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Abstract: The converse problem of measurement interpretation is event recognition. In situations which are characterized by a
specific order of events, a single snapshot is not sufficient to recognize an event. Instead one has to plan a measurement

sequence that consists of observations at more than one time point. In this paper we present an algorithm for planning such an
observation sequence based on the specification of the event and discuss the problem of giving a meaningful definition of a
'successful match of a measurement sequence against a situation description'.

1 Introduction

Conventionally, in Qualitative Reasoning the term measure-
ment interpretation stands for the task of explaining a given
set of measurements by reconstructing a section of the
system's envisionment that accounts for all of the measure-
see [Forbus83], [Forbus86],
[Simmons82])!. In a diagnostic setting measurement
interpretation is useful when observations have already been
made (e.g. by automatic sampling of quantities) but a hypo-
thesis has not yet been formed.

ments (for examples,

Frequently, though, we are faced with the opposite situation:
given a hypothesis we must determine a set of observations
that will support it. In the simple case there exists a unique
state which occurs only within the hypothetical behavior and
nowhere else in the envisionment. If such a combination can
be found, a "one-look™ approach at the right moment is all we
need to verify the hypothesis. Things are more complicated
when no unique state exists and the hypothetical behavior is
characterized instead by the specific sequence of events. We
have found examples for this latter case while constructing

1 Variations on this topic include the choice whether the
imeasurements are made simultaneously or sequentially and
\whether only the amounts or also the derivatives of quantities
are measured.

MOLTKE, an expert system for the diagnosis of CNC-
machining centers [ANRRS88]. A medical domain in which
temporally distributed symptoms play a role is described in
[Tsotsos85]. Verifying that such a behavior is occurring is
the aim of temporal event recognition; it necessarily requires
planning a measurement sequence that consists of observa-
tions at more than one time point. In this paper we discuss
the problem of giving a meaningful definition of a 'successful
match of a measurement sequence against a situation descrip-
tion’ and present an algorithm for planning and matching an
observation sequence. Although throughout the discussion we
will draw our examples from the diagnostic domain, in the
concluding section we will argue that our method of temporal
matching can be applied in other areas, too.

2 An example
Consider the following example from MOLTKE's domain:

One possible cause for an undefined position of the tool
magazine is a faulty limit switch. This cause can be ruled
out if the status registers IN20 and IN30 of the CNC
control system show the following behavior: at the
beginning both registers contain the value 1. Then IN20
drops to 0, followed by IN30. Finally, both return to
their original values in the reverse order.
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The situation is illustrated in the following figure:

IN20 _|—-|—
IN30 |

(=T~

Fig. 1 — An example for a dynamic situation

If we want to recognize an occurrence of this situation we
have to solve two problems:

- We have to plan an observation sequence for IN20 and IN30
that can be observed only in this particular situation.

- If at any point partway through the plan we are confronted
with an unexpected measurement we have to be able to decide
whether this piece of information is compatible with the
situation or not.

The solution to the first problem depends on the assumptions
we make about measurements. When we speak of a measure-
ment we mean an observation of the amount of a specific
quantity at a specific time point, made either by a human
observer or by a sensor. A theory of measutement (in
particular, of measurement errors) is beyond the scope of this
paper. For our purposes measurements are characterized by the
following properties:

(M1) No two measurements can take placé at exactly the
same time,

(M2) All measurements are discrete, i.e. the amount of a
quantity is measured at a time point! rather than over an
interval.

Axiom (M2) immediately poses the problem that the period
over which a situation occurs cannot be covered with
measurements. Consequently, we have to define a weaker
criterion: we would like to be able to derive from the situa-
tion a specific measurement sequence such that if this

1 This should not be confused with the question how time
points are accommodated in an interval-based temporal logic.

sequence has been observed and all possible additional
measurements fit in we are sure that no other situation can
have occurred modulo the resolution of our measurement
techniques. In our example, we would insist on observing
IN30 = 1 again after IN20 = 0 has been measured to make
sure that IN30 does not drop to 0 before IN20 does. If on the
other hand our initial measurement for IN30 had been IN30 =
0, we would have rejected an occurrence of the situation
because there is no way of fitting in this observation at the
beginning of the situation.

All of these intuitive notions will be defined more formally
in the next section.

3 Situations, measurements, and
matching

3.1 Situations

While figure 1 is a perfectly natural representation of the
situation for a human reader, we adopt a representation that is
better suited to algorithmic manipulation.

The basic vocabulary for the description of situations
comprises quantities, intervals, episodes and value histories.
As each of these terms have been used in the literature with
varying meanings, we briefly summarize their intended inter-
pretations within this paper.

Intervals are defined as in [Allen/Hayes85]. For the purpose of
mapping an interval I onto a global time line we assume the

existence of a left (right) endpoint of I which is denoted by

LM RAY.

We assume that quantities q take on qualitative values? from
some set Dom(q) and change their value only a finite number
of times during any situation. A pair <I,v>, where I is an
interval of maximal extent during which the (qualitative)

2 Stated in another way, continuously changing quantities
have been replaced by discrete ones by imposing an order-
preserving equivalence relation on their values.
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value of q is constantly equal to v, is called an ¢pisode. The
values that a quantity q takes on over a period of time are
represented as a value history which is a set of episodes in
which the episode intervals form a linear chain related by the
interval relation "meets".

DEFINITION: A situation is a triple <Q, H, C> where

- Q is a finite set of quantities;

-H={Hglqe Q} isasetof value histories and

- C= {Cg E' | E, E' episodes of histories in H} is a set of
constraints specifying the relative positions of the histories
w.r.t. each other. Each Cg g’ is a disjunction of Allen inter-
val relations ([Allen83])1 one of which is required to hold
from the interval of E to the interval of E'.

In our example, IN20's value history is (Ej=<Iy,1>,
Eg=<I3,0>, E3=<I3,1>), IN30's value history is (E4=<I4,1>,
E5=<I5,0>, Eg=<Ig,1>). C contains CE E' = {m] for each
pair E, E' of consecutive episodes in the same history. The

relative positions of the epsiodes in the two histories are
specified by constraints such as CE4 Ey = CEy Eg = {0}.

Actually the constraints in C are further restricted to convex
relations which are defined in [N6kel88]. Convex relations
form a subalgebra of Allen's full relation algebra which has
been found sufficiently expressive for the description of the
dynamic behavior of technical systems in all the examples we
have studied so far. Roughly speaking, a disjunction D of
primitive Allen relations is convex iff the following holds for
any pair of intervals I, I standing in the relation D: if we
keep the positions of three of the four endpoints fixed w.r.t. a
global time line, then the set of timepoints that can be
assigned to the fourth endpoint in accordance with D is
convex. Convex relations can also be described as conjunc-
tions of endpoint orderings; in contrast to the subalgebra
described in [Vilain/Kautz86] we allow <, >, <, 2, and
"unconstrained”, but not #, as endpoint relations. For a more
detailed discussion see [Ntkel88].

1 We abbreviate interval relations as usual, e.g. m for "meets”,
o for "overlaps" and so on.

The similarity between situations and the format of the
envisionments generated by a number of qualitative simula-
tion programs (e.g. HIQUAL [VoB887] or programs based on
the episode propagators in [Williams86) and [Decker87)) is
not accidental. One geal in a later stage of the project is to
use one of these programs to generate the situation descrip-
tions and use them later as complex symptoms in a rule-based
diagnostic system. In this system the matching algorithm
described in section 4 will be invoked by the rule interpreter
whenever a situation is encountered in the condition part of a
rule.

We need some more terminology to formalize the relation
between situations as patterns and actual occurrences of situa-
tions:

DEFINITION: For every set of value histories H let
PH):={L(DIHge H,<Lv>e Hy} U{R() I Hy € H,
<Iv> € Hgq } denote the set of (left and right) endpoints of all
episode intervals in all histories of H.

DEFINITION: An instance of a situation S = <Q,H,C>isa
mapping D: P(H) — T (T dense, totally ordered, without
least or greatest element, e.g. T = IR), which respects the
relations in C.

DEFINITION: An instance D of a situation § = <Q, H,C>
occurs in an interval O € T iff D maps into O and
Vte O,qe @ Mgp=v

= 3<I,v>e Hg DILD) <t <DRQD).2

We say that a situation S has occurred when we are not
interested in the properties of the particular instance.
3.2 Measurements

DEFINITION: A measurement is a triple <g, t, v>,where q is a
quantity, t € T and v e Dom(q).

2 (M q t) is borrowed from QPT notation and means "the
(magnitude of the) amount of q at timepoint t".
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DEFINITION: A measurement sequence M is a finite set of
measurements {<qj, tj, vi>}i=1,,,.,n where t] <t2 <... <tp.
Let Int(M) :=[t1 ; tp] = T.

DEFINITION: A measurement sequence

M = {<qjtj,vi>}i=1,. ..,n is compatible with a situation S if
there is an instance D of S that maps into Int(M) and
Vi:3<I,v> € Hgy DO <ti < DRM) A v =V;.

3.3 Matching

The problem of recognizing an occurrence of a situation can
be split into two tasks:

@ planning a desired sequence of observations
(b)  matching the actual observations against the situation.

We will discuss (b) first and return to (a) in section 4, Ideally,
we would like to define a relation ‘matches’ between measure-
ment sequences M and situations S in such a way that the
following two properties hold:

Completeness:
VS VM: M determines S = matches (M, S)

where M determines S if the observation of M implies that S
has indeed occurred in Int(M).

Soundness:
VS VM: matches (M, S) => M determines S.

Evidently, with this definition we run into problems
regarding the granularity of measurement sequences and situa-
tions. Consider our example and the measurement sequence
indicated by the arrows in figure 2:

Although the observations are compatible with an instance of
S, we cannot guarantee that it has occurred. For all we know,
the situation §' in figure 3

IN20

IN30
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Fig. 2 — A sparse measurement sequence M

Fig. 3 — M is compatible with other situations

may equally well have occurred. Hence, matches(M, S) must
not hold.

As long as we are committed to discrete measurements the
dilemma cannot be resolved. If we want to capture the way
that discrete measurements do act as filters on situations, we
have to replace "M determines S" by a weaker notion. We
therefore define the granularity of a situation's instance and of
a measurement sequence.

DEFINITION: The granularity of an instance D of a situation
S (written gran(D)) is the shortest duration among all episode

intervals in the instance.

DEFINITION: The granularity of a measurement sequence M
(written gran(M)) is the longest gap between any two conse-
cutive measurements of the same quantity in M.

DEFINITION: A measurement sequence M weakly determines
S if the following implication holds: M has been observed =
[(3 D instance of S: D occurs in Int(M)) v (VS': V D'
instance of S": D' occurs in Int(M) = gran(D') < gran(M))].

The intention behind this definition is that if we have the
extra knowledge that the episodes over which the quantities
remain (qualitatively) constant do not become arbitrarily
short, then a suitably chosen measurement sequence which is
denser than the minimal duration of the episodes can indeed
determine a situation in the stronger sense. Notice the
similarity of this argument to the discussion in [Forbus86].

We next give a definition of 'matches’ that satisfies the weak
versions of the completeness and soundness properties.

4
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DEFINITION: A measurement sequence
M={<qj,ti,¥i>}i=1,...,n matches a situation S=<QH,C>, iff
there is an instance D of S that satisfies the following condi-
tions:

(i) D maps into Int(M).

(i) V <q,t,v>e M: I <l,v> € H<1: DILI) £t <DRA))
(all measurements are compatible with the instance)

(iii) Vq e Q: V <L, v> € Hy: d<«q,t,v>e M DLID) <t <
DR{®D)

(there is at least one observation for each episode)

(Vg qe QGQVE=<Lv>e Hg,E'=<I,v>e Hq‘i

E necessarily overlaps E' 1o

J<q,t,v>, <q, t, v> e M: DALY <t £t <DRA))
(each overlap of two episodes required by C is verified by
observing the overlapping episode at a point gfter the

observation of the overlapped episode)

We sketch a proof for the claim that this definition satisfies
the completeness and soundness properties.

Soundness: Assume that the measurement sequence M, which
matches the situation S=<Q,H,C>, has been observed.
Further assume that there has been an instance D' of a situa-
tion S' with gran(D") > gran(M) which means that no quantity
changes its value twice in an interval of length less than
gran(D"). In conjunction with (ii) and (iii) of the definition
this implies that exactly the episodes in H have occurred in
Int(M) and none else. We have to show yet that all con-
straints in C are satisfied. Here we use the fact that all con-
straints are convex relations, i.e. representable as conjuncti-
ons of certain endpoint orderings. By examining each possible
endpoint ordering it can be shown that a violation of any
endpoint ordering would lead to a violation of condition (ii),
(iii) or (iv) and thus to a contradiction. If e.g. CEE' =
{0,s,d}, but in reality the interval of E "meets" the interval of
E', then M cannot have been observed, because for M to
match S there has to be a measurement for E' followed by one
for E.

1 Formally: Cg g is any subset of {o, oi, d, di, f, fi, s, si, =}.

Completeness: The claim is equivalent to saying that af
measurement sequence M that does not match S, cannot
weakly determine S. Therefore we have to show that all of (i)-
(iv) are needed to ensure that M weakly determines S. (i) is
obvious: even if there is no instance of S that could possibly
occur in Int(M), there can still be an instance D' of another
situation with gran(D') > gran(M), and in this case weak
determination would not hold vacuously. If (ii) were violated,
M would weakly determine a different situation in which the
episodes would fit the measurement. If (iii) did not hold, M
could not weakly determine S, because a situation in which
one cpisode were missing could also have occurred. Case (iv)
is similar, except that the presence of an overlap cannot be
guaranteed.

If we take a second look at the measurement sequence M in
figure 2, we find that it satisfies all of (i)-(iii), but not (iv).
By adding two additional measurements for IN30 = 1 and one
for IN20 = 0 we get the measurement sequence M in figure 4
which indeed matches the situation.

IN20 v 1
2 % 0
N [}

N30 ~4—% — 1
2 ! 4 & . 7 H ’
. "J—+-| 2020
A T

M'=(ml m2 m3 m4 m5 m6 m7m8 m9)

Fig. 4 — A matching measurement sequence

There is an interesting asymmetry in the definition: (iv)
.makes sure that every overlap specified in the constraints of
the situation is actually observed; there is no analogous
condition which ensures that two episode transitions specified
to take place simultaneously actually do so. In fact, given the
limitations of discrete, one-at-a-time measurements there
cannot be such a condition. How, then, can we detect that the
measurement set M' in figure 4 does not match a situation
where IN20 and IN30 change values simultaneously? As we
see in figure 5, there is no consistent mapping that associates
measurements with episodes and condition (ii) is violated.
Hence, we do not have a positive condition for the occurrence
of simultaneous transitions, but we know that given a
measurement sequence of sufficiently fine granularity we
would detect an overlap if there were one instead.

S
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relations according to the gbservation rule: if m] = <qq, t],
v1> and mg = <q2, t2, v2>, t] <t are associated with
episodes E1 and E», respectively, then it follows that Ep
cannot possibly precede Ej.

Fig. 5 — Detecting an overlap that should not be there

4 The matching algorithm

We are now ready to tackle problem (a) above. In order to
implement the matching definition we have to add a mecha-
nism which suggests the observations and turn the static
match of the complete measurement set against the situation,
into an incremental match which minimizes effort by
detecting irreparable deviations from the situation as early as
possible.

Recall that we want to verify (i) that all episodes mentioned
in the situation actually occur and (ii) that their relative posi-
tions satisfy the interval relations in the constraint part.
Verifying (i) is relatively easy: all we have to watch out for is
not o associate a measurement with an episode E unless we
have an observation for every episode E' that precedes E
according to Cl. As for (ii), imagine starting with an Allen
interval graph G containing the episode intervals as nodes and
having all edges labelled with "no-info"2.3 Each pair of
measurements in a sequence rules out some of the initial

lje. Cgg is one of {<}, {m}, or {<;m]}.

2 The disjunction of all 13 primitive interval relations.

3 Well, not quite no-info. Since simultaneous transitions can
be observed only via negationis (by failing to detect an
overlap instead, as discussed at the end of section 3.3), we
cannot expect to narrow down the edge labels from no-info to
a simultaneous transition such as {<}, {m} or {<, m} just by
applying the observation rule (fig. 6). We therefore initialize
the edge labels in G with no-info except where the relation in
C is one of {<}, {m} or {<, m}; these we take over unchanged
and propagate them using Allen's algorithm to arrive at the
initial state of G. In this case a mismatch is detected when an
application of the observation rule to the offending overlap
results in the empty disjunction as the new edge label,
signalling an inconsistent state of G.

El= <Il,v1>|—.——|

E2 = <I2,v2> !

-

&

.

1

=, {<m)® 1

2

5 eenn

Fig. 6 - The observation rule

If we can find a measurement sequence which narrows down
the labels in the interval graph from the initial state to
subsets of the corresponding relations in the constraint part C
of a situation S and contains at least one observation for each
episode, then it matches S. The intermediate stages of the
interval graph can be used to plan the next measurement: if
the relation from episode E1 to Ep in the interval graph con-
tains < and/or m but the relation in C does not, then plan to
observe E2 and Ej - in that order - to get rid of the unwanted
relations. Furthermore, all episodes that have not been
observed at all are candidates for observation. This initial
candidate set can be pruned using rules which are detailed in
the algorithm below.

The algorithm that we are about to describe (see next page)
operates in a cycle with alternating suggestions and
measurements until the candidate set is empty. We report a
match iff at this point the labels of the interval graph are
subsets of the constraints in C and no episode has been
skipped unobserved. The algorithm is of the "sweep-line"
type and at any point during the matching process divides the
set of episodes into three classes:

- sleeping: episodes that have not yet been observed;

- open: episodes which have been observed at least once, but
the following episode has not been observed.

- closed: episodes which precede an episode in open.

As shown in [Ntkel88], the test for global consistency in
line (*) can be carried out in polynomial time (w.r.t. the

6
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number of episodes in the sitvation), if we restrict ourselves In our example, this algorithm suggests the measurement
to convex interval relations. This result is very similar in  sequence M' from figure 4 which indeed matches the
nature to the one in [Vilain/Kamz86], although the sub- situation. Sequence M from figure 2, however, is rejected.
algebra is defined differently.

To find a matching measurement sequence for a situation $§ = <Q,H,C> do:
Initialize interval graph G as described above;
open « &;
sleeping ¢« the set of all episodes in H;
closed « U;
suggest a set N of quantities one of which should be measured next;
while N # & do

obtain a measurement (m);

fit_in measurement (m):;

if m does not fit,then report failure, stop:

suggest a set N of quantities one of which should be measured next;
end;
if the relations in G are subsets of the relations in C,

then report match else report failure:;
end.

To suggest a set of quantities to be measured next do:
/* Episodes which should be observed next are accumulated in candidates. Follow-ups
contains the second episodes where a planned application of the observation rule

forces the first episode into the candidate set; it is used for pruning the candidate
set.*/

(a) follow-ups ¢« ; candidates « sleeping;

(b) For each pair of episodes Ej, E2 such that < and/or m occurs
in the relation from Ej to E2 in G but not in C do:
/* To get rid of the unwanted relations, observe first Ep and then
Ej, so that the observation rule can be applied. If E» has not been
observed before then add it to the candidate set (E; will be added the
next time around) else add Ej. */

if E2 € sleeping
then candidates « candidates U {E2}:
follow-ups ¢« follow-ups U {Ei};
else candidates ¢ candidates U {Ej1};
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Prune candidates:
Repeatedly apply the following deletion rules:
(a) if E1 € candidates, E2 € (follow-ups U candidates), E2 precedes Ej in cl
then delete Ej from candidates;
/* It is no use trying to observe an episode, if there 1is another
in the candidate set which necessarily has to be observed before. */
(b) if Eq, E2 € candidates, E1 € open,
E> ends before the end of Ej in C2
then delete Eq from candidates;
/* "Ej € open" means that E; has been observed before and is to be
observed again to make sure it is still continuing. If there is
another candidate Ep that ends before Ej does, we can postpone the
observation of Ej because after E2 has ended we will have to verify
anyway that Ej is going on even then. */
(c) if E1, Eo € candidates, Ej € sleeping,
E2 ends before the end of E7] in C and Ej starts before the end of E2 in c3
then delete Ep from candidates;
/* Again, Ej] has to be observed before E» so that the overlap can be
verified. This case is not caught by (a) because Ep does not
completely precede Ej. */
Suggest the quantities to which the episodes in candidates belong;
end.

To fit_ in measurement (m) do:
Let m = <qg,t,v>;
Find the earliest episode E = <I,v> in Hg \ closed;
if E € sleeping
then if there exists E' € sleeping that precedes E in C
then report "m does not fit", stop;
/* In this case the observation seguence was not dense enough
and we have missed an observation for E' which cannot be made up for
after E has been observed. */
for each preceding measurement m' do
let E' be the episode that m' has been associated with;

add E {<m§ B' to G and propagate according to Allen;

(*) if the new G is not globally consistent, then report "m does not fit", stop:
/* An overlap was detected instead of a simultaneous transition. */

if E € sleeping then /* update sweep-line */
closed ¢« closed U (open N Hg) ;open <« (open \ Hy) v {E};sleeping ¢« sleeping \

{E};

Associate m with E;

Report "m fits™;

end.

lje. Cgg is one of {<}, {m}, or {<,m}.

2je. CEZ,El is any subset of {<,m,0,d,s}.

3 e Cg, B, is any subset of {oi,si,di}.
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5 Status of the implementation and
further work

Following an early prototype [Lamberti88] the algorithms
described have been fully implemented using the temporal
extension of Prolog described in [Hrycej88]. Currently, they
are being incorporated into the MOLTKE diagnostic system.

One of the system's severest limitations at the present
moment is its incapability to deal with duration constraints.
The following example demonstrates how absolute upper
bounds on the episodes’ duration could greatly improve the
system's ability to abort the matching process when it
encounters a non-instance of a situation. Recall our earlier
example and assume that both IN20 and IN30 remain stuck at
0 indefinitely instead of returning to 1. The algorithm would
cycle forever, suggesting to look for IN30 = 1 and accepting
IN30 = 0 readings without a chance to recognize a time-out,
Clearly, an upper bound on the duration of the IN30 = 0
episode would solve the problem, so adding this feature is our
next step in the project.

Our plans also include applying the technique in an entirely
different area. In reactive planning, feedback is gained by
monitoring the plan execution and comparing the observa-
tions to the predicted behavior. If the predictions could be
described in the form of a situation, temporal matching might
be an instrument in designing efficient monitoring schedules.
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