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Abstract.

Traditionally unification is viewed as solving an equation in an algebra given an explicit
construction method for terms and substitutions. We abstract from this explicit term construction
methods and give a set of axioms describing unification algebras that consist of objects and
mappings, where objects abstract terms and mappings abstract substitutions. A unification problem in
a given unification algebra is the problem to find mappings for a system of equations {s; =t;lie I),
where s; and t; are objects, such that s; and t; are mapped onto the same term. Typical instances of
unification algebras and unification problems are: Term unification with respect to equational theories
and sorts, standard equation solving in mathematics, unification in the A-calculus, constraint solving,
disunification, and unification of rational terms.

Within this framework we give general purpose unification rules that can be used in every
unification algorithm in unification algebras. Furthermore we demonstrate the use of this framework
by investigating the analogue of syntactic unification and unification of rational terms.

Keywords: Unification algebra, universal algebra, equation solving, constraint solving, equational
theories
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1 Introduction.

What are the common features of unification of first-order terms with respect to an equational theory,
unification in A-calculus, equation solving in mathematics and answering a query with respect to a
logic program? In order to approximate the answer let us look more closely to the different problems.
~ Unification is the task to make two terms equal, i.e., given two terms s,t, which contain variables
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(in some sense), find replacements for these variables, such that s and t are equal after the
replacement. This task arises in several settings, for free first order terms [Her30, MMS82 , Hu76],
for terms together with an equational theory [P172,Si87] and for terms in sorted signatures
[Wa88,Sch88, SNMG87].

— Unification in A-calculus [Hu75, SG88] is the task given two A-expressions with free variables,
find A-expressions that substituted for these variables make the two expressions equal after
application of reduction rules.

— Solving an equation s =t over a fixed (universal) algebra A is to find assignments from variables
in s and t to elements of A, such that s and t are mapped to the same element of the algebra by the
assignment.

— Solving equations in mathematics, for example solving Diophantine equations over the naturals,
means given a polynomial p with several variables, to find natural numbers for every variable in
p such that the p becomes zero after replacing the variables by those naturals.

— Solving constraints [Co82b, JL86, DSV87] is the task to find solutions, i.e., substitutions into
variables, such that a given constraint is satisfied. It is also common in practice only to require a
test for solvability of a constraint rather than explicitely computing solutions.

- Answering a query with respect to a logic program is given a query including variables, findone or
all answers, i.e., all instantiation of variables in the query, such that the instantiated query follows
from the logic program.

To summarize, some common features of all these problems are:

i) there are objects having variables,

ii) the names of the variables do not matter

iii) there exists an operation like substituting objects into variables

iv) there is a domain where the valid solutions come from.
The common problems are that some or all instantiations are wanted that solve some equation or
makes some formulae true.
A further common problem is that methods are needed to represent infinite sets of solutions in a
finite way. For example the equation x2 = y2 has an infinite number of solutions over the
integers, but every solution can be represented using variables, and in this case either by x=y or
by x = -y.

This paper is an attempt to give an axiomatic framework for unification in terms of unification
algebras, such that all the problems above can be seen as unification problems within this framework.
We develop this unification theory to the extent that a set of lemmas and theorems can be derived
including some nondeterministic unification rules that are valid in general.

A particular advantage of this approach is that many of the familiar lemmata and theorems of standard
unification theory can be shown for unification algebras and hence can be used for every problem
domain, which satisfies the axioms of a unification algebra.

This work was inspired by a recent excellent paper of J. Goguen [Go88], which advocates a

categorical approach to unification, viewing unifiers as equalizers in some category. His attempt to



provide a framework for unification theory clearly advanced the field and had strong influence in that
it showed a new line of development. However, category theory appears to have too strong an
emphasis on the substitutions (as arrows) and underrates the inner structure of the objects, for
example the role of the variables in objects. Furthermore his approach has a built-in renaming every
time a unifier or a unifying step is executed. This makes completeness proofs for unification
algorithms that rename variables only if necessary overly complicated. Though we were inspired by
J. Goguen, the first authors to consider unification in categories were R. M. Burstall and
D.E.Rydeheard [RB85, RS87].

Our approach allows a natural treatment of unification algorithms based on transforming systems of
equations or multi-equations as for example used in [Her30, MM&2, GS87, Hu76, Sch87]. This
approach allows easy proofs of completeness of such nonrenaming algorithms, wich are of high
practical interest. A further advantage is that our appeoach allows a unified treatment of sorts and of
equational theories.

The paper is structured as follows: In sections 2-4 we give the basic axioms for a unification algebra,
define the notions of unification type and provide some consequences in order to show that the
substitutions behave as expected. Section 5 on homomorphisms and congruences shows that
unification algebras form a category where the usual homomorphism theorem holds. In section 6 we
give complete transformation steps for equation systems that can be used in every unification
algorithm. Section 7 presents the notion of dimension and redundant equations in unification
algebras. In section 8 we discuss the notion of minimal representations of solutions. Section 9
presents a complete unification algorithm for the equivalent of the Robinson-case and also for the case

of rational infinite terms,

2. Unification Algebras

Basically, unification algebras consist of a set OBJ and a set MAP of mappings from OBJ into
OBJ. Intuitively, the set OBJ can be viewed as the set of all well-formed expressions with respect
to some language modulo a congruence and MAP as the set of well-formed variable-replacements
modulo the same congruence. We will distinguish some elements in OBJ as variables V. This gives
a level of abstraction, in which the properties of the defined structure can be investigated without
regarding the language which is used to define this structure.

The design decisions we have made are for example that variables are explicitly available in contrast
to the categorical approach, where variables are considered modulo renamings. Furthermore it is not
possible to prohibit the application of a substitution to some term, for example it is impossible to say
that it is disallowed to subtitute O for x in the term y/x if substituting O for x is allowed in other terms.

As a preliminary for the definition of unification algebra we define a unification quasi-algebra 4
as a triple (V, OBJ, MAP), where OBJ # @, MAP is a set of total mappings 6: OBJ — OBJ
and V ¢ OBJ. We tacitly assume that equal mappings on OBJ are equal elements of MAP.

Usually we will refer to elements of OBJ as objects, to MAP as mappings and to V as



variables.
We try to provide a minimal axiomatization, such that it is easy to check that a given structure is a
unification algebra, and that the machinery for unification algebras can be used.

Now we give the axioms which a unification algebra 4 should obey.
In the following we assume that 4= (V, OBJ, MAP) is a unification quasi-algebra.

MON) MAP is a monoid with respect to composition of mappings with identity 1d.

We use the usual notation for substitutions als for mappings 6 € MAP. By DOM(c) we denote
{x € Vlox #x} and by COD(c) = 6DOM(c). The notation ¢ = T [W] for mappings 6,T means that
ox = 1x for all variables x in W.

The next axiom states that every mapping can be characterized by its values on V:

V1) (Basis axiom)
Votie MAP:.g=1t[V]=0=1.

We represent a mapping 6 € MAP by 6 = {xj <~ ox; | i € I}, where DOM(0) = {xjlie I }.
The axiom (V2) captures the intuition that one can independently choose instantiations for variables.

V2)  (Restriction axiom)
Voe MAPVYVWcCcVite MAP o=1[W] and ty=y forally ¢ W.
We denote T as Gy .

2.1 Definition. We say & is a variable permutation iff
) EVcV,and
i) There exists a mapping &~ € MAP such that &-& = 1Id.
We say two variables x,y are equivalent, if Ex = y for some variable permutation &.

Axiom V3 has the task to axiomatize that the name of variables is irrelevant.

V3) (Renaming axiom)
For all finite sets W, W' of variables there exists a variable permutation & € MAP such that
EWNW =0@.

The following axiom is the first of the finiteness axioms, and together with the second (finiteness of
variables occurring in an object) we are enabled consider the set of variables as coinfinite, i.e., we
can always assume that new variables can be introduced. This is a slight restriction, since this makes
it impossible to solve problems including an infinite number of variables. A solution for this more
general case would be to choose V such that the cardinality of V is greater than the cardinality of the



set of variables in an object and the set of variables in the domain of a mapping. Note that in the
infinite case, the axioms may be insufficient, since we have tried to make the axioms as small as

possible.

V4) (Finiteness of domains of mappings)
DOM(o) is finite for all e MAP.

2.2 Definition. The set of variables of an object t € OBJ is defined as the following set:
Vi) ={xeVldo Olx}t #t }.

We denote the set of variables introduced by a mapping ¢ by I(0) := V(COD(0)).

VS5)  (Finiteness axiom for objects)
Vte OBJ: V(t) is finite. W

2.3 Definition. (V,OBJ, MAP) is a unification algebra, iff it is a unification quasi-algebra
and the axioms (MON) and V1) - V5) are satisfied. R

We denote the set of the set of reachable objects as TERM := MAP(V) = {cx |1 6 € MAP,x € V}
and refer to objects in TERM as terms.

2.4 Definition. A unification algebra (V,OBJ, MAP) is called unsorted, iff all variables are
equivalent and MAP(OBJ - TERM) ¢ OBJ — TERM. Otherwise it is called sorted. B

The condition MAP(OBJ — TERM) < OBJ — TERM can be interpreted as: instances of literals are
again literals, and literals and terms are different. If for some object t that is not a term some instance
is a term, then t can be considered as a nonwell-sorted term, which has become well-sorted after
instantiation.

The definition characterizes the set of unsorted terms and literals with respect to some signature as
unsorted unification algebra.

2.5 Example.

1) Let ¥ be a signature, 1 be a set of variables, 7(%,7) be the set of first order terms and let
SUB be the set of substitutions over 7(X,7/). It can easily be verified that
(v, Ti£,%), SUB) is an (unsorted) unification algebra.

2) Let Z, ¥, 7(Z,7), and SUB be as above and let ~ be a congruence on 7{Z,%), such thats ~ t
implies 0s ~ ot for all terms s,t and all substitutions ¢ € SUB.
Let 1/~ , TZ,Y)/~ , SUB/~ be the quotients of variables, terms and substitutions modulo ~.
Again it can easily be verified that (V/~, 7(Z,7)/~ , SUB/~) is an (unsorted) unification
algebra.
If the congruence comes from an equational theory Z, then E-equality transforms into identity



3)

4)

5)

6)

7)

of objects and substitutions in the unification algebra.

It should be noted that the set of variables in a term defined here is not the syntactic one as in
term algebras. For example the theory £ axiomatized by {f(x) = f(y)} causes f(x) to contain
no variables with respect to the unification algebra, since it cannot be changed (modulo Z) by
instantiating the variable x.

Let 7 be the set of set of first-order-expressions with respect to some signature, i.e., the set
consisting of variables, terms, and first order formulae.

As equivalence = we use the change of bound variables in formulae. Since the names of
bound variables should not conflict with free variables, we assume that the set of free
variables is disjoint from the set of bound variables. Then let OBJ = /=,
and MAP be the set of first-order substitutions with respect to the terms over free variables.
This constitutes a unification algebra.

Let ¥ be the set of set of first-order-expressions with respect to some signature, i.e., the set
consisting of variables, terms, and first order formulae. We include also the constants true
and false. We assume that for every ground literal (i.e., without variables), we know whether
it is true or false. Furthermore we assume that every literal has a ground instance.

We choose an equivalence different to 3): A formulae L is equivalent to true, iff it contains no
free variables and is interpreted as true with respect to the given semantics. A formulae L is
equivalent to false, iff it contains no free variables and is interpreted as true with respect to
the given semantics. For arbitrary formulae we assume that two formulae are equivalent (=),
iff they always evaluate to the same truth-value under every interpretation. As above, we can
assume that the set of free variables is disjoint from the set of bound variables.

Then let OBJ := F/=, and let MAP be the set of first-order substitutions over the set of terms
with respect to free variables. This constitutes a unification algebra.

We have not allowed that free variables are captured, for example it is not allowed to replace y
by x in the formula ¥x P(x,y), since then there exists no variable permutation that renames y.
A slight variation of the example in 4) is that the semantics is defined via a logic program, and
formulae are only the queries, i.e., clauses with negative literals, where the variables in the
query are considered as free. As equivalence we may use the following: two queries are
equivalent (=), iff they are equal under associativity, commutativity and idempotence of v.
Then #/= together with the set of first-order substitutions over the set of terms
with respect to free variables constitute a unification algebra.

It is also possible to have stronger equivalences, for example an equational theory on the
term-algebra, and a theory on literals, such as symmetry of predicates.

The well-sorted terms of a sorted termalgebra [Wa83, Sch88] together with the well-sorted
substitutions form a sorted unification algebra, as is easily verified.

This unification algebras are sorted in the sense of Definition 2.4, since in general not all
variables are equivalent.

The set of all polynomials over the integers together with substitutions that substitute
polynomials into variables is a unification algebra.



8) Let ¥ be the set of A-expressions (including free variables) over some signature modulo
some equivalence (Bn-reduction, denoted by =). We assume that the set of bound and free
variables are disjoint. Then ¥/= together with the set of substitutions that substitute
A-expressions into variables are a unification algebra.

9 Solving equations over fields:

Let K be a field. We add an error-element error. We take the set of first order formulae
as OBJ, where we assume that = is a built-in binary predicate, and use an appropriate
congruence on first order-formulae. For example p/0 = error. Two formulae are equivalent,
if they can be made equal by renaming of bound variables. The mappings MAP are all
assignments of rational polynomials (including error) to variables (modulo the congruence).
This constitutes a unification algebra.

Solving an equation p/q = 0 means to solve the problem (p/q=0,q=0). R

2.6 Example.

1) Matching as defined in [BHS87] can be seen as solving equations in a unification algebra. The
unification algebra for matching is constructed from the term-algebra by considering some
variables as constants, i.e., by restricting the set of substitutions.

2) Matching as defined in [FH83] cannot be seen as solving equations in a unification algebra in
the sense that a matching problem is replaced by its solution. In our framework this type of
matching means to add equations to a to-be-solved system, where these additonal equations
come from a substitution.

3) Disunification [Co84, Com88, Bii88] can also be seen as solving equations in a unification
algebra, where the encoding as equations may be via formulae as in Example 2.5.
Disunification with parameters can be interpreted as solving an infinite systemn of equations
containing only a finite set of variables.

3. Semantics and Unification Problems.

In this section we develop the notion of solving equations and systems of equations adopting the
notion of solutions as ground solutions. This is according to our intuition of equation solving in
mathematics, but seems not to capture term-unification. However, considering the variables in a
problem and the variables in terms, which occur in solutions, as different things, we can view the
variables in terms as free constants, whereas the variables in a problem to be solved are variables in
the sense of unification algebras.

In sections 5 and 6 we show more explicitly the relation between our notion of the solution of an
equation and with the unification in term-algebras.

Rather than to provide the semantics of expressions with respect to some external models, we prefer
to use a similar notion as the Herbrand-model, which uses ground terms and atoms for providing a



semantics. This (internal) semantics can be seen as ‘definite’ semantics, and captures also the case

where semantics is defined via a class of models.

Let OBJgr = {te OBJIV(t) = @)} be the set of ground objects, and let the set of ground
mappings on a set of variables W be MAP,, w = {o € MAP | W ¢ DOM(0) and I(c) = @}. If
0 € MAP,, w we say also o is ground on W.

3.1 Definition. A unification algebra 4 is called inhabited, iff for every x € V, there exists an
object t with V(t) = @, such that {x <t} € MAP. H

In the following we assume that A is inhabited.

3.2 Definition. A unification problem is a set I' of pairs of objects, also denoted by I' =
(s; = t; 1 1 €1}, such that V(T') is finite.
A solution ¢ of I'=(s; =t;lieI) is a mapping ¢ ground on V(I'), such that os; = ot; for all
ie I.
The set of solutions of I is also denoted SOL(I"). We say I is solvable, if SOL(T) # @,
otherwise it is called unsolvable. B

For a mapping © = {x1¢ ty,...,X, ¢ t,}, we denote the unification problem (x; =ty,...,x; = t,) by
(o).

For a set of mappings U we define the set of restrictions on a set of variables W as Uy =
{ojw | o € U}. For two sets of mappings U and U', we say U and U' are equal modulo a set of
variables W, denoted by U = U’ [W], iff Ujw = U'lwy.

We define systems of solved forms as an extension of idempotent substitutions:
3.3 Definition. Let S be a set of unification problems.
We say Sis a system of solved problems, iff
i SOL(A) = @ for every A € S.
i)  For every unification problem T, there exists a subset 2 C $ such that
SOL(IN) = u{SOLA) 1A e D} [V(D].
Such a set Dis also called an S-representation of SOL(I").
ili) For every 6 € MAP with DOM(c)Nl(c) = @: (c) e S. W

In section 4 (Lemma 4.15) we show that this definition is consistent, since for mappings ¢ € MAP
with DOM(c)NI(c) = @, the unification problem (G) is solvable.

3.4 Definition. Let S be a system of solved problem. The unification type of unification
problems and algebras is defined with respect to a system .S of solved problems.
Let I" be a solvable unification proble and let Anbe a unification algebra.
1)  Wessay I' is S-unitary, iff there exists a S—representation of SOL(I") that is a singleton.



ii) We say I' is S-finitary, iff there exists a finite S-representation of SOL(T).

iii) We say I' is S-infinitary, iff there exists no finite S-representation.

iv) We say A4is S-unitary, iff every solvable I is S-unitary.

v) We say 4is S-finitary, iff every solvable I' is $-finitary

vi) We say 4is S-infinitary, if there exists some solvable I" that is S-infinitary. W

It is common in unification theory to use as system S of solved problems only the set of all (o) for all
mappings ¢ with DOM(c} nl(o) = @, i.e., all idempotent substitutions. However, there are also
examples where the system of solved problems is larger. For rational terms, it is accepted that cyclic
problems are also solved forms, and for unification in A-calculus there are also flexible-flexible term
pairs allowed in a solved form [Hu75, SG88].

We compare systems of equations (unification problems) with an ordering.
3.5 Definition. Let W be a set of variables and let I', A be unification problems. Then
I' cw A, iff SOLIND)w < SOL(A)jyw. W

We do not define minimal problems as in [Si88], since for the general framework given here, this
notion seems to be unimportant, see our discussion in section 8 on optimal representations.

Let Synp be the standard (and minimal) set of solved forms consisting of all equational systems that
correspond to idempotent substitutions, i.e., Syny := {{0) | e MAP and DOM(c)NI(0) = B}. We
give the definition of unifiers and correct and complete sets of unifiers:

3.6 Definition. Let I" be a unification problem.

i) A mapping G is a unifier of T, if whenever Ac is ground on V(I') it is also a solution of I".

ii) A set cU is a correct set of unifiers of T, if every mapping in cU is a unifier.

iti) A set cU is a complete set of unifiers of T, if for every 6 € SOL(I"), there exists a
T € cU and a mapping A, such that At=c [V(IN)].

iv) A correct and complete set of unifiers is also called a unifier-representation of SOL(I).
|

In the rest of this paper we will only consider solved forms that correspond to unifiers, if not stated
otherwise.

4. Properties of Unification Algebras

In this section we explore some consequences of our axioms and show that the behaviour of
mappings is as expected. The proofs are in general simple, but some are rather tedious to our
surprise.

Throughout this section we assume that V # @.



4.1 Lemma. (Nontriviality of variables)
i) Forallxe V there exists a 6 € MAP with ox # x.
i)  V is an infinite set
Proof,
i)  Follows from Axiom V6).
i) Axiom V3) allows the introduction of infinitely many variables, hence V is infinite. l

As noted above, every mapping G can be represented in a finite way as {xq < ty,....X, ¢ t,} where
DOM(0o) = {x1,...,X,} and COD(0) = {ty,...,t,}. The mappings {x; < t;} are called components
of 0. We show, how to compute the representation of the composition of mappings 6,1 € MAP:

4.2 Lemma. If 6 = {X] <51 ,...,Xg < sp} and T={y] ¢ t1 ,..., Ym < tm)}, then
0T ={y] ¢ Ot] ,..., Ym < Otm} U{Xj < sij | xj € DOM(1) }. '

Proof. Using V1) we can compute 0T by testing 0T on variables: For x ¢ DOM(c)w DOM(1),
we have 01x = 6x = x. If x € DOM(0)-DOM(7), then ¢1x = ox. If x € DOM(7), then
o1x = o(1x).l

4.3 Proposition. For every x € V there exist infinitely many variables x' equivalent to x.

Proof. Let x be a variable and assume there are only finitely many variables W equivalent to x. Then
application of axiom V3 yields for the set W a variable permutation &, such that WNEW = .
Since EW is a set of variables equivalent to x, this is a contradiction to the assumption thate W is
the largest set of variables equivalent to x. l

This proposition justfies the notion of new variable: if we have already used a finite set of variables
W and we have a variable x, then it is always possible to select a variable x' equivalent to x, such that
x'e W,

Let s,t be two objects. We say s is more general than t (or t is an instance of s), iff there exists a
mapping ¢ with os = t. This is denoted by s <t. We say s and t are equivalent, iff s<tandt<s,
and denote this by s =t. The next lemma shows, that this is consistent with the notion of equivalent
variables.

4.4 Lemma. The following statements are equivalent:
i)  The variables x and y are equivalent,
i) {y ¢ x}e MAP and {x ¢« y}e MAP
iii) There exist 6,1 € MAP with 6x =y and 6y = x.
Proof. i) =ii) follows from the definition of variable permutation and V2).
i) = iil) trivial.
iii) = ii) follows from the restriction axiom V2).
ii)=1i) Let {x ¢« y}e MAP and {y « x}e MAP. Let y' be a new variable equivalent to x.
Then {x « y'}, {y' « x}e MAP, since i) implies ii). Hence also
({x < yHy < xDyyy = {y' ¢y} € MAP.

10



Obviously we have ({y' <= y}Hy « x}Hx <y Dixy} = (X < ¥, y «x}.
Since {x « ¥,y «x} {x « y,y «x} = Id, we have constructed a variable
permutation § := {x & y,y «x} with{x=y. H

4.5 Lemma. Let § = {xq ¢=Y,...,.Xp <Y, } be a variable permutation. Then

i)

the left-inverse &~ is also a right-inverse

the inverse &~ is unique.

iiiy  the inverse & is a variable permutation

iii)  &is abijection on V.
iv) g_ ={y1 ¢Xp--5¥n <_Xn}
Proof. Let £~ be a mapping with && =1d.

A

For x; € DOM(&) we have &Ex; = Ey; = x;, since & is a left inverse of &,

For x ¢ DOM(E) we have &=&x = &x =x, since &~ is a left inverse of &.

Let y; € COD(§) — DOM(E), then on the one hand, we have §~y; = y;, since y; € DOM(E), on the
other hand, we have &~ y; = x,. This implies x; = y;, hence we have the contradiction that x; ¢
DOM(E). We have proved that COD(E) c DOM(E).

& is injective on DOM(E), since &x; = &x implies 6&x; = o&x which is equivalent x; = xy.

Since DOM(E) is finite, we have DOM(E) = COD(§).

Summarizing, we have shown that &= = {y; <X{,...,yn <Xq}, which also shows that the inverse
is unique.

Now &~ is also a right inverse of &:

For x ¢ DOM(§), we have E&x = x.

For x e DOM(§), we can assume that x =y, for some k. Then €&~y = Exy = vy

Hence & is a variable permutation.

That & is a bijection on V follows, since & is surjective as DOM(§) = COD(&), and since & is
injective, which is implied by the fact that € has a left inverse. B

renaming p € MAP is a restriction of a variable permutation &, such that DOM(p)NI(p) = @. If

p = {X] €¥1,-..-Xp < Yn}, then the converse p— is defined as p~= {y; ¢X1,...,¥, <X,}. If the

domain of a renaming p is W and the codomain of p consists of new variables, we will call p a

renaming of W.

4.6 Lemma. Let p be a renaming.

i)

if)

A renaming is the product of its components.
p is idempotent, i.e., pp = p.

ii) The converse p~ of a renaming exists and is a renaming.

iv) pp=ppp-=p. W

In

the following we analyse the notion of variables in an object, and show that it behaves as expected.

4.7 Lemma. Lettbe an object, let y be a variable and let y' be a new variable equivalent to y.

Then ye V() < {y «y'}t#t¢,

11



Proof. "<" is trivial.

"= Let y € V(t). Then there exists an object s such that {y « s}t # t. Let y' be a new variable
equivalent to y. Since y' is new we have y' € V(t)UV({y « s}t)u V(s). Now consider the
product: {y « s} {y' « y} = {y' « s,y ¢s}, hence by V2 the mapping {y' « s} is in
MAP. Now {y' s} {y «y'} = {y ¢« s,y ¢« s} = {y « s} {y « s}, hence
{v' e~ s} {y «y'}t={y « s} {y « s}t ={y « s}t #t. Furthermore{y' « y} {y «y'}t
={y <y}t =t. Thismeans y' € V( {y «y'}t), hence {y «y'}t =tH

4,7 Lemma. Lett be a nonvariable object with y € V(t) and let y' be a new variable equivalent to
y. Then {y «y'}jte V.

Proof. Assume for contradiction that {y «y'}Jt =z e V. Then {y' «y}{y «y'}Jt =t, hence
{y' « y}z =t. This means that t = z or t = y', which is a contradiction. Il

Now the notion of mappings and objects seem to be understandable, however, one problem remains:
we have not proved that ot = t, if DOM(0) NV(t) = @. Surprisingly, the proof is tedious:

4.8 Lemma. Let t be an object and let p € MAP be a renaming with I(p) N V(1) = @.
Then V(pt) = pV(1).
Proof.
1) It suffices to consider a single component of p, since p = p1pj... Py
Assume as base case for the induction on the number of components, that the lemma is true for a
single component.
Then we can prove the induction step:
We have I(p;) N V(pj... pat) = I(p1) N pa... po V() = B (by induction hypothesis and
assumption.
Then we can conclude V(pipj... ppt) = p1V(P2... Pub) = P1P2..- Pn Y(), since the lemma
holds for a single component.
i) The lemma holds for a single component, i.e. for different (but equivalent) x,x’ € V with
x' & V(), wehave V({x « x'}t) = {x «x'}V():
The case that x € V(¢) is trivial, since then by definition of V(t) we have {x « x'jt =t, hence
V({{x « x'}t) = V(@) = {x «x'}V(t). Thus we can assume that x € V().
Now we can compute {x «x'}V(t) = {x'} U (V() - {x}).
Since for all mappings {x ¢« s}, we have {x « s} ({x « x'})= ({x s} {xex'Dt=
{x « x'}t, we have that x is not a variable of the object {x « x'}t, hence {x « x'Jt # 1.
Since x and x' are equivalent, there exists a mapping {x' « x}, hence {x' « x} {x « X'}t =
{x" « x}t =timplies that x' € V({x « x'}1).
We show that V({x « x'}t) — {x'} = {x «x'}V(@) - {x'}:
) V({x & x}9 - (x) € (x <X}V - [x'}:
Assume by contradiction that for some y € V({x « x'}t) with y # x,x' we have
y € {x «x'}V(®). Then y e V(t). Let y' =y be a variable such that y'is new.
We have {y « y'} {x « X'}t # {x « Xx'}t, sincey € V({x « x'}t). However,
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{y <y} {xx}={xx'} {y <y}, since all variables are different, hence
{y ey} {(xext={x«x}{y <« ylt={x«x}t. This is a contradiction.

2) {(x X}V - {x} < V({x «x') - {x'}:
Assume there exists a variable y # x,x' withy € V(1), buty ¢ V({x « x'}1).
Let y' =y be anew variable Then {y < y'} {x ¢« x'}t = {x ¢ x'}t. Application of
(x' & x} gives {x' ¢~ x} {y ¥} {x X}t = {X «x} {x < x'}t =t but
Xex}{yey) xext ={yey} X x) {xex'}t =y« y)t This is
a contradiction, since t # {y « y'}t. W

4.9 Lemma. For 6 € MAP and t € OBJ we have ot = (Gjyp)t.

Proof. Let c € MAP and let t be an object. Let p be a renaming of DOM(0) N I(c), such that I(p)
consists of new variables. Assume that DOM(0) = {X;,...,X,} and that DOM(c)NV(t) =
{X{s...oX}. From 6 = {x] & tq,..., X <t} we get po = {x] < pty,..., Xy < Py}
Furthermore by Lemma 4.8 we get V(pt)) N DOM(6) = @.

Hence po = {x] <= pt1} {x3 < ptp} ... {X, ¢ pty}. This factorization implies pot = (PO vyt -
Obviously the mapping (po)|vyy) has the representation {X ¢ pty,..., Xg ¢ Pty }

Applying p~ to the equation pot = (pG)jy(yt gives p~pot = p~ (PO)jy(yt and thus p~ct = ppot =
P(PO)v(t = P{X1 ¢ Plrseees X = Plicdt = p{Xy = ty,..., Xk = i}t = p(Opyp)t.

Since DOM(p~) is disjoint from V(ot) and V((Gjy)t), we get ot = p~ot = p-(cw(t))t = (<S|V(t))t .
|

4.10 Corollary. Let 6 € MAP and let t be an object such that V(t) » DOM(c) = @. Then ot =t.

4.11 Corollary. Let 6,1 € MAP and lett € T. Then
c=1[V(@t)] = ot=1t.
Proof. Since ot = (GlV(t))t , U= (TlV(t))t and Sivey = Tv(y, We can conclude ot =1t. W

4.12 Lemma V(ot) ¢ U{V(ox)ix € V(1)}.
Proof. We can assume DOM(c) = V(1), since 6t = Olvt by Lemma 4.9.
Note that (U{V(cx)lx € V{t)} = I(c) u (V) - DOM(c)).
Let y be a variable with y ¢ I{c) U (V(t) — DOM(05)). That means y ¢ I(c). Furthermore
eithery ¢ V(1) ory € DOM(0G). Let y' be a new variable that is equivalent to y'.
If ye V(t),then {y«y'}lot=0{y « y'}t =ct, hence y ¢ V(o1).
If y € DOM(0), then {y <~ y'} 0 =0, hence y ¢ V(ot). This proves the lemma. ll

4.13 Lemma. The union of mappings exists:
Let 6,1 € MAP such that ¢ = 1 [DOM(6)NDOM(T)] .
Then there exists a mapping W, such that 4 = ¢ [DOM(c)] and = 1 [DOM(T)].
Proof. Let p be a renaming of I(t) by new variables. Then let 7' := (P"DiDoM(r) and UL := pOT.
Let x € DOM(%). Then Ux =poTX =poP~TtX = Pp~TX = PTX = TX using Lemma 4.9.
If x € DOM(0)NDOM(T), then Ux = 1x = ox by the assumption of the lemma.
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If x eDOM(0) — DOM(1), then pux =potx=pox=cx. M

For two mappings ¢,T with 6 =1 [DOM(c) N DOM(7)] we define 6 L T as the mapping given in
the lemma above restricted to DOM(c) w DOM(7). This union can be seen as a union of the

representations of ¢ and 7.

Now we can prove some required lemmas concerning solvability of equation systems.
We can characterize OBJ,;, as the set of fixed points under MAP:

4.14 Lemma. OBJ, = {te OBJIVc e MAP:ct=t}.

Proof. If t € OBJ,, then V() = @, hence ot =t for all 6 € MAP by Corollary 4.10. On the other
hand, if for some t € OBJ is fixed under all 6 € MAP, it is fixed under all mappings {x < s},
hence V) = @. I

We show that the equation systems in solved forme are solvable:

4.15 Lemma. Let 4 be an inhabited unification algebra and let ¢ be a mapping with
DOM(6) N I(c) = @. Then (o) is solvable.

Proof. For every x € I(c) there exists a ground term s, with {x < sy} € MAP. The union 7 of all
these mappings exists by Lemma 4.13. Then 1o is a solution of {¢). For a component {x = Gx),
we have T0x = 166X, since ¢ is idempotent. Furthermore 16 is ground on V(I'). &

According to Definition 3.5, we define two subsumption relations on mappings.
4.16 Definition. Let 6,7 be mappings and W be a set of finite variables,
i) © 2w T, iff for all A € MAP, such that AT is ground on W, there exists a A', such that
AG = At [W].
Intuitively, 6 Dw T means that © represents more ground substitutions than 7.
i) o<t [W],iff there exists a mapping A such that Ac =1 [W]. B

Obviously <[W] and D are quasi-orderings on MAP for a fixed W.

4.17 Lemma. ¢ <1 [W] implies 6 Dw T, but the converse may be false.

Proof. Let it be such that 1o =T [W]. Let A € MAP, such that At is ground on W. Then AULC is
also ground on W and ApLo = At [W]. Hence o Dw T,
We give an example that the converse is false:
Consider substitutions over the integers.
Let G = {x ¢« y} and let T := {x ¢ X124+ X324+ X324+ x42 - (124 y 2+ y32+ y42)}
Obviously we have 6 Dw T and 6 Dw T, since both substitutions range over the whole set of
integers as is well-known from the theory of numbers. The relation ¢ <1t [W] holds, but not
¢ 2T [W], since it is not possible to obtain y by substituting polynomials into the polynomial 1x.
|
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We show in paragraph 5 that for unification in free term algebras the two relations < [W] and Dy

are the same.

4.18 Example, Consider Pythagoras~ equation x2+y2 = z2 over the naturals (including zero). This
equations has infinitely many solutions. A minimal representation consists of the two unifiers
{x « 2p(p+Q), ¥y < q2+2pq, z < p2+(p+q)?} and {x« q2+2pq, y < 2p(p+q),
z «p2+(p+q)? ).

5. Homorphisms and Congruences

In this paragraph we develop the algebraic tools that correspond to unification algebras like
homomorphisms and quotients and show that the isomorphism theorem holds. This makes the
unification algebras to be a category with some additional properties.

A the end of this paragraph we argue that every unification algebra is isomorphic to the quotient of
of an order-sorted term-algebra [Sch88, SNMGS87] (including ill-sorted terms), where the quotient is
made with respect to a stable congruence. At the first glance this appears to be a drawback, since we
have arrived at what was to be generalized. However, there are several merits. Usually it is easier to
prove that some problem can be formulated using unification algebras than to give a signature, a
congruence and a sort-structure that describes the problem domain, since there may be infinitely many
symbols, equations and term-sort declarations. A further advantage of unification algebras is the
notion of isomorphism, which is superior to isomorphisms of universal algebras, since it includes
weak isomorphism of universal algebras (definitional equivalence, polynomial equivalence), [G179,
BS81] isomorphisms or symmetries of signatures, and symmetries of the sort-structure.

5.1 Definition. Let 4; = (V,0BJ;,MAP,) and 4; = (V,,0BJ,,MAP,) be unification algebras.
A mapping y: 4; — A, is a homomorphism, iff

i) v isamapping y:OBJ; — OBJ, and y:MAP — MAP,

i) Yo =Wy

i) Voe MAP; Vte OBJi: w(ot) = (yo)(yt).

iv) Vocwy(vy).m

Let y: 4; — A, be a homomorphism. We say y is an isomorphism, iff it is a homomorphism

that is a bijection on the set objects and mappings, such that the inverse is an homomorphism.

Let range(y) := (Vy,, yOBJ;, yMAP)), where V, := {x € V; | there exists exactly one variable
y € V| with yy = x}.

The unification algebras form a category with this notion of homomorphism. There is a final object,
which is the trivial unification algebra (@, {a}, {Id})

We say 4 is embedded in 4, via v, iff y:4; —> 4, is an injective homomorphism.
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Let 4, B be unification algebras, such that V5= V4 OBJ ;4 OBJg MAP; C MAPg4 Then 4 is
called strongly embedded in ‘3.

5.2 Lemma. Let y: 4; — 4, be a homomorphism. Then:
DOM(yo) < wDOM(o) for all 6 € MAP.

Proof. Let x, € DOM(yo). There exists a variable x; € V; w1th YX1 = Xp. Assume x; € DOM(0).
Then ox; = x;, which implies x5 = Y(x1) = Y(0x;) = y(O)Y(X;) = Y(0)X,, which contradicts
Xy € DOM(yo). Hence x; € DOM(c). |

5.3 Lemma. A homomorphism V: A; — A; that is bijective on objects and mappings, is an
isomorphism.

Proof. Let y— be the inverse mapping of y. Condition i) of Definition 5.1 is trivially satisfied.
In order to prove ii), let 65,7, be mappings in MAP,. There are mappings 0,T; in MAP,
with Y61 =67 and Y11 = Tp. We have y(0777) = Yy~ (Yo DY(T))) = ¥ (W(01T1)) =011 =
Y (02 Y (Ty). A similar computation shows that iii) also holds.

We have already V, < W(V,), since ¥ is a homomorphism. We have to show that V; € y(V5).
From V, c y(V;) we get y—(V,) c V. Assume for contradiction, that there is a variable
x € V; —y(V5). That means yx ¢ V,. Let y be a variable equivalent to x. The mapping ¢ :=
{x « y} must be mapped to Id,, since DOM(yo) = V5 N {yx} = @. Since y is a bijection on
MAP, this implies that ¢ = Id,, which is a contradiction. Hence V, = y(V). B

The next lemma clarifies the effect of homomorphisms on variables.
5.4 Lemma. Let y:4; — 4, be a homomorphism, and let x € V. Then
1) yx ¢V, implies that there exists a variable y # x with yx = yy.
i) If there exists a variable y # x with yx = yy, then
a) Vyis constant on the set {s| {x « s} € SUB or {y « s} € SUB}
b)  wx is fixed by every substitution in range(y).

) Let yx ¢ V,. There exists a variable y # x that is equivalent to x. Consider the
mapping {x « y}. Since yx ¢ V,, we have DOM(y({x « y}) = @, hence yx = yy.

i) Lety be a variable with y # x and yx = yy. Let s be a term such that {x <— s} € MAP or
{y « s} € MAP. Without loss of generality we can assume that {x < s} € MAP. Then
s = Y({x < s}x) = Yy({x « s}) yx = y({x « shyy = y({x « s}y) = yy.
This proves part a). Let yobe a mapping in range(y). Then {x « ox}e MAP, hence
YO Wx = Yox = yx due to a). This proves part b).H

We give an example, that yx = yy for different variables x,y does not preclude that yx is a variable
in V,. Let 4; be a unification algebra consisting only of variables, The variables are partitioned in
classes S;, i = 1,2,..., such that x is equivalent to y, iff they belong to the same class. The mappings
in MAP, are the possible substitutions. Let A, consist only of variables z;, i= 1,2,... that are all
equivalent, and of all possible substitutions on these variables.
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Let the homomorphism :2; — A, be such that yx = z;, iff x €§;, and all mappings in MAP; are

mapped to the identity. Then y is a homomorphism and maps different variables in 4; to the same

variable in A4j.

5.5 Lemma. Let DOM,, () and V\V(') be that domain and variable operator, respectively, with
respect to range(y). Then

i) DOMy(yo) € YDOM(6) N Vy, where Vy, = {x € V; | there exists exactly one variable
y € V; with yy = x}.

i) Vyy) S yVE©)

Proof.

i) Let c € MAP. Lemma 5.2 shows that DOM(yc) € yDOM(0o). Let z; € V,. Then
there exists a variable z; with yz; = z,. If there is another variable z1' with yz,'=2z,, then
Lemma 5.4.ii.b) shows that Y& does not change z;, hence z) € DOM(y0). This means
DOM(yo) € YDOM(G) N Vy.

i) Letxy€ Yy(yt). Then there exists a mapping {x; < so} € YMAP; with {x) & sp}yt#yt.
Hence there exists a mapping {x; ¢ s1} with y{x; ¢ 57} = {x3 ¢ s} and yx; = x;.. This
means Y{x; ¢ s} Yt = y({x] <5110 #Wyt, hence {x; « s}t #t. Thusx; € V(). &

5.6 Proposition. range(\y) is a unification algebra.
Proof. MON) follows from the definition of a homomorphism and since 4; is a unification algebra.

V1) Letyo =yt [Vw] . Lemma 5.4 shows that DOM(yo) < V\v and DOM(y1) < V\!, . Hence
Yo = Y1 [V,] which implies yo =y, since (V,,T,,SUB») is a unification algebra.

V2) Trivial.

V3) Let W, < V,, be a finite set of variables. Since every variable in W is the image of a (unique)
variable in V, there exists a finite set of variables W; € V; with yW; = W,. Let Ebe a
variable permutation that renames W;. The image of & is also variable-permutation:
If DOM(y&) # yDOM(E), then there exists a component {x « y} of & such that yx = yy,
which contradicts W, < Vy,. Hence DOM(y€) = yDOM(E). Since Y& has as inverse Y&, it
is a variable permutation. Now the set W(§)W, is a set of variables that is disjoint with W .
Hence V3) holds.

V4) follows from Lemma 5.2.

V5) follows, since A, is a unification algebra. W

5.6 Corollary. An embedding y:4; — A, is an isomorphism y:4; — range(y)
Proof. Holds, since range(y) is a unification algebra by Proposition 5.5 and by Lemma 5.3. I

5.7 Definition. Let 4= (V,OBJ,MAP) be a unification algebra.
i) A equivalence relation ~ on OBJ is a congruence, iff
s ~tand ox ~ Tx for all x € V implies Os ~ Tt.
i) For a congruence — we define the quotient 4/~ as (V_,T/~SUB/~), where
V. = {x/~1x€ Vand x/~ NV = {x} }. The relation ~ is extended to mappings by ¢ ~1
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iff ox ~1x for all variables x. The operations are defined as (6/~) (T/~):= (67)/~ and

(o/~) (t/~):= (ot)/~.

5.8 Lemma. quotients are unification algebras.

Proof. Operations are well-defined: Let 6] ~ 65 and T; ~T5. Then we have 617T1x ~ 05T)x for all
variables x, hence G;T; ~ 057,. The other follows from the definition of congruence.
The proofs are tedious, but exactly analogous to the proofs that show that the range of a
homomorphism is a unification algebra, hence we omit them. W

5.9 Proposition. Let 4; = (V1,T{,SUB) and 4, = (V,,T,,SUB,) be unification algebras and
let y: A; = Ap be a homomorphism.
Then the relation ~ on T; with s ~ t :<> s =yt is a congruence.
Furthermore 4;/ ~ is isomorphic to range(y).
Proof. Let s,t € T with ys =yt and let 6,1 € SUB such that y(ox) = y(1x) forallx € V.
Then y(6)(yx) = y(T)(wx) for all x € V. Since yV < V', we have (o) = (1), hence
W(G)(Ws) = W) ().
In order to prove the isomorphism between A4;/~ and range(y), we have to check that yis a
bijection, which is obvious. Then we can apply Lemma 5.3. l

There are some natural isomorphisms on unification algebras:

5.10 Lemma. Variable permutations provide isomorphisms on unification algebras.
For a variable permutation &, the corresponding isomorphism ®¢ on the unification algebra
operates as follows: @¢ t := &t fort € OBJ and ¢ ¢ :=£0&~ for oe MAP.

5.11 Lemma. Let 4 := (V, OBJ, MAP) be a unification algebra, and let V=V, U V,bea
partition of V, such that there is a bijection ¢: V — V), such that ¢x is equivalent to x for all x. Let
Ay be the following unification algebra: 4y = (V;, T, {oc € MAP | DOM(c) c V1},

Then 4 is embeddable in 4.

Proof. The injective homomorphism y:4 — 4 is defined as follows: Let yt= @t andlet Yo =
@o¢~, where ¢~ is the inverse of ¢. These definition are not quite correct as they stand. ¢t for
example can be seen as the result of applying the substitution @[y to t. Note that the mapping
@o¢~ has a finite domain and hence is a mapping in MAP. Now all conditions can be easily
verified. W

If in the construction above the partition V = V; U V, is such that there is also a bijection ¢: V —
V,, then we will call the unification algebra 43 = (Vy, T, {oc € SUB | DOM(c) € V;} the
unification algebra extended by constants. For these distinguished constants it makes sense
to speak of constants occurring in a term. Let CONST(t) := V 4(t) - V1.

The usual notion of unification in the free term algebra as considered in [Si86, Si88] and for sorted
signatures [Sch88] is a specialization of unification in a unifcation algebra extended by free constants.
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In order to show that minimal representations for usual term unification are exactly minimal sets of
unifiers in the usual sense, we use the unification algebra extended by constants. This is the same as
viewing the variables in solutions as ground and only the new variables in unifiers as variables in
which something can be substituted. The same effect can be achieved by adding an infinite set of free

constants to a term-algebra.

5.12 Lemma. For a unification algebra extended by constants: ¢ <1t [W] is equivalentto © Dw T

for finite W .

Proof. Let A = (V,T,SUB) be a unification algebra, let V = Vg U V; such that Ay =
(Vo,To,SUB() has variables V and is the unification algebra extended by constants. Now we
refer elements of V as constants and to elements of V as variables.

Let 6,1 be substitutions with © Dyw 1. Without loss of generality we can assume that
DOM(c) = DOM(T) € W and that I(c) N I(t) =@. Let xy,...,x, be the variables in V(tW) and
let ay,...,a, be constants not occurring in the terms of COD(o) v COD(1), such that
X; is equivalent to a; in A Then Ty, 1= {X; ¢~ 8;}7 is an instance of T ground on W. There exists a
substitution A, such that Ac is ground on W and AG = Ty [W]. Now we switch to 4, the larger
unification algebra: Then {a; ¢~ x;} is a substitution in SUB. Applying it to the equation above
gives {a; & X; A6 = (a; ¢ X} Tgr = {3 < %} (%] < a;}T =7 [W]. Furthermore {2; - x;}Ac
=({a; < x; }M)| )0 [W]. The substitution ({a; < X; }?»)H(G) is in SUB), hence 0 < T [W] in 4;,.
|

5.13 Corollary. For unification in a unification algebra extended by constants: ¢ <71 [W] is
equivalent to ¢ Dw T, for every finite set of variables W .
Proof. Follows from 5.12.

The following structure theorem holds:

5.14 Theorem. Every unification algebra is isomorphic to 7/~, where T'is a set of terms with
respect to some order-sorted signature, such that 7is closed under well-sorted instantiation, T
contains all well-sorted terms, but may contain also ill-sorted ones, and ~ is a stable congruence on
Z.

Proof. Let 4= (V,0BJ, MAP). Then we construct the signature X, as follows:

The set of sorts is the set of equivalence classes of variables and the ordering on sorts is [x] = [y],
iff {y ¢~ x} € MAP. For every object t €« OBJ —V there is a function symbol f; € Z. We
can assume that the operator V(.) gives a vector of variables instead of a set. Then if V(t) =
(x1,..-,Xp), the function symbol f; has arity n. For every variable y such that {y <t} ¢ MAP,
there is a function declaration f;: [x;]X...X[x,] — [y]. Every variable y is considered to have sort
[y] and all greater sorts.

Let By = (V,7,(Z,V), SUB(Z,V)), where SUB(Z,V) is the set of well-sorted
substitutions on (the set of well-sorted terms) 7(Z,V). 7, (Z,V)is V U {Gf[(xl,.“,xn(t)) |
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oce SUB(Z,V),te OBJ, V(t) = {xl,...,xn(t)}}. The set 7T, (X,V) contains 7(X,V), but is in
general not equal to the set of all syntactic possible terms over X.

Let ¢: B— A4 be defined as follows:

D ox):=xforxeV,

i)  @fxy,....xy) :=t, where t is an object, and V(t) = (X1,...,Xp).

i) O({X] < Yioeeos Xp Ynb) = {X] & Y1be.., Xpé— yp} for variables x;, y;

iv) @ f(ty,....ty) = {X] & @ty,..., X~ @t }t, where t is an object, and V(1) = (Xq,...,Xp).
V) Ofxy € ty,..., Xpé 1) 1= {Xg € Oty Xpé O, )

We have to show that the definition of ¢ makes sense and that ¢ is a homomorphism.
1) if s is of sort [x], then {x « @s} is a mapping in MAP:
Proof. By induction on the term depth.
If y is of sort [x], then {x < y} is in MAP by definition.
If s is of sort [x], then s = f,(s1,...,5y), and {x < t} is in MAP. By the definition of
T.(%,V), s; is a term of sort [x;] for all i = 1,...,n. By induction hypothesis,
{x; & ¢s;} is a mapping in MAP for all i = 1,...,n. Since the union of mappings
exists, we have also that ¢ :={x; ¢ ¢sy,..., Xu¢— ¢S, } is a mapping. Composition and
restriction gives that {x ¢« ot} is in MAP. By definition {x « ot} =
{x < of(S1,...,80)} = (x « @s}.
2) ¢is surjective on V, OBJ, MAP:
¢ is obviously surjective on V. ¢ is also surjective on OBJ, since for every t € OBJ, there
exists a term fi(Xy,... Xy () with @ fi(Xq,....x,)) = t. It is surjective on MAP, since for every
mapping {xq < ty,..., Xp¢— t} there exists terms ¢-1t; of sort [x;], such that {x; < @!t;} is
a substitution.
3) ¢is a homomorphism:
Definition 5.1.iii holds by the definition of ¢. That 5.1 iii) can be shown by an easy
computation using @(ct) = @(c)@t. Definition of ¢ implies that 5.1 iv) holds.
Proposition 5.9 now implies that 4 is isomorphic to a quotient of 3. B

Note that this structure theorem allows some ill-sorted terms without well-sorted instances. Such

terms could have been also considered as literals. For the sake of simplicity, we have treated them as

ill-sorted terms.

For unsorted unification algebras, from Definition 2.4 and Theorem 5.14 it is easy to deduce that

5.14 can be sharpened to:

5.15 Proposition. Every unsorted unification algebra is isomorphic to TUA7/~, where Tis a set
of terms with respect to some unsorted signature, 47 is the set of atoms, and ~ is a stable

congruence on TUAZ, such that terms and atoms are never congruent.
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6. Nondeterministic Transformations

In this paragraph we give transformation rules for constructing unification algorithms and show that
they apply universally.

As basic datastructure we use systems of multi-equations I', where I' is a multiset {M; 11 € I},
M; are multisets of objects in OBJ also called multi-equations, such that V(I') is finite. The set of
solutions of I" is denoted by SOL(T’) is the set of substitutions ground on V(I'), such that for every
o € SOL(I"), M e T and for all st € M we have os = ot. Every unification problem I" can be
considered as a system of multi-equations. Let VAR(I') be the set of variables that occur as elements
in some multi-equation in I" and let OBJ(T) be the set of nonvariable objects that occur in some
multi-equation from I,

Multisets [DM79] are like sets but allow multiple occurrences of the same element. We use the
set-theoretic operators U, N, —, € for multisets in their obvious meaning.

We compare two sets of solutions as follows: Sy cw S, , iff Syyw € Syyw and S =w S, iff
SiCw Sy and Sy 2w Sy.

Assume given a unification problem Iy for which we want to know all solutions. Since in general
there is an infinite number of such solutions it is useful either to have a finite representation for all
solutions or at least to compute further constraints on the solutions. We use the method of applying
transformations to multi-equation systems. Such a transformation is denoted as I =y A, where T, A
are systems of multi-equations and W is a finite set of variables. In the following we give rules that
specify classes of transformations. We will define solved forms of multi-equations. As solution for a
system I'we will accept a transformation I" = 1) A, where A is a system in solved form with
SOL(T") =w SOL(A). Usually, a set of solved forms may be necessary to represent the solutions of I"
adequately.

6.1 Definition. We say a specific transformation I" =y A is complete, iff
SOL(T) =yw SOL(A).
We say a rule is complete, iff every application provides a complete transformation,

Obviously, the application of transformations is transitive: If I'y =y I'p is complete and 'y =w I’z
is complete, then I'; =w I'3 is complete.

We use the following conventions for denoting the rules:
=>w denotes the transformation relation with respect to W.
M denotes a multi-equation and I" denotes a system of multi-equations.

6.2 Definition. The basic rule set BRSis defined as follows:

Rule: Equal objects. (M} Ul =w {M-(s}} uT
if M contains s more than once.
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Rule: Trivial multi-equation. T’ =w I' - (M},
if M is a singleton.

Rule: Merging. {M;}U{Mjy}ul’ =w {M{UM,}UT,
if MinMy# 4]

Rule: Auxiliary variables {M} T =w {M-{x}} UT,
if x is a variable with x ¢ W and x does nor occur elsewhere in I" and M and there exists a term
t € M —{x}, such that {x < t} € MAP.

Rule: Unfolding. {{t}uM} UT =w {{s}uM} UT U (D)
if ts =t and V(s) consists of new variables, DOM(T) = V(s), and DOM(T) N I(1) = @.

Rule: Replacement. {{s;}UM>j} U {{s;,t1}uM;} =2w  {{{x < t1}s}uMy) U {{s1,t1}UM, ]}
if s is an object, x a variable, {x ¢« s;} a mapping, such that {x <—s;}s =5,

Rule: Application of substitution: { {xt}UM} U T =w {({xt}UM} U {x « t}T,
if {x <t} € MAP.

Rule: Partial solution. T U A=w HUA
if I'y =vy(ryy Ty is complete and all variables in V(I"p)- V(I")) are new variables.

6.3 Theorem. All the rules in BSR are complete.
Proof. The completeness of the equal-objects rules, the trivial multi-equations rule and the merging
rule is trivial.
Auxiliary variables :
Obviously SOL({M} u I''W) cw SOL({M—-{x}} u I). Let 6 € SOL({M—{x}} v ).
Without loss of generality we can assume that x ¢ DOM(G). Let t be the term in M —{x} such
that {x « t} € MAP. Construct ¢' such that DOM(c') = DOM(0)u{x}, ¢' = ¢ [DOM(0)]
and o'x := ot. Then ' is a mapping, since (X ¢ Ot} = (O{x ¢~ 1})|(x). 0" is also a solution
of (M} U T with o =0'[W], since x ¢ W.
Unfolding:
Let ¢ be a solution of {{t}uM} L I" with DOM(c) < V({{t}uM} w I"). Then &7 is a solution
of {{s}uM} U I'T): we have 61s = ot, and ¢ = o1 [V({{t} UM} U IN)], hence 07 solves
{{s} M} UT. For x € DOM(1) we have 0T(Tx) = 6(TT)x = 01X, hence 67T solves (T).
Let ¢ be a solution of {{s}uM]} w I'T). Then 6x = otx for all x e DOM(1), hence ©s =

O1s = Ct.

Replacement:
We can assume that x € V(s). Let ¢ be a solution of {{s;} UM, }u {{s1,t;}\wM;} . Then
Os) = oty, hence 0{x « t;}s = 6{x ¢« s1}s = 6s,. This shows one direction, the other
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direction is a symmetric case.

Application of itution:
Follows from repeated application of the replacement rule.

Partial solution:
If Ty =vy1y 2 is complete and all variables in V(I'p)— V(I'}) are new variables.
Let o be a solution of Ty W A. Since T’y =y () I, is complete, there exists a solution T of
' with 6 =1 [V(T"))]. Since DOM(6)NDOM(1) = V(I'}), we can define 6 := tU0.
Obviously, this is a solution of I'; U A.
Let o be a solution of T, UA. Since T} =y(ry I’ is complete, there exists a solution T of
'y with o =1 [V(I'p]. Since DOM(6)NDOM(1) = V(I'y), we can define 0 := 1UG.
Obviously, this is a solutionof 'y U A. W ~

6.4 Proposition. The equal terms rule, the trivial multi-equations rule and the merging rule can be
applied only a finite number of times.
Proof. Obvious, since the number of multi-equations and the number of terms in I' is decreased.

A system of multi-equations, where none of the rules ‘equal terms’, ‘Trivial multi-equations’ and
merging can be applied, is called merged.

This generally applicable rules have the practical advantage that a unification algorithm can solve
partially a unification problem and that the variables introduced by unifiers may contain some "old"
variables.

To obtain a similar proof for this fact within the framework of [Go88] would be hard, since his
substitution systems behave as if all codomains are renamed away.

6.5 Definition. Let I" be a system of multi-equations.
A set of pairs {(x;,t;) | i=1,...,n} is called a cycle, iff x;,t; are in the same multi-equation of T,
where the x;’s are variables and the t;’s are nonvariable objects, and x; € V(t;,4) fori=1,...,n-1
and x, € V().

6.6 Definition. Let I" be a merged system of multi-equations.

i) a multi-equation M is in solved form, iff M contains a term t, such that M - {t} is a set of
variables {xj,...,X,} (t maybe a variable), such that Typ:= {x] « t,...,X,¢— t} is a mapping
and VIONV(M—{t}} = @.

ii) T is called solved, if every multi-equation M in T is in solved form and I contains
no cycles.

6.7 Proposition. Every solved system is solvable and has a unitary representation.

Proof. Let I" be sequentially solved system. We partition every multi-equation M; into M; ;=
M;ou{t;}, where M;j is a multiset of variables, such that {x « t} is a substitution for every
X € Mjq.

We can assume that in the case that t; is a variable, ihe variables M;q do not occur elsewhere in T"
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(by applying the appropriate substitution.

We introduce a transitive ordering < on multi-sets generated by the pairs M; < M;, iff Mjon\V(ty) #
?.

This ordering is cycle-free, since I" contains no cycles.

Let M; be minimal with respect to this ordering and let M; be direct succesor of M;, then by
applying the substitution {x ¢ t;,...,x, « t} for M;g = {xy,...,Xx,}, we obtain a system I" that is
smaller in the sense that there is a smaller number of generating pairs for the ordering. Note that the
application has an effect only on the terms t; and that I" is a solved system.

Hence I can be brought into a form such that it is solved and the ordering < is empty.

Now the substitution ¢ that represents all solutions is the union of all substitiuions for every
multi-equation,

It remains to show that this substitution is indeed a representation.

Assume there is a solution 0 of (I',W). Then 60 = 0: Consider an M; = M;ou{t;} and x € M.
Then 80x = 6t; by definition of ¢ and 0t; = 0x since 0is a solution. For variables y € V(t;) we
have B0y = 0y, since y ¢ DOM(0).

Let A be such that AG is ground on V(I'UW. Then A is a solution, since for x,y € M;y we have
Aox = Aoy, since 6x = oy. Furthermore we have Aox = At; by definition of ¢ and Act; = At;,
since DOM(c) N V(1) = 0. R

A unification algorithm can now be described as a set of rules that describe transformations of
equation systems. These rules are in general considered as nondeterministic, where the
nondeterminism has two instances: "dont-know" and "dont care" nondeterminism. "Don’t know"
means that we have to choose between several alternatives and that for a complete algorithm, all
alternatives have to be explored, whereas "don’t care” means that we can choose one alternative and
forget the other without loosing completeness.
We haven’t said what completeness means:
A unification algorithm is complete, iff
for every I" and every solution ¢ of T, there exists a system of multi-equations A that can be
reached from I' using correct transformations specified by the algorithm, the transformations
are with respect to V(I'), A is in solved form, and ¢ is a solution of A.
Given a system of multi-equations I’, every complete unification algorithm can be used to enumerate a
set of representatives for I, if a breadth-first-like method is exploited to search for all reachable
solved systems.

The advantage of describing an algorithm by nondeterministic rules over a description using a
disjunction of systems of multi-equations is that for the nondeterministic approach it is easier to

handle cases, where an infinite set of alternatives has to be explored.

In order to handle such sets of alternatives, we introduce the notion of a complete sets of alternatives:
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6.8 Definition. Let I', T, i € I be systems of multi-equations and let W be a set of variables, such
that T" =>w T is a correct transformation for alli e L
Then {T" = T i€ I} is a complete set of alternatives, iff
SOL(D) =y U{SOLI)lie I}. N

Complete sets of altemnatives can be combined:
6.9 Lemma. If {T =w [;li€ I} and {Tjo =w A; | j € J} are complete sets of alternatives, where
ige I,thenalso {I =»w [jlie I-{ig}} v (T =w Y Ij e T} is a complete set of alternatives.

On the basis of a complete (nondeterministic) algorithm Sy for solving the equation s =t, i.e., for
solving sytems {{s,t}} it is easy to construct a complete algorithm for arbitrary systems of equations
T. For this purpose we can assume (w.l.o.g.) that I' is a system of multi-equations, where every
multi-equation contains exactly two terms. Furthermore we can assume that Sg;,, has as result a
system {T) that comes from a unifier T with DOM(7) < V(s,t) and VCOD(7) consists only of new
variables.
The algorithm Sgy works as follows:
Input: T
A=0
while T #@ do
Let {s,t} be a multi-equation in T".
Let o5 ¢ be some output Of Sging(S,t)
Let A:=AuU{ogy and letlet " := 05 ¢ (' — {s,t})
endwhile
Output: A

6.10 Proposition. Given a complete algorithm S, for single equations, the algorithm Ssys is a
complete unification algorithm for systems of equations.

Proof. Obviously, Sy terminates, since I' is reduced in every step. Furthermore, A is solved, since
it has no cycles due to the condition that G ; introduces only new variables.
The completeness is shown by induction.
Let 6 be a solution of T". Since S4(s,t) is complete, there is a nondeterminstic execution of Sy,
such that Gy ¢ is the output, such that there is a solution 8' of {(cg ) and 0 =0 [V(s,t)]. Theorem
6.3 shows that application of Oy ¢ is a complete step. Hence no solution is lost. H

Now we consider solution methods for strongly embedded unification algebras. Note that the notion
of strong embedding can be applied to the embedding of the theory of AC into AC1 [HS87], for
restricted unification and matching [BHS87, Bii86] and for unification in sorted equational theories as
considered in [Sch88, Sch86b].

6.11 Lemma. If 4 is strongly embedded in B, then for all equation systems I' containing only
objects from A4: SOL 4(I") = SOLzI) "MAP,. 1

25



Let 4 be strongly embedded in ‘B, and let " be an equation systems containing only objects from 24
Suppose, there is a complete algorithm Sz for solving equation systems in B and a complete algorithm
Wp_, 4 that takes a mapping in MAP 3 and generates an instance in MAP 4. Then we can use the
combined algorithm Wp_, 4 Sz as unification algorithm for 4. Wp , 4o Sz works as follows: first it
computes a unifier with respect to B and afterwards instantiates it such that the instance is an
A-mapping. We give a condition for completeness of Wy _; 2°53..

We say the “weakening-algorithm" Wp_, 4is 2-B-complete, iff the following holds: for input ¢, and
every B-instance 0 € MAP 4, it can generate a B-instance T of 0, such that T€e MAPgzand O isa
A-instance of T.

6.12 Theorem. Under the conditions above, and if Wg_, 4is A-B-complete, then Wy, 4°S5is a
complete unification algorithm for 4.

Proof. Let I" be a system of equations with respect to 4, and let 6 € SOL 4(I"). Then 6 € SOLKI)
and Sz gives a ‘B-unifier o, such that 0 is a B-instance of 6. Wg_, 4 now generates a B-instance T of
¢ with T € MAP 4, such that 0 is a Z-instance of 1. Hence Wg_, 4°S5 is complete. W

The hard part for such a strong embedding is to show that there exists such an A-B-complete
weakening algorithm. Once this is shown, we can apply Theorem 6.12. Such A-B-complete
weakening algorithms exist for the embedding of AC into AC1, for the case of restricted unification,
and for unification in some special sorted equational theories.

7. Unification Algebras with Dimension

In this section we assume that all equation systems have only multi-equations with exactly two

elements.

We define the rank of a system of equations I" as the number of equations in it and denote it by II'l
[LMMS87]. The number of variables in I' is denoted by V(I

A single equation s = t in I is redundant, iff SOL(I") = SOL(") —{s =t} [V(IN)]. A system of
equations I is called redundant, iff it contains a redundant equation, otherwise it is called
irredundant.

7.1 Definition. We say a unification algebra 4 has a (linear) dimension, iff for every solvable
system of equations I" : II'1 > V(I')! implies that I is redundant.
As extension we say a unification algebra 4 has a f(n)-dimension, iff for every solvable system
of equations I" : T > f(IV(I)I) implies that I" is redundant. i

Abelian groups [LBB84], the empty theory [Ro65, LMMS87] and vector spaces have a dimension (as

defined above). Below we will show that Abelian semigroups and Abelian monoids also have a

dimension.
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The theory of associativity with only axiom {f(x, f(y, z)) = f(f(x, y), z)} does not have a linear
dimension: Consider the system {(abx=xba, abax=xaba), which has only {x < aba} as solution, but
the first equation has also {x « a} as solution, which is not a solution to the second one, and the
second one has {x «abaaba} as solution, which in turn is not a solution to the first one.

The theory of commutativity with only axiom {f(x, y) = f(y, x)} does not have a linear dimension:
Consider the system (f(f(x,x), f(a, b)) = f(f(x, a), f(x, b)), f(f(x.x), f(b, ¢)) = f(f(x, b), f(x, ¢))),
which has only x = b as solution, but the first equation has as solutions: {{x ¢« a}, {x « b}} and
the second equation has as solutions: {{x ¢« b}, {x <c}}.

The theory of Boolean rings does not have an n-dimension for the function n: the proposition below
shows, that f(n) is exactly 250 —1, where k is the number of free constants in the signature, since
unification in Boolean algebras is a special case of‘ sc;lving equations in a term algebra generated by a
primal, finite algebra.

More generally, if we consider unification in primal algebras [BS81, Ni88] we have the following:

7.2 Proposition. If 4 is the term algebra generated by a finite algebra A with Al 2 2, then the
corresponding dimension function f(n) is IAlR — 1, which can easily be verified. If A is in addition
primal, then the dimension function is exactly AR — 1.

Proof. Let I" be an irredundant, solvable system of equations with IV(T') = n. Then there are at most
IAI? possible different solutions to IT'l. The possible solutions can be seen as vectors of length n
over A. The difference A® — SOL(T") is the same as U {A? — SOL(s; = ;) | {s;, t;} € T}.
Furthermore, the set A? — SOL(I) is not empty. Were there more than |AlI-1 different equations
in T, then one set in the union above is redundant, hence one equation is redundant.

If A is primal, then every function is a term. This means that for two elements 0,1 in A we can
construct the following terms: a (ground) term tg that is equal to O (and contains at most one
variable), and terms t,, where v is a vector in A1, such that t,(w) = 0 for v#w and t,(v) = 1.

The system I' := {{tg,t,} | v € An—{(0,...,0)}} contains no redundant equation, has at most n
variables in V(I") and I" contains |AI"-1 equations. H

7.3 Proposition. Let 4 be a unification algebra with dimension. Let I" be a solvable system of
equations, such that I > [V(I')l. Then there are at least T - 1V(I')l redundant equations in I'.

Recall that A is called strongly embedded in B, iff V4=V g, OBJ ;€ OBJzand MAP,; c MAP,,

7.4 Lemma. If 4 is strongly embedded in 3, then for all equation systems I':
SOL4(I) = SOLKT) " MAP,.

7.5 Lemma. Let 4, B be unification algebras, such that A is strongly embedded in 3.
Then: If Bhas a dimension, then 2 has a dimension.

Proof. Let T be an equation system containing only objects from OBJ 4, such that I" is solvable
with respect to 4 and let 111> IV(IDL. Then T is also solvable with respect to B. Hence there exists
a proper subsystem I'" of I", such that SOLgxI™) = SOLI") [V(IN)]. By Lemma 7.3 we have
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SOL z(I") = SOLZI™") N MAP z and SOL4(I') = SOL&(I") " MAP 4. Hence SOL 4(I'™) =
SOL T") [V(ID]. This means that I" is redundant. l

We can give a sufficient criterion for 4 has a dimension:

7.6 Theorem. Let 4 be unitary. If for every equation s = t there exists 2 most general unifier ¢ with
IVCOD(o)l <IV(s,bl, then 4 has a dimension.

Proof. Let T := (s1 = t1,...,8, = t,) be a solvable system of equations with IV(sy,ty,...,Sp,t)l < n.
Ifn=1, then IV(sy,t)l = 0, hence sy = t; holds and {s; = t;) is redundant.
In order to prove the induction step, first assume that s; = t; is not redundant, otherwise we are
ready. Let ¢ be a most general unifier of s; = t; that introduces only new variables and less than
IV(sy,t1)l. Then the system {(G) U (Gs, = Ot»,...,05, = Ot is equivalent to I due to Theorem 6.3
on the variables V(I'). The induction hypothesis applies to {Osy = Ot»,...,08, = Ot,), since
Kos, = oty,...,08, = ot )l < n-1. This yields that one equation is redundant, say os; = Ot;. But
then s; = tjis redundant in I". I

7.7 Theorem. Let A4 be unitary such that for every equation s =t there exists a most general unifier
¢ with IVCOD(0)I <IV(s,t)l. Let " be a solvable, irredundant system of equations.
Then there exists a most general unifier 6 of I" such that [IVCOD(c)l < V(DI —IT1- 1.

Proof. LetT":= (s} =ty,...,S, = t,) be a solvable, irredundant system of equations.
Consider one step of solving this system sequentially. A general situation is that (1) U
(81 =1ty,...,8; = ty) has to be solved.
Let ¢ be a most general unifier of s; = t; that introduces only new variables and less than
IV(s1,tl. Then the system (67) U (GS; = Oty,...,08, = Ot} is equivalent to I due to Theorem 6.3
on the variables V(I'). Obviously, IV({os; = oty,...,0s, = ot )UVCOD(ct) < V(D).
Since no equation in I' is redundant, the same holds for the derived system, and hence every step
reduces the number of variables by 1. Thus the equation I[VCOD(c)l < IV(IDI — IT1 - 1 holds for the
finally constructed most general unifier ¢ of .l

7.8 Proposition. Abelian monoids and Abelian semigroups have a dimension.
Proof. Follows, since Abelian monoids and Abelien semigroups can be strongly embedded into
Abelian groups, and Abelian groups have a dimension [LBB84]. B

As mentioned above, the theories of associativity and commutativity don’t have a linear dimension.
However, a defect lemma holds for both theories, stating that for every T” there exists a complete set
of unifiers that use at most IV(INI — 1 variables in their codomains. Similarly, for Boolean rings it is
well-known that the most general unifier requires at most |V(I')l variables in its codomain.
Nevertheless, the impact of such a defect to the redundancy of systems of equations is unclear and
should be investigated in the future.
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8. Minimal and Optimal Representations

Unification theory has as an important notion the definition of what it means for a complete set to be
minimal, and a unification hierarchy for equational theories depending on the existence and cardinality
of minimal complete sets. We show that for unification algebras extended by constants such a usual
notion is available, 1.e. in particular for term algebras. Furthermore some counterexamples are given
that in the general case there is no satisfactory definition of minimality.

8.1 Definition. Let cU be a representation of solutions of the unification problem I.

1) We say cU is in addition minimal, iff no proper subset of cU is complete.

i) Let U; and U, be minimal representations.
Then Uj is more general than U, (modulo V(IN), iff Vo € Uy dte Uy andt 2v(r) O-
We say Uj is properly more general than Uy, if U, is not more general than Uj.
We say Uy and U, are equivalent representations, iff U is more general than U; and vice
versa.

iii) A minimal representation cU is in addition an optimal representation, iff there is no properly
more general minimal representation.

iv) A unifier ¢ is maximal, if for every unifier T with T Dy ) ¢ we have also 6 2oy T B

In several theories and fields one has a measure for the set of solutions. For example for linear
systems of equations of a field the set of solution is a vectorspace and has a dimension. A translation
of this in terms of unification theory would be the number of variables (or parameters) in the
codomain of a a complete representation. There are a lot of interesting theories where the number of
parameters depends in a fixed way from the number of variables in the problem. For Boolean rings,
Abelian groups, the empty theory and linear equations the number of parameters is not greater than
the number of variables in the original problem. In [LMMS&7] such a notion of dimension is
considered for the free term algebra.

8.2 Lemma. Let U be an minimal representation of the solutions of I. Then U is optimal iff there
is no other properly (not necessarily minimal) more general representation.
Proof. "«=" is trivial.

"=»": Let U be an optimal representation and let Ug be a representation that is properly more
general than U. Since Uy is properly more general, there exists a substitution T € Uy, such
that 6 2vy(r) T is false for all 6 € U. On the other hand there exists a 6ge U, such that
0o Sv() T Let U':= (U ~ {Gp})u{7}. This is a representation that is properly more general
than U. Let U" := U' ~ {A € UIA Cy(r) 7}. This is a minimal representation that is properly
more general than U, which is a contradiction. ll

8.3 Lemma. Let U be an minimal representation of the solutions of I'. Then U is optimal iff it
consists only of maximal unifiers.
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Proof. "=": Let U be optimal and let ¢ be a unifier in U that is not maximal. Then there exists a
unifier T such that T 2y () © but not 6 Dy 7. Let U' be (U ~ {c}) v {t}. Then U is a properly
more general representation, a contradiction tio Lemma 8.2.

"<": trivial. @

We show below that for sets of unifiers in term algebras modulo an equational theory the two notions
collapse to the notion of minimality with respect to unification in termalgebras. Hence we can use the
usual examples to show that minimal and optimal sets may not exist [FH83].

In general, minimal sets of unifiers are not elementwise equivalent nor have a fixed cardinality, since
for example the set of all ground solutions is minimal in this sense. Unfortunately, the same holds for
optimal sets of unifiers, as the next example shows.

8.4 Example.
The following part of the constructions is always the same in the four parts of this lemma.
We construct a term-algebra, such that the initial algebra consists of the set of naturals N including
-zero. There is a unary function symbol f with f(0) = 0 and f(n) = 1 foralln 2 1. Let P :=
{ne Ninx1}.
For every example we select a fixed set S of subsets of P, such that for every A €S there is a
unary function symbol g4, such that ga(N) = A and such that US = P. We assume that an
appropriate set of ground equations is given.
The unification problem is {f(x) = 1), which has as solution the set { {x < nlIne P}.
It is obvious that every maximal unifier has the form {x « ga(y)}. Now the problem to find
optimal sets is equivalent to find "optimal” coverings of P using sets in S. So in the following we
give only the set-theoretic part of the arguments
i) Optimal representations of the same size may be uncomparable.
Let S := {P-{1}, P-{2}, P-{3}]}.
Then P-{1}UP—{2} = P-{1}u P-{3} = P, but the coverings are not comparable.
ii) There exists a unification problem such that for every n = 2,3,... and even for n = oo there exist
optimal representations.
Let the following sets be in S:
a) Everyset {2n-1,2n} forn=1.
b) Everyset {2n}u{k |k 2= 2n+1 and kis odd} for n= 1.
¢) Everyset {2n-1}u{k{k=2n+2 and kis even} for n=>1.
These sets are all maximal in the sense that they cannot be compared by C.
The finite coverings of P are:
For every m = 2 we have the covering of P with m elements from S
The m-2 smallest sets of a), {2m-2)}u {klk = 2m-1) and k is odd} and
{2m-3}u{k | k = 2m and k is even}.
For the infinite covering take all sets of type a).
iii) There may exist a I with a minimal representation consisting of two elements. But no optimal
representation exists.
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Let S consist of the following sets:

a) The set of positive odd numbers

b) fornx>lthesets A, :={kl1<k<2n-1}u{kePlkiseven}.

Then the sets A, are an ascending chain with respect to € without maximal element in S. There is
no optimal covering, since the sets A, are necessary, but not maximal. A minimal complete
covering of cardinality 2 is A; and the odd numbers. Il

8.5 Lemma. For a unitary unification problem, all optimal representations are equivalent.
Proof. Trivial. B

In the following we show that for unification in unification algebras extended by free constants (in
particular in free term algebras) the notion of minimal representation and optimal representation are
the same and that all minimal sets are equivalent [FH83].

8.6 Theorem. Let A be a unification algebra extended by constants and let I" be a unification
problem
i)  Every minimal representation is optimal.
i)  All minimal representations are equivalent and of the same cardinality.

Proof. Follows by standard arguments [FH83]. H

Now we can define a special unification type ( extended by constants), which corresponds exactly to
the usual one: [Si75, Si88]

8.7 Definition. Let A be a unification algebra extended by constants.

i)  LetI be asolvable unification problem .
I"is called unitary, if an optimal representation exists that is a singleton.
I" is called finitary, if a finite optimal representation exists.
I"is called infinitary, if an infinite optimal representation exists.
I is called nullary, if no optimal representation exists.

ii) A is called unification based, iff no solvable I'is nullary
A is called unitary, if all solvable T"are unitary.
A is called finitary, if all solvable I'are finitary.
A is called infinitary, if A is unification based and some I" isf infinitary.
A is called nullary, if some I" is nullary. H

9. Classes of Unification Algebras:
How to Obtain the Martelli-Montanari Algorithm

In this section we investigate some classes of unification algebras and give unification procedures for
these classes. In particular we show how an algorithm in the Martelli-Montanari style can be used for
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solving unification problems in unification algebras corresponding to free term algebras and the term
algebra of rational terms.

The first part is a preliminary and provides the required notions and some connections between them.

Throughout the whole section we assume that unification algebras are unsorted and nontrivial and that
TERM = OBJ, hence we can speak of terms instead of objects.

9.1 Properties of Unification Algebras.

In the following we define some typical properties of free term algebras and show how to use them to
construct complete unification steps.

9.1.1 Definition. Let 2 = (V,T,SUB) be a unification algebra.
i) Atermte Tis Q-free, iff forallo,te SUB: ot=1t = o= 1 [V(@®)].
i) A unification algebra 4 is Q-free, iff all terms are Q-free.
iti) A unification algebra 4 is decomposable, if for all nonvariable objects s,t: if (s =t) is
solvable, then there exists a nonvariable object r and ¢,T € SUB, such that cr=sand r=t.
|

An Q-free term algebra [Sz82] (see also [BHS87]) and in particular the free term-algebra are Q-free
in this sense.

We need a notion of subterms in order to characterize properties of unification algebras.

9.1.2 Definition. A term s is a subterm of t, if there exists a nonvariable term r, such that
xe V@) and {x « s}r=1t.
We denote this by s sub t. B

9.1.3 Definition. Let 4 be a unification algebra.
i) A is called subterm-cycle-free, if sub does not contain cycles.
ii) A is called subterm-finite, if every term contains at most finitely many subterms.
Accordingly we say a term t is subterm-finite, if t has a finite number of subterms.
iii) Ais called collapsing, iff there is a nonvariable term t with x € V(t) and a term s such that
{x « s}t is a variable. Otherwise 4 is called collapse-free.
iv) Ais called regular, iff forallo e SUBand allteT: V(ot)=U{V(ocx)lxe V()}. R

If we consider usual term algebras modulo an equational theory, then we have the following
analogies. A simple theory has a subterm-cycle-free term-algebra as unification algebra. However,
simplicity depends not only on the ‘structure’ of the equational theory, but also on the signature. An
almost collapse-free theory has a collapse-free term-algebra (modulo theory) as unification algebra,
and vice versa. Regular equational theories provide regular unification algebras, but since regularity
of equational theory depends also on syntax, there are examples of nonregular equational theories,
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which provide regular unification algebras. An example is the theory axiomatized by E := {f(x,y) =
f(x,z)}. This theory is not regular. However, the provided unification algebra is regular, since y does

not count as variable in f(x y) due to our definition.

We investigate some properties of the subterm relation.

9.1.4 Lemma.
i) In Definition 9.1.2, we can assume that x is a new variable.
iyxe V() =>xsubt

Proof. i) Let {x « s}r = t. Then with a new variable x', we have ({x¢ s}r =
(X e« s}{x'e x} (X x'}r=t.Thetermr' = {x « x'}r is not a variable, furthermore
x' € V(). Hence {x' ¢« s}r'=t '
i) If x € V(t), we have {x' < x}{x' < x}t=1t, where x'is a new variable and t'= {X' ¢ x]}t is

a nonvariable term with x' e V(t'). I

The converse of Lemma 9.1.4 ii) may be false:
Consider the theory E := {f(x, x) = a}. Then V(f(x,y)) = {X,y}. Thus {x « y}f(x, y) = a. This
means y sub a,butye V(a).

9.1.5 Lemma. Let 2 be a regular, collapse-free unification algebra. Then
) ssubt = V(s)cV(Q®)
i) xsub t iff x e V(1).
fii) the relation sub is transitive.
iv) ssub t = o©s sub ot
Proof. i) Holds, since A is regular.
i) Ifx e V(1), then {x' « x}{({x «x'}t) =t, where X' is a new variable, hence x sub t. The
other direction follows from 1)
iii) Let r sub s sub t. There exist terms 1', 8, with x € V(') and y € V(s') such that
{x « 1}r'=s and {y « s}s' =1. We can assume that x and y are new variables. We have
{x « r}{y « 1r'}s' = {y « {x « r'}s' = {y « s}s' = t. Since 4 is regular,
x € V({y « r'}s"), and since A4 is collapse-free, {y <« r'}s’ is not a variable. Hence r sub t.
iv) ssubt means {x ¢« s}s' =t for some s' with x € V(s'). We can assume that x is a new
variable. We can assume that DOM(c) CV(t), due to i). Applying ¢ gives 6t = 6{x ¢« s}s'=
(0 U {x « os}) s' = {x « os} (os). Since 4 is regular x € V(os'), and since A is
collapse-free ¢s' is not a variable, thus Gs is a subterm of ot. H

9.1.6 Example. i) The relation sub may be transitive for a nonregular unification algebra: An
example is the theory E := {f(x a) = f(a x) = b}.
ii)) Consider the theory £ axiomatized by E = {f(f(x)) = x}. The theory £ is regular,
Q-free, decomposable, subterm-finite, and collapsing. In this theory, terms are equal, iff they
contain the same variable and the same number of f’s modulo 2. Q-freeness holds since f(s) = f(t)
implies that the number of f’s in s and t is equal modulo 2. £is decomposable, since every term is
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an instance of f(x). The relation sub is not transitive: We have f(x) sub x sub f(x), but not
f(x) sub f(x), since {y « f(x)}t = f(x) with y € V(t) implies t = y.

9.1.7 Lemma. 4 is regular, iff for all {x < s} € SUB,t € T with x € V(t):
V({x ¢ s}t = (V(D-{x}) U V(s).

Proof. Follows by a renaming technique. Rename all variables in I(G) by new variables. Then the
renamed G is a product of its components. Use induction on the number of components. ll

9.1.8 Lemma. Every Q-free theory is also regular.

Proof. Suppose there is a 6 € SUB and a t € T such that V(ot) c U{V(cox)Ix € V(1)}.
Let v be a variable in U{V(ox)l x € V()} — V(ot). Let x and z be two new different
variables, such that {y < x} and {y ¢« z} are substitutions. Then {y « x}ot= {y « z}ot, since
y is not a variable in ot. Since Ais Q-free, we get {y ¢ x}0 = {y < z}o [V(t)]. This is not
possible due to Lemma 2.13. We have reached a contradiction. B

9.1.9 Lemma. Let 4 be an Q-free unification algebra.
Then for variables x,y, nonvariable terms s,t with x € V(t): the collapse-equation {x < s}t=y
implies that V(t) = {x}, V(s)=yands #y.

Proof. Assume V(t) D {x}. Since 4is regular by Lemma 9.1.8, ¥(t) = {x,y}.
Now {y « t }{x « s}t = IDy t, hence by Q-freeness, we have {y « t }{x < s} =
IDt [{x,y}], and finally the contradiction t = y. We conclude V(t) = {x}.
V(s) = {y}holds, since A4 is regular.
Assume for contradiction that s =y. Then {x <« ylt=y. Ify ¢ V@), thenx = {y « x} {x <y}t
=t, which is not possible. If y € V(t), we get the same contradiction as above. ll

9.1.10 Lemma. If 4is Q-free and subterm-cycle-free, then 4is collapse-free.

Proof. Assume, 4is not collapse-free. Then there exists a term s and a nonvariable term t with
x € V(1), such that {x <— s}t =y for some variable y. If y ¢ V({x « s}t), then all terms in A are
equal, which contradicts our assumption that 4 is nontrivial. Hence y € V({x < s}t). Lemma
9.1.9 shows that V(t) = {x}, V(s) = {y} and s # y. Now {y « t}{x ¢« s}t= {y «t}y =tand
{y « t}{x & s}t = {x &« [y &« t)s}t imply that {y « t}s is a subterm of t. Since s is not a
variable, we have t sub {y < t}s sub t, which is a cycle in the subterm relation. This contradicts
our assumption.M

9.1.11 Lemma. Let 4 be Q-free and subterm-cycle-free.
Then for equivalent terms s,t there always exists a renaming p with ps =t.

Proof. There exists ¢,T with DOM(c) = V(s), DOM(7) = V(t) and os =t and 1t = s. Hence o1t =t
and tcs = s. Q-freeness implies 6T = ID 4 [V(t)] and 16 =ID 4 [V(s)]. Since A is collapse-free
by Lemma 9.1.10, COD(c) and COD(t) consist of variables. The substitution o is invertable,

hence it is a renaming. W
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We denote by (o = T) the equation system {s; =t;,...,S, = t,), for substitutions ¢ = {x; « s; |
i=1,...,n} and T = {x; « t; li = 1,...,n}, where DOM(c) = DOM(7) = {x; i = 1,...,n}.

Now we can give rules that are sufficient for the empty theory:
9.1.12 Definition.
Rule: Decomposition. {{s,t}UM} =w {{s}uM} U (o =1),
iff there is a nonvariable term r such that or=s and tr = t and DOM(c) = DOM(T) = V().
Rule: Occur-check. T' =y FAIL,
if ['contains a cycle.
Rule: Clash {s,t}uUM = FAIL,
if s and t are nonvariable terms and decomposition is not applicable.

9.1.13 Proposition. Let 4 be a unification algebra extended by constants.
i) If A4is Q-free, then decomposition is complete.
i) If 4is subterm-cycle-free, then the occur-check is complete.
iti) If 4is decomposable, then the clash-rule is complete.

Proof. i) Let A be 2-free.

"=y ": Let 8 be a solution of {{s}\UM} U (6 =1). Then 0 is also a unifier of s =t, as 8ot =
gtr. Hence 6 is a solution of {s,t}UM.

"=w'": Let 0 be a solution of {s,t}\UM, let 6,7 € SUB with or = and tr =t and DOM(0) =
DOM(7) = V(). Since A is Q-free, we have 06 = 01 [V(1)), hence 0 is a solution of
(c=1).

ii) Let 4be subterm-cycle-free. It is sufficient to show that a T" with a cycle has no
solution. Assume there is a solution 0 of I". There exists a cycle (x;,t;) in I, Since 6
unifies the cycle and t; is not a variable, we have that 6t; is a subterm of itself, which
is a contradiction.

ili) Let 4 be decomposable. It is sufficient to show that {s,t}\UM has no solution. Assume
there is a solution 6 of s = t. Since 4 is decomposable, there exists substitutions ¢,
and a nonvariable term r, such that or = s and tr = t. But then decomposition would be

applicable. B

If a unification algebra is regular, collapse-free, subterm-cycle-free, then we can define the depth of
terms for all terms that have a finite number of subterms as follows depth(x) ;=0 forx € V, and
depth(t) := 1 + max{depth(s) | s sub t}

9.1.14 Lemma. If A4 is regular, collapse-free, and subterm-cycle-free, then the definition of depths
of terms is sensible for subterm-finite terms t for a subterm-finite term t we have sub t implies
depth(s) < depth(t).

Proof. If 4is regular and collapse-free, variables have no subterms, hence depth(x) := 0 is
compatible with the definition of depth. Transitivity of sub yields that for sub t , the {rlrsubs}is
a subset of {r | r sub t}. Subterm-cycle-freeness implies that the subset relation is proper. For
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subterm-finite t, these subsets are finite by assumption, hence depth is a natural nuber and sub t
implies depth(s) < depth(t). B

Note that since A41is unsorted, solved systems of equations are exactly those, which are merged, have
no cylces and in every multi-equation there is at most one nonvariable term.

Now we can show termination of decomposition-merge for a class of unification algebras:

9.1.15 Theorem. Let 4 be Q-free, subterm-cycle-free and decomposable and let I" be a unification
problem, such that all all terms in I" have only a finite number of subterms.
Then decomposition, merge, occur-check and clash provide a terminating, complete unification
algorithm for I'.

Proof. Proposition 9.1.13 and Theorem 6.3 show that the rules preserve the solution space.
‘We show that the the application of rules terminates. Therefore we need a slight variation of the
decomposition rule: In the multi-equation{s,t}\uM , we delete the term with greater depth and
keep the one with a smaller depth.
The measure for showing termination is W(I') = (111, Wy, H3), ordered lexicographically, where [,
is the multiset {depth(t) | t € OBJ(I")} and the ordering on these multisets is inherited from the
ordering on natural numbers, and |l is the number of multi-equations in I'".
Decomposition strictly decreases 41, since the terms in (¢ = T) are subterms of either s or t, hence
the depth of all terms in (o = T) is strictly smaller than max {depth(s), depth(t)} by Lemma 9.1.14.
The merge rule leaves |, invariant and strictly decreases L.
Since W is well-founded, the procedure terminates.
It remains to be shown that the returned system is in solved form, if I" is unifiable. If no rule is
applicable, then the system has no cycles. Furthermore, every multi-equation contains at most one
nonvariable term, since otherwise either decompositon or clash is applicable. This means that I is
solved. (Note that we have assumed that A is unsorted) B

9.1.16 Corollary. Let 4 be Q-free, subterm-cycle-free, decomposable and subterm-finite.
Then decomposition, merge, occur-check and clash provide a terminating, complete unification

algorithm for I". Morover, A is unitary and has a dimension in the sense of 7.1 ll

9.2 Unification of Free Terms.

9.2.1 Definition.
1) Asubstitution ¢ is Noetherian (modulo W), if there is no properly decreasing infinite chain
00 >w O1>w Oy >w. ..
i) Antermtis Noetherian (modulo W), if there is no properly decreasing infinite chain
to>t> 1>,
iif) A unification algebra is Noetherian, if every term is Noetherian and for every finite set of

variables W every substititution is Noetherian. Il
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9.2.2 Theorem. Let A be a unification algebra, such that Zis Q-free, subterm-cycle-free,

decomposable, subterm-finite and Noetherian.

Then 4 is isomorphic to the terms over a free signature.

Proof.

D

2)

3

For every term t there is a term t, with tg <t, ty has only variables as subterms, and tg is
minimal with respect to <.This term is unique up to =

Since t is Noetherian, there exists a <-minimal nonvariable term ty with tg < t. Assume, ty has
a nonvariable subterm s. Then there exists a nonvariable term s' such that {x « s}s' =t.
This means s' < tg. Since ty is minimal, there exists a ¢ such that oty = s'. Thus
o{x « s}s' = §', and hence by Q-freeness we obtain o{x « s } = ID4z. Now
os = x implies that Zis not collapse-free, which contradicts Lemma 9.1.10.

Assume, there is another minimal term t; with the described properties. Without loss of
generality we can assume that ty and t; are variable disjoint, by applying a variable
permutation if necessary. Then tg and t; are unifiable, and hence we can use decomposition.
There exists a term r and substitutions G,T with or =ty and tr = t;. By minimality, we have
r=tgandr= ty, hence tg =t;.

Now we can define the signature X: 4

We can assume that the set of variables is ordered by a total partial ordering. For every
equivalence class EC of <-minimal nonvariable terms, we select a representative tgc. Due to
Lemma 9.1.8, all terms in EC have the same number of variables, say ngc. We select a
ngc-ary function symbol fgc. The signature X then exactly consists of all function symbols
fgc for all such equivalence classes. We assume that the variables are exactly the set V.

We define the generating terms ty gc = fgc(X1s.. -»Xggc), Where {x,...,xppc} = V(tge) and
the variables are ascending with respect to the ordering on variables.

The set of all terms 7(Z,V) can be constructed from the generating terms ty gc.

Every term in 7(Z,V) is either a variable or of the form {x{¢- t,...,.Xypc ¢ tyec) ty gc for
some terms t;. This representation is unique for terms in 7(Z,V).

T£,V) and 4 are isomorphic:

We define a mapping ¢: 7(Z,V) — 4, and show that ¢ is an isomorphism of unification
algebras.

¢(x) :=x for variablesx € V.

P({X14= t15... XpEC € thpc} txEC) = {X14= Ot Xppe ¢ Plugc) tC-

For substitutions 6 = {x; ¢ t},....X ¢ t;} we define ¢(0) = {x] « @ty,...,x ¢ Ot}

) @ TZ,V) - Tgis injective:

Q({xX¢ ty,....XpEC € thpclts Q) =Q({X1¢= S1,....Xqpc ¢ Sppe} tyEey) implies

{x16= Qt1,... . Xppc ¢ Ptypcttee = {X1¢= Qty,... Xppc < Qtyrc) tge. Hence tgc and tge are
unifiable in A4, which is only possible if tgc = tgc by (1). Now Q-freeness of 4 implies
¢t; = @s; for all i, and by induction on the depth of terms in 4 we conclude that ¢ injective.

i) @IE,V) > Tgis a surjective:

Let s be a term in 4 If s is a variable, then G is in the image of ¢. Let s be a nonvariable term.
Thens = {X] ¢ 81,...,X5¢= 8y} Sp EC, Where sg gc is the minimal nonvariable term that is
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more general than s. Q-freeness of 4 implies that s; are unique, and subterm-cycle-freeness of
A implies that the A-depths of the s;’s are strictly smaller than the depth of s. Now induction
on the A-depth shows that there are terms s; 7 with @s; t = s;. Hence
O({X1 & 81,15 X Sp T} SE0,EC) = 8.

iii) @ is also a bijection ¢:= SUBy — SUB 4.

iv)  p(ot) = p(a)o(1):

If t is a variable, then the equations holds by definition.

If tis not a variable, then t can be represented as t = {x¢=ty,....Xypc ¢ typc} ty Ec, Where
the t;'s have smaller term depths than t. By definition, we have ¢(ct) =

{x1¢ o(oty),....Xgrc « O(Ctygc) }tec. Induction on the term depth shows that this
expression is equal to {x;¢ Q(O)P(t1),....Xppc ¢ P(O)P(thec) tgc- Since V(tge) =
{X1,--..XnEc}, this expression is equal to G(G)({X1¢ @(t1),....XnEC ¢ P(taec) Jtee). This is
exactly @(c)o(t).

V)  9(0T) = @(0)¢(T):

Follows easy from part iv).

vi) ¢ is an isomorphism:

Using Definition 5.1, we have shown that ¢ is a bijection on terms and substitutions and is a
homomorphism of unification algebras. That ¢ is an isomorphism follows from Lemma 5.3.
|

The following example gives a theory that is unitary due to Corollary 9.1.16 but cannot be equivalent
to a free term algebra, since it is not Noetherian.

9.2.3 Example.
Consider the following theory. The theory can be viewed as a theory of infinite sequences s, such
that for every sequence s, there exists a number n such that s, becomes constant for for all m 2 n.
The signature has for every n > 0 an n-ary function symbol f,,. The theory Eis defined by the
(infinite) canonical term rewriting system:
R = {fy(x1,....X02.%,X) = £, 1(X1,-..,Xp.0,X) In 2 2},
Eis Q-free: Assume f(Sy,...,5n) =¢ fi(ty,....ty) for some £, s; and t; and assume that for some
je{1,...,n}, we have s; # t;. We can assume that all s; and t; are in normal form. Furthermore,
we can assume that n is the smallest number, which violates Q-freeness. Since f;,(sy,...,8y) =¢
fa(ty,...,ty), one of them must be reducible, say f,(s;,...,8,), hence n = 2. Reducability of
fy(s1,...,8y) implies s, = s,_1. Now f(ty,...,t,) must be reducible, too, hence t, = t,_;. Thus we
have f,_1(s1,...,8p.1) =¢ f1(ty,. .- ty-1), Which contradicts the minimal choice of n.
E is subterm-cycle-free: Holds, since the (usual) term depth is invariant in equivalence classes

with respect to .

E is subterm-finite: The equations show, that application of rewrite rules does not change
equivalence classes of subterms, hence a term has only a finite number of subterms modulo E.

Z is decomposable: Let s,t be nonvariable, unifiable terms. By applying rewrite rules backwards,

we can assume that s = f, (sq,...,8y) and t = f(t1,...,t;)) for some n. Then we can choose 1 =
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f(X1,...,Xp), Where Xy,...,X, are new variables, and 6 := {x; - s;li=1,....n} and T := {x; « t; |
i=1,...,n}.

£ is not Noetherian: the following chain fi(x1) > f5(x1,xp) > f3(X1,X9,%X3) > ... shows this:

We have {x ¢ Xp.1 Hp(X1,..Xp) = fp.1(X15...5%n-1). In order to show that £, 1(xy,....x5.1) isa
proper E-instance of f,(xy,....Xp), assume fi_1(t,....ty1) =g fr(X1,....Xp). The term f(xq,....xp)
is in normal form, thus f;,_1(t,....t,.1) must be reducible. However, it is not possible to reduce it

to a term starting with f,,. We have reached a contradiction.
Now Corollary 9.1.16 shows that for this theory the algorithm consisting of the rules
decomposition, merge is a unification algorithm and that it is of unification type unitary. M

9.3 Unification of Rational Terms,

In order to give unification rules that are able to deal with the algebra of rational terms [Co82}, we
need more properties of unification algebras.

9.3.1 Definition. Let 4 be a unification algebra.
A solves cycles uniquely, iff for every nonvariable term r with x € V(1), and two terms
s,t: {x «s}r=sand {x «t}r=timpliess=t. W

9.3.2 Definition.
Rule: Rational-Unfolding:
t=M =w x=t'=M,
if t contains a nonvariable subterm s, {x < s}t' = t, where t' is a nonvariable term with
x € V(1'), and x is a new variable. M

9.3.3 Proposition. If Zis Q-free, collapse-free, and solves cycles uniquely, then rational-
unfolding is a complete step.

Proof.
1) The tranformation is complete.
"=": Let O be a solution of t = M. Then define 6' such that 6'= 6 [V(t,M)], and 6'x := 0t.
Obviously 0' = 0'{x « t}. This implies 8't' = 8'{x « t}t'= 0't = Ot.
"e=": Let § be a solution of x = t' = M. Without loss of generality we can assume that DOM(6 ) N
I(8) = @. With 0" := Oyr).(x)» We can partitition 8 as follows: 8 = 8'U(x « 6t'}. Then we have
0x =0t = {x « Ot'}(0't).
Q't' is not a variable, since Ais collapse-free. We have 0t = (B'U{x « Ot'}){x « t}t' =
{x « 6U'}0'{x « O't}t' = {x « 0't}0't" = {x « 0t}0't. 4 solves cycles uniquely, hence 0t
= 0t".This means, 0 is a unifier of t = M.
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9.3.4 Proposition. If Ais Q-free, collapse-free, and Noetherian, then the rational-unfolding rule
terminates with a I', such that all terms in OBJ(I") have only variables as subterms.

Proof. We show that the transformation terminates:
Let the measure be the multiset of all nonvariable terms that have nonvariable subterms, ordered by
the ordering that comes from the instance relation. Since 4is Noetherian, the multi-set ordering is
well-founded. We have to show that t' < t. Obviously t' < t. Assume ot = t' for some substitution
¢ with DOM(0) = V(1) . Then {x ¢« s}ot = t. Furthermore t # t', which implies V(t) # @. Now
Q-freeness implies {x « s}o = IDt [V(t)], which is impossible, since 2 is regular and
collapse-free.
We have shown that rational-unfolding terminates.
If rational-unfolding stops, then there is no term with a nonvariable subterm, hence the last claim
holds. W

Cyclically solved systems of equations are exactly those, which are merged and in every
multi-equation there is at most one nonvariable term.

9.3.5 Theorem. If 2is Q-free, collapse-free, decomposable, Noetherian, and solves cycles
uniquely, then the following procedure is complete and terminates.
1) first use rational-unfolding until this is no longer possible,
2) use decomposition, merge and clash.
If it terminates, then I is in cyclically solved form.

Proof. Lemma 9.3.4 shows that step 1 yields a I', which contains only variables or terms that have
no nonvariable subterms.
Let s = t be in a multi-equation and nonvariable terms. If they are unifiable, then decomposition is
applicable. Let or = s, Tr = t with DOM(c) = DOM(1) = V(r). We have that COD(c) abnd COD(7)
consist of variables, since otherwise s or t have nonvariable subterms as 4is regular and
collapse-free. Hence every decomposition removes a nonvariable term. This means, the
merge-decomposition process terminates. Furthermore it is complete due to Lemma 9.1.13. W

All the above properties hold for rational terms [Co 82], hence our algorithm can be applied to them.
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