
E
m

S
C

E
G

m
E

x
83-0

9
%

£858
59305533

‚étem
zc:

5
5

8
6

5
5

5650308

David M. W. Powers

SEKI Report SR-90-O9

h...hw‚H
Pow

S
e

ke‚m
p

us

Q
d

dmeiZ....
H

P
M

O1araP

EO
nm

E - 2m
m

1

Parallelized QuickSort with Optimal Speedup

David M. w. Powers1

Fachbereich Infonnatik

Universitiit Kaiserslautem

6750 KAISERSLAUTERN WEST GERMANY

Overview

This paper introduces a parallel sorting algorithm based on QuickSort and having an n-input, n-processor,

time complexity of O(log n) exhibited using a CRCW PRAM model. Although existing algorithms of similar

complexity are known, this approach leads to a family of algorithms with a considerably lower constant It is

also significant in its close relationship to a standard sequential algorithm.

1.1 Sorting

Knuth (1973,pp2-3) notes that sorting is estimated to take up 25% of the world's

computer time. With the advent of the microcomputer this may well have changed, but it is

nonetheless a both practically and theoretically interesting task. Sorting, in the sense of

bringing together related things, has now been subsumed by.the more specific task of ordering,

and has spawned an enonnous number of serial sorting algorithms.

Whilst for specific cases, faster algorithms are known, in general sorting requires

O(n log n) comparisons, and hence time. The algorithms meeting this expected complexity are

based on ideas of either partitioning or merging, usually with the aid of explicit or implicit list

and/or tree data structures. These are prototypically represented by the algorithms QuickSort

and MergeSort (Knuth,1973).

Logically these algorithms require two phases: placement into the tree, and extraction from

the tree. In some cases, one or other of these phases CIDl be left implicit. As the tree has

logarithmic depth, and each element needs to be placed and/or extracted, the O(n log n)

complexity follows immediately.

IThe work reported was undertaken while the author was at Macquarie University NSW 2009,

AUSTRAliA, and was supported by IMPACT Ltd, PETERSHAM NSW 2049, AUSTRALIA. The author is

currently supported under ESPRIT BRA 3012: COMPULOG.

Parallelized QuickSort with Optimal Speedup

David M. W. Powers1

Fachbereich Informatik

Universität Kaiserslautern

6750 KAISERSLAUTERN WEST GERMANY

1 Overview

This paper introduces a parallel sorting algorithm based on QuickSort and having an n-input, n-processor,

time complexity of 0(log n) exhibited using a CRCW PRAM model. Although existing algorithms of similar

complexity are known, this approach leads to a family of algorithms with a considerably lower constant. It is

also significant in its close relationship to a standard sequential algorithm.

1 . l Sorting

Knuth (197 3,pp2~3) notes that sorting is estimated to take up 25% of the world’s

computer time. With the advent of the microcomputer this may well have changed, but it is

nonetheless a both practically and theoretically interesting task. Sorting, in the sense of

bringing together related things, has now been subsumed by.the more specific task of ordering,
and has spawned an enormous number of serial sorting algorithms.

Whilst for specific cases, faster algorithms are known, in general sorting requires

O(n log n) comparisons, and hence time. The algorithms meeting this expected complexity are

based on ideas of either partitioning or merging, usually with the aid of explicit or implicit list

and/or tree data structures. These are prototypically represented by the algorithms QuickSort

and MergeSort (Knuth, 197 3).

Logically these algorithms require two phases: placement into the tree, and extraction from

the tree. In some cases, one or other of these phases can be left implicit. As the tree has

logarithmic depth, and each element needs to be placed and/or extracted, the O(n log n)

complexity follows immediately.

1The work reported was undertaken while the author was at Macquarie University NSW 2009,

AUSTRALIA, and was supported by IMPACT Ltd, PETERSHAM NSW 2049, AUSTRALIA. The author is

currently supported under ESPRIT BRA 3012: COMPULOG.

-2­

1.2 Parallel Sorting Algorithms

In view of this sequential result, we would hope for an optimal linear speedup to O(log n)

when we move to parallel processing on n processors. In practise, however, this is not easily

achieved.

The infamous AKS result (Ajtai et al, 1983), which was the first to demonstrate the

theoretical feasibility of O(log n) time on O(n) processing elements, is based on a sorting

network entailing a fIxed sequence of comparisons - but with a rather impractical constant of

6100! This is for achievable datasets (<26100 elements) actually worse than the performance of

the older networks/algorithms due to Batcher (1968) - with 0(log2 n) and a subunit constant

'(Parberry,1989).

1.3 Parallelized Sorting Algorithms

Several authors have noted that the standard O(n log n) serial algorithms seem to have

serial constraints which prohibit linear parallelization. Knuth (1973,pl14) proposed that a

"strategy which uses the result of each comparison to determine what keys are to be considered

next ... is inappropriate for parallel computations". Only recently has this state of affairs

changed.

Cole (1988) has achieved the O(1og n) bound with a variation of MergeSort - and a

considerably smaller constant (normalized at 12). This makes clever use of a sorted sample to

partition the streams to be merged into bounded chunks which may be merged in parallel, thus

avoiding a linear cost in the merging/extraction process.

The obvious parallel form of QuickSort exhibits an O(n) time complexity, and although a

number of variants have been proposed, none have hitherto proven to have the desired

O(1og n) complexity (Francis and Pannan, 1989).

1.4 A Parallelized QuickSort with Linear Speedup

The present work has achieved the O(log n) bound wi1l a variant of QuickSort - achieving

a still smaller constant of 2.4 (in terms of the expected number of comparisons). The algorithm

performs the partitioning implicitly, avoiding the linear number of overt moves normally

performed at each level of the tree. The implicitly sorted elements are eventually moved to their

desired position (if necessary) using standard techniques.

1 .2 Parallel Sorting Algorithms

In view of this sequential result, we would hope for an optimal linear speedup to O(log n)

when we move to parallel processing on n processors. In practise, however, this is not easily

achieved.

The infamous AKS result (Ajtai et al, 1983), which was the first to demonstrate the

theoretical feasibility of 0(log n) time on O(n) processing elements, is based on a sorting

network entailing a fixed sequence of comparisons - but with a rather impractical constant of

6100! This is for achievable damsets (<26100 elements) actually worse than the performance of
the older networks/algorithms due to Batcher (1968) - with O(log2 n) and a subunit constant

'(Parbetry,l989).

1 .3 Parallelized Sorting Algorithms

Several authors have noted that the standard O(n log n) serial algorithms seem to have

serial constraints which prohibit linear parallelization. Knuth (1973,pll4) proposed that a

“strategy which uses the result of each comparison to determine what keys are to be considered
next is inappropriate for parallel computations”. Only recently has this state of affairs
changed.

Cole (1988) has achieved the 0(log n) bound with a variation of MergeSort - and a

considerably smaller constant (normalized at 12). This makes clever use of a sorted sample to

partition the streams to be merged into bounded chunks which may be merged in parallel, thus
avoiding a linear cost in the merging/extraction process.

The obvious parallel form of QuickSort exhibits an 0(n) time complexity, and although a

number of variants have been proposed, none have hitherto proven to have the desired

O(log n) complexity (Francis and Pannan, 1989).

1 .4 A Parallelized QuickSort with Linear Speedup

The present work has achieved the 0(log n) bound with a variant of QuickSort - achieving

a still smaller constant of 2.4 (in temxs of the expected number of comparisons). The algorithm

performs the partitioning implicitly, avoiding the linear number of overt moves normally

performed at each level of the tree. The implicitly sorwd elements are eventually moved to their

desired position (if necessary) using standard techniques.

2

-3­

Algorithm

The problems of QuickSort and its parallel variants lie in the partition procedure - the

recombination is trivial and can be implemented as an implicit concatenation step.

The problems with the partition step have three aspects: the choice of pivot (from or

appropriate to the present partition); the division of the partition into two (one containing

elements "less than" and the other those "greater than" the pivot); and the handling of the

equality case (do elements equal to the pivot go into a partition, and if so which).

The choice ofpivot is important, as a poor choice will result in little or no reduction in the

size of one of the partition. In a serial context, this is responsible for the O(n2) worst case of

QuickSort. In the parallel context, it reduces the utilization of processors, leading to a worst

case linear number of parallel partitioning steps. If these cost linear time, this can result in a

similar quadratic time execution for a parallel algorithm!

The partitioning step is normally conceived of in the context of an in situ partitioning, or

perhaps in terms of operations on linked lists. In both cases the procedure tends to be serial, as

the placement of an element to be moved can only be determined in relation to those which have

already been processed. If the partioning step requires linear time in the size of the partition,

then the linear time for the initial partition step will dominate any later savings due to the

parallelism.

The handling of equal elements can also lead to a worst case situation if elements that

compare equal to the pivot are naively placed consistently in the same partition (always in the

righthand partition in terms of the above description).

2.1 Description

The worst cases resulting from poor choice of pil'ot or poor handling of equality

correspond to fairly common situations - and can be attacked with ad hoc heuristic techniques

applicable only to specific distributions (e.g. use of a sample median where a linear distribution

is expected), or by randomizaition techniques (Le. the pivot is chosen randomly and any

element equal to it is distributed randomly).

In the algorithm described here, the latter approach is used, and a worst case performance

would imply that the random choices have been a perfect oracle for either the sort or the reverse

2 Algorithm

The problems of QuickSort and its parallel variants lie in the partition procedure - the

recombination is trivial and can be implemented as an implicit concatenation step.

The problems with the partition step have three aspects: the choice of pivot (from or

appropriate to the present partition); the division of the partition into two (one containing

elements “less than" and the other those “greater than” the pivot); and the handling of the

equality case (do elements equal to the pivot go into a partition, and if so which).

The choice of pivot is important, as a poor choice will result in little or no reduction in the

size of one of the partition. In a serial context, this is responsible for the 0(n2) worst case of

QuickSort. In the parallel context, it reduces the utilization of processors, leading to a worst

case linear number of parallel partitioning steps. If these cost linear time, this can result in a

similar quadratic time execution for a parallel algorithm!

The partitioning step is normally conceived of in the context of an in situ partitioning, or

perhaps in terms of operations on linked lists. In both cases the procedure tends to be serial, as

the placement of an element to be moved can only be determined in relation to those which lave

already been processed. If the partioning step requires linear time in the size of the partition,

then the linear time for the initial partition step will dominate any later savings due to the

parallelism.

The handling of equal elements can also lead to a worst case situation if elements that
compare equal to the pivot are naively placed consistently in the same partition (always in the
righthand partition in terms of the above description).

2 . 1 Description

The worst cases resulting from poor choice of pivot or poor handling of equality

correspond to fairly common situations - and can be attacked with ad hoc heuristic techniques

applicable only to specific distributions (e.g. use of a sample median where a linear distribution

is expected), or by randomizaition techniques (i.e. the pivot is chosen randomly and any

element equal to it is distributed randomly).

In the algorithm described here, the latter approach is used, and a worst case performance

would imply that the random choices have been a perfect oracle for either the sort or the reverse

-4­

ordering, with equal elements being consistently distributed to the same (longer) side. The

expected length of the longer partition is in any case 0.75p (where p is the prior length), giving

rise to an expectation of 2.4 log n parallel partitioning steps (n *0.752.410g n = 1).

Once the pivot is chosen, it is straightforward to decide in parallel which partition an

element should go into. The problem of choosing the pivot can be easily solved in parallel in

the CRCW model, as all processors working in a partition can simultaneously Rropose

themselves as the new pivot by Concurrently Writing to an agreed location, and can

subsequently obtain the actual selected pivot by Concurrently Reading that location. In view of

the preceding discussion, it is desirable that the choice of which of the contending processors

succeeds in writing the values be non-systematic so that it resembles a random choice rather

than a likely oracle for systematic data.

The final partitioning problem concerns the moving of the partitioned data to suitable

locations without meeting a sequential bottleneck. The solution proposed here, which is the

primary augmentation of the algorithm, is that the movement of the elements is not performed at

this stage, but sufficient information about the partitioning structure is retained to allow

logarithmic time relocation of the elements in a subsequent phase.

Making the partition tree structure explicit provides this information. The algorithm

exhibited here relocates the elements in unit time following two logical logarithmic phases. The

flfst sizes the partitions, giving therelative location of each pivot. The second adds in the sizes

of the left partitions at each level to give the implicit absolute location of each pivot. Each

element is at some level a pivot, so it is now possible to read each element in parallel from its

originaJ.location and relocate it directly to the specified absolute location.

2.2 Code

In this section, extracts from the code of a PASCAL procedure implementing the described

algorithm are shown, and in the following section results from an instrumented version are

given as empirical evidence of the number of parallel steps required. Note that as no machine

implementing the CRCW PRAM model is available, the algorithm has been simulated in a

sequential environment and the Concurrent Read and Concurrent Write steps are expressed in

separate pseudo-parallel loops - the par in the code shown is precisely equivalent to a PASCAL

for executed in random order. The par and for statements are all to be executed in parallel.

Associated with each pivot is its immediate parent, which partition of the parent it is in,

and pointers to the two partitions of the next subdivision. The initialization of these variables is

-4.’
ordering, with equal elements being consistently distributed to the same (longer) side. The

expected length of the longer partition is in any case 0.75p (where p is the prior length), giving

rise to an expectation of 2.4 log n parallel partitioning steps (n * 0.7524108 " = 1).

Once the pivot is chosen, it is straightforward to decide in parallel which partition an

element should go into. The problem of choosing the pivot can be easily solved in parallel in

the CRCW model, as all processors working in a partition can simultaneously propose

themselves as the new pivot by Concurrently Writing to an agreed location, and can

subsequently obtain the actual selected pivot by Concurrently Reading that location. In view of

the preceding discussion, it is desirable that the choice of which of the contending processors

succeeds in writing the values be non-systematic so that it resembles a random choice rather

than a likely oracle for systematic data.

The final partitioning problem concerns the moving of the partitioned data to suitable
locations without meeting a sequential bottleneck. The solution proposed here, which is the

primary augmentation of the algorithm, is that the movement of the elements is not performed at

this stage, but sufficient information about the partitioning structure is retained to allow

logarithmic time relocation of the elements in a subsequent phase.

Making the partition tree structure explicit provides this information. The algorithm

exhibited here relocates the elements in unit time following two logical logarithmic phases. The

first sizes the partitions, giving therelative location of each pivot. The second adds in the sizes

of the left partitions at each level to give the implicit absolute location of each pivot. Each

element is at some level a pivot, so it is now possible to read each element in parallel from its

origiml location and relocate it directly to the specified absolute location.

2 .2 Code

In this section, extracts from the code of a PASCAL procedure implementing the described

algorithm are shown, and in the following section results from an instrumented version are

given as empirical evidence of the number of parallel steps required. Note that as no machine

implementing the CRCW PRAM model is available, the algorithm has been simulated in a

sequential environment and the Concurrent Read and Concurrent Write steps are expressed in

separate pseudo-parallel loops - the pat in the code shown is precisely equivalent to a PASCAL

for executed in random order. The par and for statements are all to be executed in parallel.

Associated with each pivot is its immediate parent , which partition of the parent it is in,

and pointers to the two partitions of the next subdivision. The initialization of these variables is

-5­

not shown, but whichis initialized to right and the remainder to undef. At each level each

processor remembers its current pivot as parent and detennines which new partition it is in.

Then with a Concurrent Write to the correspondingnext pointer of the parent, it nominates itself

as the pivot for this new partition. The result of the ballot is discovered with a Concurrent

Read and stored away as its new pivot.

repeat { "" PHASE A ... form binary tree by part~ioning}

finish:= true;

par r:= n-1 downto 0do (random synchronization}
if pivot <> rthen begin

finish:= false;
if e~[pivot) =eR[r) {fair<= >= comparison}

then which:= boolean(random(2))
else which:= eR[pivot) <elt[r);;

parent:= pivot;
proc[pivot].next[which]:= r; (concurrent wrtte}

end:

for p:= n-1 downto 0do (selection synchronization)
with proc[p] do
if pivot <> pthen

pivot:= proc[pivot).next[which): (concurrent read)

until finish;

Figure 1. Procedure powerson (PHASE A)

At the end of this process, the partition tree is explicitly represented with bidirectional

pointers, parent and next. The number of parallel fair comparisons is clearly equal to the

height of this tree, namely 2.4 log n.

In the next phase we first calculate (bottom up) the size of each partition which gives us the

relative position of each element (pivot) in the partition of which it is the pivot. The variable

root is intialized to the index of the first pivot chosen. The leaves have trivially defined counts,

and calculation of further counts is possible as the dermed count condition propogates up the

tree. The parallel overhead here is clearly also proportional to the height of the tree.

-5 -

not shown, but whichis initialized to right and the remainder to undef. At each level each

processor remembers its current pivot as parent and determines which new partition it is in.

Then with a Concurrent Write to the correspondingnaxt pointer of the parent, it nominates itself

as the pivot for this new partition. The result of the ballot is discovered with a Concurrent

Read and stored away as its new pivot.

repeat {“ PHASE A "“ form binary tree by partitioning}
tinish:= true;

par r:= n-1downto 0 do {random synchronization}
ii pivot <> r then begin

finishz= false;
if e|t[pivot] = e|t[r] [fair<= >= comparison}

then which:= boolean(random(2))
else which:= eit[pivot] < eit[r];;

parent: pivot;
proc[pivot1next[which]:= r: {concurrent write}

end.

for p:= n-1 downto 0 do [selection synchronization}
wth proclp] do
if pivot <> p then

pivot:= proc[pivot}next[which]; [concurrent read}

until finish:
Figure 1. Procedure powersort (PHASE A)

At the end of this process, the'partition tree is explicitly represented with bidirectional

pointers, parent and next. The number of parallel fair comparisons is clearly equal to the

height of this tree, namely 2.4 log n.

In the next phase we first calculate (bottom up) the size of each partition which gives us the

relative position of each element (pivot) in the partition of which it is the pivot. The variable

root is initialized to the index of the first pivot chosen. The leaves have trivially defined counts,

and calculation of further counts is possible as the defined count condition propogates up the

tree. The parallel overhead here is clearly also proportional to the height of the tree.

-6­

while proc[root].count =undef do {U PHASE BUcalc size of partttion}
begin

for p:= n-1 downto 0do
w~h proc[p] do
begin

tf next[left] =undef then
pos:= 0

else
tf proc[next[left]].count <> undef then

pos:= proc[next[left]].count;
tf pos <> undef then

tf (next[right] =undef) then
count:= pos +1

else
tf (proc[next[right]].count <> undef) then

count= pos +proc[next[right]].count +1
. end;

end:

Figure 2. Procedure powersort (PHASE B).

For the final pass, it is necessary that the root processor (owning the first pivot) has pivot

and parent initialized to undef. and -1 respectively, indicating that it is the root and has the

imaginary element -1 to its left (recall that we initialized the input partition as a right partition).

The undefmed elements are those which are processed and defined on each iteration (working

top down). The defmed absolute position of the parent plus one (since we count from zero and

need to count the parent too) is added to the processed element's position relative to the parent.

This phase also requires time proportional to the height of the tree.

The fmal move of each element from the input vector to the output vector is also shown.

This is clearly achievable in constant parallel time.

~6-

while proc[root].count = undef do [" PHASE B ”' calc size of partition}
begin

for p:= n-1 downto 0 do
with proc[p] do
begin

if next[left] = undef then
pos:= 0

else
if proc[next[lett]].count <> undef then

pos:= proc[next[lett]].count;
if pos <> undef then

ll (next[right] = undef) then
count:= pos + 1

else
'rt(proc[next[right]].count <> undef) then

count:= pos + proc[next[right]].count + 1
end:

end;
Figure 2. Procedure powersort (PHASE B).

For the final pass, it is necessary that the root processor (owning the first pivot) has pivot

and parent initialized to undef. and -1 respectively, indicating that it is the root and has the
imaginary element - 1 to its left (recall that we initialized the input partition as a right partition).
The undefined elements are those which are processed and defined on each iteration (working
top down). The defined absolute position of the parent plus one (since we count from zero and
need to count the parent too) is added to the processed element’s position relative to the parent.
This phase also requires time proportional to the height of the tree.

The final move of each element from the input vector to the output vector is also shown.
This is clearly achievable in constant parallel time.

-7 ­

repeat { •• PHASE C•• cale absolute posttion}
finish:= true;

for p:= n-1 downto 0do

w~h proc[p] do

if pivot =undef then

begin

pos:= pos + parent + 1;

proc[next[left]].parent:= parent;

proc[next[right]J.parent:= pos;

proc[next[left]].pivot:= undef;

proc[next[right]].pivot:= undef;

pivot:= p;

finish:= false;

end;

until finish;

for p:= n-1 downto 0do sort[proc[p].pos]:= e~[p];

end;

Figure 3. Procedure powersort (PHASE C).

2.3 Results

The parallelized QuickSort procedure 'powersort' was run on a series of distributions with

results for Phase A that accorded well with the expected 2.4 log n parallel comparison time.

Note that the algorithm and results for Phases B and C have been included only for

completeness as the logarithmic complexity of parallel coun.ting operations is well known. For

this reason, no effort has been made to enforce simultaneous simulated parallel instances of the

for loops, and the sequential simulation results in fortuitous premature propagation of counts

and positions within a single iteration of the main loop, ~o on average half the degenerate

subtrees are pruned away faster.

- 7 -

repeat [" PHASE C ’" calc absolute position}
finish:= true;

for p:= n-t downto 0 do
wth proctp] do
if pivot = undef then
begin

pos:= pos + parent + 1;
proc[next[left]].parent:= parent;
proclnextlrightllparent:= pos;

proc[next[left]].pivot= undef;
proc[next[right]].pivot:= undef;
Piv0t= p; -
finish:= false;

end;
until finish;

for p:= n-1 downto 0 do sort[proc[p].pos]:= e|t[p]:
end,

Figure 3. Procedure powersort (PHASE C).

2 .3 Results

The patallelized QuickSort procedure ‘powersort’ was run on a series of distributions with
results for Phase A that accorded well with the expected 2.4 log n parallel comparison time.
Note that the algorithm and results for Phases B and C have been included only for
completeness as the logarithmic complexity of parallel counting operations is well known. For
this reason, no effort has been made to enforce simultaneous simulated parallel instances of the
for loops, and the sequential simulation results in fortuitous premature propagation of counts
and positions within a single iteration of the main loop, so on average half the degenerate
subtrees are pruned away faster.

3

-8­

Size Distribution Phase A Phase B Phase C
n c c/log n c c/log n c c/log n

25 sorted 7 1.8 5 1.3 7 1.8
25 reversed 9 2.3 7 1.8 5 1.3
25 nonnal 10 2.5 5 1.3 7 1.8
25 linear 7 1.8 4 1.0 6 1.5
25
25

quadratic
quartic

8
8

2.0
2.0

6
4

1.5
1.0

5
7

1.3
1.8

100 sorted 12 2.0 8 1.3 8 1.3
100 reversed 12 2.0 8 1.3 11 1.8
100 nonnal 12 2.0 7 1.2 8 1.3
100 linear 15 2.5 7 1.2 10 1.7
100
100

quadratic
quartic

14
11

2.3
1.8

8
7

1.3
1.2

8
7

1.3
1.2

400 sorted 19 2.4 14 1.8 11 1.4
400 reversed 16 2.0 12 1.5 13 1.6
400 nonnal 16 2.0 9 1.1 10 1.3
400 linear 24 3.0 12 1.5 16 2.0
400 quadratic 20 2.5 9 1.1 13 1.6
400 quartic 16 2.0 9 1.1 10 1.3

1600 sorted 24 2.4 14 1.4 15 1.5
1600 reversed 21 2.1 13 1.3 15 1.5
1600 nonnal 20 2.0 12 1.2 12 1.2
1600 linear 25 2.5 16 1.6 15 1.5
1600 quadratic 27 2.7 14 1.4 17 1.7
1600 quartic 21 2.1 12 1.2 13 1.3

Table 1. Empirical measurements.

Conclusions

3.1 Parallelized QuickSort

The algorithm, analysis and results here all indicate that QuickSort can easily be executed

in logarithmic expected parallel time. The simple CRCW algorithm of the first phase is the key,

and there is considerable scope for utilization or relocation of the elements in ways other than

that used here in the subsequent phases.

To give an example of such an alternative, it is noted here that this algorithm is actually a

biproduct of research into Parallel Logic Programming (powers,1988). The input in this case

is a list, and the output is a relinking of this list. Preliminary results indicate that the standard

Size Distribution Phase A Phase B Phase C
n c c / log n c c/log n c c/log n

25 sorted 7 1 .8 5 1.3 7 1.8
25 reversed 9 2 .3 7 1.8 5 1.3
25 normal 10 2 .5 5 1.3 7 1.8
25 linear 7 1 .8 4 1.0 6 1.5
25 quadratic 8 2 .0 6 1.5 5 1.3
25 quartic 8 2 .0 4 1.0 7 1.8

100 sorted 12 2 .0 8 1.3 8 1.3
100 reversed 12 2 .0 8 1.3 11 1.8
100 normal 12 2 .0 7 1.2 8 1.3
100 linear 15 2 .5 7 1.2 10 1.7
100 quadratic 14 2 .3 8 1.3 8 1.3
100 quartic 11 1 .8 7 1.2 7 1.2

400 sorted 19 2 .4 14 1.8 11 1.4
400 reversed 16 2 .0 12 1.5 13 1.6
400 normal 16 2 .0 9 1.1 10 1.3
400 linear 24 3 .0 12 1 .5 16 2 .0
400 quadratic 20 2 .5 9 1.1 13 1.6
400 quartic 16 2 .0 9 1.1 10 1.3

1600 sorted 24 2 .4 14 1.4 15 1.5
1600 reversed 21 2 .1 13 1.3 15 1.5
1600 normal 20 2 .0 12 1.2 12 1.2
1600 linear 25 2 .5 16 1.6 15 1.5
1600 quadratic 27 2 .7 14 1 .4 17 1.7
1600 quartic 21 2 .1 12 1.2 13 1.3

Table 1. Empirical measurements.

3 Conclusions

3 .1 Parallelized QuickSort

The algorithm, analysis and results here all indicate that QuickSort can easily be executed

in logarithmic expected parallel time. The simple CRCW algorithm of the first phase is the key,

and there is considerable scope for utilization or relocation of the elements in ways other than

that used here in the subsequent phases.

To give an example of such an altemative, it is noted here that this algorithm is actually a

biproduct of research into Parallel Logic Programming (Powers,1988). The input in this case

is a list, and the output is a relinking of this list. Preliminary results indicate that the standard

-9­

PROLOG QuickSort admits a logarithmic expected parallel logical inference complexity, that

the unification involved could also be executed in logarithmic parallel time, and that heuristics

can be added to a parallel theorem prover which will guide it into such a proof.

It was noted earlier that no CRCW parallel computer was available for the empirical

verification of the algorithm. The use of a CRCW model as opposed to CREW is not itself a

bar to achieving the expected efficiency, as they can be shown equivalent within a constant

factor. Cole (1986) however translates his original CREW sorting algorithm to a more complex

algorithm for an EREW model of the same theoretical complexity. The present author is of the

opinion that in the case of this QuickSort algorithm it makes more sense to implement the

required concurrent operations, and that EREW is in practice little easier to implement.

A more serious bar to achieving the logarithmic time is the additional overhead of

communication cost between processors,. or processors and memory. Assuming that it is

necessary to use constant-degree processors, this introduces an O(log2 n) overhead according

to the conventional wisdom (parberry,1989). By contrast Batcher's Bitonic Exchange requires

only constant-degree communication and thus incurs only an O(log n) overhead, and with its

smaller constant will always be ahead.

However, the 0(1og2 n) overhead is not a lower bound, and using a pipelined

O(log n * log log n) communication scheme, the present algorithm would be well ahead of

Batcher's by n = 106 elements/processors.

3.2 Parallelized RadixSort

One major disadvantage of QuickSort in general is its terrible worst case perfonnance. As

discussed above, the problem can largely be avoided by randomization techniques, but we can

never guarantee that the unlikely 'oracle' behaviour will not occur.

In the above discussion, it was implicitly assumed that the log n characterization of

communication costs included not only addressing but the messages themselves. Suppose the

keys are less than 2.4 log n bits long. Instead of choosing an element as pivot, an implicit

pivot can be used by making the left-right decision on the basis of successive bits, which

guarantees the tree will have a height equal to this bound.

Moreover, even in the general case, it is now no longer necessary to transmit entire keys

around the network and RadixSort (Knuth, 1973) may be a viable alternative. Whereas

QuickSort will in fact have a max(log n, w) overhead hidden in the communication costs,

-9 -

PROLOG QuickSort admits a logarithmic expected parallel logical inference complexity, that

the unification involved could also be executed in logarithmic parallel time, and that heuristics

can be added to a parallel theorem prover which will guide it into such a proof.

It was noted earlier that no CRCW parallel computer was available for the empirical

verification of the algorithm. The use of a CRCW model as opposed to CREW is not itself a

bar to achieving the expected efficiency, as they can be shown equivalent within a constant

factor. Cole (1986) however translates his original CREW sorting algorithm to a more complex

algorithm for an EREW model of the same theoretical complexity. The present author is of the

opinion that in the case of this QuickSort algorithm it makes more sense to implement the

required concurrent operations, and that EREW is in practice little easier to implement.

A more serious bar to achieving the logarithmic time is the additional overhead of

communication cost between processors, or processors and memory. Assuming that it is

necessary to use constant-degree processors, this introduces an O(log2 n) overhead according

to the conventional wisdom (Parberry,1989). By contrast Batcher’s Bitonic Exchange requires

only constant-degree communication and thus incurs only an O(log n) overhead, and with its

smaller constant will always be ahead.

However, the 0(log2 n) overhead is not a lower bound, and using a pipelined

0(log n * log log n) communication scheme, the present algorithm would be well ahead of

Butcher’s by n = 106 elements/processors.

3 .2 Parallelized RadixSort

One major disadvantage of QuickSort in general is its terrible worst case performance. As

discussed above, the problem can largely be avoided by randomization techniques, but we can

never guarantee that the unlikely ‘oracle’ behaviour will not occur.

In the above discussion, it was implicitly assumed that the log n characterization of

communication costs included not only addressing but the messages themselves. Suppose the

keys are less than 2.4 log n bits long. Instead of choosing an element as pivot, an implicit

pivot can be used by making the left—right decision on the basis of successive bits, which

guarantees the tree will have a height equal to this bound.

Moreover, even in the general case, it is now no longer necessary to transmit entire keys

around the network and RadixSort (Knuth, 1973) may be a viable alternative. Whereas

QuickSort will in fact have a max(log n, w) overhead hidden in the communication costs,

- 10­

RadixSort will avoid this potential deterioration of the communication, and any further

undesirable ramifications of that overloading, but will have a guaranteed O(w) parallel

complexity.

Thus, whatever the key length, and assuming no compression of messages is performed,

paraIlelized RadixSort will have the same expected overall time complexity as the parallelized

QuickSort, but will not suffer an insidiously lurking potential worst case.

References

AJTAI, M; KOMLOS, J; & SZEMEREDI (1983): Sorting in clog n parallel steps.
Combinatorica, 3 #1 pp.I-19.

BATCHER, K E (1968):.Sorting Networks and their Applications. Proc. AFIPS
Spring Joint Comp. Conf. pp.303-314.

COLE, R (1986): Parallel Merge Sort. Proc. 27th Ann. IEEE Symp. FOCS, pp.511-516.

FRANCIS, R S; & PANNAN, L J H (1989): Parallelism in QuickSort. Proc. 12th Aust.
Comp. Sci. Conf. pp.353-361.

HOARE, CAR (1962): QuickSort, Computer Journal,S pp.10-15.

KNUTH, D E (1973): Sorting and Searching. The Art of Computer Programming, 3.
Addison-Wesley, Reading MA USA.

PARBERRY, I (1989):Scholarly Review. Computing Reviews, #8911 pp.578-580.

POWERS, D M W (1988): Implementing Connection Graphs for Logic
Programming. Proc. 9th European Meeting on Cybernetics, Vienna pp957-964.

-10 -

RadixSort will avoid this potential deterioration of the communication, and any further

undesirable ramifications of that overloading, but will have a guaranteed 0(w) parallel

complexity.

Thus, whatever the key length, and assuming no compression of messages is performed,

parallelized RadixSort will have the same expected overall time complexity as the parallelized

QuickSort, but will not suffer an insidiously lurking potential worst case.

References

AJTAI, M; KOMLOS, J; & SZEMEREDI (1983): Sorting in c l ogn parallel steps.
Combinatorica, 3 #l pp.1-l9.

BATCHER, K E (1968):.Sorting Networks and their Applications. Proc. AFIPS
Spring Joint Comp. Conf. pp.303—3l4. .

COLE. R (1986): Parallel Merge Sort. Proc. 27th Ann. IEEE Symp. FOCS, pp.511—5 16.

FRANCIS, R S; & PANNAN, L I H (1989): Parallelism in QuickSort. Proc. 12th Aust.
Comp. Sci. Conf. pp.353—361.

HOARE, C A R (1962): QuickSort, Computer Journal , 5 pp.10—15.

KNUTH, D E (1973): Sorting and Searching. The Art of Computer Programming, 3 .
Addison—Wesley, Reading MA USA.

PARBERRY, I (1989):Scholarly Review. Computing Reviews, #8911 pp.578—580.
POWERS, D M W (1988): Implementing Connection Graphs for Logic

Programming. Proc. 9th European Meeting on Cybernetics, Vienna pp957—964.

