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1 Introduction 

Unification theory is concerned with problems of the following kind: Given 

two terms built from function symbols and variables, do there exist terms that 

can be substituted for the variables such that the two terms thus obtained are 

equal? This operation, called unification of terms, is the fundamental operation 

in automated deduction. In his seminal paper that presented the resolution 

calculus for first order predicate logic, Robinson [1965] gave an algorithm to 

compute a unifying substitution of two terms and proved that this uniner is 

most general in the sense that every other unifier can be obtained from it by 

further instantiation of variables. 

Plotkin [1972] suggested to generalize Robinson's syntactic unification to 

unification modulo equationally defined first order theories as a more efficient 

means for equational deduction. Since then, equational unification has been 

built into resolution theorem provers, logic programming languages, and com­

pletion procedures for rewriting systems. In his survey, Siekmann [1989] gives 

an overview of the different applications of unification. 

In the presence of equalities, a single most general unifier representing all 

solutions need no longer exist. If for instance associative and commutative 

function symbols are involved, a finite number of unifiers is needed to represent 

all other unifiers. In the case of associativity alone, even infinitely many unifiers 

may be necessary. Therefore, one introduces the concept of a complete set of 

uniners representing all solutions and, more specifically, a minimal complete set 

of unifiers. 

Siekmann [1978] divided equational theories into four classes. For unitary, 

finitary, and infinitary theories minimal complete sets of unifiers always ex­

ist and are singletons, finite, or possibly infinite sets, respectively. In nullary 

theories, minimal complete sets do not exist for some equation systems. This 

classification is known as the unification hierarchy. Examples for the classes 

are the theory of boolean rings (unitary), the theory of associativity and com­

mutativity (finitary) and associativity alone (infinitary). It is well known that 

unification of typed lambda terms is nullary, but for a long time it was an 

open problem whether there exist nullary first order theories until Fages and 
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1 Introduction

Unification theory is concerned with problems of the following kind: Given
two terms built from function symbols and variables, do there exist terms that

can be substituted for the variables such that the two terms thus obtained are

equal? This operation, called unification of terms, is the fundamental operation

in automated deduction. In his seminal paper that presented the resolution

calculus for first order predicate logic, Robinson [1965] gave an algorithm to
compute a unifying substitution of two terms and proved that this unifier is
most general in the sense that every other unifier can be obtained from it by
further instantiation of variables.

Plotkin [1972] suggested to generalize Robinson’s syntactic unification to
unification modulo equationally defined first order theories “as "a "more efficient
means for equational deduction. Since then, equational unification has been
built into resolution theorem provers, logic programming languages, and com—
pletion procedures for rewriting systems. In his survey, Siekmann [1989] gives
an overview of the different applications of unification.
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all other unifiers. In the case of associativity alone, even infinitely many unifiers
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unifiers representing all solutions and, more specifically, a minimal complete set
of unifiers.

Siekmann [1978] divided equational theories into four classes. For unitary,
finitary, and infinitary theories minimal complete sets of unifiers always ex-
ist and are singletons, finite, or possibly infinite sets, respectively. In nuHary
theories, minimal complete sets do not exist for some equation systems. This
classification is known as the unification hierarchy. Examples for the classes
are the theory of boolean rings (unitary), the theory of associativity and com-
mutativity (finitary) and associativity alone (infinitary). It is well known that
unification of typed lambda terms is nullary, but for a long time it was an
open problem whether there exist nullary first order theories until Fages and





Huet [1986] constructed an (artificial) example. A naturally occurring example 

was exhibited by Baader [1986] and Schmidt-SchauB [1986] who independently 

proved for unification under associativity and idempotence, that is unification 

in idempotent semigroups, that minimal complete sets need not exist. 

The question whether the hierarchy can still be refined has to be answered 

negatively. Book and Siekmann [1986] showed that if for an equational theory 

there exists an equation system having a minimal complete set whose cardinality 

is at least two then there are systems having minimal complete sets of arbitrarily 

great cardinality. 

From a computational point of view, theories with small minimal com­

plete sets are what is needed whereas infinitary or nullary theories are of little 

practical interest. It -would therefore be desirable to recognize from the presen­

tation of a theory its unification type to exclude unfeasible cases from the very 

beginning. 

We prove that this is impossible. To be more precise, we show that none of 

the unification types is decidable and that the classes of infinitary and nullary 

theories are not even semi-decidable, that is, recursively enumerable. Moreover, 

the same is still true if unification is replaced by the somewhat more special 

case of matching where substitution is only allowed for the variables on one side 

of the equations to be unified. 

The undecidability of the unification and matching hierarchy has already 

been stated in [Biirckert et al. 1987], but the proof in that paper contains a 

serious error [Baader 1989]. 

The paper is organized as follows. In section 2 we briefly review the basic 

definitions of unification theory and fix our notation. Section 3 presents results 

from combinatorial group theory saying that there are groups for which it is 

undecidable whether a given element has order one, finite order greater one, or 

infinite order. In section 4, these problems are reduced to the decision problem 

whether a theory is of unification or matching type unitary, finitary or infinitary. 

The undecidability of type nullary is shown in section 5 by a reduction of the 

consistency problem for equational theories. 
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Huet [1986] constructed an (artificial) example. A naturally occurring example
was exhibited by Baader [1986] and Schmidt-Schaufl [1986] who independently
proved for unification under associativity and idempotence, that is unification
in idempotent semigroups, that minimal complete sets need not exist.

The question whether the hierarchy can still be refined has t o  be  answered

negatively. Book and Siekmann [1986] showed that if for an equational theory
there exists an equation system having a minimal complete set whose cardinality
i s  at least two then there are systems having minimal complete sets of arbitrarily
great cardinality.

From a computational point of view, theories with small minimal com-

plete sets are what is needed whereas infinitary or nullary theories are of little
practical interest: It would therefore be desirable to recognize -from---the— presen-
tation of a theory its unification type to  exclude unfeasible cases from the very
beginning.

We prove that this is impossible. To be more precise, we show that none of
the unification types i s  decidable and that the classes of infinitary and nullary
theories are not even semi-decidable, that is, recursively enumerable. Moreover,
the same is still true if unification is replaced by the somewhat more special
case of matching where substitution is only allowed for the variables on one side
of the equations to be unified.

The undecidability of the unification and matching hierarchy has already
been stated in [Biirckert et a1. 1987], but the proof in that paper contains a
serious error [Baader 1989].

The paper is organized as follows. In section 2 we briefly review the basic
definitions of unification theory and fix our notation. Section 3 presents results
from combinatorial group theory saying that there are groups for which it  is
undecidable whether a given element has order one, finite order greater one, or
infinite order. In section 4,  these problems are reduced to  the decision problem
whether a theory is of unification or matching type unitary, finitary or infinitary.
The undecidability of type nullary is shown in section 5 by a reduction of the
consistency problem for equational theories.





2 Basic Definitions and Notations 

We briefly review the necessary notions and notation from unification and 

monoid theory. A collection of papers representing the state of the art in unifi­

cation theory can be found in the special issue [Kirchner 1989]. 

2.1 Equational Theories 

We assume that two disjoint denumerable sets of symbols are given, a set of 

function symbols (like a, b, 1) and a set of variables (like x, y, z ). 

A signature :Eis a finite set of function symbols each of which is associated 

with a nonnegative integer, determining its arity. We define :E-terms (like s, t) 
and :E-substitutions (like A, Il, u, T) as usual. The set of variables occurring in 

s is denoted as V(s). A substitution u that is determined by its values on the 

variables {Xl, ... , x n} will be represented as [xI/UXll"" xn/uxn]. The identity 

substitution that maps every term to itself is written as []. 

An equational theory £ = (:E, E) is a pair consisting of a signature :E and 

a finite set E = {81 . t l , ••• , 8 n ...:.. t n } of equations between :E-terms. The 

theory E induces a stable congruence =£ on the set of all :E-terms. A theory 

is monadic if its signature contains only unary function symbols. Since we 

assume a fixed denumerable set of symbols, there are only denumerably many 

equational theories. 

For a given set of variables V we extend =£ to substitutions by defining 

u =£,V ut if u x =£ utx for all x E V. In .this case we say that u and ut are 

£-equal on V. We define a quasi-ordering on substitutions by u >£,V ut if there 

exists a substitution).. such that u = £,V Aut. In this case we say that ut is more 

general on V than u and that u is an £-instance on V of ut. We say that ut is 

strictly more general on V than u, and we write u >£,vut if u ?e,vut and not 

ut ?e,vu. We say that ut and u are independent on V, if neither ut ?£,v u nor 

u ?£,v ut. 

A theory £ is inconsistent if x =£ y holds for two distinct variables x, y, 

otherwise it is consistent. In the following, we require equational theories to be 

consistent. 
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2 Basic Definitions and Notations

We briefly review the necessary notions and notation from unification and

monoid theory. A collection of papers representing the state of the art in unifi-

cation theory can be found in the special issue [Kirchner 1989].

2.1 Equational Theories

We assume that two disjoint denumerable sets of symbols are given, a set of
function symbols (like a ,  b, f) and a set of variables (like :13, y ,  z ) .

A signature E is a finite set of function symbols each of which is associated
with a nonnegative integer, determining its arity. We define E—terms (like s , t )

and Z-substitutions (like A, M, 0,7") as usual. The set of variables occurring in
3 is denoted as 12(3) A substitution 0 that is determined by its values on the
variables {:31 , . . . , sun} will be  represented as [xl/03:1 , . . . ‚urn/own]. The identity
substitution that maps every term to itself is written as [].

An equational theory E = (2 ,  E) is a pair consisting of asignature E and
a finite set E = {sl  é t 1 , . . . , sn  é tn} of equations between Z—terms. The
theory € induces a stable congruence = € on the set of all Z-terms. A theory
is monadic if its signature contains only unary function symbols. Since we
assume a fixed denumerable set of symbols, there are only denumerably many
equational theories.

For a given set of variables V we extend =5 to  substitutions by defining
0 =£ ,V  0' if aa: =8  cr'a: for all a: € V. In this case we say that 0‘ and 0 '  are
8-equal on V .  We define a quasi-ordering on substitutions by a 253/ 0" if there
exists a substitution Ä such that 0' =“,— Äa' . In this case we say that 0' is more
general on V than 0‘ and that a is an 8-instance on V of a '  . We say that 0’ is
strictly more general on V than a ,  and we write a > 8,V 0 '  if a _>_g,va' and not
a’ Z£,V‘7- We say that 0 '  and o are independent on V, if neither 0’ 28 ,c  nor

Ia 233 /0 .

A theory 8 is inconsistent if :c = ;  y holds for two distinct variables x,  3;,
otherwise it is consistent. In the following, we require equational theories to  be
consistent.





2.2 Unification and Matching 

A E-equation system is a finite sequence f = (SI . tl, ... , Sn . tn) of equations 

between E-terms. The set of variables occurring in f is denoted as V(f). 

A unification problem is given by a theory [ = (E, E) and a E-equation 

system f. An [-unifier of f is a substitution a such that aSi =e ati for i = 
1, ... , n. We denote the set of all [-unifiers of f as Ue(f). A subset U ~ Ue(f) 

is complete if for every a E Ue(f) there is a at E U such that a ~e,v(r) at. A 

complete set U represents Ue(f) in the sense that every unifier is an [-instance 

on V(f) of some element of U. 

The set of complete subsets of Ue(f) is ordered by set inclusion. A com­

plete subset is minimal if it is minimal with respect to set inclusion. Ing~!1er(l,l, 

minimal complete sets need not exist, but if they exist they have equal cardi­

nality [Fages/Huet, 1986]. Furthermore, two minimal complete subsets U and 

ut are equivalent in the sense that for every a E U there exists some at E ut 

such that a ~e, v(r) at and at >e,V(r) a. A complete subset U is minimal i:ff any 

two elements of U are independent on V(f). 

Often 'one defines complete sets of minimal unifiers instead of minimal 

complete sets of unifiers. It is easy to show that both concepts are equivalent, 

but the latter allows for technically simpler proofs. 

Siekmann [1978, 1989] introduced a classification of equational theories, 

which is known as the unification hierarchy. He divided equational theories 

into four classes, depending on the existence and cardinality of minimal sets of 

unifiers. Let [ be a theory, then: 

[ E U l iff minimal sets of unifiers exist for all f and have at most one 

element ([ is of type 1 or [ is unitary) 

[ E Uw iff finite minimal sets of unifiers exist for all f and [ rf­ U1 

([ is of type w or [ is finitary) 

[ E Uoo iff minimal sets of unifiers exist for all f and [ fJ. U l U Uw 

([ is of type 00 or [ is infinitary) 

[ E Uo iff there is some f for which no minimal set of unifiers exists 

([ is of type 0 or [ is nullary). 
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2.2 Unification and Matching

A E—equation system is a finite sequence I‘ = (31 i h ,  . . . , 3,, i tn) of equations
between Z—terms. The set of variables occurring in P is denoted as V(P).
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1,  . . . , n .  We denote the set of all E-unifiers of I‘ as Ug(I‘). A subset U g [Lg-(F)
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complete set U represents Ug(I‘) in the sense that every unifier is an 8-instance
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......I.21_9.te Sub$¢t__.,_i$ minimal if it is maimed with rssrectto $.61; mcluswnln general
minimal complete sets need not exist, but if they exist they have equal cardi—
nality [Fages/Huet, 1986]. Furthermore, two minimal complete subsets U and
U’ are equivalent in the sense that for every 0 E U there exists some 0 '  € U’
such that 0‘ 250%?) 0’ and a '  Z£,V(I‘)  0. A complete subset U is minimal ifi' any
two elements of U are independent on V(I‘).

Often “one defines complete sets of minimal unifiers instead of minimal
complete sets of unifiers. It is easy to show that both concepts are equivalent,
but the latter allows for technically simpler proofs.

Siekmann [1978, 1989] introduced a classification of equational theories,
which is known as the unification hierarchy. He divided equational theories
into four classes, depending on the existence and cardinality of minimal sets of
unifiers. Let € be a theory, then:

8 € 211 ifl' minimal sets of unifiers exist for all F and have at most one
' element (5  is of type 1 or 8 is unitary)

€ E u„ ifl' finite minimal sets of unifiers exist for all I‘ and 8 € ul
(8  is of type w or 5 is finitary)

€ € Moo ifl' minimal sets of unifiers exist for all I‘ and 8 € 211 U u„
(5  is of type 00 or 8 is infinitary)

8 € Ho iff there is some I‘ for which no minimal set of unifiers exists

(5  is of type 0 or 8 is nullary).





If we are only interested in substituting into the variables of one 

side of the equations, we call such a problem an £-matching problem. 

We write (SI ~ tI, . .. , Sn ~ tn) for the problem to find a substitution a, 

satisfying ax = x for all x E U~=l V(ti), with aSi =£ ti for i = 1, ... , n. We 

call such a substitution an £-matcber of SI, ... ,Sn to tl, . .. , tn. Notice that the 

restriction on a implies that a does not change the terms ti, that is ati = ti, 

and hence every £-matcher is also an £-unifier of the terms. The set of all 

£-matchers of SI, ... , Sn to tl, ... ,tn is denoted by M£(Sl ~ tl,' .. , Sn ~ tn). 

Let V be the set of variables occurring in the terms Si and ti. A subset 

M ~ M£ is complete if for every a E M£ there exists some a' E M with 

a >£,V a'. Again, a complete set of matchers is minimal if it is minimal with 

respect to set inclusion. 

Analogously to the unification hierarchy, we define a matching hierarchy 

with classes Ml, Mw, Moo, and Mo of equational theories depending on the 

existence and cardinality of minimal sets of matchers. 

2.3 Words, Monoids, Groups 

An alphabet :E is a finite set of function symbols. We denote the set of words 

(like u, v, w) over :E by :E* and the empty word bye. 

A monoid presentation (or Thue system) is a pair M = (:E,.6.) consisting 

of an alphabet :E and a finite set .6. of word equations over:E. The equations 

introduce a congruence =M on :E*, thus associating to every word w E :E* the 

= M-equivalence class w. By abuse of notation we will identify the presentation 

M and the factor monoid :E* / = M' speaking of the finitely presented monoid 

M. 

We assume that for every alphabet :E there exists a disjoint alphabet :E- l = 
{a- l I a E :E}. An alphabet :E' is a group alphabet if :E' ' :E U :E- l for some 

lalphabet :E. The inverse of a word over :E' is defined by e- = e, (aw )-1 = 

w-la-\ and (a-lw)-l = w-la. For integers n E Z the n-th power of w is 

defined by wO = e, wn = wwn- l if n > 0, and wn = (w- l )-n if n < O. 

A group presentation is a monoid presentation 9 = (:E U :E- l ,.6.) such that 

for all a E :E we have aa- l . e E 6. and a-la ...:.... e E 6.. The factor monoid 
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If we are only interested in substituting into the variables of one

side of the equations, we call such a problem an «ff—matching problem.

We write (31 < t1,. . .‚3„ << tn) for the problem to find a substitution a ,
satisfying 03: = as for all a: E U?=1 ]}(ti), with as,- =£ t,- for i = 1, . . . , n .  We
call such a substitution an 5—matcher of .31, . . . , sn  to  t l ,  . . . ‚ i n .  Notice that the

restrictionon 0 implies that a does not change the terms t i ,  that is at; : 155,
and hence every 8—matcher is also an E-unifier of the terms. The set of all
S—matchers of 31, . . . , sn  to t l ,  . . . ‚ in is denoted by M5031 << t1, . . . ‚an << in).

Let V be the set of variables occurring in the terms 3,- and t i .  A subset

M g Mg is complete if for every 0 6 Mg there exists some 0'  E M with
0 2.2V o". Again, a complete set of matchers is minimal if it is minimal with

respect to  set inclusion.

Analogously to the unification hierarchy, we define a matching hierarchy
with classes M1 ,  MW, Moo, and Mo  of equational theories depending on the
existence and cardinality of minimal sets of matchers.

2.3 Words, Monoids, Groups

An alphabet )3 is a finite set of function symbols. We denote the set of words
(like u,  v, w) over 2 by 2* and the empty word by e.

A monoid presentation (or Thue system) is a pair M == (E,  A)  consisting
of an alphabet E and a finite set A of word equations over 2 .  The equations
introduce a congruence =M on 2* ,  thus associating to every word w 6 2* the
= M—equivalence class E. By abuse of notation we will identify the presentation
M and the factor monoid E* /  = Ma speaking of the finitely presented monoid
M.

We assume that for every alphabet 2 there exists a disjoint alphabet 2‘1 =
{ca—1 | a E 2}. An alphabet 2' is a group alphabet if E’ ': 2 U 2—1 for some
alphabet 2 .  The inverse of a word over L" is defined by 6—1 = e, (aw)"’1 =
rode—1, and (ct—1w)"1 = fur—la. For integers n E Z the n—th power of w is
defined by w0 = e, w“ = town—1 if n > 0, and w"  : (w'1)—" if n < 0.

A group presentation is a monoid presentation Q = (E  U 2‘1 , A)  such that
for all a. E Z we have (za—1 “"—- e E A and a ‘ l a  £ e E A.  The factor monoid





defined by 9 is a group with inverses (w) -1 = W -1 . 

For w E 9 the subgroup generated by w is the least subgroup of 9 contain­

ing w. It consists of the elements w k for k E Z, and is denoted as (w). 

The word problem for a finitely presented group 9 is to decide for an 

arbitrary word w whether w =Q e. There exist finitely presented groups with 

an undecidable word problem. 

An alphabet ~ can be transformed into a signature by considering each 

element as a unary function symbol. Given a variable x, every word w = 

a1 a2 .•• an E ~* is then transformed into a term a1 (a2 ( ... (an ( x » ...», abbre­

viated to wx. Conversely, for every ~-term t there exists' a word w E ~* with 

t = wx for some variable x. 

To every finitely presented monoid M = (~,~) there corresponds a 

monadic theory £ = (~, E) where E is obtained from ~ by transforming each 

word equation u ....:.... v E 6. into the term equation ux . vx. Equality in M and 

equality with respect to £ are related by the equivalence u = M v ~ ux =t: vx 

for all u, v E ~*. 

3 The Order Problem 

In this section we review some undecidability results from group theory. 

The cardinality of a set S is denoted as ISj, where ISI = 00 if S is infinite. 

If 9 = (~, 6.) is a finitely presented group and w E ~*, then the order of w is 

defined as ord(w) = I(w )I, that is, ord(w) is the cardinality of the subgroup 

generated by w. 

Proposition 3.1. Let 9 = (~,~) be a finitely presented group and w E ~*. If 

(w) is finite, then ord(w) is the least nonnegative integer n such that wn =Q e. 

If ( w) is infinite, such an integer does not exist. In particular, ord(w) = 1 iif' 

w =Q e. 

We will show that there are finitely presented groups for which it is unde­

cidable whether a word has order one, finite order greater one, or infinite order. 
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defined by g is a group with inverses (E)—1 = w"1 .

For 75 € g the subgroup generated by "5 is the least subgroup of g contain-
ing 5. It consists of the elements 5: for k E Z, and is denoted as (T6).

The word problem for a finitely presented group g is to decide for an
arbitrary word w whether w =g  c. There exist finitely presented groups with
an undecidable word problem.

An alphabet 2 can be  transformed into a signature by considering each
element as a unary function symbol. Given a variable :3, every word w =
ala? . . ‚an E 2* is then transformed into a term a1(a2(. . . (a„(m)) . . .)), abbre—
viated to waz. Conversely, for every 2-term t there exists' a word w E 2* with
t == wa: for some variable a:.

To every finitely presented monoid M = (2 ,  A) there corresponds a
monadic theory € = (2 ,  E)  where E is obtained from A by transforming each
word equation u & v € A into the term equation ua: _": mc. Equality in M and
equality with respect to € are related by the equivalence 'u. =M v «(=> ua: =£ vw
for all u ,  '0 € 2* .

3 The Order Problem

In this section we review some undecidability results from group theory.

The cardinality of a set 5' is denoted as |S | ,  where IS | = 00 if S is infinite.
If g == (2 ,A)  is a finitely presented group and w € 2*,  then the order of w is
defined as ord(w) = [(E)],  that is, ord(w) is the cardinality of the subgroup
generated by “tb”.

Proposition 3.1. Let Q = (2 ,  A) be a finitely presented group and w E 2*. If
(T17) is finite, then ord(w) is the least nonnegative integer n such that w" =g e.
If (Eu—) is infinite, such an integer does not exist. In particular, ord('w) = 1 iff
w=g e .

We will show that there are finitely presented groups for which i t  is unde-
cidable whether a word has order one, finite order greater one, or infinite order.





Since deciding whether a word has order one is equivalent to the word problem, 

part of our claim follows from the existence of a group with an undecidable word 

problem. To show that all three problems are undecidable, we need groups with 

additional properties. 

Theorem 3.2. There exists a finitely presented group 9 = (~,.6.) with an 

undecidable word problem such that the only element of finite order is the 

identity. 

Proof. Actually, such a group was exhibited by Boone and Collins. We 

refer to the presentation of their construction in [Rotman 1973] and show that 

every nonidentity element of this group has infinite order. Since we are not 

interested in group theoretic details, we present ouraI'guments in such a way 

that it is possible to verify their correctness using standard textbooks on the 

subject. 

In [Rotman 1973], a finite sequence of finitely presented groups 90, 91, 9i, 
92, 93, 9 is constructed. It is shown that 90 is a free group, and that each of 

the other groups is an HNN extension with basis its predecessor. The group 9 
has an undecidable word problem. 

To this construction the Torsion Theorem for HNN extensions [Lyn­

donjSchupp 1977] can be applied. It says that an HNN extension has elements 

of finite order n only if its basis has elements of order n. Since in a free group 

every nonidentity element has infinite order, it follows from the Torsion The­

orem that none of the groups occurring in the sequence has elements of finite 

order n > 1. In particular, 9 is a group with an undecidable word problem such 

that the only element of finite order is the identity. 0 

Since in this group a word has either order one or inifinite order, we obtain 

the following corollary. 

Corollary 3.3. There exists a finitely presented group 9 = (~,.6.) such that 

the following problems are undecidable: 

INSTANCE: a word W E E* 
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Since deciding whether a word has order one is equivalent to the word problem,
part of our claim follows from the existence of a group with an undecidable word
problem. To show that all three problems are undecidable, we need groups with
additional properties.

Theorem 3 .2 .  There exists a finitely presented group g : (E ,A)  With an
undecidable word problem such that the only element of finite order is the
identity.

Proof. Actually, such a group was exhibited by Boone and Collins. We

refer to the presentation of their construction in [Rotman 1973] and show that
every nonidentity element of this group has infinite order . Since we are not

interested ..in.......group theoretic----details, we present our arguments in such a way
that it is possible to  verify their correctness using standard textbooks on the

sub _] ect.

In [Rotman 1973], a finite sequence of finitely presented groups go, g l ,  91,
gg, gg, 9’ is constructed. It is shown that go is a free group, and that each of
the other groups is an HNN extension with basis i ts  predecessor. The group Q
has an undecidable word problem.

To this construction the Torsion Theorem for HNN extensions [Lyn-
don/Schupp 1977] can be applied. It says that an HNN extension has elements
of finite order n only if its basis has elements of order n .  Since in a free group
every nonidentity element has infinite order, it follows from the Torsion The-
orem that none of the groups occurring in the sequence has elements of finite
order n > 1. In particular, 9 is a group with an undecidable word problem such
that the only element of finite order is the identity. EI

Since in this group a word has either order one or inifinite order, We obtain
the following corollary.

Corollary 3.3. There exists a finitely presented group g = (2 ,A)  such that
the following problems are undecidable:
INSTAN CE: a word w E 2*





QUESTION 1: is ord(w) = 1 ? 

QUESTION 2: is ord(w) = 00 ? 

Corollary 3.4. There exists a finitely presented group Q = (~,~) such that 

the set {w E ~* Iord(w) = oo} is not recursively enumerable. 

Proof. The group from Theorem 3.2 has the desired property. For this 

group, the set {w E ~* I ord(w) = oo} is the complement of the set {w E ~* I 
ord(w) = I}, the latter being undecidable but recursively enumerable. D 

To find a group where it is undecidable whether a word has finite order 

greater one, we have to modify the construction exhibited by the last theorem. 

Corollary 3.5. There exists a finitely presented group Q' = (~', ~') such that
 

the following problem is undecidable:
 

INSTANCE: a word w' E ~'*
 

QUESTION: is 1 < ord(w') < 00 ? 

Proof. By Theorem 3.2 there exists a finitely presented group Q = (~,~) 

with an undecidable word problem such that the only element of finite order is 

the identity. Let b be a symbol not occurring in ~. Define 

Q' := (~', ~') 

where 

~' = ~U {b,b- 1
} and 

6.' = ~ U {ab . ba I a E ~} 

U {bb-1 ...:... e, b-1b"':'" e} 

U {bb"':'" e}. 

That is, Q' is the direct product of Q with the cyclic group of order two. 

Now, for w' E (~')* we have 1 < ord(w') < 00 if and only if w' =gl bw for 

some w E ~* satisfying W =g e. Thus determining whether a given element of 
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QUESTION _1: is ord(w) = 1 ?
QUESTION 2: is ord(w) = 00 ?

Corollary 3 .4 .  There exists a finitely presented group 9 = (2 ,A)  such that

the set {w E 2* I ord(w) = 00} is not recursively enumerable.

Proof. The group from Theorem 3.2 has the desired property. For this

group, the set {w E 2* | ord(w) = 00} is the complement of the set {w E 2* |
ord(w) = 1}, the latter being undecidable but recursively enumerable. EI

To find a group where it is undecidable whether a word has finite order

greater one, we have to modify the construction exhibited by the last theorem.

Corollary 3.5 .  There exists a finitely presented group 9' = (2', A') such that

the following problem is undecidable:

INSTANCE: a word w' € 2”

QUESTION: is 1 < ord(w') < 00 ?

Proof. By Theorem 3.2 there exists a finitely presented group g = (2, A)
with an undecidable word problem such that the only element of finite order is

the identity. Let 6 be a symbol not occurring in 2. Define

g i  :: ( E „  A I )

where

2' = 2 U {b, 6—1} and

A'zAU{ab—'——ba|ae2}

U {bb"'1 5-— e, b—lb & e}
U {bb & e}.

That is, g' is the direct product of 9 with the cyclic group of order two.

Now, for w' 6 (E’)* we have 1 < ord(w') < oo if and only if w' =g, bw for
some w E 2* satisfying w 2 g  e. Thus determining whether a given element of
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0 

g' has strictly finite order is equivalent to solving the word problem in g which 

is undecidable. 

4 UndecidabiIity of Types Unitary, Finitary, 
and Infinitary 

The aim of this section is to reduce the problem of deciding the order of a group 

element to the problem of deciding the unification type of an equational theory. 

Construction 4.1. Let g = (~,~) be a finitely presented group. For every 

w E :E* we define a finitely presented monoid 

gw:-(~U{f},~U{fw'f}) 

where f is a symbol not occurring in ~. We denote the monadic theory corre­

sponding to gw as £w. 

Next, we investigate £w-equality of terms. Given a word w E ~*, we say 

that words u, v E ~* are equal modulo w if u =g wkv for some integer k, and 

we write u ""w v. 

Proposition 4.2. ""w is an equivalence relation on ~*. 

In fact, ""w is the right congruence defined by {w}. 

Proposition 4.3. Let u, v E ~*. Then fu =gw fv if and only if u ""w v. 

Lemma 4.4. Let u = UOfUlf ... fU rn and v = VOfVIf ... fV n where 

Ui, Vj E ~*. Then U =gw v if and only if 

1. m=n 

2. Uo =g Vo, and 

3. Ui ""w Vi for i = 1, ... , m. 

Proof. The sufficiency of the conditions is an immediate consequence of 

Proposition 4.3. 
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g' has strictly finite order is equivalent to solving the word problem in g which
i s  undecidable. El

4 Undecidability of Types Unitary, Finitary,
and Infinitary

The aim of this section is to reduce the problem of deciding the order of a. group
element to the problem of deciding the unification type of an equational theory.

Construction 4 .1 .  Let Q = (2 ,A)  be  a finitely presented group. For every
w € 2*  we define a finitely presented monoid

g... == (2 u {f}, A u {mam
Where f is a symbol not occurring in 2 .  We denote the monadic theory corre-
sponding to gw as Em.

Next, we investigate Ew—equality of terms. Given a. word w 6 2* ,  we say
that words 21., 0 € 2* are equal modulo w if u :9 wk'v for some integer 16, and
we write u Nw 22.

Proposition 4.2.  Nu, is an equivalence relation on 2*.

In fact, N.” is the right congruence defined by (To' ).

Proposition 4.3 .  Let u ,  'v E 2*. Then fu =gw fv if and only i fu  Nu, v.

Lemma 4.4.  Let u == uo fu l f . . . f um  and v == vo fv l f .  „ fun  where
ua, ’Uj E 2* .  Then u 29w v if and only if

l .  m=n

2. no  : 9  vo,  and

3. «„,i vgfor i=1 ,„ . ,m .

Proof. The sufficiency of the conditions is an immediate consequence of
Proposition 4.3.
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To prove the necessity, suppose u· =gw v. Since no equation in 9w changes 

the number of fs, U and v contain the same number of fs. Thus condition (1) 

is necessary. A further inspection of the equations shows, that every proof of 

U =gw v contains proofs of UQ =gw VQ and fUi =gw fVi for i = 1, ... ,m. Since 

UQ, VQ don't contain fs, the proof of UQ =gw VQ is in fact a proof of UQ =g VQ. 

Thus condition (2) is necessary. The necessity of condition (3) follows from 

Proposition 4.3. D 

The idea in defining £w is best illustrated by the following example. Con­

sider the £w-unification problem (fx . fy). Then the substitution 0"0 = 
[x/y, y/y] is a unifier, and more generally, for every k E Z the substitution 

O"k = [x/wky,y/y]is also a unifier. 

If ord(w) = 1, then all these unifiers are £w-equal. If ord(w) = n < 00, 

then O"Q, ... , O"n-l are pairwise £w-different on {x, y}, and O"k =ew,{x,y} O"k+n for 

k E Z. Finally, if ord(w) = 00 then all O"k are £w-different on {x,y}. 

Next we show that every £w-unifier of our problem is an £w-instance of 

some 0"k on {x, y}. If r is an arbitrary unifier, then rx and ry contain the same 

number of fs. Suppose the two terms do not contain any fs. Then we have 

rx = uz and ry = vz for some u, v E ~* and some variable z. Since fuz = 

r(Jx) =e r(Jy) = fvz, Lemma 4.4 implies U""'w v, hence u =g wkv for some 
w 

k E Z. Thus, r =ew,{x,y} [x/wkvz, y/vz] =ew,{x,y} [y/vz][x/wky, y/y] = AO"k, 

where A = [y/vz]. This implies r ~ew,{x,y} O"k. In case rx and ry contain some 

j, a similar argument shows that r ~ew,{x,y} O"k for some k E Z. 

Finally, we examine which of the unifiers O"k are independent. Suppose 

O"k =ew,{x,y} AO"I. We can assume that A = [y/vy] for some v E (~U if} )*. 

Then we have y = O"kY =e (AO"I)Y = A(O"IY) = Ay = vy, hence y =e vy.w w 

This yields wky = O"kX =e (AO"I)X = A(O"IX) = Aw1y = w'vy =e w1y. Hence w w 
k lO"k ~ew,{x,y} 0"1 iff w =gw w . Thus we have shown that for w of finite order 

O"k and 0"1 are independent on {x, y} if 0 ~ k < I < ord(w), and that for w of 

infinite order, O"k and 0"1 are £w-independent on {x,y} if k i= I. 
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To prove the necessity, suppose if =92» v .  Since no equation in gm changes

the number of fs, u and v contain the same number of fs .  Thus condition (1)
is necessary. A further inspection of the equations shows, that every proof of
u =gw '0 contains proofs of no =91» vo and fit; :9”) ft),- for z' = 1, . . . ,m .  Since

no, vo don’t contain fs,  the proof of no =gw vo is in fact a proof of no :9 vo.
Thus condition (2) is necessary. The necessity of condition (3) follows from
Proposition 4.3. EI

The idea in defining &, is best illustrated by the following example. Con-
sider the ftp—unification problem ( fa: & fy ) .  Then the substitution ao ::
[:c/ y ,y /  y] is a unifier, and more generally, for every k E Z the substitution
O"): = [a: /_w'.°y,„_y /y]1s also.. a unifier.

If ord(w) = 1, then all these unifiers are Ew-equal. If ord(w) = n < 00,
then ao, . . . , a„__1 are pairwise (i'm-different on {x,  y}, and ak =gw‚{„,y} ck...” for
k E Z.  Finally, if ord(w) = 00 then all ak are Ew-different on {m, y}.

Next we show that every 5w-unifier of our problem is an Sty-instance of

some ak on {x ,  3;}. If 7" is  an arbitrary unifier, then Ta: and Ty contain the same
number of fs.  Suppose the two terms do not contain any f s.  Then we have
TSC = uz  and 73; = vz  for some u ,  v € 2*  and some variable z .  Since fuz =
7'(f$) =£w 'r(fy) == f'vz, Lemma 4.4 implies u Nu, v, hence u =9  wkv for some

k e z. Thus, r =5“... [x/wkw/vz] =gw,{.,.} [wax/mam] = Auk.

Where A = [y/vz]. This implies T 281.0, {M,} ak. In case Tre and Ty contain some
f ,  a similar argument shows that 'r s , {x ‚y}  ak for some k E Z.

Finally, we examine which of the unifiers ak are independent. Suppose
ak =8w‚{$ ‚y}  A07. We can assume that A = [y/vy] for some I) E (2  U {f})*.
Then we have y : crky =£w (Am)?! = Mam) = Ay = vy, hence y :Sw vy.
This yields wky : aka: 23w (A003: = Mon) : ‚\w = w'vy  =5w wly. Hence
ak Zßwdmy}  cr; iff wk 29w w! . Thus we have shown that for w of finite order
ak and cn are independent on {x ,y}  if 0 S k < 1 < ord(w), and that for w of
infinite order, ak and a; are Stu-independent on {x,  y} if k # l.
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In summary, the £w-unification problem (Ix -=- fy) has a minimal complete 

set of unifiers of cardinality ord(w). 

The same kind of argument that we used in the discussion of the above 

example applies to arbitrary unification and matching problems consisting of 

a single equation. The next two propositions give a complete case analysis of 

such problems. 

Proposition 4.5. (Unification) Suppose u = UOfUlf •.. fU m and v 

VOfVlf • •• fVn where Ui, Vj E ~* such that m ::; n. 

1.	 The unification problem (ux . vx) is solvable iff U =gw v. In this case 

{[]} is a minimal complete set of unifiers. 

2.	 The unification problem (uox -=- vy) is solvable and {[x/U01vy,y/y]} is a 

minimal complete set of unifiers. 

3.	 For m> 0 the unification problem (ux . vy) is solvable iff 

•	 U o =g Vo 

•	 Ui "'w Vi for i = 1, ... , m - 1. 

In this case, 

is a minimal complete set of unifiers if ord(w) = 00, and 

is a minimal complete set of unifiers if ord(w) < 00. 

Proposition 4.6. (Matching) Suppose U = UOfUlf •.. fU m and v 

VOfVlf· .• fV n where Ui,Vj E ~*. 

1.	 The matching problem (ux ~ vx) is solvable iff U =gw v. In this case 

{ []} is a minimal complete set of matchers. 
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In summary, the Sw—unification problem ( f a: é f y) has a minimal complete

set of unifiers of cardinality ord(w).

The same kind of argument that we used in the discussion of the above
example applies to arbitrary unification and matching problems consisting of
a single equation. The next two propositions give a complete case analysis of

such problems.

Proposition 4.5 .  (Unification) Suppose u = uo ful f . . .  fum and v ::
vof 'v l f .  . . f vn  Where ua, v,- E 2* such that m 5 n .

1. The unification problem (ua: & m:) is solvable ifi' u =9w '0. In this case

{H}  is a minimal complete set of unifiers.

2. The unification problem (una: & vy) is solvable and {[m/uf," 1vy , y / y ] }  is a
minimal complete set of unifiers.

3. For m > 0 the unification problem (m: i vy) is solvable ifl'

. ua :9 220

o u;  Nm vi fori = 1 , . . . ,m— 1 .

In this case,

{lx/ualwkvmfmfvnyay/yl I k 6 Z}

is a minimal complete set of unifiers if ord(w) = 00, and

{[w/ug lwk‘vmf .  . . f v„y ‚y / y ]  l 0  5 k < ord(w)}

is a minimal complete set of unifiers if ord(w) < oo.

Proposition 4 .6 .  (Matching) Suppose u = ngfu l f . . . fum and v
vofv l f .  . . f vn  Where taz-‚w E B”“.

1. The matching problem (ua: << m:) is solvable if u =Gw 2). In this case
{ [ ]}  is a minimal complete set of matchers.
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2.	 The matching problem (uox ~ vy) is solvable and {[xjuo1vy, yjyJ} is a 

minimal complete set of matchers. 

3.	 For m > 0 the matching problem (ux ~ vy) is solvable iff 

•	 mS:.n 

•	 U o =g Vo 

•	 Ui "'w Vi fori = 1, ... ,m-1. 

In	 this case, 

is a minimal complete set of matchers if ord(w) = 00, and 

is a minimal complete set ofmatcbers if ord(w) < 00. 

Biirckert et al. [1987] give an example of a theory of type 0 such that for 

every equation minimal complete sets of unifiers and matchers, respectively, 

exist. For this theory, systems that do not possess minimal sets consist of at 

least two equations. The example shows that in general we cannot locate a 

theory in the hierarchy by inspecting only single equations. On the other hand, 

we can do so provided the theory is not nullary [Biirckert et al. 1987]. 

Lemma 4.7. £w is not nullary. 

Proof. It suffices to prove that there is no infinite descending chain of 

substitutions 0'1 >£ V 0'2 >£ v ... where V is a finite set of variables. Assume w, w, 

by contradiction that such an infinite chain exists. 

Let Wi := UXEV V(O'i X ) be the set of variables introduced by O'i via the 

variables in V. Since 0'i >£w, V 0'i+I and £w is monadic, we have IWi I < IWi+11· 

Furthermore, we have IWil S:. lVI, since £w is monadic. Therefore we can assume 

without loss of generality that Wi = W for some fixed finite set W. 
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2. The matching problem (uom << vy) is solvable and {[a: /u5' 1vy,y/y]} is a

minimal complete set of matchers.

3. For m > 0 the matching problem (um << vy) is solvable ifl"

o m 5 n

. ua =g vo

. uf „w vi fori= 1,...,m—1.

In this case,

{[x/uglwkvmf. . . fvny‚y/y] | k € Z}

is a minimal complete sét of matchers if ord(ib) = ob, and

{ [x/ualwkvmfmfvnyw/y] I0 s k < ord<w)}

is a minimal complete set ofmatchers if ord(w) < oo.

Bürckert et al. [1987] give an example of a theory of type 0 such that for
every equation minimal complete sets of unifiers and matchers, respectively,

exist. For this theory, systems that do not possess minimal sets consist of at

least two equations. The example shows that in general we cannot locate a

theory in the hierarchy by inspecting only single equations. On the other hand,

we can do so provided the theory is not nullary [Biirckert et a1. 1987].

Lemma 4.7. Em is not nullary.

Proof. It suffices to prove that there is no infinite descending chain of

substitutions 01 >5w,V  02 >55a . . . where V is a finite set of variables. Assume

by contradiction that such an infinite chain exists.

Let W; := UxEV ]}(0'527) be the set of variables introduced by 0,- via the
variables in V. Since 05 > EMV 034.1 and 8w is monadic, we have |W,| S |W5+1 |.
Furthermore, we have |W5| _<_ IVI, since 8w is monadic. Therefore we can assume

without loss of generality that W,- = W for some fixed finite set W.
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For each yEW let ViY := {x E V IV(O"i X ) = {yn· Every family (ViY)YEW 
is a partition of V. Since V is finite, there exist only finitely many partitions of 

V. Therefore we can assume without loss of generality that ViY = VY for some 

fixed partition (VY)YEW of V. Thus for every x E V we have V( O"iX) = V(O"i+lX). 

Furthermore we can assume without loss of generality that for every x E V 

all terms CJ'iX contain the same number of fs. 

Let Ai be substitutions such that CJ'i =", V AiCJ'i+!. To obtain a contradic­'"w, 
tion, it suffices to construct substitutions Pi such that PWi =£w,v CJ'i+l. 

Since for x E V the terms CJ'iX and CJ'i+lX contain the same number of fs, 

the substitution Ai doesn't introduce any f. Hence, for yEW the term AiY 

contains bnly symbolsfioiri the group alphabet. Now, define PiY := v-1y where 

vy = AiY for yEW and PiY := Y otherwise. 

We will show that PiO"i =c v CJ'i+l. Let x E V. Then x E VY for some <Ow, 

yEW. Let O"iX = UiY, O"i+lX = Ui+lY, and AiY = vy. Then Ui =Yw Ui+l v which 

implies UiV- 1 =Yw Ui+l. By definition of the PiS it follows that /lWi X =£w 

O"i+lX, which yields the claim. 

Propositions 4.5 and 4.6 say that for a single equation in £w minimal com­

plete sets of unifiers and matchers, respectively, have at most cardinality ord(w) 
and that there exist such sets having exactly cardinality ord(w). Since no the­

ory £w is nullary, the position of £w in the hierarchy depends on the order of 

w. 

Proposition 4.8. 

• £wEMw ~ £wEUw ~ l<ord(w)<oo 

• £w E Moo ~ £w EUoo ~ ord(w) = 00 
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For each y E W let V,.” :=  {:I: E V I V(a‚'a:) = {y}}. Every family ("/iy)yEW
is & partition of V .  Since V is finite, there exist only finitely many partitions of

V. Therefore we can assume without loss of generality that V,” = V” for some
fixed partition (Vy)yew of V. Thus for every 3: E V We have V(0’,-:c) = V(0',-+1a:).

Furthermore we can assume without loss of generality that for every 3: E V
all terms am: contain the same number of f s .

Let A,- be  substitutions such that cr,- :8w‚V  Ami“. To obtain a contradic-

tion, i t  suffices to construct substitutions m such that ma,- =8w,v  (f,-+1.

Since for :1: € V the terms aim and 0241.1: contain the same number of fs,

the substitution A; doesn’t introduce any f .  Hence, for y E W the term My

vy = Ägy for y E W and my  :=  y otherwise.

We will show that ma,- =£w,V (n+1. Let a: E V.  Then a: E V9 for some
3; E W. Let (7,11: = my ,  ag+1x = taz-+13}, and My  = vg. Then u,- :92» u,:„v which

implies ago-'1 :92» Ui+1o  By definition of the ms  it follows that main: 25w

(rt-+13, which yields the claim. Ü

Propositions 4.5 and 4.6 say that for a single equation in 8w minimal com-
plete sets of unifiers and mat chers, respectively, have at most cardinality ord(w)
and that there exist such sets having exactly cardinality ord(w). Since no- the-
ory 8,, is nullary, the position of 8., in the hierarchy depends on the order of
w.

Proposition 4 .8 .

o Ewe/V11 <=:— Sweul (=> o rd (w)=1

osweMw (=> Sweuw @ 1<ord (w)<oo

OEwEMoo  <=) SwEZ/(oo <=} o rd (w)=oo
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Having established the correspondence between the order of group elements 

and the type of an equational theory, we can reduce the order problem for groups 

to the problem of locating a theory in the hierarchy. 

Theorem 4.9. 

1. Ux> and Moo are not recursive1y enumerable. 

Proof. 1. The claim is true, since by Proposition 3.4 there exists a finitely 

presented group 9 = (2j,~) such that the set {w E 2j* I ord(w) = co} is not 

recursively enumerable. 

2. The claim is true, since by Propositions 3.3 and 3.5 there exist finitely 

presented groups for which it is undecidable whether a word has order one, 

finite order greater one, or infinite order. 0 

5 UndecidabiIity of Type Nullary 

In this section we reduce the consistency problem for equational theories to the 

decision problem whether a theory is nullary. Since the disjoint combination 

of a consistent theory and a nullary theory is again nullary, by combination of 

an arbitrary theory £ with a nullary theory we can construct a theory that is 

nullary if and only if £ is consistent. 

We start with a well-known result from equationallogic, which has been 

proved by Perkins [1967]. Recall that a theory £ is inconsistent iff x =& y for 

two distinct variables x and y, and consistent otherwise. 

Lemma 5.1. The following problem is undecidable: 

INSTANCE: an equational theory £ 

QUESTION: is £ consistent? 

Corollary 5.2. The set of equational theories {£ I £ is consistent} is not re­

cursively enumerable. 
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Having established the correspondence between the order of group elements

and the type of an equational theory, we can reduce the order problem for groups
to the problem of locating a theory in the hierarchy.

Theorem 4.9.

1. am and Moo are not recursively enumerable.

2. 211, u„, um, M1 ,  M„ ,  and Moo are undecidable.

Proof. 1. The claim is true, since by Pr0position 3.4 there exists a finitely
presented group g = (E,A) such that the set {w E 2* | ord(w) : 00} is not
recursively enumerable.

2. The-claim is true, since by --~Pr0posi-tions 3.3 and-3.5 there exist finitely
presented groups for which it is undecidable whether a word has order one,
finite order greater one, or infinite order. El

5 Undecidability of Type Nullary

In this section we reduce the consistency problem for equational theories to the
decision problem whether a theory is nullary. Since the disjoint combination
of a consistent theory and a nullary theory is again nullary, by combination of
an arbitrary theory £ with a nullary theory we can construct a theory that is
nullary if and only if 5 is consistent.

We start with a well-known result from equational logic, which has been
proved by Perkins [1967]. Recall that a theory 8 is inconsistent iff 3: =5 3} for
two distinct variables a: and y ,  and consistent otherwise.

Lemma 5.1. The following problem is undecidable:
INSTAN CE: an equational theory 8
QUESTION: is 8 consistent ?

Corollary 5.2.  The set of equational theories {5  I 8 is consistent} is not re-
cursively enumerable.
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Proof IT for a theory £ we have x =& y, then this fact can be derived 

by equational deduction. By a dovetailing argument, this implies that the set 

of inconsistent theories is recursively enumerable. Hence, the set of consistent 

theones is not recursively enumerable, since, by the preceding lemma, it is 

undecidable. o 

Let £1 = (~1, El) and £2 = (~2, E2 ) be equational theories such that the 

signatures ~1 and ~2 are disjoint. The disjoint combination of £1 and £2 is the 

theory £1 I±l £2 := (~1 U ~2, El U E2 ). The following lemma which is due to 

Tiden [1986] and Schmidt-Schaufi [1989] says that the disjoint combination of 

consistent theories does not influence the structure of pure unification problems. 

Lemma 5.3. L~et£l = (~1, El) and £2 = (~2, E2 ) be consistent _equational 

theories such that ~1 and ~2 are disjoint, and let £ := £1 I±l £2 be their disjoint 

combination. If f is an £1 -unification problem and U is a complete set of £1 ­

unifiers of f, then 

1. U is also a complete set of £-unifiers off 

2. ~&l,V(r) and ~&,v(r) agree on U. 

Theorem 5.4. Uo and Mo are not recursively enumerable. 

Proof Let £0 = (~o, Eo) be a nullary theory. Then there exist an £0­

unification problem f and a complete set of unifiers Uo of f such that Uo has 

no minimal complete subset. 

Suppose £ is a consistent theory. By the preceding lemma, Uo is also 

a complete set of unifiers of r for the combined theory £+ := £0 I±l £, and 

Uo has no minimal complete subset if £ is consistent. Hence, £+ is nullary 

if £ is consistent. Conversely, the combined theory £+ is inconsistent if £ 

is inconsistent. Thus we have proved that £+ is nullary if and only if £ is 

consistent. 

Were Uo recursively enumerable, then in particular the set of theories 

{£+ I £+ is nullary} would be recursively enumerable. Hence the set {£ I 
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Proof. If for a theory 8 we have :1: =8 y, then this fact can be derived
by equational deduction. By a dovetailing argument, this implies that the set
of inconsistent theories is recursively enumerable. Hence, the set of consistent

theories is not recursively enumerable, since, by the preceding lemma, it is

undecidable. EI

Let 81 = (21 ,  E1) and 82 = (22,132) be equational theories such that the

signatures E1 and 22 are disjoint. The disjoint combination of £1 and 6'2 is  the

theory 81 HJ 52 :=  (>31 U 22 ,E1  U E2).  The following lemma Which is due to

Tidén [1986] and Schmidt-Schaufi [1989] says that the disjoint combination of
consistent theories does not influence the structure of pure unification problems.

Lemma 5.3. Let „51 = ( >31 , E1) and -82 = (.22, E2) be consistent equational
theories such that 21 and 22 are disjoint, and let 8 := 81 EH 82 be their disjoint
combination. If I‘ is an 81—unification problem and U is a complete set of 81—
unifiers of I‘, then

1. U is also a complete set of E-unifiers of I‘

2. _>_£1’v(1") and 28.1%?) agree on U.

Theorem 5.4. U0 and Mo are not recursively enumerable.

Proof. Let 80 = (20,190) be a nullary theory. Then there exist an 80-
unification problem I‘ and a complete set of unifiers U0 of F such that Ua has
no minimal complete subset.

Suppose 8 is a consistent theory. By the preceding lemma, U0 is also
a complete set of unifiers of I1 for the combined theory 8+ :=  80 &) € , and
U0 has no minimal complete subset if 8 is consistent. Hence, 8+ is nullary
if 5 is  consistent. Conversely, the combined theory 8+ is  inconsistent if 5
is inconsistent. Thus we have proved that 8+ is nullary if and only if 8 is
consistent.

Were Ua recursively enumerable, then in particular the set of theories
{(€-+ | g+ is nullary} would be recursively enumerable. Hence the set {€  |
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£ is consistent} wouldbe recursively enumerable, which is impossible by Corol­

lary 5.2. 

The proof that Mo is not recursively enumerable is completely analogous. 

o 

Theorem 5.5. Uo and Mo are not recursive1y enumerable. 

Proof. Let £0 = (~o, Eo) be a nullary theory. Then there exist an £0­

unification problem r and a complete set of unin.ers Uo of r such that Uo has 

no minimal complete subset. 

Suppose £ = (E, E) is a consistent theory such that E and Eo are disjoint. 

By the preceding lemma, Uo is also a complete set of unmers of ffor the 

combined theory £+ := £0 ltJ £, and Uo has no minimal complete subset if £ is 

consistent. Hence, £+ is nullary if £ is consistent. Conversely, the combined 

theory £+ is inconsistent if £ is inconsistent. Thus we have proved that £+ is 

nullary if and only if £ is consistent. 

Were Uo recursively enumerable, then in particular the set of theo­

ries {£o I±J £1 £0 and £ have disjoint signatures, and £0 I±J £ is nullary} would 

be recursively enumerable. From this it would follow that the set {£ I 
£0 and £ have disjoint signatures, and £ is consistent} is recursively enumer­

able, which is impossible by Corollary 5.2. 0 

Corollary 5.6. Uo and Mo are not decidable. 

6 Conclusion 

There is no algorithm to decide for an arbitrary equational theory where it 

resides in the unification or matching hierarchy. Moreover, our proofs show also 

that for the restricted case of a theory having only unary function symbols it is 

impossible to decide whether it is unitary, finitary or infinitary. 

The undecidability proofs for the types 00 and 0 admit the stronger result 
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5 is consistent} would-be recursively enumerable, which is impossible by Corol—
lary 5.2.

The proof that M o is not recursively enumerable is completely analogous.
EI

Theorem 5.5.  U0 and Mo are not recursively enumerable.

Proof. Let 80 =: (20,  E0) be a nullary theory. Then there exist an 80—
unification problem I‘ and a complete set of unifiers U0 of I‘ such that Un has
no minimal complete subset.

Suppose € = (E ,  E) is a consistent theory such that E and 20  are disjoint.
By .the preceding lemma, U0 is also a complete ..set.....of....unifiers of I‘ for the
combined theory 8+ :=  80 Hal 8 ,  and U0 has no minimal complete subset if 8 is
consistent. Hence, 5+ is nullary if 5 is consistent. Conversely, the combined
theory 8+ is inconsistent if 8 is inconsistent. Thus we have proved that 8"" is
nullary if and only if € is consistent.

Were Mg recursively enumerable, then in particular the set of theo—

ries {50 HJ € I 80 and € have disjoint signatures, and 80 Hi 8 is nullary} would
be recursively enumerable. From this it would follow that the set {€  I
50 and € have disjoint signatures, and 8 is consistent} is recursively enumer—
able, which is impossible by Corollary 5.2. El

Corollary 5 .6 .  Mo and Mo  are not  decidable.

6 Conclusion

There is no algorithm to decide for an arbitrary equational theory where it
resides in the unification or matching hierarchy. Moreover, our proofs show also
that for the restricted case of a theory having only unary function symbols i t  is
impossible to decide whether it is  unitary, finitary or infinitary.

The undecidability proofs for the types 00 and 0 admit the stronger result
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that these types are not even recursively enumerable. It is an open problem 

whether the types 1 and ware semi-decidable, and I conjecture they are not. 

In the light of this paper's results, it seems more promising to investigate 

the hierarchy problem for special classes of theories. Since theories that are 

essentially equivalent can be presented with different signatures and different 

equations, a viable method can be to single out algebraic and model theoretic 

properties of a theory that determine its unification type. In general, these 

properties will not be decidable, but decidable sufficient criteria are to be ex­

pected. 

Acknowledgments: I like to thank K. Madlener for his hints to the liter­

ature on undecidability results in group theory. H.-J. Biirckert and J. Siekmann 

rer.l,d drJlit versions,a.nd discussions with the_mcQntributed very much to the 

present form of the paper. 
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In the light of this paper’s results, i t  seems more promising to investigate

the hierarchy problem for special classes of theories. Since theories that are
essentially equivalent can be presented with different signatures and different
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