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Abstract. 

It is shown that in the frame-based language KL-ONE it is undecidable, whether one concept is 
subsumed by another concept. The concept forming operators which are sufficient for this result 
are: conjunction, value restriction, role restriction, the operator 'SOME', and role value maps 
using only '='. In particular, number restrictions are not used. This shows that there is a basic 
difference between feature terms and KL-ONE, since the complexity of subsumption switches 
from co-NP-complete to undecidable, if the restriction is dropped that roles are functional. 
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1. Introduction. 

The frame-based knowledge representation language KL-ONE [BS85, BGL85] permits 
describing concepts on the basis of unary predicates (concepts, frames) and binary predicates 
(roles, slots). KL-ONE or related languages are currently being used as the basis of several 
knowledge representation systems [BS85, LN87, KBR86, Mg88], in particular for natural 
language processing. 

The terminological component (T-Box) of KL-ONE gives a user the possibility to structure a 
domain of interest by using concepts and roles (frames and slots). Usually, such a description 
starts by postulating certain primitive concepts and roles, and afterwards describing definable 
concepts using the operators available. New concepts can be defined via conjunction, via value 
restriction with respect to some role ("a person with every male friend is a doctor"), via number 
restriction (" a person with more than three children"), and via role value maps ("a man with: 
every child of a child of his father is also a child"). 

Research in computational linguistics has lead to a related knowledge representation method on 
the basis of unification grammars [Sh86], namely so-called 'P-terms [AN86] or feature terms 
[SA87, Sm88], where concepts are called sorts and roles are called features. The difference to 
knowledge representation ala KL-ONE is that feature terms permit only functional roles. The term 
forming rules for feature terms directly correspond to the concept forming possibilites of KL
ONE. Indeed, the expressiveness of feature terms can be viewed as KL-ONE where all roles are 
functional, and where a complement operator is added. 

The basic service provided by all these languages is a reasoning facility called 'classification' 
that informs the user whether a concept A is subsumed by a concept B, that means: every B is also 
an A. For several languages related to KL-ONE, the complexity of subsumption is known: The 
language :FL- admits a classification algorithm of quadratic time complexity [LB87], the language 
:FL has a co-NP-complete classification problem. Recently it was shown that the classification 
problem for feature terms is co-NP-complete [Sm88]. 

Although there is agreement upon that role value maps provide complications, there are systems 
allowing them as descriptive possibility and use them also in the (incomplete) classification 
algorithm. In this paper it is shown that subsumption in a sublanguage of KL-ONE is undecidable. 
Number restrictions are used in this proof only in the restricted form of a 'some' operator, wheras 
role value maps are crucial for this proof. However role value maps are only permitted with '=' 
as comparison operator. 

This result was a surprise, since the very similar language of feature terms has a decidable (co
NP-complete) classification problem. This means that if we extend the feature term language by 
allowing arbitrary roles instead of functions then the complexity of classification switches from co
NP-complete to undecidable. This shows that role value maps in the restricted form are acceptable, 
but that the general form as used in KL-ONE should be avoided. 
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1. Introduction.

The frame-based knowledge representation language KL—ONE [BS85, BGL85] permits
describing concepts on the basis of unary predicates (concepts, frames) and binary predicates
(roles, slots). KL-ONE or related languages are currently being used as the basis of several
knowledge representation systems [B885, LN87, KBR86, Mg88], in particular for natural
language processing.

The terminological component (T—Box) of KL-ONE gives a user the possibility to structure a
domain of interest by using concepts and roles (frames and slots). Usually, such a description
starts by postulating certain primitive concepts and roles, and afterwards describing definable
concepts using the operators available. New concepts can be defined via conjunction, via value
restriction with respect to some role ("a person with every male friend i s  a doctor"), via number
restriction (" a person with more than three children"), and via role value maps ("a man with:
every child of a child of his father is also a child").

Research in computational linguistics has lead to a related knowledge representation method on
the basis of unification grammars [Sh86], namely so-called ‘P-terms [AN86] or feature terms
[SA87, Sm88], where concepts are called sorts and roles are called features. The difference to
knowledge representation ä la KL—ONE is  that feature terms permit only functional roles. The term
forming rules for feature terms directly correspond to the concept forming possibilites of KL-
ONE. Indeed, the expressiveness of feature terms can be viewed as KL-ONE where all roles are
functional, and where a complement operator is added.

The basic service provided by all these languages is a reasoning facility called ‘classification’
that informs the user whether a concept A is subsumed by a concept B ,  that means: every B is  also
an A. For several languages related to KL—ONE, the complexity of subsumption is known: The
language 9'1;- admits a classification algorithm of quadratic time complexity [LB 87], the language
TL has a co—NP-complete classification problem. Recently it was shown that the classification
problem for feature terms is co—NP-complete [Sm8 8].

Although there is agreement upon that role value maps provide complications, there are systems
allowing them as descriptive possibility and use them also in the (incomplete) classification
algorithm. In this paper it is shown that subsumption in a sublanguage of KL- ONE is  undecidable.
Number restrictions are used in this proof only in the restricted form of a ‘some’ Operator, wheras
role value maps are crucial for this proof. However role value maps are only permitted with ‘=’
as comparison operator.

This result was a surprise, since the very similar language of feature terms has a decidable (co-
NPucomplete) classification problem. This means that if we extend the feature term language by
allowing arbitrary roles instead of functions then the complexity of classification switches from co-
NP-complete to undecidable. This shows that role value maps in the restricted form are acceptable,
but that the general form as used in KL-ONE should be avoided.



Recently, P. Patel-Schneider [PS88] has shown that classification in KL-ONE is undecidable. 
However, the used sublanguage of KL-ONE appears to require more of the expressivity of KL
ONE than our sublanguage, such as role value maps with cc' as comparison operator, inverse 
roles and number restrictions. A further proof of undecidable subsumption of roles in a KL-ONE 
related language including negation of roles was recently presented by K. Schild [Sc88]. 

2. The Language 

In the following we describe the syntax and semantics of an extension of the terminological 
language KL-ONE [BS85] in a slightly modified syntax, but the same semantics. Our language 
KL-ONE+c allows to construct concept expressions as follows. There are disjoint sets of role 
symbols and concept symbols. Concept expressions are: 

i) concept symbols
 
ii) CnD, if C and D are concept expressions.
 
iii) VR:C, if R is a role symbol and C is a concept expression.
 
iv) 3R:C, if R is a role symbol and C is a concept expression.
 
v) P = Q ifP and Q are lists of roles.
 
vi) -,C if C is a concept expression.
 

Let R,S be relations over a set M, Le., R,S c MxM. 
The composition of R and S is defmed as: 

RoS:= {(x,y) 13zEM (x,z) E R 1\ (z,y) eS}. 
The application of a relation R to a set s ~ M is defmed as follows: 

sR := {y I 3x: x E s 1\ (x,y) ER}. 
The application of R to an element is defmed analogously: 

xR := {y I (x,y) ER}. 
Obviously, we have s (RoS) = (sR)S 

The semantics of the concept expressions is as usual. An interpretation I is a pair (M, I), where 
M is a set and I an interpretation function, such that 

i) for every concept symbol C: I(C) c M 
ii) for every role symbol R: I(R) c MxM. 

Lists of roles are interpreted as the composition of relations: 
I«Rl, ... ,Rn»= I(Rl)o ... ol(Rn)· 

We intepret defined concepts as subsets of M as follows: 
ICC n D) = I(C) (") I(D) 
I(C u D) = I(C) u leD) 
I(VR:C) = {x E M IVy: (x,y) E I(R) => YE I(C)} 
1(3R:C) = {x E M 13y: (x,y) E I(R) 1\ YE I(C)}. 
I(P = Q) = {x E M I x(I(P» = x(I(Q»} 
I(-,C) = M - I(C). 

Subsumption and Consistency are defined with respect to this semantics: 
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Recently, P. Patel—Schneider [P888] has shown that classification in KL-ONE is undecidable.
However, the used sublanguage of KL—ONE appears to require more of the expressivity of KL—
ONE than our sublanguage, such as role value maps with ‘g ’  as comparison operator, inverse
roles and number restrictions. A further proof of undecidable subsumption of roles in a KL-ONE
related language including negation of roles was recently presented by K. Schild [SCS 8].

2. The Language

In the following we describe the syntax and semantics of an extension of the terminological
language KL-ONE [B885] in a slightly modified syntax, but the same semantics. Our language
KL-ONE+c allows to construct concept expressions as follows. There are disjoint sets of role
symbols and concept symbols. Concept expressions are:

i) concept symbols
ii) C n D, if C and D are concept expressions.
iii) VR:C, if R is a role symbol and C is a concept expression.
iv) 3R:C,  if R is a role symbol and C is a concept expression.
v) P = Q if P and Q are lists of roles.
vi) -1C if C is a concept expression.

Let R,S be relations over a set M, i.e., R,S ; MxM.

The composition of R and S is defined as:
RoS :=  {(x,y) | 326 M (x,z) e R A (z,y) e S}.

The application of a relation R to a set s g M is defined as follows:
sR := {ylElxz xe  SA (x,y) e R}.

The application of R to an element is defined analogously:
xR :=  [y l  (x,y) e R}.

Obviously, we have s (RoS) = (sR)S

The semantics of the concept expressions is as usual. An interpretation I is a pair (M, I), where
M is a set and I an interpretation function, such that

i) for every concept symbol C: I(C) g M
ii) for every role symbol R: I(R) ; MxM.

Lists of roles are interpreted as the composition of relations:
I ( (R1‚ .„ ‚Rn) )  = I (R1)° .„ ° I (Rn) .

We intepret defined concepts as subsets of M as follows:
I(C n D) = I(C) n I(D)
I(C u D) = I(C) u I(D)
I(VRzC) = {x  e M | Vy: (x,y) e I(R) => y e I(C)}
I(EIR:C) = {x  e M l Ely: (x,y) e I(R) A y e I(C)}.
KP = Q) = {x E M | X(I(P)) = X(I(Q))}

I(—tC) = M— I(C).

Subsumption and Consistency are defined with respect to this semantics:



A concept expression C subsumes a concept expression D, iff for all possible 
interpretations I, we have I(C):::> I(D). 

A concept C is consistent, iff there exists an interpretation I, such that I(C) *" 0, otherwise 
it is called inconsistent. 

Two concepts C and D are equivalent, iff C subsumes D and D subsumes C. 

2.1 Lemma. Let C, D be concept expressions. 
Then D subsumes C, iff ...,D n C is an inconsistent concept. • 

Since we have negation in KL-ONE+C, subsumption problems are equivalent to inconsistency 
problems. 

There is a minor difference to usual KL-ONE: The operator 3R:C appears to introduce more 
expressivity. However, this operator can be seen as an abbreviation of 
(SOME (RESTRICT R C)), hence KL-ONE+c without complements is a sublanguage of KL
ONE. The sublanguage of KL-ONE+C without complements is called KL-ONE*. Obviously this 
is a sublanguage of KL-ONE. In KL-ONE* it is not possible to define new roles, and number 
restrictions appear only in the form of the SOME. Furthermore role value maps of the form 
(P c Q) are disallowed. 

3. Subsumption is Undecidable. 

Similar as in [SS88, Sm88], we transform subsumption problems into a system C of 
constraints, where every single constraint is of one of the forms s c C, X E C, S *" t. We write 
x,y, z for element variables, s,t denote expressions of the form xRl." Rn' and C, D denote 
concept expressions. 

Let I = (M, I) be an interpretation. Let a be an assignment of elements in M to element 
variables of C. We assume that a extends the interpretation function I, Le.aC = I(C), a(xP) := 
(ax)I(P). 

Then we say a satisfies C, if the following holds: 
for (x E A) E C, we have ax E aA 
for (A c B) E C, we have a(A) ~ aB 
for (A =B) E C, we have aA =aB. 
for (A *" B) E C, we have aA *" aB. 

A constraint system Cis consistent, iff there exists a model M and an assignment a with respect 
to this model such that a satisfies C, otherwise it is called inconsistent. 

3.1 Lemma. Let C be a concept expression. 
Then C is consistent, iff the constraint system {x E C} is consistent.• 

There are several rules for replacing concepts and constraints which make life easier: 
...,VR:C H 3R:...,C 
...,3R:C H VR:...,C 
x E AnB H x E A, x E B 
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A concept expression C subsumes a concept expression D ,  iff for all possible
interpretations I, we have I(C) ; I(D).

A concept C is consistent, iff there exists an interpretation I, such that I(C) ;é Q, otherwise
it is  called inconsistent.

Two concepts C and D are equivalent, iff C subsumes D and D subsumes C.

2.1 Lemma. Let C, D be concept expressions.
Then D subsumes C, iff --.D n C is an inconsistent concept. I

Since we have negation in KL—ONE+C, subsumption problems are equivalent to inconsistency
problems.

There is a minor difference to usual KL-ONE: The operator 3R:C appears to introduce more
expressivi ty .  However, this operator can  be  seen  a s  an abbreviation of
(SOME (RESTRICT R C)), hence KL—ONE+C without complements is a sublanguage of KL-
ONE. The sublanguage of KL—ONE+C without complements is called KL—ONE*. Obviously this
is  a sublanguage of KL-ONE. In KL-ONE* it is not possible to define new roles, and number
restrictions appear only in the form of the SOME. Furthermore role value maps of the form
(P ; Q) are disallowed.

3. Subsumption is Undecidable.

Similar as  in [SS88‚ Sm88],  we transform subsumption problems into a system C of
constraints, where every single constraint is of one of the forms s g C, x e C,  s at t .  We write
x,y, z for element variables, s,t denote expressions of the form l . . .Rn ,  and C,  D denote
concept expressions.

Let I = (M, I) be an interpretation. Let on be an assignment of elements in M to element
variables of C. We assume that a extends the interpretation function I ,  i.e.0tC = I(C), 0t(xP) :=
(05x)I(P).

Then we say OL satisfies C, if the following holds:
for (x e A) e C, we have ax e aA
for (A g B)  e C ,  we have oc(A) ; ocB
for (A = B)  e C, we have OLA = ocB.
for (A ;: B) e C, we have OLA # ocB.

A constraint system Cis consistent, iff there exists a model M and an assignment ou with respect
to this model such that on satisfies C, otherwise it is called inconsistent.

3.1 Lemma. Let C be a concept expression.
Then C is consistent, iff the constraint system {x e C} is consistent.

There are several rules for replacing concepts and constraints which make life easier:

x e AnB <—> x e A, x e B



XE 'v'R:C ~ Rx~C 

XE 3R:C ~ yE xR, YE C 
XE (P=Q) ~ XP=XQ 
x E ....,(P=Q) ~ XP*XQ 

In order to show undecidability of subsumption, we use the undecidability of the word problem in 
groups [B059, N055]. Such a problem looks as follows: Let Rl, ... ,Rn be the symbols of a group 
and let Pl=Q},... ,Pm=Qm be the generating relations of some group. Then the word problem is to 
test given strings P andQ, whether P = Q is a consequence of these relations and the axioms for a 
group. We will show that there is a subsumption problem that is equivalent to this word problem. 

In order to avoid clumsy notation, we assume that only associativity is built-in and that the 
relations imply that the semigroup defmed by the relations is a group. If we have given generating 
relations under the assumption that all axioms for a group are built-in, the following procedure 
gives relations for semigroups ensuring that the generated semigroup is a group: Add a new 
symbol Re standing for the unit, and add for every symbol Ri a new symbol Ri for the inverse. 
Then add the relations: ReoR = R and RoRe = R for every symbol R E {Re,Ri,Ri, i = 1, ... ,n} 
and add the relations RioRi = Re and RioRi= Re for all symbols Ri. The defining relations for the 
group are translated as follows: We assume that the words occurring in the relations are composed 
of symbols or inverses of symbols. The unit is translated into Re, symbols are translated 

identically and inverses of symbols are translated by (Ri)-l ~ Ri. Now the new relations together 
with the translated generated relations defining the group provide a semigroup, which is 
isomorphic to the original group and has an equivalent word problem. 

These considerations permit us to assume in the following that the symbols are R},... ,Rn and 
that the relations are Pl=QI. ... ,Pm=Qm, where the group defining relations are among these 
relations. By (j we denote the free semigroup (which is in fact a group) generated by the symbols 
R}, ... ,Rn with relations PI=QI, ... ,Pm=Qm. For convenience we denote elements of (j by [P], 
where P is a string of symbols and [P] denotes the congruence class with respect to the defining 
relations. Note that for two words it is semidecidable, whether they are congruent by replacement 

of equals by equals. Furthermore [P] = [Q] holds in (j, iff P = Q can be derived as equational 
consequence from the defining relations [BS81,Gr79]. 

We need a further role symbol R that is different from all other roles. Furthermore we use 
Pi,Qi,P and Q also for the list of roles. 

We define several concepts that are needed for the subsumption problem encoding the word 
problem. For convenience we use n as associative operator and write lists of roles as 
composition. 

Cl := (R.RI = R) n n (RoRn = R) 
C2 := 'v'R:(PI= QI) n n 'v'R:(Pm= Qm) 

Now let C := Cl n C2 and let D := 'v'R: (p=Q). 

The idea of the construction is to view the relation in the role value maps as relations that define a 
semigroup and then to make deductions by replacing equals by equals. The concept C2 encodes 
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ec  <—-> Rn
elR:C <——> ye  xR ,yeC
xe(P=Q)  (—-> xP=xQ
x e "I(P=Q) (—9 xP # xQ

In order to show undecidability of subsumption, we use the undecidability of the word problem in
groups [B059, N055]. Such a problem looks as follows: Let R1,. ..,R1] be the symbols of a group
and let P1=Q1,. . .,Pm=Qm be the generating relations of some group. Then the word problem is to
test given strings P andQ, whether P = Q is  a consequence of these relations and the axioms for a
group. We will show that there is a subsumption problem that is  equivalent to this word problem.

In order to avoid clumsy notation, we assume that only associativity is built-in and that the
relations irnply that the semigroup defined by the relations is a group. If we have given generating
relations under the assumption that all axioms for a group are built-in, the following procedure
gives relations for semigroups ensuring that the generated semigroup is a group: Add a new
symbol Re standing for the unit, and add for every symbol Ri a new symbol Ri— for the inverse.
Then add the relations: ReoR = R and RoRe = R for every symbol R e {Re,Ri,Ri‘, i == 1,...,n}
and add the relations Ri—oRi = Re and RioR'i‘z Re for all symbols Ri. The defining relations for the
group are translated as follows: We assume that the words occurring in the relations are composed
of symbols or inverses of symbols. The unit is translated into Re, symbols are translated
identically and inverses of symbols are translated by (Ri)'l _) R‘i“. Now the new relations together
with the translated generated relations defining the group provide a semigroup, which is
isomorphic to the original group and has an equivalent word problem.

These considerations permit us to assume in the following that the symbols are R1,. ..,Rn and
that the relations are P1=Q1,...,Pm=Qm, where the group defining relations are among these
relations. By  g we denote the free semigroup (which is in fact a group) generated by the symbols
R1,...,Rn with relations P1=Q1,...,Pm=Qm. For convenience we denote elements of 9 by [P],
where P is a string of symbols and [P] denotes the congruence class with respect to the defining
relations. Note that for two words it is semidecidable, whether they are congruent by replacement
of equals by equals. Furthermore [P] = [Q] holds in g, iff P = Q can be derived as equational
consequence from the defining relations [BS81,G1'79].

We need a further role symbol R that is different from all other roles. Furthermore we use
Pi,Qi,P and Q also for the list of roles.

We define several concepts that are needed for the subsumption problem encoding the word
problem. For convenience we use n as associative operator and write lists of roles as
composition.

C1 := (RoR1= R) r1... n (RoRn = R)
C2 :=  VR:(P1= Q1) I'I I'I VR:(Pm= Qm)

Now let C :=  C1 r1 C2 and let D := VR: (P=Q).

The idea of the construction is to view the relation in the role value maps as relations that define a
semigroup and then to make deductions by replacing equals by equals. The concept C2 encodes



the relations that are used to defme a particular group, wheras Cl is only technical; it encodes some 
fixed point properties that will enable deductions as in groups. 

Now we can prove the main result as a sequence of lemmas. 

3.2 Lemma. D subsumes C, iff the following constraint system is inconsistent: {y e xR, 
yP '# yQ, xRoRI = R, ... , xRoRn = xR, xR ~ (PI= QI), .. " xR ~ (Pm= Qm)}. 

Proof. Lemma 2.1 yields that D subsumes C iff -,D n C is an inconsistent concept, and Lemma 
3.1 yields that this is equivalent to the inconsistency of the constraint system 
{x e -,DnC}. Due to the rules above, we can transform this constraint system into 

{x e 3R:-,(P=Q), x e Ch x e C2} and thus into 
{ye xR,yP'#yQ,xe CI,xe C2}. 

If we develop the concepts Cl and C2, then we obtain the following constraint system: 
{ye xR, yP '# yQ, xRoRI = R, ... , xRoRn = xR, xR c (PI= QI), ... , xR c (Pm= Qm)} .

• 
In the constraint system obtained from Lemma 3.2 we abbreviate xR by s: 

{yes, yP '# yQ, SRI = S, ... , sRn = s, s c (PI= QI), ... , s c (Pm= Qm)}. 

We denote this constraint system by Cq. 

3.3	 Lemma. If pI = QI is an equational consequence of the relations defining g, then 
s c (P'= Q') can be added to Cfj without affecting consistency. 

Proof. The proof is by induction on a single deduction step. It suffices to prove this for the 
replacement of equals by equals. Let Ai denote lists of roles. Let C be a constraint system 
obtained after the addition of some consequences to Cfj. Let s c (AloA2oA3 = A4) and 
s c (A2 = AS) be in C. 
We have to show that we can add the constraint s c (AloAsoA3 = A4) to C. Therefore let M 
be a model and a be an assignment that satisfies C before the addition. For every element 
a e as, we have aa(AloA2oA3) = aa(A4) and aa(A2) = aa(As). The latter implies that for 
every subset B c as we have Ba(A2) = Ba(As). If we choose B as aAI, we obtain 
aa(ApA2) = aa(ApAs). Obviously we can apply aA3 to the right. Thus we have 
aa(ApA2oA3) = aa(ApAsoA3). This holds for every element a in as, hence 
as c a(AIoAsoA3 = A4).• 

3.4 Lemma. Let P and Q be words over the symbols generating g. Then 
[P] = [Q] iff Cfj is inconsistent. 

Proof. 
"~": Lemma 3.3 shows that we can add add s ~ (P = Q). which contradicts the constraints 

yes, yP'# yQ. Hence Cfj is inconsistent. 
"<:=": A model can be constructed as follows: Let the denotation of s be the set of congruence 

classes of the semigroup as := g. The application of a role to as is defined as [P]Ri := 
[poRi]. Then the constraints SRI = S, ... ,sRn = s are satisfied, since g is a group. The 
constraints s c (PI = QI), ... , s c (Pm=Qm) are also satisfied, since the equations 
[Pi] = [Qi], i = 1,... ,n hold in g. It remains to be shown that yP '# yQ, yes can be 
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the relations that are used to define a particular group, wheras C1 is only technical; it encodes some
fixed point properties that will enable deductions as in groups.

Now we can prove the main result as a sequence of lemmas.

3.2 Lemma. D subsumes C,  iff the following constraint system is inconsistent: {y  e xR,
yP at yQ, xRoR1 = R,...‚ xRoRn = xR, xR ; (P1= Q1),...,  xR ; (Pm: Qm)}.

Proof. Lemma 2.1 yields that D subsumes C iff —-:D n C is  an inconsistent concept, and Lemma
3 .1  yields that this i s  equivalent to the inconsistency of the constraint system
{x  & -.DI'IC). Due to the rules above, we can transform this constraint system into

{x e ElR:—-—.(P=Q)‚ x 6 C1, x 5 C2} and thus into
{y  e xR, yP at yQ, x C- C1, x 6 C2}.

If we develop the concepts C1 and C2, then we obtain the following constraint system:
{y  e xR, yP at yQ, xRoR1=  R,.. . ,  xRoRn = xR, xR g (P1: Q1)....,  xR ; (Pm: Qm)}.
I

In the constraint system obtained from Lemma 3.2 we abbreviate xR by s:

{ye S .yP¢yQ.  sR1=s ‚ . . . ‚ sRn=s ‚  s ; (P1=  Q1).....s; (Pm= Qm)}-
We denote this constraint system by C9

3.3 Lemma. If P' = Q' i s  an equational consequence of the relations defining 9 ,  then
s ; (P'= Q') can be added to Cg without affecting consistency.

Proof. The proof is  by induction on a single deduction step. I t  suffices to prove this for the
replacement of equals by equals. Let Ai denote lists of roles. Let C be a constraint system
obtained after the addition of some consequences to C9. Let s ; (A1°A2°A3 = A4) and
s g (A2 = A5) be in  C.
We have to show that we can add the constraint 3 g (AloAsoAg == A4) to C. Therefore let M
be a model and oz be an assignment that satisfies C before the addition. For every element
a e as, we have aoc(A1oA2o A3) = aOt(A4) and act(A2) = a0t(A5). The latter implies that for
every subset B g ocs we have Boc(A2) = Ba(A5) .  If we choose B as (1A1, we obtain
a0t(A1oA2) = a0t(A1oA5). Obviously we can apply 0tA3 to the right. Thus we have
aa (A1oA2oA3)  = aoc(A1oA5oA3). This holds for every element a in a s ,  hence
as  ; oc(A1°A5°A3 = A4). I

3.4 Lemma. Let P and Q be words over the symbols generating 9“. Then
[P] = [Q] iff Cg is inconsistent.

Proof.
"=>": Lemma 3.3 shows that we can add add s g (P = Q). which contradicts the constraints

y e s, yP # yQ. Hence Cg is inconsistent.
"<=": A model can be constructed as follows: Let the denotation of s be the set of congruence

classes of the semigroup as :=  (j. The application of a role to as is defined as [P]Ri :=
[PoRi]. Then the constraints sR1 = s,. . .,sRn = s are satisfied, since 9; is a group. The
constraints 3 ; (P1= Q1),... ,  s ; (Pm=Qm) are also satisfied, since the equations
[Pi] = [Qi] ,  i = 1 , . . . ,n  hold in C}. It remains to be shown that yP at yQ, y e s can be



satisfied. The assigment of the unit in (j to y gives an element that is in the set 
a(P '# Q), since [P] '# [Q] in (j. That s is an abbreviation for xR does not matter: we 
can simply add some element a to the model and define ax := a and aR := {(a, b) I 

b E (j}. Hence all constraints can be satisfied.• 

3.5 Theorem. Subsumption in KL-ONE*, and hence in KL-ONE, is undecidable. 
Proof.	 Obviously the subsumption problem in Lemma 3.2 can be formulated in KL-ONE*. 

Lemmas 3.2, 3.3, 3.4 together with the well-known result that the word problem in groups 
is undecidable [B059, N055] shows the theorem.• 

4. Conclusion 

We have shown that a considerable small sublanguage of KL-ONE has an undecidable 
subsumption problem. The reason for this nasty result seems to be the expressive power of role 
value maps. They are rather intuitive at first glance, but provide the full power of Turing machines 

if used excessively. 

It is remarkable that role value maps in the feature term language [Sm88, SA87], where 
subsumption is co-NP-complete, do not have such a dramatic effect. The only difference between 
KL-ONE+C and the feature term language is that roles in the latter always are functional. The other 
possibility to restrict the expressive power of KL-ONE+C by discarding role value maps has been 
considered in [SS88], where it is shown that subsumption becomes co-NP-complete in this case. 

Our conclusion is that either role value maps have to be discarded or simple restrictions on the 
use of role value maps have to be found, such that subsumption remains decidable. 
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