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Abstract: The converse problem of measurement interpretation is event recognition. In situations which are characterized by a 

specific order of events, a single snapshot is not sufficient to recognize an event. Instead one has to plan a measurement 

sequence that consists of observations at more than one time point. In this paper we present an algorithm for planning such an 

observation sequence based on the specification of the event and discuss the problem of giving a meaningful definition of a 

'successful match of a measurement sequence against a situation description'. 

1 Introduction 

Conventionally, in Qualitative Reasoning the term measure

ment interpretation stands for the task of explaining a given 

set of measurements by reconstructing a section of the 

system's envisionment that accounts for all of the measure

ments (for examples, see [Forbus83], [Forbus86], 

[Simmons82]) 1. In a diagnostic setting measurement 

interpretation is useful when observations have already been 

made (e.g. by automatic sampling of quantities) but a hypo

thesis has not yet been formed. 

Frequently, though, we are faced with the opposite situation: 

given a hypothesis we must determine a set of observations 

that will support it. In the simple case there exists a unique 

state which occurs only within the hypothetical behavior and 

nowhere else in the envisionment. If such a combination can 

be found, a "one-look" approach at the right moment is all we 

need to verify the hypothesis. Things are more complicated 

when no unique state exists and the hypothetical behavior is 

characterized instead by the specific sequence of events. We 

have found examples for this latter case while constructing 

1 Variations on this topic include the choice whether the 
,measurements are made simultaneously or sequentially and 
Iwhether only the amounts or also the derivatives of quantities 
are measured. 

MOLTKE, an expert system for the diagnosis of eNC

machining centers [ANRR88]. A medical domain in which 

temporally distributed symptoms play a role is described in 

[Tsotsos85]. Verifying that such a behavior is occurring is 

the aim of temporal event recognition; it necessarily requires 

planning a measurement sequence that consists of observa

tions at more than one time point. In this paper we discuss 

the problem of giving a meaningful definition of a 'successful 

match of a measurement sequence against a situation descrip

tion' and present an algorithm for planning and matching an 

observation sequence. Although throughout the discussion we 

will draw our examples from the diagnostic domain, in the 

concluding section we will argue that our method of temporal 

matching can be applied in other areas, too. 

2 An example 

Consider the following example from MOLTKE's domain: 

One possible cause for an undefined position of the tool 

magazine is a faulty limit switch. This cause can be ruled 

out if the status registers IN20 and IN30 of the CNC 

control system show the following behavior: at the 

beginning both registers contain the value 1. Then IN20 

drops to 0, followed by IN30. Finally, both return to 

their original values in the reverse order. 
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1 Introduction

Conventionally, in Qualitative Reasoning the term measure-
ment interpretation stands for the task of explaining a given
set of measurements by reconstructing a section of the
system's envisionment that accounts for all of the measure-

[Forbus86],
[SimmonsS 2]) 1 .  In a diagnostic setting measurement
interpretation is useful when observations have already been
made (e.g. by automatic sampling of quantities) but a hypo-
thesis has not yet been formed.

ments  (for examples,  see [Forbu383],

Frequently, though, we are faced with the Opposite situation:
given a hypothesis we must determine a set of observations
that will support it. In  the simple case there exists a unique
state which occurs only within the hypothetical behavior and
nowhere else in the envisionment. If  such a combination can
be found, a "one—look" approach at the right moment is all we
need to verify the hypothesis. Things are more complicated
when no unique state exists and the hypothetical behavior is
characterized instead by the Specific sequence of events. We
have found examples for this latter case while constructing

1 Variations on this topic include the choice whether the
measurements are made simultaneously or sequentially and
whether only the amounts or also the derivatives of quantities
are measured.

MOLTKE, an expert system for the diagnosis of  CNC-
machining centers [ANRRSS]. A medical domain in which
temporally distributed symptoms play a role is  described in
[TsotsosSS]. Verifying that such a behavior is occurring is
the aim of temporal event recognition; it necessarily requires
planning a measurement sequence that consists of observa-
tions at more than one time point. In this paper we discuss
the problem of giving a meaningful definition of a ‘successful
match of a measurement sequence against a situation descrip-
tion’ and present an algorithm for planning and matching an
observation sequence. Although throughout the discussion we
will draw our examples from the diagnostic domain, in the
concluding section we will argue that our method of temporal
matching can be applied in other areas, too.

2 An example

Consider the following example from MOLTKE's domain:

One possible cause for an undefined position of the tool
magazine is a faulty limit switch. This cause can be ruled
out if the status registers IN20 and IN30 of the CNC
control system show the following behavior: at the
beginning both registers contain the value 1. Then IN20
drops to 0, followed by IN30. Finally, both return to
their original values in the reverse order.
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The situation is illustrated in the following figure: 

IN20--- r----l 

o 
IN30-----U....--.....;.-~ 

Fig. 1 - An example for a dynamic situation 

If we want to recognize an occurrence of this situation we 

have to solve two problems: 

- We have to plan an observation sequence for INW and lN30 

that can be observed only in this particular situation. 

- If at any point partway through the plan we are confronted 

with an unexpected measurement we have to be able to decide 

whether this piece of information is compatible with the 

situation or not. 

The solution to the first problem depends on the assumptions 

we make about measurements. When we speak of a measure

ment we mean an observation of the amount of a specific 

quantity at a specific time point, made either by a human 

observer or by a sensor. A theory of measurement (in 

particular, of measurement errors) is beyond the scope of this 

paper. For our purposes measurements are characterized by the 

following properties: 

(MI) No two measurements can take place at exactly the 

same time. 

(M2) All measurements are discrete, i.e. the amount of a 

quantity is measured at a time pointl rather than over an 

interval. 

Axiom (M2) immediately poses the problem that the period 

over which a situation occurs cannot be covered with 

measurements. Consequently, we have to define a weaker 

criterion: we would like to be able to derive from the situa

tion a specific measurement sequence such that if this 

1 This should not be confused with the question how time 
points are accommodated in an interval-based temporal logic. 

sequence has been observed and all possible additional 

measurements fit in we are sure that no other situation can 

have occurred modulo the resolution of our measurement 

techniques. In our example, we would insist on observing 

IN30 =1 again after IN20 =0 has been measured to make 

sure that IN30 does not drop to 0 before lN20 does. If on the 

other hand our initial measurement for IN30 had been IN30 = 
0, we would have rejected an occurrence of the situation 

because there is no way of fitting in this observation at the 

beginning of the situation. 

All of these intuitive notions will be defined more formally 

in the next section. 

3 Situations, measurements, and 
matching 

3.1 Situations 

While figure 1 is a perfectly natural representation of the 

situation for a human reader, we adopt a representation that is 

better suited to algorithmic manipulation. 

The basic vocabulary for the description of situations 

comprises quantities, intervals, episodes and value histories. 

As each of these terms have been used in the literature with 

varying meanings, we briefly summarize their intended inter

pretations within this paper. 

Intervals are defined as in [Allen/Hayes85]. For the purpose of 

mapping an interval I onto a global time line we assume the 

existence of a left (right) endpoint of I which is denoted by 

LOO (R(I)). 

We assume that quantities q take on qualitative values2 from 

some set Dom(q) and change their value only a finite number 

of times during any situation. A pair <I ,v>, where I is an 

interval of maximal extent during which the (qualitative) 

2 Stated in another way, Continuously changing quantities 
have been replaced by discrete ones by imposing an order
preserving equivalence relation on their values. 
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The situation is illustrated in the following figure:
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Fig. 1 — An example for a dynamic situation

If we want to recognize an occurrence of this situation we
have to solve two problems:

- We have to plan an observation sequence for IN20 and IN30
that can be observed only in this particular situation.

- If at any” point partway through the plan we are confronted
with an unexpected measurement we have to be able to decide
whether this piece of information is compatible with the
situation or not.

The solution to the first problem depends on the assumptions
we make about measurements. When we speak of a measure-
ment we mean an observation of the amount of a specific
quantity at a specific time point, made either by a human
observer or by a sensor. A theory of measurement (in
particular, of measurement errors) is beyond the scope of this
paper. For our purposes measurements are characterized by the
following properties:

(M1) No two measurements can take place at exactly the
same time.

(M2) All measurements are discrete, i.e. the amount of a
quantity is measured at a time point1 rather than over an
interval.

Axiom (M2) immediately poses the problem that the period

over which a situation occurs cannot be covered with
measurements. Consequently, we have to define a weaker
criterion: we would like to be able to derive from the situa-
tion a specific measurement sequence such that if  this

1 This should not be confused with the question how time
points are accommodated in an interval-based temporal logic.

sequence has been observed and all possible additional

measurements fit in we are sure that no other situation can

have occurred modulo the resolution of our measurement

techniques. In our example, we would insist on observing

INSO = 1 again after IN20 = 0 has been measured to make

sure that [N30 does not drop to 0 before IN20 does. If on the
other hand our initial measurement for IN30 had been IN 30 =
0, we would have rejected an occurrence of the situation

because there is no way of fitting in this observation at the

beginning of the situation.

All of these intuitive notions will be defined more formally

in the next section.

3 Situations, measurements, and
matching

3 .1  Si tuat ions

While figure 1 is a perfectly natural representation of the

situation for a human reader, we adopt a representation that is

better suited to algorithmic manipulation.

The basic vocabulary for the description of situations

comprises quantities, intervals, episodes and value histories.

As each of these terms have been used in the literature with

varying meanings, we briefly summarize their intended inter-
pretations within this paper.

Intervfls are defined as in [Allen/HayesSS]. For the purpose of
mapping an interval I onto a global time line we assume the
existence of a left (right) endpoint of I which is denoted by
LU) (Rm)-

We assume that quantities q take on qualitative values2 from
some set Domgg) and change their value only a finite number

of times during any situation. A pair <I,v>, where I is an

interval of maximal extent during which the (qualitative)

2 Stated in another way, continuously changing quantities
have been replaced by discrete ones by imposing an order-
preserving equivalence relation on their values.
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value of q is constantly equal to v, is called an e.pisode. The 

values that a quantity q takes on over a period of time are 
represented as a value history which is a set of episodes in 

which the episode intervals form a linear chain related by the 

interval relation "meets". 

DEFINITION: A situation is a triple <Q, H, C> where 

- Q is a finite set of quantities; 

- H = {Hq I q E Q} is a set of value histories and 

- C = {CE,E' IE, E' episodes of histories in H} is a set of 

constraints specifying the relative positions of the histories 

W.r.t. each other. Each CE,E' is a disjunction of AlIen inter

val relations ([Allen83])1 one of which is required to hold 

from the interval of E to the interval of E'. 

In our example, IN20's value history is (El=<ll.l>, 

E2=<l2,0>, E3=<l3,1», IN30's value history is (£4=<14,1>. 

E5=<I5,0>, E6=<I6,1». C contains CE,E' = {m} for each 

pair E, E' of consecutive episodes in the same history. The 

relative positions of the epsiodes in the two histories are 
specified by constraints such as CE4,E2 = CE2,E6 = {o}. 

Actually the constraints in C are further restricted to convex 

relations which are defined in [NokeI88]. Convex relations 

form a subalgebra of AlIen's full relation algebra which has 

been found sufficiently expressive for the description of the 

dynamic behavior of technical systems in all the examples we 

have studied so far. Roughly speaking, a disjunction D of 

primitive AlIen relations is convex iff the following holds for 
any pair of intervals IJ, 12 standing in the relation D: if we 

keep the positions of three of the four endpoints fixed w.r.t. a 

global time line, then the set of timepoints that can be 

assigned to the fourth endpoint in accordance with D is 

convex. Convex relations can also be described as conjunc

tions of endpoint orderings; in contrast to the subalgebra 

described in [Vilain/Kautz86] we allow <, >. ~, ;::, and 

"unconstrained", but not "#, as endpoint relations. For a more 

detailed discussion see [NokeI88]. 

The similarity between situations and the format of the 

envisionments generated by a number of qualitative simula

tion programs (e.g. HIQUAL [VoB87] or programs based on 

the episode propagators in [Williams86J and [Decker87]) is 

not accidental. One goal in a later stage of the project is to 

use one of these programs to generate the situation descrip

tions and use them later as complex symptoms in a rule-based 

diagnostic system. In this system the matching algorithm 

described in section 4 will be invoked by the rule interpreter 

whenever a situation is encountered in the condition part of a 

rule. 

We need some more terminology to formalize the relation 

between situations as patterns and actual occurrences of situa

tions: 

DEFINITION: For every set of value histories H let 

f..f11l := {L(I) I Hq E H, <I,v> E Hq }U { R(I) I Hq E H, 

<I,v> E Hq }denote the set of (left and right) endpoints of all 

episode intervals in all histories of H. 

DEFINITION: An instance of a situation S = <Q,H,C> is a 

mapping D: P(H) -7 T (T dense. totally ordered. without 

least or greatest element, e.g. T = IR), which respects the 

relations in C. 

DEFINITION: An instance D of a situation S = <Q, H, C> 

~ in an interval 0 sTiff D maps into 0 and 

'i t E 0, q E Q: (M q t) = v 

~ 3 <I, v > E Hq: D(L(I» ~ t ~ D(R(I).2 

We say that a situation S has occurred when we are not 

interested in the properties of the particular instance. 

3.2 Measurements 

DEFINITION: A measurement is a triple <q. t, v>,where q is a 

quantity, t E T and v E Dom(q). 

1 We abbreviate interval relations as usual, e.g. m for "meets", 2 (M q t) is borrowed from QPT notation and means "the 
o for "overlaps" and so on. (magnitude of the) amount of q at timepoint t". 
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value of q is constantly equal to v, is called an crusade. The
values that a quantity q takes on over a period of time are
represented as a value history which is a set of episodes in

which the episode intervals form a linear chain related by the

interval relation "meets".

DEFINITION: A situation is a triple <Q, H, C> where

- Q is a finite set of quantities;
— H = {Hq I q 6 Q}  is a set of  value histories and

- C = {CHE IE ,  E' episodes of histories in H} is a set of

constraints specifying the relative positions of the histories
w.r.t. each other. Each CE,E' is a disjunction of Allen inter—
val relations ([A11en83])1 one of which is required to hold
from the interval of E to the interval of E'.

In our example, IN20‘s value history is (E1=<11 ,1> ,

E2=<12,0>, E3=<Ij,l>), IN30's value history is (E4=<I4,1>,

E5=<15,0>, E6=<I6,1>). C contains CE,E '  = {m} for each

pair E ,  E '  of consecutive episodes in the same history. The
relative positions of the epsiodes in the two histories are
specified by constraints such as €134,132 == CE27EÖ = {o}.

Actually the constraints in C are further restricted to convex
relations which are defined in [Noke188]. Convex relations
form a subalgebra of Allen's full relation algebra which has
been found sufficiently expressive for the description of the
dynamic behavior of technical systems in all the examples we
have studied so far. Roughly speaking, a disjunction D of
primitive Allen relations is convex iff the following holds for
any pair of intervals 11,12 standing in the relation D: if we

keep the positions of three of the four endpoints fixed w.r.t. a
global time line, then the set of timepoints that can be
assigned to the fourth endpoint in accordance with D is
convex. Convex relations can also be described as conjunc-
tions of endpoint orderings; in  contrast to the subalgebra
described in [Vilain/Kautz86] we allow < ,  > ,  s ,  2., and
"unconstrained", but not $, as endpoint relations. For a more
detailed discussion see [Nöke188].

1 We abbreviate interval relations as usual, e.g. m for "meets",
o for "overlaps" and so on.

The similarity between situations and the format of the
envisionments generated by a number of qualitative simula-
tion programs (e.g. HIQUAL [V0887] or programs based on
the episode propagators in [WilliamsSö] and [Decker87]) is
not accidental. One goal in a later stage of the project is to

use one of these programs to generate the situation descrip-
tions and use them later as complex symptoms in a rule-based
diagnostic system. In this system the matching algorithm
described in section 4 will be invoked by the rule interpreter
whenever a situation is encountered in the condition part of a
rule.

We need some more terminology to formalize the relation
between situations as patterns and actual occurrences of situa-
tions:

DEFINITION: For every set of value histories H let
£(HJ :={L( I ) IqH,<I ,v>e  Hq} u{R( I ) Iq  H,
<I,v> e Hq } denote the set of (left and right) endpoints of all

episode intervals in all histories of H.

DEFINITION: An instance of a situation S = <Q,H,C> is  a
mapping D: P(H) ——> T (T dense, totally ordered, without
least or greatest element, e.g. T = IR), which respects the
relations in C.

DEFINITION: An instance D of a situation S = <Q, H, C>
m in an interval O E Tiff D maps into O and
Vte  O ,qe  Q: (Mqt )=v

=> 3 <1, v > e Hq: D(L(I)) s t s D(R(I)).2

We say that a situation S has occurred when we are not
interested in the properties of the particular instance.

3.2 Measurements

DEFINITION: A measurement is a triple <q, t, v>,where q is a
quantity, 1: e T and v e Dom(q).

2 (M q t) is borrowed from QPT notation and means "the
(magnitude of the.) amount of q at timepoint t".
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DEFINITION: A measurement sequence M is a finite set of 

measurements {<qi, tit vi»i=I,...•n where tl < t2 < ... < tn. 

Let In1{Ml := [tl ; tn] S T. 

DEFINTI10N: A measurement sequence 

M = (<CJi,ti.vP li=l.....n is compatible with a situation S if 

there is an instance D of S that maps into Int(M) and 
Vi: 3 <I. v> E Hqi' D(L(I)::;; ti::;; D(R(l)) A V= Vi. 

3.3 Matching 

The problem of recognizing an occurrence of a situation can 

be split into two tasks: 

(a) planning a desired sequence of observations 

(b) matching the actual observations against the situation. 

We will discuss (b) first and return to (a) in section 4. Ideally. 

we would like to define a relation 'matches' between measure

ment sequences M and situations S in such a way that the 

following two properties hold: 

Completeness: 
VS VM: M determines S => matches (M. S) 

where M determines S if the observation of M implies that S 

has indeed occurred in Int(M). 

Soundness: 

VS VM: matches (M, S) => M determines S. 

Evidently. with this definition we run into problems 

regarding the granularity of measurement sequences and situa

tions. Consider our example and the measurement sequence 

indicated by the arrows in figure 2: 

IN20 -..,- , 1 

hJ.., f.o 
IN30 ~:""'-~"'fL.Jrr'''': 1, , 1:'

ih-.: ~,:O 
~ ~ ~":: f 

~: ~ ~ 

~3 ~4 m5 m6) 

Fig. 2 - A sparse measurement sequence M 

Although the observations are compatible with an instance of 

S. we cannot guarantee that it has occurred. For all we know, 

the situation S' in figure 3 

IN20 

~ , I. ~ , 0 
• • 1 

, , ,, ,IN30 , b, , 1 , ,•,, ~. 
••, 1,*., •

,
,, 0

•, • ,, ••• 
•I ,•• •, 
I · •••M=(rnl m2 m3 m4 m5 m6) 

Fig. 3 - M is compatible with other situations 

may equally well have occurred. Hence. matches(M, S) must 

not hold. 

As long as we are committed to discrete measurements the 

dilemma cannot be resolved. If we want to capture the way 

that discrete measurements do act as filters on situations, we 

have to replace "M determines S" by a weaker notion. We 

therefore derme the granularity of a situation's instance and of 

a measurement sequence. 

DEFINITION: The granularity of an instance D of a situation 

S. (written gran(D)) is the shortest duration among all episode 

intervals in the instance. 

DEFlNITION: The granularity of a measurement sequence M 

(written gran(M)) is the longest gap between any two conse

cutive measurements of the same quantity in M. 

DEFINITION: A measurement sequence M weakly determines 

S if the following implication holds: M has been observed => 
[(3 D instance of S: D occurs in Int(M)) v (VS': V D' 

instance of S': D' occurs in Int(M) => gran(D')::;; gran(M))]. 

The intention behind this definition is that if we have the 

extra knowledge that the episodes over which the quantities 

remain (qualitatively) constant do not become arbitrarily 

short. then a suitably chosen measurement sequence which is 

denser than the minimal duration of the episodes can indeed 

determine a situation in the stronger sense. Notice the 

similarity of this argument to the discussion in [Forbus86]. 

We next give a defmition of 'matches' that satisfies the weak 

versions of the completeness and soundness properties. 
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DEFINITION: A W M is a finite set of
measurements {<Qi. ti, Vi> l i=1 , . . . , n  where t1 < t2 < < tn.
Let Int(M! :=  [t]L ; tn]  ;. T.

DEFINITION: A measurement sequence
M = {<Qia t i ,Vi>} i=1 , .  _ . ,n  is commie with a situation S if
there is an instance D of S that maps into Int(M) and
Vi: 3 <I, v> & Hqi= D(L(I) S ti S D(R(I)) A v = vi.

3.3 Matching

The problem of recognizing an occurrence of a situation can
be Split into two tasks:

(a) planning a desired sequence of observations
(b) matching the actual observations against the situation.

We will discuss (b) first and retum to (a) in section 4. Ideally,
we would like to define a relation 'matches' between measure-
ment sequences M and situations S in such a way that the
following two properties hold:

Completeness:
VS VM: M determines S => matches (M, S)

where M determines S if the observation of M implies that S
has indeed occurred in Int(M).

Soundness:
VS VM: matches (M, S) => M determines S .

Evidently, with this definition we run into problems
regarding the granularity of measurement sequences and situa-
tions. Consider our example and the measurement sequence
indicated by the arrows in figure 2:

IN20 '—0—’ 1

mso +O—r', I 1: , : ;, :: 4» : t" = 0
! ! I c p '

: : ; ; : =
M: 1 m2 m3 m4 m5 m6)

Fig. 2 - A sparse measurement sequence M

Although the observations are compatible with an instance of
S ,  we cannot guarantee that it has occurred. For all we know,
the situation 8 '  in figure 3

1N20 . 1
$. &? ot r

IN30 43; ; 1
* ‚) ‘ „ i ()E r 3 . = E: : E : $ '

M: 1 m2 m3 m4 m5 m6)

Fig. 3 — M is compatible with other situations

may equally well have occurred. Hence, matches(M, 8)  must

not hold.

As long as we are committed to discrete measurements the
dilemma cannot be resolved. If we want to capture the way
that discrete measurements do act as filters on situations, we
have to replace "M determines S" by a weaker notion. We
therefore define the granularity of a situation's instance and of

a measurement sequence.

DEFINITION: The anul ' t  of in
S (written gran(D)) is the shortest duration among all episode

itua 'on

intervals in the instance.

DEFINITION: The W
(written gran(M)) is the longest gap between any two conse-
cutive measurements of  the same quantity in M.

DEFINITION: A measurement sequence M weakly determines
S if the following implication holds: M has been observed =>
[(3 D instance of S: D occurs in Int(M)) v (VS': V D'
instance of S': D' occurs in Int(M) :; gran(D') s gran(M))].

The intention behind this definition is that if we have the

extra knowledge that the episodes over which the quantities
remain (qualitatively) constant do not become arbitrarily

short, then a suitably chosen measurement sequence which is

denser than the minimal duration of the episodes can indeed

determine a situation in the stronger sense. Notice the
similarity of this argument to the discussion in [Forbus86].

We next give a definition of 'matches‘ that satisfies the weak

versions of the completeness and soundness properties.

4
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DEFINITION: A measurement sequence 

M={<%ti,vP li=l, ... ,n matches a situation S=<Q,H,C>, iff 

there is an instance D of S that satisfies the following condi

tions: 

(i) D maps into Int(M). 
(ii) 'if <q, t, v> E M: 3 <I,v> E Hq: D(L(I»:::; t:::; D(R(I» 

(all measurements are compatible with the instance) 
(iii) 'if q E Q: 'if <I, v> E Hq: 3 <q, t, v> E M: D(L(I» S; t S; 

D(R(I) 

(there is at least one observation for each episode) 
(iv) 'if q, q' E Q; 'if E = <I,v> E Hq, E' = <I',v'> E Hq':
 
E necessarily overlaps E' 1 =>
 
3 <q, t, v>, <q', t', v'> E M: D(L(!'» S; l' S; t S; D(R(I»
 

(each overlap oftwo episodes required by C is verified by
 
observing the overlapping episode at a point after the 

observation ofthe overlapped episode) 

We sketch a proof for the claim that this definition satisfies 

the completeness and soundness properties. 

Soundness: Assume that the measurement sequence M, which 

matches the situation S=<Q,H,C>, has been observed. 

Further assume that there has been an instance D' of a situa

tion S' with gran(D') > gran(M) which means that no quantity 

changes its value twice in an interval of length less than 

gran(D). In conjunction with (ii) and (iii) of the definition 

this implies that exactly the episodes in H have occurred in 

Int(M) and none else. We have to show yet that all con

straints in C are satisfied. Here we use the fact that all con

straints are convex relations, Le. representable as conjuncti

ons of certain endpoint orderings. By examining each possible 

endpoint ordering it can be shown that a violation of any 

endpoint ordering would lead to a violation of condition (ii), 

(Hi) or (iv) and thus to a contradiction. If e.g. CE,E' = 

{o,s,d}, but in reality the interval of E "meets" the interval of 

E', then M cannot have been observed, because for M to 

match S there has to be a measurement for E' followed by one 

forE. 

I 
11 Formally: CE,E' is any subset of {o, oi, d, di, f, fi, s, si, =}. 

Completeness: The claim is equivalent to saying that a 

measurement sequence M that does not match S, cannot 

weakly determine S. Therefore we have to show that all of (i)

(iv) are needed to ensure that M weakly determines S. (i) is 

obvious: even if there is no instance of S that could possibly 

occur in Int(M), there can still be an instance D' of another 

situation with gran(D') > gran(M), and in this case weak 

determination would not hold vacuously. If (ii) were violated, 

M would weakly determine a different situation in which the 

episodes would fit the measurement. If (iii) did not hold, M 

could not weakly determine S, because a situation in which 

one episode were missing could also have occurred. Case (iv) 

is similar, except that the presence of an overlap cannot be 

guaranteed. 

If we take a second look at the measurement sequence M in 

figure 2, we find that it satisfies all of (i)-(iii), but not (iv). 

By adding two additional measurements for 1N30 = 1 and one 

for IN20 = 0 we get the measurement sequence M' in figure 4 

which indeed matches the situation. 

IN20 11. J4 0 
~ t - - ~ 1IN30 • ~,-I. ".~.r. ,,;, 

~ :~ *,::~O•• : ~ : ~ : : 
~ ~~ ~!~- ~ 

M'=( m1 m2 m3 m4 m5 m6 m7 m8 m9) 

Fig. 4 - A matching measurement sequence 

There is an interesting asymmetry in the definition: (iv) 

makes sure that every overlap specified in the constraints of 

the situation is actually observed; there is no analogous 

condition which ensures that two episode transitions specified 

to take place simultaneously actually do so. In fact, given the 

limitations of discrete, one-at-a-time measurements there 

cannot be such a condition. How, then, can we detect that the 

measurement set M' in figure 4 does not match a situation 

where 1N20 and 1N30 change values simultaneously? As we 

see in figure 5, there is no consistent mapping that associates 

measurements with episodes and condition (ii) is violated. 

Hence, we do not have a positive condition for the occurrence 

of simultaneous transitions, but we know that given a 

measurement sequence of sufficiently fine granularity we 

would detect an overlap if there were one instead. 
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DEFINITION: A measurement sequence
M={<Qi . t i vv i> ] i=1 , .  _ . ,n matches a situation S=<Q,H,C>, iff

there is an instance D of S that satisfies the following condi-
tions:
(i) D maps into Int(M).
(ii) V <q, t, v> e M: El <I,v> e Hq: D(L(I)) s t s D(R(I))

(all measurements are compatible with the instance)
(iii) V q e Q: V <1, v> e Hq: 3 <q, t, v> e M: D(L(I)) S t s
D(R(I))

(there is at least one observation for each episode)
(iv) ‘0’ q, q‘ e Q; V E = <I,v> e Hq, E‘ = <I‘,v'> e Hq‘:

E necessarily overlaps E' 1 =>
El <q, t, v>,  <q', t', v'> e M: D(L(I')) s t' .<. t S D(R(I))

(each overlap of two episodes required by C is verified by
observing the overlapping episode at a point after the

observation of the overlapped episode )

We sketch a proof for the claim that this definition satisfies
the completeness and soundness properties.

Soundness: Assume that the measurement sequence M, which
matches the situation S=<Q,H,C>, has been observed.
Further assume that there has been an instance D' of a situa-
tion S' with gran(D') > gran(M) which means that no quantity
changes its value twice in an interval of length less than
gran(D'). In conjunction with (ii) and (iii) of the definition
this implies that exactly the episodes in H have occurred in

Int(M) and none else. We have to show yet that all con-
straints in C are satisfied. Here we use the fact that all con-
straints are convex relations, i.e. representable as conjuncti-
ons of certain endpoint orderings. By examining each possible
endpoint ordering it can be shown that a violation of any
endpoint ordering would lead to a violation of condition (ii),
(iii) or (iv) and thus to a contradiction. If e.g. CEJ-g' =

{o,s,d}, but in reality the interval of E "meets" the interval of
E',  then M cannot have been observed, because for M to
match S there has to be a measurement for E'  followed by one
for E.

1 Formally: CE.E' is any subset o f  {o,  oi ,  d, di, f, fi, s, si, =} .

Completeness: The claim is equivalent to saying that a
measurement sequence M that does not match S ,  cannot
weakly determine S. Therefore we have to show that all of (i)-
(iv) are needed to ensure that M weakly determines S .  (i) is
obvious: even if there is  no instance of S that could possibly
occur in Int(M), there can still be an instance D' of another
situation with gran(D') > gran(M), and in this case weak

determination would not hold vacuously. If (ii) were violated,
M would weakly determine a different situation in which the
episodes would fit the measurement. If (iii) did not hold, M
could not weakly determine S,  because a situation in which
one episode were missing could also have occurred. Case (iv)
is similar, except that the presence of  an overlap cannot be
guaranteed.

If we take a second look at the measurement sequence M in
figure 2 ,  we find that it satisfies all of (i)-(iii), but not (iv).
By adding two additional measurements for IN30 = 1 and one
for INZO = O we get the measurement sequence M‘ in figure 4
which indeed matches the situation.
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Fig. 4 — A matching measurement sequence

There is an interesting asymmetry in the definition: (iv)
makes sure that every overlap specified in the constraints of
the situation is actually observed; there is no analogous
condition which ensures that two episode transitions specified
to take place simultaneously actually do so. In fact, given the
limitations of discrete, one-at-a-time measurements there
cannot be such a condition. How, then, can we detect that the
measurement set M' in figure 4 does not match a situation
where [N 20 and IN30 change values simultaneously? As we
see in figure 5 ,  there is no consistent mapping that associates
measurements with episodes and condition (ii) is violated.
Hence, we do not have a positive condition for the occurrence
of Simultaneous transit ions,  but  we know that given a

measurement sequence of sufficiently fine granularity we
would detect an overlap if there were one instead.

5
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1lN20 

• 
t.-• •, I. O 

1lN30 ••• If- •• j).&. ••• • ••, •• • 0 
! 

•• , l· ,
M'=(m1 m2 rri.3 m4? m5? .. 

Fig. 5 - Detecting an overlap that should not be there 

4 The matching algorithm 

We are now ready to tackle problem (a) above. In order to 

implement the matching definition we have to add a mecha

nism which suggests the observations and turn the static 

match of the complete measurement set against the situation, 

into an incremental match which minimizes effort by 

detecting irreparable deviations from the situation as early as 

possible. 

Recall that we want to verify (i) that all episodes mentioned 

in the situation actually occur and (ii) that their relative posi

tions satisfy the interval relations in the constraint part. 

Verifying (i) is relatively easy: all we have to watch out for is 

not to associate a measurement with an episode E unless we 

have an observation for every episode E' that precedes E 

according to Cl. As for (ii), imagine starting with an AlIen 

interval graph G containing the episode intervals as nodes and 

having all edges labelled with "no-info"2.3 Each pair of 

measurements in a sequence rules out some of the initial 

1 i.e. CE,E' is one of {<}, {ml. or {<.m}. 

2 The disjunction of all 13 primitive interval relations. 

3 Well. not quite no-info. Since simultaneous transitions can 
be observed only via negationis (by failing to detect an 
overlap instead. as discussed at the end of section 3.3). we 
cannot expect to narrow down the edge labels from no-info to 
a simultaneous transition such as {<}. {m} or {<. m} just by 
applying the observation rule (fig. 6). We therefore initialize 
the edge labels in G with no-info except where the relation in 
C is one of {<}. {m} or {<. m}; these we take over unchanged 
and propagate them using AlIen's algorithm to arrive at the 
initial state of G. In this case a mismatch is detected when an 
application of the observation rule to the offending overlap 
results in the empty disjunction as the new edge label. 
signalling an inconsistent state of G. 

relations according to the observation rule: if mI =<qJ, tJ, 

VI> and m2 = <q2, t2, v2>, tI < t2 are associated with 

episodes El and E2, respectively, then it follows that E2 

cannot possibly precede El . 

El = <I1,v1>I-.IIIe'-----

E2 = <I2,v2> t. I • 
;: m2. mI 

=> 12 {<,m}c) 11 

Fig. 6 - The observation rule 

If we can find a measurement sequence which narrows down 

the labels in the interval graph from the initial state to 

subsets of the corresponding relations in the constraint part C 

of a situation S and contains at least one observation for each 

episode, then it matches S. The intermediate stages of the 

interval graph can be used to plan the next measurement: if 

the relation from episode El to E2 in the interval graph con

tains < and/or m but the relation in C does not, then plan to 

observe E2 and El - in that order - to get rid of the unwanted 

relations. Furthermore, all episodes that have not been 

observed at all are candidates for observation. This initial 

candidate set can be pruned using rules which are detailed in 

the algorithm below. 

The algorithm that we are about to describe (see next page) 

operates in a cycle with alternating suggestions and 

measurements until the candidate set is empty. We report a 

match iff at this point the labels of the interval graph are 

subsets of the constraints in C and no episode has been 

skipped unobserved. The algorithm is of the "sweep-line" 

type and at any point during the matching process divides the 

set of episodes into three classes: 

- sleeping: episodes that have not yet been observed; 

- open: episodes which have been observed at least once, but 

the following episode has not been observed. 

- closed: episodes which precede an episode in open. 

As shown in [NokeI88], the test for global consistency in 

line (*) can be carried out in polynomial time (w.r.t. the 
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Fig.  5 — Detecting an overlap that should not be there

4 The matching algorithm

We are now ready to tackle problem (a) above. In order to
implement the matching definition we have to add a mecha-
nism which suggests the observations and turn the static
match of the complete measurement set against the situation,
into an incremental match which minimizes effort by
detecting irreparable deviations from the situation as early as
possible.

Recall that we want to verify (i) that all episodes mentioned
in the situation actually occur and (ii) that their relative posi-
tions satisfy the interval relations in the constraint part.
Verifying (i) is relatively easy: all we have to watch out for is
not to associate a measurement with an episode E unless we
have an observation for every episode E' that precedes E
according to C1. As for (ii), imagine starting with an Allen
interval graph G containing the episode intervals as nodes and
having all edges labelled with "no-info"2.3 Each pair of
measurements in a sequence rules out some of the initial

1 Le. CE,E' is one of {<}, {m}, or {<,m}.

2 The disjunction of all 13 primitive interval relations.

3 Well, not quite no-info. Since simultaneous transitions can
be observed only via negationis (by failing to detect an
overlap instead, as discussed at the end of section 3.3), we
cannot expect to narrow down the edge labels from no-info to
a simultaneous transition such as {<}, {m} or {<, m} just by
applying the observation rule (fig. 6) .  We therefore initialize
the edge labels in G with no-info except where the relation in
C i s  one of {<}, {m} or {<, 111}; these we take over unchanged
and propagate them using Allen's algorithm to arrive at the
initial state of G. In this case a mismatch is detected when an
application of the observation rule to the offending overlap
results in the empty disjunction as the new edge label,
signalling an inconsistent state of G .

relations according to the observation rule: if m l  = <q1, t1,
VP  and mg = <q2, t2,  v2>, t1 < t2 are associated with
episodes E1  and E2,  respectively, then it follows that E2

cannot possibly precede E1.

El = <Il,v1>|—.——|

'b

E2 = <12,v2> ”% 'r 4 fi'

nil n12
älgflfi) 11

Fig. 6 — The observation rule

If we can find a measurement sequence which narrows down
the labels in the interval graph from the initial state to

subsets of the corresponding relations in the constraint part C
of a situation S and contains at least one observation for each
episode, then it matches S .  The intermediate stages of the

interval graph can be used to plan the next measurement: if
the relation from episode E1  to E2 in the interval graph con-

tains < and/or m but the relation in C does not, then plan to
observe E2 and E1 - in that order - to get rid of the unwanted
relations. Furthermore, all episodes that have not been

observed at all are candidates for observation. This initial

candidate set can be pruned using rules which are detailed in

the algorithm below.

The algorithm that we are about to describe (see next page)

operates in a cycle with alternating suggestions and

measurements until the candidate set is empty. We report a
match iff at this point the labels of the interval graph are
subsets of the constraints in C and no episode has been

skipped unobserved. The algorithm is  of the "sweep-line"

type and at any point during the matching process divides the

set of episodes into three classes:

- sleeping: episodes that have not yet been observed;

- open: episodes which have been observed at least once, but

the following episode has not been observed.

- closed: episodes which precede an episode in Open.

As shown in [NökelSS], the test for global consistency in

line (*) can be carried out in polynomial time (w.r.t. the

6
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number of episodes in the situation), if we restrict ourselves In our example, this algorithm suggests the measurement 

to convex interval relations. This result is very similar in sequence M' from figure 4 which indeed matches the 

nature to the one in [Vilain!Kautz86], although the sub situation. Sequence M from figure 2, however, is rejected. 

algebra is defined differently. 

To find a matching measurement sequence for a situation S <Q,H,C> do:
 
Initialize interval graph G as described above;
 
open ~ 0;
 
sleeping ~ the set of all episodes in H; 

closed ~ 0;
 
suggest a set N of quantities one of which should be measured next;
 

while N *' 0 do
 
obtain a measurement (m);
 
fit in measurement (m);
 
if mdoes not fit, then report failure, ~;
 
suggest a set N of quantities one of which should be measured next;
 

end; 
if the relations in G are subsets of the relations in C, 

then report match else report failure; 
end. 

To suggest a set of quantities to be measured next do: 
/* Episodes which should be observed next are accumulated in candidates. Follow-ups 
contains the second episodes where a planned application of the observation rule 
forces the first episode into the candidate set; it is used for pruning the candidate 
set.*/ 

Find	 candidates: 

(a) follow-ups ~ 0; candidates ~ sleeping; 
(b) For each pair of episodes El, E2 such that < and/or m occurs 

in the relation from El to E2 in G but not in C do:
 
/* To get rid of the unwanted relations, observe first E2 and then
 
El, so that the observation rule can be applied. If E2 has not been
 
observed before then add it to the candidate set (El will be added the
 
next time around) else add El. */
 

if	 E2 E sleeping
 

then candidates ~ candidates u {E2};
 

follow-ups ~ follow-ups U {El);
 

else candidates ~ candidates U {El);
 

7 

Klaus Nökel: Temporal Matching

number of episodes in the situation), if we restrict ourselves In our example, this algorithm suggests the measurement
to convex interval relations. This result is very similar in sequence M' from figure 4 which indeed matches the
nature to the one in [Vilain/Kautz86], although the sub- situation. Sequence M from figure 2, however, is rejected.
algebra is defined differently.

To  f ind  a ma tch ing  measurement  sequence  fo r  a s i t ua t i on  S = <Q,H,C> do :
In i t i a l i z e  in t e rva l  graph G as  desc r ibed  above ;
open (— Q;
s l eep ing  e— the  se t  o f  a l l  ep i sodes  in  H ;

closed (— @;
suggest a se t  N of  quan t i t i e s  one  o f  which  should  be measured nex t ;
whi le  N # ® do

ob ta in  a measurement  (m) ;
f i t  i n  measurement  (m) ;
i f  m .d5es  not  f i t , t hen  report  f a i l u r e ,  stop;
suggest  a se t  N of  quan t i t i e s  one o f  which  should  be measured next ;

end ;
i f  t he  r e l a t i ons  i n  G a re  subse t s  o f  t he  r e l a t i ons  i n  C ,

then  repor t  match  e l s e  repor t  f a i l u r e ;
end .

To  suggest  a s e t  o f  quant i t ies  t o  be measured  next do :
/*  Episodes which shou ld  be observed next  a re  accumula t ed  i n  cand ida te s .  Fol low—ups
con ta ins  the  second  episodes where a p lanned appl icat ion of the  observation ru le
forces the  first  episode i n to  the  candida te  s e t ;  i t  i s  used for pruning the  candida te
se t . * /

( a )  fo l low—ups  (— 6 ;  candidates  (- s leep ing;
(b) Fo r  each  pa i r  o f  episodes E1,  E2 such tha t  < and /o r  m occurs

in  the r e l a t ion  f rom E l  t o  E2  in  G but no t  in C do :
/*  To get  r i d  of t he  unwanted r e l a t i ons ,  observe f i rs t  E2 and  then
E1, so  t ha t  t he  observation ru le  can be applied.  If E2 has  no t  been
observed before then add i t  t o  t he  candida te  s e t  (El wi l l  be added the
next  t ime a round)  e l s e  add E l .  * /
i f  E2  6 s leeping

then candidates  e—‘cand ida t e s  u !{E2} ;

fo l low—ups  (— fo l low-ups  U {El};
e l se  cand ida tes  e— cand ida te s  L1{E1} ;
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Prune candidates:
 
Repeatedly apply the following deletion rules:
 
(a) if El E candidates, E2 E (follow-ups u candidates), E2 precedes El in Cl 

then delete El from candidates; 
/* It is no use trying to observe an episode, if there is another 
in the candidate set which necessarily has to be observed before. */ 

(b)	 if El, E2 E candidates, El E open,
 

E2 ends before the end of El in C2
 

then delete El from candidates; 

/* "El E open" means that El has been observed before and is to be 
observed again to make sure it is still continuing. If there is 
another candidate E2 that ends before El does, we can postpone the 
observation of El because after E2 has ended we will have to verify 
anyway that El is going on even then. */ 

(c)	 if El, E2 E candidates, El E sleeping, 
E2 ends before the end of El in C and El starts before the end of E2 in C3 

then delete E2 from candidates; 
/* Again, El has to be observed before E2 so that the overlap can be 
verified. This case is not caught by (a) because E2 does not 
completely precede El. */ 

Suggest the quantities to which the episodes in candidates belong; 
end. 

To fit in_measurement (m) do:
 
Let m = <q,t,v>;
 
Find the earliest episode E = <I,v> in Hq \ closed;
 

if E E sleeping 

then if there exists E' E sleeping that precedes E in C 
then report "m does not fit", ~;
 

/* In this case the observation sequence was not dense enough
 
and we have missed an observation for E' which cannot be made up for
 
after E has been observed. */
 

for each preceding measurement m' do 
let E' be the episode that m' has been associated with; 

add E {<,m}~ E' to G and propagate according to Allen; 
(*) if the new G is not globally consistent, then report "m does not fit", ~; 

/* An overlap was detected instead of a simultaneous transition. */ 

if E E sleeping then /* update sweep-line */ 
closed ~ closed u (open n Hq);open ~ (open \ Hq) U {E};sleeping ~ sleeping \ 

{E} ; 

Associate m with E; 
Report "m fits"; 
end. 

1 Le. CE E' is one of {<}, (m), or {<,m}. 

2 Le. CEZ,El is any subset of {<,m,o,d,s}. 

3 i.e. CE1,EZ is any subset of {oi,si,di}. 
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Brune_candidatesr
Repeatedly apply the following deletion rules:
(a) i f  E l  6 candidates, E2 6 (follow-ups Llcandidates), EZ precedes E l  in C1

then delete El from candidates;
/* It i s  no use trying to observe an episode, i f  there i s  another
in the candidate set which necessarily has t o  be observed before. */

(b) if El, E2 6 candidates, El 6 open,

E2 ends before the end of El in C2
then delete E1 from candidates:

/* "E1 6 open" means that El has been observed before and is to be
observed again to make sure i t i s  still continuing. If there is
another candidate EZ that ends before El does, we can postpone the
observation of El because after E2 has ended we will have to verity
anyway that El is going on even then. */

(c) if El, E2 6 candidates, El e sleeping,
E2 ends before the end o f  E l  in C and E l  starts before the end o f  E2 in C3

then delete E2 from candidates:
/* Again, El has to be observed before E2 so that the overlap can be
verified. This case is not caught by (a) because E2 does not
completely precede E1. */

Suggest the quantities to which the episodes in candidates belong;
end.

To fitfiin_measurement (m) do:
Let m = <q,t,v>;
Find the earliest episode E = <I,v> in Hq \ closed:
if E e sleeping

then if there exists E' e sleeping that precedes E in C
then report "m does not fit", step;

/* In this case the observation sequence was not dense enough
and we have missed an observation for E ’  which cannot be made up for

after E has been observed. */
for each preceding measurement m' do

let E‘ be the episode that m' has been associated with;

add E_i5LElg E '  t o  G and propagate according t o  Allen;

(*) i f  the new G i s  not globally consistent, then report " m  does not fit", stop;

/* An overlap was detected instead of a simultaneous transition. */

if E e sleeping then /* update sweep-line */

closed.e— closed t ! ( o p e n  Pa);open.e— (open \ Hq) LI{E};sleeping'+— sleeping \

{E}:
Associate m with E;
Report "m fits“:
end.

1 i.e. CE,E'  is one of [<] ,  [111], or {<,m}.

2 Le. C132,};1 is any subset of {<,m,o,d,s}.

3 i.e. CE1,E2  is any subset of {oi,si,di}.
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5 Status of the implementation and 
further work 

Following an early prototype [Lamberti88] the algorithms 

described have been fully implemented using the temporal 

extension of Prolog described in [Hrycej88]. Currently, they 

are being incorporated into the MOLTKE diagnostic system. 

One of the system's severest limitations at the present 

moment is its incapability to deal with duration constraints. 

The following example demonstrates how absolute upper 

bounds on the episodes' duration could greatly improve the 

system's ability to abort the matching process when it 

encounters a non-instance of a situation. Recall our earlier 

example and assume that both IN20 and IN30 remain stuck at 

oindefinitely instead of returning to 1. The algorithm would 

cycle forever, suggesting to look for IN30 = 1 and accepting 

IN30 =0 readings without a chance to recognize a time-out. 

Clearly, an upper bound on the duration of the IN30 =0 

episode would solve the problem, so adding this feature is our 

next step in the project. 

Our plans also include applying the technique in an entirely 

different area. In reactive planning, feedback is gained by 

monitoring the plan execution and comparing the observa

tions to the predicted behavior. If the predictions could be 

described in the form of a situation, temporal matching might 

be an instrument in designing efficient monitoring schedules. 
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5 Status of the implementation and
further work

Following an early prototype [Lamberti88] the algorithms

described have been fully implemented using the temporal
extension of Prolog described in [Hrycej88]. Currently, they

are being incorporated into the MOLTKE diagnostic system.

One of the system's severest limitations at the present
moment is its incapability to deal with duration constraints.
The following example demonstrates how absolute upper

bounds on the episodes' duration could greatly improve the
system's ability to abort the matching process when it
encounters a non-instance of a situation. Recall our earlier
example and assume that both IN20 and IN30 remain stuck at
0 indefinitely instead of returning to 1. The algorithm would
cycle forever, suggesting to look for IN30 = l and accepting
IN30 = O readings without a chance to recognize a time-out.
Clearly, an upper bound on the duration of the IN30 = 0
episode would solve the problem, so adding this feature is our
next step in the project.

Our plans also include applying the technique in an entirely
different area. In reactive planning, feedback is gained by
monitoring the plan execution and comparing the observa-
tions to the predicted behavior. If the predictions could be
described in the form of a situation, temporal matching might
be an instrument in designing efficient monitoring schedules.
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