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Abstract. 

Traditionally unification is viewed as solving an equation in an algebra given an explicit 

construction method for terms and substitutions. We abstract from this explicit term construction 

methods and give a set of axioms describing unification algebras that consist of objects and 

mappings, where objects abstract terms and mappings abstract substitutions. A unification problem in 

a given unification algebra is the problem to find mappings for a system of equations (Si =ti liE I), 

where si and ti are objects, such that si and ti are mapped onto the same term. Typical instances of 

unification algebras and unification problems are: Term unification with respect to equational theories 

and sorts, standard equation solving in mathematics, unification in the A-calculus, constraint solving, 

disunification, and unification of rational terms. 

Within this framework we give general purpose unification rules that can be used in every 

unification algorithm in unification algebras. Furthermore we demonstrate the use of this framework 

by investigating the analogue of syntactic unification and unification of rational terms. 

Keywords: Unification algebra, universal algebra, equation solving, constraint solving, equational 

theories 

Acknowledgement. We are grateful to Hans-Jiirgen Biirckert and Wemer Nutt for discussions on 

the subject of this paper. We acknowledge suggestions from Gert Smolka concerning solved forms. 

1 Introduction. 

What are the common features of unification of first-order terms with respect to an equational theory, 

unification in A-calculus, equation solving in mathematics and answering a query with respect to a 

logic program? In order to approximate the answer let us look more closely to the different problems. 

- Unification is the task to make two terms equal, i.e., given two terms s,t, which contain variables 
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1 In t roduc t ion .

What are the common features of unification of first-order terms with respect to an equational theory,
unification in l—calculus, equation solving in mathematics and answering a query with reSpeCt to a
logic program? In order to approximate the answer let us  look more closely to the different problems.
-— Unification is the task to make two terms equal, i.e., given two terms s,t, which contain variables
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(in some sense), find replacements for these variables, such that s and t are equal after the 

replacement. This task arises in several settings, for free first order terms [Her30, MM82 , Hu76], 

for terms together with an equational theory [PI72,Si87] and for terms in sorted signatures 

[Wa88,Sch88, SNMG87]. 

- Unification in A-calculus [Hu75, SG88] is the task given two A-expressions with free variables, 

find A-expressions that substituted for these variables make the two expressions equal after 

application of reduction rules. 

- Solving an equation s = t over a fixed (universal) algebra A is to find assignments from variables 

in s and t to elements of A, such that s and t are mapped to the same element of the algebra by the 

assignment. 

- Solving equations in mathematics, for example solving Diophantine equations over the naturals, 

means given a polynomial p with several variables, to rmd natural numbers for every variable in 

p such that the p becomes zero after replacing the variables by those naturals. 

- Solving constraints [C082b, JL86, DSV87] is the task to find solutions, i.e., substitutions into 

variables, such that a given constraint is satisfied. It is also common in practice only to require a 

test for solvability of a constraint rather than explicitely computing solutions. 

- Answering a query with respect to a logic program is given a query including variables, fmdone or 

all answers, Le., all instantiation of variables in the query, such that the instantiated query follows 

from the logic program. 

To summarize, some common features of all these problems are: 

i) there are objects having variables, 

ii) the names of the variables do not matter 

iii) there exists an operation like substituting objects into variables 

iv) there is a domain where the valid solutions come from. 

The common problems are that some or all instantiations are wanted that solve some equation or 

makes some formulae true. 

A further common problem is that methods are needed to represent infinite sets of solutions in a 

finite way. For example the equation x2 = y2 has an infinite number of solutions over the 

integers, but every solution can be represented using variables, and in this case either by x = y or 

by x= -y. 

'This paper is an attempt to give an axiomatic framework for unification in terms of unification 

algebras, such that all the problems above can be seen as unification problems within this framework. 

We develop this unification theory to the extent that a set of lemmas and theorems can be derived 

including some nondeterministic unification rules that are valid in general. 

A particular advantage of this approach is that many of the familiar lemmata and theorems of standard 

unification theory can be shown for unification algebras and hence can be used for every problem 

domain, which satisfies the axioms of a unification algebra. 

This work was inspired by a recent excellent paper of J. Goguen [G088], which advocates a 

categorical approach to unification, viewing unifiers as equalizers in some category. His attempt to 
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(in some sense), find replacements for these variables, such that s and t are equal after the

replacement. This task arises in several settings, for free first order terms [Her30, MM82 , Hu76],

for terms together with an equational theory [P172,Si87] and for terms in sorted signatures
[Wa88‚Sch88, SNMG87].

— Unification in l—calculus [Hu75, SGSS] is the task given two Ä—expressions with free variables,

find K-expressions that substituted for these variables make the two expressions equal after

application of reduction rules.

— Solving an equation s = t over a fixed (universal) algebra A is to find assignments from variables
in s and t to elements of A,  such that s and t are mapped to the same element of the algebra by the
assignment.

— Solving equations in mathematics, for example solving Diophantine equations over the naturals,

means given a polynomial p with several variables, to find natural numbers for every variable in

p such that the p becomes zero after replacing the variables by those naturals.
—- Solving constraints [C082b, JL86, DSV87] is the task to find solutions, i . e . ,  substitutions into

variables, such that a given constraint is satisfied. It is also common in practice only to require a

test for solvability of a constraint rather than explicitely computing solutions.
— Answering a query with reSpect to a logic program is given a query including variables, findone or

all answers, i.e., all instantiation of variables in the query, such that the instantiated query follows
from the logic program.

To summarize, some common features of all these problems are:
i) there are objects having variables,
ii) the names of the variables do not matter
iii) there exists an Operation like substituting objects into variables
iv) there is a domain where the valid solutions come from.

The common problems are that some or all instantiations are wanted that solve some equation or
makes some formulae true.
A further common problem is that methods are needed to represent infinite sets of solutions in a
finite way. For example the equation x2 = y2 has an infinite number of solutions over the
integers, but every solution can be represented using variables, and in this case either by x = y or
by x = -y.

This paper is an attempt to give an axiomatic framework for unification in terms of unification

algebras, such that all the problems above can be seen as unification problems within this framework.
We develop this unification theory to the extent that a set of lemmas and theorems can be derived
including some nondeterministic unification rules that are valid in general.
A particular advantage of this approach is that many of the familiar lemmata and theorems of  standard
unification theory can be shown for unification algebras and hence can be used for every problem
domain, which satisfies the axioms of a unification algebra.
This work was inspired by a recent excellent paper of J. Goguen [G088], which advocates a
categorical approach to unification, viewing unifiers as equalizers in some category. His attempt to



provide a framework for unification theory clearly advanced the field and had strong influence in that 

it showed a new line of development. However, category theory appears to have too strong an 

emphasis on the substitutions (as arrows) and underrates the inner structure of the objects, for 

example the role of the variables in objects. Furthermore his approach has a built-in renaming every 

time a unifier or a unifying step is executed. This makes completeness proofs for unification 

algorithms that rename variables only if necessary overly complicated. Though we were inspired by 

J. Goguen, the first authors to consider unification in categories were R. M. Burstall and 

D.E.Rydeheard [RB85, RS87]. 

Our approach allows a natural treatment of unification algorithms based on transforming systems of 

equations or multi-equations as for example used in [Her30, MM82, GS87, Hu76, Sch87]. This 

approach allows easy proofs of completeness of such nonrenaming algorithms, wich are of high 

practical interest. A further advantage is that our appeoach allows a unified treatment of sorts and of 

equational theories. 

The paper is structured as follows: In sections 2-4 we give the basic axioms for a unification algebra, 

define the notions of unification type and provide some consequences in order to show that the 

substitutions behave as expected. Section 5 on homomorphisms and congruences shows that 

unification algebras form a category where the usual homomorphism theorem holds. In section 6 we 

give complete transformation steps for equation systems that can be used in every unification 

algorithm. Section 7 presents the notion of dimension and redundant equations in unification 

algebras. In section 8 we discuss the notion of minimal representations of solutions. Section 9 

presents a complete unification algorithm for the equivalent of the Robinson-case and also for the case 

of rational infmite terms. 

2. Unification Algebras 

Basically, unification algebras consist of a set OBJ and a set MAP of mappings from OBJ into 

OBJ. Intuitively, the set OBJ can be viewed as the set of all well-formed expressions with respect 

to some language modulo a congruence and MAP as the set of well-formed variable-replacements 

modulo the same congruence. We will distinguish some elements in OBJ as variables V. This gives 

a level of abstraction, in which the properties of the defined structure can be investigated without 

regarding the language which is used to define this structure. 

The design decisions we have made are for example that variables are explicitly available in contrast 

to the categorical approach, where variables are considered modulo renamings. Furthermore it is not 

possible to prohibit the application of a substitution to some term, for example it is impossible to say 

that it is disallowed to subtitute 0 for x in the term y/x if substituting 0 for x is allowed in other terms. 

As a preliminary for the defmition of unification algebra we define a unification quasi-algebra .9l 

as a triple (V. OBJ. MAP). where OBJ '* 0. MAP is a set of total mappings cr: OBJ ~ OBJ 

and V ~ OBJ. We tacitly assume that equal mappings on OBJ are equal elements of MAP. 

Usually we will refer to elements of OBJ as objects, to MAP as mappings and to V as 
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provide a framework for unification theory clearly advanced the field and had strong influence in that

it showed a new line of development. However, category theory appears to have too strong an

emphasis on the substitutions (as arrows) and underrates the inner structure of  the objects, for

example the role of the variables in objects. Furthermore his approach has a built-in renaming every

time a unifier or a unifying step is executed. This makes completeness proofs for unification

algorithms that rename variables only if necessary overly complicated. Though we were inspired by

J.  Goguen,  the first authors to consider unification in categories were R.  M.  Burstall and

D.E.Rydeheard [RB85, RSS7].
Our approach allows a natural treatment of unification algorithms based on transforming systems of

equations or multi—equations as for example used in [Her30, MM82, G887, Hu76, Sch87]. This
approach allows easy proofs of completeness of such nonrenaming algorithms, wich are of high

practical interest. A further advantage is that our appeoach allows a unified treatment of sorts and of
equational theories.

The paper is structured as follows: In sections 2—4 we give the basic axioms for a unification algebra,
define the notions of unification type and provide some consequences in order to  show that the

substitutions behave as expected. Section 5 on homomorphisms and congruences shows that

unification algebras form a category where the usual homomorphism theorem holds. In section 6 we
give complete transformation steps for equation systems that can be used in every unification
algorithm. Section 7 presents the notion of  dimension and redundant equations in unification

algebras. In section 8 we discuss the notion of minimal representations of solutions. Section 9

presents a complete unification algorithm for the equivalent of the Robinson—case and also for the case
of rational infinite terms.

2. Unification Algebras

Basically, unification algebras consist of a set OBJ  and a set MAP of mappings from OBJ  into
OBJ. Intuitively, the set OBJ can be viewed as the set of all well—formed expressions with respect
to some language modulo a congruence and MAP as the set of  well-formed variable-replacements
modulo the same congruence. We will distinguish some elements in OBJ as variables V. This gives
a level of abstraction, in which the properties of the defined structure can be investigated without
regarding the language which is used to define this structure.
The design decisions we have made are for example that variables are explicitly available in contrast
to the categorical approach, where variables are considered modulo renamings. Furthermore it is not
possible to prohibit the application of a substitution to some term, for example it is impossible to say
that it is disallowed to subtitute 0 for x in the term y/x if substituting 0 for x is allowed in other terms.

As a preliminary for the definition of unification algebra we define a unification quasi-algebra it
as a triple (V, OBJ ,  MAP),  where OBJ at @, MAP is a set of total mappings 0': OBJ  —> OBJ
and V (; OBJ. We tacitly assume that equal mappings on OBJ are equal elements of  MAP.
Usually we will refer to elements of OBJ  as ob j ec t s ,  to MAP as mapp ings  and to V as



variables.
 

We try to provide a minimal axiomatization, such that it is easy to check that a given structure is a
 

unification algebra, and that the machinery for unification algebras can be used.
 

Now we give the axioms which a unification algebra.91 should obey.
 

In the following we assume that .9l =(V, OBJ, MAP) is a unification quasi-algebra.
 

MON)	 MAP is a monoid with respect to composition of mappings with identity Id.
 

We use the usual notation for substitutions als for mappings cr E MAP. By DOM(cr) we denote
 

{x E VI crx *" x} and by COD(cr) = crDOM(cr). The notation cr = 't [W] for mappings cr,1: means that
 

crx = 'tX for all variables x in W.
 

The next axiom states that every mapping can be characterized by its values on V:
 

VI)	 (Basis axiom) 

Vcr,1: E MAP: cr = 't [V] ==> cr = 'to 

We represent a mapping cr E MAP by cr = {xi f- O'Xi liE I}, where DOM(cr) = {xi liE I }. 

The axiom (V2) captures the intuition that one can independently choose instantiations for variables. 

V2)	 (Restriction axiom) 

Vcr E MAP VW ~ V 3't E MAP cr = 't [W] and 'ty = Yfor all y e: W. 

We denote 't as crlW. 

2.1	 Definition. We say S is a variable permutation iff 

i) SV ~ V, and 

ii) There exists a mapping S- E MAP such that S-S = Id. 

We say two variables x,y are equivalent, if SX = y for some variable permutation S. 

Axiom V3 has the task to axiomatize that the name of variables is irrelevant. 

V3) (Renaming axiom) 

For all finite sets W,W' of variables there exists a variable permutation S E MAP such that 

SW (J W'= 0. 

The following axiom is the first of the finiteness axioms, and together with the second (finiteness of 

variables occurring in an object) we are enabled consider the set of variables as coinfinite, Le., we 

can always assume that new variables can be introduced. This is a slight restriction, since this makes 

it impossible to solve problems including an infinite number of variables. A solution for this more 

general case would be to choose V such that the cardinality of V is greater than the cardinality of the 
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variables.
We try to provide a minimal axiomatization, such that it is easy to check that a given structure is  a

unification algebra, and that the machinery for unification algebras can be used.

Now we give the axioms which a unification algebra fl! should obey.
In the following we assume that .?! = (V, OBJ, MAP) is a unification quasi-algebra.

MON) MAP is a monoid with respect to composition of mappings with identity Id.

We use the usual notation for substitutions als for mappings 0' e MAP. By  DOM(0') we denote

{x  e VI O'X # x}  and by COD(o) = oDOM(6). The notation o = 't [W] for mappings 6,1: means that

ox = 1x for all variables x in W.

The next axiom states that every mapping can be characterized by its values on V:

V1) (Basis axiom)
Von € MAo=1  [V] =>o=t .

We represent a mapping 6 6 MAP by 6 = {xi <— oxi | i e I}, where DOM(o) = { i  i e  I }.

The axiom (V2) captures the intuition that one can independently choose instantiations for variables.

V2) (Restriction axiom)
Vce  MAP VWgVBTe  MAP 0 '= 'c [W]  and Iy=yfora l lye£W.

We denote 1: as 61w.

2.1 Definition. We say g is a variable permutation iff
i) av g v, and
ii) There exists a mapping E," & MAP such that @@ = Id.
We say two variables x,y are equivalent, if fix = y for some variable permutation €.

Axiom V3 has the task to axiomatize that the name of variables is irrelevant.
V3) (Renaming axiom)

For all finite sets W,W' of variables there exists a variable permutation € 6 MAP such that
E_‚W n W' = @.

The following axiom is the first of  the finiteness axioms, and together with the second (finiteness of

variables occurring in an object) we are enabled consider the set of variables as coinfinite, i.e., we
can always assume that new variables can be introduced. This is a slight restriction, since this makes

it impossible to solve problems including an infinite number of  variables. A solution for this more

general case would be to choose V such that the cardinality of V is greater than the cardinality of the



set of variables in an object and the set of variables in the domain of a mapping. Note that in the 

infinite case, the axioms may be insufficient, since we have tried to make the axioms as small as 

possible. 

V4)	 (Finiteness of domains of mappings) 

DOM(a) is finite for all aE MAP. 

2.2	 Definition. The set of variables of an object t E OBJ is defined as the follDwing set: 

V(t):= {x EVI3a al{x}t :;t:t }. 

We denote the set of variables introduced by a mapping a by 1(0') := V(COD(cr». 

VS)	 (Finiteness axiom for objects) 

'\7't E OBJ: Vet) is finite.• 

2.3 Definition. (V ,OBJ, MAP) is a unification algebra, iff it is a unification quasi-algebra 

and the axioms (MaN) and VI) - VS) are satisfied.• 

We denote the set Df the set of reachable objects as TERM := MAP(V) = {ax I a E MAP, x E V} 

and refer tD objects in TERM as terms. 

2.4	 Definition. A unification algebra (V ,OBJ, MAP) is called unsorted, iff all variables are 

equivalent and MAP(OBJ - TERM) ~ OBJ - TERM. Otherwise it is called sorted.• 

The condition MAP(OBJ - TERM) ~ OBJ - TERM can be interpreted as: instances of literals are 

again literals, and literals and terms are different. If for some object t that is not a term some instance 

is a term, then t can be considered as a nonwell-sorted term, which has becDme well-sorted after 

instantiation. 

The definition characterizes the set Df unsorted terms and literals with respect to some signature as 

Wlsorted Wlification algebra. 

2.5 Example. 

1) Let ~ be a signature, 0/ be a set of variables, '1'(£, '0 be the set of first order terms and let 

SUB be the set of substitutions over 'T{I., 0/). It can easily be verified that 

('V, 'T(L, '0, SUB) is an (unsorted) unification algebra. 

2) Let ~, 0/, 'T(L, '0, and SUB be as above and let - be a congruence on 'T(L, 'l!), such that s - t 

implies as ­ at fDr all terms s,t and all substitutions a E SUB. 

Let 0//- , 'T(L,1l>/- , SUB/- be the quotients of variables, terms and substitutions modulo -. 

Again it can easily be verified that (0//-, 'T(L,1l)/- , SUB/-) is an (unsorted) unification 
algebra. 

If the congruence comes from an equational theory 'E, then 'E-equality transforms into identity 

5
 

set of variables in an objeCt and the set of variables in the domain of a mapping. Note that in the

infinite case, the axioms may be insufficient, since we have tried to make the axioms as small as

possible.

V4) (Finiteness of domains of mappings)
DOM(6) is finite for all 66 MAP.

2 .2  Defini t ion.  The set of variables of an object t e OBJ is defined as the following set:

V(t) :: {x eVI  30' 6|{X}t act }.

We denote the set of  variables introduced by a mapping 0' by I(G) :=  V(COD(0)).

VS) (Finiteness axiom for objects)

Vte  OBJ : V(t) is finite. I

2.3 Definition. (V,OBJ,  MAP) is a unification algebra,  iff it is a unification quasi-algebra
and the axioms (MON) and V1) - V5) are satisfied. I

We denote the set of the set of  reachable objects as TERM :=  MAP(V) = {ox l G 6 MAP, x e V}

and refer to objects in TERM as terms.

2.4 Definition. A unification algebra (V,OBJ,  MAP) is called unsor ted,  iff all variables are

equivalent and MAP(OBJ —- TERM) ; OBJ —— TERM. Otherwise it is called sorted. I

The condition MAP(OBJ — TERM) ; OBJ — TERM can be interpreted as: instances of literals are
again literals, and literals and terms are different. If for some object t that is not a term some instance

is a term, then t can be considered as a nonwell-sorted term, which has become well-sorted after

instantiation.
The definition characterizes the set of unsorted terms and literals with respect to some signature as
unsorted unification algebra.

2 .5  Example .

1) Let E be a signature, 1/ be a set o f  variables, 172,10 be the set of  first order terms and let
SUB be  the set  o f  substitutions over ’17): ‚V) .  It can easily be verified that
(1/, 172,16, SUB) is an (unsorted) unification algebra.

2) Let E ,  1/, (172,10, and SUB be as above and let -- be a congruence on GEA/), such that s -- t
implies Us ~ at for all terms s,t and all substitutions 0' e SUB.
Let 1//-— , TE, 1/)/~ , SUB/»- be the quotients of variables, terms and substitutions modulo » .
Again it can easily be verified that (“V/— , TEJÖ/H , SUB/«) is an (unsorted) unification
algebra.
If the congruence comes from an equational theory £, then ‘E—equality transforms into identity



of objects and substitutions in the unification algebra. 

It should be noted that the set of variables in a term defined here is not the syntactic one as in 

term algebras. For example the theory 'Eaxiomatized by {f(x) =f(y)} causes f(x) to contain 

no variables with respect to the unification algebra, since it cannot be changed (modulo 'E) by 

instantiating the variable x. 

3)	 Let !Tbe the set of set of first-order-expressions with respect to some signature, i.e., the set 

consisting of variables, terms, and first order formulae. 

As equivalence =we use the change of bound variables in formulae. Since the names of 

bound variables should not conflict with free variables, we assume that the set of free 

variables is disjoint from the set of bound variables. Then let 0 B J = !T/= , 
and MAP be the set of first-order substitutions with respect to the terms over free variables. 

This constitutes a unification algebra. 

4)	 Let !Fbe the set of set of first-order-expressions with respect to some signature, i.e., the set 

consisting of variables, terms, and first order formulae. We include also the constants true 

andfalse. We assume that for every ground literal (Le., without variables), we know whether 

it is true or false. Furthermore we assume that every literal has a ground instance. 

We choose an equivalence different to 3): A formulae L is equivalent to true, iff it contains no 

free variables and is interpreted as true with respect to the given semantics. A formulae L is 

equivalent to false, iff it contains no free variables and is interpreted as true with respect to 

the given semantics. For arbitrary formulae we assume that two formulae are equivalent (=), 

iff they always evaluate to the same truth-value under every interpretation. As above, we can 

assume that the set of free variables is disjoint from the set of bound variables. 

Then let OBJ := :J1=, and let MAP be the set of first-order substitutions over the set of terms 

with respect to free variables. This constitutes a unification algebra. 

We have not allowed that free variables are captured, for example it is not allowed to replace y 

by x in the formula Vx P(x,y), since then there exists no variable permutation that renames y. 

5)	 A slight variation ofthe example in 4) is that the semantics is defined via a logic program, and 

formulae are only the queries, i.e., clauses with negative literals, where the variables in the 

query are considered as free. As equivalence we may use the following: two queries are 

equivalent (=), iffthey are equal under associativity, commutativity and idempotence ofv. 

Then !T/= together with the set of first-order substitutions over the set of terms 

with respect to free variables constitute a unification algebra. 

It is also possible to have stronger equivalences, for example an equational theory on the 

term-algebra, and a theory on literals, such as symmetry of predicates. 

6)	 The well-sorted terms of a sorted termalgebra [Wa83, Sch88] together with the well-sorted 

substitutions form a sorted unification algebra, as is easily verified. 

This unification algebras are sorted in the sense of Definition 2.4, since in general not all 

variables are equivalent. 

7)	 The set of all polynomials over the integers together with substitutions that substitute 

polynomials into variables is a unification algebra. 
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3)

4)

5 )

6)

7)

of objects and substitutions in the unification algebra.

It should be noted that the set of variables in a term defined here is not the syntactic one as in
term algebras. For example the theory £ axiomatized by {f(x) == f(y)] causes f(x) to contain

no variables with respect to the unification algebra, since it cannot be changed (modulo E) by

instantiating the variable x.
Let 9' be the set of set of first—order-expressions with respect to some signature, i.e., the set
consisting of variables, terms, and first order formulae.

As equivalence “== we use the change of bound variables in formulae. Since the names of

bound variables should not conflict with free variables, we assume that the set of free
variables is disjoint from the set of bound variables. Then let 0 B J = f/E ,
and MAP be the set of first—order substitutions with respect to the terms over free variables.
This constitutes a unification algebra.
Let T be the set of set of first-order-expressions with respect to some signature, i.e., the set

consisting of variables, terms, and first order formulae. We include also the constants true

and false. We assume that for every ground literal ( i .e. ,  without variables), we know whether

it is true or false. Furthermore we assume that every literal has a ground instance.
We choose an equivalence different to 3 ) :  A formulae L is equivalent to true, iff it contains no

free variables and is interpreted as true with respect to the given semantics. A formulae L is

equivalent to false, iff it contains no free variables and is interpreted as true with respect to
the given semantics. For arbitrary formulae we assume that two formulae are equivalent (E),

iff they always evaluate to the same. truth-value under every interpretation. As above, we can

assume that the set of free variables is disjoint from the set of bound variables.

Then let OBJ := 975, and let MAP be the set of first-order substitutions over the set of terms
with respect to free variables. This constitutes a unification algebra.
We have not allowed that free variables are captured, for example it is not allowed to replace y
by x in the formula Vx P(x,y), since then there exists no variable permutation that renames y.
A slight variation of the example in 4) is that the semantics is defined via a logic program, and

formulae are only the queries, i .e . ,  clauses with negative literals, where the variables in the

query are considered as free. As equivalence we may use the following: two queries are

equivalent (5), iff they are equal under associativity, commutativity and idempotence of v.

Then WE together with the set of  first-order substitutions over the set  of  terms

with respect to free variables constitute a unification algebra.
It is also possible to have stronger equivalences, for example an equational theory on the

term-algebra, and a theory on literals, such as symmetry of predicates.
The well-sorted terms of a sorted termalgebra [Wa83, Sch88] together with the well-sorted

substitutions form a sorted unification algebra, as is easily verified.
This unification algebras are sorted in the sense of Definition 2.4, since in general not all
variables are equivalent.
The set of all polynomials over the integers together with substitutions that substitute

polynomials into variables is a unification algebra.



8)	 Let :T be the set of A-expressions (including free variables) over some signature modulo 

some equivalence (~ll-reduction, denoted by =). We assume that the set of bound and free 

variables are disjoint. Then 'FI= together with the set of substitutions that substitute 

A-expressions into variables are a unification algebra. 

9)	 Solving equations over fields: 

Let K be a field. We add an error-element error. We take the set of first order formulae 

as OBJ, where we assume that = is a built-in binary predicate, and use an appropriate 

congruence on first order-formulae. For example plO =error. Two formulae are equivalent, 

if they can be made equal by renaming of bound variables. The mappings MAP are all 

assignments of rational polynomials (including error) to variables (modulo the congruence). 

This constitutes a unification algebra. 

Solving an equation p/q =0 means to solve the problem (p/q =0, q;# 0).• 

2.6 Example. 

1)	 Matching as defined in [BHS87] can be seen as solving equations in a unification algebra. The 

unification algebra for matching is constructed from the term-algebra by considering some 

variables as constants, i.e., by restricting the set of substitutions. 

2)	 Matching as defmed in [FH83] cannot be seen as solving equations in a unification algebra in 

the sense that a matching problem is replaced by its solution. In our framework this type of 

matching means to add equations to a to-be-solved system, where these additonal equations 

come from a substitution. 

3)	 Disunification [C084, Com88, BliSS] can also be seen as solving equations in a unification 

algebra, where the encoding as equations may be via formulae as in Example 2.5. 

Disunification with parameters can be interpreted as solving an infinite system of equations 

containing only a fmite set of variables. 

3. Semantics and Unification Problems. 

In this section we develop the notion of solving equations and systems of equations adopting the 

notion of solutions as ground solutions. This is according to our intuition of equation solving in 

mathematics, but seems not to capture term-unification. However, considering the variables in a 

problem and the variables in terms, which occur in solutions, as different things, we can view the 

variables in terms as free constants, whereas the variables in a problem to be solved are variables in 

the sense of unification algebras. 

In sections 5 and 6 we show more explicitly the relation between our notion of the solution of an 

equation and with the unification in term-algebras. 

Rather than to provide the semantics of expressions with respect to some external models, we prefer 

to use a similar notion as the Herbrand-model, which uses ground terms and atoms for providing a 

7
 

8) Let 9' be the set of l—expressions (including free variables) over some signature modulo

some equivalence (Bu-reduction, denoted by 5) .  We assume that the set of bound and free

variables are disjoint. Then 975 together with the set of substitutions that substitute
l—expressions into variables are a unification algebra.

9) Solving equations over fields:

Let K be a field. We add an error—element error. We take the set  of  first order formulae

as OBJ ,  where we assume that : is a built—in binary predicate, and use an appr0priate
congruence on first order-formulae. For example p/O = error. Two formulae are equivalent,
if they can be made equal by renaming of bound variables. The mappings MAP are all

assignments of rational polynomials (including error) to variables (modulo the congruence).

This constitutes a unification algebra.

Solving an equation p/q = 0 means to solve the problem (p/q = 0, q $ 0). I

2.6 Example.

1)  Matching as defined in [BHSS7] can be seen as solving equations in a unification algebra. The

unification algebra for matching is constructed from the term-algebra by considering some

variables as constants, i.e., by restricting the set of  substitutions.

2 )  Matching as defined in [FH83] cannot be seen as solving equations in a unification algebra in

the sense that a matching problem is replaced by its solution. In our framework this type of
matching means to add equations to a to-be-solved system, where these additonal equations
come from a substitution.

3)  Disunification [C084, Com88, Bii88] can also be seen as solving equations in a unification
algebra, where the encoding as equations may be via formulae as in Example 2.5.
Disunification with parameters can be interpreted as solving an infinite system of equations
containing only a finite set of variables.

3. Semantics and  Unification Problems.

In this section we develop the nation of solving equations and systems of equations adopting the
notion of solutions as ground solutions. This is according to our intuition of equation solving in
mathematics, but seems not to capture term-unification. However, considering the variables in a

problem and the variables in terms, which occur in solutions, as different things, we can view the
variables in terms as free constants, whereas the variables in a problem to be solved are variables in
the sense of unification algebras.

In sections 5 and 6 we show more explicitly the relation between our notion of the solution of an
equation and with the unification in term-algebras.

Rather than to provide the semantics of expressions with respect to some external models, we prefer
to use a similar notion as the Herbrand-model, which uses ground terms and atoms for providing a



semantics. This (internal) semantics can be seen as 'definite' semantics, and captures also the case 

where semantics is defined via a class of models. 

Let OBJgr := {t E OBJ 'V(t) =0} be the set of ground objects, and let the set of ground 

mappings on a set of variables W be MAPgr,W = {o' E MAP I W ~ DOM(O') and 1(0') = 0}. If 
0' E MAPgr,W we say also 0' is ground on W. 

3.1 Definition. A unification algebra Jl. is called inhabited, iff for every x E V, there exists an 

object t with Vet) =0, such that {x f- t} E MAP.• 

In the following we assume that Jl. is inhabited. 

3.2	 Definition. A unification problem is a set r of pairs of objects, also denoted by r = 

(Sj = tj liE I), such that V(D is finite. 

A solution 0' of r =(Sj =tj liE I) is a mapping 0' ground on VCr), such that O'Sj =crtj for all 

i E 1.
 

The set of solutions of r is also denoted SOL(r). We say r is solvable, if SOL(r) ;I; 0,
 
otherwise it is called unsolvable.•
 

For a mapping 0' ={xlf- tl,,,,,xn f- tn}, we denote the unification problem (xl =tl,,,,,xn =tn) by
 

(O') .
 

For a set of mappings D we define the set of restrictions on a set of variables W as DIW =
 

{O'IW I 0' E D}. For two sets of mappings D and U', we say D and U' are equal modulo a set of
 

variables W, denoted by D =D' [W], iff U,w =U'IW.
 

We defme systems of solved forms as an extension of idempotent substitutions:
 

3.3 Definition. Let S be a set of unification problems. 

We say S is a system of solved problems, iff 

i) SOL(M ;I; 0 for every .1. E S. 

ii) For every unification problem r, there exists a subset '1J ~ S such that 

SOLeD = u{SOL(.1.) I t1 E 'D} [V(D]. 

Such a set '1J is also called an S-representation of SOLeD. 

iii) For every 0' E MAP with DOM(O')nI(O') =0: (0') E S.• 

In section 4 (Lemma 4.15) we show that this definition is consistent, since for mappings 0' E MAP 

with DOM(O')nI(O') = 0, the unification problem (0') is solvable. 

3.4	 Definition. Let S be a system of solved problem. The unification type of unification 

problems and algebras is defined with respect to a system S of solved problems. 

Let r be a solvable unification proble and let .%lbe a unification algebra. 

i) We say r is s-unitary, iff there exists a S-representation of SOLeD that is a singleton. 
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semantics. This (internal) semantics can be seen as ‘definite’ semantics, and captures also the case

where semantics is defined via a class of models.

Let OBJgr := {t 6 GB]  I V(t) = @} be the set of ground objects, and let the set of g round
mappings on a set of variables W be MAPgr,w = {0' 6 MAP I W g DOM(0') and I(0') = 9} .  If
o 6 MAPn we say also 0' is ground on W.

3.1 Definition. A unification algebra ‚91 is called inhabited, iff for every x e V, there exists an
object t with V(t) = @, such that {x <— t} 6 MAP. I

In the following we assume that 14 is inhabited.

3.2 Definition. A unification problem is a set 1" of pairs of objects, also denoted by l" =
(s;l = ti I i c—_' I), such that V(l") is finite.
A solution 0' of l" = (si : ti I i e I) is a mapping 6 ground on V(F), such that 631: Gti for all
i e  I .
The set of solutions of 1" is also denoted SOL(I‘). We say 1" is solvable, if SOL(F) at @,
otherwise it is called unsolvable. I

For a mapping 0' = {x1(— t1 , . . . , xn  <— tn},  we denote the unification problem (xl  : t1, .  . . ,xn = tn) by

(6).
For a set of mappings U we define the set of restrictions on a set of variables W as U|w :
{O ' IW | 0' e U}. For two sets of mappings U and U', we say U and U‘ are equal modulo a set of

variables W,  denoted by U = U’ [W],  iff UIW = U'Iw.

We define systems of solved forms as an extension of idempotent substitutions:
3.3 Definition. Let 5 be a set of unification problems.

We say 5 is a system of solved problems, iff
i) SOL(A) :: @ for every A e 5.
ii) For every unification problem I‘, there exists a subset ‘D ; 5 such that

SOLO") = U{SOL(A) I A e @} [V(D].
Such a set D i s  also called an S-repres-entation of SOL(F).

iii) For every 0' 6 MAP with DOM(0)mI(G) = Q: (G) E S. I

In section 4 (Lemma 4.15) we show that this definition is consistent, since for mappings 0' 6 MAP
with DOM(6)r\I(o) = @, the unification problem (0) is solvable.

3 .4  Def in i t ion .  Let 5 be  a system of solved problem. The unification type of unification

problems and algebras is defined with respect to a system .5 of solved problems.
Let 1" be a solvable unification proble and let ,‘Ztnbe a unification algebra.
i) We say F is 5-unitary, iff there exists a S—representation of SOL(I) that is a singleton.



ii) We say r is S-finitary, iff there exists a finite S-representation of SOL(I).
 

ill) We say r is s-infinitary, iff there exists no finite s-representation.
 

iv) We say 5'1. is s-unitary, iff every solvable r is S-unitary.
 

v) We say 5'1. is S-finitary, iff every solvable r is S-finitary
 

vi) We say 5'1. is S-infinitary, if there exists some solvable r that is S-infinitary.•
 

It is common in unification theory to use as system S of solved problems only the set of all (a) for all 

mappings a with DOM(a} ilI(a) = 0, Le., all idempotent substitutions. However, there are also 

examples where the system of solved problems is larger. For rational terms, it is accepted that cyclic 

problems are also solved forms, and for unification in A-calculus there are also flexible-flexible term 

pairs allowed in a solved form [Hu75, SG88]. 

We compare systems of equations (unification problems) with an ordering. 

3.5 Definition. Let W be a set of variables and let r, 11 be unification problems. Then 

r ~W 11, iff SOL(D\w ~ SOL(I1)IW· • 

We do not define minimal problems as in [Si88], since for the general framework given here, this 

notion seems to be unimportant, see our discussion in section 8 on optimal representations. 

Let SUNI be the standard (and minimal) set of solved forms consisting of all equational systems that 

correspond to idempotent substitutions, Le., SUNI:= {(a) IaE MAP and DOM(a)ilI(a) = 0}. We 

give the definition of unifiers and correct and complete sets of unifiers: 

3.6 Definition. Let r be a unification problem. 

i) A mapping a is a unifier of r, if whenever Aa is ground on V(n it is also a solution of r. 
ii) A set cD is a correct set of unifiers of r, if every mapping in cD is a unifier. 

ill) A set cD is a complete set of unifiers of r, if for every a E SOL(r), there exists a 

1 E cD and a mapping A, such that A1 = a [V(D]. 

iv) A correct and complete set of unifiers is also called a unifier-representation of SOLeI). 

• 
In the rest of this paper we will only consider solved forms that correspond to unifiers, if not stated 

otherwise. 

4. Properties of Unification AIgebras 

In this section we explore some consequences of our axioms and show that the behaviour of
 

mappings is as expected. The proofs are in general simple, but some are rather tedious to our
 

surprise.
 

Throughout this section we assume that V:;l!: 0.
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ii) We say F is .S-finitary, iff there exists a finite .9—representation of  SOLO").

iii) We say 1" is 5-infinitary, iff there exists no finite S—representation.

iv) We say ‚‘?! is S—unitary, iff every solvable I‘ is 5-unitary.

v) We say it is 5-finitary, iff every solvable l" is 5-finitary
vi) We say fll is S-infinitary, if there exists some solvable F that is 5-infinitary. I

It is common in unification theory to use as system 5 of solved problems only the set of all (0') for all
mappings o with DOM(0'} AKG) = @, i.e., all idempotent substitutions. However, there are also
examples where the system of solved problems is larger. For rational terms, it is accepted that cyclic

problems are also solved forms, and for unification in l—calculus there are also flexible—flexible term

pairs allowed in a solved form [Hu75, SG88]. ’ “

We compare systems of equations (unification problems) with an ordering.

3.5 Definition. Let W be a set of variables and let I“, A be unification problems. Then

I“ gw A, iff SOL(I‘)|W _c_ SOL(A)|W. I

We do not define minimal problems as in [Si88], since for the general framework given here, this

notion seems to be unimportant, see our discussion in section 8 on optimal representations.
Let 5UNI be the standard (and minimal) set of solved forms consisting of  all equational systems that
correspond to idempotent substitutions, i.e., SUNI := {(0') I 06 MAP and DOM(o)nI(o) = Q}. We
give the definition of unifiers and correct and complete sets of unifiers:

3.6 Definition. Let 1" be a unification problem.
i) A mapping 0' is a unifier of 1", if whenever 7L6 is ground on V0") it is also a solution of  F.
ii) A set cU is a correct set of unifiers of P,  if every mapping in cU is a unifier.

iii) A set cU is a complete set of unifiers of 1", if for every 6 e SOL(I‘), there exists a
’E e cU and a mapping 7t, such that M = o [V(I‘)].

iv) A correct and complete set of unifiers is also called a unifier-representation of SOL(l").
I

In the rest of  this paper we will only consider solved forms that correspond to unifiers, if not stated
otherwise.

4.  Propert ies  of Unification Algebras

In this section we explore some consequences of our axioms and show that the behaviour of
mappings is as expected. The proofs are in general simple, but some are rather tedious to our
surprise.
Throughout this section we assume that V at @.



4.1	 Lemma. (Nontriviality of variables) 

i) For all x E V there exists acrE MAP with crx '* x. 

ii) V is an infmite set 

Proof. 

i) Follows from Axiom V6). 

ii) Axiom V3) allows the introduction of infinitely many variables, hence V is infinite.• 

As noted above, every mapping cr can be represented in a finite way as {Xl f- tl," .,xn f- tu} where 

DOM(cr) ={xl""'xn } and COD(cr) ={tl, ... ,tn }. The mappings {Xi f- td are called components 

of cr. We show, how to compute the representation of the composition of mappings cr,1: E MAP: 

4.2 Lemma. If cr ={Xl f- sI,... , xn f- sn} and 't ={Yl f- t1 ,... , Ym f- tm}, then 

cr1: = {Yl f- 0'11,· .. , Ym f- mm} U{xi f- si I xi e DOM('r) }. 

Proof.	 Using VI) we can compute cr't by testing cr't on variables: For Xe DOM(cr)u DOM('t), 

we have cr'tX =crx =x. If x E DOM(cr)-DOM('t), then cr'tX =crx. If x E DOM('t), then 

cr'tX =cr('tx).• 

4.3 Proposition. For every x E V there exist infinitely many variables x' equivalent to x. 

Proof. Let x be a variable and assume there are only finitely many variables W equivalent to x. Then 

application of axiom V3 yields for the set W a variable permutation S, such that WnSW = 0. 
Since SW is a set of variables equivalent to x, this is a contradiction to the assumption thate W is 

the largest set of variables equivalent to x.• 

This proposition justfies the notion of new variable: if we have already used a finite set of variables 

W and we have a variable x, then it is always possible to select a variable x' equivalent to x, such that 

x' e W. 

Let s,t be two objects. We say s is more general than t (or t is an instance of s), iff there exists a 

mapping cr with crs =t. This is denoted by s ::;; 1. We say s and t are equivalent, iff s ::;; t and t ::;; s, 

and denote this by s == 1. The next lemma shows, that this is consistent with the notion of equivalent 

variables. 

4.4 Lemma. The following statements are equivalent: 

i) The variables x and y are equivalent, 

ii) {y f- X}E MAP and {x f- Y}E MAP 

iii) There exist cr,1: E MAP with crx =y and cry =x. 

Proof. i) =>ii) follows from the definition of variable permutation and V2). 

ii) => iii) triviaL 

iii) => ii) follows from the restriction axiom V2). 

ii) => i) Let {x f- Y}E MAP and {y f- X}E MAP. Let y' be a new variable equivalent to x. 

Then {x f- y'}, {y' f- X}E M A P, since i) implies ii). Hence also 

({x f- y}{y' f- x})/{y'} ={y' f- y} E MAP. 
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4.1 Lemma. (Nontriviality of variables)

i) For all x e V there exists a 0' 6 MAP with ox at x.

ii) V is an infinite set
P r o o f .

i) Follows from Axiom V6).

ii) Axiom V3) allows the introduction of infinitely many variables, hence V is infinite. I

As noted above, every mapping O' can be represented in a finite way as {x1 (— t1,. . .‚xn <— tn} where
DOM(0) = {x1,... ,xn} and COD(G) = {t1,...,tn}. The mappings [x i  (— ti} are called components

of 0'. We show, how to compute the representation of the composition of  mappings (5,1 6 MAP:

4.2 Lemma. I fo  ={X1<——- S1,..., xn <— sn} and ”l: = {Y1<— t1,..., ym <— tm}, then
O'T={y1<—-O't1,...,ym<—-Gtm} u{xi<—-si|xie DOM(r) }. '

Proof. Using V1)  we can compute or by testing or on variables: For x e DOM(o)u DOM(’t),

we have GTX = ox  = x. If x e DOM(o)—DOM(I) ,  then GTX = 6x.  If x e DOM(’ : ) ,  then

O'Tx = o('cx).I

4.3 Proposition. For every x e V there exist infinitely many variables x' equivalent to x.
Proof. Let x be a variable and assume there are only finitely many variables W equivalent to x. Then

application of axiom V3 yields for the set W a variable permutation ?„ such that WnfiW = @.
Since §W is a set of variables equivalent to x, this is a contradiction to the assumption thate W is
the largest set of variables equivalent to x.  I

This proposition justfies the notion of new variable: if we have already used a finite set of variables
W and we have a variable x, then it is always possible to select a variable x' equivalent to x,  such that

x '  E W.
Let s,t  be two objects. We say s is more general than t (or t is  an instance of 3), iff there exists a
mapping 0' with os = t. This is denoted by 3 S t. We say s and t are equivalent, iff s S t and t s s,
and denote this by s a t. The next lemma shows, that this is consistent with the notion of  equivalent

variables.

4.4 Lemma. The following statements are equivalent:
i) The variables x and y are equivalent,

ii) {y  <— x}e  MAP and {x  (— y}e  MAP
iii) There exist 6,1: 6 MAP with 0x = y and O'y = x.

Proof. i)  =>ii) follows from the definition of  variable permutation and V2).
ii) => iii) trivial.

iii) ==> ii) follows from the restriction axiom V2).
ii) = i) Let {x  (— y}e  MAP and {y  (— x}e  MAP. Let y' be a new variable equivalent to x .

Then {x  <— y '} ,  {y '  <- x}e  M A P , s ince  i) implies i i ) .  Hence a l so

({x <— y}{y' <— x}) | {y ' }  = {y '  <- y} 6 MAP.
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Obviously we have ({y' f- y}{y f- x}{x f-y'))I{x,y} = {x f- Y, Yf-x}. 

Since {x f- y, Y f-x} {x f- Y, Y f-x} = Id, we have constructed a variable 

permutation S:= {x +- Y, Yf-x} with SX = y.• 

4.5 Lemma. Let S == {xl +-YI,' ",xn f-Yn} be a variable permutation. Then 

i) the left-inverse S- is also a right-inverse 

ii) the inverse S- is unique. 

iii) the inverse S- is a variable permutation 

iii) S is a bijection on V. 

iv) ~- = {YI f-XI," ',Yn f-Xn} 

Proof. Let S- be a mapping with S-S = Id. 

For Xi E DOM(~) we have ~-~Xi = S-Yi = Xi, since S- is a left inverse of S· 

For x e: DOM(S) we have S-Sx = S-x = x, since S- is a left inverse of S. 

Let Yi E COD(S) - DOM(S), then on the one hand, we have S-Yi =Yi, since Yi e: DOM(S), on the 

other hand, we have ;- Yi = Xi' This implies Xi = Yi, hence we have the contradiction that Xi e: 
DOM(~). We have proved that COD(;) ~ DOM(S). 

sis injective on DOM(S), since SXj = ;Xk implies crSXj = cr~xk which is equivalent Xj = xk­

Since DOM(S) is fmite, we have DOM(S) =COD(S). 

Summarizing, we have shown that;- ={YI f-Xlo ... ,Yn f-Xn}, which also shows that the inverse 

is unique. 

Now S- is also a right inverse of~: 

For x e: DOM(S), we have ~s-x = x. 

For x E DOM(S), we can assume that x = Yk for some k. Then SS-Yk = ;xk =Yk' 

Hence ;- is a variable permutation. 

That S is a bijection on V follows, since S is surjective as DOM(S) == COD(S), and since S is 

injective, which is implied by the fact that S has a left inverse. • 

A renaming p E MAP is a restriction of a variable permutation;, such that DOM(p)r1I(p) = 0. If 
P == {xl f-YI""'Xn f-Yn}, then the converse p- is defined as p- = {YI f-XI," "Yn f-Xn}. If the 

domain of a renaming p is W and the codomain of p consists of new variables, we will call p a 

renaming ofW. 

4.6 Lemma. Let p be a renaming.
 

i) A renaming is the product of its components.
 

ii) p is idempotent, Le., pp == p.
 

iii) The converse p- of a renaming exists and is a renaming.
 

iv) p-p = p-, pp- = p.•
 

In the following we analyse the notion of variables in an object, and show that it behaves as expected. 

4.7 Lemma. Let t be an object, let y be a variable and let y' be a new variable equivalent to y. 

Then yE Vet) ~ {y f-y'}t:;t t, 
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Obviously we have ({y' <— y}{y (— x}[x <—y'})l{x‚y} = {x <— y, y <———x].
Since {x (— y, y <-—x} {x <— y, y <—x} = Id, we have constructed a variable
permutation € := {x (—- y, y <——x} with §x = y. I

4.5 Lemma. Let € = {x1 <-—y1‚...,xn e—yn} be a variable permutation. Then
i)

ii)
the left-inverse €“ is also a right-inverse
the inverse I: is unique.

iii) the inverse &“ is a variable perrnutation
iii) & is a bijection on V.
iv) é” ={y1<—x1,...,yn (—xn}
Proof. Let é" be a mapping with && = Id.

A

For xi e DOM(§) we have é—fixi = £"yi = xi, since & is a left inverse of E.
For x e DOM(§) we have fi—éx = Efx = x, since &“ is a left inverse of &.
Let yi e COD(§) — DOM(§), then on the one hand, we have é—yi = yi, since yi & DOM(§), on the

other hand, we have & yi = xi. This implies xi = yi, hence we have the contradiction that xi 6
DOM(§). We have proved that COD(§) g DOM(§).
&, is injective on DOM(§), since §xj = gxk implies ofixj = €"n which is equivalent xj = xk.
Since DOM(E_,) is finite, we have DOM(§) = COD(§).

Summarizing, we have shown that €" = {yl <—x1,. . .‚yn <—xn}, which also shows that the inverse
is unique.

Now 5: is also a right inverse of &:
For x E DOM(§), we have ig“); : x.
For x e DOM(E_‚), we can assume that x = yk for some k. Then &&,“yk : éxk = yk.
Hence €“ is a variable permutation.
That a is a bijection on V follows, since € is surjective as DOM(§) = COD(§), and since & is
injective, which is implied by the fact that I; has a left inverse. I

renaming p 6 MAP is a restriction of a variable permutation &, such that DOM(p)nI(p) : @. If
p = {x1 é—y1,...,xn <—-yn}, then the converse p“ is defined as p— = {y1 <—x1,...‚yn e—xn}. If the
domain of a renaming p is W and the codomain of p consists of new variables, we will call p a
renaming of W.

4.6 Lemma. Let p be a renaming.
i)

ii)
A renaming is the product of its components.
p is idempotent, i.e., pp  = p.

iii) The converse p“ of a renaming exists and is a renaming.
1") P'P = P": PP“ = P- '

In the following we analyse the notion of variables in an object, and show that it behaves as expected.

4.7 Lemma. Let t be an object, let y be a variable and let y' be a new variable equivalent to y.
Then y eV(t)  <:> {y <—y'}t # t ,
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Proof. "<:=" is trivial. 

"~ Let ye Vet). Then there exists an object s such that {y f- s}t *- t. Let y' be a new variable 

equivalent to y. Since y' is new we have y' E V(t)vV({y f- s}t)v V(s). Now consider the 

product: {y f- s} {y' f- y} ={y' f- s, Yf-sl. hence by V2 the mapping {y' f- s} is in 

MAP. Now {y' f- s} {y f-y'} = {y' f- s, Yf- s} = {y' f- s} {y f- sl. hence 

{y' f- s} {y f-y'}t ={y' f- s} {y f- s}t ={y f- s}t *- t. Furthermore{y' f- y} {y f-y'}t 

={y' f- y}t =t. This means y' E V( {y f-y'}t), hence {y f-y'}t *- t.• 

4.7 Lemma. Let t be a nonvariable object with y E Vet) and let y' be a new variable equivalent to 

y.	 Then {y f-y'}t ~ V. 

Proof.	 Assume for contradiction that {y f-y'}t =Z E V. Then {y' f-y}{y f-y'}t =t , hence 

{y' f- y}z =t. This means that t =Z or t =y', which is a contradiction.• 

Now the notion of mappings and objects seem to be understandable, however, one problem remains: 

we have not proved that at =t, if DOM(cr) (lV(t) =0. Surprisingly, the proof is tedious: 

4.8 Lemma. Let t be an object and let P E MAP be a renaming with I(p) (l Vet) =0. 
Then V(pt) =pV(t). 

Proof. 

i) It suffices to consider a single component of p, since p =PlP2'" Pn: 

Assume as base case for the induction on the number of components, that the lemma is true for a
 

single component.
 

Then we can prove the induction step:
 

We have I(Pl) (l V(P2'" Pnt) = I(Pl) (l P2 ... PnV(t) = 0 (by induction hypothesis and
 

assumption. 

Then we can conclude V(PIP2'" Pnt) =PlV(P2'" Pnt) =PIP2... Pn Vet), since the lemma 

holds for a single component. 

ii)The lemma holds for a single component, Le. for different (but equivalent) x,x' E V with 

x' ~ Vet), we have V({x f- x'}t) = {x f-X'}V(t): 

The case that x E Vet) is trivial, since then by definition ofV(t) we have {x f- x'}t = t, hence 

V({x f- x'}t) =Vet) ={x f-X'}V(t). Thus we can assume that x E Vet).
 

Now we can compute {x f-X'}V(t) = {x'} V (V(t) - {x}).
 

Since for all mappings {x f- sl. we have {x f- s} ({x f- x'}t) = ({x f- s} {x f- x'}) t =
 
{x f- x'}t, we have that x is not a variable ofthe object {x f- x'}t, hence {x f- x'}t *- 1.
 

Since x and x' are equivalent, there exists a mapping {x' f- x}, hence {x' f- x} {x f- x'}t =
 

{x' f- x}t =t implies that x' E V({x f- x'}t).
 

We show that V({x f- x'}t) - {x'} ={x f-X'}V(t) - {x'}:
 

1) V({x f- x'}t) - {x'} ~ {x f-X'}V(t) - {x'}:
 

Assume by contradiction that for some y E V ({ X f- x' }t) with Y *- x,x' we have 

y ~ {x f-X'}V(t). Then y ~ Vet). Let y' == y be a variable such that y' is new. 

We have {y f- y'} {x f- x'}t ':I- {x f- x'}t, since ye V({x f- x'}t). However, 
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Proof. "<=" is trivial.
"=> Let y e V(t). Then there exists an object s such that {y (— s}t :t t. Let y' be a new variable

equivalent to y .  Since y' is new we have y' E V(t)uV({y <— s} t )u  V(s). Now consider the

product: {y  (-— s}  {y '  <— y}  = {y'  <— s ,  y (—s}, hence by  V2 the mapping {y '  <- s}  is in

MAP. Now {y' <— s}  {y <——y'} = {y' <— s ,  y <— s}  = {y' <— s}  {y  <— s} ,  hence

{y' <— s}  {y  <—y'}t = {y' (— s}  {y  <— s}t  = {y  (— s} t  $ t .  Furthermore[y' <— y}  {y <—y‘}t

= {y'  (— y}t = t. This means y' e V( {y  <—y'}t ) ,  hence {y  <——y'}t $ L.

4.7 Lemma. Let t be a nonvariable object with y e V(t) and let y' be a new variable equivalent to
y. Then {y  <—y']t e V.

Proof.  Assume for contradiction that {y <—y'}t = z e V.  Then {y' <—y}{y e—y'}t = t , hence
{y' (— y}z = t. This means that t = z or t = y', which is a contradiction. I

Now the notion of mappings and objects seem to be understandable, however, one problem remains:
we have not proved that O't = t ,  if DOM(0') nV(t) = Q). Surprisingly, the proof is tedious:

4.8 Lemma. Let t be an object and let p 6 MAP be a renaming with I(p) n V(t) = @.

Then V(pt) = pV(t).
Proof .

i) It suffices to consider a single component of p, since p = plpz. . .  pn:
Assume as base case for the induction on the number of components, that the lemma is true for a

single component.
Then we can prove the induction step:
We have I (p l )  n V(pg. . .  pnt) : I(p1) n p2 . . .  aCt) : 0 (by induction hypothesis and

assumption.
Then we can conclude V(plpz...  pnt) = p1V(p2... pnt) = plpz. . .  pn V(t), since the lemma
holds for a single component.

ii)The lemma holds for a single component, i.e. for different (but equivalent) x,x' e V with
x' e V(t),  we have V({x  <— x'}t) = {x  <—x'}V(t):
The case that x e V(t) is trivial, Since then by definition of  V(t) we have {x  <— x' }t  = t ,  hence

V({x <— x'}t) = V(t) = {x  <—x'}V(t). Thus we can assume that x & V(t).
Now we can compute {x  <-—x'}V(t) = {x’} U (V(t) — {x}).

Since for all mappings {x <— s}, we have {x <— 3} ({x <— x'}t) = ({x <— s} {x <— x'}) t ==
{x  (— x'}t , we have that x is not a variable of the object {x  <— x‘}t, hence {x  <— x'}t at t.
Since x and x '  are equivalent, there exists a mapping {x'  <— x}, hence {x' <— x}  {x  <— x'}t :

{x' +— x}t = t implies that x' e V({x (— x'}t).
We show that V({x (— x'}t) — {x'} = {x  <——x'}V(t) - {x'}:
1)  V({X <— X'} t )  - {X'} g {X <-X'}V(t) -— {X'}:

Assume by contradiction that for some y e V({x  (— x’]t) with y rat x,x' we have

y e {x  <—x'}V(t). Then y @ V(t). Let y '  E y be a variable such that y '  is new.

We have {y <— y'} {x (— x'}t :15 {x (— x'}t, since y e V({x (— x'}t). However,
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{y ~ y'} {x ~ x'} = {x ~ x'} {y ~ y'}, since all variables are different, hence 

{y ~ y'} {x ~ x'}t ={x ~ x'} {y ~ y'}t ={x ~ x'}t . This is a contradiction. 

2) {x ~x'}V(t) - {x'} ~ V({x ~ x'}t) - {x'}: 

Assume there exists a variable y ~ x,x' with y E VCt), but ye V({x ~ x'}t). 

Let y' == y be a new variable Then {y ~ y'} {x ~ x'}t = {x ~ x'}t. Application of 

{x' ~ x} gives {x' ~ x} {y ~ y'} {x ~ x'}t ={x' ~ x} {x ~ x'}t =t, but 

{x' ~ x} {y ~ y'} {x ~ x'}t = {y ~ y'} {x' ~ x} {x ~ x'}t = {y ~ y'}t. This is 

a contradiction, since t :t {y ~ y'}t. • 

4.9 Lemma. For a E MAP and t E OBJ we have at = (aIV(t»t. 

Proof. Let a E MAP and let t be an object. Let p be a renaming of DOM(a) n l(a), such that l(p) 

consists of new variables. Assume that DOM(a) = {xl""'xn } and that DOM(a)nVet) = 

{Xl,... ,Xk}' From a = {xl ~ tl"'" xn ~ tn}we get pa == {xl ~ Ptl"'" xn ~ ptn }· 

Furthermore by Lemma 4.8 we get V(ptj) n DOM(a) =0. 
Hence pa ={xl ~ ptrJ {x2 ~ pt2} ... {xn ~ Ptn}. This factorization implies pat =(pa)/V(t)t. 

Obviously the mapping (pa)IV(t) has the representation {xl ~ Ptl"'" xk ~ ptk} 

Applying p- to the equation pat = (pa)IV(t)t gives p-pat = p- (pa)IV(t)t and thus p-at = p-pat = 

p-(pa)IV(t)t = P-{xl ~ Ptlo"" xk ~ ptk}t = P-{xl ~ tl"'" Xk ~ tklt = p-(aIV(t»t. 

Since DOM(p-) is disjoint from V(at) and V«aIV(t»t), we get at = p-at = p-(a\V(t»t = (aIV(t)t . 

• 
4.10 Corollary. Let a E MAP and let t be an object such that Vet) n DOMCa) = 0. Then at == t. 

4.11 Corollary. Let a,.t E MAP and let t E T. Then 

a = 't[V(t)] ~ at = 'tt. 

Proof. Since at == (aIV(t»t, 'tt = ('tIV(t»t and aIV(t) = 'tIV(t), we can conclude at = 'tt.• 

4.12 Lemma V(at) ~ u{V(ax)1 x E VCt)}. 

Proof. We can assume DOM(a) = Vet), since at = aIV(t)t by Lemma 4.9. 

Note that u{V(ax)1 x E V(t)} = l(a) u (V(t) - DOM(a». 

Let y be a variable with y e l(a) u (V(t) - DOM(a». That means y e l(a). Furthermore 

either ye Vet) or yE DOM(a). Let y' be a new variable that is equivalent to y'. 

If ye Vet), then {y ~ y'} at = a {y ~ y'} t = at, hence y e V(crt). 

If yE DOM(a), then {y ~ y'} a = a, hence ye V(crt) . This proves the lemma.• 

4.13 Lemma. The union of mappings exists: 

Let a,'t E MAP such that a == 't [DOM(a)nDOM('t)] . 

Then there exists a mapping 11, such that 11 = a [DOM(a)] and 11 = 't [DOMet)] . 

Proof. Let p be a renaming of let) by new variables. Then let 't' := (P-'t)IDOM('t) and Il := pa't'. 

Let x E DOM('t). Then Ilx =pa't'x =pap--rx = pp-'tX = p'tx = 'tX using Lemma 4.9. 

Ifx e DOM(a)nDOM('t), then Ilx ='tx = ax by the assumption ofthe lemma. 
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{y (— y'} {x  <— x'} = {x  <— x'} {y  <— y'}, since all variables are different, hence

{y <— y‘} {x <— x‘}t = {x <— x‘} {y <— y‘}t = {x <— x‘}t . This is a contradiction.

2) {x <—X'}V(t) — {x'} e V({x <— x 'm — {x'}:
Assume there exists a variable y == x,x' with y e V(t), but y £ V({x <— x‘}t).

Let y '  a y be a new variable Then {y  <— y'} {x  (— x'}t = {x  <— x'}t .  Application of

{x' <— x} gives {x' <— x} {y e— y'} {x (- x'}t =: {x' <— x} {x <— x‘}t = t, but
{x' <— x} {y (— y'} {x (— x‘}t = {y (— y'} {x‘ <— x} {x <— x‘}t = {y <— y'}t. This is
a contradiction, since t $ {y <— y'}t. I

4.9 Lemma. For 0 6 MAP and t e OBJ we have O't = (cm/apt.
Proof. Let 0 6 MAP and let t be an object. Let p be a renaming of  DOM(O‘) n I(6), such that I(p)

consists of new variables. Assume that DOM(O‘) = {x1, . . . ,xn]  and that DOM(O‘)nV(t) :

{x1,...,xk}. From a : {x1<—-t1,...‚ Xn <- tn}we get po  = {x1<— pt1,..., xn <— ptn}.
Furthermore by Lemma 4.8 we get V(pti) n DOM(6) = Q.
Hence pc  = {x1 <— p t l}  {x2 <— ptz} {xn <— ptn}. This factorization implies pot = (pc)|V(t)t.

Obviously the mapping (P0)IV(t) has the representation [x l  <— pt1,. . . ,  xk <— ptk}
Applying p“ to the equation pot = (PG)IV(t)t gives p—pot = p- (po)lv(0t and thus p-ot = p-pot :

P'“"(PU)|V(t)t = P"{X1 <— Ptls-na X1: <— Ptk}t = P‘l X1 <—t19---a Xk <- t k} t  = P"(GIV(t))t.
Since DOM(p") is diSjOint from V(O't) and V((G|V(t))t), we get G1: = p'O't = p_(G|V(t))t = (G|V(t ) ) t  .

I

4.10 Corollary. Let 0' e MAP and let t be an object such that V(t) n DOM(o) = @. Then Gt = t .

4.11 Corollary. Let 6.1 6 MAP and let t e T .  Then

0 = ’C[V(t)] => at = "ct.
Proof. Since OT == (G|V(t))t , It = (T|V(t))t and O'lvm = TW“), we can conclude 61: = 11. .

4.12 Lemma V(6t) (; U[V(6X) |  x & V(t)}.
Proof. We can assume DOM(0‘) = V(t), since (St = („t by Lemma 4.9.

N0te that U{V(0'x)l x e V(t)} = 1(6) U (V(t) -— DOM(G)).
Let y be  a variable with y e 1(0) U (V(t) -- DOM(6)).  That means y @ I(O'). Furthermore
either y & V(t) or y E DOM(0'). Let y '  be a new variable that is equivalent to y'.
If y e V(t), then {y <— y'} Gt = G {y <— y'} t =: 6t, hence y 6 Wm).
If y e DOM(o), then {y <— y‘} 0' = 6, hence y a V(O't) . This proves the lemma. I

4.13 Lemma. The union of mappings exists:
Let 6.1: 6 MAP such that o = 'c [DOM(o)nDOM(t)] .
Then there exists a mapping {1, such that it = c [DOM(O')] and u = "|: [DOM(1:)] .

Proof. Let p be a renaming of 1(1) by new variables. Then let 1' :=: (P"TNDOMcc) and u := pG’c'.
Let x e DOM(’C). Then ux :pc’c'x :pcpqcx = pp—Tx = p’cx : 'cx using Lemma 4.9.
If x e DOM(o)nDOM('c), then ux : ”tx = O'X by the assumption of the lemma.
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If x E DOM(a) - DOM('t), then ~x =pa't'x = pax =ax.• 

For two mappings a;'t with a = 't [DOM(a) n DOM('t)] we define a u 't as the mapping given in 

the lemma above restricted to DOM(a) u DOM('t). This union can be seen as a union of the 

representations of a and 'to 

Now we can prove some required lemmas concerning solvability of equation systems. 

We can characterize OBJgr as the set of fixed points under MAP: 

4.14 Lemma. OBJgr ={t E OBJ I \;;fa E MAP: at =t}. 

Proof. If t E OBJgro then Vet) =0, hence at =t for all a E MAP by Corollary 4.10. On the other 

hand, if for some t E 0 BJ is fixed under all a E MAP, it is fixed under all mappings {x ~ s}, 

hence Vet) =0.• 

We show that the equation systems in solved forme are solvable: 

4.15	 Lemma. Let 5'1. be an inhabited unification algebra and let a be a mapping with 

DOM(a) n l(a) = 0. Then (a) is solvable. 

Proof. For every x E l(a) there exists a ground term Sx with {x ~ sx} E MAP. The union 't of all 

these mappings exists by Lemma 4.13. Then 'ta is a solution of (a). For a component (x =ax), 

we have 'tax = 't(l'(JX, since a is idempotent. Furthermore 'ta is ground on Vel).• 

According to Definition 3.5, we define two subsumption relations on mappings. 

4.16 Definition. Let a,'t be mappings and W be a set of finite variables, 

i)	 a ;;;).W 't, iff for all /.., E MAP, such that A't is ground on W, there exists a 'A:, such that 

A'a = A't [W]. 

Intuitively, a ;;;).W 't means that a represents more ground substitutions than 'to 

ii)	 a::; 't [W], iff there exists a mapping /.., such that Aa = 't [W].• 

Obviously ::;[W] and ;;;).W are quasi-orderings on MAP for a fixed W. 

4.17 Lemma. a::; 't [W] implies a ;;;).w 't, but the converse may be false. 

Proof.	 Let ~ be such that ~a = 't [W]. Let A E MAP, such that /"''t is ground on W. Then /"'~a is 

also ground on W and /"'~a = /..,'t [W]. Hence a;;;).w 't, 

We give an example that the converse is false: 

Consider substitutions over the integers. 

Let a = {x~y} andlet't:= {X~X12+X22+X32+X4L(Y12+Y22+Y32+Y42)} 

Obviously we have a ;;;).W 't and a;;;).w 't , since both substitutions range over the whole set of 

integers as is well-known from the theory of numbers. The relation a::; 't [W] holds, but not 

a ~ 't [W] , since it is not possible to obtain y by substituting polynomials into the polynomial 'tx. 

• 
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If x e DOM(0‘) —— DOMCE), then px = pG’t'x = pox = ox. I

For two mappings 6,1 with 6 = 'c [DOM(o) n DOM(’c)] we define 0' U fc as the mapping given in

the lemma above restricted to DOM(0') U DOM('c). This union can be seen as a union of  the
representations of 0' and 1:.

Now we can prove some required lemmas concerning solvability of equation systems.

We can characterize OBJgI as the set of fixed points under MAP:

4.14 Lemma. OBJgr = {t e OBJ I V6 e MAP: 6t = t}.
Proof. If t & OBJgr, then V(t) : @, hence 0t = t for all 0' 6 MAP by Corollary 4.10. On the Other

hand, if for some t & OBJ is fixed under all 0' 6 MAP, it is fixed under all mappings {x <— s},
hence V(t) = 0 .  I

We show that the equation systems in solved forme are solvable:
4.15 Lemma.  Let )1 be  an inhabited unification algebra and let 6 be a mapping with

DOM(0') (\ I(6) = @. Then (G) is solvable.
Proof. For every x 6 1(6) there exists a ground term sx with {x  (— sx} 6 MAP. The union 1 of all

these mappings exists by Lemma 4.13. Then ’tO’ is a solution of (0'). For a component (x == ox),
we have 10'): = TOOK, since 0' is idempotent. Furthermore 10' is ground on V(l"). I

According to Definition 3.5, we define two subsumption relations on mappings.
4.16 Definition. Let 0,”: be mappings and W be a set of finite variables,

i) 0‘ 2W 1, iff for all k e MAP,  such that M is ground on W, there exists a N, such that
NG = M: [W].

Intuitively, G QW 1 means that 0 represents more ground substitutions than 1“.

ii) 0' S ’: [W], iff there exists a mapping Ä such that XG = ': [W]. I

Obviously _<_[W] and ;)W are quasi—orderings on MAP for a fixed W.

4.17 Lemma. O“ S. T [W] implies 0' QW 1:, but the converse may be false.
Proof. Let u be such that no = ’C [W]. Let 7L e MAP,  such that M: is ground on W. Then Mm is

also ground on W and N16 = M [W]. Hence 6 2W 12,
We give an example that the converse is false:
Consider substitutions over the integers.
Let 0' = {x <— y} and let ”I: := {x (— x12+ x22+ x32+ x42 - (y12+ y22+ y32+ y42)}
Obviously we have 0 2W t and O“ 2W fc , since both substitutions range over the whole set of
integers as is well—known from the theory of numbers. The relation 6 £ ': [W] holds, but not

G 2 ’L' [W] , since it is not possible to obtain y by substituting polynomials into the polynomial ”tx.

I
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We show in paragraph 5 that for unification in free term algebras the two relations s [W] and;).w 

are the same. 

4.18 Example. Consider Pythagoras' equation x2+yZ = zZ over the naturals (including zero). This 

equations has infinitely many solutions. A minimal representation consists of the two unifiers 

{x f- 2p(p+q), Y f- q2+2pq, Z f- p2+(p+q)2} and {x f- q2+2pq, Y f- 2p(p+q), 

Z f-p2+(p+q)2 }. 

5. Homorphisms and Congruences 

In this paragraph we develop the algebraic tools that correspond to unification algebras like 

homomorphisms and quotients and show that the isomorphism theorem holds. This makes the 

unification a1gebras to be a category with some additional properties. 

A the end of this paragraph we argue that every unification algebra is isomorphic to the quotient of 

of an order-sorted tenn-a1gebra [Sch88, SNMG87] (including ill-sorted tenns), where the quotient is 

made with respect to a stable congruence. At the first glance this appears to be a drawback, since we 

have arrived at what was to be generalized. However, there are several merits. Usually it is easier to 

prove that some problem can be fonnulated using unification a1gebras than to give a signature, a 

congruence and a sort-structure that describes the problem domain, since there may be infinitely many 

symbols, equations and term-sort declarations. A further advantage of unification a1gebras is the 

notion of isomorphism, which is superior to isomorphisms of universal a1gebras, since it includes 

weak isomorphism of universal a1gebras (definitional equivalence, polynomial equivalence), [Gr79, 

BS81] isomorphisms or symmetries of signatures, and symmetries of the sort-structure. 

5.1 Definition. Let J1l1 = (V 1,OBJ1,MAP1) and J1l2 = (V2,OBJ2,MAPz) be unification algebras. 

A mapping 'If: 511 ~ J1l2 is a homomorphism, iff 

i) 'I' is a mapping 'I':OBJ1 ~ OBh and 'I':MAP ~ MAP2 
ii) '1'((J'C) = '1'(cr)'If(t) 

ill) Vcr E MAP1 "It E OBJ1: 'If(crt) = ('I'o")('I't). 

iv) V2 k; 'I'(V1)'. 

Let '1': Jl1 ~ Jl2 be a homomorphism. We say 'If is an isomorphism, iff it is a homomorphism 

that is a bijection on the set objects and mappings, such that the inverse is an homomorphism. 

Let range('I') := (V'If ' 'l'0BJ1, 'l'MAP1), where V'If := {x E V2 I there exists exactly one variable 

yE VI with 'l'Y = xl. 

The unification algebras form a category with this notion of homomorphism. There is a final object, 

which is the trivial unification algebra (0, {a}, {Id}) 

We say Jl1 is embedded in Jl2 via '1', iff'll:J1l1 ~ 5lz is an injective homomorphism. 
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We show in paragraph 5 that for unification in free term algebras the two relations s [W] and 2W

are the same.

4.18 Example. Consider Pythagoras’ equation X2+y2 = z2 over the naturals (including zero). This
equations has infinitely many solutions. A minimal representation consists of the two unifiers

{x <- 2p(p+q).  y <- q2+2pq. z <— p2+(p+q)2} and {x <— q2+2pq‚ y <- 2p(p+q) ,

z <—p2+(p+q)2 }.

5. Homorphisms and  Congruences

In this paragraph we develop the algebraic tools that correspond to unification algebras like

homomorphisms and quotients and show that the isomorphism theorem holds. This makes the
unification algebras to be a category with some additional properties.

A the end of this paragraph we argue that every unification algebra is isomorphic to the quotient of

of  an order-s orted term-algebra [Sch88, SNMG87] (including ill-sorted terms), where the quotient is

made with respect to a stable congruence. At the first glance this appears to be a drawback, since we
have arrived at what was to be generalized. However, there are several merits. Usually it is easier to
prove that some problem can be formulated using unification algebras than to give a signature, a

congruence and a sort-structure that describes the problem domain, since there may be infinitely many

symbols, equations and term-sort declarations. A further advantage of unification algebras is the
notion of isomorphism, which is  superior to isomorphisms of universal algebras, since it includes

weak isomorphism of universal algebras (definitional equivalence, polynomial equivalence), [Gr79,
BS81] isomorphisms or symmetries of  signatures, and symmetries of the sort—structure.

5.1 Definition. Let fill : (V1,OBJ1,MAP1) and 342 = (V2,OBJ2,MAP2) be unification algebras.
A mapping w: .911 —-> 542 is a homomorphism, iff

i) w is a mapping w20BJ1 —> OBJg and sAP -—> MAP2
ii) WG?) = MONK?)
iii) Vo e MAP1 Vt e 0BJ1: Mat) : (wa)(\ut).
iV) V2  Q “1071).-

Let W: .5211 —> ‚5212 be a homomorphism. We say 111 is an isomorphism, iff it is a homomorphism
that is a bijection on the set objects and mappings, such that the inverse is an homomorphism.
Let rangeW) := (VuJr , IIIOBJ 1 ,  wMAPl), where VW := {x e V2 I there exists exactly one variable

y 6V1  with my = x}.

The unification algebras form a category with this notion of homomorphism. There is a final object,
which is the trivial unification algebra (@, {a}, {Id})

We say 5211 is embedded in fig via w, iff 14111211 —> ‚912 is an injective homomorphism.
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Let Yl, '13 be unification algebras, such that V.J'I = V1J, OBJ.J'I f;;;;; OBJ1J, MAP.J'I f;;;;; MAP1J. Then Yl is 

called strongly embedded in '13. 

5.2 Lemma. Let '1': Yl1 -?Yl2 be a homomorphism. Then: 

DOM(\lfo) f;;;;; 'l'DOM(cr) for all cr E MAP. 

Proof. Let x2 E DOM(\lfcr). There exists a variable xl E VI with \Ifxl =x2. Assume xl ~ DOM(cr). 

Then crx1=xl, which implies x2 ='I'(x1) = \If(crx1) ='1'(cr)\If(x1) = \If(cr)x2, which contradicts 

x2 E DOM('I'cr). Hence xl E DOM(cr).• 

5.3	 Lemma. A homomorphism \If: Yl1 -? Yl2 that is bijective on objects and mappings, is an 

isomorphism. 

Proof. Let '1'- be the inverse mapping of \If. Condition i) of Definition 5.1 is trivially satisfied. 

In order to prove ii), let cr2,'t2 be mappings in MAP2' There are mappings cr1,'t1 in MAP1 
with 'l'cr1 =cr2 and 'I''t1 = 't2. We have V-(cr2't2) =V-«\lfcr1)\If('t1)) =\If-(\If(cr1't1)) = cr1't1 = 

V-(crV V-('tV. A similar computation shows that iii) also holds. 

We have already V2 ~ \jf(V1), since 'I' is a homomorphism. We have to show that VI f;;;;; V-(V2). 

From V2 ~ 'l'CV 1) we get V-CV2) ~ V 1. Assume for contradiction, that there is a variable 

x E V1 - V-(V2). That means \Ifx ~ V2. Let y be a variable equivalent to x. The mapping cr := 

{x t- y} must be mapped to Idz, since DOM(\jfcr) = V2 (l {\jfx} = 0. Since \jf is a bijection on 

MAP, this implies that cr = Id2, which is a contradiction. Hence V2 = \jf(V 1)' • 

The next lemma clarifies the effect of homomorphisms on variables. 

5.4 Lemma. Let \jf:Yl1 -? Yl2 be a homomorphism, and let x E V 1. Then 

i) 'lfX ~ V2 implies that there exists a variable y :t:. x with \jfx = \jfy. 

ii)	 If there exists a variable y :t:. x with 'lfX = \lfy, then
 

a) \jf is constant on the set {s I {x t- s} E SUB or {y t- s} E SUB}
 

b) \jfx is fixed by every substitution in range(\jf).
 

Proof. 

i) Let \jfx ~ V 2. There exists a variable y:t:. x that is equivalent to x. Consider the 

mapping {x t- y}. Since \jfx ~ V2, we have DOM(\jf({x t- y}) =0, hence \jfx = \jfY. 

ii)	 Let y be a variable with y:t:. x and \Ifx = \lfy. Let s be a term such that {x t- s} E MAP or 

{y t- s} E MAP. Without loss of generality we can assume that {x f- s} E MAP. Then 

\jfs = \If({x t- s}x) = \jf({x f- s}) \Ifx = \If({x t- s})\jfy =\If({x f- sly) = \lfy. 

This proves part a). Let \jfcrbe a mapping in range(\jf). Then {x f- ax}E MAP, hence 

\jfcr 'l'x = \lfcrx = \jfx due to a). This proves part b).• 

We give an example, that \Ifx = 'lfY for different variables x,y does not preclude that \IfX is a variable 

in V2. Let Yl1 be a unification algebra consisting only of variables. The variables are partitioned in 

classes Si, i = 1,2,... , such that x is equivalent to y, iff they belong to the same class. The mappings 

in MAP1 are the possible substitutions. Let Yl2 consist only of variables zi, i= 1,2,... that are all 

equivalent, and of all possible substitutions on these variables. 

16 

Let fl, 9 be unification algebras, such that V„ V3, OBJ‚q_c OBJ._3‚ MAPfl C MAPQ. Then .:71'IS
called strongly embedded m B.

5.2 Lemma. Let m: fill 422 be a homomorphism. Then:
DOM(mG) c mDOM(0') for all 0' e MAP.

Proof. Let x2 6 DOM(mo). There exists a variable xl  e V1 with mx1= x2. Assume xl e DOM(o).
Then 6x1 :  x1, which implies x2 — m(x1)-— m(0'x1) = m(0')m(x1) = \|I(O')X2, which contradicts
x2 6 DOM(m6). Hence x1 6 DOM(0'). I

5.3 Lemma. A homomorphism m: fill —> ‚912 that is bijective on objects and mappings, is an
isomorphism.

Proof. Let m— be the inverse mapping of m.  Condition i) of Definition 5 .1  is  trivially satisfied.
In order to prove ii),  let 62,12 be mappings in MAPZ. There are mappings 61,11 in MAP1

with mol  = 62 and mm = 12. We have W—(ozfcg) = \|F’((\|IO'1)\V(’C1)) == m"(lll(0'1’tl)) = 61171 :
\lf—(Gz) III—(12). A similar computation shows that iii) also holds.
We have already V2 g; m(V1), since m is a homomorphism. We have to show that V1 ; \|F(V2).
From V2  g m(V1) we get m—(Vz) g V1.  Assume for contradiction, that there is a variable
x e V1 — m—(Vg). That means mx e V2. Let y be a variable equivalent to x.  The mapping 0' :=
{x <— y} must be mapped to Idz, since DOM(m0') = V2 n {mx} : @. Since m is a bijection on
MAP, this implies that 0' = Id2, which is a contradiction. Hence V2 = m(V1). I

The next lemma clarifies the effect of homomorphisms on variables.
5.4 Lemma. Let mzflll —> 5212 be a homomorphism, and let x e V1. Then

i) mx 6 V2 implies that there exists a variable y $ x with mx = my.
ii) If there exists a variable y $ x with mx = my, then

a) m is constant on the set {s  I {x  <— s}  e SUB or {y <— s}  e SUB}
b) mx is fixed by every substitution in range(m).

P roo f .
i) Let mx e V2. There exists a variable y at x that is equivalent to x. Consider the

mapping {x <— y}. Since mx E V2, we have DOM(m({x <— y}) = 0,  hence mx = my.
ii) Let y be a variable with y at x and mx = my. Let s be a term such that {x  <- s}  6 MAP or

{y  <— s}  6 MAP.  Without loss of generality we can assume that {‘x <— s}  6 MAP.  Then

vs = max <— s}x> = v({x +- s}> um = v({x <— snvy = v({x <— s1y> = w.
This proves part a). Let mobe a mapping in range(m). Then {x <— 0'x}e MAP, hence
m6 mx=  max =—mx due to a). This proves part b).  I

We give an example, that mx = my for different variables x,y does not  preclude that mx is a variable
in V2. Let J41 be a unification algebra consisting only of variables. The variables are partitioned in
classes Si, i = 1,2,.  . . ,  such that x is equivalent to y, iff they belong to the same class. The mappings
in MAPI  are the possible substitutions. Let J42 consist only of variables Zi, i: 1,2, . . .  that are all
equivalent, and of all possible substitutions on these variables.
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Let the homomorphism 'I':.::I1 ~ .::I2 be such that \jIX =zi' iff x E Si, and all mappings in MAP1 are 

mapped to the identity. Then 'l'is a homomorphism and maps different variables in.::I1 to the same 

variable in .::I2' 
5.5	 Lemma. Let DOM", (.) and V",(.) be that domain and variable operator, respectively, with 

respect to range('I'). Then 

i) DOM",('I'O') ~ 'l'DOM(0') n V"" where V", = {x E V2 I there exists exactly one variable 

y E V1 with 'l'y = x}. 

ii) V",('I't) ~ 'l'V(t) 

Proof. 

i)	 Let 0' E MAP. Lemma 5.2 shows that DOM('I'O') ~ 'l'DOM(O'). Let z2 E V2. Then 

there exists a variable zl with 'l'zl =z2' If there is another variable zl' with 'l'zl' =z2, then 

Lemma 5.4.iLb) shows that '1'0' does not change z2' hence z2 e DOM('I'O'). This means 

DOM('I'O') ~'I'DOM(O') n V",. 

ii)	 Let x2 E V~'I't). Then there exists a mapping {X2 f- S2} E 'l'MAPI with {x2 f- S2}'I't"* 'l't. 

Hence there exists a mapping {xl f- sd with 'I'{x1 f- sd ={x2 f- s2} and 'l'xl =x2" This 

means 'I'{xI f- sd 'l't ='1'({Xl f- sdt) "* 'l't, hence {Xl f- sdt "* t. Thus xl E Vet).• 

5.6 Proposition. range('I') is a unification algebra. 

Proof. MON) follows from the defmition of a homomorphism and since .::I1 is a unification algebra. 

VI) Let '1'0' ='I''t [V",] . Lemma 5.4 shows that DOM('I'O') ~ V", and DOM('I''t) ~ V'" . Hence 

'1'0' ='I''t [V2] which implies '1'0' ='I''t, since (V20T2oSUB2) is a unification algebra. 

V2) Trivial. 

V3) Let W2 ~ V", be a fmite set of variables. Since every variable in W2 is the image of a (unique) 

variable in VI' there exists a finite set of variables W1 ~ V1 with 'l'W1 =W2. Let S be a 

variable permutation that renames Wl' The image of S is also variable-permutation: 

If DOM('I'S)"* 'l'DOM(S), then there exists a component {x f- y} of S such that 'l'x ='l'y, 

which contradicts W2 ~ V",. Hence DOM('I'S) = 'l'DOM(S). Since 'l'S has as inverse 'l'S-, it 

is a variable permutation. Now the set 'I'(S)W2 is a set of variables that is disjoint with W2 . 

Hence V3) holds. 

V4) follows from Lemma 5.2.
 

V5) follows, since .::I2 is a unification algebra.•
 

5.6 Corollary. An embedding 'I':.::I1 ~ .::I2 is an isomorphism 'I':.::I1 ~ range('I')
 

Proof. Holds, since range('I') is a unification algebra by Proposition 5.5 and by Lemma 5.3.•
 

5.7 Definition. Let	 .::I =(V,OBJ,MAP) be a unification algebra. 

i) A equivalence relation - on OBJ is a congruence, iff 

s - t and O'X - 'tX for all x E V implies O'S - 'tt. 

ii)	 For a congruence - we define the quotient Jl!J- as (V_,T/-,sUB/- ), where 

V_ := {x/- I x E V and x/- n V = {x} }. The relation - is extended to mappings by er - 't 
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Let the homomorphism ilk/‘11 —-> ‚912 be such that = zi, iff x e Si, and all mappings in MAPI are
mapped to the identity. Then w is a homomorphism and maps different variables in fill to the same
variable in 542.
5.5 Lemma. Let DOM“, (.) and VWL) be that domain and variable operator, respectively, with

respect to range—‚(w). Then

i) DOMWOVO') ; WDOM(0') n VW, where V“, = {x e V2 I there exists exactly one variable
y E V1 with \uy = x}.

ii) VwOVt) ; \VVÜ)

Proo t

i) Let 0‘ 6 MAP.  Lemma 5 .2  shows that DOMOVG) g wDOM(G) .  Let 22 e V2.  Then

there exists a variable 21 with \!l = 22. Ifhthere is another variable 21‘ with wzl' = 22, then
Lemma 5.4.ii.b) shows that wo does not change 22, hence 22 e DOM(\|IG). This means

DOMOVG) ; wDOM(o) m Vw-

ii) Let X2 e VwOllt). Then there exists a mapping {x2 <— s2} 6 wMAPl with {x2 <— s2}1yt at wt.
Hence there exists a mapping {x l  &— $1} with \|I{X1 <— s1} = {x2 (— sz} and WM = x2.. This

means 1p{x1<—- s1}\pt  = \|I({x1(— s1}t) im ,  hence {x1 <— s1}t := t .  Thus x l  e V(t). I

5.6 Proposition. rangehp) is a unification algebra.
Proof. MON) follows from the definition of a homomorphism and since fill is a unification algebra.

V1) Let WG = wt [VW] . Lemma 5 .4  shows that DOMWG) ; VW and DOMOV'C) ; VIP . Hence

WG : qr: [V2] which implies wo : \in, since (V2‚T2‚SUB2) is a unification algebra.
V2) Trivial.
V3) Let W2 ; VW be a finite set of variables. Since every variable in WZ is the image of a (unique)

variable in V1, there exists a finite set of variables WI ; V1 with l = W2. Let € be a
variable permutation that renames WI .  The irnage of}; is also variable-permutation:
If DOM(\|!2';) i wDOM(§), then there exists a component {x  <— y} o fé  such that wx = my,
which contradicts WZ ; VW' Hence DOM(\|IE_‚) = tyDOM(§). Since wg has as inverse we: it
is a variable permutation. Now the set w(§)W2 is a set of variables that is disjoint with W2 .
Hence V3)  holds.

V4) follows from Lemma 5.2.
V5) follows, since 542 is a unification algebra. I

5.6 Corollary. An embedding 1412211 —> 542 is an isomorphism 111341 —> rangeotr)
Proof. Holds, since rangeml) is a unification algebra by Proposition 5.5 and by Lemma 5.3. I

5.7 Definition. Let .?! = (V,OBJ‚MAP) be a unification algebra.
i) A equivalence relation -— on OBJ is a congruence, iff

s ~ t and ox -— 'cx for all x e V implies 0's - 'rt.
ii) For a congruence - we define the quotient W— as (V,_,T/~,SUB/—- ) ,  where

V„ :=  {x,/— | x e V and x/~ n V = {x} }. The relation ~ is extended to mappings by c - 1:
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iff ax -'tX for all variables x. The operations are defined as (0'/-) ('t/-):= (a't)/- and 

(0'/-) (t/-):= (at)/-. 

5.8 Lemma. quotients are unification algebras. 

Proof. Operations are well-defined: Let 0'1 - 0'2 and 'tl - 't2' Then we have al'tlx - a2't2x for all 

variables x, hence al'tl - a2't2' The other follows from the defmition of congruence. 

The proofs are tedious, but exactly analogous to the proofs that show that the range of a 

homomorphism is a unification algebra, hence we omit them. • 

5.9	 Proposition. Let Jl.l = (V I,T 1,SUB 1) and Jl.2 = (V2,T2,SUB2) be unification algebras and 

let "': Jl.l -t Jl.2 be a homomorphism. 

Then the relation - on T 1 with s - t :<=} "'S = \jft is a congruence. 

Furthermore Jl.l/ - is isomorphic to range(",). 

Proof. Let s,t E T with "'S =",t and let a,'t E SUB such that ",Cax) ="'('tx) for all x E V. 

Then ",(a)(",x) = ",C't)C",x) for all x E V. Since ",V ~ V', we have "'Ca) = ",C't), hence 

",Ca)C",s) = "'('t)C",t). 

In order to prove the isomorphism between Jl.l/ - and range(",), we have to check that", is a 

bijection, which is obvious. Then we can apply Lemma 5.3. • 

There are some natural isomorphisms on unification algebras: 

5.10 Lemma. Variable permutations provide isomorphisms on unification algebras. 

For a variable permutation ~, the corresponding isomorphism <p~ on the unification algebra 

operates as follows: <p~ t := ~t for t E OBJ and <p~ 0' := ~a~- for aE MAP. 

5.11	 Lemma. Let Jl. := (V, 0 BJ, MAP) be a unification algebra, and let V = VI U V2 be a 

partition of V, such that there is a bijection <p: V -t V1 such that <px is equivalent to x for all x. Let 

Jlo be the following unification algebra: Jlo = (Vl' T, {a E MAP I DOM(0') ~ VI}' 

Then Jl. is embeddable in Jlo. 
Proof. The injective homomorphism ",:Jl. -t Jl.o is defined as follows: Let ",t = <pt and let "'0' = 

<pa<p-, where <p- is the inverse of <po These definition are not quite correct as they stand. <pt for 

example can be seen as the result of applying the substitution <PIV(t) to t. Note that the mapping 

<pa<p- has a finite domain and hence is a mapping in MAP. Now all conditions can be easily 

verified.• 

If in the construction above the partition V = VI U V2 is such that there is also a bijection <p: V -t 

V2> then we will call the unification algebra Jl.o = (V 1, T, {a E SUB I DOM(a) ~ Vd the 

unification algebra extended by constants. For these distinguished constants it makes sense 

to speak of constants occurring in a term. Let CONST(t) := V.it) - Vl' 

The usual notion of unification in the free term algebra as considered in [Si86, Si88] and for sorted 

signatures [Sch88] is a specialization of unification in a unifcation algebra extended by free constants. 
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iff ox ~tx for all variables x .  The operations are defined as (Cl—) (t/-):= ((n)/— and

(GI—) (t/~):= (GO/~-

5.8 Lemma. quotients are unification algebras.
Proof. Operations are well—defined: Let 0'1 - 0'2 and ”cl ~ 12. Then we have (511:1); »— 0212): for all

variables x,  hence 011:1 ~ 62172. The other follows from the definition of congruence.

The proofs are tedious, but exactly analogous to the proofs that show that the range of a

homomorphism is a unification algebra, hence we omit them. I

5.9 Proposition. Let fill = (V1,T1,SUB1) and 1212 = (V2‚T2,SUB2) be unification algebras and
let w: ‚911 —> :42 be a homomorphism.
Then the relation ~ on T1 with s -- t :<:> ws : wt is a congruence.
Furthermore 541/ - is isomorphic to rangemi).

Proof. Let s, t  e T with VS = wt and let 6,1: 6 SUB such that u,!(Gx) = max) for all x e V .

Then wm“) (1px) = 1p(’t)(wx) for all x e V.  Since wV ;; V',  we have Mo) = 111(1), hence
1V(6)(\IIS) = \lf(’t)(\lft)-

In order to prove the isomorphism between 5211/ ~ and range(\p), we have to check that q! is a
bijection, which is obvious. Then we can apply Lemma 5.3. I

There are some natural isomorphisms on unification algebras:
5.10 Lemma. Variable permutations provide isomorphisms on unification algebras.

For a variable permutation &, the corresponding isomorphism (pg on the unification algebra
operates as follows: (pg t := ét fort e OBJ and (pg 6 := is? for GE MAP.

5.11 Lemma. Let fll := (V, OBJ ,  MAP) be a unification algebra, and let V = V1 U V2 be a
partition of V, such that there is a bijection (p: V —-> V1 such that (px is equivalent to x for all x. Let
filo be the following unification algebra: 20 = (V1, T ,  {0‘ 6 MAP I DOM(0') (; V1},
Then fll is embeddable in flo.

Proof. The injective homomorphism 111:5! —> 510 is defined as follows: Let wt = (pt and let wc :

(pO'(p“", where (p— is the inverse of (p. These definition are not quite correct as they stand. (pt for

example can be seen as the result of applying the substitution (P|V(t)  to t .  Note that the mapping

(p6(p“ has a finite domain and hence is a mapping in MAP.  Now all conditions can be easily
verified. I

If in the construction above the partition V = V1 U V2 is such that there is also a bijection (p: V —->
V2,  then we will call the unification algebra 540 = (V1, T ,  {0' e SUB | DOM(0') ; V1} the

unification algebra extended by  constants. For these distinguished constants it makes sense

to speak of constants occurring in a term. Let CONST(t) := V „(t) —-—- V1.
The usual notion of unification in the free term algebra as considered in [S i86 ,  S i88 ]  and for sorted

signatures [Sch88] is a specialization of unification in a unifcation algebra extended by free constants.
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In order to show that minimal representations for usual term unification are exactly minimal sets of 

unifiers in the usual sense, we use the unification algebra extended by constants. This is the same as 

viewing the variables in solutions as ground and only the new variables in unifiers as variables in 

which something can be substituted. The same effect can be achieved by adding an infmite set of free 

constants to a term-algebra. 

5.12 Lemma. For a unification algebra extended by constants: a ~ 't [W] is equivalent to a;;;).W 't
 

for finite W .
 

Proof. Let fl. =(V,T,SUB) be a unificatio~algebra, let V = Vo U VI such that JIo =
 
(V0'T o,SUBo) has variables Vo and is the unification algebra extended by constants. Now we 

refer elements of V1 as constants and to elements of V0 as variables. 

Let 0', 't be substitutions with a ';dw 'to Without loss of generality we can assume that 

DOM(O') = DOM(t) ~ Wand that l(a) (\ l('t) = 0. Let xI"",xn be the variables in V('tW) and 

let al, ... ,a be constants not occurring in the terms of COD(O') u COD('t), such that n 

Xi is equivalent to ai in Jl. Then 'tgr := {xi ~ ail't is an instance of't ground on W. There exists a 

substitution A, such that AO' is ground on W and Aa = 'tgr [W]. Now we switch to fl., the larger 

unification algebra: Then {ai ~ xd is a substitution in SUB. Applying it to the equation above 

gives {ai ~ Xi }AO' = {ai ~ xil 'tgr ={ai ~ xil {xi ~ ad't ='t [W]. Furthermore {ai ~ XilAO' 

= ({ai ~ Xi }A)!I(o)O [W]. The substitution ({ai ~ Xi }A)II(o) is in SUEo, hence a:::; 't [W] in 510. 

• 
5.13 Corollary. For unification in a unification algebra extended by constants: a ~ 't [W] is 

equivalent to a;;;).w 't , for every finite set of variables W . 

Proof. Follows from 5.12. 

The following structure theorem holds: 

5.14	 Theorem. Every unification algebra is isomorphic to 'I/-, where Tis a set of terms with 

respect to some order-sorted signature, such that Tis closed under well-sorted instantiation, T 

contains all well-sorted terms, but may contain also ill-sorted ones, and - is a stable congruence on 

cr. 

Proof. Let Jl =(V,OBJ, MAP). Then we construct the signature :E as follows: 

The set of sorts is the set of equivalence classes of variables and the ordering on sorts is [x] E [y], 

iff {y ~ x} E MAP. For every object t E OBJ - V there is a function symbol ft E :E. We 

can assume that the operator V(.) gives a vector of variables instead of a set. Then if Vet) = 

(xl""'xn), the function symbol ft has arity n. For every variable y such that {y f- t} E MAP, 

there is a function declaration ft: [xdx...X [xn] ~ [y]. Every variable y is considered to have sort 

[y] and all greater sorts. 

Let 'Ba := (V, T+(L,V), SUB(L,V)), where SUB(:E,V) is the set of well-sorted 

substitutions on (the set of well-sorted terms) T(L,V). cr+(L,V) is V u {crft(XI, ... ,Xn(t)) I 
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In order to show that minimal representations for usual term unification are exactly minimal sets of

unifiers in the usual sense, we use the unification algebra extended by conStants. This is the same as

viewing the variables in solutions as ground and only the new variables in unifiers as variables in

which something can be substituted. The same effect can be achieved by adding an infinite set of free

constants to a term-algebra.

5.12 Lemma. For a unification algebra extended by constants: 0' „<. 't [W] is equivalent to 0 2W 1

for finite W .

Proof .  Let fl = (V ,T ,SUB)  be a unification algebra, let V = V0 u V1 such that filo =
(V0,T0,SUB0) has variables V0 and is the unification algebra extended by constants. Now we
refer elements of V1 as constants and to elements of V0 as variables.
Let (5,1: be substitutions with G 2W 1. Without loss of  generality we can  assume that

DOM(G) = DOM(1:) g; W and that 1(6) n 1(1) = ®.  Let x1,... ,xn be the variables in V(IW) and

let a1 , . . . , an  be  constants not occurring in the terms of COD(0)  U COD(’ t ) ,  such that
Xi is  equivalent to ai in 54. Then 't :=  {xi (— ai}’c is an instance of fr ground on W.  There exists a

substitution %, such that ?LG is ground on W and 7&0 : Tgr [W]. Now we switch to .321, the larger

unification algebra: Then {a5l (— xi} is a substitution in SUB.  Applying it to the equation above

gives {ai (— xi Mo = {ai <— Xi}  Tgr = {ai (— Xi}  [xi (— ai}’c =”: [W]. Furthermore {a-l <— xi}7L6
= ([afl <— Xi }}.)„(oys [W]. The substitution ({ai <— xi 170mg) is in SUBO, hence 0' S 1: [W] in ‚540.

I

5.13 Corollary. For unification in a unification algebra extended by constants: 0' s 1: [W] is

equivalent to 0' 2W 1: , for every finite set of  variables W .

Proof. Follows from 5.12.

The following structure theorem holds:

5.14 Theorem. Every unification algebra is isomorphic to ‘27~, where '1‘ is a set of terms with
respect to some order-sorted signature, such that '2‘ is closed under well-sorted instantiation, ‘T
contains all well—sorted terms, but may contain also illwsorted ones, and -—- is a stable congruence on
‘1'.

Proof. Let fll = (V,OBJ,  MAP). Then we construct the signature 2 as follows:
The set of sorts is the set of  equivalence classes of variables and the ordering on sorts is [x] E [y],
iff {y <— x} E- MAP.  For every object t & OBJ  —— V there is a function symbol ft E Z. We
can assume that the operator V(.) gives a vector of variables instead of  a set. Then if V(t) =
(x1,...,xn), the function symbol ft has arity n. For every variable y such that {y  <— t }  6 MAP,
there is a function declaration ft: [x1]><. . .><[xn] —> [y]. Every variable y is considered to have sort
[y] and all greater sorts.
Let ‘30 :=  (V , 7+ {2 ,V  ) ,  SUB(Z ,V  ) ) ,  where SUB(£ ,V)  i s  the set  of  well-sorted
substitutions on (the set of well—sorted terms) W&V). ‘T_‚_(Z,V) is V U {Gft(x1,.„,xn(t)) I
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cr E SUB(L,V), t E OBJ, Vet) = {Xl> ... ,Xn(t)}}. The set 'T+(L,V) contains 'T(L,V), but is in 

general not equal to the set of all syntactic possible terms over L. 

Let cp: '13 ---7 fl be defined as follows:
 

i) <p(x) := x for x E V.
 

ii) cp ft(xl, ... ,xn) := t, where t is an object, and Vet) = (Xl,., .,xn).
 

ill) CP({xl f- Yl,'''' Xnf- Yn}) := {Xl f- Yl,'''' Xnf- Yn} for variables xi, Yi
 

iv) cp ft(tr. ... ,tn) := {Xl f- CPtl"'" Xnf- CPtn}t, where t is an object, and Vet) = (Xl,''''Xn)'
 

v) CP{Xl f- tl'"'' Xnf- tn} := {xl f- cptr. ... , Xnf- cptn}·
 

We have to show that the defmition of cp makes sense and that cp is a homomorphism.
 

1) if s is of sort [x], then {x f- cps} is a mapping in MAP:
 

Proof By induction on the term depth. 

If Yis of sort [x], then {x f- y} is in MAP by definition. 

If s is of sort [x], then s = ft(Sl, ... ,Sn)' and {x f- t} is in MAP. By the definition of 

'T+(L,V), si is a term of sort [xi] for all i = 1, ... ,n. By induction hypothesis, 

{xi f- cpsd is a mapping in MAP for all i = 1, ... ,n. Since the union of mappings 

exists, we have also that 0' :={Xl f- cpsl"'" Xnf- cpsn} is a mapping. Composition and 

restriction gives that {x f- at} is in M A P. By definition {x f- at} = 

{x f- cpft(sl> ... ,sn)} = {x f- cps}. 

2)	 cp is surjective on V, OBJ, MAP: 

cp is obviously surjective on V. cp is also surjective on OBJ, since for every t E OBJ, there 

exists a term ft(xl,'" ,Xn(t)) with cp ft(xl," .,Xn(t)) = t. It is surjective on MAP, since for every 

mapping {xl f- tl"'" Xnf- tn} there exists terms CP-lti of sort [xil , such that {xi f- cp-ltd is 

a substitution. 

3)	 cp is a homomorphism: 

Definition 5.l.iii holds by the definition of cp. That 5.1 Hi) can be shown by an easy 

computation using cp(at) = cp(O')cpt. Definition of cp implies that 5.1 iv) holds. 0 

Proposition 5.9 now implies that .9l is isomorphic to a quotient of '13•• 

Note that this structure theorem allows some ill-sorted terms without well-sorted instances. Such 

terms could have been also considered as literals. For the sake of simplicity, we have treated them as 

ill-sorted terms. 

For unsorted unification algebras, from Definition 2.4 and Theorem 5.14 it is easy to deduce that 

5.14 can be sharpened to: 

5.15	 Proposition. Every unsorted unification algebra is isomorphic to 'Tu.9l'I!-, where 'Tis a set 

of terms with respect to some unsorted signature, .9l'T is the set of atoms, and - is a stable 

congruence on 'Tu.9l'T', such that terms and atoms are never congruent. 
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(3 e SUB(2,V), t e OBJ, V(t) == {x1,...,xn(t)}}. The set ‘I‘+(E‚V) contains TEN), but is in
general not equal to the set of all syntactic possible terms over Z.

Let (p: (B _) fit be defined as follows:
i) (p(x) :=  x for x e V.

(p ft(x1,.  . . , xn )  :=  t ,  where t is an object, and V(t) = (x1 , .  . . , xn) .

(p({x1<— y1,..., xn<— yn}) := {x1 (— y1,..., xn<—- yn} for variables Xi:  Yi
(p ft(t1,...‚tn) := {x1 (— (pt1,.„‚ xne— (ptn}t, where t is an object, and V(t) = (x1,...,xn).

(p{x1<— t1,..., xn<—- tn} := {x1<—— (pt1,..., xne (ptn}.

We have to show that the definition of (p makes sense and that (p is a homomorphism.
1) if s is of sort [x], then {x (— (ps} is a mapping in MAP:

2)

3 )

Proof. By induction on the term depth.

If y is of sort [x], then {x <— y} is in MAP by definition.
If s is of sort [x ] ,  then s = f [ ( s l , . . . , sn ) ,  and {x  <— t}  is in MAP. By the definition of

T+(E,V), si is a term of sort [Xi ]  for all i : 1,...,n. By induction hypothesis,
{xi (— (psi} is a mapping in MAP for all i = 1,...,n. Since the union of mappings
exists, we have also that o :=={x1 <——— (ps1,. . . ,  xn<— cpsn} is a mapping. Composition and
restriction gives that {x  <— O't} is in MAP.  By  definition {x  <— Gt} :
{x <— (pft(sl,...,sn)} = {x <— {ps}.

(p is surjective on V, OBJ, MAP:
(p is obviously surjective on V .  (p is also surjective on OBJ, since for every t e OBJ, there

exists a term ft(x1,. . . ,xnm) with (p ft(x1,. . . ,xnm) = t. It is surjective on MAP, since for every
mapping {x1 (— t1,. . ., xn<— tn} there exists terms (p‘lti of sort [xi] , such that {Xi  (— (p'lti} is
a substitution.

(p is a homomorphism:
Definition 5.1.iii holds by the definition of (p. That 5 .1  iii) can be shown by an easy

computation using (p(0't) = (p(6)(pt. Definition of (p implies that 5.1 iv) holds. Cl
Proposition 5.9 now implies that 121 is isomorphic to a quotient of ß. I

Note that this structure theorem allows some ill-sorted terms without well-sorted instances. Such

terms could have been also considered as literals. For the sake of simplicity, we have treated them as
ill-s orted terms.

For unsorted unification algebras, from Definition 2.4 and Theorem 5.14 it is easy to deduce that

5.14 can be sharpened to:
5.15 Proposit ion.  Every unsorted unification algebra is  isomorphic to Tuflfi~, where ‘T i s  a set

of terms with respect to some  unsorted signature,  IN” is the set  of  atoms, and ~ is  a stable

congruence on “1051?; such that terms and atoms are never congruent.
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6. Nondeterministic Transformations 

In this paragraph we give transformation rules for constructing unification algorithms and show that 

they apply universally. 

As basic datastructure we use systems of multi-equations r, where r is a multiset {M j liE n, 
M j are multisets of objects in OBJ also called multi-equations, such that V(r) is finite. The set of 

solutions of r is denoted by SOL(f) is the set of substitutions ground on V(f), such that for every 

a E SOL(r), MEr and for all s,t E M we have as = at. Every unification problem r can be 

considered as a system of multi-equations. Let VAR(r) be the set of variables that occur as elements 

in some multi-equation in r and let OBJ(r) be the set of nonvariable objects that occur in some 

multi-equation from r. 

Multisets [DM79] are like sets but allow multiple occurrences of the same element. We use the 

set-theoretic operators v, 11, -, E for multisets in their obvious meaning. 

We compare two sets of solutions as follows: SI r:;;;;.w S2 ,iff SIIW r:;;;;. S21W and SI =W S2 iff 

SI r:;;;;.w S2 and SI ;;;},W S2· 

Assume given a unification problem r 0 for which we want to know all solutions. Since in general 

there is an infinite number of such solutions it is useful either to have a finite representation for all 

solutions or at least to compute further constraints on the solutions. We use the method of applying 

transformations to multi-equation systems. Such a transformation is denoted as r ~w~, where r, ~ 

are systems of multi-equations and W is a finite set of variables. In the following we give rules that 

specify classes of transformations. We will define solved forms of multi-equations. As solution for a 

system rwe will accept a transformation r ~V(1) ~, where ~ is a system in solved form with 

SOL(f) =w SOL(~). Usually, a set of solved forms may be necessary to represent the solutions of r 

adequately. 

6.1 Definition. We say	 a specific transformation r ~W ~ is complete, iff 

SOL(r) =w SOL(~). 

We say a rule is complete, iff every application provides a complete transformation.• 

Obviously, the application of transformations is transitive: If r 1 ~W r 2 is complete and r 2 ~W r 3 

is complete, then r 1 ~W r 3 is complete. 

We use the following conventions for denoting the rules: 

~W denotes the transformation relation with respect to W. 

M denotes a multi-equation and r denotes a system of multi-equations. 

6.2 Definition. The basic rule set '13'l.(S is defined as follows: 

Rule:	 Equal objects. {M} v r ~W {M-{s}} v r 

if M contains s more than once. 
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6. Nondetermin i s t i c  Transformations

In this paragraph we give transformation rules for constructing unification algorithms and show that
they apply universally.

As basic datastructure we use systems of multi—equations 1", where F is a multiset {Mi l i e I},
Mi are multisets of objects in OBJ also called multi—equations, such that VO") is finite. The set of

solutions of F is denoted by SOL(I’) is the set of substitutions ground on VO"), such that for every

6 e SOL(I‘),  M e F and for all s,t e M we have os : c't. Every unification problem T‘ can be

considered as a system of multi—equations. Let VAR(I’) be the set of variables that occur as elements
in some multi—equation in F and let OBJ(1") be the set of  nonvariable objects that occur in some

multi-equation from 1".

Multisets [DM79] are like sets but allow multiple occurrences of the same element. We use the

set-theoretic operators U, n ,  —, e for multisets in their obvious meaning.

We compare two sets of solutions as follows: 81 gw 82 , iff SI IW g SZIW and 81 =w 82 iff
31  gw 32  and S I  2W 32 .

Assume given a unification problem F0 for which we want to know all solutions. Since in general
there is an infinite number of such solutions it is useful either to have a finite representation for all
solutions or at least to compute further constraints on the solutions. We use the method of applying
transformations to multi-equation systems. Such a transformation is denoted as l" =>W A, where F, A
are systems of multi-equations and W is a finite set of variables. In the following we give rules that
specify classes of transformations. We will define solved forms of multi-equations. As solution for a
system I‘we will accept a transformation 1" =>V(1‘) A, where A is a system in solved form with
SOL(I") =W SOL(A). Usually, a set of solved forms may be necessary to represent the solutions of F
adequately.

6.1 Definition. We say a specific transformation 1" =>w A is complete ,  iff
SOL(D =W SOL(A).
We say a rule is complete, iff every application provides a complete transformation. I

Obviously, the application of transformations is transitive: If F1 =>w F2 is complete and F2 =>W F3
is complete, then F1 =>W F3 is complete.

We use the following conventions for denoting the rules:
=>W denotes the transformation relation with respect to W.
M denotes a multi-equation and F denotes a system of multi-equations.

6.2 Definition. The basic rule set Giga; is defined as follows:
Rule:  Equal objects. {M}  U l" =>w {M—{s}} U I‘

if M contains 3 more than once.
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Rule: Trivial multi-equation. r ~w r - {M}, 

if M is a singleton. 

Rule: Merging. {Mdu{M2}ur ~w {M1uM2}ur, 

if M1 n M2 'it 0 

Rule: Auxiliary variables {M} u r ~W {M-{x}} u r, 

if x is a variable with x e W and x does nor occur elsewhere in r and M and there exists a term 

t E M -{x}, such that {x +- t} E MAP. 

Rule: Unfolding. {{t}uM} ur~w {{sluM} uru(t} 

if"ts =t and V(s) consists of new variables, DOM("t) =V(s), and DOM("t) n I("t) =0. 

Rule: Replacement. {{S2}uM2} u {{sl,tduMd ~w {{ {x +- t!ls}uM2} u {{sl>t!luMd 

if s is an object, x a variable, {x +- sd a mapping, such that {x +- sds = s2 

Rule: Application of substitution: {{x,t}uM} u r ~w {{x,t}uM} u {x +- t}r, 

if {x +- t} E MAP. 

Rule: Partial solution. r 1 u d ~w r 2 u d 

if r 1 ~v(rI) r 2 is complete and all variables in V(r2)- V(r1) are new variables. 

6.3 Theorem. All the rules in ~S1(are complete. 

Proof. The completeness of the equal-objects rules, the trivial multi-equations rule and the merging 

rule is triviaL 

Auxiliary variables: 

Obviously SOL({M} u r,W) r:w SOL({M-{x}} un. Let er E SOL({M-{x}} un. 

Without loss of generality we can assume that x e DOM(er). Let t be the term in M -{x} such 

that {x +- t} E MAP. Construct er' such that DOM(er') = DOM(er)u{x}, er' =er [DOM(er)] 

and er'x := at. Then er' is a mapping, since {x +- at} = (er{x +- t DJ {x}, er' is also a solution 

of {M} u r with er = er'[W], since x e W. 

Unfolding: 

Let er be a solution of {{t}uM} u r with DOM(er) r: V( {[t}uM} u D. Then er"t is a solution 

of {{s}uM} u ru(t}: we have er"ts = at, and er = er"t [V({ {t}uM} u D], hence er"t solves 

{{s }uM} u r. For x EDOM("t) we have er't('tx) =er('t't)x =er'tx, hence a't solves (t). 

Let er be a solution of {{s}uM} u ru('t}. Then erx = er'tx for all x EDOM('t), hence as = 

er'ts = ert. 

Replacement: 

We can assume that x E V(s). Let er be a solution of {{S2}uM2 }u {{sl>tduM d . Then 

ersl =ert1' hence er{x +- tds = er{x +- sds =ers2. This shows one direction, the other 
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Rule: Trivial multi-equation. 1" =>w l" — {M},

if M is a singleton.

Rule: Merging. {M1}U{M2}U1" =W {MlUM2}UI‘ ,
if M1  n M2 #“ 0

Rule: Auxiliary variables {M}  U I‘ =>W {M—-[x}} U 1",
if x is a variable with x E W and x does nor occur elsewhere in 1" and M and there exists a term

t e M —{x}, such that {x  <— t }  6 MAP.

Rule: Unfolding. { { t }UM} U T‘ =>W {{ s }UM} U P U (1:)
if IS = t and V(s) consists of new variables, DOM(1:) = V(s), and DOM('c) (\ I(1:) = 0 .

Rule: Replacement. {{82}UM2} U {{Sl,t1}UM1} =>W {{{x ( - - t1}S}UM2] U {{Sl,t1}UM1}

if s is an object, x a variable, {x  <— s1} a mapping, such that {x  <— s l } s  = $2

Rule: Application of substitution: {{x , t }UM} U P =>W {{x , t}UM} U {x  <— t}F,
if {x <— t} 6 MAP.

Rule: Partial solution. F1 U A =>w F2 U A
if F1 =°V(Fl) F2 is complete and all variables in V(l‘2)—- V(F1) are new variables.

6.3 Theorem. All the rules in 9359mm complete.
Proof. The completeness of the equal—objects rules, the trivial multi-equations rule and the merging

rule is trivial.
Auxiliary variables :

Obviously SOL({M} U RW) gw SOL({M—{x}} U I‘). Let 6 e SOL({M—{x}} U F).

Without loss of generality we can assume that x e DOM(0'). Let t be the term in M —-{x} such

that {x  (— t}  6 MAP. Construct 6' such that DOM(o‘) = DOM(o)U{x} ,  o '  = 0' [DOM(o)]

and 6'): := O't. Then O" is a mapping, since {x  <— Gt} : (0'{x <— t})|{x}. 0 '  is also a solution

of {M}  U 1" with 0' = 0"[W], since x 65 W.
Unfolding:

Let c be a solution of  {{ t}UM} U I‘ with DOM(0') ; V({  {t}UM} U 1"). Then cn is a solution

of { { s }UM} U I‘U(’t): we have 01s = O't, and 0' = cn [V({ {t}UM} U D] ,  hence or solves
{ { s }UM} U I“. For x e DOM('c) we have max) = O'(’C't)x = O’Tx, hence o1: solves (I).
Let 0' be a solution of  { { s }UM} U I‘U('c). Then ox = cx for all x e DOM('c)‚ hence GS :

OTS = 01.

Replacement:
We can assume that x e V(s). Let o be a solution of  [{82}UM2 }U {{sl , t1}UM1} . Then
081 = ot l ,  hence o {x  (— t1}s = O'{X (— s l } s  = 652. This shows one direction, the other
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direction is a symmetric case.
 

ApplicatiQn Qf substitutiQn:
 
FQllQWS frQm repeated application of the replacement rule.
 

Partial sQlutiQn: 

If r l =>v(rl) r 2 is cQmplete and all variables in V(rz)- V(rl) are new variables. 

Let cr be a SQlutiQn of r l u Ll. Since r l =}V(rl) r 2 is complete, there exists a solution 1: of 

r 2 with cr = 1: [V(r l)]. Since DOM(cr)tlDOM('t) = V(r l), we can define e := 'tucr. 

ObviQusly, this is a solution of r 2 u Ll. 

Let cr be a solutiQn of r 2 u~. Since r I =>v(rl) r 2 is complete, there exists a solution 't of 

r l with cr ='t [V(rl)]' Since DOM(cr)tlDOM('t) =V(r l), we can define e·:= 'tucr. 

Obviously, this is a solution of r I u ~.•' .. 

6.4 Proposition. The equal terms rule, the trivial multi-equations rule and the merging rule can be 

applied only a finite number of times. 

Proof. Obvious, since the number of multi-equations and the number of terms in r is decreased.• 

A system of multi-equations, where none of the rules 'equal terms', 'Trivial multi-equations' and
 

merging can be applied, is called merged.
 

This generally applicable rules have the practical advantage that a unification algorithm can sQlve
 

partially a unification problem and that the variables intrQduced by unifiers may cQntain SQme "Qld"
 

variables.
 

TQ Qbtain a similar prQQf for this fact within the framework Qf [GQ88] WQuld be hard, since his
 

substitutiQn systems behave as if all codQmains are renamed away.
 

6.5 Definition. Let r	 be a system of multi-equations. 

A set of pairs {(xi,ti) I i =1,... ,n} is called a cycle, iff xi,ti are in the same multi-equation of r, 

where the Xi'S are variables and the ti's are nonvariable objects, and Xi E V(ti+l) for i = 1,... ,n-l 

and xn E V(tl)' 

6.6 Definition. Let r be a merged system Qf multi-equations. 

i) a multi-equation M is in solved form, iff M contains a term t, such that M - {t} is a set of 

variables {xI""'xn} (t maybe a variable), such that 1:M:= {Xl t-- t, ... ,Xnt-- t} is a mapping 

and V(t)tlV(M-{t}} =0. 
ii) r	 is called solved, if every multi-equation M in r is in solved form and r contains 

no cycles. 

6.7 Proposition. Every solved system is solvable and has a unitary representation. 

Proof. Let r be sequentially solved system. We partition every multi-equation Mi into Mi := 

MiOu{td, where MiD is a multiset of variables, such that {x t-- t} is a substitution for every 

x E MiD' 
We can assume that in the case that 1j, is a variable, ihe variables MiD do not occur elsewhere in r 
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direction is a symmetric case.

A li i n f i ' n:
Follows from repeated application of the replacement rule.

m:
If F1 =>V(I‘1) F2 is complete and all variables in V(1"2)-— V(T1) are new variables.
Let G be a solution of F1 u A . Since F1 =°V(I‘1) F2 is complete, there exists a solution I of
F2 with c = fc [V(I‘1)]. Since DOM(o)nDOM(r)  == V(1"1), we can define 9 :=  rue".

Obviously, this is a solution of F2 U A.
Let o be a solution of 1‘2 u A. Since F1 =>V(1-1) F2 is complete, there exists a solution "c of
F1  with o = 1: [V(I‘1)]. Since DOM(G)nDOM('c) = V(I‘1), we can define @- :=  TUO'.
Obviously, this is a solution of F1 U A. l '  "

6.4 Proposition. The equal terms rule, the trivial multi-equations rule and the merging rule can be
applied only a finite number of times.

Proof. Obvious, since the number of  multi-equations and the number of terms in I“ is decreased.-

A system of multi-equations, where none of the rules ‘equal terms”, ‘Trivial multi—equations’ and
merging can be applied, is called merged.

This generally applicable rules have the practical advantage that a unification algorithm can solve
partially a unification problem and that the variables introduced by unifiers may contain some "old"
variables.

To obtain a similar proof for this fact within the framework of [G088] would be hard, since his

substitution systems behave as if all codomains are renamed away.

6.5 Definition. Let 1" be a system of multi—equations.
A set of pairs {(xi,ti) l i = 1,. . .,n} is called a cycle, iff xi,ti are in the same multi-equation of T‘,
where the xi’s are variables and the ti’s are nonvariable objects, and xi 6 V(ti+1) for i = 1,. . .,n-1
and xn e V(t1).

6.6 Definition. Let F be a merged system of multi-equations.
i) a multi—equation M is in solved form, iff M contains a term t, such that M -— {t} is a set of

variables {x1,...,xn} (t maybe a variable), such that 1M1: {xl (— t,...,Xn(-— t} is a mapping
and V(t)nV(M——{t}} = @.

ii) F is called so lved ,  if every multi-equation M in 1" is in solved form and l" con ta in s
no cycles.

6.7 Proposition. Every solved system is solvable and has a unitary representation.
Proof. Let 1" be sequentially solved system. We partition every multi-equation Mi into Mi :=

Miouh i} ,  where M10 is a multiset of variables, such that {x  <— t}  is a substitution for every
x e Mio.
We can assume that in the case that t,- is a variable, ihe variables M10 do not occur elsewhere in I‘
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(by applying the appropriate substitution.
 

We introduce a transitive ordering < on multi-sets generated by the pairs Mj < Mj, iff MiOrN(tj) *
 
0.
 
This ordering is cycle-free, since r contains no cycles.
 

Let Mj be minimal with respect to this ordering and let Mj be direct succesor of Mj, then by
 

applying the substitution {xl ~ tj, ... ,xn ~ t} for MjO ={xl, ... ,xn }, we obtain a system r that is
 

smaller in the sense that there is a smaller number of generating pairs for the ordering. Note that the
 

application has an effect only on the terms tk and that r is a solved system.
 

Hence r can be brought into a form such that it is solved and the ordering < is empty.
 

Now the substitution a that represents all solutions is the union of all substitiuions for every
 

multi-equation.
 

It remains to show that this substitution is indeed a representation.
 

Assume there is a solution 8 of (r,W). Then 8a =8: Consider an Mj =MiOV{ tj} and X E MiO.
 

Then 8ax =8ti by definition of a and 8ti =8x since 8is a solution. For variables y E V(tj) we
 

have 8ay =8y, since y ~ DOM(a).
 

Let Abe such that Aa is ground on V(nvW. Then Aa is a solution, since for x,y E Mw we have
 

Aax =Aay, since ax =ay. Furthermore we have Aax =Atj by definition of a and Acrti =Ati ,
 

since DOM(a) (J V(ti) =0.•
 

A unification algorithm can now be described as a set of rules that describe transformations of 

equation systems. These rules are in general considered as nondeterministic, where the 

nondeterminism has two instances: "don't-know" and "don't care" nondeterminism. "Don't know" 

means that we have to choose between several alternatives and that for a complete algorithm, all 

alternatives have to be explored; whereas "don't care" means that we can choose one alternative and 

forget the other without loosing completeness. 

We haven't said what completeness means: 

A unification algorithm is complete, iff 

for every r and every solution a of r, there exists a system of multi-equations Ll that can be 

reached from r using correct transformations specified by the algorithm, the transformations 

are with respect to V(n, Ll is in solved form, and a is a solution of A 

Given a system of multi-equations r, every complete unification algorithm can be used to enumerate a 

set of representatives for r, if a breadth-first-like method is exploited to search for all reachable 

solved systems. 

The advantage of describing an algorithm by nondeterministic rules over a description using a 

disjunction of systems of multi-equations is that for the nondeterministic approach it is easier to 

handle cases, where an infmite set of alternatives has to be explored. 

In order to handle such sets of alternatives, we introduce the notion of a complete sets of alternatives: 
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(by applying the appropriate substitution.
We introduce a transitive ordering < on multi—sets generated by the pairs Mi < M-, iff avaj) #

@.
This ordering is cycle-free, since 1" contains no cycles.
Let Mi be minimal with respect to this ordering and let Mj be direct succesor of Mi, then by

applying the substitution {x1 (— ti,. . .,xn (— t ]  for Mio : {x1,. ..,xn} , we obtain a system I“ that is
smaller in the sense that there is a smaller number of generating pairs for the ordering. Note that the
application has an effect only on the terms tk and that 1" is a solved system.
Hence F can be brought into a form such that it is solved and the ordering < is empty.
Now the substitution 0' that represents all solutions is the union of all substitiuions for every

multi-equation.
It remains to show that this substitution is indeed a representation.
Assume there is a solution 9 of (EW). Then 90' = 9: Consider an Mi = Miouüi} and x e Mio-

Then 90’x = Bti by definition of 0' and Gti = 9x  since 613 a solution. For variables y e V(ti) we

have Boy = 9y, since y 65 DOM(0').
Let %. be such that 2.6 is ground on V(DUW. Then 16 is a solution, since for x,y e Mio we have
lex = lay, since O'X = O'y. Furthermore we have lax = Mi by definition of 0' and ?LO'ti = Mi ,
since DOM(o) n V(ti) = Q. I

A unification algorithm can now be described as a set of rules that describe transformations of
equation systems.  These rules are in general considered as nondeterministic, where the
nondeterminism has two instances: "don’t-know" and ”don’t care" nondeterminism. "Don’t know"
means that we have to choose between several alternatives and that for a complete algorithm, all

alternatives have to be explored; whereas "don’t care" means that we can choose one alternative and

forget the other without loosing completeness.
We haven’t said what completeness means:

A unification algorithm is complete, iff
for every F and every solution 0' of  F, there exists a system of multi-equations A that can be
reached from I‘ using correct transformations specified by the algorithm, the transformations
are with respect to Va"), A is  in solved form, and 0' is a solution of A.

Given a system of multi-equations 1", every complete unification algorithm can be used to enumerate a
set of representatives for 1", if a breadth-first-like method is exploited to search for all reachable

solved systems.

The advantage of  describing an algorithm by nondeterministic rules over a description using a
disjunction of systems of multi—equations is that for the nondeterministic approach it is easier to
handle cases, where an infinite set of alternatives has to be explored.

In order to handle such sets of alternatives, we introduce the notion of a complete sets of alternatives:
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6.8 Definition. Let r, ri, i E I be systems of multi-equations and let W be a set of variables, such 

that r ==*w ri is a correct transformation for all i E I. 

Then	 {r ==*w ri 1i E I} is a complete set of alternatives, iff
 

SOLCI) -=w U {SOLcri)1 i El}.•
 

Complete sets of alternatives can be combined: 

6.9 Lemma. If {r ~w ri liE I} and triO ~w Llj I j E J} are complete sets of alternatives, where 

io El, then also {r ==*w r i liE I-{io}} v {r ~w ~j I j E J} is a complete set of alternatives. 

On the basis of a complete (nondeterministic) algorithm Ssing for solving the equation s -= t, i.e., for 

solving sytems {{ s,t} } it is easy to construct a complete algorithm for arbitrary systems of equations 

r. For this purpose we can assume (w.l.o.g.) that r is a system of multi-equations, where every 

multi-equation contains exactly two terms. Furthermore we can assume that Ssing has as result a 

system ('t) that comes from a unifier "t with DOM("t) ~ VCs,t) and VCOD("t) consists only of new 

variables. 

The algorithm Ssys works as follows:
 

Input: r
 

~:-=0 

while r* 0 do 

Let {s,t} be a multi-equation in r.
 

Let O's,t be some output of Ssing(S,t)
 

Let ~ :-= ~ U (O's,t) and let let r :-= O's,t cr - {s,t})
 

endwhile 

Output: ~ 

6.10	 Proposition. Given a complete algorithm Ssing for single equations, the algorithm Ssys is a 

complete unification algorithm for systems of equations. 

Proof. Obviously, Ssys terminates, since r is reduced in every step. Furthermore, ~ is solved, since 

it has no cycles due to the condition that O's,t introduces only new variables. 

The completeness is shown by induction. 

Let 8 be a solution of r. Since Ssing(S,t) is complete, there is a nondeterrninstic execution of Ssing' 

such that O's,t is the output, such that there is a solution 8' of (O's,t) and 8 -= 8 [V(s,t)]. Theorem 

6.3 shows that application of O's,t is a complete step. Hence no solution is lost. • 

Now we consider solution methods for strongly embedded unification algebras. Note that the notion 

of strong embedding can be applied to the embedding of the theory of AC into ACl [HS87], for 

restricted unification and matching [BHS87, Bii86] and for unification in sorted equational theories as 

considered in [Sch88, Sch86b]. 

6.11	 Lemma. If Jl is strongly embedded in '13, then for all equation systems r containing only 

objects from Jl: SOL}t(I) -= SOLiI) (1 MAP}t.• 
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6.8 Definition. Let I", I‘i, i e I be systems of multi—equations and let W be a set of variables, such

that F =>W Fi is a correct transformation for all i e I.

Then {F  =‘W Fi | i e I} is a complete set of alternatives, iff

SOL(I’) =W U{SOL( I ‘1 ) I i e  I}.  I

Complete sets of alternatives can be combined:

6.9 Lemma. If {1" =>w Fi | i e  I} and { Pic =>w Aj l j e J } are complete sets of alternatives, where
io e I , then also {F  ::»W Fi | i e  I—{i0]} U {T =>W Aj I j  e J} is a complete set of alternatives.

On the basis of a complete (nondeterministic) algorithm 55mg for solving the equation s = t, i.e., for

solving sytems {{s,t}} it is easy to construct a complete algorithm for arbitrary systems of equations

F. For this purpose we can assume (w.1.o.g.) that F is a system of multi—equations, where every

multi—equation contains exactly two terms. Furthermore we can assume that .55n has as result a
system (T) that comes from a unifier 'c with DOM(’c) ; V(s,t) and VCOD(”c) consists only of new

variables.

The algorithm Ssys works as follows:
Input: F

A := @
while l" 1: @ do

Let {s,t} be a multi—equation in 1".
Let 5s,t be some output of Ssing(s,t)
Let A := A U (634) and let let F := Üs,t  (F — {s,t})

endwhile
Output: A

6.10 Proposition. Given a complete algorithm 53n for single equations, the algorithm Ssys is a
complete unification algorithm for systems of equations.

Proof. Obviously, Ssys terminates, since F is reduced in every step. Furthermore, A is solved, since
it has no cycles due to the condition that 0s,t  introduces only new variables.

The completeness is shown by induction.
Let 6 be a solution of F. Since .Ssing(s,t) is complete, there is a nondeterminstic execution of ‚ging,
such that GS; is the output, such that there is a solution 8 '  of (GS; ) and 0 = 0 [V(s,t)]. Theorem
6.3 shows that application of as; is a complete step. Hence no solution is lost. I

Now we consider solution methods for strongly embedded unification algebras. Note that the notion
of strong embedding can be applied to the embedding of the theory of AC into AC1 [H887], for
restricted unification and matching [BH887, Bü86] and for unification in sorted equational theories as
considered in [Sch88, Sch86b].

6.11 Lemma. If fl! is strongly embedded in 2%, then for all equation systems F containing only
objects from fl: SOL„(F) = SOLga") (\ MAP„. I
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Let.9l be strongly embedded in tB, and let r be an equation systems containing only objects from 5t 

Suppose, there is a complete algorithm S'B for solving equation systems in tB and a complete algorithm 

W'B--751 that takes a mapping in MAP'B and generates an instance in MAP51' Then we can use the 

combined algorithm W'B--751°S'B as unification algorithm for .9l. W'B--751°S'B works as follows: first it 

computes a unifier with respect to tJ3 and afterwards instantiates it such that the instance is an 

.9l-mapping. We give a condition for completeness of 'U''B--751°S'B'' 

We say the "weakening-algorithm" W'B--751 is .9l-tB-complete, iffthe following holds: for input cr, and 

every 'B-instance e E MAP51' it can generate a 'B-instance 't of cr, such that 't E MAP51 and e is a 

.9l-instance of't. 

6.12	 Theorem. Under the conditions above, and if 'U''B--751 is .9l-tB-complete, then W'B--751oS'Bis a 

complete unification algorithm for 5t 

Proof. Let r be a system of equations with respect to.9l, and let eE SOL5ICI). Then eE SOLiD 

and S'B gives a 'B-unifier cr, such that eis a 'B-instance of cr. W'B--751 now generates a 'B-instance 't of 

cr with 't E MAP51' such that eis a .9l-instance of't. Hence W'B--751°S'B is complete.• 

The hard part for such a strong embedding is to show that there exists such an .9l-tB-compleie 

weakening algorithm. Once this is shown, we can apply Theorem 6.12. Such .9l-tJ3-complete 

weakening algorithms exist for the embedding of AC into AC1, for the case of restricted unification, 

and for unification in some special sorted equational theories. 

7. Unification AIgebras with Dimension 

In this section we assume that all equation systems have only multi-equations with exactly two 

elements. 

We define the rank of a system of equations r as the number of equations in it and denote it by Irl 

[LMM87]. The number of variables in r is denoted by IVCI)I. 

A single equation s = t in r is redundant, iff SOLCI) = SOLCI) -{s = t} [Vcn]. A system of 

equations r is called redundant, iff it contains a redundant equation, otherwise it is called 

irredundant. 

7.1	 Definition. We say a unification algebra .9l has a (linear) dimension, iff for every solvable 

system of equations r: Irl > IVCDI implies that r is redundant. 

As extension we say a unification algebra .9l has a f(n)-dimension, iff for every solvable system 

of equations r: In > f(lVCDI) implies that r is redundant.• 

Abelian groups [LBB84], the empty theory [Ro65, LMM87] and vector spaces have a dimension Cas 

defined above). Below we will show that Abelian semigroups and Abelian monoids also have a 

dimension. 
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Let ‚91 be strongly embedded in 23, and let F be an equation systems containing only objects from flL

Suppose, there is a complete algorithm 59 for solving equation systems in 9 and a complete algorithm
‘wg_„q that takes a mapping in MAP3 and generates an instance in MAP _q. Then we can use the

combined algorithm W9_‚Ä°5$ as unification algorithm for fit. ‘wßäflosg works as follows: first it
computes a unifier with respect to 93 and afterwards instantiates it such that the instance is an
iii—mapping. We give a condition for completeness of n_.>fl°5t3u
We say the “weakening-algorithm" W992 is fll-B-complete, iff the following holds: for input 0', and
every B—instance 6 e MAPa: it can generate a (ls—instance 'r of G, such that ”c e MAP „ and 9 is a
fll—instance of ”c.

6.12 Theorem. Under the conditions above, and if 741% ‚4 is fll-Bcomplete, then 14/96/163 is a
complete unification algorithm for ‚54.

Proof. Let ]" be a system of equations with respect to A, and let 9 e SOLAG"). Then 6 e SOLga‘)
and .53 gives a faunifier 6, such that 9 is a flinstance of o. ‘WQHÄ now generates a B—instance 1: of
0' with ”t e MAP „, such that 9 is a fll—instance of "c. Hence 74/395463 is complete. I

The hard part for such a strong embedding is to show that there exists such an film-complete

weakening algorithm. Once this is shown, we can apply Theorem 6.12. Such fl-Q-complete
weakening algorithms exist for the embedding of AC into AC1, for the case of restricted unification,
and for unification in some special sorted equational theories.

7. Unification Algebras with Dimension

In this section we assume that all equation systems have only multi-equations with exactly two

elements.

We define the rank of a system of equations l‘ as the number of equations in it and denote it by IF!
[LMM87]. The number of  variables in 1" is denoted by IV(1")|.
A single equation s = t in F is redundant ,  iff SOLO“) = SOLO“) —{s = t }  [V(l")]. A system of

equations F is called redundant ,  iff it contains a redundant equation, otherwise it is called
i r redundant .

7.1 Definit ion.  We say a unification algebra 52! has a (linear) dimension,  iff for every solvable

system of  equations F : In  > |V(1")| implies that F is redundant.
As extension we say a unification algebra 2 has a f(n)-dimensi0n‚ iff for every solvable system

of equations 1": II"! > f(|V(l")I) implies that l" is redundant. I

Abelian groups [LBB 84 ] ,  the empty theory [Ro65, LMM87] and vector spaces have a dimension (as

defined above). Below we will show that Abelian semigroups and Abelian monoids also have a
dimension.
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The theory of associativity with only axiom {f(x, fey, z» = f(f(x, y), z)} does not have a linear 

dimension: Consider the system (abx=xba, abax=xaba), which has only {x f- aba} as solution, but 

the first equation has also {x f- a} as solution, which is not a solution to the second one, and the 

second one has {x f-abaaba} as solution, which in turn is not a solution to the fIrst one. 

The theory of commutativity with only axiom {f(x, y) = fey, x)} does not have a linear dimension: 

Consider the system (f(f(x,x), f(a, b» =f(f(x, a), f(x, b», f(f(x,x), f(b, c» =f(f(x, b), f(x, c»), 

which has only x = b as solution, but the first equation has as solutions: {{x f- a}, {x f- b}} and 

the second equation has as solutions: {{ x f- b}, {x f- c} }. 

The theory of Boolean rings does not have an n-dimension for the function n: the proposition below 

shows, that fen) is exactly 2kn -1, where k is the number of free constants in the signature, since 

unifIcation in Boolean algebras is a special case of solving equations in a term algebra generated by a 

primal, fmite algebra. 

More generally, if we consider unification in primal algebras [BS81, Ni88] we have the following: 

7.2	 Proposition. If Jl. is the term algebra generated by a finite algebra A with IAI ~ 2, then the 

corresponding dimension function fen) is lAin - 1, which can easily be verified. If A is in addition 

primal, then the dimension function is exactly lAin - 1. 

Proof. Let r be an irredundant, solvable system of equations with IV(n) = n. Then there are at most 

lAin possible different solutions to In. The possible solutions can be seen as vectors of length n 

over A. The difference An - SOL(r) is the same as U {An - SOL(si = ti) I {si, td En. 
Furthermore, the set An - SOL(f) is not empty. Were there more than IAIIL-l different equations 

in r, then one set in the union above is redundant, hence one equation is redundant. 

If A is primal, then every function is a term. This means that for two elements 0,1 in A we can 

construct the following terms: a (ground) term to that is equal to 0 (and contains at most one 

variable), and terms tv, where v is a vector in An, such that tv(w) = 0 for v#w and tv(v) =1. 

The system r := {{to,tv} I v E AIL-{(O, ... ,O)}} contains no redundant equation, has at most n 

variables in V(f) and r contains IAIIL-1 equations.• 

7.3	 Proposition. Let Jl. be a unification algebra with dimension. Let r be a solvable system of 

equations, such that Irl > IV(f)1. Then there are at least In -IV(f)1 redundant equations in r. 

Recall that Jl. is called strongly embedded in '13, iff V>t =V']3' OBJ>t ~ OBJ']3 and MAP>t ~ MAP']3' 

7.4 Lemma. If Jl. is strongly embedded in '13, then for all equation systems r: 
SOL>t(f) = SOL~f) n MAP>to 

7.5	 Lemma. Let Jl., '13 be unification algebras, such that Jl. is strongly embedded in '13. 

Then: If '13 has a dimension, then Jl. has a dimension. 

Proof. Let r be an equation system containing only objects from OBJJ/., such that r is solvable 

with respect to Jl. and let Irl > IV(f)1. Then r is also solvable with respect to '13. Hence there exists 

a proper subsystem r' of r, such that SOL~r) = SOL~r) [V(!)]. By Lemma 7.3 we have 
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The theory of associativity with only axiom {f(x, f(y, 2)) == f(f(x, y) ,  2)} does not have a linear

dimension: Consider the system (abxsa, abax=xaba>‚ which has only {x  <— aba} as solution, but

the first equation has also {x  <— a}  as solution, which is not a solution to the second one, and the

second one has {it e—abaaba} as solution, which in turn is not a solution to the first one.

The theory of commutativity with only axiom {f(x, y) = f(y, x)} does not have a linear dimension:

Consider the system (f(f(x,x), f(a, b)) = f(f(x, a), f(x, b)), f(f(x,x), f(b, c)) = f(f(x‚ b), f(x, c))),

which has only x = b as solution, but the first equation has as solutions: {{x  <— a}, {x  <— b}} and

the second equation has as solutions: {{x <— b}, {x  <— c}  }.

The theory of Boolean rings does not have an n—dimension for the function n: the proposition below
shows, that f(n) is exactly 2131 —1, where k is the number of free constants in the signature, since

unification in Boolean algebras is a special case of‘solving equations in a term algebra generated by a

primal, finite algebra.

More generally, if we consider unification in primal algebras [B881, Ni88] we have the following:
7.2 Proposition. If 54 is the term algebra generated by a finite algebra A with IAI 2 2 ,  then the

corresponding dimension function f(n) is IAIn — 1 ,  which can easily be verified. If A is in addition

primal, then the dimension function is exactly IAIn — 1.
Proof. Let F be an irredundant, solvable system of equations with IV(I‘I) = n .  Then there are at most

IAIn possible different solutions to |l"|. The possible solutions can be seen as vectors of length n

over A. The difference A11 — SOLO") is the same as U {An — SOL(si = ti) I {si, ti} 6 1‘}.
Furthermore, the set An — SOLO") is not empty. Were there more than IAIn—l different equations
in 1", then one set in the union above is redundant, hence one equation is redundant.
If A i s  primal, then every function is a term. This means that for two elements 0 ,1  in A we can

construct the following terms: a (ground) term to that is equal to (] (and contains at most one
variable), and terms tv, where v is a vector in A“, such that tv(w) = 0 for v¢w and tv(v) = 1.
The system I‘ :=  {{t0,tv} l v e An—{(O,...,O)}} contains no redundant equation, has at most n
variables in VO") and F contains lAln—l equations. I

7.3 Proposition. Let fllbe a unification algebra with dimension. Let F be a solvable system of
equations, such that In  > |V(I‘)l. Then there are at least IT| - |V(1")l redundant equations in F.

Recall that fit is called strongly embedded in $, iff V‚q = V3, OBJJq <; OBJß and MAP„ (; MAP?

7.4 Lemma. If fl! is strongly embedded in 9, then for all equation systems 1":
SOLÄG') = SOLßfl') n MAP„.

7.5 Lemma.  Let 521, Q} be unification algebras, such that 54 is strongly embedded in Qi.
Then: If ’Bhas a dimension, then fil has a dimension.

Proof. Let F be an equation system containing only objects from OBJfl ,  such that l" is solvable
with respect to ‚9! and let IT| > |V(l")l. Then l" is also solvable with respect to @. Hence there exists
a proper subsystem 1'“ of P, such that SOLQG") = SOLQG") [V(l")]. By  Lemma 7 .3  we have
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SOL~(r') = SOLB<T') n MAP~ and SOL~(r) = SOL'B(r) n MAP~. Hence SOL~(r') = 

SOLdI) [V(I)]. This means that r is redundant. • 

We can give a sufficient criterion for Jl.has a dimension: 

7.6 Theorem. Let Jl. be unitary. If for every equation s =t there exists a most general unifier 0' with 

IVCOD(O')I < IV(s,t)l, then Jl.has a dimension. 

Proof. Let r := (SI = tl, ... ,sn = tn) be a solvable system of equations with IV(sl,tl, ... ,sn,tn)1 < n. 

Ifn = 1, then IV(sl,tl)1 = 0, hence sI = tl holds and (SI = tl) is redundant. 

In order to prove the induction step, first assume that sI = tl is not redundant, otherwise we are 

ready. Let 0' be a most general unifier of sI =tl that introduces only new variables and less than 

IV(SI,tl)1. Then the system (0') U (O'S2 =0't2," .,O'sn = O'tn) is equivalent to r due to Theorem 6.3 

on the variables V(I). The induction hypothesis applies to (O'S2 =0't2, ... ,O'sn =O'tn), since 

I(O'S2 = 0't2,'" ,O'sn =O'tn)1 < n-1. This yields that one equation is redundant, say O'Sj = O'tj. But 

then Sj =tj is redundant in r .• 

7.7 Theorem. Let Jl. be unitary such that for every equation s =t there exists a most general unifier 

0' with IVCOD(O')I < IV(s,t)1. Let r be a solvable, irredundant system of equations. 

Then there exists a most general unifier 0' of r such that IVCOD(O')I < IV(I)I- 1:r1- 1. 

Proof.	 Let r := (sI = tl,' .. ,sn = tn) be a solvable, irredundant system of equations. 

Consider one step of solving this system sequentially. A general situation is that ('t) u 

(SI = tl> ... ,sn = tn) has to be solved. 

Let 0' be a most general unifier of SI =tl that introduces only new variables and less than 

IV(sl.tl)1. Then the system (O''t) U (O'S2 =0't2," .,O'sn =O'tn) is equivalent to r due to Theorem 6.3 

on the variables V(I). Obviously, IV«O'S2 =0't2," .,O'sn =O'tn)uVCOD(O''t)1 < IV(I)1. 

Since no equation in r is redundant, the same holds for the derived system, and hence every step 

reduces the number of variables by 1. Thus the equation IVCOD(O')I < IV(I)I-In - 1 holds for the 

fmally constructed most general unifier 0' of r.. 

7.8 Proposition. Abelian monoids and Abelian semigroups have a dimension. 

Proof. Follows, since Abelian monoids and Abelien semigroups can be'strongly embedded into 

Abelian groups, and Abelian groups have a dimension [LBB84].• 

As mentioned above, the theories of associativity and commutativity don't have a linear dimension. 

However, a defect lemma holds for both theories, stating that for every r there exists a complete set 

of unifiers that use at most IV(I)I - 1 variables in their codomains. Similarly, for Boolean rings it is 

well-known that the most general unifier requires at most IV(r)1 variables in its codomain. 

Nevertheless, the impact of such a defect to the redundancy of systems of equations is unclear and 

should be investigated in the future. 
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SOL  fl(T“) = SOL3(I") n MAP „ and SOL/.40") = SOL9(F) n MAP ,4. Hence SOLÄO'“) =

SOL„(D [V(1")]. This means that F is redundant. I

We can give a sufficient criterion for filhas a dimension:
7.6 Theorem. Let fll be unitary. If for every equation s = t there exists a most general unifier 0' with

IVCOD(0')I < |V(s,t)l, then flhas a dimension.
Proof. Let F := ($1 = t1,. . .,sn = tn) be a solvable system of equations with |V(sl,t1,. . .,sn,tn)| < 11.

If n = 1, then |V(s1‚t1)l : 0, hence s1 = t1 holds and (sl = t1) is redundant.
In order to prove the induction step, first assume that s l  = t 1  is not redundant, otherwise we are

ready. Let G be a most general unifier of s l  = t1 that introduces only new variables and less than
|V(sl,t1)|. Then the system (6) U (as; = O't2,. . . ,osn = t> is equivalent to ]" due to Theorem 6.3
on the variables V0"). The induction hypothesis applies to (osz = 6t2‚...‚csn = otn), since
Kosz = ot2,. . . ,0 'sn = t)l < n—1. This yields that one equation is redundant, say osj = 65-. But

then sj = tj is redundant in I‘. I

7.7 Theorem. Let fll be unitary such that for every equation s = t there exists a most general unifier

0' with IVCOD(G)| < |V(s,t)l. Let F be a solvable, irredundant system of equations.
Then there exists a most general unifier 0' of 1" such that IVCOD(O')I < IV(D| — Il“I — 1.

Proof. Let 1" := (sl = t1,. ..,s]r1 = tn) be a solvable, irredundant system of equations.
Consider one step of solving this system sequentially. A general situation is that {T) U
(s1=t1,...,sn = tn) has to be solved.
Let 6 be a most general unifier of s l  : t1 that introduces only new variables and less than
|V(s1,t1)l. Then the system (61:) U (682 = 012,. . ”as,1 = (fin) is equivalent to F due to Theorem 6.3
on the variables VO"). Obviously, lV((os2 = ot2,. . .,o'sn = O'tn)UVCOD(0't)I < |V(DI.
Since no  equation in F is redundant, the same holds for the derived system, and hence every step

reduces the number of variables by 1.  Thus the equation IVCOD(o)| < |V(I‘)I — II“! —— 1 holds for the
finally constructed most general unifier o of R I

7.8 Proposition. Abelian monoids and Abelian semigroups have a dimension.
Proof. Follows, since Abelian monoids and Abelien semigroups can be“ strongly embedded into

Abelian groups, and Abelian groups have a dimension [LBB 84]. I

As mentioned above, the theories of associativity and commutativity don’t have a linear dimension.

However, a defect lemma holds for both theories, stating that for every T there exists a complete set

of unifiers that use at most lV(1")| —— 1 variables in their codomains. Similarly, for Boolean rings it is
well—known that the most  general unifier requires at most  IVG“)! variables in its codomain.
Nevertheless, the impact of such a defect to the redundancy of systems of equations is  unclear and

should be investigated in the future.
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8. Minimal and Optimal Representations 

Unification theory has as an important notion the definition of what it means for a complete set to be 

minimal, and a unification hierarchy for equational theories depending on the existence and cardinality 

of minimal complete sets. We show that for unification algebras extended by constants such a usual 

notion is available, i.e. in particular for term algebras. Furthermore some counterexamples are given 

that in the general case there is no satisfactory definition of minimality. 

8.1 Definition. Let cV be a representation of solutions of the unification problem r. 
i) We say cV is in addition minimal, iff no proper subset of cU is complete. 

ii) Let U1 and U2 be minimal representations. 

Then U1 is more general than U2 (modulo V(r), iff Va E V231: E VIand 1: ~V(r) a. 

We say U1 is properly more general than U2' if U2 is not more general than Ul' 

We say VIand U2 are equivalent representations, iff U1 is more general than U2 and vice 

versa. 

iii) A minimal representation cU is in addition an optimal representation, iff there is no properly 

more general minimal representation. 

iv) A unifier a is maximal, if for every unifier 1: with 1: ~v(r) a we have also a ~V(r) 1: • 

In several theories and fields one has a measure for the set of solutions. For example for linear 

systems of equations of a field the set of solution is a vectorspace and has a dimension. A translation 

of this in terms of unification theory would be the number of variables (or parameters) in the 

codomain of a a complete representation. There are a lot of interesting theories where the number of 

parameters depends in a fixed way from the number of variables in the problem. For Boolean rings, 

Abelian groups, the empty theory and linear equations the number of parameters is not greater than 

the number of variables in the original problem. In [LMM87] such a notion of dimension is 

considered for the free term algebra. 

8.2 Lemma. Let U be an minimal representation of the solutions of r. Then U is optimal iff there
 

is no other properly (not necessarily minimal) more general representation.
 

Proof. "~" is trivial.
 

"::>"; Let V be an optimal representation and let Vo be a representation that is properly more 

general than U. Since Uo is properly more general, there exists a substitution 1: E Uo, such 

that 0' ~V(n 1: is false for all a E U. On the other hand there exists a O'OE U, such that 

0'0 ~V(f) 'to Let U' := (U - {ao})u{'t}. This is a representation that is properly more general 

than U. Let U" := U' - {A. E V I A. ~V(f) 't}. This is a minimal representation that is properly 

more general than U, which is a contradiction.• 

8.3 Lemma. Let U be an minimal representation of the solutions of r. Then U is optimal iff it 

consists only of maximal unifiers. 
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8. Minimal and Optimal Representations

Unification theory has as an important notion the definition of what it means for a complete set to be
minimal, and a unification hierarchy for equational theories depending on the existence and cardinality

of minimal complete sets. We show that for unification algebras extended by constants such a usual
notion is available, i.e. in particular for term algebras. Furthermore some counterexamples are given
that in the general case there is no satisfactory definition of rninimality.

8.1 Definition. Let CU be a representation of solutions of the unification problem 1".
i) We say cU is  in addition minimal, iff no proper subset of cU is complete.

ii) Let U1 and U2 be minimal representations.
Then U1 is more general than U2 (modulo V(T‘)), iff V6 6 U2 3': 6 U1 and fc 2W1“) 6.
We say UI  is properly more general than U2, if UZ is not more general than U1.

We say U1 and U2 are equivalent representations, iff UI is more general than UZ and vice
versa.

iii) A minimal representation cU is in addition an optimal representation, iff there is no properly

more general minimal representation.

iv) A unifier 0' is maximal, if for every unifier t with fc QVC") 0' we have also O' v 1: I

In several theories and fields one has a measure for the set of solutions. For example for linear
systems of equations of a field the set of solution is a vectorspace and has a dimension. A translation
of this in terms of unification theory would be the number of variables (or parameters) in the
codomain of a a complete representation. There are a lot of interesting theories where the number of
parameters depends in a fixed way from the number of variables in the problem. For Boolean rings,
Abelian groups, the empty theory and linear equations the number of parameters is  not greater than

the number of variables in the original problem. In [LMM87] such a notion of dimension is
considered for the free term algebra.

8.2 Lemma. Let U be an minimal representation of the solutions of F. Then U is optimal iff there
is no other properly (not necessarily minimal) more general representation.
Proof. "<=" is trivial.

"=>": Let U be an optimal representation and let U0 be a representation that is properly more
general than U. Since U0 is pr0perly more general, there exists a substitution 1: 6 U0, such
that (5 Qwr) 't is false for all 0' e U.  On the other hand there exists a O'OE U, such that
60 Eva) 1:. Let U‘ :=  (U —— [GO})U{’C}. This is a representation that is preperly more general
than U. Let U" :=: U' — {7L 6 U | 7t Eva) 'c}. This is a minimal representation that is pr0perly
more general than U, which is a contradiction. I

8.3 Lemma. Let U be an minimal representation of the solutions of 1". Then U is optimal iff it
consists only of maximal unifiers.
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Proof. "==>": Let U be optimal and let cr be a unifier in U that is not maximal. Then there exists a 

unifier't such that 't ~V(n cr but not cr ~V(n 'to Let U' be (U - {cr}) v {'t}. Then U' is a properly 

more general representation, a contradiction tio Lemma 8.2. 

"<:=": trivial. • 

We show below that for sets ofunifiers in term algebras modulo an equational theory the two notions 

collapse to the notion of minimality with respect to unification in termalgebras. Hence we can use the 

usual examples to show that minimal and optimal sets may not exist [FH83]. 

In general, minimal sets of unifiers are not elementwise equivalent nor have a fixed cardinality, since 

for example the set of all ground solutions is minimal in this sense. Unfortunately, the same holds for 

optimal sets of unifiers, as the next example shows. 

8.4 Example. 

The following part of the constructions is always the same in the four parts of this lemma. 

We construct a term-algebra, such that the initial algebra consists of the set of naturals N including 

. zero. There is a unary function symbol f with f(O) =0 and f(n) = I for all n ~ 1. Let JP := 
{nENln~I}. 

For every example we select a fixed set S of subsets of JP, such that for every A E S there is a 

unary function symbol gA, such that gA(N) = A and such that us = JP. We assume that an 

appropriate set of ground equations is given. 

The unification problem is {f(x) = 1), which has as solution the set { {x f- n In E JP}. 

It is obvious that every maximal unifier has the form {x f- gA(y)}. Now the problem to find 

optimal sets is equivalent to find "optimal" coverings oflP' using sets in S. So in the following we 

give only the set-theoretic part of the arguments 

i)	 Optimal representations of the same size may be uncomparable. 

Let S := {lP'-{1}, lP'-{2}, lP'-{3}}. 

Then lP'-{ I} v lP'-{2} = lP'-{ I}v lP'-{3} = lP', but the coverings are not comparable. 

ii) There exists a unification problem such that for every n = 2,3, ... and even for n = 00 there exist 

optimal representations. 

Let the following sets be in S: 

a) Every set {2n-I,2n} for n ~ 1. 

b) Every set {2n}v{k Ik ~ 2n+l and k is odd} for n ~ 1. 

c) Every set {2n-l}v{k Ik ~ 2n+2 and k is even} for n ~ 1. 

These sets are all maximal in the sense that they cannot be compared by ~.
 

The finite coverings of lP' are:
 

For every m ~ 2 we have the covering of lP' with m elements from S
 

The m-2 smallest sets of a), {2m-2)}v {k Ik ~ 2m-I) and k is odd} and
 

{2m-3 }v{k I k ~ 2m and k is even}.
 

For the infinite covering take all sets of type a).
 

iii) There may exist a r with a minimal representation consisting of two elements. But no optimal 

representation exists. 
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Proof. "=>": Let U be optimal and let 0' be a unifier in U that is not maximal. Then there exists a

unifier ’t such that “c QVG') 6 but not 6 2V0") "c. Let U' be (U -— {6})  U {T}. Then U' is a properly

more general representation, a contradiction tio Lemma 8.2.
"<=": trivial. I

We show below that for sets of unifiers in term algebras modulo an equational theory the two notions
collapse to the notion of  minimality with respect to unification in tennalgebras. Hence we can use the

usual examples to show that minimal and optimal sets may not exist [FH83].
In general, minimal sets of unifiers are not elementwise equivalent nor have a fixed cardinality, since

for example the set of all ground solutions is minimal in this sense. Unfortunately, the same holds for

optimal sets of unifiers, as the next example shows.

8 .4  Example .
The following part of the constructions is always the same in the four parts of this lemma.

We construct a term-algebra, such that the initial algebra consists of the set of naturals N including

-zero.  There is a unary function symbol f with f(0) = 0 and f(n) = 1 for all n 2 1. Let P :=:

{n  e N I n 2 1}.
For every example we select a fixed set S of subsets of IP, such that for every A e S there is a

unary function symbol g A: such that g A(N)  = A and such that US  == P .  We assume that an

appropriate set of ground equations is given.
The unification problem is (f(x) = 1), which has as solution the set { {x <— n | n e IP}.
It is obvious that every maximal unifier has the form {x  (— g A(y)} .  Now the problem to find

optimal sets is equivalent to find ”optimal” coverings of !? using sets in S .  So  in the following we

give only the set-theoretic part of the arguments
i) Optimal representations of the same size may be uncomparable.

Let S :=  {JP—{1}, IP—{Z}, IP——{3}}.
Then IP—{ 1 } U P—{2} : ]P—-—{ 1 }u  IP—{3} == IP, but the coverings are not comparable.

ii) There exists a unification problem such that for every n = 2,3,.  . .  and even for n = oo there exist

optimal representations.

Let the following sets be in S :
a) Every set {Zn-1,2n} for n 2 1 .
b) Every set {2n}U{k I k 2 2n+1 and k is odd} for n 21 .
0) Every set {2n—1}U{k I k 2 2n+2 and k is even} for n 21 .
These sets are all maximal in the sense that they cannot be compared by ;.
The finite coverings of P are:
For every m 2 2 we have the covering of 1? with m elements from S
The m-2 smallest sets of a), {2m-2)}u {k  I k 2 2m—1) and k is odd} and

{2m-3}U{kl k 2 2m and k is even}.
For the infinite covering take all sets of type a).

iii) There may exist a F with a minimal representation consisting of two elements. But no optimal
representation exists.

30



Let S consist of the following sets: 

a) The set of positive odd numbers 

b) for n?:::lthe sets An := {k 11::;; k::;; 2n-l} u {k E JP I k is even} . 

Then the sets An are an ascending chain with respect to k without maximal element in S. There is 

no optimal covering, since the sets An are necessary, but not maximal. A minimal complete 

covering of cardinality 2 is A1 and the odd numbers. • 

8.S Lemma. For a unitary unification problem, all optimal representations are equivalent. 

Proof. Trivial. • 

In the following we show that for unification in unification algebras extended by free constants (in 

particular in free term algebras) the notion of minimal representation and optimal representation are 

the same and that all minimal sets are equivalent [FH83]. 

8.6	 Theorem. Let A be a unification algebra extended by constants and let r be a unification 

problem 

i) Every minimal representation is optimal. 

ii) All minimal representations are equivalent and of the same cardinality. 

Proof. Follows by standard arguments [FH83].• 

Now we can define a special unification type (extended by constants), which corresponds exactly to 

the usual one: [Si75, Si88] 

8.7 Definition. Let A be a unification algebra extended by constants. 

i)	 Let r be a solvable unification problem.
 

r is called unitary, if an optimal representation exists that is a singleton.
 

r is called finitary, if a finite optimal representation exists.
 

r is called infinitary, if an infinite optimal representation exists.
 

r is called nulIary, if no optimal representation exists.
 

ii)	 A is called unification based, iff no solvable ris nullary
 

A is called unitary, if all solvable rare unitary.
 

A is called finitary, if all solvable rare finitary.
 

A is called infinitary, if A is unification based and some r isfinfinitary.
 

A is called nulIary, if some r is nullary.•
 

9.	 Classes of Unification Algebras: 
How to Obtain the Martelli-Montanari Algorithm 

In this section we investigate some classes of unification algebras and give unification procedures for 

these classes. In particular we show how an algorithm in the Martelli-Montanari style can be used for 
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Let S consist Of the following sets:

a) The set of positive odd numbers

b) for nzlthe sets An :=  {k l  1 SkSZn- l}  u {k  & IP Ik i s  even } .

Then the sets An are an ascending chain with respect tO g without maximal element in S. There is
no optimal covering, since the sets An are necessary, but not maximal. A minimal complete
covering of  cardinality 2 is A1  and the Odd numbers. I

8.5 Lemma. For a unitary unification problem, all optimal representations are equivalent.

Proof.  Trivial. I

In the following we show that for unification in unification algebras extended by free constants (in
particular in free term algebras) the notion of  minimal representation and optimal representation are

the same and that all minimal sets are equivalent [FH83].

8.6 Theorem.  Let A be a unification algebra extended by constants and let 1" be a unification

problem

i) Every minimal representation is optimal.
ii) All minimal representations are equivalent and Of the same cardinality.

Proof. Follows by standard arguments [FH83]. I

Now we can define a special unification type ( extended by constants), which corresponds exactly to
the usual one: [Si75, Si88]

8.7 Definition. Let A be a unification algebra extended by constants.
i) Let I“ be a solvable unification problem .

1" is called unitary, if an Optimal representation exists that is a singleton.
F is called finitary, if a finite optimal representation exists.
F is called infinitary, if an infinite Optimal representation exists.
I‘ is called nullary, if no Optimal representation exists.

ii) A is called unification based, iff no solvable I‘is nullary
A is called unitary, if all solvable Fare unitary.
A is called finitary, if all solvable Fare finitary.
A is called infinitary, if A is unification based and some F isf infinitary.
A is called nullary, if some 1" is nullary. I

9. Classes Of Unification Algebras:
HOW to Obta in  the Martelli-Montanari Algorithm

In this section we investigate some classes of unification algebras and give unification procedures for
these classes. In particular we show how an algorithm in the Martelli—Montanari style can be used for
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solving unification problems in unification algebras corresponding to free term algebras and the term
 

algebra of rational terms.
 

The first part is a preliminary and provides the required notions and some connections between them.
 

Throughout the whole section we assume that unification algebras are unsorted and nontrivial and that
 

TERM = OBJ, hence we can speak of terms instead of objects.
 

9.1 Properties of Unification Algebras. 

In the following we define some typical properties of free term algebras and show how to use them to 

construct complete unification steps. 

9.1.1 Definition. Let 5l. = (V ,T,SUB) be a unification algebra. 

i) A term t E T is Q-free, iff for all cr,'t E SUB: at ='tt => cr = 't [Vet)]. 

ii) A unification algebra 5l. is Q-free, iff all terms are Q-free. 

iii) A unification algebra 5l. is decomposable, if for all nonvariable objects s,t: if (s = t ) is 

solvable, then there exists a nonvariable object r and cr,'t E SUB, such that crr = s and 'tr = t. 

• 
An Q-free term algebra [Sz82] (see also [BHS87]) and in particular the free term-algebra are Q-free 

in this sense. 

We need a notion of subterms in order to characterize properties of unification algebras. 

9.1.2	 Definition. A term s is a subterm of t, if there exists a nonvariable term r, such that 

x E VCr) and {x f- s}r = t. 

We denote this by s sub t.• 

9.1.3	 Definition. Let 5l. be a unification algebra. 

i) ~ is called subterm-cycle-free, if sub does not contain cycles. 

ii) ~ is called subterm-finite, if every term contains at most finitely many subterms. 

Accordingly we say a term t is subterm-finite, if t has a finite number of subterms. 

iii) ~ is called collapsing, iff there is a nonvariable term t with x E Vet) and a term s such that 

{x f- s}t is a variable. Otherwise ~ is called collapse-free. 

iv) ~iscalledregular,iff forallcrE SUBandalltET: V(at)=u{V(crX)IXE V(t)}.• 

If we consider usual term algebras modulo an equational theory, then we have the following 

analogies. A simple theory has a subterm-cycle-free term-algebra as unification algebra. However, 

simplicity depends not only on the 'structure' of the equational theory, but also on the signature. An 

almost collapse-free theory has a collapse-free term-algebra (modulo theory) as unification algebra, 

and vice versa. Regular equational theories provide regular unification algebras, but since regularity 

of equational theory depends also on syntax, there are examples of nonregular equational theories, 
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solving unification problems in unification algebras corresponding to free term algebras and the term

algebra of rational terms.
The first part is a preliminary and provides the required notions and some connections between them.

Throughout the whole section we assume that unification algebras are unsorted and nontrivial and that
TERM = OBJ, hence we can speak of terms instead of objects.

9.1 Properties of Unification Algebras.

In the following we define some typical properties of free term algebras and show how to use them to

construct complete unification steps.

9.1.1 Definit ion. Let H = (V,T,SUB) be a unification algebra.

i) A term t e T is Q-free, iff for all 0,1 & SUB: O't = It => 0' = ”c [V(t)].

ii) A unification algebra fll is Q—free, iff all terms are ().-free.
iii) A unification algebra .521 is decomposable, i f  for all nonvariable objects s,t: if ( s  = t )  i s

solvable, then there exists a nonvariable object I and 6,1: 6 SUB, such that or = s and 'cr : t .

I

An Q—free term algebra [8282] (see also [BH887])  and in particular the free tenn—algebra are Q-free

in this sense.

We need a notion of subtenns in order to characterize properties of unification algebras.

9.1.2 Definition. A term 3 is a subterm of t, if there exists a nonvariable term r, such that
x e V(r) and {x  (— s} r  = t .
We denote this by 3 sub t. I

9.1.3 Definition. Let fl be a unification algebra.
i) 54 is called subterm-cycle-free,  if sub does not contain cycles.

ii) % is called subterm-finite, if every term contains at most finitely many subterms.

Accordingly we say a term t is subterm-finite, if t has a finite number of subterms.
iii) 54 is called collapsing, iff there is a nonvariable term t with x e V(t) and a term 5 such that

{x  (— s}t is a variable. Otherwise :4 is called collapse-free.
iv) fl is called regular, iff for all 0' e SUB and all t e T :  V(O't) = U{V(0'x)l x e V(t)}. I

If we consider usual term algebras modulo an equational theory, then we have the following

analogies. A simple theory has a subterm-cycle—free term-algebra as unification algebra. However,

simplicity depends not only on the ‘structure’ of the equational theory, but also on the signature. An

almost collapse—free theory has a collapse-free term—algebra (modulo theory) as unification algebra,

and vice versa. Regular equational theories provide regular unification algebras, but since regularity

of equational theory depends also on syntax, there are examples of nonregular equational theories,
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which provide regular unification algebras. An example is the theory axiomatized by E:= {f(x,y) = 

f(x,z)}. This theory is not regular. However, the provided unification algebra is regular, since y does 

not count as variable in f(x y) due to our definition. 

We investigate some properties of the subterm relation. 

9.1.4 Lemma. 

i) In Definition 9.1.2, we can assume that x is a new variable. 

ii) x E Vet) ~ x sub t 

Proof.	 i) Let {x r s}r = t. Then with a new variable x', we have {x r s}r = 

{x r s} {X'r x} {x ~ x'} r = t . The term r' = {x ~ x'}r is not a variable, furthermore 

x' E Ver'). Hence {x' ~ s}r' = t 

ii) If x E V(t) , we have {x' ~ x} {x' ~ x}t = t, where x' is a new variable and 1':= {x' f- x}t is 

a nonvariable term with x' E Vet').• 

The converse of Lemma 9.1.4 ii) may be false: 

Consider the theory E := {f(x, x) = a}. Then V(f(x,y)) ={x,y}. Thus {x ~ y}f(x, y) = a. This 

means y sub a, but y ~ Yea). 

9.1.5 Lemma. Let 5l be a regular, collapse-free unification algebra. Then 

i) s sub t ~ Yes) ~V(t) 

ii) x sub tiff x E Vet). 

ill) the relation sub is transitive. 

iv) s sub t ~ as sub at 

Proof. i) Holds, since 5l is regular. 

ii) If x E Vet), then {x' ~ x}({x ~x'}t) = t, where x' is a new variable, hence x sub t. The 

other direction follows from i) 

iii) Let r sub s sub 1. There exist terms r', s', with x E VCr') and y E V(s') such that 

{x f- r}r'= sand {y f- s}s' = t. We can assume that x and y are new variables. We have 

{x r rHy f- r'}s' = {y f- {x ~ r}r'}s' = {y ~ s}s' = t. Since 5l is regular, 

x E V({y ~ r'}s'), and since Jl is collapse-free, {y f- r' }s' is not a variable. Hence r sub 1. 

iv)	 s sub t means {x r s}s' = t for some s' with x E V(s'). We can assume that x is a new 

variable. We can assume that DOM(a) ~V(t), due to i). Applying 0' gives at = o'{x f- S}s' = 

(0' V {x ~ as}) s' = {x f- as} (as'). Since 5l is regular x E yeas'), and since A is 

collapse-free as' is not a variable, thus as is a subterm of at. • 

9.1.6	 Example. i) The relation sub may be transitive for a nonregular unification algebra: An 

example is the theory E:= {f(x a) = f(a x) = b}. 

ii) Consider the theory 'E axiomatized by E = {f(f(x)) = x}. The theory 'E is regular, 

Q-free, decomposable, subterm-finite, and collapsing. In this theory, terms are equal, iff they 

contain the same variable and the same number off's modulo 2. Q-freeness holds since f(s) ='1;f(t) 

implies that the number off's in sand t is equal modulo 2. 'Eis decomposable, since every term is 
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which provide regular unification algebras. An example is  the theory axiomatized by E :=  {f(x,y) :

f(x,z) } .  This theory is not regular. However, the provided unification algebra is regular, since y does

not count as variable in f(x y) due to our definition.

We investigate some pr0perties of the subterm relation.

9.1.4 Lemma.

i) In Definition 9.1.2, we can assume that x is a new variable.

ii) x e V(t) => x sub t

Proof.  i )  Let {x  <— s} r  = t .  Then with a new variable x ' ,  we  have {x  +— s} r  =

{x  <— s}  {x'<—- x}  {x  <— x'} r = t . The term r' = {x  (— x'}r  is not a variable, furthermore

x' e V(r'). Hence {x'  (- s}r'  = t '

ii) I f x  eV(t ) ,  we have {x' <— x}  {x' <— x}t  = t ,  where x’ is a new variable and t':== {x’ <— x}t is

a nonvariable term with x' e V(t‘). I

The converse of Lemma 9.1.4 ii) may be false:

Consider the theory E := {f(x, x) = 3}. Then V(f(x,y)) == {x,y]. Thus {x <— y}f(x, y) = a. This
means y sub a,  but y e V(a).

9.1.5 Lemma. Let fl be a regular, collapse—free unification algebra. Then

i) s sub t => V(s) ;V(t)

ii) x sub  t iff xe  V(t).

iii) the relation sub is transitive.

iv) s sub  t => GS sub O't

Proof. 1) Holds, since fll is regular.

ii) If x e V(t), then {x '  <— x}({x <——x'}t) = t ,  where x' is a new variable, hence x sub t. The

other direction follows from i)

iii) Let r sub  s sub t .  There exist terms r ' ,  s ' ,  with x e V(r') and y e V(s ')  such that
{x  <— r}r'== s and {y (— s}s' = t .  We can assume that x and y are new variables. We have
{x  <— r}{y (— r‘}s‘ = {y  <— {x <— r}r‘}s‘ : {y  (— s}s '  = t .  Since .91 i s  regular,

x E V({y <— r'}s'), and since fll is collapse-free, {y (— r'}s' is not a variable. Hence I sub t.
iv) s sub t means {x  e— s}s'  = t for some s '  with x e V(s'). We can assume that x is a new

variable. We can assume that DOM(c) gV(t), due to i). Applying 0' gives (St = (5{x «e— s}s' =
(G U {x  (— Gs}) s '  = {x  <— GS} (63').  Since ‚q is regular x e V(Gs'), and since A is

collapse—free os‘ is not a variable, thus 0's is a subterm of O't. I

9.1.6 Example. i) The relation sub may be transitive for a nonregular unification algebra: An
example is the theory E := {f(x a) = f(a x) == b}.
ii) Consider the theory £ axiomatized by  E = {f(f(x)) = x}.  The theory £ is regular,
Q-free, decomposable, subterm-finite, and collapsing. In this theory, terms are equal, iff they
contain the same variable and the same number of  f’s modulo 2 .  Q-freeness holds since f(s) :1; KO
implies that the number of f ’s in s and t is equal modulo 2. 95 is decomposable, since every term is
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an instance of f(x). The relation sub is not transitive: We have f(x) sub x sub f(x), but not 

f(x) sub f(x), since {y ~ f(x)}t = f(x) with YE Vet) implies t = y. 

9.1.7 Lemma. Jl is regular, iff for all {x ~ s} E SUB, t E T with x E Vet): 

V({x ~ s}t) = (V(t)-{x}) u V(s). 

Proof. Follows by a renaming technique. Rename all variables in l(a) by new variables. Then the 

renamed a is a product of its components. Use induction on the number of components.• 

9.1.8 Lemma. Every Q-free theory is also regular. 

Proof. Suppose there is a a E SUB and a t ET such that V(crt) c u{V(ax)1 x E Vet)}. 

Let y be a variable in U {V (ax)1 x E V (t)} - V (at). Let x and z be two new different 

variables, such that {y ~ x} and {y ~ z} are substitutions. Then {y ~ x}crt = {y ~ z}m, since 

y is not a variable in at. Since Jlis Q-free, we get {y ~ x}a = {y ~ z}a [Vet)]. This is not 

possible due to Lemma 2.13. We have reached a contradiction.• 

9.~.9 Lemma. Let Jl be an Q-free unification algebra. 

Then for variables x,y, nonvariable terms s,t with x E Vet): the collapse-equation {x ~ s}t = y 

implies that Vet) = {x}, V(s) = y and s ~ y. 

Proof. Assume V(t):::> {x}. Since Jlis regular by Lemma 9.1.8, Vet) = {x,y}. 

Now {y ~ t }{x ~ s}t = IDT t, pence by Q-freeness, we have {y ~ t }{x ~ s} = 
IDT [{x,y}], and finally the contradiction t = y. We conclude Vet) = {x}. 

V(s) = {y}holds, since Jl is regular. 

Assume for contradiction that s =y. Then {x ~ y}t =y. If ye Vet), then x ={y ~ x} {x ~ y}t 

= t, which is not possible. If y E Vet), we get the same contradiction as above.• 

9.1.10 Lemma. If Jl is Q-free and subterm-cycle-free, then Jl is collapse-free. 

Proof.	 Assume, Jl is not collapse-free. Then there exists a term s and a nonvariable term t with 

x E Vet), such that {x ~ s}t = y for some variable y. If ye V({x ~ s}t), then all terms in Jl are 

equal, which contradicts our assumption that Jl is nontriviaL Hence y E V({x ~ s}t). Lemma 

9.1.9 shows that Vet) = {x}, V(s) ={y} and s ~ y. Now {y ~ t} {x ~ s}t = {y ~ t}y =t and 

{y ~ t} {x ~ s}t = {x ~ {y ~ t}s}t imply that {y ~ t}s is a subterm of t. Since s is not a 

variable, we have t sub {y ~ t}s sub t, which is a cycle in the subterm relation. This contradicts 

our assumption.• 

9.1.11 Lemma. Let Jl be Q-free and subterm-cycle-free. 

Then for equivalent terms s,t there always exists a renaming p with ps =1. 

Proof. There exists a,'t with DOM(a) =V(s), DOM('t) =Vet) and as =t and 'tt =s. Hence a'tt =t 

and 'tas =s. Q-freeness implies a't =1D>l [Vet)] and 'ta =1D>l [V(s)]. Since Jl is collapse-free 

by Lemma 9.1.10, COD(a) and COD('t) consist of variables. The substitution a is invertable, 

hence it is a renaming.• 
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an instance of f(x). The relation sub is not transitive: We have f(x) sub  x sub f(x), but not
f(x) sub f(x), since {y  <— f(x)}t : f(x) with y e V(t) implies t = y.

9.1.7 Lemma. 2 is regular, iff for all {x  4— s}  e SUB, t E T with x e V(t):
V({x <- S} t )  = (V(t)-{X}) U V(S)-

Proof. Follows by a renaming technique. Rename all variables in 1(6) by new variables. Then the

renamed 0' is a product of its components. Use induction on the number of components. I

9.1.8 Lemma. Every Q—free theory is also regular.
Proof. Suppose there is a 0' e SUB and a t e T such that V(O‘t) c U{V(6x)l  x e V(t)}.

Let y be a variable in U{V(0 'x ) |  x e V( t )}  — V(Gt) .  Let x and 2 be two new different

variables, such that {y  <— x}  and {y (—- z}  are substitutions. Then {y <— x}0‘t = {y <— z}0‘t , since
y is not a variable in ot. Since fl i s  Q-free, we get {y  <— x}o  == {y  (— z ]o  [V(t)]. This is not

possible due to Lemma 2.13. We have reached a contradiction. I

9.1.9 Lemma. Let ‚q be an Q—free unification algebra.
Then for variables x,y, nonvariable terms s,t with x e V(t): the collapse—equation {x <— s}t = y
implies that V(t) = {x}  , V(s) = y and s at y.

Proof. Assume V(t) :) {x}. Since fl i s  regular by Lemma 9.1.8, V(t) = {x,y}.
Now {y  <— t }{x (— s ] t  = IDT t,  hence by Q-freeness, we have {y  <— t }{x <-- s}  =
IDT [{x,y}], and finally the contradiction t = y. We conclude V(t) == {x}.

V(s) = {y}holds, since fi i s  regular.
Assume for contradiction that s = y.  Then {x  <— y}t = y. If y 65 V(t), then x = {y (— x} {x  <— y}t

= t ,  which is not possible. If y e V(t), we get the same contradiction as above. I

9.1.10 Lemma. If fl i s  Q-free and subterm-cycle—free, then it is collapse-free.
Proof. Assume, fl is not collapse-free. Then there exists a term s and a nonvariable term t with

x e V(t), such that {x (— s}t = y for some variable y. If y as V({x (— s}t), then all terms in flare
equal, which contradicts our assumption that fl i s  nontrivial. Hence y e V({x (-— s}t). Lemma

9.1.9 shows that V(t) = {x}, V(s) = {y} and s $ y. Now {y  (— t}{x +— s}t = {y <— t}y = t and

{y <— t}{x (— s}t = {x 6—— {y (- t]s}t imply that {y <— t}s is a subterm of t. Since s i s  not a
variable, we have t sub {y (— t}s sub t, which is a cycle in the subterm relation. This contradicts
our assumption]

9.1.11 Lemma. Let ‚'Zlbe Q-free and subterm-cycle-free.
Then for equivalent terms s,t there always exists a renaming p with ps = t.

Proof. There exists 6,1 with DOM(G) = V(s) ,  D'OM(1:) = V(t) and 0‘s = t and ’ct = 3. Hence O'Tt = t

and tos = s. Q-freeness implies or = ID 54 [V(t)] and "cc = ID a [V(s)]. Since 14 is collapse—free

by Lemma 9.1.10, COD(0‘) and COD(’t) consist of variables. The substitution 0‘ is invertable,

hence it is a renaming. I
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We denote by (a = 't) the equation system (s 1 = t1" .. ,sn = tn), for substitutions a = {xi ~ si I 

i =1,... ,n} and 't = {xi ~ ti li = 1,... ,n}, where DOM(a) = DOM('t) = {Xi li = 1,... ,n}. 

Now we can give rules that are sufficient for the empty theory: 

9.1.12	 Definition. 

Rule: Decomposition. {{s,t}uM} ~W {{s}uM} u (a = 't), 

iffthere is a nonvariable term r such that ar = sand 'tr =t and DOM(a) =DOM('t) = VCr). 

Rule: Occur-check. r ~w FAIL, 

if rcontains a cycle. 

Rule:	 Clash {s,t}uM ~w FAIL, 

if s and t are nonvariable terms and decomposition is not applicable. 

9.1.13 Proposition. Let Jl be a unification algebra extended by constants. 

i) IfJI is Q-free, then decomposition is complete. 

ii) IfJIis subterm-cycle-free, then the occur-check is complete. 

ill) If JI is decomposable, then the clash-rule is complete. 

Proof. i) Let Jl be Q-free. 

n~w n: Let 8 be a solution of {{s}uM} u (a = 't). Then 8 is also a unifier of s = t, as 8ar = 

8'tr. Hence 8 is a solution of {s,t}uM. 

n~wn: Let 8 be a solution of {s,t}uM, let a,'t E SUB with ar =sand 'tr = t and DOM(a) = 

DOM('t) = VCr). Since JIis Q-free, we have 8a = 8't [VCr)], hence 8 is a solution of 

(a ='t). 

ii)	 Let JI be subterm-cycle-free. It is sufficient to show that a r with a cycle has no 

solution. Assume there is a solution 8 of r. There exists a cycle (xi,ti) in r. Since 8 

unifies the cycle and t1 is not a variable, we have that 8t1 is a subterm of itself, which 

is a contradiction. 

ill)	 Let Jl be decomposable. It is sufficient to show that {s,t} uM has no solution. Assume 

there is a solution 8 of s = t. Since .9l is decomposable, there exists substitutions a,'t 

and a nonvariable term r, such that ar = sand 'tr = t. But then decomposition would be 

applicable.• 

If a unification algebra is regular, collapse-free, subterm-cycle-free, then we can define the depth of 

terms for all terms that have a finite number of subterms as follows depth(x):= 0 for x E V, and 

depth(t) := 1 + max{depth(s) I s sub t} 

9.1.14 Lemma. If JIis regular, collapse-free, and subterm-cycle-free, then the definition of depths 

of terms is sensible for subterm-finite terms t for a subterm-finite term t we have sub t implies 

depth(s) < depth(t). 

Proof. If JI is regular and collapse-free, variables have no subterms, hence depth(x) := 0 is 

compatible with the definition of depth. Transitivity of sub yields that for sub t , the {r I r sub s} is 

a subset of {r I r sub t}. Subterm-cycle-freeness implies that the subset relation is proper. For 
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We denote by (o = T) the equation system (31 = t1,...,sn = tn), for substitutions o = {xi (-— si l
i :  1„‚_‚n} and 1: = {xi (— ti Ii = 1,. . . ,n},  where DOM(0') = DOM(1:) = {xi li = l , . . . ,n} .

Now we can give rules that are sufficient for the empty theory:

9 .1 .12  Def in i t i on .

Rule: Decomposition. {{s,t}wM} =>w {{s }UM} U (0' = 'c),
iff there is a nonvariable term I such that or = s and II = t and DOM(0') = DOM('C) = V(r).

Rule: Occur-check. 1" =>W FAIL,
if I‘contains a cycle.

Rule: Clash {S,t}UM =>w FAIL,
if s and t are nonvariable terms and decomp‘oSition is not applicable.

9.1.13 Proposition. Let Zbe  a unification algebra extended by constants.

i) If Fl is Q-free, then decomposition is complete.
ii) If fitis subterm-cycle—free, then the occur—check is complete.
iii) If ‚Qi is decomposable, then the clash-rule is complete.

Proof. 1) Let fi be Q-free.

":w " :  Let 8 be a solution of {{s}uM} u (0' = 1:). Then 9 is also a unifier of s = t ,  as 861' =

G’cr. Hence 0 is a solution of {s,t}UM.

"=>W": Let 6 be a solution of {s , t}uM, let 6,1 6 SUB with or == s and tr = t and DOM(o) =

DOM(’C) : V(r). Since filis Q—free, we have 90' = 61: [V(r)], hence 9 is a solution of

(o = 1).
ii) Let flbe  subterm-cycle-free. It is sufficient to show that a I‘ with a cycle has no

solution. Assume there is a solution 9 of I‘. There exists a cycle (xi,ti) in I". Since 6
unifies the cycle and t l  is not a variable, we have that 9t1 is a subterm of itself, which

is a contradiction.
iii) Let fllbe decomposable. It is sufficient to show that {S,t}UM has no solution. Assume

there is a solution 9 of s = t. Since % is decomposable, there exists substitutions 6,1:
and a nonvariable term r,  such that or = s and 'tr = t.  But  then decomposition would be

applicable. I

If a unification algebra is regular, collapse—free, subterm—cycle-free, then we can define the depth of
terms for all terms that have a finite number of subterms as follows depth(x) := 0 for x e V ,  and

depth(t) :=  1 + max{depth(s) I 3 sub t }

9.1.14 Lemma. If H i s  regular, collapse-free, and subterm-cycle-free, then the definition of  depths
of terms is sensible for subterm—finite terms t for a subterm-finite term t we have sub t implies
depth(s) < depth(t).

Proof .  If % is regular and collapse—free, variables have no  subterms, hence depth(x) :=  0 is
compatible with the definition of depth. Transitivity of sub yields that for sub t , the { r  I r sub s}  is
a subset of { r  I r sub t}.  Subterm—cycle-freeness implies that the subset relation is proper. For
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subterm-finite t, these subsets are rmite by assumption, hence depth is a natural nuber and sub t 

implies depth(s) < depth(t).• 

Note that since 5l. is unsorted, solved systems of equations are exactly those, which are merged, have 

no cylces and in every multi-equation there is at most one nonvariable term. 

Now we can show termination of decomposition-merge for a class of unification algebras: 

9.1.15 Theorem. Let 5l. be Q-free, subterm-cycle-free and decomposable and let r be a unification 

problem, such that all all terms in r have only a rmite number of subterms. 

Then decomposition, merge, occur-check and clash provide a terminating, complete unification 

algorithm for r. 
Proof. Proposition 9.1.13 and Theorem 6.3 show that the rules preserve the solution space. 

We show that the the application of rules terminates. Therefore we need a slight variation of the 

decomposition rule: In the multi-equation{s,t}uM , we delete the term with greater depth and 

keep the one with a smaller depth. 

The measure for showing termination is Il(r) =(Ill, 1l2' 1l3), ordered lexicographically, where III 

is the multiset {depth(t) I t E OBJ(r)} and the ordering on these multisets is inherited from the 

ordering on natural numbers, and 112 is the number of multi-equations in r. 
Decomposition strictly decreases Ill> since the terms in (a ='t) are subterms of either s or t, hence 

the depth of all terms in (a ='t) is strictly smaller than max{depth(s), depth(t)} by Lemma 9.1.14. 

The merge rule leaves III invariant and strictly decreases 1l2' 
Since Il is well-founded, the procedure terminates. 

It remains to be shown that the returned system is in solved form, if r is unifiable. If no rule is 

applicable, then the system has no cycles. Furthermore, every multi-equation contains at most one 

nonvariable term, since otherwise either decompositon or clash is applicable. This means that r is 

solved. (Note that we have assumed that 5l.is unsorted) • 

9.1.16 Corollary. Let 5l. be Q-free, subterm-cycle-free, decomposable and subterm-finite. 

Then decomposition, merge, occur-check and clash provide a terminating, complete unification 

algorithm for r. Morover, 5l. is unitary and has a dimension in the sense of 7.1 • 

9.2 Unification of Free Terms. 

9.2.1 Definition. 

i) A substitution a is Noetherian (modulo W), if there is no properly decreasing infinite chain 

aO >W a1>W a2 >W··· 

ii) An term t is Noetherian (modulo W), if there is no properly decreasing inrmite chain 

to> t1> t2 > ... 

ill) A unification algebra is Noetherian, if every term is Noetherian and for every finite set of 

variables W every substititution is Noetherian.• 
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subterm-finite t, these subsets are finite by assumption, hence depth is a natural nuber and sub t
implies depth(s) < depth(t). I

Note that since .?! is  unsorted, solved systems of equations are exactly those, which are merged, have
no cylces and in every multi-equation there is at most one nonvariable term.

Now we can show termination of decomposition—merge for a class of unification algebras:
9.1.15 Theorem. Let fll be Q-free, subterm-cycle—free and decomposable and let F be a unification

problem, such that all all terms in F have only a finite number of  subterms.

Then decomposition, merge, occur-check and clash provide a terminating, complete unification

algorithm for I‘.
Proof. Proposition 9.1.13 and Theorem 6.3 show that the rules preserve the solution space.

We show that the the application of rules terminates. Therefore we need a slight variation of the

decomposition rule: In the multi—equation{s,t}UM , we delete the term with greater depth and

keep the one with a smaller depth.
The measure for showing termination is pa") : (ul ,  H2: u3), ordered lexicographically, where u l
is the multiset {depth(t) I t e OBJ(1")} and the ordering on these multisets is inherited from the

ordering on natural numbers, and u; is the number of multi—equations in 1".
Decomposition strictly decreases 1.11, since the terms in (0‘ = I) are subterms of either 3 or t, hence
the depth of all terms in (o = I) is strictly smaller than max{depth(s), depth(t)} by Lemma 9.1.14.
The merge rule leaves ul invariant and strictly decreases H2-
Since tL is well-founded, the procedure terminates.
It remains to be shown that the returned system is in solved form, if 1" is unifiable. If no rule is

applicable, then the system has no cycles. Furthermore, every multi-equation contains at most one

nonvariable term, since otherwise either decompositon or clash i s  applicable. This means that F is

solved. (Note that we have assumed that :21 is unsorted) I

9.1.16 Corollary. Let fllbe Q-free, subterm-cycle-free, decomposable and subterm-finite.

Then decomposition, merge, occur-check and clash provide a terminating, complete unification

algorithm for F. Morover, % is unitary and has a dimension in the sense of  7 .1 I

9 .2  Unif icat ion of Free Terms.

9.2.1 Definition.
i) A substitution 0' is Noetherian (modulo W), if there is no properly decreasing infinite chain

00 >W 61>W 0'2 >W-  . .
ii) An term t is Noetherian (modulo W), if there is no properly decreasing infinite chain

t0>  t1> t2 >.. .
iii) A unification algebra is Noetherian, if every term is Noetherian and for every finite set of

variables W every substititution is Noetherian. I
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9.2.2	 Theorem. Let JI. be a unification algebra, such that JI. is a-free, subterm-cycle-free, 

decomposable, subterm-finite and Noetherian. 

Then JI. is isomorphic to the terms over a free signature. 

Proof. 

1) For every term t there is a term to, with to :::; t, to has only variables as subterms, and to is 

minimal with respect to :::;.This term is unique up to ==:
 

Since t is Noetherian, there exists a :::;-minimal nonvariable term to with to :::; 1. Assume, to has
 

a nonvariable subterm s. Then there exists a nonvariable term s' such that {x ~ s}s' :: to.
 

This means s' :::; to. Since to is minimal, there exists a 0' such that O'tO:: s'. Thus
 

O'{x ~ s}s' :: s', and hence by a-freeness we obtain O'{x ~ s } = ID51 . Now
 

O'S :: x implies that Jl.is not collapse-free, which contradicts Lemma 9.1.10.
 

Assume, there is another minimal term tl with the described properties. Without loss of
 

generality we can assume that to and tl are variable disjoint, by applying a variable
 

permutation if necessary. Then to and tl are unifiable, and hence we can use decomposition.
 

There exists a term r and substitutions O',"t with ar = to and 'tr = tl' By minimality, we have
 

r == to and r == tl, hence to == tl'
 
2)	 Now we can defme the signature L: 

We can assume that the set of variables is ordered by a total partial ordering. For every 

equivalence class EC of :::;-minimal nonvariable terms, we select a representative tEC' Due to 

Lemma 9.1.8, all terms in EC have the same number of variables, say nEC' We select a 

nEc-ary function symbol fEC' The signature L then exactly consists of all function symbols 

fEC for all such equivalence classes. We assume that the variables are exactly the set V. 

We define the generating terms t:E,Ec:== fEC(xl,' .. ,xnEd, where {Xl" .. ,xnEd = V(tEC> and 

the variables are ascending with respect to the ordering on variables. 

The set of all terms 'T~,V) can be constructed from the generating terms t:E,EC. 

Every term in 'T~,V) is either a variable or of the form {xl~ tl, ... ,xnEC +- tnEd t:E,EC for 

some terms ti' This representation is unique for terms in 'T(L,V). 

3)	 'T~,V) and JI. are isomorphic: 

We define a mapping <p: 'T~,V) 4 JI., and show that <p is an isomorphism of unification 

algebras. 

<p(x) := x for variables x E V. 

<P({xl~ tl,· .. ,xnEC +-~d t:E,EC> := {xl~ <Ptl,· .. ,xnEC +- <p~d tEC' 

For substitutions 0' == {Xl ~ tl, ... ,xn~ 1n} we define <p(0') := {Xl ~ <Ptl,···,xn~ <P1n} 

i) <p: 'T(L,V) 4 T51 is injective: 

<P({x1~ t1, .. ·,xnEC ~ tnEc}t:E,EC> =<P({x1~ sl,···,xnEC' ~ snEC'} t:E,EC') implies 

{x1~ <Pt1,· .. ,xnEC ~ <P~cJtEC = {xl~ <Pt1, .. ·,xnEC ~ <ptnEd tEC" Hence tEc and tEC' are 

unifiable in JI., which is only possible if tEC = tEc' by (1). Now a-freeness of JI. implies 

<Pti = <pSi for all i, and by induction on the depth of terms in JI. we conclude that <p injective. 

ii) <p:'T~,v) -7 T51 is a surjective: 

Let s be a term in JI.. If s is a variable, then 0' is in the image of <po Let s be a nonvariable term. 

Then s = {Xl ~ sl," .,xn~ snl sO,EC' where sO,EC is the minimal nonvariable term that is 
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9.2 .2  Theorem. Le tfl l be  a unification algebra, such tha tfl l i s  Q-free,  subterm-cycle-free,

decomposable, subterm—finite and Noetherian.

Then 521 is isomorphic to the terms over a free signature.

Proof .
1)

2)

3 )

For every term t there is a term to, with to 5 t, to has only variables as subterms, and to is
minimal with respect to S.This term is unique up to E:

Since t is Noetherian, there exists a _<_-minimal nonvariable term to with to s t. Assume, to has
a nonvariable subterm s.  Then there exists a nonvariable term s' such that {x  (— s}s' = to.

This means s' S. to. Since to is minimal, there exists a 0' such that O'to = s'. Thus
O' [ x (— s}s' = s', and hence by Q-freeness we obtain 0 [x  <— s } = IDfl. Now
0's = x implies that 591 is not collapse—free, which contradicts Lemma 9.1.10.
Assume, there is another minimal term t l  with the described properties. Without loss of

generality we can assume that to and t1 are variable disjoint, by applying a variable

permutation if necessary. Then to and t1 are unifiable, and hence we can use decomposition.
There exists a term I and substitutions 6,1: with or = to and ”cr == t1. By minimality, we have
I‘Eto and r _=_ t1, hence to =:—: t1.
Now we can define the signature 2: .
We can assume that the set of variables is ordered by a total partial ordering. For every
equivalence class EC of _<_-minimal nonvariable terms, we select a representative tEC- Due to
Lemma 9.1.8, all terms in EC have the same number of variables, say nEC. We select a
nEC—ary function symbol fEC. The signature 2 then exactly consists of all function symbols
fEC for all such equivalence classes. We assume that the variables are exactly the set V.
We define the generating terms tz‚EC := fEC(x1,. . . , aC) ,  where {x1,. . . ,aC} = V(tEC) and
the variables are ascending with respect to the ordering on variables.
The set of all terms TEN) can be constructed from the generating terms t2,EC-

Every term in TEN) is either a variable or of the form {x1<—- t1,. . . ,aC <— tnEC} tE‚EC for
some terms ti. This representation is unique for terms in TEN).
TEN) and :21 are isomorphic:

We define a mapping (p: TEN) -—> fl, and show that (p is an isomorphism of unification
algebras.
(p(x) := x for variables x e V.

<P({X1<—t1:--uac <— tnEc} tz,EC) == {X1<— (Pt1v'-9XnEC *— ‘PtnEd tEC-

For substitutions o = {xl <— t1,...,xn<— tn} we define (par) := {x1 <— <pt1‚...,xne (ptn}
i) (p: TEN) —> T‚q is injective:
(p({x1+— t1,. . .‚aC <— tnEC}tZ,EC) =(p({x1<— 31,. . „a@ (— snECJ t2,EC‘) implies
{X1(— (1)121,” ' saC (_— (PtnEC}tEC = {X16-  (Pt1,. ..‚XnEC (— (ptnEC} tEC" Hence tEC and tEC' are

unifiable in 521, which is only possible if tEC = tEC' by (1). Now Q—freeness of :21 implies
(pt, = (ps5l for all i, and by induction on the depth of terms in It! we conclude that (p injective.
ii) (p:TE,V) —-> T„ is a surjective:
Let s be a term in fll. If s is a variable, then 0' is in the image of (p. Let s be a nonvariable term.
Then s = {x1 (— s1.. . .,xn<—— sn} Soße, where SQEC is the minimal nonvariable term that is
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more general than s. Q-freeness of JI implies that Si are unique, and subterm-cycle-freeness of 

JI implies that the JI-depths of the Si'S are strictly smaller than the depth of s. Now induction 

on the JI-depth shows that there are terms Si T with <p siT = si' Hence, , 

<pe {Xl t- SI T,·· .,Xnt- sn T} s~ 0 Ed = s., " , 
iii) <p is also a bijection <p:= SUB~ --7 SUB51'
 

iv) <peen) = <p(o)<p(t):
 

If t is a variable, then the equations holds by definition.
 

Ift is not a variable, then t can be represented as t = {xlt- tl"",xnEC t- tnEcl t~,EC' where
 

the ti's have smaller term depths than t. By definition, we have <peen) =
 

{Xlt- <P(otl)"",XnEC t- <P(otnEC)}tEC' Induction on the term depth shows that this
 

expression is equal to {Xl t- <p(o)<P(tl),'" 'XnEC t- <p(cr)<p(tnEd }tEC' Since V(tEc) =
 

{xl," "xnEC}, this expression is equal to <P(cr)({xl t- <P(tl)," "xnEC t- <p(tnEc)}tEd. This is
 

exactly <pecr)<p(t).
 

v) <p(o'!) = <p(cr)<p(''I:):
 

Follows easy from part iv).
 

vi) <p is an isomorphism:
 

Using Definition 5.1, we have shown that <p is a bijection on terms and substitutions and is a
 

homomorphism of unification algebras. That <p is an isomorphism follows from Lemma 5.3.
 

• 
The following example gives a theory that is unitary due to Corollary 9.1.16 but cannot be equivalent 

to a free term algebra, since it is not Noetherian. 

9.2.3 Example. 

Consider the following theory. The theory can be viewed as a theory of infinite sequences s, such
 

that for every sequence s, there exists a number n such that srn becomes constant for for all m ~ n.
 

The signature has for every n > 0 an n-ary function symbol fn. The theory 'E is defined by the
 

(infmite) canonical term rewriting system:
 

R := {fn(xlo" "xn_2,x,x) --7 fn-l (xlo""xn_2,x) I n ~ 2}.
 

'E is Q-free: Assume fn(Sl," .,sn) ='E fn(tr. ... ,tn) for some fn' Si and ti and assume that for some
 

j E {1, ... ,n}, we have Sj *'E tj' We can assume that all Si and ti are in normal form. Furthermore,
 

we can assume that n is the smallest number, which violates Q-freeness. Since fn(sl,···,sn) ='E
 

fn(t1, ,tn), one of them must be reducible, say fn(sl, ... ,sn), hence n ~ 2. Reducability of
 

fn(s!> ,sn) implies sn = sn-l. Now fn(tl, ... ,tn) must be reducible, too, hence tn = tn-l' Thus we
 

have fn-l(Sl, ... ,Sn-l) ='Efn-l(t1, ... ,1n-l), which contradicts the minimal choice ofn.
 

'E is subterm-cycle-free: Holds, since the (usual) term depth is invariant in equivalence classes
 

with respect to 'E.
 

'E is subterm-finite: The equations show, that application of rewrite rules does not change
 

equivalence classes of subterms, hence a term has only a finite number of subterms modulo 'E.
 

'E is decomposable: Let s,t be nonvariable, unifiable terms. By applying rewrite rules backwards,
 

we can assume that s = fn(sl, ... ,sn) and t = fn(tl, ... ,tn) for some n. Then we can choose r =
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more general than s .  Q—freeness of J?! implies that si are unique, and subtenn—cycle-freeness of

fll implies that the fll—depths of the si’s are strictly smaller than the depth of s. Now induction

on the fl —depth shows that there are terms SLT with (p 8LT = si. Hence

<P({X1 <— Sl,Tv'--vxn<_ Sn,T} SE,O,EC) = S-

iii) (p is also a bijection (p:= SUB; —-> SUB ‚q.
iv) (P031) = (P(6)<P(t)2

If t is a variable, then the equations holds by definition.
I f t  is not a variable, then t can be represented as t = {x1<— t1,. . . ,ac <— tnEC} EEC» where
the ti's have smaller term depths than t. By definition, we have (p(0‘t) =
{x1<— (p(0' t1)‚ . . . ,aC (—- (p(0'tnEc) }tEC. Induction on the term depth shows that this
expression is equal to {x1<— (p(0')(p(t1),. . . ,aC <— (p(o)(p(tnEc) }tEC. Since V(tEC) =
{x1,. . . , aC} ,  this expression is equal to (p(0')({x1<— (p(t1),. . . ,ac e— (p(tnEC)}tEC). This is
exactly <p(o)<p(t).
V) <i>(6’t) = <P(G)<P(T):
Follows easy from part iv).

vi) (p is an isomorphism:
Using Definition 5.1,  we have shown that (p is a bijection on terms and substitutions and is a

homomorphism of unification algebras. That (p is an isomorphism follows from Lemma 5.3.
I

The following example gives a theory that is unitary due to Corollary 9.1.16 but cannot be equivalent

to a free term algebra, since it is not Noetherian.

9 .2 .3  Example .
Consider the following theory. The theory can be viewed as a theory of infinite sequences 8, such

that for every sequence 3, there exists a number n such that sm becomes constant for for all m 2 n.

The signature has for every n > 0 an n-ary function symbol fn. The theory 93 is  defined by the

(infinite) canonical term rewriting system:
R := {fn(x1,...,xn_2,x‚x) —-> f _1(x1,„.,xn_2,x) In  2 2}.
£ is gz-free: Assume fn(sl,. . .,sn) =95 fn(t1,. . .,tn) for some fn, si and ti and assume that for some
j e {1,.. .,n}, we have sj if  tj. We can assume that all si and ti are in normal form. Furthermore,
we can assume that n is the smallest number, which violates Q-freeness. Since fn(s1,...,sn) =£
fn(t1,. . . , tn),  one of  them must be reducible, say fn(s l , . . . , sn) ,  hence n 2 2. Reducability of

fn(sl,...,sn) implies s1“ = sn_1. Now fn(t1,. . .,tn) must be reducible, too, hence tn == tn_1. Thus we
have fn_1(sl,. . . ,sn_1) =£ fn_1(t1,. . .,tn_1), which contradicts the minimal choice of n.
95 is subterm-cycle-free: Holds, since the (usual) term depth is invariant in equivalence classes
with respect to £

Meme: The equations show, that application of rewrite rules does not change

equivalence classes of subterms, hence a term has only a finite number of subterms modulo £

2 is decomposable: Let s,t be nonvariable, unifiable terms. By applying rewrite rules backwards,
we can assume that s = fn(sl,.„‚sn) and t = fn(t1,...,tn) for some n. Then we can choose I =
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f(XI'" .,xn), where xl," "xn are new variables, and (J := {xi f- si I i = 1,... ,n} and 1: := {xi f- ti I 

i = 1, ... ,n}.
 

'Eis not Noetherian: the following chain fl(xI) > f2(xloxi) > f3(xI,x2,x3) > .,. shows this:
 

We have {xn f- xn_dfn(xI'''''xn) = fn_l(xl,,,,,xn_l)' In order to show that fn-l(xl,,,,,xn-l) is a
 

proper 'E-instance of fn(xI,''''xn), assume fn-l(tl, ... ,tn-l) ='E fn(xI,""xn), The term fn(xI," .,xn)
 

is in normal form, thus fn-l(tl, ... ,tn-l) must be reducible. However, it is not possible to reduce it
 

to a term starting with fn. We have reached a contradiction.
 

Now Corollary 9.1.16 shows that for this theory the algorithm conslstmg of the rules
 

decomposition, merge is a unification algorithm and that it is of unification type unitary.•
 

9.3 Unification of Rational Terms. 

In order to give unification rules that are able to deal with the algebra of rational terms [C082], we 

need more properties of unification algebras. 

9.3.1 Definition. Let Jl be a unification algebra. 

.9/. solves cycles uniquely, iff for every nonvariable term r with x E VCr), and two terms 

s, t: {x f- s}r =s and {x f- t}r =t implies s =t.• 

9.3.2	 Definition. 

Rule: Rational-Unfolding: 

t =M ==>w x =t' =M, 

if t contains a nonvariable subterm s, {x f- s}t' = t, where t' is a nonvariable term with 

x E Vet'), and x is a new variable.• 

9.3.3	 Proposition. If Jl is Q-free, collapse-free, and solves cycles uniquely, then rational­

unfolding is a complete step. 

Proof. 

1) The tranformation is complete. 

"=::}": Let 8 be a solution oft = M. Then define 8' such that 8' = 8 [V(t,M)], and 8'x := 8t. 

Obviously 8' = 8'{x f- t}. This implies 8't' = 8'{x f- t}t' = 8't = 8t. 

"<=:": Let 8 be a solution of x =t' =M. Without loss of generality we can assume that DOM(8 ) n 
1(8) = 0. With 8' := 8IV(t')-(x}' we can partitition 8 as follows: 8 = 8'u{x f- 8t'}. Then we have 

8x =8t' ={x f- 8t'}(8't'). 

8't' is not a variable, since.9/. is collapse-free. We have 8t =(8'u {x f- 8t'}){x f- t}t' = 
{x f- 8t'}8'{x f- 8't}t' = {x f- 8't}8't' = {x f- 8t}8'!'. .9/. solves cycles uniquely, hence 8t 

=8t'.This means, 8 is a unifier oft =M. 
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f(x1,...,xn)‚ where x1,...‚xn are new variables, and 6 := {xi <— si l i = 1,...,n} and ”c := {xi <— ti I
i = 1 , .  . . , n} .

“Eis not Noetherian: the following chain f1(x1) > f2(x1,x2) > f3(x1,x2‚x3) > shows this:
We have {xn (— xn,1}fn(x1,...,xn) = f _1(x1,...,xn_1). In order to show that f „1(x1‚...,xn_1) is a
proper nE—instance of fn(x1,...,xn), assume f _1(t1,...,t„_1) =£  fn(x1,...,xn). The term fn(x1,...,xn)

is in normal form, thus f _1(t1,. . . ,tn_1) must be reducible. However, it is not possible to reduce it

to a term starting with fn. We have reached a contradiction.

Now Corollary 9.1.16 shows that for this theory the algorithm consisting of the rules

decomposition, merge is a unification algorithm and that it is of unification type unitary. I

9 .3  Unif icat ion o f  Rational  Terms.

In order to give unification rules that are able to deal with the algebra of rational terms [C082], we

need more properties of unification algebras.

9.3.1 Definition. Let flbe  a unification algebra.

fl solves cycles uniquely,  iff for every nonvariable term r with x e V(r), and two terms
s , t :  {x<— s} r=s  and {x<—t}r= t i rnp l i e s s  = t .  I

9 .3 .2  Def in i t i on .
Rule :  Rational—Unfolding:

t=M =»W x= t '=M‚

if t contains a nonvariable subterm s ,  {x  <— s}t' = t ,  where t' is a nonvariable term with
x eV(t ' ) ,  and x is a new variable. I

9.3.3 Proposi t ion.  I ffl t i s  Q—free, collapse-free, and solves cycles uniquely, then rational-
unfolding is a complete step.

P roo f .

1) The tranformation is complete.
"=>": Let 0 be a solution of t = M. Then define 9 '  such that 8 '  = 9 [V(t,M)], and 9'): :=  9t .
Obviously 9 '  = 6'{x <— t}. This implies G't' = 8'{x (— t}t‘ = G't = Gt.
"<=": Let 6 be a solution of x = t' = M. Without loss of generality we can assume that DOM(9 ) n
I(9) = @. With 6‘ := 9|V(t.)_[x}, we can partitition 9 as follows: 9 = 6'U{x (— Gt'}. Then we have
0x : Ot' = {x e— 6t‘}(9't').
O't' is not a variable, since fl i s  collapse-free. We have Gt = ( 6 ' u { x  (— 9t '}){x (— t}t' =
{x  <— 9t '}8 '{x (— 9't}t'  = {x  <— 0't}9't '  = {x  <— 9t}9‘t'. .91 solves cycles uniquely, hence Gt
= Bt'.This means, 9 is a unifier of t = M.
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9.3.4 Proposition. If Jlis Q-free, collapse-free, and Noetherian, then the rational-unfolding rule 

tenninates with a r, such that all terms in OBJ(r) have only variables as subterms. 

Proof. We show that the transformation tenninates: 

Let the measure be the multiset of all nonvariable terms that have nonvariable subterms, ordered by 

the ordering that comes from the instance relation. Since Jl is Noetherian, the multi-set ordering is 

well-founded. We have to show that t' < 1. Obviously t' ~ t. Assume at = t' for some substitution 

cr with DOM(cr) =V(t) . Then {x f-- s}at =1. Furthermore t '* t', which implies V(t) '* 0. Now 

Q-freeness implies {x f-- s}cr = IDT [V(t)], which is impossible, since Jl is regular and 

collapse-free. 

We have shown that rational-unfolding terminates. 

If rational-unfolding stops, then there is no term with a nonvariable subterm, hence the last claim 

holds.• 

Cyclically solved systems of equations are exactly those, which are merged and in every 

multi-equation there is at most one nonvariable term. 

9.3.5	 Theorem. If Jl is Q-free, collapse-free, decomposable, Noetherian, and solves cycles 

uniquely, then the following procedure is complete and terminates. 

1) first use rational-unfolding until this is no longer possible, 

2) use decomposition, merge and clash. 

If it terminates, then r is in cyclically solved form. 

Proof. Lemma 9.3.4 shows that step	 ~ yields a r, which contains only variables or terms that have 

no nonvariable subterms. 

Let s =t be in a multi-equation and nonvariable terms. If they are unifiable, then decomposition is 

applicable. Let crr = s, tr =t with DOM(cr) = DOMet) = V(r). We have that COD(cr) abnd COD('t) 

consist of variables, since otherwise s or t have nonvariable subterms as Jl is regular and 

collapse-free. Hence every decomposition removes a nonvariable term. This means, the 

merge-decomposition process terminates. Furthermore it is complete due to Lemma 9.1.13.• 

All the above properties hold for rational terms [Co 82], hence our algorithm can be applied to them. 
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