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Abstract 
An important research problem is the incorporation of "declarative" knowledge into an automated 

theorem prover that can be utilized in the search for a proof. An interesting proposal in this direction 
is Alan Bundy's approach of using explicit proof plans that encapsulate the general form of a proof 
and is instantiated into a particular proof for the case at hand. We give some examples that show 
how a "declarative" highlevel description of a proof can be used tonnd proofs of apparently "similiar" 
theorems by analogy. This "analogical" information is used to select the appropriate axioms from the 
database so that the theorem can be proved. This information is also used to adjust some options of a 
resolution theorem prover. In order to get a powerful tool it is necessary to develop an epistemologically 
appropriate language to describe proofs, for which a large set of examples should be used as a testbed. 
We present some ideas in this direction. 

Keywords: analogy, theorem proving, proof plans, abstract description 

... et chaque verit(: que je trouvais etant une regle 
qui me servait apres a. en trouver d'autres, ... 
Rene Descartes, Discours de la Methode 

Introduction 

Analogy plays an important role in mathematics: a main part of the formation of concepts as well as 
of general reasoning is done by analogy. Mathematicians know many concepts, theorems, and examples 
and out of this fund they can invent new concepts, find new theorems, construct new proofs, and enlarge 
this fund of examples. GEORGE POLYA writes in [15] that a proof is not completed once it is found and 
written down, but then perhaps the most important steps are to analyze the proof and to learn from it 
for the solution of future problems. Finding the solution of a problem often consists in reformulating it 
into a problem that is analogous to a solved one. In [16] POLYA writes that two systems are analogous, if 
they agree in clearly definable relations of their respective parts. As examples he mentions a geometrical 
analogy, namely a triangle in the plane and a tetrahedron in the space, and an analytical example of 
determining the sums of infinite series. POLYA'S ideas are not formalized as his purpose is to teach how 
to instruct students in mathematics. Instead of a formalization he presents many examples, by means 
of which a pupil can learn also for other cases. But as pointed out by ALLEN NEWELL [14] there is a 
considerable gap between the advice POLYA gives and what can be used direetely in a computer system, 
because - if one wants to use POLYA'g heuristic - one has to master "wild subproblems" as NEWELL calls 
them, that is, it is still a problem to utilize the solution of a "subproblem" to the solution of the proper 
problem. 
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René Descartes, Discours de la Méthode

1 Introduction

Analogy plays an important röle in mathematics: a main part of the formation of concepts as well as
of general reasoning is done by analogy. Mathematicians know many concepts, theorems, and examples
and out of this fund they can invent new concepts, find new theorems, construct new proofs, and enlarge
this fund of examples. GEORGE PÖLYA writes in [15] that a proof is not completed once it is found and
written down, but then perhaps the most important steps are to analyze the proof and to  learn from it
for the solution of future problems. Finding the solution of a problem often consists in reformulating it
into a problem that is analogous to a solved one. In [16] P6LYA writes that two systems are analogous, if
they agree in clearly definable relations of their respective parts. As examples he mentions a geometrical
analogy, namely a triangle in the plane and a tetrahedron in the space, and an analytical example of
determining the sums of infinite series. PÖLYA’S ideas are not formalized as his purpose is to teach how
to instruct students in mathematics. Instead of a formalization he presents many examples, by means
of which a pupil can learn also for other cases. But as pointed out by ALLEN NEWELL [14] there is a
considerable gap between the advice PÖLYA gives and what can be  used directely in a computer system,
because - if one wants to use PÖLYA’S heuristic - one has to master “wild subproblems” as NEWELL calls
them, that is, it is still a problem to utilize the solution of a “subproblem” to the solution of the proper
problem.





2 2 THESIS 

In the following we consider only some simple aspects of analogy and give examples how the utilization of 
such analogies can be profitable. We do not give a formalization of analogy, but only present some ideas, 
how certain aspects might be formalized. In general it seems that "analogy" is a term that stands for 
many methods and techniques with some common features, just as for example in "machine learning" , 
where almost certainly no single method will be sufficient for all its aspects. However we argue that even 
the simple aspects that are proposed here can lead to drastic improvements when they are appropriately 
used in an automated theorem prover. Our method of using analogy does not enlarge the possibilities of 
deduction in principle, but it is helpful in guiding the search for a proof. In addition we give some hints 
how it might be possible to find the preconditions that are necessary for the proof of a theorem. 
Most examples are taken from [5], as the idea to look for analogies in proofs arose in JORG SIEKMANN'S 
project, where many of the theorems of a textbook on automata theory [5] where proved with the help of 
the MKRP theorem proving system [6,12]. 
Many different approaches exist to capture certain aspects of analogy: 

• Pairings of or mappings between the analogous parts 

• Abstraction to a common generalization 

• Relation between the signatures based on a model-theoretical approach 

• Proof plans to find proofs in a certain domain 

We are not going to give an overview on all these efforts. We refer to the overview article of ROGERS 
P . HALL [11]. The idea presented in this paper is closely related to proof plans, that is, to describe the 
proofs abstractely. If a proof has been found the plan should be analyzed and simplified. Then - so the 
hope - this proof plan can be used to find proofs of similiar theorems. On the importance of abstract 
description of theorems and proofs see also [8]. 

2 Thesis 

To find an analogy depends, just as many other intelligent processes, to a great degree on finding the 
adequate level of abstraction. When we are searching for an analogy we are taking only certain aspects 
of the situation into account and are disregarding others. HELMUT THIELE [18] uses subsystems of the 
signature to abstract from unimportant parts of a concept, in other words to neglect those parts that are 
not necessary when only the two analogous facts are taken into account. The remaining important parts 
then have to be isomorphic. In some sense this can be seen as an equivalence mapping among models. In 
mathematics we can follow a similiar simple approach by not telling the system the meaning, that is, the 
definition of some concept. For example if we want to consider only the "reflexivity" of an equivalence 
relation, we abstract from "symmetry" and "transitivity". In other words we want to model reasoning of 
the sort "whatever symmetry and transitivity might be, we can conclude ..." (see the example below). 
This method is well known in the field of automated theorem proving, and is in fact the second "cheat" 
of ALAN BUNDY'S (originally longer) list in [3, p.88]: 

"Feeding to the theorem prover only those axioms known to be required in the proof. Irrelevant 
axioms can dramatically increase the size of the search tree." 

"Generating only that part of the search tree which lies within some arbitrary limits, but which is 
known to include the proof. Typically, the sought proof is examined to see: how long it is; what the 
maximum depth of function nesting is and what the maximum length of clauses is: and then the 
tree is only searched within those limits." 

We give examples how "analogy" can help at least in some cases to automate the finding of those clauses 
that are necessary to derive a theorem and to automatically adjust some "options" of a resolution prover 
in order to cut down the search space. Unlike other approaches of using analogy as that of GREINER 
[9], where facts that are neither in the data base nor logically derivable, can be derived by analogy, our 
treatment of analogy does not enlarge the derivation facilities in principle. 

2 2 THESIS

In the following we consider only some simple aspects of analogy and give examples how the utilization of
such analogies can be profitable. We do not give a formalization of analogy, but only present some ideas,
how certain aspects might be formalized. In general it seems that “analogy” is a term that stands for
many methods and techniques with some common features, just as for example in “machine learning” ,
where almost certainly no single method will be sufficient for all its aspects. However we argue that even
the simple aspects that are proposed here can lead to drastic improvements when they are appropriately
used in an automated theorem prover. Our method of using analogy does not enlarge the possibilities of
deduction in principle, but it is helpful in guiding the search for a proof. In addition we give some hints
how it might be possible to find the preconditions that are necessary for the proof of a theorem.
Most examples are taken from [5], as the idea to look for analogies in proofs arose in JÖRG SIEKMANN’S
project, where many of the theorems of a textbook on automata theory [5] where proved with the help of
the MKRP theorem proving system [6,12].
Many different approaches exist to capture certain aspects of analogy:

o Pairings of or mappings between the analogous parts

a Abstraction to a common generalization

. Relation between the signatures based on a model-theoretical approach

. Proof plans to find proofs in a certain domain

We are not going to give an overview on all these efforts. We refer to the overview article of ROGERS
P .  'HALL [11]. The idea presented in this paper is closely related to proof plans, that is,  to describe the
proofs abstractely. If a proof has been found the plan should be analyzed and simplified. Then — so the
hope —- this proof plan can be used to find proofs of similiar theorems. On the importance of abstract
description of theorems and proofs see also [8].

2 Thesis

To find an analogy depends, just as many other intelligent processes, to a great degree on finding the
adequate level of abstraction. When we are searching for an analogy we are taking only certain aspects
of the situation into account and are disregarding others. HELMUT THIELE [18] uses subsystems of the
signature to abstract from unimportant parts of a concept, in other words to neglect those parts that are
not necessary when only the two analogous facts are taken into account. The remaining important parts
then have to be  isomorphic. In some sense this can be  seen as an equivalence mapping among models. In
mathematics we can follow a similiar simple approach by not telling the system the meaning, that is, the
definition of some concept. For example if we want to consider only the “reflexivity” of an equivalence
relation, we abstract from “symmetry” and “transitivity”. In other words we want to model reasoning of
the sort “whatever symmetry and transitivity might be, we can conclude . . .” (see the example below).
This method is well known in the field of automated theorem proving, and is in fact the second “cheat”
of ALAN BUNDY’S (originally longer) list in [3, p.88]:

—- “Feedn to the theorem. prover only those axioms known to be  required in the proof. Irrelevant
axioms can dramatically increase the size of the search tree.”

-— “Generating only that part of the search tree which lies within some arbitrary limits, but which is
known to include the proof. Typically, the sought proof is examined to see: how long it is; what the
maximum depth of function nesting is and what the maximum length of clauses is: and then the
tree is only searched within those limits.”

We give examples how “analogy” can help at least in some cases to automate the finding of those clauses
that are necessary to derive a theorem and to automatically adjust some “options” of a resolution prover
in order t o  cut down the search space. Unlike other approaches of using analogy as that of GREINER
[9], where facts that are neither in the data base nor logically derivable, can be  derived by analogy, our
treatment of analogy does not enlarge the derivation facilities in principle.
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Additionally we argue that the description level of concepts and theorems should be as high as possible, 
as it is much easier then to find the corresponding level of abstraction where the analogy can be expressed. 
If the level is too high one can expand the definitions stepwise without any problem, the reverse operation 
is much more difficult. 

3 Main	 Example 

In this part we analyze the following simple theorem in detail (taken from [5, p.37]): 

Theorem:	 Let S be a set and p and eT be two equivalence relations on S, then the relation p n eT is 
also an equivalence relation. 

If we use a sorted first order logic to formalize the theorem and prove it automatically by a theorem prover 
as the MKRP system, we may axiomatize it in the following way: 

•	 Definition of an equivalence relation:
 
Vp: relation equivalence..relation(p) ~ reflexive(p) A symmetric(p) A transitive(p)
 

•	 Definition of reflexivity:
 
Vp: relation reflexive(p) ~ (Vx: S (x, x) E p)
 

•	 Definition of symmetry: 
Vp:relation symmetric(p) ~ (Vx,y:S (x,y) Ep==!?(y,x)Ep) 

•	 Definition of transitivity:
 
Vp : relation transitive(p) <=? (Vx, y, z : S (x, y) E P A (y, z) E p ==!? (x, z) E p)
 

•	 Definition of intersection:
 
Vp,u: relation Vx,y: S (x,y) E pn u ~ (x,y) E pA (x,y) E u
 

•	 Theorem: 
Vp, u : relation	 equivalence.Telation(p) A equivalence.relation(0")
 

==!? equivalence..relation(p n u)
 

Let us use the following abbreviation: 
P(p, u) ~	 reflexive(p) A symmetric(p) A transitive(p)A
 

reflexive(u) A symmetric(u) A transitive(O")
 

Expanding the definition of an equivalence relation the theorem can be rewritten as: 

Vp, u : relation	 P(p, u) ==!? reflexive(p n u) A symmetric(p n u) A transitive(p n u) 

We (as well as the MKRP system) see that one can split the proof into the three subproofs: 

•	 Vp,u: relation P(p, iT) ==!? reflexive(p n iT) 

•	 Vp, iT : relation pep, iT) ==!? symmetric(p n 0") 

•	 Vp, u : relation P(p, iT) ==!? transitive(p niT) 

These subproofs are independent, so the order of the subproofs is a priori irrelevant. Now it would be a 
good heuristic to begin proving the "simplest" part of the theorem, namely the reflexivity of pn eT, in order 
to use this proof to prove the other parts "analogously". Why is this the simplest part? One might argue 
as a purely syntactic heuristic that the definition of the reflexivity produces only two two-literal clauses 
whereas symmetry produces a three-literal and two two-literal clauses, and transitivity a four-literal, a 
three-literal, and a two-literal clause. Consequently it is "easier" to show the reflexivity than to show the 
symmetry, which is itself easier to show than the transitivity, which is by far the most difficult part. 
If we give the axiomatization of the definitions and of the first part of the theorem (the reflexivity) to 
an automated theorem prover, we might obtain the following resolution proof which the MKRP system 
actually produced (s..1, reLl and rel..2 are Skolem constants. The asterisk indicates that the following 
clause is used in the final proof). 

Additionally we argue that the description level of concepts and theorems should be as high as possible,
as it is much easier then to  find the corresponding level of abstraction where the analogy can be  expressed.
If the level is too high one can eXpand the definitions stepwise without any problem, the reverse operation
is much more difficult.

3 Main Example

In this part we analyze the following simple theorem in detail (taken from [5, p.37]):

Theorem: Let S be a set and p and a' be two equivalence relations on S, then the relation p n a' is
also an equivalence relation.

If we use a sorted first order logic to formalize the theorem and prove it automatically by a theorem prover
as the MKRP system, we may axiomatize it in the following way:

. Definition of an equivalence relation:
Vp : relation equivalence.relatz'on(p) <:=> reflexive(p) A symmetric(p) A transitive(p)

. Definition of reflexivity:
Vp : relation reflea:___ive(p) im) (Va: : S (a:, r.) E p)

. Definition of symmetry:
Vp : relation symmetric(p) (==> (Va, 3; : S (22,31) E p => (y,:n) € p)

. Definition of transitivity:
Vp : relation transitive(p) (==> (Var, y ,z  : S (x, y) E pA (y, z) E p => (2:, z) E p)

. Definition of intersection:
Vp,a':relatz'on V3,?) : S (a:,y) 6 pn  a' <=} (a:,y) E pA (a:,y) e a:

o Theorem: .
Vp, o' : relation equivalence:elatzon(p) A equivalencelelationw)

=> equivalenceJelation(p n a)

Let us use the following abbreviation:
P(p, a') <=} re  flexive(p) A symmetric(p) A transitive(p)A

re f lerive(a') A symmetric(a) A transitive(a)

Expanding the definition of an equivalence relation the theorem can be  rewritten as:

Vp, or : relation P(p, a') ==> reflexive(p n o') A symmetric(p n a") A transitive(p n a")

We (as well as the MKRP system) see that one can split the proof into the three subproofs:
e Vp, or : relation P(p, a) => reflexive(p n a)
o W), a : relation P(p,  a) =? symmetr ic(pn a“)
o Vp, cr : relation P(p, a") =) transitive(pn 0')

These subproofs are independent, so the order of the subproofs is a priori irrelevant. Now it would be a
good heuristic to  begin proving the “simplest” part of the theorem, namely the reflexivity of pnar, in order
to use this proof t o  prove the other parts “analogously”. Why is this the simplest part? One might argue
as a purely syntactic heuristic that the definition of the reflexivity produces only two two-literal clauses
whereas symmetry produces a three-literal and two two—literal clauses, and transitivity a four-literal, a
three-literal, and a two-literal clause. Consequently it  is “easier” to show the reflexivity than to show the
symmetry, which is itself easier to show than the transitivity, which is by far the most difficult part.
If we give the axiomatization of the definitions and of the first part of the theorem (the reflexivity) to
an automated theorem prover, we might obtain the following resolution proof which the MKRP system
actually produced (3.1, re1_1 and re1_2 are Skolem constants.- The asterisk indicates that the following
clause is used in the final proof).





4 3 MAIN EXAMPLE 

Ai: All rho,sigma:ReI z:E1ement - In(z intersect(sigma rho» + In(z sigma)
 
A2: All rho,sigma:Rel z:E1ement - In(z intersect(sigma rho» + In(z rho)
 
A3: All rho,sigma:Rel z:Element + In(z intersect(sigma rho» - In(z sigma) - In(z rho)
* 
T4: All x:S + In(pair(x x) rel-1)* 
15: All x:S + In(pair(x x) rel-2)* 
T6: - In(pair(s_1 s_1) intersect (reL1 rel-2»* 
T7: All x,y:S - In(pair(y x) relJ) + In(pair(x y) relJ)
 
T8: All x,y:S - In(pair(y x) rel...2) + In(pair(x y) rel.2)
 
T9: All x,y,z:S - In(pair(z y) rel-1) - In(pair(y x) relJ) + In(pair(z x) relJ)
 
T10: All x,y,z:S - In(pair(z y) rel-2) - In(pair(y x) rel.2) + In(pair(z x) rel-2)
 

T5,1 I; A3,3 --> * R1: + In(pair(sJ s-1) intersect(reL1 rel...2» - In(pair(s-1 s-1) rel-1)
 
R1,2 I; T4,1 --> * R2: + In(pair(s..1 s-1) intersect(reL1 rel...2»
 
R2,1 I; T6,1 --> * R3: []
 

If we analyze this proof, we see that the axioms defining symmetry and transitivity have not been used,
 
hence we can prove the reflexivity of the intersection of two equivalence relations only by using the
 
definition of intersection and reflexivity.
 
That is instead ofVp,u: relation P(p, IT) ==? reflexive(pn IT) we simply have to prove:
 
Vp, IT: relation reflexive(p) 1\ reflexive(u) ==? reflexive(p n u)
 
This is easier because the original version results ina larger search space. This now is also the decisive
 
step to notice, where we use analogy: we prove the other two parts in the "same" manner, that is, we
 
replace "reflexive" by "symmetric" or rather "transitive". So we obtain a general proof plan for the whole
 
proof:
 

• Vp, er: relation reflexive(p) 1\ reflexive(er) ==? reflexive(p n er) 

• Vp, er: relation symmetric(p) 1\ symmetric(er) ==} symmetric(p n er) 

• Vp, er: relation transitive(p) A transitive(lT) ==? transitive(p n IT) 

Abstractly speaking we use the heuristic: "Prove equal things with equal preconditions." 
But analyzing the proof of the reflexivity property we observe in addition that only terms of depth one 
occur (no terms of the form (p n er) n p). This can also be used as heuristic: "Restrict the term depth 
to n, if n is the deepest nesting of terms in the proof that is used for the analogy." The use of the last 
heuristic is more limited, but in this case (where n = 1) it works and causes a drastic improvement in the 
proof of transitivity. In the following table the number of resolvents in order to find the proof is shown. 
As one can see both heuristics together show the best results. 
In the table "all" means that all three definitions of reflexivity, symmetry and transitivity are given to 
the theorem prover, "one" means only the necessary one is given, "unbounded" that arbitrary terms may 
occur, whereas in the case of "depth one" only terms of depth one may occur. 

all & unbounded one & unbounded all & depth one one & depth one 
reflexivity 3 3 3 3 
symmetry 9 9 7 7 

transitivity 122 83 46 23 

Summarizing we see that it is possible to find powerful heuristics by using analogy. In this case a proof 
was possible even without domain specific heuristics, but in more difficult examples this might be no 
longer the case. Another interesting aspect is that analogy can be used to find the "preconditions" of 
a theorem (those axioms that are necessary to prove the theorem). Unlike to the workings of a human 
mathematician, an automated resolution theorem prover must be told all relevant facts, the so-called 
preconditions. The theorem prover has then to show the unsatisfiability of the facts and the negated 
theorem. When we started to prove the "reflexivity" we used all the definitions of all occuring concepts 
as preconditions. We then found a proof and analyzed it and noticed that the definitions of symmetry 
and transitivity have not been used. By analogy we concluded that in the other two cases too only the 
corresponding precondition might be necessary. 

4 3 MAIN EXAMPLE

A1: All rho,sigma:Re1 zzElement - In(z intersect(sigma rho)) + In(z sigma)
A2: All rho,sigma:Re1 z:E1emen1: - InCz intersect(sigma rho))  + In(z  rho)
AB: All rho,sigma:Re1 z:E1ement + In(z intersect(sigma rho)) - In(z sigma) - In(z rho)
T4: All x :S  + In(pair'(x 1) 1121.1)

'. All x :S  + InCpair(x x) rel_2)
T6: - In(pair(s-1 3-1) intersect(re1.1 re1_‘2))
T7: A11 x ,y :S  - In(pair(y x) 1631.1) + In(paix(x y) re1.1)
T8: All x , y :S  - In(pair(y x) 131.2) + In(pair(x y) :re1_2)
T9: All x ,y , z :S  - In(pair(z y) re1.1) - In(pai.r(y x) re1_1) + In(pa:ir(z x) re1_1)
T10 :  All x ,y , z :S  - In(pair(z y) re1.2) - In(pair(y x) re1_2) + In(pai:r:(z x) re1_2)

i t
' l

l -
*4

! -

ä

T5,1  !: A3 ,3  ---> * R1:  + In(pair(s_1 3.1) intersect(re1_1 re1_2))  - In(pair(s.1 s.1) re1.1)
R1,2 &: T4,1 --> * R2: + In(pair(s.1 3.1) intersect(re1_1 re1.2))
R2,1 e T6,1 —-> * R3: []

If we analyze this proof, we see that the axioms defining symmetry and transitivity have not been used,
hence we can prove the reflexivity of the intersection of two equivalence relations only by using the
definition of intersection and reflexivity.
That is instead of Vp, a : relation P(p ,  0') => reflexive(p n a') we simply have to prove:
Vp, or : relation reflexive(p) A reflem'vda') => reflewivdp n cr)
This is easier because the original „version results in .a larger search space. This now is also the decisive
step to notice, where we use analogy: we prove the other two parts in the “same” manner, that is, we
replace “reflexive” by  “symmetric” or rather “transitive”. So  we obtain a general proof plan for the whole
proof:

o Vp, a' : relation reflexivdp) A reflewive(a) =} reflexive(p n a)

o Vp, a : relation symmetric(p) A symmetric(a) => sym-metric(p n cr)

. Vp, a": relation transitive(p) A transitive(a) ==> transitive(p n a)

Abstractly speaking we use the heuristic: “Prove equal things with equal preconditions.”
But analyzing the proof of the reflexivity property we observe in addition that only terms of depth one
occur (no terms of the form (‚0 0 cr) n p). This can also be used as heuristic: “Restrict the term depth
to n ,  if n is the deepest nesting of terms in the proOf that is used for the analogy.” The use of the last
heuristic is more limited, but in this case (where n = 1) it works and causes a drastic improvement in the
proof of transitivity. In the following table the number of resolvents in order to find the proof is shown.
As one can see both heuristics together show the best results.
In the table “all” means that all three definitions of reflexivity, symmetry and transitivity are given to
the theorem prover, “one” means only the necessary one is given, “unbounded” that arbitrary terms may
occur, whereas in the case of “depth one” only terms of depth one may occur.

all & unbounded one & unbounded all & depth one one &; depth one
reflexivity 3 3 3 3
symmetry 9 9 7 7

transitivity 122 83 46 23

Summarizing we see that it is possible to find powerful heuristics by using analogy. In this case a proof
was possible even without domain specific heuristics, but in more difficult examples this might be  no
longer the case. Another interesting aspect is that analogy can be used to find the “preconditions” of
a theorem (those axioms that are necessary to prove the theorem). Unlike to the workings of a human
mathematician, an automated resolution theorem prover must be told all relevant facts, the so-called
preconditions. The theorem prover has then to show the unsatisfiability of the facts and the negated
theorem. When we started to prove the “reflexivity” we used all the definitions of all occuring concepts
as preconditions. We then found a proof and analyzed it and noticed that the definitions of symmetry
and transitivity have not been used. By analogy we concluded that in the other two cases too only the
corresponding precondition might be  necessary.
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The heuristics above can also be used to prove the theorem that the intersection of two congruence
 
relations is again a congruence relation [5, pA5], but the savings for the proof of the property that is
 
additionally to be shown are much smaller.
 
But not only in a neighbourhood as close to the original theorem as these two can we use these heuristics.
 
We can also prove for example the subgroup criterion analogously by using the heuristic "prove equal
 
things with equal preconditions":
 
Define a subgroup as a subset of a group that is itself a group with respect to the same group operation.
 
We then have the following theorem:
 

Theorem:	 Let (G, +) be a group with neutral element 0, inverse function "-" and let S be a subset 
ofG. Then (8,+) is subgroup of(G,+) ifand only if 

a) 0 E 8 and 

b)Vx,yE8	 (x+Y)E8and 

c) "Ix E 8 (-x) E 8 

Let us consider here only the ("non-trivial") "~"-part of the proof: 
We define a group by: 

group(G, +, 0, -) {::::::}	 1) G set 5) associative(G, +)
 
2)+:GxG-+G 6) neutraL.element(G, +, 0)
 
3) 0 EG 7) inverse(G,+,O,-)
 
4) - :G-+G
 

Then we can prove group(8, +,0, -) by proving these conditions. Therefore we use 8 ~ G in all seven
 
cases and the corresponding facts of the precondition, i.e.
 
in the case of 1), 5), 6) and 7) no additional information,
 
in the case of 2) the corresponding condition b),
 
in the case of 3) condition a), and
 
in the case of 4) condition c).
 

As in the example above we can use here the heuristic "show equal things by equal preconditions" and
 
reduce the used preconditions to the necessary ones.
 
This form of analogical reasoning can be used in the proofs of corresponding structures like rings, fields,
 
vector spaces and so on. In all these cases the proofs can be separated into different parts, with a similiar
 
reduction of savings in the search space.
 
Unfortunately this is not the whole story, since in a mathematical textbook our theorem would not be
 
phrased as above. For example condition a) would not be mentioned, because it follows from the others.
 
But then our analogy would not be sufficient to prove 3).
 

There are also counterexamples for the heuristic "Show equal things by equal preconditions". Let for
 
example a group be defined by 1) through 5) above, but instead of 6) and 7) there would be axioms for
 
the existence of a left-neutral element and the existence of left-inverses. Then it is not possible to show
 
property 6) for the substructure using only the existence of a left-neutral element. One needs also the
 
associativity and the existence of left-inverses. From an abstract point of view this is surprising. This
 
proof is therefore more difficult than the other proofs above.
 

More Examples 

In this section we want to sketch some analogies in proofs taken from [5]. All page numbers refer to [5]. 
A little more difficult than the proof of the previous section is the proof of the following part of a theorem 
(p.37): 

TheoreIn:	 Let p and u be two equivalence relations then the transitive hull of pUu (written (pUu)l) 
is also an equivalence relation. 

4 

The heuristics above can also be used to prove the theorem that the intersection of two congruence
relations is again a congruence relation [5, p.45], but the savings for the proof of the property that is
additionally to be shown are much smaller.
But not only in a neighbourhood as close to the original theorem as these two can we use these heuristics.
We can also prove for example the subgroup criterion analogously by using the heuristic “prove equal
things with equal preconditions”:
Define a subgroup as a subset of a group that is itself a group with respect to the same group operation.
We then have the following theorem:

Theorem: Let (G, +) be a group with neutral element 0, inverse function “—” and let S’ be  a subset
of G. Then (S,+) is subgroup of (G, +) if and only if
a )0€S’and
'b)Va: ,yES (m+y)ESand
c)V:cES (—$)€S

Let us consider here only the “non-trivial”) “<=”-part of the proof:
We define a group by:

group(G,+,0,  --) {==> 1) G set 5) associative(G,+)
2) + : G x G —> G 6) neutralrlemént(G,+,0)
3) 0 E G 7) inverse(G,+,0,—)
4) — : G -——> G

Then we can prove group(S‚ +,  0, —) by proving these conditions. Therefore we use S g G in all seven
cases and the corresponding facts of the precondition, i.e.
in the case of 1), 5), 6) and 7) no additional information,
in the case of 2) the corresponding condition b),
in the case of 3) condition a ) ,  and
in the case of 4) condition c).

As in the example above we can use here the heuristic “show equal things by equal preconditions” and
reduce the used preconditions to the necessary ones.
This form of analogical reasoning can be used in the proofs of corresponding structures like rings, fields,
vector spaces and so on. In all these cases the proofs can be separated into different parts, with a similiar
reduction of savings in the search space.
Unfortunately this is not the whole story, since in a mathematical textbook our theorem would not be
phrased as above. For example condition a) would not be mentioned, because it follows from the others.
But then our analogy would not be sufficient to  prove 3).

There are also counterexamples for the heuristic “Show equal things by equal preconditions”. Let for
example a group be defined by 1) through 5) above, but instead of 6) and 7) there would be axioms for
the existence of a left-neutral element and the existence of left-inverses. Then it is not possible to show
property 6 )  for the substructure using only the existence of a left-neutral element. One needs also the
associativity and the existence of left—inverses. From an abstract point of View this is surprising. This
proof is therefore more difficult than the other proofs above.

4 More Examples
In this section we want to sketch some analogies in proofs taken from [5]. All page number'srefer to [5].
A little more diflicult than the proof of the previous section is the proof of the following part of a theorem
(p.37):

Theorem: Let p and a be two equivalence relations then the transitive hull of pUcr (written (pUcr)‘)
is also an equivalence relation.





6	 5 ANALOGY BY AN ABSTRACT DESCRIPTION OF PROOFS 

As in the proof of our first example in section 3 this proof can be split into the three subproofs "reflexivity" , 
"symmetry", and "transitivity". But here "transitivity" plays a special role: It is possible to show that 
for every relation a the relation at is transitive. The proof of the other two parts are then mutually 
analogous: 

• Prove the property for the union. 

• Show the invariance of the property under closure. 

The next example shows how a special case can catch the whole proof idea. 

Theorem:	 Let {U; : i E I} be a family of subsemi-groups of a semi-group F, then the intersection 
n Ui is also a subsemi-group of F, if the intersection is not empty. 
iEI 

The proof of this theorem (p.9) is given only for the intersection of two semi-groups. The general proof is 
then analogous to this special case. The analogy consists in the correspondence between "A" and "n" on 
the one hand and ''Vi E I " and "n" on the other hand. 

iEI 
The two proofs can be sketched as: 

'IL, V E nUi=* Vi E I 'It, V E Ui 
'It, V E U n V =* 'It, V E U /\ 'It, V E V iEI 

=* uv E U /\ uv E V ===? Vi E I 'ItV E Ui 
=*uv E UnV =*'ltV En Ui 

iEI 

Because of its close analogy to this proof, no proof of the next theorem (p.lO) is given: 

Theorem:	 Let {Ui : i E I} be a family of subgroups of a group F, then the intersection n Ui is also 
iEI 

a subgroup of F. 

Later on an analogous theorem is formulated for families of ideals of a semi-group F (p.22) and proved 
analogously. 

It is a challenge to find similiar heuristics as shown above also for proofs that are more difficult to find. 
Therefore it will probably be necessary to use a hierarchical representation as proposed in [2]. 

5 Analogy by an Abstract Description of Proofs 

BUNDY'S idea of proof plans as introduced in [4] may also serve as a metaphor for "proving by analogy": 
two proofs are analogous if they are instantiations of the same proof plan. BUNDY argues that learning 
from proofs should be possible, that it should be possible to find a proof by using the successful proof plan 
of another theorem. In order to do so, it is necessary to find a basic number of structuring and description 
facilities that are epistemological sufficient to describe proofs and their mutual relationships in order to 
find analogies, even in cases that are not as easy as the previous one. Examples from the domain of Real 
Analysis can be found in [2], where a working system is described, that uses a higher level representation 
for proofs. 
Let us look closer at another example: We have the following two "analogous" theorems: 

Let A, Band C be sets with addition + and let u Let A, Band C be topological spaces and let u 
and T be linear functions A ....::....,. B ~ C. Then and T be continous functions A ~ B ~ C. 
u 0 T is linear. Then u 0 T is continous. 

The proofs of these theorems can be sketched as: 

6 5 ANALOGY BY  AN ABSTRACT DESCRIPTION OF PROOFS

As in the proof of our first example in section 3 this proof can be  split into the three subproofs “reflexivity” ,
“symmetry”, and “transitivity”. But  here “transitivity” plays a special röle: It is possible to show that
for every relation 0: the relation at  is transitive. The proof of the other two parts are then mutually
analogous:

o Prove the property for the union.

. Show the invariance of the property under closure.

The next example shows how a special case can catch the whole proof idea.

Theorem: Let {U,- : € € I}  be a family of subsemi-gmUps of a semi-grou p F, then the intersection
fl U,- is also a subsemi—group of F, if the intersection is not empty.
ie ]

The proof of this theorem (p.9)  is given only for the intersection of two semi-groups. The general proof is
then analogous to this special case. The analogy consists in the correspondence between “A” and “n” on
the one hand and “Vi E I ” and “ n ” on the other hand.

i e ]
The two proofs can be  sketched as:

25,06 n U5==>V£EI u ,vEU, -
u ,vEUnV=¢u ,u€UAu,vEV £61

==>eUA2wEV =>Vi€ l tweUg
=>zw€UnV =>uoEflUg

i e !

Because of its close analogy to this proof, no proof of the next theorem (p.10) is given:

Theorem: Let {U,- : z' E I} be a family of subgroups of a group F, then the intersection n U,- is also
iE I

a subgroup of F .

Later on an analogous theorem is formulated for families of ideals of a semi-group F (p.22) and proved
analogously.

It is a challenge to find similiar heuristics as shown above also for proofs that are more difficult to find.
Therefore it will probably be necessary to use a hierarchical representation as proposed in [2].

5 Analogy by an Abstract Description of Proofs

BUNDY’S idea of proof plans as introduced in [4] may also serve as a metaphor for “proving by analogy”:
two proofs are analogous if they are instantiations of the same proof plan. BUNDY argues that learning
from proofs should be possible, that it should be possible to find a proof by using the successful proof plan
of another theorem. In order to do so, it is necessary to find a basic number of structuring and description
facilities that are epistemological sufficient to describe proofs and their mutual relationships in order to
find analogies, even in cases that are not as easy as the previous one. Examples from the domain of Real
Analysis can be found in [2], where a working system is described, that uses a higher level representation
for proofs.
Let us look closer at another example: We have the following two “analogous” theorems:

Let A, B and 0 be sets with addition + and let a Let A, B and C be topological spaces and let a
and r be  linear functions A „L., B —"—-> C. Then and 7- be continous functions A —T—> B L C.
0' o 1" is linear. Then 0' o 1' is continous.

The proofs of these theorems can be sketched as:
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(1) r linear => "la, a' E A r(a + a') = r(a) + r(a') (1) r cont. => VU ~ B open r-I(U) open in A 
(2) u linear => Vb, b' E B u(b + b') = u(b) + u(b') (2) IT cont. => W ~ C open IT-I (V) open in B 

"la, a' EAu 0 Tea + a,)dgou(r(a + a'» (*) W ~ C (u 0 r)-l(V)Prog; -1 r-I 0 u-1 (V) 

C;) u(r(a) + r(a'» dgo r-l(u-1(V» 

<;) u(r(a» + u(r(a'» V open in C ~ u-1 (V) open in B 
defo ( ')= uor(a)+uor a Wr-1 (u-1 (V» open in A 

=> u 0 r linear 
~ (IT 0 r)-I(V) open in A 

=> u 0 r continous 

Abstractly speaking the proofs consist both of the following general steps in sequence, which then consti
tute the "proof plan": 

• expand what to prove 

• use definition of composition 

• use the only applicable property 

• use the then newly applicable property 

The analogy between concepts that underly the previous example (semi-group, vector space, ... and 
topological spaces) resulted later on in the history of mathematics in the definition of the new concept of 
an "abelian category", where one can prove formally that certain proofs about rings can be generalized 
to arbitrary abelian categories [13, p.151]. 
The most important steps of the proof can be described "declaratively". The hope is that it is possible to 
classify the theorems and that then the proofs can be found analogously. The two theorems above would 
belong to a category "property inheritence in case of composition" . 

Classification 

Because it can be rather difficult to find an analogy, it is helpful to have a classification of theorems. 
Taking a closer look at the first five paragraphs of [5], one can make the following rough classification of 
theorems (We describe only the first two categories in more detail): 

• Invariance: 

- 1.11: intersection of a family of subsemigroups is again a subsemigroup if it is nonempty 
- 1.12: intersection of a family of subgroups is again a subgroup 
- 3.3: union (intersection) of a family of ideals is again an ideal if nonempty 
- 4.8.1: intersection of equivalence relations is again an equivalence relation 
- 4.8.2.1: transitive closure of the union of equivalence relations is again an equivalence relation 

• CompatibilityfCommutativity: 

- 1.9: one of subgroup equals one of group
 
- 4.10.3: commutative diagram
 
- 4.11, 4.12: reference of equivalence relations and mappings
 

• Equality of Sets: 1.15, 3.9, 3.10.1-3, 3.15.1, 4.3 

• Equivalences: 1.10,2.6, 2.7, 3.6, 5.2 

• Uniqueness Theorems: 2.5.1, 2.5.2, 3.10.4, 3.15.2 

• Hierarchy Relation: 3.2 

• Minimality: 4.8.2.2 

(1) 1' linear => Va, a '  € A f(a  +a ' )  :: f(a) + f(a') (1) T cont. => VU g B open r"1(U) open in A
(2) 0' linear => Vb, b' E B 0(1) + b') = a'(b) + aUJ') (2) 0' cont- => W E G Open 0—1 (V) Open in B
Va, (1’ E A a o 7(a. + a')d3-£°a(‘_r(a + a')) (:|:) VV g C (a- o r)‘1 (V)Pmä'_1'r'1 o a '1(V)

“4 «(rm + roam =°r-1(a-1(V»
(1%) a(r(a.)) + a(r(a '))  V open in C (=? a_1(V) open in B
=°a o 7(a)  + a o f (a')  (=1)? 

7—1 (a":L (V)) Open in A
:> a o r hnear (=? (a- o r)-1 (V) open in A

=> cr o r continous

Abstractly speaking the proofs consist both of the following general steps in sequence, which then consti—
tute the “proof plan”:

o expand what to prove

o use definition of composition

. use the only applicable property

. use the then newly applicable property

The analogy between concepts that underly the previous example (semi-group, vector space, . . . and
topological spaces) resulted later on in the history of mathematics in the definition of the new concept of
an “abelian category”, where one can prove formally that certain proofs about rings can be generalized
to arbitrary abelian categories [13, p.151].
The most important steps of the proof can be described “declaratively”. The hope is that it is possible to
classify the theorems and that then the proofs can be found analogously. The two theorems above would
belong to a category “property inheritence in case of composition”.

Classification

Because it can be  rather difficult to  find an analogy, it is helpful to have a classification of theorems.
Taking a closer look at the first five paragraphs of [5], one can make the following rough classification of
theorems (We describe only the first two categories in more detail):

o Invariance:

1.11: intersection of a family of subsemigroups is again a subsemigroup if it is nonempty
1.12: intersection of a family of subgroups is again a subgroup
3.3: union (intersection) of a family of ideals is again an ideal if nonempty

— 4.8.1: intersection of equivalence relations is again an equivalence relation
-- 4.8.2.1: transitive closure of the union of equivalence relations is again an equivalence relation

Compatibility / C ommutativity:

— 1.9: one of subgroup equals one of group
— 4.10.3: commutative diagram
—- 4.11, 4.12: reference of equivalence relations and mappings

Equality of Sets: 1.15, 3.9,  3.10.1-3, 3.15.1, 4 .3

Equivalences: 1.10, 2.6,  2.7, 3.6,  5 .2

o Uniqueness Theorems: 2.5.1, 2.5.2, 3.10.4, 3.15.2

Hierarchy Relation: 3 .2

Minimality: 4.8.2.2





8 6 ANALOGY AND MODEL 

5.3,5.6, 5.7, 5.8 are analogous to 4.8, 4.10, 4.11, 4.12 for congruence relations.
 
The theorems 5.14 and 5.17 do no fit into the categories above and an abstract description may be difficult.
 
For the first category one has the following description (when only two components are considered):
 
P(x) 1\ P(y) 1\ additional conditions ===> P(f(x, y»
 
Such a classification could be useful in automated theorem proving, when one has to solve a problem, in
 
the following way:
 

• at first find the corresponding category of the problem 

• then find an "analogous" theorem in this category with a known proof 

• try to transform the proof to the new theorem 

Sometimes it should be possible to extract a proof schema for the whole category (not to find a general 
proof for the whole schema, but as a heuristic). Or it is at least possible to have some heuristic information 
as in the case of the "invariance"-category the heuristic "prove equal things with equal preconditions" . 
Another such heuristic is BUNDY'S "Ripple-Out" heuristics [4, p.1l5]. 

6 Analogy and Model 

Many mathematical fields as geometry and topology are guided by strong aspects of spatial imagination 
and live widely on intuition and geometrical views of things. Even in fields where one has no visual models 
at all, mathematicians try to use the strong visual apparatus of the human mind for an intuition of the 
constituting concepts and even of proofs. JACQUES HADAMARD gives an example of a "mental picture" 
of the proof that there are infinitely many prime numbers [10, p.76]. A more complex example is given 
by BARTEL L. VAN DER WAERDEN in [19]. 
We can rephrase this by saying that mathematicians use intuitive models of the objects they deal with 
whenever possible. These objects are not always real models in the logical sense, more often they are only 
"near models" or "almost models" (a very lively discussion of this trick can be found in [7, p.1l2 f.]). The 
proof is searched for and visualized by means of an example. If the proof is found for the example it is 
generalized by finding the corresponding analogy and only then is it written down formally. 
Many parts of mathematics have been developped by abstracting and generalizing known concepts. For 
example topology can be regarded as a generalization dealing with open sets and continous functions on 
the real numbers R. So when trying to find a general proof in topology one sometimes uses the analogous 
situation in the case of R or more often in the case of R 2 to find the general proof. Let. us consider a 
simple theorem (taken from [17, p.19f1): 
We want to begin with recalling some definitions of topology: Let (X,O) be a topological space, the 
members of CJ are called open sets and for all x E X let U(x) be the set of all surroundings of x, a subset 
U ~ X is called a surrounding of x i:ff there is a V E CJ with x E V ~ U. 

Theorem: A set V ~ X is open -<===> \/x E V 3Ua; E U(x) with Ua; ~ V 

The proof: 
"===>": V open ===> V EO===> \/x E V x E V ~ V 
"<:==": \/x E V 3Ua; E U(x) therefore 

"Ix E V 3Va; E CJ with x E Va; ~ U:r; ~ V therefore 

V =Ua;EV{x} ~ U:r;EV V:r; ~ U:r;EV U:r; ~ U:r;EV V =V 
consequently V is open as union of the open sets V:r;. 

Consider only the second (non-trivial) part of the proof. Although this proof can be found directly, it 
is most convenient for a mathematician to use his intuition of the plane when trying to find the proof. 
The set V is imagined as a (finally open) circle in the plane. The x's are points inside the circle aIidthe 
Ua; are small circles around the x's fully contained in V, the V:r; are small open circles inside the U:r; with 
centre x. This picture then induces the proof: All the small open circles V:r; form a cover of V. 
A similiar visualization is often used to clarify the relationship between sets and their intersections, unions, 
or complements by so called VENN-diagrams (see [1] or another mathematical encyclopedia). 

3 6 ANALOGY AND MODEL

5.3, 5 .6 ,  5.7, 5.8 are analogous to 4.8, 4.10, 4.11, 4.12 for congruence relations.
The theorems 5.14 and 5.17 do no fit into the categories above and an abstract description may be difficult.
For the first category one has the following description (when only two components are considered):
P(a:) A P(y) A additional conditions ==> P(  f (x,  y))
Such a classification could be  useful in automated theorem proving, when one has to solve a problem, in
the following way:

o at first find the corresponding category of the problem

. then find an “analogous” theorem in this category with a known proof

. try to transform the proof to the new theorem

Sometimes it should be  possible to extract a proof schema for the whole category (not to find a general
proof for the whole schema, but as a heuristic). Or  it is at least possible to  have some heuristic information
as in the case of the “invariance” -category the heuristic “prove equal things with equal preconditions”.
Another such heuristic is BUNDY’S “Ripple-Out” heuristics [4, p.115].

6 Analogy and Model
Many mathematical fields as geometry and tOpology are guided by strong aspects of spatial imagination
and live widely on intuition and geometrical views of things. Even in fields where one has no  visual models
at all, mathematicians try to  use the strong visual apparatus of the human mind for an intuition of the
constituting concepts and even of proofs. JACQUES HADAMARD gives an example of a “mental picture”
of the proof that there are infinitely many prime numbers [10, p.76]. A more complex example is given
by BARTEL L .  VAN DER WAERDEN in [19].
We can rephrase this by saying that mathematicians use intuitive models of the objects they deal with
whenever possible. These objects are not always real models in the logical sense, more often they are only
“near models” or “almost models” ( a  very lively discussion of this trick can be found in [7, p.112 f.]). The
proof is searched for and visualized by means of an example. If the proof is found for the example it is
generalized by finding the corresponding analogy and only then is it written down formally.
Many parts of mathematics have been developped by abstracting and generalizing known concepts. For
example topology can be regarded as a generalization dealing with Open sets and continous functions on
the real numbers R. So when trying to find a general proof in topology one sometimes uses the analogous
situation in the case of R or more often in the case of R.2 to find the general proof. Let. us consider a
simple theorem (taken from [17, p.19fl):
We want to begin with recalling some definitions of topology: Let (X,  0) be a topological space, the
members of O are called open sets and for all a: E X let “($) be  the set of all surroundings of a:, a subset
U 9 X is called a surrounding of a: ifi there is a V € 0 with a: € V ; U.

Theorem: A set V _C_ X is open <==> Va: € V EU„- 6 (1(13) with U„ 9 V

The proof:
“=>”: V o p e n = r > V 6 0 = > V m € V  egV
“<=”: V9: 6 V EU„ E ”(13) therefore

Va: € V EV,; E 0 with a: E V,c g U„ g V therefore
V = User/{‘5} Q UzeV V3 Q UmeV U3 g UzeV V = V
consequently V is open as union of the Open sets V3.

Consider only the second (non—trivial) part of the proof. Although this proof can be found directly, it
is most convenient for a mathematician to use his intuition of the plane when trying to find the proof .
The set V is imagined as a (finally open) circle in the plane. The m’s are points inside the circle and the
Um are small circles around the :c’s fully contained in V, the V„ are small open circles inside the Us, with
centre 23. This picture then induces the proof: All the small open circles V„- form a cover of V .
A similiar visualization is often used to clarify the relationship between sets and their intersections, unions,
or complements by so called VENN—diagrams (see [1] or another mathematical encyclopedia).
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The interesting thing is that one considers only one special example in order to catch the whole proof. 
POLYA gives in [16] some more examples where the general case is equivalent to the special one. Such an 
example has to be as easy as possible (in order to be feasible) and as general as necessary (in order to 
include the whole problem). Now if we have a reasoner for such restricted examples one could then follow 
this proof of the example as a guiding yardstick in the general case. This could be 40ne just as described 
above, where one proof is used to guide the search for another by analogy. 

7 Conclusion and Further Work 

We presented some examples for the possibility to find or to facilitate proofs by analogy. The examples 
suggest an actual formalization such that the idea can be used in an automated theorem proving system. 
(The examples of the last section seem to be at the moment a little far from actual formalization: this 
idea is appropriate only in limited cases when an intuition is helpful. The great contribution of formal 
logic to mathematics however has been to abstract from concrete models and to treat the problem purely 
formal.) 
The idea is to find a whole set of representation facilities for proofs, so that the system can formulate 
abstract versions of proofs in order to prove other theorems by analogy. This should help in finding the 
preconditions of a theorem (those clauses that are actually necessary for a proof) and to automatically 
set certain parameters such as term depth. It also should contribute to the answer of the question "what 
are the main steps of the proof" . 
We also notice a semantic aspect: When we draw an analogy from theorems and concepts to analogous 
proofs we use as a general heuristic that the proof of the generalization follows the same general steps 
as in the special case. One might argue that this follows from the analogy between the corresponding 
models. But this whole aspect is only heuristic and there are much more counterexamples than the ones 
mentioned above. 
In this paper we have presented a proposal of how to include some aspects of the concept of "analogy" in 
an automated theorem prover. In order to see whether the proposed ideas are really useful it is necessary 
to experiment with a much larger set of theorems taken arbitrarily from a mathematical textbook. There 
are more problems however that have to be solved before we have a useful tool. 
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The interesting thing is that one considers only one special example in order to catch the whole proof.
PÖLYA gives in [16] some more examples where the general case is equivalent to the special one. Such an
example has to be  as easy as possible (in order to be feasible) and as general as necessary (in order to
include the whole problem). Now if we have a reasoner for such restricted examples one could then follow
this proof of the example as a guiding yardstick in the general case. This could be  done just as described
above, where one proof is used to guide the search for another by analogy.

7 Conclusion and Further Work

We presented some examples for the possibility to find or to facilitate proofs by analogy. The examples
suggest an actual formalization such that the idea can be  used in an automated theorem proving system.
(The examples of the last section seem to be at the moment a little far from actual formalization: this
idea is appropriate only in limited cases when an intuition is helpful. The great contribution of formal
logic to mathematics however has been to abstract from concrete models and to treat the problem purely
formal.)
The idea is to find a whole set of representation facilities for proofs, so that the system can formulate
abstract versions of proofs in order to prove other theorems by analogy. This should help in finding the
preconditions of a theorem (those clauses that are actually necessary for a proof) and to automatically
set certain parameters such as term depth. It also should contribute to the answer of the question “what
are the main steps of the proof” .
We also notice a semantic aspect: When we draw an analogy from theorems and concepts to analogous
proofs we use as a general heuristic that the proof of the generalization follows the same general steps
as in the special case. One might argue that this follows from the analogy between the corresponding
models. But  this whole aspect is only heuristic and there are much more counterexamples than the ones
mentioned above.
In this paper we have presented a proposal of how to include some aspects of the concept of “analogy” in
an automated theorem prover. In order to see whether the proposed ideas are really useful it is necessary
to experiment with a much larger set of theorems taken arbitrarily from a mathematical textbook. There
are more problems however that have to be  solved before we have a useful tool.

Acknowledgements
I would like to thank AXEL PRÄCKLEIN for thorough readings of an earlier draft and JÖRG SIEKMANN
for many advices that resulted in numerous improvements.

References

[1] Heinrich Behnke, Reinhold Remmert, Hans-Georg Steiner, Horst Tietz (Edts.) (1964), “Mathematik 1”
Fischer Taschenbuch Verlag, Frankfurt.

[2] Bishop Brock, Shaun Cooper, William Pierce (1988), “Analogz'cal Reasoning and Proof Discovery” Proc. of
the 9th CADE, Argonne Illinois, LNCS 310, Edts. E.Lusk & R.Overbeek‚ Springer Verlag, Berlin, Heidelberg,
New York.

[3] Alan Bundy (1983) ,  “The Computer Modelling of Mathematical Reasoning” Academic Press, London.

[4] Alan Bundy (1988), “The Use of Explicit Plans to Guide Inductive Proofs” Proc. of the 9th CADE, Argonne
Illinois, LNCS 310, Edts. E.Lusk & R.Overbeek, Springer Verlag, Berlin, Heidelberg, New York.

[5] Peter Deussen (1971), “Halbgrappen und Automaten” Springer Verlag, Berlin, Heidelberg, New York.

[6] Norbert Eisinger, Hans Jürgen Ohlbach (1987), “The Markgraf Kar! Refistation Procedure (MK RP}” Proc.
of the 8th CADE, Oxford, England, LNCS 230, Edt. J.Siekmann, Springer Verlag, Berlin, Heidelberg, New
York.





10 REFERENCES 

[7]	 Richard P. Feynman (1987), "Sie belieben wohl zu scherzen, Mr. Feynman!" Piper, Miinchen, german 
translation of: "Surely You're Joking, Mr. Feynman!", Norton, New York, London, 1985. 

[8]	 T. Gergely, KP. Vershinin (1985), "Natural Mathematical Texts vs. Programs" in Mathematical Methods of 
Specification and Synthesis of Software Systems '85, Proc. of the International Spring School Wendisch-Rietz, 
GDR, LNCS 215, Edt. W.Bibel & KP.Jantke, Springer Verlag, Berlin, Heidelberg, New York. 

[9]	 Russell Greiner (1988), "Learning by Understanding Analogies" Artificial Intelligence 35 81-125. 

[10]	 Jacques Hadamard (1945), "The Psychology of Invention in the Mathematical Field" Princeton University 
Press, reprinted 1954 by Dover Publication, New York. 

[11] Rogers P. Hall (1989), "Computational Approaches to Analogical Reasoning: A Comparative Analysis" Ar
tificial Intelligence 39 39-120: 

[12J	 Karl Mark GRaph (1984), "The Markgraf Karl Refutation Procedure" Memo-SEKI-MK-84-01, Fachbereich 
Informatik, Universitiit Kaiserslautern. 

[13]	 Barry Mitchell (1965), "Theory of Categories" Academic Press, New York, London. 

[14]	 Allen Newell (1981), "The Heuristic of George Polya and its Relation to Artificial Intelligence" Department 
of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvanian 15213; CMU-CS-81-133, also 
to appear iri R.Grorier, M.Groner arid W.F.Bishoof (Eds.), Methods of Heuristics, Hillsdale, MJ: Lawrence 
Erlbaum. 

[15] George P6lya (1949), "How to Solve It" Princeton University Press, Princeton, New Jersey. 

[16] George	 P6lya (1954), "Mathematics and Plausible Reasoning" Princeton University Press, Princeton, New 
Jersey. 

[17]	 Boto von Querenburg (1979), "Mengentheoretische Topologie" 2.Au:O.., Springer Verlag, Berlin, Heidelberg, 
New York. 

[18]	 Helmut Thiele (1986), "A Model Theoretic Oriented Approach to Analogy" Proc. of the International Work
shop on Analogical and Inductive Inference, Wendisch-Rietz, GDR, LNCS 265, Edt. KP.Jantke, Springer 
Verlag, Berlin, Heidelberg, New York. 

[19]	 Bartel L. van der Waerden (1964), "Wie der Beweis der Vermutungvon Baudet gefunden wurde" Abh. Math. 
Sem. Univ. Hamburg 28. 

10 REFERENCES

[7] Richard P. Feynman (1987),  “Sie belieben wohl zu scherzen, Mr. Feynman!” Piper, München, german
translation of: “Surely You’re Joking, Mr. Feynmanl”, Norton, New York, London, 1985.

[8] T. Gergely, K.P. Vershinin (1985), “Natural Mathematical Texts as. Programs” in Mathematical Methods of
Specification and Synthesis of Software Systems ’85, Proc. of the International Spring School Wendisch-Rietz,
GDR, LNCS 215, Edt. W.Bibel &. K.P.Jantke, Springer Verlag, Berlin, Heidelberg, New York.

[9] Russell Greiner (1988), “Learning by Understanding Analogies” Artificial Intelligence 35  81-125.

[10] Jacques Hadamard (1945) ,  “The Psychology of Invention in the Mathematical Field” Princeton University
Press, reprinted 1954 by Dover Publication, New York.

[11] Rogers P .  Hall (1989), “Computational Approaches to Analogicol Reasoning: A Comparative Analysis” Ar-
tificial Intelligence 39  39-120;

[12] Karl Mark G Raph (1984) ,  “The Markgraf Karl Refutation Procedure” Memo-SEKI—MK—84-01, Fachbereich
Informatik, Universität Kaiserslautern.

[13] Barry Mitchell (1965), “Theory of Categories” Academic Press, New York, London.

[14] Allen Newell (1981), “The Heuristic of George Polya and its Relation to Artificial Intelligence” Department
of Computer Science, Carnegie-Mellon University, Pittsburgh, Pennsylvanian 15213; CMU-CS—81-133, also
to appear in R.Groi1er, M.Groner and W.F.Bishoof (Eds) ,  Methods of Heuristics, Hillsdale, MJ  : Lawrence
Erlbaum.

[15] George Polya (1949), “How to Solve It” Princeton University Press, Princeton, New Jersey.

[16] George Polya (1954), “Mathematics and Plausible Reasoning” Princeton University Press, Princeton, New
Jersey.

[17] Boto von Querenburg (1979),  “Mengentheoretische Topologie” 2.Aufl., Springer Verlag, Berlin, Heidelberg,
New York.

[18] Helmut Thiele (1986),  “A Model Theoretic Oriented Approach to Analogy” Proc. of the International Work-
shop on Analogical and Inductive Inference, Wendisch-Rietz, GDR, LNCS 265, Edt. K.P.Jantke, Springer
Verlag, Berlin, Heidelberg, New York.

[19] Bartel L. van der Waerden (1964), “Wie der Beweis der Vermutung- von Baudet gefunden wurde” Abh. Math.
Sem. Univ. Hamburg 28.





Tite!: S'D""'e. Atf~c..tr of 4...~(()~r1 

I" M "- f4"",-~ l-t"c.~ itQ.f() ~ 

Autoden): 

Produktart: SWP Produktnummer: S) -Itj -12® 

Einverstanden:. t) f?..: £~ . 
2) .. 

Doppelveroffentlichung: nein (wo: ) 

Auflage: TTX 

[ostenstelle: '8 ~ 

[aiserslautern. den 

W

Titel: So Me, A tra d"! o + Axe—(037

\[h  MaWwd-ulai than M436

Autor(en): M am Feel {Ca Hoe:

Produktart: SWP Produktnummer: S7)— "" 39  " 4L

Einverstandem l )  _ R M

2)

Doppelveröffentlichung= @ nein (wo: )

Auflage: ? TX

Kostenstellez 3°!

Kaiserslautern, den


