
F
a

ch
b

e
re

i c
h

ln
fo

rm
o

t l
k

U
n

i v
e

rs
i t

ä
t

K
a

i s
e

rs
l a

u
te

rn
P

o
s t

f a
ch

30
49

SE
KI

-
RE

PO
RT

D
-6

7
5

0K
o

i s
e

rs
l o

u
te

rn

Proving termination of
associative rewriting systems

using the Knuth-Bendix ordering

Joachim Steinbach

SEKI Report SR—89-1 3

Abstract	 Term rewriting systems provide a simple mechanism for computing in
equations. An equation is converted into a directed rewrite rule by
comparing both sides w.r.t. an ordering. However. there exist equations

which are incomparable. The handling of such equations includes. for
example. partitioning the given equational theory into a set R of rules and
a set E of equations. The appropriate reduction relation allows reductions
modulo the equations in E. The effective computation with this relation
presumes E-termination. Classical termination methods cannot directly
guarantee E-termination. This report deals with a new ordering applicable
to (R,E)-systems where E contains associative-commutative equations. The
method is based on the Knuth-Bendix ordering and is AC-commuting. a
property introduced by Jouannaud and Munoz.

Keywords	 Associative and commutative operators. Associative path ordering. E-com
muting. E-compatible. Equational theories. Flattening. Knuth-Bendix ordering.

Lexicographical ordering. Multiset ordering. Polynomial ordering. Recursive
path ordering. Simplification ordering. Status. Termination. Term rewriting
system. Well-founded ordering

Contents Introduction

2 Notations

3 Knuth-Bendix ordering

4 An extension of the KBO

5 Handling AC-rewriting

6 Improving the ACK

7 Conclusion

Acknowledgement & References

Appendix: Examples

Abstract

Keywords

Contents

Term rewriting systems provide a simple mechanism for computing in
equations. An equation is converted into a directed rewrite rule by
comparing both sides w.r.t. an ordering. However, there exist equations
which are incomparable. The handling of such equations includes, for
example. partitioning the given equational theory into a set R of rules and
a set E of equations. The appropriate reduction relation allows reductions
modulo the equations in E. The effective computation with this relation
presumes E-termination. Classical termination methods cannot directly
guarantee E-termination. This report deals with a new ordering applicable
to (RED—systems where E contains associative—commutative equations. The
method is based on the Knuth—Bendix ordering and is AC—commuting, a
property introduced by Iouannaud and Munoz.

Associative and commutative operators, Associative path ordering. E—com—
muting. E—compatible. Equational theories , Flattening, Knuth-Bendix ordering,
Lexicographical ordering. Multiset ordering. Polynomial ordering. Recursive
path ordering, Simplification ordering. Status, Termination, Term rewriting
system, Well-founded ordering

1 Introduction

2 Notations

3 Knuth—Bendix ordering

4 An extension of the KBO

5 Handling AC—rewriting

() Improving the ACK

T Conclusion

Acknowledgement & References

Appendix: Examples

1 Introduction

Term rewriting systems gain more and more in importance because they are a useful
model for non-deterministic computations: They are based on directed equations with no
explicit control. Various applications in many areas of computer science and mathematics
incl uding automatic theorem proving and program verification. abstract data type
specifications and algebraic simplification have been developed.
The basic concept of term rewriting systems is that of reducing a given term to an easier
one. An equation is converted into a directed rewriting rule in such a way that the right
hand side of the rule is easier than the left-hand side. In order to exclude infinite derivations
of terms the rewrite system must terminate. The tools to prove the termination are called
orderings. A survey of the most important ones is given in [Oe87J.

The basic idea of an ordering> is to verify that the rewrite relation ====}(R (induced by the
rule system \)i) is included in >. Such an ordering must be w~ll~fouI1ded to prevent infinite
derivations of terms. To check the inclusion I====}(R C >1 all infinitely many possible
derivations must be tested. The key idea is to restrict this infinite test to a finite one by
requiring a reduction ordering. A reduction ordering is a well-founded ordering and has
the replacement property (also called compatibility with the structure of terms), which
means that decreasing a subterm decreases any superterm containing it, too. The notion of
reduction orderings leads to the following description of termination of rewrite systems
(developed by Lankford, see [Oe87]):

A rewrite system (R terminates if and only if there exists a reduction
ordering > such that aCD > a(r) for each rule 1 ~(R r and for any
substitution a.

The theorem above reveals another dilemma which is known as the universal quantification
on substitutions or the so-called stability w.r.t. substitutions: s > t implies a(s) > aCO. for
all a.

Summarizing, it is to remark that a termination proof of a term rewriting system requires
a reduction ordering stabilized W.r.t. substitutions. In general, it is very difficult to guarantee
the well-foundedness of a reduction ordering. This fact leads to the basic idea of characterizing
classes of orderings for which there is no need to prove this condition. One possible solution
is represented by the class of simplification orderings which are at least reduction orderings:

An ordering is a simplification ordering if and only if it has
the replacement property and
the subterm property (any term is greater than any of its proper
subterms),

- 1

1 Introduction

Term rewriting systems gain more and more in importance because they are a useful
model for non-deterministic computations: They are based on directed equations with no
explicit control. Various applications in many areas of computer science and mathematics
including automatic theorem proving and program verification. abstract data type
specificatiOns and algebraic simplification have been developed.
The basic concept of term rewriting systems is that of reducing a given term to an easier
one . An equation is converted into a directed rewriting rule in such a way that the right—
hand side of the rule i s easier than the left—hand side. In order to exclude infinite derivations
of terms the rewrite system must terminate. The tools to prove the termination are called
orderings. A survey of the most important ones is given in [DeBT].

The basic idea of an ordering > is to verify that the rewrite relation =>SR (induced by the
rule system SR) -is included in >. Such an ordering must be we'll—founded to prevent infinite
derivations of terms. To check the inclusion läßt C >' all infinitely many possible
derivations must be tested. The key idea is to restrict this infinite test to a finite one by
requiring a reduction ordering. A reduction ordering is a well-founded ordering and has
the replacement property (also called compatibility with the structure of terms), which
means that decreasing a subterm decreases any superterm containing it. too. The notion of
reduction orderings leads to the following description of termination of rewrite systems
(developed by Lankford, see [DeB'IDz

A rewrite system ER terminates if and only if there exists a reduction
ordering > such that 6(1) > oCr) for each rule 1 —->mr and for any
substitution 0 .

The theorem above reveals another dilemma which is known as the universal quantification
on substitutions or the so-called stability w.r.t. substitutions: s > t implies CCS) > oCt). for
all 6.

Summarizing. it is to remark that a termination proof of a term rewriting system requires
a reduction ordering stabilized w.r.t. substitutions. In general. i t is very difficult to guarantee
the well—foundedness of a reduction ordering. This fact leads to the basic idea of characterizing
classes of orderings for which there is no need to prove this condition. One possible solution
is represented by the class of simplification orderings which are at least reduction orderings:

An ordering is a simplification ordering if and only if it has
the replacement property and
the subterm property (any term is greater than any of its proper
subterms).

Simplification orderings are discussed in detail in [De871 Well-known simplification orderings
are the recursive path orderings and the Knuth-Bendix orderings. Unfortunately. the termination
of an arbitrary term rewriting system is an undecidable property. even in the 'one-rule
easel ([Da88]).

An additional negative fact derives from the existence of equations of which the left-hand
side and the right-hand side are incomparable in any case. For example. a rewriting system
containing the commutativity axiom x+y = y+x as a rule is non-terminating. However. if
the termination property is not satisfied. the set of axioms can be split into two parts: Those
axioms causing non-termination are used as equations E while the others are used as rewrite
rules (R. The appropriate reduction relation allows reductions modulo the equations in E. The
effective computation with this relation presumes

a complete unification algorithm for the equational theory E and
the E-termination. i.e. there is no infinite sequence of terms of the form

t1 =E t; ====?ffi, t2 =E t2 ====?ffi, ••..

We now adapt the general results on termination from the previous page to the case of
equational term rewriting systems.

An equational term rewriting system terminates if there is an ordering > which contains
the rewrite relation ====?lR/E = =E' ====?ffi, • =E' The test of this inclusion requires to check
all derivations of the form s ====?ffi.lE t. This requirement can be refined: If > is E-compatible.
then > contains ====?ffi,/E if and only if it contains ~ffi, (cf. CBP85]). An ordering > is
E-compatible if and only if

s s· Si=E

> implies >

=E e t'

If a reduction ordering > is E-compatible and oCD > oCr). for every rule 1 --7ffi, r and every
substitution 0. then the equational term rewriting system (R/E terminates.

]ouannaud and Munoz succeeded in weakening the E-compatibility for this statement (see
f.JM84]). They introduced a property called E-commuting:

s s' s'
> implies 3t' >

The following theorem (cf. theorem 5.1 on page ID points out the main importance of E
commutation for the E-termination problem. The theorem is a modification of one contained
in [JM841

- 2

Simplification orderings are discussed in detail in [DeB'Il Well—known simplification orderings

are the recursive path orderings and the Knuth-Bendix orderings. Unfortunately, the termination

of an arbitrary term rewriting system is an undecidable property. even in the 'one-rule

case' ([Da881).

An additional negative fact derives from the existence of equations of which the left-hand

side and the right—hand side are incomparable in any case. For example. a rewriting system

containing the commutativity axiom x+y = y+x as a rule is non-terminating. However, if
the termination preperty is not satisfied, the set of axioms can be split into two parts: Those

axioms causing non—termination are used as equations E while the others are used as rewrite

rules m. The appmpriate reduction relation allows reductions modulo the equations in E. The

effective computation with this relation presumes

- a complete unification algorithm for the equational theory E and

- the E—termination. i.e. there is no infinite sequence of terms of the form
_ I

1 _ E t 1 9% tz E R " '

We now adapt the general results on termination from the previous page to the case of
equational term rewriting systems.

An equational term rewriting system terminates if there is an ordering > which contains
the rewrite relation =»w = =E- =93; - =E. The test of this inclusion requires to check
all derivations of the form 5 SWE t. This requirement can be refined: If > is E—compatible,
then > contains :KR/E if and only if it contains am (cf. [BP85]). An ordering > is

E—compatible if and only if
51

> implies >
t = t' t'

If a reduction ordering > is E—compatible and 0(1) > oCr). for every rule 1 ——>ER r and every
substitution o, then the equational term rewriting system ER/E terminates.

Jouannaud and Munoz succeeded in weakening the E-compatibility for this statement (see
LIL/184]). They introduced a property called E-commuting:

> implies Elt' >

The following theorem (of. theorem 5.1 on page 11) points out the main importance of E-
commutation for the E-termination problem. The theorem is a modification of one contained
in [IM84].

A rewrite system ~ is E-terminating if and only if there exists an E
commuting simplification ordering > such that CleD > Cl(r) for each
rule 1-£R r and for any substitution Cl.

In this report we are going to deal with a special theory E: associative-commutative term
rewriting systems. An equational theory E is called an associative-commutative theory if
every equation in E is either an associative or commutative axiom:

Ef(x,f(y,z)) f(f(x, y),z): f l5A and
f(x,y) f(y ,x) f E l5c'

In order to describe the fact that f is both associative and commutative we use If E l5AC I
•

An equational term rewriting system (~,E) will be an associative-commutative term
rewriting system if E is an associative-commutative theory.

There only exist a few orderings for this kind of rewriting systems, e.g. the associative path
orderings ([Gn88J, [GL86J, CBP85J. CBP85aJ, CDIiJP83J) and the orderings on special polynomial
interpretations (CBL87aJ, CBL86J, [La79]).
The polynomial interpretation I for an associative (and commutative) operator must be of
the form ICD(x,y) = axy + l:f..x+y) + c such that ac+b-if = O. The fundamental disadvantage
of polynomial orderings is the difficulty of choosing interpretations for operators such that
a given rewrite system terminates.
Associative path orderings extend the recursive path orderings to AC-congruence classes.
They are based on flattening and transforming the terms by a rewriting system with rules
similar to the distributive axioms. Furthermore, the precedence on the operators has to satisfy
a property called associative pair condition. A crucial point of this ordering is its in

efficiency which results from the demand that two terms must be pre-processed (flattened
and transformed w.r.t. distributive axioms) before they are compared.

Here, we supply a concept which avoids the disadvantages of these two orderings. It is
based on the Knuth-Bendix ordering KBO ([KB7OJ). A modification of this well-known ordering
(called associative-commutative Knuth-Bendix ordering, ACK) causes its AC-commutation.
The transformation of terms, required by the associative path orderings, is reduced to a
minimum. Moreover, the algorithm of [Ma87J for finding an adequate weight function
proving the termination of a given rewriting system w.r.t. the KBO can be applied here.
The power of the ordering is nearly the same as that of the Knuth-Bendix ordering.
Consequently, the applicability of the ACK is bounded by that of the Knuth-Bendix ordering.

After giving some indispensable definitions in the next chapter. the classical Knuth-Bendix
ordering of [KB7OJ will be presented. In chapter 4. we extend this ordering by using the
concept of status (see [KL80J, [St88]). The definition of the ACK and the proofs of its important
properties can be found in chapter 5. Subsequently, we will introduce some extensions of
the ACK, e.g. to theories which are only commutative. We conclude with some comments
about the comparison of the power of the ACK to other orderings.

- 3

A rewrite system ER is E-terminating if and only if there exists an E-
commuting simplification ordering > such that 6(1) > oCr) for each
rule 1 "—931“ and for any substitution 0.

In this report we are going to deal with a special theory E: associative-commutative term
rewriting systems. An equational theory E is called an associative-commutative theory if
every equation in E is either an associative or commutative axiom:

f (x , f (y , z))
f , y)

fCx ,y) , z) : f e 3A and
f (y .x) : f e SC .

In order to describe the fact that f is both associative and commutative We use 'f e 53AC' .

An equational term rewriting system (EEE) will be an associative-commutative term
rewriting system if E is an associative—commutative theory.

There only exist a few orderings for this kind of rewriting systems. e .g . the associative path
orderings ([Gn88], [GL86], [BPBS]. [BPBSa], [DH]P83]) and the orderings on special polynomial
interpretations ([BLBTa], [BLBo], [LaTQIIl
The polynomial interpretation I for an associative (and commutative) operator must be of
the form ICDCx.y) = axy + b+y) + c such that amb—b2 = O. The fundamental disadvantage
of polynomial orderings is the difficulty of choosing interpretations for operators such that
a given rewrite system terminates.
Associative path orderings extend the recursive path orderings to ACE—congruence classes.
They are based on flattening and transforming the terms by a rewriting system with rules
similar to the distributive axioms. Furthermore. the precedence on the operators has to satisfy
a property called associative pair condition. A crucial point of this ordering is its in—
efficiency which results from the demand that two terms must be pre—processed (flattened
and transformed w.r.t. distributive axioms) before they are compared.

Here, we supply a concept which avoids the disadvantages of these two orderings. It is
based on the Knuth-Bendix ordering KBO ([KB'IOJ). A modification of this well-known ordering
(called associative—commutative Knuth—Bendix ordering. ACK) causes its ALT-commutation.
The transformation of terms, required by the associative path orderings, i s reduced to a
minimum. Moreover, the algorithm of [MaBT] for finding an adequate weight function
proving the termination of a given rewriting system w.r.t. the KBO can be applied here.
The power of the ordering is nearly the same as that of the Knuth-Bendix ordering.
Consequently, the applicability of the ACK is bounded by that of the Knuth—Bendix ordering.

After giving some indispensable definitions in the next chapter. the classical Knuth—Bendix
ordering of [KBTO] will be presented. In chapter 4. we extend this ordering by using the
concept of status (see [KLBO], [St88]). The definition of the ACK and the proofs of its important
prcperties can be found in chapter 5. Subsequently, we wil l introduce some extensions of
the ACK. e.g. to theories which are only commutative. We conclude with some comments
about the comparison of the power of the ACK to other orderings.

2 Notations

A term rewriting system (R over a set of terms r is a finite or countably infinite set of
rules, each of the form I ~~ r. where I and r are terms in r. such that every variable
that occurs in r also occurs in 1. The set r of all terms is constructed from elements of a
set {5 of operators (or function symbols) and some denumerably infinite set 93 of varia
bles. The set of ground terms (terms without variables) is denoted by 1(;. The leading
function symbol and the tuple of the (direct) arguments of a term t are referred to by
topm and argsm. respectively. The size It I of a term t is the number of operators and

variables occurring in t.

A substitution CS is defined as an endomorphism on r with the finite domain {x I cs(x) oF x},
Le. CS simultaneously replaces all variables of a term by terms. We use the formalism of
positions of terms which are sequences of non-negative integers. The set of all positions of
a term t is called the set of occurrences and its abbreviation is om. We writl3 tCu ~ sJ
to denote the term that results from t by replacing tlu (the subterm of t at occurrence u)
by s at the occurrence u oen.E

A (partiaD ordering on rG is a transitive and irreflexive binary relation> and it is called
well-founded if there are no infinite descending chains. Most of the orderings on terms
are precedence orderings using a special ordering on operators. More precisely. a prece
dence is a partially ordered set ({5 . 1» consisting of the set {5 of operators and an irre
flexive and transitive binary relation l> defined on elements of {5 .

Note that a term ordering)- is used to compare terms. Since operators have terms as ar
guments we define an extension of)-. called lexicographically greater ()-lex). on tuples of
terms as follows:

)-lex(Sl·S2····'srn) (tl ·t2····,t)n
if either m > 0 A n = 0

or sI)- t1

)-lexor SI tl A (s2'····srn) (t2·····tn)·

If there is no order of succession among the terms of such tuples then the structures are
called multisets. Multisets differ from sets by allowing multiple occurrences of identical
elements. The multiset difference is represented by \. The extension of)- on multisets of
terms is defined as follows. A multiset S is greater than a multiset T. denoted by S » T:

S » T

iff SoFT A

(Vt E T\S) (3s E S\T) s)- t

i.e. S » T if T can be obtained from S by replacing one or more terms in S by any finite
number of terms. each of which is smaller (w.r.t. » than one of the replaced terms.

- 4

2 Notations

A term rewriting system 9% over a set of terms I‘ is a finite or countably infinite set of
rules. each of the form 1 __>£R r . where l and r are terms in I'. such that every variable

that occurs in I also occurs in l. The set 1" of all terms is constructed from elements of a
set 8 of operators (or function symbols) and some denumerably infinite set % of varia-
bles. The set of ground terms (terms without variables) is denoted by g . The leading
function symbol and the tuple of the (direct) arguments of a term t are referred to by
top(t) and argsCt). respectively. The size Itl of a term t is the number of operators and
variables occurring in t.

A substitution 0 is defined as an endomorphism on I‘ with the finite domain {x | c (x) i x}.
i.e. 0 simultaneously replaces all variables of a term by terms. We use the formalism of
positions of terms which are sequences of non—negative integers. The set of all positions of
a term t is called the set of occurrences and its abbreviation is OCt). We write tEu <-—s]
to denote the term that results from t by replacing t/u (the subterm of t at occurrence u)
by s at the occurrence u e 0(t).

A (partial) ordering on FG is a transitive and irreflexive binary relation > and it is called
well-founded if there are no infinite descending chains. Most of the orderings on terms
are precedence orderings using a special ordering on operators. More precisely. a prece-
dence is a partially ordered set (3 , D) consisting of the set 8 of operators and an irre-
fle‘xive and transitive binary relation D defined on elements of % .

Note that a term ordering > i s used to compare terms. Since Operators have terms as ar-
guments we define an' extension of >, called lexicographically greater Öle“). on tuples of
terms as follows:

(31.52..... sm) flax (t t t)1 '2 " " " n
if either In > O A n = O

or 51 > t1
or s1 t1 A (52 sm) >15“ (t2 tn).

If there is no order of succession among the terms of such tuples then the structures are
called multisets. Multisets differ from sets by allowing multiple occurrences of identical
elements. The multiset difference is represented by \ . The extension of > on multisets of
terms is defined as follows. A multiset S is greater than a multiset T. denoted by S >> T:

S » T

iff - S i T A
(Vt e T\S)Gs e S\T) s > t

i.e. S » T if T can be obtained from S by replacing one or more terms in S by any finite
number of terms. each of which is smaller (w.r.t. >) than one of the replaced terms.

To combine these two concepts of tuples and multisets. we assign a status tCD to each
operator f E ~ that determines the order according to which the subterms of fare
compared. Formally. a status is a function which maps the set of operators into the set
{mult . left . right}. Thus. a function symbol can have one of the following three statuses:

mult Cthe arguments will be compared as multisets).
left (lexicographical comparison from left to right) and
right cthe arguments will lexicographically be compared from right to left).

The result of an application of the function args to a term t = fCtI t) depends on then
status of f : If tCD = multo then argsCD is the multiset {tI •...•tn} and otherwise. argsCD delivers
the tuple CtI •.... t). Obviously. if the precedence is a quasi-ordering Ca transitive and reflexiven
binary relation). two equivalent symbols w.r.t. the precedence are supposed to have the
same status. With this requirement ambiguities will be avoided.

- 5

To combine these two concepts of tuples and multisets, we assign a status fit) to each

operator f e 8 that determines the order according to Which the subterms of f are
compared. Formally, a status is a function which maps the set of operators into the set

{mult . left . right}. Thus. a function symbol can have one of the following three statuses:

mult (the arguments will be compared as multisets),

left (lexicographical comparison from left to right) and
right (the arguments Will lexicographically be compared from right to left).

The result of an application of the function args to a term t = fCtl,...,tn) depends on the
status of f : If 1:(f) = mult, then argsCt) is the multiset {t1 tn} and otherwise, argsCt) delivers
the tuple (t1....,tn). Obviously. if the precedence is a quasi—ordering (a transitive and reflexive
binary relation), two equivalent symbols W.r.t. the precedence are supposed to have the
same status. With this requirement ambiguities will be avoided.

3 Knuth-Bendix ordering

To prove the termination of term rewriting systems we can use the notion of a well
founded set CS . >5) which is a set S and a partial ordering :os on S such that any decreasing
sequence e1 >5 e 2 :os ... of elements of S only consists of a finite number of elements. To
construct an ordering we choose a well-founded set CS . :os) and a so-called termination

function which maps the term algebra into S.

The ordering of Knuth and Bendix CKBO. for shorD takes CIN . » as the underlying well
founded set, Le. it assigns natural Cor possibly reaD numbers to the function symbols and
then to terms (called weight of a term) by adding the numbers of the operators they

contain. Two terms are compared by comparing their weights. If their weights are equal
the subterms are lexicographically collated. To describe this strategy. we need some pre
requisites and helpful definitions.

If x is a variable and t is a term we denote the number of occurrences of x in t by u)D.
We assign a non-negative integer epCD - the weight of f - to each operator in ~ and a
positive integer % to each variable such that

epCe) 2 % if c is a constant.
epCD > 0 if f has one argument.

We extend this weight function on operators to terms. For any term

Definitian 3.1 [KB7OJ

Let ~ be a precedence and ep a weight function. The Knuth-Bendix ordering >KBO on
terms sand t is defined as follows:

s >KBO t
iff i) c\:jx E ~) u)s) 2 u)D A ep(s) > epCD
or iD C\:jx E ~) u)s) u)D A epCs) epCD A topCs) ~ toPCD

or iiD C\:jx E ~) uxCs) UCD x A

A

epCs) epCD A

argsCs) >lex
KBO argsCD

topCs) = topCD

•
The congruence =KBO of this ordering is the syntactical identity.

Note that this ordering is well-founded on ground terms and stable w.r.t. substitutions. Le.
s > t implies 6(S) > 6et) for all substitutions 6. The proofs of these properties may be found
in [KB70J.

- 6

3 Knuth-Bendix ordering

To prove the termination of term rewriting systems we can use the notion of a well—
founded set (S , >5) which is a set S and a partial ordering >5 on S such that any decreasing
sequence e1 >3 e2 >3 . . . of elements of S only consists of a finite number of elements. To
construct an ordering we choose a well—founded set (S , >33 and a so-called termination
function which maps the term algebra into S.

The ordering of Knuth and Bendix (KBO. for short) takes (IN , >) as the underlying well-
founded set, i.e. i t assigns natural (or possibly real) numbers to the function symbols and
then to terms (called weight of a term) by adding the numbers of the operators they
contain. Two terms are compared by comparing their weights. If their weights are equal
the subterms are lexicographically collated. To describe this strategy. we need some pre-
requisites and helpful definitions.

If x is a variable and t is a term we denote the number of occurrences of x in t by nXCt).
We assign a non—negative integer cpCf) - the weight of f - to each operator in 8 and a
positive integer cpc, to each variable such that

cp(c) 2 cpo if c is a constant.
<p(f) > 0 if f has one argument.

We extend this weight function on operators to terms. For any term t = f(t1 tn) let

cp(t) = cpCf) + ZcpCti).

Def in i t i on 3 .1 [KB'IO]

Let D be a precedence and cp a weight function. The Knuth-Bendix ordering >
terms 5 and t is defined as follows:

KBC) on

5 >KBO t
iii 1) (VX e Q3) nx(s) 2 nxfit) A (9(5) > cpCt)
or ii) (VX e 93) HXCS) = nxfit) A <pCs) = cp(t) A tpCS) [> top(t)
or iii) (VX e QS) flXCS) = nx(t) A <p(s) = cpCt) A top(s) = top(t)

A argsCs) >liilx argsCt) I
KBC)

The congruence =KBO of this ordering is the syntactical identity.

Note that this ordering is well-founded on ground terms and stable w.r.t. substitutions. i.e.
3 > t implies 0(5) > o(t) for all substitutions o. The proofs of these properties may be found
in [KBTO].

Remark 3.2

It is possible to allow one unary operator f with weight zero, at most. To guarantee the
well-foundedness. all other operators in ~ have to be smaller than f with respect to the
precedence (see [KB7OJ). If the precedence is partial the possibility feD >KBO t. for all
terms t with f ~ topeD, must be taken into account. •

Remark 3.3

Permitting variables, we have to consider each and everyone of them as an additional
constant symbol uncomparable (w.r.t. ~) to all other operators in ~. By admitting a unary
operator f with epCD = O. the possibility that fi(x) >KBO x must be added to the definition
of the KBO. •

Example 3.4

Consider the terms
s = (x + y) + z and t = x + (y + z)

and the following weight function: epo = I and ep(+) = O. We want to prove that s >KBO t.
Since ep(s) = ep(+) + ep(x+y) + ep(z) = 0 + ep(+) + ep(x) + ep(y) + I = 0 + 0 + I + I + I = epet) and

top(s) = + = topeD we have to apply the KBO recursively on the tuples of arguments and

have to verify (x+Y . z) >~~O (x , y+z). This is true because x+y >KBO x, since
ep(x+y) = 2 > I = ep(x) and the variable condition is fulfilled. •

The variable condition - ux(s) ~ u)D - guaranteeing the stability w.r.t. substitutions certainly
is a very strong restriction. Note that. for example, the distributive law cannot be oriented
in the usual direction.

Note that we can use a quasi-ordering on the function symbols instead of a partial
ordering. Nevertheless, the KBO remains well-founded.

[Ma87] contains a practical decision procedure for determining whether or not a set of rules
can be ordered by a KBO. The basic idea of this algorithm is to transform the desired rules
to linear inequalities which are derived from the weight function. The solutions to these
inequalities are determined by using the simplex method.

- 7

Remark 3 -2

It is possible to allow one unary operator f with weight zero. a t most. To guarantee the
well-foundedness. all other operators in % have to be smaller than f with respect to the
precedence (see [KBTO]). If the precedence is partial the possibility fCt) >KBO t. for all
terms t with f it topCt). must be taken into account. |

Remark 3 .3

Permitting variables. we have to consider each and every one of them as an additional
constant symbol uncomparable (w.r.t. D) to all other operators i n 8. By admitting a unary
operator f with cpCf) = O. the possibility that filix) >KBO X must be added to the definition
of the KBO. I

Example 3 -4

Consider the terms
s=(x+y)+z and t=x+(y+z)

and the following weight function: cpO = 1 and (p(+) = 0. We want to prove that s >KBO t.
Since cpCs) = <p(+) + (pony) + cpCz) = O + cp(+) + cp) + cp) + l = O + O + l + l + l = <pCt) and
topCs) = + = topCt) we have to apply the KBO recursively on the tuples of arguments and
have to verify (x+y , 2) 91:30 (x . y+z). This is true because x+y >KBO x, since
<p(x+y) = 2 > 1 = cp) and the variable condition is fulfilled. I

The variable condition — HxCS) 2 nt) - guaranteeing the stability w.r.t. substitutions certainly
is a very strong restriction. Note that. for example. the distributive law cannot be oriented
in the usual direction.

Note that we can use a quasi—ordering on the function symbols instead of a partial
ordering. Nevertheless, the KBC) remains well-founded.

[Ma8T] contains a practical decision procedure for determining whether or not a set of rules
can be ordered by a KBO. The basic idea of this algorithm is to transform the desired rules
to l inear inequalities which are derived from the weight function. The solutions to these
inequalities are determined by using the simplex method.

4 An extension of the KBO

The use of the Knuth-Bendix ordering for associative-commutative rewriting systems requires
some modifications. This chapter deals with one of these changes: the extension of the KBO.
To make the KBO more powerful. we have to realize its short-comings by studying certain
examples. In addition. we will analyze the definition of the KBO to point out its weaknesses.
The following rules can intuitively be ordered but the KBO does not guarantee their

termination.

Exa.rn.ple 4.1

We want to prove the termination of the rule

s = Cy ... x) + x ~ Cy + D ... x = t

with the help of the KBO. Therefore. we have to verify that <pCs) ~ <pm. This implies that
<pCx) = <Po ~ <pcn Since the weight of a constant must be greater than or equal to <Po' the
weights of the variables and of 1 have to be the same: <Po = <pCD. On this premises. s
and t have the same weight. As the multisets of the variables of the two terms are not
identicaL s can never be greater than t Caccording to definition 3.D. •

One way to establish the termination of this rule is to weaken the variable condition in
iD of definition 3.1 by CV x E ~) uxCs) ~ uxct) Csee [Ma87J).

Exa.mple 4.2

We would like to show the termination of the rule

s = x ... CC-y) ... y) ~ C- Cy ... y)) ... x = t

with the help of the KBO. The weights and the leading function symbols of sand tare
equal Cirrespective of the weight function). This situation demands that x >KBO - Cy ... y)
which cannot be valid Csince the variable condition is infringed). •

However. C-y) ... Y >KBO - Cy ... y) if ... ~ -. In addition to the fact that x is a subterm of
s as well as of t. a possible way to guarantee the termination of the rule is to compare the
arguments of sand t as multisets instead of lexicographically.

- 8

4 An extension of the KBO

The use of the Knuth-Bendix ordering for associative-commutative rewriting systems requires
some modifications. This chapter deals with one of these changes: the extension of the KBO.
To make the KBO more powerful, we have to realize its short-comings by studying certain
examples. _In addition. we will analyze the definition of the KBO to point out its weaknesses.
The following rules can intuitively be ordered but the K30 does not guarantee their
termination.

Example 4 .1

We want to prove the termination of the rule

s= (y*x)+x —> (y+ l)*x= t

with the help of the KBO. Therefore. we have to verify that <p(s) 2 cp(t). This implies that
cp(x) = (po 2 (9(1). Since the weight of a constant must be greater than or equal to cpo, the
weights of the variables and of l have to be the same: 6pc, = cpCl). On this premises, 3
and t have the same weight. As the multisets of the variables of the two terms are not
identical, 5 can never be greater than t (according to definition 3.1). I

One way to establish the termination of this rule i s to weaken the variable condition in
ii) of definition 3.1 by (Vx e QS) IIXCS) z ut) (see [Ma8T]).

Example 4 .2

We would like to show the termination of the rule

s=x*((-y)*y) --> (~ (y*y))*x= t

with the help of the K80. The weights and the leading function symbols of 3 and t are
equal (irrespective of the weight function). This situation demands that x >KBO — (y * y)
which cannot be valid (since the variable condition is infringed). l

However. (—y) * y >KBO — (y * y) if ale [> —. In addition to the fact that x is a subterm of
s as well as of t. a possible way to guarantee the termination of the rule is to compare the
arguments of s and t as multisets instead of lexicographioally.

Exa.mple 4.3

The termination of the rule

cannot be proved by any Knuth-Bendix ordering. The reason for this assertion is .that two
unary function symbols C- and 2) with weight zero must exist since <pCx) + <pC*) + <pCy) +

<p(2) ~ <pCx) + <p(2) + epC*) + epC-) + <pCy) + <p(2) which is equivalent to 0 ~ epC-) + <p(2). This

requirement is not allowed Csee the remark 3.2 on page n I

Using a quasi-ordering on the function symbols instead of a partial ordering. we may
allow more than one unary operator with weight zero. On the premise that all these
operators are equivalent w.r.t. the precedence the induced extension of the KBO also is
a well-founded ordering stabilized w.r.t. substitutions Csee [St88]). The rule above can then
be oriented Cif 2 ~ *). This kind of extension will not be mentioned explicitly by the
definition of the new ordering Cdefinition 4.4),

The different aspects of the analysis of the original Knuth-Bendix ordering leads to a new
and more powerful definition:

Defi:n.itio:n. 4.4 [St8B]

Let ~ be a precedence and <p a weight function Cas described in chapter 3), The Knuth
Bendix ordering >KBOS with status on terms sand t is defined as

s >KBOS t

iff CVx E \8) uxCs) ~ uxeD A

- <pCs) > <peD
- topCs) ~ topeD

- argsCs) >KBOS.•CtopCs)) argseD	 I

We use a compressed representation of the definition. The hyphens stand for the lexico
graphical performance of conditions. Le. s >KBOS t iff <pCs) > <pm or [<pCs) <peD A

topCs) l> topCD] or [<pCs) = epet) A topCs) = topeD A argsCs) >KBOS.•CtopCs)) argsmJ.

Moreover. the index .CD of >KBOS.•(f) marks the extension of >KBOS W.r.t. the status of the
operator f:

Csl·····srn) >KBOS.•(f) Ctl· .. ··tn)
iff .CD = left A Csl·· .. ·srn) lex Ctl· .. ··tn)>KBOS
or .CD = mult A {sl·.. ··srn}	 »KBOS {tl·.. ··tn}

;)exor LCD = right A Csrn··.. ·sl) Ctn·· .. ·tl) . KEOS

- 9

Example 4 .3

The termination of the rule

(X * y)2 —> x2 * (—y)2

cannot be proved by any Knuth-Bendix ordering. The reason for this assertion i s that two

unary function symbols (— and 2) with weight zero must exist since <p(x) + (pCaIO' + <p(y) +
<pc2) % cp) ... cpc2) + we) + cp(-) + cp(y) + (9(2) which is equivalent to o é <p(-) + cpCZ). This
requirement is not allowed (see the remark 3.2 on page T). I

Using a quasi-ordering on the function symbols instead of a partial ordering, we may
allow more than one unary operator with weight zero. On the premise that all these
operators are equivalent w.r.t. the precedence the induced extension of the KBO also is
a well-founded ordering stabilized w.r.t. substitutions (see [St88]). The rule above can then
be oriented (if 2 D *). This kind of extension will not be mentioned explicitly by the
definition of the new ordering (definition 4.4).

The different aspects of the analysis of the original Knuth—Bendix ordering leads to a new
and more powerful definition:

Def in i t i on 4.4— [St88]

Let l> be a precedence and cp a weight function (as described in chapter 3). The Knuth—
Bendix ordering >KBOS with status on terms 5 and t is defined as

S >“mac—3 "
iff (VX e Q3) ux(s) 2 11x6) A

- (9(5) > cp(t)
- t0p(s) l> top(t)

" argsCs) >KBOS,1:CtopCs)) 3‘95“) '

We use a compressed representation of the definition. The hyphens stand for the lexico—
graphical performance of conditions. i.e. s >KBOS t iff cpCs) > cp(t) or [cp(s) = cp(t) A
top(s) l> top(t)] or [cp(s) = (MD A top(s) = top(t) A args(s) >KBOS 'tCtOpCSJ) args(t)l

Moreover, the index r(f) of >KBOS.- :Cf) marks the extension of >KBOS w.r . t . the status of the
operator f:

(51 ''''' Sm) >KBOS.t) (t1....,tn)
iff ‘ECD = left A (s1 sm) 951303 (t1 tn)
or t(f) = mult A {s1 sm} >>KBOS {t1 tn}
or t(f) = right A (sm 51) 91333503 (tn tl) .

The KBOS uniquely defines a congruence '" C=KBOS) dependent on l5 and 1: via:

fCs l ' ...•srn) '" gCtl ·· ...t)n
if[f = g A m = n A

either i) 1:CD = mult and there is a permutation 'It of the set n.....n} such that

si '" t'TI:(i)' for all i E n.nJ.
or iD 1:CD:j: mult and Si '" ti. for all i E n.nl

We conclude this chapter with the enumeration of important properties of the KBOS. The proofs
are not given here but may be found in [St88l

Lemma. 4.5

KBOS is

a simplification ordering.

stable w.r.t. substitutions and

an extension of the KBO.
 •

- 10

The KBOS uniquely defines a congruence „ (=KBOS) dependent on 8 and 1: via:

s1 sm) ~ gCt1 tn)
iff f = g A m = n A
either i) dt? = mult and there is a permutation TE of the set {l,....n} such that

si N tncn ' for all i e [Ln].
or i i) t(f) # mult and s i ~ t i . for all i e [Ln] .

We conclude this chapter with the enumeration of important preperties of the KBOS. The proofs
are not given here but may be found in [St88].

Lemma 4 .5

KBOS is

a simplification ordering.

stable w.r.t. substitutions and

an extension of the KBO. |

.10

5 Handling AC-revvriting

In this chapter we introduce a new class of orderings. associative-commutative Knuth
Bendix orderings. for proving the termination of associative and Cor) commutative term
rewriting systems. These orderings have to satisfy certain properties. The new Knuth-Bendix
ordering will fulfil the conditions required by Jouannaud and Munoz:

Theorem 5.1

Assume that > is a simplification ordering and AC-commuting. Then. :R IS

AC-terminating if ~~ c >.

Proof: This theorem is a slight modification of the following one contained in [JM84]: Assume
that > is AC-commuting with ~~ and contains the homeomorphic embedding
relation. Then. ~~ is AC-terminating.
> is AC-commuting with ~~ iff for any Si. sand t such that s' E s ~~ t. then
Si > t l E t for some t l

.

We have to prove that the AC-commutation of > together with ~~ C > implies the
AC-commutation of > with ~~ :
s' = s ~ t

E ~

""-'> Si E s > t

because ~~ C >

""-'> C3t') Si> t l E t
since > is AC-commuting •

The KBOS is a simplification ordering. Unfortunately. it is not AC-commuting. Consider the
following examples.

Exa.mple 5.2

s' = C- C-x)) * x x * C- C-x)) = s=AC

t l
= C-x) * C-x)

- 11

5 Handling AC—rewrit ing

In this chapter we introduce a new class of orderings, associative-commutative Knuth-
Bendix orderings. for proving the termination of associative and (or) commutative term
rewriting systems. These orderings have to satisfy certain properties. The new Knuth—Bendix
ordering wil l fulfil the conditions required by Iouannaud and Munoz:

Theorem 5 .1

Proof:

Assume that > i s a simplification ordering and AC—commuting. Then. 9% is
AC—terminating if =>£R C >.

This theorem is a slight modification of the following one contained in []M84]: Assume
that > is AC—commuting with =>“ and contains the homeomorphic embedding
relation. Then, ==>SR is AC-terminating.
> is AC—commuting with ==“ iff for any s'. s and t such that s' =E s S:“ t, then
s ' > t ' =E t for some t‘.

We have to prove that the AC—commutation of > together with im; > implies the
AC—commutation of > with =)“:

+

S '= S=> t
E

m> s ‘= sm>tE
because :SR C >

rW> CW) 5' > t ' =E t
since > is AC-commuting I

The KBOS is a simplification ordering. Unfortunately. it is not AC—commuting. Consider the
following examples.

Example . 5 .2

s '= C— (—x)) *)(=AC)(* E- (—x)) = s

>KBOS

t’ = (—20 * (-x)

-11 -

If * E {5AC' tC*) = left and cpC-) > O. Assuming the AC-commutation of the KBOS. a term t
AC-equivalent to t l must exist which is simpler Cw.r.t. the KBOS) than s. The only possible
term t is the term t l itself Cbecause no other term exists which is AC-equivalent to t l

). But
s is not greater than t l Cw.r.t. the KBOS). On the contrary. t I >KBOS s. •

The term s would be greater than tl if the KBOS were used and the status of the
multiplication operator were of type multisel. All other relations would be left unchanged.

Taking this idea CtCD = mult if f E ~C) into account, let us consider some further examples.

Si = Cx v y) v z x v Cy v z) s=AC

t l = ...,Cx t: y) v z

If v E ~AC' cpCv) = cpC"") + cpC"A) . v I> ..., and tCv)=mult. The term t could be either t I or
z v ...,Cx t: y). Unfortunately. s *KBOS 1. The crux of the comparison of sand t is that we
have to apply the definition of the KBOS recursively to the arguments of the two terms:
There is no subterm of s which is greater than ...,Cx t: y} •

Requiring cpCs l) > cpCt I
) would avoid the recursive application of the ordering. More

precisely. Si >KBOS tl and s >KBOS t' if cpCv) > cpC...,) + cpCA) . Another solution is to forbid
that Si >KBOS t l by requiring v Call A-operators. respectively) to be minimal w.r.t. the
precedence.

Exa.mple 5_4

Si = CC- - x) * x) * Y C--x) * Cx * y) = s =AC

t l = CC-x) * C-x)) * y

If * E ~AC' tC*)=mult and cpC-) > O. The term t could be either t l or C- x) * CC- x) * y) if we
consider the multiset status of *. Therefore. we must show that the multiset {- - x . x * y}
is greater than either {C-x) * C-x) . y} or {-x. C-x) * y}. However. no term exists in
{- - x . x * y} which is either greater than C-x) * C-x) or greater than C- x) * y. •

A possibility to deal with this problem is to restrict the terms to be compared to their
normal forms w.r.t. the associative theory cthe flattened versions of the terms).

- 12

If * & gm. role) = left and cpC—) > 0. Assuming the AC-commutation of the KBOS. a term t
AC—equivalent to t' must exist which is simpler (w.r.t. the KBOS) than s. The only possible
term t is the term tI itself (because no other term exists which is ACE—equivalent to t'). But
5 is not greater than t ' (w.r.t. the KBOS). On the contrary, t ' >KBOS s. I

The term 5 would be greater than t' if the KBOS were used and the status of the
multiplication operator were of type multiset. All other relations would be left unchanged.

Taking this idea (126) = mult if f E 3°) into account, let us consider some further examples.

Example 5 -3

s '= (xvy)vz =Ac xv(yvz)=s

>KBOS

t' = - (x7?y)v z

If v e 31%, cpCv) = cp) + cpCW) , v [> -. and 1:(v)=mult. The term t could be either t ' or
z v -s(x "A— y). Unfortunately, s *KBOS t. The crux of the comparison of s and t is that we
have to apply the definition of the KBOS recursively to the arguments of the two terms:
There is no subterm of 3 which is greater than “ (x 7 y). |

Requiring cpCs') > cpCt') would avoid the recursive application of the ordering. More
precisely. sl >KBOS t ' and s >KBOS t1 if cpCv) > cpC-l) + cpCT) . Another solution is to forbid
that s' >KBOS t ' by requiring v (all A-operators. respectively) to be minimal w.r.t. the
precedence.

Example 5 -4

s' = ((--x) * x) * y =Ac (-—x) * (x * y) = s

>KBOS

tI = ((-x) * (-x)) * y

If 9IE e SAC, tC*)=mu1t and cp(—)>O. The term t could be either t ' or (-x) * ((—x) * y) if we
consider the multiset status of *. Therefore. we must show that the multiset {-—x , x aIe y}
is greater than either {(-x) * (-x) . y} or {-x . (-x) * y}. However, no term exists in
{—-x , x * } which is either reater than (-x) * (—x) or reater than (- x) * . |Y 9 g Y

A possibility to deal with this problem is to restrict the terms to be compared to their
normal forms w.r.t. the associative theory (the flattened versions of the terms).

-12 -

Usually. terms with AC-operators are represented as flattened terms having no nested
occurrences of identical associative operators. This representation requires the operators to
have variable arity. Le. associative function symbols may possess any positive number
C> D of arguments. whereas non-associative operators have a fixed arity.

Based on this background. the flattening operation fl is defined as follows:

DefirLitiorL 5.5 [BP85a]

Let be t = fct1t) a term. Then n

if t is a constant or a variable

if f ~ l5A
otherwise

with t l results from t by replacing ti by flCt i) if topCti) :f: f. and replacing

ti by slsrn if flCt i) = fCs1.···.srn)· •

The following definition of a new Knuth-Bendix ordering summarizes the substantial ideas
of the KBO illustrated by the examples.

DefirLi tiOrL 5.6

Let cp be a weight function as described in chapter 3 such that CVf E l5A)

cpCD = O. Furthermore. I> is a precedence such that CVf E l5p((] g) f I> g. The
status function L fulfils the condition that tCD = mult if f E l5c

The ordering >ACK (associative-commutative Knuth-Bendix ordering) on
terms sand t is defined as

s 'A.cK t
iff flCs) >KBOS flet)

(with s =ACK tiff fl(s) KBOS fleD)

- 13

Usually. terms with AC-operators are represented as flattened terms having no nested
occurrences of identical associative operators. This representation requires the operators to
have variable arity. i.e. associative function symbols may possess any positive number
(> 1) of arguments. whereas non—associative operators have a fixed arity.

Based on this background, the flattening operation fl is defined as follows:

Def in i t i on 5 .5 [BP85a]

Let be t = fCt1 tn) a term. Then

t if t i s a constant or a variable

flCt) -- flCtl) flCt) if f d 8A
t ' otherwise

with t ' results from t by replacing ti by flCti) if topCti) i: f, and replacing
ti by s1 sm if flCti) = s1 sm). I

The following definition of a new Knuth-Bendix ordering summarizes the substantial ideas
of the KBO illustrated by the examples.

Def in i t i on 5 .6

Let cp be a weight function as described in chapter 3 such that (Vf e &&)
cpCf) = O. Furthermore. l> is a precedence such that (Vf e ß}? (ii g) f D g. The
status function 1: fulfils the condition that fit? = mult if f e Sc .

' The ordering >ACK (associative-commutative Knuth—Bendix ordering) on
terms 5 and t is defined as

s ’Acrc t

iff fl(s) >KBOS flCt)

(with s =ACK t iff fl) =KBOS flCtD

Exa.mple 5.7 [BP85J, taken from Huet

Consider the following rules:

RI x + 0 ----;.. x

R2 o + x ----;.. x

R3 x '* 1 ----;.. x

R4 1 '* x ----;.. x

R5 hCQ) ----;.. 1
R6 hCx + y) ----;.. hCx) * hCy)

Assuming + and '* are associative and commutative operators. we will prove that the system
is terminating with regard to the following preconditions:

h [> '* and mult
2 1 0 0 0 1tffiIf8£fd

The termination of the rules RI - R4 is proved by the subterm property of the ACK (see

5.10). The rule R5 is terminating since epChCO)) = 2 > I = epCD. The weights of both terms of
the rule R6 are identical (= 2) and h [> '* •
For more examples. see appendix.

The rest of this chapter contains an enumeration of the necessary properties and their proofs
which guarantee the use of >ACK for proving the termination of an AC-rewriting system.
The following theorem presents a summary of the following lemmata.

Th.eorem 5. 8

ACK IS

a simplification ordering: Lemma 5.9 - 5.12

stable w.r.t. substitutions: Lemma 5.13 - 5.17

AC-commuting: Lemma 5.18 - 5.20

- 14

Example S -? [BP85], taken from Huet

Consider the following rules:

R1 x + 0 ——> x
R2 O + x —> x
R3 x * 1 ——> x
R4 1 * x -—> x
R5 hCO) 4» l
R6 t + y) ——> t) * hCy)

Assuming + and * are associative and commutative operators. we will prove that the system
is terminating with regard to the following preconditions:

symbol 0 1 h + * x‚y
h l> * and 1:(+) = 10*) = mult

(p 2 l O O O 1

The termination of the rules R1 - R4 is proved by the subterm property of the ACK (see
5.10). The rule R5 is terminating since <p(h(0)) = 2 > l = tpCl). The weights of both terms of
the rule R6 are identical (= 2) and h l> * . |
For more examples. see appendix.

The rest of this chapter contains an enumeration of the necessary properties and their proofs
which guarantee the use of >ACK for proving the termination of an ACE-rewriting system.
The following theorem presents a summary of the following lemmata.

Theorem 5 . 8

ACK is

a simplification ordering: Lemma 5.9 — 5.12

stable w.r . t . substitutions: Lemma 5.13 - 5.1T

AC-commuting: Lemma 5.18 - 5.20

-14 . .

Lemma. 5.9 ACK is a partial ordering.

Proof: We must show that

D t *ACK t and

iD r >ACK s >ACK ""'> r >ACK t.

D Assume that t >ACK t

""'> fl(t) >KBOS flCD

by definition of the ACK

""'>	 contradiction to the fact that the KEOS IS a partial ordering Csee
[St88])

iD r >ACK s >ACK t

""'> flCr) >KBOS fl(s) >KBOS flCD

by defInition of the ACK

""'>	 fl(r) >KBOS flCD
since the KEOS is a partial ordering Csee [St88])

""'>	 r >ACK t
by definition of the ACK •

Lemma. 5.10 ACK has the subterm property.

Proof:	 We have to show that s :j: u E OCD ""'> t >ACK t!u. Let us consider a term t and
an occurrence u E OCD. topCD = f and topCt!u) = g. It is obvious that CVx E Q))

U CD ~ u Ct!u). We must distinguish two cases which will be proved by induction x	 x
on Itl:

D	 ep(fl(t)) > <p(flCt!u))

""'> t >ACK Uu

by definition of the ACK

iD	 <p(flCt)) = <p(flCt!u))

""'> <peD = 0 /\ f is a unary operator

f :j: g

""'> f ~ g
see remark 3.2 on page 7

""-'>	 t >ACK t!u
by definition of the ACK

- 15

Lemma 5 . ? ACK is a partial ordering.

Proof: We must show that

i)

ii)

i) t>I>ACKt and

“) I >ACK S >ACK t M" r >ACK

Assume that t >ACK t
flCt) >KBOS flCt)
by definition of the ACK

rw)

"\n-«> contradiction to the fact that the KBOS is a partial ordering (see
[St88])

r >ACK 3 >ACK t
flCr) >KBOS flCs) >KBQS flCt)
by definition of the ACK

W)

“> flCr) >KBOS flCt)
since the KBOS is a partial ordering (see [StBBD

”T“} I >ACK t
by definition of the ACK |

Lemma 5 .1 O ACK has the subterm preperty.

Proof: We have to show that s i u e OCt) m> t >ACK t/u. Let us consider a term t and
an occurrence u e OCt). topttl = f and topCt/u) = g. It is obvious that (VX e QS)
ut) 2 HXCt/u). We must distinguish two cases Which will be proved by induction
on It]:

i)

ii)

(pCfl(t)) > cpCflCt/ull
M9 t >ACK t/u

by definition of the ACK

cpCflCtD = cpCflCt/uD
m> cpCf) = O A f is a unary operator

— f # g
“> f D g

see remark 3.2 on page T
„> t >53LCK t/u

by definition of the ACK

-15 -

I

f = g:
Let flCt) = rct l) • flCtlu) = fCt")

l
""">	 t >KBOS t"

by induction hypothesis since t' Cresp. t") is a proper subterm of

flCD Cresp. flCt/u))

""">	 t >ACK tlu
by definition of the ACK

Lemma. 5.11 ACK has the replacement property.

Proof:	 It is to show CVi £ D.n]) r >ACK S

""'> t := fCt l •....tJs ~ rJ,....t) >ACK fCt l .···.tJs <Eo- sJ.t) =: t l
.n	 n

Obviously. CVx £ lE) uxCr) 2 u)s) ""'> CVx £ lE) uxCD 2 uxCt l).

We have to examine three cases:

D cp(fiCr)) > cp(flCs))

""'> cpCr) > cpCs)

because cpCg) 0 if g £ ~A

""'> cpCt) > cpCt l)

""'> cp(fiCt)) > cp(fict I))

since CVg £ ~A) cp Cg) = 0

""'> t >ACK t l

by definition of the ACK

iD cp(fiCr)) = cpCflCs)) A topCr) ~ topCs)

""'> topCr) £1 ~A

since CVg £ ~A) C]h) g I> h

~> net) = fCt1t:n . fier))

et)	 topCs) £1 ~A v topCs):j: f

t"V'J> fICt l) ~ f(t~ t ••• .t:n J fl(s) . ..J

""'>	 cp(fict)) > cp(flCt I))

since cp(fiCr)) > cp(fiCs))

""'>	 t >ACK t l

since flCr) >KBOS flCs) Cregardless of the status of D and by

definition of the ACK

~) topCs) £ ~A A topCs) = f

"""> flCt l) = fCt~t:n . sl .. ··.sk ...J

with flCs) = fCslsk)

'tCD =	 left

""'> We must prove that ctlt~ . flCr) . ..J >KBOS,left

Ctl ...·.t~ sl.·...sk ..J. This is valid because

flCr) >KBOS flCS) >KBOS SI and since the KBOS is transitive
and has the subterm property.

- 16

- f = g:
Let flCi) = f(t') . flCt/u) = fü")

“> ’" >KBos t "

by induction hypothesis since tl (resp. t") is a proper subterm of
flCt) (resp. flC’t/LÜ)

m> t >ACK t/u
by definition of the ACK |

Lemma 5 .1 1 ACK has the replacement property.

Proof: It is to show (Vi e [l ,n]) r >ACK s
-> t == f(t1 ti[s <— r] tn) >11“:K f(t1 ti[s + s] tn) t'.

Obviously, (VX e QS) ttxü) 2 ux(s) m> (VX e QS) uxü) 2 nxü').
We have to examine three cases:

i) cp(fl(r)) > cp(fl(s))
'W> cpCr) > <p(s)

because cn) = 0 if g e SA
m> <p(t) > cpCt')
„> (p(fl(t)) > cpCflCt'D

since (Vg 6 58A) cn) = O
m> t > A CK t '

by definition of the AOK

ii) cpCflCrD = cpCfl)) A topCr) D topCs)
m> top(r) el &

since (Vg e 8A) (llh) g [> h
'W> flCt) = f(tl' tin . fiir) , ...)

cc) topCs) el 3A v topCs) 2t: f
m> flCt') = f(tl' qm . flCs))
„..-„> <p(fl(t)) > cpCflCt'D

since cp(f1(r)) > cp(fl(s))
m> t >ACK t l

since flCr) >KBOS fl(s) (regardless of the status of f) and by
definition of the ACK

ß) topCs) e „SA A topCs) = f
'w> flCt') = f(ti t]:TI . s1 Sk )

with fl(s) = sl sk)

— tJ = left
m> We must prove that (t i t];n . flCr) , ...) >KBOSh3ft

(ti fin . 51.....sk). This i s valid because
fl(r) >KBOS flCs) >KBOS s1 and since the KBOS i s t ransi t ive
and has the subterm property.

- “) -

'tCD = right:

analogous with the previous case

'tCD = mult
n..rv>	 We have to show args(flCt)) »KBOS args(flCt l)) which is

equivalent to {flCr)} »KBOS {sl.·...skl. This is true since

fiCr) >KBOS flCs) and {flCs)} »KBOS {sl ... ·.sk} Cbecause each
si is a proper subterm of flCs) and by the transitivity of

the KBOS.

iiD	 cp(flCr)) = cpCflCs)) A topCr) = topCs) A args(flCr)) >KBOS;tCtopCr)) args(flCs))

a) topCr) El 15A v topCr):j: f

n..rv> flCt) fCt1 .t:n. flCr) ..J and

flCt l) = fCt1 t:n . flCs) ...J

l
""">	 t >ACK t

since flCr) >KBOS flCs) and regardless of the status of f Csee case
a of iD

(3) topCr) E 15A A topCr) = f

""">	 flet) = fCt1 t:n . rl rk ..J with flCr) = fCrl rk) and

flCt') = fCt1 t:n . sl sp ..J wi th flCs) = fCsl sp)

'tCD =	 left
""">	 We have to show

C3i E D.minCk,p)]) CVj < D rj = ACK Sj A ri >ACK si'
This can be proved with the help of the precondition

since args(flCr)) >KBOS.left args(flCs))

'tCD = right:

analogous with the previous case

'tCD =	 mult

""">	 We have to prove that args(flet)) »KBOS argsCflCt I)).

This is equivalent to {rl ... ·.rk} »KBOS {slsp) which is the
precondition. •

Lemma. 5.12 ACK has the deletion property.

Proof:	 We have to show that s := fe.... r ...J >ACK fC.....J -. t. It is obvious that
CVx E lE) 14xCs) ~ 14 et).x

E ~"-"'>	 CVx t,B) l:Ix(flCs)) l:Ix(flCt)) C*)

since the fi-operator does not remove leaves of the terms

- 17

- t) = right:
analogous with the previous case

- tD = mult
rW> We have to show args(fl(t)) »KBOS args(fl(t')) which is

equivalent to {fl(r)} >>KBOS {s1 sk}. This is true since
flCr) >KBOS flCs) and {fl(s)} »KBOS {s1 sk} (because each
si is a proper subterm of flCs) and by the transitivity of
the KBOS.

iii) cpCflCrD = cpCflD A topCr) = topCs) A argsCflCrD >KBOS.1:CtopCr)) argsCflCsJ)

or) topCr) el %A v topCr) i f
-> flCt) = f(ti tl'm . flCr) , ...) and

flCt') = fCti tig“ . flCs) , ...)

“> t >ACK tl
since f1(r) >KBOS fl) and regardless of the status of 1' (see case
or of ii)

ß) topCr) e 3A A topCr) = f
“> flCt) = f(ti t1'_n , rl rk) with Mr)

flCt') = f(tium . s1sp) with flCs)
fCr1 rk) and
f(s1 s)P

- 16) = left
“> We have to show

(Eli e [l,min(k.p)]) (Vj < i) rj =ACK sj A r.1 >cK si.
This can be proved with the help of the precondition
since args(fl(r)) >KBOSJefl args(fl(s))

— t) = right:
analogous with the previous case

— t) = mult
fw> We have to prove that argsCflCtD >>KBOS argsCflCt'D.

This is equivalent to {r1 rk} >>KBOS {s1 sp) which is the
precondition. I

Lemma 5 -12 ACK has the deletion property.-

Proof: We have to show that s == fC... , r , ...) >ACK fC...) == t . I t is obvious that
(VX e %) ttx(s) 2 uxit).
'W> (Vx 6 Q3) nxCflCSD) 2 nfICtD care)

since the fl-operator does not remove leaves of the terms

_ 1 T _

It is also obvious that <pes) > <pCD because t results from s by removing at least

one leaf (and the constant symbols and variables have a positive weight).
""'> <p(fl(s)) > <p(fl(t))

since (VD <pCD = <p(fl(t)) (because <peg) = 0 if g E ~A)

rvv>	 flCs) >KBOS flet)

since (*) is valid

s >ACK t

by definition of the ACK
 •

Lemma. 5.13 (V tEn (Vrj) fl(rj(fl(t))) = flCrj(t))

Proof: fl(fl(t)) = flCD

rvv> t = A flCD

since s =A t iff flCs) = flet)
rvv> (Vrj) rjet) = A rj(flet))

since = A is closed under substitution
rvv> fl(rj(t)) = flCrj(fl(t)))

since s =A t iff fl(s) = flCD •

Lemma. 5.14 (Vrj) flCs) =KBOS flCt) rvv> flCrj(s)) =KBOS fl(Cl(t))

Proof: fl(s) =KBOS flCt)
rvv> fl (s) '" flen

by definition of the KBOS

rvv> S =AC t
see [GD88J, proposition 5

rvv> rj(s) =AC rjet)

rvv> flCrj(S)) '" fl (rj(t))

see [G088J. proposition 5

""'> flCrj(s)) =KBOS fl(rj(t))

by definition of the KBOS
 •

Lemma. 5.15	 Let be t a term. flet) = f(tlt~) its flattened version

and rj = {x <- g(slsrn)} a substitution. Then. fl(rj(t)) =
f(fl(rjCt~)).....fl(rj(t~))) if f :j: g or (V i E D.kJ) t~ :j: x.

Proof: flCCl(t)) fl(rj(fl(t))) by using lemma 5.13

= fl(rj(f(tl·····t~))) by precondition

= flCf(rjCtl),..··rjCt~))) by definition of substitutions

- 18

It is also obvious that (9(5) > cpEt) because t results from s by removing at least
one leaf (and the constant symbols and variables have a positive weight).
m)

Lemma

Proof:

cpCflD > cp(fl(t))
since (Vt) cpCt) = cpfflftl) (because cn) = 0 if g e 3A)

flCs) >KBOS flCt)

since (*) is valid

5 >ACK t
by definition of the ACK

5 - 1 3 (Vt e 1") (Vo) flCoCflCtD) -= flCoCD)

flCflCtD = flCt)

Lemma

Proof: fl)

5 - 1 4 (V0) f1(s)

=KBOS

t =A flCt)
since 3 = A t iff fl) = flCt)
(Vo) oft) =A olCtD

since =A is closed under substitution

flCoCtD = flCoCflCtD)
since s =A t iff flCs) = flCt)

__.KBOS flct) w» flCoCsD =KBOS fl(o(t))

fl(t)

flfs) m flCt)

by definition of the KBOS
s = AC t
see [GDBB]. proposition 5
0(5) = AC oCt)
flCoCsD ~ flCoCtD
see [GD88], proposition 5
flCoCSD =KBOS flCoCtD
by definition of the KBOS

Lemma 5.15 Let be t a term. flCt) = fCtl' tic) its flattened
and o = {x <- g(sl sm3} a substitution. Then. flCoCtD =

Proof: flCoCtJ)

flCoCt'lD flCoCt'kD) iff =1: g or (Vi e [l.l<]) ti' i x.

flCoCfl(t))) by using lemma 5.13
flCoCtl' tic») by precondition
flCfCoCtl') OCtI'CJD by definition of substitutions

- 1 8 -

version

D	 f :j: g:

a) t!	 = x
1

rvv>	 aCti) = g(Sl J ••• 'Srn)

.-v-v>	 assertion

because f:j: g

b) t.'	 :j: X
1

~> top(dcti)):j: f

since flet) is flattened

.-v-v> assertion

iD	 (Vi E D.k]) ti:j: x:

analogous with b) of D
 •

Lemma. 5.16	 fl(s) >KBOS flet) .-v-v> fl(d(s)) >KBOS fl(det))

if d = {x <- ferl' r2)} • f E ~A

Proof:	 It is obvious that (Vx E ~) tlxCfl(d(S))) ~ tlxCfl(j(t))) if (Vx E ~) tlxCfl(s)) ~ tlxCfl(t))

since lemma 6.14 of [St88] is valid.

We have to consider three cases which will be proved by induction on Ifl(s) I + IflCDI.

D	 cpCfl (s)) > cpCfl(t))

.-v-v>	 cpCfl(d(S))) > cpCfl(dCt)))

since (Vte n cpCfl(dCt))) = cp(dCflct))) (because cpCD

and lemma 6.14 of [St88]

.-v-v>	 fl(d(S)) >KBOS fl(dCt))

by defini tion of the KBOS .

iD	 cpCfl(s)) = cp(flCt)) A topCfl(s)) ~ topCfl(t))

""'->	 cpCfl(d(S))) ~ cpCfl(d(t)))

since (Vt E D cpCfl(d(t))) cp(dCflct))) (because cpCD O. f E ~A)

and lemma 6.14 of [St88]

.-v-v>	 fl(d(s)) >KBOS flCd(t))

because topCfl(d(S))) ~ topCfl(d(t))) and by definition of the KBOS

iiD cpCfl (s)) = cpCflCD) A topCfl(s)) = topCflct))

.-v-v> argsCfl(s)) >KBOS.1:CtopCs)) argsCfl(t))

since flCs) >KBOS flet) and by definition of the KBOS

cpCfl(d(S))) ~ cpCfl(d(t))) A top(fl(Cl(S))) = top(fl(Cl(tm

since (Vt E D cpCfl(d(t))) cp(dCfl(t))) (because cpCD

and lemma 6.14 of [St88]

- 19

i) f i g :

a) ti' =)(
mm> o(ti') = n1 sm)
“> assertion

because 1' # g

b) ’tiI i x
W> top(o(ti')) i f

since fltt) is flattened
m> assertion

ii) (Vi e [1,k]) t; $ x :
analogous with b) of i) |

Lemma 5 .1 :5 {1(5) >KBOS fl(t) fw> fl(o(s)) >KBOS fl(o(t))
if d = {x <— f(r1.r2)}. f e SA

Proof: It is obvious that (VX e %) nxü'lCöCsD) 2 nx(fl(o(t))) if (VX e Q3) nx(fl(s)) 2 nx(fl(t))
since lemma 6.14 of [St88] is valid.
We have to consider three cases which will be proved by induction on lfl(s)| + lfl(t)|.

i) cp(fl(s)) > cp(fl(t))
-> rp(fl(o(s))) > cp(fl(o(t)))

since (Vte F) cp(fl(o(t))) = cp(o(fl(t))) (because cp(f) = O , f 6 3A)
and lemma 6.14 of [51:88]

m> fl(o(s)) >KBOS fl(o(t))
by definition of the KBOS '

ii) <pCfl(s)) = cp(fl(t)) A top(fl(s)) > top(f1(t))
«~> cp(fl(o(s))) 2 cp(fl(o(t)))

since (Vt e F) <p(f1(o(t))) = cp(o(fl(t))) (because cpCD = O . f e 3A)
and lemma 6.14 of [St88]

“> fl(o(s)) >KBOS fl(o(t))
because top(fl(o(s))) b top(fl(o(t))) and by definition of the KBOS

iii) cp(fl(s)) = cp(fl(t)) A top(fl(s)) = top(fl(t))
“> args(f1(s)) >KBOS.1:(topCs)) argsCflCtD

since fl(s) >KBOS fl(t) and by definition of the KBOS

fw> cp(fl(o(s))) 2 cpCflCcSCtD) A topCflCoCsD) = top(fl(o(t)))
since (Vt e I') cp(fl(o(t))) = <p(o(fl(t))) (because cpCD = O , f e 3A)
and lemma 6.14 of [St88]

-19 -

ex)	 ep(flCClCS))) > ep(flCClet)))

n.rv>	 fl(ClCS)) >KBOS flCoCt))

by definition of the KBOS

(3)	 ep(flCClCS))) = ep(flCClct))) A tctop(flCs))) = left:

Let be	 s = gCs1sk) and t = gct1tk) .

flCs) = gCs{.....s:n) and flet) = gct~t~)

l

n.rv>	 OD CVj < D Sjl =KBOS tj A si >KBOS ti

D	 g :j: f v [C] P E D.maxCm.n)]) s~ = x V t I xJ
P

n.rv> flCoCs)) = g(flCoCs~)) flCClCS:n))) and
flCClCt)) = g(flCoct~)) fl(ClCt~)))

by using lemma 5.15

n.rv>	 CVj < D flCClCSj)) =KBOS flcoCtj)) A

flCClCsi))	 >KBOS flCClcti))
since s~ = flCs~) A t~ = flct~) Vp E [l.k]

because gCs~s;) and gCt{t~) are the
flattened versions of sand t . respectively.

flCs) =KBOS flet) n.rv> flCoCs)) =KBOS flCClCt)).
Vo Cwith the help of lemma 5.14)
lemma 5.13

and by using the induction hypothesis together with C*)

n.rv>	 fl(oCs)) >KBOS flCoCt))

by definition of the KBOS

ID	 g = f A [C3p E D.maxCm,n)]) s~ = x v t~ = xJ
'V"v> fl(s) z: f(sl, ...,s~) and net) = fCt; I .t~)

Note that C*) is valid. Let be flCdCS)) = fCs{' s~) . flCClet)) = fCti',t~).

s.' :j: x A t.l:j: X
1 1

n.rv>	 C3a E n.minCp.q)]) CVj < a) A

s 11 > t 11
a KBOS a

since s~ = flCdCsi)) . t~ = flCClCti)) , lemma 5.13 and
by induction hypothesis

flCClCS)) >KBOS flCdCt))
by definition of the KBOS

t.1
= X

1

n.rv> C3u E OCs;)) u:j: E A s;/u = x

since	 s; >KBOS t; and by definition of the KBOS

.-..rv>	 epCs;) > epCt;) v Cs; = hChC. ..hCxLJ A cpCh) = OJ

by definition of the KBOS

- 20	

cc)

B)

cp(fl(o(5))) > cpCflCoCtID
rW> flCoCsD >KBC,S flCoCtl)

by definition of the KBOS

cp(fl(o(s))) = cpCflCöCtJJ) A 1:(top(fl(s))) = l e f t :
Let be s = n1 sk) and t = gC’t1tk) ,

flCs) = ni slim) and flCt) = gCtl' tä)
m> (Eli) (Vj < i) S]! =KBOS tj‘ A s ; >KBOS ti’ (as)

I) g i f v [Glp e [l.max(m.n)]) 3%; x v tio= x]

ID

“> flCo(s)) = gCflCoCsl'))‚...‚fl(o(sl'_n))) and
fl(o(t)) = gCflCoCtl‘)) flCoCtäD)
by using lemma 5.15

fw> (Vj < i) mas—‚;)) =KBOS flCoCtj'D A
flCoCsi‘D >KBOS flCoCti'D
since sl'D = flCsI'D) A ti: = flCtl'D) , Vpe [Lk]

because gfsl',....sl'_n) and gfti ta) are the
flattened versions of s and t . respectively.
flCs) ”KBOS flCt) “> flCoCsD =KBOS fl(o(t)),
Vo (with the help of lemma 5.14)
lemma 5.13

and by using the induction hypothesis together with (*)

m> fl(o(s)) >KBC)S flCoCtD
by definition of the KBOS

g =- f A [(3pe [l,max(m.n)]) si: = x v ‚ti-:= x]
“> MS) = f(sl' slim) and flCt) = £t tin)

Note that (*) is valid. Let be flCcCs)) = f(si' 51:) . flCoCtD = ffti' tL'I).

si' # x A t i i x
-> (Eta e [1.min(p,q)l) (Vj < a) sj'I =KBOS tj“ A

S" t i l
a >KBOS :51

since 5; = flCoCsi'D , t ; = flfoCti'D . lemma 5.13 and
by induction hypothesis

“> fl(o(s)) >KBOS flCoCtD
by definition of the KBOS

'W> (Elu e OCsi'D u i s A si'/u = x
since s; >KBOS ti' and by definition of the KBOS

'W> cpCsi') > cpCti') v [sil = hChC...h(x)„.) A tp(h) = O]
by definition of the KBOS

-20 -

(3 a	 D.min(p.q)]) CVj < a) AE

t lls 11 >
a KBOS a

since s 11 = fl(o(s.')) . fl(o(x)) f(t~ ...J and lemma a 1

6.14 of [StBB] and either ep(s~) > epct~) or with the

help of remark 3.2 / 3.3

.-vv>	 flCo(s)) >KBOS fl(o(t))

by definition of the KBOS

-y)	 ep(fl(o(s))) = ep(fl(oct))) A t(top(fl(s))) = right:

analogous with ~)

S) ep(fl(o(s))) = ep(fl(o(t))) A t(top(fl(s))) = mult

.-vv> args(fl(s)) »KBOS args(fl(t)) (**)

since fl(s) >KBOS flet) and by definition of the KBOS

D g :j: f v [(~p E D.k]) s~ = x v t
p
l = x]

fl(o(s)) = g(fl(oCs~)) fl(o(s:n))) and

fl(o(t)) = g(fl(o(t~)) fl(o(t~)))

by using lemma 5.15

rvv>	 args(fl(o(s))) »KBOS args(fl(oct)))

since s~ = fl(s~) A t~ = fl(t~) . Vp
because g(sls~) and g(t~t~)

are the flattened versions of sand t.

respectively.

fl(s) =KBOS flet) .-vv> flCo(s)) =KBOS fl(o(t))

with the help of lemma 5.14

and by using the induction hypothesis together with (**)

.-vv>	 fl(o(s)) >KBOS fl(o(t))

by definition of the KBOS

ID	 g = f A [(3p E [l,max(m,n)]) s~ = X v t
p
I = xJ

.-vv> fl(s) f(sls:n) and flet) = fCtlt~)

.-vv>	 S:= {sls:n} »KBOS {t~•t~} =: T
by definition of the KBOS (see (n))

X A t!:j:
J

toP(fl(o(si1)))

X

:j: f A top(fl(o(t.'))) :j: f

since fl(s;) = s; A fl(t.')
J

= t.}
J

- 21 -

7)

8)

«~> (3a e [1.minCp.q)]) (v; < a) sj" =KBOS ti" A
S" > t "

a KBOS a
since s; = flCoCSi'D) . flCoCXJ) = mg,...) and lemma
6.14 of [St88] and either cpCsä) > cpCtä) or with the
help of remark 3.2 / 3.3

“> flCoCSJJ >KBOS flCoCtJ)
by definition of the KBOS

cpCflCoCsD) = cpCflCoftD) A tCtopCflCSD) = right:
analogous with ß)

cp(fl(o(s))) = cpCflCoCtD) A 1:(top(fl(s))) = mult
'W> argsCflCsJ) »KBOS argsCflCtD (ame)

since flCs) >KBOS flCt) and by definition of the KBOS

I) g :l: f v [(Epe [l .k]) Sin : x v t i n : x]
m> flCoCsD = gCflCoCSI‘D flCoCSI'nD) and

flCoCtD = gCflCoCtl'J).....fl(o(tr'lD)
by using lemma 5.15

m> argsCflCoCsD) »KBOS argsCflCoCtD)
since ' 51': = flI'DJ A t}; = flCtI'D) . Vp

because g(sl' 5;“) and gttig)
are the flattened versions of s and t.
respectively.
flCs) ”KBOS fl(t) “> flCoCsD =KBOS flCoCtD
with the help of lemma 5.14

and by using the induction hypothesis together with CH)

«~> flCoCSD >KBOS flCoCtJ)
by definition of the KBOS

II) g = f A [Gpe [l.max(m.n)]) s}; =)(v t};„» flCs) = f(sl',...‚sr'n) and flCt) = f(tf....‚t'n)
x]

m> S == {S i slim} »KBOS {tl'.....t;1} == T
by definition of the KBOS (see (**))

M.) (W13 6 T\S) (Elsi' e S\T3 5; >KBOS tjl

SiI #: x A t' =l= x

-> topCfl(o(si'))) i f A topCflCoCt'D) # f
since flCsi') = siI A flCtj') = tj

_21-

nccsCs)) >KBOS nCcset))
since nCcsCs;)) >KBOS flCcsCtj')) Cby induction

hypothesis) and with the help of the lemmata

5.13 and 5.14

C3u E OCs.')) u:t: s /\ s.l/u = X
1 1

since s; >KBOS t; and by definition of the KBOS

cpCs;) > cpCtp v [s; = hChc...hCxLJ /\ cpCh) = OJ

by definition of the KBOS

Let be nccs(x)) = fCrlr~). It is sufficient to show that

flCcsCs;)) >KBOS r~ . for all q E [l.p):
This is true since the variable condition is fulfilled and

cp(fiCcsCs;))) > cpCr~)

because r I is a subterm of cp Cs.I)) and cpCs.l) > cpet.') •
q 1 1 J

Lemma. 5.1 7 ACK is stable w.r.t. substitutions.

Proof: We have to show that CVCS) s >ACK t <VV> csCs) >ACK cset).

s >ACK t

<VV> flCs) >KBOS flet)

by definition of the ACK

'""'-'> CVcs) fi(csCs)) >KBOS flCcsCt))

with the help of the following facts:

flCs) >KBOS net) '""'-'> flCcsCs)) >KBOS fi(csCt))

if cs = {x <- f(rl.·· ..r)} • f El ~A
 n

This is true because (Vt E n fl(cs(t)) = cs(flCt)) and by using the stability

of the KBOS w.r.t. substitutions (see [St88D.

lemma 5.16

Let be cs a substitution whose domain is {xl ... ·.xn }· Then cs = csI ... on
where csi is the elementary substitution Cthe domain is reduced to a
single variable) whose domain is {x) . The proof can be found in
[GL861

(Vcs) csCs) >ACK cset)
by definition of the ACK •

- 22

Lemma 5 .1?

Proof: We have to show that (V0) 3 >AOK t 'W> 0(5) >

S)

m)-

m)

AOK t
flCs) >KBOS flCt)

m> flCoCsD >KBC.)S flCoCtD
since maß—‚;)) >1<Bos fl(o(tj')) (by induction
hypothesis) and with the help of the lemmata
5.13 and 5.14

'W> (Elu e OCsi'D u 4: s A s i ' fu = x
since 5 il >KBOS tjl and by definition of the KBOS

“> cpCsi') > (pttj') v [si' = h(h(...h(x).„) A cp(h) = O]
by definition of the KBOS

Let be fl(o(x)) = f(rl' III:)“ I t is sufficient to show that
flCoCSi'JJ >KBOS réI , for all q e [l,p]:
This is true since the variable condition i s fulfilled and
cpCflCOCsi'D) > «peg
because I“; is a subterm of cpCsi'D and (pCsi') > cpCtj') I

ACK i s stable w. r . t . substitutions.

AOK 000.

by definition of the ACK
(Va) flCoCsD >»KBOS
with the help of the following facts:

fl) > Mt)KBOS

flCoCtJ)

m> flCoCSJ) >KBOS flCoCt))
if o = {X <— fCrlrn)} . f el 8A

This is true because (Vt e l") flCoCtJ) = olCtD and by using the stability
of the KBOS w.r.t. substitutions (see [St88]).

lemma 5.16

Le t be 0 a substitution whose domain i s {X1 xn}. Then 0 = 01 o
where oi is the
single variable)
[GLBÖ].

(Vo) ots) > ACK oCt)

n

elementary substitution (the domain is reduced to a
whose domain is {Xi} . The proof can be found in

by definition of the ACK |

_22 . .

Lemma. 5.1 S S =AC "-"'> s '"ACK t

Proof:	 s =AC t

<"-"'> f1(s) flet)'V

see [GD88J , proposition 5

<rvv> f1(s) =KBOS flet)

by definition of the KBOS

<"-"'>
 s =ACK t

by definition of the ACK
 •

Lemma. 5.1 <;>

Proof:	 We will show it by induction on Itl. It is clear that CVx E tE) uxCr) ~ uxen if
CVx E tE) uxCr) = u)s) ~ uxen because> on IN is a partial ordering. We have ta

consider five disjoint cases:

D cpCs) > cpet)

""'> cpCr) > cpm

since cpCr) = cpCs) which follows from r =KBOS s

"-"'> r >KBOS t
by definition of the KBOS

iD cpCs) = cpm A topCs) ~ topm

rvv> cpCr) = cpm A topCr) ~ topCD

since cpCr) = cpCs) C<"'" r =KBOS s)

and topCr) = topCs) A ~ is a partial ordering

""'> r >KBOS t
by definition of the KBOS

iiD	 cpCs) = cpm A topCs) = topm A 1:CtapCs)) = left:

Let be s = fCs l ,....sm) and t = fCtlt) (.-vv> r = fCr1,... ,rm))n

""'> (sl·.. ··sm) >KBOS,left Ctl ·· ...tn)

since s >KBOS t and by definition of the KBOS

.-vv> (3D CVj < D Sj "'KBOS tj A Si >KBOS ti v [CVi E n.nJ)

si =KBOS ti A m > nJ

by definition of >KBOS left

rvv> CVj < D rj "'KBOS tj A ri >KBOS ti
because (Vj ~ D rj =KBOS Sj

since r =KBOS s and by definition of the KBOS

tl =KBOS t2 =KBOS t3 .-vv> tl =KBOS t3
can be proved easily

- 23

Lemma 5.18 s =AC t “> s =ACK t

Proof: 5 =AG t
<~v> flCs) ~ fl(t)

see [GD88] . proposition 5
<~v> flCs) =KBOS flCt)

by definition of the KBOS
(“> s =ACK t

by definition of the ACK |

Lemma 5 .19 r ”KBOS s >KBOS t “> r >KBOS t

Proof: We will show it by induction on Itl. It is clear that (Vx e QS) ttI) 2 uXCt) if
(Vx e B) nxCr) = ux(s) 2 nXCt) because > on IN is a partial ordering. We have to
consider five disjoint cases:

i)

ii)

iii)

@@ > <p(t)
M.) <p(r) > tpCt)

since cpCr) = <pCs) which follows from r =KBOS s

I >KBOS t
by definition of the KBOS

m)

cp(s) = (pCt) A topCs) [> top(t)
fw> cpCr) = <pCt) A topCr) I> top(t)

since cpCr) = cpCs) (<- r “KBOS s)
and topCr) = topCs) A D is a partial ordering

m) r >KBOS t
by definition of the KBOS

(13(5) = <pCt) A topCs) = topCt) A t(t0p(s]) = left:
Let be s = f(51,....sm) and t = f(t1 tn) (m) r = {(r1 rmD

(s1 sm) >KBOS.left (t1 tn)
since s >KBOS t and by definition of the KBOS

m> (Eli) (Vj < i) sj =KBOS tj A si >KBOS ti v [(Vi e [1.n])
Si =KBOS t i " m > “]
by definition of >KBOS‚left

“> (VJ < Ü rj =KBOS tj " ri >KBOS
because ' (V] S 1) rj =KBOS sj

since r ‘"KBOS s and by definition of the KBOS

Nu}

t1

mm;}t1 =KBOS t 2 =KBOS t 3 t r =KBOS t s

can be proved easily

-23 . .

induction hypothesis

since ri =KBOS si >KBOS ti

<'VV>	 r >KBOS t

by definition of the KBOS

iv)	 rpCs) = rpeD A topCs) = topeD A 1:CtopCs)) = right:

analogous with the previous case

v)	 rpCs) = rpeD A topCs) = topCD A 1:CtopCs)) = mult:

Let be s = fCs1srn) and t = fCtlt n)

rvv>	 {slsrn} »KBOS {tl.···.tn }

since s >KBOS t and by definition of the KBOS

w.l.o.g.	 let be {sl 'srn} n {tl.···.t } = cJ:>n

<'VV> CVtj) C3si) si >KBOS tj
by definition of the extension of the KBOS to multisets
It is sufficient to show that

cil si >KBOS tj <'VV> C3k) rk >KBOS tj and
~) C~ k) r i =KBOS tk

C3k) rk =KBOS si
since r =KBOS s and by definition of the KBOS

<'VV>	 r k >KBOS tj
because si >KBOS tj and with the help of the induction
hypothesis

Assume that C3k) ri =KBOS tk

<'VV> tk =KBOS si
SInce ri =KBOS si C<<'VV r =KBOS s)

<'VV> {slsrn} n {tlt } ::f: cD n	

•which	 is a contradiction to the precondition

Le:rn:rna. 5.20 ACK is AC-commuting.

Proof: We have to show that r =AC s >ACK t <'VV> C3t ') r >ACK t l =AC t.

r =AC s >ACK t
<'VV> r =ACK s >ACK t

by using lemma 5.18

<'VV> flCr) =KBOS flCs) >KBOS flen
by definition of the ACK

- 24

induction hypothesis
51““ lri =KBOS Si >KBOS i

“> I >KBOS t
by definition of the KBOS

iv) cpCs) = cpCt) A topCs) = topCt) A tCtopCs)) = r ight:
analogous with the previous case

v) cpCs) = cpCt) A topCs) = topCt) A ICtopCSJ) = mult:
Let be s = f(s1 sm) and t= f(tl tn)
-> {31 Sm} >>KBÜS {t1 tn}

since s >KBOS t and by definition of the KBOS
w.l.o.g. let be {s1 sm} n {t1 tn} = (1)

m> (t) (Elsi) si >KBQS tj
by definition of the extension of the KBOS to multisets

'W> It is sufficient to show that
a) si >KE,’OS tj 'W> (Elk) rk >KBOS tj and

B) Ü] 10 1'1 =KBOS tk

cc) (Elk) rk =KBOS si
since r =KBOS s and by definition of the KBOS

“> rk >KBOS tj

because si >KBOS tj and with the help of the induction
hypothesis

ß) Assume that (Elk) Ii =KBOS tk

m) t1; =KBOS si

Since Ii =KBOS si (<'W 1’ =KBOS s)
-> {51 sm} n {t] tn} # (D

which is a contradiction to the precondition I

Lemma 5 -20 ACK is AC-commuting.

Proof: We have to show that r =AC s >ACK t “> (Elt') r >ACK t ' =AC t.

r =AC
m)

t
S>

s >ACK
1” =ACK ACK t
by using lemma 5.18
flCr) =KBOS flCs) >KBOS flCt)
by definition of the ACK

-24 -

I

rvv>	 fler) >KBOS flet)

with the help of lemma 5.19

r >ACK t
by definition of the ACK

t l = t

t l t l
since = t rvv> AC

- 25

m)- flCr) >KBOS flCt)
with the help of lemma 5.19

I >ACK t
by definition of the ACK
t ' = t
since t ' = t 'w> t ' =Act

- 25 . .

6 Improving the ACK

The associative-commutative Knuth-Bendix ordering defined in the last chapter is an
ordering which can prove the termination of rewriting systems modulo an associative and
commutative theory. This theoretical aspect is the foundation for using the ACK in practice.
However. from a practical point of view the ACK is inefficient since the terms to be
compared must be flattened. Subsequently. we will present two different kinds of versions
of the ACK which improve its applicability.

6.1 Red:ucin.g the 'Use of the fl-operator

Comparing two terms w.r.t. the ACK we do not always have to flatten them. This expense
will only be necessary if the arguments of both terms must be compared. The following
lemma reifies this fact:

s >ACK t
iff CVx E <g) uxCs) ~ u)D A

-cpCs) > cpet)

- topCs) ~ topCD

- args(flCs)) >ACK,-cCtopCs)) args(flCt))

with all conditions of 5.6 about cp and ~ Csee page 13)

Proof: The proof can be easily performed by using the following facts:
u)flCs)) ~ u)flCt)) iff uxCs) ~ u)D
by definition of the fl-operator

cp(flCs)) > cp(flet)) iff cpCs) > cpet) and cpCfl Cs)) = cpCflcm iff cpCs) = cpCD
since cpeD = 0 if f E ~A

top(flcm = topCD. Vt E r and ~ is a partial ordering •

Note that it is even possible to improve this version by only

flattening the term if topCs) E ~A and

flattening the highest level of sand t if topCs) E ~A.

- 26

ö Improving the ACK

The associative-commutative Knuth-Bendix ordering defined in the last chapter is an
ordering which can prove the termination of rewriting systems modulo an associative and
commutative theory. This theoretical aspect is the foundation for using the ACK in practice.
However. from a practical point of view the ACK is inefficient since the terms to be
compared must be flattened. Subsequently. we will present two different kinds of versions
of the ACK which improve its applicability.

63.1 Reducing the use o f the fl—opera tor

Comparing two terms w.r.t. the ACK we do not always have to flatten them. This expense
will only be necessary if the arguments of both terms must be compared. The following
lemma reifies this fact:

S >'ACK tiff (Vx e QS) axe) z axe) A
— _cp(s) > cpCt)

topCs) {> topCt)
argsCflCsD >ACK.1:t3p(s)) argsCflCtD

with all conditions of 5.6 about cp and D (see page 13)

Proof: The proof can be easily performed by using the following facts:
HXCflCSD 2 nx(fl(t)) iff nx(s) 2 nt)
by definition of the fl—operator

cpCflCsD > cpCflCtD iff cpCs) > @(t) and (p(fl(s)) = cpCflCtD iff cp(s) = cpCt)
since cpCf) = 0 if f e &

topCfl(t)) = topCt). Vt e I‘ and D is a partial ordering |

Note that it is even possible to improve this version by only

flattening the term if topCs) e 3A and
flattening the highest level of s and t if topCs) e &.

-26 -

·6.2 Restricting the AC:K to C-theories

Up to now we admitted commutative and associative operators. The exclusion of the latter
enables us to simplify the ACK: The flattening of the terms to be compared is completely
redundant. Obviously. we do not need to check the conditions about associative operators.

Defin.ition. 6.2.1

Let be ~ a precedence and cp a weight function as described in chapter 3. The status

function t fulfils the condition that tCD = mult if f E ~C'

The ordering >CK (commutative Knuth-Bendix ordering) on terms sand t is defined as

s >CK t

iff s >KBOS
 •

We want to use this restricted verSIOn of the KBOS as an ordering to prove the termina
tion of rewrite systems modulo commutative theories. Therefore. the CK must be a
simplification ordering and C-commuting. The proofs of these properties will follow.

LerLLrLLa. 6.2.2

CK is a simplification ordering and stable w.r.t. substitutions.

Proof:	 This is valid since the KBOS has the same properties (lemma 4.5 on page I0). •

CK is C-commuting.

Proof:	 We have to show that Si C s >CK t rvv>

Si =c S >CK t
rvv> S' =CK s >CK t

since s =c t rvv> S =CK (because tCD mult if f E ~c)

rvv> Si l<BOS s >KBOS t
by definition of the CK

rvv> Si >KBOS t
lemma 5.19

rvv> Si >CK t
by definition of the CK

rvv> t l = t
since t'	 = t rvv> t' = C •

- 27

' ö . 2 Res t r i c t i ng the ACK to C—thec r i e s

Up to now we admitted commutative and associative operators. The exclusion of the latter
enables us to simplify the AOK: The flattening of the terms to be compared is completely
redundant. Obviously. we do not need to check the conditions about associative operators.

De f in i t i on (5 .2 .1

Let be [> a precedence and cp a weight function as described in chapter 3. The status
function 1: fulfils the condition that 126) = mult if f 5 so.
The ordering >CK (commutative Knuth-Bendix ordering) on terms 5 and t is defined as

s>CKt

iff s >KBOS t I

We want to use this restricted version of the KBOS as an ordering to prove the termina-
tion of rewrite systems modulo commutative theories. Therefore. the CK must be a
simplification ordering and C—commuting. The proofs of these properties will follow.

Lemma (5 .2 .2

CK is a simplification ordering and stable w.r.t. substitutions.

Proof: This is valid since the KBOS has the same properties (lemma 4.5 on page 10). I

Lemma (5 .2 -3

CK is C—commuting.

Proof: We have to show that s ' =(: s >CK t m> (Elt') s | >0K t ' =(: t .
l _s "C s >CK t

m) s l=c1< S >CK t
since s =C t m> s =CK t (because tCD = mult if f e go)

fw> s ' - s > t_KBOS KBOS

by definition of the CK

“> 5 ' >KBOS t
lemma 5.19

“> 5 ' >CK t
by definition of the CK

-> t' = t
since t ' = t m> t ' =C t |

- 2 ' I -

7 Conclusion

This paper introduces a class of termination orderings for associative and (or) commutative
term rewriting systems. called associative-commutative Knuth-Bendix orderings (ACK, for
shorD. The ACK is a modified version of the Knuth-Bendix ordering with the following basic

concepts:

Extending the KBO to KBOS by permitting various statuses (to compare the
arguments of two terms).

Assigning multiset status to each commutative function symbol.

Assigning weight zero to each associative operator which has to be minimal w.r.t.

the precedence and

Partly flattening the terms to be compared.

This ordering can prove the AC-termination of a set of rules since it is a simplification
ordering and AC-commuting (see [JM84J). A great deal of the substantial aspects of this
ordering are similar to those of the associative path ordering.

The power of the ACK is approximately the same as that of the KBOS. We expect this
conjecture to be confirmed by several tests.

Unlike the associative path ordering APO (cf. [Gn88J. [GL86J. [BP85J. [BP85aJ. EDHJP83J), the
ACK does not require a complete transformation (including distributing and flattening) of
the terms to compare. The comparison of the power of the APO and the ACK leads to the
fact that they are incomparable:

ACK is more powerful than the APO: APO is more powerful than the ACK:

X
Z * yZ

>ACK
(x * y)Z sex) * y ~po y + (x * y)

but but

X
Z * yZ t APO (x * y)Z sex) * y tACK Y + (x * y)

with *. + E ~AC • cp(exp»O * l> +

There exists another ordering for AC-termination: a restricted version of the ordering on
polynomial interpretations (POL. for shorD. The power of this method and the power of the
ACK also overlap:

- 28

T Conclusion

This paper introduces a class of termination orderings for associative and (or) commutative
term rewriting systems, called associative—commutative Knuth-Bendix orderings (AOK, for
short). The ACK is a modified version of the Knuth—Bendix ordering with the following basic
concepts:

Extending the KBO to KBOS by permitting various statuses (to compare the
arguments of two terms).

Assigning multiset status to each commutative function symbol.

Assigning weight zero to each associative operator which has to be minimal w.r.t.
the precedence and

Partly flattening the terms to be compared.

This ordering can prove the AC-termination of a set of rules since it is a simplification
ordering and AC-commuting (see [IM84]). A great deal of the substantial aspects of this
ordering are similar to those of the associative path ordering.

The power of the ACK is approximately the same as that of the KBOS. We expect this
conjecture to be confirmed by several tests.

Unlike the associative path ordering APO (cf. [Gn88]. [ems], [BP85]. [BP85a]. [DHIP83]). the
ACK does not require a complete transformation (including distributing and flattening) of
the terms to compare. The comparison of the power of the APO and the ACK leads to the
fact that they are incomparable:

ACK is more powerful than the APO: APO is more powerful than the ACK:

xz * yz >15“:K (x * y)z SCX) * y >APO y + (x * y)
but but
xZ * yz l’APO (x * y)z sCx) * y $ACK y + (x * y)

with *, + e {SAC ‚ cp(exp)>0 , ale [> +

There exists another ordering for AC—termination: a restricted version of the ordering on
polynomial interpretations (POL, for short). The power of this method and the power of the
ACK also overlap:

—28—

POL IS more powerful than the ACK:ACK IS more powerful than the POL:

(-x) + X >ACK X + (-x) sex) * y >POL Y + (y * x)
butbut

(-x) + x X + (-x) sex) * y :tACK y + (y * x):tPOL

with + E ~A • t(+)=left . l(+)(x.y)=x+y . 1(*)(x.y)=x+3y . l(s)(x)=4x

From a practical point of view. the POL is applicable to more rules than the ACK, but it
is very difficult to choose the adequate interpretations for the operators (see [BL87a]) On
the contrary. it is easy to determine whether or not a set of rules can be ordered by a
Knuth-Bendix ordering (cL [Ma87J).

The generalization of the presented method for other theories as well as the weakening of
the conditions for associative operators (by eventually distributing simultaneously) will be
part of future plans.

- 29

ACK is more powerful than the POL: POL is more powerful than the ACK:

C—x) + x >ACK x + (-x) sCx) * y >POL y + (y aIE x)
but but
(-x) + x #POL x + C—x) sCx) * y #ACK y + (y are x)

with + e 8A , 1:(+)=left . I(+)(x,y)=x+y . I(*)(x.y)=x+3y . ICs3=4x

From a practical point of View, the POL is applicable to more rules than the ACK. but it
is very difficult to choose the adequate interpretations for the operators (see [BLBTaD On
the contrary, it is easy to determine whether or not a set of rules can be ordered by a
Knuth-Bendix ordering (of. [MaBTJl

The generalization of the presented method for other theories as well as the weakening of
the conditions for associative operators (by eventually distributing simultaneously) will be
part of future plans.

-29 -

Ackno'W'ledgernent

There remains the pleasant duty to thank those who somehow co-operated in forming
this paper: Jurgen Avenhaus. Jorg Oenzinger. Roland Fettig. Bernhard Gramlich. Rita Kohl.
Klaus Madlener. Inger Sonntag and Michael Zehnter.

References

[Ad8T]	 Christian Adler

Vervollstandigung von Termersetzungssystemen modulo einer gleichungsdefinierten
Theorie
Master Thesis. Kaiserslautern. W. Germany. 1987

[BOBT]	 Leo Bachmair / Nachum Dershovvitz

Completion for rewriting modulo a congruence
Proc. 2nd	 RTA. Bordeaux. France. 1987. LNCS 256

[BOB6]	 Leo Bachmair / Nachum Dershovvitz

Commutation. transformation and termination
Proc. 8th	 CADE. Oxford. U.K.. 1986. LNCS 230

[BLB1]	 Francoise Bellegarde / Pierre Lescanne

Transformation orderings
Proc. TAPSOFT. Pisa. Italy. 1987. LNCS 249

- 30

Acknowledgement

There remains the pleasant duty to thank those who somehow co-operated i n forming
this paper: Jürgen Avenhaus. Jörg Denzinger, Roland Fettig, Bernhard Gramlich. Rita Kohl,
Klaus Madlener, Inger Sonntag and Michael Zehnter.

References

LAdB'I] Christian Adler
Vervollständigung von Termersetzungssystemen modulo einer gleichungsdefinierten
Theorie
Master Thesis . Kaiserslautern. W. Germany. 198T

[BUST] Leo Baehmair / Naehum Dershowitz

Completion for rewriting modulo a congruence
Proc.. 2nd RTA. Bordeaux. France . 1987', LNCS 256-

EBDBÖ] Lee Bachmair / Nachum Dershewitz

Commutation. transformation and termination

Proc. 8th CADE. Oxford, U_.K.. 1986. muss 230

[51.81] Francoise Bel legarde / Pierre Lescanne

Transformation orderings
Proc. TAPSOF'T. Pisa . I ta ly . 1987. LNCS 249

-30 -

03LBTaJ Ahlem Ben Cherifa / Pierre Lescanne

Termination of rewriting systems by polynomial interpretations and its
implementation
Science of Computer Programming 9 (2). 1987

03LB6J. Ahlem Ben Cherifa / Pierre Lescanne

An actual implementation of a procedure that mechanically proves termination of
rewriting systems based on inequalities between polynomial interpretations
Proc. 8th CADE. Oxford. U.K.. 1986. LNCS 230

[BPBSJ Leo Bachmair / David A. Plaisted

Termination orderings for associative-commutative rewriting systems
J. Symbolic Computation 1. 1985

03PBSaJ Leo Bachmair / David A. Plaisted

Associative path orderings
Proc. 1st RTA. Dijon. France. 1985. LNCS 202

[DaBSJ Max Dauchet

Termination of rewriting is undecidable in the one-rule case
MFCS. Carlsbad. CSSR. 1988. LNCS 324

[DeBTJ Nachum Dersho~itz

Termination of rewriting
J. Symbolic Computation 3. 1987

[DHJPB3J Nachum Dersho~itz / Jieh Hsiang / N. Alan Josephson / David A. Plaisted

Associative-eommutative rewriting
Proc. 8th IJCAI, Karlsruhe. W. Germany. 1983

[GDBSJ Bernhard Gramlich / Jorg Denzinger

Efficient AC-matching using constraint propagation
SEKI-Report. Kaiserslautern. W. Germany. 1988

[GnBBJ Isabelle Gnaedig

Total orderings for equational theories
Working document. Nancy. France. 1988

[GLB6J Isabelle Gnaedig / Pierre Lescanne

Proving termination of associative-commutative rewriting systems by rewriting
Proe. 8th CADE. Oxford. U.K.. 1986. LNCS 230

[J083J Jean-Pierre Jouannaud

Confluent and coherent equational term rewriting systems - application to proofs
in abstract data types
Proe. CAAP. LIAquila. Italy. 1983. LNCS 159

- 31

EBLB'Ia]

[BLBé].

EBPBS]

EBP85a]

[DaBB]

EDeB'I]

EDHIPBBJ

[GDBB]

[Gn88]

EGL86]

[1083]

Ahlem Ben Cherifa / Pierre Lescanne

Termination of rewriting systems by polynomial interpretations and its
implementation
Science of Computer Programming 9 C2). 1987

Ahlem Ben Cherifa / Pierre Lescanne

An actual implementation of a procedure that mechanically proves termination of
rewriting systems based on inequalities between polynomial interpretations
Proc. 8th CADE. Oxford. U .K . . 1986. LNCS 230

Leo Bachmair / David A . Plaisted

Termination orderings for associative-commutative rewriting systems
] . Symbolic Computation 1 . 1985

Leo Bachmair / David A . Plaisted

Associative path orderings
Proc. I s t RTA. Dijon. France. 1985. LNCS 202

Max Dauchet

Termination of rewriting is undecidable in the one-rule case
MFCS. Carlsbad. CSSR. 1988. LNCS 324

Nachurn Dershowitz

Termination of rewriting
] . Symbolic Computation 3. 198'1'

Nachum Dershowitz / I ieh I-Isiang / N. Alan Josephson / David A . Pla is ted

Associative-commutative rewriting
Proc. 8th HOAI. Karlsruhe, W. Germany. 1983

Bernhard Gremlich /]örg Denzinger

Efficient AC—matching using constraint propagation
SEKI-Report . Kaiserslautern. W. Germany. 1988

Isabelle Gnaedig

Total orderings for equational theories
Working document. Nancy. France. 1988

Isabelle Gnaedig / Pier re Lescanne

Proving termination of associative-commutative rewriting systems by rewriting
Proc. 8th CADE. Oxford. U.K.. 1986. LNCS 230

Jean-Pierre Jouannaud
Confluent and coherent equational term rewriting systems - application to proofs
in abstract data types
Proc. CAAP. L 'Aqu i l a . I t a ly . 1983. LNCS 159

[JK86J	 Jean-Pierre Jouannaud / Helene Kirchner

Completion of a set of rules modulo a set of equations
SIAM J. Computing 15 (4). 1986

[JKR83]	 Jean-Pierre Jouannaud / Helene Kirchner / Jean-Luc Remy

Church-Rosser properties of weakly terminating equational term rewriting systems
Proc. 8th	 IJCAI. Karlsruhe. W. Germany. 1983

[JM84J	 Jean-Pierre Jouannaud / Miguel Munoz

Termination of a set of rules modulo a set of equations
Proc. 7th CADE. Napa. California. 1984. LNCS 170

[1(BTO] Donald E. Knuth / Peter B. Bendix

Simple word problems in universal algebras
Computational Problems in abstract algebra. Pergamon Press. 1970

[1(L8OJ Sam Kamin / Jean-Jacques Levy

Attempts	 for generalizing the recursive path orderings
Unpublished manuscript. Urbana. Illinois. 1980

CLaT9J Dallas S. Lankford

On proving term rewriting systems are noetherian
Memo MTP-3. Ruston. Louisiana. 1979

!Ma8TJ Ursula Martin

How to choose the weights in the Knuth-Bendix ordering
Proc. 2nd	 RTA. Bordeaux. France. 1987. LNCS 256

1:P183J	 David A. Plaisted

An associative path ordering
Proc. NFS Workshop on the RRL. Schenectady. U.S.A.. 1983

I:PS8lJ	 Gerald E. Peterson / Mark E. Stickel

Complete sets of reductions for some equational theories
J. ACM 28 (2). 1981

CSt88J	 Joachim Steinbach

Term orderings with status
SEKI-Report. Kaiserslautern. W. Germany. 1988

also: Extensions and Comparison of Simplification orderings

Proc. 3rd RTA. Chapel Hill. North Carolina. 1989. LNCS 355

EZe89J	 Michael Zehnter

Theorievertragliche Ordnungen - Eine Ubersicht
Project report. Kaiserslautern. W. Germany. 1989

- 32

[]K86]

EIKRBB]

[IM84]

[KB'IO]

[KLBO]

[La'I9]

EMaB'I]

EP133]

[PSBl]

[StBB]

[ZeB9]

Jean-Pierre Iouannaud / Helene Kirchner

Completion of a set of rules modulo a set of equations
SIAM] . Computing 15 C4). 1986

Jean-Pierre Iouannaud / Helene Kirchner / Iean—Luc Remy

Church-Rosser properties of weakly terminating equational term rewriting systems
Proc . 8th HOAI. Karlsruhe. W. Germany. 1983

Jean-Pierre Jouannaud / Miguel Munoz

Termination of a set of rules modulo 3 set of equations
Proc. Tth CADE. Napa. California. 1984. LNCS l'IO

Donald E . Knuth / Peter B . Bendix

Simple word problems in universal algebras
Computational Problems in abstract algebra. Pergamon Press . 1970

Sam Kamin / Jean-Jacques Levy

Attempts for generalizing the recursive path orderings
Unpublished manuscript. Urbana. I l l inois . 1980

Dal las S . Lankford

On proving term rewriting systems are noetherian
Memo MTP-3. Ruston. Louisiana. 1979

Ursula Martin

How to choose the weights in the Knuth—Bendix ordering
Proc. 2nd RTA. Bordeaux. France. 1987. LNCS 256

David A . Plaisted

An associative path ordering
Proc. NFS Workshop on the RRL. Schenectady. U .S .A . . 1983

Gerald E. Peterson 2* Mark E. Stickel
Complete sets of reductions for some equational theories
1. ACM 28 C2), 1981

Joachim Steinbach

Term orderings with status
SEKI-Report . Kaiserslautern. W. Germany. 1988

Extensions and Comparison of Simplification orderings
Proc . 3rd RTA, Chapel H i l l . North Carolina. 1989. LNCS 355

also:

Michael Zehnter

Theorievertri-igliche Ordnungen - Eine Ubersicht
Project report. Kaiserslautern. W. Germany. 1989

Appendix: Examples

Associativity and Endomorphism

ffi.: [Cx) + [Cy) ~ [Cx + y)

[Cx) + C[Cy) + z) ~ [Cx + y) + z

<pCD > 0

E:	 Cx + y) + Z x + Cy + z)

x + y y + x

Abelian group theory

ffi.:	 x + 0 ~ x
x + iCx) ~ 0
iCQ) ~ 0 <pCD = 0
iCiCx)) ~ x i I> +

iCx + y) ~ iex) + iCy) i I> 0

E:	 Cx + y) + Z x + Cy + z)

x + y y + x

Disjunctive normal form CDershowitz)

ffi.: --.--.x ~ x
--.Cx v y) ~ ...,...,...,x A ...,...,-,y

--.Cx A y) ~ ...,·...,x v ...,...,...,y

X A X ~ X
X v x ~ x

E: Cx A y) A Z x A Cy A Z)

XAy Y A X
Cx v y) v Z x v Cy v Z)

x v y y v x

<pC --.) = 0
--. I> A
--. I> V

- 33

Appendix : Examples

Associativity and Endomorphism

4/ER: f(x) + f(y) f(x + y)
f(x) + (f (y)+ z) —> f(x+ y)+ z

(96) > O
E: (x+y)+z = x+(y+z)

X + Y = Y * X

Abelian group theory

ER: x + O -> X
x + iCx) -> O
iEO) -> O cpCi) = 0
iCiCxD + x i D +
iCx + y) -> 160 + iCy) i [> O

E: Cx+y)+z = x+(y+z)

X * Y = Y * X

Disjunctive normal form (Dershowitz)

SR: fi—«x —> x
“(x v y) -> —.-.-.x A «fly
fiCX A y) -> ——.-—.—.x v —.—‚—.y
X A x -> x

>: V x -> x cpC-I) = O
"'! [> A

E: (XAy)Az=XACyAz) —:[>v
x A y = y A x
vy3vz=xvVZJ
x v y = y v x

Unary integer addition CDershowitz)

(R:

E:

x + 0
o + y
-0

-CC-x) + y)

-- x
C-D + 1

-Cx+D+

Cx + y) + z

~

~

~

~

~

~

~

~

x

y
0

x + C-y)

x

0
-x

x + Cy + z)

epC-) = 0 . epC!) > epCG)

- ~ 0

- ~ +

- 34

Unary integer addition (Dershowitz)

9?: X+O
O + y
—0
-((-x) + y)
-—-X
(-1) + I
-(x + 1) + 1

(x+y)+z

\‘/
\'/\

'/\!
/\'x

\‘/
\'/ + (-y)

O
>¢

x0
~<

x
X+Cy+z)

-34 -

cp(—) = O . <p(1)> cpCO)
- I>O
—D+

