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Abstract

Multiset orderings are usual‘ly used to prove the termination of production
systems in comparing elements directly with respect to a given precedence
ordering. Topographical multiset orderings are based on the position of elements
in the graph induced by the precedence. This concept results in more flexible
and stronger multiset orderings. To support the dynamic aspect of incremental
refinement of a multiset ordering the notion of Depth Graphs is introduced. This
concept leads to the use of a graph of which the nodes are terms [instead of
constants and function symbols]. It replaces the standard precedence graph.
Moreover, it can be used to define a new recursive decomposition ordering on
terms which is stronger than the original one.




1 IMotivation

"Suppose you have a big box filled with red, green and blue balls”, said
the fox. "And suppose further that you are allowed to throw away any red ball
you can find in the box, but you have to put in thousand green balls for each
blue one you remove and each green one has to be replaced by a million of reds.
Do you think that you can ever succeed in emptying the box?” "Yes, I do”,
replied the owl. "Are you sure?” "Of course, I can prove it", answered the owl],
with a twinkle in her eyes.

The sophisticated owl knows about the concept of multiset orderings. Beside
solving puzzles, multiset orderings are used to prove termination of programs and
processes ([DM791] and they serve as a basis for many recursive term orderings
which in turn are used in proofs for the well-foundedness of term rewriting
systems ([AMS89], [De87] [HO80], [Ru87], [St89]). Their properties have been
studied in [JL82], [Ma89], [St86], [MS86], [Fe88l Especially, for the improvement
of term orderings they are very helpful since the term ordering will be stronger
if the underlying multiset ordering gets stronger.

"Well”, said the fox, "but what happens if you are in addition allowed to
replace balls by boxes of balls. Say, blue balls might be replaced by boxes
with any number of green and red balls. Green ones may be replaced by two
boxes filled with red balls. You may also handle the balls as before and any
empty box will be thrown away. So now you will have boxes in boxes which
contain boxes and balls, etc. Do you think that you will end up eventually
with one empty box?" "Sure” said the owl, "it's the same story.”

If complex objects 0,,0, must be compared, we usually have a partial ordering
on the simple objects. Thus, complex objects are decomposed into [multi-] sets
of less complex objects and the task of comparing 0,,0, is reduced to comparing
these sets. By decreasing the complexity of the objects stepwise we eventually
generate sets of simple objects which are compared with respect to the given
ordering. If terms, treated as complex objects, have to be compared, we usually
have a precedence ordering on the function symbols. For example, we would like
to compare h(f(a],b] and h[gla).b] with respect to [(wur.t] the well-known
recursive path ordering (see [De87]]. The given objects are incomparable since
the precedence is empty. We may refine the precedence by f b g and will get
fla) > g(a). This relation implies h(f[a],b] > h(g{a),b] to be valid since it is
equivalent to {f[a],b} » {g(a].b}. But, for the sake of receiving fla) > g(a] we have
fixed the value of other comparisons, as well. For instance, f(g(a)] > g[i{a])
inducing h(f(g(a]).b) > h(g(f(al].b] is derived. Thus, it is impossible to have
h(g(f(a]].b) > h{f(g(a)).b] under the precondition that f(g{a)] > g(f(a)).



This example illustrates that a precedence determines the comparison of a class
of object pairs. In order to weaken this inflexible approach of extending a
precedence we will refine the ordering in a more moderate way. The original
ordering compares two objects by comparing parts of these objects as multisets.
We will generalize a precedence to a graph of complex objects (not only function
symbols] by simultaneously using a stronger ordering on multisets of objects
called dynamic depth ordering. The dynamic depth ordering is a topographical
multiset ordering which compares two objects by using their depths (natural
numbers) w.r.t. the precedence graph.

After a brief description of the classical multiset ordering we will explain the
technique of topographical multiset orderings by presenting some examples of
orderings. Section 23 will deal with the definition of the dynamic depth
ordering which can be used as part of a term ordering. The incorporation of
this multiset ordering in a recursive decomposition ordering [by using a graph
instead of a precedence] will be the main part of chapter 3.



2 Multiset Orderings

Intuitively, a multiset is a collection of elements of one set. In contrast to subsets
every element of a multiset can possibly occur more than once. More formally, a
multiset M on S is a mapping from S to the natural numbers. Each element of
S is associated with the number of times it appears in the multiset M.

Definition Let S be any set.
A mapping M : S+~ N is called a multiset on S. .

However, we will use the informal "bracket” notation to describe the contents
of a multiset, eg. M = {a,b,b,b.c} instead of M(a) = M(c] =1, M[b] = 3.

Note that multisets on S, with elements occurring once at the most [i.e: M[x] <1,
¥x € S], can be identified with the subsets of S. Based on operations with
natural numbers, the common operations known of sets, such as union,
intersection, difference and inclusion, can also be defined on multisets. We
expect the reader to be familiar with these operations [an exact definition is
included in [HO80], [Fe88] and [St86] for example]. In order to preserve
computability, we are exclusively interested in the class of all multisets
containing a finite number of elements.

Definition Let S be any set.
Mult[S] := {M : S» N | M is finite }
is called the set of all finite multisets on S. n

Note that Mult(S] is closed under multiset union, intersection and difference.

2.1 Standard Multiset Ordering

We focus our interest on comparing finite multisets by defining well-founded
partial orderings on Mult(S). A partial ordering on a set S is a relation > < S x S
which is irreflexive and transitive. If x,y € S are incomparable [wrt. >] we
write x n y. A partial ordering > on S is well-founded if there exists no infinite
decreasing sequence Xx;> X, > .. of elements of S.

One way to define a multiset ordering over S (a partial ordering on Mult(S)] is
to "lift” a given partial ordering > on S to Mult[S). Reasonably, the resulting
multiset ordering » should be an extension of > to multisets (i.e. X > y implies
{x} » {y}, ¥vx,y € S].



Following this idea, Dershowitz and Manna have presented a multiset ordering
that is induced by a partial ordering > on the underlying set S.

Definition [ Multiset ordering of Dershowitz-Manna, [DM79] ]

Let > be a partial ordering on S and M,N ¢ Mult(S).
M »oy, N iff  3XY € Mult(S]) such that
i] 0+XcM
i) M\ XJuy = N
iii) Vy € Y 3xeX: x>y .

A lot of definitions of multiset orderings equivalent to the one of Dershowitz and
Manna exist [see for example [St861). Therefore, we call » DM the Standard
Multiset Ordering and will simply refer to it by ».

We present an example to illustrate the definiton of the Standard Multiset
Ordering. This example also indicates the disadvantages of ». Therefore, it will
be used throughout this paper to demonstrate the differences between the
presented orderings.

Example Let S = {a,bc.def} and a>c>e c>f b>d>f

Hasse diagram: a b
| |
c d
RN
e H
Further, M = {a,c} N = {¢ceffif}
M = {be} N° = {b,d}
M” = {a,c,d} N = {b.def}
M » N since (M \ {a}] u{cefff} = N and
a>c¢c,a>e, a>f
M # N since (M" \ {e}]] u{d} = N and en d

or (N \ {d}] v {e}

M’ o N~ since (M” \{a,c})] u{bef} = N° and anb cub
or [N\ {beif}Jufac} = M' and bna e<a f<a =

M and dne

Intuitively, one can imagine that M’ is smaller than N° and M~ dominates N".
Therefore, the result of comparing these multisets with » requires the search for
more powerful multiset orderings.




2.2 Topographical Multiset Orderings

Our new multiset orderings are based on the topographical aspects of the
graphical representation of a given ordering on S. The basic idea is: "The higher
an element is situated, the bigger it is"! More precisely, we introduce the
depth of an element which characterizes its position in the underlying partial
ordering on S.

Definition [ Depth of an element ]

Let > be a partial ordering on S. DS : S » N with
DS(x) :=max { DS[y) i x <y e S} «1 ([ where max[®] = 0 )
is called the depth of x in S. .

In general, it should be noted that the existence of the depth is not guaranteed
for all elements of S. In fact, most of the interesting orderings [especially those
presented in the second part of this paper] do not have the desired property, i.e.
there are some elements with an infinite depth. A partial ordering > with all
elements of S possessing finite depth is called co-bounded [i.e. < is bounded)].
Now, we connect the notion of the depth of elements of S with multisets on S
resulting in definitions which are used to construct some topographical multiset
orderings.

Definition [ Optimum, hierarchy level and depth multiset ]

Let > be a co-bounded partial ordering on S, M € Mult(S] and n € N.

OptS: Mult(S] » NuU{w} with
OptS(M) = min {DS(x} | xcM } { where OptS(0] = « )
is called the optimum of M.

LS: Mult(S) x N » Mult(s) with
LSMmn) = {xeM | D5(x)=n}

( exactly: LS[Mn)(x) = M(x) iff DS[x] = n)
is called the n-th hierarchy level of M.

DS: Mult[S] » Mult[N] with
DSM] == {DS[x] | xeM} [ exactlyy DS[M](n] := ILS[Mn]l )
is called the depth multiset of M. x

We will write D(x] (and Opt[M], L[M,n), D(M]], if it is obvious which set S is
referred to.



The fundamental idea of the following multiset ordering (see [St86]] is, that a
multiset M is bigger than a multiset N if its biggest element [w.r.t. >} is
"higher” than that of N. Therefore, this multiset ordering follows from the idea
given above.

Definition [ Optimum Ordering ]

Let > be a co-bounded partial ordering on S.
M »5 N iff  Opt3(M\N]) < Opt5[N\M] .

The presented example will illustrate how the Optimum Ordering works.

Example Let 5, > and six multisets be as in the example above.

M »5 N since Opt(M\N] = Opt({a}] = Dfa) = 1 and
Opt(N\M) = Opt{{c.efff}) = min{2,3,333} = 2

M’ «y N since Opt(M"\N] = Opt[{e}] = Dle] = 3 and
Opt[N\M'] = Opt{{d}] = D(d] = 2

M” o N” since Opt(M"\N"] = Opt({a.c}) = min{1,2} = 1 and
Opt[N"\M"”] = Opt[{b.e i}] = min{1,3,3} = 1 .

In addition to M and N, M’ and N’ are now comparable in the desired manner.
In fact, »o is stronger than the Standard Multiset Ordering, but M"” and N” remain
incomparable. Moreover, the Optimum Ordering demands the ordering on S to be
co-bounded, i.e. the depths of all elements must be finite. To overcome this
restriction, the definition of »o may be altered in such a way that the depths
of the elements are computed w.r.t a finite subset of S. For a comparison, this
subset must contain all the elements needed. The first attempt in generalizing
the Optimum Ordering in this manner is based on the following concept [see
[St861): When comparing two multisets M and N the required depths are computed
w.rt. set/MUN] which denotes the set of elements contained in the union of M
and N.

Definition [ General Optimum Ordering )

Let (S,>] be a partially ordered set and M,N € Mult(S].
M Nt opt™M i < opt ™V .

As our example will prove, the General Optimum Ordering differs from the
original one [see the second comparison].



Example Let S, > and six multisets be as in the example above.

M »% N since Optset(MUN)[M\N] - Opt(a.c.e.f){a}] . D{a,c.e.f)[a] -
and  opt“™MMmiM) = opt®™*P{cettt}] = min{233,33) = 2
M’ ’% N’ since Optset(M:UNi)[M.\N,] - opt(b.d,e)[{e}] . DEb,d,e)[e] -
and Optset(MUN)[N,\M.] - Opt(b,d.e)[{d}] . D{b,d,e}[d] -5
M~ s N since Opt™ " (MM\N") = optS{ac)) = min{1,2} = 1
and Optset(M N )[N"\M'-'] = OptS[{b,e t}) = min{1,3,3} = 1

Notethat »é is still stronger than the Standard Multiset Ordering. Moreover, the
General Optimum Ordering is equivalent to the multiset ordering based on
disjunctive partitions [»y,] of Jouannaud and Lescanne (fJL821). Thus, the
definition of »g gives useful hints for an efficient implementation of the

Disjunctive Partition Based Ordering.

A closer look at the definition of »Z shows that, in general, set(MUN] contains
elements whose depths are never needed in the comparison process. These are
elements appearing equally in number in both multisets. Therefore, another
version of the Optimum Ordering can be constructed, where the depths are
computed w.r.t. set{M®&N] that denotes the set of elements occurring in either M
or N but not in equal quantities in both multisets.

Definition [ Basic Optimum Ordering ]

Let [S,>] be a partially ordered set and M,N € Mult[S].
M »(®3 N iff Optset(M®N)[M\N] < Optset(M(DN)[N\M] .

It is easy to see that the comparison of the muiltisets of our example with the
Basic Optimum Ordering provides the same results as with the Standard
Multiset Ordering. Moreover, »% and » are equivalent, i.e. the Basic Optimum
Ordering is a topographical definition of ». Like »g , the definition of »(@3 is
very useful to efficiently implement the well-known Standard Multiset Ordering.

Now, we will concentrate on the problem that the example still contains two
incomparable multisets ([M"" and N”’). All Optimum Orderings only use the topmost
elements to decide which of the two compared multisets is the greater one. If
the optima are equal, the two multisets are incomparable, no matter what
depths the smaller elements possess. The following multiset ordering [[St86])

solves this problem. It compares lexicographically the number of elements on
each hierarchy level.



Definition [ Level Ordering ]

Let > be a co-bounded partial ordering on S.

M » N iff Jk € N such that
il lLSpmi)l = LSl Vi <k
ii) ILS(Mk) > LSkl .

If the topmost elements are of the same depth, they are neglected. The comparison
process will proceed by recursively comparing the remaining multisets until a
decision can be made or the multisets are empty. Thus, we may call »_a "recursive
version” of ». From this point of view, it seems natural that the Level Ordering
is in fact stronger than the Optimum Ordering. To illustrate the definition of »
we again use the example given above.

Example Let S, > and six multisets be as in the example above.

M » N since ILM.1)l = Ha}l =1 >0 = lol = IL{w 1)

M « N since LM, 1)l = o}l =1 = lfp}l = (v 1)l and
lLim,2) = lol = 0<1 = Kal = IL(n.2)

M” » N since IL(M"1])l= Hall =1 = b}l = (v 1)l and
LM~ 2)l = eall = 2 >1 = K@)l = I[N~ 2) .

In contrast to all the Optimum Orderings, M~ and N” are comparable. Since
D[a] = D(b] = 1, both elements are removed from the two multisets. M is at least
greater than N” since it contains more elements than N on the second hierarchy
level.

We deduce another definition of a multiset ordering straight from the extension
of the depth function to multisets [i.e. the depth multisets).

Definition [ Depth Ordering ]

Let > be a co-bounded partial ordering on S.

Further, let » be the Standard Multiset Ordering on Mult(N] that
respects the ordering < on IN.

M »y N itf ~ DS[M] »* DS([N] .

The ordering »* is the multiset extension of the reverse ordering on N, ie.
1> 2> . . Note that »~ differs from «, e.g. {1,3} » {2} but also {1,3} » {2}. Since the
natural numbers are totally ordered, a comparison of two multisets with »5 can
be done by sorting the corresponding depth multisets [w.r.t. <] and comparing



them lexicographically [w.r.t. <]. This process reveals a certain similarity between
» and »o. Later on, we will state that they are not only similar but equal.

The definition of the technical term hierarchy level [(resp. depth multiset)
demands the same restrictions on »_[resp. »5 ] as on »,. But, if we try to
overcome these restrictions in the same fashion as we did with the Optimum
Ordering, we lose the transitivity property. Therefore, »{ [resp. »g] would not

be an ordering at all. This fact is shown by the following example.

Example Let S = {a,bc,d}] and b >c, d > a.

Hasse diagram: b d

Further, let A ,B,C € Mult[S] with A = {a,a,a}, B = {b,b}, C = {c.d}.

Assume the "General Level Ordering” (»] is developed from » as
»g from »5. When computing the depths of the elements wr.t.

set(AUB] (resp. set[BuC) and set[AuC]]), it is easy to see that
A »Y B »’ C»’ A This contradicts transitivity, because A » B and
B »y C must imply A »’ C. .

»

2.3 Dynamic Depth Ordering

The loss of transitivity by generalizing the Depth [Level] Ordering is caused
by the fact that several elements appear on the same level one time and on
different levels at another time. Each comparison generates its own environment
of depths. The decision which of two multisets is the greater one strongly
depends on this environment. Furthermore, the comparison process of the Depth
Ordering does not respect any other environment than the current one. A possible
way out of this awkward situation is given by dynamically generating a
singleton depth function. It has to be constructed by "freezing” each environment
once generated. Following this idea we introduce the notion of a Depth Graph.
It simply relates depths with the elements of an appropriate subset of S.

Definition [ Graph ]

Let > be a partial ordering on S, P< S and D : P~ N
G := [(P,D] is called a graph from S
iff vx,y e . x>y = D[x] < D[y) .



L.ater on, we will discuss how to expand a graph dynamically without destroying
the present depth relations. The notions of hierarchy level and depth multiset
can easily be adapted to graphs. They are denoted by LE[M,n) (resp. DF[(M])
with the corresponding depth graph G as index.

Now, we are able to redefine the Depth [Level] Ordering by exchanging the
originally used depth function with the one given by an underlying depth graph.

Definition [ Dynamic Depth Ordering ]

Let (S.>) be a partially ordered set, G = (P,D) a graph from S
M,N € Mult[P] and »* the Standard Multiset Ordering over N that
respects the ordering < on N.

M »& N iff D9M] »< DYN] .

Only multisets over P € S can be compared with -»g. The definition says nothing
about the elements of Mult(S], in general. This doesn’t satisty our goal since
we are not only interested in a multiset ordering on subsets of S but also on the
whole set S. At this point the dynamic extendability of the depth graph takes
etfect. When comparing two multisets over S w.r.t. an underlying depth graph
G, the first thing to do is to extend G, such that it contains all the elements
needed for the comparison. The extension of a depth graph has to be done
carefully, in order to preserve the [frozen] results of all previous comparisons.
This can be guaranteed if the extension does not destroy existing hierarchy
levels. Also, one can show the existence of such an extension independent of
the actual depth graph and the underlying ordering > on S. Proofs of these two
statements are included in [Fe88l.

Example Let S ={a,b,c,d}] and b >c d > a

Hasse diagram: b d

C a

Further, let A B,C € Mult(S) with A = {a,a,a}, B = {b,b}, C = {c.d}.

Let & = ({a,b},D] with Dfa)] = D[b] = 1. G is a depth graph from S.
A »8 B since D[A) = {111} »* {11} = DS[B]

Let G = [{a,b,c,d},D’] with D’a] = D'(b] = 2, D[c] = 3 and D’[d] = 1.
G’ is an extension of G that preserves A »Z B.

A since DY(C) = {13} »° {222} = D9(A)

B

C »
C since DSC] = {1.3} » {22} = DS(B) .

vQua

».
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2.4 Comparing the introduced orderings

In this section we summarize the comparisons between the presented orderings.
There are three possible relations: Two orderings can be equivalent [» = »] , one
ordering can be properly included in the other [» C »] or they overlap each
other [» # »). Two orderings overlap each other if there exist multisets M, N,
M’ N° such that M » N A M $N and M" » N" A M" » N".

The proofs of the following lemmata can be found in [Fe88l

Lemma Let > be a partial ordering on S. Then the following holds:

» = »®
(o]

» C »g = »M

» C o»y  C o= oop , if > is co-bounded
U

»o " »o hud >>L

» C »S no»d , restricted to P
G

»o jatd »D hut »L

Graphical representation:

))D \
»,
M »,
\; L i »g
4 >>U
(o)
=gl
» »@ -‘
° |
n
Lemma Let > be a total ordering on S
Then, all the orderings presented are equivalent:
» = >>g = »M = »é =
o T oL = op = [ if > is co~-bounded )
»g ( restricted to P ) .

2.5 Properties of the introduced orderings

All the presented orderings are really partial orderings [irreflexive and
transitive relations] on Mult(S), of course. We want to point out a few other

characteristics of the topographical multiset orderings. The proofs of all
statements are included in [Fe88l

-1 -



It is very useful for implementation purposes to have multiset orderings which
are additive ([Ma89]) and closed under difference [[St86]). If a comparison result
never changes by adding [deleting) equal elements to [from) both multisets, the
used ordering is called additive [closed under difference). Only the General
Optimum Ordering [»3] is neither additive nor closed under difference. All of
the other orderings possess both properties.

For termination proofs, it is important to know under which conditions a
multiset ordering is well-founded. The Basic [»g] and General [»LCJ)] Optimum
Ordering (just like the Standard Multiset Ordering] are well-founded if and only
if the ordering > on S is well-founded. The Optimum Ordering ([»5] itself as
well as the Depth [Level] Ordering [»y = » ] and its dynamic version (»J] are
well-founded if and only if the wvalues of the corresponding depth functions

have an upper bound.

The Standard Multiset Ordering (») is a monotonous extension of > on S to
multisets, i.e. a stronger ordering on S implies a stronger multiset ordering. As
Jouannaud and Lescanne [[JL82]] have shown, » is the maximal multiset ordering
possessing this property (called incrementality]. Therefore, none of the presented
topographical multiset orderings has this property (except the Basic Optimum
Ordering since it is equivalent to »}.

The Dynamic Depth Ordering [»g'] features monotony w.r.t. depth graphs which
is similar to the monotony of the Standard Multiset Ordering. This property
leads to the concept of dynamical extensions of »g’ stated above. It also reveals
the great difference to all other topographical multiset orderings. A comparison
result not only reflects a fixed relation. The relation itself is constructed during
the comparison process. Therefore, it is possible to specify désirable results in
order to dynamically adapt »S to the multisets to be compared.

It seems possible to simulate the adaptation process of the Dynamic Depth
Ordering [»J) with the Standard Multiset Ordering using appropriate extensions
of > on S. The simulation requires that > can be extended in any desired
direction, but this does not hold for each partially ordered set [see the second
part of this paper].

We now present an application of the Dynamic Depth Ordering.

- 12 -




3 Term Orderings

Term rewriting provides a simple mechanism that can be applied to reasoning in
structures defined by equations. The effective calculation using term rewriting
systems presumes termination. Orderings on terms are able to guarantee this
property. Most of the published term orderings are recursively constructed
by applying the definition to the multisets of the subterms. The multiset ordering
needed is the standard one. This chapter deals with the substitution of this
weaker multiset ordering by the Dynamic Depth Ordering.

First of all, we briefly recapitulate the most important notions concerning term
rewriting systems and their termination. A detailed description is presented
in [HO801 and [AMS891

A term rewriting system [TRS] is a set of rules R, each of the form 1 = r.
1 and r are terms built from a set of function symbols § and a set of variables
®. A TRS R defines a binary relation = on the set of terms which is called
reduction relation. A term s can be reduced to another term t under the TRS
R (s = t] if and only if there exists a rule 1 > r € R and a match from 1
into s. By replacing the matched subterm of s with an instance of r, t is
derived from s. A more formal introduction to TRS theory is contained in
[HO801 or [AMB89], for example.

A TRS terminates if and only if each reduction sequence starting with any term
ends after a finite number of steps in an irreducible term. Proving the
termination of an arbitrary TRS R is an important but generally undecidable
problem. Nevertheless, some methods have been developed that can prove the
termination of a large number of TRSs. A very successful method is to search
for a well-founded ordering on terms which includes the reduction relation. If
such a reduction ordering exists, the TRS must terminate. Moreover, the
existence of a simplification ordering (a special kind of reduction ordering) is
sufficient to guarantee the termination of a TRS (fDe871]. An ordering on terms
is a simplification ordering if and only if it possesses the subterm and the
replacement property. The subterm property guarantees that a term is bigger
than any of its proper subterms. The replacement property ensures that the
value of a term will be decreased if any one of its subterms is decreased.

To prove the inclusion of a given reduction relation in a simplification ordering >,
it is sufficient to show that o(l)] > o[r] for all ground substitutions o of each
rulel > r € R. To obtain a finite termination proof (of a finite TRS) the chosen
simplification ordering is required to be stable wurt. substitutions [i.e.
s > t = os] > o[t], for all o].

- 13 -



A large class of simplification orderings is known as path orderings [[De87]
[St89]). Each definition of a path ordering contains recursive calls to a multiset
ordering. Traditionally, the Standard Multiset Ordering is wused in these
definitions. We will demonstrate the possible usage of the Dynamic Depth
Ordering in the definition of the Improved Recursive Decomposition Ordering
IRD [[Ru87], [St89]). During the first attempt we restrict the definition to ground
terms. But first of all, we need some notation.

The leading function symbol of a term t is referred to by top(t]. Terms are
labelled with sequences of natural numbers to identify the positions of their
subterms. The set of all labels of a term t is called set of all occurrences of
t, O[t]. Ot{t] denotes the set of all terminal occurrences of the term t, i.e. the
labels of its leaves. A specific subterm of a term t is determined by tlu with
u € Oft).

Definition [ Occurrences and Subterm )

Ofi(ty,..t, )] = {e} vi{iuiue Oty 1<ix<n}
Ot(t] = {u e O[t) | Vv £+ ¢ Yw € O[t): w * uv}
tle = t flt,..ty)liu = tlu .

We now introduce the notion of the decomposition of a term which is used to
define the IRD. Our notation is influenced by [St89] but it is not exactly the
same. This notation (hopefully) provides a somewhat easier definition of the IRD.

Definition | Decompositio'n.]

dec_[t]

£

dec(t]

o dec; ,[f(ty..t )] = {t;} U dec[t;]
{dec,(t] | u e Ot[t]} .

The decomposition of a term t is a multiset consisting of multisets of elementary
decompositions. In our notation, an elementary decomposition looks like a
(proper] subterm of t. Note that additional information is needed for an exact
characterization of an elementary decomposition, i.e. an elementary decomposition
is closely related to its multiset. A term s is greater that a term t [wurt. the
IRD] if the decomposition of s is greater than the decomposition of t. The
ordering on these multisets [» »] is an extension of the basic ordering on terms
(>] to multisets of multisets.
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Definition [ Improved Recursive Decomposition Ordering, [Ru87] ]

Let > be a partial ordering on the set of function symbols and f an additional
unary function symbol.

S >gp t iff dec(f(s]) » » dec(f(t]]
decpu[s] slp = s > t = tlq ¢ decqv[t]

1ff

- top(s’] » top(t])

- decys] » dec,[t]

- dec(s’) »» dec[t) .

The evaluation of the conditions is marked by hyphens: s > t iff - s> t -5 >, t
stands for s > t iff s » t or [s = t A s >, t]. Here, the equality sign = is the
congruence relation induced by the quasi-ordering >. Two terms are equivalent
under =z if they are the same up to equivalent function symbols and

permutations of subterms.
Before modifying the IRD we explain its definition with a simple example.

Example Let § = {afg} and fbg.

- fla) »gp 9lal since dec(f [f(a))) {ila)all
dec(f (g(a])]) {{gla).a}}
and decy(f(f(a)]] fla)> gla) € decy,[f (glall]

- flgla)) > gp glila)) since dec(f(i{g(al])]] = {ilglall.glalal},
dec(f (glf(a]])]) = tglf(a))tla)al}
and dec,,(f[f{g(a])]] flgla)] > f(a] € dec,, (£ [glilal]]],
dec,,, (£ (flg(a)))) f{gla]] > gli(a]) € dec,,,[f (gli(a])])

Further, we are going to improve this decomposition ordering by using the
Dynamic Depth Ordering instead of the Standard Multiset Ordering, i.e. the
precedence of the IRD will be replaced by the more flexible structure of a depth
graph. We change the definition of the IRD at the "inner” one of its two
multiset comparisons. In the dynamic version the IRD will compare multisets
of elementary decompositions with the Dynamic Depth Ordering [»S] instead
of the Standard Multiset Ordering. Therefore, we need a depth graph consisting
of elementary decompositions. The depth graph has to respect an ordering on
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its elements. We choose a modified version of > on elementary decompositions
to construct our depth graph. The modification is the same as with the IRD:
multisets of elementary decompositions are compared with »g.

Definition ( Dynamic IRD ]

Let P be a partial ordering on the set of function symbols, fan additional
unary function symbol and G a depth graph containing all elementary
decompositions appearing in dec(f (s]) U dec(f [t]].

S *pIrRD ¢ iff dec(f[s]) » »F dec(f[t]]

with

decpu[s] 3 slp = & >DEL t” = tlg ¢ dquv[t]
iff

- top(s] » top(t)
- dec,(s) »2 dec,(t)
-  dec(s’] » »g dec(t’] =

It is easy to see that two elementary decompositions s and t can only be
compared with DEL if the corresponding depth graph contains all elementary
decompositions occurring in dec(s) U dec(t]. This reveals the indirect recursion of
DIRD: before inserting a term into a depth graph, all of its arguments have to be
inserted recursively. In contrast to the originals, DEL and DIRD themselves are
not recursive. We decided on using the [strongest]) decomposition ordering since
the needed partition into subterms represents a simple and efficient method for
determining the order in which the terms are integrated in the depth graph.

Example Let § = {af g}

Let G = ({a,f{a),g(a]},D] with D(a) = 3, D(i(a]]
gla] >gpp fla) since  D%%(dec,,(f (g(a]]
D%%(dec,, ([ [f(a)]]
and {13} »* {23}
Let G = [{a,f(a) g(a) f(g(a)).g(f(a)]}.D’) with
D’(a) = 6, D(f[a]] = 4, D’[gla]] = 3, D'(g(f(a)]] = 2 and D(f{g(a]]] = 1.
G’ is an extension of G which respects gla) >z flal.

= 2 and D(glal] =1
1) = {13},
) = {2,3}

flgla)] >pirp glilal] since  D%(dec,,, (£ (f{g(a)]]]] = {1,356},
D% dec,,, (f (g(f(a)))]) = {2.4.5}
and {135} » {24,5} =
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Note that this result cannot be obtained with the original IRD, irrespective of the
chosen precedence: g{a] > fla) requires g » f but flgla]) »grp glilal] requires
f > g which contradicts the former choice of b.

The IRD is monotonous w.ur.t. the precedence which permits an incremental
generation of the precedence. This property demands the multiset ordering to
be a monotonous extension function. Therefore, we cannot hope to transfer the
precedence monotony to the DIRD. But we have replaced it by a similar
property. Owing to the characteristics of »g', the Dynamic IRD is monotonous
w.r.t. the depth graph. As you can see in the example above, this concept
allows a very flexible adaptation of the DIRD to the set of terms to compare. It
is more flexible than a dynamic generation of the precedence.

To be usable as a tool for proving the termination of a TRS, the DIRD has to
possess certain characteristics. Of course, it has to be a partial ordering.
Furthermore, the condition of being a simplification ordering [subterm and
replacement property) has to be fulfilled. In addition, the Dynamic IRD should
be an extension of the original one in order to justify its definition.

We formulate lemmata about the characteristics of DIRD and will prove them.
Lemma DIRD is a simplification ordering.

Proof Let G = [(P,.D] be a depth graph which contains all elementary
decompositions needed for the proof.

a] DIRD is irreflexive and transitive since the Standard Multiset
Ordering [») as well as the Dynamic Depth Ordering [»S) is a partial
ordering.

b) DIRD has the subterm property:
Let be =% u € Oft]
= t >pp tlu . since the IRD has the subterm property
= t >gp tlu , since IRD < DIRD [see below]

c] DIRD has the replacement property:
Let be s >, 8. We have to show that
t = f{t,..s..ty) >oirp ftg.8h .t ) =
&> dec(f[t])] » »g" dec(f(t’])
&= vveOt(f(t)) 3ue ot(f(t)):  dec [f[t] »S dec,(f(t])
since dec[f(t]] n dec(f[t])] = ©
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This is true because
vYv € Ot(£(t’]] 3Ju € Ot(f (t]):
dec (£ (t]] t >yg t' € dec,[f(t]]
(case distinction whether v determines a position in s’ or not]

t>peL t0 = D(t] < D(t’) since G respects DEL
dec(f (s]] » »S dec(f(s]) by precondition (s >5;pp 8
»g' is additive "

The property of being a simplification ordering authorizes the DIRD to guarantee
the termination of a ground term rewriting system. The following lemma gives
preference to the DIRD since it is stronger than the IRD.

Lemma IRD < DIRD

Proof - > C >_.;: By induction on the structure of terms and owing to
the construction of the depth graph (s >, t = D[s] < D[t]]

$ Irp ¢

&> dec([f(s]] » » declf (t]) [ Def. of the IRD ]

=>  dec(f(s)] » »pg; dec(f(t]] ( since > € >y g |

=>  dec(f(s)) »»3  dec(f(t]] ( G respects DEL ]

> s > t [ Def. of the DIRD ) n

DIRD

Neither in the definition nor in the proofs of the properties of the DIRD, the
restriction to ground terms is needed. The question arises why we have
demanded it at the beginning? Well, the utilization of terms containing
variables causes some problems which we wanted to neglect. Firstly, the
treatment of terms which are identical except for the names of their variables
cannot yet be specified. This class of terms raises both practical and theoretical
questions. For reasons of efficiency, it is desirable to avoid redundant
information in the depth graph. From a theoretical point of view, this problem
is connected with the general question of how to construct a depth graph
correctly? A correctly constructed depth graph guarantees the stability wur.t.
substitutions of the DIRD.

Up to now, we have no solution to this problem. It is, however, obvious that
the definition of the depth graph must be altered. With the presented version it
is probably impossible to guarantee the stability w.r.t. substitutions. Suppose
a > b to be constants and x to be a variable. x is incomparable with both a
and b with all simplification orderings stable w.r.t. substitutions [because x is
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unifiable with both constants]). To receive the same results with DIRD we have
to construct a depth graph with the restriction D[a] = D[x] = D{b] concerning
the depth function. But the precedence [a » b) demands D(a)] < D[b] since
a >pgr. b. Obviously, it is impossible to satisfy both constraints.
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4 Conclusion

We have developed new multiset orderings which are classified to be
topographical. All presented orderings are equal to or stronger than the Standard
Multiset Ordering [on similar conditions]. The Dynamic Depth Ordering [»g'] is
incrementally adaptable to the multisets to be compared. It is not a fixed
relation, but is generated during the comparison process. This unique flexibility
also causes some problems when »g is used in a term ordering environment.
We have altered the improved recursive decomposition ordering (IRD] by
replacing the Standard Multiset Ordering with »g'. The resulting DIRD is a
simplification ordering but it is not stable w.r.t. substitutions. We hope to find
a modification of the depth graph to gain back this property. Our future work
is influenced by the idea of not only characterizing the depth of an element
by a single natural number, but by an interval.
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