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Term rewriting systems provide a simple mechanism for computing in
equations. An equation is converted into a directed rewrite rule by
comparing both sides w.rt. an ordering. However, there exist equations
which are incomparable. The handling of such equations includes, for
example, partitioning the given equational theory into a set R of rules and
a set E of equations. The appropriate reduction relation allows reductions
modulo the equations in E. The effective computation with this relation
presumes E-termination. Classical termination methods cannot directly
guarantee E-termination. This report deals with a new ordering applicable
to (RE)-systems where E contains associative-commutative equations. The
method is based on the Knuth-Bendix ordering and is AC-commuting, a
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]l Introduction

Term rewriting systems gain more and more in importance because they are a useful
model for non-deterministic computations: They are based on directed equations with no
explicit control. Various applications in many areas of computer science and mathematics
including automatic thecrem proving and program verification, abstract data type
specifications and algebraic simplification have been developed.

The basic concept of term rewriting systems is that of reducing a given term to an easier
one. An equation is converted into a directed rewriting rule in such a way that the right-
hand side of the rule is easier than the left-hand side. In order to exclude infinite derivations
of terms the rewrite systern must terminate. The tools to prove the termination are called
orderings. A survey of the most important cnes is given in [De8T1.

The basic idea of an ordering > is to verify that the rewrite relation =5z (induced by the
rule system R)J is included in > Such an ordering must be well-founded to prevent infinite
derivations of terms. To check the inclusion ==y < >' all infinitely many possible
derivations must be tested. The key idea is to restrict this infinite test to a finite one by
requiring a reduction ordering. A reduction ordering is a well-founded ordering and has
the replacement property (also called compatibility with the structure of terms), which
means that decreasing a subterm decreases any superterm containing it, too. The notion of
reduction orderings leads to the following description of termination of rewrite systemns
(developed by Lankiford, see [De871x

A rewrite system R terminates if and only if there exists a reduction
ordering > such that oll) > o) for each rule 1 —>g 1 and for any
substitution o.

The theorem above reveals another dilemma which is known as the universal quantification
on substitutions or the so-called stability w.rt. substitutions: s > t implies ols) > olt), for
all c.

Summarizing, it is to remark that a termination proof of a term rewriting system requires
a reduction ordering stabilized w.r.t. substitutions. In general, it is very difficult to guarantee
the well-foundedness of a reduction ordering. This fact leads to the basic idea of characterizing
classes of orderings for which there is no need to prove this condition. One possible solution
is represented by the class of simplification orderings which are at least reduction orderings:

An ordering is a simplification ordering if and only if it has
the replacement property and
the subterm property (any term is greater than any of its proper
subterms).







Simplification orderings are discussed in detail in [De87]. Well-known simplification orderings
are the recursive path orderings and the Knuth-Bendix orderings. Unfortunately, the termination
of an arbitrary term rewriting system is an undecidable property, even in the ‘one-rule
case' ([Da88D.

An additional negative fact derives from the existence of equations of which the left-hand
side and the right-hand side are incomparable in any case. For example, a rewriting system
containing the cornmutativity axiom x+y = y+x as a rule is non-terminating. However, if
the termination property is not satisfied, the set of axioms can be split into two parts: Those
axioms causing non-termination are used as equations E while the others are used as rewrite
rules R. The appropriate reduction relation allows reductions rmodulo the equations in E. The
effective computation with this relation presumes

+ a complete unification algorithm for the equational theory E and
- the E-termination, i.e. there is no infinite sequence of terms of the form
b =gl =g b=gt =

2 R

We now adapt the general results on termination from the previous page to the case of
equational term rewriting systerns.

An equational term rewriting system terminates if there is an ordering > which contains
the rewrite relation =y o = =g =g - =g The test of this inclusion requires to check
all derivations of the form s =>4, . t. This requirement can be refined: If > is E-compatible,
then > contains ==y p if and only if it contains -j—'*‘>m (cf. [BP85D. An ordering > is
E-compatible if and only if

s =g S s'

> implies >

t =5 t t!

If a reduction ordering > is E-compatible and o) > o(1), for every rule 1 —x I and every
substitution o, then the equational term rewriting system R/E terminates.

Jouannaud and Munoz succeeded in weakening the E-compatibility for this statement (see
[IM84D. They introduced a property called E-commuting:

' [
> implies 3t >

The following theorem (cf. theorem 51 on page 11) points out the main importance of E-
comrutation for the E-termination problem. The theorem is a meodification of one contained
in [M841






A rewrite system R is E-terminating if and only if there exists an E-
commuting simplification ordering > such that o) > o) for each
rule 1—>gr and for any substitution o.

In this report we are going to deal with a special theory E: associative-commutative term
rewriting systems. An equational theory E is called an associative-commutative theory if
every equation in E is either an associative or commutative axiom:

f(x,f(y.z)
f(x,y)

fii(x,y).z): e §5 and
fly,x) cTe 8.

]

In order to describe the fact that f is both associative and commutative we use 'f ¢ §,."
An equational term rewriting systen (RE) will be an associative-cornmutative term
rewriting system if E is an associative-commutative theory.

There only exist a few orderings for this kind of rewriting systems, e.g. the associative path
orderings ([Gn88], [GL86], [BP85], [BP85al, [DHJP83D and the orderings on special polynornial
interpretations ([BL87al, [BL86], [La79D.

The polynomial interpretation I for an associative (and commutative) operator must be of
the form IXx.y) = axy + Hx+y) + ¢ such that ac+b-F? = O. The fundamental disadvantage
of polynomial orderings is the difficulty of choosing interpretations for operators such that
a given rewrite systemn terminates.

Associative path orderings extend the recursive path orderings to AC-congruence classes.
They are based on flattening and transforming the terms by a rewriting systern with rules
similar to the distributive axioms. Furthermore, the precedence on the operators has to satisfy
a property called associative pair condition. A crucial point of this ordering is its in-
efficiency which results fromm the demand that two terms must be pre-processed (flattened
and transformed w.r.t. distributive axioms) before they are compared.

Here, we supply a concept which avoids the disadvantages of these two orderings. It is
based on the Knuth-Bendix ordering KBO (IKBTOD. A modification of this well-known ordering
(called associative-cornmutative Knuth-Bendix ordering, ACK) causes its AC-commutation.
The transformation of terms, required by the associative path orderings, is reduced to a
minimum. Moreover, the algorithm of [Ma8T] for finding an adequate weight function
proving the termination of a given rewriting system wur.t. the KBO can be applied here.
The power of the ordering is nearly the same as that of the Knuth-Bendix ordering.
Consequently, the applicability of the ACK is bounded by that of the Knuth-Bendix ordering.

After giving some indispensable definitions in the next chapter, the classical Knuth-Bendix
ordering of [KB70l will be presented. In chapter 4, we extend this ordering by using the
concept of status (see [KL8OI, [5t88]. The definition of the ACK and the proofs of its important
properties can be found in chapter 5. Subsequently, we will introduce some extensions of
the ACK, e.g. to theories which are only commutative. We conclude with some cornments
about the comparison of the power of the ACK to other orderings.






2 Notations

A term rewriting systemm R over a set of terms T' is a finite or countably infinite set of
rules, each of the form | —> r, where | and r are terms in T, such that every variable
that occurs in r also occurs in 1. The set ' of all terms is constructed from elements of a
set § of operators (or function symbols) and some denumerably infinite set B of varia-
bles. The set of ground terms (terms without variables) is denoted by I, . The leading
function symbol and the tuple of the (direct) arguments of a term t are referred to by
top®) and args(t), respectively. The size |t| of a termn t is the number of operators and
variables occurring in t.

A substitution ¢ is defined as an endomorphism on I' with the finite domain {x 1o&x) * x},
ie. o simultaneously replaces all variables of a termm by terms. We use the formalism of
positions of terms which are sequences of non-negative integers. The set of all positions of
a term t is called the set of occurrences and its abbreviation is O). We write tlu <—s]
to denote the term that results from t by replacing t/u (the subterm of t at occurrence w)
by s at the cccurrence u ¢ O).

A (partial) ordering on I, is a transitive and irreflexive binary relation > and it is called
well-founded if there are no infinite descending chains. Most of the orderings on terms
are precedence orderings using a special ordering on operators. More precisely, a prece-
dence is a partially ordered set (§ . ») consisting of the set § of operators and an irre-
flexive and transitive binary relation b defined on elements of § .

Note that a term ordering » is used to compare terms. Since operators have terms as ar-
gurments we define an extension of » called lexicographically greater (»'¢%), on tuples of
terms as follows:

n
if either m>0 A n=0
or s; * h
or s; = oA Ggus ) M ()

If there is no order of succession among the terms of such tuples then the structures ars
called multisets. Multisets differ from sets by allowing multiple occurrences of identical
elements. The multiset difference is represented by \. The extension of » on multisets of
terms is defined as follows. A multiset S is greater than a multiset T, denoted by S »» T:

S » T
iff « S+#T a
(Wt ¢ T\S)(3s ¢ S\T) s » t

ie. 5 »» Tif T can be obtained from S by replacing one or more terms in S by any finite
number of terms, each of which is smaller (w.r.t. » than one of the replaced terms.






To combine these two concepts of tuples and multisets, we assign a status o) to each
operator f ¢ § that deterrnines the order according to which the subterms of f are
compared. Formally, a status is a function which maps the set of operators into the set
{rnult , left , right}. Thus, a function symbol can have one of the following three statuses:

rmult (the arguments will be compared as multisets),
left  (lexicographical comparison from left to righ) and
right (the arguments will lexicographically be compared from right to left).

The result of an application of the function args to a term t = f(t,..,t ) depends on the
status of f : If ©) = mult, then args® is the multiset {;...t } and otherwise, args(t) delivers
the tuple (},...,t ). Obviously, if the precedence is a quasi-ordering (a transitive and reflexive
binary relation), two equivalent symbols w.r.t. the precedence are supposed to have the
same status. With this requirement ambiguities will be avoided.






3 Knuth-Bendix ordering

To prove the termination of term rewriting systems we can use the notion of a well-
founded set (S, %) which is a set S and a partial ordering > on S such that any decreasing
sequence € % €, % . . . of elernents of S only consists of a finite number of elements. Ta
construct an ordering we choose a well-founded set (S , %) and a so-called termination
function which maps the termm algebra into S.

The ordering of Knuth and Bendix (KBO, for short) takes (N , >) as the underlying well-
founded set, i.e. it assigns natural (or possibly real) numbers to the function symbols and
then to terms (called weight of a term) by adding the numbers of the operators they
contain. Two terms are compared by comparing their weights. If their weights are equal
the subterms are lexicographically collated. To describe this strategy, we need some pre-
requisites and helpful definitions.

If x is a variable and t is a termn we denote the number of occurrences of x in t by = (0.
We assign a non-negative integer ¢ -the weight of f- to each operator in § and a
positive integer ¢, to each variable such that

elc) z @, if ¢ is a constant,

e >0 if f has one argument.

We extend this weight function on operators to terms. For any term t = fit)...t ) let

o) = oM + Lolt,).

Definition 3.1 [KBIO]

Let P be a precedence and ¢ a weight function. The Knuth-Bendix ordering >kBo ©R
terms s and t is defined as follows:
s >gpo !
iff D (Vxe B 86) 28 d 4 pls) > o)
or i) (Vxe B) nld = u® 4 o) = o) A top(s) b top(®
or i) (Vx e B) a6 = a® 4 es) = o) A top(s) = top®
A args(s) >1%%_ args(h n

KBO

The congruence =y~ of this ordering is the syntactical identity.

Note that this ordering is well-founded on ground terms and stable w.r.t. substitutions, ie.
s > t implies o(s) > o) for all substitutions o. The proofs of these properties may be found
in [KBT01.






Remarlk 3.2

It is possible to allow one unary operator f with weight zero, af most. To guarantee the
well-foundedness. all other operators in § have to be smaller than { with respect to the
precedence (see [KBIOD. If the precedence is partial the possibility ft) >, .~ t. for all
terms t with f # top(), must be taken into account. ]

Remarle 3.3

Permitting variables, we have to consider each and every one of them as an additional
constant symbol uncomparable (wrt » to all other operators in §. By admitting a unary
operator f with @ = O, the possibility that £ >kBo X must be added to the definition
of the KBO. 1

Example 3.4

Consider the terms
s=x+y)+z and t=3x+(y + 2)

and the following weight function: ¢4 = 1 and @G) = 0. We want to prove that s >,p- t.
Since @) = () + Plx+y) + @(2) = 0 + @) + x) + @ly) + [ =0+ 0 +«1 +1 + 1 = @i and
top(s) = + = top(t) we have to apply the KBO recursively on the tuples of arguments and
have to verily (x+y , 2) >1§’1’§o & . y+z). This is true because x+y > oo X since

elx+y) = 2 > 1 = ox) and the variable condition is fulfilled. 1

The variable condition - 5. (s) 2 u_({) - guaranteeing the stability w.rt. substitutions certainly
is a very strong restriction. Note that, for exarnple, the distributive law cannot be oriented
in the usual direction.

Note that we can use a quasi-ordering on the function symbols instead of a partial
ordering. Nevertheless, the KBO remains well-founded.

[Ma87] contains a practical decision procedure for determining whether or not a set of rules
can be ordered by a KBO. The basic idea of this algorithm is to transform the desired rules
to linear inequalities which are derived from the weight function. The solutions to these
inequalities are determined by using the simplex method.






4 An extension of the KBO

The use of the Knuth-Bendix ordering for associative-commutative rewriting systems requires
some modifications. This chapter deals with one of these changes: the extension of the KBO.
To make the KBO more powerful, we have to realize its short-comings by studying certain
examples. In addition, we will analyze the definition of the KBO to point out its weaknesses.
The following rules can intuitively be ordered but the KBO does not guarantee their
termination.

Example 4.1
We want to prove the termination of the rule

s={y*x+x —> (y+D*x-=1t
with the help of the KBO. Therefore, we have to verify that ¢(s) 2 oM. This implies that
¢ = @ > (). Since the weight of a constant must be greater than or equal to ¢, the
weights of the variables and of 1 have to be the same: @, = @(1). On this premises, s
and t have the same weight. As the multisets of the variables of the two tferms are not

identical, s can never be greater than t (according to definition 3.1). |

One way to establish the termination of this rule is to weaken the variable condition in
i) of definition 31 by (¥x ¢ ®) n () = o B see [Ma8TD.

Example 4.2
We would like o show the termination of the rule

s=x*(-y)*xvy) — Cly*yd*x-=1t
with the help of the KBO. The weights and the leading function symbols of s and t are
equal (rrespective of the weight function). This situation demands that x >p - @y * ¥
which cannot be valid (since the variable condition is infringed). |
However, (-y) * y >~ - (y * y) if * b - In addition to the fact that x is a subterm of

s as well as of t, a possible way to guarantee the termination of the rule is to compare the
arguments of s and t as multisets instead of lexicographically.






Example 4.3
The termination of the rule
x * y2 — %2 % y»?

cannot be proved by any Knuth-Bendix ordering. The reason for this assertion is that two
unary function symbols - and 9 with weight zero must exist since @) + QC*) + ely) +
0@ 2 9 + 0@ + e + ¢ + @ly) + 9@ which is equivalent to 0 £ ¢ + ¢@. This
requirement is not allowed (see the remark 3.2 on page D. 1

Using a quasi-ordering on the function symbols instead of a partial ordering, we may
allow more than one unary operator with weight zero. On the premise that all these
operators are equivalent wur.t the precedence the induced extension of the KBO also is
a well-founded ordering stabilized w.r.t. substitutions (see [St88D. The rule above can then
be oriented Gf 2 > #). This kind of extension will not be mentioned explicitly by the
definition of the new ordering (definition 4.4).

The different aspects of the analysis of the ariginal Knuth-Bendix ordering leads to a new
and more powerful definition:

Definition 4.4 [St88]

Let » be a precedence and ¢ a weight function (as described in chapter 3). The Knuth-
Bendix ordering >pp~e With status on terms s and t is defined as

s >kpos !
iff Wxe B) . 6)2ad A
- pls) > o)
- top(s) b top(t)
- args(s) >KBOS, Tttopls) args(® |

We use a compressed representation of the definition. The hyphens stand for the lexico-
graphical performance of conditions, ie. s > p~o t il @) > o) or [pls) = o) a
top(s) b top] or [els) = @) A top(s) = topl) A argsls) >pp~g tops) args(t)].

Moreover, the index 1) of > KBOS. (D marks the extension of >rwpos WIL the status of the
operator f:

GpeS) Pgposan -ty

iff D - left A (5)0nS) “iemog Gt
or o= mult & {s)s Prpos ot}
or D - right & (s, onS) R ng ().






The KBOS uniquely defines a congruence ~ (=,,p~o) dependent on § and t via:

iff f=g A m=n A
either i) ) = mult and there is a permutation = of the set {l...n} such that

s; ™ t_’tm, for all i « [I,n]

or i) ©® # mult and s, ~ ti, for all i ¢ [I,nl

We conclude this chapter with the enumeration of important properties of the KBOS. The proofs
are not given here but may be found in [5t88].
Lemma 4.5
KBOS is
a simplification ordering,
stable w.r.t. substitutions and

an extension of the KBO. ]

- 10 -






5 Handling AC-rewriting

In this chapter we introduce a new class of orderings, associative-commutative Knuth-
Bendix orderings, for proving the termination of associative and (or) commutative term
rewriting systerns. These orderings have to satisfy certain properties. The new Knuth-Bendix
ordering will fulfil the conditions required by Jouannaud and Munoz:

Theorern 5.1

Proof:

Assume that > is a simplification ordering and AC-commuting. Then, R is
AC-terminating if =g < >.

This theorem is a slight modification of the following one contained in [JM841: Assume
that > is AC-commuting with == and contains the homeomorphic embedding
relation. Then, ==y is AC-terminating.

> is AC-cormnmuting with =g, iff for any s', s and t such that s’ =, s éﬁm t, then
st > ' =g t for some t'.

We have to prove that the AC-commutation of > together with == < > implies the
AC-commutation of > with =g

+
' = 5 =t
E
gl o= éR>t
E

because =g < >
> (G st >t =g t
since > is AC-commuting 1

The KBOS is a simplification ordering. Unfortunately, it is not AC-commuting. Consider the
following examples.

Example 5.2

sl= (- (X)) * x =aAcC x * - (X)) =5

“KBOS

t= () * (-

- 11 -






If * ¢ §por N = left and @) > O. Assuming the AC-commutation of the KBOS. a term
AC-equivalent to t' must exist which is simpler (w.r.t. the KBOS) than s. The only possible
term t is the term t' itself (because no other term exists which is AC-equivalent to t). But
s is not greater than t' (wrt the KBOS). On the contrary, t' >pp~qo s. |

The term s would be greater than t' if the KBOS were used and the status of the
multiplication operator were of type multiset. All other relations would be left unchanged.

Taking this idea (t() = mult if f ¢ F~) into account, let us consider some further examples.

Example 5.3

s'=&xvy)l v oz =ac xviy vz =s

“KBOS

th = axAY) v oz

Ifve Fac: ov) = @) + ©A) , v » = and tlvlmult. The term t could be either t' or
z v =(x ‘A y). Unfortunately, s #KBOS t. The crux of the comparison of s and t is that we
have to apply the definition of the KBOS recursively to the arguments of the two terms:
There is no subterm of s which is greater than -~(x A y). I

Requiring ¢(s") > o) would avoid the recursive application of the ordering. More
precisely, s' >KBOS t' and s >ppag t' i V) > @) + ©(R) . Another solution is to forbid
that s' >vpos U by requiring v (all A-operators, respectively) to be minimal wurt. the
precedence.

Example 5.4
s' = (--x) * x) x y A -x) % x * y) =5
“KBOS
th o= (-0 % CxD *x y
If * ¢ §a )=mult and @(-)>0. The term t could be either t' or (-x) * (-x) * y) if we
consider the multiset status of *. Therefore, we must show that the multiset {--x , x * y}
is greater than either {-x) * ¢ , y} or {-x , (- * y}. However, no term exists in

{--x , x * y} which is either greater than (-x) * (-¥) or greater than (-x) * y. 1

A possibility to deal with this problem is to restrict the terms to be compared to their
normal forms w.rt. the associative theory (the flattened versions of the terms).

- 12 -






Usually, terms with AC-operators are represented as flattened terms having no nested

occurrences of identical associative operators. This representation requires the operators to

have variable arity, i.e. associative function symbols may possess any positive number
(> 1) of arguments, whereas non-associative operators have a fixed arity.

Based on this background, the flattening operation fl is defined as follows:

Definitiorn 5.5

let be t = f(’fl ..... tn) a term. Then

t

i = ¢ [, 080

tl

if t is a constant or a variable
if £43a
otherwise

with t' results from t by replacing t; by fl(t) if top(t) * f, and replacing

t, by spes, if 1) = f)..5_). '

The following definition of a new Knuth-Bendix ordering summarizes the substantial ideas

of the KBO illustrated by the examples.

Definition 5.6

The ordering >;~i

S "Ack t
iff fls) PKBOS
(with s =ACKt iff

Let ¢ be a weight function as described in chapter 3 such that (Vf ¢ §,)
@ = 0. Furthermore, > is a precedence such that (Vf ¢ §)) 3 f > g. The
status function t fulfils the condition that @ = mult if { ¢ F.

(associative-commmutative Knuth-Bendix ordering) on
terms s and t is defined as

i

f1(t2

- 13 -






Example 5.7 [BP85], taken from Huet

Consider the following rules:

RI x+0 — X
R2 O+ x — X
R3 x =1 — X
R4 1 *x — X
R5 h(0) — 1
R6 hix +y) —> hx) * hiy)

Assuming + and * are associative and commutative operators, we will prove that the system
is terminating with regard to the following preconditions:

oy
+

symboal 0 1 * ‘x,y

P 2 1 0 0| O 1

h b * and () = 1(x) = mult

The termination of the rules Rl - R4 is proved by the subterm property of the ACK (see
510). The rule R5 is terminating since @(h(0) = 2 > 1 = ¢(1). The weights of both terms of
the rule R6 are identical ¢ 2) and h b *. 1
For more examples, see appendix.

The rest of this chapter contains an enumeration of the necessary properties and their proofs
which guarantee the use of >, o for proving the termination of an AC-rewriting system.
The following theorem presents a summary of the following lemmata.

Theorern 5.8
ACK is
a simplification ordering: Lemma 59 - 512
stable w.r.t. substitutions: Lemma 513 - 517
AC-commuting: Lemma 518 - 520

- 14 -






Lemma 5.2 ACK is a partial ordering.

Proof:

We must show that

iy

1)

i) t*ACKt and

W r >ack S TACK >

I >aAck
Assume that t > ACK t
~> o I > KBOS )

by definition of the ACK

~~>  contradiction to the fact that the KBOS is a partial ordering (see
[5t88D

ack S Zack t
fi(s) > i

~> ) >ypos KBOS
by definition of the ACK

r >

> ) >ppae IO
since the KBOS is a partial ordering (see [St88D

> T ekt

by definition of the ACK 1

Lemmma 5.10 ACK has the subterm property.

Proof:

We have to show that ¢ ¥ u ¢ O©) ~> t >, . t/u. Let us consider a term t and
an occurrence u ¢ OM, topt) = f and toplt/u) = g. It is obvicus that (Vx ¢ B
n (D 2 » (t/u). We must distinguish two cases which will be proved by induction
on |t]:

i)

it

Ul > eUlt/ul
> t >

ACK t/u
by definition of the ACK

eUfl) = eUlt/ul)
~> o) =0 A fis aunary operator

- f+g
~> f b g
see remark 32 on page T
>t > a e YU

by definition of the ACK

- 15 -






- f = g:
Let fI® = fth |, flt/w = M
t“

~ |
> t >kpos

by induction hypothesis since t' (resp. t") is a proper subterm of

ity (esp. flt/a)
~> >

Ack YU
by definition of the ACK

Leamma 5.11 ACK has the replacement property.

Proof:

It is to show Wie [ln] r >acKk S

Obviously, (¥x ¢ B) 0, (D 2 1 (8 ~> (¥x e V) o O = ux(t‘).
We have to examine three cases:

i el > eUl(s)
~> o o) > ls)
because (@ =0 if ge F,
~> () > elth
> Ul > U
since (Vg ¢ §z) @ =0
> t >x CK t!
by definition of the ACK

i) Ul = Ul A top() > topls)
> top(n) d

since (Vg e §) Jh) g > h
s M = Rt @ LD

o) topls) d 5 v tops) # f

> Ul > Ul
since Ul > @(ls)

|
>t >ACK t

since fl{r) >p~q {68 (regardléss of the status of ) and by

definition of the ACK

B tops) € §5 A top) = f

> fI@ED - fi),...t} SppenSpe 1 een)
with  {l(s) = f(s},....5) )
- ) = left
~> We must prove that (t...t . flO
T e s This s

and has the subterm property.

- 16 -

“KBOS left
valid because

i) >KBOS f1(s) >KBOS 51 and since the KBOS is transitive






oD

= right;

analogous with the previous case

4]

D>

i) Ul = @(flls))

= mult

We have to show argstflt) >, o args@'»  which is
equivalent to {flt)} >, p~a {5)...5.}. This is true since
i) >ppag fI6) and {fli)} >, p o {55, 3 (becau;e each
s; is a proper subterm of {ls) and by the transitivity of
the KBOS.

A top®) = top(s) A args{ladd >KBOS. top args({lés)

o) top) d §, v topm) * f

~uD

~ruD>

i

= f(ti ..... tll‘l'l. , flty , ) and

ity = f.t L ), L)

t >

|
ACK t

since 1) >,p~g fls) and regardless of the status of { (see case
a of iD

By topM e 5, A topd = {

~uD>

Lermma 5.12

Proof: We have to show that s := f(.. , r, .J
Wx ¢ B) n,ls) 2 m ()

flc)

fith

@ =

~UD>

o =

L]
—
——

..... t;n S ST S ) with fl(r) =
Jrees t! . SpuenS . with fl(s) =

!
~
o

"
=
~
1
=
t

left

We have to show

(3 ¢ [ILmink,p)D vj <D L=ack § A T ack S
This can be proved with the help of the precondition
since  args(flr)) >ppq g argslls)

right:

analogous with the previous case

D =

~rD>

mult
We have to prove that argstltt) >, oo argstld').

This is equivalent to {1},..1.} »>ppae {sl,....sp) which is the
precondition. 1

ACK has the deletion property.

> ACK f(..., .) == t. It is obvicus that

o> Vx ¢ B u (f1(s)) = a (1) (%)
since the fl-operator does not remove leaves of the terms

- 17 -






Lemma 513

Proof:

It is also obvicus that @(s) > o) because t results from s by removing at least
one leaf (and the constant symbols and variables have a positive weight.
el > N

since (VD o) = Ul (because (@) -0 if ge Fp)

~u>

~a>

flq1an = 11w
t =4 1)
since

Lermma

Proof:

Lermma

Proof:

fl(s)

(st

fi(s) >
since

s >

KBOS

1ty
is valid

by definition of the ACK n

Wt e ID (Vo) fl(cCfID) = fla(t)

s =5t Hf 1) = £

(Vo) o) =, ollt)

since

=x is closed under substitution

fls) = fl(sUEID)

since

514

“KBOS
fi(s)

At i ) = I 1

(Vo) 118 =ppog D ~> o) = po o)

fl

by definition of the KBOS

S =ac

see [GD88], proposition 5
ols) =5~ o

G

fl{s(t)

see [CDB88], proposition 5

f1(e(s))

“KBOS

flo(t)

by definition of the KBOS 1

515

Let be t a term, O = [,..t) its flattened wversion
and 6 = {x <= g(..s ) a substitution. Then, fllct) -

by using lemma 513
LM by precondition

..... oty ) by definition of substitutions

- 18 -






) f+g

a t=x
~> o) = gls).s )
~>  assertion
because [ ¥ g

b) ti' £ 4
~>  toplot/n # f
since fl(t) is flattened
~>  assertion

i vie [1kD t *x:
analogous with b) of 1) ]

Lemma 5.16 fl(s) >KBOS 1) > fl(o(s)) > BOS ()
if o= {x<=f.r )}, fe F,
Proof: It is obvious that (¥x ¢ B) ttx(ﬂ(d(s))) = ux(ﬂ(o(t))) if (¥x ¢ R) nx(ﬂ(s)) p:3 nx(ﬂ(t))

since lemma 614 of [St88] is valid.
We have to consider three cases which will be proved by induction on |fl(s)| + [fl(H].

i) el > flt)
~> o fl(e(s)) > @l
since (VieID @{lc(t)) = @(cUlt))) (because o) = O , f ¢ A)
and lemma 614 of [5t881

> o) > e fllo()
by definition of the KBOS "’

ii) el(s) = UlE) A toplls) P topUldt)
~> o oUlloe)) = eUl(ald)
since (Vt ¢ D o(lla(t)) = @Ul()) (because e = O , f ¢ F ’~®,
and lemma 6.14 of [5t88]

~> - fl(o(s) >ppag o)
because  toplfllc(s)) » top(fllct)) and by definition of the KBOS

i eUlG) = eUl) A top(flis) = topdl(t)
~> argstlis) >ppag i ops) args(fl(t)
since  fl(s) > p~g I and by definition of the KBOS

~> flle(s))) = e(flle(t)) A top(flla(s)) = topUlls(t)

since (¥t ¢ DD ofllc®)) = @sUl(t)) (because ) = O , { « 840
and lemma 6.14 of [5t88]
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o0

B

fl(s(s

>

) > ofllalt))
fllo(s) >ppeog fllolt)
by definition of the KBOS

ellce))) = eflla®) A  tltoplls)) = left:

Let be

~D>

D

ID

s = glsp...8 ) and  t = glh,t)
fits) = glsj...sl ) and {0 = gly...t0)
@) ¥ <D 8 epos ¥ A S >kpos b )

g*f v [Qpe [Imaxtmm] s,m X vt xJ
> flle(s)) = g(ﬂ(o(sl')),...,ﬂCd(sl',n))) and

fllet) = gUllelt/D...., fl(o(t;l)))

by using lemma 515

> vVj <D ﬂ(o(sj')) =KBOS ﬂ(o(tj‘)) A

fitaG)) >ppag oltN

since sl‘3 = ﬂ(sI'D) A ’(I'3 = ﬂ(tl'o) . Vpe [Lk]
because gls)....s; ) and gl..t) are the
flattened versions of s and t , respectively.
1) =pgag 1) ~> fllels) =pp~e o),
Yo (with the help of lemma 514
lemma 513

and by using the induction hypothesis together with (%)

SR (GO I ()
by definition of the KBOS

g=f s [@pe [lmaxtmnD Sx'ﬁ: X v t;3= x]
> fits) = f(sl' ..... s;) and IO = fii.., )

HES S
~>  (da ¢ 0 minpPh (V] < a) sJ.“ ~KBOS tj" A
" 1]
Sa >KBOS J[a
since s! = fl(a(s)) , t!' = filo(t;)) . lerama 513 and

by induction hypothesis
~> o fllo(s) >ppag (1ol
by definition of the KBOS
~>  (Ju e OCsi')) ute A si'/u = X

since s, >,p~g ti and by definition of the KBOS

> cp(si') > cp(ti') v [sil = hth(.hGd.) A b = O]
by definition of the KBOS
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)

3)

~> (Ja e DmineDd O <a) s =gpos ' 4
Sll > tH
a ~KBOS "a
since sl = fl(o(si')) . flleG) = ft1...) and lemma
614 of [5t88] and either @G]) > el) or with the

help of remark 32 / 33

> fllo(s) > p e fllo(t)
by definition of the KBOS

pUllo(s = ellc® A tloplfl(s)) = right:
analogous with 8)
ello(s)) = ellc® A tlopl(s)) = mult

~>  args(fl(s)) > BOS args(flt) (%%)
since f1s) >pog I  and by definition of the KBOS

D g+f v [Upe [LkD S;D= X v t1'3= x]
> flla(s)) = glllaGs)M....[Hels 1) and

by using lemma 515

> argslle(s)) »pp~q argsilc)

since * S;: = ﬂ(s}'j) A t}'j = ﬂ(tI'D) . Vp
because gls) s ) and glj...tD)
are the flattened wversions of s and 1,
respectively.
fIts) =xpos I ~> fllo(s) =pgqg fHo®)
with the help of lemma 514

and by using the induction hypothesis together with (x%)

> fite(s) >ppag fllot)
by definition of the KBOS

m g=f A [(p ¢ 0 maxmmnD 55, < X v th = xJ
> fl(s) = f(sl' ..... sr'n) and 1) = f(tl' ..... t;_‘)

> S = {s),..5. ) > .. =T
by definition of the KBOS (see (*%)

~> o Y e TNS) Gs{ ¢ S\ 5§ >ppog b

si'ix A t! + x

J
~> toplles * £ A toplllett ) * f
since flts) =5y A ) =

-2 -






> i) > pag 1o)
since fl(c(si')) >KBOS fl(o(tj')) by induction
hypothesis} and with the help of the lemmata
513 and 514

> (Gue OEMN u*xe A si/u=x
since si' >KBOS tj' and by definition of the KBOS

> ls)) > <p(tj') v [si‘ = hth(.hGd.) A e = 0]
by definition of the KBOS

Let ke fllcx)) = f(rl‘ ..... rI'D). It is sufficient to show that
(e >ppag r;, . for all g e [pk

This is true since the variable condition is fulfilled and
<p(ﬂ(o(si'))) > cp(r"q)

because r(‘:I is a subterm of (s and cp(si') > cp(tj') i

Lemma 5.17 ACK is stable w.r.t. substitutions.

Proof:

We have to show that (Vo) s > ACK t ~> o) >

t

S ACK

ACK o®.

~r ) >ppog M

by

> (Vo) fllsls)) >

wit

definition of the ACK

KkBog Hot)

h the help of the following facts:
1) >ppng )~ o) >pp e
if o= {x < fi,.r, . fd§,
This is true because (¥t ¢ ID fl(c() = o(fl(t) and by using the stability
of the KBOS w.rt. substitutions (see [St88D.

(et

lemma 516

Let be o a substitution whose domain is {x...x_}. Then o6 =0, .. o
where o; is the elementary substitution (the domain is reduced to a
single variable) whose domain is {x;} . The proof can be found in

[GLBA1.

> Vo) o(s) > ACK o)

by

definition of the ACK »
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Lemma 5.18 S =ac t o~ s =x t

Proof: S =ac t
<> fll) ~ 1)
see [GD88] , proposition 5

> fl8) =ppog 1M
by definition of the KBOS
> s =aep

by definition of the ACK

Lemrma 5.1<2 I =ppos 5 KBOS t ~> > ROS t

Proof: We will show it by induction on |t|. It is clear that (¥x ¢ R) g @ = g M if
WVx e B) v () = n () >n ) because > on N is a partial ordering. We have to

consider five disjoint cases:

1) p(s) > @)
> o) > )
since @) = @(s) which follows from

I >kpos |
by definition of the KBOS

I =xBOS

~nD

i) o) = e A topls) > top(d
~> o) = e® A top®d P> topl)
since @ = o8 (<~ 1 =pp oo S)

and top(r) = top(s) A P is a partial ordering

~> T >ppog

by definition of the KBOS

i) ) = elt) A top(s) = topt) A tliop(s) = left:

Let be s = f(s1 ..... sm) and t = f(t1 ..... tn) (> 1 = f(rl

> (St Pxposiett Gty

since s >pp~g t and by definition of the KBOS

e @D O <D s gpos A S Cksos &V

S, xpos i A MM >nl]

by definition of KBOS left

(Vi e O.nD

~> o 0 <D Hegpos A T Pkeos b
because * (Vj <D I; =kpos 5
since I =pp~o s and by definition of the KBOS
Y =kBos 2 TkBos '3 > 4 =kBos

can be proved easily
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induction hypothesis

since T; =ppos S “keos b

~> T ppog t

by definition of the KBOS

iv) p(s) = ) A top(s) = topl) A tlop(s)) = right:
analogous with the previous case
V) i) = @) A top(s) = toplt) A tlop() = mult:

Let be s = f(5;,.,5, ) and t = f(t,..t)
1St Prmos ety

since s >pp~e t and by definition of the KBOS
wlog. let be {s,.s} n it }1=-0

m

> (th) (s s; >kpos tj
by definition of the extension of the KBOS to multisets
~> It is sufficient to show that
0 S, >ppos tJ. ~> (3K
B 4k 1 =ppos b

I« *kpos f and

Q) 1 =kpos §
since I =pp~g 5 and Dby definition of the KBOS

~> T >pos
because s; > pqs tj and with the help of the induction

hypaothesis

€] Assume that QK 1, =ppog e

[ ¥a%> 13

te =xBoOS S
sincé  I; =ppog S (g~ 1 “KBOS s)
> {spes b on Lt # 0]

which is a contradiction to the precondition 1
Lemma 35.20 ACK is AC-commuting.
Proof: We have to show that 1 =5~ 5 >4t~ GtY 1 >4 1 =ac b
I =ac S >ack !
> T =ack S Tack
by using lemma 5.18
> 1D =ppog 16) >ppog 1D

by definition of the ACK
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~D>

10 >ppog 1M
with the help of lemmma 519

I >ack t

by definition of the ACK

t =t

since t'=t ~»> =ac b
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6 Improving the ACK

The associative-commutative Knuth-Bendix ordering defined in the last chapter is an
ardering which can prove the termination of rewriting systems modulo an associative and
commutative theory. This theoretical aspect is the foundation for using the ACK in practice.
However, from a practical point of view the ACK is inefficient since the terms to be
compared must be flattened. Subsequently, we will present two different kinds of versions
of the ACK which improve its applicability.

&1 Reducing the use of the fl-operator

Comparing two terms w.rt. the ACK we do not always have to flatten them. This expense
will only be necessary if the argumenits of both terms must be compared. The following
lemma reifies this fact:

S >ack t
M (Vxe Ba) 2 a® 4
- @ls) > oM

top(s) » top)
args(fls)) >x ~i 1 opE args1)n

with all conditions of 5.6 about ¢ and > (see page 13)

Proof: The proof can be easily performed by using the following facts:
v (1) 2 o (1M iff n () 2 n
by definition of the fl-operator

el > oIt iff () > o) and e(l(s)) = Ul iff ) = o)
since @ =0 if fe §,

topUlt) = top®), Vt ¢ T  and P is a partial ordering 1
Note that it is even possible to improve this version by only

flattening the term if top(s) € §,  and
flattening the highest level of s and t if top(s) ¢ §,.
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6.2 Restricting the ACK to C-theories
Up to now we admitted commutative and associative operators. The exclusion of the latter

enables us to simplify the ACK: The flattening of the terms to be compared is completely
redundant. Obviously, we do not need to check the conditions about associative operators.

Definition &.2.1
Let be b a precedence and ¢ a welght function as described in chapter 3. The status

function t fulfils the condition that (D) = mult if f ¢ .
The ordering >~ (commutative Knuth-Bendix ordering) on terms s and t is defined as

s>CKt

iff s Spos t 1

We want to use this restricted version of the KBOS as an ordering to prove the termina-
tion of rewrite systems modulo cormmutative theories. Therefore, the CK must be a
simplification ordering and C-commuting. The proofs of these properties will follow.
Lemma &.2.2

CK is a simplification ordering and stable w.r.t. substitutions.

Proof: This is valid since the KBOS has the same properties (lemma 4.5 on page 10). 1

Lermma &.2.3

CK is C-commuting.

Proof: We have to show that s' = S Yo t o~ G s oK1 t! == t
1 _
s s S e t
> st e s e
since s 55t > s ot (because ) = mult if e F)
~> 5! ypos S kpos
by definition of the CK
~> 5! 3pog t
lemmma 519
> st e t
by definition of the CK
am> =t
since t'=1 ~> { =~ t (]

- 2T -






T Conclusion

This paper introduces a class of termination orderings for associative and (or) commutative
term rewriting systemns, called associative-commutative Knuth-Bendix orderings (ACK, for
short). The ACK is a modified version of the Knuth-Bendix ordering with the following basic

concepts:

Extending the KBO to KBOS by permitting various statuses (to compare the
arguments of two terms),

Assigning multiset status to each commutative function symbol,

Assigning weight zero to each associative operator which has to be minimal w.r.t.
the precedence and

Partly flattening the terms to be compared.

This ordering can prove the AC-termination of a set of rules since it is a simplification
ordering and AC-commmuting (see [[M841. A great deal of the substantial aspects of this
ordering are similar to those of the associative path ordering.

The power of the ACK is approximately the same as that of the KBOS. We expect this
conjecture to be confirmed by several tests.

Unlike the associative path ordering APO (cf. [Gn88], [GL86], [BP85], [BP85al, [DHJP83D, the
ACK does not require a complete transformation (ncluding distributing and flattening) of
the terms to compare. The comparison of the power of the APO and the ACK leads to the
fact that they are incomparable:

ACK is more powerful than the APO:

APO is more powerful than the ACK:

X% * y* > 2 CK x * y>* G *xy oo ¥y o*y)
but but
X% * yZ tapo & * yFF S * Yy b Yo+ &o*xy)

with *, + ¢ Fx~ . plexp)>0 , * > +
There exists another ordering for AC-termination: a restricted version of the ordering on

polynomial interpretations (POL, for short). The power of this method and the power of the
ACK also overlap:
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ACK is more powerful than the POL: POL is more powerful than the ACK:

Cx) + x >k X+ s) ¥y >py YV o+ (y xx)
but but
(X + x oo X+ 0 S xy Ao Vo lyxx)

with +e¢ §, . th=left |, I YI=x+y , IR YI=x:3y | 1(5)0=4%

From a practical point of view, the POL is applicable to more rules than the ACK, but it
is very difficult to choose the adequate interpretations for the operators (see [BL8TaD. On
the contrary, it is easy to determine whether or not a set of rules can be ordered by a
Knuth-Bendix ordering (cf. [Ma87D.

The generalization of the presented method for other theories as well as the weakening of

the conditions for associative operators (by eventually distributing simultaneously) will be
part of future plans.
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Appendix: Examples

Associativity and Endomorphism

R G+ fy) > fx+y)
)+ iy + 20 > x+y)+z
e > 0
E x+y)+z = x+{y+2
X+y = ¥y *X
Abelian group theory
R x+0 > X
x + 160 > 0
i0) > 0 el = O
166N > X ib o+
it + y) => 160 + iy) iv O
EE G+y)+z = x+ly +2)
Xy = ¥y *X
Disjunctive normal form (Dershowitz)
R -=x > X
~{x v y) > oooX A ooy
(x A ) > SmoX v oony
X A X > x
X Vv X > X (=) =0
DA
E Gaydyaz = xalyaz -bv
XAY = Y AX
xvy)vz = xviyva
Xvy = Yy vX
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Unary integer addition (Dershowitz)

R x+0

> X
O+vy > v
-0 > 0 o) = O, o) > O
{-x) + y) > x + y) ->0
--X > X - b«
GD o+ 1 > 0
x+1DD+sl > -X

E &K+y+z => X+ ly +2)
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