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Abstract: 

To be able to quickly build expert systems for technical diagnosis causal knowledge is needed. In this paper 

we propose a specific way of integration between "shallow" (heuristic) knowledge and "deep" (causal) 

knowledge (i.e. a model of the device under investigation), namely the translation (compilation) from the 

model into causal rules. We present a way to separate the behavior acquisition of the typical components of a 

device (given by some domain experts) from the construction of a concrete representation (model) which 

can be built without experts. This model together with domain specific "technical common sense" integrated 

into our system is used to construct rules for a rule-based expert system that represent the causal 

knowledge. Our system is also able to modularize the resulting knowledge base into contexts (rule sets) 

similar to those given by experts themselves. These techniques are used in MOLTKE, an expert system for 

the diagnosis of CNC machining centers at the University of Kaiserslautern. 
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1 Introduction 
Expert systems for the diagnosis of some technical device need information about the structure, behavior 
and function of that device to be competent and easy to build and enlarge. This information, which we will call 
causal knowledge, differs in its sources and use from the heuristic and statistic knowledge that in the past 
was mainly used in expert systems. The sources for causal knowledge are - in the technical domain - quite 
exact, e.g. design information (function), physical laws (behavior) and connectivity descriptions (structure). 
All this information can be used to find faults even in new devices, i.e. no experience - inevitable for heuristic 
diagnosis - is needed. This is important, since diagnostic expert systems have to be made available for new 
devices immediately, not only after some time of experience in the field. Furthermore, new devices usually 
contain known parts, for which heuristic and statistic knowledge may already exist. 

Most expert systems represent heuristic and statistic knowledge (also often called "shallow" knowledge) 
using rules. The ways in which these two can be combined with causal ("deep") reasoning still are a hot 
research topic. One solution to this problem is to represent causal knowledge in rules too. In this paper we 
propose such a concrete way of integration, the translation (compilation) of a model of a device (by model we 
mean a representation of the structure, behavior and function) into causal rules, i.e. rules that represent 
causal knowledge. We present a way to separate between the behavior acquisition of typical components of 
the device and the construction of the model itself, which can be built without experts from the structure 
description of the device. Thus we try to show how a basic rule-based expert system for the diagnosis of a 
device can be build from its structure descriptions and a component library. This basic expert system then 
contains only causal and statistic knowledge, but can be easily improved by adding other rules that represent 
e.g. heuristic knowledge. 

The paper is organized as follows: After giving some definitions we need (section 1.1) we will take a look at 
the different types of knowledge and their sources (section 1.2). Then a short description of the chosen 
domain - CNC machining centers - is given (section 1.3), followed by an informal depiction of the task our 
approach tries to solve (section 1.4). The next two parts deal with the representation of structure and 
behavior descriptions (chapter 2) and control system error messages (chapter 3). After giving a short look at 
the rule system used in MOLTKE, just enough to show how our tool fits in (section 4.1) we come to the main 
point and show how the information from the descriptions can be used to build causal rules and to structure 
them (section 4.2-4.5). Some reflections on test selection and explanations together with a look at related 
work etc. conclude the paper. 

1.1 Causal Knowledge and Deep Models 

In this paper we will use the word "causal" to distinguish things that can be traced back directly and with 
absolute certainty to structure, behavior and function of a single concrete physical device from those that do 
not, either since they lack a clear correlation to the physical facts (these we will call "heuristic") or since they 
depend on many instances of a device and are not certain (called "statistic"). Thus causal knowledge in a 
technical domain consists of all the facts on structure, behavior and function of the device together with 
information on how connected parts interact and can be considered synonymous to the term "deep 
knowledge". From the causal knowledge of a device a representation can be build which we will call a deep 
model, or just a model. 

An important part of the causal knowledge is the organization of the machine which must be represented 
adequately in the model. Clever grouping of knowledge (of all kinds) is essential for efficient and reliable 
problem solving. We will call such a chunk of knowledge belonging together a context. 

1.2 Sources of Knowledae 

The different types of knowledge for technical diagnosis can be acquired from different sources: 

Heuristics can only be derived from one or more experts of the domain (since this knowledge is what makes 
them experts) or learned from experience (as experts do). 

Statistic information can be obtained from the files of the manufacturer and/or directly from the domain 
expert(s). If available, the former source will be more reliable than the latter due to its greater statistic 
significance, but may be too general to be of much use. Experts often mix statistic knowledge with other kind 
of heuristics to achieve their good results, often on a quite small base of typical examples. 
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the different types of knowledge and their sources (section 1.2). Then a short description of the chosen
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approach tries to solve (section 1.4). The next two parts deal with the representation of structure and
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work etc. conclude the paper.

1.1 I Kn wl n D M I

In this paper we will use the word "causal" to distinguish things that can be traced back directly and with
absolute certainty to structure, behavior and function of a single concrete physical device from those that do
not, either since they lack a clear correlation to the physical facts (these'we will call "heuristic") or since they
depend on many instances of a device and are not certain (called "statistic"). Thus causal knowledge in a
technical domain consists of all the facts on structure, behavior and function of the device together with
information on how connected parts interact and can be considered synonymous to the term "deep
knowledge". From the causal knowledge of a device a representation can be build which we will call a deep
model, or just a model.
An important part of the causal knowledge is the organization of the machine which must be represented
adequately in the model. Clever grouping of knowledge (of all kinds) is essential for efficient and reliable
problem solving. We will call such a chunk of knowledge belonging together a context.
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The different types of knowledge for technical diagnosis can be acquired from different sources:

Heuristics can only be derived from one or more experts of the domain (since this knowledge is what makes
them experts) or learned from experience (as experts do).
Statistic information can be obtained from the files of the manufacturer and/or directly from the domain
expert(s). If available, the former source will be more reliable than the latter due to its greater statistic
significance, but may be too general to be of much use. Experts often mix statistic knowledge with other kind
of heuristics to achieve their good results, often on a quite small base of typical examples.
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Causal knowledge can be derived from design plans and diagrams of the device, if these descriptions are 
read by someone with a "technical common sense" that enables him/her to understand them. Naturally we 
could get the causal knowledge for our expert system from the experts too. But there is another possibility: If 
we provide the system with that ''technical common sense" it could derive the information directly from the 
diagrams without using up the experts valuable time. Additionally, a systematic interpretation of the diagrams 
guarantees that all causal relations are represented in rules. 

1.3 The Domain: CNC machining centers 

In MOLTKE [AIthoff et al. 88], an expert system project for the diagnosis of CNC machining centers at the 
University of Kaiserslautern, we had the problem of acquisition of causal knowledge too. In this domain even 
the experts (Le. the service technicians of the manufacturer) often have to rely on the diagrams of the 
machine because 

there are many machine types that the same service technician has to maintain, 

nearly every other month a new series of the same machine type appears that has some 
changes in its composition, 

even machines from the same type and series differ due to optional subdevices. 

Therefore only general statistics on typical parts are available and each individual service technician has only 
a low chance to acquire special heuristics for individual machine types. Thus the causal knowledge 
represented in the descriptions and the general understanding of the functionality of machining centers play 
an important role in the modeling of the diagnosticians behavior. In MOLTKE we try to integrate this 
description-based inference techniques with the collected heuristics of the technicians in the field. 

1.4 The Task: Getting the Causal Knowledge Into the System 

A possible approach to get some of the causal knowledge about a device into the expert system could be to 
have an engineer (i.e. someone with that "technical common sense", not necessarily an expert) look at the 
design plans and diagrams of a concrete machine and write down the information in form of failure detection 
flowcharts which are then translated into rules of different types. The order in the flowchart would be based 
on a priori failure probabilities and directly influence the ordering and priorities of the rules. When we tried this 
way of knowledge acquisition in MOLTKE it turned out that it was quite time consuming, since the process 
required several iterations and the final flowcharts were by no means complete (With respect to the 
underlying descriptions). Worse, new machine series or, even more, types required much of that work again, 
since most diagrams had to be revisited to check for changes (e.g. new components with new failure 
probabilities or even new failures). 

This caused us to build a tool to do the work of that engineer. The tool gets diagrams (Le. the structure) of 
the machine and uses its built-in knowledge of electrical and mechanical engineering (Le. its "technical 
common sense") - e.g. the behavior of typical components - to form a (deep) model of the machine and to 
derive rules for fault identification, test suggestion and determination of yet unmeasured symptoms from this 
model. Furthermore the system is able to organize the rules into groups (called contexts in MOLTKE) that 
represent intermediate diagnoses. A more detailed description of how the rules and contexts are build can 
be found in chapter 4. 

An important point is that the diagrams can be entered by anyone; there is no need for the special 
knowledge of an engineer to do that. An engineer (and maybe the expert) is needed only to provide 
information about the typical atomic parts in the descriptions, e.g. valves, switches, contactors, hydraulic 
pistons. Some statistic knowledge about a priori failure probabilities and additional information on 
measurement costs have been integrated into the model to allow a more sophisticated test selection; thus 
the model is no longer purely causal, but contains other knowledge too. Note that our domain is not as 
simple as digital circuits, the usual example domain for model-based diagnosis. 
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A possible approach to get some of the causal knowledge about a device into the expert system could be to
have an engineer (i.e. someone with that "technical common sense", not necessarily an expert) look at the
design plans and diagrams of a concrete machine and write down the information in form of failure detection
flowcharts which are then translated into rules of different types. The order in the flowchart would be based
on a priori failure probabilities and directly influence the ordering and priorities of the rules. When we tried this
way of knowledge acquisition in MOLTKE it turned out that it was quite time consuming, since the process
required several iterations and the final flowcharts were by no means complete (with respect to the
underlying descriptions). Worse, new machine series or, even more, types required much of that work again,
since most diagrams had to be revisited to check for changes (e.g. new components with new failure
probabilities or even new failures).

This caused us to build a tool to do the work of that engineer. The tool gets diagrams (Le. the structure) of
the machine and uses its built-in knowledge of electrical and mechanical engineering (Le. its "technical
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derive mles for fault identification. test suggestion and determination of yet unmeasured symptoms from this
model. Furthermore the system is able to organize the rules into groups (called contexts in MOLTKE) that
represent intermediate diagnoses. A more detailed description of how the rules and contexts are build can
be found in chapter 4.

An important point is that the diagrams can be entered by anyone; there is no need for the special
knowledge of an engineer to do that. An engineer (and maybe the expert) is needed only to provide
information about the typical atomic parts in the descriptions, e.g. valves, switches, contactors. hydraulic
pistons. Some statistic knowledge about a priori failure probabilities and additional information on
measurement costs have been integrated into the model to allow a more sophisticated test selection; thus
the model is no longer purely causal, but contains other knowledge too. Note that our domain is not as
simple as digital circuits, the usual example domain for model-based diagnosis.
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2 The Model 
We use a component oriented, hierarchical qualitative model of the machine. What is considered an atomic 
component is determined by the granularity of the used diagrams and the exchangeability of the parts (e.g. 
since relays are completely replaced if found faulty, there is no need to model the parts of a relay). 
Information on typical primitive (atomic) components like valves, switches etc. is stored in a library. Using 
these parts, new assembly groups (also called complex components) can be built and so on; this way a 
hierarchical model is built up where the top component represents the entire machine. The general 
description of a component is found in the component class, its instances represent the concrete 
components. Connections are internally modeled as components, but need not to be entered explicitly, 
since they can be added automatically (e.g. if the user connects two hydraulic ports the system automatically 
assumes a pipe between them). 

A component class stores the following knowledge: 

name of the component type 

ports to other components (optionally with test costs) 

possible internal states (optionally with test costs)
 
Internal states can be made available to other components using them as ports.
 

behavior of the component 
The behavior is given either in form of tables or by rules: the if-part contains predicates on 
ports and states that allow to conclude some other port or state in the then-part. These 
tables/rules represent the constraints the component sets up between its ports and states. 
Note that components do know about their function, thus the "no-function-in-structure" 
principle is deliberately abandoned to enable the generation of better causal rules from the 
model. 

subparts and their interconnections (only if non-atomic) 

typical malfunctions with name and effects (if available) 
These typical malfunctions model the behavior of the component when a common failure 
occurred and enable the system to reason faster. There is always the possibility to fall back to 
the total suspension of the constraints of the component, which is the usual approach of 
model-based troubleshooting. 

a priori probability of failure (if available) 

An actual component is an instance of its class which additionally knows its name, location, neighbors (Le. 
which of its ports is connected to which port of which (possibly) other instance), names of its subcomponents 
(if any) and position in the diagram. 

We will present our notation of the model using the typical relay and switch from MOLTKE as an example1: 

PrimitiveComponent define: Relay 
ports: «currentln medium) (currentOut medium) (lever easy» 
states: (lever (unshifted shifted) easy) 
behavior: (currentln = +) (currentOut = -) -> (lever = shifted) 

(currentln # +) -> (lever = unshifted)
 
(currentOut # -) -> (lever = unshifted»
 

failures: «stuck (lever = shifted»
 
(magnetDefective (lever = unshifted»)
 

failProbability: high.
 

1 Since MOLTKE is implemented in Smalftalk-80 we will use its syntax in this paper. 
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components. Connections are internally modeled as components, but need not to be entered explicitly,
since they can be added automatically (e.g. if the user connects two hydraulic ports the system automatically
assumes a pipe between them).

A component class stores the following knowledge:

An actual component is an instance of its class which additionally knows its name, location, neighbors (Le.
which of its ports is connected to which port of which (possibly) other instance), names of its subcomponents

name of the component type

ports to other components (optionally with test costs)
possible internal states (optionally with test costs)
lntemal states can be made available to other components using them as ports.

behavior of the component
The behavior is given either in form of tables or by rules: the if-part contains predicates on
ports and states that allow to conclude some other port or state in the then-part. These
tables/rules represent the constraints the component sets up between its ports and states.
Note that components do know about their function, thus the "no-function-in-structure"
principle is deliberately abandoned to enable the generation of better causal rules from the
model.

subparts and their interconnections (only if non-atomic)
typical malfunctions with name and effects (if available)
These typical malfunctions model the behavior of the component when a common failure
occurred and enable the system to reason faster. There is always the possibility to fall back to
the total suspension of the constraints of the component, which is the usual approach of
model-based troubleshooting.

a priori probability of failure (if available)

(if any) and position in the diagram.

We will present our notation of the model using the typical relay and switch from MOLTKE as an example1 :
PrimitiveComponent de f ine :  Relay

po r t s :  ( ( cu r ren t I n  medium) (cur rentOut  medium) ( lever  easy ) )
s ta tes :  ( l eve r  ( unsh i f t ed  sh i f t ed )  easy )
behav io r :  ( cu r ren t I n  = +)  (currentOut = —) —> ( l eve r  = sh i f t ed )

( cu r ren t I n  ? +)  —> ( l eve r  = unsh i f t ed )
(cu r ren tOu t  # —) ->  ( l eve r  = unsh i f t ed ) )

f a i l u res :  ( ( s t uck  ( l eve r  = sh i f t ed ) )
(magnetDefect ive ( l eve r  = unsh i f t ed ) ) )

f a i lP robab i l i t y :  h i gh .

" Since MOLTKE is implemented in Smalltalk-80 we will use its syntax in this paper.
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PrimitiveComponent define: Switch+1 

ports: «currentln medium) (currentOut medium) (lever easy» 
states: nil 
behavior: (lever = unshifted) -> (currentOut = 0) 

(lever = shifted) (currentln = X) -> (currentOut X)
 
failures: (noContact (currentOut = 0»
 
failProbability: medium.
 

Examples for instances are relay s27Kl and switch s27Kla: 

Relay new: s27Kl 
location: toolChanger 
connections: «currentln m326 currentOut) 

(currentOut pI currentln)
 
(lever s27Kla lever)
 
(lever s27Klb lever)
 
(lever s27Klc lever»
 

position: 275. 

Switch+ new: s27Kla 
location: toolChanger 
connections: «currentln p2 currentOut) 

(currentOut n514 currentInl)
 
(lever s27Kl lever»
 

position: 214.
 

This means that a relay is a primitive (atomic) component, has three ports, two for the control current (medium 
measurement costs) and one for its state (Iow measurement cost); the lever only shifts when it gets current; 
typical failures are a stuck (Le. the lever is shifted even if there is no current) and a broken magnet (Le. the 
current can not shift the lever); its a priori failure probability is high, i.e. relays are a common failure reason. 
Relay only models the acting parts. Each relay can steer several instances of Switch, which can be an 
opening switch or a closing switch. Switches are connected to their relay through their lever port. The 
actual relay s27Kl is part of the tool changer, gets its current from measuring point 3262 and power supply 1, 
steers switches s27Kla-c and can be found on diagram position 275. 

An example for a non-atomic component is the typical valve selection unit, which consists of a switCh, a 
measuring point and a valve. This unit would be represented as follows: 

ComplexComponentdefine: ValveSelection 
ports: (lever currentln currentOut slide3 ) 
states: nil 
behavior: nil 
parts: (Switch+ s Measuringpoint m Valve v) 
connections: «self currentln s currentln) 

(s currentOut m currentIn)
 
(m currentOut v currentln)
 
(v currentOut self currentOut»
 

failures: nil
 
failProbability: unknown.
 

ValveSelection new: vs27Yl 
location: toolChanger 
connections: «currentln n152 currentOut) 

(currentOut n511 currentln»
 
subparts: «s s27K1a 214) (m m317 214) (v v27Y1 275»
 
position: nil.
 

Switch+ means a closing switch (Le. a connection is made iff the lever is shifted) while Switch- would denote an 
opening switch (Le. connection iff the lever is unshifled). 

2	 Measuring points (like manometers etc.) are components whose only function is to make their input and output port 
the same (without failing ability). Their real purpose is to allow observations at low cost. 

3	 s1 j de is a state of Valve and indicates whether the valve is open or closed. 

Robert Rehbold: Model-Based Knowledge Acquisition 5

PrimitiveComponent def ine:  Switch+1

ports: ((currentIn medium) (currentOut medium) (lever easy))
states: nil

behavior: (lever = unshifted) —> (currentOut = 0)

(lever = shifted) (currentIn = X )  —> (currentOut = X )

failures: (noContact (currentOut = 0))
failProbability: medium.

Examples for instances are relay 52 7K1 and switch 327K1a:

Relay new: 327K1
location: toolChanger
connections: ((currentIn m326 currentOut)

(currentOut pl currentIn)
(lever $27K1a lever)
(lever 527K1b lever)

(lever 5 2 7 c  lever))

position: 275.

Switch+ new: s27Kla
location: toolChanger

connections: ((currentIn p2 currentOut)
(currentOut n514 currentInl)

(lever 327K1 lever))

position: 214.

This means that a relay is a primitive (atomic) component, has three ports, two for the control current (medium
measurement costs) and one for its state (low measurement cost); the lever only shifts when it gets current;
typical failures are a stuck (i.e. the lever is shifted even if there is no current) and a broken magnet (Le. the
current can not shift the lever); its a priori failure probability is high, i.e. relays are a common failure reason.
Relay only models the acting parts. Each relay can steer several instances of Switch, which can be an
opening switch or a closing switch. Switches are connected to their relay through their lever port. The
actual relay 527K1 is part of the tool changer, gets its current from measuring point 3262 and power supply 1,
steers switches $27K1a-c and can be found on diagram position 275.

An example for a non-atomic component is the typical valve selection unit, which consists of a switch, a
measuring point and a valve. This unit would be represented as follows:

ComplexComponent define: ValveSelection

ports: (lever currentIn currentOut slides)
states: nil
behavior: nil

parts: (Switch+ s MeasuringPoint m.Valve v)
connections: ((self currentIn s currentIn)

( s  currentOut m currentIn)
(m currentOut v currentIn)

(v currentOut self currentOut))
failures: nil

failProbability: unknown.

ValveSelection new: v527Y1

location: toolChanger
connections: ((currentIn n152 currentOut)

(currentOut n511 currentIn))

subparts: ( ( s  327K1a 214) (m.m317 214) (v v27Y1 275))
position: nil.

1 Swit ch+ means a closing switch (Le. a connection is made iii the lever is shifted) while Switch- would denote an
opening switch (is. connection iff the lever is unshifted).

2 Measuring points (like manometers etc.) are components whose only function is to make their input and output port
the same (without falling ability). Their real purpose is to allow observations at low cost.

3 slide is a state of Valve and indicates whether the valve is open or closed.
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States, behavior and failures need not be defined, instead the system will assume that the new component 
has the same states as its only component with state, Valve. The behavior of the unit will be derived from 
the behavior of its subparts. Failures of a non-atomic component include those of its subcomponents 
including the possibility of broken connections (in this case wires, which are added automatically). If no costs 
for tests of ports are given they are deduced from the ports the component is connected to; state test costs 
are inherited from the according sUbcomponent. 

Note that the creation of instance vs27Yl does not include the creation of instances for s27Kla etc. 
Instead, the information about the subpart names is stored with vs27Yl to be used if needed. There is no 
need for even a single instance of Valve being created, if all valves are part of a valve selection component, 
since all rules can be derived from the class definitions. 

Component classes are immediately cross-checked: topology, states and behavior must be fully specified, all 
ports of subparts must be connected by connections of the correct type1 and states must appear in the 
behavior. When actual parts (instances) are entered, they are cross-checked too to ensure that every 
subpart class exists and is of proper type and that the connections to the neighbors are ok. 

3 Control System Error Messages 
The control system of the CNC machining center provides us with first information about where a failure 
happened by displaying an error number. These errors are issued if some feedback signal to a started 
machine order misses or is wrong (e.g. a limit switch did not operate within a given time). This information 
allows to focus the attention to a certain part of the machine and is therefore a valuable starting point for the 
diagnosis. Each error is associated with a certain machine sUbcycle that performs a special operation starting 
with some control system output signals and ending with some feedback input signals. It· is possible to 
conclude from the model which valves, switches etc. are related to these 10 signals and are therefore under 
suspect. 

Our tool requires the following pieces of information on each control system error message: 

error number 

textual description of failure (only needed for explanation reasons) 

name of operation(s) it can occur in 

names and values of output status when the error occurred 

names and values of input status that lead to the message 

EXAMPLE: 

ErrorMessage new: 159 
description: 'Tool cannot be released' 
operations: (releaseToolHolder) 
oStatus2 : «OUT7 1) (OUT24 1)} 
iStatus: ( (1N32 O)} «1N36 1)}} 

1	 Ports have types and directions to ensure proper modeling (left out in this paper for the sake of readability). 

2	 Input and output status are named looking from the inside of the control system. Thus OUT signals go from the 
control system to the machine; IN signals come from the machine and go into the control system. 
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4 Building Rules and Contexts from the Model 

4.1	 Rules In MOLTKE 

Before we come to the central point of this paper, namely to show how causal rules can be derived and 
collected into contexts, we will take a short look at the way MOLTKE organizes its rules. As often done in 
rule-based systems rules are collected in groups called contexts. They were introduced to modularize the 
knowledge base. This modularization pays in two ways: 

1)	 The knowledge base can be easily changed without accidentally destroying global 
consistency etc. 

2)	 The speed of the system depends mainly on the number of rules in a context, not on the total 
number of rules in the system, thus enabling really large knowledge bases such as required 
by complicated devices like CNC machining centers. 

Each context contains the rules to be considered in a certain state of the diagnostic process and thus 
represents an intermediate diagnosis. There are four types of rules in a context: 

1)	 diagnostic rules to establish one or more diagnoses (intermediate or final) 

2)	 ordering rules to locally order the questions in the interaction with the user (Le. which 
question to ask next) 

3)	 determination rules to conclude unknown symptoms out of already known ones 

4)	 control rules to manage the proceeding of the system (control knowledge). 

Causal knowledge is contained in the diagnostic and determination rules. The statistic knowledge 
incorporated in our model allows to extract ordering rules if SUfficient information on the a priori failure 
probabilities was provided; if already known facts are considered too the border to heuristic knowledge 
would be crossed. Control rules contain typical expert (heuristic) knowledge and can not be derived from a 
model. Diagnostic and determination rules can be certain (total) or uncertain (partial). Total rules will pay for 
their absolute correctness1 by having more and stronger preconditions than partial ones2. 

A rule in MOLTKE consists of the usual parts: a rule name, some conditions, some conclusions, explanations 
for different kinds of questions, a priority and a certainty factor (which for causal rules derived from the model 
is always certain). Conditions and conclusions can contain variables and operate on frame-based local 
working memories. 

4.2	 Building Contexts from the Model 

The best way to choose contexts (remember: each context represents an intermediate diagnosis) is to ask 
the experts; but since we want to build the basic causal expert system without their help, we have to build the 
contexts ourselves. Naturally, automatically generated contexts may be not as good as those from the 
experts, but our experience with the manually chosen contexts showed some typical patterns that will most 
often fit. Each context (intermediate diagnosis) leads to several more special diagnoses that are its 
subcontexts. An example for a piece of a context heterarchy is given in figure 1. 

The most abstract context and root of the context heterarchy is a context called MachineFailure. Its first 
level of subcontexts is induced by the control system error messages, Le. each error number has its own 
context (e.g. ErrorI59 in fig. 1). Each of these error contexts now gets subcontexts of its own for each 
control system input that could have been responsible for that error (e.g. IN32=O). Since the same fault 
could lead to different error messages, depending on the machine cycle it occurred in, the contexts are 
organized in a heterarchy instead of a hierarchy to avoid multiple instances of the same context. 

1 with respect to the underlying model 

2 Such partial rules are found in MOLTKE through case based learning. 

Robert Rehbold: Model-Based Knowledge Acquisition 7

4 Building Rules and Contexts from the Model

4.1 R I I n  M LTKE

Before we come to the central point of this paper, namely to show how causal rules can be derived and
collected into contexts, we will take a short look at the way MOLTKE organizes its rules. As often done i n
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The best way to choose contexts (remember: each context represents an intermediate diagnosis) is to ask
the experts; but since we want to build the basic causal expert system without their help, we have to build the
contexts ourselves. Naturally, automatically generated contexts may be not as good as those from the
experts, but our experience with the manually chosen contexts showed some typical patterns that will most
often fit. Each context (intermediate diagnosis) leads to several more special diagnoses that are its
subcontexts. An example for a piece of a context heterarchy is given in figure 1 .

The most abstract context and root of the context heterarchy is a context called MachineFai lure  . Its first
level of subcontexts is induced by the control system error messages, i.e. each error number has its own
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1 with respect to the underlying model
2 Such partial rules are found in MOLTKE through case based learning.
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MachineFailure 

-----~--/ ""~"===---ErrorI55 ErrorI57 ErrorI59 ErrorI60 
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WireBroken 

Figure 1: Example of a context heterarchy 

A context C gets a new subcontext for each of its components that has a state that, if wrong (unexpected1), 
may have caused the conditions that led to the intermediate diagnosis represented by C, e.g. a valve that 
should have been closed was open (e.g. Valve5YlOpen2). This method is applied recursively until no more 
components with states are in the path from the control system output to the component with the wrong 
state. This path is found using the interconnection information given in the component definition. Final 
diagnoses (e.g. LimitSwitchStuck, WireBroken) form the leaves of the context heterarchy, since they 
have no need for further subcontexts. There is only one context for each of these typical faults which is 
instantiated with the name of the component under consideration. 

Creating a context for each unexpected state of a component requires the discrimination of that component 
in several parts: one that represents the behavior that changes the state (which is visible as a port) and one 
that depends on the state in its behavior. 

EXAMPLE: 

A relay is not modeled in whole, but instead separated into one "core relay" that moves the 
switches via the lever and the switches themselves that perform their particular function (see 
definition of Relay and Switch above). The port containing the effects (here: one of the 
switches) is treated in the context itself while the part that causes the state (here: the "core 
relay") belongs to the subcontext that deals with the unexpected state. 

Since there may be different contexts that need a subcontext for the same unexpected state (e.g. one "core 
relay" can steer many switches), it is important that contexts form a heterarchy instead of a hierarchy to avoid 
unnecessary duplications. The separation is possible since the state itself will never be influenced by the 
ports it influences. 

4,3 Construction of Determination Rules 

A determination rule tries to establish facts about yet unmeasured port values from already acquired data. 
Deriving them from a model requires knowledge about the way connected components interact. Our 
determination rules rely on the fact that all possible failures of components are modeled. Since these rules 
cannot assume any component to work correctly, too many different possible failures make it impossible to 
derive any determination rule at all. If an unmodeled fault occurs the determination rules may conclude wrong 

We call a state wrong if it may have caused another unexpected measurement. Such states are found by tracing the 
effects (IN status) back to their sources (OUT status). 

2	 Note that there is no special context for each instance of the same class. Instead one parameterized context is 
created which will be used by all instances. 
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Figure 1: Example of a context heterarchy

A context C gets a new subcontext for each of its components that has a state that, if wrong (unexpected‘),
may have caused the conditions that led to the intermediate diagnosis represented by C, e.g. a valve that
should have been closed was open (e.g. Valve5Y10pen2). This method is applied recursively until no more
components with states are in the path from the control system output to the component with the wrong
state. This path is  found using the interconnection information given in  the component definition. Final
diagnoses (e ‚g. L im i tSw i t chStuck ,  Wi reBroken)  form the leaves of the context heterarchy, since they
have no need for further subcontexts. There is only one context for each of these typical faults which is
instantiated with the name of the component under consideration.

Creating a context for each unexpected state of a component requires the discrimination of that component
in several parts: one that represents the behavior that changes the state (which is visible as a port) and one
that depends on the state in its behavior.

EXAMELE;

A relay is not modeled in whole, but instead separated into one "core relay" that moves the
switches via the lever and the switches themselves that perform their particular function (see
definition of Re lay  and Sw i t ch  above). The port containing the effects (here: one of the
switches) is treated in the context itself while the part that causes the state (here: the "core
relay") belongs to the subcontext that deals with the unexpected state.

Since there may be different contexts that need a subcontext for the same unexpected state (e.g. one "core
relay" can steer many switches), it is important that contexts form a heterarchy instead of a hierarchy to avoid
unnecessary duplications. The separation is possible since the state itself will never be influenced by the
ports it influences.

W
A determination rule tries to establish facts about yet unmeasured port values from already acquired data.
Deriving them from a model requires knowledge about the way connected components interact. Our
determination rules rely on the fact that all possible failures of components are modeled. Since these rules
cannot assume any component to work correctly, too many different possible failures make it impossible to
derive any determination rule at all. If an unmodeled fault occurs the determination rules may conclude wrong

We call a state wrong if it may have caused another unexpected measurement. Such states are found by tracing the
effects (lN status) back to their sources (OUT status).
Note that there is no special context for each instance of the same class. Instead one parameterized context is
created which will be used by all instances.
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port values, but this kind of failure can be found by direct use of the model, e.g. by constraint suspension 
[Davis 84] or similar techniques which, however, will be quite costly. 

We have different contexts for the same component with state, one for each possible state value, but the 
determination rules are the same for all of them, since they are only based on the model of the working 
device. We derive the determination rules for a component as follows: 

i)	 Each behavior rule is copied as a determination rule iff there is no failure that produces an 
unexpected (different) output1 on the same inputs. 

ii)	 The inversion of each behavior rule is copied as a determination rule iffthere is no failure that 
produces the same output on different inputs. 

In the context, the determination rules of each component are collected together with some rules that state 
the equality of connected ports. 

EXAMPLE: 

Given (currentIn = X) -> (currentOut = X) as the behavior rule for Wire and 
(Broken (currentOut = 0)) as the failure of wire, we can conclude the following: 

Since for all x:~o Broken produces a different (unexpected) output (Le. 0) on input X than the 
behavior rule, i) can only be used for X=O. Thus i) leads to the following determination rule: 

(currentln = 0) -> (currentOut = 0) 

Broken produces output 0 for every input, not just on O. Thus, according to ii), we must 
exclude X=O from the inversion of the behavior rule and can conclude the determination rule 

(currentOut = X) (X * 0) -> (currentIn = X) 

4.4	 ConstruCtion of Diagnostic Rules 

Thanks to the context concept the preconditions for an actual diagnosis can be local, Le. relative to the 
preconditions of the whole context and that of its ancestors. Thus, a diagnostic rule consists of a number of 
preconditions that make sure the proper circumstances for a component to work are given, the precondition 
that it does not work and the conclusion to change to the corresponding subcontext, which indicates that 
that component is faulty, together with a high priority (since the failure is found) and certainty (since this is 
100% correct with respect to the model). In the wire example above the diagnostic rule would be 

(current In = X) (X * 0) (currentOut = 0) -> (newContext WireBroken). 

Diagnostic Rules lead to subcontexts, Le. the preconditions for a diagnostic rule are the conditions under 
which the diagnosis (intermediate or final) of a given subcontext is established. For example, the 
precondition for a descent from context ValveClosed in our valve selection example into its subcontext 
Switch+Unshifted is (Switch+ lever = unshifted); the precondition for subcontext 
ValveMagnetDefective is (ValveCurrentIn = +) (ValveCurrentOut = -). These preconditions 
can be that (surprisingly) short, since the preconditions of the context they are used in must be fulfilled 
anyway and need not to be repeated. Thus, preconditions like (OUT? = 1) or (Valve slide = closed) 
have not to be mentioned again. 

Finding diagnostic rules from the model is quite straightforward: as mentioned above there is a context for 
each possible state value for each component. Its precondition is that that state value really was observed. 
Each failure of a component has its own context too, which is named after the failure name; the preconditions 
of these contexts are that their inputs were correct, while their outputs were not. Any precondition 
mentioned in one of the supercontexts' preconditions is simply left out. 

In the last two sections the question may have arisen why we first model the component with its correct and 
faUlty behavior and then mechanically derive determination and diagnostic rules out of it instead of writing 
them down immediately. Beneath the fact that the representation of the connectivity would be more difficult 
and that consistency checks would have to be reduced the chosen representation is much clearer, easier to 
produce and can be used for other tasks too (e.g. construction of ordering rules - see section 4.5 - or 
explanations - see chapter 5). 

1 Outputs are ports or states that appear on the right side of a behavior rule; inputs appear on the left side. 
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EXAMELE;
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Broken produces output 0 for every input, not just on 0. Thus, according to ii), we must
exclude X=0 from the inversion of the behavior rule and can conclude the determination rule
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Thanks to the context concept the preconditions for an actual diagnosis can be local, i.e. relative to the
preconditions of the whole context and that of its ancestors. Thus, a diagnostic rule consists of a number of
preconditions that make sure the proper circumstances for a component to work are given, the precondition
that it does not work and the conclusion to change to the corresponding subcontext, which indicates that
that component is faulty, together with a high priority (since the failure is found) and certainty (since this is
100% correct with respect to the model). In the wire example above the diagnostic rule would be

( cur ren t In  = X )  ( x  $ 0) (currentOut  = 0 )  —> (newContext Wi reBroken) .

Diagnostic Rules lead to subcontexts, i.e. the preconditions for a diagnostic rule are the conditions under
which the diagnosis (intermediate or final) of a given subcontext is established. For example, the
precondition for a descent from context ValveClosed in our valve selection example into its subcontext
Swi tch+Unsh i f ted  is (Switch+ l ever  = unsh i f ted ) ;  the precondition for subcontext
ValveMagnetDefective is (ValveCurrentIn = +) (ValveCurrentOut = —) . These preconditions
can be that (surprisingly) short, since the preconditions of the context they are used in must be fulfilled
anyway and need not to be repeated. Thus, preconditions like (OUT? = 1) or (Valve slide = closed)
have not to be mentioned again.
Finding diagnostic rules from the model is quite straightforward: as mentioned above there is a context for
each possible state value for each component. Its precondition is that that state value really was observed.
Each failure of a component has its own context too, which is named after the failure name; the preconditions
of these contexts are that their inputs were correct, while their outputs were not. Any precondition
mentioned in one of the supercontexts' preconditions is simply left out.
In the last two sections the question may have arisen why we first model the component with its correct and
faulty behavior and then mechanically derive determination and diagnostic rules out of it instead of writing
them down immediately. Beneath the fact that the representation of the connectivity would be more difficult
and that consistency checks would have to be reduced the chosen representation is much clearer, easier to
produce and can be used for other tasks too (e.g. construction of ordering rules - see section 4.5 - or
explanations - see chapter 5).

1 Outputs are ports or states that appear on the right side of a behavior rule; inputs appear on the left side.
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4.5 Construction of Ordering Rules 

Our augmentation of the model with failure probabilities and measurement complexity allows us to produce 
rules that ask for easy tests that identify frequent errors first. A simple approach uses the measurement 
complexity first and arranges testing points of the same complexity according to the expected information, 
which is calculated using the model for each possible input and comparing the results to the preconditions of 
the diagnostic rules. A more complex solution determines the next test point from the expected increase of 
information [de Kleer, Williams 87]. A complete discussion of these aspects deserves a paper on its own and 
is omitted here. 

5 Explanations 
Every rule constructed from the model will be automatically augmented with a causal explanation. For the 
extracted determination and diagnostic rules the explanations are constructed straightforward: Every 
diagnostic rule gets its complete precondition (Le. its own and all preconditions of the supercontexts it is 
embedded in) as its How?-, the name of its diagnosis as its Why?- and the types and names of the involved 
components as its What?-explanation. Determination rules rely on their associated behavior rule as their 
Why?- and How?-explanation and on the type and name of their component as their What?-explanation. 

Even Why not?-questions can be answered due to the additional information on the possible failures, their 
probabilities and the measurement complexities stored with the model. This ability is deeply connected to 
the problem of the selection of the next test (see paragraph above), therefore we will not go into details here. 

6 Further Uses of the Model 
Once there is a model of the machine in the system, one could do more with it than just derive rules out of it. 
The model could be enhanced to be useful for all the things models are believed to do better than shallow 
rules, e.g. suspect generation for uncommon causes (e.g. by constraint suspension [Davis 84]), suspect 
examination (by simulation and testing or fault model simulation and verification) or explanation generation 
(by following the causal paths). 

7 Related Work 
[Chandrasekaran, Mittal 83] discuss the model-to-rule compilation for the medical diagnosis domain. Their 
main point is to show that in general a rule-based diagnosis structure D compiled from a underlying model U is 
able to find any disease that could be found using U. Due to their general approach they need experts to 
build the model U and the hierarchy of the compiled structure D. 

A way of modeling technical processes is presented in [Sembugamoorthy, Chandrasekaran 86]. This 
approach puts the emphasis on the representation of the function of the device and assume a high-level 
modeling. The compilation to "specialists" seems similar to our context creation; there are no equivalents to 
our determination rule generation. Since the intention of their work seems to have been fairly different from 
ours, the high-level functional description makes it difficult to have an unexperienced user enter complex 
devices into the representation formalism. 

[Milne 85] assigns "responsibilities" for parts of the output of analog circuits. These responsibilities are 
provided by an expert and use his/her terminology to reason from "second principles". The system does not 
compile the circuit model into rules, but instead uses a few general rules to interpret it. As [Gantone et al. 85] 
point out, these rules appear to be restricted to low-level components. 

IN-ATE [Gantone et al. 85] deduces "missing" rules from the topology of the unit under test. The rule lists the 
suspect components for a given set of symptoms and distributes fault probabilities to them according to a 
priori failure rates it was provided with. It does not use special engineering knowledge and the rules it 
produces do not represent pure causal knowledge. 

[Steels, van de Velde 86] propose an algorithm that learns heuristic rules from a model. The rules they derive 
are not certain (total), but represent a shortcut of a reasoning in the model due to omissions of intermediate 
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Our augmentation of the model with failure probabilities and measurement complexity allows us to produce
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examination (by simulation and testing or fault model simulation and verification) or explanation generation
(by following the causal paths).

7 Related Work
[Chandrasekaran, Mittal 83] discuss the model-to-rule compilation for the medical diagnosis domain. Their
main point is to show that in general a rule-based diagnosis structure D compiled from a underlying model U is
able to find any disease that could be found using U. Due to their general approach they need experts to
build the model U and the hierarchy of the compiled structure D.
A way of modeling technical processes is presented in [Sembugamoorthy, Chandrasekaran 86]. This
approach puts the emphasis on the representation of the function of the device and assume a high-level
modeling. The compilation to "specialists" seems similar to our context creation; there are no equivalents to
our determination rule generation. Since the intention of their work seems to have been fairly different from
ours, the high-level functional description makes it difficult to have an unexperienced user enter complex
devices into the representation formalism.
[Milne 85] assigns "responsibilities" for parts of the output of analog circuits. These responsibilities are
provided by an expert and use his/her terminology to reason from "second principles". The system does not
compile the circuit model into rules, but instead uses a few general rules to interpret it. As [Cantone et al. 85]
point out, these rules appear to be restricted to low-level components.
IN-ATE [Cantone et al. 85] deduces "missing" rules from the topology of the unit under test. The rule lists the
suspect components for a given set of symptoms and distributes fault probabilities to them according to a
priori failure rates it was provided with. It does not use special engineering knowledge and the rules it
produces do not represent pure causal knowledge.

(Steels, van de Velde 86] propose an algorithm that learns heuristic mles from a model. The rules they derive
are not certain (total). but represent a shortcut of a reasoning in the model due to omissions of intermediate
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steps and concentration on "plausible" conclusions. Thus, their rules are faster in finding a conclusion than 
ours, but do not provide the full information of the model. 

[Pearce 88] uses a flat (Le. non-hierarchical) qualitative model of a technical device to simulate the failure of 
each component in the model resulting in a complete example set of all failure possibilities. From theses 
examples his system induces rules using a version of the AQ rule induction algorithm. While the way the 
behavior of components is represented (using behavior rules) seems quite similar to our approach, we do 
not use the model for exhaustive simulation, since the size of the set of examples grows exponentially with 
the complexity of the device. Instead we allow a kind of restricted local simulation using determination rules. 

8 Conclusion 
We have presented a system to support the acquisition of causal knowledge for the diagnosis of technical 
devices. We have shown how a model of the concrete machine under investigation can be built from 
technical diagrams without the need for an engineer, and how this model can be used to construct rules for a 
rule-based expert system that represent the causal knowledge from the descriptions. 

An expert is still needed to provide all kinds of information on the basic components, especially about failures 
together with their probabilities, about the difficulty of measurements and about the functionality. 

A tool like ours is especially useful in a domain where similar devices are the objects of diagnosis. In the 
chosen domain where a new machine series with minor changes appears every other month our tool allows 
to derive the causal knowledge for a new series with much less effort than having an engineer doing that. 

9 Status of the Research 
MOLTKE is implemented in Smalltalk-80 and runs on Apollo, Hewlett-Packard and SUN workstations. It 
consists of a sophisticated forward/backward rule interpreter that operates on rule contexts, a frame system 
and several tools, e.g. a rule and a frame browser. Large parts of the acquired knowledge have been 
successfully integrated into the system. Due to the compleXity of the machine there are still pieces of 
knowledge (causal and other) not integrated into the system. For the acquisition of the causal information the 
tool described in this paper will be quite helpfUl. 

Up to now we concentrated our efforts on the electric and hydraulic parts of the machine for three reasons: 
they are simpler to model, they fail much more often than mechanical parts and they are easier to transfer 
from the diagrams to the system (it is possible to enter a hydraulic diagram without knowing much about 
hydraulics, but to model a mechanical function from technical drawings requires some skill). 

10 Future Plans 
More knowledge about new types and/or new series of machines will be acquired to prove the general 
usefulness of the presented tool. 

It should be possible to automatically retrieve the error messages together with the signals that were wrong 
directly from the control program, which implements the machine cycles and subcycles and which gives the 
error messages if something goes wrong. 

Mechanical components and their interactions are not really deep modeled yet. To change that is one of our 
main research directions and will be tackled next. 
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