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ABSTRACT 

The theoretical and practical problems of equality reasoning in Automated Deduction are 
notorious. A new method is presented to cope with the enormous search space that 
usually arises when equational axioms are present. Starting from an empty graph a 
production system constructs graphs which represent solutions for simpler problems 
defined by abstraction. These graphs contain ~lobal information and are plans for guiding 
the search for a proof of the original problem, represented in the final graph. The 
construction of equality graphs is based on tht, idea to search for the differences between 
two terms by seperating toplevel symbol and subterms of a functional term. The impact 
of the explicit representation of information contained in the inference system on the 
control of inferences is discussed. Finally H.e method is compared to other equality 
reasoning methods. 

1. Introduction 

Equality is an important relation in theorem proving, not least because it is so frequently 
used in mathematical formalism. The problem of deciding whether two terms sand tare 
equal - relative to a given set of equations E - may occur many times during a proof. The 
hitherto existing experience in the field of automated theorem proving has shown that it 
is extremely difficult to find efficient methods of handling such equality problems 
automatically. since normally large search :;paces arise. The following example is a 
standard test problem in the field: A group with x2 :; e is commutative. Bundy ([Bu83] 
page 84 - 88) analysed this example in detail. For a breadth first paramodulation [RW69] 
proof. he estimated a search space of 1210 parHmodulation steps. 

Most existing automatic deduction systems ,re based on some sort of unification. For 
these systems sub problems arise of the follow ing kind: decide whether two terms sand t 
are unifiable under a given (equationaI) theor" E. Le. instances s' and t' of the terms sand 
t are to be found. such that s' and t' are equal under E. Such a problem is called an 
equality problem and is denoted by <S BE t >. 

It is well known that in general (i.e. for arbitrary sets of equations E) the unifiability of 
two terms under a theory E is undecidable. However, for certain sets of equations E it is 
possible to find an algorithm which solves the equality problem < S SE t > for any terms s 

and 1. Such classes of equations are investigated in Unificationtheory (e.g. [Hu76J. [PI72J. 
[Si841. [SS81 n. The purpose of our equality reasoning method is to solve equality 
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The theoretical and practical problems of equality reasoning in Automated Deduction are
notorious. A new method is  presented to cripe with the enormous search space that
usually arises when equational axioms are present. Starting from an empty graph a
production system constructs graphs which represent solutions for simpler problems
defined by abstraction. These graphs contain global information and are plans for guiding
the search for a proof of the original problem, represented in the final graph. The
construction of equality graphs is based on the idea to search for the differences between
two terms by seperating toplevel symbol and subter ms of a functional term. The impact
of the explicit representation of information contained in the inference system on the
control of inferences is discussed. Finally the method is compared to other equality
reasoning methods.
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Equality .is an important relation in theorem proving. not least because it is so frequently
used in mathematical formalism. The problem of deciding whether two terms 3 and t are
equal — relative to a given set of equations E - may occur many times during a proof. The
hitherto existing experience in the field of automated theorem proving has shown that it
is extremely difficult to find efficient methods of handling such equality problems
automatically, since normally large search spaces arise. The following example is a
standard test problem in the field: A group with x2 = e is commutative. Bundy ([Bu83]
page 84  — 88)  analysed this example in detail. Fora breadth first paramodulation [RW69]
proof. he estimated a search space of 1210 paramodulation steps.

Most existing automatic deduction systems are based on some sort of unification. For
these systems subproblems arise of the following kind: decide whether two terms s and t
are unifiable under a given (equational) theory E. i.e. instances s’ and t’ of the terms s and
t are to be found, such that s' and t' are equal under E. Such a problem is called an
equality problem and i s  denoted by < s IE t >.

I t  is well known that in general (Le. for arbitrary sets of equations E) the unifiability of
two terms under a theory E is undecidable. However, for certain sets of equations B it is
possible to find an algorithm which solves the equality problem < s EE t > for any terms 8

and t. Such classes of equations are investigated in Unificationtheory (eg. [Hu76]. [Pl72].
181841. [5581]). The purpose of our equality reasoning method is to solve equality
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problems for arbitrary sets of equations E LJsing equality graphs to heuristically guide the 
search. This work is somehow similar 14> the investigation into universal unification 
algorithms (e.g. [Hul801, [Sz821, (jK83]). However whereas they usually have strong 
prerequisites for their algorithms to work (like Noetherianess, Confluence etc of the 
equational theories) our method applies to any equational axioms - hence the strong 
emphasis on heuristics and artificial inteHiltence techniques. 

The experience in automated theorem proving demonstrated very early that the explicit 
use of the equality axioms (reflexivity, symmetry, transitivity and substitution axioms) is 
very inefficient. Therefore many method~ have been developed to incorporate equality 
somehow directly into the proof procedtre ([WRC67], [RW691, [Si691, [M0691, [Br75}, 
[Sh78], [HR78], [ni79}, [LH8,]). 

Many equality reasoning methods are b"sed on the subterm replacement principle: a 
subterm s of a term t can be replaced by,. term r, if sand r are equal relative to a given 
set of equations E. Paramodulation [RW69] for instance is an inference rule that 
instantiates a term by applying a unifying substitution and replaces a subterm by an 
equal term. 

Other equality reasoning methods are ba~ed on the difference reduction principle: The 
difference of two terms is searched for an j tried to be minimized or removed where the 
type of difference guides the operator to be applied just like in GPS [NS591 Procedures 
based on such methods usually compare the heads of both terms and try to make them 
equal, and then try to unify the pairs of corresponding subterms. In most known methods 
the resulting unifiers are immediately applied to the following pairs of subterms. 
RUE-resolution (Di79] is an example for an equality reasoning method based on the 
difference reduction principle: Two literal~: with the same predicate symbol and different 
sign can be resolved upon even if not all of the corresponding subterm-pairs are 
unifiable. The disagreement pairs (non-un tfiable subterm-pairs) are added to the derived 
clause as negated equations. 

Some equality reasoning methods combine both principles: replacement operations are 
performed under the control of difference reduction. (LH8,] 

Equality reasoning methods based on graphs have been developed: The connection graph 
method for resolution [R065] introduced by Kowalski [K075} was extended by Siekmann 
and Wrightson [SW79] to incorporate paramodulation: In paramodulated clause graphs 
the possible operations are representf~d by links. Possible resolution steps are 
represented by R-links and paramodulation steps by P-links. Each deduction step 
modifying the clause set requires some modification of the graphical structure. Links are 
inherited thus saving additional search for new possible resolution - or paramodulation 
steps. The aim of the paramodulated clause graph procedures is to transform a total 
initial graph (where all possible operations are represented by links) into a graph 
containing the empty clause. Sequences of links can be examined in order to control the 
deduction by way of planning, but the graph contains only local information about the 
potential next steps. There is no explicit information about global co-operation of the 
links, hence the support of the graph structure for an efficient global planning is limited. 
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problems for arbitrary sets of equations B using equality graphs to heuristically guide the
search. This work is somehow similar to the investigation into universal unification
algorithms (e.g. [HulSO], [8282], []K83l). However whereas they usually have strong
prerequisites for their algorithms to work (like Noetherianess, Confluence etc of the
equational theories) our method applies to any equational axioms — hence the strong
emphasis on heuristics and artificial intelligence techniques.

The experience in automated theorem proving demonstrated very early that the explicit
use of the equality axioms (reflexivity, symmetry, transitivity and substitution axioms) is
very inefficient. Therefore many methods have been developed to incorporate equality
somehow directly into the proof procedure ([WRC67]. [RW69], [Si69]. [M069]. [B:-75].
[Sh78]‚ [HR78], [Di79], [LH85]).

Many equality reasoning methods are based on the subterm replagmen t principle: a
subterm 3 of a term t can be  replaced by 2: term r, if s and r are equal relative to a given
set of equations E. Paramodulation [RW69] for instance is an inference rule that
instantiates a term by applying a unifying substitution and replaces a subterm by an
equal term--

Other equality reasoning methods are based on the difference reduction arm “gie-= The
difference of 919 terms is searched for and tried to be  minimized or removed where the
type of difference guides the operator to be applied just like in GPS [N559]. Procedures
based on such methods usually compare the heads of both terms and try to make them
equal, and then try to unify the pairs of corresponding subterms. In most known methods
the resulting unifiers are immediately applied to the following pairs of subterms.
RUE-resolution [Di79] is an example for an equality reasoning method based on the
difference reduction principle: Two literals with the same predicate symbol and different
sign can be  resolved upon even if not all of the corresponding subterm—pairs are
unifiable. The disagreement pairs (non—un ifiable subterm-pairs) are added to the derived
clause as  negated equations.

Some equality reasoning methods combine both principles: replacement operations are
performed under the control of difference reduction. [LH85]

Equality reasoning methods based on graphs have been developed: The connection graph
method for resolution [R065] introduced by Kowalski [K075] was extended by Siekmann
and Wrightson [SW79]  to incorporate paramodulatiom In paramodulated clause graphs
the possible operations are represented by links. Possible resolution steps are
represented by R-links and paramodulation steps by P-links. Each deduction step
modifying the clause set requires some modification of the graphical structure. Links are
inherited thus saving additional search for new possible resolution — or paramodulation
steps. The aim of the paramodulated clause graph procedures i s  to transform a total
initial graph (where all possible operations are represented by links) into a graph
containing the empty clause. Sequences of links can be  examined in order to control the
deduction by way of planning, but the graph contains only local information about the
potential next steps. There is no explicit information about global (:o—operation of the
links, hence the support of the graph structure for an efficient global planning is limited.
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Experiments with the paramodulated clause graph proced~re demonstrated, that the 
search space is too large: there is an enormOUs set of P-1inks created in most of the tested 
examples (the order of magnitude is often more than 10 000, Le. 10000 possible 
operations in each step). 

In [B183] we proposed a paramodulated clause graph procedure, which checks 
combinations of P-links for certain conditions. The aim was to reduce the search space by 
exploiting constraints: only those combinations of P-links fulfilling the conditions were to 
be considered as a potential solution for an equality problem. The analysis has shown that 
this method improves upon earlier methods but by and large it is inadequate also for 
equality reasoning (see section 2.1), since the search spaces for reasonably difficult 
problems are still for too large. But the experience with it led to another kind of search, 
based on the difference reduction principle and on graph construction: Starting from an 
initial graph, which is empty and contains no information, the actual graph is modified 
step by step while trying to reduce the difference between two terms till it results in a 
solution graph which represents the final proof. 

In [BI86] a formal presentation of our method as well as the soundness and completeness 
proofs are given (see also [BI8S]). In this paper we shall instead present how it works and 
some of its practical advantages over other approaches. 

2. Eguality Graphs 

2.1. Constraints in Paramodulated Clause Graphs 

Our first attempt to solve general "equality problems" was based on paramodulated 
clause graphs. Combinations of P-links were ~earched for which represent an executable 
paramodulation sequence modifying two literals such that they become resolvable [B1831 
Such paramodulation sequences can be represented in a graph which consists of two 
potentially complementary literals (having the same predicate and opposite sign) and 
several equations connected with P-links. The graph represents a solution of the equality 
problem. Examples 2-1 and 2-2 show such graphs: 

QabPa 

r ~ 
a E f( b c) 

a !! g(b) 
r-- r=LJ 
b k c == I b ­~ -

I 

( 
b ;;;;; c I I 

f(k 1) i-

I
-P g(c) -Q i j 

Example 2-1 Example 2-2 
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Experiments with the paramodulated clause graph procedure demonstrated. that the
search space is too large: there is an enormous setnf P-links created‘1n most of the tested
examples (the order of magnitude is often more than 10 000, is. 10000 possible
operations in each step).

In [3183] we proposed a paramodulated clause graph procedure, which checks
combinations of P-links for certain conditions. The aim was to reduce the search space by
exploiting constraints: only those combinations of P—links fulfilling the conditions were to
be  considered as a potential solution for an equality problem. The analysis has shown that
this method improves upon earlier methods but by and large it is inadequate also for
equality reasoning (see section 2.1 ), since the search spaces for reasonably difficult
problems are still for too large. But the experience with it led to another kind of search,
based on the difference reduction principle and on graph construction: Starting from an
initial graph. which is empty and contains no information. the actual graph is modified
step by step while trying to reduce the difference between two terms till it results in a
solution graph which represents the final proof.

In [3186] a formal presentation of our method as well as the soundness and completeness
proofs are given (see also [B18511 In this paper we shall instead present how it works and
some of its practical advantages over other approaches.

2.1. Conan-gm ts in Paramodulatgd gauge fig pha-

Our first attempt to solve general "equality problems" was based on paramodulated
clause graphs. Combinations of P—links were searched for which represent an executable
paramodulation sequence modifying two literals such that they become resolvable [Bl83].
Such paramodulatlon sequences can be represented in a graph which consists of two
potentially complementary literals (having the same predicate and opposite sign) and
several equations connected with P—links. The graph represents a solution of the equality
problem. Examples 2—1 and 2—2 show such graphs:

Pa  Qab.
l l

a lg lb )  I '_II

|___, bäk  ca l  bä i

bac Ir ;  |
rl f (k l lä iü

||
-P g(C) -Q. i i

Example 2-1 Example 2—2
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Unfortunately not every graph represents an executable sequence of paramodulation 
steps as the following two examples show 

P g(a) Pa 

~1(x~a}~l 
a == b 

g(x) iii f(x) ~2 
f(b) == c(1~b}~2 

~3 
-P f(b) -P c 

Example 2-3 Example 2-4 

In example 2-3 the combination of the P-links 1 and 2 is impossible because their 
unifiers {x H a} and {x H b} are incompatible. In example 2-4 the P-links 1 and 2 are 
incompatible, because after paramodulation on link 1, link 2 cannot be inherited to the 
paramodulant Pb since the access depths do not coincide. 

An equality graph that can not be executed is called incompatible, whereas a graph 
representing the solution of the equality problem for two potentially complementary 
literals is called compatible. The problem now is to find compatible graph structures. To 
this end several conditions can be stated which are necessary but not sufficient for the 
compatibility of a graph. In particular constraints can be formulated, which are not 
expensive to test but reduce the search space drastically. 

Some of the constraints to be used are: (1) All unifiers of the P-links concerned must 
merge to one most general unifier (Le. the unifiers must be compatible. provided a proper 
variable renaming has been carried out). (2) For each maximal chain of P-links in a graph 
the sum of all access depths must be equal to zero and each partial sum must be less than 
or equal to zero. (3) Each combination of P-links containing an incompatible substructure 
is incompatible too. 

Practical experiments with a procedure based on the above constraint satisfaction method 
have shown however, that the set of potential graphs (i.e. combinations of P-links), which 
have to be created in order to test for compatibility, is still far too large, even in 
relatively simple examples. Especially the P-links connecting variables (to everything 
else) make the procedure extremely inefficient. 

Hence the procedure was modified several times, such that only those graph structures 
fulfilling certain constraints were created. The experimental modifications finally led to 
the equality graph construction procedure (EeOp), which constructs compatible graphs 
without ever creating the enormous set of incompatible ones in the first place. The 
essential idea is: Starting from some initial state a sequence of operations is performed on 
each subsequent state until a compatible graph is constructed. 

-4 -

Unfortunately not every graph represents an executable sequence of paramodulation
steps as the following two examples show:

P— 3(a) P a

{I H a} _9 |___] “1
'1 a a b .

' glx) = f(x) "_12
{I- Hb}  9 ,  Nb)  E .C'

[““ 2 H3
-P f(b) —P c

Example 2—3 Example 2—4.

In  example 2—3 the combination of the P—links l and 2 is impossible because their
unifiers {x H a} and [x H b} are incompatible. I n  example 2-4  the P—links l and 2 are
incompatible, because after paramodulation on link 1 ,  link 2 cannot be  inherited to the
paramodulant Pb since the access depths do not coincide.

An equality graph that can not be executed is called incompatible, whereas a graph
representing the solution of the equality problem for two potentially complementary
literals is called compatible. The problem now is to find compatible graph structures. To
this end several conditions can be stated which are necessary but  not sufficient for the
compatibility of a graph. In  particular constraints can be  formulated, which are not
expensive to test bu t  reduce the search space drastically.

Some of the constraints to be used are: (1) All unifiers of the P—links concerned must
merge to one most general unifier (Le. the unifiers must be  compatible, provided a proper
variable renaming has been carried out). (2) For each maximal chain of P—links in a graph
the sum of all access depths must be equal to zero and each partial sum must be less than
or equal to zero. (3) Each combination of 'P—links containing an incompatible substructure
is incompatible too.

Practical experiments with a procedure based on the above constraint satisfaction method
have shown however, that the set of potential graphs (i.e. combinations of P—links). which
have to be  created in order to test for compatibility, is still far too large. even in
relatively simple examples. Especially the P-links connecting variables (to everything
else) make the procedure extremely inefficient.

Hence the procedure was modified several times, such that only those graph structures
fulfilling certain constraints were created. The experimental modifications finally led to
the equality graph construction procedure (ECOP). which constructs compatible graphs
without ever creating the enormous set of incompatible ones in the first place. The
essential idea is: Starting from some initial state a sequence of operations is performed on
each subsequent state until a compatible graph is constructed.
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2.2. Constructing Solution Graphs 

The graphs constructed while solving equality problems are called eguality graphs and 
the resulting solution graph is called a compatible eguality graph. The structure of 
equality graphs and their construction is demonstrated by the following example: Let E 0= 

(g(x) !!! h(x b). h(y z)!! h(z y). h(b a) !I f(b 0, bsc, c !! i. I!! j} and let 
<g(a) S!!E fO j) >be the given equality problem, then the initial equality graph is 

g( a) 
I 
I 
I 
I 

f{ i j) 

The only information of this graph is that the problem <g(a) !iE Hi j) > is to be solved. 

The main discrepancy are the different toplevel symbols g and f. Hence this difference 
must be removed by some equations. There are two equations in E, which can be 
combined to a chain g{x)!!!! hex b) - - - - h{b a)!! f(b I) which allows for the removal 
of this discrepancy and is inserted into the graph: 

g{ a) 

I 

I 

g{x) == h(x b) 
I, 

h(b a) == f(b 1) 

f{ i j) 

Three subproblems are created, which have to be solved: < g(a) ~ g(l) > 

< hex b) -E h(b a) > and <f{b 1) =E fO j». In all three cases the heads of both terms 

are equal. Now the corresponding pairs of subterms generate new subproblems, some of 
which are trivially solved. We obtain the equality graph: 

g( a) 

{x H a} ~~-r=J 

g(x) == hex b) 
___---.1 I 

b Hb} ---1 :------ --j 

h{b a) == f(b 1) 
I I 
, I 

,- -_-_-_-_-_.__~-__ I 

I , 
I , 

f( i j) 

Lamm Solution Grants;

The graphs constructed while solving equality problems are called W and
the resulting solution graph is  called a W The structure of
equality graphs and their construction i s  demonstrated by the following example:  Let E =-
{g(x) = h(x b), hfy z) = h(z y), h(b a) ! f(b l). b a c, c n i. [ e i ]  and let
< g(_a) 2E  f (i  i )  > be the given equality problem, then the. initial equality graph is

g( a)
II
t

m n
The only information of this graph i s  that the problem < g(a) IE f (i i )  > is to be  solved.

The main discrepancy are the different toplevel symbols g and f.  Hence this difference
mus t  be  removed by  some equations. There are two equations in E, which can be
combined to a chain 3(1) = h(x b) — — - — h(_b a )  = f(b 1) which allows for the removal
of this discrepancy and is inserted. into the graph:

ma)
l

gm a. no b)
___ ._ -—_-W_

h(b a) a f lb 1)

Three subproblems are created, which have to be solved: <gla) ='_-E g i t ) ;
< h(x b) aß  Mb 3) > and < f(b l) EE f(i j) >. In  all three cases the heads of both terms
are equal. Now the corresponding pairs of subterms generate new subproblems, some of
which are trivially solved. We obtain the equality graph:

3(a)
{ma}  '|_—

3(1) 2 11(1 b)„4 ;
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The links represent solved subproblems and are marked with a substitution, empty 
substitutions are omitted. Dotted lines indicate unsolved subproblems which can be 
selected for the next step. If the subproblem I - - - - j is selected, the following graph is 
constructed: 

g( a) 

{x .... a}-~ 
g(x) = h(x b)
 

--I I
 

{x .... b} ---~-I----------~
 
I I 

h(b a) 5 f(b I) 

1-- - - - - - ­ J I~ 2 

l~l.j. 
I I 

: I 
f( i j) 

The substitutions within each chain must be checked for compatibility, i.e. they must be 
unified themselves and the result of this unification is marked on a separate link (2). In 
just the same way the solutions for the subproblems given by the corresponding 
subterm-pairs of two terms with the same function must be checked for compatibility 
and the result is also marked on a link (1). If the subproblem b - - - - i is selected for 
the next step, the chain b .. c - - - c - i can be inserted with the result: 

g( a) 

{x .... a} --t=rJ
 
g(x) == h(1 b)
 
,....-__---..' I 

{x .... b} ---1 :-------.1 
h(b a)!! f(b 1) 

r-;::::,=====:::-,11 L._. 
b !Ii C 

,--J 1 !i!i 

C ii i 

~====::-J
 
f( i j) 

Now one unsolved subproblem remains: b - - a. It is not possible to build a chain of 
equations from the given set E connecting b and a, hence this subproblem is unsolvable. 
However instead of solving b - - - a we can create a new subproblem at a higher term 
level: h(x b) - - - h(b a). There exists an appropriate equation in E: h(y z) == h(z y) 

-5 -

The links represent solved subproblems and are marked with a substitution, empty
substitutions are omitted. Dotted lines indicate unsolved subproblems which can be
selected for the next step. If the subproblem l — * — — j is selected, the following graph is
constructed:

am
|

{ I  H a} r...

Bü) I nu b):
' i{x „ b} —a- ———————— 4

till) a) I f(b !)H‚___

l l j

Irl

| )h
:

A

The substitutions within each chain must be checked for compatibility, i.e. they must be
unified themselves and the result of this unification is marked on a separate link (2). In
just the same way the solutions for the subproblems given by the corresponding
subterm-pairs of two terms with the same function must be checked for compatibility
and the result is also marked on a link (1). If the subproblem b — — - - i is selected for
the next step, the chain b a: c — - - c = i can be inserted with the result:

Bl a)
J{x  H a}

3(1) 2 MI b)
J I

{x H b} - - - - - - -- - - -'

b ! c
I ' “ " " .  l ' 1c = 1

" l l

fl i j)

Now one unsolved subproblem remains: b — —- a. It is not possible to build a chain of
equations from the given set E connecting b and a, hence this subproblem is unsolvable.
However instead of solving b — - - a we can create a new subproblem at a higher term
level: hlx b) - - - h(b a). There exists an appropriate equation in E: hly z) & h(z y)
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which is now inserted into the graph. Since the substitutions 6 and t are compatible. we 
have the final solution graph: 

g( a) 

a} -t----lt----IB = {I H 

g(l) E h(x b) 

?
 
'f = {x ...., a, y...., a, z...., b} --f~ h(y z) == h(z y) 

Il~-~
 

(I H a, YHa, Z H b) 
f(b 

r--;:=====:::UI 
b == c 

h(b a) :: I) 

~ 
C !!!! i 

I -

III~===~
 
f( i j) 

Starting from an empty graph a solution graph is constructed in a sequence of steps, 
where each possible intermediate graph is a solution at a certain level of abstraction (see 
[Pl81]) and is a global plan for the search for the solution of the original problem. The 
abstraction is weakened with each step, whereby the graph is refined. The dotted lines 
(unsolved subproblems) indicate positions where an abstraction is used. In our example 
an abstraction can be formulated as: disregard the second argument of the function h and 
the first argument of the function f. Usually such an abstraction cannot be expressed 
uniformly for all occurrences of the function, but depends on the position of its 
occurrence. 

At each step the graph contains the information about the global correlation of the 
subproblems already solved and the information about the subproblems which are to be 
solved. Finally the position can be localized where the graph is to be modified in order to 
make solutions of subprobJems compatible from a global point of view. 

Equality graphs are constructed using a production system, which in a sense represents a 
meta calculus for the search for proofs. Equality graphs and this production system are 
defined in [BI8S]. 

2.3. Term graphs and Substitution graphs 

During the construction of equality graphs sub problems are often created of the form 
( x ==E t ) where 1 is a variable not contained in the term t. Such an equality problem is 

trivially solvable with the substitution (x H t) without using any equations. 
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which is now inserted into the graph. Since the substitutions o and { are compatible, we
have the final solution graph:

3(a)

a ={1Ha}
[— _

g(x) I h(l b)
l

_ [r=-{xHa,yHa,zu-»b} * h(y z)_=_h(z y)

h(b a) E f(b l)
{xH-a ,yaa , zah}fi  I J

b "=- c

|—_‘I l a ]
c= i

!
Wim—=
f ( i j )

Starting from an empty graph a solution graph is constructed in a sequence of steps,
where each possible intermediate graph is a solution at a certain level of abstraction ( see
[13181]) and is a global plan for the search for the solution of the original problem. The
abstraction is weakened with each step, whereby the graph is refined. The dotted lines
(unsolved subproblems) indicate positions where an abstraction is used. In our example
an abstraction can be formulated as: disregard the second argument of the function h and
the first argument of the function f. Usually such an abstraction cannot be expressed
uniformly for all occurrences of the f unction, but depends on the position of its
occurrence.

At each step the graph contains the information about the global correlation of the
subproblems already solved and the information about the subproblems which are to be
solved. Finally the position can be localized where the graph is to be modified in order to
make solutions of sub problems compatible from a global point of view.

Equality graphs are constructed using a production system, which in a sense represents. a
meta calculus for the search for proofs. Equality graphs and this production system are
defined in [B185].

2.3. Term graphs ad gubsgtuu’on graphs

During the construction of equality graphs subproblems are often created of the form
< x 551  > where I is a variable not contained in the term 1. Such an equality problem is
trivially solvable with the substitution {1 H t) without using any equations.
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Let <[(x x) -E f(g(a) g(b») with E - (a - b) be an equality problem. There exist trivial 

solutions for the created subproblems but their substitution~ G and '[ are not compatible: 

f ( x x ) 

6 = (x l-+ g(a)} ---.--~ 

t = (x l-+ g(b)) ­ ---;--+-----OJl 

f (g(a) g(b» 

Most methods known based on the difference reduction principle use partial unifiers 
which are applied to the other subproblems before these are tried to be solved (e.g. 
[Di791. [LH8S]). In our example the substitution G would be applied to <x =E g(b) > 

yielding <g(a) -E g(b) >. The disadvantage of the immediate application of partial unifiers 

will become apparent in the following section. Another approach could be the insertion of 
equations between x and g(b); 

f ( x x ) 

i 
G = (x l-+ g(a)) g(y):5 g(y)
 
'[' = (x l-+ g(a)) ---+~f--1I I I
 

(x l-+ g(a)) - ---1 a!!! b 

~ 
f ( g(a) g(b) ) 

If the insertion of equations between the variable I and the term g(b) was allowed, then 
the search space would explode and especially it would be necessary to use functional 
reflexiv axioms. Furthermore each unifier t' derivable with the use of equations would be 
equal under E to an instance of t. Hence, if 6 is unifiable with t', then G is also unifiable 
with t under the theory E. 

Therefore the unification of substitutions is performed under the theory E, and the 
discrepancies are removed where they occur: 

f ( x x ) 

g(a)) t---~ 

l---+- (x l-+ g(a)) - G 

(x l-+ 

(x H g(b)} = '(
~ 
a == b f ( g(a) g(b) ) 

~ 
(x H g(b)) 

_ 3 _

Let < f(x x) 'E f(g(a) g(b)) > with B - {a I b} be an equality problem. There exist trivial
solutions for the created subproblems but their substitutions o and ‘1' are not compatible:

f l :  1 )

6 -{1H8(a)} “"“—i'ä

'c = {1H3(b)} “*- ä

f l  3(a) 3(b))

Most methods known based on the difference reduction principle use partial unifiers
which are applied to the other subproblems before these are tried to be solved (eg.
[Di79]. [LH85]). In our example the substitution 6 would be applied to < 15E glb) >
yielding < 3(a) IE glb) >. The disadvantage of the immediate application of partial unifiers
will become apparent in the following section. Another approach could be the insertion of
equations between I and g(b)=

f ( I x )_J..
o =- {x H 3(a)} sly) E gly)

T'=  {x H 3(a)} - _ '—b_'

{I H 3(a)} __.- - a I:i _„ H
f ( 2(a) Rib) i

If the insertion of equations between the variable x and the term g(b) was allowed, then
the search space would explode and especially it would be necessary to use functional
ref lexiv axioms. Furthermore each unifier 1" derivable with the use of equations would be
equal under E to an instance of ‘l'. Hence, if e is unifiable with 17', then 6 is also unifiable
with r under the theory E.

Therefore the unification of substitutions is performed under the theory B, and the
discrepancies are re moved where they occur:

f (x  1 )

. {I H 8(a)} - e
H! H 8(a)}' - '

'__| ”(_—{I H8(b ) }  = t

a E b f ( 3(a) 3th) )

{I H gib”k__/
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o and '( are the only unifiers derivable for the subproblems given in this example. It is 
neither aHowed to insert any equations between x and g(b) nor to use functional reflexive 
axioms neither is 6 applied to the second subproblem. but both substitutions are 
successful1y unified under the theory E. 

Hence there are two types of equality graphs corresponding to different kinds of 
subproblems. The unification of terms under a theory E is divided into two parts 
(subproblems): 

1) local unification of two terms under Ewithout applying the unifier to the next 
subterm-pairs 

2) unification of a list of substitutions under E 

The problem < S -E t ) itself and each subproblem created recursively is solved by 

division into these two different kinds of subproblems. According to these kinds of 
subproblems two types of equality graphs are defined: 

1) term graphs, representing proof plans for the unification of two terms under E 
2) substitution graphs, representing proof plans for the unification of a list of 

substitutions under E 

3. Alternative Subgraphs 

For a given subproblem there are often many possible equality-chains which could be 
inserted and which would lead to different solutions. When solving a subproblem it is in 
general not possible to know which of the alternative partial solutions is the best from a 
global point of view, hence it is often necessary to consider several alternatives. Since it is 
too inefficient to construct a new subgraph for each possible equality-chain - there would 
be an enormous search space of graphs - we shall present two methods of how to handle 
alternative partial solutions. 

3, 1. Subgraph Replacement 

In special cases a subgraph for an already solved subproblem may be replaced by 
another subgraph representing another solution (i.e. another unifier) for the same 
subproblem. For example let E = {h(f(x a)) !5 g{h{x) x). b :5 c, h{u) E k(u b), 
[([(u v) w) == f(u f(v w))} and let ( h(f(a Z)) ==E g(k(y c) f(a a)) > be an equality problem. 

The fol1owing equality graph may be constructed: 

-9 -

o and 1 are the only unifiers derivable for the subproblems given in this example. It i s
neither allowed to insert any equations between 1 and g(b) nor to use functional reflexive
axioms neither i s  5 applied to the second subproblem, but both substitutions are
successfully unified under the theory E.

Hence there are two types of equality graphs corresponding to different kinds of
subproblems. The unification of terms under a theory E is divided into two parts
(subproblem):

1)  local unification of two terms under E without applying the unifier to the next
subterm—pairs

2) unification of a list of substitutions under E

The problem < 3 IE t > itself and each subproblem created recursively is solved by

division into these two different kinds of subproblems. According to these kinds of
subproblems two types of equality graphs are defined:

1) term graphs, representing proof plans for the unification of two terms under E
2) substitution graphs, representing proof plans for the unification of a list of

substitutions under E

www

For a given subproblem there are often many possible equality—chains which could be
inserted and which would lead to different solutions. When solving a subproblem it is in
general not possible to know which of the alternative partial solutions is the best from a
glob al point of view, hence it is often necessary to consider several alternatives. Since it is
too inefficient to construct a new subgraph for each possible equality—chain - there would
be an enormous search space of graphs — we shall present two methods of how to handle
alternative partial solutions.

In special cases a subgraph for an already solved subproblem may be replaced by
another subgraph representing another solution (Le. another unifier) for the same
subproblem. For example let B =- {hlflx a)) z g(h(x) x). b a c, h(u) a k(u b),
flflu v )  W)‘-:= f lu f(v wi l l  and let < h(f(a 2” EE g(k(y 0) Na a)) > be an equality problem.
The following equality graph may be constructed:
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h(f(a z)) 

,-rd J 
6 = {x I-t a, z I-t a} --t-11" 

: h(f(x a) I iii g(h(x) x) 

: I I I 
I 

I h(u)!! k(u b) 
: I 
, I 
I b !!! C 
I 

t = (x I-t f( a a), y I-t f( a a)} -r--~:lI-+----+-~ 

g( k(y c) f(a a» 

The dotted line represents the subproblem to unify the substitutions 6 and t. If this 
9ubproblem is solved, then the main problem would be finally solved. But it is unsolvable: 
6 and t are not unifiable under E, since the unification fails for the variable x. Positions 
causing the incompatible assignments of the variable x can be localized within the graph, 
and the graph can be modified locally at that position with no effect on other parts of the 
graph, i.e. not disturbing the hitherto existing plan for a proof. 

At occurrences of x other unifiers should be derivable, but it makes no sense to replace 
the subgraph 

a 

(x».) ---1 
x 

by another one where equations are inserted between a and I, because all unifiers 
derivable this way would be equal to {I a} under E, and would therefore not be H 

unifiable with t. Inserting equations in supergraphs of a -- I could lead to new 
substitutions really different from o. For t!Iample we can insert the equation f(u f(v w)) 
!! f(f(u v) w) between f(a z) and f(I a) and replace the subgraph 

f(a z) 

(x» .. z».)--1 
f(x a) 

by the subgraph 

-w . . .

m f(ra 2))

Ö={1Ha,ZHa} }

E nm: all I sul-(I) I")
; “?‘__l |_.

_ h(u)nk(u b)“-
|___]

T = {x Hfla a), nla a)}

8(k(Y c) f(a a))

The dotted line represents the subproblem to unify the substitutions o and ‘l’. If this
subproblem is solved, then the main problem would be  finally solved. But it is unsolveble:
o and r are not unifiable under B, since the unification fails for the variable 1. Positions
causing the incompatible assignments of the variable x can be localized within the graph,
and the graph can be  modified locally at that position with no effect on other parts of the
graph, Le. not disturbing the hitherto existing plan for a proof.

At occurrences of 1 other unifiers should be derivable. but it makes no sense to replace
the subgraph

{1H3} ' ' >|]

by another one where equations are inserted between a and I ,  because all unifiers
derivable this way would be equal to {x H a} under E, and would therefore not be
unifiable with t .  Inserting equations in supergraphs of a -- I could lead to new
substitutions really different from o. For example we can insert the equation f(u f(v w))
= f(f(u v) w) between f(a z) and fix a) and replace the subgraph

[(a z)

{I H a. z H a}

fix a)

by the subgraph
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f(a z) 

~ 
(I f4 f(a V), Z f4 f(v an1 f(u f(v w)) 5 [([(u v) w) 

I I 

[(I a) 

with the result 
h( f(a z)) 

piJ 
f(u [(v w)) 5 [(f(u v) w) 

G' - {x f4 [(a v), Z f4 f(v a)} I 
I 

h(f(x a)) == g(h(x) x) 

~ (I H f(a a), y H f(a a), Z H f(a an 
h(u) 5 k(u b) 

I I 
I 
b == c 

'( == (x f4 f( a a) I y H f( a an -+---lI-+----+-~ 

g(k(y c) f(a a» 

which is a solution for the given problem. The replacement operation is appropriate since 
the first solution of the subproblem is no longer required. The replacement of subgraphs 
neither destroys the solutions of other subproblems nor destroys the global plan. 

An immediate application of partial unifiers (unifiers of subproblems) to other 
subproblems would prevent us from finding the proper position for a subgraph 
replacement. Combinations of instantiations may pass through a large part of the graph, 
the origin of which cannot be found in case of a conflict. 

3.2. Multiple Graphs 

The following example demonstrates the necessity of mUltiple graphs. Let E => (g(z z) iI a, 
g(z Hz») == a, h(i(z) z) == a, h(z z) == a} and let ( [(8(X y) g(x Y» =E f(a a) >be an equality 

problem. For each subproblem given by the corresponding subtermpairs 

f ( g (I y) h (I y» 

f ( a a ) 

__" . . .

f(a z)

”\
(x-Hfla V),ZHf(v a)} __“). f(u f(v w)) = f(f(u v) w)

|
I
fix a)

with the result
h(f(a z))

r—‚éij
NU NV W)) = f(f(u v) w)

e' - {x Hf(a v), z Hf lv  a)} I
|

h(f(x a)) = g(h(x) x)
—-F'J l_

{x „Ha  a). y Hfla a). z Hfla a)} _} hlu) a klu b) _
[___—|

Disc
1'. ={1Hf l aa ) . n ( aa )}  '

l Ff——
glkly c) f(a a))

which is a solution for the given problem. The replacement operation is appropriate since
the first solution of the subproblem is no longer required. The replacement of subgraphs
neither destroys the solutions of other subproblems nor destroys the global plan.

An immediate application of partial unifiers (unifiers of subproblems) to other
subproblems would prevent us  from finding the proper position for a subgraph
replacement.  Combinations of instantiations may pass through a large part of the graph,
the origin of which cannot be  found in case of a conflict.

3.2mm;

The following example demonstrates the necessity of multiple graphs. Let E - {glz z) I a.
Biz M” E a, h(i(z) Z) E a .  h(z Z) E a} and let < f(g(x y) sh y)) 55 f(a a) > be an equality
problem. For each subproblem given by the corresponding subtermpairs

f (g lx  y) h lx  y ) )

"‘
ll

A

|» “ 
. .

.—
„_

_-

“ "
—

f
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a solution may be constructed:
 

f ( g (I y) h (I y»
 

6 = {xHY}-~ t={xHi(y)} 

g(z z) == a hOlz) z) == a 
1 

jt.--- ­~ 
r( a a ) 

Since ('S and '{ are not unifiable under E, another solution ('S' for the first subproblem has to 
be constructed, followed by a graph replacement operation: 

f ( g (I y) h (I Y» 

G·,{y~i(X)) j t = (x H Hy)} 

g(z Hz)) !!! a h(i( z) z)!!: a 

~I_J 
f ( a a ) 

6' and t are still not unifiable and an alternative solution t' for the second subproblem has 
to be constructed, followed by a graph replacement operation: 

f ( g (I y) h (x y» 

cs' = (y H HI)} j 
g(z i(z)) == a h(z z) == a 

~I~ 
f ( a a ) 

But 6' and t' are not unifiable too. In order to find a solution for our problem the partial 
solution represented by the first 6 must be reconstructed or the first graph replacement 
operation must be cancelled: 

f ( .g (I y) h (x y») 

6'" (x Hy) --H
 

g(z z). a h(z z). a
 
{x H y} ----lII 

~~ 
f ( a a ) 

. . . - 12—

a solution may be constructed:

f (8 (x  3!) 11(1. y) )

6={IHY} „ -  „ (mi tm

8(z z )äa  hülz) 212al lr _
__

_-
__

_—

H
a

H
‘ n

' -
"

[ (

Since o and 1' are not unifiable under E, another solution e' for the first subproblem has to
be constructed, followed by a graph replacement operation:

Hglx  y) 11h;- y) )

62—1 {yr-Him} “ia L’r ' t = {rain/))
g(zi(z))=a h(i(z) Z)!a|[ I

a )

I
H

un
—

-fl
—

u—

S
E

:

6' and T are still not unifiable and an alternative solution 1" for the second subproblem has
to be constructed, followed by a graph replacement operation:

Hal :  y) h lx  y ) )

Hi “ 1.", = { I  H- }”

s(z i(z)) an  hlz z) a aII l
a )

LA il ‚..
—

\
‘<

". I
F;

H \in
-"

u.
..-

f
_,

m
i

--
{"

—
\ =
=

=
"

But 6' and 1" are not unifiable too. I n  order to find a solution for our problem the partial
solution represented by the first 6 must be reconstructed or the first graph replacement
operation must be cancelled:

f («gh  y) h( .x y ) )
L'

6 ' { IHY}  | f - { IHV}
g(z z) . a  h(z z ) .  a

{ IHY}  ——%' | J
H .

f ( a  a )



g(z z) == a 
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To avoid the search and reconstruction of the same partial solution many times (which is 
the case for many other equality reasoning methods, see section S.2.3) our method is 
extended to allow the insertion of alternative partial solutions into the graph connected 
with an or-link: 

f ( g (I y) h (I y» 

6" (I~Y)-~ 

f (a a) 

Not one unifier, but a list of several unifiers (a list of alternative partial solutions) is 
attached, to one subproblem. To check the compatibility of partial solutions a matrix of 
substitutions has to be evaluated. 

o and 
~ ( ) 

All substitutions in one column are alternative solutions for one subproblem and in 
different columns there are solutions for different subproblems. Each possible 
combination of substitutions (partial solutions) (61 i1 ,62;2 ' .... , 6mim) containing exactly 

one substitution (partial solution) from each column may be a solution for the superior 
problem (if these substitutions are compatible). n * n2 * ... * n such combinations exist. t m 

With the use of multiple graphs (which represent some kind of structure sharing) each 
partial solution is searched for and constructed at most once. The derivabiJity of all 
unifiers computable from the matrix requires the derivability of 

m i 

~1I n· . 1 . 1 J1- J. 

partial solutions without the use of multiple graphs and 

r
m 

n i
i=1 

partial solutions if multiple graphs are employed. 

To avoid the search and reconstruction of the same partial solution many times (which is
the case for many other equality reasoning methods, see section 5.2.3) our method is
extended to allow the insertion of alternative partial solutions into the graph connected
with an or-link=

f ( e (x  y) M:  V) )

s = {x H y} 6' == {y H im}
' all z)£a g(zi(z))sa

[ (a  a )

Not one unifier, but a list of several unifiers (a list of alternative partial solutions) is
attached ‚to one subproblem. To check the compatibility of partial solutions a matrix of
substitutions has to be evaluated.

611  521  “at A

O / and
" \ >

6 6 6 _ _1 n1 2 n2 mnm \ /

All substitutions in one column are alternative solutions for one subproblem and in
dill‘erent columns there are solutions for different subproblems. Each possible
combination of substitutions (partial solutions) (o1 ll . 62 i2 , , °mim) containing exactly
one substitution (partial solution) from each column may be a solution for the superior
problem (if these substitutions are compatible). 111 a: 112 a: a: nIn such combinations exist.

With the use of multiple graphs (which represent some kind of structure sharing) each
partial solution is searched for and constructed at most once. The derivability of all
unifiers computable from the matrix requires the derivability of

m 1
ZH n i

1-! j - l
partial solutions without the use of multiple graphs and

partial solutions if multiple graphs are employed.
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4. Control of Inferences 

The power of a problem solving procedure depends significantly on its control 
mechanis01l: In order to solve difficult problems it is paramount to find general and 
domain specific heuristic knowledge and to represent this knowledge in the problem 
solving system. The smaller the class of control strategies admissible for an inference 
system, the tighter its limitations in ta.king full advantage of heuristic knowledge. 
Inference systems supporting some kind of planning may provide for strong search space 
reductions. Furthermore inference systems can be improved by integrating preprocessors 
and postprocessors simplifying the given problem and generalizing partial solutions, 
respectively. 

Strategies, heuristic control, planning, preprocessors and postprocessors require 
information which must be explicitly represented by the inference system otherwise they 
have nothing to operate upon. In particular the states of the inference system should be 
richly structured to provide immediate access to such information. 

In this section we give an impression of the impact of the expHcit representation of 
information contained in our inference system. 

is 1. Weights and Limits 

Heuristics for inference systems based on the subterm replacement principle (e.g. 
paramodulation, demodulation) are usually computed from the information implicit in a 
term (literal, clause) [WOL84], For example weight, ordering, size, nesting depth etc are 
defined and are often based on certain sy mbol occurrences, like the number of different 
variables in a literal, etc. The main purpose of these heuristics is to control and reduce the 
complexity in terms of the defined measure. 

Since the information of terms is available, this class of heuristics is also applicable in 
methods based on the difference reductlon principle [Di8S]. Hence such heuristics are 
applicable in ECOP too. 

4.2. Difference reduction 

Equality reasoning systems based on the difference reduction principle compare two 
terms. A measure for the difference of two terms can be defined and heuristics can be 
developed to control the reduction of these differences. Just like the operators in GPS 
[NSS9] they estimate which equations could best reduce these differences. As before the 
difference measure may depend on term structures and symbol occurrences. In contrast 
to the previous heuristics based on weights and limits, difference reduction heuristics not 
only restrict term sizes etc. but control the distance between terms, i.e. are directed 
towards the goal to make two terms equal. 

Heuristics of this type are for example used by Digricoli [Di8S] who defines a heuristic 
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The power of a problem solving procedure depends significantly on its control
mechanism. In order to solve difficult problems it is paramount to find general and
domain specific heuristic knowledge and to represent this knowledge in the problem
solving system. The smaller the class of control strategies admissible for an inference
system, the tighter its limitations in taking full advantage of heuristic knowledge.
Inference systems supporting some kind of planning may provide for strong search space
reductions. Furthermore inference systems can be improved by integrating preprocessors
and postprocessors simplifying the given problem and generalizing partial solutions.
respectively.

Strategies, heuristic control, planning. preprocessors and postprocessors require
information which must be mm:-gm by the inference system otherwise they
have nothing to operate upon. In particular the states of the inference system should be
richly structured to provide immediate access to such information.

In this section we give an impression of the impact of the explicit representation of
information contained in our inference system.
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Heuristics for inference systems based on the subterm replacement principle (es.
paramodulation. demodulation) are usually computed from the information implicit in a
term (literal, clause) [WOL84]. For example weight. ordering. size, nesting depth etc are
defined and are often based on certain symbol occurrences. like the number of different
variables in a literal, etc. The main purpose of these heuristics is to control and reduce the
complexity in terms of the defined measure.

Since the information of terms is available. this class of heuristics is also applicable in
methods based on the difference reduction principle [Di-85]. Hence such heuristics are
applicable in BCOP too.
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Equality reasoning systems based on the difference reduction principle compare two
terms. A measure for the difference of two terms can be defined and heuristics can be
developed to control the reduction of these differences. Just like the operators in GPS
[NSS9] they estimate which equations could best reduce these differences. As before the
difference measure may depend on term structures and symbol occurrences. In contrast
to the previous heuristics based on weights and limits. difference reduction heuristics not
only restrict term sizes etc. but control the distance between terms, i.e. are directed
towards the goal to make two terms equal.

Heuristics of this type are for example used by Digricoli [Di85] who defines a heuristic
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ordering by degree of unification. His ordering depends on the equality of the toplevel 
function symbols and on the number of unifiable subterms. 

The heuristics and preprocessors applicable in difference reduction methods are also 
applicable in our method. In the example of section 2.2 the sub problem 
h(x b) - - - - h(b a) has to be solved. Since the term b occurs in both terms at the first 
subterm level but in different positions, a heuristic should be available proposing the 
insertion of an equality-chain between these terms at toplevel: if possible a 
commutativity axiom. instead of unifying the corresponding pairs of subterms. 

In our system we integrated two preprocessors: one tests whether both terms under 
consideration can be made equal with respect to its symbol occurrences. If this test fails, 
no further operation need be performed because of the unsolvability of the subproblem. 
The second preprocessor matches the given subproblem with the equations derived so far 
in order to find a quick solution. 

It is more difficult to insert heuristics and preprocessors as explained in this section into 
subterm replacement inference systems, since the information about the goal is not 
available in the calculus. 

4.3. Solving Confl~ 

In our method the global links and the structure of the graph provide the information for 
heuristics, which control the selection of subproblems and the subgraph replacements. 
Hence heuristic planning from a global point of view becomes possible. 

In the example of section 3.1 a conflict occurs in the attempt to assign two different terms 
f(a a) and a to the variable x. By subgraph replacement at one of the occurrences of 
the variable x other partial solutions can be derived possibly leading to compatible 
unifiers. It seems to be more likely to find new partial solutions at the position where a 
was assigned to x (such that the new assignment to x is extended to a term with leading 
function symbol n, than to find new partial solutions yielding the constant a or a 
variable instead of f(a a) at the appropriate position. Therefore in our example a heuristic 
should be available to prefer the insertion of an equation-chain between f(a z) and f(x a), 
such that after the insertion x is assigned to a term with topsymbol f: 

f(a z) --- f( .. ) ..... f(r( .. ) . ) --- f(x a). 
~ --1 

The link indicates the condition which should be used by the heuristic guiding the 
subgraph replacement. Hence a partial solution assigning a to x is to be replaced by one 
assigning a term f( .. ) to x which is more likely to be unifiable with r(a a) in order to 
get two compatible partial solutions. 

To sum up most equality reasoning systems based on the principle of subterm 
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ordering by degree of unification. His ordering depends on the equality of the toplevel
function symbols and on the number of unifiable subterms.

The heuristics and preprocessors applicable in difference reduction methods are also
applicable in our method. In the example of section 2.2 the subproblem
hlx b) -— — — - h(b a) has to be solved. Since the term b occurs in both terms at the first
subterm level but in different positions, a heuristic should be available proposing the
insertion of an equality-chain between these terms at toplevel: if possible a
commutativity axiom. instead of unifying the corresponding pairs of subterms.

In our system we integrated two preprocessers: one tests whether both terms under
consideration can be made equal with respect to its symbol occurrences. If this test fails.
no further operation need be performed because of the unsolvability of the subproblem.
The second preprocessor matches the given subproblem with the equations derived so far
in order to find a quick solution.

It is more difficult to insert heuristics and preprocessors as explained in this section into
subterm} replacement inference systems. since the information about the goal is not
available in the calculus.
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In our method the global links and the structure of the graph provide the information for
heuristics. which control the selection of subproblems and the subgraph replacements.
Hence heuristic planning from a global point of view becomes possible.

In the example of section 3.1 a conflict occurs in the attempt to assign two different terms
f(a a) and a to the variable 1'. By subgraph replacement at one of the occurrences of
the variable 1 other partial solutions can be derived possibly leading to compatible
unifiers. It seems to be more likely to find new partial solutions at the position where a
was assigned to x (such that the new assignment to x is extended to a term with leading
function symbol f ), than to find new partial solutions yielding the constant a or a
variable instead of f(a a) at the appropriate position. Therefore in our example a heuristic
should be  available to prefer the insertion of an equation-chain between f(a :) and f(x 3).
such that after the insertion x is assigned to a term with topsymbol f:

f(aZ) ---f(  - . ) .  . . .-f(f( . . ) . )  --- ll! a).
| :|_

The link indicates the condition which should be used by the heuristic guiding the
subgraph replacement. Hence a partial solution assigning a to x is to be replaced by one
assigning a term f( . . ) to x which is more likely to be unifiable with flat a) in order to
get two compatible partial solutions.

To sum up most equality reasoning systems based on the principle of subterm
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replacement support only heuristics concerning weights and limits, whereas the inference 
systems based on the difference reduction principle also support heuristics guiding the 
difference reduction of two terms. 

In our method, the states of the inference system have a structure rich enough to 
incorporate both kinds of heuristics. Above all heuristics can be incorporated supporting 
the planning of the search for a proof from a global point of view. Such heuristics require 
global infomation about the correlation of partial solutions. which is explicitly represented 
in the graph structure. Thus it is possible to develop and integrate a wide varity of 
heuristics at different levels of a problem solving process. 

Heuristics concerning weights and limits are well examined in the field. Unfortunately 
that is not the case for the other classes of heuristics, although they seem to be more 
powerful. 

5. Eyaluation 

5.1. Implementation 

The equality graph construction method has been implemented as an independent 
equality prover, currently integration into the "Markgraf Karl Refutation Procedure" 
[KM84] is under way. The implementation includes some pre- and postprocessors as 
described in [B1851 

Only a preliminary version of the control component has been implemented at the 
present time. Subgraphs are selected rather arbitrarily and most of the applicable rules to 
insert equation chains are applied at once producing several alternative equality graphs. 
The integration of heuristics as explained in section 4 has as yet not been exploited. 

Although no refined selection exists at the moment, the experi mental results with the 
system are promising: The standard test problems in the field were easily solved by the 
HeOp procedure (see [BI8S]). 

5.2. Comparison with other Approaches 

5.2,1. Graph Procedures 

Most theorem proving procedures based on graphs have the advantage of being 
independent of the order of the execution sequence: For one compatible equality graph 
there exist in general many paramodulation sequences performing the same steps in a 
different order. For the example (f(a b) -8 f(c d) ), E· (a. c, b. d) there exists only 

one compatible equality graph: 
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replacement support only heuristics concerning weights and limits, whereas the inference
systems based on the difference reduction principle also support heuristics guiding the
difference reduction of two terms.

In our method. the states of the inference system have a structure rich enough to
incorporate both kinds of heuristics. Above all heuristics can be incorporated supporting
the planning of the search for a proof from a global point of view. Such heuristics require
global infomation about the correlation of partial solutions. which is explicitly represented
in the graph structure. Thus it is possible to develop and integrate a wide varity of
heuristics at different levels of a problem solving process.

Heuristics concerning weights and limits are well examined in the field. Unfortunately
that is not the case for the other classes of heuristics. although they seem to be more
powerful.

SE!"

The equality graph construction method has been implemented as an independent
equality prover, currently integration into the "Markgraf Karl Refutation Procedure"
[KM84] is under way. The implementation includes some pre— and postprocessors as
described in [B185].

Only a preliminary version of the control component has been implemented at the
present time. Subgraphs are selected rather arbitrarily and most of the applicable rules to
insert equation chains are applied at once producing several alternative equality graphs.
The integration of heuristics as explained in  section 4 has as yet not been exploited.

Although no refined selection exists at the moment. the experimental results with the
system are promising: The standard test problems in the field were easily solved by the
ECOP procedure (see [3185]).
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Most theorem proving procedures based on graphs have the advantage of being
independent of the order of the execution sequence: For one compatible equality graph
there exist in general many paramodulation sequences performing the same steps in a
different order. For the example < f(a b) IB “C d) > . E - {a I c. b . d} there exists only
one compatible equality graph:
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f(a b) 
I \ 

a!!!! cb!!!! d 
\ I 

f(c d) 

f(cb) f(cd)-t 

but the paramodulation steps f(a b) < 
f(a d) f(c d) -t 

are possible. 

Like other graph based theorem proving procedures more information has to be stored 
and hence more memory is required as compared to non graph based methods. This 
disadvantage is compensated by a smal1er search space, which is particularily important 
when the system is applied to more complex problems. 

5.2.2. Subterm Replacement versus Difference Reduction 

Although subterm replacement is a very natural operation, the difference reduction 
principle seems to be more powerful for computational equality reasoning. 

As demonstrated in section 4 difference reduction based methods represent more 
information in the states of the inference system. Hence they support the development of 
proper heuristics. which direct the deduction process towards the goal of making two 
terms equal. Most of the heuristics based on weights and orderings are also applicable in 
difference reduction based systems. and in domains where term rewriting systems have 
been sucessful, such reduction systems can be used as preprocessors. 

Using some small examples we compare paramodulation with our method: 

In ECOP only inferences are aUowed which reduce the difference of ~ terms. For 
elample in <f(a b) liE f(d b) >. E- {a. c} the term f(a b) can be paramodulated by a!l c 

with the result Hc b) . but in difference reduction based systems no operation is possible, 
because using the equation a. c would not reduce the difference to f(db). 

In ECOP it is not allowed to insert equations between a variable and a term, unless the 
term contains the variable as a subterm. This restriction is much stronger. than analogous 
restrictions in paramodulation procedures, which prevent paramodulation into variables, 
because 
1) the restriction is effective at both sides of an equality problem as in the following 

elample: (f(a) ==E nl) >, E = {a == bl. The equation a == b may be paramodulated into 

f(a) but the insertion of the equation a!l b between f(a) and f(x) is forbidden. 
2) the restriction is also effective for all equations involved as demonstrated 

by < f(a)!!!!E g(y) >. E:: (f(I)!!!! g(I). a!!!! b} : 

-” -

f(a b)
/ \

a=c  bad
\ /
f(c d)

f(Cb) —» f(c d )
but the paramodulation steps I(a b) (_

f(a d) + “C d)
are possible.

Like other graph based theorem proving procedures more information has to be stored
and hence more memory i s  required as compared to non graph based methods. This
disadvantage is compensated by a smaller search space. which is particularity important
when the system is applied to more complex problems.

Although subterm replacement is a very natural operation, the difference reduction
principle seems to be more powerful for computational equality reasoning.

As demonstrated in section 4 difference reduction based methods represent more
information in the states of the inference system. Hence they support the development of
proper heuristics, which direct the deduction process towards the goal of making two
terms equal. Most of the heuristics based on weights and orderings are also applicable in
difference reduction based systems. and in domains where term rewriting systems have
been sucessf ul, such reduction systems can be  used as preprocessors.

Using some small examples we compare paramOdulation with our method:

In ECOP only inferences are allowed which reduce the difference of M terms. For
example in < f(a b) "E f(d b) >, E - {a l c} the term f(a b) can be paramodulated by as  c
with the result f(c b) . but in difference reduction based systems no operation is possible,
because using the equation a I c would not reduce the difference to f( d b ).

In ECOP it is not allowed to insert equations between a variable and a term, unless the
term contains the variable as a subterm. This restriction is much stronger, than analogous
restrictions in paramodulation procedures, which prevent paramodulation into variables,
because
1) the restriction is effective at both sides of an equality problem as in the following

example: < f(a) Ea fix”) > , E = {a a b}. The equation a a b may be paramodulated into
f(a) but the insertion of the equation a = b between f (a) and f (x) is forbidden.

2) the restriction is also effective for all equations involved as demonstrated
by < f(a)=E g(y) > , E = {f (x):  3(1) , a:  b} =
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f(b) ~ g(b)
 
The paramodulation sequences f(a) <
 

g(a) ~ g(b)
 

are derivable. Le. after paramodulation with f(x)!!! g(x) the variable x is instantiated 
and paramodulation at this position is possible. In our method however the only 
solution is 

na) 
/ 

f(x) ~ g(x) 
/ 

g(y) 

and the insertion of a 11 b is not allowed at any position. 

5.2.3. Subterm Replacement and Difference Reduction versus ECOP 

The main advantage of the equality graph construction method is the possibility of 
subgraph replacement and OR-branch extension. Local modifications in the graph can be 
controlled by global planning, for example partial solutions which are not compatible with 
other partial solutions when viewed from a more global level, can be detected and 
replaced or modified. Local modifications in the graph do not disturb the global plan and 
do not render other partial solutions useless. Expressed conversely, one bad operation 
does not make subsequent good operations at other positions of the same structure 
worthless, as is the case in many other equality reasoning methods. 

Consider the example of section 3.1 with the equality problem 
<h(f(a z)) liE g(k(y c) f(a a» >. The following paramodulation sequence may be derived: 

h(f(a z» + h(nx a» i! g(h(x) x) -+ g(h(a) a)
 
g(h(a) a) + h(u)!!! k(u b) -+ g(k(a b) a)
 
g(k(a b) a) + b. c -+ g(k(a c) a)
 

With regard to the given equality problem this paramodulation sequence seems to be 
desirable and well directed towards the goal of making the terms h(f(a z» and 
g(k(y cl f(a a» equal. The difference between both terms is reduced with each step. under 
the assumption of an appropriate measure for the difference of two terms. 

But although the difference between g(k(a c) a) and g(k(y c) f(a a» is relatively small, this 
difference cannot be removed by the given equations. No continuation of the stated 
paramodulation sequence can lead to the final goal. only backtracking and the choice of 
another step can help. 

If after backtracking the initial term h(f(a z» is first paramodulated with f(u f(v w») ii 

n18—

“b)  —+ g(b)
The paramodulation sequences f(a) (

g(a) _, 3%)

are derivable, Le. after paramodulation with f(x) = g(x) the variable x is instantiated
and paramodulation at this position is possible. In our method however the only
solution is

f(a)
/

f(x) = 8(1)
/

sly)

and the insertion of a I b is not allowed at any positiOn.
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The main advantage of the equality graph construction method is the possibility of
subgraph replacement and OR-branch extension. Local modifications in the graph can be
controlled by global planning, for example partial solutions which are not compatible with
other partial solutions when viewed from a more global level, can be detected and
replaced or modified. Local modifications in the graph do not disturb the global plan and
do not render other partial solutions useless. Expressed conversely, one bad operation
does not make subsequent good operations at other positions of the same structure
worthless, as is the case in many other equality reasoning methods.

Consider the example of section 3.1 with the equality problem
< h(f(a z)) 'E  g(k(y c) f(a a)) >. The following paramodulation sequence may be derived:

h(f(a 2.)) + h(f(x a)) = g(h(x) x) -—+ g(h(a) a)
g(h(a) a) + h(u) - k(u b) -~—9 g(k(a b) a)
g(k(a b) a) + b u c —-‚ g(k(a c) a)

With regard to the given equality problem this paramodulation sequence seems to be
desirable and well directed towards the goal of making the terms h(f(a 2)) and
3(k(y c) f(a 3)) equal. The difference between both terms is reduced with each step. under
the assumption of an appropriate measure for the difference of two terms.

But although the difference between g(k(a c) a) and g(k(y c) f(a a)) is relatively small, this
difference cannot be removed by the given equations. No continuation of the stated
paramodulation sequence can lead to the final goal, only backtracking and the choice of
another step can help.

If after backtracking the initial term h(f(a z)) is first paramodulated with f(u f(v w))  a
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f(f(u V) w) yielding h(f(f(a v) w» then the saDle paramodulation sequence as before must 
be searched for and executed again (a well known disadvantage of all blind backtracking 
methods, which led to the development of nondependency directed backtracking and 
reason maintenance systems): 

h(f(a z)) .. feu f(v w)) • f(f(u v) w) -~ h(f(f(a v) w» 
h(f(f(a v) w» .. h(f(x a». g(h(x) x) --t g(h(f(a v» f(a v)) 
g(h(f(a v)) f(a v)) .. h(u). k(u b) ~ g(k(f(a v) b) f(a v)) 
g(k(f(a v) b) f(a v)) .. b!!!! C --t g(k(f(a v) c) f(a v)) 

After one bad or one missing paramodulation step the subsequent steps might be 
worthless although they are just the right steps to solve subproblems which are 
encountered: Partial solutions cannot be combined arbitrarily. 

The effect that partial solutions can be lost is not only a property of the subterm 
replacement methods, but also occurs in reasoning based on difference reduction: In the 
method of Digricoli for example an application of the RUE-rule can result in the clause 
h(a) * key c), a * f(a a). All operations to eliminate the first literal are worthless and 
cannot be reused after the choice of another disagreement set or another substitution 
yielding h(f(a a)) * k(y c) , f(a v) * f(a a) for example. The same operations as before 
must be searched for and performed in order to remove the literal h(f(a a)) *key c). 

The immediate application of unifiers to other subproblems produces completely 
different versions of the subproblem <hex) BE key c) > that is <h(a) -E key c) > and 

< h(f(a a» -E key c) >. In both paramodulation and RUE-resolution the solution of the 

second version of the subproblem cannot be reduced to the first version but must be 
recomputed, again. That is, it cannot be realized, that the solution of < hex) I!!E k(y c) ) 

need not refer to the variable x. 

In ECOP we have more global information in the graph, which supports the planning of 
the proof. Subgraph replacements or extensions by OR-branches are allowed to solve 
conflicts, without losing the partial solutions aiready found in other parts of the graph. 

The lack of the possibility for repair might be the reason why Digricoli as well as Um and 
Henschen allow instantiations in their metho.js not determined by unification or partial 
unification (see [Di79J page 46, [Di8SJ and [LH8SJ). 

5.2.4. Anti Waltz Effect 

Like other applications in artificial inte11i\~ence equality reasoning procedures are 
confronted with large search spaces. 

For the problem of interpreting line drawin~.s as geometrical objects, Waltz proposed a 
method of exploiting local constraints to keep the search space under control. The great 
success of his method was surprising and is founded on the fact, that combinations of a 

f(f( u v) w) yielding h(f(f(a v) w)) then the same paramodulation sequence as before must
be searched for and executed again (a well known disadvantage of all blind backtracking
methods. which led to the development of nondependency directed backtracking and
reason maintenance systems)=

h(f(a z)) + f(u [(V W)) I f(f(u v) w) -—+ h(f(f(a v) w))
h(f(f(a v) w)) + h(f(x a)) I glhlx) x) --+ g(h(f(a V)) f(a V))
g(h(f(a V)) f(a V)) + h(u) I k(u b) ** s(k(f(a v) b) He V))
30:00: v) b) fin V)) + b = c ——» 8(k(f(a v) c) m V))

After one bad or one missing paramodulation step the subsequent steps might be
worthless although they are just the right steps to solve subproblems which are
encountered: Partial solutions cannot be combined arbitrarily.

The effect that partial solutions can be lost is not only a property of the subterm
replacement methods. but also occurs in reasoning based on difference reduction: In the
method of Digricoli for example an application of the RUE-rule can result in the clause
h(a) s k(y c), a * f(a a). All operations to eliminate the first literal are worthless and
cannot be reused after the choice of another disagreement set or another substitution
yielding h(f(a a)) s k(y c) , f (a  v )  s f(a a) for example. The same operations as before
must be searched for and performed in order to remove the literal h(f(a a)) * k(y c).

The immediate application of unifiers to other subproblems produces completely
different versions of the subproblem <h(x)-E k(y c) > that is <h(a)-E k(y e) > and
< h(f(a a))-E k(y c) >. In both paramodulation and RUE—resolution the solution of the
second version of the subproblem cannot be reduced to the first version but  must be
recomputed. again. That is. it cannot be realized. that the solution of < h(x) '3 My c) >
need not refer to the variable x.

In ECOP we have more global information in the graph, which supports the planning of
the proof. Subgraph replacements or extensions by OR—branches are allowed to solve
conflicts, without losing the partial solutions already found in other parts of the graph.

The lack of the possibility for repair might be the reason why Digricoli as well as Lim and
Henschen allow instantiations in their methods not deter mined by unification or partial
unification (see [Di79] page 46. [Di85l and [LH 851).
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Like other applications in artificial intelligence equality reasoning. procedures are
confronted with large search spaces.

For the problem of interpreting line drawings as geometrical objects, Waltz proposed a
method of exploiting local constraints to keep the search space under control. The great
success of his method was surprising and is founded on the fact, that combinations of a
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few elementary interpretations are in most cases very early detected as incompatible, 
hence the combinatorial explosion is mini mized or even eliminated. In other words if n 
elements are to be combined, in most ca:;es the incompatible combinations are already 
detected when only two, three, or four of i~s elements are combined. 

Unfortunately in equality reasoning the or posite happens. Due to the many variables that 
generally occur in the formulas, combinations of two, three or four operations are 
compatible in most cases. If n elements arl~ to be combined, the incompatibility is in most 
cases not detected until at least n- 1, n-2, or n-3 operations are combined. This effect is 
the main reason why our earlier approach for equality reasoning [B183J based on 
constrain satisfaction methods similar to Waltz failed. This "Anti Waltz Effect" as well as 
the potential to operate on every subterrr of each formula seems to be the main reason 
for the crux caused by equational axioms i 1 automatic theorem proving. 

The search space explodes because many combinations of possible operations are 
compatible. Incompatibilities are detected far too late. The search performed until 
detection of an incompatibility is useless in most cases, even if partial problems have 
been solved. After backtracking the partial problems must be solved again. 

In order to work against the "Anti Waltz Effect" we try to solve incompatibilities by 
repairing the graph through subgraph replacement or OR-branch extension. This retains 
the existing plan and does not destroy o~her partial solutions. The graph and thus the 
inference system contains the information necessary to perform such repairs, which is 
again very much in the spirit of reason maintenance systems and nondependency 
directed backtracking methods. 

5.2.5. Derivability of Unifiers 

The equality graph construction method presented in this paper overcomes the necessity 
to derive all different unifiers as is the case in other equality reasoning methods. 

The exclusion of equality-chains between variables and terms restricts the derivability 
of unifiers for the given problem: only one of the class of all unifiers equal under E is 
derivable. 

Due to the introduction of OR-branches representing alternative solutions for the same 
problem each partial solution is derivable at most once. 

Strategies can be incorporated restricting the derivability of unifiers, in such a way that 
after a subproblem has been solved, no other solutions, Le. other unifiers for this 
subproblem are derivable, until a conflict in the unification of substitutions occurs in a 
global environment. This restriction also tnvolves quite different unifiers which are not 
unifiable under E. Only when the unification of two substitutions fails, another solution 
for one of the subproblems causing the conflict is derivable and inserted into the hitherto 
existing graph by subgraph replacement or OR-branch extension. 

few elementary interpretations are in most cases very early detected as incompatible,
hence the combinatorial explosion is minimized or even eliminated. In other words if n
elements are to be combined, in most cases the incompatible combinations are already
detected when only two. three, or four of its elements are combined.

Unfortunately in equality reasoning the Opposite happens. Due to the many variables that
generally occur in the formulas. combinations of two. three or four operations are
compatible in most cases. If n elements are to be combined. the incompatibility is in most
cases not detected until at least n - l .  n-2, or n-3 Operations are combined. This effect is
the main reason why our earlier approach for equality reasoning [3183] based on
constrain satisfaction methods similar to Waltz failed. This "Anti Waltz Effect" as well as
the potential to operate on every subterm d' each formula seems to be the main reason
for the crux caused by equational axioms i1  automatic theorem proving.

The search space explodes because many combinations of possible operations are
compatible. Incompatibilities are detected far too late. The search performed until
detection of an incompatibility is useless in most cases, even if partial problems have
been solVed. After backtracking the partial problems must be solved again.

In order to work against the "Anti Waltz Meet" we try to solve incompatibilities by
repairing the graph through subgraph replacement or OR-branch extension. This retains
the existing plan and does not destroy Other partial solutions. The graph and thus the
inference system contains the information necessary to perform such repairs. which is
again very much in the spirit of reason maintenance systems and nondependency
directed backtracking methods.
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The equality graph construction method presented in thispaper overcomes the necessity
to derive all different unifiers as is the case in other equality reasoning methods.

The exclusion of equality—chains between variables and terms restricts the derivability
of unifiers for the given problem: only one of the class (1‘ all unifiers equal under E is
derivable.

Due to the introduction of OR—branches representing alternative solutions for the same
problem each partial solution is derivable at most once.

Strategies can be incorporated restricting the derivability of unifiers. in such a way that
after a subproblem has been solved, no other solutions. i.e. other unifiers for this
subproblem are derivable, until a conflict in the unification of substitutions occurs in a
global environment. This restriction also involves quite different unifiers which are not
unifiable under E. Only when the unification of two substitutions fails. another solution
for one of the subproblems causing the conflict is derivable and inserted into the hitherto
existing graph by subgraph replacement or Oli-branch extension.



- 21 ­

The restriction of the derivability of unifiers by means of globally planned graph 
operations is comparable to the restriction of the derivability of instances through the 
introduction of unification. 

6. Applicability 

In contrast to methods like E-Resolution or RUE-Resolution our method is not a uniform 
proof procedure for first order predicate calculus with equality. It is much more like an 
independent universal unification procedure. Hence it can be used in all problem solving 
systems in which unification and equality are important. Since ECOP is not a decision 
procedure (like most ordinary unification algorithms), the incorporation into a theorem 
proving procedure like the Markgrar Karl Refutation Procedure [KM84] requires a 
mechanism to control the co-operation between equality reasoning and other tasks by a 
heuristic allocation of resources. 

For the integration of ECOP into the MKRP-system we propose to use E-resolution [M069] 
as the inference rule and EooP to search for possible E-resolution steps. An E-resolution 
step can 'be regarded as a sequence of paramodulation steps such that two potentially 
complementary unifiable literals become unifiable, followed by the appropriate resolution 
step. Paramodulation and resolution concern at most two clauses, whereas E-resolution is 
a generalization of resolution concerning many clauses. To integrate E-resolution into 
clause graphs new structures are required: ER-paths (E-resolution-paths) are defined to 
represent possible E-resolution steps. An ER-path connects two potentially 
complementary literals and the equations which make both literals unifiable. 

In an extended clause graph proof procedure ER-paths should also be searched for and 
created at the beginning, when the initial graph is formed. This information should then 
be inherited during the subsequent search for a proof. But because of the undecidability 
of equality of two terms not all the necessary ER-paths can be found in the initial graph, 
For that reason a new link type called PER-link (D.otential E-r.esolution link) is introduced 
into the graph connecting potentially complementary unifiable literals (with same 
predicate and opposite sign). These PER-links provide the top-level information for the 
proof procedure to search for the corresponding BR-p ths. 

If an ER-path is selected during the derivaton, then the B-resolution corresponding to the 
ER-path is executed and if a PER-link is selected the search for ER-paths is continued, 
calling ECOP. If ECOP determines the unsolvability of a given equality problem then the 
corresponding PER-link is deleted. During the search for a proof ER-paths as well as 
PER-links are inherited and used to compute new ER-paths and new PER-links. 

Conclusion 

Three points can be stated concerning further development of existing equality reasoning 
methods: 
1. Equality graph construction gives full support for the global planning of the whole 
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The restriction of the derivability of unifiers by means of globally planned graph
operations is comparable to the restriction of the derivability of instances through the
introduction of unification.
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In contrast to methods like E—Resolution or RUE—Resolution our method is not a uniform
proof procedure for first order predicate calculus with equality. It is much more like an
independent universal unification procedure. Hence it can be used in all problem solving
systems in which unification and equality are important. Since ECOP is not a decision
procedure (like most ordinary unification algorithms). the incorporation into a theorem
proving procedure like the Markgraf Karl Refutation Procedure [KM84] requires a
mechanism to control the co-operation between equality reasoning and other tasks by a
heuristic allocation of resources.

For the integration of ECOP into the MKRP-system we propose to use E-resolution [M069]
as the inference rule and ECOP to search for possible E—resolution steps. An B—resolution
step can 'be regarded as a sequence of paramodulation steps such that two potentially
complementary unifiable literals become unifiable, followed by the appropriate resolution
step. Paramodulation and resolution concern at most two clauses, whereas B—resolution is
a generalization of resolution concerning many clauses. To integrate E-resolution into
clause graphs new structures are required: ER—paths (B-resolution—paths) are defined to
represent possible E-resolution steps. An ER—path connects two potentially
complementary literals and the equations which make both literals unifiable.

In an extended clause graph proof procedure BR-paths should also be searched for and
created at the beginning. when the initial graph is formed. This information should then
be inherited during the subsequent search for a proof. But because of the undecidability
of equality of two terms not all the necessary ER-paths can be found in the initial graph.
For that reason a new link type called EERjink (potential B-resolution link) is introduced
into the graph connecting potentially complementary unifiable literals (with same
predicate and opposite sign). These PER—links provide the top—level information for the
proof procedure to search for the corresponding BR-psths.

If an BR-path is selected during the derivatcn. then the B-resolution corresponding to the
ER-path is executed and if a PER—link is selected the search for ER-paths is continued,
calling ECOP. If ECOP determines the unsolvability of a given equality problem then the
corresponding PER—link is deleted. During the search for a proof BR-paths as well as
PER-links are inherited and used to compute new Eli-paths and new PER—links.

; | .

Three points can be stated concerning further development of existing equality reasoning
methods:
1. Equality graph construction gives full support for the global planning of the whole
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proof and supplies the information for a wide varity of heuristics. 
2.	 The Anti Waltz Effect in equality reasoning makes standard constraint satisfaction 

methods unfeasable. Instead of this a repair facility is integrated into the inference 
system to solve conflicts of compatibility by subgraph replacement or extension. 

3. Similar to the lifting effect of unification which restricts the derivability of instances, 
the derivability of unifiers is restricted by our method. This reduces the search space 
drastically. 

Future research should investigate the development of heuristics for all three categories, 
further examine the problems of subgraph replacement. and should allow for conditional 
equations. 
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