
undoSusanne B i

Franti§ek Zboray

EXISTENCE PROOFS BY INDUCTION

USING METHODS OF PROGRAM SYNTHESIS

UNIVERSITÄT KARLSRUHE
FAKULTÄT F Ü R INFORMATIK

Postfach 63 80. D 7500 Kaflsruho 1

Bericht Nr. 16 /84

Susanne Biundo
Institut für Informatik I

Universität Karlsruhe
Postfach 6 3 8 0

„ D - 7 5 0 0 Karlsruhe 1

Frantiäek Zboray*
Institut für Angewandte Informatik
und Formale Beschreibungsverfahren

Universität Karlsruhe
Postfach 6380

D-7500 Karlsruhe 1

*
on leave from

Katedra pocitacov (EV SVST)
Universität Bratislava

Vazovova 5
81218 Bratislava (Tschechoslowakei)

EXISTENCE PROOFS BY INDUCTION

USING METHODS OF PROGRAM SYNTHESIS

Susanne Biundo

Franti§ek Zboray

1 . Introduction

1 .1 Automatic Induction
1.2 Existential Quantifiers and Proofs by Induction

1.3 Program Synthesis

1.4 The Correctness of "Proving by Synthesis"

2. The Synthesis System

2.1 Transformation Rules

2 .1 .1 The Induction Rule
2 .1 .2 Evaluation Rules

2 .1 .3 Using Lemmata

2 .1 .4 Isolating Terms

2 .1 .5 Special Rules

2.2 How to Apply the Transformation Rules

3. Examples

3 .1 Synthesis of Function plus
3.2 Synthesis of Function rest

3 .3 Synthesis of Function half
3 .4 Synthesis of Function sort

4 . Conclusion

1. Introduction

1.1 Automatic Induction

Induction is the basic technique used to prove properties of

functions and predicates defined on well-founded sets. As a

consequence proofs by induction play a central role in several

subfields of mathematics such as arithmetic, formal logic,

formal languages, algebra etc.

In computer science proofs by induction are important to

verify programs, i.e. to prove properties of loops and recursive

procedures.

Proving theorems by induction using an automated theorem prover

presupposes a formalism which makes it possible to

- define well-founded sets,

- define functions and predicates which Operate on these well-

founded sets and

- formulate properties of these functions and predicates.

In Boyer and Moore's theorem proving system [BM79] for instance

so—called shells are used to represent well-founded sets. The

system offers a LISP—like definition principle to define functions

using the techniques of definition by cases, by recursion and by

functional composition. Terms and formulas are represented like

S-expressions in LISP [WH81]

The language of the Boyer/Moore system can also be viewed as a

programming language based on LISP:

The shell principle makes it possible to define abstract data--

types [GTW77] and by the "definition principle" [BM79] functions

operating on them can be introduced. This fact i s not accidental:

Since the system was designed to mechanize theorem proving by

induction, i.e. to prove theorems in constructive theories, the

objects under consideration must be defined in a constructive

way.

Therefore the induction system presently being developed as a

part of the

MARKGRAF KARL REFUTATION PROCEDURE,

(an automated theorem prover developed at the University of

Karlsruhe [BES81 , DMW82, 0hl82]) also provides some kind of

programming language to make possible the definition of well-

founded sets as well as definitions of functions and predicates

over these well—founded sets by means of so-called structure,

function, and predicate expressions.

For example the concept of natural numbers (nat) together with

the predecessor (pred) andxiifference (diff)functions and the

predicate even may be defined by the following expres s ions :

STRUCTURE O s(nat) : nat

0 is a base constant, 3 is the constructor function which applied

to an element o f nat always yields another element of na t .

FUNCTION pred(x:nat) : nat =

IF x = O THEN 0

IF Hu : nat x = s(u) THEN u

FUNCTION diff(x,y:nat) : nat =

IF y = 0 THEN x

IF 3v : nat y = s(v) THEN pred(diff(xv))

PREDICATE even(x:nat) =

IF x = o THEN true
IF au : nat x = s(u) THEN not even(u)

For each function or predicate expression the induction system

will carry out a so—called consistency check.

This check consists in testing whether

(i) the function (predicate) symbol is new in the sense that no

definition for i t already exists

(ii) the definition is complete, i.e. the function (predicate)

i s totally defined

(i i i) the definition i s unique

(iv) the function (predicate) terminates, i.e. in every

recursive call of the function (predicate) occurring

in the then-part of the definition the parameters decrease

according to a certain ordering.

Let us assume that a definition o f the following form i s given:

‚ F U N C T I O N f(xznat) : nat =

I F A1 THEN t1

I F An THEN t n '

The Ai (1sisn) are formulas characterizing the definition cases

and the ti are terms. The uniqueness test (iii) consists in

giving the definition as input to an algorithm which works as

follows: ‘

From the input definition a so—called uniqueness formula will be

constructed which is the prenex normal form of

.A. [A i A A j -> t i = t j] (1 S i , a ; j. * j) .
1]

That means whenever two conditions are true the corresponding

terms have to be equal.

Now certain (logical) simplification rules (for instance,

tautology—elimination and subsumption) are applied to the

uniqueness formula and the simplification algorithm returns

TRUE) FALSE or a simplified formula which is equivalent to the

uniqueness formula.

If the result is a simplified formula this formula will be given

to the theorem proving system.

The tests (ii) and (iv) are carried out similarly; test (i)

simply consiSts in looking up a table of all defined symbols.

In case of a successful consistency check (ire. test (1) succeeds

and the formulas of tests (ii) - (iv) given back by the

simplification algorithm are TRUE or are proved by the system)

the definition is accepted and will then be translated into a

set o f first-order—formulas, the so—called definition formulas,

which provide a semantic for the structure-, function— and

predicate expressions.

Thus, because they satisfy the consistency check the definitions

of nat, pred, diff and even above lead to the following formulas:

(AX1) Vx : nat x = o v 3y : nat x = s(y)

every element o f nat i s equal to the base constant

or equal to a constructor—term

(A X 2) Vx : nat s(x) # 0

every constructor—term i s unequal to the base

constant

(AX3) Vx,y : nat s(x) = s(y) ++ x = y

the constructor function i s injective

(Ax4) VX : nat x = O » pred(x) O
pred

l
l

::(AXS) Vx,u : nat x = s(u) » pred(x)

(AX6) Vx,u : nat y = O ’ * diff(xy) = x
diff

s(v) » diff(xy) = pred(diff(xy))(AX7) Vx,y,v : nat y

(AX8) Vx : nat x O » [even(x) ++ true]
even

(A X 9) V x , u : nat x s (u) » [e v e n (x) ++ not e v e n (u)]

As can be seen from the form of our axioms we are dealing with a

many-sorted first-order calculus. From now on we shall omit the

sortsymbols except whentreatimgconcrete formulas like the above

axioms.

I t can be proved that because o f the consistency check each set

of first-order formulas which consists only of definition

formulas (like the AXi above) is consistent and therefore

possesses a model. These formulas && together with an infinite

set of induction axioms ;ggi constitute the axiom set of the

induction theorem proving system.

If the system is given a formula @ to be proved the system

selects a finite subset IND of iND* which seems to be adequate

to prove @ , and then attempts to infer @ from AX u IND.

For instance i f @ i s given as Vx‚y : nat w(xy) where

w(xy) : = pred(diff(xy)) = diff(pred(x)y) the system selects

the induction axiom $1 A $ 2 » @

where w1 := Vx : nat w(x0)

Vy : nat [Vx : nat w(xy) *
Vz : nat w(zs(y))]

and $ 2 :

and attempts to find a proof for w1 and wzz

w1: Vx : nat pred(diff(x0)) = diff(pred(x)0)

+ by AX6

Vx : nat pred(x) = pred(x)

+ by reflexivity of the equality

TRUE

W2: Vy : nat [VX : nat w(xy) a
V2 : nat pred(diff(zs(y))) = diff(pred(z)s(y))]

+ by AX7

Vy : nat [Vx : nat pred(diff(xy)) = diff(pred(x)y)

+ Vz : nat pred(pred(diff(zy))) = pred(diff(pred(z)y))]

+ by an instance of the induction hypothesis

wxy)

Vy : nat [Vz : nat pred(diff(pred(z)y)) = pred(diff(pred(z)y))
+ by reflexivity o f the equality '

TRUE

1.2 Existential Quantifiers and Proofs by Induction

However difficulties arise if the task is to prove a formula

involving an existential quantifier, for instance to prove the

formula

(0) ' Vx,y : nat az : nat diff(zy) = x.

In the context of induction proofs where the task is to prove

formulas i n constructive theories i t i s sometimes difficult to

prove such formulas because the existentially quantified variable

causes a search for a solution.

I n a given formula

(1) Vx1,..,xn Ey w[x1...xny]

it is therefore a useful prooftechnique to replace the existential

quantified variable y by a term using a skolemfunction f and then

to prove the resulting formula:

(2) Vx1,...,xn w[x1...xn f(x1...xn)]

instead. This technique i s sound because

(3) Vx1,...,xn w[x1...xn f(x1...xn)] » Vx1,...,x 3y w[x1...xny]
n

i s valid for each formula w.

But why i s it easier to prove formula (2) than formula (1)?

Suppose in our set of axioms AX we have definition formulas

for the addition of natural numbers denoted by the function

symbol plus. Substituting plus for f in

(4) Vx,y : nat diff(f(xy)y) = x

formula (4) is easily proved by induction. The reason for

this i s that the existentially quantified variable y in (O)

which causes a search for a solution is replaced by a term

using a function which i s constructively defined and so a

search i s obsolete.

But what should be done i f it i s not known which of the given functions

for which definition axioms are present should replace the skolem

function f such that (4) becomes provable (or even worse what

should be done if no such function is in the axiom set AX at all)?

The answer is, and this i s the central idea of our work, that we

attempt to synthezise definition formulas for the skolem function

f such that (4) becomes provable where we use formula (4) as a

Specification.

For the present purpose we shall restrict our attention to

formulas of the form:

Vx1...xn 3y w[x1...xny] with w being a first—order formula with-

out any quantifier.

Now we shall demonstrate our technique by an example: Given the

formula

(5) n : nat 32 : nat pred(z) = diff(pred(x)y).

By skolemization we obtain the formula

(6) n : nat pred(f(xy)) = diff(pred(x)y)

which we try to prove by induction:

Base case: y = O

Vx : nat pred(f(x0)) = diff(pred(x)0)

+ by AX6

Vx : nat pred(f(x0)) = pred(x).

Defining

(7) n : nat y = O 4 f(xy) = x

the base case is proved. a

Induction Step:

Our induction hypothesis is to assume that

(8) Vx : nat pred(f(xy)) = diff(pred(x)y).

We have to prove

Vx : nat pred(f(xs(y))) = diff(pred(x)s(y))

+ by AX 7

Vx : nat pred(f(xs(y))) = pred(diff(pred(x)y))

+ by (8)

Vx : nat pred(f(xs(y))) = pred(pred(f(xy)))

Defining

(9) Vx,y : nat f(xs(y)) = pred(f(xy))

the induction step is proved. a

The formulas (7) and (9) constitute the definition formulas

of a new function expression

FUNCTION f(x,y : nat): nat =

I F y = O THEN x

IF av : nat y = s(v) THEN pred(f(xv))

i.e. we have synthesized the difference function on natural

numbers. Now as a final step we have to verify that f fulfills

the consistency conditions (thus guaranteeing that such a

function f in fact exists) and after a successful verification

a proof of the initially given formula (5) can easily be done.

In the well—known induction theorem proving systems [BM79‚

Aub79] the problem of existence proofs is solved rather

radically by simply inhibiting the explicit and implicit

usage of existential quantifiers:

"Advocates of quantification may feel that our lack of

quantification makes it difficult for us to state certain

conjectures. We agree, but we observe that the use of explicit

existential quantification makes it more difficult to find

constructive proofs." [BM79, p. 84].

In these systems the user is forced to decide which known

function has to replace the skolem function or even worse to

define a new o n e .

We want to shift the burden of searching for skolem functions

and their constructive definitions from the user to the system:

This paper presents an outline of a subsystem of an induction

theorem prover which synthesizes the definition o f skolem

functions (in our example the formulas (7) and (9)) in order

to replace existentially quantified variables in an in-

constructive formula (5) obtaining a formula (6) which can be

proved automatically by induction using the definition formulas

(7) and (9) as axioms.

I n general a function definition for the skolem function f i s

generated and then it has to be proved that the skolemized

formula (2) becomes true.

An important point i s , and this will be explained in detail

later o n , that in almost a l l cases the synthesis process it-

self can be viewed as an induction proof of formula (2).

In section 1.4 it will be pointed out that a proof of formula

(2) represents a solution of the initial problem: a proof of

formula (1).

10

1.3 Program Synthesis

Deductivegprogram synthesis [MW79/1, MW79/2, BiSO] is one of

the proposed methods of deriving constructive (algorithmic)

definitions of functions.

It consists in transforming a specification (i.e. a description.

of a function given in a specific high level specification

language) according to certain rules, the transformation rules

[MW79/1, MW79/2] into an algorithm which computes the specified

function. The specification may be completely inconstructive

giving no hint of how to "implement" the function. The

transformation rules represent knowledge about the program's

subject domain and their application is guided by several

strategies and heuristics [MW79/2].

Goad [G080] shows how to extract algorithmic definitions of

skolem functions from already existing (hand-written) proofs.

These techniques can now be applied for our purpose as follows:

The specification'and programming language is first-order

predicate logic.

Let us consider a relation R(xyz), for instance

(1) z — y = x .

The goal is to find a program (in logic) which for each pair

of input variables x and y computes a value for an output

variable z such that (1) is satisfied (if (1) has a solution

at all).

Using the proper quantifiers to express this fact

(2) n Hz 2 - y = x

means that (1) must be a total relation. Transforming (2) into

(3) wo :5 n f(xy) — y = x

11

(i.e. the introduction of a skolem function) causes a further

restriction: the relation (1) has to be unigue wrt. 2.

Now various transformation rules are applied to mo

(*) wo 5 > ... wi s > wi+1 => ... wk

until a formula wk i s derived (which includes the function

symbol f) and which can be interpreted as a recursive algorithm

computing f.

wk i s a conjunction of so-called definition formulas and may

look like this:

l
l[y = o » f(xy) = x] A [y s(v) + f(xy) = s(f(xv))]

wk has to fulfill the consistency conditions described in

chapter 1 .1 , i.e. the definition o f f has to be complete,

unique and terminating and f has to be a new function symbol.

Finally it has to be proved that wk is correct in the sense

that i t i s a solution o f the given problem: One has to prove

(possibly by induction): wk » wo, i.e. that wk satisfies the

specification.

The transformation rules we shall use (see section 2 .1) have
the following property:

R: A transformation rule T R has the property R iff

for all formulas w, m':

w a> w ' implies w ' » w .
TR

This i s very important because R holding for each rule used

in a transformation (*) frees us from having to prove

explicitly the correctness o f wk: the correctness proof i s

implicitly part of the synthesis process which in general

involves some k i n d o f induction.

12

1.4 The Correctness of "Proving by Synthesis"

In this section it will finally be demonstrated that a success-

ful synthesis of a skolem function (i.e. having synthesized a

definition wk such that wk fulfills the consistency check and

wk has been proved correct indeed represents a proof not only

o f the skolemized formula but o f the original existentially

quantified one.

Let us suppose that given:

formula ® withI m

@ := Vx1...xn Ey w[x1...xny]‚

- a finite set o f axioms:

among others the definition formulas for all sort, function,

and predicate symbols occurring in ©, andv

- an infinite set of induction axioms IND*.

The task is to prove

(1) IND* u AX IF © .

First of all formula @ will be skolemized to eliminate the
A

existential quantification. The result will be a formula ®

with

A
@ := Vx1...xn w[x1...xn f(x1...xn)] and

A
(2) IF @ » © .

Now a definition for the skolem function f (i.e. a set of

definition formulas DEFf) will be synthesized from the
A

specification @ and its consistency will be proved:

(3) IND* u AX IF total(f) A unique(f) A terminating(f).

Let us assume there exists an interpretation I_with

I It IND* u AX.

13

With (3) we have shown that for each S-interpretation I with

I |F IND* u AX there exists a S u {f}-interpretation If with

(4) I IF IND* u AX u DEFf f '

which differs from I only in the interpretation of the function

symbol'f.

Now we have to prove that:

A
(5) IND* u AX u DEFf |F Ö . (Correctness)

Let I be a S-interpretation with I IF IND* u AX. Then

If |F IND* u Ax u DEFf by (4),
A ,

If IF @ by (5) ,

I f |F © by (2), and

If |F ® , because f does not occur in @.

Thus for each S—interpretation I we have:

If f I IF IND* u AX

then I I F @ '

i.e. IND* u AX IF © . n

14

2 . The Synthesis System

2.1 Transformation Rules

In this section the transformation rules will be presented

which we use to synthesize the definitions of various skolem

functions. They are classified according to their functions.

For the following the letters A , B , C , ... denote quantifier—

free first-order formulas; t , t 1 , ... and T , T 1 , . . . denote

terms.

The rules are o f form

and each o f the formulas A , B 1 , ..., Bn has to be read as i f

it is prefixed by a universal quantification of all variables

occurring in it.

A[object] means that object occurs in A and A[object1 + objectz]

i s the formula obtained from A by replacement of object1 by

o b J e c t z .

15

2 .1 .1 The Induction Rule

The definition of a skolem function f , like those of the already

defined functions and predicates occurring in.the specification wo,

has to be done by case analysis and by recursion.

The problem of how to get a suitable recursion scheme for f is

quite similar to the problem of generating an induction scheme

for a formula m using the definitions of the functions and

predicates occurring in it [BM79].

One successful heuristic is to use the recursion schemetxfone

of the most nested functions of wo. A most nested function is

a function occurring at an innermost position in wo. If no such

function is available the recursion scheme of a predicate

occurring in wo can be taken as well.

The way to generate the case analysis and the recursion for the

definition o f f from the definition of a most nested function or

a suitable predicate is given by the induction rule.

I t reads as follows:

A[f(x1...xn) p(t1...xi...tm)]

IND

("induction")

Y t * A
A

I
'Yk A V Z 1 . . . Z l A [x i + t i] -D A

where

- p is a recursively defined function or predicate

- f is the skolem function

— xi € {x1‚...‚xn}‚ i.e. the variable xi occurs in A as an
argument of f a s well as an argument o f p

- xi i s a recursion argument of p

16

— the definition formulas of p are:

* p(...) === T191 Y1 Y1 ym (++) 1

' . A A A
w k + p(y1...yi...ym) €:; Tk[p(t1...ti...tm)]

IPr -> o(y1...yi...ym) (T:->) Tr

- w1,...‚wr are conjunctions of atomar or negated atomar

formulas

T1,...,Tr are terms or atomar or negated atomar formulas

resp. and p neither occurs in T
A A

(s € {1,...,r}\{K}) nor in t1,...,tm

- for all j € {1,...,t} is
j E {plp € {1,...,r}\{K} and there exists an

x € {x1‚...,xn} with:
x occurs in wp[*]}

_ i [*] : = l p j [y ’] < _ t a l] ' 0 v [Y i < — } { i] " ' | : y I - n . (_ t r n]

j € {1‚...‚r}

- with wj[*] = B1 A ... A Bq

for all K € {1‚...‚q} with:
there exists an x € {x1,...,xn}

K
' s . : = A B1 Y] K

which occurs i n B K

- Y1 v ... v Y t v Y k i s a theorem
A

- {z1,...,zl} = vars(A)\vars(ti)
where vars (object) is the set of all variables occurring

i n o b j e c t

A' A }
_ t i _ t i [*] .

The induction rule is the first rule to be applied to a

specification wo to start the process of synthesis. If its

application fails because no suitable function or predicate

17

is available a complete recursion scheme will be constructed

by selecting a Variable parameter of f and setting up cases

and recursion according to the associated structure definition.

Given, for instance, the following structure definition of lists

o f natural numbers:

STRUCTURE emgtx cons(nat list): list.

Let us now assume that f(xyz) i s the skolem term o f a formula w

and rule IND cannot be applied; let y be the selected parameter
0

o f sort l i s t .

The formulas generated to synthesize the definition of f for

the base case or the recursion case resp. would be:

y empty -> wo

y cons(nl) A sz1 . . . z n wo[y+l] —> too

where {x,z,z1,...,zn} = vars(¢o)\{y} .

But this technique shall not be considered here i n detail.

18

2 .1 .2 Evaluation Rules

Performing the synthesis of a skolem function.presupposes having

at one's disposal a set of lemmata about properties<xffunctions

and predicates occurring in the specification wo, for example,

lemmata expressing communtativity, associativity, injectivity of

a function or symmetry, reflexivity etc. o f a predicate. The

definition formulas of course play the most important role. The

following two "evaluation"— or "rewrite"-rules serve to use such

lemmata or definitions to simplify an (already modified)

specification or make other rules applicable.

RWT

("rewrite term") B » t1 = t1 (*)

A A B -> C [t 1 + t 2]

A A B -) C[D]

RWF _
("rewrite formula") B + [D ++ D'] (*)

A A B _» C[D+D']

The formulas marked with (*) are presumed to be among the axioms.

19

2 .1 .3 Using Lemmata

There are three further transformation rules which serve to

use already existing lemmata or to generate them. The most

important of them is the implication rule:

A » C

IMPL

("implication“) B » C (*) 4

A , » B ‘ .

This makes it possible to weaken a formula A » C by replacing

C by a formula which implies C.

A transformation rule used to strengthen a given formula

A A B » C is the specialization rule:

A A B » C

SPEC

("specialization") B ifB'

A A B ' » C .

The extension rule is a very helpful tool if additional pro-

positions, for example about terms occurring in a formula,

are needed.

A A B » C

EXT

("extension") B » D (*)

A A B » C A D .

20

2 .1 .4 Isolating Terms

The following rules are used to extract terms from formulas to

obtain equalities which finally help to constitute the desired

definition formulas.

The most important of these rules is the equality rule which

carries out the very last step in almost every synthesis.

B A t = t1 + (-) t = t2
EQ

("equality") B » (-) t1 = t2

Very similar is the predicate rule which is also helpful in

eleminating predicates:

4 ‘l I
B A p (t 1 o n o t n) _. p (t 1 c o o t n)

PRED
- n = I ._. I("predicate) B + t1 t1 A . . . A tn tn

where p i s a n-ary predicate.

The elimination of functions is done by the function rule:

A » f(t .tn) = f(ti...t£)1 . 0

FUN
" u = I = I(function) A » t1 t1 A ... A tn tn .

The equal term rule serves to eliminate redundant terms:

A » [t = t1 ++ t = t]2
EQT

("equal terms") ‘ ' A -9 t1 = t2

Extraction of formulas analogous to the extraction of terms

by the equality rule is done by the equivalence rule:

B A [A ++ C] * [A ++ D]
EQV

("equivalence") B » [C ++ D] .

21

2 .1 .5 Special Rules

Finally some rules will be described Which belong to none of

the above categories or are very special.

The case analysis rule:

A » B

CA

("case analysis") A A C1 » B‘

A A Cn » B

provided C1 v ... v Cn
i s a theorem.

The strengthening rule serves to eliminate implications:

D [A + B A C]

STR

("strengthening") D [A A B A C] .

The premise elimination rule is used to eliminate redundant

premises from a synthesized definition formula:

A A B + C

EL

(" e l i m i n a t i o n ") A » B

A + C ‘ .

In addition to the transformation rules described up to now

equivalent logical transformations are allowed such as the

elimination o f true and false and substitutions like

t 1 t2 A B + C[t1]

(*)
t1_= t2 A B » C[t2]

and

. 22

A‘ért t2 A C [t1]

(* *)
A * t1 = t 2 A C[t2] .

From this we can see that all transformation rules have the

property R .

23

2.2 How to Apply the Transformation Rules

In this section we shall describe the sequence on which the

transformation rules are applied in order to find a constructive

definition of a skolem function f from a given specification wo.

Assume the definition formulas of all functions, predicates and

structures occurring in wo as well as certain lemmata and

information about the recursion of functions and predicates are

given and available i n a data base. These formulas together with

the form of mo control the selection of the transformation rules

to be applied according to the following strategy.

The rule to be applied first is the induction rule, yielding a

s e t o f formulas like

{Y1 - ’ (Oo , - - - r Y m v t p o } I

where m i s the number o f definition c a s e s .

A
The induction hypothesis Vz1...zl A[xi+ti] will automatically

be generated by the induction system.

Each o f these formulas will be treated separately until a

definition formula for f is found for this case.

The synthesis process terminates if a definition formula has

been derived from each formula Y i » wo.

Now we shall try to evaluate symbolically the functions and

predicates occurring in wo by applying the rules RWT and RWF

to Y i * wo. The rules and definition formulas to be used are

pattern directed selected ("pattern directed invocation"

[MW79/2]) according to the function and predicate symbols

occurring in wo.

This process continues until neither RWT nor RWF are applicable

any more.

The examples of chapter 3 show that, if Y i has been a formula

characterizing a base case the synthesis has often already

24

finished at this point and a non-recursive definition of f ,

i.e. a definition formula

Y i » f(x1...xn) = t

i s obtained.

If no definition formula has been.derived at this point and

some functions or predicates have remained unevaluated the

application of the case analysis rule CA goal directed is

attempted to enable applicability of RWT or RWF resp.

The way to do this is first to look up all definition formulas

whose symbols occur in @ (where Y i a w is the formula derived

from Y i » wo) and which have not yet been evaluated.

Their premises are collected and the formulas w are determined

which in conjunction with Y i make the application of RWT or

RWF possible. From the w the one which contains the highest

number of structural propositions is chosen, i.e. propositions

about the structure of the term f(x1...xn) or a variable, in

terms of constructor functions and/or base constants (e.g.

f(x1...xn) = s(V) or y = cons(uv) etc;). Taking the selected
w and the remaining cases w1‚...,wk of the correSponding

definition, the disjunction w v W1 v ... V wk will be a

theorem because the formulas w‚w1‚...,wk represent a complete

case analysis.

The formulas resulting from application of CA are:

Y i A w —>w

viAw1-up

Y-Awk-Ho .

This transformation will be carried out i n cases where not

only the formula Y i A w » m but also any of the others
y. A w . » @ can be transformed by evaluation o f the
1 J

corresponding function or predicate.

25

If only the first formula yi A w + m can be transformed by RWT

resp. RWF the cases w1,...‚wk are ignored and the CA-rule simply

yields:

viA w-up
y.l A - x p e c p ‘ .

Evaluationstepswhich are possible only because a CA-rule was

used previously with a formula w including predicates or

functions which occur neither in Y i nor in w have a lower

priority.

The next transformation after such a CA-step will always be

carried out on that formula which makes the desired evaluation

possible (eventually after another application o f a CA—rule).

I f Y i i s not a characterization o f a base case and wo has been

simplified by applying the evaluation rules RWT and RWF, possibly

with the aid o f CA, the next step is to consider the induction

hypothesis of the original specification formula mo which is

part of Y i "

The main goal is now to transform the formula Y k A I A w » w

(which has been derived from Y k A I » wo) to obtain the

applicability of one of the term isolating rules (section 2 .1 .4)
in order to find a recursive definition of f .

This will be done by trying to match the induction hypothesis I

with @ such that one of the rules PRED or FUN can be applied.

A failure of this match causes goal-oriented transformations.

They may consist in applying rules RWT, RWF, IMPL, EQ etc.

together with (*) and (**) using lemmata (such a s commutativity

or associativity o f functions), which w i l l be selected pattern

directed. Additionally the induction hypothesis I may be modified

to I' by the SPEC—rule rendering a successful match of the

resulting w ' and I'.

A good heuristic is to try matching the formulas after each step

and then to decide which rule to apply next depending on the

information obtained from the failed match. Transformations with

26

rules CA should be avoided if possible.

The process terminates i f each o f the formulas Y i 4 mo (which

are the results o f the first transformation IND) has been

transformed into a definition formula o f formt

w » f(x1...xn) = t .

The derived definition of the skolem function f must be checked

for uniqueness, whereas completeness and termination are already

guaranteed by the rules IND and CA. A correctness proof of the

derived definition (i.e. the conjunction of a l l derived definition

formulas implies the specification wo) is also obsolete because

all rules defined in section 2.1 have the property R.

Finally all the formulas which have been generated in the

synthesis process but have not lead to a definition formula

have to be proved using the synthesized definition o f f .

27

3. Examples

In this chapter some examples are presented to give a precise

idea of how a synthesis system as described in chapter 2 works
and in particular how the transformation rules are selected.

The first examples are very simple, whereas the last demonstrate

some problems which occur i n treating more complex specifications

like conjunctions or equivalences.

3.1 Synthesis of function plus

The following example demonstrates the straight forward

derivation of a function plus from its specification.

Let us suppose the definitions given to the system are those

of the structure nat of natural numbers and two functions pred

(predecessor) and diff (difference).

STRUCTURE O s(nat): nat

FUNCTION pred(x:nat): nat =

I F x = O THEN 0

I F au : nat x = s(u) THEN u

FUNCTION diff(x,y:nat): nat =

IF y = O THEN x

IF 3v : nat y = s(v) THEN pred(diff(xv)) .

For the following assume that all formulas are prefixed by a

universal quantification o f all variables occurring i n it.

The definition formulas generated by the system are then:

28

AX1 x = O v Hy : nat x = s(y)
AXZ s(x) * O
AX3 s(x) =s(y) + + x = y
AX4 x = O + pred(x) = O
AXS x1= s(u) » pred(x) = u
AX6 y = 0 » diff(xy) = x

AX7 y = s(v) » diff(xy) = pred(diff(xv))

The formula to be proved is:

Vx,y : nat az : nat diff(zy) = x .

Skolemization yields the specification:

diff(f(xy)y) = x .

The rule first to be applied is the induction rule. The

recursive function diff satisfies all premises for its

application.

diff(f(XY)Y) = x
‘ (IND)

1 . y = O diff(f(xy)y) = x

2. y = s(v) A Vz : nat diff(f(zv)v) = z » diff(f(xy)y)

Now formula 1 . will be transformed by symbolical evaluation of
function diff:

1 . y = 0 # diff(f(xy)y) = x

(RWT)

1.1 y O » f(xy) = x

1.2 y O » diff(f(xy)y) = f(xy)

(instance o f AX6)

With formula 1.1 the first definition formula has been derived

and the process continues with transformation of formula 2.

The first step again will be the symbolical evaluation of

function diff:

X

29

2. y = s(v) A Vz : nat diff(f(zv)v) = z » diff(f(xy)y) = x

2.1 y = s(v) A Vz : nat diff(f(zv)v) = z »

pred(diff(f(xy)v)) = x

N N "
<
:

I
I

s(v) » diff(f(xy)y) = pred(diff(f(xy)v))

(instance of AX7)

Now no further evaluation step is possible and the attempt to

match formula pred(diff(f(xy)v) = x with the induction hypothesis

I: Vz : nat diff(f(zv)v) = 2 fails because of the occurrence of

function pred. Therefore its elimination is attempted with the

aid of its definition and the implication rule:

2 .1 y = s(v) A Vz : nat diff(f(zv)v) = z »

pred(diff(f(xy)v) = x

(IMPL)

2 .1 .1 y = s(v) A Vz : nat diff(f(zv)v) = z »

diff(f(xy)v) = s(x)

2 .1 .2 diff(f(xy)v) = s(x) + pred(diff(f(xy)v)) = x

(instance o f AX5)

Obviously the match between formula diff(f(xy)v) = s(x) and the
induction hypothesis I will succeed, in that rule FUN becomes

applicable, i f we take the instance o f I with z replaced by the

term s(x) and then apply the equality rule:

2 .1 .1 y = s(v) A Vz : nat diff(f(zv)v) = z »

diff(f(xy)v) = s(x)
(SPEC)

2 .1 .1 .1 y = s(v) A diff(f(s(x)v)v) = s(x) »

diff(f(xy)v) = s(x)

2 .1 .1 .2 Vz : nat diff(f(zv)v) = z » diff(f(s(x)v)v) = s(x)

30

2 .1 .1 .1 y s(v) A diff(f(s(x)v)v) = s(x) »

diff(f(xy)v) = s(x)

(EQ)

y s(v) » diff(f(s(x)v)v) = diff(f(xy)v)

Now application of the function rule leads to the second

definition formula:

y s(v) + diff(f(s(x)v)v) = diff(f(xy)v)

(FUN)

y s(v) » f(xy) = f(s(x)V)

(The formula v = v has been simplified to true and then has

been eliminated.)

At this point the synthesis process terminates. The derived

definition formulas for the skolem function f (i.e. plus)

are:

y 0 + f(xy) = x

Y s(v) * f(xy) = f(s(x)y) , i.e.

the definition o f f i s :

FUNCTION f(x,y:nat): nat =

IF y 0 THEN x

s(v) THEN f(s(x)v)IF y

Now the definition has to be checked for uniqueness and

finally the formula 2 .1 .1 .2 : v : natEVz:nat diff(f(zv)v) = z »
diff(f(s(x)v)v) = s(x)]

has to be proved.

31

3.2 Synthesis o f function rest

This example shows how some lemmata have to be used skillfully

to derive the definition formulas of function rest.

Let us assume the following definitions of natural numbers and

functions and predicates defined on them are given:

STRUCTURE O s(nat): nat

FUNCTION plus(x,y:nat): nat =

'IF x = o THEN y

IF au : nat x = s(u) THEN s(plus(uy))

FUNCTION times(x,y:nat): nat =

I F x = O THEN 0

IF au : nat x = s(u) THEN plus(times(uy)y)

FUNCTION sub(x,y:nat): nat =

IF y o THEN x

IF x O THEN 0

IF au‚v : nat x = s(u) A y = s(v) THEN sub(uv)

PREDICATE lt(x,y:nat) =

‘IF y 0 THEN false

IF x O A av : nat y.= s(v) THEN true

IF 3u,v : nat x = s(u) A y = s(v) THEN lt(uv)

PREDICATE ge(x‚y:nat) = not lt(xy)

FUNCTION quot(x,y:nat): nat =

IF y = o THEN 0

IF lt(xy) THEN 0

IF ge(xy) A y # 0 THEN s(quot(sub(xy)y))

32

The definition formulas generated by the system are:

AX1 x = 0 v 3y : nat x = s(y)

AX2 s(x) * O

AX3 s(x) = s(y) ** X = Y

AX4 x = O + plu5(Xy) = Y

AXS x = s(u) » plus(xy) = s(plus(uy))

AX6 x = O + times(xy) = O

AX7 x = s(u) » times(xY) = plus(times(uy)y)

AX8 y = O + sub(xy) = x

AX9 x = O + sub(xy) = O

AX1O x = s(u) A y = s(v) + sub(xy) = sub(uv)

AX11 y = O + [lt(xy) ++ jglgg]

AX12 x = O A y = s(v) » [1t(xy) ++ true]

AX13 x s(u) A y = s(v) + [lt(xy) ++ lt(uv)]

AX14 ge(xy) ++ EEE 1t(xy)

AX15 y = O + quot(xy) = O

AX16 lt(xy) + quot(xy) = O

AX17 ge(xy) A y # O + quot(xy) = s(quot(sub(xy)y))

Additionally the following lemmata will be given:

L1 plus(xy) = plus(yx)

L 2 plus(plus(xy)z) = plus(x plus(yz))

L3 ge(uv) + [plus(wv) = u ++ w = sub(uv)]

The formula to be proved is:

Vx‚y : nat az : nat plus(times(quot(xy)y)z) = x

Skolemization yields the specification:

plus(times(quot(xy)y) f(xy)) = x

33

The function quot will be taken to apply the induction rule

because its parameter x is a recursion argument and all

premises for the application of IND are fulfilled. The result

is three formulas:

plus(times(quot(xy)y) f(xy)) = x

(IND)

1 . y = o » p 1 u s (t i m e s (q u o t (x y) y) f(xy)) = x

2. lt(xy) » plus(times(quot(xY)Y) f(xy)) = x

3. ge(xy) A y # 0 A plus(times(quot(sub(xy)y)y)

f(sub(xy)y)) = sub(xy)

» plus(times(quot(xy)Y) f(xy)) = x

Formula 1 . will be transformed by symbolical evaluation of
functions quot, times and p lus :

1. y = O plus(times(quot(xy)y) f(xy)) = x

(RWT)

1 .1 y = O » plus(times(Oy) f(xy)) = x

1.2 y = 0 * quot(xy) = O

(instance of AX15)

1.1 y = O plus(times(0y) f(xy)) = x
(RWT)

1 .1 .1 y = O + plus(o f(xy)) = x

1.1 .2 0 = o » times(0y) = o

(instance of AX6)

1 .1 .1 y = O » plus(o f(xy)) = x
(RWT)

1 .1 .1 .1 y = O » f(xy) = x

1 .1 .1 .2 O = O » plus(o f(xy)) = f(xy)

' (i n s t a n c e of AX4)

34

With formula 1 .1 .1 .1 the f i r s t definition formula has been

derived.

Formula 2 will now be treated very similarly:

2. lt(xy) 9 plus(times(quot(xy)y) f(xy)) = x

(RWT)

2.1 lt(xy) » plus(times(0y) f(xy)) = x

2.2 lt(xy) » quot(xy) = O

(instance o f AX16)

2.1 lt(xy) + plus(times(0y) f(xy)) = x

(RWT)

2 .1 .1 lt(xy) » plus(O f(xy)) = x

2 .1 .2 0 = O » times(0y) = O

(insta nce o f A X 6)

2 .1 .1 lt(Xy)-+plus(0 f(xy)) = x
(RWT)

2 .1 .1 .1 lt(xy) * f(xy) = x

2.1.1.2 O = O » plus(O f(xy)) = f(xy)

(instance o f AX4)

With formula 2 .1 .1 .1 the second definition formula has been

derived.

Now formula 3 will be transformed and the first steps to be

taken will be symbolical evaluation of functions quot and

times. But first the following abbreviations shall be made.

£ := quot(sub(xy)y)
I := plus(times(£y) f(sub(xy)y)) = sub(xy)

35

3. ge(xy) A y # O A I » plus(times(quot(xy)y) f(xy)) = x

(RWT)

3.1 ge(xy) A y # O A'I +

plus(times(s(quot(sub(xy)y))y) f(xy)) = x

3.2 ge(xy) A'y * O » quot(xy) = s(quot(sub(xy)y))

(instance o f AX17)

3.1 ge(xy) A y # O A I ; p l u s (t i m e s (s (£) y) f(xy)) = X

(RWT)

3.1.1 ge(xy) A y * o A
plus(times(£y) f(sub(xy)y)) = sub(xy)

» plus(plus(times(£y)y) f(xy)) = x

3 .1 .2 s (£) = s (£) » times(s(£)y) = plus(times(£y)y)

(instance o f AX7)

Now no further evaluation would be helpful and therefore

to match I with the formula '

F := plus(plus(times(£y)y) f(xy)) = x

The failure consists in the second plus of formula F and

function sub occurring on the right side of the equality

A look a t our data b a s e shows u s that the lemma L 3 makes

possible under certain conditions Uaexchange an equality

we try

i n the

i n I .

i t

involving a plus—term for one involving a sub-term. The only

condition we s t i l l have to f u l f i l l i s to transform F such that

y becomes the second argument of the first plus instead of that

o f the s e c o n d o n e .

To reach this goal lemmata L1 and L2 will be helpful and

way we choose is the following:

the

36

Use commutativity of function plus:

3 .1 .1 ge(xy) A y # O A I-aplus(plus(times(£y)y) f(xy)) = x
(RWT)

3 .1 .1 .1 ge(xy) A y * O A I 4

I
I Xp1us(plus(y times(£y)) f(xy))

3 .1 .1 .2 plus(times(£y)y) = plus(y times(£y))

(instance o f L1)

Use associativity o f function plus:

3 .1 .1 .1 ge(xy) A y # O A I »

l
l Np1us(plus(y times(£y)) f(xy))

(RWT)

3 .1 .1 .1 .1 ge(xy) A y # O A I a

I
I

Nplus(y plus(times(£y) f (x y)))

3 .1 .1 .1 .2 plus(plus(y times(£y)) f(xy)) =

plus(y plus(times(£y) f(xy)))

(instance o f L2)

Again use commutativity of function plus:

3 .1 .1 .1 .1 ge(xy) A y * O A I »

plus(y plus(times(£y) f(xy))) = x
(RWT)

3 .1 .1 .1 .1 .1 ge(xy) A y # O A I »

plus(plus(times(£y) f(xy))y) = x

3 .1 .1 .1 .1 .2 plus(y p1us(times(£y) f(xy))) =

p1us(plus(times(£y) f(xy))y)

(instanCe o f L 1)

37

Now with rule RWF and L3 formula 3 .1 .1 .1 .1 .1 can be transformed

such that a match between i t and I su¢ceeds i n that after an EQ

step rule FUN becomes applicable and yields a recursive

definition of f:

3 .1 .1 .1 .1 .1 ge(xy) A y * O A I »

plus(p1us(times(£y) f(xy))y) = x

RWF

3 .1 .1 .1 .1 .1 .1 ge(xy) A y * o A I »

plus(times(£y) f(xy)) = sub(xy)

3.1.1.1.1.1.2 g e (x y) -» _
[plus(plus(times(£y) f(xy))y) = x ++

plus(times(£y) f(xy)) = sub(xy)]

(instance of L3)

3 .1 .1 .1 .1 .1 .1

ge(xy) A y # O A plus(times(£y) f(sub(xy)y)) = sub(xy)

» p1us(times(£y) f(xy)) = sub(xy)

(EQ)

ge(xy) A y * o # plus(times(£y) f(sub(xy)y)) =

plus(times(£y) f(xy))

ge(xy) A y * O » p1us(times(£y) f(sub(xY)Y)) =

plus(times(£y) f(xy))
(FUN)

ge(xy) A y # O » f(xy) = f(sub(xy)y)

Now the third definition formula of f has been derived and the

synthesis process terminates.

The definition formulas o f the skolem function f (i.e. rest)

a r e :

38

y = O » f(xy) = x

lt(xy) » f(xy) = x

ge(ky) A y * o » f(xy) f(sub(xy)y) ,

i.e. the definition o f f i s :

FUNCTION f(x,y:nat): nat =

IF y = 0 THEN x

IF lt(xy) THEN x

IF ge(xy) A y * 0 THEN f(sub(xy)y)

I t still has to be checked for uniqueness but then i t will be

finiShed.

39

3.3 Synthesis of function half

This example has been chosen to demonstrate how a function

definition can be derived from a more complex specification.

It will be an equivalence with a predicate other than equality

being involved. Suppose the definitions given to the system

are:

STRUCTURE O s(nat): nat

FUNCTION double(x:nat): nat =

IF x = o THEN o
s(u) THEN s(s(double(u)))I F a u : nat x

PREDICATE even(x:nat)

I F x = 0 THEN true

I F x = s(O) THEN false

I F au : nat x = s(s(u)) THEN even(u)

The definition formulas generated by the system are:

AX1 x = O v ay : nat x = s(y)

AX2 s(x) # O

Ax3 s(x) = s(y) ++ x = y

AX4 x = 0 * double(x) = O

AXS x = s(u) + double(x) = s(s(double(u)))

AX6 x = O + [even(x) ++ £532]

AX7 x = s(O) » [even(x) ++ false]

AX8 x = s(s(u)) » [even(x) ++ even(u)]

The formula to be proved is:

Vx : nat Ey : nat even(x) ++ double(y) = x

Skolemization yields the specification:

e v e n (x) ++ d o u b l e (f (x)) = x .

40

The induction rule will be applied and the recursive predicate

even fulfills all premises which are required. We therefore get

three definition cases:

even(x) ++ double(f(x)) = x'

(IND)

1. x = 0 -> [even(x) <—> double(f(x)) -—j x]
2. x = s(O) » [even(x) ++ double(f(x)) = ‚ X J

3. x = s(s(u)) A [even(u) ++ double(f(u)) = u]
* [even(x) ++ double(f(x)) = x]

The first formula w i l l be transformed by symbolical evaluation

o f predicate even:

1. x = O » [even(x) ++ double(f(x)) = x]

(RWF)

1 1 x = O + [true ++ double(f(x)) = x]

1.2 x = o » [even(x) ++ true]

(instance o f A X 6)

Now no further evaluation rule can be applied because we have

no information about the structure o f f(x) to evaluate the term

double(f(x)).

Therefore the case analysis rule will be goal directed applied

to reach applicability of RWT:

1.1 x = O » double(f(x)) = x

(CA)

1 .1 .1 x = O A f(x) = O » double(f(x)) = x

1 .1 .2 x = O A f(x) = s(u) * double(f(x)) = x

1 .1 .1 x = O A f(x) = O » double(f(x)) = x

(RWT)

1 .1 .1 .1 x 0 A f(x) = O + O = x

1 .1 .1 .2 f(x) = O + double(f(x)) = O

(instance o f AX4)

41

Applying rule EQ to formula 1 .1 .1 .1 yields the first

definition formula:

1.1.1.1 x_= o A'f(x) = o 4 o = x
(EQ)

x = O 4 f(x) = x

Formula 2 will be transformed very similarly by first evaluating
the predicate even and then goal directed applying the CA-rule

to reach applicability of RWT to evaluate function double:

2 . x = s(0) » [even(x) ++ double(f(x)) = x]

(RWF)

2.1 x = s(0) » [false ++ double(f(x)) = x]

2.2 x = 5(0) + [even(x) ++ false]

(instance of AX7)

. 2.1 x = s(0) & - double(f(x)) = x

(CA)

2 .1 .1 x = s(0) A f(x) = O » — double(f(x)) = x

2.1.2 x = s(Ö) A f(x) = s(u) » - double(f(x)) = x

2 .1 .1 x = s(0) A f(x) = O + — double(f(x)) = x

(RWT)

2 .1 .1 .1 x = s(o) A f(x) = O + - O = x

2 .1 .1 .2 f(x) = O » double(f(x)) = O

(instance o f AX4)

Applying rule EQ to formula 2 .1 .1 .1 yields a very "weak"

specification for our skolem function:

2 .1 .1 .1 x = s(O) A f(x) = O + - O = x

(EQ)

'2 .1 .1 .1 .1 x = s(0) » - f(x) = x

42

Now our system has to choose a value for f(x) which is

sufficient to make formula 2 .1 .1 .1 .1 true.

This i s very simple here. Because x i s presumed to be a

constructor term (s (O)) we simply choose the base constant

of structure nat as value o f f(x) and reach the second

definition formula:

2 .1 .1 .1 . 1
X s(O) » - f(x) = x

(choose
value)

X 5 (0) -> f(x) = 0

Finally formula 3 will be transformed and the first rule to
be applied to it will be RWF. I stands for the induction

the formula even(u) ++ double(f(u)) = u.hypothesis, i.e.

3 . x = s(s(u)) A I » [even(x) ++ double(f(x)) = x]

(RWF)

3.1 x = s(s(u)) A I » [even(u) ++ double(f(x)) = x]

3.2 x = s(s(u)) » [even(x) ++ even(u)]

(instance o f AX8)

The function double can be evaluated symbolically after

application of the CA-rule:

(A
)

_
A N l
l

(CA)

s(s(u)) A I » [even(u) ++ double(f(x)) = x]

3 .1 .1 x s(s(u)) A f(x)
S (s (u)) A f(X)

[even(u) ++

= O A I » [even(u) ++ double(f(x))==x]

= s(v) A I »

double(f(x)) = x]

43

3 .1 .2 x = s(s(u)) A f(x) = s(v) A I »

[even(u) ++ double(f(x)) = x]

(RWT)

3 .1 .2 .1 x = s(s(u)) A f(x) = s(v) A I »

[even(u) ++ s(s(double(v))) = x]

3 .1 .2 .2 f(x) = s(v) » double(f(x)) = s(s(double(v)))

(instance o f AX5)

With the equivalence rule EQV the formula even(u) can be

eliminated from formula 3 .1 .2 .1 :

3 .1 .2 .1 x = s(s(u)) A f(x) = s(v) A

[even(u) ++ doub1e(f(u)) = u]

» [even(u) ++ s(s(double(V))) = x]
(EQV)

x = s(s(u)) A f(x) = S (v) -»

[double(f(u)) = u ++ s(s(double(v))) = x]

The main goal now is to apply transformations which change the

formula F : = s(s(double(v))) = x i n such a way that rule EQT

can be applied to eliminate the equivalence.

Replacing the x in formula F by the term s(s(u)), which can

easily be done by the (*)-rule, makes it possible to reduce F
by rule RWF and the injectivity o f the constructor function

such that EQT can be applied.

s(v) *x = s(s(u)) A f(x) =

[double(f(u)) = u ++ s(s(double(v))) = x]
(*)

x = s(s(u)) A f(x) = s(v) »

[double(f(u)) = u ++ s(s(double(v))) = s(s(u))]

44

x = s(s(u)) A f(x) = s(v) +

[double(f(u)) = u ++ s(s(doub1e(v))) = s(s(u))]

(RWF)

x = s(s(u)) A f(x) = s(v) +

[double(f(u)) = u ++ s(double(v)) = s(u)]

_s(s(double(v))) = s(s(u)) ++ s(double(v)) = s(u)

(instance of AX3)

x = s(s(u)) A f(x) = s(v) +

[double(f(u)) = u ++ s(double(v)) = s (u)]

(RWF) '

x = s(s(u)) A f(x) = s(v) +

[double(f(u)) = u ++ double(v) = u]

s(double(v)) = s(u) ++ double(v) = u

(instance o f AX3)

x = s(s(u)) A f(x) = s(v) +

[double(f(u)) = u ++ double(v) = u]

(EQT)

x = s(s(u)) A f(x) = s(v) + double(f(u)) = double(v)

Now the function rule FUN can be applied:

x = s(s(u)) A f(x) = s(v) + double(f(u)) = double(v)

(FUN)

x = s(s(u)) A f(x) = s(v) + f(u) = v

We have now reached a kind of formula which very often occurs

towards the end of a synthesis process.

We know that if f(x).is a constructor term then the argument

of the constructor function is equal to a certain term. In

such a situation the definition fermula of f i s obtained by

45

first applying the RWF rule with the injectivity of the

constructor function and then applying the equality rule.

x = s(s(u)) A f(x) = s(v) » f(u) = v
(RWF)

x = s(s(u)) A f(x) = s(v) » s(f(u)) = s(v)
f(u) = V' +»- s(f(u)) = s(v)

(instance of AX3)

x = s(s(u)) A f(x) = s(v) » s(f(u)) = s(v)

(EQ)

x = s(s(u)) » f(x) = s(f(u))

Now the synthesis process terminates yielding the following

definition formulas of function f (i.e. half):

x = O » f(x) = x

x = s(O) » f(x) = 0

x = s(s(u)) » f(X) = s(f(u)) ,

i . e . the definition o f f i s :

FUNCTION f(x:nat): nat =

IF x = 0 THEN X

IF x = s(O) THEN l o
IF Eu : nat x = s(s(u)) THEN s(f(u)) .

Finally this definition has to be checked for uniqueness and

the following formulas have to be proved:

1 .1 .2 Vx : natEx O A f(x) = s(u) » double(f(x)) = x]

s(O) A-f(x) = s(u) ; — double(f(x)) = x]2 .1 .2 Vx : n a t E x

3 .1 .1 Vx,u : natEx = s(s(u)) A f(x) = O A
[even(u) +» double(f(u)) = u] »

[even(u) +» double(f(x)) = x]]

46

This i s easily done Using the definition formulas o f function f

together with the axioms AX2, AX4 and AXS.

47

3.4 Synthesis of function sort

The last example shows the synthesis of a sort—function. The

specification is a conjunction of atomar formulas without any

equality predicate. We will see that a terminating definition

of the skolem function can only be obtained if the modified

specification is extended by a lemma. The following shows how

this will be managed.

First assume the definitions of the set of lists of natural

numbers, the predicates perm (permutation), ordered and member

and the function min (minimum) are given:

STRUCTURE O s(nat): nat

STRUCTURE empty cons(nat list): list

PREDICATE le(x,y:nat) =

I F x = O THEN true

IF x * o A y = o' THEN false
IF au,v : nat x = s(u) A y = s(v) THEN le(uv)

PREDICATE gt(x,y:nat) = not le(xy)

FUNCTION min(x:list): nat =

IF x = empty THEN 0

I F 3n:nat x = cons(n empty) THEN n

IF 3n,m : nat Hy : list x = cons(n cons(my))

A le(nm) THEN min(cons(ny))

IF an,m : nat Ey : list x = cons(n cons(my))

A gt(nm) THEN min(cons(my))

FUNCTION

I F

IF

IF

PREDICATE

IF

I F

I F

PREDICATE

I F

I F

I F

PREDICATE

I F

I F

I F

The definition formulas generated by

48

delete(n:nat x:list): list =

x=3np£z THEN x

By : list x = cons(ny) THEN y

am : nat By : list x = cons(my)

A n * m THEN. Cons(m delete(ny))

ordered(x:list)

x = emEtx _THEN true

3n : nat Ey : list x cons(ny)

A n # min(x) THEN false

an : nat 3 y : list x cons(ny)

A n min(x) THEN ordered(y)

perm(x,y:nat)

x = emEtz THEN y = emEtX

y = emEtx THEN x = emgtx

an : nat a z : list x = cons(nz)

A y * emEtX THEN perm(z delete(ny))

member(n:nat x:list)

x = emEtX THEN f a lse

3m : nat By : list x = cons(my)

A n = m THEN true

am : nat Ey : list x = cons(my)

A n * m THEN member(ny)

the system are:

[

Ax1 Vx : nat [x = O v 3y : nat x = s(y)]

AX2 VX : nat s(x) # O

AX3 Vx‚y : nat [s(x) = s(y)'*-+ x = y]

49

AX4 Vx : list [x = empty v a n : nat By:: list x = cons(ny)]

AXS Vx : list Vn : nat cons(nx) # emEtX

AX6 Vx,y : list Vn,m : nat [cons(nx) = cons(my) ++ n = m A x = y]

The following axioms apply to the defined functions and

predicates and are given without an outermost universal

quantification. The sorts o f the occurring variables become

clear from the context.

l
l

AX7 x O + [le(xy) ++ true]

AX8 x # O A y = O + [le(xy) ++ false]

AX9 x s (u) A y = s(v) + [le(xy) ++ le(uv)]

AX1O gt(Xy) ++ not le(xy)

AX11 x = emEtX + min(x) = O

AX12 x cons(n emEtx) + min(x) = n

AX13 x = cons(n cons(my)) A le(nm) + min(x) — min(cons(ny))

AX14 x = cons(n cons(my)) A gt(nm) + min(x) min(cons(my))

AX15 x emgtx + d e l e t e (n x) = x

AX16 x = cons(ny) + delete(nx) = y

AX17 x = cons(my) A n # m + delete(nx) = cons(m delete(ny))

AX18 x = emEtx + [ordered(x) ++ true]

AX19 x = cons(ny) A n * min(x) + [ordered(x) ++ false]

AX20 x = cons(ny) A n = min(x) + [ordered(x) ++ ordered(y)]

AX21 x = emgtz + [perm(xy) ++ y = emgtx]

AX22 y = emEtX + [perm(xy) ++ x = emRtX]

AX23 x = cons(nz) A y # emEtX + [perm(xy) ++ perm(z delete(ny))]

AX24 x = emEtX + [member(nx) ++ false]

AX25 x = cons(my) A n = m + [member(nx) ++ true]

AX26 x = cons(my) A n # m + [member(nx) ++ member(ny)]

50

Additionally the following lemma will be available:

L1 Vx,y : list Vn : nat member(nx) A perm(y delete(nx))

» min(x) = min(cons(ny)) .

The formula to be proved is:

Vx : list 3y : list perm(yx) A ordered(y) .

Skolemization yields the specification:

perm(f(x)x) A ordered(f(x)) .

The induction rule is applied using the recursive predicate

perm. The induction hypothesis generated for this specification

has a more complex structure because taking only its second

argument into consideration the predicate perm doesn't terminate

except under a certain condition. However the problem of

generating a correct induction hypothesis for a formula will not

be d i s c u s s e d h e r e .

The first transformation step yields two formulas:

perm(f(x)x) A ordered(f(x))

(IND)

1. x = empty » perm(f(x)x) A ordered(f(x))

2. - x = empty A Vm : nat [member(mx) a perm(f(delete(mx))

delete(mx)) A ordered(f(delete(mx)))]»
perm(f(x)x) A ordered(f(x))

The first formula will be transformed by symbolical evaluation

of predicate perm:

1. x = empty » perm(f(x)x) A ordered(f(x))

(RWF) ‚_

1.1 x = empty » f(x) = empty A ordered(f(x))

1.2 x = empty » [perm(f(x)x) ++ f(x) = mpty]

(i n s t a n c e o f A X 2 2)

51

After a (**)—step the predicate ordered will be evaluated:

1.1 x = emEtX » f(x) = emgtx A ordered(f(x))

(* *)

1 .1 .1 x emgtx + f(x) = emEtX A ordered(emEtx)

1 .1 .1 x emEtX » f(x) emEtX A ordered(emEtx)

(RWF)

1 .1 .1 .1 x = emEtX » f(x) = empty

1 .1 .1 .2 emEtX = emgtx » [ordered(emEt2) ++ true]

(instance o f AX18)

With formula 1 .1 .1 .1 the f i r s t definition formula has been

derived.

For the following assume I to be an abbreviation for the

induction hypothesis Vm : nat [member(mx) + perm(f(delete(mx))

delete(mx))A ordered(f(de1ete(mx)))].

A symbolical evaluation o f a predicate occurring i n formula 2

can only be made i f some information about the structure o f

the term f(x) i s available. Therefore a case-analysis—step i s

carried out f i r s t :

2. x # emgtz A I » perm(f(x)x) A ordered(f(x))

(CA)
2.1 x * emEtZ A f(x) = emgty A I » perm(f(x)x) A ordered(f(x))

2.2 x # emEtX A f(x) cons(nz) A I » perm(f(x)x) A

ordered(f(x))

52

2.2 x # emEtx A f(x) = cons(nz) A I » perm(f(x)x) A

ordered(f(x))
(RWF)

2 .2 .1 x # emEtx A f(x) = cons(nz) A I »

perm(z delete(nx)) A ordered(f(x))

2 .2 .2 f(x) = cons(nz) A x # emgtx » perm(f(x)x) +»

perm(z delete(nx))

(instance o f AX23)

A second CA—step enables symbolical evaluation of predicate

ordered:

2 .2 .1 x # empty A f(x) = cons(nz) A I » perm(z delete(nx)) A

ordered(f(x))

(CA)

2 .2 .1 .1 x * emEtz A f(x) = cons(nz) A n = min(f(x)) A I »

perm(z delete(nx)) A ordered(f(x))

2 .2 .1 .2 x # emEtX A f(x) = cons(nz) A n * min(f(x)) A I »

perm(z delete(nx)) A ordered(f(x))

2 .2 .1 .1 x # emEtX A f(x) = cons(nz) A n = min(f(x)) A I »

perm(z delete(nx)) A ordered(f(x))

(RWF)

2 .2 .1 .1 .1 x * emEtX A f(x) = cons(nz) A n = min(f(x)) A

I e m d d u d A O M M fi M)

2 .2 .1 .1 .2 f(x) = cons(nz) A n = min(f(x)) »

[ordered(f(x)) ++ ordered(z)]

(instance o f AX20)

53

I n order to eventually obtain the applicability o f the

predicate-rule to arrive at a value of the variable z we

use an instance of our induction hypothesis. This we will

obtain by the specialization-rule:

2 .2 .1 .1 .1 x # 99231 A f(x) = cons(nz) A n = min(f(x)) A

Vm : nat [member(mx) » perm(f(de1ete(mx))

delete(mx)) A ordered(f(delete(mx)))] »

perm(z delete(nx)) A ordered(z)

(SPEC)

2 .2 .1 .1 .1 .1 x # emgtx A f(x) = cons(nz) A n = min(f(x)) A

[member(nx) » perm(f(de1ete(nx)) delete(nx)) ;

ordered(f(delete(nx)))].» perm(z delete(nx))

ordered(z)

2 .2 .1 .1 .1 .2 Vm : nat [member(mx) + perm(f(de1ete(mx))

delete(mx)) A ordered(f(delete(mx)))] »
[member(nx) » perm(f(de1ete(nx)) delete(nx)) I

ordered(f(delete(nx)))]

Now we use the strengthening-rule to eliminate the implication in

the antecedent o f formula A : = 2 .2 .1 .1 .1 .1 .

A x # emEtz A f(x) = cons(nz) A n = min(f(x)) A

[member(nx) » perm(f(de1ete(nx))

delete(nx)) A ordered(f(deletehnd))] *

perm(z delete(nx)) A ordered(z)
(STR)

A.1 x * emEtX A f(x) = cons(nz) A n = min(f(x)) A

member(nx) A perm(f(delete(nx))

delete(nx)) A ordered(f(delete(nx))) »

perm(z delete(nx)) A ordered(z)

54

Now we shall replace the term f (x) in the formula n : min(f (m))
by the term cons (nä) . By doing this we are able to achieve that

the term f (x) occurs only once in the antecedent. From there it

can be removed (after some further transformations) by the EQ-

rule.

The problem which we have to solve now is that we may indeed

obtain a value for the variable 2 by applying the PRED-rule,

but what about n? No formula in the succedent of our modified

specification makes the application o f the EQ—rule possible to

attain a suitable value for n.

Therefore we apply the extension—rule with an instance o f

lemma L1: ‘

A.1 x # empty A f(x) = cons(nz) A n = min(cons(nz)) A

member(nx) A perm(f(delete(nx)) delete(nx)) A

ordered(f(delete(nx))) » perm (z delete(nx)) A

ordered(z)

(EXT)

A.1 .1 member(nx) A perm(f(delete(nx)) delete(nx)) »

min(cons(n f(delete(nx)))) = min(x)

(instance o f lemma L1)

A.1 .2 x # empty A f(x) = cons(nz) A n = min(cons(nz))A

member(nx) A perm(f(delete(nx)) delete(nx)) A

ordered(f(delete(nx))) » perm(z delete(nx)) A

ordered(z) A min(cons(n f(delete(nx)))) = min(x)

Applying the PRED-rule twice yields:

55

(PRED)

(PRED)

A.1 .2 .1 x * empty A f(x) = cons(nz) A n = min(cons(nz)) A

member(nx) » z = f(delete(nx)) A

min(cons(n f(delete(nx)))) = min(x)

Applicability o f the equality-rule to get a value o f n i s attained

by a (**)—step:

A.1 .2 .1

(**)

A.1 .2 .1 .1 x # empty A f(x) = cons(nz) A n =min(cons(nz)) A

member(nx) » z = f(delete(nx)) A

min(cons(nz)) = min(x)

A.1 .2 .1 .1

(EQ)

A.1 .2 .1 .1 .1 x # empty A f(x) = cons(nz) A member(nx) »

z = f(delete(nx)) A n = min(x)

Rule (**) will now replace the variable n in z = f(delete(nx)) by
the term min(x):

x * empty A f(x) = cons(nz) A member(nx) +

z f(delete(nx)) A n = min(x)

(**)

x # empty A f(x) = cons(nz) A member(nx) »

z==f(delete(min(x)x)) A n = min(x)

As i n example 3.3 the definition formula o f f i s now obtained by

first applying the RWF-rule with the injectivity o f the constructor

function and then applying the equality-rule:

56

x # emEtX A f(x) = cons(nz) A member(nx) »

z = f(delete(min(x)x)) A n = min(x)

(RWF)

x # empty A f(x) = cons(nz) A member(nx) » cons(nz) =

cons(min(x)f(delete(min(x)x)))

min(x) A z f(delete(min(x)x)) ++ cons(nz) ='J l
l

cons (min-(x) f (delete (min(X)X)))
(instance o f AX6

x # emgtx A f(x) = cons(nz) A member(nx) » cons(nz) =

cons(min(x)f(delete(min(x)x)))

(EQ)

x # emptz A member(nx) » f(x) = cons(min(x)

f(delete(min(x)x)))

Finally we are left with the fact that the antecedent o f the

derived definition formula F includes a formula (member(nx))

with a variable (n) occurring in i t which appears nowhere else

i n F .

This calls for an application of the elimination-rule:

x # emEtX A member(nx) » f(x) = cons(min(x)

f(delete(min(x)X)))

(EL)

x # empty » f(x) = cons(min(x)f(deleteCmin(x)x)))

x # emgtx » a n : nat member(nx)

Now the synthesis process terminates. The definition formulas

o f function f (i.e. sort) are:

57

x = empty » f(x) empty

cons(min(x)f(delete(min(x)x))) .X # empty » f(x)

They correspond to the following definition:

FUNCTION‘ f(X:liSt): list =

I F x = empty THEN empty

I F x * empty THEN cons(min(x)f(delete(min(x)x)))

The definition has to be checked for uniqueness and finally

the following formulas have to be proved:

2.1 x * empty A f(x) = empty A I » perm(f(x)x) A ordered(f(x))

2 .2 .1 .2 x # empty A f(x) = cons(nz) A n # min(f(x)) A I +

perm(z delete(nx) A ordered(f(x))

2 .2 .1 .1 .1 .2 Vm : nat [member(mx) » perm(f(delete(mx))

delete(mx)) A ordered(f(delete(mx)))] »

[member(nx) » perm(f(delete(nx)) delete(nx)) A

ordered(f(delete(nx)))]

- x # empty » 3 n : nat member(nx) .

The first and second formulas are easily proved using the

derived definition formulas o f function f . The third formula

i s very simple and the last one c a n be proved by Ax4 and the

definition formulas of predicate member.

58

4 . Conclusion

In order to eliminate existential quantifiers a method has been

presented to show how to synthesize a constructive definition

of the corresponding skolem function.

So far only atomar formulas with the equality predicate and

with only one occurrence of the skolem function have been

considered. For these specifications synthesis processes have

been carried out as demonstrated in examples 3.1 and 3.2. Now

further work on this topic consists in exactly specifying a

synthesis systemvflfixfllwill be able to deal with such specifications

and then implementing it.

Later more complex specifications involving implications or

conjunctions of predicates different from equality will be

considered. This should solve problems like those occurring

in examples 3.3 and 3.4.

Another problem which will become particularly important for

more complex specifications is the great number of CA-steps

which leads to an enormous increase in the number o f formulas

to be transformed. I t may become necessary to carefully select

those formulas which can possibly provide a definition. A way

of doing this is to first prove the premises of the formulas

resulting from a CA-step to exclude those whose premises are

false. This restricts fluanumber o f formulas to be considered

and helps to avoid useless derivations.

Additionally the first transformation step may be modified to

make any suitable case analysis possible (as discussed at the

end of section 2.1.1). It may be helpful, for instance, to

first look at the specification and all function and predicate

definitions involved and then to decide which case analysis

would be helpful (cf. example 3.4).

Further problems are those of weak specifications as in example

3.3 which force the system to find explicit values.

59

Presently the lemmata to be used are assumed to be available i n

a data base and are pattern directed selected.

Yet it would be helpful to enable the system to generate lemmata,

for instance, about properties of functions, particularly while

trying to reach a successful match between the formulas derived

from the specification and the induction hypotheses.

Finally there is the problem of treating inconstructive

specifications like the following one of the god-function.

Vx,y,z : nat[divides(f(xy)x) A divides(f(xy)y)

A [divides(zx) A divides(zy) » le(zf(xy))]] .

These problems together with an extension of the strategies

for applying the transformation rules will be the subject of

our future work.

References

[Aub79]

[BES81]

[BI80]

[BM79]

[DMW81]

[G080]

[GTW77]

[MW79/1]

6 0

R.'Aubin

Mechanizing Structural Induction

Part I: Formal System

Part II: Strategies

Theoretical Computer Science 9 (1979)

K . Bläsius, N . Eisinger, J . Siekmann, G . Smolka,

A. Herold and C. Walther .
The Markgraf Karl Refutation Procedure

Proc. of the 7th International Joint Conference on

Artificial Intelligence 1981

W . Bibel

Syntax-Directed,

Semantics—Supported Program Synthesis

Artificial Intelligence 14 (1980)

R.S. Boyer and J s . Moore

A Computational Logic

Academic Press (1979)

W. Dilger, J . Müller and W . Womann

Einführung i n die Markgraf Karl Refutation Procedure

Interner Bericht 40 /81 '

Fachbereich Informatik, Universität Kaiserslautern (1981)

C.A. Goad

Computational Uses of the Manipulation of Formal Proofs

PhD Thesis, Stanford University (1980)

J . A . Goguen, J . W . Thatcher and E . G . Wagner

An Initial Algebra Approach to the Specification,

Correctness and Implementation o f Abstract Data Types

IBM Research Report RCG 487 (1977)

Z . Manna and R. Waldinger

A Deductive Approach to Program Synthesis

Proc. o f the 6th

Artificial Intelligence (1979)

International Joint Conference on

[MW79/2]

[Oh182]

[WH81]

61

Z . Manna and R. Waldinger

Synthesis: Dreams » Programs

IEEE Transactions on Software Engineering

Vol. SE-5 No. 4 (1979)

H.J. Ohlbach‚

The Markgraf Karl Refutation Procedure:

The Logic Engine

Interner Bericht 24 /82

Institut für Informatik I , Universität Karlsruhe

(1982)

P.H. Winston and B.K.P. fiorn

LISP

Addison Wesley (1981)

