
Fa
ch

be
re

ich
In

fo
rm

ah
k

U
n

iv
e

rs
it

ä
t

K
a

is
e

rs
la

u
te

rn
P

o
st

fa
ch

30
49

SE
KI

—

R
EP

O
R

T
D

-6
7

5
0

K
a

is
e

rs
la

u
te

rn

Proof Transformation With
Built-In Equality Predicate

Christoph Lingenfelder, Axel Präcklein

SEKI Report SR—90-13 (SFB)

Proof Transformation

with Built-in Equality Predicate

Christoph Lingenfelder Axel Pracklein
Fachbereich Informatik Fachbereich Informatik

Universitiit Kaiserslautern Universitat Kaiserslautem
Postfach 3049 Postfach 3049

D-6750 Kaiserslautem D-6750 Kaiserslautem
phone: 49 631 205 3335 phone: 49 631 205 3344

email: lingenf@informatik.uni-kl.de email: prckln@informatik.uni-kl.de

Abstract

One of the main reasons why computer generated proofs are not widely accepted
is often their complexity and incomprehensibility. Especially proofs of mathematical
theorems with equations are normally presented in an inadequate and not intuitive
way. This is even more of a problem for the presentation of inferences drawn by
automated reasoning components in other AI systems. For first order logic, proof
transformation procedures have been designed in order to structure proofs and state
them in a formalism that is more familiar to human mathematicians. In this report we
generalize these approaches, so that proofs involving equational reasoning can also be
handled. To this end extended refutation graphs are introduced to represent combined
resolution and paramodulation proofs. In the process of transforming these proofs
into natural deduction proofs with equality, the inherent structure can also be
extracted by exploiting topological properties of refutation graphs.

This research was supported by the Deutsche Forschungsgemeinschaft (DFG), SFB 314

Proof Transformation
with Built-in Equality Predicate

Christoph Lingenfelder _ Axel Präcklein
Fachbereich Informatik Fachbereich Informatik

Universität Kaiserslautern Universität Kaiserslautern
Postfach 3049 Postfach 3049

D-6750 Kaiserslautern D-6750 Kaiserslautem
phone: 49 631 205 3335 phone: 49 631 205 3344

email: lin genf@informatik.uni-k1.de email: prckln@informatik.uni—kl.de

Abstract

One of the main reasons why computer generated proofs are not widely accepted
is often their complexity and incomprehensibility. Especially proofs of mathematical
theorems with equations are normally presented in an inadequate and not intuitive
way. This is even more of a problem for the presentation of inferences drawn by
automated reasoning components in other AI systems. For first order logic, proof
transformation procedures have been designed in order to structure proofs and state
them in a formalism that is more familiar to human mathematicians. In this report we
generalize these approaches, so that proofs involving equational reasoning can also be
handled. To this end extended refutation graphs are introduced to represent combined
resolution and paramodulation proofs. In the process of transforming these proofs
into natural deduction proofs with equality, the inherent structure can also be
extracted by exploiting topological properties of refutation graphs.

This research was supported by the Deutsche Forschungsgemeinschaft (DFG), SFB 314

mailto:prckln@informatik.uni-kl.de
mailto:lingenf@informatik.uni-kl.de

ii Proof Transformation with Built-in Equality Predicate

Contents

Abstract .i

Contents 11

1 Introduction 1

2 Proof Formats 3

2.1 General DefInitions 3

2.2 Clause Graphs and Refutation Graphs with Equality 8

2.3 Natural Deduction Proofs with Equality 10

3 Proof Transformation 15

3.1 General Procedure.. 15

3.2 Transformation Rules 17

3.3 A Proof Transformation System with Equality.. 19

3.4 Example 21

4 Structuring the Proof 25

4.1 General Procedure 25

4.2 Special Considerations Induced by Equality Clause Nodes 28

4.3 Example 29

5 Conclusion 34

6 Literature 35

Proof Transformation with Built-in Equality Predicate

Contents

Abstract . i

Contents . i i

1 Introduction . 1

2 Proof Formats ... 3

2 .1 General Definitions . 3

2 .2 Clause Graphs and Refutation Graphs with Equality 8

2.3 Natural Deduction Proofs with Equality 10

3 Proof Transformation .. 15

3 .1 General Procedure . 15

3 . 2 Transformation Rules . 17

3.3 A Proof Transformation System with Equality . 19

3 .4 Example . 21

4 Structuring the Proof ... 25

4.1 General Procedure . 25

4 .2 Special Considerations Induced by Equality Clause Nodes 28

4 .3 Example . 29

5 Conclusion . 34

6 Literature . 35

1 Introduction

1 Introduction

With the increasing strength of Automated Deduction Systems the length and

complexity of computer generated proofs has reached a degree where they become

almost impossible to understand even for the expert. To add to their incomprehen­
sibility, almost every research group uses its own format and style of stating a proof.
This has led to a state where only specialists, and sometimes only specialists in the
very method of automated reasoning, are capable to understand and check a proof

found by an automated deduction system.

But whenever human beings are addressed, the need of easily understandable
and clearly structured arguments becomes apparent. Therefore it is necessary to be
able to represent proofs in a more abstract and better structured way. Ideally one
would like the proof to be given in natural language, with a large variety of inference
rules. As a preliminary step in this direction it seems to be useful to transform the
computer generated proof into a proof in a natural deduction system which, although
still a system of formal logic, has been devised to approximate as much as possible an
intuitive form of reasoning.

The transformation of proofs into a natural deduction formulation has solved
some of the problems, see [An80], [Mi83], or [Li86], but by and large th~ increasing
length and complexity of the transformed proofs adds to their incomprehensibility
rather than to reduce it. It is therefore paramount to be able to state the proofs in a
hierarchically structured way, as mathematicians do, formulating subgoals and
lemmata. There has been some success in structuring computer generated proofs, cf.
[Li90], [PN90], or [Hu90], but all of these approaches are restricted to logics without
equality.

·We feel, however, that this is a severe restriction, as equality is essential for any
natural coding of mathematical problems and of AI problems in general. Therefore, in
this report, we generalize Lingenfelder's approach, so that proofs involving
equational reasoning can also be structured automatically.

In chapter 2 the formal basis for this work is defined, especially the different
calculi and proof representations: resolution proofs with paramodulation, refutation

graphs with equality clause nodes, and natural deduction proofs. Then the system of
natural deduction, that has been invented by Gerhard Gentzen for its simplicity and
systematic use of the connectives, is extended by rules to handle the use of equations.

Introduction 1

1 Introduction

With the increasing strength of Automated Deduction Systems the length and
complexity of computer generated proofs has reached a degree where they become
almost impossible to understand even for the expert. To add to their incomprehen-
sibility, almost every research group uses its own format and style of stating a proof.
This has led to a state where only specialists, and sometimes only specialists in the
very method of automated reasoning, are capable to understand and check a proof
found by an automated deduction system.

But whenever human beings are addressed, the need of easily understandable
and clearly structured arguments becomes apparent. Therefore it is necessary to be
able to represent proofs in a more abstract and better structured way. Ideally one
would like the proof to be given in natural language, with a large variety of inference
rules. As a preliminary step in this direction it seems to be useful to transform the
computer generated proof into a proof in a natural deduction system which, although
still a system of formal logic, has been devised to approximate as much as possible an
intuitive form of reasoning.

The transformation of proofs into a natural deduction formulation has solved
some of the problems, see [An80], [Mi83], or [Li86], but by and large the increasing
length and complexity of the transformed proofs adds to their incomprehensibility
rather than to reduce it. It is therefore paramount to be able to state the proofs in a
hierarchically structured way, as mathematicians do, formulating Subgoals and
lemmata. There has been some success in structuring computer generated proofs, cf.
[Li90], [PN90], or [Hu90], but all of these approaches are restricted to logics without
equality.

‘We feel, however, that this is a severe restriction, as equality is essential for any
natural coding of mathematical problems and of AI problems in general. Therefore, in
this report, we generalize Lingenfelder’s approach, so that proofs involving
equational reasoning can also be structured automatically.

In chapter 2 the formal basis for this work i s defined, especially the different
calculi and proof representations: resolution proofs with paramodulation, refutation
graphs with equality clause nodes, and natural deduction proofs. Then the system of
natural deduction, that has been invented by Gerhard Gentzen for its simplicity and
systematic use of the connectives, is extended by rules to handle the use of equations.

2 Proof Transformation with Built-in Equality Predicate

Chapter 3 extends the basic system of proof transformation so that equality
reasoning is also covered. This fits well into the transformation approach, if
equational reasoning is not dominating. Here equality is seen as a specific theory (in
the sense of theory resolution) so that a further generalization to arbitrary theories can
be envisaged.

The task of finding the underlying proof structure is presented in chapter 4. This
can be accomplished by the elegant expedient of exploiting topological properties of
the refutation graphs in order to come up with a well-organized proof. Structure can
be imposed upon the proofs by introducing lemmata, both to avoid duplication of
parts of the proof and to arrange a larger proof in a sequence of subgoals easier to
understand. Another means of structuring proofs is its division into several disjoint
parts by employing the method of case analysis. This constitutes very often the only
possibility to use a conditional equation without having to fall back on a proof by
contradiction.

2 Proof Transformation with Built-in Equality Predicate

Chapter 3 extends the basic system of proof transformation so that equality
reasoning is also covered. This fits well into the transformation approach, if
equational reasoning is not dominating. Here equality is seen as a specific theory (in
the sense of theory resolution) so that a further generalization to arbitrary theories can
be envisaged.

The task of finding the underlying proof structure is presented in chapter 4. This
can be accomplished by the elegant expedient of exploiting topological properties of
the refutation graphs in order to come up with a well-organized proof. Structure can
be imposed upon the proofs by introducing lemmata, both to avoid duplication of
parts of the proof and to arrange a larger proof in a sequence of subgoals easier to
understand. Another means of structuring proofs i s its division into several disjoint
parts by employing the method of case analysis. This constitutes very often the only
possibility to use a conditional equation without having to fall back on a proof by
contradiction.

3 Proof Formats

2 Proof Formats

In this chapter we will define the logic and introduce all the basic definitions for

the logical calculi used in this report. Everything is standard fIrst order predicate logic

with a built-in equality predicate, and we need resolution (with paramodulation) and a
natural deduction system based on Gerhard Gentzen's calculus NK [Ge35].
Additionally, as our actual starting point of the proof transformation will not be a

resolution proof, but rather the result of a graph-based theorem prover, we must
introduce the representation of proof-s as graphs, i.e. as so-called refutation graphs.

2.1 General Defmitions

This section contains the basic definitions of the underlying logic. There are no

important differences from the usual way of defining these concepts; similar

definitions can for instance be found in [Ga86] or in [1.078].

2.1-1 Definition: (Signature. Terms)

We define a signature IF as the union of the sets of constant symbols lFo, and the
sets lFn of n-ary function symbols (n = 1, 2, .••); all the lFn are finite. Let V be a

countable set of variable symbols. Then the set 'Jr of terms is the smallest set with

(i) V, lFo c 'Jr

(ii) if f E lFn and t}, t2, ... , tn E 'Jr, then ftlt2... tn E 'Jr.

Vet) is the set of variables occurring in a term t. A term containing no variables is
called a ground term. 'Jrgr is the set of all ground teims. V(0) is an abbreviation for the
set of variables occurring in an arbitrary object 0, and the same convention is
similarly used for lFn, IF, 'Jr, and 'Jrgr.

2.1-2 Definition: (Substitutions)

A substitution is a mapping cr: V-7 'Jr with finite domain V:={VEV I cr(v):t:v};

cr(V) is called the codomain of cr. A substitution cr with domain {Xl,X2, ... ,Xn} and

codomain {tl,t2, ... ,tn} is represented as {Xl"-Hl, ... ,Xn~tn}' A substitution is
extended to a mapping 'Jr-7'Jr by the usual homomorphism on terms. The application
of a substitution to any other object containing terms is defined analogously.

Proof Formats 3

2 Proof Formats

In this chapter we will define the logic and introduce all the basic definitions for
the logical calculi used in this report. Everything is standard first order predicate logic
with a built-in equality predicate, and we need resolution (with paramodulation) and a
natural deduction system based on Gerhard Gentzen’s calculus NK [Ge35].
Additionally, as our actual starting point of the proof transformation will not be a
resolution proof, but rather the result of a graph-based theorem prover, we must
introduce the representation of proofs as graphs, i.e. as so-called refutation graphs.

2 .1 General Definitions

This section contains the basic definitions of the underlying logic. There are no
important differences from the usual way of defining these concepts; similar
definitions can for instance be found in [Ga86] or in [L07 8].

2.1-1 Definition: (Signature, Terms)

We define a signature]F as the union of the sets of constant symbols IPO, and the
sets E, of n-ary function symbols (n = 1, 2 , . . .) ; all the IF“ are finite. Let V be a
countable set of variable symbols. Then the set '11‘ of terms is the smallest set with

(i) V9 F0 ; T

(ii) i f f 5a and t1, tz, . . . , tn eT , then ft1t2...tn eT .

V(t) is the set of variables occurring in a term t. A term containing no variables is
called a ground term. 'JI‘gr is the set of all ground terms. V(o) is an abbreviation for the
set of variables occurring in an arbitrary object o, and the same convention is
similarly used for F“, IF, T, and Tgr.

2.1-2 Definition: (Substitutions)

A substitution i s a mapping 6: V——> T with finite domain V:={ve V I 6(v) $ v};
0'(V) is called the codomain of 6. A substitution 0' with domain {x1,x2,...,xn} and
codomain {t1,t2, . . . ,tn} i s represented as {xp—m,. . . , a t n} . A substitution i s
extended to a mapping T—fll‘ by the usual homomorphism on terms. The application
of a substitution to any other object containing terms is defined analogously.

4 Proof Transformation with Built-in Equality Predicate

A substitution 0' is idempotent if cr 0 0' = cr. This is equivalent to the requirement
that none of the variables of its domain occurs in any of the terms of its codomain, cf.
[He87]. In this report all substitutions will be idempotent. If a substitution maps into
Tgn it is called a ground substitution, if it is a bijection and maps into V it is called a
renaming.

Let s,t eT. A matcher from s to t is a substitution Jl with Jls = 1. A unifier of s
and t is a substitution 0' with as = at. If a unifier for s and t exists, then the two terms
are said to be unifiable.

2.1-3 Definition: (Formulae)

We introduce the set JP= UOSnJPn consisting of finite sets of n-ary predicate
symbols (n=O, 1, ...). There are two special zero-place predicate symbols, TRUE
(written T) and FALSE (written .J.), T, .J.eJPo, and a binary predicate symbol
EQUAL (written =), =e JP2. The objects of the form Ptlt2... tn with Pe JPn and
tl,t2, ... ,tneT constitute the set A of atoms.

To construct the formulae of First Order Predicate Logic, we use the following
additional signs:

(a) Unary connective negation sign
(b) Binary connectives conjunction sign

v disjunction sign
~ implication sign

(c) Quantifiers V universal quantifier
3 existential quantifier

(d) Structuring Signs (opening parenthesis
) closing parenthesis

The set ~ of formulae of First Order Predicate Logic is now defined as the
smallest set with:

(i) Ac~

(ll) If A, B e~, then (A/\B), (AvB), and (A~B) are all in~.

(ill) IfA E <@J and x E V, then -,A, (Vx A), and (3x A) are all in ~. •

An atom = s t is also written in infix form, s = t. (A<=> B) is used as an
abbreviation for (A~B) /\ (B~A). Furthermore we write (V'Xl>X2, ... ,xnA) as an
abbreviation for (V'Xl(VX2... (V'xnA» ...) and similarly for the existential quantifier.
If :M= {Ml,M2,. .. ,Mn} is a finite set of formulae, we write (A~ or (AlS~nMi)

instead of (M1/\(M2/\"'/\ Mn)...) and likewise (V:M) or (V lSiSnMj) instead of
(M1v(M2V ... vMn)...).

4 Proof Transformation with Built-in Equality Predicate

A substitution 6 is idempotent if 0' ° o : 6. This is equivalent to the requirement
that none of the variables of its domain occurs in any of the terms of its codomain, cf.
[He87]. In this report all substitutiéns will be idempotent; If a substitution maps into
Tgr, it is called a ground substitution, if it is a bijection and maps into V it is called a
renaming.

Let s,te'lI‘. A matcher from 5 to t is a substitution u with u s : t. A unifier of s
and t is a substitution 6 with cs = (It. If a unifier for s and t exists, then the two terms
are said to be unifiable.

2 . 1-3 Definition: (Formulae)

We introduce the set P : UosnPn consisting of finite sets of may predicate
symbols (n =0 ,1 , . . .) . There are two special zero-place predicate symbols, TRUE
(written T) and FALSE (written J.), T, .Le IPO, and a binary predicate symbol
EQUAL (written =), : 6 P2. The objects of the form Pt1t2...tn with P611"n and
t1,t2,. . . ‚tn e'lI‘ constitute the set A of atoms.

To construct the formulae of First Order Predicate Logic, we use the following
additional signs:

(a) Unary connective —. negation sign
(b) Binary connectives A conjunction sign

v disjunction sign
=> implication sign

(c) Quantifiers V universal quantifier
El existential quantifier

(d) Structuring Signs (opening parenthesis
) closing parenthesis

The set GI» of formulae of First Order Predicate Logic i s now defined as the
smallest set with: ‘

(i) A ; @
(ii) If A‚B e @, then (AAB), (AvB), and (A=>B) are all in @.
(iii) I fAedDande ‚ then—1A, (VxA) , and (3xA)a rea l l i n®. 0

An atom =s t i s also written in infix form, s= t . (A<=> B) i s used as an
abbreviation for (A=B)A(B=>A). Furthermore we write (Vx1,x2,...,xn A) as an
abbreviation for (Vx1(Vx2. . .(Vxn A)). . .) and similarly for the existential quantifier.
If M: {M1,M2,...,Mn} is a finite set of formulae, we write (AM) or (A 1515“ Mi)
instead of (M1A(M2A...AMn)...) and likewise (Vat) or (VlsiSHMi) instead of
(M1v(M2v... a) . . .) .

5 Proof Fonnats

Parentheses are only used to indicate the range of the connectives, as in
«-,A) 1\ (Bv C). The outermost parentheses will be omitted most of the time, and we
adopt the usual convention to define a binding order of the connectives. We assume
that -, binds more strongly than 1\ and v, these in turn bind more strongly than =>
and <::>, and the quantifiers V and 3 are the weakest. Parentheses may be omitted
according to this binding hierarchy, so that the above formula could be written as
-,AI\(BvC).

In order to establish a well-defined connection between the original formula to be
proved and the literal and clause nodes in the proof (when it is represented as a
refutation graph), we need a relation between these literal nodes and the atoms
occurring in the original formula. The following definitions are made in order to
formalize this correspondence. Similarly, to describe equational transformations, we
must be able to refer to subterms within terms or atomic formulae.

2.1-4 De:Bnition: (SubformuJae, Subterms)

For any formula F, atom A or term t, we define the sets S(F) of subformulae of
F and T(A) and T(t) of subterms of A and t as follows:

(0"1) If Fe A, then S(F)={F}; iftelFouV, then S(t)={t}.
(0"2) If F is of the form GI\H, GvH, or G=>H, then

S(F)={F}uS(G)uS(H).
G and H are called immediate subformulae of F.

«(13) IfF is of the form -,G, Vx G, or 3x G, then S(F)={F}uS(G).
In this case G is the only immediate subformula ofF.

(tl) If t is of the form ftlt2 ...tn with fe f n and tl,t2, ... ,tne 'Jr, then
T(t)=Ui~n T(tDu{t}.

('t2) If A is of the form Ptlt2... tn with Pel?n and tl,t2, ... ,fne'Jr, then
T(A)=Ui~n T(ti).

. If s is a subterm of a formula F, we sometimes write F(s) to denote this fact. An
occurrence of F(t) in the same context will then represent the formula where s has
been replaced by 1.

2.1-5 Detlnition: (Subterm and Subformula Occurrences)

In order to specify subterm occurrences of a given term t (or formula occurrences
of a formula F) we use finite sequences <kl.k2.....kn> of integers. We derme the set
of subterm occurrences O(t) as follows:

Proof Formats 5

Parentheses are only used to indicate the range of the connectives, as in
((—1A)/\ (Bv C)). The outermost parentheses will be omitted most of the time, and we
adopt the usual convention to define a binding order of the connectives. We assume
that —. binds more strongly than A and v, these in turn bind more strongly than =
and @, and the quantifiers V and 3 are the weakest. Parentheses may be omitted
according to this binding hierarchy, so that the above formula could be written as
—.A A (B v C).

In order to establish a well-defined connection between the original formula to be
proved and the literal and clause nodes in the proof (when it i s represented as a
refutation graph), we need a relation between these literal nodes and the atoms
occurring in the original formula. The following definitions are made in order to
formalize this correspondence. Similarly, to describe equational transformations, we
must be able to refer to subterms within terms or atomic formulae.

2 .1 -4 Definition: (Subformulae. Subterms)

For any formula F, atom A or term t, we define the sets S(F) of subformulae of
F and T(A) and T(t) of subterms of A and t as follows:

(0'1) IfFe A, then S(F)={F}; if te IFOUV, then S(t)={t}.
(62) If F is of the form GAH, GvH, or G==>H, then

S(F)={F}US(G)US(H).
G and H are called immediate subformulae of F.

(63) If F is of the form —.G, Vx G , or fix G, then S(F)={F}US(G).
In this case G is the only immediate subformula of F.

(1:1) If t is of the form ftltz. . .tn with fe E, and t1,t2,. . . , tne 11‘, then
T(t)=UiSn T(ti)U{t}.

(12) If A is of the form Putz. . .tn with PE R. and t1,t2,. . .,tne T, then
T(A)=Ui5„ T(ti).

_ If s is a subterm of a formula F, we sometimes write F(s) to denote this fact. An
occurrence of F(t) in the same context will then represent the formula where s has
been replaced by t.

2 .1 -5 Definition: (Subterm and Subformula Occurrences)

In order to specify subterm occurrences of a given term t (or formula occurrences
of a formula F) we use finite sequences <k1.k2.kn> of integers. We define the set
of subterm occurrences 52(t) as follows:

6 Proof Transformation with Built-in Equality Predicate

(a)	 t<>E 12(t)
([3)	 t<i.k 2•.•..kn> E n(t) if ti<k2.....kn> E n(ti),

wheret=ftlt2... tn, felFn, and tl,t2, ... ,tnE'f

(y)	 subformula occurrences and subtenn occurrences within fonnulae

are defmed analogously

12(F) can be viewed as the set of partial paths through the fonnula tree of F.
12a(F) c 12(F) denotes the set of atom occurrences within a fonnula F.

2.1-6 Example: (Formula Occurrences)

Let F= (Vu fiuu =e) A(Vvfve=v) A(Vxy SXASy => Sfiyx) => (Vz Sz => Siz).
For instance F<1.3. 1.1.2> denotes the occurrence of Sy within F, and F<1.1.1.1.1>
represents the subtenn occurrence of iu within F.

Note, that in general identical fonnulae or terms may appear as different
occurrences within a given tenn or fonnula.

2.1-7 Definition: (Literals, Clauses)

If A is an atom, then +A and -A are (complementary) literals. The set of all
literals is lL. A finite set of literals is called a clause, the number of literals in a clause
C is denoted by ICI, and <C is the set of all clauses. The clause without any literals is
called the empty clause and is denoted by Cl.

Two literals are unifiable if their signs are equal and their atoms are unifiable.
They are called resolvable whenever their signs are different and their atoms
unifiable.

2.1-8 Definition: (Normal Forms)

A fonnula F e ~ is said to be in Negation Normal Form (NNF) if it contains no
equivalence or implication signs and all its negation signs appear directly before an
atom. It is in Prenex Normal Form (PNF) if all the quantifiers (together with the
variables they bind) are placed at the beginning of the fonnula, i.e. before any atom
or connective; the string of quantifiers together with the variables they bind is called
the prefix, the quantifier-free rest of the fonnula is called the matrix.

A formula F in PNF can be transformed into Skolem Normal Form (SNF); all
the variables Yi bound by existential quantifiers are replaced by tenns fiXl .•.Xni, where
the function symbols fi are distinct Sko/em functions and the variables Xj are all the
universally quantified variables that are bound before Yi in the prefix of F.

6 Proof Transformation with Built-in Equality Predicate

(oz) t<>e Q(t)
(ß) t<i.k2. .kn> e 520) if ti<k2. .kn> e ()(ti),

where t = ft1t2. . . tn, fe Fu, and t1,t2,.. . , tne T
('y) subformula occurrences and subterrn occurrences within formulae

are defined analogously

Q(F) can be viewed as the set of partial paths through the formula tree of F.
SMF) (_: Q(F) denotes the set of atom occurrences within a formula F.

2 .1 -6 Example: (Formula Occurrences)

Let F= (Vu fiuu =e) A (Vv fve=v) A (n SXASy => Sfiyx) => (Vz Sz=> Siz).
For instance F<l.3.1.1.2> denotes the occurrence of Sy within F, and F<1.l.1.1.1>
represents the subterm occurrence of iu within F.

Note, that in general identical formulae or terms may appear as different
occurrences within a given term or formula.

2 .1 -7 Definition: (Literals. Clauses)

If A i s an atom, then +A and —A are (complementary) literals. The set of all
literals is L. A finite set of literals is called a clause, the number of literals in a clause
C is denoted by ICI, and C is the set of all clauses. The clause without any literals is
called the empty clause and is denoted by El.

Two literals are unifiable if their signs are equal and their atoms are unifiable.
They are called resolvable whenever their signs are different and their atoms
unifiable.

2 .1 -8 Definition: [Normal Forms)

A formula Fe <div i s said to be in Negation Normal Form (NNF) if it contains no
equivalence or implication signs and all its negation signs appear directly before an
atom. It is in Prenex Normal Form (PNF) if all the quantifiers (together with the
variables they bind) are placed at the beginning of the formula, i.e. before any atom
or connective; the string of quantifiers together with the variables they bind is called
the prefix, the quantifier—free rest of the formula is called the matrix.

A formula F in PNF can be transformed into Skolem Normal Form (SNF); all
the variables yi bound by existential quantifiers are replaced by terms fixl . . - a where
the function symbols fi are distinct Skolem functions and the variables Xj are all the
universally quantified variables that are bound before yi in the prefix of F.

7 Proof Fonnats

A fonnula Fe ~ in Skolem nonnal fonn can be transfonned into a set of clauses,

the so-called clauseform C(F).

2.1-9 Definition: (Resolution Method)

Two clauses C and D are resolvable if, for a renaming p such that C and pD have
no variables in common, there exists a pair of resolvable literals Le C, K e pD. If a
unifies the atoms ofL and K, then the clause a(C\L) ua(pD\K) is called a resolvent

of C and D. In the case where C =D the clause C is said to be self-resolvable.

A finite sequence So, SI, ... , Sn of clause sets is called a resolution derivation of
Sn from So if for all i there exist clauses Ci and Db such that Ci and Di are resolvable
with resolvent Ri and Si+l =Si URi. A resolution derivation is called a resolution
refutation or a resolution proofif the final clause set Sn contains the empty clause. •

The resolution method for automated theorem proving relies on the fact that a
clause set S is unsatisfiable if and only if there exists a resolution refutation starting
with S. This means that a fonnula F is valid if and only if there is a resolution
refutation for the clause set C(-oF).

2.1-10 Definition: (Paramodulation Method)

Let C be a clause with a literal L whose atom has a subtenn t, and D be a clause
with a literal l' =s. D can be paramodulated into C if, for a renaming p such that C
and pD have no variables in common, there exists a unifier a of pt' and t. Then the
clause a(C') u ap(D\{t' =s}) is called a paramodulant of C and D, where C' is
constructed from C by replacing t with s in C. •

Modem (automated) theorem proving, however, has altogether put away with the
derivation of new fonnulae, whether they are clauses or not. Instead, the original set
of fonnulae, or its clause fonn, is arranged in a matrix or a graph structure, and
finding a proof amounts to checking certain conditions in this structure. The two
competing approaches are the matrix method by Andrews [An76], [An8!], and Bibel
[Bi81], [Bi82] and the connection graph method introduced by Kowalski in [K075].

Both methods result in an even more abstract notion of a proof than resolution
does, because a proof is no longer viewed as a dynamic process leading from a set of
original fonnulae to a desired goal fonnula (or a contradiction). Instead, a proof
consists of a matrix or a graph containing the given set of fonnulae, which must be

linked in a specific way. In the next section, the notion of a refutation graph will be
introduced as a means to fonnulate proofs found with the connection graph method.
These graphs are· the final result of the "Markgraf Karl Refutation Procedure",

Proof Formats _ 7

A formula Fe «lb in Skolem normal form can be transformed into a set of clauses,

the so-called clause form C(F).

2 .1 -9 Definition: (Resolution Method]

Two clauses C and D are resolvable if, for a renaming p such that C and pD have
no variables in common, there exists a pair of resolvable literals L e C, K e pD. If O“
unifies the atoms of L and K, then the clause 6(C\L) UO'(pD\K) is called a resolvent
of C and D. In the case where C = D the clause C is said to be self-resolvable.

A finite sequence So, 81 , . . . , Sn of clause sets is called a resolution derivation of
Sn from So if for all i there exist clauses Ci and Di, such that Ci and Di are resolvable
with resolvent Ri and Si+1= Si URi. A resolution derivation i s called a resolution
refutation or a resolution proof if the final clause set Sn contains the empty clause. 0

The resolution method for automated theorem proving relies on the fact that a
clause set S is unsatisfiable if and only if there exists a resolution refutation starting
with S. This means that a formula F i s valid if and only if there is a resolution
refutation for the clause set C(—.F).

2 .1 -10 Definition: [Paramodulation Method)

Let C be a clause with a literal L whose atom has a subterm t, and D be a clause
with a literal t' = s. D can be paramodulated into C if, for a renaming p such that C
and pD have no variables in common, there exists a unifier 6 of pt' and t. Then the
clause o (C')uo*p(D\{ t ‘=s}) i s called a paramodulant of C and D , where C' i s
constructed from C by replacing t with s in C. o

Modern (automated) theorem proving, however, has altogether put away with the
derivation of new formulae, whether they are clauses or not. Instead, the original set
of formulae, or its clause form, is arranged in a matrix or a graph structure, and
finding a proof amounts to checking certain conditions in this structure. The two
competing approaches are the matrix method by Andrews [An76], [An81], and Bibel
[Bi81], [Bi82] and the connection graph method introduced by Kowalski in [K075].

Both methods result in an even more abstract notion of a proof than resolution
does, because a proof is no longer viewed as a dynamic process leading from a set of
original formulae to a desired goal formula (or a contradiction). Instead, a proof
consists of a matrix or a graph containing the given set of formulae, which must be
linked in a specific way. In the next section, the notion of a refutation graph will be
introduced as a means to formulate proofs found with the connection graph method.
These graphs are. the final result of the “Markgraf Karl Refutation Procedure”,

8	 Proof Transformation with Built-in Equality Predicate

"MKRP", a theorem prover developed in Karlsruhe and Kaiserslautern, [MKRP84],
[EG88] or [OS89].

2.2 Clause Graphs and Refutation Graphs with Equality

2.2-1 Definition: (Clause Graph)

A clause graph is a quadruple r =(N, [N], £,][]I), where

(a)	 N is a finite set. Its members are called the literal nodes of r.
(b)	 [N] c 2 N is a partition of the set of literal nodes. The members of

[N] are called the clause nodes of r. Contrary to the standard
definition of a partition, 0 E [N] is allowed. A clause node
consisting of literal nodes LI through Ln is denoted by [LI ... Ln].

(c)	 £: N~ lL is a mapping, which labels the literal nodes with literals,

such that if L, KEN belong to different clause nodes, then

V(£L) n V(£K) = 0.

(d)	 The set of polylinksTI is a partition of a subset ofN, such that for

all A E TI the following polylink condition holds:

(Xl) All the literal nodes in one polylink are labeled with literals

whose atoms are unifiable.

(X2)	 There must be at least one positive and one negative literal
in a polylink.

Literal nodes belonging to no polylink at all are called pure; Np is the set of all
pure literal nodes. Each polylink A has two opposite shores, a positive shore S+(A),

and a negative shore S-(A), constituted by the literal nodes with positive and negative

literals, respectively. As a literal node belongs to at most one polylink, it is possible

to use A(N) to denote this polylink; if N E Np A(N) =0.

These clause graphs, developed by N. Eisinger in [Ei88], are a generalization of

Kowalski's connection graphs, [K075], and Shostak's refutation graphs, [Sh76].
Unlike Eisinger we have no need for any links different from the polylinks defined
above, so that we will often simply use the term link to denote a polylink. Similarly

the term "graph" is used as a synonym for clause graph.

2.2-2 Definition: (Clause Graphs and Clause Sets)

A clause graph r = (N, [N],£,TI) is said to represent a clause set S if every

clause node C E [N] has the fonn [-A(s) s;t:t A(t)] or there is a parent clause C'e S

8 Proof Transformation with Built-in Equality Predicate

“MKRP”, a theorem prover developed in Karlsruhe and Kaiserslautern, [MKRP84],
[E088] or [0889].

2.2 Clause Graphs and Refutation Graphs with Equality

2.2-1 Definition: (Clause Graph)

A clause graph is a quadruple I‘ = (N, [N] , £ , H), where

(a) N is a finite set. Its members are called the literal nodes of P.

(b) [N] c: ZN is a partition of the set of literal nodes. The members of
[N] are called the clause nodes of I‘. Contrary to the standard
definition of a partition, Q E [N] is allowed. A clause node
consisting of literal nodes L1 through Ln is denoted by [L1 . . . Ln].

(c) £ : N-—) l.. i s a mapping, which labels the literal nodes with literals,
such that if L, K e N belong to different clause nodes, then
V(£L) n V(£K) = %.

(d) The set of polylinksl'll is a partition of a subset of N, such that for
all Ae lll[the following polylink condition holds:

(nl) All the literal nodes in one polylink are labeled with literals
whose atoms are unifiable.

(11:2) There must be at least one positive and one negative literal
in a polylink.

Literal nodes belonging to no polylink at all are called pure; N1) i s the set of all
pure literal nodes. Each polylink A has two opposite shores, a positive shore S+(A),
and a negative shore S'(A), constituted by the literal nodes with positive and negative
literals, respectively. As a literal node belongs to at most one polylink, it is possible
to use A(N) to denote this polylink; if N e Np A(N) = @.

These clause graphs, developed by N. Eisinger in [Ei88], are a generalization of
Kowalski’s connection graphs, [K075], and Shostak’s refutation graphs, [Sh76].
Unlike Eisinger we have no need for any links different from the polylinks defined
above, so that we will often simply use the term link to denote a polylink. Similarly
the term “graph” is used as a synonym for clause graph.

2.2-2 Definition: (Clause Graphs and Clause Sets)

A clause graph I‘ = (N, [N]‚£,lÜ[) is said to represent a clause set S if every
clause node C e [N] has the form [—A(s) s¢t A(t)] or there i s a parent clause C'e S

9 Proof Fonnats

and a ground substitution 'Y such that the restriction of £ to C is a bijection between it
literal nodes and the literals of yC'.Clause nodes of the fonn [-A(s) s#:t A(t)] ar
called equality clause nodes.

2.2-3 Deftnition: (Deduction and Refutation Graphs)

A deduction graph is anon-empty, ground, and acyclic clause graph. A cycle is a
sequence of clause nodes and links ChTI1,C2, ...Cn,TIn,Ch such that all the Ili are
different and they contain literal nodes with opposite sign in their respective
neighbour clause nodes. A refutation graph is a deduction graph without pure literal
nodes. We sometimes speak: of deduction or refutation graphs even if they are not
ground, but then the existence of a global substitution is required that transfonns
them into ground graphs without destroying the polylink conditions for any of its
links.

A minimal deduction (refutation) graph is one containing no proper subgraph
which is itself a deduction (refutation) graph.

2.2-4 Deftnition: (Clause Graph Relation)

For a fonnula F and a clause graph r =(N, [N], £, ll) representing C(F) or
C(...,F), a relation /1 ~ {(roa, L) IroaE Oa(F), LE N} is a clause graph relation if it is
compatible with the relation established by the nonnalization process when the clause
fonn is constructed from the formula.

It is obvious from this defmition that the literal nodes of equality clause nodes are
never related to atom occurrences in Oa(F). •

/1 is in general not a function, which can easily be seen when one envisages the
process of constructing the clause fonn of a fonnula F. It is often useful, however, to
be able to use 11 as a function to denote the set of literal nodes related to a given
formula occurrence. In this sense we use /1 as a symbol for one of the two functions
defined by the relation /1,

/1:	 Oa(F) ~ 2N and /1: N ~ 2n.(F)

11(00) ={L EN I(roa, L) E 11} /1(L) = {roaE Oa(F) I(roa, L) E /1}

Proof Formats 9

and a ground substitution 7 such that the restriction of £ to C is a bijection between itä
literal nodes and the literals of yC'. Clause nodes of the form [—A(s) satt A(t)] are
called equality clause nodes.

2.2-3 Definition: (Deduction and Refixtation Graphs]

A deduction graph is a non-empty, ground, and acyclic clause graph. A cycle is a
sequence of clause nodes and links C1,II1,C2‚...C„,H„‚C1‚ such that all the Hi are
different and they contain literal nodes with opposite sign in their respective
neighbour clause nodes. A refutation graph is a deduction graph without pure literal
nodes. We sometimes speak of deduction or refutation graphs even if they are not
ground, but then the existence of a global substitution is required that transforms
them into ground graphs without destroying the polylink conditions for any of its
links.

A minimal deduction (refutation) graph is one containing no proper subgraph
which is itself a deduction (refutation) graph.

2.2-4 Definition: (Clause Graph Relation)

For a formula F and a clause graph F=(N, [N],£,ll ' l) representing C(F) or
C(—.F), a relation A ; {(ma, L) l cone Qa(F), Le N} is a clause graph relation if it i s
compatible with the relation established by the normalization process when the clause
form is constructed from the formula.

It is obvious from this definition that the literal nodes of equality clause nodes are
never related to atom occurrences in SMF). O

A i s in general not a function, which can easily be seen when one envisages the
process of constructing the clause form of a formula F. It is often useful, however, to
be able to use A as a function to denote the set of literal nodes related to a given
formula occurrence. In this sense we use A as a symbol for one of the two functions
defined by the relation A,

A: DAF) _) 2N and A: N —) 29-(F)
A(O))=[LEN| (O)a ,L)EA} A(L)= {maeQa(F) l ((Oa ,L)eA}

10 Proof Transformation with Built-in Equality Predicate

2.3 Natural Deduction Proofs with Equality

In 1933, Gerhard Gentzen developed a formal system for mathematical proofs
with the intention to describe as closely as possible the actual logical inferences used
in mathematical proofs. To quote from [Ge35]:

der moglichst genau das richtige logische Schliej3en bei
mathematischen Beweisen wiedergibt

The main difference between these natural deduction proofs (NDPs) and proofs
in the earlier axiomatic systems by Frege, RusseU, and Hilbert is that inferences are
drawn from assumptions rather than from axioms.

Prawitz describes such systems of natural deduction in [Pr65]:

The inference rules of the systems of natural deduction
correspond closely to procedures common in intuitive
reasoning, and when informal proofs - such as are
encountered in mathematics for example - are formalized
within these systems, the main structure of the informal
proofs can often be preserved.

We use a linearized form of Gentzen's calculus NK, where the dependencies
between formulae are explicitly included as justifications, and where for every
formula we give the set of assumption formulae it depends on. The actual form of the
proof lines is taken from Andrews [An80], but they differ only in their syntax from
Gentzen's rule system for NK in [Ge35].

2.3-1 Definition: (Natural Deduction Proof)

A natural deduction proof line consists of

(a) a [mite, possibly empty set of formulae, called the assumptions

(b) a single formula, called conclusion

Cc) a justification.

A proof line with assumptions jI, conclusion F and justification "Rule 9{" is
written {jI I- F Rule 9{}. Sometimes comments are given to make the proof easier
to read; these comments are then written as if they were proof lines.

A [mite sequence S of proof lines is a natural deduction derivation of a formula F
from assumptions jI, if

(a) F is the conclusion of the last line of S,

(~) jI is the set of assumptions of this last line, and

(y) every line in S is correctly justified by one of the rules given in 2.3-2.

1 0 Proof Transformation with Built-in Equality Predicate

2 .3 Natural Deduction Proofs with Equality

In 1933, Gerhard Gentzen developed a formal system for mathematical proofs
with the intention to describe as closely as possible the actual logical inferences used
in mathematical proofs. To quote from [Ge35]:

der möglichst genau das richtige logische Schließen bei
mathematischen Beweisen wiedergibt

The main difference between these natural deduction proofs (NDPs) and proofs
in the earlier axiomatic systems by Frege, Russell, and Hilbert i s that inferences are
drawn from assumptions rather than from axioms. '

Prawitz describes such systems of natural deduction in [Pr65]:

The inference rules of the systems of natural deduction
correspond closely to procedures common in intuitive
reasoning, and when informal proofs — such as are
encountered in mathematics for example — are formalized
within these systems, the main structure of the informal
proofs can often be preserved.

We use a linearized form of Gentzen’s calculus NK, where the dependencies
between formulae are explicitly included as justifications, and where for every
formula we give the set of assumption formulae it depends on. The actual form of the
proof lines is taken from Andrews [An80], but they differ only in their syntax from
Gentzen’s rule system for NK in [Ge35].

2.3-1 Definition: (Natural Deduction Proof)

A natural deduction proof line consists of

(a) a finite, possibly empty set of formulae, called the assumptions

(b) a single formula, called conclusion

(c) a justification.

A proof line with assumptions A, conclusion F and justification “Rule SR” is
written { fll l -F Rule 9?}. Sometimes comments are given to make the proof easier
to read; these comments are then written as if they were proof lines.

A finite sequence S of proof lines is a natural deduction derivation of a formula F
from assumptions %, if

(or) F is the conclusion of the last line of S ,

(ß) fl! is the set of assumptions of this last line, and

(7) every line in S is correctly justified by one of the rules given in 2.3-2.

11 Proof Formats

A proof line A= {.~ I- F Rule 9t} within a sequence of proof lines is correctly
justified iff jIl-F matches the lower part of Rule 9t and there are proof lines before

Ain the sequence matching the upper part of Rule 9t

A finite sequence S of proof lines is a natural deduction proofof a formula F if it

is a natural deduction derivation of F from an empty set of assumptions.

2.3-2 Deftnition: (Rules of the Natural Deduction System)

In the following defmition of the rules of the natural deduction calculus the letters

F, G, and H represent formulae and jI represents a finite set of formulae.

Assumption Rule (Ass):
Jl, F I- F

This rule introduces a new assumption. For the intuitionistic calculus NI it replaces

the axioms of other calculi. To obtain the full power of classical logic one needs to
add an additional axiomatic rule, the law of the excluded middle:

Tertiam non datur (Axiom);
jI I- Fv-, F

The following rules are introduction and elimination rules for the various logical

connectives. Only the rule of contradiction does not fit into this scheme.

jI, F I- G
Deduction Rule (=>D:

jI l-F=>G

jI l- F '13 l- F=>G
Modus Ponens (::>E);

Jil, '13 l- G

AND-Introduction (1\1);

Jil I- FI\G
AND-Elimination (I\E); and

Jill-G

jIl-F Jill-G
OR-Introduction (vI); and

5l l- FvG jI I- FvG

jI,F l-.L
NOT-Introduction (-,1);

J1I. I- -, F

Proof Formats 1 1

A proof line %: { fl t- F Rule 9 i} within a sequence of proof lines i s correctly
justified iff fill-F matches the lower part of Rule SR and there are proof lines before
X in the sequence matching the upper part of Rule 91.

A finite sequence S of proof lines is a natural deduction proof of a formula F if it
is a natural deduction derivation of F from an empty set of assumptions.

2.3-2 Definition: (Rules of the Natural Deduction System)

In the following definition of the rules of the natural deduction calculus the letters
F, G, and H represent formulae and 3! represents a finite set of formulae.

. . ___—5mm” A fl,FI—F
This rule introduces a new assumption. For the intuitionistic calculus NI it replaces
the axioms of other calculi. To obtain the full power of classical logic one needs to
add an additional axiomatic rule, the law of the excluded middle:

Tertiam non datur Axiom : “__—
51 l- FV—I F

The following rules are inuoduction and elimination rules for the various logical
connectives. Only the rule of contradiction does not fit into this scheme.

JLF i -G
' 1 :Deduction Rug (3 !) a t- F=> G

E- z r -F 'B r—F=>G

m ma

_ fi l l - F {B l -G
—In Ct lnA: ___—__—

man—FAG

li _ _ E- ‚q I-FAG d A I—FAG
AND- anon A . ___—fl+- F an “ r t- G

I _ 2 f— F d 51 I- G
-n v % I—FVG an 1 l -FVG

AF l-..L
N QT—InMuCg’on h l) :

flF—nF

12 Proof Transformation with Built-in Equality Predicate

~ f- ,-,F
Rule of Double Negation (,El:

.f4f-F

Rule of Contradiction (Contra):

~f-FvG 'B,Ff-H C,Gf-H

Rule of Cases (vE):

~,'B, C f- H

.f4f-Fc

Universal Generalization (vI):

.f4 f- 'V x Fx

provided that c does not occur in any of the assumption
fonnulae in ~ and Fc = {Xi-7C }Fx.

.f4 f- Ft

Existential Generalization GI):

.f4 f-3x Fx

where Ft= {xi-7t}Fx.

.f4 f- 'if x Fx

Universal Instantiation ('VE):

~ f- Ft

where Ft = {Xi-7t} Fx.

~f-3xFx 'B,Fcf-G

Rule of Choice GE):

.f4, '13 f- G

provided that Fc = {Xi-7C}Fx and c does neither occur in G,
nor in 3x Fx, nor in any of the assumption fonnulae in .f4.

In addition to Gentzen's original rules for his calculus NK we need rules to
handle the equality predicate. So we add the following two rules:

Rule of Reflexivity (ReO:
~ f- t=t

~f- F(s) 'B I- s=t ~f-F(t) '13 f- s=t
Rule of Equality (=): and

.f4, '13 f- F (t) ~,'13 f- F (s)

1 2 Proof Transformation with Built-in Equality Predicate

Rul QfDQuhlgN gg‘g (E) “"—""I:: _
e ea n "I fi l l -F

R f _ . fi l l - F @ I - - 1F

“ man-.1.

R fC E ‚qn-FvG gun-H C,G+-H
:ML“? ”° " mom-H

_ al . _ I fill—F0

“N° “ ‘ “ flll—Vx Fx
provided that c does not occur in any of the assumption
fonnulae in :4, and PC = { xn—>c }Fx.

1 ‚fl l -F tE . . fi l' . EL“ __
n ‚q I-Ex Fx

where Ft = {XHt}Fx.

_ In E 2 t-Vx Fx
Wm H “ ‚q l-Ft

where Ft = { t }Fx .

fll I - 3x Fx $,Fc |- G
1, ß t- G

provided that Fe = {xo->c}Fx and c does neither occur in G,
nor in 3x Fx, nor in any of the assumption formulae in FL

R f 'ce E :

In addition to Gentzen’s original rules fo'r his calculus NK we need rules to
handle the equality predicate. So we add the following two rules:

R M fl l-t=t

flli—F(s) 23 |- s= t fill—Fa) 93 !- s= t
R1 f “ =' mama) and fi,$t—F(s)

13 Proof Fonnats

2.3-3 Example: (Natural Deduction Proof)

As an example let us prove that ("Ix ...,Px) => ...,(3y Py). Note that no axiom is
introduced, so this formula is also valid in intuitionistic logic.

(1) 1 I­ "Ix -.Px Ass
(2) 2 l- Pa Ass
(3) 3 I­ 3y Py Ass
(4) 1 I­ ...,Pa "1£(1)
(5) 1, 2 I­ .l. Contra(2,4)
(6) 1, 3 I­ .l. 3£(3,5)
(7) 1 I­ ...,3y Py -.1(6)
(8) I­ ("Ix ...,Px) => -.(3y Py) =>1(7)

The proof lines have numbers, which are used for two purposes:

(a)	 in the justification, to indicate which other lines a given line depends on, and

(b)	 to abbreviate an assumption formula; a number in the place of an assumption
formula stands for the formula introduced by the assumption rule in the line
with this number.

Note that the reasoning is done exclusively with the conclusion formulae, while
the assumptions are only carried along to emphasize the interdependencies between
the formulae. This is characteristic of Gentzen's natural deduction system NK,
whereas the calculi of sequents, as for example Gentzen's LK, also change the
formulae of the antecedent.

2.3-4 Derived Natural Deduction Rules

Gentzen chose his original set of natural deduction inference rules for its
systematic introduction and elimination of the logical connectives. It is very cumber­
some, though, to do proofs using only these rules. Therefore, we will introduce a
number of derived rules in this section, which will facilitate some often recurring
proof processes.

Al	 ~FIJ'ln f-FnRule Qf PrQPOsitional Calculus (Tau):
.9l I , ... ,.9ln f- G

provided that FI /\.../\ Fn => G is a tautology.

Proof Formats 1 3

2.3-3 Example: (Natural Deduction Proot)

As an example let us prove that (Vx —:Px) = -.(Ely Py). Note that no axiom is
introduced, so this formula is also valid in intuitionistic logic.

(1) 1 !- Vx —1Px Ass

(2) 2 |— Pa Ass

(3) 3 I- Ely Py Ass
(4) 1 I— -1Pa VE(1)
(5) 1 , 2 |— J. ‘ Contra(2‚4)
(6) 1, 3 I— .L 3E(3,5)
(7) 1 |— —By Py _ —.I(6)
(8) +- (Vx —1Px) => —.(Ely Py) =>I(7)

The proof lines have numbers, which are used for two purposes:

(a) in the justification, to indicate which other lines a given line depends on, and

(b) to abbreviate an assumption formula; a number in the place of an assumption
formula stands for the formula introduced by the assumption rule in the line
with this number.

Note that the reasoning is done exclusively with the conclusion formulae, while
the assumptions are only carried along to emphasize the interdependencies between
the formulae. This is characteristic of Gentzen’s natural deduction system NK,
whereas the calculi of sequents, as for example Gentzen’s LK, also change the
formulae of the antecedent.

2.3-4 Derived Natural Deduction Rules

Gentzen chose his original set of natural deduction inference rules for its
systematic introduction and elimination of the logical connectives. It is very cumber—
some, though, to do proofs using only these rules. Therefore, we will introduce a
number of derived rules in this section, which will facilitate some often recurring ,
proof processes.

R1 f __ 11 Alt-F1 flint-Fa
WW

' 1 n 21‚ . . . ,flnI -G

provided that F1 A. . ‚A Fn = G is a tautology.

14 Proof Transformation with Built-in Equality Predicate

This rule substitutes any reasoning that can entirely be done in propositional
logic. It is, however, not meant to hide complicated proof sequences, but to shorten
many obvious derivations, ~s for instance in the example below:

2.3-5 Example: (Rule of Propositional Calculus)

In order to prove that (FvG) follows from (.F=>G) one would have to go
through the following derivation

(a) JI I­ .F=>G Rule 9\
(~) JI I­ Fv-,F Axiom

Case 1:
(r) JI, F l- F Ass
(0) JI, F I- FvG vIer)

Case 2:
(e) JI,-,F 1­ .F Ass
(~) JI,.F 1­ G =>E(a,e)
(11) JI,.F I- FvG vI(~)

End of Cases(1,2)
('0-) JI I- FvG vE(~,o,11)

•
The rule below handles negation in connection with quantifiers. Similar to the

rule of propositional calculus it leads to considerably shorter proofs.

JIr-F
Negation Rule (Neg):

JIr-G
where F equals -('ix H), -,(3x H), \:Ix -,H, or 3x -,H,

and G equals 3x .H, \:Ix,H, -,(3x H), or -,(\:Ix H),

respectively.

l 4 Proof Transformation with Built-in Equality Predicate

This rule substitutes any reasoning that can entirely be done in propositional
logic. It is, however, not meant to hide complicated proof sequences, but to shorten
many obvious derivations, as for instance in the example below:

2.3-5 Example: (Rule of Propositional Calculus)

In order to prove that (FVG) follows from (—.F=>G) one would have to go
through the following derivation

(0t) 54 |— —‚F=>G Rule9l
(ß) :! I— Fv-«F Axiom

Case 1:
(y) A, F I— F Ass
(8) ‚91, F i— FVG vI(y)

Case 2:
(e) 2,—uF l— —.F Ass

(Q nflF l— G =>E(a,e)
(T1) Ja,—‚F I— FVG vI(C_‚)

End of Cases! 1 ,2)

(19) fl l— FvG vE(ß‚ö‚n)

.

The rule below handles negation in connection with quantifiers. Similar to the
rule of propositional calculus it leads to considerably shorter proofs.

_ fl l- F
Negation Rule meg) : fl ‚_ G

where F equals —-(Vx H), —a(3x H), Vx —-1H‚ or 3x ”WH,

and G equals 3x —|H, Vx aH, —1(3x H), or —.(Vx H),

respectively.

Proof Transformation 15

3 Proof Transformation

The construction of natural deduction proofs (NDPs), by humans and computers
alike, is conducted in single steps. To prove any valid formula F one always starts
with a line {I- F}. Such a line is obviously no proof, because it is not correctly
justified. Now the proof is constructed by deriving subgoals until the proof is
completed. In the intermediate states one may find completed subproofs, but also
others that are not yet done. To formalize the procedure of the search for such a
natural deduction proof, we use Generalized Natural Deduction Proofs as defined in

[Li90].

3.1 General Procedure

3.1-1 Deflnition: (Generalized Natural Deduction Proof)

A finite sequence S of proof lines is called a Generalized Natural Deduction
Proof(GNDP) of a formula F, if

(i) F is the conclusion of the last line of S,

(ii) the last line of S has no assumptions, and

(ill) every line is either justified by a rule of the calculus, or it is justified

by a proof (possibly in a different calculus) of its conclusion from
its assumptions.

This allows lines not correctly justified within the calculus, but it is assumed that
these lines are "sound", in the sense that the formula (J\assumptions => conclusion)
is valid. Such lines are called external lines, lines justified within the calculus are
called internal. When no external lines are present in a GNDP, it is a normal NDP.

A GNDP consisting of just one line, which is an external line without assump­
tions and with conclusion F, is called the trivial GNDP for F.

3.1-2 Example: (Generalized NDP)

In this example we give one possible generalized NDP for the formula
F =(v'u fiuu = e) 1\ (Vv fve= v) 1\ (Vxy Sx 1\ Sy => Sfiyx) => (Vz Sz => Siz), with a

constant symbol e and function symbols f and i. This is a formulation of part of the
subgroup criterion:

Proof Transformation l 5

3 Proof Transformation

The construction of natural deduction proofs (NDPs), by humans and computers
alike, is conducted in single steps. To prove any valid formula F one always starts
with a line {i- F}. Such a line is obviously no proof, because it i s not correctly
justified. Now the proof is constructed by deriving subgoals until the proof i s
completed. In the intermediate states one may find completed subproofs, but also
others that are not yet done. To formalize the procedure of the search for such a
natural deduction proof, we use Generalized Natural Deduction Proofs as defined in
[Li90].

3 .1 General Procedure

3 .1 -1 Definition: [Generalized Natural Deduction Proof)

A finite sequence S of proof lines is called a Generalized Natural Deduction
Proof (GNDP) of a formula F, if

(i) F is the conclusion of the last line of S ,

(ii) the last line of S has no assumptions, and

(iii) every line is either justified by a rule of the calculus, or it i s justified
by a proof (possibly in a different calculus) of its conclusion from
its assumptions.

This allows lines not correctly justified within the calculus, but it is assumed that
these lines are “soun ”, in the sense that the formula (Aassumptions => conclusion)
is valid. Such lines are called external lines, lines justified within the calculus are
called internal. When no external lines are present in a GNDP, it is a normal NDP.

A GNDP consisting of just one line, which is an external line without assump-
tions and with conclusion F, i s called the trivial GNDP for F.

3 .1 -2 Example: (Generalized NDP)

In this example we give one possible generalized NDP for the formula
F= (Vufiuu= e)A (vve=v)/\ (nSXASy=Sfiyx) => (V2 82 = Siz), with a
constant symbol e and function symbols f and i. This i s a formulation of part of the
subgroup criterion:

16 Proof Transfonnation with Built-in Equality Predicate

Let G be a group, Ss;;;G; if/or all x,y in S, y-lox is also in
S, thenfor every X in S its inverse is also in S.

(1) 1 r- (\tu fiuu = e) 1\ (\tv fve =v) 1\ (\txy Sx 1\ Sy => Sfiyx) Ass
Let a be an arbitrary constant

(2) 2 r- Sa	 Ass
(3) 1 r- \tv fve = v	 I\E(l)

(4) 1,2 r- fiae=ia	 \t1(3)
(12) 1, 2 r-	 Sfiae 1t

(13) 1, 2 r-	 Sia =(12,4)

(14) 1 r-	 Sa => Sia =>1(13)
(15) 1 r-	 \tz Sz => Siz \t1(14)

(16)	 r- (\tu fiuu = e) 1\ (\tv fve = v) 1\ (\txy Sx 1\ Sy => Sfiyx)

=> (\tz Sz => Siz) =>1(15)

For a proof of 1t see the refutation graph in example 3.4-1.

In the following we always assume that for a refutation graph r proving a
formula F we know a clause graph relation 8. c Qa(F) x N establishing a clear

connection between the formula F and the literal nodes of the refutation graph. When

the proof is automatically generated by a computer, this relation has to be computed
during the process of transforming F into clause form and must be maintained

throughout the search for the proof.

3.1-3 Definition: (Polarization of Clause Nodes)

Given a refutation graph r justifying an external line (X of a GNDP with

assumptions Fi, conclusion G, and a clause graph relation 8., relating all the literal
nodes of r to atom occurrences in QaCH) with H: = Fll\ F21\ ••• 1\ Fn => G. Then a

clause node is negatively polarized if any of its literal nodes is related to an atom

occurrence H<2....>. Otherwise the clause node is said to be positively polarized. In

particular equality clause nodes are positively polarized.

If a refutation graph is drawn and the polarization of its clause nodes must be

emphasized, then a negatively polarized clause node is drawn with a double box as in

In order to find a natural deduction proof of a formula F, a finite sequence of

generalized NDPs can be constructed whose first element is the trivial GNDP for F,
and whose last element is a natural deduction proof of F. To be able to generate such

a sequence of GNDPs it is necessary to describe the rules by which a GNDP is

l 6 Proof Transformation with Built-in Equality Predicate

Let G be a group, S gG; iffor all x,y in S, y‘1 «x is also in
S, then for every x in S its inverse is also in S .

(1) 1 l- (Vu fiuu = e) A (Vv fve =v) A (n Sx A Sy => Sfiyx) Ass
Let a be an arbitrary constant

(2) 2 I- Sa Ass
(3) l l- Vv fve = v AE(1)
(4) 1, 2 !- fiae = ia \7’I(3)

(12) l , 2 |- Sfiae 112
(13) 1, 2 l— Sia =(12‚4)
(14) 1 |- Sa => Sia =>I(13)
(15) l !- VzSz=>Siz VI(14)
(16) I— (Vu fiuu=e)A(Vv fve=v)A(n SXASy=>Sfiyx)

=> (Vz Sz => Siz) =>I(15)

For a proof of it see the refutation graph in example 3.4-1.

In the following we always assume that for a refutation graph F proving a
formula F we know a clause graph relation A ;9a (F)xN establishing a clear
connection between the formula F and the literal nodes of the refutation graph. When
the proof is automatically generated by a computer, this relation has to be computed
during the process of transforming F into clause form and must be maintained
throughout the search for the proof.

3. 1-3 Definition: (Polarization of Clause Nodes]

Given a refutation graph I‘ justifying an external line a of a GNDP with
assumptions Fi, conclusion G, and a clause graph relation A , relating all the literal
nodes of 1" to atom occurrences in 52a(H) with H: =F1AF2A AFn=>G. Then a
clause node i s negatively polarized if any of its literal nodes is related to an atom
occurrence H<2. . . .>. Otherwise the clause node is said to be positively polarized. In
particular equality clause nodes are positively polarized.

If a refutation graph i s drawn and the polarization of its clause nodes must be
emphasized, then a negatively polarized clause node is drawn with a double box as in

m- lfi - I - I -
In order to find a natural deduction proof of a formula F , a finite sequence of

generalized NDPs can be constructed whose first element is the trivial GNDP for F,
and whose last element is a natural deduction proof of F. To be able to generate such
a sequence of GNDPs i t i s necessary to describe the rules by which a GNDP i s

Proof Transfonnation	 17

constructed from its predecessor in the sequence. In the following example one such
transition between two consecutive GNDPs is shown.

3.1-4 ~x~ple: (Proof Transformation)

At a certain point during the proof transformation process the following GNDP
has been arrived at:

(1) 1 f- ('Vu fiuu = e) /\ ('Vv fve =v) /\ ('Vxy Sx/\ Sy ~ Sfiyx) Ass

(15) 1 f-	 'v'z Sz ~ Siz 1t

(16)	 f- ('Vu fiuu =e) /\ ('Vv fve =v) /\ ('v'xy Sx /\ Sy ~ Sfiyx)
~ ('v'z Sz ~ Siz) ~1(15)

Now in order to prove the universally quantified formula in (15) the formula is

derived for a (new) arbitrary constant. Then it is possible to generalize the result. This

leads to the next GNDP.

(1) 1 f- ('Vu fiuu = e) /\ ('Vv fev = v) /\ ('v'xy Sx /\ Sy => Sfiyx) Ass

Let a be an arbitrary constant

(14) 1 f-	 Sa => Sia 1t '

(15) 1 f-	 'Vz Sz => Siz 'VI(14)

(16)	 f- ('Vu fiuu = e) /\ ('Vv fev = v) /\ ('Vxy Sx /\ Sy => Sfiyx)
=> ('Vz Sz => Siz) =>1(15)

•
In the following section we shall give a formal account of some of these

transition rules. In their description, jf is a list of assumption formulae, capital letters
indicate single formulae, ex, ~, y, ... are used as labels for the lines, the justification

Rule 9\ stands for an arbitrary rule of the natural deduction calculus, and the

justifications 1t, 1t' , 1t1' and 1t2 represent proofs of the respective lines. For all these
rules one must make sure that the proofs 1t' , 1t1' or 1t2 can be constructed from 1t or
are otherwise known. How this can be done if the proof is given in form of a
refutation graph will be shown later, when the automatic proof transformation
procedure is described.

3.2 Transformation Rules

The transformation rules are to be read as follows: the lines on the left hand side
of the arrow (~) are replaced by those on the right hand side in the next generalized

NDP of the sequence. Some of the rules simply add a new internal line, they are also
marked with an arrow and written below their parent lines.

Proof Transformation l 7

constructed from its predecessor in the sequence. In the following example one such
transition between two consecutive GNDPs is shown.

3 .1 -4 Example: [Proof 'n'ansformation)

At a certain point during the proof transformation process the following GNDP
has been arrived at:

(1) 1 |— (Vu fiuu = e) A (Vv fve = v) A (n SKA Sy = Sfiyx) Ass
(15) 1 +- Vz Sz = Siz TI:
(16) +- (Vu fiuu=e)A (VV fve=v)A(n SXASy=Sf iyx)

= (VzSz=Siz) =I(15)

Now in order to prove the universally quantified formula in (15) the formula i s
derived for a (new) arbitrary constant. Then it is possible to generalize the result. This
leads to the next GNDP.

(1) l +- (Vu fiuu=e)/ \ (Vv fev=v)A(n SXASy=>Sfiyx) Ass
Let a be an arbitrary constant

(14) 1 +— Sa => Sia 1c'
(15) l |— Vz Sz = Siz VI(14)
(16) t— (Vu fiuu=e)A(\7’v f ev=v)A (n SXASy=Sfiyx)

= (VzSz => Siz) =I(15)
.

In the following section we shall give a formal account of some of these
transition rules. In their description, :4 is a list of assumption formulae, capital letters
indicate single formulae, a, ß, 'y, . . . are used as labels for the lines, the justification
Rule Si stands for an arbitrary rule of the natural deduction calculus, and the
justifications n, n‘, 1:1, and 11:2 represent proofs of the respective lines. For all these
rules one must make sure that the proofs 1c“, nl, or 1t2 can be constructed from n or
are otherwise known. How this can be done if the proof i s given in form of a
refutation graph will be shown later, when the automatic proof transformation
procedure is described.

3 .2 Transformation Rules

The transformation rules are to be read as follows: the lines on the left hand side
of the arrow (_») are replaced by those on the right hand side in the next generalized
NDP of the sequence. Some of the rules simply add a new internal line, they are also
marked with an arrow and written below their parent lines.

18 Proof Transformation with Built-in Equality Predicate

The rules can be divided into three classes. Internal rules introduce new internal
lines without any relation to current external lines, this corresponds to forward
reasoning. External rules try to reduce a current external line, this realizes backward

reasoning. Mixed rules depend on both, external and internal lines, reducing an

externa1line in the light of previously derived formulae.

EA:

{(a) YI l- F	 1tl
(r) YI I- FAG 1t	 (13) YI I- G 1tz

(r) YI I- FAG Al(a,l3)

E=>:

{(a) YI,F l- F	 Ass
(r) YI I- F~G 1t	 (13) YI,F I- G 1t'

(r) YI I- F~G ~1(13)

EV:

{Let c be an arbitrary constant
(13) YI I- VxFx 1t	 (a) YI I- Fc 1t'

(13) YI I- 'v'xFx 'v'l(a)

c must be a "new" constant, not occurring in YI or Fx.

M-Cases:	 (a) YI I- FvG Rule 9t
We consider separately the cases of (a)
Case'l:
(13) YI,F l- F	 Ass

(a) YI I- FvG Rule 9t	 (r) YI,F I- H 1tl

}~ Case 2:
(~) YI I- H 1t (0) YI,G I- G Ass

(e) YI,G I- H 1t2
End of cases 0, 2) of (a)
(~) YI I­ H vE(a,r,e)

IAleft:
~

(a) YI

(13) YI

I­

l-

FAG

F

Rule 9t
AE(a)

IV:

for an arbitrary term 1.

~

(a) YI

(13) YI
I­

-ן

'v'xFx
Ft

Rule 9t
'v'E(a)

E3-constructive:
(13) YI I­ 3xFx 1t {(a)

(13)

YI

YI

I­

I-

Ft

3xFx

1t'

31(a)

1 8 Proof Transformation with Built-in Equality Predicate

The rules can be divided into three classes. Internal rules introduce new internal
lines without any relation to current external lines, this corresponds to forward
reasoning. External rules try to reduce a current external line, this realizes backward
reasoning. Mixed rules depend on both, external and internal lines, reducing an
external line in the light of previously derived formulae.

BA:
(or) fll. I- F 1:1

(7) fl !- FAG 11: —> (ß) 541 |- G 1:2
('y) fll I— FAG AI(a,ß)

E=>z
(a) A, F l- F Ass

(y) 14 |- F=>G 1t (ß) 2, F l- G
(y) a l- F=>G =>I(|3)

EV:
Leto be anarbitrary constant

(ß) 2 +- Vx 1: { (a) fl I- Fc 1t'
(l3) fll t- Vx VI(0t)

c must be a “new” constant, not occurring in 31 or Fx.

We consider separately the cases of (on)
M-Cases: (a) ‚q +— FvG RuleSR

(ß) 12,1: |— F Ass
(oe) 2 1- FvG Ru leSK} (1082 ,13 !- H 1:1

(C) ‚q s— H n (ö)s ?, G l- G Ass
(e) 54, G I- H 1:2
End of cases (1, 2) of (oz)
(t;) ‚q r— H vE(a‚7‚e)

IAleftI (0c) fl I— F A G Rule 9?
_» (B) A ' 1- F AE(0t)

LZ; (0L) fll l- Vx RuleSR
—» (ß) fit I- Ft VE(a)

foran arbitrary term t.

EEl-constructive:
(ß) fll +- 5!x 1c

{ ((x) ‚q }- Ft 1t'

_» (ß) a l- 3x am)

19 Proof Transfonnation

M-Inf:
(a)	 5l f- F:::)G (a) Jl f- F:::)G Rule 9\

(~) 5l f- F x'{
(y) Jl f- G	 (y) Jl f- G =>E(a,~)

Similar to rule Tau in the Natural Deduction Calculus, one can define a transfor­

mation rule I-Tau combining all possible derivations in propositionallogic.

I-Tau:	 (al) JlI f- FI Rule9\1

(a2) 5lz f- F2 Rule 9\2
(Un) Jln f- Fn Rule 9tn

~ (~) uYG f- F Tau(al,. .. ,an)
provided that F is a consequence of F I through Fn in propositionallogic.

As we are mainly concerned with the effect of equality reasoning in a proof, we

will now state the rules handling the application of an equation.

E-=..L:

(y) Jl f­ 1. x
(a)
(~)
(y)

5l
5l

f­
f­
f-

S = S
S:;l!: S

1.

Ref
x'

Contra

E _.--.
(a)	 5l f- s=t (a) 5l f- S =t Rule 9\

(~) Jl f- F(s) x'{
(y) Jl f- F(t)	 (y) 5l f- F(t) =(~,a)

As we are mainly concerned with the effect of equality reasoning in a proof, we
will now state the rules handling the application of an equation.

3.3 A Proof Transformation System with Equality

The set of transformation rules defined in the previous section constitutes a proof

system for natural deduction proofs. This means that for any valid formula F, there is
a finite sequence of GNDPs starting with {f- F} and ending with an NDP for F.

Every element in this sequence can be constructed frQm its predecessor by application
of one of the transition rules (completeness of the set of transition rules).

This system could be used as a proof checker, the user choosing from a menu of

applicable rules, and the system correctly applying them. Some of the rules (called

"automatic") are always useful and can automatically be applied by the system. For

the others (called "user guided") the user must make a decision or provide more

Proof Transformation l 9

M-Inf:

(a) 1 t- F=>G RuleER } { (a) fll |- F=>G Rulegi
—» (ß) 2 +- F 1 t '

(7) fl l- G 1; (y) a I- G =>E(a,ß)

Similar to rule Tau in the Natural Deduction Calculus, one can define a transfor-
mation rule I—Tau combining all possible derivations in propositional logic.

I ‘Tau: ((1.1) fi] I- Fl Rule 5K1

((1.2) 22 I- Fz Rule SR2
(an) fin I- Fn Rule SR“

_» (ß) ufli !- F Tau(a1,...,0tn)
provided that F is a consequence of F1 through Fn in propositional logic.

As we are mainly concerned with the effect of equality reasoning in a proof, we
will now state the rules handling the application of an equation.

E-= :

} { (0t) +- s=s Ref
(7) A t- _L 7t _» (ß) fit |- s ¢ s 16'

(’Y) 2 I- J. Contra

(a)} ! |— s= t RuleSR} { (a) x +- s= t RuleSR
—> (ß) 2 l- F(s) 1 t '

(7) a r- F(t) n ('Y) a |- F(t) =(ß‚oc)
As we are mainly concerned with the effect of equality reasoning in a proof, we

will now state therules handling the application of an equation.

3.3. A Proof Transformation System with Equality

_ The set of transformation rules defined in the previous section constitutes a proof
system for natural deduction proofs. This means that for any valid formula F, there is
a finite sequence of GNDPs starting with {|— F} and ending with an NDP for F .
Every element in this sequence can be constructed from its predecessor by application
of one of the transition rules (completeness of the set of transition rules).

This system could be used as a proof checker, the user choosing from a menu of
applicable rules, and the system correctly applying them. Some of the rules (called
“automatic”) are always useful and can automatically be applied by the system. For
the others (called “user guided”) the user must make a decision or provide more

20	 Proof Transfonnation with Built-in Equality Predicate

information. So the system can actually do much more by preselecting a subset of the
transformation rules and giving the user a much smaller choice of rules.

Now the strategy for a semiautomatic proof system can be described by the
following algorithm:

3.3-1 Algorithm: (Basic Proof Transformation)

1.	 Start with GNDP = {0 I- F}.

2.	 Apply "automatic" external rules as long as possible.1

3.	 Decide whether to apply any of the "user guided" external rules. If so, do
it , then go to 2.

4.	 Now apply mixed rules until no longer possible. If M-Inf was applied, go
to 2.

5.	 Check whether the proof is already completed, in which case the GNDP
is returned as final proof.

6.	 Choose any number of the internal rules to be applied. Then go to 4.

The transformation rules are selected according to appropriate heuristics, making
use of the information in a given proof, for instance a previously computed refutation
graph.

The selection between different rules that might be applicable is guided by the
refutation graph representing the proof of the external lines in a GNDP. The
assumptions of such external lines may then be treated as axioms for this particular
proof. In a refutation graph there is a priori no distinction between clause nodes
representing axioms and others representing (negated) theorem parts. In order to
formalize such a distinction we use the notion of polarization of clause nodes defined
in definition 3.1-3.

In [Li90] it is shown how a proof represented as a refutation graph without
equality can guide the "search" for a natural deduction proof. In this context, search
means to transform the given, graph-represented proof into the natural deduction
calculus, rather than to find an original proof.

After an application of rule E-= replacing a goal formula F(t) by F(s) a refu­
tation graph for F(s) can be constructed by removing the equality clause node
[-P(s) s:;JI:t P(t)] and the equation clause node [s =t] unless used more than once.

1	 A fonnula is not further divided if it is "integral", Le. it can be derived without using its
subfonnuIae. For a defmition of the notion of integrality see [Li90J.

2 0 Proof Transformation with Built-in Equality Predicate

information. So the system can actually do much more by preselecting a subset of the
transformation rules and giving the user a much smaller choice of rules.

Now the strategy for a semiautomatic proof system can be described by the
following algorithm:

3.3-1 Algorithm: (Basic Proof Transformation)

1 . Start with GNDP = [Q i -F} .

2 . Apply “automatic” external rules as long as possible.1

3 . Decide whether to apply any of the “user guided” external rules. If so, do‘
it , then go to 2.

4 . Now apply mixed rules until no longer possible. If M-Inf was applied, go
to 2.

5 . Check whether the proof is already completed, in which case the GNDP
is returned as final proof.

6 . Choose any number of the internal rules to be applied. Then go to 4.

The transformation rules are selected according to appropriate heuristics, making
use of the information in a given proof, for instance a previously computed refutation
graph.

The selection between different rules that might be applicable is guided by the
refutation graph representing the proof of the external lines in a GNDP. The
assumptions of such external lines may then be treated as axioms for this particular
proof. In a refutation graph there i s a priori no distinction between clause nodes
representing axioms and others representing (negated) theorem parts. In order to
formalize such a distinction we use the notion of polarization of clause nodes defined
in definition 3.1-3.

In [Li90] it i s shown how a proof represented as a refutation graph without
equat can guide the “search” for a natural deduction proof. In this context, search
means to transform the given, graph—represented proof into the natural deduction
calculus, rather than to find an original proof.

After an application of rule E-= replacing a goal formula F(t) by F(s) a refu-
tation graph for F(s) can be constructed by removing the equality clause node
[—P(s) sit P(t)] and the equation clause node [s= t] unless used more than once.

1 A formula is not further divided if it is “integral”, i.e. it can be derived without using its
subformulae. For a definition of the notion of integrality see [Li90].

21 Proof Transfonnalion

Then the literal node -P(s) is substituted for all the literal nodes linked to P(t) from
the equality clause node. In doing so -P(s) remains linked as before and -P(s), which
was previously not related to an atom occurrence, inherits the relation from -P(t) and
also becomes negatively polarized.

Similarly, when E-=.l is applied, the polarization of the clause node [s=s] is
changed from positive to negative. Note that the refutation graph has no negatively
polarized part when a proof by contradiction is represented. The structure of the

graph remains unchanged.

3.3-2 ~ple: (Graph Update for E-=)

In this example we show a refutation graph for F(t)=PtA(AvB) and the
resulting graph proving Ps A(AvB)..

3.4 Example

As an example of the proof transformation procedure, we use again a part of the
subgroup criterion. The formula to prove is

F = (\tu fiuu =e) A("ifv fve =v) A(\txy Sx ASy => Sfiyx) => ("ifz Sz => Siz).
In order to develop a natural deduction proof of this formula we start with the
following information:

.•	 a refutation graph r proving F,

•	 the set of equality clause nodes in r,

•	 a clause graph relation .1 c Qa(F), and

•	 a ground substitution y mapping the variables in C(-,F) to the ground
terms occurring in corresponding clause nodes of the refutation graph.
The variables of the formula "if x y Z SXA Sy => Sfiyx, which is
instantiated twice, are renamed to Xl, YI, and X2, Y2.

Proof Transfmnation 2 1

Then the literal node —P(s) i s substituted for all the literal nodes linked to P(t) from
the equality clause node. In doing so —P(s) remains linked as before and —P(s), which
was previously not related to an atom occurrence, inherits the relation from —P(t) and
also becomes negatively polarized

Similarly, when E-=J. i s applied, the polarization of the clause node [s=s] i s
changed from positive to negative. Note that the refutation graph has no negatively
polarized part when a proof by contradiction is represented. The structure of the
graph remains unchanged.

3.3-2 Example: (Graph Update for E—-=]

In this example we show a refutation graph for F (t)=P tA(AvB) and the
resulting graph proving Ps A (AvB). '

subgraph Ps 4%

3.4 Example

As an example of the proof transformation procedure, we use again a part of the
subgroup criterion. The formula to prove is

F=(Vufiuu= e) A(vve=v)A(n SXASy=> Sfiyx) => (Vz Sz=>Siz).
In order to develop a natural deduction proof of this formula we start with the
following information:

-- a refutation graph F proving F,

' the set of equality clause nodes in P,

° a clause graph relation A ; SMF), and

° a ground substitution 7 mapping the variables in C(—.F) to the ground
terms occurring in corresponding clause nodes of the refutation graph.
The variables of the formula nz Sx.A Sy => Sfiyx, which i s
instantiated twice, are renamed to x l , y l , and X2, yz.

22 Proof Transfonnation with Built-in Equality Predicate

All of this infonnation, the refutation graph, the clause graph relation, and the
ground substitution has been automatically generated by the theorem prover MKRP,
see [MKRP84] and [Le88]. Below the refutation graph r is shown; theory clause

nodes are indicated by dashed lines.

3.4-1 Example: (Refutation Graph)

+Sa A

-Se
-Sa
Sfiae

Q
Sia -Sia

......_..J--_--A._....

Y= {u~ a, v~ ia, Xl ~ a, YI ~ a, X2~ e, Y21-7 a, ZI-7 ia}

The transfonnation process is now started with the trivial GNDP for F
(16)	 I- (V'ufiuu = e) 1\ (V'vfve =v) 1\ (V'xy Sx 1\ Sy => Sfiyx)

=> (V'z Sz => Siz) r

The first rule to be applied is E=>, which leads to the next GNDP:
(1) 1 I- (V'ufiuu=e)I\(V'vfve=v) 1\ (V'xySxI\Sy=>Sfiyx) Ass

(15) 1 I-	 V'z Sz => Siz r
(16) I-	 (V'u fiuu = e) 1\ (V'v fve = v) 1\ (V'xy Sx 1\ Sy => Sfiyx)

=> (V'z Sz => Siz) =>1(15)
The new external line is justified by the same refutation graph r, .1 and y have
also not changed.

With some further steps not involving equality, the following GNDP is

constructed:
(1) 1 f- (V'u fiuu =e) 1\ (V'V fve = v) 1\ (V'xy Sx 1\ Sy => Sfiyx) Ass

Let a be an arbitrary constant

(2) 2 f- Sa	 Ass

(13) 1, 2 f-	 Sia 1t

(14) 1 f-	 Sa => Sia =>1(13)

(15) 1 f-	 V'z Sz => Siz V'1(14)

(16)	 f- (V'u fiuu = e) 1\ (V'v fve = v) 1\ (V'xy Sx 1\ Sy => Sfiyx)

=> (V'z Sz => Siz) =>1(15)

2 2 Proof Transformation with Built-in Equality Predicate

All of this information, the refutation graph, the clause graph relation, and the
ground substitution has been automatically generated by the theorem prover MKRP,
see [MKRP84] and [Le88]. Below the refutation graph P is shown; theory clause
nodes are indicated by dashed lines.

3.4-1 Example: [Refutation Graph)

L-Sa I -Sa Igaial—o— -Sfiaa
2 fiaaaee +fi—Ißa=e]

Se

+-Se W
-Sa @ ' (I) Q

+Sa A Sfiae —-o—[-Sfiaeifiae¢iaESia

Y= {uHa ,VHia .X1 ' ->a ,y1 I ->a , X2He, „Ha , ZHia}

The transformation process is now started with the trivial GNDP for F
(16) !— (Vu fiuu=e)A(vve=v)A(n SXASy=Sfiyx)

= (V z Sz = Siz) F

The first rule to be applied is E=, which leads to the next GNDP:
(1) 1 I— (Vu f iuu=e)A(Vv fve=v)A(n SxASy=Sfiyx) Ass

(15) 1 +- Vz Sz = Siz P
(16) I— (Vu fiuu=e)A(Vv fve=v)A(n SXASy=Sfiyx)

= (V2 32 = Siz) =I(15)
The new external line is justified by the same refutation graph 1", A and 7 have
also not changed.

With some further steps not involving equality, the following GNDP is
constructed:

(1) 1 !- (Vufiuu=e)A(\ ' / ve=v)A(nSXASy=Sfiyx) Ass
Let a be an arbitrary constant

(2) 2 l— Sa Ass
(13) 1, 2 +- Sia 1c
(14) 1 |- Sa => Sia :3103)
(15) 1 +— Vz Sz=Siz VI(14)
(16) |- (Vu fiuu=e)A(Vv fve=v)A(nSXASy=Sfiyx)

= (V2 82 = Siz) =>I(15)

23 Proof Transfonnation

At this point the fonnula to prove, Sia, cannot further be processed by external
rules. A consultation of the refutation graph, which has not changed yet, tells us that
the literal node corresponding to Sia is only connected to a theory clause node.

Therefore Sia must be derived using the rule of equality. As a preliminary operation

we must isolate the equation feia = ia, using internal rules, then E-= can be applied.
Now the GNDP takes on the fonn shown below:

(1) 1 f- (\iu fiuu = e) 1\ (\iv fve = v) 1\ (\ixy Sx 1\ Sy => Sfiyx) Ass
Let a be an arbitrary constant

(2) 2 f- Sa	 Ass
(3) 1 f- \ivfve=v	 I\E(I)

(4) 1, 2 f- fiae = ia	 \iI(3)

(12) 1, 2 f-	 Sfiae it'
(13) 1, 2 f-	 Sia =(12,4)

(14) 1 f-	 Sa => Sia =>1(13)
(15) 1 f-	 \izSz=>Siz \iI(14)
(16)	 f- (\iufiuu =e) 1\ (\ivfve =v) 1\ (\ixy SXl\Sy => Sfiyx)

=> (\izSz => Siz) =>1(15)

The refutation graph It has now changed to the graph It':

+Sa A

Now the transfonnation process continues as in the first order case, with just one
more application of an equality rule to produce the [mal natural deduction proof:

(1) 1 f- (Vu fiuu = e) 1\ (Vv fve = v) 1\ (\ixy Sx 1\ Sy => Sfiyx) Ass
Let a be an arbitrary constant

(2) 2 f- Sa	 Ass
(3) 1 f- Vvfve=v	 I\E(I)
(4) 1, 2 f- fiae =ia	 VI(3)
(5) 1 f- \ixy Sx 1\ Sy => Sfiyx	 I\E(I)
(6) 1 f- Se 1\ Sa => Sfiae	 \iI(5)
(7) 1 f- \iu fiuu = e	 I\E(I)
(8) 1 f- fiaa = e	 \11(7)

Proof Transformation 2 3

At this point the formula to prove, Sia, cannot further be processed by external
rules. A consultation of the refutation graph, which has not changed yet, tells us that
the literal node corresponding to Sia i s only connected to a theory clause node.
Therefore Sia must be derived using the rule of equality. As a preliminary operation
we must isolate the equation feia = ia, using internal rules, then E—= can be applied.
Now the GNDP takes on the form shown below:

(1) 1 t- (Vu fiuu=e) / \ (Vv fve=v)/ \ (n SXASy=>Sfiyx) Ass
Let a be an arbitrary constant

(2) 2 I- Sa Ass
(3) 1 t- Vv fve = v ‘ AE(1)
(4) l , 2 t- fiae =ia VI(3)

(12) 1, 2 I- Sfiae ' i t '
(13) 1, 2 I- Sia =(12,4)
(14) 1 t— Sa = Sia =I(13)
(15) 1 t- Vz Sz => Siz VI(14)
(16) I- (Vu fiuu=e)A (Vv fve=v)A(n SXASy=Sf iyx)

= (VzSz= Siz) =I(15)

The refutation graph 1: has now changed to the graph 1t':

I -Sa r—SaJSfaia Z -Sfiaa
fiaaaee ko—{jaaw j
Se H

-Se
-Sa @

+Sa A Sfiae snag]

Now the transformation process continues as in the first order case, with just one
more application of an equality rule to produce the final natural deduction proof:

(1) 1 I- (Vu fiuu=e)A(vve=v) / \ (n SXASy=>Sfiyx) Ass
Let a be an arbitrary constant

(2) 2 |- Sa Ass
(3) 1 |- Vv fve = v AE(1)
(4) 1, 2 t- fiae = ia VI(3)
(5) 1 l— n Sx A Sy = Sfiyx AE(1)
(6) 1 t- Se A Sa = Sfiae VI(5)
(7) l I— Vu fiuu = e AE(1)
(8) 1 I— fiaa = e VI(7)

24 Proof Transformation with Built-in Equality Predicate

(9) 1 f- Sa 1\ Sa ~ Sfiaa VI(5)
(10) 1 I- Sfiaa =>E(2,9)
(11) 1 f- Se =(10,8)
(12) 1, 2 f- Sfiae ~E(11,2,6)

(13) 1,2 f- Sia =(12,4)
(14) 1 f- Sa ~ Sia ~I(13)

(15) 1 f­ VzSz~Siz VI(14)
(16) f­ (Vu fiuu = e) 1\ (Vv fve = v) 1\ (Vxy Sx 1\ Sy ~ Sfiyx)

~ (Vz Sz ~ Siz) =>I(15)

24

T
T

T
T

T
T

T
T

Proof Transformation with Built-in Equality Predicate

Sa A Sa :> Sfiaa VI(5)
Sfiaa =>E(2‚9)
Sc =(10,8)
Sfiae =>E(1 1,2,6)
Sia =(12,4)
Sa => Sia =>I(13)
Vz Sz = Siz VI(14)
(Vu fiuu = e) A (Vv fve =v) A (n Sx A Sy => Sfiyx)
=> (Vz Sz => Siz) =>I(15)

25 Structuring the Proof

4 Structuring the Proof

4.1 General Procedure

We assume that a proof of a fonnula <p has already been found by an automated

deduction system. We will further assume that this proof is represented as a refutation
graph r. In addition to the refutation graph, in order to establish a correspondence
between the literal nodes of r and the atom occurrences within <p, we need a clause
graph relation ~~ Qa(<p) x N, which must of course have been maintained throughout

the search for a proof, especially during the process of nonnalization of the original

fonnula.

An initial "trivial" generalized natural deduction proof (GNDP) can then be
constructed to start a transfonnation process as described in section 3. Now some of
the transfonnation rules, EA for instance, lead to additional external lines, and as a

consequence to a division of the refutation graph according to the splitting theorem
[Li90]. In the simplest case the refutation graph proving FAG is "cut" through the
clause [-F-G], such that the two resulting components are refutation graphs for F

and G, respectively. In general, however, the two components may have a non­

empty intersection, and this is similarly the case for the other rules leading to a
division of the refutation graph. The splitting theorem does not take this into account,
so that these shared subgraphs are always duplicated and therefore processed more
than once.

This does not matter if the intersection is comparatively smalI1, when it may
easily be copied and later used several times in the resulting subproofs. If it is
relatively large and complex, however, it may be sensible to prove a lemma first and
then use it in all the proof parts. In order to formalize such a procedure, the
transfonnation rule E-Lemma is introduced.

1 A lemma only makes sense, when the deduction graph in question is complex enough to
warrant a separate proof. Otherwise it may be better to repeat a trivial argument instead of
using a lemma. It is of course not straightforward to decide which deduction graph (or
lemma) is non-trivial. To make a decision we use a heuristic approach taking into account
several properties of the refutation graph and its subgraph, the deduction graph proving the
lemma. As in [Li90] our method is based on Davis' def"mition of trivial proofs [Da81].

Structuring the Proof 2 5

4 Structuring the Proof

4 .1 General Procedure

We assume that a proof of a formula (p has already been found by an automated
deduction system. We will further assume that this proof is represented as a refutation
graph F. In addition to the refutation graph, in order to establish a correspondence
between the literal nodes of 1" and the atom occurrences within (p, we need a clause
graph relation A g Q.((p) x N, which must of course have been maintained throughout
the search for a proof, especially during the process of normalization of the original
formula.

An initial “trivial” generalized natural deduction proof (GNDP) can then be
consu'ucted to start a transformation process as described in section 3. Now some of
the transformation rules, BA for instance, lead to additional external lines, and as a
consequence to a division of the refutation graph according to the splitting theorem
[Li90]. In the simplest case the refutation graph proving F AG is “cut” through the
clause [—F—G], such that the two resulting components are refutation graphs for F
and G, respectively. In general, however, the two components may have a non-
empty intersection, and this is similarly the case for the other rules leading to a
division of the refutation graph. The splitting theorem does not take this into account,
so that these shared subgraphs are always duplicated and therefore processed more
than once.

This does not matter if the intersection is comparatively smalll, when it may
easily be copied and later used several times in the resulting subproofs. If it i s
relatively large and complex, however, it may be sensible to prove a lemma first and
then use it in all the proof parts. In order to formalize such a procedure, the
transformation rule E-Lemma is introduced.

1 A lemma only makes sense, when the deduction graph in question is complex enough to
warrant a separate proof. Otherwise it may be better to repeat a trivial argument instead of
using a lemma. It is of course not straightforward to decide which deduction graph (or
lemma) is non-trivial. To make a decision we use a heuristic approach taking into account
several properties of the refutation graph and its ,subgraph, the deduction graph proving the
lemma. As in [Li90] our method is based on Davis’ definition of trivial proofs [Da8l].

26 Proof Transformation with Built-in Equality Predicate

E-Lemma:
(1", G Xo{(a)

(131) ~1 I- F1 Xl
(131) 511 I- F1 xi

(Pn) ~n I- F n Itn
(Pn) ~n I- Fn It'n

This rule must of course be used with discretion, i.e. only when specifically
called for by a heuristic. In particular it may only be applied when all the literal nodes
in the refutation graph Xo are positively polarized, so that it is possible to prove G
from axioms and current assumptions only. It goes without saying that Xo must be a
common subgraph of all the graphs Iti. In constructing the graphs rei one is entitled to
use the formula G as an additional axiom. The case n =1 may also be meaningful,
when a lemma is introduced as a subgoal, see section 4.3.

Let us consider now what these shared subgraphs may look like. We always
assume that a cut is being made in order to apply EA to an external proof line with
conclusion F1 A F2. In the simplest case the lemma consists of just one atom G. Then
the graph has the form

Up to now, the main incentive for the introduction of a lemma was to avoid an
unnecessary duplication of parts of the proof. But this is not the only reason why
mathematicians use lemmata. In many cases they are used purely to structure the
proof, so that the idea behind a proof becomes better visible.

In an automatic proof transformation the difficulty is obviously to find
meaningful lemmata. And it is here again that the topological structure of the
refutation graph may successfully be exploited. The task is to find parts of the
refutation graph that are sufficiently complex in order to justify the introduction of a
lemma, while they should at the same time be easily separable from the rest of the
graph. Besides, all the parts belonging to the proposed lemma must of course have
been positively polarized before.

If it were possible to find a link or a small set of links separating the refutation
graph, and fulfilling the above requirements, one might use the positively polarized

2 6 Proof Transformation with Built-in Equality Predicate

E—Lemma:
(or) FM, l— G flo

(BU/11 I -F i 1E1

—i> (B1) fill l- F1 11:1'
(BID/1:1 l-Fn 1tn

(ßn) zu + Fn 16,1

This rule must of course be used with discretion, i.e. only when specifically
called for by a heuristic. In particular it may only be applied when all the literal nodes
in the refutation graph no are positively polarized, so that it is possible to prove G
from axioms and current assumptions only. It goes without saying that 1:0 must be a
common subgraph of all the graphs m. In constructing the graphs 1:; one is entitled to
use the formula G as an additional axiom. The case n =1 may also be meaningful,
when a lemma is introduced as a subgoal, see section 4.3.

Let us consider now what these shared subgraphs may look like. We always
assume that a cut is being made in order to apply EA to an external proof line with
conclusion F1 A F2. In the simplest case the lemma consists of just one atom G. Then
the graph has the form

subgraphl

Up to now, the main incentive for the introduction of a lemma was to avoid an
unnecessary duplication of parts of the proof. But this is not the only reason why
mathematicians use lemmata. In many cases they are used purely to structure the
proof, so that the idea behind a proof becomes better visible.

In an automatic proof transformation the difficulty i s obviously to find
meaningful lemmata. And it i s here again that the topological structure of the
refutation graph may successfully be exploited. The task i s to find parts of the
refutation graph that are sufficiently complex in order to justify the introduction of a
lemma, while they should at the same time be easily separable from the rest of the
graph. Besides, all the parts belonging to the proposed lemma must of course have
been positively polarized before.

If it were possible to find a link or a small set of links separating the refutation
graph, and fulfilling the above requirements, one might use the positively polarized

27 Structuring the Proof

part as a lemma. If paramodulation steps are represented using equality clause nodes
in the refutation graph the search algorithm in [Li90] can be used unchanged.

M-Cases, one of the transfonnation rules defined in section 3, leads to a division
of the refutation graph by dividing an assumption fonnula. This rule can always be
applied, when a disjunction has been derived earlier. An application is however
undesirable in many cases, as can be seen from the following examples:

(a) If only one of the resulting components contains negatively polarized literal
nodes, then an extra and unnecessary proof by contradiction must be perfonned.

Here the case B is straightforward, but A needs a proof by contradiction.

(b) If both of the resulting parts overlap widely, including negatively polarized
literal nodes, then large parts of the proof will be duplicated in both cases.

It is advantageous to apply M-Cases, when both of the resulting components
contain parts of the theorem, and their overlap is either small or restricted to positively
polarized parts, in which case a lemma can be defined to avoid the duplication.

This is the case when the fonnula to prove is distributed in the refutation graph
with respect to the disjunctive fonnula which shall be used for case analysis, so that
the graph meets the condition of lemma 3.6-8 in [Li90].

The most important case for the rule M-Cases in pure first order logic comes up,

when an existentially quantified fonnula cannot be proven constructively. With built­
in equality there is one additional reason for a case analysis. As the natural deduction
calculus only allows the application of unit equations, special considerations are
needed for conditional equations. One solution of this problem could be the division
of the proof into cases such that the equation is assumed to hold in one of them.

Structuring the Proof 2 7

part as a lemma. If paramodulation steps are represented using equality clause nodes
in the refutation graph the search algorithm in [Li90] can be used unchanged.

M-Cases, one of the transformation rules defined in section 3, leads to a division
of the refutation graph by dividing an assumption formula. This rule can always be
applied, when a disjunction has been derived earlier. An application is however
undesirable in many cases, as can be seen from the following examples:

(a) If only one of the resulting components contains negatively polarized literal
nodes, then an extra and unnecessary proof by contradiction must be performed.

pOS'ti e . . . negative

Here the case B is straightforward, but A needs a proof by contradiction.

(b) If both of the resulting parts overlap widely, including negatively polarized
literal nodes, then large parts of the proof will be duplicated in both cases.

It is advantageous to apply M-Cases, when both of the resulting components
contain parts of the theorem, and their overlap is either small or restricted to positively
polarized parts, in which case a lemma can be defined to avoid the duplication.

This is the case when the formula to prove is distributed in the refutation graph
with respect to the disjunctive formula which shall be used for case analysis, so that
the graph meets the condition of lemma 3.6—8 in [Li90].

The most important case for the rule M-Cases in pure first order logic comes up,
when an existentially quantified formula cannot be proven constructively. With built-
in equality there is one additional reason for a case analysis. As the natural deduction
calculus only allows the application of unit equations, special considerations are
needed for conditional equations. One solution of this problem could be the division
of the proof into cases such that the equation is assumed to hold in one of them.

28 Proof Transformation with Built-in Equality Predicate

4.2	 Special Considerations Induced by
Equality Clause Nodes

As mentioned above paramodulation steps of the computer generated proof are
represented in the refutation graph using special "equality" clause nodes. For example
the combination of a paramodulation step Pa to Pb via a=b and the resolution step
between Pb and some literal -Pb is simulated as a sequence of three resolution steps
of the equality clause node [-Pa a:;t:b Pb] with the unit clauses [Pa], [-Pb], and
[a=b]. The special clause node denotes the trivial fact that Pa /\ a=b =:) Pb. The
symmetry of the equality predicate is incorporated into the unification algorithm and
hence this additional property must not be considered in the graph. In the natural
deduction calculus this fact is reflected by the existence of two symmetric rules for the
application of an equation. Alternatively one might have chosen a rule axiomatizing
the symmetry explicitely, viz.

5t I- s=t

5tl-t=s

But this does not comply with intuitive mathematical reasoning, where equation
are rarely oriented and therefore such a symmetry rule never needs to be explicitly
used.

Conditional equations, that is, equationalliterals in non unit clauses, need no
special handling, because the only difference is that the negated equation in the
equality clause node is connected to a non unit clause node and therefore to a whole
refutation graph. However, the formulation of the proof can be more difficult because
the equation is not necessarily true. One can either prove the equality as a lemma or
divide the proof into cases such that the equality holds in one of the cases.

The decision between these possibilities depends on general considerations, as
for example the complexity of resulting lemmata or the position of negatively
polarized clause nodes in the graph. Yet there is one heuristic depending on equality.
Case analysis is most profitable if the condition for an equation is itself an equation

used for paramodulation. Then both obstructing conditions are removed in parallel.

Usually mathematicians employ case analysis only when the disjunction is an
axiom or has been previously derived. Equality clause nodes, however, represent
implications and therefore are unattractive for this purpose. But if -Pa or a:;t:b is first
derived from the contrapositive of Pa /\ a=b =:) Pb, a case analysis may then be the
best choice.

2 8 Proof Transformation with Built-in Equality Predicate

4 .2 Special Considerations Induced by
Equality Clause Nodes

As mentioned above paramodulation steps of the computer generated proof are
represented in the refutation graph using special “equality” clause nodes. For example
the combination of a paramodulation step Pa to Pb via a=b and the resolution step
between Pb and some literal —Pb is simulated as a sequence of three resolution steps
of the equality clause node [—Pa a¢b Pb] with the unit clauses [Pa] , [—Pb], and
[a=b]. The special clause node denotes the trivial fact that PaAa=b=>Pb. The
symmetry of the equality predicate‘is incorporated into the unification algorithm-and
hence this additional property must not be considered in the graph. In the natural
deduction calculus this fact is reflected by the existence of two symmetric rules for the
application of an equation. Alternatively one might have chosen a rule axiomatizing
the symmetry explicitely, viz.

fl I - s= t

fl l l—t=s

But this does not comply with intuitive mathematical reasoning, where equation
are rarely oriented and therefore such a symmetry rule never needs to be explicitly
used.

Conditional equations, that is , equational literals in non unit clauses, need no
special handling, because the only difference i s that the negated equation in the
equality clause node is connected to a non unit clause node and therefore to a whole
refutation graph. However, the formulation of the proof can be more difficult because
the equation is not necessarily true. One can either prove the equality as a lemma or
divide the proof into cases such that the equality holds in one of the cases.

The decision between these possibilities depends on general considerations, a s
for example the complexity of resulting lemmata or the position of negatively
polarized clause nodes in the graph. Yet there is one heuristic depending on equality.
Case analysis is most profitable if the condition for an equation is itself an equation
used for paramodulation. Then both obstructing conditions are removed in parallel.

Usually mathematicians employ case analysis only when the disjunction is an
axiom or has been previously derived. Equality clause nodes, however, represent
implications and therefore are unattractive for this purpose. But if —Pa or a¢b is first
derived from the contrapositive of Pa A a=b => Pb, a case analysis may then be the
best choice. '

Structuring the Proof 29

Often several equations are successively applied to a formula leading to chains of
equality clause nodes. If any of their connecting links are separating, and therefore
candidates for lemmata, only the links joining the chain to the rest of the graph should
be selected. Otherwise the equality argument would be tom asunder.

A more syntactical criterion is the distinction between completion and rewriting
steps, which can be made if the underlying paramodulation rule discriminates these
steps according to the Knuth-Bendix algorithm. Completion steps are more important
and substantial while rewriting steps can usually be considered a calculation rather

than a proof.

The structuring procedure can be generalized to theory resolution with arbitrary
theories. A resolution step between two literals that are complementary in the given
theory is represented with a clause node containing the residue and a syntactically
complementary literal for each resolution literal.

Another possibility to represent such theory resolution steps would be to use
pointers from the links to the residue literals. But this method does not fit similarly
well into our framework of refutation graphs as the simulation via resolutions. In
addition the sequence of resolutions can be simply transformed into a Gentzen style
proof.

It is clear that this method can only handle proofs with a relatively small number

of paramodulation steps. Otherwise a large number of equality clause nodes would
obscure the structure of the proof. This is especially the case when paramodulation
steps are performed into other equations. Therefore purely or even substantially
equational proofs need special considerations due to their inherent internal structure.

4.3 Example

As an example we chose one of Pelletier's problems [Pe86], which can be
considered one of the simpler standard examples in equality theorem proving. In this

problem there are exactly two objects, and it muSt be shown that a property P holds
for all x if it holds for two different constants. In fIrst order notation with equality this
is represented by the following formula:

3 x,y "it z (z=x vz=y) /\ (a::l=b) A Pa/\ Pb => V w Pw

An automatically generated resolution and paramodulation proof of this formula
is shown below. x, y, as well as w become Skolem constants in clause normal form,
and therefore also in the refutation graph. They are named 1, 2, and 3 in the sequel.

Structuring the Proof 2 9

Often several equations are successively applied to a formula leading to chains of
equality clause .nodes. If any of their connecting links are separating, and therefore
candidates for lemmata, only the links joining the chain to the rest of the graph should
be selected. Otherwise the equality argument would be torn asunder.

A more syntactical criterion is the distinction between completion and rewriting
steps, which can be made if the underlying paramodulation rule discriminates these
steps according to the Knuth-Bendix algorithm Completion steps are more important
and substantial while rewriting steps can usually be considered a calculation rather
than a proof.

The structuring procedure can be generalized to theory resolution with arbitrary
theories. A resolution step between two literals that are complementary in the given
theory is represented with a clause node containing the residue and a syntactically
complementary literal for each resolution literal.

Another possibility to represent such theory resolution steps would be to use
pointers from the links to the residue literals. But this method does not fit similarly
well into our framework of refutation graphs as the simulation via resolutions. In
addition the sequence of resolutions can be simply transformed into a Gentzen style
proof.

It is clear that this method can only handle proofs with a relatively small number
of paramodulation steps. Otherwise a large number of equality clause nodes would
obscure the structure of the proof. This is especially the case when paramodulation
steps are performed into other equations. Therefore purely or even substantially
equational proofs need special considerations due to their inherent internal structure.

4.3 Example

As an example we chose one of Pelletier’s problems [Pe86], which can be
considered one of the simpler standard examples in equality theorem proving. In this
problem there are exactly two objects, and it must be shown that a property P holds
for all x if it holds for two different constants. In first order notation with equality this
is represented by the following formula:

3x ,y Vz(z=xvz=y)A(a¢b)APa / \Pb =>Vw Pw

An automatically generated resolution and paramodulation proof of this formula
is shown below. x, y, as well as w become Skolem constants in clause normal form,
and therefore also in the refutation graph. They are named 1 , 2, and 3 in the sequel.

30 Proof Transfonnation with Built-in Equality Predicate

Axioms:	 Ex x,y (All z z = z Or z y)
P (a) And P (b)

Not a = b

Theorems:	 All x P (x)

Set of Axiom Clauses Resulting from Normalization:

* AI: All x:Any + =(x x)

* A2: + P (a)

* A3: + P(b)

* A4: - = (a b)

* A5: All x:Any + = (x 1) + =(x 2)

Set of Theorem Clauses Resulting from Normalization:

* T6: - P (3)

Refutation:

A5,2 & A2,1 -t * PI: + P (2) + = (a 1)

A5,2 & A3,1 -t * P3: + P (2) + = (b 1)

A5,2 & T6,1 -t * P4: - P (2) + = (3 1)

Pl,2 & A4,1 -t * PS: - = (1 b) + P (2)

PS,I & P3,2 -t * R6: + P (2) + P(2)

R6 1=2 -t * D7: + P(2)

P4,1 & D7,1 -t * R8: + = (3 1)

A5,1 & R8 -t * Rw9: All x:Any + =(x 3) + =(x 2)

Rw9,2 & A4,1 -t * PIl: - =(2 b) + =(a 3)

Pll,2 & A2,1 -t * P12: + P (3) - =(2 b)

P12,1 & T6,1 -t * R13: - = (2 b)

Rw9,2 & R13,1 -t * R15: + =(b 3)

A3,1 & RI5 -t * Rw16: + P·(3)

Rw16,1 & T6,1 -t * R19: 0

30 Proof Transformation with Built-in Equality Predicate

Axioms: Ex x,y (All z z = 2 Or z = y)

P(a) And P(b).

Nat a = b

Theorems: All x P(x)

Set of Axiom Clauses Resulting from Normalization:

* Al:

A2:

A3:

A4:

A5:

*
*
*
!
-

Set o f Theorem Clauses

* T6:

Refutation:

A5,2

A5,2

A5,2

P1,2

P5,1

R6 l=2

P4,1 & D7,l

A5,l & R8

Rw9,2 & A4‚1

P11,2 & A2,1

P12,l & T6‚1

Rw9,2 & R13,1

A3‚l & R15

Rw16‚l & T6,1

A2‚1

A3,1

T6‚1

A4‚1

P3,2

m
m

m
m

m

l
l
i
l
i
i
l
i
l
l
l
l
i
i

All x:Any + =(x x)
+ P(a)

+ P(b)

— =(a b)

All sny + = (x l) + = (x 2)

Resulting from Normalization:

- P(3)

* Pl: + P(2) + =(a l)

* P3: + P(2) + =(b 1)

* P4: - P(2) + =(3 1)
* P5: - =(l b) + P (2)

* R6: + P(2) + P (2)

* D7: + P(2)

* R8: + =(3 l)
* Rw9: All sny + =(x 3) + =(x 2)
* P l l : _ = (2 b) + = (a 3)

* P12: + P(3) _ =(2 b)

* R13: - =(2 b)

* R15: + =(b 3)

* Rw16: + P(3)

* R19: H

31 Structuring the Proof

The proof is ftrst translated into a refutation graph. The clause nodes It and 12 in
the upper graph are both instances of the deduction graph below; a complete
refutation graph can be obtained by inserting two copies of the deduction graph for I1
and 12. The relation !':! is also given; in this case the correspondence is

straightforward.

The first operations performed in the transformation process are automatic
applications of rules introducing the Skolem constants in the theorem. The other
Skolem constants are introduced by need, whenever they appear in a subgraph that is

Structuring the Proof 3 1

The proof is first translated into a refutation graph. The clause nodes I l and 12 in
the upper graph are both instances of the deduction graph below; a complete
refutation graph can be obtained by inserting two copies of the deduction graph for I l
and 12. The relation A i s also given; in this case the correspondence i s
straightforward.

T6 —P3 2 :
1

A5

P3 3¢1 -—P1 E07
A2 A3
Pa Pb

Q

E04 #1 —Pa P1 P1 —Pb b¢1 E05

E06
A1 A2

A5 a=1 a=2 a¢2 a=b b¢2 b=2 b=1 A5

a¢b A4

The first operations performed in the transformation process are automatic
applications of rules introducing the Skolem constants in the theorem. The other
Skolem constants are inu'oduced by need, whenever they appear in a subgraph that i s

32 Proof Transfonnation with Built-in Equality Predicate

currently worked with. Of course it may be necessary to isolate the existentially
quantified fonnula fIrst.

Now we know all the prerequisites for the structuring of this proof. At fIrst we
consider the subgraph which is used in two different copies in the refutation graph.
Here the disjunction of free literal nodes (x =1 v x =3) cannot immediately be used as
a lemma because the deduction graph contains a negatively polarized clause node
(T6). One heuristic to obtain a lemma in this case would be to use a maximal
positively polarized subgraph of this deduction graph instead. This corresponds to a
lemma P3 v V x (x = 1v x = 3). Note that the variable situation allows the introduction
of a universally quantified lemma.

Alternatively, we can split the proof into cases as the situation meets the
conditions explained above. The instance 1=3 v 2=3 of axiom A5 is used, so that
only a very small overlap remains in one of the resulting cases. Actually this overlap
corresponds only to a trivial rewrite step. Below the refutation graph for the fIrst case
is shown.

1=3 Case 1

EQ4 EQS

AS AS

It remains to be checked whether the two cases of the proof should be further
structured. The links Al and A2 are found to be separating nin case 1, indicating a
proof by analyzing the cases a = 2 and a;t: 2 or, alternatively, b = 2 and b:;t: 2. The
symmetry of the graph suggests, however, a division of the proof into cases a:;t: 2 and
b :;t: 2. This reflects the reasoning "a;t: b, therefore it is impossible that both a and b are
equal to 2. If a;t: 2 ...". The second case has exactly the same structure and can
therefore be done using the same case analysis.

3 2 . Proof Transformation with Built-in Equality Predicate

currently worked with. Of course it may be necessary to isolate the existentially
quantified formula first.

Now we know all the prerequisites for the structuring of this proof. At first we
consider the subgraph which is used in two different copies in the refutation graph.
Here the disjunction of free literal nodes (x = l v x = 3) cannot immediately be used as
a lemma because the deduction graph contains a negatively polarized clause node
(T6). One heuristic to obtain a lemma in this case would be to use a maximal
positively polarized subgraph of this deduction graph instead. This corresponds to a
lemma P3 v V x (x = 1 v x = 3). Note that the variable situation allows the introduction
of a universally quantified lemma.

Alternatively, we can split the proof into cases as the situation meets the
conditions explained above. The instance 1=3 v 2=3 of axiom A5 is used, so that
only a very small overlap remains in one of the resulting cases. Actually this overlap
corresponds only to a trivial rewrite step. Below the refutation graph for the first case
is shown.

It remains to be checked whether the two cases of the proof should be further
structured. The links A1 and A2 are found to be separating nin case 1, indicating a
proof by analyzing the cases a=2and a¢2 or, alternatively, b : 2 and b ; 2. The
symmetry of the graph suggests, however, a division of the proof into cases at 2 and
b ;6 2. This reflects the reasoning “aat b, therefore it is impossible that both a and b are
equal to 2. If a¢2 . . . ” . The second case has exactly the same structure and can
therefore be done using the same case analysis.

33 S1rUcturing the Proof

Now the following global structure of the proof has become visible:

1=3 v 2=3

/ ~

a;t2 v b;t2 a;t2 v b;t2

Jj. .~

a=l b=l

Jj. Jj.

P3 P3

There are x and y such that any z equals x or y. Two distinct constants a and b
have a property P. Then the property P holds universally.

A proof in natural language might therefore read as follows:

Let 1 and 2 be constatns such that any z equals I or 2. In order to prove P as a
universal property it suffices to show that P holds for an arbitrary constant 3. 3 must
equal either 1 or 2. Let's fIrst consider the case 3=1. Since a;t b it is impossible that
both are equal to 2. Ifa;t 2 then a must be 1, which equals 3, and therefore P3 holds
because Pa holds. If on the other hand b;t 2 then b must be 1, which equals 3, and
therefore P3 holds because Pb holds. The second case (3=2) can be handled
analogously. Therefore P3 holds in all cases, and as 3 was chosen arbitrarily P holds
universally.

Structuring the Proof 3 3

Now the following global structure of the proof has become visible:

l=3 v 2:3

a¢2 v b¢2 a¢2 v b¢2

ll 11 -
a=1 b=1 .

U 11
P3 P3

There are x and y such that any z equals x or y. Two distinct constants a and b
have a property P. Then the property P holds universally.

A proof in natural language might therefore read as follows:

Let 1 and 2 be constatns such that any z equals 1 or 2. In order to prove P as a
universal property it suffices to show that P holds for an arbitrary constant 3. 3 must
equal either 1 or 2. Let’s first consider the case 3=1. Since at b it is impossible that
both are equal to 2. If ave 2 then a must be 1, which equals 3, and therefore P3 holds
because Pa holds. If on the other hand ba t 2 then b must be 1 , which equals 3 , and
therefore P3 holds because Pb holds. The second ‘case (3:2) can be handled
analogously. Therefore P3 holds in all cases, and as 3 was chosen arbitrarily P holds
universally.

3 4 Proof Transformation with Built-in Equality Predicate

5 Conclusion

In this report a method is described to transform a proof generated by a
resolution-based theorem prover with a built-in paramodulation rule into a natural
deduction proof in Gentzen's system NK. Starting from the basic proof trans­
formation and structuring mechanism published in [Li90], the necessary changes and

additions are made to meet the special needs of equality reasoning.

Paramodulation steps are represented in the refutation graph by means of equality
clause nodes and additional links for each application of an equation. The extension
of this mechanism to arbitrary theory resolution appears to be a straightforward affair.
The most remarkable result is the fact that this basis allows to employ the structuring

algorithm essentially unchanged. The only extensions were to handle conditional
equations by case analysis and some specialized heuristics for the consideration of

equational steps.

An open question with respect to the structuring of proofs is the presentation of

proofs based only or mainly on the equality predicate. The representation of pure
unconditional equality proofs in equality graphs, as in Karl-Hans BHisius'
dissertation, [B186], seems to be a promising starting point to construct a procedure
analogous to the algorithm described here.

3 4 Proof Transformation with Built-in Equality Predicate

5 Conclusion

In this report a method i s described to transform a proof generated by a
resolution-based theorem prover with a built-in paramodulation rule into a natural
deduction proof in Gentzen’s system NK. Starting from the basic proof trans-
formation and structuring mechanism published 1n [Li90], the necessary changes and
additions are made to meet the special needs of equality reasoning.

Paramodulation steps are represented in the refutation graph by means of equality
clause nodes and additional links for each application of an equation. The extension
of this mechanism to arbitrary theory resolution appears to be a straightforward affair.
The most remarkable result is the fact that this basis allows to employ the structuring
algorithm essentially unchanged. The only extensions were to handle conditional
equations by case analysis and some specialized heuristics for the consideration of
equational steps.

An open question with respect to the structuring of proofs is the presentation of
proofs based only or mainly on the equality predicate. The representation of pure
unconditional equality proofs in equality graphs, as in Karl-Hans Bläsius’
dissertation, [B186], seems to be a promising starting point to construct a procedure
analogous to the algorithm described here.

35 Literature

6 Literature

[An76] Peter B. Andrews

[An80] Peter B. Andrews

[An81] Peter B. Andrews

[Bi81] Wolfgang Bibel

[Bi82] Wolfgang Bibel

[BI86] Karl-Hans Blasius

[Da81] Martin Davis

[Ga86] Jean H. Gallier

[Ge35] Gerhard Gentzen

[Ei88] Norbert Eisinger

Refutations by Matings
JACM 15,3 (1983)

Transforming Matings into Natural Deduction

Proofs
Lecture Notes in Comp. Sci. 87, Springer­
Verlag, Proc of 5th CADE (1980), pp. 281-292

Theorem Proving via General Matings

JACM 28 (1981), pp. 193-214

On Matrices with Connections
JACM 28 (1981), pp. 633-645

Automated Theorem Proving

vieweg, Braunschweig, Wiesbaden (1982)

Equality Reasoning Based on Graphs

PhD Thesis, Universitat Kaiserslautem (1986)
SEKI-Report SR-87-01

Obvious Logical Inferences

'Proc. 7th nCAl, Vancouver (1981)

Logicfor Computer Science

- Foundations ofAutomatic Theorem Proving
Harper & Row, Publishers, New York (1986)

Untersuchungen ilber das logische SchliejJen I
Mathematische Zeitschrift 39 (1935), pp.176-21O

Completeness, Confluence, and Related

Properties ofClause Graph Resolution

PhD Thesis, Universitat Kaiserslautem (1988)
SEKI-Repon SR-88-07

Literature

6 Literature

[An7 6] Peter B. Andrews

[An80] Peter B. Andrews

[An81] Peter B. Andrews

[Bi81] Wolfgang Bibel

[Bi82] Wolfgang Bibel

[B186] Karl-Hans Bläsius

[Da81] Martin Davis

[Ga86] Jean H. Gallier

[Ge35] Gerhard Gentzen

[E188] Norbert Eisinger

35

Refutations by Matings
JACM 15, 3 (1983)

Transforming Matings into Natural Deduction
Proofs
Lecture Notes in Comp. Sci. 87, Springer—
Verlag, Proc of 5th CADE (1980), pp. 281-292

Theorem Proving via General Matings
JACM 28 (1981), pp. 193-214

On Matrices with Connections
JACM 28 (1981), pp. 633-645

Automated Theorem Proving
vieweg, Braunschweig, Wiesbaden (1982)

Equality Reasoning Based on Graphs
PhD Thesis, Universität Kaiserslautern (1986)
SEKI—Report SR— 87-01

Obvious Logical Inferences
'Proc. 7th UCAI, Vancouver (1981)

Logic for Computer Science
- Foundations of Automatic Theorem Proving
Harper & Row, Publishers, New York (1986)

Untersuchungen über das logische Schließen I
Mathematische Zeitschrift 39 (1935), pp. 176—210

Completeness, Confluence, and Related
Properties of Clause Graph Resolution
PhD Thesis, Universität Kaiserslautern (1988)
SEKI-Report SR—88-07

36 Proof Transformation with Built-in Equality Predicate

[E088] Norbert Eisinger, Hans J. Ohlbach
The MarkgrafKarl Refutation Procedure

Lecture Notes in Comp. Sci. 230, Springer­

Verlag, Proc of 8th CADE (1986), pp. 682-683

[He87] Alexander Herold	 Combination ofUnification Algorithms in

Equational Theories
PhD Thesis, Universitat Kaiserslautem (1987)
SEKI-Report SR-87-05

[Hu90] Xiaorong Huang	 On a Natural Calculus for Argument Presentation

to appear as SEKI-Report,
Universitat Kaiserslautem (1990)

[Ko75] Robert Kowalski	 A ProofProcedure Using Connection Graphs

JACM 22, No. 4 (1975), 572-595

[Le88] Siegfried Lehr	 Transformation von Resolutionsbeweisen des

MKRP

Studienarbeit, Universitat Kaiserslautern 1988

[Li86] Christoph Lingenfelder	 Transformation ofRefutation Graphs into

Natural Deduction Proofs
SEKI-Report SR-86-10, Universitat
Kaiserslautem (1986)

[Li90] Christoph Lingenfelder	 Structuring Computer Generated Proofs

PhD Thesis, UniversiHit Kaiserslautern (1990)

[Lo78] Donald W. Loveland	 Automated Theorem Proving: A Logical Basis

North Holland (1978)

[Mi83] Dale Miller	 Proofs in Higher Order Logic

Ph.D. Thesis, Carnegie Mellon University
(1983),
Tech Report MS-CIS-83-87, University of
Pennsylvania, Philadelphia

[MKRP84] Karl Mark GRaph	 The MarkgrafKarl Refutation Procedure

Memo-SEKI-Mk-84-01,
Universitiit Kaiserslautem (1984)

36 Proof Transformation with Built—in Equality Predicate

[E088] Norbert Eisinger, Hans J. Ohlbach

[He87] Alexander Herold

[Hu90] Xiaorong Huang

[K075] Robert Kowalski

[Le88] Siegfried Lehr

[Li86] Christoph Lingenfelder

[Li90] Christoph Lingenfelder

[Lo78] Donald W. Loveland

[Mi83] Dale Miller

[MKRP84] Karl Mark G Raph

The Markgrafl Rq‘utation Procedure
Lecture Notes in Comp. Sci. 230, Springer-
Verlag, Proc of 8th CADE (1986) , pp. 682-683

Combination of Unification Algorithms in
Equational Theories
PhD Thesis, Universität Kaiserslautern (1987)
SEKI-Report SR-87-05

On a Natural Calculus for Argument Presentation
to appear as SEKI-Report,
Universität Kaiserslautern (1990)

A Proof Pracedure Using Connection Graphs
JACM 22, No. 4 (1975), 572-595

Transformation von Resolutionsbeweisen des
MKRP
Studienarbeit, Universität Kaiserslautern 1988

Transfonnation of Refutation Graphs into
Natural Deduction Proofs
SEKI-Report SR—86—10, Universität
Kaiserslautern (1986)

Structuring Computer Generated Proofs
PhD Thesis, Universität Kaiserslautern (1990)

Automated Theorem Proving: A Logical Basis
North Holland (1978)

Proofs in Higher Order Logic
Ph.D. Thesis, Carnegie Mellon University
(1983),
Tech Report MS-CIS-83-87, University of
Pennsylvania, Philadelphia

The Markgraf Karl Refutation Procedure
Memo-SEKI-Mk-84—Ol,
Universität Kaiserslautern (1984)

Literature 37

[OS89] Hans J. Ohlbach, Jorg H. Siekmann
The MarkgrajKart Refutation Procedure
SEKI-Report SR-89-19,
UniversiHit Kaiserslautern (1989)

[PN90] Frank Pfenning, Daniel Nesmith
Presenting Intuitive Deductions via Symmetric

Simplification

Lecture Notes in AI 449, Springer-Verlag, Proc
of 10th CADE (1990), pp. 336-350

[Pr65] Dag Prawitz Natural Deduction ­ A ProofTheoretical Study
Almqvist & Wiksell, Stockholm (1965)

[Pe86] Francis Jeffrey Pelletier Seventy-Five Problems for Testing Automatic

Theorem Provers

JAR, VoL2, No.2 (1986), pp. 191-216

[Sh76] Robert E. Shostak Refutation Graphs

Artificial Intelligence 7 (1976), pp. 51-64

Literamre 3 7

[0889] Hans J. Ohlbach, Jörg H. Siekmann
The Markgraf Karl Refutation Procedure
SEKI—Report SR—89-19‚
Universität Kaiserslautern (1989)

[PN90] Frank Pfenning, Daniel Nesmith
Presenting Intuitive Deductions via Symmetric
Simplification
Lecture Notes in AI 449, Springer—Verlag, Proc
of 10‘h CADE (1990), pp. 336-350

[Pr65] Dag Ptawitz Natural Deduction — A Proof Theoretical Study
Almqvist & Wiksell, Stockholm (1965)

[Pe86] Francis Jeffrey Pelletier Seventy-Five Problems for Testing Automatic
Theorem Provers
JAR, Vol.2, No.2 (1986), pp. 191-216

[8117 6] Robert E. Shostak Rq‘utation Graphs
Artificial Intelligence 7 (1976), PP. 51-64

