonable time variations”. Conf-cleanness operates
w.r.t. a formal contract C = ⟨StdIn, dIn, dOut, κi, κo,RetIn,RetOut, τi, τo⟩ contain-
ing all information necessary to construct conformance notions for inputs and
outputs.
To accommodate for distance in time, we (1) compare prefixes using a confor-

mance relation, and (2) allow for variation in the length of the compared prefixes
that is within the corresponding time-distance threshold. More precisely, when
comparing two prefixes, we allow for discarding start and end segments of length
at most τi, respectively τo. This idea is formally implemented by the predicate
PrefConfτ , which is parametrised by a conformance notion Conf and a time thresh-
old τ . The predicate PrefConfτ compares the prefixes of two traces µ1 and µ2 by
requiring that there exist infixes µ1[t

s
1 . . . t

e
1] and µ2[t

s
2 . . . t

e
2] of these traces that

are conformant with respect to Conf. The infixes are obtained from µ1 and µ2

by taking a prefix of them that has a “normative” length of t but where prefixes

3.4 Hybrid Systems 97

or suffixes of length up to τ are added or removed at the beginning or the end
of the t-prefix.

Definition 3.109. Let Conf be a notion of conformance on GTTs with tolerance
threshold τ ∈ R≥0 for time disturbance. For any pair of GTTs µ1 : T1 → X and

µ2 : T2 → X, and time t ∈ T1 ∪ T2, the predicate PrefConfτ is defined as:

PrefConfτ (µ1, µ2, t) :⇔ ∃ts1 ∈ [0, τ] ∩ T1. ∃te1 ∈ [t− τ, t+ τ] ∩ T1.
∃ts2 ∈ [0, τ] ∩ T2. ∃te2 ∈ [t− τ, t+ τ] ∩ T2.
Conf(µ1[t

s
1..t

e
1], µ2[t

s
2..t

e
2]).

For conformance notions with unbounded timing deviation PrefConfτ coincides
with Conf, i.e., PrefConf∞ := Conf.

The predicate PrefConfτ provides a generic notion of prefix-conformance. By
instantiating it with conformance relations Conf RetIndIn,τi,κi

and Conf RetOut

dOut,τo,κo
for input

and output traces respectively, we can define conf-cleanness.

Definition 3.110. Let H : Inϑ → 2(Outϑ) be a hybrid system and consider the
cleanness contract C = ⟨StdIn, dIn, dOut, κi, κo,RetIn,RetOut, τi, τo⟩. Let further be
Conf In = Conf RetIndIn,τi,κi

and ConfOut = Conf RetOut

dOut,τo,κo
the conformance notions for

inputs and, respectively, outputs obtained from C. Then, H is conf-clean w.r.t.
C, if and only if

∀i1 ∈ StdIn, i2 ∈ Inϑ. ∀t ∈ dom(i1) ∪ dom(i2).(
∀t′ ≤ t. PrefConf Inτi (i1, i2, t

′)
)
⇒(

(∀o1 ∈ H(i1). ∃o2 ∈ H(i2). Pref
ConfOut
τo (o1, o2, t)) ∧

(∀o2 ∈ H(i2). ∃o1 ∈ H(i1). Pref
ConfOut
τo (o1, o2, t))

)
.

As for robust cleanness, we consider two inputs, one of which is a standard
input. To not miss any possible prefix of the two inputs, the definition quantifies
over all time values that are in at least one of the two inputs’ time domains. Also,
the adequacy of the combination of inputs is determined analogously to previous
robust cleanness definitions, except that conf-cleanness uses the prefix confor-
mance w.r.t. Conf In as the predicate deciding the adequacy. For an adequate
pair of inputs, the remaining part of the definition is analogue to the quantifier-
based definition of robust cleanness and ensures that the sets of outputs satisfy
prefix conformance w.r.t. ConfOut.

The following propositions shows that conf-cleanness is a generalisation of
robust cleanness.

98 3 Notions of Software Doping

Proposition 3.111. Let H : Inϑ → 2(Outϑ) be a hybrid system and assume a
robust cleanness contract C = ⟨StdIn, dIn, dOut, κi, κo⟩. Then, for conf-cleanness
contract C′ = ⟨StdIn, dIn, dOut, κi, κo,Retid,Retid, 0, 0⟩ it holds that H is robustly
clean w.r.t. C if and only if H is conf-clean w.r.t. C′.

Proof. Let i ∈ StdIn, i′ ∈ Inϑ, and t ∈ dom(i1) ∪ dom(i2). For conf-cleanness, we
may assume the premise that restricts the combination of inputs to be checked.
Hence, we assume that ∀t′ ≤ t, PrefConf In0 (i1, i2, t

′) for Conf In = Conf RetiddIn,0,κi
. By

Definition 3.109, PrefConf In0 (i1, i2, t
′) if and only if Conf In(i1[0..t

′], i2[0..t
′]). We

know from Prop. 3.108 that Conf RetiddIn,0,κi
= TraceConfdIn,κi . Thus, Pref

Conf In
0 (i1, i2, t

′)
if and only if TraceConfdIn,κi(i1[..t

′], i2[..t
′]), which is exactly the premise of ro-

bust cleanness that restricts the combination of inputs to be checked. This
proves that conf-cleanness and robust cleanness consider the same combina-
tions of inputs for the output conformance check. Using the same arguments,
we get for any two outputs o1 and o2 that PrefConfOut

0 (o1, o2, t) if and only if

Conf RetiddOut,0,κi
(o1[0..t], o2[0..t]) (using Definition 3.109) and that this is equivalent

to TraceConfdOut,κi(o1[..t
′], o2[..t

′]) (using Proposition 3.108). Hence, we can con-
clude that any H is robustly clean w.r.t. C if and only if H is conf-clean w.r.t.
C′.

In this section, we introduced hybrid conformance and Skorokhod confor-
mance as concrete examples for suitable conformance notions. Derived from
conf-cleanness we will explicitly define cleanness notions using hybrid and, re-
spectively, Skorokhod conformance. Both definitions define cleanness w.r.t. a
contract C = ⟨StdIn, dIn, dOut, κi, κo, τi, τo⟩ containing the set of standard inputs,
value distance functions, and thresholds for value distances and time distances.

Definition 3.112. Let H : Inϑ → 2(Outϑ) be a hybrid system and consider a
cleanness contract C = ⟨StdIn, dIn, dOut, κi, κo, τi, τo⟩. Then,

1. H is hybrid-conformance clean w.r.t. C if and only if H is conf-clean w.r.t.
contract ⟨StdIn, dIn, dOut, κi, κo,Rethy,Rethy, τi, τo⟩,

2. H is Skorokhod-conformance clean w.r.t. C if and only if conf-clean w.r.t.
contract ⟨StdIn, dIn, dOut, κi, κo,Retsk,Retsk, τi, τo⟩.

Example 3.113. Using the new cleanness definitions, we can re-examine the be-
haviour depicted in Figure 3.8. For the inputs ist and iddev (in subfigure (b))
the retiming function r(t) := t − τi shifts iddev to the left so that it is identical
to idev . Hence, it is obvious that ist and iddev are hybrid conformant. Since r
is a strictly increasing bijection between the time domains of ist and iddev , the
retiming (r, r−1) induces Skorokhod conformance; hence, ist and iddev are also
Skorokhod conformant. As discussed in Example 3.102 ist and iddev are not

3.4 Hybrid Systems 99

trace conformant. The outputs for ist and for iddev in subfigure (c) are neither
trace, hybrid nor Skorokhod conformant. Indeed, whatever retiming one might
choose, the peak value of iddev ’s output has a distance of more than κo from all
values in ist ’s output. In subfigure (d), the two outputs are hybrid conformant
for κo and τo. However, they are not trace or Skorokhod conformant. Based
on these conformance evaluations, we can conclude that both the outputs in (c)
and those in (d) are robustly clean, because the inputs for which these outputs
were produced did not meet the adequacy criterion in the first place. Hybrid
cleanness is violated for the outputs in (c), but satisfied for the outputs in (d).
Finally, both the outputs in (c) and (d) violate Skorokhod cleanness. We re-
mark that these verdicts relate only to the inputs ist and iddev and under the
assumption, that the outputs shown in (c) and (d) are the only outputs that can
be produced for these inputs by the fictitious cars we assumed in this running
example. Notably, the car that produced the outputs in subfigure (d) is not
necessarily hybrid-conformance clean. To get a (positive) cleanness verdict for
the system as a whole, the full input space of the system must be considered, i.e.,
the system must satisfy hybrid-conformance cleanness for every combination of
inputs.

The contracts for conf-cleanness provide a variety of parameters to modify
when hybrid systems are deemed clean or doped. The following proposition
shows, that, in general, less tight input conformances or tighter output confor-
mances lead to stricter cleanness definitions.

Proposition 3.114. Let H be a hybrid system, StdIn be a set of standard
inputs, dIn and dOut distance functions, and κ1i , κ

2
i , κ

1
o, κ

2
o, τ

1
i , τ

2
i , τ

1
o and τ2o

value and time thresholds. Further, let Ret1In, Ret
1
Out, Ret

2
In and Ret2Out be families

of retimings and let Conf 1In = Conf
Ret1In
dIn,τ1

i ,κ
1
i
, Conf 1Out = Conf

Ret1Out

dOut,τ1
o ,κ

1
o
, Conf 2In =

Conf
Ret2In
dIn,τ2

i ,κ
2
i
and Conf 2Out = Conf

Ret2Out

dOut,τ2
o ,κ

2
o
be conformance notions induced by

these families of retimings.
Then, whenever Conf 1In ⊒ Conf 2In and Conf 1Out ⊑ Conf 2Out, it holds that H be-
ing conf-clean w.r.t. contract ⟨StdIn, dIn, dOut, κ

1
i , κ

1
o,Ret

1
In,Ret

1
Out, τ

1
i , τ

1
o ⟩ implies

that H is conf-clean w.r.t. contract ⟨StdIn, dIn, dOut, κ
2
i , κ

2
o,Ret

2
In,Ret

2
Out, τ

2
i , τ

2
o ⟩.

The result of Proposition 3.114 becomes particularly interesting in combina-
tion with the following proposition, which establishes relations between trace,
hybrid and Skorokhod conformance.

Proposition 3.115. For any distance function d and thresholds τ, ϵ ∈ R≥0, the
following relations hold:

TraceConfd,ϵ ⊑ SkorConfd,τ,ϵ ⊑ HybridConfd,τ,ϵ

100 3 Notions of Software Doping

Propositions 3.114 and 3.115 have two important corollaries. The first one
explains the relationships between robust cleanness, and notions of cleanness
based on Skorokhod conformance and hybrid conformance, in particular stat-
ing the conservative generalisation property for the latter notions. The second
corollary compares cleanness notions with different distance thresholds.
In the remainder of this section we assume some arbitrary, but fixed StdIn, dIn

and dOut and write RobustClean(κi, κo) to mean “robustly clean w.r.t. contract
⟨StdIn, dIn, dOut, κi, κo⟩”, HybridClean(τi, κi, τo, κo) to mean “hybrid-conformance
clean w.r.t. ⟨StdIn, dIn, dOut, κi, κo, τi, τo⟩”, and SkorClean(τi, κi, τo, κo) to mean
“Skorokhod-conformance clean w.r.t. ⟨StdIn, dIn, dOut, κi, κo, τi, τo⟩”.

Corollary 3.116. For all τi, τo, κi, κo ∈ R≥0, the following implications hold:

1. RobustClean(κi, κo)⇒ SkorClean(0, κi, τo, κo)⇒ HybridClean(0, κi, τo, κo),

2. HybridClean(τi, κi, 0, κo) ⇒ SkorClean(τi, κi, 0, κo) ⇒ RobustClean(κi, κo).

Also, RobustClean(κi, κo) = SkorClean(0, κi, 0, κo) = HybridClean(0, κi, 0, κo) and
hence SkorClean and HybridClean are conservative extensions of robust cleanness.

Corollary 3.117. For all κi, κ
′
i , κo, κ

′
o, τi, τ

′
i , τo, τ

′
o that satisfy the inequalities

κ′i ≤ κi, τ ′i ≤ τi, κ′o ≥ κo, τ ′o ≥ τo the following implications hold:

1. RobustClean(κi, κo) ⇒ RobustClean(κ′i , κ
′
o),

2. HybridClean(κi, τi, κo, τo) ⇒ HybridClean(κ′i , τ
′
i , κ

′
o, τ

′
o), and

3. SkorClean(κi, τi, κo, τo) ⇒ SkorClean(κ′i , τ
′
i , κ

′
o, τ

′
o).

3.4.2 Synchronised Retiming

An intuitive and useful notion of doping cleanness should capture precisely what
we expect from a clean system subject to disturbances in time and value. In
this regard, the very strict Skorokhod cleanness has certain drawbacks, as the
following example demonstrates.

Example 3.118. Figure 3.9 shows another example of inputs and outputs related
to the emission cleaning system of a fictitious car. The left plot shows a standard
input ist and a non-standard input idev with idev (t) = ist(t − τi), i.e., the two
inputs are identical up to time shift τi to the right. Fictitious outputs for ist
and idev are shown in the right plot. Assume that for ist , the vehicle shows the
output (emission) profile ost . For idev , consider two possible output trajectories:
one output is odev (t) = ost(t − τi), i.e., it is shifted in the same manner as the
input; this is assumed to be the best response to idev . The other output is of

3.4 Hybrid Systems 101

ist
idev

(a)

v(km/h)

t

ost
odev

(b)

em(mg)

t

oddev
✓

𐄂

Figure 3.9: Imprecision problem of Skorokhod-conformance cleanness without
synchronisation of retimings. Inputs are depcited in (a), outputs are
shown in (b). For τi = τo, Skorokhod-conformance cleanness consid-
ers the combination of ost and odev as clean, but the combination of
ost and oddev as doped.

the form oddev (t) = ost(t − τi − δ), where δ > 0 can be arbitrarily small; this
output is the optimal output with an arbitrary small, additional shift to the
right. Skorokhod-conformance cleanness with τi = τo would accept output odev ,
but it would reject oddev , because Skorokhod cleanness does not allow outputs
for idev to deviate any further to the right than the τi margin that has already
been used up by the input deviation. A potential solution could be to increase
the value of τo so that it is significantly larger than τi, but this increases the
imprecision by accepting also trajectories shifted far to the left from the optimal
output odev .

Intuitively, when considering a pair of inputs that is shifted by some τi, we
would like to adjust the corresponding output trajectories accordingly before
comparing them. In the example above, one would therefore ideally like to
check conformance of output ost against τi-shifted odev and oddev , rather than
the original, unshifted odev and oddev .

To couple input retimings and output retimings, we propose a cleanness defi-
nition that checks for the two outputs involved in the cleanness check, whether
each of the outputs and the retimed other output satisfy a conformance pred-
icate. The best retiming to adjust the output trajectories based on an input
retiming may not necessarily be identical to the input retiming. We account for
that by adding a retiming synchronisation function as an additional component
to cleanness contracts. This function specifies the output adjusting retiming for
a concrete input retiming. The cleanness definition then applies a retiming to
the output trajectories twice: first, in reaction to the input retiming (e.g., the
τi shift in the example) and second, the retiming that is applied by the output
conformance predicate (e.g., the δ shift in the example).

102 3 Notions of Software Doping

The function WitConf Retd,τ,ϵ below is an extension of the predicate Conf Retd,τ,ϵ from
Definition 3.107. Instead of just saying “yes” or “no” to whether two traces are
conformant, it returns a set of retimings witnessing such conformance. This set
is non-empty if and only if the two traces are conformant.

Definition 3.119. The conformance witness function for a family of retimings
Ret, a distance function d, time distance threshold τ , value distance threshold ϵ,
and two GTTs µ1 and µ2 is the function

WitConf Retd,τ,ϵ(µ1, µ2) := {(r1, r2) ∈ Retτ (T1, T2) |
∀t ∈ T1 : d(µ1(t)− µ2 ◦ r1(t)) ≤ ϵ∧
∀t ∈ T2 : d(µ1 ◦ r2(t)− µ2(t)) ≤ ϵ}.

Similarly, the function PrefWitWitConf
τ returns the set of retimings witnessing

that PrefConfτ from Definition 3.109 holds.

Definition 3.120. Let WitConf be a conformance witness function, and τ a
time distance threshold. Then, the set of witnesses for prefix-conformance of
two GTTs µ1 and µ2, and time t is defined by the function

PrefWitWitConf
τ (µ1, µ2, t) := {(r1, r2) ∈WitConf(µ1[t

s
1..t

e
1], µ2[t

s
2..t

e
2]) |

ts1 ∈ [0, τ] ∩ T1, te1 ∈ [t− τ, t+ τ] ∩ T1,
ts2 ∈ [0, τ] ∩ T2, te2 ∈ [t− τ, t+ τ] ∩ T2}.

We remark that the domains of the retimings in PrefWitWitConf
τ (µ1, µ2, t) can

be smaller than the domains of µ1 and µ2.
The adjustment of the output traces is realised through a synchronisation func-

tion Sync that specifies for an input retiming r ∈ R(T1, T2) a set Ret ⊆ R(T1, T2)
of output retimings that may be used to adjust the output traces to appropriately
react to the input retiming r. We add the function Sync to the cleanness con-
tracts for conformance-based cleanness with synchronisation. Hence, contracts
are of the form C = ⟨StdIn, dIn, dOut, κi, κo,RetIn,RetOut, τi, τo,Sync⟩.
To expand conf-cleanness as defined in Definition 3.110 by synchronised re-

timing, the definition must change after the premise that enforces input con-
formance of two inputs i1 and i2 up to time t. For valid pairs of inputs the
definition must extract a retiming (r1, r2) for i1, i2 and t using PrefWitConf Inτi .
Then, it passes this retiming to Sync to obtain a retiming (r′1, r

′
2) to adjust the

output traces accordingly. Finally, the definition checks the conformance of the
retimed outputs according to the output conformance predicate. Analogue to
the definition of conformance notions in Definition 3.107, the output predicate
check PrefConfOut

τo (o1, o2, t) expands to the conjunction of PrefConfOut
τo (o1, o2 ◦ r′1, t)

and PrefConfOut
τo (o1 ◦ r′2, o2, t).

3.4 Hybrid Systems 103

Definition 3.121. Let H : Inϑ → 2(Outϑ) be a hybrid system and assume that
C = ⟨StdIn, dIn, dOut, κi, κo,RetIn,RetOut, τi, τo,Sync⟩ is a cleanness contract. Let
further be Conf In = Conf RetIndIn,τi,κi

and ConfOut = Conf RetOut

dOut,τo,κo
the conformance

notions for inputs and, respectively, outputs obtained from C. Then, H is sync-
conf-clean w.r.t. C, if and only if

∀i1 ∈ StdIn. ∀i2 ∈ Inϑ. ∀t ∈ dom(i1) ∪ dom(i2).(
∀t′ ≤ t. PrefConf Inτi (i1, i2, t

′)
)
⇒

∃(r1, r2) ∈ PrefWitConf Inτi (i1, i2, t). ∃(r′1, r′2) ∈ Sync(r1, r2).(
(∀o1 ∈ H(i1). ∃o2 ∈ H(i2). Pref

ConfOut
τo (o1 ◦ r′2, o2, t) ∧ PrefConfOut

τo (o1, o2 ◦ r′1, t)) ∧
(∀o2 ∈ H(i2). ∃o1 ∈ H(i1). Pref

ConfOut
τo (o1 ◦ r′2, o2, t) ∧ PrefConfOut

τo (o1, o2 ◦ r′1, t))
)
.

An obvious default choice for Sync is to apply the same retiming for the output
that has been used for the input, i.e., Sync(r1, r2) := {(r1, r2)}.
Example 3.122. With sync-conf-cleanness, there is an elegant solution to the
problem explained in Example 3.118. When using Skorokhod conformance with
time threshold τi for inputs, the synchronisation function Sync(r1, r2) := {(r1, r2)}
lets the outputs oddev shifted by τi to the left and ost be Skorokhod conformant
with time threshold δ. Obviously, with r1(t) = t+τ and r2(t) = t−τ , (r1, r2) is a
retiming that can be obtained from PrefWitConf Inτi . Because of the synchronisation,
ost and oddev are retimed before the conformance check, such that actually,
ost(t− τi) and oddev (t) (= ost(t− τi − δ)) are compared, respectively, ost(t) and
oddev (t+ τi) (= ost(t− δ)).
In certain scenarios, synchronisation functions that deviate from the above

advertised default function are better suited. For example, although the emission
cleaning system of a car reacts immediately to the inputs it receives and adjusts
the physical or chemical processes inside the car in a reasonable way, the effects
may be observable only with a certain delay. Hence, it would be reasonable
to incorporate the average delay into the synchronisation function. Another
use case of a non-default synchronisation function are scenarios in which the
timelines for the inputs and the outputs have different scales. Then, Sync can
ensure that the translation from the input timeline to the output timeline is
done correctly. In general, the definition of Sync allows to incorporate any
available knowledge regarding the expected output behaviours for conforming
input trajectories.
It is worth to mention, that sync-conf-cleanness is a generalisation of conf-

cleanness, as the following proposition shows.

Proposition 3.123. Let H : Inϑ → 2(Outϑ) be a hybrid system and consider
the conf-cleanness contract C = ⟨StdIn, dIn, dOut, κi, κo,RetIn,RetOut, τi, τo⟩. Let

104 3 Notions of Software Doping

further be Sync(r1, r2) := (id, id) be the synchronisation function that does not
apply any retiming to output traces prior to the output conformance check, and
let C′ = ⟨StdIn, dIn, dOut, κi, κo,RetIn,RetOut, τi, τo,Sync⟩ be the cleanness contract
for sync-conf-cleanness that is identical to C up to the additional component
Sync. Then, H is conf-clean w.r.t. C if and only if H is sync-conf-clean w.r.t. C′.

3.5 Summary

In this chapter, we provide cleanness definitions for sequential programs, reac-
tive systems, mixed-IO systems and hybrid systems. For sequential programs in
Section 3.1 and reactive systems in Section 3.2 we consider both parametrised
and non-parametrised variants of strict cleanness, robust cleanness and func-
cleanness. The constraints defined by robust cleanness and func-cleanness may
be seen as a combination of two sub-constraints that define a lower bound and up-
per bound on the allowed (non-standard) software behaviour. These constraints
are explicitly captured by l-cleanness, respectively u-cleanness definitions. In
Section 3.2.4 we additionally provide for for reactive systems trace integral vari-
ants of robust cleanness and func-cleanness, which are stricter than their original
counterparts and are particularly useful for contracts that entail past-forgetful
distance functions. Table 3.1 provides an overview of all cleanness notions for
sequential programs and reactive systems.

In Section 3.3 we demonstrate how robust and func-cleanness can be adapted
for mixed-IO systems. The resulting definitions are summarised in Table 3.2.

Finally, in Section 3.4 covering hybrid systems, we propose an appropriate vari-
ant of robust cleanness (Definition 3.101 on Page 91), and additionally cleanness
notions based on conformance relations, namely conf-cleanness (Definition 3.110
on Page 97) and sync-conf-cleanness (Definition 3.121 on Page 103).

3.6 Related Work & Contributions

The term “software doping” was coined by the press in 2015 after the Volkswagen
exhaust emissions scandal, when it surfaced that software developers introduced
code intended to deceive [67]. Shortly after, a special session at ISOLA 2016 was
devoted to this topic [88]. Baum [14] addresses the problem from a philosophical
point of view and elaborates on the ethics of it. Barthe et al. [11] provided a
first discussion of the problem and some informal characterisations that were
very influential for some cleanness definitions in this thesis. Though all these
works point out the need for a technical attack on the problem, none of them
provide a formal proposal.

3.6 Related Work & Contributions 105

sequential reactive

cleanness parametrised non-parametrised parametrised non-parametrised

strict
Def. 3.1
Page 39

Def. 3.2
Page 40

Def. 3.40
Page 61

Def. 3.41
Page 61

robust
Def. 3.6
Page 43

Def. 3.17
Page 48

Def. 3.44
Page 63

Def. 3.49
Page 65

l-robust
Def. 3.7
Page 44

Def. 3.20
Page 51

Def. 3.45
Page 64

Def. 3.54
Page 70

u-robust
Def. 3.8
Page 44

Def. 3.21
Page 51

Def. 3.46
Page 64

Def. 3.55
Page 70

robust
trace integral

Def. 3.76
Page 80

Def. 3.79
Page 81

l-robust
trace integral

Def. 3.74
Page 80

Def. 3.77
Page 81

u-robust
trace integral

Def. 3.75
Page 80

Def. 3.78
Page 81

func
Def. 3.27
Page 54

Def. 3.32
Page 56

Def. 3.60
Page 73

Def. 3.65
Page 74

l-func
Def. 3.28
Page 54

Def. 3.35
Page 58

Def. 3.61
Page 73

Def. 3.69
Page 77

u-func
Def. 3.29
Page 54

Def. 3.36
Page 59

Def. 3.62
Page 73

Def. 3.70
Page 77

func
trace integral

Def. 3.82
Page 81

Def. 3.85
Page 82

l-func
trace integral

Def. 3.80
Page 81

Def. 3.83
Page 81

u-func
trace integral

Def. 3.81
Page 81

Def. 3.84
Page 82

Table 3.1: Overview of cleanness notions for sequential and reactive programs.

106 3 Notions of Software Doping

cleanness robust robust
(trace integral)

func func
(trace integral)

l-
Def. 3.88
Page 85

Def. 3.95
Page 89

Def. 3.92
Page 89

Def. 3.98
Page 90

u-
Def. 3.90
Page 88

Def. 3.96
Page 89

Def. 3.93
Page 89

Def. 3.99
Page 90

both
Def. 3.91
Page 88

Def. 3.97
Page 90

Def. 3.94
Page 89

Def. 3.100
Page 90

Table 3.2: Overview of cleanness notions for mixed-IO systems.

Similar to software doping, backdoored software is a class of software that
does not act in the best interest of users; see for instance the recent analysis
in [106]. The primary emphasis of backdoored software is on leaking confidential
information while guaranteeing functionality.
Cleanness in sequential programs is related to abstract non-interference [12,

62]. More generally, our notions of cleanness are hyperproperties [35], a gen-
eral class that encompasses notions across different domains, in particular non-
interference in security [72, 116].
Some of the definitions we will propose share conceptual similarities to con-

tinuity properties [30, 65] of programs, and stability and robustness notions for
cyber-physical systems [115, 49, 86, 101]. Absence of discontinuities alone does
not provide an adequate guarantee of cleanness. This is because physical out-
puts (e.g. the amount of nitric oxides in the exhaust stream of a car) usually do
change continuously. For instance, a doped car may alter its emission cleaning
in a discrete way, but that induces a (rapid but) continuous change of nitric
oxides concentrations. Notions of stability and robustness assure the outputs to
stabilise despite transient input disturbances. Our definitions will be based on
comparison of two different inputs; the second input does not necessarily need
to be a disturbance of the first input.

The contents in Sections 3.1 and 3.2 are based on [42]. The cleanness defi-
nitions for parametrised programs and systems in these sections are developed
jointly by my co-authors and by myself. New in this thesis are the trace integral
definitions, which become important in the remaining chapters. The definitions
for non-parametrised strict cleanness of sequential programs and a quantifier-
based definition of robust cleanness of reactive systems have been published
in [17, 18]. All other (non-parametrised) cleanness definitions in Sections 3.1
and 3.2 are new and have not been published before. The same holds for all
proofs in Sections 3.1 and 3.2.

3.6 Related Work & Contributions 107

The concept of mixed-IO computation models in Section 3.3 has its origins in
the model-based testing theory by Tretmans [119] that assumes systems to be
modelled as labelled transition systems. We used model-based testing in [17, 18]
and the “mixed-IO model” has been first mentioned explicitly in [25]. There,
we introduced the mixed-IO model to avoid talking about LTS and to reason
instead directly over traces (irrespective of whether they are obtained from an
LTS or not). The cleanness definitions in Section 3.3 are inspired by those for
LTS [17, 18], but they are foundationally different (also to the definitions in [25])
in the sense that in these publications robust cleanness is defined for cleanness
contexts (with a fixed standard behaviour; this will be explained in Chapter 5),
while in this thesis, the cleanness notions are defined w.r.t. a cleanness contract
in its general form (i.e., for standard inputs instead of standard inputs and out-
puts). Moreover, Section 3.3 proposes func-cleanness and trace integral variants
of robust cleanness and func-cleanness for mixed-IO systems for the first time.
The content regarding hybrid systems in Section 3.4 is based on [46, 20].

The cleanness definitions in this section are a result of the cooperation with
my co-authors of these publications. In this thesis I further developed these
definitions so that they are consistent with the definitions in Sections 3.1 to 3.3.
In particular, I introduce the distinction between input and output domain, I
add the set of standard inputs to the contracts, I consistently make cleanness
definitions suitable for nondeterministic systems, and more.

4 Model-Aware Software Doping Analysis

The definitions introduced in Chapter 3 offer a rich portfolio of cleanness notions
for programs and systems. It depends on the concrete scenario, which of these
cleanness notions is most suitable. In this chapter, we present techniques to
verify that a program or system satisfies a certain cleanness notion. We start
with the analysis of sequential programs using a self-composition technique. For
reactive systems, we formalise cleanness in the logic HyperLTL and demonstrate
how the toy examples from Examples 3.50 and 3.66 can be model-checked using
this formalisation.

4.1 Analysis through self-composition

To analyse sequential programs, we consider a program P as a state transformer
on states η : Var → Val mapping variables to values; see Section 2.5. Let

x⃗p = (x
(1)
p , . . . , x

(n)
p) be a vector of variables representing parameters, x⃗i =

(x
(1)
i , . . . , x

(m)
i)a vector of variables representing inputs, and x⃗o = (x

(1)
o , . . . , x

(r)
o)

a vector of variables representing outputs. We denote by x⃗ the vector of all

variables, i.e., x⃗ = (x
(1)
p , . . . , x

(n)
p , x

(1)
i , . . . , x

(m)
i , x

(1)
o , . . . , x

(r)
o). Thus, in this

section, Var is the set of all variables in x⃗. We assume that all variables are
pairwise different and, hence, that |Var| = n + m + r. For any vector y⃗, we
denote by |y⃗| the number of variables in y⃗. In particular, |x⃗p| = n, |x⃗i| = m and
|x⃗o| = r. To consistently use the the notations Param, In and Out, we define

Param = Val|x⃗p|, In = Val|x⃗i| and Out = Val|x⃗o| to be sets of Val-vectors of lengths
n, m and r, respectively.

For two states η1 and η2 we will use the equality predicate η1 =V η2 that holds
if and only if for every v ∈ V , η1(v) = η2(v). For some state η and a vector of
variables V = (v1, . . . , vl), we define η(V) := (η(v1), . . . , η(vl)).

To define strict cleanness for a state transformer P, we consider cleanness
contracts C = ⟨≈P,StdIn⟩, where the predicate ≈P encodes a binary relation on
parameter vectors from Param and StdIn is a predicate over input vectors from In.
Strict cleanness for deterministic sequential programs can then be reformulated
as follows.

110 4 Model-Aware Software Doping Analysis

Definition 4.1. A sequential and deterministic program P is strictly clean w.r.t.
contract C = ⟨≈P,StdIn⟩ if and only if for all states η1, η2 and η′1 such that
η1(x⃗p) ≈P η2(x⃗p), StdIn(η1(x⃗i)), η1 =x⃗i

η2 and (P, η1) ⇓ η′1, there exists a state
η′2, such that (P, η2) ⇓ η′2 and η′1 =x⃗o

η′2.

The definition is essentially a notation change of (a deterministic version of)
Definition 3.1. In contrast to the sequential programs in Section 3.1, state trans-
formers might not terminate. Due to its symmetry, strict cleanness ensures that
P terminates for initial state η1 if and only if it terminates for initial state η2. If
P does not terminate for η1, then strict cleanness is satisfied for this combina-
tion of η1 and η2. But it would be violated for the combination η2 and η1 (i.e.,
switching the roles of η1 and η2): Since (P, η2) ⇓ η′2, there must exist a state η′1
such that (P, η1) ⇓ η′1, but since P does not terminate for η1, such η

′
1 does not

exist and, hence, P is not strictly clean.
For strict cleanness, we define the indistinguishable criteria (cf. Section 2.5

and [12, Section 3])

I = {(η1, η2) | η1(x⃗p) ≈P η2(x⃗p) ∧ StdIn(η1(x⃗i)) ∧ η1 =x⃗i
η2} and

I ′ = {(η1, η2) | η1 =x⃗o
η2}.

Thus, Definition 4.1 characterises termination-sensitive (I, I ′)-security. From
Proposition 2.6 we get that strict cleanness of deterministic sequential pro-
grams can be analysed using Dijkstra’s weakest precondition (wp) through self-
composition.

Proposition 4.2. A deterministic sequential program P is strictly clean if and
only if

x⃗p ≈P x⃗
′
p ∧ StdIn(x⃗′i) ∧ x⃗i = x⃗′i ∧ wp(P, true) ⇒ wp(P;P[x⃗/x⃗′], x⃗o = x⃗′o).

The term wp(P, true) in the antecedent of the implication is the weakest pre-
condition that ensures that program P terminates. It is necessary in the predi-
cate, otherwise it could become false only because program P does not terminate.

To analyse robust cleanness, let C = ⟨≈P,StdIn, dIn, dOut, κi, κo⟩ be a contract
containing, in addition to the components that are already in the strict cleanness
contract, distance functions dIn : In× In→ R≥0 and dOut : Out×Out→ R≥0, and
thresholds κi ∈ R≥0 for inputs and κo : R≥0 for outputs. The following definition
of robust cleanness for state transformers corresponds to the definition of robust
cleanness for sequential programs (Definition 3.6):

Definition 4.3. A sequential and deterministic program P is robustly clean if
and only if for all states η1, η2, and η

′ such that η1(x⃗p) ≈P η2(x⃗p), StdIn(η1(x⃗i)),
and dIn(η1(x⃗i), η2(x⃗i)) ≤ κi, the following two conditions hold:

4.1 Analysis through self-composition 111

1. if (P, η1) ⇓ η′, then there exists a state η′2, such that (P, η2) ⇓ η′2 and
dOut(η

′(x⃗o), η
′
2(x⃗o)) ≤ κo; and

2. if (P, η2) ⇓ η′, then there exists a state η′1, such that (P, η1) ⇓ η′1 and
dOut(η

′
1(x⃗o), η

′(x⃗o)) ≤ κo.

In contrast to strict cleanness, this definition is not symmetric, because only
the input of η1 is required to be a standard input. Thus, to ensure that (P, η1)
terminates if and only if (P, η2) terminates, there are two conditions in Defini-
tion 4.3.
For robust cleanness, we use the following indistinguishability criteria.

I = {(η1, η2) | η1(x⃗p) ≈P η2(x⃗p) ∧ StdIn(η1(x⃗i)) ∧ dIn(η1(x⃗i), η2(x⃗i)) ≤ κi}
I ′ = {(η1, η2) | dOut(η1(x⃗o), η2(x⃗o)) ≤ κo}

As Definition 4.3, the relation I is not symmetric, i.e., there exist η1 and η2
with (η1, η2) ∈ I and (η2, η1) ̸∈ I. In particular, it turns out that the first
condition of Definition 4.3 defines termination-sensitive (I, I ′)-security, and the
second condition defines termination-sensitive (I−1, I ′)-security. Finally, we get
from Proposition 2.6 that robust cleanness can be analysed using wp through
self-composition.

Proposition 4.4. A deterministic program P is robustly clean if and only if

x⃗p ≈P x⃗
′
p ∧ StdIn(x⃗i) ∧ dIn(x⃗i, x⃗′i) ≤ κi

⇒

(
wp(P, true) ⇒ wp(P;P[x⃗/x⃗′], dOut(x⃗o, x⃗

′
o) ≤ κo)

∧ wp(P[x⃗/x⃗′], true) ⇒ wp(P[x⃗/x⃗′];P, dOut(x⃗o, x⃗
′
o) ≤ κo)

)

Proceeding in a similar manner, we can also obtain a definition of func-
cleanness for deterministic state transformers. For func-cleanness a contract
is a tuple C = ⟨≈P,StdIn, dIn, dOut, f⟩; it is similar to contracts for robust clean-
ness, but the distance thresholds are replaced by the function f : R≥0 → R≥0 to
relate input distances and output distances.

Definition 4.5. A sequential and deterministic program P is func-clean w.r.t.
a contract C = ⟨≈P,StdIn, dIn, dOut, f⟩ if and only if for all states η1, η2, and η

′

such that η1(x⃗p) ≈P η2(x⃗p), StdIn(η1(x⃗i)), the following two conditions hold:

1. if (P, η1) ⇓ η′, then there exists a state η′2, such that (P, η2) ⇓ η′2 and
dOut(η

′(x⃗o), η
′
2(x⃗o)) ≤ f(dIn(η1(x⃗i), η2(x⃗i))); and

2. if (P, η2) ⇓ η′, then there exists a state η′1, such that (P, η1) ⇓ η′1 and
dOut(η

′
1(x⃗o), η

′(x⃗o)) ≤ f(dIn(η1(x⃗i), η2(x⃗i))).

112 4 Model-Aware Software Doping Analysis

Here, the term f(dIn(η1(x⃗i), η2(x⃗i))) appears in the conclusion of the implica-
tions of both items. This may look unexpected since it seems to be related to
the input requirements rather than the output requirements, because it refers to
the input states. To overcome this situation, we introduce a parameter Y ∈ R≥0

which we assume universally quantified. Using this, we define the following
indistinguishability criteria

IY = {(η1, η2) | η1(x⃗p) ≈P η2(x⃗p) ∧ StdIn(η1(x⃗i)) ∧ f(dIn(η1(x⃗i), η2(x⃗i))) = Y }
I ′Y = {(η1, η2) | dOut(η1(x⃗o), η2(x⃗o)) ≤ Y }

We can reformulate Definition 4.5 using the indistinguishability criteria: P
is func-clean w.r.t. contract C = ⟨≈P,StdIn, dIn, dOut, f⟩ if and only if for every
Y ∈ R≥0, and for all states η1, η2, and η

′ such that (η1, η2) ∈ IY

1. if (P, η1) ⇓ η′, then there exists some state η′2, such that (P, η2) ⇓ η′2 and
(η′, η′2) ∈ I ′Y ; and

2. if (P, η2) ⇓ η′, then there exists some state η′1, such that (P, η1) ⇓ η′1 and
(η′1, η) ∈ I ′Y .

With this new definition, and taking into account again the non-symmetry of
IY , the first item characterises termination-sensitive (IY , I ′Y)-security while the
second one characterises termination-sensitive (I−1

Y , I ′Y)-security. From this and
Proposition 2.6 it follows that the property of func-cleanness can be analysed
using wp and self-composition.

Proposition 4.6. A deterministic program P is func-clean w.r.t. contract C =
⟨≈P,StdIn, dIn, dOut, f⟩ if and only if for all Y ∈ R≥0

x⃗p ≈P x⃗
′
p ∧ StdIn(x⃗i) ∧ f(dIn(x⃗i, x⃗′i)) = Y

⇒

(
wp(P, true) ⇒ wp(P;P[x⃗/x⃗′], dOut(x⃗o, x⃗

′
o) ≤ Y)

∧ wp(P[x⃗/x⃗′], true) ⇒ wp(P[x⃗/x⃗′];P, dOut(x⃗o, x⃗
′
o) ≤ Y)

)

Example 4.7. In this example, we use Proposition 4.6 to prove correct the
statements in Example 3.39. The programs shown in Figures 4.1 and 4.2 are
equivalent to the programs in Figures 3.4 and 3.5 and are syntactically adapted
to match the language used for the wp calculus. The programs are not explicitly
parametrised, hence we assume a single parameter () that is equivalent to itself,
i.e., () ≈P (). Using the same StdIn, dIn, dOut and f as in Example 3.39, we
get the predicates StdIn(thrtl) ⇔ (thrtl ∈ (0, 1]), f(dIn(thrtl, thrtl

′)) = Y ⇔
|thrtl−thrtl ′|

2 = Y , and dOut(NOx,NOx ′) ≤ Y ⇔ |NOx−NOx ′| ≤ Y .

4.1 Analysis through self-composition 113

def dose := thrtl2

NOx := thrtl3 / (2 · def dose)

Figure 4.1: Program ec

if thrtl ∈ ThrottleTestValues then
def dose := thrtl2

else
def dose := thrtl

end if
NOx := thrtl3 / (2 · def dose)

Figure 4.2: Program aec

To proof func-cleanness of ec, let ec′ be another instance of ec with every
program variable x renamed to x′. First observe that wp(ec, true) = true and
wp(ec′, true) = true, i.e., ec and ec′ always terminate. It remains to show that

thrtl ∈ (0, 1] ∧
(

|thrtl−thrtl ′|
2 = Y

)
⇒

(
wp(ec;ec′, |NOx−NOx ′| ≤ Y)

∧ wp(ec′;ec, |NOx−NOx ′| ≤ Y)

)
It is easy to verify that

wp(ec;ec′, |NOx−NOx ′| ≤ Y) ≡
(
|thrtl−thrtl ′|

2
≤ Y

)
and

wp(ec′;ec, |NOx−NOx ′| ≤ Y) ≡
(
|thrtl ′−thrtl|

2
≤ Y

)
from which the implication follows and hence ec is func-clean.
Let aec′ be another instance of aec with every program variable x renamed

to x′. Again, wp(aec, true) = true and wp(aec′, true) = true. It is easy to verify
that wp(aec;aec′, |NOx−NOx ′| ≤ Y) is equivalent to

(thrtl ∈ (0, 1] ∧ thrtl ′ ∈ (0, 1]) ⇒ |thrtl−thrtl ′|
2 ≤ Y

∧ (thrtl ∈ (0, 1] ∧ thrtl ′ /∈ (0, 1]) ⇒ |thrtl−thrtl ′2|
2 ≤ Y

∧ (thrtl /∈ (0, 1] ∧ thrtl ′ ∈ (0, 1]) ⇒ |thrtl2−thrtl ′|
2 ≤ Y

∧ (thrtl /∈ (0, 1] ∧ thrtl ′ /∈ (0, 1]) ⇒ |thrtl2−thrtl ′2|
2 ≤ Y

For wp(aec′;aec, |NOx−NOx ′| ≤ Y), the predicate is semantically the same,
since |a− b| = |b− a|. Then, the predicate

thrtl ∈ (0, 1] ∧
(

|thrtl−thrtl ′|
2 = Y

)
⇒

(
wp(aec;aec′, |NOx−NOx ′| ≤ Y)

∧ wp(aec′;aec, |NOx−NOx ′| ≤ Y)

)

114 4 Model-Aware Software Doping Analysis

is equivalent to

(
thrtl ∈ (0, 1] ∧ |thrtl−thrtl ′|

2 = Y
)
⇒

(
thrtl ′ ∈ (0, 1]⇒ |thrtl−thrtl ′|

2 ≤ Y
∧ thrtl ′ /∈ (0, 1]⇒ |thrtl−thrtl ′2|

2 ≤ Y

)

which can be proved false if, e.g., thrtl = 1 and thrtl ′ = 1.5. Consequently, aec
is not func-clean.

Notwithstanding the simplicity of the previous example, the technique can be
applied to complex programs including loops. We decided to keep it simple as
it is not our intention to show the power of wp, but the applicability of our
definition.

4.2 HyperLTL

In this section, we propose HyperLTL characterisations for strict cleanness, trace
integral robust cleanness and trace integral func-cleanness of reactive systems.1

HyperLTL reasons about sets of infinite traces over sets of atomic proposi-
tions. Thus, we assume that the state of a system can be represented by a
Boolean combination of atomic propositions. Concretely, we consider the set
AP = APp ∪ APi ∪ APo of atomic propositions, where APp, APi, and APo are
the atomic propositions that define the parameter values, the input values, and
the output values, respectively. Thus, we take Param = 2APp , In = 2APi and
Out = 2APo . The reactive behaviour of a system is represented as an infinite
trace of sets of atomic propositions, i.e., a subset of (2AP)ω. To distinguish
the AP encoded reactive systems from the function encoding in Section 3.2, we
call the former circuits and denote them as C ⊆ (2AP)ω. Still, there is a rela-
tion to function encoded reactive systems. C can be interpreted as a function
Ŝ : Param→ Inω → 2(Outω) where

t ∈ C if and only if (t↓APo) ∈ Ŝ(t↓APp [0])(t↓APi), (4.1)

with t↓A defined by (t↓A)[k] = t[k] ∩A for all k ∈ N.
For the remainder of this chapter, we restrict contracts for robust cleanness

and func-cleanness to provide distance functions that are past-forgetful and,
therefore, consider the trace integral variants of the cleanness definitions (cf.
Section 3.2.4).

1The contents in this section deviate from previous work [42], which contains incorrect
proofs claiming that the proposed HyperLTL formulas characterise non-trace-integral ro-
bust cleanness and func-cleanness.

4.2 HyperLTL 115

In the HyperLTL formulas below occur, for convenience, non-atomic proposi-
tions. For the correctness of these formulas, we must assume that the translation
of these non-atomic propositions satisfy the following properties:

Assumption 4.8. Let C ⊆ (2AP)
ω
be a circuit with AP = APp ∪ APi ∪ APo, let

t, t′ ∈ C be traces in this circuit, and let Π = {π := t, π′ := t′} be a trace
assignment. Further, let p ∈ Param, i ∈ In, and o ∈ Out. Then, the following
equivalences must hold.

1. Π |=C pπ = pπ′ if and only if t↓APp [0] = t′↓APp [0]

2. Π |=C iπ = iπ′ if and only if t↓APi [0] = t′↓APi [0]

3. Π |=C oπ = oπ′ if and only if t↓APo [0] = t′↓APo [0]

4. Π |=C pπ = p if and only if t↓APp [0] = p

5. Π |=C iπ = i if and only if t↓APi [0] = i

6. Π |=C oπ = o if and only if t↓APo [0] = o

7. Π |=C pπ ≈P pπ′ if and only if t↓APp [0] ≈P t
′↓APp [0]

8. Π |=C dIn(iπ, iπ′) ≤ κi if and only if dIn(t↓APi [0], t
′↓APi [0]) ≤ κi

9. Π |=C dOut(oπ, oπ′) ≤ κo if and only if dOut(t↓APo [0], t
′↓APo [0]) ≤ κo

10. Π |=C dOut(oπ, oπ′) ≤ f(dIn(iπ, iπ′)) if and only if dOut(t↓APo [0], t
′↓APo [0]) ≤

f(dIn(t↓APi [0], t
′↓APi [0]))

Figure 4.3 proposes a translations from the non-atomic propositions to valid
quantifier-free HyperLTL subformulas that satisfy the assumption above. The
proofs are straightforward and are omitted.

We assume that there is an LTL formula that can check whether a trace
is in the set of standard inputs StdIn ⊆ Inω. We ambiguously call this LTL
formula StdIn. The LTL formula StdIn contains only atomic propositions in
APi. That is, the formula is obtained with the grammar in the second line of
Equation (2.1) where atomic propositions have the form a (instead of aπ) with
a ∈ APi. With StdInπ we represent the HyperLTL formula that is exactly like
StdIn but where each occurrence of a ∈ APi has been replaced by aπ. Obviously,
the LTL formula StdIn should be defined such that for every trace t ∈ C it holds
that {π := t} |=C StdInπ if and only if (t↓APi) ∈ StdIn.
The following proposition shows the HyperLTL formula to analyse strict clean-

ness.

116 4 Model-Aware Software Doping Analysis

pπ = pπ′ ↭
∧

a∈APp

aπ ↔ aπ′ pπ = p ↭
∧
a∈p

aπ ∧
∧

a∈APp\p

¬aπ

iπ = iπ′ ↭
∧

a∈APi

aπ ↔ aπ′ iπ = i ↭
∧
a∈i

aπ ∧
∧

a∈APi\i

¬aπ

oπ = oπ′ ↭
∧

a∈APo

aπ ↔ aπ′ oπ = o ↭
∧
a∈o

aπ ∧
∧

a∈APo\o

¬aπ

pπ ≈P pπ′ ↭
∨

p,p′∈Param
p≈Pp

′

pπ = p ∧ pπ′ = p′

dIn(iπ, iπ′) ≤ κi ↭
∨

i,i′∈In
dIn(i,i

′)≤κi

iπ = i ∧ iπ′ = i′

dOut(oπ, oπ′) ≤ κo ↭
∨

o,o′∈Out
dOut(o,o

′)≤κo

oπ = o ∧ oπ′ = o′

dOut(oπ, oπ′) ≤ f(dIn(iπ, iπ′)) ↭
∨

o,o′∈Out,i,i′∈In
dOut(o,o

′)≤f(dIn(i,i
′))

iπ = i ∧ iπ′ = i′ ∧ oπ = o ∧ oπ′ = o′

Figure 4.3: Syntactic sugar for comparisons between traces

Proposition 4.9. Let C ⊆ (2AP)
ω

be a circuit, let Ŝ be the reactive system
constructed from C according to Equation (4.1), let C = ⟨≈P,StdIn⟩ be a contract
for strict cleanness, and let StdInπ be a HyperLTL subformula such that {π :=

t} |=C StdInπ if and only if t↓APi ∈ StdIn. Then, Ŝ is strictly clean w.r.t. C if and
only if C satisfies the HyperLTL formula

∀π1.∀π2.∃π′
2. (pπ1

≈P pπ2
∧ StdInπ1

)→
(
pπ2

= pπ′
2
∧ (iπ1

= iπ′
2
∧ oπ1

= oπ′
2
)
)

The first quantifier (for π1) in the HyperLTL formula in the proposition im-
plicitly quantifies the first parameter p1, the standard input i, and an output
o1 ∈ Ŝ(p1)(i). The second quantifier (for π2) implicitly quantifies the second
parameter p2; however, due to the potential nondeterminism in the behaviour
of the system, the third, existential, quantifier for π′

2 is necessary. Trace π′
2

must encode parameter p2 and, according to the definition of strict cleanness,
the inputs of this trace must be identical to i. Thus, it existentially quantifies an

4.2 HyperLTL 117

output o2 ∈ Ŝ(p2)(i) and enforces that o1 = o2. In essence, the formula checks
that for every o1 ∈ Ŝ(p1)(i), there exists o2 ∈ Ŝ(p2)(i), such that o1 = o2. Hence,
it checks that Ŝ(p1)(i) ⊆ Ŝ(p2)(i). Since the formula is symmetric, it also checks
that Ŝ(p2)(i) ⊆ Ŝ(p1)(i) and, ultimately, ensures that Ŝ(p1)(i) = Ŝ(p2)(i).

To prove Proposition 4.9, we will use the following lemma, which follows al-
most directly from Equation (4.1).

Lemma 4.10. Let C ⊆ (2AP)
ω
be a circuit with AP = APp ∪ APi ∪ APo and P

be a predicate over Param× Inω × Outω. Then,

1. ∀t ∈ C. P (t↓APp [0], t↓APi , t↓APo) if and only if ∀p ∈ Param, i ∈ Inω. ∀o ∈
Ŝ(p)(i). P (p, i, o), and

2. ∃t ∈ C. P (t↓APp [0], t↓APi , t↓APo) if and only if ∃p ∈ Param, i ∈ Inω. ∃o ∈
Ŝ(p)(i). P (p, i, o).

Furthermore, we need to make explicit the reasoning about time enforced by
the HyperLTL operators globally () and weak until (W).

Lemma 4.11. Let Π be a trace assignment and let ϕ and ψ be quantifier-free
HyperLTL formulas. Then the following equivalences hold.

1. Π |=C ϕ if and only if ∀k > 0. Π[k..] |=C ϕ

2. Π |=C ϕW ψ if and only if ∀k > 0. (∀j ≤ k. Π[j..] |=C ¬ψ)→ Π[k..] |=C ϕ.

Proof. We prove the two statements separately.

1. Using the definitions of and (from Section 2.6.1), we get that Π |=C ϕ
holds if and only if Π |=C ¬(⊤U ¬ϕ) holds. Applying the semantics for ¬
and U yields the equivalent proposition that ¬(∃k > 0. Π[k..] |=C ¬ϕ∧∀j <
k. Π[j..] |=C ⊤). By applying again the semantics for ¬ and by logical
simplifications, we know that the above is equivalent to ∀k > 0. Π[k..] |=C

ϕ.

2. According to the definition of W, the semantics of U and with 1, Π |=C

ϕW ψ holds if and only if (∃k > 0. Π[k..] |=C ψ ∧ ∀j < k. Π[j..] |=C ϕ) ∨
∀k > 0. Π[k..] |=C ϕ holds. We denote this proposition as V . It is easy
to see that the right operand of the equivalence to prove holds if and only
if ∀k > 0. (∃j ≤ k. Π[j..] |=C ψ) ∨ Π[k..] |=C ϕ holds. We denote this
proposition as W . Thus, we must prove that V ⇒ W and that W ⇒ V .
To prove that V implies W , we distinguish two cases.

118 4 Model-Aware Software Doping Analysis

• For the first case, assume that the left operand of the disjunction in
V holds, i.e., that there is some k > 0, such that Π[k..] |=C ψ ∧ ∀j <
k. Π[j..] |=C ϕ. To show W , let k′ > 0 be arbitrary. If k′ ≥ k, then
there exists j ≤ k′ (namely j = k) such that Π[j..] |=C ψ; hence,
W holds. If k′ < k, then we know from ∀j < k. Π[j..] |=C ϕ that
Π[k′..] |=C ϕ is true; hence, W holds.

• For the second case, assume that the right operand of the disjunction
in V holds, i.e., that ∀k > 0. Π[k..] |=C ϕ. Then, obviously W holds.

To prove that W implies V , let PV = {k | Π[k..] |=C ψ} be the set of
all indices where ψ holds for the given trace assignment Π. If PV is the
empty set, then it follows immediately from W that ∀k > 0. Π[k..] |=C ϕ
and that, hence, V holds. If PV is not empty, let k = minPV be the
smallest index in PV . Then, obviously, ∃k > 0. Π[k..] |=C ψ. To show that
V holds, it suffices to show that ∀j < k. Π[j..] |=C ϕ holds. This follows
from W , because k is the smallest index for which Π[k..] |=C ψ holds and,
therefore, for every j < k it does not hold that Π[j..] |=C ψ.

With these Lemmas, we are able to prove that the strict cleanness character-
isation above is correct.

Proof of Proposition 4.9. From the semantics of HyperLTL (cf. Section 2.6.1)
we get that

∅ |=C ∀π1.∀π2.∃π′
2. (pπ1 ≈P pπ2 ∧ StdInπ1)

→
(
pπ2 = pπ′

2
∧ (iπ1

= iπ′
2
∧ oπ1

= oπ′
2
)
)

if and only if

∀t1 ∈ C. ∀t2 ∈ C. ∃t′2 ∈ C. (Π |=C pπ1 ≈P pπ2) ∧ (Π |=C StdInπ1)

→ (Π |=C pπ2 = pπ′
2
) ∧ (∀k > 0. Π[k..] |=C iπ1 = iπ′

2
∧ oπ1 = oπ′

2
),

where Π = {π1 := t1, π2 := t2, π
′
2 := t′2}. From Assumption 4.8 and the the

premise that {π := t} |=C StdInπ if and only if t↓APi ∈ StdIn, we get that the
above is equivalent to

∀t1 ∈ C. ∀t2 ∈ C. ∃t′2 ∈ C. (t1↓APp [0] ≈P t2↓APp [0]) ∧ (t1↓APi ∈ StdIn)

→ (t2↓APp [0] = t′2↓APp [0]) ∧
(∀k > 0. t1↓APi [k] = t′2↓APi [k] ∧ t1↓APo [k] = t′2↓APo [k]).

4.2 HyperLTL 119

With Lemma 4.10 we get that this is equivalent to

∀p1, p2 ∈ Param. ∀i1, i2 ∈ Inω. ∀o1 ∈ Ŝ(p1)(i1). ∀o2 ∈ Ŝ(p2)(i2).

∃p′2 ∈ Param. ∃i′2 ∈ Inω. ∃o′2 ∈ Ŝ(p′2)(i
′
2). p1 ≈P p2 ∧ i1 ∈ StdIn

→ p2 = p′2 ∧ ∀k > 0. i1[k] = i′2[k] ∧ o1[k] = o′2[k],

which can be simplified to

∀p1, p2 ∈ Param. p1 ≈P p2 → ∀i ∈ StdIn. ∀o1 ∈ Ŝ(p1)(i). ∃o2 ∈ Ŝ(p2)(i). o1 = o2.

This, in turn, is equivalent to

∀p1, p2 ∈ Param. p1 ≈P p2 → ∀i ∈ StdIn. Ŝ(p1)(i). ⊆ Ŝ(p2)(i).

By symmetry, this is equivalent to Definition 3.40, hence proving the proposition.

A HyperLTL characterisation also exists for robust cleanness. Propositions 4.12
and 4.13 show HyperLTL formulas for trace integral l-robust cleanness and trace
integral u-robust cleanness, respectively. Thus, the conjunction of the two for-
mulas characterises trace integral robust cleanness.

Proposition 4.12. Let C ⊆ (2AP)
ω
be a circuit, let Ŝ be the reactive system

constructed from C according to Equation (4.1), and let C = ⟨≈P,StdIn, dIn, dOut,
κi, κo⟩ be a contract for robust cleanness, where dIn and dOut are past-forgetful.
Further, let StdInπ be a HyperLTL subformula such that {π := t} |=C StdInπ if

and only if t↓APi ∈ StdIn. Then, Ŝ is trace integral l-robustly clean w.r.t. C if
and only if C satisfies the HyperLTL formula

∀π1.∀π2.∃π′
2.

(pπ1
≈P pπ2

∧ StdInπ1
)

→
(
pπ2

= pπ′
2
∧ (iπ2 = iπ′

2
) ∧
(
(dOut(oπ1

, oπ′
2
) ≤ κo)W(dIn(iπ1

, iπ′
2
) > κi)

))
Proposition 4.13. Let C ⊆ (2AP)

ω
be a circuit, let Ŝ be the reactive system

constructed from C according to Equation (4.1), and let C = ⟨≈P,StdIn, dIn, dOut,
κi, κo⟩ be a contract for robust cleanness, where dIn and dOut are past-forgetful.
Further, let StdInπ be a HyperLTL subformula such that {π := t} |=C StdInπ if

and only if t↓APi ∈ StdIn. Then Ŝ is trace integral u-robustly clean w.r.t. C if
and only if C satisfies the HyperLTL formula

∀π1.∀π2.∃π′
1.

(pπ1 ≈P pπ2 ∧ StdInπ1)

→
(
pπ1 = pπ′

1
∧ (iπ1

= iπ′
1
) ∧
(
(dOut(oπ′

1
, oπ2

) ≤ κo)W(dIn(iπ′
1
, iπ2

) > κi)
))

120 4 Model-Aware Software Doping Analysis

The difference between the first and second formula is subtle, but reflects the
fact that, while the first formula has the universal quantification on the outputs
of the program that takes the standard input and the existential quantification on
the behaviour that may deviate, the second one works in the other way around.
Thus, each of the formulas captures the ∀∃ alternation in the conclusion of
Definitions 3.74 and 3.75 of l-robust cleanness and u-robust cleanness. To notice
this, follow the existentially quantified variable (π′

2 for the first formula and π′
1

for the second one). In both formulas we use the weak until operator W. It
has exactly the behaviour that we need to represent the interaction between the
distances of inputs and the distances of outputs (cf. Lemma 4.11).
Below is the proof for the correctness of the characterisation of l-robust clean-

ness, i.e., for Proposition 4.12. For Proposition 4.13 the proof is analogue, hence
we omit it.

Proof of Proposition 4.12. Using the semantics of HyperLTL and Lemma 4.11.2
we get that

∅ |=C ∀π1.∀π2.∃π′
2.

(pπ1
≈P pπ2

∧ StdInπ1
)

→
(
pπ2

= pπ′
2
∧ (iπ2

= iπ′
2
) ∧
(
(dOut(oπ1

, oπ′
2
) ≤ κo)W(dIn(iπ1

, iπ′
2
) > κi)

))
is equivalent to

∀t1, t2 ∈ C. ∃t′2 ∈ C. (Π |=C pπ1 ≈P pπ2) ∧ (Π |=C StdInπ1)→
(Π |=C pπ2 = pπ′

2
) ∧ (∀k > 0. Π[k..] |=C iπ2 = iπ′

2
) ∧

(∀k > 0. (∀j ≤ k. Π[j..] |=C dIn(iπ1
, iπ′

2
) ≤ κi)→ Π[k..] |=C dOut(oπ1

, oπ′
2
) ≤ κo),

where Π = {π1 := t1, π2 := t2, π
′
2 := t′2}. Further, with Assumption 4.8, and the

assumption that {π := t} |=C StdInπ if and only if t↓APi ∈ StdIn, we get that this
is equivalent to

∀t1, t2 ∈ C. ∃t′2 ∈ C. (t1↓APp [0] ≈P t2↓APp [0]) ∧ (t1↓APi ∈ StdIn)→
(t2↓APp [0] = t′2↓APp [0]) ∧ (∀k > 0. t2↓APi [k] = t′2↓APi [k]) ∧
(∀k > 0. (∀j ≤ k. dIn(t1↓APi [j], t

′
2↓APi [j]) ≤ κi)→ dOut(t1↓APo [k], t

′
2↓APo [k]) ≤ κo).

We can switch from trace quantification to explicit parameter, input and output
quantification by using Lemma 4.10:

∀p1, p2 ∈ Param. ∀i1, i2 ∈ Inω. ∀o1 ∈ Ŝ(p1)(i1). ∀o2 ∈ Ŝ(p2)(i2).

∃p′2 ∈ Param. ∃i′2 ∈ Inω. ∃o′2 ∈ Ŝ(p′2)(i
′
2). p1 ≈P p2 ∧ i1 ∈ StdIn

→ p2 = p′2 ∧ (∀k > 0. i2[k] = i′2[k]) ∧
(∀k > 0. (∀j ≤ k. dIn(i1[j], i′2[j]) ≤ κi)→ dOut(o1[k], o

′
2[k]) ≤ κo).

4.2 HyperLTL 121

By further simplifying the above and by using that for past-forgetful distance
functions d(x[k], x′[k]) = d(x[..k], x′[..k]) for k > 0, we get

∀p1, p2 ∈ Param. p1 ≈P p2 →

∀i1 ∈ StdIn. ∀i2 ∈ Inω. ∀o1 ∈ Ŝ(p1)(i1). ∃o2 ∈ Ŝ(p2)(i2). ∀k > 0.

(∀j ≤ k. dIn(i1[..j], i2[..j]) ≤ κi)→ dOut(o1[..k], o2[..k]) ≤ κo.

Since for k = 0 we have that dOut(o1[..k], o2[..k]) = dOut(ϵ, ϵ) = 0, we have in
total that the above is equivalent to trace integral l-robust cleanness as defined
in Definition 3.74.

Finally, we also give the characterisation of a func-clean program in terms of
HyperLTL.

Proposition 4.14. Let C ⊆ (2AP)
ω
be a circuit, let Ŝ be the reactive system con-

structed from C according to Equation (4.1), and let C = ⟨≈P,StdIn, dIn, dOut, f⟩
be a contract for func-cleanness, where dIn and dOut are past-forgetful. Further,
let StdInπ be a HyperLTL subformula such that {π := t} |=C StdInπ if and only

if t↓APi ∈ StdIn. Then Ŝ is trace integral l-func-clean w.r.t. C if and only if C
satisfies the HyperLTL formula

∀π1.∀π2.∃π′
2.

(pπ1 ≈P pπ2 ∧ StdInπ1)

→
(
pπ2 = pπ′

2
∧ (iπ2

= iπ′
2
) ∧

(
dOut(oπ1

, oπ′
2
) ≤ f(dIn(iπ1

, iπ′
2
))
))
.

Proof. Using the semantics of HyperLTL and Lemma 4.11.1 we get that

∅ |=C ∀π1.∀π2.∃π′
2.

(pπ1
≈P pπ2

∧ StdInπ1
)

→
(
pπ2

= pπ′
2
∧ (iπ2

= iπ′
2
) ∧

(
dOut(oπ1

, oπ′
2
) ≤ f(dIn(iπ1

, iπ′
2
))
))
.

holds if and only if

∀t1, t2 ∈ C. ∃t′2 ∈ C. (Π |=C pπ1
≈P pπ2

) ∧ (Π |=C StdInπ1
)

→ (Π |=C pπ2
= pπ′

2
) ∧ (∀k > 0. Π[k..] |=C iπ2

= iπ′
2
) ∧

(∀k > 0. Π[k..] |=C dOut(oπ1
, oπ′

2
) ≤ f(dIn(iπ1

, iπ′
2
)))

holds with Π = {π1 := t1, π2 := t2, π
′
2 := t′2}. Using Assumption 4.8 and the

assumption that {π := t} |=C StdInπ if and only if t↓APi ∈ StdIn, we get that the

122 4 Model-Aware Software Doping Analysis

above is equivalent to

∀t1, t2 ∈ C. ∃t′2 ∈ C. (t1↓APp [0] ≈P t2↓APp [0]) ∧ (t1↓APi ∈ StdIn)→
(t2↓APp [0] = t′2↓APp [0]) ∧ (∀k > 0. t2↓APi [k] = t′2↓APi [k]) ∧

(∀k > 0. dOut(t1↓APo [k], t
′
2↓APo [k]) ≤ f(dIn(t1↓APi [k], t

′
2↓APi [k]))).

Using Lemma 4.10, we can replace the trace quantifiers by explicit quantifiers
over parameters, inputs and outputs, and get

∀p1, p2 ∈ Param. ∀i1, i2 ∈ Inω. ∀o1 ∈ Ŝ(p1)(i1). ∀o2 ∈ Ŝ(p2)(i2).

∃p′2 ∈ Param. ∃i′2 ∈ Inω. ∃o′2 ∈ Ŝ(p′2)(i
′
2). p1 ≈P p2 ∧ i1 ∈ StdIn

→ p2 = p′2 ∧ (∀k > 0. i2[k] = i′2[k]) ∧
(∀k > 0. dOut(o1[k], o

′
2[k]) ≤ f(dIn(i1[k], i′2[k]))).

By further simplifying the above and by using that for past-forgetful distance
functions d(x[k], x′[k]) = d(x[..k], x′[..k]) for k > 0, we get

∀p1, p2 ∈ Param. p1 ≈P p2 → ∀i1 ∈ StdIn. ∀i2 ∈ Inω.

∀o1 ∈ Ŝ(p1)(i1). ∃o2 ∈ Ŝ(p2)(i2).

∀k > 0. dOut(o1[..k], o2[..k]) ≤ f(dIn(i1[..k], i2[..k])).

Since for k = 0 we have that dOut(o1[..k], o2[..k]) = dOut(ϵ, ϵ) = 0, we have in
total that the above is equivalent to trace integral l-func-cleanness as defined in
Definition 3.80.

Proposition 4.15. Let C ⊆ (2AP)
ω
be a circuit, let Ŝ be the reactive system con-

structed from C according to Equation (4.1), and let C = ⟨≈P,StdIn, dIn, dOut, f⟩
be a contract for func-cleanness, where dIn and dOut are past-forgetful. Further,
let StdInπ be a HyperLTL subformula such that {π := t} |=C StdInπ if and only

if t↓APi ∈ StdIn. Then Ŝ is trace integral u-func-clean w.r.t. C if and only if C
satisfies the HyperLTL formula

∀π1.∀π2.∃π′
1.

(pπ1 ≈P pπ2 ∧ StdInπ1)

→
(
pπ1 = pπ′

1
∧ (iπ1

= iπ′
1
) ∧

(
dOut(oπ′

1
, oπ2

) ≤ f(dIn(iπ′
1
, iπ2

))
))
.

The proof for Proposition 4.15 is analogue to the proof of Proposition 4.14,
hence we omit it.
As before, the difference between the first and second formula is subtle and

can be noticed again by following the existentially quantified variables in each
of the formulas.

4.2 HyperLTL 123

Example 4.16. We take up the emission cleaning examples from Examples 3.50
and 3.66. With the HyperLTL formulas presented in this section, we can now
check whether the toy programs from Section 3.2 are robustly clean, respectively
func-clean. For the concrete example, the property of l-robust cleanness reduces
to checking formula

∀π1.∀π2.∃π′
2. (4.2)

StdInπ1
→
(

(tπ2
= tπ′

2
) ∧
(
(dOut(nπ1

,nπ′
2
) ≤ κo)W(dIn(tπ1

, tπ′
2
) > κi)

))
.

For u-robust cleanness it reduces to the obvious symmetric formula. For read-
ability reasons, we shorthandedly write t for thrtl and n for NOx. Notice that
any reference to parameters disappears since the emission control system does
not have parameters. The set of standard inputs is characterised by the LTL
formula StdIn ≡ (t ∈ (0, 1]). Likewise, we can verify that the model of the
emission control system is l-func-clean through the formula

∀π1.∀π2.∃π′
2. (4.3)

StdInπ1 →
(

(tπ2 = tπ′
2
) ∧

(
dOut(nπ1 ,nπ′

2
) ≤ f(dIn(tπ1 , tπ′

2
))
))
,

and that it is u-func-clean through the symmetric formula.

4.2.1 Experimental Results

We verified the cleanness of the toy emission cleaning system from Example 4.16
using the HyperLTL model checker MCHyper [57]. The input to the model
checker is a description of the system as an Aiger circuit and a hyperproperty
specified as a HyperLTL formula. At the time when we conducted the experi-
ments outlined below, MCHyper could only check HyperLTL formulas that were
alternation-free. Since the HyperLTL formulas from the previous section are of
the form ∀π1∀π2∃π′

2 . . ., and are, hence, not alternation-free, MCHyper could
not check these formulas directly. At the time when this thesis was submitted,
MCHyper is able to check formulas with a single quantifier alternation [38]. For
a ∀∀∃ quantified formula the tool replaces the existential quantifier by “strategic
choice”. The strategy, though, must be passed as an additional input to MCHy-
per. Coenen et al. [38, Table 1] show that robust cleanness can be checked with
this new version of MCHyper.
Without this new version of the tool, we proved, respectively disproved, our

formulas by strengthening them and their negations such that they become
alternation-free formulas.
To prove that program ec in Figure 4.1 is robustly clean, we strengthen for-

mula (4.2) by substituting π2 for the existentially quantified variable π′
2. The

124 4 Model-Aware Software Doping Analysis

resulting formula is alternation-free :

∀π1.∀π2. StdInπ1
→
(
(dOut(nπ1

,nπ2
) ≤ κo)W(dIn(tπ1

, tπ2
) > κi)

)
(4.4)

MCHyper confirms that program ec satisfies formula (4.4). The program thus
also satisfies formula (4.2). Notice that we had obtained the same formula if we
would have started from the formula symmetric to formula (4.2).
To prove that program aec in Figure 4.2 is doped with respect to Equa-

tion (4.2), we negate formula (4.2) and obtain

∃π1.∃π2.∀π′
2.

¬
(
StdInπ1

→
(

(tπ2
= tπ′

2
) ∧
(
(dOut(nπ1

,nπ′
2
) ≤ κo)W(dIn(tπ1

, tπ′
2
) > κi)

)))
This formula is of the form ∃π1.∃π2.∀π′

2. . . . and, hence, again not alternation-
free. We replace the two existential quantifiers with universal quantifiers and
restrict the quantification to two specific throttle values, a for π1 and b for π2
(we will explain further down which concrete values for a and b we used for the
analysis):

∀π1.∀π2.∀π′
2. (4.5.a)

(tπ1 = a ∧ tπ2 = b) →

¬
(
StdInπ1

→
(

(tπ2
= tπ′

2
) ∧
(
(dOut(nπ1

,nπ′
2
) ≤ κo)W(dIn(tπ1

, tπ′
2
) > κi)

)))
This transformation is sound as long as there actually exist traces with throttle
values a and b. We establish this by checking, separately, that the following
existential formula is satisfied:

∃π1.∃π2. (tπ1
= a ∧ tπ2

= b) (4.6)

MCHyper confirms the satisfaction of both formulas, which proves that for-
mula (4.2) is violated by program aec. Precisely, the counterexample that
shows the violation of formula (4.2) is any pair of traces π1 and π2 that makes
(tπ1 = a ∧ tπ2 = b) true in formula (4.6). We proceed similarly for the formula

symmetric to formula (4.2) obtaining two formulas just as before which are also
satisfied by aec and hence the original formula is not. Also, we follow a similar
process to prove that ec is func-clean but aec is not.
Table 4.1 shows experimental results obtained with MCHyper2 version 0.91

for the verification of robust cleanness. The Aiger models were constructed by
discretizing the values of the throttle and the NOx. We show results from two

2https://www.react.uni-saarland.de/tools/mchyper/

https://www.react.uni-saarland.de/tools/mchyper/

4.3 Related Work & Contributions 125

Program
NOx model size circuit size

property
time

step #transitions #latches #gates (sec.)

ec
0.05 1436 17 9749 eq. (4.4) 0.92

0.00625 60648 23 505123 eq. (4.4) 22.19

aec

0.05 3756 19 27574

(4.5.a) a = 0.1 1.62
(4.5.b) a = 0.1 1.6
(4.5.a) a = 1 1.68
(4.5.b) a = 1 1.56

0.00625 175944 25 1623679

(4.5.a) a = 0.1 102.07
(4.5.b) a = 0.1 96.3
(4.5.a) a = 1 97.67
(4.5.b) a = 1 92.8

Table 4.1: Experimental results from the verification of robust cleanness of ec
and aec

different models, where the values of the throttle was discretised in steps of 0.1
units in both models and the values of the NOx in steps of 0.05 and 0.00625. All
experiments were run under OS X “El Capitan” (10.11.6) on a MacBook Air with
a 1.7GHz Intel Core i5 and 4GB 1333MHz DDR3. In Table 4.1, the model size
is given in terms of the number of transitions, while the size of the Aiger circuit
encoding the model prepared for the property is given in terms of the number
of latches and gates. The specification checked by MCHyper is the formula
indicated in the property column. Formula (4.5.b) is the formula symmetric
to (4.5.a). For the throttle values a and b in formulas (4.5.a) and (4.5.b), we
chose b = 2 and let a vary as specified in the property column. Table 4.2 shows
similar experimental results for the verification of func-cleanness. With (4.4′),
(4.5.a′), and (4.5.b′) we indicate the similar variations to formulas (4.4), (4.5.a),
and (4.5.b) required to verify formula (4.3). Model checking takes less than
two seconds for the coarse discretisation and about two minutes for the fine
discretisation.

4.3 Related Work & Contributions

In this chapter, we picked two out of many possible techniques to prove cleanness
of sequential programs and reactive systems. The weakest precondition reasoning
provides a convenient methodology to prove or disprove cleanness for sequential
programs. For reactive systems, the HyperLTL characterisations allow for a tool-
supported cleanness analysis. Other verification techniques include relational

126 4 Model-Aware Software Doping Analysis

Program
NOx model size circuit size

property
time

step #transitions #latches #gates (sec.)

ec
0.05 1436 5 9869 (4.4′) 1.08

0.00625 60648 8 505285 (4.4′) 21.74

aec

0.05 3756 6 27708

(4.5.a′) a = 0.1 1.71
(4.5.b′) a = 0.1 1.72
(4.5.a′) a = 1 1.72
(4.5.b′) a = 1 1.77

0.00625 175944 9 1623855

(4.5.a′) a = 0.1 95.29
(4.5.b′) a = 0.1 97.48
(4.5.a′) a = 1 95.57
(4.5.b′) a = 1 95.5

Table 4.2: Experimental results from the verification of func-cleanness of ec and
aec

and Cartesian Hoare logics [16, 137, 110], self-composition and product programs
constructions [10], temporal logics [34, 57, 56], or games [92]. These techniques
greatly vary in their completeness, efficiency, and scalability.
The adaptation of the parametrised cleanness definitions for weakest precon-

dition reasoning has its origin in one of our previous works [42]. It is the result
of a fruitful cooperation with my co-authors. The same is true for the Hyper-
LTL characterisations. During my work on this thesis, though, I realised that
parts of the encodings of the non-atomic propositions (cf. Figure 4.3) were in-
correct, and that the propositions in [42] incorrectly claimed that the HyperLTL
characterisations capture the non-trace-integral variants of robust cleanness and
func-cleanness. I revised the complete proof structure and fixed the propositions
in this thesis. As part of this restructuring I decoupled the proofs from the en-
coding in Figure 4.3 and instead summarised in Assumption 4.8 the properties
that an encoding must satisfy for the proofs to be valid. This provides the flexi-
bility to replace the encoding from Figure 4.3 with any other encoding satisfying
Assumption 4.8. The experiment with MCHyper is primarily a contribution of
myself.

5 Model-Agnostic Software Doping
Analysis

A common reason to check whether a program satisfies (a suitable form of) clean-
ness is to detect software doping, i.e., a behaviour of a software that is intended
by the manufacturer, but that is not in the interest of the user or society. When
analysing software for this reason, the manufacturer is typically not involved;
they already know that their software is not clean. Instead, the analysis might
be initiated by the user of the system, an NGO, or by researchers. In most
of these cases, there is not sufficient information available to do a model-aware
analysis and the system is merely a black-box. The analysis must, essentially,
be based on observations of the system. In this chapter, we introduce formal
foundations to conduct robust cleanness tests using a model-based testing ap-
proach [119, 120, 121]. Furthermore, we will extend the HyperLTL characterisa-
tions of robust cleanness and func-cleanness from Section 4.2 to HyperSTL and
STL characterisations. This enables us to complement the model-based testing
approach with probabilistic falsification [95, 2] techniques to systematically find
violations of robust cleanness or func-cleanness.

5.1 Cleanness of Labelled Transition Systems

In this chapter we will focus on robust cleanness and func-cleanness of mixed-
IO systems (cf., Section 3.3). Mixed-IO systems are defined by means of sets
of traces that describe the behaviour of a system. Hence, it is well suited for
black-box settings that we target in this chapter. In the following, we will
use labelled transition systems to make the reasoning about sets of traces more
convenient. The paths in an LTS originating from the LTS’ initial state induce a
set of traces. Conversely, for every set of traces an LTS can be constructed that
induces this set of traces. Notably, constructing mixed-IO systems from LTS
does not necessarily satisfy the input and output enabledness that is required
for mixed-IO systems. To ensure that the induced mixed-IO system is input
enabled, we will work with input-output transition systems, which constitute
the subset of labelled transition systems that are input enabled. If an IOTS L
is not output enabled, then there is some state that does not have an outgoing

128 5 Model-Agnostic Software Doping Analysis

transition labelled with an output symbol. To overcome this problem, instead of
using L, we use its quiescence closure Lδ, i.e., we use the special output symbol
δ to represent the absence of an output (cf. Section 2.3). The IOTS Lδ induces
a mixed-IO system that is input and output enabled. By default, a distance
function for outputs dOut is not prepared to handle output traces that contain
the quiescence symbol. The cleanness definitions we will show below use an
extended output distance function dOutδ that is based on the original function
dOut. Concretely, dOutδ(σ1, σ2) := dOut(σ1\δ, σ2\δ) if σ1[k] = δ ⇔ σ2[k] = δ for
all k, and dOutδ(σ1, σ2) := ∞ otherwise, where σ\δ is the same as σ with all δ
removed. dOutδ returns the distance infinity for two traces if they have quiescence
symbols at different positions. Otherwise, the quiescence symbols are removed
and what remains after that removal is passed to the original output distance
function.

We could use robust cleanness for mixed-IO systems straightforwardly for
cleanness of IOTS. An IOTS L would be robustly clean w.r.t. some contract
C if and only if tracesω(Lδ) is robustly clean w.r.t. C. To make our approach
better usable in practice, we generalise this notion of cleanness to allow also
partial knowledge about the output behaviour of a system for standard inputs.
Concretely, instead of defining only inputs as standard, we define inputs and
outputs for such inputs as standard. Notably, for an input, one of its outputs
can be considered as standard behaviour while a different output can be ex-
cluded. This corresponds to a testing context, in which recordings of the system
executing standard inputs are the baseline for testing. We adapt the clean-
ness contracts from Chapter 3 by replacing the set StdIn with an LTS Std that
defines the standard behaviour and call the resulting tuple cleanness context.
Conceptually, cleanness contracts and contexts are very similar: For a mixed-
IO robust cleanness contract C′ = ⟨StdIn, dIn, dOut, κi, κo⟩ and an IOTS L that
induces a mixed-IO system L′ = tracesω(Lδ), the tuple C = ⟨Std, dIn, dOut, κi, κo⟩
is a cleanness context, if Std is an LTS such that tracesω(Stdδ) ⊆ L′(StdIn), i.e.,
the behaviour captured by Stdδ is also a behaviour of Lδ. Ideally, tracesω(Stdδ)
is equal to L′(StdIn), because missing standard behaviour may lead to false pos-
itives of doping detection. Notice that a cleanness context implicitly defines a
set StdIn; it is determined by the input sequences tracesω(Stdδ)↓i occurring in
Stdδ.

Robust cleanness for LTS closely resembles robust cleanness for mixed-IO
systems, except for the special handling of the standard behaviour and the usage
of IOTS instead of mere trace sets.

Definition 5.1. An IOTS L is l-robustly clean with respect to cleanness con-
text C = ⟨Std, dIn, dOut, κi, κo⟩ if and only if tracesω(Stdδ) ⊆ tracesω(Lδ) and
for all σ ∈ tracesω(Stdδ), σ

′ ∈ tracesω(Lδ) and k > 0 it holds that whenever

5.1 Cleanness of Labelled Transition Systems 129

dIn(σ[..j]↓i, σ′[..j]↓i) ≤ κi for all j ≤ k then there exists σ′′ ∈ tracesω(Lδ) such
that σ′↓i = σ′′↓i and dOutδ(σ[..k]↓o, σ′′[..k]↓o) ≤ κo.

We remark that cleanness definitions for IOTS are system-specific, i.e., they are
only applicable to the IOTS from which the standard behaviour Std is obtained
from (or could have been obtained from). This is in contrast to all cleanness
notions from Chapter 3 that are defined w.r.t. contracts, which are applicable to
all systems matching the sets In and Out implicitly defined through the distance
functions. For an IOTS to be clean according to the above definition, the traces
of the (quiescence-closed) standard behaviour must be fully contained in the
behaviour of the IOTS.

Definition 5.2. An IOTS L is u-robustly clean with respect to cleanness con-
text C = ⟨Std, dIn, dOut, κi, κo⟩ if and only if tracesω(Stdδ) ⊆ tracesω(Lδ) and
for all σ ∈ tracesω(Stdδ), σ

′ ∈ tracesω(Lδ) and k > 0 it holds that whenever
dIn(σ[..j]↓i, σ′[..j]↓i) ≤ κi for all j ≤ k then there exists σ′′ ∈ tracesω(Stdδ) such
that σ↓i = σ′′↓i and dOutδ(σ

′[..k]↓o, σ′′[..k]↓o) ≤ κo.

A peculiarity of u-robust cleanness of IOTS is in the existential quantification:
Instead of quantifying over traces of Lδ, the quantifier requests a trace from the
standard LTS Stdδ. This is necessary, because, as explained above, the standard
LTS may be incomplete. So, to satisfy Definition 5.2 there must be an output
for input σ↓i that has been actually observed; it does not suffice if the system
is in principle capable of showing an output that satisfies the output distance
requirement.

Finally, the full robust cleanness definition is given below using the quantifier-
based characterisation analogue to its mixed-IO counterpart.

Definition 5.3. An IOTS L is robustly clean with respect to cleanness con-
text C = ⟨Std, dIn, dOut, κi, κo⟩ if and only if tracesω(Stdδ) ⊆ tracesω(Lδ) and
for all σ ∈ tracesω(Stdδ), σ

′ ∈ tracesω(Lδ) and k > 0 it holds that whenever
dIn(σ[..j]↓i, σ′[..j]↓i) ≤ κi for all j ≤ k then

1. there exists σ′′ ∈ tracesω(Lδ), such that σ′↓i = σ′′↓i and
dOutδ(σ[..k]↓o, σ′′[..k]↓o) ≤ κo,

2. there exists σ′′ ∈ tracesω(Stdδ), such that σ↓i = σ′′↓i and
dOutδ(σ

′[..k]↓o, σ′′[..k]↓o) ≤ κo.

In the sequel, we will often use the predicate ∀j ≤ k : dIn(σ[..j]↓i, σ′[..j]↓i) ≤ κi;
we abbreviate this predicate by V(dIn,κi)(k, σ, σ

′). If dIn and κi are known from
the context, we omit the index.

In a similar way, we obtain LTS variants of func-cleanness.

130 5 Model-Agnostic Software Doping Analysis

Definition 5.4. An IOTS L is l-func-clean with respect to cleanness context
C = ⟨Std, dIn, dOut, f⟩ if and only if tracesω(Stdδ) ⊆ tracesω(Lδ) and for all σ ∈
tracesω(Stdδ), σ

′ ∈ tracesω(Lδ) and k > 0, there exists σ′′ ∈ tracesω(Lδ), such
that σ′↓i = σ′′↓i and dOut(σ[..k]↓o, σ′′[..k]↓o) ≤ f(dIn(σ[..k]↓i, σ′[..k]↓i)).

Definition 5.5. An IOTS L is u-func-clean with respect to cleanness context
C = ⟨Std, dIn, dOut, f⟩ if and only if tracesω(Stdδ) ⊆ tracesω(Lδ) and for all σ ∈
tracesω(Stdδ), σ

′ ∈ tracesω(Lδ) and k > 0, there exists σ′′ ∈ tracesω(Stdδ), such
that σ↓i = σ′′↓i and dOut(σ

′[..k]↓o, σ′′[..k]↓o) ≤ f(dIn(σ[..k]↓i, σ′[..k]↓i)).

Definition 5.6. An IOTS L is func-clean with respect to cleanness context
C = ⟨Std, dIn, dOut, f⟩ if and only if tracesω(Stdδ) ⊆ tracesω(Lδ) and for all σ ∈
tracesω(Stdδ), σ

′ ∈ tracesω(Lδ) and k > 0,

1. there exists σ′′∈ tracesω(Lδ), such that σ′↓i = σ′′↓i and
dOut(σ[..k]↓o, σ′′[..k]↓o) ≤ f(dIn(σ[..k]↓i, σ′[..k]↓i)),

2. there exists σ′′∈ tracesω(Stdδ), such that σ↓i = σ′′↓i and
dOut(σ

′[..k]↓o, σ′′[..k]↓o) ≤ f(dIn(σ[..k]↓i, σ′[..k]↓i)).

Trace integrity preserving robust cleanness definitions for LTS-defined systems
are enumerated below. They deviate from the above definitions as expected (cf.
Sections 3.2.4 and 3.3.3).

Definition 5.7. An IOTS L is trace integral l-robustly clean w.r.t. cleanness
context C = ⟨Std, dIn, dOut, κi, κo⟩ if and only if tracesω(Stdδ) ⊆ tracesω(Lδ) and
for all σ ∈ tracesω(Stdδ) and σ

′ ∈ tracesω(Lδ), there exists σ′′∈ tracesω(Lδ) such
that σ′↓i = σ′′↓i and for every k > 0 it holds that whenever dIn(σ[..j]↓i, σ′[..j]↓i) ≤
κi for all j ≤ k, then dOutδ(σ[..k]↓o, σ′′[..k]↓o) ≤ κo.

Definition 5.8. An IOTS L is trace integral u-robustly clean w.r.t. cleanness con-
text C = ⟨Std, dIn, dOut, κi, κo⟩ if and only if tracesω(Stdδ) ⊆ tracesω(Lδ) and for all
σ ∈ tracesω(Stdδ) and σ

′ ∈ tracesω(Lδ), there exists σ
′′∈ tracesω(Stdδ) such that

σ↓i = σ′′↓i and for every k > 0 it holds that whenever dIn(σ[..j]↓i, σ′[..j]↓i) ≤ κi
for all j ≤ k, then dOutδ(σ

′[..k]↓o, σ′′[..k]↓o) ≤ κo.

Definition 5.9. An IOTS L is trace integral robustly clean w.r.t. cleanness con-
text C = ⟨Std, dIn, dOut, κi, κo⟩ if and only if L is trace integral l-robustly clean
w.r.t. C and L is trace integral u-robustly clean w.r.t. C.

Accordingly, there are trace integral definitions for func-cleanness.

Definition 5.10. An IOTS L is trace integral l-func-clean with respect to clean-
ness context C = ⟨Std, dIn, dOut, f⟩ if and only if tracesω(Stdδ) ⊆ tracesω(Lδ) and
for all σ ∈ tracesω(Stdδ) and σ

′ ∈ tracesω(Lδ), there exists σ
′′∈ tracesω(Lδ), such

that σ′↓i = σ′′↓i and for every k > 0, it holds that dOut(σ[..k]↓o, σ′′[..k]↓o) ≤
f(dIn(σ[..k]↓i, σ′[..k]↓i)).

5.2 Reference Implementation for Robust Cleanness 131

Definition 5.11. An IOTS L is trace integral u-func-clean with respect to clean-
ness context C = ⟨Std, dIn, dOut, f⟩ if and only if tracesω(Stdδ) ⊆ tracesω(Lδ) and
for all σ ∈ tracesω(Stdδ) and σ′ ∈ tracesω(Lδ), there exists σ′′ ∈ tracesω(Stdδ),
such that σ↓i = σ′′↓i and for every k > 0, it holds that dOut(σ

′[..k]↓o, σ′′[..k]↓o) ≤
f(dIn(σ[..k]↓i, σ′[..k]↓i)).

Definition 5.12. An IOTS L is trace integral func-clean with respect to clean-
ness context C = ⟨Std, dIn, dOut, f⟩ if and only if L is trace integral l-func-clean
w.r.t. C and L is trace integral u-func-clean w.r.t. C.

5.2 Reference Implementation for Robust Cleanness

As we will show in this section, for many robust cleanness contexts, there exists
an IOTS that is robustly clean w.r.t. this context and that is maximal in the
sense that whatever behaviour is deemed robustly clean w.r.t. this context, it is
part of this IOTS. The condition for such an IOTS to exist is a cleanness context
that actually allows robustly clean IOTS to exist at all. As the following example
shows, this is not always the case.

Stdδ

i−κi i+κi

δ o

δ

δδ

L

i−κi i+κi

δ o

i

x

Example 5.13. The LTS Stdδ on the right is a quiescence-
closed standard LTS Stdδ for the implementation L shown
below Stdδ. For simplicity some input transitions are omitted.
Assume Out = {o} and In = {i, i − κi, i + κi}. Consider the
transition labelled x of L. This must be one of either o or
δ, but we will see that either choice leads to a contradiction
w.r.t. the output distances induced. The input projection of
the middle path in L is i –i and the input distance to (i−κi) –i
and (i + κi) –i is exactly κi, so both branches (i + κi) o and
(i−κi) δ of Stdδ must be considered to determine x. For x = o,
the output distance of –o x to –o o in the right branch of Stdδ
is 0, i.e. less than κo. However, dOutδ(–o δ, –o o) = ∞ > κo.
Thus the output distance to the left branch of Stdδ is too
high if picking o. Instead picking x = δ does not work either for the symmetric
reasons – the problem switches sides. Thus, neither picking o nor δ for x satisfies
robust cleanness here (more precisely, u-robust cleanness in this case). Indeed,
no implementation satisfying robust cleanness exists for the given context.

The problem of unsatisfiable contexts is unique to IOTS; for the contract-based
cleanness definitions for other system models, it is always possible to describe
a system that satisifies a contract. The crucial difference is that a cleanness
context defines the outputs for the standard inputs. Irrespective of how an
IOTS looks like, the outputs this IOTS must exhibit for standard inputs are

132 5 Model-Agnostic Software Doping Analysis

fixed by Stdδ. In the above example, we cannot change the implementation L to
get better outputs for inputs i − κi and i + κi (without changing the cleanness
context).

Definition 5.14 (Satisfiable Context). A context C = ⟨Std, dIn, dOut, κi, κo⟩ is
satisfiable, if and only if, there exists an IOTS L that is robustly clean w.r.t. C.
A contract that is not satisfiable is called unsatisfiable.

If a context C is satisfiable, then this means in particular that there exists an
IOTS L that is l-robustly clean w.r.t. C and that is u-robustly clean w.r.t. C.
Moreover, the following proposition shows that the standard LTS of a satisfiable
context is always u-robustly clean on its own. That is, every behaviour that
Std shows is justifiable by every trace of Std. The LTS Std may, however, lack
behaviour to satisfy l-robust cleanness.

Proposition 5.15. Let C = ⟨Std, dIn, dOut, κi, κo⟩ be a cleanness context. If C is
satisfiable, then Std is u-robustly clean w.r.t. C.

Proof. First, observe that obviously tracesω(Stdδ) ⊆ tracesω(Stdδ). Further, let
σ, σ′ ∈ tracesω(Stdδ) and k > 0. We may assume that V(dIn,κi)(k, σ, σ

′) holds, and
have to show that there exists a trace in σ′′ ∈ tracesω(Stdδ), such that σ↓i = σ′′↓i
and dOutδ(σ

′[..k]↓o, σ′′[..k]↓o) ≤ κo.
From satisfiability of C, we get an IOTS L that is robustly clean w.r.t. C, and,

hence, u-robustly clean w.r.t. C. From Definition 5.2 we get that tracesω(Stdδ) ⊆
tracesω(Lδ); thus, σ

′ ∈ tracesω(Lδ). Further, since V(dIn,κi)(k, σ, σ
′) holds, we get

for σ and σ′ from u-robust cleanness of L a trace σ′′ ∈ tracesω(Stdδ) such that
σ↓i = σ′′↓i and dOutδ(σ

′[..k]↓o, σ′′[..k]↓o) ≤ κo.

For every satisfiable context, there exists an IOTS that is the largest imple-
mentation that is robustly clean w.r.t. this context. “Largest” is defined on the
set of traces of an IOTS:

Definition 5.16 (Largest Implementation). Let C be a context and L an IOTS
that is robustly clean w.r.t. C. L is the largest implementation for C if and only if
for every L′ that is robustly clean w.r.t. C, it holds that tracesω(L′δ) ⊆ tracesω(Lδ).

If a cleanness context is satisfiable, there is always a (up to trace equivalence)
unique IOTS that is the largest, robustly clean implementation for this context.
We will construct this largest implementation and call it reference implementa-
tion R. To construct R, we will in the following assume, for simplicity of the
construction, past-forgetful output distance functions. Thus, we simply assume
that dOut : (Out∪{–o} × Out∪{–o})→ R≥0. We remark that dOutδ(δ, o) =∞ for
all o ̸= δ.

5.2 Reference Implementation for Robust Cleanness 133

ϵ

i+[0, 2κi]i+[−κi, 0) other i

i+[−κi, 0) o+[−κo, 2κo]i+[−κi, 0) any i i+[0, 2κi] any i i+[0, 2κi] o+[0, 2κo] other i any o other i any i

i+[−κi,0)
i+[0,2κi]

other i

any i o+[−κo,2κo] any i o+[0,2κo] any o any i

Figure 5.1: The reference implementation R of Std in Example 5.18.

The reference implementation R is derived from a concrete cleanness context
C = ⟨Std, dIn, dOut, κi, κo⟩. Since R must be input-enabled, it supports any possi-
ble sequence of inputs. For every state in R that is reachable through an input
σ, R can nondetermistically choose an output that satisifies u-robust cleanness.
That is, an edge leaving such a state is labelled with output o only if for every
trace σi of Stdδ with an input distance of at most κi, there is a state in Stdδ
reachable through σi that has an outgoing edge labelled with output o′ that is
at most κo away from o. Moreover, every state in R offers every output that is
permitted by u-robust cleanness. Consequently, for inputs beyond the κi radius
of all standard inputs, all outputs in Outδ are possible in the respective state in
R.
To construct the reference implementation R we decide to model the quies-

cence transitions explicitly instead of using the quiescence closure. We preserve
the property, that in each state of the LTS it is possible to do an output or a
quiescence transition. The construction of R proceeds by adding all transitions
that satisfy u-robust cleanness.

Definition 5.17. Let C = ⟨Std, dIn, dOut, κi, κo⟩ be a context. The reference
implementation R for C is the LTS ⟨(In ∪ Outδ)

∗, In,Outδ,→R, ϵ⟩ where →R is
defined by

∀σi ∈ tracesω(Stdδ)↓i :
(∀j ≤ |σ|+ 1: dIn((σ · a)[..j]↓i, σi[..j]) ≤ κi)

⇒ ∃σS ∈ tracesω(Stdδ) : σS↓i = σi ∧ dOutδ(a↓o, σS [|σ|+ 1]↓o) ≤ κo
σ

a−→R σ · a

Notably, R is deterministic, since only transitions of the form σ
a−→R σ · a are

added. Even further, the construction of R is such that we are always able to
identify for each trace the (unique) state which can be reached by that trace.
This is also expressed formally in Lemma 5.19 and Corollary 5.20. Before, we
provide a detailled example to explain the construction of a reference implemen-
tation.

134 5 Model-Agnostic Software Doping Analysis

s0

s2s1 s3

s4 s5 s6

Std
i i i+κi

o o+κo o+κo

Example 5.18. Figure 5.1 gives a schematic representa-
tion of the reference implementation R for the LTS Std
on the right. Input (output) actions are denoted with
letter i (o, respectively), quiescence transitions are omit-
ted. We use the absolute difference of the values, so that
dIn(i, i

′) := |i − i′| and dOut(o, o
′) := |o − o′|. For this

example, the quiescence closure Stdδ looks like Std but
with δ-loops in states s0, s4, s5, and s6. Label r+[a, b] should be interpreted
as any value r′ ∈ [a+ r, b+ r] and similarly r+[a, b) and r+(a, b], appropriately
considering closed and open boundaries; “other i” represents any other input not
explicitly considered leaving the same state; and “any i” and “any o” represent
any possible input and output (including δ), respectively. In any case –i and –o
are not considered since they are not part of the alphabet of the LTS. Also, we
note that any possible sequence of inputs becomes enabled in the bottom states
in R in Figure 5.1 (omitted in the picture).
The reference implementation R is obtained according to Definition 5.17. In

order to give an idea of its construction we focus on the states σ such that |σ| = 1
(i.e., σ ∈ In ∪ {δ}) – other cases are simpler. First, notice that

tracesω(Stdδ) = δω + δ∗ i o δω + δ∗ i (o+κo) δ
ω + δ∗ (i+κi) (o+κo) δ

ω.

Here we use ω-regular notation to describe the set of traces. This means that
tracesω(Stdδ) contains the trace that remains quiet indefininitely (namely δω),
all traces that may stay quiet for a while, receive an input i, produce and output
o, and remain quiet indefininitely (i.e., any trace in δ∗ i o δω), and so on. Hence,
the set tracesω(Stdδ)↓i is then

tracesω(Stdδ)↓i = –ωi + –∗i i –
ω
i + –∗i (i+κi) –

ω
i .

Suppose σ ∈ i+[−κi, 0) and a ∈ o+ [−κo, 2κo]. Then, σi = i –ωi ∈ tracesω(Stdδ)↓i
is the only standard trace satisfying ∀j ≤ 2: dIn((σ · a)↓i[..j], σi[..j]) ≤ κi. If
a ∈ o+ [−κo, κo] take σS = i o δω, then σS↓i = σi ∧ dOutδ(a↓o, σS [|σ| + 1]↓o) ≤
κo holds. If a ∈ o+ [0, 2κo], then σS = i (o+κo) δ

ω is the one that does

the job. Therefore σ
a−→R σ · a. This case defines the schematic transition

i+[−κi, 0)
o+[−κo,2κo]−−−−−−−−→R i+[−κi, 0) o+[−κo, 2κo].

If instead a ∈ Out but a /∈ o+ [−κo, 2κo], then no a-outgoing transition from
σ ∈ i+[−κi, 0) is possible since no matching σS can be found. However, if
a ∈ In, no σi ∈ tracesω(Stdδ)↓i satisfies ∀j ≤ 2: dIn((σ · a)↓i[..j], σi[..j]) ≤ κi.
As the antecedent of the implication is false, any input defines a valid outgoing
transition from a state σ ∈ i+[−κi, 0). This yields the schematic transition

i+[−κi, 0)
any i−−−→R i+[−κi, 0) any i.

5.2 Reference Implementation for Robust Cleanness 135

Suppose now σ ∈ i+[0, 2κi] and a ∈ o+ [0, 2κo]. We consider the two sub-
cases σ ∈ i+[0, κi] and σ ∈ i+(κi, 2κi]. If σ ∈ i+(κi, 2κi] then σi = (i+κi) –

ω
i ∈

tracesω(Stdδ)↓i is the only one satisfying ∀j ≤ 2: dIn((σ ·a)↓i[..j], σi[..j]) ≤ κi and
the construction follows similarly as above. If instead σ ∈ i+[0, κi], then every
σi ∈ {i –ωi , (i+κi) –ωi } satisfies ∀j ≤ 2: dIn((σ · a)↓i[..j], σi[..j]) ≤ κi. If σi = i –ωi ,
choose σS = i (o+κo) δ

ω, and if σi = (i+κi) –
ω
i , choose σS = (i+κi) (o+κo) δ

ω. In
both of these cases, σS↓i = σi ∧ dOutδ(a↓o, σS [|σ|+ 1]↓o) ≤ κo is satisfied. Hence

σ
a−→R σ · a. Putting both subcases together yields the schematic transition

i+[0, 2κi]
o+[0,2κo]−−−−−−→R i+[0, 2κi] o+ [0, 2κo].

The case in which σ ∈ i+[0, 2κi] but a /∈ o+ [0, 2κo] follows as before.
If σ /∈ i+[−κi, 2κi] (in other words, “σ ∈ other i”), there is no trace σi ∈

tracesω(Stdδ)↓i such that ∀j ≤ 2: dIn((σ · a)↓i[..j], σi[..j]) ≤ κi, so any transition
is possible.
Finally, if σ = δ (omitted in Figure 5.1) the construction would follow just

like for the initial state ϵ.

Properties of the Reference Implementation R. To show that R is defined in a
reasonable way, we will establish some important properties of R. We start with
a fundamental property, which exploits the way R is constructed to serve as a
basis for many of the following proofs. Essentially, every state in R is “labelled”
with the unique trace by which the state is reachable, if it is reachable at all.

Lemma 5.19. Let C be a context and R the reference implementation for C.
Then, for all finite paths ρ ∈ paths∗(R) it holds that last(ρ) = trace(ρ).

Proof. We proceed by induction on the number of states in ρ. If ρ has only one
state then ρ = ϵ = last(ρ) = trace(ρ), since ϵ is the initial state in R.
Suppose now, that ρ = (ρ′ a s) ∈ paths∗(R). By induction, last(ρ′) = trace(ρ′).

By Definition 5.17, last(ρ′)
a−→R s only if s = last(ρ′) · a. But last(ρ) = s =

last(ρ′) · a = trace(ρ′) · a = trace(ρ), which proves the lemma.

As a consequence, for every trace of R we can reconstruct the unique path
with this trace.

Corollary 5.20. Let C be a context, R the reference implementation for C,
ρ ∈ paths∗(R) a finite path of R and σ = trace(ρ) its trace. Then ρ is exactly
the path ϵ σ[1] (σ[..1])σ[2] (σ[..2]) · · · (σ[..|σ| − 1])σ[|σ|] (σ[..|σ|]).
One of the most desired properties of R that we will show is that it is the

largest implementation for the context it is constructed from. The following
lemma shows a similar property. It assumes implementations to be LTS (rather
than IOTS) and it considers only u-robust cleanness. This Lemma will be central
to many of the following proofs.

136 5 Model-Agnostic Software Doping Analysis

Lemma 5.21. Let C be a context and R the reference implementation for C.
Then, for every LTS L that is u-robustly clean, it holds that tracesω(Lδ) ⊆
tracesω(R).

Proof. For a proof by contradiction, suppose that there is some L that is u-rob-
ustly clean, but which has some trace σ ∈ tracesω(Lδ) that is not a trace of
R, i.e. σ ̸∈ tracesω(R). Since σ ̸∈ tracesω(R), there must be some k > 0
for which σ[..(k − 1)] ∈ traces∗(R), but σ[..k] ̸∈ traces∗(R). Hence, there is no

transition σ[..(k−1)] σ[k]−−→R σ[..k] inR. This can only be, because the premise of
Definition 5.17 is not satisfied, i.e., there is some σi ∈ tracesω(Stdδ)↓i, such that
(1) V(k, σ, σi) and (2) for all standard traces σS ∈ tracesω(Stdδ) with σs↓i = σi
it holds that dOutδ(σ[k]↓o, σS [k]↓o) > κo.
Let σio ∈ tracesω(Stdδ) such that σio↓i = σi. From Definition 5.2 we get for
L, σio, σ and k with (1) a trace σ′′ ∈ tracesω(Stdδ) with σ′′↓i = σio↓i = σi and
dOutδ(σ[..k]↓o, σ′′[..k]↓o) ≤ κo. From the assumption that dOutδ is past-forgetful,
we get that dOutδ(σ[k]↓o, σ′′[k]↓o) ≤ κo, which is a contradiction to (2).

Definition 5.17 models an LTS that is deterministic and quiescence is added
explicitly instead of relying on the quiescence closure. As a consequence, outputs
and quiescence may coexist as options in a state, i.e., they are not mutually
exclusive. Lemma 5.22 shows that this is done in the spirit of model-based
testing theory and ioco, that is, Rδ is identical to R.

Lemma 5.22. Let C be a satisfiable context andR the reference implementation
for C. Then, the quiescence closure Rδ of R is exactly R.

Proof. We have to show that for every state σ ∈ (In∪Outδ)∗, there is a transition

σ
o−→R σ · o in R with o ∈ Outδ. Let σi = σ↓i · (–i)ω an infinite input trace. We

proceed by case-distinction on whether there is a trace σS ∈ tracesω(Stdδ) such
that V(|σ|+1, σi, σS) holds. If this is not the case, the premise of Definition 5.17

does not hold and hence we get that for all o ∈ Outδ a transition σ
o−→R σ · o in

R.
In the case that the assumption does hold, we get from satisfiability of C and
Definition 5.14 an implementation L that is robustly clean and, hence, in partic-
ular l-robustly clean. Using Definition 5.1, we get a trace σ′′ ∈ tracesω(Lδ) with
σ′′↓i = σi and dOutδ(σ

′′[|σ|+ 1]↓o, σS [|σ|+ 1]↓o) ≤ κo. From Lemma 5.21 we get
that σ′′ ∈ tracesω(R). For this trace to exist it is necessary that there is the

transition σ′′[..|σ|] σ′′[|σ|+1]−−−−−−→R σ′′[..|σ|+ 1] in R. Hence, we know (from Defini-
tion 5.17) that for every trace σS ∈ tracesω(Stdδ)↓i for which V(|σ| + 1, σ′′, σS)
holds, there is some σ̂ ∈ tracesω(Stdδ) with σ̂↓i = σS↓i and dOutδ(σ

′′[|σ| +
1], σ̂[|σ|+1]↓o) ≤ κo. Since σ′′↓i = σi and in particular σ↓i ·–i = σ′′[..|σ|+1]↓i, we

5.2 Reference Implementation for Robust Cleanness 137

have that for every σS and j ≤ |σ|+ 1, the equivalence dIn(σ
′′[..j]↓i, σS [..j]↓i) ≤

κi ⇐⇒ dIn((σ · σ′′[|σ| + 1])[..j]↓i, σS [..j]↓i) ≤ κi holds. Hence, for every
σS ∈ tracesω(Stdδ)↓i with V(|σ| + 1, (σ · σ′′[|σ| + 1]), σS), we can provide a
σ̂ ∈ tracesω(Stdδ) with σ̂↓i = σS↓i and dOutδ(σ

′′[|σ| + 1], σ̂[|σ| + 1]↓o) ≤ κo. By

Definition 5.17 we know that the transition σ[..|σ|] σ′′[|σ|+1]−−−−−−→R σ[..|σ|] ·σ′′[|σ|+1]
exists in R. Since σ′′↓i = σi, we know that σ′′↓i[|σ| + 1] = –i and hence
σ′′[|σ|+ 1] ∈ Outδ.

The LTS R is supposed to serve as an implementation. Hence, Lemma 5.23
shows that R is input-enabled and hence is an IOTS.

Lemma 5.23. Let C be a satisfiable context with standard Std and let R be
constructed from C. Then R is an input-output transition system.

Proof. By construction, R is a labelled transition system. By Definition 2.1 an
LTS is an IOTS, if it is input-enabled. Hence, we have to show that for every

state σ ∈ (In∪Out)∗ it holds for every i ∈ In that there is a transition σ
i−→R σ·i in

R. To have this transition, the premise of Definition 5.17 must be satisfied. Let
σi ∈ traces∗(Stdδ)↓i and accordingly σS ∈ traces∗(Stdδ) a trace with σS↓i = σi.
Assume that V(|σ|+1, (σ ·i), σi) holds (otherwise the lemma holds trivially). We
pick σS for the existential quantifier. By definition σS↓i = σi, so it suffices to
show that dOutδ(i↓o, σS [|σ|+1]↓o) = dOutδ(–o, σS [|σ|+1]↓o) ≤ κo. We continue by
case distinction of whether σS [|σ|+1] ∈ In. If this is the case, we are immediately
done, because dOutδ(–o, –o) = 0 ≤ κo.
If instead σS [|σ| + 1] ∈ Outδ, from satisfiability of C we get an LTS L that is
robustly clean. Hence, L is l-robustly clean and u-robustly clean. From l-robust
cleanness of L we get, with σS for σ, (σ · i) for σ′ and k = |σ| + 1, a trace
σ̂ ∈ tracesω(Lδ) with σ̂↓i = (σ · i)↓i and dOutδ(σ̂[|σ| + 1]↓o, σS [|σ| + 1]↓o) ≤ κo.
From u-robust cleanness of L and Lemma 5.21 we get that σ̂ ∈ tracesω(R).
We get from dOutδ(σ̂[|σ| + 1]↓o, σS [|σ| + 1]↓o) ≤ κo and σ̂↓i = (σ · i)↓i that
dOutδ(–o, σS [|σ|+ 1]↓o) ≤ κo, which concludes the proof.

Each context contains some standard behaviour modelled as an LTS Std. The
reference implementation for a context should be constructed in a way such
that the standard behaviour is contained in R, i.e., tracesω(Stdδ) ⊆ tracesω(Rδ).
Lemma 5.24 shows that this is the case for R.

Lemma 5.24. Let C = ⟨Std, dIn, dOut, κi, κo⟩ a satisfiable context and R the
reference implementation for C. Then tracesω(Stdδ) ⊆ tracesω(Rδ).

Proof. The lemma follows from Proposition 5.15 and Lemmas 5.21 and 5.22.

138 5 Model-Agnostic Software Doping Analysis

R is modelled by adding all transitions satisfying Definition 5.2. Lemma 5.25
confirms that, conversely, R satisfies u-robust cleanness. Then, Lemma 5.26
shows that R satisfies also l-robust cleanness.

Lemma 5.25. Let C be a context and R the reference implementation for C.
Then, R is u-robustly clean w.r.t. C.

Proof. From Lemma 5.23 we know thatR is an IOTS and from Lemma 5.24 that
tracesω(Stdδ) ⊆ tracesω(Rδ). Let σ ∈ tracesω(Stdδ), σ

′ ∈ tracesω(Rδ), k > 0 and
assume that dIn(σ[..j]↓i, σ′[..j]↓i) ≤ κi for all j ≤ k. Using Lemma 5.22 we
know that σ′ ∈ tracesω(R). By Corollary 5.20, we get that there must be some
path ρ = ϵ σ′[1](σ′[..1]) . . . (σ′[..k − 1])σ′[k](σ′[..k]) ∈ paths∗(R). In particular

σ′[..k− 1]
σ′[k]−−−→ σ′[..k] is a transition in R. By Definition 5.17, we know that for

all σi ∈ traces(Stdδ)↓i with V(k, σ′[..k], σi) (which is equivalent to V(k, σ′, σi)),
there is some σS ∈ tracesω(Stdδ) with σS↓i = σi and dOutδ(σ[k]↓o, σS [k]↓o) ≤ κo
(*).
Since σ ∈ tracesω(Stdδ) then σ↓i ∈ tracesω(Stdδ)↓i. Suppose V(k, σ′, σ) holds
(otherwise the lemma holds trivially). Then, we get from (*) a trace σS ∈
tracesω(Stdδ) with σS↓i = σ↓i such that dOutδ(σ[k]↓o, σS [k]↓o) ≤ κo.

Lemma 5.26. Let C be a satisfiable context andR the reference implementation
for C. Then, R is l-robustly clean w.r.t. C.

Proof. From Lemma 5.23 we know that R is an IOTS and from Lemma 5.24
that tracesω(Stdδ) ⊆ tracesω(Rδ). Let σ1 ∈ tracesω(Stdδ), σ2 ∈ tracesω(Rδ) and
k > 0. Using Lemma 5.22 we know that σ2 ∈ tracesω(R). Suppose V(k, σ1, σ2)
holds (otherwise, the lemma holds trivially). From satisfiability of C we get an
LTS L that is robustly clean w.r.t. C. Hence, L is l-robustly clean and u-rob-
ustly clean. Since L is an IOTS, it must be input-enabled; hence, there is some
σ3 ∈ tracesω(Lδ) with (σ3)↓i = σ2↓i. From Definition 5.1, with σ1 for σ, σ3 for
σ′, k and V(k, σ1, σ3), we get a trace σ′′ ∈ tracesω(L) with σ′′↓i = σ3↓i (and
hence σ′′↓i = σ2↓i) and dOutδ(σ

′′[k]↓o, σ1[k]↓o) ≤ κo. Since L is u-robustly clean,
we get from Lemma 5.21 that σ′′ ∈ tracesω(R), which concludes the proof.

With the properties of R established in this section it is easy to show that R
is robustly clean w.r.t. the context it is constructed from.

Theorem 5.27. Let C = ⟨Std, dIn, dOut, κi, κo⟩ be a satisfiable context and R
the reference implementation for C. Then R is robustly clean w.r.t. C.

Proof. Definition 5.3 requires that R is an IOTS, which is shown in Lemma 5.23.
Furthermore, from Lemma 5.24 we get that tracesω(Stdδ) ⊆ tracesω(R). With
Lemmas 5.22, 5.25 and 5.26 we get that R satisfies Definitions 5.1 and 5.2.
Hence, R satisfies Definition 5.3.

5.3 Model-Based Doping Tests 139

Furthermore, it is not difficult to show that R is indeed the largest implemen-
tation that is allowed by the context it was constructed from.

Theorem 5.28. Let C = ⟨Std, dIn, dOut, κi, κo⟩ be a satisfiable context and R
the reference implementation for C. Then R is the largest implementation for C.

Proof. We know from Theorem 5.27 that R is an IOTS, which is robustly clean
w.r.t. C. It remains to show that for every LTS L′ that is robustly clean w.r.t.
C, tracesω(Lδ) ⊆ tracesω(R). Any such L′ satisfies in particular Definition 5.2,
so it follows directly from Lemma 5.21 that R is the largest implementation for
C.

5.3 Model-Based Doping Tests

In this section, we develop a testing algorithm for robust cleanness of mixed-IO
systems. Following the conceptual ideas behind ioco, we need to construct a
specification that is compatible with our notion of robust cleanness in such a
way that a test suite can be derived. Intuitively, such a specification must be
able to foresee every behaviour of the system that is allowed by the contract. It
turns out that we can take up the model-based testing theory right away with
R as the specification Spec. We get an algorithm that can generate doping test
suites provided we are able to prove that R is constructed in such a way that
whenever an IUT I is robustly clean I ioco R holds, i.e.,

∀σ ∈ traces∗(Rδ) : out(Iδ after σ) ⊆ out(Rδ after σ). (5.1)

Working out this proof requires frequent reasoning about the functions out and
after. However, there is a strong connection between these functions and rea-
soning about traces, which is established in Lemma 5.29. This enables us to use
all the properties considering traces of R from Section 5.2.

Lemma 5.29. Let L be an LTS, σ ∈ traces∗(Lδ) a suspension trace of L and o
an output. Then, o ∈ out(Lδ after σ) if and only if σ · o ∈ traces∗(Lδ).

Proof. By definition, o ∈ out(Lδ after σ) if and only if there is some q ∈ (Lδ after

σ) for which there is some q′ and a transition q
o−→ q′. This holds if and only

if there is a path ρ ∈ paths∗(Lδ) with trace(ρ) = σ, last(ρ) = q and q
o−→ q′.

Equivalently, there can be a path ρ′ ∈ paths∗(Lδ) with trace(ρ′) = σ · o, which is
the case if and only if σ · o ∈ traces∗(Lδ).

The following theorem shows that R, indeed, satisfies the conditions to serve
as a specification for model-based testing. Its proof translates the requirements
enforced by ioco into trace properties and exploits the properties of R estab-
lished in Section 5.2.

140 5 Model-Agnostic Software Doping Analysis

Theorem 5.30. Let C = ⟨Std, dIn, dOut, κi, κo⟩ be a satisfiable context, R the
reference implementation for C and let I be an IOTS that is robustly clean w.r.t.
C. Then, it holds that I ioco R.

Proof. We have to show that for all σ ∈ traces∗(Rδ) it holds that out(Iδ after
σ) ⊆ out(Rδ after σ). From Lemma 5.22 we know that σ ∈ traces∗(R). If
out(Iδ after σ) = ∅ the theorem trivially holds. Otherwise, there is some o ∈
out(Iδ after σ) ⊆ Outδ and σ · o ∈ traces∗(Iδ) follows with Lemma 5.29. By
Definition 2.2, every state in Iδ has an outgoing output or quiescence transition
and hence there is an infinite trace σ′ ∈ tracesω(Iδ) with σ′[..|σ| + 1] = σ · o.
From Definition 5.16, Theorems 5.27 and 5.28 and robust cleanness of I, we can
conclude that σ′ ∈ tracesω(Rδ). Since σ · o is a finite prefix of σ′, we get that
σ · o ∈ traces∗(Rδ). Finally, Lemma 5.29 gives us that o ∈ out(Rδ after σ).

Theorem 5.30 establishes that we can use Algorithm TG to generate dop-
ing tests (in the form of LTS) by using R as the specification model. From
a theoretical point of view, the problem of finding doping tests is solved with
Corollary 5.31, which follows directly from the completeness of TG [120, 121].

Corollary 5.31. Let C = ⟨Std, dIn, dOut, κi, κo⟩ a satisfiable context and R the
reference implementation for C. Then I ioco R if and only if I passesTG({ϵ}).

However, there are several issues regarding the practicality of TG. To perform
a doping test for a given context C, we first have to construct R. R is the largest
implementation for C and is, hence, infinite in size. Constructing R is necessary,
because R serves as the specification for model-based testing. In general, a
specification LTS may not be computable on-the-fly and hence TG assumes the
availability of the full specification upon test case generation. The following test
generation algorithm DTG echoes Algorithm TG, however, it does not need R as
input but constructs on-the-fly the relevant information that TG obtains from
R.
DTG(h) := choose nondeterministically one of the following processes:

1. pass
2. i; pi where i ∈ In and pi ∈ DTG(h · i)

+
∑
{o; fail | o ∈ Out ∧ o /∈ Θ(h)}

+
∑
{oj ; poj | oj ∈ Out∧ oj ∈ Θ(h)}, where for each oj , poj ∈ DTG(h · oj)

3.
∑
{o; fail | o ∈ Out ∪ {δ} ∧ o /∈ Θ(h)}

+
∑
{oj ; poj | oj ∈ Out ∪ {δ} ∧ oj ∈ Θ(h)}, where for each oj , poj ∈

DTG(h · oj)

There are two main differences between DTG and TG. First, the input h to
DTG is a single trace instead of a set of states. That is because the construction

5.3 Model-Based Doping Tests 141

of DTG follows the same ideas as the construction ofR, where a trace represents a
state of the LTS. Moreover, R is deterministic, so when using TG with R, the set
S always contains exactly one state of R, which is a trace. The second difference
is that DTG uses a function Θ instead of out. Essentially, Θ(h) captures all
output transitions leaving state h in R (i.e., out({h})) without knowing (or
constructing) R. Thus, Θ(h) is precisely the set of outputs that satisfies the
premise in the definition of R after the trace h, as stipulated in Definition 5.17.
The definition of Θ is shown in Equation (5.2).

Θ(h) := {o ∈ Outδ | (5.2)

∀σi ∈ tracesω(Stdδ)↓i :
(∀j ≤ |h|+1: dIn(σi[..j]↓i, (h · o)[..j]↓i) ≤ κi)
⇒ ∃σ ∈ tracesω(Stdδ) : σ↓i = σi↓i ∧ dOutδ(o, σ[|h|+ 1]↓o) ≤ κo}

The following lemma confirms that Θ can be used to compute out without
knowing R. Instead, the definition of Θ is defined directly for a context C =
⟨Std, dIn, dOut, κi, κo⟩. We emphasize this difference in Lemma 5.32 by annotating
the functions appropriately, i.e., by Θ(C) and out(R).

Lemma 5.32. Let C = ⟨Std, dIn, dOut, κi, κo⟩ be a satisfiable context and R the
reference implementation for C. For all h ∈ (In∪Outδ)∗, Θ(C)(h) = out(R)({h}).

Proof. Let h ∈ (In ∪Outδ)∗ and o ∈ Outδ. As per Equation (5.2), o ∈ Θ(C)(h) if
and only if for any σi ∈ tracesω(Stdδ)↓i with V(|h|+ 1, σi, h · o) there exists σ ∈
tracesω(Stdδ) such that σ↓i = σi↓i and dOut(o, σ[|h| + 1]↓o) ≤ κo. However, this
is equivalent to the premise of the rule from Definition 5.17, hence o ∈ Θ(C)(h) if

and only if there is a transition h
o−→R h · o in R. In turn, such transition exists

if and only if o ∈ out(R)({h}).

Although Algorithm DTG does not require R as an input, R still is the spec-
ification for which DTG is supposed to generate test cases. Hence, we have to
show that I ioco R if and only if I passes DTG(ϵ) (as in Corollary 5.31). For
this, it is serviceable to realise that for every history h ∈ (In ∪ Outδ)

∗, the set
of test cases TG and DTG generate are identical (i.e., the processes defining the
LTS are identical). This is expressed by the following Lemma.

Lemma 5.33. Let C be a satisfiable context andR the reference implementation
for C. Then, for every process p ∈ P and history h ∈ (In ∪ Outδ)

∗, it holds that
p ∈ TG({h}) if and only if p ∈ DTG(h).

Proof. We prove the claim by structural induction on p. If p is a process name,
then p = fail or p = pass. Neither TG nor DTG produce fail for any input,
however, both can always produce pass.

142 5 Model-Agnostic Software Doping Analysis

If p =
∑

z∈Z az; pz, both TG and DTG can use choices (2) and (3) to generate
p. We first show p ∈ TG({h}) ⇒ p ∈ DTG(h) and distinguish between whether
p is constructed by choice (2) or (3) of TG.
For case (2), we fix some arbitrary i ∈ In and pi ∈ TG({h} after i). Notice that
({h} after i) is always non-empty, because R is input-enabled (Lemma 5.23).
Furthermore, we fix a mapping from accepted outputs to one of the possible
recursively computed subprocess F := {(o, po) | o ∈ Out ∩ out({h}) ∧ po ∈
TG({h} after o)}. Then, choice (2) of TG produces exactly one test, which
is p = i; pi +

∑
{o; fail | o ∈ Out ∧ o /∈ out({h})} +

∑
{o;F(o) | o ∈ Out ∧

o ∈ out({h})}. We can rewrite the test case to p′ = i; pi +
∑
{o; fail | o ∈ Out ∧

o /∈ Θ(h)} +
∑
{o;F(o) | o ∈ Out ∧ o ∈ Θ(h)} by using that out({h}) = Θ(h)

from Lemma 5.32. From Definition 5.17 it follows that for every o ∈ out({h}),
({h} after o) = {h ·o}. Hence, F = {(o, po) | o ∈ Out∩Θ(h)∧po ∈ TG({h ·o})} =
{(o, po) | o ∈ Out∩Θ(h)∧ po ∈ DTG(h · o)} with the inductive hypothesis. From
Lemma 5.23 and Definition 5.17 we know that pi ∈ TG({h · i}) and hence by the
inductive hypothesis pi ∈ DTG(h · i). Now, for the fixed i, pi and F , p′ is exactly
the test that is generated by choice (2) of DTG(h).
For case (3) of TG, we fix a mapping from accepted outputs to one of the possible
recursively computed subprocess F := {(o, po) | o ∈ Outδ ∩ out({h}) ∧ po ∈
TG({h} after o)}. Then, choice (3) of TG produces exactly one test, which is∑
{o; fail | o ∈ Outδ ∧ o /∈ out({h})} +

∑
{o;F(o) | o ∈ Outδ ∧ o ∈ out({h})}.

We can rewrite the test case to p′ = i; pi +
∑
{o; fail | o ∈ Outδ ∧ o /∈ Θ(h)} +∑

{o;F(o) | o ∈ Outδ ∧ o ∈ Θ(h)} by using out({h}) = Θ(h) as per Lemma 5.32.
From Definition 5.17 it follows that for every o ∈ out({h}), ({h} after o) = {h·o}.
From this, we can conclude F = {(o, po) | o ∈ Outδ ∩ Θ(h) ∧ po ∈ TG({h · o})}
and then F = {(o, po) | o ∈ Outδ ∩ Θ(h) ∧ po ∈ DTG(h · o)} with the inductive
hypothesis. Now, for the fixed F , p′ is exactly the test that is generated by
choice (3) of DTG(h).
The proof for p ∈ DTG(h)⇒ p ∈ TG({h}) is analogue.

With Lemma 5.33 and Corollary 5.31 we get soundness and exhaustiveness of
DTG. Altogether, DTG serves as an algorithm that can generate sound doping
tests. If a test fails for some implementation, we know that it is doped.

Theorem 5.34. Let C = ⟨Std, dIn, dOut, κi, κo⟩ a satisfiable context and I an
implementation. If I is robustly clean w.r.t. C, then I passes DTG(ϵ).

Proof. Let R be the reference implementation for C. With Lemma 5.33 and
Corollary 5.31 we get that I passes DTG(ϵ) if and only if I ioco R. According
to Theorem 5.30 the latter holds if I is robustly clean w.r.t. C.

It is worth noting that this theorem does not imply that I is robustly clean
if I always passes DTG. This is due to the intricacies of actual hyperproperties.

5.3 Model-Based Doping Tests 143

By testing, we will never be able to verify l-robust cleanness (even if we consider
infinitely large test suites), because this needs a simultaneous view on all possible
execution traces of I. During testing, however, we always can observe only a
single trace. Intuitively, this is because l-robust cleanness effectively puts a
constraint on the lower bound of the size of the sets of outputs that a system
must be able to produce, whereas u-robust cleanness enforces an upper bound.
A violation of the upper-bound constraint is irrevocable, i.e., once observed, the
system is for sure not robustly clean. However not having observed an output
does not exclude the possibility for observing it in the future.

Bounded-Depth Doping Tests We developed and proved correct Algorithm DTG,
which enables model-based testing for some context C w.r.t. ioco without the
need to explicitly construct R, which is infinite in size. Nevertheless, practical
problems remain. First, it might still be the case that a generated test case is
an LTS of infinite size. Second, even for finite test cases a practitioner might
consider it a waste of computing resources to construct a test covering all pos-
sible answers of the implementation under test, instead of dynamically checking
conformance of an output once it was received from the implementation. Third,
function Θ, although independent of the availability of R, can be hard to com-
pute (in terms of finding an algorithm), as it involves infinite traces. So, in
light of the nature of testing, namely that every test eventually has to end, it
seems reasonable to modify the acceptance predicate Θ so that it considers fi-
nite traces for its decision. Such a bounded-depth construction is provided as
Equation (5.3).

Θb(h) := {o ∈ Outδ | (5.3)

∀σi ∈ tracesb(Stdδ)↓i :
(∀j ≤ |h|+1: dIn(σi[..j]↓i, (h · o)[..j]↓i) ≤ κi)
⇒ ∃σ ∈ tracesb(Stdδ) : σ↓i = σi↓i ∧ dOutδ(o, σ[|h|+1]↓o) ≤ κo}

For test history of length at most b, Θb delivers all outputs that are accepted
by some context. It is computable provided that the standard behaviour Std is
modelled by a finite LTS and that In and Out are bounded and discretised. The
only variation w.r.t. Θ in Equation (5.2) lies in the use of the set tracesb(Stdδ),
instead of tracesω(Stdδ), so as to return all traces of Stdδ whose length is exactly
b. Since Stdδ is finite, Θb can indeed be implemented.
We get a bounded-depth test generation algorithm DTGb by replacing every

occurrence of Θ in DTG by Θb and by forcing case 1 if and only if |h| = b.
Since Θb only considers finite traces, it conservatively includes extra outputs
thus making tests more permissive. This is due to the existential quantifier in
the last line of Equation (5.3): it may be the case that the b-prefix of some

144 5 Model-Agnostic Software Doping Analysis

infinite trace satisfies this expression, but no infinite extension of such prefix in
Stdδ does. Therefore, we have the following variation of Lemma 5.32.

Lemma 5.35. Let C = ⟨Std, dIn, dOut, κi, κo⟩ be a context and R the reference

implementation for C. For all b > 0 and h ∈ (In∪Outδ)∗ with |h| < b, Θ
(C)
b (h) ⊇

out(R)({h}).

Proof. From Lemma 5.32 we get that Θ(C)(h) = out(R)({h}), hence it suffices to

show that Θ(C)(h) ⊆ Θ(C)
b (h). Let o ∈ Θ(C)(h). To show that o ∈ Θb(h) we may

assume an arbitrary σi ∈ tracesb(Stdδ)↓i with V(|h+ 1|, σi, h · o) (notice that
|h| + 1 ≤ b). σi ∈ tracesb(Stdδ)↓i implies that there is some σio ∈ tracesb(Stdδ)
with σio↓i = σi. By Definition 2.2, there is an infinite trace σ̂io ∈ tracesω(Stdδ)
with σ̂io[..b] = σio. V(|h| + 1, σ̂io, h · o) still holds, as |h| + 1 ≤ b = |σio| and
σ̂io[..|h| + 1]↓i = σi. From o ∈ Θ(C)(h) and Equation (5.2) we get for σ̂io and
V(|h+ 1|, σ̂io, h ·o) a trace σ̂ ∈ tracesω(Stdδ) with σ̂↓i = σ̂io↓i and dOutδ(o, σ̂[|h|+
1]↓o) ≤ κo. Let σ = σ̂[..|h| + 1], then σ↓i = σi and dOutδ(o, σ[|h| + 1]↓o) ≤ κo.
This proves o ∈ Θb(h).

As a consequence of Lemma 5.35, we have that any robustly clean implemen-
tation passes the test suite generated by DTGb, or, expressed inversely, if an
implementation fails a test generated by DTGb, then it is doped. This is stated
in the following lemma.

Lemma 5.36. Let Std be a finite LTS, C = ⟨Std, dIn, dOut, κi, κo⟩ a satisfiable
context and I an implementation. If I is robustly clean w.r.t. C, then I passes
DTGb(ϵ) for every positive integer b.

Proof. Let b ∈ N+. We prove the claim by contraposition, i.e., we show that I is
not robustly clean w.r.t. C, if ¬(I passes DTGb(ϵ)). Let I = ⟨Q, In,Out,→, q0⟩.
Assume, there is some t ∈ DTGb(ϵ) and q

′ ∈ Q, such that fail ∥ q′ is reachable
from t ∥ q0. Let P = {p ∈ paths∗(t ∥ q0) | ∃q′ ∈ Q. last(p) = fail ∥ q′} the set
of paths by which such a state can be reached. Let (t ∥ q0) a0 · · · an−1 (tn ∥
qn) an (fail ∥ q′) = p ∈ P be the shortest of these paths, σ = trace(p) be
its trace and let h = σ[..|σ| − 1]. Since p is the shortest path in P , evidently
tn ̸= fail and hence tn ∈ DTGb(h). By definition of DTGb, a transition from tn
to fail is only possible in cases (2) and (3) if an ∈ Outδ (notice that Out ⊂ Outδ)
and an ̸∈ Θb(an). With Lemma 5.35, we get that an ̸∈ Θ(an). Moreover,
it is easy to see from the definition of P , that if σ ∈ traces∗(t ∥ q0), then
also σ ∈ traces∗(q0) and hence σ ∈ traces∗(Iδ). As an ̸∈ Θ(an) (although
an ∈ Outδ), according to Equation (5.2), there is some σi ∈ tracesω(Stdδ)↓i with
V(n + 1, σi, σ), such that for all σ′′ ∈ tracesω(Stdδ) with σ′′↓i = σi, it is the
case that dOutδ(an, σ

′′[n + 1]↓o) > κo (*). Let σio ∈ tracesω(Stdδ) be such that

5.3 Model-Based Doping Tests 145

σio↓i = σi. By Definition 2.2, each state in Iδ can proceed by some output
or quiescence. Hence, there is some infinite suffix σ+ ∈ Outδ

ω to σ, such that
(σ · σ+) ∈ tracesω(Iδ).
Now, assume that I is robustly clean w.r.t. context C. Then, I is in particular
u-robustly clean w.r.t. C and we get from Definition 5.2 for σio, (σ · σ+), (n+ 1)
and with V(n + 1, σi, σ) ⇐⇒ V(n + 1, σio, σ · σ+), that there is some trace
σ′′ ∈ tracesω(Stdδ) with σ′′↓i = σio↓i = σi and dOutδ((σ · σ+)[n + 1]↓o, σ′′[n +
1]↓o) = dOutδ(an, σ

′′[n + 1]↓o) ≤ κo. However, this is a contradiction to (*),
which concludes the proof.

Since I passes DTGb(ϵ) implies I passes DTGa(ϵ) for any a ≤ b, we have in
summary arrived at a computable algorithm DTGb that for sufficiently large b
(corresponding to the length of the test) will be able to generate a doping test
that will be a convicting witness for any IUT I that is not robustly clean w.r.t. a
given context C. The transformation of the model-based testing algorithm gets
its finishing touch with Algorithm 5.1 presented below, which, similar to the
transformation from TG to DTG, circumvents the need to construct the entire
test LTS upfront by instead actively reacting to the implementation under test.
In this, DTb constructs on-the-fly only those parts of the test LTS that are
necessary at the given point of execution.

The algorithm shares several characteristics with DTGb. Each call receives
the current history of the test as a finite trace of inputs and outputs. DTGb

eventually reaches the fail or pass state, whereas DTb explicitly returns either
of two values fail or pass. It chooses one of three cases, where the first case ex-
actly imitates the first case of DTGb – the test terminates by indicating success.
Cases 2 and 3 are similar, however not identical since DTb explicitly resolves
nondeterminism when the IUT offers some output. Case 2 of DTGb allows to
decide nondeterministically to either process this output or to pass some input
to the IUT. DTb instead gives priority to processing the output. Hence, in this
case DTb enforces to use the third case of the algorithm. Notice that we consider
DTb as an on-the-fly algorithm simulating the parallel composition of a test case
LTS with I. Consequently, we assume that one call of the algorithm executes
atomically, i.e., if I does not offer an output in line 4, it also does not offer
outputs in line 5. Case 3 handles reception of outputs or detects quiescence.
Quiescence can be recognized by using a timeout mechanism that returns δ if no
output has been received in a given amount of time, and DTb verifies whether
the output (or its absence) is valid by consulting Θb. In case the output is among
those foreseen by Θb, the test continues recursively. Otherwise, the algorithm
terminates with a fail verdict. If instead the IUT is not offering an output, it is
legitimate (but not necessary) to choose Case 2 so as to pick some input, pass
it to the IUT and continue recursively to simulate a transition in the test LTS.

146 5 Model-Agnostic Software Doping Analysis

Algorithm 5.1 Bounded-Length Doping Test (DTb)

Input: history h ∈ (In ∪ Out ∪ {δ})∗
Output: pass or fail
1: c ← Ωcase(h) /* Pick from one of three cases */
2: if c = 1 or |h| = b then
3: return pass /* Finish test generation */
4: else if c = 2 and no output from I is available then
5: i← ΩIn(h) /* Pick next input */
6: i↠ I /* Forward input to IUT */
7: return DTb(h · i) /* Continue with next step */
8: else if c = 3 or output from I is available then
9: o↞ I /* Receive output from IUT */

10: if o ∈ Θb(h) then
11: /* If o is foreseen by oracle continue with next step */
12: return DTb(h · o)
13: else
14: return fail /* Otherwise, report test failure */
15: end if
16: end if

DTGb chooses the case to apply and the input to provide next nondeterministi-
cally. DTb is parameterized by Ωcase and ΩIn which can be instantiated by either
nondeterminism or some optimized test-case selection.
With Algorithm DTb, we finish a journey of transformations. The bounded-

depth algorithm effectively circumvents the fact that, except for Std and Stdδ, all
other objects we need to deal with are countably or uncountably infinite and that
the property we need to check is a hyperproperty. By furthermore relegating the
construction of the test LTS and its parallel composition (with the implemen-
tation under test) into an on-the-fly-algorithm, akin to [43], a practically usable
and elegant algorithm for real-world doping tests results.

5.4 HyperSTL

With the model-based testing theory, we have a rigorous foundation to do dop-
ing tests in practice. The theory provides an algorithm that, given some input,
specifies how the output from the system under test must be interpreted. How-
ever, the theory leaves out how test inputs can be obtained. In the following we
will use probabilistic falsification methods to strategically obtain test inputs. We
first introduce HyperSTL, an extension of STL to express hyperproperties over

5.4 HyperSTL 147

real-valued or mixed-IO systems. Then, based on the HyperLTL characterisa-
tions in Section 4.2, we develop HyperSTL characterisations for robust cleanness
and func-cleanness and explain how these HyperSTL formulas can be used with
a probabilistic falsification method to obtain test inputs.

Before we introduce HyperSTL, we remark that there exists previous work
by Nguyen et al. [96] that discusses an extension of STL to HyperSTL though
using a non-standard semantic underpinning. In this context, they present a
falsification approach restricted to the fragment “t-HyperSTL” where, according
to the authors, “a nesting structure of temporal logic formulas involving different
traces is not allowed”. Therefore, none of our cleanness definitions belongs to this
fragment. Finally, Nguyen et al. assume that the system under falsification can
be simulated. This is a reasonable assumption, because probabilistic falsification
is traditionally used for Simulink models. Nevertheless, STL-based falsification
techniques are applicable also to black-box systems, as long as the outputs of
the system can be passed into the falsification engine.

For HyperSTL this is different; the problem is 1) the potentially continuous
time domain, 2) that the evaluation of the HyperSTL formula is based on sam-
pling, and 3) that two or more traces must be compared. What Nguyen et al. pro-
pose is an algorithm that constructs a new (Simulink) model by cloning the sys-
tem under falsification and letting all clones run in parallel. This self-composition
technique is common to realise evaluation of hyperproperties [12, 34]; we ex-
plicitly use self-composition in Section 4.1. In Nguyen’s parallel composition
approach, snapshots of the composed system are effectively snapshots of the in-
dividual copies of the model at exactly the same instant of time – despite the
continuous time domain. This approach is not available when interacting with
(black-box) real-world cyber-physical systems (CPS). Here, two samples of dif-
ferent executions are taken at different times with probability 1. Consequently,
traces are sampled with different timing functions. To overcome this problem,
there are several options. One option is offered by the logic HyperSTL* [20]
(an extension of STL* [27]), which enables the comparison of values at different
times in different traces. HyperSTL* characterisations have been proposed for
various cleanness notions and is beyond the scope of this thesis [20]. The second
option is to ensure by means of preprocessing the input and output traces to and
from the system that all traces use the same timing function (as we implicitly
did for the model-based testing theory and for the HyperLTL characterisations).
In the following, we will investigate the second option.

To this end, we propose a HyperSTL syntax similar to that of Nguyen et
al. [96]:

ψ :: = ∃π. ψ | ∀π. ψ | ϕ
ϕ :: = ⊤ | f > 0 | ¬ϕ | ϕ ∧ ϕ | ϕU ϕ .

148 5 Model-Agnostic Software Doping Analysis

The meaning of the universal and existential quantifier is as for HyperLTL. A
crucial difference to the other logics presented above is the proposition f > 0. In
contrast to HyperLTL and to the existing definition of HyperSTL, we consider
it insufficient to allow propositions to refer to only a single trace. In HyperLTL
that does not cause harm, because atomic propositions of individual traces can
be compared by means of the Boolean connectives. To formulate thresholds for
real values, however, we feel the need to allow real values from multiple traces to
be combined in the function f , and thus to appear as arguments of f . Hence, in
our semantics of HyperSTL, f > 0 holds if and only if the result of f , applied to
all traces quantified over, is greater than 0. For this to work formally, the arity
of function f is the product of the trace width n and the number m of traces
quantified over at the occurrence of f > 0 in the formula, so f : (Rn)m → R.
A trace assignment [34] Π : V → M is a partial function assigning traces of

M to variables. Let Π[π := w] denote the same function as Π, except that π is
mapped to trace w. The Boolean semantics of HyperSTL is defined below.

Definition 5.37. Let ψ be a HyperSTL formula, t ∈ T a time point, M ⊆
(T → Rn) a real-valued system, and Π a trace assignment. Then, the Boolean
semantics for M,Π, t |= ψ is defined inductively:

M,Π, t |= ∃π.ψ ⇔ ∃w ∈ M. M,Π[π := w], t |= ψ

M,Π, t |= ∀π.ψ ⇔ ∀w ∈ M. M,Π[π := w], t |= ψ

M,Π, t |= ⊤
M,Π, t |= f > 0 ⇔ f(Π(π1)(t), . . . ,Π(πm)(t)) > 0 for dom(Π) = {π1, . . . , πm}1

M,Π, t |= ¬ϕ ⇔ M,Π, t ̸|= ϕ

M,Π, t |= ϕ1 ∧ ϕ2 ⇔ M,Π, t |= ϕ1 and M,Π, t |= ϕ2

M,Π, t |= ϕ1 U ϕ2 ⇔ ∃t′ ≥ t. M,Π, t′ |= ϕ2 and ∀t′′ ∈ [t, t′). M,Π, t′′ |= ϕ1

A system M satisfies a formula ψ if and only if M,∅, 0 |= ψ. Analogue to
the quantitative semantics of STL, the quantitative semantics for HyperSTL is
defined below:

Definition 5.38. Let ψ be a HyperSTL formula, t ∈ T a time point, M ⊆ (T →
Rn) a real-valued system, and Π a trace assignment. Then, the quantitative
semantics for ρ(ψ,M,Π, t) is defined inductively:

ρ(∃π. ψ,M,Π, t) = sup
w∈M

ρ(ψ,M,Π[π := w], t)

ρ(∀π. ψ,M,Π, t) = inf
w∈M

ρ(ψ,M,Π[π := w], t)

ρ(⊤,M,Π, t) = ∞

5.4 HyperSTL 149

ρ(f > 0,M,Π, t) = f(Π(π1)(t), . . . ,Π(πm)(t)) for dom(Π) = {π1, . . . , πm}1

ρ(¬ϕ,M,Π, t) = −ρ(ϕ,M,Π, t)
ρ(ϕ1 ∧ ϕ2,M,Π, t) = min(ρ(ϕ1,M,Π, t), ρ(ϕ2,M,Π, t))

ρ(ϕ1 U ϕ2,M,Π, t) = sup
t′≥t

min{ρ(ϕ2,M,Π, t′), inf
t′′∈[t,t′)

ρ(ϕ1,M,Π, t
′′)}

It is an easy exercise to show that for continuous-time signals this quantitative
semantics of HyperSTL is a conservative extension of the quantitative semantics
of STL discussed above. For discrete-time signals it is important to understand
that discrete time points often represent points in continuous time. It is widely
accepted, that this can be cast into a (strictly monotonic) timing function τ :
N → R≥0 [7, 54]. The HyperSTL semantics given above is meaningful in a
discrete-time setting if all traces share the same timing function.

HyperSTL characterisation The HyperLTL characterisations in Section 4.2 as-
sume the system to be a subset of (2AP)ω and works with distances between traces
by means of a Boolean encoding into atomic propositions. By using HyperSTL,
we can characterise cleanness for systems that are representable as subsets of
(T → Rn) for some width n ∈ N. That is, input sets In and output sets Out
represent real-valued signals of width m, respectively width l, and a system is
encoded by a set M ⊆ (T → Rm+l) that captures the full system behaviour.
We can take the HyperLTL formulas from Propositions 4.12 to 4.15 and trans-

form them into HyperSTL formulas by applying simple syntactic changes. We
consider here cleanness for non-parametrised systems. Therefore, those parts
of the HyperLTL formulas reasoning about parameters do not appear in the
following HyperSTL formulas. We get for l-robust cleanness the formula

ψl-rob := ∀π1. ∀π2. ∃π′
2.Stdπ1 > 0 (5.4)

→
(

(eq(π2↓i, π′
2↓i) ≤ 0) ∧(

(dOut(π1↓o, π′
2↓o)− κo ≤ 0)W(dIn(π1↓i, π′

2↓i)− κi > 0)
))
,

u-robust cleanness is characterised by

ψu-rob := ∀π1.∀π2. ∃π′
1. Stdπ1 > 0 (5.5)

→
(
Stdπ′

1
> 0 ∧ (eq(π1↓i, π′

1↓i) ≤ 0) ∧(
(dOut(π

′
1↓o, π2↓o)− κo ≤ 0)W(dIn(π

′
1↓i, π2↓i)− κi > 0)

))
,

1We admit some sloppiness; the set dom(Π) should have a fixed order.

150 5 Model-Agnostic Software Doping Analysis

for l-func-cleanness we get the formula

ψl-fun := ∀π1.∀π2. ∃π′
2. Stdπ1 > 0 (5.6)

→
(

(eq(π2↓i, π′
2↓i) ≤ 0) ∧

(
(dOut(π1↓o, π′

2↓o)− f(dIn(π1↓i, π′
2↓i)) ≤ 0)

))
,

and, finally, u-func-cleanness is encoded by

ψu-fun := ∀π1.∀π2. ∃π′
1. Stdπ1 > 0 (5.7)

→
(
Stdπ′

1
> 0 ∧ (eq(π1↓i, π′

1↓i) ≤ 0) ∧(
(dOut(π

′
1↓o, π2↓o)− f(dIn(π

′
1↓i, π2↓i)) ≤ 0)

))
.

The quantifiers remain unchanged relative to the formulas in Propositions 4.12
to 4.15. The formulas use generic projection functions ↓i and ↓o to extract
the input values, respectively output values from a trace. To apply the for-
mulas, these functions must be instantiated with functions for the concrete
value domain of the traces to be analysed. For example, for In = Rm, Out =
Rl and M ⊆ (T → Rm+l), the projections could be defined for every w =
(s1, . . . , sm, sm+1, . . . , sm+l) as w↓i = (s1, . . . , sm) and w↓o = (sm+1, . . . , sm+l).
The input equality requirement for two traces π and π′ is ensured by glob-
ally enforcing eq(π↓i, π′↓i) ≤ 0. eq is a generic function that must return zero
if and only if its arguments are identical and a positive value otherwise. It
has to be instantiated for concrete value domains. For example, for In = Rm,
eq((s1, . . . , sm), (s′1, . . . , s

′
m)) could be defined as the sum of the component-wise

distances
∑

1≤i≤m|si − s′i|. Finally, in the above formulas we replace the AP-
encoded versions of dIn and dOut by the original distance functions dIn and dOut

and perform simple arithmetic operations to match the syntactic requirements
of HyperSTL.

Formulas (5.5) and (5.7) are prepared to express u-robust cleanness, respec-
tively u-func-cleanness w.r.t. both cleanness contracts or cleanness contexts.
That is, we assume the existence of a function Stdπ that returns a positive value
if and only if the trace assigned to π encodes a standard input (when considering
cleanness contracts) or encodes an input and output that constitute a standard
behaviour (when considering cleanness contexts). In the latter case, we must
additionally check that the existentially quantified trace π′

1 represents standard
behaviour. For cleanness contracts this additional check is not necessary (but
also not harmful), because the formula enforces that if π1 represents a standard
input, then π′

1 represents the same standard input, too. Explicitly requiring that
π′
1 represents a standard behaviour echoes the setup in Definitions 5.8 and 5.11,

which define trace integral u-robust cleanness and u-func-cleanness w.r.t. clean-
ness contexts.

5.4 HyperSTL 151

We remark that for encoding Stdπ, due to the absence of the Next-operator
in HyperSTL, it might be necessary to add a clock signal s(t) = t to traces in a
preprocessing step. This is not considered here for the sake of avoiding cluttered
notation.

Correctness under Mixed-IO Interpretation For a model M, the structure of the
real-valued traces requires inputs and outputs to form pairs synchronised in time.
A more realistic scenario is that of inputs and outputs occurring independently
of each other. In particular, when testing a real-world CPS, the testing interface
can either pass an input to the system under test or receive an output, but not
both at the same time. Furthermore, certain tests require to pass a series of
inputs before receiving an output at all (examples are provided in Chapter 6).
The mixed-IO model supports such real-world testing scenarios.
Mixed-IO signals are defined in the discrete time domain N. A mixed-IO signal

s ∈ (In ∪ Out)ω (or, equivalently, s : N → In ∪ Out) is similar to a real-valued
discrete-time signal, but the value domain R is replaced by the domain In∪Out.
A mixed-IO trace always consists of a single mixed-IO signal, e.g., w = (s).
Accordingly, predicates of the form f > 0 must use functions f that produce
real values for mixed-IO signals.
The formulas above are applicable to mixed-IO system models (and, hence,

to LTS-defined systems), too. The abstract functions ↓i, ↓o, eq and Std can
be instantiated for mixed-IO models. ↓i and ↓o can be defined equally to the
syntactically identical projection functions for mixed-IO models defined in Sec-
tion 3.3. The function eq(i1, i2) ≤ 0 can be defined using the distance function
dIn and some arbitrary small ε > 0:

eq(i1, i2) :=


0, if i1 = i2

dIn(i1, i2) + ε, if i1 ̸= i2 ∧ i1, i2 ∈ In

∞, otherwise.

(5.8)

In the second clause of the above definition we add some positive value ε to the
result of dIn, because dIn(i1, i2) could be 0 even if i1 ̸= i2. For the correctness of
the above HyperSTL formulas, however, it is crucial that eq(i1, i2) = 0 if and
only if i1 = i2. For a good performance of the falsification algorithm, we will
nevertheless want to make use of dIn if i1 ̸= i2.

Propositions 5.39 and 5.40 show that HyperSTL formulas (5.4) and (5.5) under
the mixed-IO interpretation outlined above indeed characterise trace integral l-
robust cleanness and u-robust cleanness.

Proposition 5.39. Let L ⊆ N→ (In∪Out) be a mixed-IO system and C = ⟨Std,
dIn, dOut, κi, κo⟩ a contract or context for robust cleanness with Std ⊆ L. Further,

152 5 Model-Agnostic Software Doping Analysis

let Stdπ be a quantifier-free HyperSTL subformula, such that L, {π := w}, 0 |=
Stdπ if and only if w ∈ Std. Then, L is trace integral l-robustly clean w.r.t. C if
and only if L,∅, 0 |= ψl-rob.

Proposition 5.40. Let L ⊆ N→ (In∪Out) be a mixed-IO system and C = ⟨Std,
dIn, dOut, κi, κo⟩ a contract or context for robust cleanness with Std ⊆ L. Further,
let Stdπ be a quantifier-free HyperSTL subformula, such that L, {π := w}, 0 |=
Stdπ if and only if w ∈ Std. Then, L is trace integral u-robustly clean w.r.t. C if
and only if L,∅, 0 |= ψu-rob.

The proof for these propositions are almost identical. For u-robust cleanness
it is slightly more difficult, because of the additional requirement that π′

1 in
formula (5.5), respectively σ′′ in Definition 5.8, represent standard behaviour
from Std. Thus, we only present the proof for Proposition 5.40. Before the
actual proof, we first establish two lemmas. Lemma 5.41 destructs the globally
() and weak until (W) operators such that the timing constraints encoded by
these operators become explicit.

Lemma 5.41. Let σ : T → X be a trace with T = N or T = R≥0 and let ϕ
and ψ be STL formulas. Then the following equivalences hold.

1. σ, 0 |= ϕ if and only if ∀t ≥ 0. σ, t |= ϕ,

2. if T = N, then σ, 0 |= ϕW ψ if and only if ∀t ≥ 0. (∀t′ ≤ t. σ, t′ |= ¬ψ)⇒
σ, t |= ϕ.

Proof. We prove the two statements separately.

1. Using the definition of the derived operators and , we get that σ, 0 |=
ϕ holds if and only if σ, 0 |= ¬(⊤U ¬ϕ) holds. Using the (Boolean)

semantics of STL (from Section 2.6.2), we get that this is equivalent to
¬(∃t ≥ 0. σ, t |= ¬ϕ ∧ ∀t′ < t. σ, t′ |= ⊤). After simple logical operations,
we get that this is equivalent to ∀t ≥ 0. σ, t |= ϕ as required.

2. Using 1, the definition of W, the (Boolean) semantics of STL, and consid-
ering that T = N, we get that σ, 0 |= ϕW ψ if and only if ∃t ∈ N. σ, t |=
ψ ∧ ∀t′ < t. σ, t′ |= ϕ or ∀t ∈ N. σ, t |= ϕ. We denote this proposition as
V . It is easy to see that the right operand of the equivalence to prove can
be rewritten to ∀t ∈ N. (∃t′ ≤ t. σ, t′ |= ψ) ∨ σ, t |= ϕ. We denote this
proposition as W and must show that V ⇒ W and W ⇒ V . To prove
that V implies W , we distinguish two cases.

• For the first case, assume that the left operand of the disjunction in V
holds, i.e., there is some t ∈ N, such that σ, t |= ψ ∧ ∀t′ < t. σ, t′ |= ϕ.
To showW , let t0 ∈ N be arbitrary. If t ≤ t0, then there exists t′ ≤ t0

5.4 HyperSTL 153

(namely t′ = t) such that σ, t′ |= ψ; hence W holds. If t > t0, then we
know from ∀t′ < t. σ, t′ |= ϕ that σ, t0 |= ϕ is true; hence, W holds.

• For the second case, assume that the right operand of the disjunction
in V holds, i.e., ∀t ∈ N. σ, t |= ϕ. Then, obviously W holds.

To prove that W implies V , let PV = {t ∈ N | σ, t |= ψ} be the set
of all time points at which ψ holds. If PV is the empty set, it follows
immediately from W that ∀t ∈ N. σ, t |= ϕ and that, hence, V holds. If
PV is not empty, let t = minPV be the smallest time in PV (the minimum
always exists, because T = N). Then, obviously, ∃t ∈ N. σ, t |= ψ. To show
that V holds, it suffices to show that ∀t′ < t. σ, t′ |= ϕ. This follows from
W , because t is the smallest time at which σ, t |= ψ holds and, therefore,
for every t′ < t it does not hold that σ, t′ |= ψ.

Lemma 5.42 converts HyperSTL formula (5.5) into a first-order logic formula.
Notably, it does so only for traces with an underlying discrete time domain. If the
time domain is continuous, it is, for example, possible to have a trace such that,
for some t > 0, in the time interval [0, t] the input distances and the output
distances are within the κi and κo thresholds, and in the open time interval
(t,∞) both input and output distances are beyond their thresholds. Due to the
open interval, we are unable to determine a time t′ at which the input distance
grows beyond the κi threshold; consequently, we can also not determine the
time at which the obligations for the output distance ends. The robust cleanness
definition can handle this instance and would label the above behaviour as clean.
The characterisation in formula (5.5), however, would be violated. The semantics
of the weak until operator is unable to capture a behaviour like the one above,
because in this example it needs a concrete time t′ at which the input distance
grows beyond the κi threshold. This is also the reason, why Lemma 5.41.2 is
restricted to T = N.
To get a HyperSTL characterisation for robust cleanness and a continuous

time domain, we believe that it is possible to add past-time operators to Hy-
perSTL. One of these operators is the historically operator [13]. ϕ, which,
similar to ϕ for the future, requires that ϕ must always have been true in the
past up until now. With this operator, robust cleanness could be expressed by
replacing in formula (5.5) the weak-until construction (dOut(π

′
1↓o, π2↓o) − κo ≤

0)W(dIn(π
′
1↓i, π2↓i)−κi > 0) with the historic construction ((dIn(π

′
1↓i, π2↓i)−

κi ≤ 0) → dOut(π
′
1↓o, π2↓o) − κo ≤ 0). A HyperSTL* characterisation of robust

cleanness is defined in this manner; we refer to [20, Proposition 6.9] for the
details.

154 5 Model-Agnostic Software Doping Analysis

Lemma 5.42. Let M be a discrete-time real-valued or mixed-IO system, i.e.,
M ⊆ (N→ Rn) or M ⊆ (N→ (In ∪ Out)), and let Std ⊆ M be a set of standard
traces. Also, let Stdπ be a quantifier-free HyperSTL subformula, such that
M, {π := w}, 0 |= Stdπ if and only if w ∈ Std. Then, M,∅, 0 |= ψu-rob if and only
if

∀w ∈ Std. ∀w′ ∈ M. ∃w′′ ∈ Std. (∀t ≥ 0. eq(w↓i[t], w′′↓i[t]) ≤ 0) ∧
∀t ≥ 0. (∀t′ ≤ t. dIn(w′′↓i[t′], w′↓i[t′])− κi ≤ 0)⇒

dOut(w
′′↓o[t], w′↓o[t])− κo ≤ 0.

Proof. Using Lemma 5.41.1, Lemma 5.41.2 and Definition 5.37, we get that

M,∅, 0 |= ∀π.∀π′.∃π′′.Stdπ

→
(
Stdπ′′ ∧ (eq(π↓i, π′′↓i) ≤ 0) ∧(

(dOut(π
′′↓o, π′↓o)− κo ≤ 0)W(dIn(π

′′↓i, π′↓i)− κi > 0)
))

holds if and only if

∀w ∈ M. ∀w′ ∈ M. ∃w′′ ∈ M. (M,Π, 0 |= Stdπ)

→
(
(M,Π, 0 |= Stdπ′′) ∧ (∀t ≥ 0. (M,Π, t |= eq(π↓i, π′′↓i) ≤ 0)) ∧(

∀t ≥ 0. (∀t′ ≤ t. (M,Π, t′ |= ¬dIn(π′′↓i, π′↓i)− κi > 0)) ⇒

(M,Π, t |= dOut(π
′′↓o, π′↓o)− κo ≤ 0)

))
holds for Π = {π := w, π′ := w′, π′′ := w′′}. Using that M, {π := w}, 0 |= Stdπ
if and only if w ∈ Std, and by further applying Definition 5.37 and basic logical
operations, we get that the above proposition is equivalent to

∀w ∈ M. ∀w′ ∈ M. ∃w′′ ∈ M. w ∈ Std

→
(
w′′ ∈ Std ∧ (∀t ≥ 0. eq(w↓i[t], w′′↓i[t]) ≤ 0) ∧(

∀t ≥ 0. (∀t′ ≤ t. dIn(w
′′↓i[t′], w′↓i[t′])− κi ≤ 0) ⇒ dOut(w

′′↓o[t], w′↓o[t])− κo ≤ 0
))
.

Finally, after carefully reordering premises, we get that the above holds if and
only if

∀w ∈ Std. ∀w′ ∈ M. ∃w′′ ∈ Std. (∀t ≥ 0. eq(w↓i[t], w′′↓i[t]) ≤ 0) ∧
∀t ≥ 0. (∀t′ ≤ t. dIn(w

′′↓i[t′], w′↓i[t′])− κi ≤ 0) ⇒ dOut(w
′′↓o[t], w′↓o[t])− κo ≤ 0.

To prove Proposition 5.40, we must further transform the first-order charac-
terisation obtained from Lemma 5.42 to see that it indeed matches the definition
of trace integral u-robust cleanness.

5.4 HyperSTL 155

Proof of Proposition 5.40. Using Lemma 5.42 we get that

L,∅, 0 |= ∀π1. ∀π2.∃π′
1. Stdπ1

→
(
Stdπ′

1
∧ (eq(π1↓i, π′

1↓i) ≤ 0) ∧(
(dOut(π

′
1↓o, π2↓o)− κo ≤ 0)W(dIn(π

′
1↓i, π2↓i)− κi > 0)

))
holds if and only if

∀w1 ∈ Std. ∀w2 ∈ L. ∃w′
1 ∈ Std. (∀t ≥ 0. eq(w1↓i[t], w′

1↓i[t]) ≤ 0) ∧
∀t ≥ 0. (∀t′ ≤ t. dIn(w

′
1↓i[t′], w2↓i[t′])− κi ≤ 0) ⇒ dOut(w

′
1↓o[t], w2↓o[t])− κo ≤ 0.

After applying simple logical operations and using that eq(i1, i2) = 0 if and only
if i1 = i2, we get that this is equivalent to

∀w1 ∈ Std. ∀w2 ∈ L. ∃w′
1 ∈ Std with w1↓i = w′

1↓i.
∀t ≥ 0. (∀t′ ≤ t. dIn(w

′
1↓i[t′], w2↓i[t′]) ≤ κi) ⇒ dOut(w

′
1↓o[t], w2↓o[t]) ≤ κo,

which, since we assumed Std ⊆ L, is equivalent to the definition of trace integral
u-robust cleanness for mixed-IO systems.

We can state propositions similar to Propositions 5.39 and 5.40 for l-func-
cleanness and u-func-cleanness.

Proposition 5.43. Let L ⊆ N→ (In∪Out) be a mixed-IO system and C = ⟨Std,
dIn, dOut, f⟩ a contract or context for func-cleanness with Std ⊆ L. Further, let
Stdπ be a quantifier-free HyperSTL subformula, such that L, {π := w}, 0 |= Stdπ
if and only if w ∈ Std. Then, L is trace integral l-func-clean w.r.t. C if and only
if L,∅, 0 |= ψl-fun.

Proposition 5.44. Let L ⊆ N→ (In∪Out) be a mixed-IO system and C = ⟨Std,
dIn, dOut, f⟩ a contract or context for func-cleanness with Std ⊆ L. Further, let
Stdπ be a quantifier-free HyperSTL subformula, such that L, {π := w}, 0 |= Stdπ
if and only if w ∈ Std. Then, L is trace integral u-func-clean w.r.t. C if and only
if L,∅, 0 |= ψu-fun.

The proofs for Propositions 5.43 and 5.44 are conceptually similar to the one
for Proposition 5.40. The only difference is that instead of the reasoning about
theW construct the globally enforced relation between output distances and the
result of f must be proven equivalent in the HyperSTL formulas and the l- and
u-func-cleanness. We omit the proofs here.

156 5 Model-Agnostic Software Doping Analysis

STL Characterisation for Finite Standard Behaviour In many practical settings –
when the different standard behaviours are spelled out upfront explicitly, as in
NEDC and WLTC – it can be assumed that the number of distinct standard
behaviours Std is finite (while there are infinitely many possible behaviours in M
or L). Finiteness of Std makes it possible to remove by enumeration the quanti-
fiers from the u-robust cleanness and u-func-cleanness HyperSTL formulas. This
opens the way – after proper adjustments – to work with the STL fragment of
HyperSTL. In the following, we assume that the set Std = {w1, . . . , wc} is an
arbitrary standard set with c unique standard traces. We further assume a fixed
system from which we get traces of width n. In particular, we assume that
w1 = (s11, . . . , s1n), . . . , and wc = (sc1, . . . , scn) are the individual standard
traces in Std. We denote by w = (s1, . . . , sn) the trace under analysis.

To encode the HyperSTL formulas (5.5) and (5.7) in STL, we use the concept
of self-composition, which has proven useful for the analysis of hyperproper-
ties [57, 12]. We concatenate all signals of w and the standard traces w1 to wc

to the composed trace w+ = (s1, . . . , sn, s11, . . . , s1n, . . . , sc1, . . . , scn) of width
n + nc. Given a trace width n ∈ N+, a system M ⊆ (T → Xn) and a set
Std = {w1, . . . , wc} with w1 = (s11, . . . , s1n), . . . , and wc = (sc1, . . . , scn), we de-
note by M ◦Std := {(s1, . . . , sn, s11, . . . , s1n, . . . , sc1, . . . , scn) | (s1, . . . , sn) ∈ M}
the system in which every trace in M is composed with the standard traces in
Std.

For every w+ ∈ M◦Std, we will in the following STL formula write w to mean
the projection on w+ to the signals (s1, . . . , sn), and we write wk, for 1 ≤ k ≤ c,
to mean the projection on w+ to the signals (sk1, . . . , skn) of the kth standard
trace. More formally, wk in an STL formula is a function such that wk(w+)
returns the trace wk ∈ Std and w is a function such that w(w+) returns the
trace w ∈ M embedded in w+.

Proposition 5.45. Let M be a discrete-time real-valued or mixed-IO system,
i.e., M ⊆ (N → Rn) or M ⊆ (N → (In ∪ Out)), and let Std = {w1, . . . , wc} ⊆ M
be a finite set of standard traces. Also, let Stdπ be a quantifier-free HyperSTL
subformula, such that M, {π := w}, 0 |= Stdπ if and only if w ∈ Std. Then,
M,∅, 0 |= ψu-rob if and only if (M ◦ Std) |= φu-rob, where

φu-rob :=
∧

1≤a≤c

∨
1≤b≤c

(
(eq(wa↓i, wb↓i) ≤ 0) ∧

(
(dOut(wb↓o, w↓o)− κo ≤ 0)W(dIn(wb↓i, w↓i)− κi > 0)

))
.

5.4 HyperSTL 157

Proof. Using Lemma 5.42 we get that

M,∅, 0 |= ∀π′. ∀π′′. ∃π′′′.Stdπ′

→
(
Stdπ′′′ ∧ (eq(π′↓i, π′′′↓i) ≤ 0) ∧(

(dOut(π
′′′↓o, π′′↓o)− κo ≤ 0)W(dIn(π

′′′↓i, π′′↓i)− κi > 0)
))

holds if and only if

∀w′ ∈ Std. ∀w′′ ∈ M. ∃w′′′ ∈ Std. (∀t ≥ 0. eq(w′↓i[t], w′′′↓i[t]) ≤ 0) ∧
∀t ≥ 0. (∀t′ ≤ t. dIn(w

′′′↓i[t′], w′′↓i[t′])− κi ≤ 0) ⇒ dOut(w
′′′↓o[t], w′′↓o[t])− κo ≤ 0.

Since Std = {w1, . . . , wc}, we can replace the universal and existential quan-
tifiers over Std by a conjunction, respectively disjunction, over the standard
traces [103]. We get

∀w ∈ M.
∧

1≤a≤c

∨
1≤b≤c

(∀t ≥ 0. eq(wa↓i[t], wb↓i[t]) ≤ 0) ∧

∀t ≥ 0. (∀t′ ≤ t. dIn(wb↓i[t′], w↓i[t′])− κi ≤ 0) ⇒ dOut(wb↓o[t], w↓o[t])− κo ≤ 0.

For the next step, we replace the universal quantification of w over M by a
universal quantification of the composed traces w+ over M◦Std. Then, from the
Boolean semantics of STL and by replacing all traces w, respectively wk, by the
corresponding w+-projections, we get the equivalent proposition

∀w+ ∈ (M ◦ Std).
∧

1≤a≤c

∨
1≤b≤c

(∀t ≥ 0. (w+, t |= eq(wa↓i, wb↓i) ≤ 0)) ∧

∀t ≥ 0. (∀t′ ≤ t. (w+, t
′ |= ¬dIn(wb↓i, w↓i)− κi > 0)) ⇒

(w+, t |= dOut(wb↓o, w↓o)− κo ≤ 0).

With the Boolean semantics of STL and Lemmas 5.41.1 and 5.41.2 we get the
equivalent statement that

∀w+ ∈ (M ◦ Std). w+, 0 |=
∧

1≤a≤c

∨
1≤b≤c

((eq(wa↓i, wb↓i) ≤ 0)) ∧

(
(dOut(wb↓o, w↓o)− κo ≤ 0)W(dIn(wb↓i, w↓i)− κi > 0)

)
,

which concludes the proof.

Notice that by definition, the behaviour of mixed-IO systems is modelled as a
set of traces that entail a single signal N→ (In∪Out). The composed trace w+,
however, consists of c+1 signals, i.e., w+ ∈ N→ (In∪Out)c+1. Nevertheless, the
usage of eq, ↓i, ↓o, dIn and dOut is not affected by this, because these functions are
applied after using the projections wk, respectively w, that recover the single-
signal mixed-IO traces from which w+ is constructed from.
By combining Propositions 5.40 and 5.45 we get that φu-rob characterises u-

robust cleanness w.r.t. contracts with finite standard behaviour:

158 5 Model-Agnostic Software Doping Analysis

Corollary 5.46. Let L ⊆ N→ (In ∪ Out) be a mixed-IO system and C = ⟨Std,
dIn, dOut, κi, κo⟩ a context for robust cleanness with finite standard behaviour
Std = {w1, . . . , wc} ⊆ L. Then, L is trace integral u-robustly clean w.r.t. C if
and only if (L ◦ Std) |= φu-rob.

The proposition below for u-func-cleanness is analogue to Proposition 5.45 –
except for the absence of the condition that M must be defined over a discrete
time domain. Its proof is, up to the different reasoning for (dOut(wb↓o, w↓o)−
f(dIn(wb↓i, w↓i)) ≤ 0) instead of (dOut(wb↓o, w↓o) − κo ≤ 0)W(dIn(wb↓i, w↓i) −
κi > 0), identical to that of Proposition 5.45. Hence, we omit it.

Proposition 5.47. Let M be a real-valued or mixed-IO system, i.e., M ⊆
(T → Rn) or M ⊆ (N → (In ∪ Out)) for T = N or T = R≥0, and let
Std = {w1, . . . , wc} ⊆ M be a finite set of standard traces. Also, let Stdπ be
a quantifier-free HyperSTL subformula, such that M, {π := w}, 0 |= Stdπ if and
only if w ∈ Std. Then, M,∅, 0 |= ψu-fun if and only if (M ◦ Std) |= φu-fun, where

φu-fun :=
∧

1≤a≤c

∨
1≤b≤c

(
(eq(wa↓i, wb↓i) ≤ 0) ∧

(
(dOut(wb↓o, w↓o)− f(dIn(wb↓i, w↓i)) ≤ 0)

))
.

Again, by combining Propositions 5.44 and 5.47 we get that φu-fun characterises
u-func-cleanness w.r.t. contracts with finite standard behaviour:

Corollary 5.48. Let L ⊆ N→ (In ∪ Out) be a mixed-IO system and C = ⟨Std,
dIn, dOut, f⟩ a context for func-cleanness with finite standard behaviour Std =
{w1, . . . , wc} ⊆ L. Then, L is trace integral u-func-clean w.r.t. C if and only if
(L ◦ Std) |= φu-fun.

Example 5.49. We consider the robust cleanness context C = ⟨Std, dIn, dOut, κi, κo⟩
where Std = {w1, w2} contains the two standard traces w1 = 1i 2i 3i 7o 0i δ

ω and
w2 = 0i 1i 2i 3i 6o δ

ω. We here decorate inputs with index i and outputs with
index o, i.e., w1 describes a system receiving the three inputs 1, 2, and 3, then
producing the output 7, and finally receiving input 0 before entering quiescence.
We take

dIn(i1, i2) =


|i1 − i2|, if i1, i2 ∈ In

0, if i1= i2=–i

∞, otherwise,

5.4 HyperSTL 159

and

dOut(o1, o2) =


|o1 − o2|, if o1, o2 ∈ Out\{δ}
0, if o1=o2=–o or o1=o2=δ

∞, otherwise.

The contractual value thresholds are assumed to be κi = 1 and κo = 6.
Assume we are observing the trace w = 0i 1i 2i 6o 0i δ

ω to be monitored with
STL formula φu-rob (from Proposition 5.45). First notice, that for combinations
of a and b in φu-rob, where a ̸= b, the subformula (eq(wa↓i, wb↓i) ≤ 0) is always
false, because w1 and w2 have different (input) values at time point 0. Hence,
it remains to show that

(dOut(w1↓o, w↓o)− κo ≤ 0)W(dIn(w1↓i, w↓i)− κi > 0) ∧

(dOut(w2↓o, w↓o)− κo ≤ 0)W(dIn(w2↓i, w↓i)− κi > 0).

For the first part, the input distance between inputs in w and w1 is always 1
at positions 1 to 3, it is 0 at position 4 (because –i is compared to –i) and in
position 5 and beyond. Thus, dIn(w1↓i, w↓i) − κi is always at most 0, and the
right hand-side of the W operator is always false. Consequently, by definition of
W, the left operand of W must always hold, i.e., dOut(w1↓o, w↓o) must always
be less or equal to 6. This is the case for w1 and w: at all positions except for
4, –o is compared to –o (or δ to δ), so the difference is 0, and at position 4, the
distance of 6 and 7 is 1.
For the second W-formula, w is compared to w2. These two traces are com-

parable only to a limited extent: the order of input and output is altered at
the last two positions of the signals before quiescence. Hence, the right operand
of W is true at position 4, and the formula holds for the remaining trace. For
positions 1 to 3, the input distances are 0, because the input values are identical.
At these positions, the left operand must hold. The values are input values, so
–o is compared to –o at each position. This distance is defined to be 0, so it holds
that −6 ≤ 0, and the formula is satisfied. Since both formulas hold, the conjunc-
tion of both holds, too, and trace w is qualified as trace integral robustly clean.
There could however be other system traces not considered in this example, that
overall could violate trace integral robust cleanness of the system.

Restriction of input space Robust cleanness puts semantic requirements on frag-
ments of a system’s input space, outside of which the system’s behaviour remains
unspecified. Typically, the fragment of the input space covered is rather small.
To falsify the STL formula φu-rob from Proposition 5.45, the falsifier has two
challenging tasks. First, it has to find a way to stay in the relevant input space,

160 5 Model-Agnostic Software Doping Analysis

i.e., select inputs with a distance of at most κi from the standard behaviour.
Only if this is assured it can search for an output large enough to violate the κo
requirement. In this, a large robustness estimate provided by the quantitative
semantics of STL cannot serve as an indicator for deciding whether an input is
too far off or whether an output stays too close to the standard behaviour.
The general strength of the falsification technique is its proven ability to dis-

cover outputs of a black-box system violating a property. That is why the
technique is considered suitable for real-world robust cleanness tests. We can
improve its efficiency significantly by narrowing upfront the input space the fal-
sifier uses.
As mentioned in Section 5.3, real-life test execution traces are always finite,

i.e., the trace lengths can be bounded by some constant B ∈ N and systems
can be represented as sets of finite traces M ⊆ (In ∪ Out)B (which for formality
reasons each can be considered suffixed with δω). In this bounded horizon, we
can provide a predicate discriminating between relevant and irrelevant input
sequences. Formally, the restriction to the relevant input space fragment of
a system M ⊆ (In ∪ Out)B is given by the set InStd,κi = {w ∈ M | ∃w′ ∈
Std.

∧B−1
k=0(dIn(w[k]↓i, w′[k]↓i) ≤ κi)}. Since Std and B are finite, membership is

computable.
There are rare cases in which this optimisation may prevent the falsifier from

finding a counterexample. This is only the case if there is an input prefix leading
to a violation of the formula for which there is no suffix such that the whole trace
satisfies the κi constraint. Below is a pathological example in which this could
make a difference.

Example 5.50. Apart from NOx emissions, NEDC (and WLTC) tests are used to
measure fuel consumption. Consider a cleanness context where inputs represent
the speed of a car and where outputs represent the amount of fuel injected
into the engine. Assuming a “normal” fuel rate behaviour during the standard
test, there might be a test within a reasonable κi distance, where the fuel is
wasted insanely. Then, the fuel tank might run empty before the intended end
of the test, which therefore could not be finished within the κi distance, because
speed would be constantly 0 at the end. The actually driven test is not in set
InStd,κi , but there is a prefix within κi distance that violates the robust cleanness
property.

5.5 An Integrated Testing Approach

From Section 5.3 we get a model-based testing algorithm that provably provides
correct verdicts for u-robust cleanness. Section 5.4 develops a quantitative se-
mantics for u-robust cleanness, which can be plugged into existing probabilistic

5.6 Related Work & Contributions 161

falsification algorithms, such as the one shown in Algorithm 2.1. The proba-
bilistic falsification approach determines inputs that falsify u-robust cleanness.
Under the assumption that inputs can be passed automatically to the system
under test, and that this system produces an output in adequate time, the two
approaches constitute alternative ways to serve as a black-box verification tech-
nique for u-robust cleanness.

For cyber-physical systems these assumptions may be questioned. To conduct
a test with a car, for example, the input to the system is a test cycle that is passed
to the vehicle by driving it. This imposes several challenges (Chapter 6 discusses
this in detail), among which are the violations of the the above assumptions: the
test cycle must be driven manually and the execution time of the system is the
duration of the test cycle and, hence, inadequately long. These concerns are
shared by many CPS. Notably, we consider here the scenario that the CPS is
tested by an entity that is not the manufacturer. While the latter might have
tools to overcome these technical challenges, the former typically does not have
access to them.

We propose the following solution for effective doping tests of cyber-physical
systems. The big picture is provided in Figure 5.2. In a first step, the CPS is
used under real-world conditions without enforcing any specific constraints on
the inputs to the system. For all executions, the inputs and outputs are recorded.
So, essentially, the system can be used as it is needed by the user, but all
interactions with it are recorded. From these recordings, a model can be learned,
which for arbitrary inputs (whether they were covered in the recorded data or
not) predicts outputs of the system. For the learned model, the probabilistic
falsification algorithm computes a test input that falsifies it – inputs to this
model can be passed automatically and an output is produced almost instantly.
The result of the falsification procedure is an input sequence that can serve in a
second step as an input that the model-based testing algorithm can use for the
real-world system. If the prediction was correct, also the real system is falsified.
If it was incorrect, the learned model can be refined and the process starts again.

5.6 Related Work & Contributions

This chapter uses an existing model-based testing approach and instantiates it
with u-robust cleanness. We take robust cleanness and identify the conditions
under which it can be used for model-based testing. We adapt the notion of
robust cleanness for mixed-IO systems from Section 3.3 so that it meets these
conditions. We continue by constructing a largest LTS that is u-robustly clean
and prove essential properties of it. This LTS can serve as a specification for

162 5 Model-Agnostic Software Doping Analysis

Learned Model

Probabilistic Falsification Model-Based Testing

(Real-World) SystemRecorded Traces

synthesised
input

predicted
output

Falsification Result pass input

Real-World
System Usage

Figure 5.2: Integrated testing approach

model-based testing and we develop a provably correct on-the-fly testing algo-
rithm for u-robust cleanness. Our algorithm is similar to existing test frameworks
like TGV [75] or TorX [43], but they cannot test for u-robust cleanness out of
the box and, consequently, they cannot provide (proved) soundness guarantees
for the detection of software doping.
The work in Section 5.4 is related to an existing, for our cleanness defini-

tions unsuitable, quantitative semantics of HyperSTL [96] and to existing work
about probabilistic falsification [48, 2, 54, 8, 13]. Inspired by the HyperLTL
characterisations in Section 4.2, we propose HyperSTL characterisation for ro-
bust cleanness and func-cleanness. Under the assumptions made in Section 5.3
we transform the HyperSTL characterisation of u-robust cleanness and u-func-
cleanness to STL formulas that allow the automatic falsification of u-robust
cleanness and, respectively, u-func-cleanness.
Finally, we combine the model-based testing technique and the falsification

technique for CPS to propose an integrated testing approach. Using a learned
model in addition to the real system has similarities to the idea of digital
twins [64, 78].
The contributions made in Sections 5.1 to 5.3 mostly come from [17, 18].

Many of the contributions in Sections 5.4 and 5.5 were first published in [25].
All contributions were primarily developed by myself. New contributions in
this thesis are the HyperSTL characterisation for l-robust cleanness and func-
cleanness, the STL characterisation of u-func-cleanness under finite standard
behaviour, all proofs in Section 5.4, and Section 5.5.

6 Hands-On: Diesel Doping Tests

Using the concepts and techniques defined in the previous chapters, we now
show how it can be applied to analyse diesel cars. With the Diesel Emissions
Scandal, it became obvious that software doping exists in products that are used
by millions of people. Despite that, the cheating software in diesel cars was not
discovered immediately. One reason for this is, that a car falls into the class of
cyber-physical systems, i.e., digital systems that interact with the physical world.
In particular, testing cyber-physical systems turns out to be often very difficult
when the test inputs must be passed “through the physical world” instead of a
purely digital interface. For example, to make a car follow a test cycle, some
human must drive the car accordingly.

This chapter identifies several challenges of automotive doping tests – chal-
lenges that these tests have in common with tests of many other cyber-physical
systems. We develop techniques to overcome these challenges, or at least signif-
icantly reduce the effort needed to conduct these tests. Our testing approaches
are based on the model-based testing technique developed in Chapter 5. We first
give a demonstration of how this technique is able to identify software doping
as it was found in a multitude of Volkswagen cars. Then, we take a real car
and conduct a variety of tests on a chassis dynamometer, which are all based on
cleanness notions that we introduced in Chapter 3. Finally, we present the Car
Data Platform, which is supposed to be a long-term research project to perform
mass-monitoring of cars and to provide a rich toolbox for automotive software
doping analysis.

6.1 Model-Based Testing in Practice

Algorithm 5.1 serves as a basis for real-world doping tests. It is the core of a
testing framework we have implemented in Python. This implementation along
with implementations specific to the use case described here. Further accom-
panying documentation is archived and publicly available at DOI 10.5281/zen-
odo.4709389 [19]. The framework defines the minimal requirements for imple-
mentations of distance functions, value domains and the communication interface
to the implementation under test as abstract classes. We call the instantiation of
the pair (Ωcase,ΩIn) a test case selection, which can be implemented as desired,

https://doi.org/10.5281/zenodo.4709389
https://doi.org/10.5281/zenodo.4709389

164 6 Hands-On: Diesel Doping Tests

as long as it complies to the interface defined by the framework. We want to
remark that our framework implements Case 2 of DTb different from what is ex-
plained in Section 5.3. In practice, we cannot assume atomicity of one iteration
of the test execution. This is a well-known practical impediment of model-based
testing [63]. The common approach to circumvent this issue proceeds by delegat-
ing the decision of Algorithm 5.1 which case to pick to the driver component [43]
(connecting to the IUT), which is configured to be able to look one output (or
quiescence) ahead. We have adapted this approach, giving preference to Case 3
if the driver holds some output. Except for the structural constraints explained
above, there are no limitations for the specification of concrete contracts or IUTs.
Software doping tests are typically executed physically rather than in simu-

lation. When testing passenger cars, the driver component is a human driver.
Having a human in the loop has severe consequences. In many cases, they will
fail to make the car under test behave exactly as specified by the designated test
inputs. To overcome this problem of human imprecisions, we will use a tech-
nique related to testing, which is monitoring. A monitor can read the inputs
and outputs of a system in order to detect incorrect behaviour of the system.
In contrast to testing, the inputs are not provided by the test, but instead the
system is monitored during normal operation. Monitors can be either online
(evaluation is done while inputs are still received) or offline (observed behaviour
is evaluated after the observation). A monitor can easily be extended to a test
by controlling the environment providing the inputs to the system. In contrast
to classical testing, however, the monitor has the flexibility to handle human
imprecisions. We made offline monitoring explicitly part of our testing frame-
work. To this end, we use its flexibility to specify a virtual implementation under
test with an associated test case selection that can run a recorded trace with
the testing algorithm being in the loop. We present two examples showing two
different approaches of how our framework can be used. Both examples consider
the Diesel Emissions Scandal.

6.1.1 The Volkswagen Case

Among the first car manufacturers convicted of cheating with emission clean-
ing systems is Volkswagen. As explained in Section 2.7, their cars used pairs
of piecewise linear functions to distinguish between emission tests and normal
driving behaviour. Before we report about doping tests with real cars, we use
the Volkswagen case to showcase how robust cleanness can identify this instance
of doping. The first step is to construct a suitable cleanness context.

Inputs & Outputs The input dimension In is spanned by (a subset of) the sensors
the car model is equipped with (among them e.g. temperature of the exhaust,

6.1 Model-Based Testing in Practice 165

outside temperature, vertical and lateral acceleration, throttle position, time
after engine start, engine rpm, possibly height above ground level etc.). Most
substances leaving the exhaust pipe are gases or small particles that are a result
of the chemical reactions in the engine. The processes inside the engine depends
to a very large extend on the amount of injected fuel, which is controlled by the
position of the throttle. The typical way of defining how the throttle is supposed
to be used is by means of a speed trajectory. The vehicle speed is the decisive
quantity specified to vary along the test cycle NEDC (cf. Figure 2.2), hence,
we take In = R. Nevertheless, it is possible to add further dimensions of inputs;
ambient air, for example, is also part of the reactions in the engine, but has much
less influence on the results than the amount of fuel. Gear changes, on the other
hand, naturally produce extreme variations on the output. Therefore, following
a pattern of gear changes different from what is prescribed by the NEDC should
be considered as an extreme variation of the input value (i.e., causing exceedance
of κi). Thus, in our experiments, we carefully follow the gear change instructions
of the NEDC. Gear information is omitted from our input domain. There are
similar practical reasons why other physical characteristics are neglected, but
which our theory can handle easily. For every input dimension added, there
needs to be a technical counterpart that is able to identify the appropriate values
and that is synchronised with the speed and emissions sensors. To avoid this
technical overhead and for ease of presentation we do not consider additional
input dimensions.
The outputs Out depend on the actual objective of the test. Most tests re-

lated to the diesel scandal involve the measurement of the amount of NOx per
kilometre emitted since engine start, but it could also be the amount of CO2,
any other gases, or fuel consumption. Sometimes, the outputs of interest are not
accessible directly. For example, when using only the OBD interface of the car
(cf. Section 2.7) the values reported by the on-board NOx sensors are expressed
in parts-per-million (ppm). In this case, other sensor values (e.g. mass air flow,
fuel rate and others) [82] can be used to compute the amount of NOx emit-
ted in mg/km. All sensor values necessary for this computation would then be
considered being part of Out; the distance function dOut would have to perform
the necessary conversions as part of the distance computation. In the follow-
ing examples we use an external emissions measurement system, that internally
performs the computation of the amount of NOx in mg/km. Hence, this is the
decisive output quantity and thus Out = R.

Cleanness Context For the experiments we will consider robust cleanness to
analyse whether a car exhibits software doping. Thus, before conducting the
experiments, we must define a cleanness context.
A standard LTS Std can be constructed from the results of driving the NEDC

166 6 Hands-On: Diesel Doping Tests

cycle several times on a chassis dynamometer, and logging both input and output
values. The specific setting we consider is that of a trace σS recorded with an
emissions measurement system which is attached to the exhaust pipe and reports
the accumulated amount of NOx gases during the entire test procedure upon its
termination. Each such experiment constitutes a trace with an infinite suffix
of δs (because the experiment is finite), say σS := i1 · · · i1180 oS δ δ δ · · · . The
inputs i1, · · · i1180 are given by the NEDC over its 20 minutes (1180 seconds)
duration, possibly deviating by up to 2 km/h due to human driving imprecision
(as per the official NEDC regulations), and are followed by a single output oS
reporting the NOx amount.
Suitable distance functions are past-forgetful and compute the absolute dif-

ference of the speed of the car for dIn and the discrepancy of the amount of
gases (in mg/km) for dOut. Formally, we define dIn(a, b) = |a − b| if a, b ∈ In,
dIn(–i, –i) = 0 and dIn(a, b) = ∞ otherwise. Similarly, dOut(a, b) = |a − b| if
a, b ∈ Out, dOut(–o, –o) = dOut(δ, δ) = 0 and dOut(a, b) =∞ otherwise.
For the distance thresholds, we pick κi = 15 km/h and κo = 180mg/km.

The input bound allows more variation than foreseen within the NEDC itself
(2 km/h). Notably, the output bound is very generous. It is more than the
double of the currently allowed legal limit (80mg/km) of how much NOx a car
is allowed to emit at all. Ultimately, this induces a concrete cleanness context
C = ⟨Std, dIn, dOut, κi, κo⟩ that we are going to use in the sequel. The contract
is strictly speaking hypothetical (since no car manufacturer agreed on it), but
from a common-sense perspective it appears generous enough to serve as a valid
discriminator to accuse any party violating it of software doping.

Test Case Selection We implemented a toy version of an emission cleaning sys-
tem [19] that encodes the pair of piecewise linear functions found in the early
Volkswagen emission cheating cases. As standard behaviour, we encoded the
NEDC with 50mg/km of emitted NOx. Moreover, we implemented the above
mentioned input distance function and output distance function. For the test
case selection, we instantiated Ωcase and ΩIn of Algorithm 5.1 with

Ωcase(h) =

{
2 if |h| ≤ 1180

3 if |h| = 1181
and

ΩIn(h) = randunif [max(0, last(h)− κi) , last(h) + κi].

That is, the test stops after 1181 steps and otherwise meanders randomly through
the speed variations possible (randunif implements uniform randomness). Run-
ning Algorithm DTb (with b = 1182) with these parameters is extremely likely
to lead to a fail, i.e., to indicate software doping. During these tests the chance
is high to leave the white area in Figure 2.3 defined by the pairs of piecewise

6.1 Model-Based Testing in Practice 167

linear functions encoded in VW’s control units. In our experiments, we had to
take κi ≤ 4 in order to see tests passing with some perceivable chance.

6.1.2 The Nissan Case

The Volkswagen example above shows how our testing framework works in the-
ory. In practice, if we test cyber-physical systems like cars, it is usually not
possible (or at least very difficult) to effectuate the interface between DTb and
the IUT. Testing a car, for example, requires a human driver who can drive
the car as specified by DTb. However, the driver needs to be made aware of
the upcoming input values a few seconds in advance in order to be able to pre-
pare for changes. This is not in the spirit of our algorithm (and neither that of
model-based testing), because there is no support for look-ahead. Furthermore,
human imprecisions must be taken into account. Even well trained drivers will
likely not be able to reach the prescribed speed values accurately at precisely the
right time points. Thus, for these kinds of experiments, we propose the following
three-step approach.

1. Use the test case selection in order to generate a sequence of inputs that
serve as a test case instruction for a human driver. Considering a tolerance
of η for human imprecisions, the input sequences should be generated for
a contract where the input threshold is κ′i = κi − η, i.e., assuming the
driver controls the car with an imprecision of at most tolerance η, the
actually driven input sequence will still be considered acceptable as per
Definition 5.2.

2. Utilise that test case to guide a human driver effectuating the test on the
chassis dynamometer, record the entire experiment, and store it as a trace.

3. Use the monitoring capabilities of our framework to simulate the experi-
ment with Algorithm DTb analysing it. To this end, we provide an imple-
mentation to parse traces and to generate a virtual IUT and a test case
selection, which, when used with DTb, simulate the recorded experiment.
Algorithm DTb will return either pass or fail (i.e., there are no inconclusive
tests).

It is worth mentioning that whatever happens during the execution of a test,
the observable input sequence is handled correctly by DTb. In particular, if
the input deviates too much from a standard input, the test is trivially passed.
In this case our framework will additionally flag that the test is passed due
to inputs not covered by robust cleanness. In practice, we try to eliminate
such unproductive experiments by adequately configuring the human imprecision
estimate η upfront.

168 6 Hands-On: Diesel Doping Tests

0 100 200
0

15

32

50

Time [s]

S
p
ee
d
[k

m h
]

Figure 6.1: Initial 200s of a SineNEDC (red, dotted), its test drive (green) and
the NEDC driven (blue, dashed).

For the purpose of practically demonstrating this three-step approach, we
picked a Renault 1.5 dci (110hp) (Diesel) engine. This engine runs, among
others, inside a Nissan NV200 Evalia which is classified as a Euro 6b car. The
test cycle used in the original type approval of the car was NEDC. Emissions
are cleaned using exhaust gas recirculation (EGR). The technical core of EGR
is a valve between the exhaust and intake pipe, controlled by software. EGR
is known to possibly cause performance losses, especially at higher speed. Car
manufacturers might be tempted to optimise EGR usage for engine performance
unless facing a known test cycle such as the NEDC.
We report here on two of the tests we executed apart from the NEDC reference

test. PowerNEDC is a variation of the NEDC, where acceleration is increased
from 0.94m/s2 to 1.5m/s2 in phase 6 of the NEDC elementary urban cycle (i.e.
after 56 s, 251 s, 446 s and 641 s). It can be described by the same Ωcase as for
the Volkswagen example. ΩIn is easy to write, but we omit it here as it is rather
space consuming. The second test, called SineNEDC, defines the speed at time
t to be the speed of the NEDC at time t plus 5 · sin(0.5t) (but capped at 0).
Again, Ωcase matches the Volkswagen one. The input selection is given by

ΩIn(h) = max

{
0,
NEDC(|h|) + 5 · sin(0.5|h|))

}
.

Figure 6.1 shows the initial 200s of SineNEDC (red, dotted). The car was
fixed on a Maha LPS 2000 dynamometer and attached to an AVL M.O.V.E iS
portable emissions measurement system (PEMS, see Figure 6.2) with speed data
sampling at a rate of 20Hz, averaged to match the 1Hz rate of the NEDC. The
human driver effectuated the NEDC with a deviation of at most 9 km/h relative
to the reference (notably, the results obtained for NEDC are not consistent with
the car data sheet, likely caused by lacking calibration and absence of any further
manufacturer-side optimisations). The NEDC drive is depicted in Figure 6.1 as

6.2 Conformance-Based Testing in Practice 169

Figure 6.2: Nissan NV200 Evalia on a dynamometer

NEDC Power Sine

Distance [m] 11,029 11,081 11,171

Avg. Speed [km/h] 33 29 34

CO2 [g/km] 189 186 182

NOx [mg/km] 180 204 584

Table 6.1: Dynamometer measurements

a blue solid line.

The PowerNEDC test drive as well as the SineNEDC test drive both deviated
by less than 15 km/h from the NEDC test drive, and hence less than κi, as per
the contract described at the beginning of this section. The green solid line in
Figure 6.1 shows the SineNEDC as driven. The test outcomes are summarised
in Table 6.1. They show that the amount of CO2 for the two tests is lower
than for the one for NEDC driven. The NOx emissions of PowerNEDC deviate
by around 24mg/km, which is clearly below κo. But the SineNEDC produces
about 3.24 times the amount of NOx, namely 404mg/km more than what we
measured for the NEDC, which is a violation of the cleanness context. Thus,
this experiment reveals that the car under test is doped, sine κo = 180mg/km.

6.2 Conformance-Based Testing in Practice

In a second set of experiments we used the Nissan car that appeared in the
previous section to practically evaluate the cleanness notions for hybrid systems

170 6 Hands-On: Diesel Doping Tests

(cf. Section 3.4). In particular, we are interested in two types of experiments.
First, we evaluate if hybrid cleanness is suitable to better overcome the human
(timing) imprecisions when driving a car – in our case on a chassis dynamometer.
This problem has already been discussed in Section 6.1.2, where we proposed a
solution that was (and could) only be based on adjusting the threshold for value
errors. With hybrid conformance, we are able to explicitly distinguish between
tolerances in the value domain as well as the time domain. For the second type of
experiments in this section we will experiment with the ability of conf-cleanness
to control time and value deviations to drive the NEDC segments in a different
order and to lengthen tests beyond the NEDC’s duration of 1180 s.
The experiments in this section are based on the conf-cleanness contract
C = ⟨StdIn, dIn, dOut, κi, κo,Retid,Retid, 0, 0⟩ that encodes robust cleanness (cf.
Proposition 3.111). We use the same dIn, dOut, κi and κo as in Section 6.1. The
set StdIn = {NEDC} is the singleton set that contains only the NEDC1. The
cleanness parameters StdIn, dIn, dOut, κo and for the output retiming Retid and
τi = 0 are identical in all contracts in the remainder of this section. We explain
for every experiment how we adjust C’s cleanness parameters for inputs. The
experiments will demonstrate, how software doping analysis benefits from input
retimings different than Retid.

NEDC Permutations First, we propose a new test cycle PermNEDC in which
NEDC segments are permuted on the time axis. Figure 6.3 shows the test
cycle. In each of the four UDC segments the three non-zero speed-phases
are permuted. The transformation from NEDC to PermNEDC can be
described by a retiming function rp. An explicit definition of rp is space
consuming, hence we omit it. Along with the new cycle, we propose two
suitable variants of contract C with different input conformances. Neither
input conformance is constrained by a time threshold; in other words,
τi =∞.

• We define contract Ca that is as C, but entails the family of retimings
Reta = {(r, r−1) | r ∈ T → T and r is total and bijective} for
inputs. Reta allows any reordering of the NEDC inputs. Notably, no
inputs can be added or removed. This contract enforces the input
conformance Conf RetadIn,∞,κi

.

• Contract Cp adjusts C by enforcing for inputs the family of retimings
Retp = {(rp, r−1

p)} that only allows the particular retiming rp used
to design the test cycle as discussed above. The input conformance

induced by this contract is Conf
Retp
dIn,∞,κi

. This input conformance is

1Strictly seen, we take the singleton set that contains the speed trajectory of our car when
the driver tried to drive the NEDC. This speed trajectory slightly differs from the NEDC.

6.2 Conformance-Based Testing in Practice 171

0 200 400 600 800 1,000 1,180
0

32

70

100

120

Time [s]

S
p
ee
d
[k

m h
]

Figure 6.3: PermNEDC (solid, black line) compared to NEDC (dashed, blue
line)

0 200 400 600 800 1,0001,180 2,360
0

32

70

100
120

Time [s]

S
p
ee
d
[k

m h
]

Figure 6.4: DoubleNEDC (solid, black line) compared to NEDC (dashed, blue
line)

stricter than Conf RetadIn,∞,κi
above; it enforces that PermNEDC is not

permuted any further by the driver.

NEDC Lengthening Conf-cleanness tests can run longer than the NEDC; this
is not possible with robust cleanness. We propose the test cycle Dou-
bleNEDC, which consists of two consecutive NEDCs. In contrast to all
other test cycles in this paper, DoubleNEDC produces two outputs: the
first after 1180 s, and the second after 2360 s. The first half of this cycle
is a classical “cold” NEDC (i.e., the engine cooled down before the test
execution). The second half is a “hot” NEDC, since the cool-down phase
was implicitly skipped. Also, the PreCon phase is skipped implicitly; there
is only a single EUDC (instead of three) prior to the second NEDC. The

172 6 Hands-On: Diesel Doping Tests

inputs of both NEDCs can be compared by using the retiming functions
id and rd = λt. t mod 1180. rd maps time points of the global “test case
clock” to the local time point in the NEDC time domain. DoubleNEDC
requires to adapt contract C to Cd by replacing the input retiming family
with Retd = {(id, rd)}. Furthermore, to be able to check the second output
against the (standard) NEDC output we need sync-conf-cleanness. Hence,
we add the synchronisation retiming function Syncd(r1, r2) = (id, rd) to Cd,
which enforces that both DoubleNEDC outputs are compared to the single
NEDC output (independent of the input retimings r1 and r2).

Human Time Imprecision Tolerance Diesel doping tests are executed by hu-
mans driving a car. Humans tend to make mistakes when driving. Mis-
takes can be the over- or undershooting of the targeted speed (the error
is on the value axis), or accelerations or decelerations happening too early
or too late (the error is a shift on the time axis), or superpositions thereof.
To compensate for both value and time errors, we use hybrid conformance.
As a formal cleanness contract, this would be expressed by a variant of C
in which the input conformance is replaced by HybridConfd,τi,κi

for some
τi > 0. For the purpose of demonstration, we will later analyse several
such variants of C, each variant with a unique value for τi and κi, i.e., we
consider the contract C(τi, κi) parametrised in τi and κi. Concrete values
for τi and κi must be specified when using the contract.

A test cycle that reflects drivings rich of acceleration and deceleration
phases – and is hence particularly prone to human driving errors – is
SineNEDC from Section 6.1.2. We will evaluate SineNEDC under several
variants of C(τi, κi).
Human time imprecision is as yet not considered in test cycles PermNEDC
and DoubleNEDC; the cleanness contracts for both cycles require cycle-
specific families of retimings. However, tolerance for human imprecision
can be added to these predicates by means of conformance and retiming
composition. Let Ret(1) and Ret(2) be two families of retimings. Then,

Ret(2) ◦ Ret(1) := {(r(2)1 ◦ r
(1)
1 , r

(2)
2 ◦ r

(1)
2) |

(r
(2)
1 , r

(2)
2) ∈ Ret(2) and (r

(1)
1 , r

(1)
2) ∈ Ret(1)}

is the component-wise function composition. The definition for confor-

mance composition is Conf Ret
(2)

d,τ2,ϵ ◦ Conf
Ret(1)

d,τ1,ϵ
:= Conf Ret

(3)

d,∞,ϵ , where Ret(3) =

Ret(2)τ2 ◦Ret
(1)
τ1 composes the individual retimings. Notably, the τ1- and τ2-

constraints on Ret(1) and Ret(2) are applied before the composition. It is
not necessary to apply further timing constraints to the resulting retiming,
hence we allow infinite τ .

6.2 Conformance-Based Testing in Practice 173

C = ⟨StdIn, dIn, dOut, 15 km/h, 180mg/km, Retid, Retid, 0, 0 ⟩
Ca = ⟨StdIn, dIn, dOut, 15 km/h, 180mg/km, Reta, Retid, ∞, 0 ⟩
Cp = ⟨StdIn, dIn, dOut, 15 km/h, 180mg/km, Retp, Retid, ∞, 0 ⟩
Cd = ⟨StdIn, dIn, dOut, 15 km/h, 180mg/km, Retd, Retid, ∞, 0, Syncd⟩
C(τi, κi) = ⟨StdIn, dIn, dOut, κi, 180mg/km, Rethy, Retid, τi, 0 ⟩
Cp(τi, κi) = ⟨StdIn, dIn, dOut, κi, 180mg/km, Rethy+p, Retid, ∞, 0 ⟩
Cd(τi, κi) = ⟨StdIn, dIn, dOut, κi, 180mg/km, Rethy+d, Retid, ∞, 0, Syncd⟩

Table 6.2: Overview of the evaluated contracts. dIn(i1, i2) = |i1 − i2| and
dOut(o1, o2) = |o1 − o2|. StdIn, the families of retimings and Syncd
are as defined in the main text.

To overcome the human imprecisions for PermNEDC and DoubleNEDC,
we use the parametrised contracts Cp(τi, κi) and Cd(τi, κi), adaptations of
Cp and Cd, with input retiming families Rethy+p := (Rethy)τi ◦ Retp and
Rethy+d := (Rethy)τi ◦ Retd, respectively, and both with value threshold
κi. Thus, contract Cp(τi, κi) enforces conformance HybridPermConfd,∞,κi

=

HybridConfdIn,τi,κi
◦Conf RetpdIn,∞,κi

and contract Cd(τi, κi) enforces conformance

HybridDoubleConfdIn,∞,κi
= HybridConfdIn,τi,κi

◦ Conf RetddIn,∞,κi
on inputs.

As for hybrid conformance in C(τi, κi), we will specify concrete τi and κi
upon usage of the contract. Notably, for DoubleNEDC, this does not have
effects on the output conformance, because Syncd does not consider the
input retiming. This is important, because outputs are available only at
time points 1180 and 2360 and must not be moved to time points different
than that. We do not compose Reta and (Rethy)τi , because Reta allows any
possible NEDC permutation, which naturally reduces the effect of timing
imprecisions.

Table 6.2 summarises the contracts presented above.

Computing Parameters of Hybrid Conformance In some experiments we com-
pute, for a fixed time threshold τi and two test cycles, the minimal value error κi
such that hybrid conformance holds for the input. The implementation of this
computation is inspired by the the HyperSTL∗ formula φHybridConf

d,τ,ϵ (cf. Equa-

tion (2.2)), i.e., it computes minκi φ
HybridConf
dIn,τi,κi

for two traces π1 and π2. The

174 6 Hands-On: Diesel Doping Tests

algorithm is sketched below.

localMin(t1, i1, i2, d, τ) = min {d(i2[t2], i1[t1]) | t2 ∈ [t1 − τ ; t1 + τ] ∩ dom(i2)}
globalMin(i1, i2, d, τ) = max {localMin(t1, i1, i2, d, τ) | t1 ∈ dom(i1)}

ϵmin(i1, i2, d, τ) = max {globalMin(i1, i2, d, τ), globalMin(i2, i1, d, τ)}

Here, localMin(t1, i1, i2, d, τ) computes the minimal ϵ for subformula

[0,τ] d(iπ2 , i
∗1
π1
) ≤ ϵ ∨ [0,τ] d(iπ2 , i

∗1
π1
) ≤ ϵ,

where the value of i∗1
π1

is frozen at time t1. globalMin(i1, i2, d, τ) reflects the
Globally and Freeze operator: it finds the maximum by quantifying over all
t1 ∈ dom(i1) and by calling localMin with the frozen time value t1. To reflect
the complete formula, ϵmin(i1, i2, d, τ) returns the maximum of the conjuncts,
which are the results of globalMin for both combinations of i1 and i2. Thus,
given dIn and τi, the minimal κi for two input traces i1 and i2 is computed by
ϵmin(i1, i2, dIn, τi).
The computations for HybridPermConf and HybridDoubleConf proceed in two

steps. Both Retp and Retd are singleton sets; it is known which retiming must
be applied first. For two input traces i1 and i2 and retiming (r1, r2), there are
shifted traces i′1 = i1 ◦r2 and i′2 = i2 ◦r1. The minimal κi for hybrid conformance
is given by max {globalMin(i1, i

′
2, dIn, τi), globalMin(i2, i

′
1, dIn, τi)}.

Test Results & Verdicts We executed each of NEDC, PermNEDC, DoubleNEDC
and SineNEDC two times. We identify a concrete test execution by a suffix -1
or -2 to test cycle identifier (e.g., NEDC-1 is the first and NEDC-2 the second
execution of NEDC). Raw data and the implementation of the analysis is avail-
able online [23]. For NEDC, we combined the result of both executions to an
average value of 182mg/km of NOx. Notably, the Euro 6b regulation (to which
our car is supposed to conform to) allows at most 80mg/km, and the car under
test is certified with 60.8mg/km according to its documentation. The car is 3
years old.

For doping detection, a test verdict is only meaningful if its input trace is con-
formant to that of the average NEDC execution; otherwise, the test is trivially
passed. We will first evaluate PermNEDC w.r.t. Ca and Cp, DoubleNEDC w.r.t.
Cd, and SineNEDC w.r.t. C. To demonstrate the effects of hybrid conformance,
we then analyse the experiments w.r.t. the parametrised variants of the con-
tracts C, Cp and Cd, respectively. By definition of the test cycles, the nominal
value difference for PermNEDC and DoubleNEDC after retiming is zero, and
for SineNEDC it is 5 km/h. Though, due to human imprecisions, the actual
differences are significantly higher.

6.2 Conformance-Based Testing in Practice 175

0 200 400 600 800 1,000 1,180
0

32

70

100

120

Time [s]

S
p
ee
d

0

80

182

392

N
O

x

Figure 6.5: PermNEDC-1 speed (black) and NEDC speed (blue) in km/h, and
accumulated NOx for PermNEDC-1 (red) and NEDC (orange) in
mg/km.

• The executions of PermNEDC are shown in Figures 6.5 and 6.6. The
amount of emitted NOx were 392mg/km for PermNEDC-1 and 316mg/km
mg/km for PermNEDC-2. Conf RetadIn,∞,κi

does hold for κi ≥ 3 km/h for both
executions; with contract Ca, which defines κi = 15 km/h, drastic devia-
tions of NOx witness doping. Hence, doping is detected for PermNEDC-1,
i.e., the cleanness test fails, as the difference of NOx (compared to NEDC)
is 210mg/km and hence greater than κo = 180mg/km defined by Ca. Test
PermNEDC-2 passes with an NOx difference of 134mg/km, which is within
the contract.

With contract Cp and input conformance Conf
Retp
dIn,∞,κi

, the test verdict for

PermNEDC-1 is different. Conf
Retp
dIn,∞,κi

would only hold for κi ≥ 16 km/h,
which is above the contract defined threshold of 15 km/h. Hence, the speed
trajectory of PermNEDC-1 is not adduced and the test trivially passed.

• DoubleNEDC-1 and 2, shown in Figures 6.7 and 6.8, lead to an average
emission of 305mg/km, respectively 308mg/km of NOx. Executions of
DoubleNEDC are twice as long as regular NEDC tests and produce two
outputs. The measurements for DoubleNEDC-1 report (229, 382) mg/km,
for DoubleNEDC-2 (207, 408) mg/km. To determine the verdicts for con-
tract Cd, we first check if Conf RetddIn,∞,κi

holds. This turns out not to hold for
DoubleNEDC-2, because we observed value deviations of up to 25 km/h.
This test is therefore trivially passed. For DoubleNEDC-1 all value devi-
ations remain below the 15 km/h threshold; this test run is thus to be

176 6 Hands-On: Diesel Doping Tests

0 200 400 600 800 1,000 1,180
0

32

70

100

120

Time [s]

S
p
ee
d

0

80

182

316

N
O

x

Figure 6.6: PermNEDC-2 speed (black) and NEDC speed (blue) in km/h, and
accumulated NOx for PermNEDC-2 (red) and NEDC (orange) in
mg/km.

considered relevant for output comparison. According to the retiming
synchronisation in Cd, each of the outputs 229 and 382 must be com-
pared to the NEDC output 182. The output conformance is violated for
the second output with a difference of 200mg/km exceeding the allowed
κo = 180mg/km threshold. Hence, DoubleNEDC-1 fails and doping is
detected.

• During the test executions of SineNEDC, we measured 483mg/km and
632mg/km. The test progression is shown in Figures 6.9 and 6.10. In
SineNEDC-1, speed values deviate by up to 18 km/h, which exceeds the κi
threshold in C, so this test run is trivially passed. SineNEDC-2 respects
the κi threshold because inputs never deviate by more than 13 km/h. Con-
sequently, SineNEDC-2 convicts our test car of doping, as the output dif-
ference of 450mg/km is 2.5 times the allowed threshold κo.

• As discussed, we use hybrid conformance to compensate for human driv-
ing imprecisions. In this context, Table 6.3 details the effect of a choice
of τi on the maximal value error. We fix a maximum value that we al-
low for the time offset τi. For this τi we analyse our dataset to find the
minimal κi such that for the combination of τi and κi the input traces
under consideration satisfy the cycle-specific hybrid conformance (defined
by the corresponding cleanness contract). For τi = 0 we get exactly the κi
for which the two traces satisfy Conf

Retp
dIn,∞,κi

(for PermNEDC), Conf RetddIn,∞,κi

(for DoubleNEDC), and TraceConfdIn,0,κi (for SineNEDC). Table 6.3 shows

6.2 Conformance-Based Testing in Practice 177

0 200 400 600 800 1,0001,180 2,360
0

32

70

100
120

Time [s]

S
p
ee
d

0

80

182

305

N
O

x

Figure 6.7: DoubleNEDC-1 speed (black) and NEDC speed (blue) in km/h, and
accumulated NOx for DoubleNEDC-1 (red) and NEDC (orange) in
mg/km.

0 200 400 600 800 1,0001,180 2,360
0

32

70

100
120

Time [s]

S
p
ee
d

0

80

182

308

N
O

x

Figure 6.8: DoubleNEDC-2 speed (black) and NEDC speed (blue) in km/h, and
accumulated NOx for DoubleNEDC-2 (red) and NEDC (orange) in
mg/km.

the computed κi values for τi = 0, 1, 2, 5, 10, 15 and 20 seconds. As ex-
pected, an increasing τi induces the minimal κi to decrease. At τi =
5 the decrease in the value error reduces notably. This happens be-
cause the error is only partially caused by the incorrect timing of the
driver. From the values reported in Table 6.3 we see that if we allow
deviation for the input τi = 2, and keep κi = 15, then we have that
the hybrid conformances HybridDoubleConfdIn,τi,κi

(NEDC,DoubleNEDC-2)
and HybridConfdIn,τi,κi

(NEDC,SineNEDC-1) hold. For time threshold τi =
3 seconds HybridPermConfdIn,τi,κi

(NEDC,PermNEDC-1) also holds. Thus,
under hybrid conformance these pairs of traces will be considered in the
cleanness test for contracts Cd(2, 15), C(2, 15) and Cp(3, 15), respectively,
while under their original contract and input conformance they are to be
dismissed.

178 6 Hands-On: Diesel Doping Tests

0 200 400 600 800 1,000 1,180
0

32

70

100

120

Time [s]

S
p
ee
d

0

80

182

483

N
O

x

Figure 6.9: SineNEDC-1 speed (black) and NEDC speed (blue) in km/h, and
accumulated NOx for SineNEDC-1 (red) and NEDC (orange) in
mg/km.

Test Name Contract τi = 0 τi = 1 τi = 2 τi = 3 τi = 5 τi = 10 τi = 15 τi = 20
PermNEDC-1 Cp(τi, κi) κi = 16 κi = 16 κi = 16 κi = 11 κi = 8 κi = 8 κi = 8 κi = 8
PermNEDC-2 Cp(τi, κi) κi = 11 κi = 10 κi = 7 κi = 7 κi = 7 κi = 7 κi = 7 κi = 7

DoubleNEDC-1 Cd(τi, κi) κi = 15 κi = 12 κi = 11 κi = 9 κi = 6 κi = 6 κi = 6 κi = 6
DoubleNEDC-2 Cd(τi, κi) κi = 25 κi = 18 κi = 10 κi = 8 κi = 8 κi = 8 κi = 8 κi = 8

SineNEDC-1 C(τi, κi) κi = 18 κi = 16 κi = 15 κi = 12 κi = 9 κi = 7 κi = 6 κi = 6
SineNEDC-2 C(τi, κi) κi = 13 κi = 11 κi = 9 κi = 9 κi = 7 κi = 7 κi = 7 κi = 7

Table 6.3: Comparison of minimal value thresholds κi for fixed τi. Values are
given as km/h and time in seconds.

Evaluation and Discussion The amounts of emitted NOx observed during our ex-
periments provide clear indications of software doping regarding the car’s emis-
sion cleaning system. The conformance-based contracts provide the formal basis
for this verdict, as discussed above. We here complement this fact with a more
intuitive explanation of the behaviour observed.

• PermNEDC slightly reorders NEDC segments in the UDC part of the test
cycle. During this part, the measured NOx does not significantly differ
from the NEDC reference. However, during the (unmodified) EUDC part,
the amount of emissions grows significantly. It is very unlikely to find a
physical explanation for the NOx increase; and very likely, that the cleaning
system is optimised specifically for the NEDC.

• The DoubleNEDC executions appear to reveal that the emission cleaning
system optimisation can also rely on engine temperature or execution time

6.2 Conformance-Based Testing in Practice 179

0 200 400 600 800 1,000 1,180
0

32

70

100

120

Time [s]

S
p
ee
d

0
80

182

632

N
O

x

Figure 6.10: SineNEDC-2 speed (black) and NEDC speed (blue) in km/h, and
accumulated NOx for SineNEDC-2 (red) and NEDC (orange) in
mg/km.

instead of speed data. Physically, many of the common emission cleaning
techniques require a hot engine to work properly (and none of them requires
a cold engine). Therefore, a lower NOx value can be expected if the NEDC
is run with a hot engine. In our experiments, however, the NOx emissions
in the hot half are almost two times higher than in the initial cold part. In
other words, the emission cleaning performance is reduced after the first
NEDC execution. There is no physical explanation for this behaviour.
Inside the software, detecting the end of an NEDC trip can be implemented
very easily, for instance with a timer counting from 1180 – the length of
NEDC – to zero.

• With SineNEDC, we test the cleaning system during driving behaviour
which is rich in accelerations and decelerations. An increased amount
of NOx can possibly be explained by physical phenomena. However, we
measured an increase of factors 2.7 and 3.5; these numbers can be safely
considered as too high for a trustworthy emission cleaning system.

Software doping theory provides the basis for detecting software behaviour
violating a formal contract. In this, physical aspects of the emission cleaning
system should be considered during the construction of test cases, and test cy-
cles for which drastically higher emissions can be explained physically, should
not be considered. The test cycles we used for our experiments were picked with
automotive expertise to avoid physically stressful cycles. If test cases are gener-
ated automatically from a contract, the physical constraints could be captured

180 6 Hands-On: Diesel Doping Tests

OBD

OBD &
Location

Data

PCDF
File

RTLola UI

PCDF Analysis

PCDF File RepositoryData Donation

RTLola

RDE Specification

GPS

Specification

Researcher

View/Download
Frontend

File Server

Upload Spec

Figure 6.11: Components of the Car Data Platform

by the contract.

The contracts we use for our experiments can be interpreted as very generous
in favour of the manufacturers. Input thresholds such as 15 km/h and 2 seconds
appear as reasonable values, keeping all tests close enough to the original NEDC.
For the output threshold, we use a very large deviation value of 180 mg/km,
which allows NOx emissions to almost double compared to the original NEDC
value. Despite the generosity of the contracts, our experiments have been able
to reveal doping for all experiments except PermNEDC-2 (and PermNEDC-1).

The analysis of the data shows that it is indeed necessary to not only consider
a deviation of value, but to also allow for timing deviations. Considering value
and timing deviations offers a rich set of potential test cycles for doping tests and
allows to realistically verify conformance of a test cycle and a reference cycle;
especially when the quality of the studied driving tests suffers from the human-
caused input distortions. In this regard, cleanness notions entailing hybrid con-
formance are more adequate than conformance notions demanding punctual test
executions, such as robust cleanness. Without hybrid conformance, more of the
doping cases we have detected would slip through.

Finally, while hybrid conformance is central to the case study considered here,
our generic theory of conformance-based cleanness allows for using other confor-
mance notions as appropriate for the CPS under test.

6.3 Car Data Platform and LolaDrives

When we do software doping tests with cars, we must assume that the system
under investigation is a black-box system. “Observing the system” is the only
possibility to gain insights into the software controlling the system. For cars,

6.3 Car Data Platform and LolaDrives 181

this raises three concrete questions: 1) how can we observe what the car is doing,
2) how can we accumulate sufficiently many observations to draw conclusions,
and 3) how can we address the above two questions in a cost efficient manner?
Our answer to all three questions is the Car Data Platform (cdp). It combines
several car-related tools and services.
Figure 6.11 summarises the main components that belong to the cdp. At the

core is the Portable Car Data Format (pcdf) to encode car-related diagnostics
data in a well-defined way [107]. The central place to collect pcdf files is a data
server, which provides interfaces to submit new files, to analyse existing files,
and to view analysis results. New files are typically submitted by instances of
the mobile app LolaDrives, which run in-the-field connected to the diagnostics
interface obd of a car. LolaDrives enables and encourages users to donate their
pcdf files. cdp offers a repository of analyses for pcdf files [26] that is used by
LolaDrives instances as well as the server. A server frontend provides researchers
with convenient access options regarding the analysis results computed for do-
nated data.

6.3.1 LolaDrives

LolaDrives is an Android application publicly available in Google’s Play Store [1].
It is compatible with many Bluetooth obd adapters to access diagnostic data
from cars. The app supports two main diagnosis modes: real-time diagnostics
monitoring and rde test guiding.

Diagnostic Monitoring. In diagnostics monitoring mode, the user selects a set
of diagnostic parameters (e.g., vehicle speed, ambient air temperature, etc.), for
which real-time values are shown on the screen (see Figure 6.12). Monitoring is
supported for all cars with combustion engine built since 20052.

RDE Testing. In rde test mode, the app constantly analyses the driving be-
haviour of the user to check whether it satisfies the rde constraints. The con-
straints [118] require the driver to equally partition the test into an urban, rural
and motorway mode, and to adhere to realistic acceleration and deceleration
behaviour. LolaDrives displays the most critical rde parameters (that the driver
can influence) by visualizing the evaluations of the rtlola streams presented in
Section 2.8.2. This allows the test personnel to easily detect and understand con-
straint violations. Figure 6.13 shows the rde feedback view of LolaDrives. From
top to bottom, it shows the total time, which must be between 90 and 120min

2Some electric vehicles are supported, too. However, it is legally not enforced that electric
vehicles expose the obd protocol at an obd interface, but they may.

182 6 Hands-On: Diesel Doping Tests

Figure 6.12: Live monitoring view Figure 6.13: rde test guide view

to finish the test, and the total distance travelled (corresponding to the rtlola
stream d in Section 2.8.2). The next line indicates the current state of the con-
ditions for a valid rde test drive disregarding emission data. In the screenshot,
the drive is still in progress and inconclusive, indicated by the question mark.
Instead, the ui can also indicate success or failure. The latter verdict can occur
far before the time limit is reached, caused by an irrecoverable situation such as
transgression of the 160 km/h speed limit. We remark that currently LolaDrives
does not always detect if for a test the rde constraints are irrecoverably violated.
For example, if a test has run for 119 minutes, but there are still at least 3 km
remaining to drive in the motorway mode to cover the 23% share of the total
trip distance, then this would require the driver to drive faster than 160 km/h
for the remaining minute. Since this is forbidden by the regulation, the rde
constraints are in this moment irrecoverably violated. In the converse case in
which the indicator reports a successful drive, this concerns the trip up until this
moment. Together with the regulatory constraints, this implies that the current
verdict can alternate between success and inconclusive from minute 90 to 120
and may also jump to failure. As there is no specific point in time when the test
ends, the app continues to compute statistics until the tester manually stops it
or the 120min mark is reached. Beneath the status indicator is the green NOx

6.3 Car Data Platform and LolaDrives 183

Figure 6.14: Log of obd events Figure 6.15: rde result summary

bar displaying the total NOx emissions (rtlola nox_per_kilometer stream in
Section 2.8.2). The two markings denote the permitted thresholds of 168mg/km
for cars admitted before 2021, and 120mg/km for cars admitted in 2021 or later.
The next three ui groups represent the progress in each of the distinct modes:

urban, rural, and motorway. Each group consists of two horizontal bars. The
gray progress bar displays the distance covered in the respective mode (e.g.,
rtlola r_d stream for the rural mode in Section 2.8.2). The vertical blue indi-
cators denote lower and upper bounds as per official regulation, for an expected
trip length configured by the user. We remark that the configured trip length is
solely used to determine the initial position of the distance indicators. In par-
ticular, when the user drives the car so that the distance would cross the upper
bound of a mode, then LolaDrives instead increases the upper bound as necessary
to avoid an overstepping and updates the distance bound indicators for the other
two modes accordingly. The blue bar below the gray one illustrates two different
metrics for the driving dynamics (e.g., rtlola r_rpa and r_pctl_dyn streams
for the rural mode in Section 2.8.2). Both dots need to eventually remain in the
middle of the bar below/above their thresholds. A more aggressive acceleration
behaviour shifts the dots to the right and a passive driving style to the left.
The rde test guide is available for cars with compatible diagnosis character-

184 6 Hands-On: Diesel Doping Tests

istics. Necessary diagnostic parameters to check the rde constraints are vehicle
speed, fuel type and the ambient air temperature. Furthermore, LolaDrives needs
access to the location services of the phone to check rde conditions that are con-
cerned with the altitude of the car. To compute the amount of emitted NOx, the
exhaust mass flow and relative amount of NOx as measured in the exhaust pipe
are necessary. The exhaust mass flow can be approximated from the mass air
flow into the engine and the fuel rate [82]. Instead of the fuel rate, the air-fuel
ratio can also be used. In case, neither is available, an expected air-fuel ratio
based on the fuel type can be used.

Dynamic Specification. While the specification of the rde regulation itself is
fixed, the app may be connected to a variety of cars, not all of which provide
the relevant data. For instance, we need the exhaust mass flow (EMF) which is
usually measured directly by the pems. In case the car does not come equipped
with an EMF sensor and we do not have a pems at our disposal, we may still be
able to calculate the EMF from other data. This has already been demonstrated
in previous work and has been the nucleus of the lightweight and low-cost variant
of the rde test procedure [82] LolaDrives relies on. Clearly, having the layperson
end user change or modify the rtlola specification to account for different car
configurations is infeasible. Hence, LolaDrives automatically adapts the specifi-
cation to a specific car. To this end, it queries the car for the supported sensors
and then automatically pieces together the best specification for the car. This
specification then includes the necessary formulae to compute values such as the
EMF from data the car actually provides.

Drive History. In both monitoring and rde testing mode, the data received
from the car is stored in a pcdf file. All recorded files can be inspected in the
“History” section of LolaDrives. It is possible to inspect the raw data received
from the car (Figure 6.14), but also results of the analyses once it is available
(e.g., rde results in Figure 6.15). Every analysis has individual requirements
about the set of diagnostics parameters that must be available in the record.

6.3.2 Technical Setup

To collect pcdf files at a central place, cdp provides a file server with an easy
to use API to submit new files and to get analysis results. The server provides
two distinct repositories, one for internal usage by the developers, and one for
official usage of the PlayStore version protected by a strong privacy policy. Fig-
ure 6.16 shows the web frontend for the internal repository. Internal files can
be downloaded, and several analysis results can be inspected. Accessing and
submitting data is protected by authorisation tokens. The implementation of

6.3 Car Data Platform and LolaDrives 185

Figure 6.16: Server Frontend: List of internal test files

the server is an interplay of individual components, deliberately held flexible so
that components can be replaced, removed or extended by other components in
the future.
The Car Data Platform is a collection of tools and services for car-related

research. It is designed in a modular way to allow for a flexible development
in the future. Modules are encapsulated in software packages, some of them
are publicly available online. The implementation of the analyses shared by
LolaDrives and the file server, and the pcdf core for easy handling of pcdf
files is written in Kotlin and published online [107, 26]. Maven artifacts are
available for integration in other projects. An analysis worker (written in Kotlin)
is running on the server to regularly check if new files have been uploaded and
to run the analyses on new files in the background. The file server backend is an
npm package written in TypeScript and Express. The frontend is also an npm
package providing a react ui to show the contents on the server.
The entire rtlola toolkit is written in Rust and available online3. The Rust

compiler uses LLVM as a backend, which enables compilation for Android de-
vices. Moreover, the implementation of the interpreter4 contains both a stan-

3https://rtlola.org
4https://crates.io/crates/rtlola-interpreter

https://rtlola.org
https://crates.io/crates/rtlola-interpreter

186 6 Hands-On: Diesel Doping Tests

dalone interpreter and a library. The library exposes a C-compatible interface,
which can in turn interface with Java Virtual Machine (JVM)-based languages
such as Kotlin. This enables linking of rtlola and LolaDrives. The latter is
written in Kotlin and also freely available online [108].

Car Simulator. By the nature of the app’s functionality, the testing of new fea-
tures of LolaDrives requires it running on a phone, connected via Bluetooth to an
obd adapter, which is plugged into a car being driven by a human. This over-
head makes testing quite inefficient. We therefore simplified the test procedure
by instead constructing a physical car simulator, to which the obd adapter can
be connected. The simulator consists of two parts: 1) a regular PC software to
parse and prepare pcdf files for simulation, and 2) an Arduino board attached
to a CAN bus shield. The Arduino board serves as a “diagnosis storage de-
vice” to which the PC repeatedly writes diagnostic data. The CAN bus shield is
connected to the obd adapter; it reads the diagnostics data from the diagnosis
storage via the obd protocol. The PC transmits each event in the source pcdf
file to the board in the same order and with the same delay as it was recorded.
PC and Arduino communicate via a protocol based on Consistent Overhead Byte
Stuffing (COBS) [31]. The PC software is written in Kotlin and the code on the
board is written in the typical C++ based Arduino language. Figure 6.17 shows
the simulator in action.

Privacy. An important feature of LolaDrives and cdp is the support for data
donation; users can opt-in to upload the files recorded by LolaDrives during
monitoring or rde test mode. But pcdf files may contain personal data, for
example, the vehicle identification number or GPS coordinates. Collecting per-
sonal data is regulated by data protection laws; in our case, the General Data
Protection Regulation (GDPR). The GDPR concedes every EU citizen the rights
to receive a copy of their data (in a machine readable format), to have it cor-
rected, or deleted. All privacy policies in the EU must educate these rights to
the users. LolaDrives does so in full. Moreover, our privacy policy [24] explains
that data uploads are automatically deleted after at most 15 years (counting 5
years for doing research with it and 10 years data retention time after publica-
tion recommended by the German Research Council DFG [44]). Data donations
are voluntary. Refusing or withdrawing consent does not restrict the available
features of LolaDrives in any way.

6.3.3 Demonstration

This section discusses the user perspective on LolaDrives. We report on the use
of LolaDrives for conducting rde test drives with two rented vehicles (the precise

6.3 Car Data Platform and LolaDrives 187

Figure 6.17: OBD Simulator

car model being unknown upfront).

Overview. The preparation of the test requires the user to plug the obd-adapter
into the obd-port of the car. After starting car and app, LolaDrives receives data
packets and determines the sensor profile of the car, assuming phone and adapter
are paired via Bluetooth. As the provided diagnostics data suffices to evaluate
the rde constraints, the app selects the appropriate rtlola specification and
initializes the rtlola monitor. LolaDrives then starts filtering and visualising
the data output and trigger notifications provided by the monitor, as explained
in Section 6.3.1.

Test Drive. The technical framework and visual feedback of the app were tested
in two experiments. The first experiments involved two rde test drives that
were both conducted with an Audi A6 Avant 45-TDI hybrid diesel, which was
admitted in 2020 under the Euro 6d-temp(-evap-isc) regulation with an NOx

threshold of 80mg/km under lab conditions and 168mg/km for rde conditions.
We denote this car as A20 and the rde tests as A20.1 and A20.2. The second
experiment involves four rde tests that were conducted with the successor of
the above car – an Audi A6 50-TDI hybrid diesel admitted in 2021 under the

188 6 Hands-On: Diesel Doping Tests

Drive A20.1 Drive A20.2

Distance
[km]

NOx

[mg/km]
CO2

[g/km]
Distance
[km]

NOx

[mg/km]
CO2

[g/km]

Urban 35.61 138 221 37.42 111 250
Rural 22.29 303 155 27.46 82 170
Motorway 26.15 245 153 25.33 103 176
Total 84.05 215 183 90.24 100 205

Drive A21.1 Drive A21.2

Distance
[km]

NOx

[mg/km]
CO2

[g/km]
Distance
[km]

NOx

[mg/km]
CO2

[g/km]

Urban 43.54 31 221 28.75 42 230
Rural 29.17 11 121 30.88 19 164
Motorway 28.73 25 166 15.66 17 137
Total 101.44 23 183 75.29 27 184

Drive A21.3 Drive A21.4

Distance
[km]

NOx

[mg/km]
CO2

[g/km]
Distance
[km]

NOx

[mg/km]
CO2

[g/km]

Urban 37.96 76 227 36.46 36 219
Rural 29.49 222 199 25.29 21 142
Motorway 43.01 41 145 34.42 29 150
Total 110.46 101 188 96.17 30 174

Table 6.4: Aggregation of the emission data based on the cdp.

(moderately stricter) Euro 6d(-isc-fcm) regulation enforcing the same NOx

threshold of 80mg/km under lab conditions and a smaller 120mg/km threshold
for rde conditions.5 We denote this car as A21 and the rde tests done with
this car as A21.1 to A21.4. Among the diagnosis parameters available within
these cars are vehicle and engine speed, ambient temperature, engine fuel rate
and mass air flow. The A20 car has two NOx-sensors – one in front and one
behind the emission cleaning system in the exhaust pipe. The A21 car has three
NOx-sensors – presumably one in front, one between components of the emission
cleaning system and one behind it. With this set of sensors, the car is compatible

5We determined the precise car model and the variant of the Euro 6d norm using the regis-
tration certificate of the car and the German Wikipedia [132, 133]

6.4 cdp-Based Test Input Selection 189

for rde tests with LolaDrives. We configured LolaDrives to assume an expected
trip length of 83 km for the visual guidance.

Test drives A20.1 and A21.4 meet all conditions to be considered as a valid
rde test. Test drives A20.2 and A21.1 did not experience sufficiently much
accelerations in the urban mode to be a valid rde test; in A21.2 there was a
malfunctioning of the OBD adapter and the test was forced to end before reach-
ing the minimal 23% share of the total trip length in the motorway mode; and
test drive A21.3 is invalid, because we failed to comply to the maximum altitude
difference of 100m between start and end point. In all cases, LolaDrives cor-
rectly confirmed the satisfaction and violation of the rde criteria. For the valid
tests A20.1 and A21.4 we measured 215mg/km and, respectively, 30mg/km
of NOx emissions. Hence, test A20.1 reveals a violation of the rde regulation
while the emissions measured during test A21.4 are conforming. A comprehen-
sive overview for all measured emissions is shown in Table 6.4. In this table,
the distances and the total amounts of emitted NOx are computed directly by
LolaDrives; all other values have been computed using a custom rtlola speci-
fication that was applied to the trip recordings after they were uploaded to the
cdp by LolaDrives’s data donation feature. Notice that the NOx value for A21.3
is significantly higher than for the other A21 drives. Additional diagnostics data
recorded made it evident that the car had been cleaning its diesel particulate
filter and NOx adsorber during the test. We are, however, not certain if this is
the reason for the higher emissions. Anyway, if A21.3 were a valid rde test, the
overall NOx emissions are still below the threshold of 120mg/km defined in the
regulation.

Figure 6.18 shows the route of test drive A20.2. The first half of the time
constituted the urban segment (green). The next 30-40% of the test mainly
consisted of the rural segment (purple) followed by the motorway segment (red).
The map shows that the rural and motorway segments are regularly interrupted
by other segments when the driver had to slow down for traffic reasons; the
three phases are solely defined by the vehicle speed. As a result, depending
on external circumstances, the driver cannot freely choose their environment,
potentially exceeding the distance thresholds for a different segment by accident.
It is, therefore, advisable to start with the urban environment and progress to
the next environment as early as possible.

6.4 cdp-Based Test Input Selection

In Section 5.4 we presented a probabilistic falsification technique that strategi-
cally searches for a test cycle that minimises the robustness estimate for u-robust
cleanness; optimally, the robustness estimate becomes negative in which case u-

190 6 Hands-On: Diesel Doping Tests

Figure 6.18: Map with the A20.2 test route highlighted.

robust cleanness (and hence robust cleanness) is falsified. Again, this technique
is not straightforwardly applicable to real cars. The falsification process requires
hundreds of iterations or more until it finds a suitable test cycle. That is, it re-
quires hundreds of experiments (or more) on a chassis dynamometer, which is
practically not feasible. Additionally, the human imprecision when driving a test
cycle remains a problem, and it is unclear how this influences the effectiveness
of the falsification technique.

This section discusses how to tailor the generic probabilistic falsification ap-
proach for STL based on Algorithm 2.1 to the particular case of diesel emissions
and how to overcome the problems explained above using the integrated testing
approach proposed in Section 5.5.

Robustness Taking up the experiments in Section 6.1, assume a cleanness con-
text C = ⟨{NEDC · o}, κi, κo, dIn, dOut⟩, where the standard behaviour Std is
described by a single trace that is the result of driving the NEDC and getting
the average amount of NOx measured during this test. That is, NEDC here
represents the sequence of 1180 inputs with the kth input defining the speed of
the car after k seconds from the beginning of the test. The (average) amount of
emitted NOx follows the inputs. By restricting the input space to In{NEDC·o},κi

as explained in Section 5.4, STL formula φu-rob from Proposition 5.45 can be

6.4 cdp-Based Test Input Selection 191

simplified to

(dOut((NEDC · o)↓o, s↓o)− κo ≤ 0). (6.1)

This is because the conjunction and disjunction over standard traces becomes
obsolete for only a single standard trace. For the same reason, the requirement
(eq(sa↓i, sb↓i) ≤ 0) becomes obsolete, as the compared traces are always iden-

tical. In the W subformula, the right proposition is always false, because of the
restricted input space: the proposition collapses to dIn((NEDC ·o)↓i, s↓i)−κi > 0
and the input domain In{NEDC·o},κi

is {w∈ M | ∀k∈ [0, 1180]. dIn
(
w[k]↓i, (NEDC·

o)[k]↓i
)
≤ κi}. Thus, by the definition of W and U , the W subformula is equiv-

alent to formula (6.1). We implemented Algorithm 2.1 for the robustness com-
putation according to formula (6.1).

Emissions Approximation In practice, running tests like NEDC with real cars is
a time consuming and expensive endeavour. Furthermore, tests on chassis dy-
namometers are usually prohibited to be carried out with rented cars by rental
companies. On the other hand, car emission models for simulation are not avail-
able to the public – and, anyway, models provided by the manufacturer cannot
be considered trustworthy. To carry out our experiments, we instead follow the
integrated testing approach from Section 5.5 and use an approximation technique
that estimates the amount of NOx emissions of a car along a certain trajectory
based on data recorded during previous trips with the same car, sampled at a
frequency of 1 Hz (one sample per second). Notably, these trips do not need
to have much in common with the trajectory to be approximated. A trip is
represented as a finite sequence t ∈ (R × R × R)∗ of triples, where each such
triple (v, a, n) represents the speed, the acceleration and the absolute amount of
NOx emitted at a particular time instant in the sample. Speed and acceleration
can be considered as the main parameters influencing the instant emission of
NOx. This is, for instance, reflected in the RDE regulation [82, 118] where the
decisive quantities to validate the test route and driving behaviour during RDE
tests are speed and acceleration.

A data recording D is the union of finitely many trips t. We can turn such a
recording into a predictor function P that predicts NOx values for pairs of speed
and acceleration:

P(v, a) = average[n | (∃v′, a′. (|v − v′| ≤ 2 ∧ |a− a′| ≤ 2 ∧ (v′, a′, n) ∈ D))].

The amount of NOx assigned to a pair (v, a) here is the average of all NOx

values seen in the recording D for v ± ℓ and a± ℓ, with 0 ≤ ℓ ≤ 2. To overcome
measurement inaccuracies and to increase the robustness of the approximated
emissions, the speed and acceleration may deviate up to 2 km/h, and 2m/s2,

192 6 Hands-On: Diesel Doping Tests

respectively. This tolerance is adopted from the official NEDC regulation [124],
which allows up to 2 km/h of deviations while driving the NEDC.

Experiment setup To demonstrate the practical applicability of our implemen-
tation of Algorithm 2.1 and our NOx approximation, we report here on two
experiments. The first experiment evaluates the recordings A20.1 and A20.2
from Section 6.3.3. The predictor defined above estimates that the NOx emis-
sion for car A20 when driving the NEDC is 86mg/km. The second experiment
involves the rde tests A21.1, A21.2 and A21.4 (leaving out A21.3, because it
produced significantly higher emissions than the other three trips). Car A21
seems to have a significantly better emission cleaning system: the estimated
amount of NOx emitted during the NEDC is 9mg/km. Recall that car A20 was
falsified w.r.t. the RDE specification in Section 6.3.3. Neither A20 nor A21 has
been falsified w.r.t. a cleanness notion defined in Chapter 3.

Cleanness Context Before turning to falsification of robust cleanness, we need
to spell out meaningful cleanness contexts. We assume that the behaviour of
the car can be modelled as an IOTS and take as input domain the set In ⊆ R≥0

of speed values, and as output domain the set Out ⊆ R≥0 representing the
average amount of NOx emitted during the test. The standard behaviour is the
singleton set containing the NEDC drive followed by a single output that is the
(predicted) average amount of NOx emitted for NEDC. That is, for A20 we get
Std = {NEDC · 86o} and for A21 Std = {NEDC · 9o}. As distance functions,
we use the past-forgetful functions from Section 6.1.1 (defined on page 166).
For κi, the cleanness context uses the same value κi = 15 km/h that has been
proven to be a reasonable choice in the sections above. The threshold for NOx

emissions under lab conditions is 80mg/km. The emission limits for RDE tests
depend on the admission date of the car. Cars admitted in 2020 or earlier,
must emit 168mg/km at most, and cars admitted later must adhere to the
limit of 120mg/km. For our experiments, we use κo = 88mg/km for A20 and
κo = 40mg/km for A21 to have the same (absolute) tolerances as for RDE tests.
Effectively, the upper threshold for A20 is 84 + 88 = 172mg/km, and for A21
the limit is 9 + 40 = 49mg/km. Notice that for software doping analysis, the
output observed for a certain standard behaviour and the constant κo define
the effective threshold; this threshold is typically different from the threshold
defined by the regulation.

Evaluation We modified Algorithm 2.1 by adding a timeout condition, i.e., if
the algorithm is not able to find a falsifying counterexample within 3,000 itera-
tions, it terminates and returns both the trace for which the smallest robustness

6.5 Related Work & Contributions 193

0 200 400 600 800 1,000 1,180
0

32

70

100

120

Time [s]

S
p
ee
d
[k

m h
]

Figure 6.19: NEDC speed profile (blue, dashed) and input falsifying C for κo =
88mg/km (red) with 182mg/km of emitted NOx.

has been observed and its corresponding robustness value. Hence, if falsifica-
tion of robust cleanness for a system is not possible, the algorithm outputs an
approximation on how robust the system satisfies robust cleanness.
For the concrete case of the diesel emissions, the robustness value during the

first 1180 inputs (sampled from the restricted input space InStd,κi) is always κo.
When the NEDC output oNEDC and the non-standard output o are compared,
the robustness value is κo − |oNEDC − o| (cf., formula (6.1), the quantitative
semantics of STL, and definition of dOut). Hence, for test cycles with small
robustness values, we get NOx emissions o that are either very small or very
large compared to oNEDC. We ran the modified Algorithm 2.1 on the predictor
functions for A20 and A21 using the contexts defined above. For A20, it found
a robustness value of −8, i.e., it was able to falsify robust cleanness relative
to the assumed contract and found a test cycle for which NOx emissions of
182mg/km are predicted. The test cycle is shown in Figure 6.19. For A21, the
smallest robustness estimate found – even after 100 independent executions of
the algorithm – was 38, i.e., A21 is predicted to satisfy robust cleanness with
a very high robustness upper bound. The corresponding test cycle is shown in
Figure 6.20.

6.5 Related Work & Contributions

This chapter applies the theory developed in this thesis (in particular that in
Chapter 5) to the Diesel Emissions Scandal. In particular, Section 6.4 instanti-

194 6 Hands-On: Diesel Doping Tests

0 200 400 600 800 1,000 1,180
0

32

70

100

120

Time [s]

S
p
ee
d
[k

m h
]

Figure 6.20: NEDC speed profile (blue, dashed) and input maximising NOx

emissions to 11mg/km (red).

ates the integrated testing approach from Section 5.5. To this end, we proposed
an easy to understand emissions prediction technique that can be seen as a sim-
ple instance of machine learning. Learning or approximating the behaviour of
a system under test has been studied intensively. Meinke and Sindhu [90] were
among the first to present a testing approach incrementally learning a Kripke
structure representing a reactive system. Volpato and Tretmans [127] propose
a learning approach which gradually refines an under- and over-approximation
of an input-output transition system representing the system under test. The
correctness of this approach needs several assumptions, e.g., an oracle indicating
when, for some trace, all outputs, which extend the trace to a valid system trace,
have been observed.
Sections 6.1, 6.2 and 6.4 present contributions that are primarily developed by

myself. Section 6.1 has its origin in [17, 18]. The use cases for conf-cleanness and
sync-conf-cleanness tests in Section 6.2 were originally published in [46, 20]. Most
of the tests conducted on the chassis dynamometer were driven by a professional
test lab driver. The contents in Section 6.3 are based on [21, 22]. All co-authors
worked together to realise this project. My main contribution in Section 6.3 was
the development of the cdp server components in tight cooperation with the
development of LolaDrives and I conducted five of the six rde test drives. The
falsification powered test cycle selection in Section 6.4 is taken from [25].

7 Conclusion & Future Work

The introduction takes up a sociological definition of trust that is explicitly
detached from “the ability to monitor or control” the software manufacturer.
This ability, in case of software doping a very technical one, is in the focus of
this thesis. It proposes a collection of techniques to give society and users the
ability to detect software doping by means of a post-production inspection of
software.

7.1 Summary

From a foundational perspective, Chapter 3 proposes cleanness definitions for
sequential programs, and reactive, hybrid and mixed-IO systems. The concrete
cleanness notions vary in their expressiveness. Strict cleanness is the most strict
notion; it enforces that equivalent inputs must lead to identical outputs. Robust
cleanness is a generalisation thereof. It assumes distance functions for inputs
and outputs and stipulates that similar inputs must lead to similar outputs.
Similarity is expressed by threshold parameters that define up to which distance
inputs, respectively outputs, are similar. Func-cleanness is a further generali-
sation that replaces the notion of “similarity” with a function f establishing a
direct relation between input distances and output distances. For hybrid sys-
tems, the timing of events is explicitly considered. This allows the notion of
conf-cleanness, which enforces that conformant inputs must lead to conformant
outputs. Hybrid conformance and Skorokhod conformance are two prominent
examples from literature that work well with conf-cleanness. A further gener-
alisation is sync-conf-cleanness that requires that inputs conformant w.r.t. a
certain retiming lead to outputs that, after applying the input retiming to the
outputs, are conformant.

Chapters 4 to 6 use cleanness definitions from Chapter 3 to propose software
doping analysis techniques. Chapter 4 proposes two white-box techniques, i.e.,
techniques that use knowledge about the implementation of a system, for an
exhaustive cleanness verification. It depicts how Dijkstra’s weakest conservative
precondition approach can be combined with a self-composition technique to
prove cleanness of sequential programs. For reactive systems, it gives HyperLTL
formulas to prove cleanness by means of model checking.

196 7 Conclusion & Future Work

Black-box analysis techniques are covered in Chapter 5 with a focus on mixed-
IO systems. In particular, we target a testing technique for robust cleanness.
To capture these tests formally, we build on a model-based testing framework.
We discuss challenges of applying it to robust cleanness and, in particular, the
impossibility of having test cases that can check for l-robust cleanness. Finally,
we get a provably correct u-robust cleanness test algorithm. The testing ap-
proach is complemented by HyperSTL and STL characterisations for (u-)robust
and func-cleanness, which can be used with probabilistic falsification approaches
to find instances of software doping. We outline how the testing and the falsi-
fication approach can be combined to an integrated testing approach to make
real-world doping tests more effective.

Chapter 6 addresses the Diesel Emissions Scandal. It demonstrates how the
model-based testing technique and the falsification technique can be applied to
detect tampered emission cleaning system. In a very simple example we show
how robust cleanness could have convicted the Volkswagen doping from 2015.
With the model-based testing technique we developed the SineNEDC test cycle
that convicted a Nissan car of not being robustly clean. Similarly, with an
implementation based on a HyperSTL* formalisation of hybrid conformance, we
demonstrate that the same Nissan car shows severely increased NOx emissions
under retimed NEDC test cycles.

The chapter also presents the mobile application LolaDrives and the Car Data
Platform. LolaDrives is, when connected to a car via a low-cost obd-Bluetooth
adapter, able to show real-time diagnostics data and to assist Real-Driving Emis-
sions tests; this works without expensive emissions measurement equipment. The
app is integrated into the cdp; users can upload their data records as a donation
for further research. Our vision is that the cdp becomes a long-term research
project and an umbrella term for a multitude of car-related tools and services.
One component of the cdp is a car-specific implementation of an integrated
CPS testing approach that combines probabilistic falsification and model-based
testing.

The white-box approaches in Chapter 4 are intended for software manufactur-
ers that want to verify the absence of software doping during the design phase of
their development. Still, it can also be used by third parties (such as researchers,
NGOs or activists) if the implementation details are publicly available. Analyses
meant explicitly to be carried out by third parties are the black-box approaches
in Chapter 5. These approaches reason over the observable behaviour of the
system; thus, no cooperation of the manufacturer is necessary. Finally, with
LolaDrives this thesis also provides a tool for laypersons. LolaDrives uses high
quality verification techniques (namely rtlola), but it hides these techniques
from the user and configures the runtime monitor such that the analysis works
out of the box.

7.2 Future Work 197

7.2 Future Work

The contents in this thesis can be developed further in many different directions.
The cleanness definitions presented in Chapter 3 cover sequential programs, re-
active systems, mixed-IO systems and hybrid systems. Yet, there are many more
modelling formalisms, for example, a whole army of automata-based formalisms
to model systems that exhibit behaviour that can be captured by probability
distributions [9, 69]. There are prominent modelling formalisms that in addition
allow to model the timing behaviour of a system [41, 66]. With cleanness defini-
tions for such systems, it may be interesting to strive for a more precise model
of the emission cleaning system of cars. The chemical and physical reactions
in such systems can presumably be encoded by probability distributions. This
would be a significant step towards a white-box model-checking approach for
emission cleaning systems. Recall that the examples from Chapter 4 consider
toy examples that deliberately ignore the complexity of the chemical processes
of the emission cleaning system.

Another step further to a viable white-box verification approach is a precise
model of the interplay of the continuous dynamics induced by the chemical
and physical reactions, and the discrete nature of the software controlling these
reactions by means of injecting the diesel exhaust fluid or actuating valves that
control the amount of oxygen that is available for the combustion in the engine.
Such hybrid system models [6] (that contain more information about the inner
workings of a system than our notion of hybrid systems in Section 3.4) would
be also interesting to consider w.r.t. conf-cleanness and sync-conf-cleanness in
Section 3.4. However, hybrid systems are known to be very hard to analyse [105,
68]; further investigations are necessary to evaluate in how far the cleanness
notions in Chapter 3 (which are all hyperproperties) can be model-checked on
automata-defined hybrid systems.

With new cleanness definitions for additional computation models, it may
become necessary to also enhance the testing techniques in Chapter 5 – be it
for simulation-based analyses of models or for real-world systems. Also, there
is no end-to-end testing approach for conf-cleanness and sync-conf-cleanness.
We demonstrated the effectiveness of these cleanness notions only manually
by computing the satisfaction of conformance between input sequences. A
promising starting point for this are the HyperSTL* characterisation of hybrid-
conformance cleanness and Skorokhod-conformance cleanness that were pro-
posed recently [20].

The Car Data Platform also offers potential for extensions. On the server-side,
a fully automatic analysis pipeline could process the data donations provided
by LolaDrives users in a privacy preserving way to draw conclusions regarding
different car models, driving styles, et cetera. We already started to add on-

198 7 Conclusion & Future Work

device analyses to the LolaDrives app, so that car owners can easily catch key
indicators for their cars, like average fuel consumption and emissions. We also
started to look into support for electrical vehicles, for which key indicators like
power consumption are interesting, and an analysis of how the driving behaviour
influences the power consumption to give vehicle specific recommendations about
which driving style can positively influence the battery range of the car. Electric
vehicles, however, are not forced to support the obd protocol. Hence, we would
need to obtain access to proprietary manufacturer protocols.

The main purpose of the cleaning definitions in Chapter 3 is to formally define
a common set of expectations that software users have on software manufactur-
ers. As it turns out, such expectations may also apply to domains other than
software. For example, if a company pays higher salaries to men than for women,
although there are no differences in work performance between the genders, then
robust cleanness is able to catch this deficiency. For an input distance function
on employees that takes into account only the work performance, but not the
gender, similar inputs (i.e., employees) would yield vastly different outputs (i.e.,
salaries). I imagine that there are many interdisciplinary use cases where our
cleanness definitions can be applied. We are currently working on a first in-
terdisciplinary project that uses func-cleanness to overcome unfair treatment of
individuals by decision making algorithms. The next section provides a preview
to this ongoing research project.

7.3 Effective Human Oversight with Func-Cleanness

As part of work in progress, software doping has been positioned in an interdisci-
plinary context to tackle relevant problems regarding unfair treatment of human
individuals by partially or fully automated decision making AI systems. Par-
ticularly interesting are so-called high-risk application areas (where “risk” must
be understood with regard to fundamental human rights). Fields of application
include credit approval [58], decisions on visa applications [113], university ad-
missions [130, 85], screening of individuals in predictive policing [136], selection
in HR [29, 98, 99], judicial decisions (as with COMPAS [33, 50, 80, 76]), tenant
screening [53], and more. In many of these areas, there are legitimate interests
and valid reasons for using such models, although the risks associated with their
use are manifold.
It is widely recognized that discrimination by unfair models is one particularly

important risk. As a result, a colorful zoo of different operationalizations of
unfairness has emerged [128, 100], which should be seen less as a set of competing
approaches and more as mutually complementary [60]. At the same time, a

7.3 Effective Human Oversight with Func-Cleanness 199

consensus is emerging that human oversight is an important piece of the puzzle
for mitigating and minimizing societal risks of AI [71, 91, 125]. Accordingly,
that idea made it into recent drafts of legislation like the EU proposal for an AI
Act [39] or certain US state laws [129].

In the following, I will give a preview of current work in progress on a joint
project with Kevin Baum, Sarah Sterz, Sven Hetmank, Markus Langer, Anne
Lauber-Rönsberg, Franz Lehr and Holger Hermanns. This project aims at pro-
moting effective human oversight with runtime fairness monitoring and is highly
interdisciplinary with contributions from philosophy, psychology, law and com-
puter science. I will focus on the computer science aspects, as this is my contri-
bution to this project.

Our claim is that effective human oversight can and should help with regard
to the risk of discriminatory systems. We want to show how an established
operationalisation of individual unfairness [52] can be suitably generalised by
func-cleanness. Furthermore, the probabilistic falsification approach from Sec-
tion 2.6.2 and the STL characterisation of u-func-cleanness from Corollary 5.46
(which for deterministic systems characterises func-cleanness) can yield a local,
model-agnostic Explainable AI (XAI) method that enables human overseers to
meet their responsibilities. In other words, we outline a runtime fairness monitor
that promotes effective human oversight.

We illustrate the challenge that our work helps to overcome by the following
example of a hypothetical university admission system (inspired by [130, 85]).

Example 7.1. A large university assigns scores to those who apply to their com-
puter science PhD program using an automated, model-based procedure P based
on three data points: the position of the applicant’s last graduate institution
in an official, subject-specific ranking, the applicant’s last grade point average
(GPA), and their score in a subject-specific standardised test taken as part of
the application procedure. The system then scores candidates based on how
successful it expects them to be as students. A dedicated university employee,
Unica, supervises P as a human in the loop and is supposed to detect when the
output of P is flawed. The university pays especial attention to fairness in the
procedure, so she has to watch out to any signs of potential unfairness. Unica is
supposed to desk-reject candidates who’s scores are below a certain, predefined
threshold – unless she finds problems with P’s scoring.

Without any additional tools, Unica, as a human in the loop, must manually
check all system outputs for signs of unfairness. This can be a tedious, com-
plicated and error-prone task and runs counter to the scalability of the overall
process. Therefore, she at least needs a tool that helps her to detect when
something is off about the scoring of individual applicants. For example, a par-
ticipant who is scored poorly with a GPA of 2.5, but receives a much higher score

200 7 Conclusion & Future Work

when they are assumed to have a GPA of 2.4 should raise red flags. This has
to happen at runtime, since Unica needs to make a timely decision on whether
to include the applicant in further considerations. Only then she can exercise
effective human oversight. Our approach describes technical measures that help
in mitigating this challenge by providing her with information from an individ-
ual fairness analysis in a suitable, purposeful, expedient way. To this end, we
propose a formal definition for individual fairness based on func-cleanness and
develop a runtime monitor that analyses every output of P immediately after
P’s decision. It strategically searches for unfair treatment of a particular indi-
vidual by comparing them to relevant hypothetical alternative individuals so as
to provide a fairness assessment in a timely manner.
AI systems – in the broadest sense of the word – more and more often support

human decision makers. Undoubtedly, such systems should be compliant with
applicable law (such as the future European AI Act [39] or the Washington State
facial recognition law [129]) and ought to minimize any risks to health, safety
or fundamental rights. Sometimes, we cannot mitigate all these risks in advance
by technical measures and also some risk-mitigation requires trade-off decisions
involving features that are either impossible or difficult to operationalise and
formalise. This is why it is essential that a human effectively oversees the system
(which is also emphasised by several institutions such as UNESCO [125] and the
European High Level Expert Group [71]). Effective human oversight, however, is
only possible with the appropriate technical measures that allow human overseers
to better understand the system at runtime [83]. From a technical point of view,
this raises the pressing question of what such technical measures can and ought
to look like to actually enable humans to live up to these responsibilities. Our
contribution is intended as bridging the gap between the normative expectations
of law and society and the current reality of technological design.

7.3.1 Individual Fairness

Unica from Example 7.1 should be able to detect individual unfairness. An op-
erationalisation thereof by Dwork et al. [52] is based on the Lipschitz condition
to enforce that similar individuals are treated similarly. To measure similarity,
they assume the existence of an input distance function dIn and an output dis-
tance function dOut. This assumption is very similar to the one that we implicitly
made in the previous sections for robust cleanness and func-cleanness. However,
in the case of the fair treatment of humans finding reasonable distance functions
is more challenging than it was for the examples in the previous chapters. Dwork
et al. assume that both distance functions perfectly measure distances between
individuals and between outputs of the system, respectively, but admit that in
practice these distance functions are only approximations of a ground truth at

7.3 Effective Human Oversight with Func-Cleanness 201

best. They suggest that distance measures might be learned, but there is no
one-size-fits-all approach to selecting distance measures. Indeed, obtaining such
distance metrics is a topic of active research [138, 94, 74]. Lastly, the Lipschitz
condition assumes a Lipschitz constant L to establish a linear constraint between
input and output distances.

Definition 7.2. A deterministic sequential program P : In → Out is Lipschitz-
fair w.r.t. dIn : In × In → R, dOut : Out × Out → R and a Lipschitz constant L,
if and only if for all i1, i2 ∈ In, dOut(P(i1), P (i2)) ≤ L · dIn(i1, i2).

Lipschitz-fairness comes with some restrictions that limit its suitability for
practical application:

dIn-dOut-relation: High-risk systems are typically complex systems and ask for
more complex fairness constraints than the linearly bounded output dis-
tances provided by the Lipschitz condition. For example, using the Lips-
chitz condition prevents us from allowing small local jumps in the output
and at the same time forbidding jumps of the same rate of increase over
larger ranges of the input space.

Input relevance: The condition quantifies over the entire input domain of a
program, without scrutinising whether each input in such domain could
plausibly represent a real-world individual. But whether a system is un-
fair for a purely hypothetical input compared to another possibly purely
hypothetical input is largely irrelevant in practice. What is practically
important is the ability to determine whether actual applicants are disad-
vantaged.

Monitorability: In a monitoring scenario with the Lipschitz condition in place,
a fixed input i1 must be compared to potentially all other inputs i2. Since
the input domain of the system can be arbitrarily large, the Lipschitz
condition is not yet suitable for monitoring in practice (for a related point
see John et al. [77]).

We propose a notion of individual fairness that is based on func-cleanness.
Instead of cleanness contracts we consider here fairness contracts, which are
tuples F = ⟨dIn, dOut, f⟩ containing input and output distance functions and the
function f relating input distances and output distances. Notably, the set of
standard inputs StdIn known from cleanness contracts is not part of a fairness
contract; it is unknown what qualifies an input to be ‘standard’ in the context
of fairness analyses. Still, our fairness definition evaluates fairness for a set
of individuals I, which has conceptual similarities to the set StdIn. A fairness

202 7 Conclusion & Future Work

contract is an encoding of what fairness means for a concrete context or situation.
Such a fairness encoding must apply equally to every individual, thus, the set I
must not be part of it.

Definition 7.3. A deterministic sequential program P : In → Out is func-fair
for a set I ⊆ In of individuals w.r.t. a fairness contract F = ⟨dIn, dOut, f⟩, if and
only if for every i ∈ I and i′ ∈ In, dOut(P(i),P(i

′)) ≤ f(dIn(i, i′)).

The idea behind func-fairness is that every individual in set I is compared to
potential other inputs in the domain of P. These other inputs do not necessarily
need to be in I, nor do these inputs need to have “physical counterparts” in
the real world. Driven by the insights of the Input relevance restriction of
Lipschitz-fairness, we explicitly distinguish inputs in the following and will call
inputs that are given to P by a user actual inputs, denoted ia, and call inputs
to which such ia are compared to synthetic inputs, denoted is. Actual inputs are
typically inputs that have a real-world counterpart in most use cases, while this
might or might not be true for synthetic inputs. An alternative to using synthetic
inputs is to use only actual inputs, i.e., to compare every actual input with every
other actual input in I. For example, for a university admission, all applicants
could be compared to every other applicant. However, this would heavily rely
on contingencies: the detection of unfair treatment of an applicant depends
on whether they were lucky enough that, coincidentally, another candidate has
also applied who aids in unveiling the system’s unfairness towards them. Func-
fairness prefers to over-approximate the set of plausible inputs that actual inputs
are compared to rather than under-approximating it by comparing only to other
inputs in I.

Notice that func-fairness is a conservative extension of the Lipschitz condition.
With I = In and f(x) = L · x, func-fairness mimics Lipschitz-fairness. Wachter
et al. [128] classify the fairness-by-awareness approach of Dwork et al. [52] as
bias-transforming. As we generalise this and introduce no element that has to
be regarded as bias-preserving, our approach arguably is bias-transforming, too.

Func-fairness, with its function f , provides a powerful tool to model complex
fairness constraints. How such an f is defined has profound impact on the quality
of the fairness analysis. A full discussion about which types of functions make
a good f go beyond the scope of this preview. A suitable choice for f and the
distance functions dIn and dOut heavily depends on the context in which fairness
is analysed – there is no one-fits-it-all solution. Func-fairness makes this explicit
with the formal fairness contract F = ⟨dIn, dOut, f⟩.

7.3 Effective Human Oversight with Func-Cleanness 203

Algorithm 7.1 FairnessMonitor,
with ξ-min S = (ξ, i1, i2) only if (ξ, i1, i2) ∈ S and for all (ξ′, i′1, i

′
2) ∈ S, ξ′ ≥ ξ

Falsification Parameters: PS: Proposal scheme, β: Temperature parameter
Input: System P : In → Out, Fairness contract F = ⟨dIn, dOut, f⟩ and set of

actual inputs I
Output: A minimal fairness score triple from R× I × In.
1: is ← any input ia ∈ I
2: (ξ, imin, is)← ξ-min{(F (ia, is), ia, is) | ia ∈ I}
3: (ξmin, i1, i2)← (ξ, imin, is)
4: while not timeout do
5: i′s ← PS(is,P(is))
6: (ξ′, i′min, i

′
s)← ξ-min{(F (ia, i′s), ia, i′s) | ia ∈ I}

7: (ξmin, i1, i2)← ξ-min{(ξmin, i1, i2), (ξ
′, i′min, i

′
s)}

8: α← exp(−β(ξ′ − ξ))
9: r ← UniformRandomReal(0, 1)

10: if r ≤ α then
11: is ← i′s
12: ξ ← ξ′

13: end if
14: end while
15: return (ξmin, i1, i2)

7.3.2 Fairness Monitoring

We develop a probabilistic-falsification-based fairness monitor that, given a set
of actual inputs, searches for a synthetic counterexample to falsify a system P
w.r.t. a fairness contract F . To this end, it is necessary to provide a quantita-
tive description of func-fairness that satisfies the characteristics of a robustness
estimate. We call this description fairness score. For an actual input ia and
a synthetic input is we define the fairness score as F (ia, is) := f(dIn(ia, is)) −
dOut(P(ia),P(is)). F is indeed a robustness estimate function: if F (ia, is) is
non-negative, then dOut(P(ia),P(is)) ≤ f(dIn(ia, is)), and if it is negative, then
dOut(P(ia),P(is)) ̸≤ f(dIn(ia, is)). For a set of actual inputs I, the definition gen-
eralises to F (I, is) = min{F (ia, is) | ia ∈ I}, i.e., the overall fairness score is
the minimum of the concrete fairness scores of the inputs in I. Notice that
RI(is) := F (I, is) is essentially the quantitative interpretation of φu-func (from
Proposition 5.47) after simplifications attributed to the fact that P is a sequential
and deterministic program.
Algorithm 7.1 shows FairnessMonitor, which builds on Algorithm 2.1 to search

for the minimal fairness score in a system P for fairness contract F . The algo-

204 7 Conclusion & Future Work

rithm stores fairness scores in triples that also contain the two inputs for which
the fairness score was computed. The minimum in a set of such triples is defined
by the function ξ-min that returns the triple with the smallest fairness score of all
triples in the set. The first line of FairnessMonitor initialises the variable is with
an arbitrary actual input from I. For this value of is, the algorithm checks the
corresponding fairness scores for all actual inputs ia ∈ I and stores the smallest
one. In line 3, the globally smallest fairness score triple is initialised. In line 5
it uses the proposal scheme to get the next synthetic input i′s. Line 6 is similar
to line 2: for the newly proposed i′s it finds the smallest fairness scores, stores
it, and updates the global minimum if it found a smaller fairness score (line 7).
Lines 8-13 come from Algorithm 2.1. The only difference is that in addition
to is we also store the fairness score ξ. Line 4 of Algorithm 7.1 differs from
Algorithm 2.1 by terminating the falsification process after a timeout occurs.
Hence, the algorithm does not (exclusively) aim to falsify the fairness property,
but aims at minimising the fairness score; even if the fair treatment of the in-
puts in I cannot be falsified in a reasonable amount of time, we still learn how
robustly they are treated fairly, i.e., how far the least fairly treated individual in
I is away from being treated unfairly. After the timeout occurs, the algorithm
returns the triple with the overall smallest seen fairness score ξmin, together with
the actual input i1 and the synthetic input i2 for which ξmin was found. In case
ξmin is negative, i2 is a counterexample for P being func-fair.
FairnessMonitor implements a sound F-unfairness detection as stated in Propo-

sition 7.4. However, it is not complete, i.e., it is not generally the case that P is
func-fair for I if ξ is positive. It may happen that there is a counterexample, but
FairnessMonitor did not succeed in finding it before the timeout. This is analogue
to the results of the model-agnostic robust cleanness analysis in Chapter 5.

Proposition 7.4. Let P : In→ Out be a sequential program, F = ⟨dIn, dOut, f⟩
a fairness contract and I a set of actual inputs. Further, let (ξmin, i1, i2) be the
result of FairnessMonitor(P,F , I). If ξmin is negative, then P is not func-fair for
I w.r.t. F .

Moreover, FairnessMonitor circumvents major restrictions of the Lipschitz-
fairness:

dIn-dOut-relation: Func-fairness defines constraints between input and output
distances by means of a function f , which allows to express also complex
fairness constraints.

Input relevance: Func-fairness explicitly distinguishes between actual and syn-
thetic inputs. This way, func-fairness acknowledges a possible obstacle of
the fairness theory when it comes to a real-world usage of the analysis.

7.3 Effective Human Oversight with Func-Cleanness 205

Algorithm 7.2 FairnessAwareSystem

Parameters: System P : In→ Out, Fairness contract F = ⟨dIn, dOut, f⟩
Input: Input ia ∈ In
Output: Tuple of the system output, normalized fairness score, and synthetic

values witnessing the fairness score
1: (ξmin, ia, is)← FairnessMonitor(P,F , {ia})
2: return (P(ia), ξmin ÷ f(dIn(ia, is)), (is,P(is)))

P

FairnessMonitor

input output of P

fairness score
(counter)example

FairnessAwareSystem

Figure 7.1: Schematic visualisation of FairnessAwareSystem

Monitorability: FairnessMonitor demonstrates that func-fairness is monitorable.
It resolves the quantification over In using concepts from probabilistic fal-
sification using the robustness estimate function F as defined above.

Towards func-fairness in the loop If a high-risk system is in operation, a hu-
man in the loop must oversee the correct and fair functioning of the outputs
of the system. To do this, the human needs real-time fairness information.
Figure 7.1 shows how this can be achieved by coupling the system P and the
FairnessMonitor in Algorithm 7.1 in a new system called FairnessAwareSystem.
This system is sketched in Algorithm 7.2. Intuitively, FairnessAwareSystem is
a higher-order program that is parameterised with the original program P and
the fairness contract F . When instantiated with these parameters, the program
takes arbitrary (actual) inputs ia from In. In the first step, it does a fairness
analysis using FairnessMonitor with arguments P, F and {ia}. To make fairness
scores comparable, FairnessAwareSystem normalises the fairness score ξ received
from FairnessMonitor by dividing1 it by the output distance limit f(dIn(ia, is)).
For fair outputs, the score will be between 0 (almost unfair) and 1 (as fair as

1For f that can return 0, there may be a 0 ÷ 0 division. The result of this division should
be defined depending on the concrete context; reasonable values range from the extreme
scores 0 (to indicate that the score is on the edge to becoming ‘unfair’) to 1 (to indicate
that more fairness is impossible).

206 7 Conclusion & Future Work

possible). Outputs that are not func-fair are accompanied by a negative score
representing how much the limit f(dIn(ia, is)) is exceeded. A fairness score of −n
means that the output distance of P(ia) and P(is) is n+ 1 times as high as that
limit. Finally, FairnessAwareSystem returns the triple with P’s output for ia, the
normalised fairness score, and the synthetic input with its output witnessing the
fairness score.

Interpretation of monitoring results Especially when FairnessAwareSystem finds
a violation of func-fairness, the suitable interpretation and appropriate response
to the normalised fairness score proves to be a non-trivial matter that requires
expertise.

Example 7.5. Instead of using P from Example 7.1 on its own, Unica now uses
FairnessAwareSystem and thereby receive a fairness score along with P’s verdict
on each applicant. If the fairness score is negative, she can also take into account
the information on the synthetic counterpart returned by FairnessAwareSystem.
Among the 4096 applicants for the PhD program, the monitoring assigns a nega-
tive fairness score to three candidates: Alexa, who received a low score, Eugene,
who was scored very highly, and John, who got an average score. According
to their scoring, Alexa would be desk-rejected, while Eugene and John would
be considered further. Alexa’s synthetic counterpart, let’s call him Syntbad, is
ranked much higher than Alexa. In fact, he is ranked so high that Syntbad
would not be desk-rejected. Unica compares Alexa and Syntbad and finds that
they only differ in one respect: Syntbad’s graduate university is the one in the
official ranking that is immediately below the one that Alexa attended. Unica
does some research and finds that Alexa’s institution is predominantly attended
by People of Color, while this is not the case for Syntbad’s institution. There-
fore, FairnessAwareSystem helped Unica not only to find an unfair treatment
of Alexa, but also to uncover a case of potential racial discrimination. John’s
counterpart, Synclair, is ranked much lower than him. Unica manually inspects
John’s previous institution (an infamous online university), his GPA of 1.8, and
his test result with only 13%. She finds that this very much suggests that John
will not be a successful PhD candidate and desk-rejects him. Therefore, Unica
has successfully used FairnessAwareSystem to detect a fault in scoring system P
whereby John would have been treated unfairly in a way that would have been
to his advantage. Eugene received a top score, but his synthetic counterpart,
Syna, received only an average one. Unica suspects that Eugene was ranked
too highly given his graduate institution, GPA, and test score. However, as he
would not have been desk-rejected either way, nothing changes for Eugene, and
the unfairness he was subject to, is not of effect to him. The cases of John and
Eugene share similarities with the configuration in (b) in Figure 7.2, the one of

7.3 Effective Human Oversight with Func-Cleanness 207

Inp
ut

O
u
tp
u
t

(a) case of unfairness
where input is treated
worse than relevant
counterpart

Inp
ut

O
u
tp
u
t

(b) case of unfairness
where input is treated
better than relevant
counterpart

Inp
ut

O
u
tp
u
t

(c) case of no detected un-
fairness

Figure 7.2: Exemplary illustration of configurations of an input (red cross) and
its synthetic counterparts (grey circles) and the synthetic counter-
part with the minimal fairness score (blue polygon); with a two-
dimensional input space (grid) and a one-dimensional output.

Alexa with (a), and the ones of all other 4093 candidates with (c).

If our monitor finds only a few problematic cases in a (sufficiently large and
diverse) set of inputs, our monitoring helps Unica from our running example by
drawing her attention to cases that require special attention. Thereby, individ-
uals who are judged by the system have a better chance of being treated fairly,
since even rare instances of unfair treatment are detected. If, on the other hand,
the number of problematic cases found is large, or Unica finds especially con-
cerning cases or patterns, this can point to larger issues within the system. In
these cases, Unica should take appropriate steps and make sure that the system
is no longer used until clarity is established why so many violations are found. If
the system is found to be systematically unfair, it should arguably be removed
from the decision process. A possible conclusion could also be that the system is
unsuitable for certain use cases, e.g., for the use on individuals from a particular
group. Accordingly, it might not have to be removed altogether but only needs
to be restricted such that problematic use cases are avoided. In any case, signifi-
cant findings should also be fed back to developers or operators of the potentially
problematic system. A fairness monitoring such as in FairnessAwareSystem or a
fairness analysis as in FairnessMonitor could also be useful to developers, regu-
lating authorities, watchdog organisations, or forensic analysts as it helps them
to check the individual fairness of a system in a controlled environment.

As mentioned in the beginning, the contents in this section are work in
progress. Still, it demonstrates how our cleanness definitions also serve for pur-

208 7 Conclusion & Future Work

poses other than the detection of software doping (in the original sense presum-
ing some intentionality by the software manufacturer). AI systems, in particular
deep neural networks, are trustworthy only to a very limited extent. Verifica-
tion of such systems is an active research topic, but their complexity makes a
comprehensive verification difficult. I advertised the cleanness definitions in this
thesis as an ability to control and to monitor systems that we do not trust. AI
systems in high-risk application areas are systems that we must not trust, and
this section shows that func-cleanness is ready to exercise control as promised.

Bibliography

[1] LolaDrives web page. https://loladrives.app.

[2] Houssam Abbas, Georgios E. Fainekos, Sriram Sankaranarayanan, Franjo
Ivancic, and Aarti Gupta. Probabilistic temporal logic falsification of
cyber-physical systems. ACM Trans. Embed. Comput. Syst., 12(2s):95:1–
95:30, 2013. doi:10.1145/2465787.2465797.

[3] Kate Abnett and Victoria Waldersee. VW defeat devices were illegal
in certain conditions, EU’s top court says, 2022. Online; accessed:
2022-09-21. URL: https://www.reuters.com/business/sustainable-
business/eus-top-court-says-vw-car-emissions-defeat-devices-

were-illegal-2022-07-14/.

[4] A. Aerts, M. Reniers, and M.R. Mousavi. Chapter 19 – Model-based test-
ing of cyber-physical systems. In Houbing Song, Danda B. Rawat, Sabina
Jeschke, and Christian Brecher, editors, Cyber-Physical Systems, Intelli-
gent Data-Centric Systems, pages 287 – 304. Academic Press, Boston,
2017. doi:10.1016/B978-0-12-803801-7.00019-5.

[5] Riham Alkousaa. German city of stuttgart bans older diesel
vehicles from April 1, 2019. Online; accessed: 2022-09-21.
URL: https://www.reuters.com/article/us-germany-emissions-
stuttgart-idUSKCN1R91P8.

[6] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, Thomas A. Hen-
zinger, Pei-Hsin Ho, Xavier Nicollin, Alfredo Olivero, Joseph Sifakis, and
Sergio Yovine. The algorithmic analysis of hybrid systems. Theor. Comput.
Sci., 138(1):3–34, 1995. doi:10.1016/0304-3975(94)00202-T.

[7] Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and
expressiveness. In Proceedings of the Fifth Annual Symposium on Logic
in Computer Science (LICS ’90), Philadelphia, Pennsylvania, USA, June
4-7, 1990, pages 390–401. IEEE Computer Society, 1990. doi:10.1109/
LICS.1990.113764.

https://loladrives.app
https://doi.org/10.1145/2465787.2465797
https://www.reuters.com/business/sustainable-business/eus-top-court-says-vw-car-emissions-defeat-devices-were-illegal-2022-07-14/
https://www.reuters.com/business/sustainable-business/eus-top-court-says-vw-car-emissions-defeat-devices-were-illegal-2022-07-14/
https://www.reuters.com/business/sustainable-business/eus-top-court-says-vw-car-emissions-defeat-devices-were-illegal-2022-07-14/
https://doi.org/10.1016/B978-0-12-803801-7.00019-5
https://www.reuters.com/article/us-germany-emissions-stuttgart-idUSKCN1R91P8
https://www.reuters.com/article/us-germany-emissions-stuttgart-idUSKCN1R91P8
https://doi.org/10.1016/0304-3975(94)00202-T
https://doi.org/10.1109/LICS.1990.113764
https://doi.org/10.1109/LICS.1990.113764

210 Bibliography

[8] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-
narayanan. S-TaLiRo: A tool for temporal logic falsification for hy-
brid systems. In Parosh Aziz Abdulla and K. Rustan M. Leino, editors,
Tools and Algorithms for the Construction and Analysis of Systems - 17th
International Conference, TACAS 2011, Held as Part of the Joint Eu-
ropean Conferences on Theory and Practice of Software, ETAPS 2011,
Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, volume 6605
of Lecture Notes in Computer Science, pages 254–257. Springer, 2011.
doi:10.1007/978-3-642-19835-9 21.

[9] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
press, 2008.

[10] Gilles Barthe, Juan Manuel Crespo, and Cesar Kunz. Relational verifica-
tion using product programs. In Michael J. Butler and Wolfram Schulte,
editors, FM 2011, volume 6664 of LNCS, pages 200–214. Springer, 2011.
doi:10.1007/978-3-642-21437-0 17.

[11] Gilles Barthe, Pedro R. D’Argenio, Bernd Finkbeiner, and Holger Her-
manns. Facets of software doping. In Tiziana Margaria and Bernhard
Steffen, editors, Leveraging Applications of Formal Methods, Verification
and Validation: Discussion, Dissemination, Applications - 7th Interna-
tional Symposium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14,
2016, Proceedings, Part II, volume 9953 of Lecture Notes in Computer
Science, pages 601–608, 2016. doi:10.1007/978-3-319-47169-3 46.

[12] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information
flow by self-composition. Mathematical Structures in Computer Science,
21(6):1207–1252, 2011. doi:10.1017/S0960129511000193.

[13] Ezio Bartocci, Jyotirmoy V. Deshmukh, Alexandre Donzé, Georgios
Fainekos, Oded Maler, Dejan Nickovic, and Sriram Sankaranarayanan.
Specification-based monitoring of cyber-physical systems: A survey on
theory, tools and applications. In Ezio Bartocci and Yliès Falcone, editors,
Lectures on Runtime Verification - Introductory and Advanced Topics, vol-
ume 10457 of Lecture Notes in Computer Science, pages 135–175. Springer,
2018. doi:10.1007/978-3-319-75632-5 5.

[14] Kevin Baum. What the hack is wrong with software doping? In
Tiziana Margaria and Bernhard Steffen, editors, Leveraging Applications
of Formal Methods, Verification and Validation: Discussion, Dissemi-
nation, Applications - 7th International Symposium, ISoLA 2016, Im-
perial, Corfu, Greece, October 10-14, 2016, Proceedings, Part II, vol-

https://doi.org/10.1007/978-3-642-19835-9_21
https://doi.org/10.1007/978-3-642-21437-0_17
https://doi.org/10.1007/978-3-319-47169-3_46
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1007/978-3-319-75632-5_5

Bibliography 211

ume 9953 of Lecture Notes in Computer Science, pages 633–647, 2016.
doi:10.1007/978-3-319-47169-3 49.

[15] Jan Baumeister, Bernd Finkbeiner, Sebastian Schirmer, Maximilian
Schwenger, and Christoph Torens. rtlola cleared for take-off: Moni-
toring autonomous aircraft. In CAV 2020, volume 12225 of LNCS, pages
28–39. Springer, 2020. doi:10.1007/978-3-030-53291-8 3.

[16] Nick Benton. Simple relational correctness proofs for static analyses and
program transformations. In Neil D. Jones and Xavier Leroy, editors,
POPL’04, pages 14–25. ACM Press, 2004. doi:10.1145/964001.964003.

[17] Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns. Doping
tests for cyber-physical systems. In David Parker and Verena Wolf, editors,
Quantitative Evaluation of Systems, 16th International Conference, QEST
2019, Glasgow, UK, September 10-12, 2019, Proceedings, volume 11785 of
Lecture Notes in Computer Science, pages 313–331. Springer, 2019. doi:
10.1007/978-3-030-30281-8 18.

[18] Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns. Doping
tests for cyber-physical systems. ACM Trans. Model. Comput. Simul.,
31(3):16:1–16:27, 2021. doi:10.1145/3449354.

[19] Sebastian Biewer, Pedro R. D’Argenio, and Holger Hermanns. Dop-
ing tests for cyber-physical systems – Tool, April 2021. doi:10.5281/
zenodo.4709389.

[20] Sebastian Biewer, Rayna Dimitrova, Michael Fries, Maciej Gazda, Thomas
Heinze, Holger Hermanns, and Mohammad Reza Mousavi. Conformance
relations and hyperproperties for doping detection in time and space. Log.
Methods Comput. Sci., 18(1), 2022. doi:10.46298/lmcs-18(1:14)2022.

[21] Sebastian Biewer, Bernd Finkbeiner, Holger Hermanns, Maximilian A.
Köhl, Yannik Schnitzer, and Maximilian Schwenger. rtlola on board:
Testing real driving emissions on your phone. In Jan Friso Groote and
Kim Guldstrand Larsen, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems - 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March
27 - April 1, 2021, Proceedings, Part II, volume 12652 of Lecture Notes in
Computer Science, pages 365–372. Springer, 2021. doi:10.1007/978-3-
030-72013-1 20.

https://doi.org/10.1007/978-3-319-47169-3_49
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1145/964001.964003
https://doi.org/10.1007/978-3-030-30281-8_18
https://doi.org/10.1007/978-3-030-30281-8_18
https://doi.org/10.1145/3449354
https://doi.org/10.5281/zenodo.4709389
https://doi.org/10.5281/zenodo.4709389
https://doi.org/10.46298/lmcs-18(1:14)2022
https://doi.org/10.1007/978-3-030-72013-1_20
https://doi.org/10.1007/978-3-030-72013-1_20

212 Bibliography

[22] Sebastian Biewer, Bernd Finkbeiner, Holger Hermanns, Maximilian A.
Köhl, Yannik Schnitzer, and Maximilian Schwenger. On the road with
rtlola: Testing real driving emissions on your phone. Int. J. Softw.
Tools Technol. Transf., 2023. doi:10.1007/s10009-022-00689-5.

[23] Sebastian Biewer, Michael Fries, and Thomas Heinze. Conformance
relations and hyperproperties for doping detection in time and space
(supplementary material). https://www.powver.org/publications/
conformance-based-doping-detection, 2020.

[24] Sebastian Biewer and Holger Hermanns. LolaDrives (App) Privacy Policy.
URL: https://www.loladrives.app/app-privacy-statement/.

[25] Sebastian Biewer and Holger Hermanns. On the detection of doped soft-
ware by falsification. In Einar Broch Johnsen and Manuel Wimmer, ed-
itors, Fundamental Approaches to Software Engineering - 25th Interna-
tional Conference, FASE 2022, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2022, Munich, Ger-
many, April 2-7, 2022, Proceedings, volume 13241 of Lecture Notes in
Computer Science, pages 71–91. Springer, 2022. doi:10.1007/978-3-030-
99429-7 4.

[26] Sebastian Biewer and Yannik Schnitzer. PCDF analyser, September 2021.
URL: https://github.com/udsdepend/pcdf-analyser.

[27] Lubos Brim, Petr Dluhos, David Safranek, and Tomas Vejpustek. STL*:
Extending signal temporal logic with signal-value freezing operator. Inf.
Comput., 236:52–67, 2014. doi:10.1016/j.ic.2014.01.012.

[28] Cadence System Analysis. The importance of battery cooling systems
in electric vehicles, 2022. Online; accessed: 2022-09-21. URL: https:
//resources.system-analysis.cadence.com/blog/msa2022-the-
importance-of-battery-cooling-systems-in-electric-vehicles.

[29] Cathy O’Neil. How algorithms rule our working lives, 2016. Online;
accessed: 2023-02-03. URL: https://www.theguardian.com/science/
2016/sep/01/how-algorithms-rule-our-working-lives.

[30] Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. Conti-
nuity analysis of programs. In Manuel V. Hermenegildo and Jens Pals-
berg, editors, Proceedings of the 37th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2010, Madrid,
Spain, January 17-23, 2010, pages 57–70. ACM, 2010. doi:10.1145/
1706299.1706308.

https://doi.org/10.1007/s10009-022-00689-5
https://www.powver.org/publications/conformance-based-doping-detection
https://www.powver.org/publications/conformance-based-doping-detection
https://www.loladrives.app/app-privacy-statement/
https://doi.org/10.1007/978-3-030-99429-7_4
https://doi.org/10.1007/978-3-030-99429-7_4
https://github.com/udsdepend/pcdf-analyser
https://doi.org/10.1016/j.ic.2014.01.012
https://resources.system-analysis.cadence.com/blog/msa2022-the-importance-of-battery-cooling-systems-in-electric-vehicles
https://resources.system-analysis.cadence.com/blog/msa2022-the-importance-of-battery-cooling-systems-in-electric-vehicles
https://resources.system-analysis.cadence.com/blog/msa2022-the-importance-of-battery-cooling-systems-in-electric-vehicles
https://www.theguardian.com/science/2016/sep/01/how-algorithms-rule-our-working-lives
https://www.theguardian.com/science/2016/sep/01/how-algorithms-rule-our-working-lives
https://doi.org/10.1145/1706299.1706308
https://doi.org/10.1145/1706299.1706308

Bibliography 213

[31] Stuart Cheshire and Mary Baker. Consistent overhead byte stuffing. In
Christophe Diot, Christian Huitema, Scott Shenker, and Martha Steen-
strup, editors, Proceedings of the ACM SIGCOMM 1997 Conference on
Applications, Technologies, Architectures, and Protocols for Computer
Communication, September 14-18, 1997, Cannes, France, pages 209–220.
ACM, 1997. doi:10.1145/263105.263168.

[32] Siddhartha Chib and Edward Greenberg. Understanding the metropolis-
hastings algorithm. The american statistician, 49(4):327–335, 1995. doi:
10.1080/00031305.1995.10476177.

[33] Alexandra Chouldechova. Fair prediction with disparate impact: A study
of bias in recidivism prediction instruments. Big Data, 5(2):153–163, 2017.
doi:10.1089/big.2016.0047.

[34] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K.
Micinski, Markus N. Rabe, and César Sánchez. Temporal logics for hy-
perproperties. In Mart́ın Abadi and Steve Kremer, editors, Principles of
Security and Trust - Third International Conference, POST 2014, Held as
Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, vol-
ume 8414 of Lecture Notes in Computer Science, pages 265–284. Springer,
2014. doi:10.1007/978-3-642-54792-8 15.

[35] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. In CSF’08,
pages 51–65, 2008. doi:10.1109/CSF.2008.7.

[36] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Hey-
mans, Axel Legay, and Jean-François Raskin. Featured transition systems:
Foundations for verifying variability-intensive systems and their applica-
tion to LTL model checking. IEEE Transactions on Software Engineering,
39(8):1069–1089, 2013. doi:10.1109/TSE.2012.86.

[37] Norine Coenen, Bernd Finkbeiner, Christopher Hahn, and Jana Hofmann.
The hierarchy of hyperlogics. In 34th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2019, Vancouver, BC, Canada, June
24-27, 2019, pages 1–13. IEEE, 2019. doi:10.1109/LICS.2019.8785713.

[38] Norine Coenen, Bernd Finkbeiner, César Sánchez, and Leander Tentrup.
Verifying hyperliveness. In Isil Dillig and Serdar Tasiran, editors, Com-
puter Aided Verification - 31st International Conference, CAV 2019, New
York City, NY, USA, July 15-18, 2019, Proceedings, Part I, volume 11561
of Lecture Notes in Computer Science, pages 121–139. Springer, 2019.
doi:10.1007/978-3-030-25540-4 7.

https://doi.org/10.1145/263105.263168
https://doi.org/10.1080/00031305.1995.10476177
https://doi.org/10.1080/00031305.1995.10476177
https://doi.org/10.1089/big.2016.0047
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1109/CSF.2008.7
https://doi.org/10.1109/TSE.2012.86
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1007/978-3-030-25540-4_7

214 Bibliography

[39] European Commission. Laying down harmonised rules on artificial in-
telligence (artificial intelligence act) and amending certain union legisla-
tive acts (proposal for a regulation) no 0106/2021, 2020. https://eur-

lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206.

[40] Moritz Contag, Guo Li, Andre Pawlowski, Felix Domke, Kirill Levchenko,
Thorsten Holz, and Stefan Savage. How they did it: An analysis of emis-
sion defeat devices in modern automobiles. In 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017,
pages 231–250. IEEE Computer Society, 2017. doi:10.1109/SP.2017.66.

[41] Pedro R. D’Argenio. Algebras and Automata for Timed and Stochastic
Systems. PhD thesis, Netherlands, 1999.

[42] Pedro R. D’Argenio, Gilles Barthe, Sebastian Biewer, Bernd Finkbeiner,
and Holger Hermanns. Is your software on dope? – Formal analysis of
surreptitiously “enhanced” programs. In Hongseok Yang, editor, Pro-
gramming Languages and Systems - 26th European Symposium on Pro-
gramming, ESOP 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April
22-29, 2017, Proceedings, volume 10201 of Lecture Notes in Computer Sci-
ence, pages 83–110. Springer, 2017. doi:10.1007/978-3-662-54434-1 4.

[43] René G. de Vries and Jan Tretmans. On-the-fly conformance testing using
SPIN. STTT, 2(4):382–393, 2000. doi:10.1007/s100090050044.

[44] Deutsche Forschungsgemeinschaft / German Research Founda-
tion. Guidelines for safeguarding good research practice – code of
conduct. URL: https://www.dfg.de/download/pdf/foerderung/
rechtliche rahmenbedingungen/gute wissenschaftliche praxis/

kodex gwp en.pdf.

[45] Edsger W. Dijkstra. A discipline of programming. Prentice Hall series in
automatic computation. Prentice Hall, Englewood Cliffs, NJ, 1976.

[46] Rayna Dimitrova, Maciej Gazda, Mohammad Reza Mousavi, Sebastian
Biewer, and Holger Hermanns. Conformance-based doping detection for
cyber-physical systems. In Alexey Gotsman and Ana Sokolova, editors,
Formal Techniques for Distributed Objects, Components, and Systems -
40th IFIP WG 6.1 International Conference, FORTE 2020, Held as Part
of the 15th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2020, Valletta, Malta, June 15-19, 2020, Proceed-
ings, volume 12136 of Lecture Notes in Computer Science, pages 59–77.
Springer, 2020. doi:10.1007/978-3-030-50086-3 4.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021PC0206
https://doi.org/10.1109/SP.2017.66
https://doi.org/10.1007/978-3-662-54434-1_4
https://doi.org/10.1007/s100090050044
https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp_en.pdf
https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp_en.pdf
https://www.dfg.de/download/pdf/foerderung/rechtliche_rahmenbedingungen/gute_wissenschaftliche_praxis/kodex_gwp_en.pdf
https://doi.org/10.1007/978-3-030-50086-3_4

Bibliography 215

[47] Felix Domke and Daniel Lange. The exhaust emissions scandal (“Diesel-
gate”). In 30th Chaos Communication Congress, 2015. Online; accessed:
2022-09-20. URL: https://events.ccc.de/congress/2015/Fahrplan/
events/7331.html.

[48] Alexandre Donzé, Thomas Ferrère, and Oded Maler. Efficient robust
monitoring for STL. In Natasha Sharygina and Helmut Veith, editors,
Computer Aided Verification - 25th International Conference, CAV 2013,
Saint Petersburg, Russia, July 13-19, 2013. Proceedings, volume 8044
of Lecture Notes in Computer Science, pages 264–279. Springer, 2013.
doi:10.1007/978-3-642-39799-8 19.

[49] Laurent Doyen, Thomas A. Henzinger, Axel Legay, and Dejan Nick-
ovic. Robustness of sequential circuits. In 10th International Conference
on Application of Concurrency to System Design, ACSD 2010, Braga,
Portugal, 21-25 June 2010, pages 77–84. IEEE Computer Society, 2010.
doi:10.1109/ACSD.2010.26.

[50] Julia Dressel and Hany Farid. The accuracy, fairness, and limits of
predicting recidivism. Science Advances, 4(1), 2018. doi:10.1126/
sciadv.aao5580.

[51] Joe Dunn. Diesel emissions scandal: Fiat under investiga-
tion. The Telegraph, http://www.telegraph.co.uk/cars/news/diesel-
emissions-scandal-fiat-under-investigation/, 2017. Online; ac-
cessed: 2023-02-03.

[52] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and
Richard Zemel. Fairness through awareness. In Proceedings of the 3rd in-
novations in theoretical computer science conference, pages 214–226, 2012.
doi:10.1145/2090236.2090255.

[53] Erin Smith, and Heather Vogell. How Your Shadow Credit Score Could
Decide Whether You Get an Apartment , 2022. Online; accessed: 2023-
02-06. URL: https://www.propublica.org/article/how-your-shadow-
credit-score-could-decide-whether-you-get-an-apartment.

[54] Georgios E. Fainekos and George J. Pappas. Robustness of temporal
logic specifications for continuous-time signals. Theor. Comput. Sci.,
410(42):4262–4291, 2009. doi:10.1016/j.tcs.2009.06.021.

[55] Peter Faymonville, Bernd Finkbeiner, Malte Schledjewski, Maximilian
Schwenger, Marvin Stenger, Leander Tentrup, and Hazem Torfah. Stream-
LAB: Stream-based Monitoring of Cyber-Physical Systems. In CAV 2019,

https://events.ccc.de/congress/2015/Fahrplan/events/7331.html
https://events.ccc.de/congress/2015/Fahrplan/events/7331.html
https://doi.org/10.1007/978-3-642-39799-8_19
https://doi.org/10.1109/ACSD.2010.26
https://doi.org/10.1126/sciadv.aao5580
https://doi.org/10.1126/sciadv.aao5580
http://www.telegraph.co.uk/cars/news/diesel-emissions-scandal-fiat-under-investigation/
http://www.telegraph.co.uk/cars/news/diesel-emissions-scandal-fiat-under-investigation/
https://doi.org/10.1145/2090236.2090255
https://www.propublica.org/article/how-your-shadow-credit-score-could-decide-whether-you-get-an-apartment
https://www.propublica.org/article/how-your-shadow-credit-score-could-decide-whether-you-get-an-apartment
https://doi.org/10.1016/j.tcs.2009.06.021

216 Bibliography

volume 11561 of LNCS, pages 421–431. Springer, 2019. doi:10.1007/978-
3-030-25540-4 24.

[56] Bernd Finkbeiner and Christopher Hahn. Deciding Hyperproperties. In
Josée Desharnais and Radha Jagadeesan, editors, CONCUR 2016, vol-
ume 59 of LIPIcs, pages 13:1–13:14. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.13.

[57] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for
model checking HyperLTL and HyperCTL∗. In Daniel Kroening and Co-
rina S. Pasareanu, editors, Computer Aided Verification - 27th Interna-
tional Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part I, volume 9206 of Lecture Notes in Computer Science,
pages 30–48. Springer, 2015. doi:10.1007/978-3-319-21690-4 3.

[58] Organisation for Economic Co-operation and Development (OECD).
Artificial intelligence, machine learning and big data in finance: Oppor-
tunities, challenges and implications for policy makers, 2021. Online;
accessed: 2023-02-03. URL: https://www.oecd.org/finance/financial-
markets/Artificial-intelligence-machine-learning-big-data-

in-finance.pdf.

[59] Fortune Business Insights. Smartwatch market size, share & covid-19
impact analysis, 2022. Online; accessed: 2022-09-21. URL: https:

//www.fortunebusinessinsights.com/smartwatch-market-106625.

[60] Sorelle A. Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian.
The (im)possibility of fairness: Different value systems require different
mechanisms for fair decision making. Commun. ACM, 64(4):136–143, mar
2021. doi:10.1145/3433949.

[61] Maciej Gazda and Mohammad Reza Mousavi. Logical characterisation
of hybrid conformance. In Artur Czumaj, Anuj Dawar, and Emanuela
Merelli, editors, 47th International Colloquium on Automata, Languages,
and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken, Ger-
many (Virtual Conference), volume 168 of LIPIcs, pages 130:1–130:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/
LIPIcs.ICALP.2020.130.

[62] Roberto Giacobazzi and Isabella Mastroeni. Abstract non-interference:
parameterizing non-interference by abstract interpretation. In Neil D.
Jones and Xavier Leroy, editors, Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL

https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.1007/978-3-030-25540-4_24
https://doi.org/10.4230/LIPIcs.CONCUR.2016.13
https://doi.org/10.1007/978-3-319-21690-4_3
https://www.oecd.org/finance/financial-markets/Artificial-intelligence-machine-learning-big-data-in-finance.pdf
https://www.oecd.org/finance/financial-markets/Artificial-intelligence-machine-learning-big-data-in-finance.pdf
https://www.oecd.org/finance/financial-markets/Artificial-intelligence-machine-learning-big-data-in-finance.pdf
https://www.fortunebusinessinsights.com/smartwatch-market-106625
https://www.fortunebusinessinsights.com/smartwatch-market-106625
https://doi.org/10.1145/3433949
https://doi.org/10.4230/LIPIcs.ICALP.2020.130
https://doi.org/10.4230/LIPIcs.ICALP.2020.130

Bibliography 217

2004, Venice, Italy, January 14-16, 2004, pages 186–197. ACM, 2004.
doi:10.1145/964001.964017.

[63] Alexander Graf-Brill and Holger Hermanns. Model-based testing for asyn-
chronous systems. In Laure Petrucci, Cristina Seceleanu, and Ana Cav-
alcanti, editors, Critical Systems: Formal Methods and Automated Veri-
fication - Joint 22nd International Workshop on Formal Methods for In-
dustrial Critical Systems - and - 17th International Workshop on Auto-
mated Verification of Critical Systems, FMICS-AVoCS 2017, Turin, Italy,
September 18-20, 2017, Proceedings, volume 10471 of Lecture Notes in
Computer Science, pages 66–82. Springer, 2017. doi:10.1007/978-3-319-
67113-0 5.

[64] Michael Grieves and John Vickers. Digital twin: Mitigating unpredictable,
undesirable emergent behavior in complex systems. Transdisciplinary per-
spectives on complex systems: New findings and approaches, pages 85–113,
2017. doi:10.1007/978-3-319-38756-7 4.

[65] Dick Hamlet. Continuity in sofware systems. In Proceedings of the In-
ternational Symposium on Software Testing and Analysis, ISSTA 2002,
Roma, Italy, July 22-24, 2002, pages 196–200. ACM, 2002. doi:10.1145/
566172.566203.

[66] Arnd Hartmanns. On the analysis of stochastic timed systems. PhD thesis,
Saarland University, 2015. URL: http://scidok.sulb.uni-saarland.de/
volltexte/2015/6054/.

[67] Les Hatton and Michiel van Genuchten. When software crosses a line.
IEEE Software, 33(1):29–31, 2016. doi:10.1109/MS.2016.6.

[68] Thomas A. Henzinger. The theory of hybrid automata. In Proceed-
ings, 11th Annual IEEE Symposium on Logic in Computer Science, New
Brunswick, New Jersey, USA, July 27-30, 1996, pages 278–292. IEEE
Computer Society, 1996. doi:10.1109/LICS.1996.561342.

[69] Holger Hermanns. Interactive Markov Chains. PhD thesis, Universität
Erlangen-Nürnberg, 1998.

[70] Holger Hermanns, Sebastian Biewer, Pedro R. D’Argenio, and Maximil-
ian A. Köhl. Verification, testing, and runtime monitoring of automo-
tive exhaust emissions. In Gilles Barthe, Geoff Sutcliffe, and Margus
Veanes, editors, LPAR-22. 22nd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning, Awassa, Ethiopia, 16-
21 November 2018, volume 57 of EPiC Series in Computing, pages 1–17.
EasyChair, 2018. doi:10.29007/6zxt.

https://doi.org/10.1145/964001.964017
https://doi.org/10.1007/978-3-319-67113-0_5
https://doi.org/10.1007/978-3-319-67113-0_5
https://doi.org/10.1007/978-3-319-38756-7_4
https://doi.org/10.1145/566172.566203
https://doi.org/10.1145/566172.566203
http://scidok.sulb.uni-saarland.de/volltexte/2015/6054/
http://scidok.sulb.uni-saarland.de/volltexte/2015/6054/
https://doi.org/10.1109/MS.2016.6
https://doi.org/10.1109/LICS.1996.561342
https://doi.org/10.29007/6zxt

218 Bibliography

[71] High-Level Expert Group on Artificial Intelligence. Ethics Guidelines for
Trustworthy AI, 2019. URL: https://digital-strategy.ec.europa.eu/
en/library/ethics-guidelines-trustworthy-ai.

[72] Sebastian Holler, Sebastian Biewer, and Clara Schneidewind. HoRStify:
Sound security analysis of smart contracts. In 36th IEEE Computer Se-
curity Foundations Symposium, CSF 2023, Dubrovnik, Croatia, July 9-13,
2023, 2023. to appear; preprint available at https://arxiv.org/abs/
2301.13769.

[73] William Hurst, Madjid Merabti, and Paul Fergus. A survey of criti-
cal infrastructure security. In Jonathan Butts and Sujeet Shenoi, ed-
itors, Critical Infrastructure Protection VIII - 8th IFIP WG 11.10 In-
ternational Conference, ICCIP 2014, Arlington, VA, USA, March 17-19,
2014, Revised Selected Papers, volume 441 of IFIP Advances in Infor-
mation and Communication Technology, pages 127–138. Springer, 2014.
doi:10.1007/978-3-662-45355-1 9.

[74] Christina Ilvento. Metric learning for individual fairness. 2019. doi:

10.48550/ARXIV.1906.00250.

[75] Claude Jard and Thierry Jéron. TGV: theory, principles and algorithms.
Int. J. Softw. Tools Technol. Transf., 7(4):297–315, 2005. doi:10.1007/
s10009-004-0153-x.

[76] Jeff Larson, Surya Mattu, Lauren Kirchner and Julia Angwin. HowWe An-
alyzed the COMPAS Recidivism Algorithm, 2016. Online; accessed: 2023-
02-06. URL: https://www.propublica.org/article/how-we-analyzed-
the-compas-recidivism-algorithm.

[77] Philips George John, Deepak Vijaykeerthy, and Diptikalyan Saha. Veri-
fying individual fairness in machine learning models. In Ryan P. Adams
and Vibhav Gogate, editors, Proceedings of the Thirty-Sixth Conference
on Uncertainty in Artificial Intelligence, UAI 2020, virtual online, August
3-6, 2020, volume 124 of Proceedings of Machine Learning Research, pages
749–758. AUAI Press, 2020. URL: http://proceedings.mlr.press/v124/
george-john20a.html.

[78] David Jones, Chris Snider, Aydin Nassehi, Jason Yon, and Ben Hicks.
Characterising the digital twin: A systematic literature review. CIRP
Journal of Manufacturing Science and Technology, 29:36–52, 2020. doi:

10.1016/j.cirpj.2020.02.002.

https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://digital-strategy.ec.europa.eu/en/library/ethics-guidelines-trustworthy-ai
https://arxiv.org/abs/2301.13769
https://arxiv.org/abs/2301.13769
https://doi.org/10.1007/978-3-662-45355-1_9
https://doi.org/10.48550/ARXIV.1906.00250
https://doi.org/10.48550/ARXIV.1906.00250
https://doi.org/10.1007/s10009-004-0153-x
https://doi.org/10.1007/s10009-004-0153-x
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
http://proceedings.mlr.press/v124/george-john20a.html
http://proceedings.mlr.press/v124/george-john20a.html
https://doi.org/10.1016/j.cirpj.2020.02.002
https://doi.org/10.1016/j.cirpj.2020.02.002

Bibliography 219

[79] Timothy Jones. Boeing reveals further software problem in
737 max airplane, 2019. Online; accessed: 2022-09-21. URL:
https://www.dw.com/en/boeing-reveals-further-software-
problem-in-737-max-airplane/a-48214065.

[80] Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirch-
ner. Machine Bias, 2016. Online; accessed: 2023-02-06. URL:
https://www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing.

[81] Narges Khakpour and Mohammad Reza Mousavi. Notions of confor-
mance testing for cyber-physical systems: Overview and roadmap (in-
vited paper). In Luca Aceto and David de Frutos-Escrig, editors,
26th International Conference on Concurrency Theory, CONCUR 2015,
Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs, pages 18–
40. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. doi:

10.4230/LIPIcs.CONCUR.2015.18.

[82] Maximilian A. Köhl, Holger Hermanns, and Sebastian Biewer. Efficient
monitoring of real driving emissions. In Christian Colombo and Martin
Leucker, editors, Runtime Verification - 18th International Conference,
RV 2018, Limassol, Cyprus, November 10-13, 2018, Proceedings, volume
11237 of Lecture Notes in Computer Science, pages 299–315. Springer,
2018. doi:10.1007/978-3-030-03769-7 17.

[83] Markus Langer, Daniel Oster, Timo Speith, Holger Hermanns, Lena
Kästner, Eva Schmidt, Andreas Sesing, and Kevin Baum. What
do we want from explainable artificial intelligence (XAI)? - A stake-
holder perspective on XAI and a conceptual model guiding interdisci-
plinary XAI research. Artif. Intell., 296:103473, 2021. doi:10.1016/
j.artint.2021.103473.

[84] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A.
Tucker. No pane, no gain: efficient evaluation of sliding-window ag-
gregates over data streams. SIGMOD Record, 34(1):39–44, 2005. doi:

10.1145/1058150.1058158.

[85] Lilah Burke. The Death and Life of an Admissions Algo-
rithm, 2020. Online; accessed: 2023-02-06. URL: https:

//www.insidehighered.com/admissions/article/2020/12/14/u-
texas-will-stop-using-controversial-algorithm-evaluate-phd.

[86] Rupak Majumdar and Indranil Saha. Symbolic robustness analysis. In
Proceedings of the 30th IEEE Real-Time Systems Symposium, RTSS 2009,

https://www.dw.com/en/boeing-reveals-further-software-problem-in-737-max-airplane/a-48214065
https://www.dw.com/en/boeing-reveals-further-software-problem-in-737-max-airplane/a-48214065
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://doi.org/10.4230/LIPIcs.CONCUR.2015.18
https://doi.org/10.4230/LIPIcs.CONCUR.2015.18
https://doi.org/10.1007/978-3-030-03769-7_17
https://doi.org/10.1016/j.artint.2021.103473
https://doi.org/10.1016/j.artint.2021.103473
https://doi.org/10.1145/1058150.1058158
https://doi.org/10.1145/1058150.1058158
https://www.insidehighered.com/admissions/article/2020/12/14/u-texas-will-stop-using-controversial-algorithm-evaluate-phd
https://www.insidehighered.com/admissions/article/2020/12/14/u-texas-will-stop-using-controversial-algorithm-evaluate-phd
https://www.insidehighered.com/admissions/article/2020/12/14/u-texas-will-stop-using-controversial-algorithm-evaluate-phd

220 Bibliography

Washington, DC, USA, 1-4 December 2009, pages 355–363. IEEE Com-
puter Society, 2009. doi:10.1109/RTSS.2009.17.

[87] Oded Maler and Dejan Nickovic. Monitoring temporal properties of con-
tinuous signals. In Yassine Lakhnech and Sergio Yovine, editors, For-
mal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Sys-
tems, Joint International Conferences on Formal Modelling and Analysis
of Timed Systems, FORMATS 2004 and Formal Techniques in Real-Time
and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France, Septem-
ber 22-24, 2004, Proceedings, volume 3253 of Lecture Notes in Computer
Science, pages 152–166. Springer, 2004. doi:10.1007/978-3-540-30206-
3 12.

[88] Tiziana Margaria and Bernhard Steffen, editors. Leveraging Applications
of Formal Methods, Verification and Validation: Discussion, Dissemina-
tion, Applications - 7th International Symposium, ISoLA 2016, Part II,
volume 9953 of LNCS, 2016. doi:10.1007/978-3-319-47169-3.

[89] Roger C Mayer, James H Davis, and F David Schoorman. An integrative
model of organizational trust. Academy of management review, 20(3):709–
734, 1995.

[90] Karl Meinke and Muddassar A. Sindhu. Incremental learning-based testing
for reactive systems. In Martin Gogolla and Burkhart Wolff, editors, Tests
and Proofs - 5th International Conference, TAP@TOOLS 2011, Zurich,
Switzerland, June 30 - July 1, 2011. Proceedings, volume 6706 of Lecture
Notes in Computer Science, pages 134–151. Springer, 2011. doi:10.1007/
978-3-642-21768-5 11.

[91] Leila Methnani, Andrea Aler Tubella, Virginia Dignum, and Andreas
Theodorou. Let me take over: Variable autonomy for meaningful hu-
man control. Frontiers in Artificial Intelligence, 4, 2021. doi:10.3389/
frai.2021.737072.

[92] Dimiter Milushev and Dave Clarke. Incremental hyperproperty model
checking via games. In Hanne Riis Nielson and Dieter Gollmann, edi-
tors, Secure IT Systems - 18th Nordic Conference, NordSec 2013, volume
8208 of LNCS, pages 247–262. Springer, 2013. doi:10.1007/978-3-642-
41488-6 17.

[93] Jad Mouawad. Volkswagen to recall 8.5 million vehicles in europe, 2015.
Online; accessed: 2022-09-21. URL: https://www.nytimes.com/2015/10/
16/business/international/volkswagen-germany-recall.html.

https://doi.org/10.1109/RTSS.2009.17
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-319-47169-3
https://doi.org/10.1007/978-3-642-21768-5_11
https://doi.org/10.1007/978-3-642-21768-5_11
https://doi.org/10.3389/frai.2021.737072
https://doi.org/10.3389/frai.2021.737072
https://doi.org/10.1007/978-3-642-41488-6_17
https://doi.org/10.1007/978-3-642-41488-6_17
https://www.nytimes.com/2015/10/16/business/international/volkswagen-germany-recall.html
https://www.nytimes.com/2015/10/16/business/international/volkswagen-germany-recall.html

Bibliography 221

[94] Debarghya Mukherjee, Mikhail Yurochkin, Moulinath Banerjee, and
Yuekai Sun. Two simple ways to learn individual fairness metrics from
data. In Hal Daumé III and Aarti Singh, editors, Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings
of Machine Learning Research, pages 7097–7107. PMLR, 13–18 Jul 2020.
URL: https://proceedings.mlr.press/v119/mukherjee20a.html.

[95] Truong Nghiem, Sriram Sankaranarayanan, Georgios E. Fainekos, Franjo
Ivancic, Aarti Gupta, and George J. Pappas. Monte-carlo techniques
for falsification of temporal properties of non-linear hybrid systems. In
Karl Henrik Johansson and Wang Yi, editors, Proceedings of the 13th ACM
International Conference on Hybrid Systems: Computation and Control,
HSCC 2010, Stockholm, Sweden, April 12-15, 2010, pages 211–220. ACM,
2010. doi:10.1145/1755952.1755983.

[96] Luan Viet Nguyen, James Kapinski, Xiaoqing Jin, Jyotirmoy V. Desh-
mukh, and Taylor T. Johnson. Hyperproperties of real-valued signals.
In Jean-Pierre Talpin, Patricia Derler, and Klaus Schneider, editors,
Proceedings of the 15th ACM-IEEE International Conference on Formal
Methods and Models for System Design, MEMOCODE 2017, Vienna,
Austria, September 29 - October 02, 2017, pages 104–113. ACM, 2017.
doi:10.1145/3127041.3127058.

[97] Bart Nooteboom. Trust: Forms, foundations, functions, failures and fig-
ures. Edward Elgar Publishing, 2002.

[98] Cathy O’Neil. Weapons of Math Destruction: How Big Data Increases In-
equality and Threatens Democracy. Crown Publishing Group, USA, 2016.

[99] Orcale. AI in Human Resources: The Time is Now, 2019. Online;
accessed: 2023-02-06. URL: https://www.oracle.com/a/ocom/docs/
applications/hcm/oracle-ai-in-hr-wp.pdf.

[100] Dana Pessach and Erez Shmueli. A review on fairness in machine learning.
ACM Comput. Surv., 55(3), feb 2022. doi:10.1145/3494672.

[101] S. Pettersson and B. Lennartson. Stability and robustness for hybrid
systems. In Proceedings of 35th IEEE Conference on Decision and
Control, volume 2, pages 1202–1207 vol.2, Dec 1996. doi:10.1109/
CDC.1996.572653.

[102] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume
317. Springer Science & Business Media, 2009.

https://proceedings.mlr.press/v119/mukherjee20a.html
https://doi.org/10.1145/1755952.1755983
https://doi.org/10.1145/3127041.3127058
https://www.oracle.com/a/ocom/docs/applications/hcm/oracle-ai-in-hr-wp.pdf
https://www.oracle.com/a/ocom/docs/applications/hcm/oracle-ai-in-hr-wp.pdf
https://doi.org/10.1145/3494672
https://doi.org/10.1109/CDC.1996.572653
https://doi.org/10.1109/CDC.1996.572653

222 Bibliography

[103] Kenneth H Rosen and Kamala Krithivasan. Discrete mathematics and
its applications: with combinatorics and graph theory. Tata McGraw-Hill
Education, 2012.

[104] Walter Rudin et al. Principles of mathematical analysis, volume 3.
McGraw-Hill New York, 1976.

[105] Gerardo Schneider. Algorithmic Analysis of Polygonal Hybrid Systems.
PhD thesis, VERIMAG – UJF, Grenoble, France, July 2002.

[106] Bruce Schneier, Matthew Fredrikson, Tadayoshi Kohno, and Thomas Ris-
tenpart. Surreptitiously weakening cryptographic systems. IACR Cryptol-
ogy ePrint Archive, 2015:97, 2015. URL: http://eprint.iacr.org/2015/
097.

[107] Yannik Schnitzer. PCDF core, September 2021. URL: https://

github.com/udsdepend/pcdf-core.

[108] Yannik Schnitzer and Sebastian Biewer. LolaDrives Android, September
2021. URL: https://github.com/udsdepend/loladrives-android.

[109] Maximilian Schwenger. Statically Analyzed Stream Monitoring for Cyber-
Physical Systems. Dissertation, Saarland University, 2022.

[110] Marcelo Sousa and Isil Dillig. Cartesian Hoare logic for verifying k-safety
properties. In Chandra Krintz and Emery Berger, editors, PLDI 2016,
pages 57–69. ACM, 2016. doi:10.1145/2908080.2908092.

[111] Statista. Installed base of smart speakers in the united states
from 2018 to 2022, 2022. Online; accessed: 2022-09-21. URL:
https://www.statista.com/statistics/967402/united-states-
smart-speakers-in-households/.

[112] Statista. Number of smartphone subscriptions worldwide from 2016 to
2021, with forecasts from 2022 to 2027, 2022. Online; accessed: 2022-09-
21. URL: https://www.statista.com/statistics/330695/number-of-
smartphone-users-worldwide/.

[113] Steven Meurrens. The Increasing Role of AI in Visa Processing, 2021.
Online; accessed: 2023-02-06. URL: https://canadianimmigrant.ca/
immigrate/immigration-law/the-increasing-role-of-ai-in-visa-

processing.

http://eprint.iacr.org/2015/097
http://eprint.iacr.org/2015/097
https://github.com/udsdepend/pcdf-core
https://github.com/udsdepend/pcdf-core
https://github.com/udsdepend/loladrives-android
https://doi.org/10.1145/2908080.2908092
https://www.statista.com/statistics/967402/united-states-smart-speakers-in-households/
https://www.statista.com/statistics/967402/united-states-smart-speakers-in-households/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://canadianimmigrant.ca/immigrate/immigration-law/the-increasing-role-of-ai-in-visa-processing
https://canadianimmigrant.ca/immigrate/immigration-law/the-increasing-role-of-ai-in-visa-processing
https://canadianimmigrant.ca/immigrate/immigration-law/the-increasing-role-of-ai-in-visa-processing

Bibliography 223

[114] Arthur Sullivan. German air traffic software glitch one of sev-
eral problems afflicting sector, 2019. Online; accessed: 2022-09-
21. URL: https://www.dw.com/en/german-air-traffic-software-
glitch-one-of-several-problems-afflicting-sector/a-48053507.

[115] Paulo Tabuada, Ayca Balkan, Sina Y. Caliskan, Yasser Shoukry, and Ru-
pak Majumdar. Input-output robustness for discrete systems. In Ahmed
Jerraya, Luca P. Carloni, Florence Maraninchi, and John Regehr, edi-
tors, Proceedings of the 12th International Conference on Embedded Soft-
ware, EMSOFT 2012, part of the Eighth Embedded Systems Week, ESWeek
2012, Tampere, Finland, October 7-12, 2012, pages 217–226. ACM, 2012.
doi:10.1145/2380356.2380396.

[116] Tachio Terauchi and Alex Aiken. Secure information flow as a safety prob-
lem. In SAS 2005, volume 3672 of LNCS, pages 352–367. Springer, 2005.
doi:10.1007/11547662 24.

[117] The European Parliament and the Council of the European Union.
Directive 98/69/ec of the european parliament and of the council, 1998.
URL: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=
CELEX:31998L0069:EN:HTML.

[118] The European Parliament and the Council of the European Union.
Commission Regulation (EU) 2017/1151, June 2017. URL: http://

data.europa.eu/eli/reg/2017/1151/oj.

[119] Jan Tretmans. A formal approach to conformance testing. PhD the-
sis, University of Twente, Enschede, Netherlands, 1992. URL: http:

//purl.utwente.nl/publications/58114.

[120] Jan Tretmans. Conformance testing with labelled transition systems: Im-
plementation relations and test generation. Computer Networks and ISDN
Systems, 29(1):49–79, 1996. doi:10.1016/S0169-7552(96)00017-7.

[121] Jan Tretmans. Model based testing with labelled transition systems. In
Robert M. Hierons, Jonathan P. Bowen, and Mark Harman, editors, For-
mal Methods and Testing, An Outcome of the FORTEST Network, Revised
Selected Papers, volume 4949 of Lecture Notes in Computer Science, pages
1–38. Springer, 2008. doi:10.1007/978-3-540-78917-8 1.

[122] Umweltbundesamt (Germany). Nitrogen dioxide has serious im-
pact on health, 2018. Online; accessed: 2022-09-21. URL:
https://www.umweltbundesamt.de/en/press/pressinformation/
nitrogen-dioxide-has-serious-impact-on-health.

https://www.dw.com/en/german-air-traffic-software-glitch-one-of-several-problems-afflicting-sector/a-48053507
https://www.dw.com/en/german-air-traffic-software-glitch-one-of-several-problems-afflicting-sector/a-48053507
https://doi.org/10.1145/2380356.2380396
https://doi.org/10.1007/11547662_24
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31998L0069:EN:HTML
http://data.europa.eu/eli/reg/2017/1151/oj
http://data.europa.eu/eli/reg/2017/1151/oj
http://purl.utwente.nl/publications/58114
http://purl.utwente.nl/publications/58114
https://doi.org/10.1016/S0169-7552(96)00017-7
https://doi.org/10.1007/978-3-540-78917-8_1
https://www.umweltbundesamt.de/en/press/pressinformation/nitrogen-dioxide-has-serious-impact-on-health
https://www.umweltbundesamt.de/en/press/pressinformation/nitrogen-dioxide-has-serious-impact-on-health

224 Bibliography

[123] European Union. Regulation (eu) 2016/679 of the european parliament
and of the council of 27 april 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such
data, and repealing directive 95/46/ec (general data protection regula-
tion), 2016. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=
CELEX%3A32016R0679.

[124] United Nations. UN Vehicle Regulations - 1958 Agreement, Revi-
sion 2, Addendum 100, Regulation No. 101, Revision 3 — E/E-
CE/324/Rev.2/Add.100/Rev.3, 2013. URL: http://www.unece.org/
trans/main/wp29/wp29regs101-120.html.

[125] United Nations Educational, Scientific and Cultural Organization (UN-
ESCO). Recommendation on the ethics of artificial intelligence, 2021.
URL: https://unesdoc.unesco.org/ark:/48223/pf0000380455.

[126] John Voelcker. VW diesel owners have lost $1,500 in value on their
cars: price analysis, 2016. Online; accessed: 2022-09-21. URL:
https://www.greencarreports.com/news/1104531 vw-diesel-owners-

have-lost-1500-in-value-on-their-cars-price-analysis.

[127] Michele Volpato and Jan Tretmans. Approximate active learning of nonde-
terministic input output transition systems. Electron. Commun. Eur. As-
soc. Softw. Sci. Technol., 72, 2015. doi:10.14279/tuj.eceasst.72.1008.

[128] Sandra Wachter, Brent Mittelstadt, and Chris Russell. Bias preser-
vation in machine learning: the legality of fairness metrics under EU
non-discrimination law. W. Va. L. Rev., 123:735, 2020. doi:10.2139/
ssrn.3792772.

[129] Washington State. Certification of Enrollment: Engrossed
Substitute Senate Bill 6280 (’Washington State Facial Recog-
nition Law’), 2020. Online; accessed: 2023-02-06. URL:
https://app.leg.wa.gov/billsummary?BillNumber=6280&Year=
2019&Initiative=false#documentSection.

[130] Austin Waters and Risto Miikkulainen. Grade: Machine learn-
ing support for graduate admissions. AI Magazine, 35(1):64, Mar.
2014. URL: https://ojs.aaai.org/index.php/aimagazine/article/
view/2504, doi:10.1609/aimag.v35i1.2504.

[131] Wikipedia. Volkswagen emissions scandal. Wikipedia, The Free En-
cyclopedia, 2016. Online; accessed: 2022-09-21. URL: https://

en.wikipedia.org/wiki/Volkswagen emissions scandal.

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016R0679
http://www.unece.org/trans/main/wp29/wp29regs101-120.html
http://www.unece.org/trans/main/wp29/wp29regs101-120.html
https://unesdoc.unesco.org/ark:/48223/pf0000380455
https://www.greencarreports.com/news/1104531_vw-diesel-owners-have-lost-1500-in-value-on-their-cars-price-analysis
https://www.greencarreports.com/news/1104531_vw-diesel-owners-have-lost-1500-in-value-on-their-cars-price-analysis
https://doi.org/10.14279/tuj.eceasst.72.1008
https://doi.org/10.2139/ssrn.3792772
https://doi.org/10.2139/ssrn.3792772
https://app.leg.wa.gov/billsummary?BillNumber=6280&Year=2019&Initiative=false#documentSection
https://app.leg.wa.gov/billsummary?BillNumber=6280&Year=2019&Initiative=false#documentSection
https://ojs.aaai.org/index.php/aimagazine/article/view/2504
https://ojs.aaai.org/index.php/aimagazine/article/view/2504
https://doi.org/10.1609/aimag.v35i1.2504
https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal
https://en.wikipedia.org/wiki/Volkswagen_emissions_scandal

Bibliography 225

[132] Wikipedia. Abgasnorm — wikipedia, die freie enzyklopädie, 2022.
Online; accessed: 2022-05-14. URL: https://de.wikipedia.org/w/
index.php?title=Abgasnorm&oldid=223638095.

[133] Wikipedia. Audi A6 C8 — wikipedia, die freie enzyklopädie, 2022.
Online; accessed: 2022-05-14. URL: https://de.wikipedia.org/w/
index.php?title=Audi A6 C8&oldid=221632578.

[134] Wikipedia contributors. Boeing 737 max groundings —
Wikipedia, the free encyclopedia, 2022. Online; accessed: 2022-
09-21. URL: https://en.wikipedia.org/w/index.php?title=
Boeing 737 MAX groundings&oldid=1111353889.

[135] Wikipedia contributors. Internet of things — Wikipedia, the free
encyclopedia, 2022. Online; accessed: 2022-09-21. URL: https:

//en.wikipedia.org/w/index.php?title=Internet of things&oldid=

1110984638.

[136] Will Douglas Heaven. Predictive policing algorithms are racist.
They need to be dismantled., 2020. Online; accessed: 2023-02-06.
URL: https://www.technologyreview.com/2020/07/17/1005396/
predictive-policing-algorithms-racist-dismantled-machine-

learning-bias-criminal-justice/.

[137] Hongseok Yang. Relational separation logic. Theoretical Computer
Science, 375(1-3):308–334, 2007. URL: http://dx.doi.org/10.1016/
j.tcs.2006.12.036, doi:10.1016/j.tcs.2006.12.036.

[138] Richard S. Zemel, Yu Wu, Kevin Swersky, Toniann Pitassi, and Cyn-
thia Dwork. Learning fair representations. In Proceedings of the 30th
International Conference on Machine Learning, ICML 2013, Atlanta,
GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop and Con-
ference Proceedings, pages 325–333. JMLR.org, 2013. URL: http://

proceedings.mlr.press/v28/zemel13.html.

https://de.wikipedia.org/w/index.php?title=Abgasnorm&oldid=223638095
https://de.wikipedia.org/w/index.php?title=Abgasnorm&oldid=223638095
https://de.wikipedia.org/w/index.php?title=Audi_A6_C8&oldid=221632578
https://de.wikipedia.org/w/index.php?title=Audi_A6_C8&oldid=221632578
https://en.wikipedia.org/w/index.php?title=Boeing_737_MAX_groundings&oldid=1111353889
https://en.wikipedia.org/w/index.php?title=Boeing_737_MAX_groundings&oldid=1111353889
https://en.wikipedia.org/w/index.php?title=Internet_of_things&oldid=1110984638
https://en.wikipedia.org/w/index.php?title=Internet_of_things&oldid=1110984638
https://en.wikipedia.org/w/index.php?title=Internet_of_things&oldid=1110984638
https://www.technologyreview.com/2020/07/17/1005396/predictive-policing-algorithms-racist-dismantled-machine-learning-bias-criminal-justice/
https://www.technologyreview.com/2020/07/17/1005396/predictive-policing-algorithms-racist-dismantled-machine-learning-bias-criminal-justice/
https://www.technologyreview.com/2020/07/17/1005396/predictive-policing-algorithms-racist-dismantled-machine-learning-bias-criminal-justice/
http://dx.doi.org/10.1016/j.tcs.2006.12.036
http://dx.doi.org/10.1016/j.tcs.2006.12.036
https://doi.org/10.1016/j.tcs.2006.12.036
http://proceedings.mlr.press/v28/zemel13.html
http://proceedings.mlr.press/v28/zemel13.html

	Introduction
	Contributions of this Thesis
	Organisation of the Thesis

	Preliminaries
	Sets, Functions, and Distances
	Traces
	Labelled Transition Systems & Model-Based Conformance Tests
	Conformance Relations
	Hyperproperties & Self-composition
	Temporal Logics
	HyperLTL
	STL
	Probabilistic Falsification
	HyperSTL*

	Diesel Emissions
	Runtime Monitoring for Real Driving Emissions
	rtlola
	From Regulation to Specification

	Notions of Software Doping
	Sequential Programs
	Strict cleanness
	Robust cleanness
	Func-cleanness

	Reactive Systems
	Strict cleanness
	Robust cleanness
	Func-cleanness
	Past-Forgetful Distance Functions & Trace Integrity

	Mixed Input-Output Systems
	Robust cleanness
	Func-cleanness
	Trace Integrity

	Hybrid Systems
	Conformance-Based Cleanness
	Synchronised Retiming

	Summary
	Related Work & Contributions

	Model-Aware Software Doping Analysis
	Analysis through self-composition
	HyperLTL
	Experimental Results

	Related Work & Contributions

	Model-Agnostic Software Doping Analysis
	Cleanness of Labelled Transition Systems
	Reference Implementation for Robust Cleanness
	Model-Based Doping Tests
	HyperSTL
	An Integrated Testing Approach
	Related Work & Contributions

	Hands-On: Diesel Doping Tests
	Model-Based Testing in Practice
	The Volkswagen Case
	The Nissan Case

	Conformance-Based Testing in Practice
	Car Data Platform and LolaDrives
	LolaDrives
	Technical Setup
	Demonstration

	cdp-Based Test Input Selection
	Related Work & Contributions

	Conclusion & Future Work
	Summary
	Future Work
	Effective Human Oversight with Func-Cleanness
	Individual Fairness
	Fairness Monitoring

	Bibliography

