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Abstract 

The effective calculation with term rewriting systems presumes t~rmination. Orderings on terms are 

able to guarantee termination. This report deals with some of those term orderings : Several path and 

decomposition orderings and the Knuth-Bendix ordering. We pursue three ~ims : Firstly, known 

orderings will get new definitions. In the second place, new ordering methods will be introduced : 

We will extend existing orderings by adding the principle of status ([KL80]). Thirdly, the 

comparison of the power as well as the time behaviour of all orderings will be presented. 

More precisely, after some preliminary remarks to termination of rewrite systems we present the 

ordering methods. All orderings are connected by an essential characteristic: Each operator 

has a status that determines the order according to which the subterms are compared. We 

will present the following well-known orderings: The recursive path ordering with status ([KL80D, 

the path of subterms ordering ([Ru8?]) and another path ordering with status ([KNS85]). A new 

recursive decomposition ordering with status will lead the catalogue of orderings introduced here. It 

is different from that of [Le84]. Moreover, we give a new definition based on decompositions of the 

path of subterms ordering (see [St88a]). An extension by incorporating status to this ordering as 

well as to the improved recursive decomposition ordering (cf. [Ru8?]) will be a part of the paper. All 

orderings based on decompositions will be presented in a new and simple style: The decomposition 

of a term consists of terms only. The original definitions take tuples composed of three (or even 

four) components. Additionally to path and decomposition orderings, we deal with the weight 

oriented ordering ([KB?O]) and incorporate status. Finally, important properties (simplification 

ordering, stability w.r.t. substitutions, etc.) of the newly introduced orderings will be listed. 

Besides the introduction of new orderings, another main point of this report is the comparison of the 

power of these orderings, i.e. we will compare the sets of comparable terms for each combination of 

two orderings. It turned out that the new version with status of the improved recursive 

decomposition ordering (equivalent to the path ordering with status of [KNS85]) is the most 

powerful ordering of the class of path and decomposition orderings presented. This ordering and the 

Knuth-Bendix ordering with status overlap. 

The orderings are implemented in our algebraic specification laboratory TRSPEC and the completion 

system COMTES. A series of experiments has been conducted to study the time behaviour of the 

orderings. An evaluation of these chronometries concludes the paper. 

Keywords 
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The effective calculation with term rewriting systems presumes termination. Orderings on terms are
able to guarantee termination. This report deals with some of those term orderings : Several path and

decomposition orderings and the Knuth-Bendix ordering. We pursue three aims : Firstly, known

orderings will get new definitions. In the second place, new ordering methods will be introduced :

We will extend existing orderings by adding the principle of status ([KL80]). Thirdly, the

comparison of the power as well as the time behaviour of all orderings will be presented.

More precisely, after some preliminary remarks to termination of rewrite systems we present the
ordering methods. All orderings are connected by an essential characteristic : Each operator
has a status that determines the order according to which the subterms are compared. We
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power of these orderings, i.e. we will compare the sets of comparable terms for each combination of
two orderings. It turned out that the new version with status of the improved recursive
decomposition ordering (equivalent to the path ordering with status of [KNS85]) is the most
powerful ordering of the class of path and decomposition orderings presented. This ordering and the
Knuth-Bendix ordering with status overlap.
The orderings are implemented in our algebraic specification laboratory TRSPEC and the completion
system COMTES. A series of experiments has been conducted to study the time behaviour of the
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1 Introduction and Notations 

Tenn rewriting systems gain more and more importance because they are a useful model for 

non-deterministic computations (since they are based on directed equations with no explicit control), 

with various applications in many areas of computer science and mathematics. Automatic theorem 

proving and program verification, abstract data type specifications and algebraic simplification, to 

name a few, have centred on this concept. 

In order to emphasize definitions we will use italic type. A term rewriting system (TRS, for short) 

9\ over a set of tenns r is a finite or countably infinite set of rules, each of the fonn I ~9{ r, 

where 1and r are tenns in r, such that every variable that occurs in r also occurs in 1. The set r of 

all terms is constructed from elements of a set !T of operators (or function symbols) and some 

denumerably infinite set X of variables. The set of ground terms (tenns without variables) is 

denoted by r o' The leading function symbol and the tuple of the (direct) arguments of a tenn t are 

referred to by top(t) and args(t), respectively. 

A TRS 9\ generates a binary relation =>9( on r as follows: s ~9{ t (tenn s rewrites to tenn t) if 

and only if s contains an instance 0'(1) of the left hand side of a rule I ~9{ r and t is derived 

from s by replacing the subterm 0'(1) by O'(r). A substitution G is defined as an 

endomorphism on r with the finite domain {x I O'(x) * x}, Le. 0' simultaneously replaces all 

variables of a term by terms. The structure of a tenn is partially altered by rule application. 

Consequently, it is advantegeous to have a precise scheme for specifying how and what particular 

part of it is to be changed. For this, we use the fonnalism of labelling tenns with positions which 

are sequences of non-negative integers. The set of all positions of a tenn t is called the set of 

occurrences and its abbreviation is O(t).Ot(t) denotes the set of all terminal occurrences 

(occurrences of the leaves) of the tenn 1. We write tlu ~ s] to denote the term that results 

from t by replacing tlu (the subterm of t at occurrence u) by s at the occurrence u E O(t). 

Furthermore, we write sft] to indicate that s contains the term t as a subterm. Analogous with 

t[u ~ s], tlr ~ s] stands for the tenn that results from t by replacing its subtenn r at a fixed 

position by the tenn s. 

A derivation in 9t is a sequence to ~9{ t1 ~9{ li ~9{ •••• The simplicity of the semantic of a TRS is 

guaranteed whenever the result of such a computation does not depend on the choice of the rules to 

be applied. This property is called confluence and is related with the so-called Church-Rosser 

property that justifies the possible solution of the word problem by checking the equality of normal 
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Term rewriting systems gain more and more importance because they are a useful model for
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where l and r are terms in l" , such that every variable that occurs in r also occurs in l. The set F of
all terms is constructed from elements of a set 7" of operators (or function symbols) and some
denumerably infinite set x of variables. The set of ground terms (terms without variables) is
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and only if s contains an instance 6(1) of the left hand side of a rule l amr  and t is derived
from s by replacing the subterm 6(1) by 6(r). A substitution 0' is defined as an
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are sequences of non-negative integers. The set of all positions of a term t is called the set of
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from t by replacing t/u (the subterm of t at occurrence u) by s at the occurrence u e 0(t).
Furthermore, we write s[t] to indicate that s contains the term t as a subterm. Analogous with
t[u <— s] ,  t[ r <—s] stands for the term that results from t by replacing its subterm r at a fixed

position by the term 5.

A derivation in 9? is a sequence t0 ”as t1 =>9t tf’sr . The simplicity of the semantic of a TRS is
guaranteed whenever the result of such a computation does not depend on the choice of the rules to
be applied. This property is called confluence and is related with the so—called Church-Rosser
property that justifies the possible solution of the word problem by checking the equality of normal
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forms (irreducible terms). If a TRS is not confluent, it can sometimes be transformed into a 

confluent one using the Knuth-Bendix completion procedure (cf. [KB70]) which adds new rules 

(non-convergent critical pairs that are derived from the overlappings of two left members of rules) 

to the initial rewrite system. Unfortunately, the successful use of this process crucially depends on 

the ability of proving the termination of a TRS. 

A TRS 9t over a set of terms r is (finitely) terminating or noetherian if there exists no infinite 

derivation in 9\. A trivial example of a terminating TRS is 

since the number of symbols is reduced by each application of a rule. But in general, the termination 

of an arbitrary TRS is an undecidable property, even if the number of rules is bounded by 2 

([HL78] , [De85]). Thus, the best we can hope for are different strategies which are together able to 

cope with many rewrite rule systems occurring in practice. These methods are based on verifying 

that the rewrite relation =}~ is included in an ordering on terms. Such an ordering must be 

well-founded to forbid infinite derivations of terms. A (partial) ordering on r G is a transitive and 

irreflexive binary relation > and it is called well-founded if there are no infinite descending 

chains. To check the inclusion I=}~ ~ >' all (infinitely many) possible derivations must be 

tested. The key idea is to restrict this infinite test to a finite one. For that purpose we have to require 

a reduction ordering >. 

A reduction ordering > is a well-founded partial ordering and compatible (or sometimes called 

monotonous) with the structure of terms (the so-called replacement property ), i.e. t1 > ~ implies 

t[u ~ t1] > t[u ~~] for any t, t1' ~ Er and u E O(t). In other words, decreasing a subterm 

decreases any superterm containing it. An example of a reduction ordering is the ordering on the size 

of terms: s ~ t if and only if Is/ > It/ where I t I is the size of the term t (i.e. the number of 

function symbols and variables appearing in t) and > is the natural ordering on integers. The 

well-foundedness of this ordering is a consequence of the ordering on integers being well-founded. 

Its compatibility is obvious. 

IThe notion of reduction orderings suggests the following meaning of proving termination of rewrite 

systems: 

Theorem ([La77]): A rewrite system 9t over r terminates if and only if there exists a 

reduction ordering > on r G such that cr(l) > cr(r) for each rule I ~9{ r and for any 

substitution cr of terms in r for the variables appearing in 1. 
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decreases any superterm containing it. An example of a reduction ordering is the ordering on the size
of terms : s r t  if and only if lsI > Itl where | t | is  the size of the term t (i.e. the number of

function symbols and variables appearing in t) and > is the natural ordering on integers. The
well-foundedness of this ordering is a consequence of the ordering on integers being well-founded.
Its compatibility is obvious.

The notion of reduction orderings suggests the following meaning of proving termination of rewrite

systems :

Theorem ([La77]) : A rewrite system 9? over 1" terminates if and only if there exists a

reduction ordering > on FG such that 60) > 6(r) for each rule 1-99t r and for any

substitution 0 of terms in I“ for the variables appearing in 1.
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The demand for a reduction ordering for the theorem is necessary since a reduction step 

t[O'(I)] ~~ t[O'(1) f- a(r)] with an application of 1~~ r must be in decreasing order, i.e. 

t[a(1)] > t[a(1) f- a(r)], and we only have required 1 > r. This representation reveals another 

dilemma which is universal quantification on substitutions or the so-called stability w.r.t. 

substitutions (cf. theorem) : 

s > t implies a(s) > aCt). 

Summarizing is to remark that a termination proof of a TRS requires a reduction ordering stabilized 

w.r.t. substitutions. Guaranteeing these properties is very difficult. This fact leads to the basic idea 

of characterizing classes of orderings for which there is no need to prove the conditions. One 

possible solution is represented by the class of simplification orderings ([De82]) which are at least 

reduction orderings. A partial ordering is a simplification ordering if it has two characteristics: The 

replacement property and the subterm property (any term is greater than any of its proper 

subterms). The requirement of the subterm property is evident since it is closely connected with the 

non-termination of rewrite systems. 

It is obvious that a TRS 9\ is not terminating if the same term repeatedly appears in a derivation: 

'" ~~ s ~~ ... ~~ t ~9\ ••• and s =1. Generally speaking, a TRS 9\ is non-terminating if a 

derivation contains two terms sand t where s is a subterm of t and t is derived from s. This property, 

called looping, provides a sufficient but not necessary condition for 9\ to be non-terminating. 

Consider the system consisting of the single rule x*y ~~ (O+x)*y which produces the infinite 

derivation x*y ~~ (O+x)*y ~~ (O+(O+x»*y ~~ (O+(O+(O+x)))*y ~~ ... . Clearly, this 

TRS neither terminates nor loops. To detect the non-termination of this kind of rewrite system a 

weaker condition is needed. It is called homeomorphic embedding or plunging ordering. This is a 

transitive and reflexive binary relation 5 on terms. Embedding can be seen as a way to 

map injectively the set of symbols of a term s into the set of symbols of a term t, having regard to 

the topology (i.e. the structure) of s. But the mapping is not sUIjective in general: If it is sUIjective 

then s and t are identical. Therefore, we write s 5 t if s can be obtained from t by deletion of 

selected symbols: 

We shall say that a derivation t1 ~9\ ~ ~9\ •.• is self-embedding if ti 5 tk for some i < k (cf. 

[PI85]). A rewrite system is self-embedding if it allows a self-embedding derivation. Note that 

non-termination allows a self-embedding derivation ([De82]). Moreover, self-embedding does not 

imply non-termination: The rewrite system (x2)2 ~~ (_(x2»2 is self-embedding and, nevertheless, l

] Introdjction and Notations 3

The demand. for a reduction ordering for the theorem is necessary since a reduction step
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We shall say that a derivation t1 =>9t t2 =><fi is  self—embedding if t].l E tk for some i<  k (cf.
[P185]). A rewrite system i s  self-embedding if  it allows a self—embedding derivation. Note that
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terminates. But we can use the homeomorphic embedding to specify a sufficient condition for the 

termination of rewrite systems: Simplification orderings. The close relationship of a simplification 

ordering > to l; is attested by the embedding lemma of Dershowitz : 

Lemma ([De82]): If s l; t, then s $ t in any simplification ordering >. 

As usual, ~ is a quasi-ordering on r G' A quasi-ordered set (fG'~) consists of the set 

r G and a transitive and reflexive binary relation ~ defined on elements of r G' A 

quasi-ordering defines an equivalence relation = as both ~ and ~, and a partial ordering 

> as ~ but not ~. 

A great number of simplification orderings have been defined. Most of them are precedence 

orderings using a special ordering on operators. More precisely, a precedence is a partially ordered 

set (1', ~) consisting of the set l' of operators and an irreflexive and transitive binary relation ~ 

defined on elements of :J. Therefore, we consider an ordering > with p (the precedence) as 

a parameter, written as >(p). If there is no ambiguity, we will use the notation > instead 

of >(p). 

A partial ordering > on a set M may be extended: An ordering ~ on M is an extension of > 

if and only if s > t implies s ~ t for all s,t EM. We also say > is included (or contained) in 

~ and write > ~~. A partial ordering > is said to be total if for any two 

distinct elements s, t (of M), either s > t or t > s holds. If two elements sand t of M are 

incomparable, we will write s # t. Let p, q be precedences. An ordering > is said to be 

monotonous w.r.t. the precedence if p ~ q implies >(p) s >(q). In other words, if the 

precedence is increased the ordering becomes stronger. 

An extension of a precedence can often be used to enable the comparison of two tenns which cannot 

be compared with the original precedence. Thanks to the monotony (w.r.t the precedence), the 

comparisons without the extension are still valid. This process of 'correctly' increasing a 

precedence is called incrementality. All the orderings described in this paper will be simplification 

orderings with this property. 

Note that a partial ordering > is used to compare elements of any set M. Since operators have terms 

as arguments we define an extension of >, called lexicographically greater (>lex), on tuples of 

elements as follows: 

(m1,m2, ... ,m ) >lex (nl'n2, ... ,n )p q

if either p > 0 1\ q = 0 

or 

or 1\ 
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terminates. But we can use the homeomorphic embedding to Specify a sufficient condition for the
termination of rewrite systems : Simplification orderings. The close relationship of a simplification
ordering > to E is attested by the embedding lemma of Dershowitz :

Lemma ([De82]) : If s E t, then s S t in any simplification ordering >.

As usual, 2 is a quasi-ordering on I'G. A quasi-ordered set (FG , 2) consists of the set
I'G and a transitive and reflexive binary relation 2 defined on elements of I‘G. A
quasi-orderin g defines an equivalence relation = as both 2 and S, and a partial ordering
> as 2 but not s.

A great number of simplification orderings have been defined. Most of them are precedence
orderings using a special ordering on operators. More precisely, a precedence is a partially ordered
set ( 37 , b) consisting of the set 9? of Operators and an irreflexive and transitive binary relation :>
defined on elements of jr. Therefore, we consider an ordering > with p (the precedence) as
a parameter, written as >(p). If there is no ambiguity, we will use the notation > instead
of >(p).

A partial ordering > on a set M may be extended : An ordering » on M is an extension of >
if and only if s > t implies s » t for all s‚t<—: M.  We also say > is included (or contained) in

> and write > <_=. >. A partial ordering > is said to be total if for any two
distinct elements s ,  t (of M), either s > t or t > 5 holds. If two elements 5 and t of M are
incomparable, we will write s # t. Let p, q be precedences. An ordering > is said to be
monotonous w.r.t. the precedence if p E q implies >(p) c_= >(q). In other words, if the

precedence is increased the ordering becomes stronger.
An extension of a precedence can often be used to enable the comparison of two terms which cannot
be compared with the original precedence. Thanks to the monotony (w.r.t the precedence), the
comparisons without the extension are still valid. This process of 'correctly' increasing a
precedence is called incrementality. All the orderings described in this paper will be simplification
orderings with this property.

Note that a partial ordering > is used to compare elements of any set M. Since operators have terms

as arguments we define an extension of >, called lexicographically greater (>le"), on tuples of
elements as follows :

(m1,m2,...,mp) >1“:x (n1,n2,...,nq)
ifeither p>0  A q=0

or m1 > 111
or m1 = 111 A (m2,...,mp) >lex (n2,...,nq).
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If there is no order among the elements of such tuples then the structures over MTI are called 

multisets. Multisers are like sets. but allow multiple occurrences of identical elements. The 

extension of > on multisets of elements is defined as follows : A multiset Ml is greater than a 

multiset ~ over M, denoted by 

M l » ~ 

iff i) Ml *M2 1\ 

ii) (\;fy E ~\Ml) (3x E Ml~) X > Y 

i.e. M1 » M2 if M2 can be obtained from Ml by replacing one or more elements in Ml by 

any finite number of elements, each of which is smaller (with respect to > on M) than one of the 

replaced elements. 

For more details and. in particular, a more formal description of multisets and multiset orderings, see 

[DM79], [St86], [JL82], [MS86] and [Fe88]. 

The main components of the next two chapters are the definitions of well-known and new 

simplification orderings. All orderings are connected by an essential characteristic : Each operator 

f E l' has a status "t(f) that determines the order according to which the subterms of f are 

compared ([KL80]). Formally, status is a function which maps the set of operators into the set 

{mult , left, right} : 

't : l' ~ {mult, left, right}. 

Therefore. a function symbol can have one of the following three statuses: Mult (the arguments 

will be compared as multisets), left (lexicographical comparison from left to right) and right (the 

arguments wi11lexicographically be compared from right to left). The result of an application of 

the function args to a term t =f(tl, ...,t ) depends on the status of f: If 't(t) =mult, then n

args(t) is the multiset {tl'... ,t } and otherwise, args(t) delivers the tuple (tl'...•t ). Of course, it n n

is possible and correct to generalize the lexicographical status by fixing any order among the 

immediate subterms. For simplicity only, we are satisfied with left, right and mult status. Obviously, 

if the precedence is a quasi-ordering, two equivalent symbols w.r.t. the precedence are supposed to 

have the same status. With this requirement ambiguities will be avoided. 

Each definition of the orderings in chapter 2 (resp. 3) will be preceded by an abstract verbal 

description of its operational method (the technique of comparing terms). Furthermore, some helpful 

and interesting remarks are given. The list of orderings consists of the following well-known ones : 

The recursive path ordering with status (RPOS) of Kamin/L6vy and Dershowitz. the path of 
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[St88] contains an ordering on decompositions (called PSD) equivalent to the PSO. An extension by 

incorporating status (PSDS) will be presented here. Finally, we have also added the principle of 

status to the improved recursive decomposition ordering of Rusinowitch ([Ru87]) denoted by 

IRDS. Concluding, important properties (simplification ordering, stability w.r.t. substitutions, etc.) 

of the newly introduced orderings will be listed. The orderings based on decompositions (RDOS, 

PSDS, IRDS) will be presented in a new and simple style: The decomposition of a term consists of 

terms only. The original definitions take tuples composed of three (or even four) components. 

In chapter 3, we deal with the weight oriented ordering of Knuth and Bendix and incorporate status 

(KBOS). 

Besides the introduction of new orderings, the second main point of this paper is the comparison 

of the power of these orderings, i.e. we will compare the sets of comparable terms for each 

combination of two orderings. This will be done w.r.t. an underlying fixed total precedence and 

irrespective of the precedence. 

An implementation of the orderings (except for the RDOS) is integrated into our rewrite rule 

laboratories TRSPEC (a term rewriting based system for algebraic specifications) and COMTES 

(completion of term rewriting systems). The TRSPEC-system (see [AGGMS87] , [ABGM86]) is 

implemented in Common Lisp and is currently running on Apollo Domain systems. It provides tools 

for specifying functions by term rewriting systems and for proving equational properties of these 

functions in the initial algebra. It allows to compile function specifications into executable lisp 

functions for computing normal forms of terms. The COMTES-system (see [Wa86] , [WS84] , 

[St86]) is part of the TRSPEC. It is a parametric completion system that is especially suited for 

efficiency experiments. Various reduction strategies and a couple of different term ordering methods 

can be used as well as different techniques for avoiding a failure of the completion process. 

In the fifth chapter we enumerate a few aspects of the lisp code of the orderings. Only deviations 

from the original definitions will be described. A series of experiments has been conducted to study 

the time behaviour of the orderings. An evaluation of these results concludes the chapter. 

The last chapter only contains the proofs of the previous lemmata. 
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2 Path orderings 

All orderings described in this and the next section are recursively defined simplification orderings. 

Most of them are well-known: A version with status exists for the recursive path ordering (RPO), 

the recursive decomposition ordering (RDO, a new and more powerful version will be presented) 

and the path ordering of Kapur, Narendran and Sivakumar (KNS). We have added the principle of 

status to the others. The main point of the next two chapters is the description of all these orderings 

with status. For a better understanding, these methods of comparing terms will be demonstrated by 

an example at the end of the chapter. The orderings described satisfy properties that qualify them for 

proving termination of term rewriting systems: Well-foundedness, stability (w.r.t. substitutions) 

and monotony (w.r.t. the precedence). Due to lack of space, we only give proofs of properties 

which have not yet been proved. 

To define the orderings, we need some kind of formalism. A path of a term is a sequence of terms 

starting with the whole term followed by a path of one of its arguments: 

- path£(~) = ~ if ~ is a constant symbol or a variable, 

- pathi.u( f(tl, .. ·,t » = f(tl' ... ,t ) ; pathu(ti) if u E Ot(tJn n

Moreover, path({tl'... ,tn }) ={pathu(t) lie [l,n] , u e Ot(ti)} is the mu1tiset of all paths of the 

specified terms tl'...,t . A path will be enclosed in square brackets. For a path p =[tl;s.; ... ;t ] wen n

denote by set(p) the set {tl' ... ,t } of all terms in p. This set will also be calledn 

Dath-decomposition and its abbreviation is decu(t) (and is equal to set(pathu(t»). An element 

(Le. a term) of a path-decomposition is called an elementary decomposition. Analogous with 

paths, the decomposition dec({tl' ,t }) ={decu(t) lie [1,n] , uE Ot(t) } is the multiset of alln 

path-decompositions of the terms tl' ,t . There are two operations on a path-decomposition P ~ rn

to describe. The set of subterms and the set of superterms of P relative to a term t are defmed as 

- sub(P,t) = {SEP (3u * £) tlu =s} and 

sup(P, t) = {SE P (3u *£) slu = t}. 

Analogous with decompositions we use sub and sup to denote subsequences of paths. Suppose 

t =(x * y) + (x * z), then path2l(t) = [t; pathl(x * z)] = [t; x * z ; pathE(x)] = [t; x * z; x], 

path({t}) ={pathn(t), path12(t), path2l(t), path22(t)}, set(path2l (t» ={t, x*z, x} = dec2l(t), 

dec({t}) = { {t, x*y, x}, {t, x*y, y}, {t, x*z, x}, {t, x*z, z}}, sub(dec2l (t), x) =0, 

sup(dec21(t), x*z) = {t} and sup(path2l(t), x) = [t; x*z]. 
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In the rest of this chapter, when writing s,t and ~ we will always assume that s and t are terms over 

r and ~ is a precedence on the set :F of operators. Moreover, we synonymously use > ord with 

ord to denote an ordering. The index 't(£) of > ord,'t(f) marks the extension of > Old w.r.t. the 

status of the operator f: 

(Sl'... ,sm) (tl' ... ,t )>ord,'t(f) n


iff 't(£) = mull It.. {Sl""'Sm} »ord {tl' ... ,tn }
 

or 't(£) = left It.. (sl' ... ,sm) > lex (t1,· .. ,t )
ord n


or 't(£) = right It.. (sm,· .. ,sI) > lex (t ,· .. ,t l )
ord n 

Permitting variables, we have to consider each and every one of them as an additional constant 

symbol uncomparable (w.r.t ~) to all the other operators in 'J. 

All of the following orderings uniquely define a congruence '" dependent on :F and 't via: 

f(sl, ...,sm) '" g(tl ,...,t ) iff f = g and m = n and i) 't(£) = mult and there is a permutationn

11 of the set {l,... ,n} such that si'" t1T (i)' for all i e [l,n] or ii) 't(£) *mult 1\ si - ti' for 

all i e [l,n]. 

Most of the orderings are based on the principle of root orderings, i.e. two terms are compared 

depending on their leading function symbols. This or other kinds of case distinctions will be 

represented as the union of conditions that will be marked by Roman numerals i), ii), and so on. 

The lexicographical performance of conditions will be indicated by hyphens, i.e. 

s > t 

iff - s >1 t 

- S >2 t 

stands for that s > tiff S >1 t or (s =1 t 1\ S >2 t). Here, the equality sign =1 is the 

congruence relation induced by the quasi-ordering 2:1, 

The comparison with respect to the recursive path ordering with status (RPOS, for short) is based on 

the following idea: A term is decreased by replacing a subterm with any number of smaller terms 

which are connected by any structure of operators smaller (w.r.t ~) than the leading function 

symbol of the replaced subterm. The method of comparing two terms depends on the leading 

function symbols. The relationship between these operators w.r.t ~ and the status 't is 

responsible for decreasing one of the (or both) terms in the recursive definition of the RPOS. If one 

of the terms is 'empty' (i.e. totally decreased) then the other one is greater. 
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2.1	 Definition ([KL80] , [De82]) 

recursive path ordering with status : RPOS 

s >RPOS t 

iff i) top(s) ~ top(t) " {s} »RPOS args(t) 

ii) top(s) = top(t) " t(top(s» = mult " args(s) »RPOS args(t) 

iii) top(s) = top(t) " t(top(s» *mult " args(s) >RPOS;t(top(s» args(t) 

" {s} »RPOS args(t) 

iv) args(s) ~RPOS {t} 

2.2	 Remarks 

- The relation s ~RPOS t is valid if s >RPOS t or s - t (see definition on page 8). 

- The definition of the RPOS is non-deterministic because condition iv) could be used whenever 

either i) or ii) or iii) is satisfied. 

- The rimltiset ordering and the simple path ordering ([PI?8b]) are special cases of the RPO, in 

which the multiset constructor { ...} is greater than any of the other operators ([De85] , 

[De82]). 

- One way of extending the RPO is to allow some component of a term f(tl' ... ,tn) to serve as 

the operator f. For example, we can consider tk to be the operator and compare two terms by 

first recursively comparing their k-th operands : To prove that s = if(if(x,y,z),u,v) ~ 

if(x,if(y,u,v),if(z,u,v» = t terminates we consider the condition (the term if(x,y,z» to be the 

function symbol. The term if(x,y,z) of s is greater than the condition x of 1. By definition 

of the RPO, we need to show that {s} »RPO {if(y,u,v) , if(z,u,v)}. Again, if(x,y,z) is greater 

than y and z , and thus {s} »RPO {u , v} holds. 

This kind of extension of the RPO represents a simplification ordering for the same reasons that 

the original definition does ([De85] , [De82]). 

- A more general technique than the previous one of extending the RPO changes terms by 

replacing their operators with the whole term itself ordered by some other well-founded ordering 

(instead of the RPO itself). This method is called semantic path ordering and was developed by 

Kamin and Levy ([KL80] , [De85] , [De83]). 

- Another extension of this ordering (from Forgaard, [F084]) takes the monotony w.r.t the 

precedence of the RPO into consideration. A term s will only be greater than a term t in this 

'lifted' ordering if s is greater (relative to the RPO) than t with respect to all total extensions of 

the given precedence. The so-called closure ordering in [Le8?] is a generalization of this method 

because it lifts any term ordering. Note that the lifted ordering and its corresponding ordering will 

be equivalent if the underlying precedence ~ is total. This statement holds since there is no other 

extension of a total ~ than ~ itself. 
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- An algorithm that automatically proves the termination of rewrite rules is described in [DF85]. 

The incrementality procedure is implemented in REVE 2, a rewrite rule based theorem prover. 

The strategy is based on the notion of 'minimal extenders', Le. if the RPO cannot order its 

arguments, it will return sets of minimal suggestions that cause them to be comparable 

(see [F084] , [DF85]). 

- Given the equation s =t, the problem whether there exists a partial order ~ on the operators that 

occur in s and t such that the equation can be oriented by the RPO is NP-complete ([KN85]). 

- The RPO has also been adapted to handling associative-commutative operators by flattening and 

transforming terms (distributing large operators over small ones) before comparing them (see 

[De85] , [De83]). 

- For more details about the RPOS (respectively the RPO), see [Ai85], [De85] , [De83] , 

[De80] , [DF85] , [KNS85] , [KN85] , [Le86] , [Le8Ia] , [Ok86] , [Pe81] , [Ru87] , 

[St88] , [St86]. 

Plaisted's path of subterms ordering (PSO, for short) is a predecessor of the RPO and compares 

two terms by comparing all their paths. A slightly modified version (equivalent to the original) of 

Rusinowitch is given next. 

2.3	 Definition ([Ru87], [PI78a] , [8t88]) 

path of subterms ordering: PSO 

S >pso t 

iff path({s}) »po path({t} ) 

with P >po q 

iff set(p) »T set(q) 

with s >T t 

iff - top(s) ~ top(t) 

- path(args(s» »po path(args(t» 

2.4	 Remarks 

- Terms are equivalent w.r.t the PSO if they are contained in the relation '" (see definition on 

page 8). This PSO-equivalence is a special case of '" since the PSO does not compare 

terms with lexicographical status. Therefore, sand t are equivalent if they are 

permutatively congruent which means that sand t are syntactically equal if the permutations 

of permutatively congruent subterms are ignored. Two zero-ary symbols (constants or 

variables) are permutatively congruent if they are syntactically equal. 
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More information about the PSO is available in [PI78a], [PI78b] , [Ru87] , [St88] , 

[St86]. 

Like the PSO, the KNSS is an ordering which compares terms using their paths. It has been 

devised by Kapur, Narendran and Sivakumar. They have implemented the RPO within their rewrite 

rule laboratory and have found it weak in handling terms which should intuitively be comparable. 

The KNSS is a consequence of these experiments and it extends the RPOS. 

2.5	 Definition ([KNS85]) 

path ordering with status of Kapur, Narendran and Sivakumar : KNSS 

S >KNSS t 

iff path({ s}) »LK path({t}) 

with P >LK q 
iff (V'1' E q) (3s' E p) s' >LT l' 

with p 3 s >LT t E q 

iff i) top(s) ~ top(t) 

ii) top(s) =top(t) A t(top(s» =mult A 

- sub(p, s) >LK sub(q, t) 

- path(args(s» »LK path(args(t» 

- sup(p, s) >LK sup(q, t) 

iii) top(s) = top(t) A t(top(s» *mult A 

- args(s) >KNss,'t(top(s» args(t) A 

{s} »KNSS args(t) 

- sup(p, s) >LK sup(q, t) 

2.6	 Remarks 

- Like the previous orderings, the equivalence w.r.t the KNSS is included in'" (cf. definition 

on page 8). 

- The third part of >LT consists of a lexicographical test divided into two conditions. We 

compromised in favour of the clearness and suffer the ambiguity of the definition. Therefore, 

note that the second condition 'sup(p, s) >LK sup(q, t)' will be tested if only 

args(s) =KNSS args(t) holds (the other test '{s} =KNSS args(t)' is redundant). 

- This path ordering can possibly be extended by way of allowing terms from different paths to 

take care of terms along a path. Thus we could remove the restriction that a path must be taken 

care of by a sole path. Let sand t be the following terms: s = 2 * 8 and t = 42 
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More information about the PSO is  available in [Pl7Sa] , [Pl78b] , [Ru87] , [St88] ,

[St86].

Like the P80,  the KNSS is  an ordering which compares terms using their paths. It has been

devised by Kapur, Narendran and Sivakumar. They have implemented the RPO within their rewrite
rule laboratory and have found it weak in handling terms which should intuitively be comparable.
The KNSS is  a consequence of these experiments and it extends the RPOS.

2.5 Definition ([KN885])

path ordering with status of Kapur, Narendran and Sivakumar : KNSS

S >KNSS t

iff path({s]) »LK path({t})
with p >LK q

iff (Vt 'e  q) (Els'e p) s’ >LT t'
with pa s  >LT tEq

iff i) top(s) > top(t)

ii) top(s) = t0p(t) A t(top(s)) = mult A
- sub(p , s) >LK sub(q , t)
- path(args(s)) »LK path(args(t))

" SUP(p a 5)  >LK sup(q a 0
iii) top(s) = top(t) A 1:(top(s)) == mult A

' args(s) >KNSS,'c(top(s)) args(t) "
{S} »KNSS args(t)

- sum) , s) >u< sum , t)

2.6 Remarks

Like the previous orderings, the equivalence w.r.t the KNSS is included in ~ (cf. definition
on page 8).
The third part of >LT consists of a lexicographical test divided into two conditions. We
compromised in favour of the clearness and suffer the ambiguity of the definition. Therefore,
note that the second condition 'sup(p , s) >LK sup(q , 0' will be tested if o_nly
args(s) =KNSS args(t) holds (the other test '{s} =KNSS args(t)' is  redundant).
This path ordering can possibly be extended by way of allowing terms from different paths to
take care of terms along a path. Thus we could remove the restriction that a path must be taken
care of by a sob: path. Let s and t be the following terms : s = 2 * 8 and t = 42
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with 2 ~ 4, 8 ~ 2. The term 8 of the path [s; 8] takes care of the term t of [t; 4] and 

2 E [s ; 2] is greater than 4 E [t; 4]. Note that this new scheme has not been clearly derfied 

yet ([KNS85]). 

- More information about the KNS(S) are given in [KNS85], [Ru87] and [St86]. 

Like the KNSS, the recursive decomposition ordering with status (RDOS in short) has been 

developed from the RPO. One of the important differences to the RPO is the fact that the RDOS 

stops a comparison as soon as it has to compare incomparable operators. The RDOS defined in 2.7 

is different from that contained in [Le84] : Both orderings are based on [RI8!] but the incorporations 

of status are different. Moreover, our various decomposition orderings (see 2.7,2.9 and 2.11) are 

founded on another decomposition: We use terms (cf. the definitions on page 7) instead of triples or 

even quadruplets (see 2.8, at the bottom of this page). 

A term s is greater than a term t (w.r.t. RDOS) if the decomposition of s is greater than the 

decomposition of t. The ordering on these multisets (»»LD) is an extension of the basic ordering on 

terms (>LD) to multisets of multisets. 

2.7	 Definition (based on [RJ8!] , [JLR82] , [Ru87]) 

recursive decomposition ordering with status: RDOS 

S >RDOS t 

iff dec( {s}) »»LD dec( {t}) 

with decu(s) 3 s' >LD t' E decvCt) 

iff i) top(s') ~ top(t') 

ii) top(s') =top(t') 1\ 't(top(s'» =mult 1\ 

- sub(decu(s) ,s') »LD sub(decv(t), 1') 

- args(s') »RDOS args(t') 

iii) top(s') =top(t') 1\ 't(top(s'» *mult 1\ 

args(s') >RDOS;t(top(s'» args(t') 1\ Is'} »RDOS args(t') 

2.8	 Remarks 

- Terms are equal (s =RDOS t) w.r.t. the RDOS if they are equivalent w.r.t. >RDOS (s - t; 

- is defined on page 8). 

- The original decomposition ordering works on triples (so-called elementary decompositions) 

instead of terms. An elementary decomposition divides a term into three parts : The leading 

function symbol, any selected immediate subterm, the rest of the immediate subterms. 

Obviously, an elementary decomposition can easily be constructed if the appropriate term is 
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with 2b4,  8b2. The term 8 of the path [ s ;8 ]  takes care of the term t of [ t ; 4 ]  and
2 e [s ; 2] is greater than 4 e [ t ;  4]. Note that this new scheme has not been clearly defined
yet ([KNSSSD.

- More information about the KNS(S) are given in [KNSSS] , [Ru87] and [St86].

Like the KNSS,  the recursive decomposition ordering with status (RDOS in short) has been
developed from the RPO. One of the important differences to the RFC is the fact that the RDOS
stops a comparison as soon as it has to compare incomparable operators. The RDOS defined in 2.7
is different from that contained in [Le84] : Both orderings are based on [RJ81] but the incorporations
of status are different. Moreover, our various decomposition orderings (see 2.7, 2.9 and 2.11) are
founded on another decomposition : We use terms (cf. the definitions on page 7) instead of triples or
even quadruplets (see 2.8, at the bottom of this page).
A term 8 is greater than a term t (w.r.t. RDOS) if the decomposition of s is greater than the
decomposition of t. The ordering on these multisets (»»LD) is an extension of the basic ordering on
terms (>LD) to multisets of multisets.

2.7 Definition (based on [R181] , [JLR82] , [Ru87])
recursive decomposition ordering with status : RDOS

S >RDos t
iff dec([s}) »»LD dec({t})

with decu(s) 3 s '  >LD t’ € dccV(t)

iff i) t0p(s') b top(t')
ii) top(s') == top(t') A 1:(top(s')) = mult A

- sub(decu(s) , s') »LD sub(decv(t) , t‘)
— args(s') »RDOS args(t')

iii) t0p(s') = t0p(t') A t(t0p(s')) :|: mult A
args(s') >RDOS,1:(top(s')) args(t') A {s'} »eS args(t')

2.8 Remarks

- Terms are equal (8 =RDOS t) w.r.t. the RDOS if they are equivalent w.r.t. >RDOS ( s~  t ;
~ is defined on page 8).

- The original decomposition ordering works on triples (so-called elementary decompositions)

instead of terms. An elementary decomposition divides a term into three parts : The leading
function symbol, any selected immediate subterm, the rest of the immediate subterms.

L Obviously, an elementary decomposition can easily be constructed if the appropriate term is
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given. Therefore, the infonnation of an elementary decomposition can be put forward during the 

definition of the ordering. 

- An essential advantage of the RDOS is the possibility of strengthening the precedence during 

the process of comparing. This method (without regard to status) is implemented in Lisp on the 

Multics of INRIA and in Clu inside the REVE-system ([Ch84] , [JLR82]). 

- A more efficient RDO without a loss of power is presented in [JLR82] and [RJ81]. 

Originally, two tenns sand t are compared w.r.t. the RDO by means of constructing the entire 

dec({s}) and the entire dec({t}). It can be proved that selected subsets of path-decompositions 

are sufficient. Moreover, a path-decomposition can be restricted to a part of itself (cf. [St86] for 

an example). 
• 

- Additional remarks are given in [Ch84] , [De85] , [De83] , [JLR82] , [KNS85] , [Le87] , 

[Le84] , [Le83a] , [Le83b] , [Le82] , [Le81b] , [Re81] , [St88] , [St86]. 

Another ordering based on decompositions results from the PSO. It is remarkable that the PSO is 

an extremely recursive ordering which takes three suborderings (>po' >T and ~) into account. We 

have succeeded in redefining this path ordering in such a way that the result, called PSD, provides a 

much simpler method of using decompositions (cf. [St88]). The PSD has another advantage 

over the PSO: The combination with the concept of status is much easier. The PSD with status 

(PSDS, for short) as well as the PSD depends on the fact that a path is an ordered 

path-decomposition. 

2.9	 Definition (based on [St88] , [Ru87] , [Pl78aD 

path of subtenns ordering on decompositions and with status: PSDS 

S >PSDS t 

iff dec( {s}) »»LP dec({t}) 

with S >LP t 

iff	 i) top(s) ~ top(t) 

ii) top(s) = top(t) 1\ t(top(s» = mult 1\ dec(args(s» »»LP dec(args(t» 

iii) top(s) = top(t) 1\ t(top(s» *mult 1\ 

args(s) >PSDS,'t(top(s)) args(t) 1\ {s} »PSDS args(t) 

2.10	 Remarks 

- S =PSDS t if and only if S'" t (cf. definition of ... on page 8). 

- This relatively simple definition of the complicated PSO has two further advantages. In the first 

place, we can compare the implementations according to their efficiency (see chapter 5, on page 
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given. Therefore, the information of an elementary decomposition can be put forward during the
definition of the ordering.
An essential advantage of the RDOS is the possibility of strengthening the precedence Mg
the process of comparing. This method (without regard to status) is implemented in Lisp on the
Multics of INRIA and in Clu inside the REVE—system ([Ch84] , [ILR82]).
A more efficient RDO without a loss of power i s  presented in [JLR82] and [R18 1].
Originally, two terms 5 and t are compared w.r.t. the RDO by means of constructing the em;
dec([ 5}) and the entire dec({t}). It can be proved that selected subsets of path-decompositions
are sufficient. Moreover, a path-decomposition can be restricted to a part of itself (cf. [St86] for
an example).
Additional remarks are given in [Ch84] , [De85] , [De83] , [ILR82] , [KNSéS] , [Le87] ,
[Le84] , [Le83a] , [Le83b] , [Le82] , [Le81b] , [Re81] , [St88] , [St86].

Another ordering based on decompositions results from the PS 0. It is remarkable that the P80 is
an extremely recursive ordering which takes three suborderings (>P0, >T and v) into account. We
have succeeded in redefining this path ordering in such a way that the result, called PSD, provides a
much simpler method of using decompositions (cf. [St88]). The PSD has another advantage
over the P80 : The combination with the concept of status is much easier. The PSD with status
(PSDS, for short) as  well as the PSD depends on the fact that a path is  an ordered
path-decomposition.

2.9 Definition (based on [St88]  , [Ru87] , [Pl78a])

path of subterms ordering on decompositions and with status : PSDS

S >PSDS ‘
iff dec({s}) »»LP dec({t})

with s >LP t
iff i) top(s) » top(t)

ii) top(s) = top(t) A 1:(top(s)) = mult A dec(args(s)) »»LP dec(args(t))
iii) t0p(s) = top(t) A t(t0p(s)) : mult A

args(s) >PSDS,1:(top(s)) args(t) A {s} »PSDS args(t)

2 .  10  Remarks

s =PSDS t if and only if 5 ~ t (cf. definition of ~ on page 8).
This relatively simple definition of the complicated PSO has two further advantages. In the first
place, we can compare the implementations according to their efficiency (see chapter 5, on page
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29). Secondly, it is easy to compare the PSO with the decomposition orderings, e.g. with the 

improved recursive decomposition ordering of Rusinowitch (so-called IRD, see 2.11). The 

essential difference between the PSO (= PSD) and the IRD concerns the way by 

which a comparison is processed. While the PSD works according to the principle of 

'breadth-fIrst' the IRD reveals the use of the principle of 'depth-fIrst' : If the leading function 

symbols of the terms to compare are identical, the IRD chooses only one subterm. On the other 

hand, the PSD proceeds by simultaneously considering the decomposition multiset of all 

subterms. 

In addition to the definition of Rusinowitch, we have incorporated status to the IRD (IRDS in 

short), so that it is equivalent to the path ordering of Kapur, Narendran and Sivakumar (IRDS = 

KNSS, see lemma 4.6 on page 25). 

2.11	 Definition (based on [Rug?]) 

improved recursive decomposition ordering with status: IRDS 

s >IRDS t 

iff dec({s}) »»EL dec({t} ) 

with decu(s) 3 s' >EL t' E decvCt) 

iff i) top(s') ~ top(t') 

ii) top(s') = top(t') " t(top(s'» =mult " 

- sub(decu(s) ,s') »EL sub(decv(t) , t') 

- dec(args(s'» »»EL dec(args(t'» 

iii) top(s') = top(t') " t(top(s'» *mult " 

args(s') >IRDS;t(top(s'» args(t') " {s'} »IRDS args(t') 

2.12	 Remarks 

- The relation s ~IRDS t is true if and only if s >IRDS t or s "" t ("" is defined on page 8). 

- The IRDS is a proper extension of the RDOS, due to a slight change of the second part (ii) of 

its definition: RDOS compares the arguments of two terms w.r.t. >RDOS while IRDS 

compares the multiset sums of the decompositions of the arguments. For example, 

and(not(not(x»,y,not(z» >IRDS and(y,nand(x,z),x) with not ~ nand, but the terms are not 

comparable with the RDOS (see [St88]). 

We will illustrate the definitions of the orderings by an example. 
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29). Secondly, it is easy to compare the P80 with the decomposition orderings, e. g. with the
improved recursive decomposition ordering of Rusinowitch (so—called IRD, sec 2.11). The
essential difference between the PSO (=  PSD) and the IRD concerns the way by
which a comparison is  processed. While the PSD works according to the principle of
'breadth-first' the IRD reveals the use of the principle of 'depth-first' : If the leading function
symbols of the terms to compare are identical, the IRD chooses only one subterm. On the other
hand, the PSD proceeds by simultaneously considering the decomposition multiset of Q
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In addition to the definition of Rusinowitch, we have incorporated status to the IRD (IRDS in
short), so that i t  is  equivalent to the path ordering of Kapur, Narendran and Sivakumar (IRDS =
KNSS, see lemma 4.6 on page 25).

2 .1  1 Definition (based on [Ru87])
improved recursive decomposition ordering with status : IRDS

S >IRDS t
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with decu(s) 3 s '  >EL t' e decv(t)
iff i) top(s') » top(t‘)

ii) t0p(s') = t0p(t') A 1:(top(s')) = mult A
- sub(decu(s) , 5') »EL sub(decv(t) , t')
-dec(args(s')) »»EL dec(args(t'))

iii) top(s') = top(t') A 'I:(t0p(s')) * mult A
args(s‘) >IRDS,1:(t0p(s')) args(t') A {s'} »IRDS args(t')

2 .  12  Remarks

- The relation 5 '>"IRDS t is  true if and only if s >IRDS t or s „., t (~ is  defined on page 8).

- The IRDS is a proper extension of the RDOS, due to a slight change of the second part (ii) of
its definition : RDOS compares the arguments of two terms w.r.t. >RDOS while IRDS
compares the multiset sums of the decompositions of  the arguments. For example,

and(not(not(x)),y,not(z)) >IRDS and(y,nand(x,z),x) with not b nand, but the terms are not

comparable with the RDOS (see [St88]).

We will illustrate the definitions of the orderings by an example.
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2.13 Example 

We want to prove that the distributive law x * (y+z) ~ (x*y) + (x*z) tenninates. We use the total 

precedence * ~ + and the statuses t(+) = t(*) = left. 

2.13.1 
s = + = t*
 

/ \ / \
 

x
 + >RPOS * * 
/ \ / \ / \ 

y z x y x z 

Since * ~ +, we must show that {s} »RPOS args(t) 

{ s } 
The single term on the left side has to be greater than both terms on the right side: s is greater than 

x*y, because we have to remove the leading function symbols and can show that 

( x , y + z) >RPOS,left (x , y ) { s} »RPOS {x, y } 

because y + Z >RPOS y (by using the fourth condition of 2.1) and S >RPOS x, S >RPOS y. 

s >RPOS x * z is proved in the same way. 

2.13.2 

s = + = t* 
/ \ / \ 

x + >pso (KNSS) * * 
/ \ / \ / \ 

y z x y x z 

We have to show that path({s}) »po (LK) path({t}) : 

path({s}) ={ [s;x] ,[s;y+z;y] ,[s;y+z;z]} and 

path({t}) = { [t; x*y; x] , [t; x*y; y] , [t; x*z; x] , [t; x*z; z] }. 
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2.13 Example

We want to prove that the distributive law x * (y+z) ——> (x*y) + (x*z) terminates. We use the total

precedence * b + and the statuses 1:(+) = 1:(*) = left.

2 .13 .1
s = * + = t

/ \ / \

X + >RPOS * *
/ \ l \ / \

y z x y x z

Since * [> +, we must show that {s} »RPOS args(t)

s »RPOS / \ , / \
X X Z

The single term on the left side has to be greater than both terms on the right side : s is greater than
x*y, because we have to remove the leading function symbols and can show that

( " ,Y ' ” )  >RPOS, l e f t (x ’y )  " {3]  ”111303 {Kay}

because y + z >RPOS y (by using the fourth condition of 2.1) and s >RPOS x, s >RPOS y.
s >RPOS x * z is proved in the same way.

2 .13 .2
s = * + = t

/ “\ / \

x + >PSO(KNSS) * *
/ \ / \ / \

y z x y x z

We have to show that path({s}) »PO(LK) path({t}):

Path({s}) ={  [Sui] , [ s ;y+z ;y ]  , [ s ;y+z ;Z]}  and
path({t}) ={[t ;x"°y;x} , [ t ; x*y ;y ]  , [t;X*z;X] , [t;X*z;Z] }.
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In accordance with the extension of >po (LK) to multisets the following has to be proved: For every
 

path in t we can find a path in s which is greater w.r.t. >po (LK)'
 

- i) [s; x] >po [t; x*y ; x]
 

iff {s, x} »T {t, x*y, x} iff Is} »T {t, x*y} 

(the last equivalence is valid since the used multiset ordering is closed under differences, 

i.e.	 M» N iff M\N» N\M) 

- S >T t 

because top(s) =* ~ + =top(t) 

- s >T x*y
 

iff path({x , y+z}) »po path({x , y}) iff path({y+z}) »po path({y}) :
 

This can be verified because y is a proper subtenn of y+z.
 

ii)	 [s; x] >po [t; x*z ; x],
 

[s;y+z;y] >po [t;x*y;y],
 

[s; y+z ; z] >po [t; x*z ; z] :
 

The proofs of these three statements can easily be done with the considerations of i).
 

-	 i) [s; x] >LK [t; x*y ; x] : 

- s >LT t
 

because top(s) =* ~ + =top(t)
 

- S >LT x*y 

iff ( x , y+z) >KNSS,left (x, y ) " {s} »KNSS {x, y} : 

This can be verified because y is a proper subterm of y+z, x and y are proper 

subterms of s. 

-	 [s; x] 3 x >LT x e [t; x*y ; x] 

'...	 sub([s; x] , x) =[]= sub([t; x*y ; x] , x) 1\ path(args(xes» =0= path(args(xet» 

....	 We have to show that sup([s; x] ,x) = [s] >LK [t; x*y] = sup([t; x*y ; x] , x) : 

As s >LT t and S >LT x*y, the requirement holds. 

ii)	 [s; x] >LK [t; x*z ; x],
 

[s;y+z;y] >LK [t;x*y;y],
 

[s ; y+z; z] >LK [t; x*z ; z] :
 

This propositions are valid if we use the steps of the previous case.
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In accordance with the extension of >PO (LK) to multisets the following has to be proved : For every
path in t we can find a path in s which is greater w.r.t. >P0 (LK).

“ i )  [S ;X]  >p0 [ t ;X*Y;K]
iff {s  , x} »T {t , x*y , x} iff {s} »T {t , x*y}
(the last equivalence is valid since the used multiset ordering is closed under differences,
i.e. M » N iff M\N » N\M)

because top(s) = * > +:  top(t)

— s >T x*y

iff path({x , y+z}) >>PO path({x , y}) iff path({y+z]) >>PO path({y}):
This can be verified because y is a proper subterm of y+z.

ii) [3  ; X] >p0 [t ; X*Z ; X],

[s ; y+z ; 3!] >130 [t ; X*y ; y],
[ s ;y+z ; z ]  >PO [ t ; x*z ; z ] :
The proofs of these three statements can easily be done with the considerations of i).

- i) [s;x} >LK [t;X*y;XJ:

because t0p(s) = * > + = top(t)

- *

iff ( X 9 y+z)  >KNSS’left (x  a Y)  A {S} »KNSS [ "  , Y} :
This can be verified because y is a proper subterm of y+z, x and y are prOper
subterms of s.

- [ s ;x ]3x  >LT xe  [ t ; x*y ;x ]
"" sub([s ; x] , x) = [ ]=  sub([t ; x*y ; x] ‚ x )  A path(args(x€s)) =6: path(args(x€t))

"'" We have to Show that sup([s ; x] , x) = [s] >LK [t ; x*y] = sup([t ; x*y ; x] , x) :
AS 3 >LT t and s >LT x*y, the requirement holds.

ii) [8 ; X] >u< [t ; x*z ; x},

[s ; y+z ; y] >LK [t ; X*y ; y],
[ s ;y+z ;  z] >LK [ t ; x*z ; z ] :
This propositions are valid if we use the steps of the previous case.
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2.13.3 

s = * + = t 
I \ I \ 

x + 

I \ 
>RDOS (PSDS ,IRDS) 

I \ 
* 

I \ 
* 

y z x y x z 

We have to prove dec({s}) »»LD (LP, EL) dec({t}) : 

dec({s}) = {dec l (s) , dec21 (s) , dec2is)}, 

dec({t}) = {decn(t) ,dec12(t) ,dec21 (t) ,dec22(t)}. 

In accordance with the definition of the RDOS (PSDS ,IRDS), for every decv(t) we have to find a 

decu(s) which is greater than decv(t) with respect to »LD (LP. EL)' Because of the demand for 

stability W.r.t. substitutions our search for decu(s) is restricted to the leaves s/u and t/v, 

respectively (it is important to observe this rule if t/v is a variable, Le. s/u must be the same 

variable). 

We can verify 

i)	 dec1(s) = {s, x} »LD (LP, EL) {t, x*y , x} = decn (t) iff {s} »LD (LP, EL) {t, x*y} : 

- S >LD (LP, EL) t
 
because top(s) = * ~ + = top(t)
 

-	 S >LD (LP, EL) x*y 

iff (x, y+z) >RDOS (PSDS ,IRDS),left (X, Y) 1\ {s} »ROOS (PSDS ,IRDS) {x, y} : 

This can be verified since y is a proper subterm of Y+z, x and y are proper 

subterms of s. 

ii)	 dec1(s) = {s, x} »LD(LP,EL) {t, x*z, x} = dec21(t), 

dec21 (s) = {s,Y+z,y} »LD(LP,EL) {t,x*y,y} =dec12(t), 

dec22(s) = {s, y+z , z} »LD (LP, EL) {t, x*z , z} = dec22(t) : 

It is easy to show these statements with the considerations of i). 

For more examples, see [Ch84] (RDO), [De85] (RPO), [De83] (RPO, RDO), [De82] (RPO), 

[JLR82] (RDO), [KL80] (RPOS), [KNS85] (KNS), [Le87] (lexicographic RDO), [Le84] (RDO), 

[Le83a] (RDO), [Re81] (RDO), [RI8!] (RDO), [Ru87] (PSO, RDO, IRD), [St88] (RPO, RDO, 

IRD), [St86] (RPO, lexicographical RPO, RDO, IRD, KNS, PSO). 
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2 .13 .3

S = * + = t

/ \ / \
x + > * *RDOS (PSDS , IRDS)

/ \ / \ / \
y z x y x z

We have to prove dec({s}) »»LD (LP, EL) dec({t}) :
dec({s}) = {dec1(s) , dec21(s) , de022(s)},
dec({t}) = {dec11(t) , dec12(t) , dec21(t) , dec22(t)}.

In accordance with the definition of the RDOS (PSDS , IRDS), for every decv(t) we have to find a
decu(s) which is greater than decv(t) with respect to »LD (LP, EL). Because of the demand for
stability w.r.t. substitutions our search for decu(s) i s  restricted to the leaves s/u and UV,

respectively (it is important to observe this rule if t/v is a variable, i.e. s/u must be the same
variable).

We can verify

i) dec1(s) = {s, x} »LD (LP, EL) {t , x*y , x} = decll(t) iff {s} ”LD(LP,EL) {t , x*y} :

' S >LD(LP,EL)  "
because top(s) == * :> + = top(t)

_ *S >LD(LP,EL) " Y
iff (x,y+2) >RDos (PSDS,IRDS),1eft (Kay) " {S} »RDOS(PSDS,IRDS) {Kay}:
This can be verified since y is  a proper subterm of y+z,  x and y are proper
subterms of 5.

ii) decl(s) = [ s  , x}  »LD(LP,EL) {t , x*z , x} = dcc21(t),
deczl(s) = {s  , y+z ,_y} »LD (LP,EL) { t  , x*y , y}  = declz(t),

dec22(s) = [ s  , y+z , 2} »LD (LP’EL) { t ,  x*z , z} = dec22(t) :
It is easy to show these statements with the considerations of i).

For more examples, see [Ch84] (RDO), [De85] (RPO), [De83] (RPO, RDO), [De82] (RPO),

[JLR82] (RDO), [KL80] (RPOS), [KNS85] (KNS), [Le87] (lexicographic RDO), [Le84] (RDO),
[Le83a] (RDO), [R681] (RDO), [RJ 81] (RDO), [Ru87] (PSO, RDO, IRD), [St88] (RPO, RDO,
IRD), [St86] (RPO,1exicographicalRPO, RDO, IRD, KNS, PSO).
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We continue with the enumeration of important properties of the IRDS (see chapter 6 for their 

proofs). To guarantee termination of rewrite systems, the IRDS must be a simplification ordering 

(irreflexivity, transitivity, subterm property and replacement property) and stable w.r.t. 

substitutions. 

2.14	 Lemma IRDS is a simplification ordering on r G' 

Proof: see 6.1 - 6.4 (pp. 33 - 35) 

2.15	 Lemma IRDS is stable w.r.t. substitutions. 

Proof: see 6.5 (pp. 35 - 36) 

Dershowitz gives a sufficient criterion for proving that a TRS tenninates for every input ([De82]): 

A TRS 9t = {li ~9t ri liE [l,n]} over a set of terms r terminates if there exists a 

simplification ordering > over r such that a(1i) > a(ri) (i E [l,n]) for any substitution a 

of tenns of r for the variables of li' The test whether a(1i) > a(ri) is true for all 

substitutions does not stop. Therefore, if we are able to prove the stability w.r.t. substitutions of 

the prescribed simplification ordering >, then showing li > ri instead of a(li) > a(ri) will be 

enough. Since the improved decomposition ordering with status is a simplification ordering (lemma 

2.14) and closed under instanciation (lemma 2.15), it may be used in conjunction with 

Dershowitz's termination theorem to prove the termination of a TRS in a relatively simple manner. 

The main importance of simplification orderings is their well-foundedness. As well as the IRDS the 

other orderings described here are well-founded, too. Instead of proving that they are simplification 

orderings it is sufficient to show that they are partial orderings and monotonic w.r.t. the precedence. 

This reasoning will be justified by the following lemma and the fact that the IRDS is stronger than 

all other orderings W.r.t. total precedences (see chapter 4). 

2.16	 Lemma A partial and monotonous (w.r.t. the precedence) ordering> is well-founded 

if there exists a well-founded ordering • which contains> w.r.t. total precedences. 

Proof: see 6.6 (on page 36) 

To use this lemma we take the IRDS as • and show (in chapter 4) the inclusion of > in >IRDS' 

Consequently, there only remains to prove that > is a partial ordering and monotonous W.r.t. the 

precedence. The proof of the irreflexivity and the transitivity of the RPOS is formulated in [KL80]. 
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We continue with the enumeration of important properties of the IRDS (see chapter 6 for their
proofs). To guarantee termination of rewrite systems, the IRDS must be a simplification ordering
(irreflexivity, transitivity, subterm property and replacement property) and stable w.r.t.
substitutions.

2 .  14  Lemma IRDS is a simplification ordering on I'G.

Proof : see 6.1 - 6.4 (pp. 33 - 35)

2 .  15  Lemma IRDS is stable w.r.t. substitutions.

Proof : see 6.5 (pp. 35 -— 36)

Dershowitz gives a sufficient criterion for proving that a TRS terminates for every input ([De82]):
ATRS ER = {Ii—>3 ri l i e  [1,n]} over a set of terms I" terminates if there exists a
simplification ordering > over F such that o(1i) > 0(ri) (i e [1,n]) for any substitution 6

of terms of 1" for the variables of l i .  The test whether 6(li) > 6(ri) is true for all

substitutions does not stop. Therefore, if we are able to prove the stability w.r.t. substitutions of
the prescribed simplification ordering >, then showing ]i > ri instead of 6(li) > 6(ri) will be

enough. Since the improved decomposition ordering with status is a simplification ordering (lemma
2.14) and closed under instanciation (lemma 2.15), it may be used in conjunction with

Dershowitz's termination theorem to prove the termination of a TRS in a relatively simple manner.

The main importance of simplification orderings is  their well-foundedness. As well as the IRDS the
other orderings described here are well-founded, too. Instead of proving that they are simplification
orderings it is sufficient to show that they are partial orderings and monotonic w.r.t. the precedence.
This reasoning will be justified by the following lemma and the fact that the IRDS is stronger than

all other orderings w.r.t. total precedences (see chapter 4).

2 .  16  Lemma A partial and monotonous (w.r.t. the precedence) ordering > is well—founded

if there exists a well-founded ordering > which contains > w.r.t. total precedences.

Proof : see 6.6 (on page 36)

To use this lemma we take the IRDS as » and show (in chapter 4) the inclusion of > in >IRDS.

Consequently, there only remains to prove that > is a partial ordering and monotonous w.r.t. the
Eacedence. The proof of the irreflexivity and the transitivity of the RPOS is formulated in [KLSO].
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In [P178b], Plaisted shows that the PSO is a partial ordering. Analogous with the proof of the 

IRDS, this property can be certified to the remaining orderings. Thus, all we need is the guarantee of 

the monotony w.r.t. the precedence. 

2.17 Lemma RPOS is monotonous w.r.t. the precedence. 

Proof: see 6.7 (pp. 36 - 37) 

2.18 Lemma RDOS is monotonous w.r.t. the precedence. 

Proof: see 6.8 (on page 37) 

2.19 Lemma PSO, PSDS and IRDS (KNSS) are monotonous w.r.t. the precedence. 

Proof: The proof of the monotony of the PSO is given in [St86]. The proofs of the remaining 

orderings PSDS and IRDS (= KNSS) are very similar to that of 2.18. 0 

The applicability of the orderings for termination proofs of term rewriting systems is ensured only if, 

additionally to the properties already proved, the stability w.r.t. substitutions is fulfilled. The 

following affirmations serve this purpose. 

2.20 Lemma RPOS is stable w.r.t. substitutions. 

Proof: see 6.9 (on page 38) 

2.21 Lemma RDO, RDOS, PSD and PSDS are stable w.r.t. substitutions. 

Proof: The proofs of the stability w.r.t. substitutions of the decomposition orderings (RDO, 

RDOS, PSD and PSDS) are very similar to that of the IRDS (see 2.15). Therefore, and due to 

lack of space, we renounce to show the property for these orderings. 0 

Since additionally the PSO is equivalent to the PSD, and the IRDS and the KNSS coincide (cf.
 

chapter 4), all orderings presented are stable w.r.t. substitutions.
 

Collecting all the previous lemmata, we may conclude this chapter with the remarkable result :
 

All orderings described in this chapter are well-founded and stable w.r.t. substitutions and therefore,
 

they are methods usable in practice for proving the termination of an arbitrary TRS.
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In [P178b], Plaisted shows that the PSO is  a partial ordering. Analogous with the proof of the
IRDS, this property can be certified to the remaining orderings. Thus, all we need is the guarantee of

the monotony w.r.t. the precedence.

2 .  17  Lemma RPOS is monotonous w.r.t. the precedence.

Proof : see 6.7 (pp. 36 — 37)

2 .  18 Lemma RDOS is monotonous w.r.t. the precedence.

Proof : see 6.8 (on page 37)

2 .19  Lemma PSO, PSDS and IRDS (KNSS) are monotonous w.r.t. the precedence.

Proof : The proof of the monotony of the PSO is given in [St86]. The proofs of the remaining
orderings PSDS and IRDS (= KNSS) are very similar to that of 2.18 . EI

The applicability of the orderings for termination proofs of term rewriting systems is ensured only if,
additionally to the properties already proved, the stability w.r.t. substitutions is fulfilled. The
following affirmations serve this purpose.

2 .20  Lemma RPOS is stable w.r.t. substitutions.

Proof : see 6.9 (on page 38)

2 .21  Lemma RDO,RDOS, PSD and PSDS are stable w.r.t. substitutions.

Proof : The proofs of the stability w.r.t. substitutions of the decomposition orderings (RDO,
RDOS, PSD and PSDS) are very similar to that of the IRDS (see 2.15).  Therefore, and due to

lack of space, we renounce to show the property for these orderings. El

Since additionally the PSO is equivalent to the PSD, and the IRDS and the KNSS coincide (cf.
chapter 4), all orderings presented are stable w.r.t. substitutions.
Collecting all the previous lemmata, we may conclude this chapter with the remarkable result:
All orderings described in this chapter are well-founded and stable w.r.t. substitutions and therefore,
they are methods usable in practice for proving the termination of an arbitrary TRS.
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3 Knuth-Bendix ordering with status 

To prove tennination of term rewriting systems we can use the notion of a welljounded set (S, >s) 

which is a set S and a partial ordering >s on S such that any decreasing sequence 

e1 >s e2 >s ... of elements of S only consists of a finite number of elements. To construct an 

ordering we choose a well-founded set (S, >s) and a so-called terminationfunction which maps 

the term algebra into S. S can be the term algebra itself: The path and decomposition orderings of 

the previous chapter are based on this notion. The ordering of Knuth and Bendix (KBO, for short) 

takes (IN, » as the underlying well-founded set, Le. it assigns natural (or possibly real) numbers 

to the function symbols and then to terms by adding the numbers of the operators (called weight of a 

term) they contain. Two terms are compared by comparing their weights, and if the weights are 

equal, by lexicographically comparing the subterms. Analogous with the path and decomposition 

orderings, we succeeded in adding the idea of status and therefore, in extending the method of 

comparing the arguments of two equivalent function symbols. To describe this strategy, called 

Knuth-Bendix ordering with status (KBOS, for short), we need some prerequisites and helpful 

definitions. 

If ~ is a function symbol or a variable and t is a term we denote the number of occurrences of ~ in 

t by #fJ.(t). We assign a non-negative integer <p(t) (the weight of t) to each operator in l' and 

a positive integer <Po to each variable such that 

<p(c) ~ <Po if c is a constant and 

<p(f) > 0 if f has one argument. 

Now we extend the weight function to terms. For any term t =f(tl' ...,tn) let 

<pet) = <pet) + l: <pet). 

3.1	 Definition (based on [Ma87] , [KB70J) 

Knuth-Bendix ordering with status: KBOS 

S >KBOS t 

iff (Vx eX) #x(s) ~ #x(t) 1\ 

- <pes) > <pet) 

- top(s) ~ top(t) 

- args(s) >KBOS;t(lOp(S)) args(t) 
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3 Knuth-Bendix ordering with status

To prove termination of term rewriting systems we can use the notion of a well-founded set (S, >5)
which is a set S and a partial ordering >S on S such that any decreasing sequence
e1 >$ e2 >S . . . of elements of S only consists of a finite number of elements. To construct an
ordering we choose a well-founded set (S, >S) and a so—called termination function whiCh maps
the term algebra into S.  S can be the term algebra itself : The path and decomposition orderings of
the previous chapter are based on this notion. The ordering of Knuth and Bendix (KBO, for short)
takes (IN, >) as the underlying well-founded set, i.e. it assigns natural (or possibly real) numbers
to the function symbols and then to terms by adding the numbers of the operators (called weight of a
term) they contain. Two terms are compared by comparing their weights, and if the weights are
equal, by lexicographically comparing the subterms. Analogous with the path and decomposition
orderings, we succeeded in adding the idea of status and therefore, in extending the method of
comparing the arguments of two equivalent function symbols. To describe this strategy, called
Knuth-Bendix ordering with status (KBOS, for short), we need some prerequisites and helpful
definitions.

If A is a function symbol or a variable and t is  a term we denote the number of occurrences of A in
t by #A(t). We assign a non-negative integer (p(f) (the weight of f) to each operator in T and

a positive integer (po to each variable such that
(p(c) z ([30 if c i s a  constant and
(pa) > 0 if f has one argument.

Now we extend the weight function to terms. For any term t=f(t1,...,tn) let
(Pa) = (Pm + 2 (Wii)-

3.1 Definition (based on [Ma87] , [KB70])
Knuth-Bendix ordering with status : KBOS

s >KBOS t
iff (Vxex)  #x(s) ; #x(t) A

-<p(S) > (W)

- top(s) > t0p(t)

' args(s) >KBOS,T(t0p(s)) 3133“)
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3.2 ,Remarks 

- The definition is slightly different from that given in [KB70]. Knuth and Bendix require that the 

precedence be total and that #x(s) = #x(t) if cp(s) = cp(t). The version given here is from 

[Ma87] and is an extension of the original definition. This claim can be substantiated with the 

help of the rule (y:::) x) v X -7 (y V 0):::) x which can only be oriented with the new definition 

(#/s) ~ #/t)) if v ~:::) is presumed. 

- The variable condition (#x(s) ~ #x(t» guaranteeing the stability certainly is a very strong 

restriction. Note that, for example, the distributive law cannot be oriented in the usual direction. 

- There exists a slight improvement of the ordering that allows at most one unary operator f with 

weight zero ([KB70]). To conserve the well-foundedness all other operators in :J have to be 

smaller than f (with respect to the precedence). 

- Using a quasi-ordering on the function symbols instead of a partial ordering, we may admit more 

than one unary operator with weight zero. On the premise that all these operators are equal 

w.r.1. the precedence, the induced KBOS also is a simplification ordering stabilized w.r.1. 

substitutions. For example, the termination of (x*y)2 -7 x2*(_y)2 can be shown with the 

improved version but cannot be shown with the partial version of the KBOS. 

- [Ma87] contains a simple and practical decision procedure for determining whether or not a set of 

rules can be ordered by a KBO. The basic idea of this algorithm is to transform the desired rules 

to linear inequalities which the weights must satisfy. The solutions to these inequalities are 

determined by using the simplex method ([Ma87]). 

- Note that the terms of the following example are not comparable with the KBO (without status). 

3.3 Example 

Consider the terms s = x * «-y) * y) and t = (- y * y) * x and the following functions on the 

operators: 

symbol x,y - * 

CV 1 1 0 

't(*) = mult 

* ~ -

We want to prove that s >KBOS 1. Since <pes) = cp(*) + <p(x) + cp«-y)*y) = 0 + 1 + cp(*) + <p(-y) 

+ cp(y) = 0 + 1 + 0 + cp(-) + cp(y) + 1 = 4 and <pet) are equal and top(s) = top(t) = * we have to 

apply the KBOS recursively on the multisets of arguments and have to verify 

{x, (-y)*y} »KBOS {-y*y,x}. This is true because s'=(-y)*y >KBOS -y*y=t', since 

cp(s') = cp(t') and top(s') = * ~ - = top(f). 
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3 .2  Remarks

- The definition is slightly different from that given in [KB70]. Knuth and Bendix require that the
precedence be total and that #x(s) = #x(t) if (p(s) = (p(t). The version given here is from
[Ma87] and is an extension of the original definition. This claim can be substantiated with the
help of the rule (y = x) v x —-> (y v 0) = x which can only be oriented with the new definition

(#x(s) >; #x(t)) if v » = is  presumed.
- The variable condition (#x(s) z #x(t)) guaranteeing the stability certainly is a very strong

restriction. Note that, for example, the distributive law cannot be oriented in the usual direction.

- There exists a slight improvement of the ordering that allows at most one unary Operator f with
weight zero ([KB70]).  To conserve the well-foundedness all other operators in ff have to be

smaller than f (with respect to the precedence).
- Using a quasi-ordering on the function symbols instead of a partial ordering, we may admit more

than one unary operator with weight zero. On the premise that all these operators are equal
w.r.t. the precedence, the induced KBOS also is  a simplification ordering stabilized w.r.t.
substitutions. For example, the termination of (x"‘y)2 —-> x2°“(-y)2 can be shown with the
improved version but cannot be shown with the partial version of the KBOS.

- [Ma87] contains a simple and practical decision procedure for determining whether or not a set of
rules can be ordered by a KBO. The basic idea of this algorithm is to transform the desired rules
to linear inequalities which the weights must satisfy. The solutions to these inequalities are
determined by using the simplex method ([Ma87]).

- Note that the terms of the following example are not comparable with the KBO (without status).

3.3 Example

Consider the terms 3 = x * ((—y) * y) and t = (- y * y) * x and the following functions on the
operators :

symbo l  x ,y  _ * 1:(*) = mult

q) 1 10  *D-

We want to prove that s >KBOS t. Since (13(5) =<p(*) + (p(x)+ q)((-y)*y) =0+  1 + <p(*)+ (p(-y)
+ (p(y) = O + 1 + O + (p(-) + cp(y) + 1 = 4 and <p(t) are equal and top(s) = t0p(t) = * we have to
apply the KBOS recursively on the multisets of arguments and have to verify
{x , (-y)*y} >>KBOS {—y*y , x} .  This is true because s'= (-y)*y >KBOS -y*y-—t', since

<o(s') = <p(t') and t0p(s') = * v - = t0p(t).
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We want to use this new version of the well-known KBO as an ordering to prove the termination 

of rewrite rules. Therefore, we conclude this section with the reference to some important properties. 

We show that the KBOS is a simplification ordering (a partial ordering with the subterm and the 

replacement property) and that it is stable W.r.t. substitutions. 

3.4 Lemma KBOS is a simplification ordering on r o' 

Proof: see 6.10 - 6.13 (pp. 39 - 41) 

3.5 Lemma KBOS is stable w.r.t. substitutions. 

Proof: see 6.14 - 6.15 (pp. 41 - 42) 
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We want to use this new version of the well-known KBO as an ordering to prove the termination
of rewrite rules. Therefore, we conclude this section with the reference to some irnportant properties.
We show that the KBOS is a simplification ordering (a partial ordering with the subtenn and the
replacement property) and that it is stable w.r.t. substitutions.

3 . 4 Lemma KBOS is a simplification ordering on I'G.

Proof: sec 6.10 - 6.13 (PP- 39 - 41)

3 .5  Lemma KBOS is  stable w.r.t. substitutions.

Proof: see 6.14 - 6.15 (pp. 41 - 42)
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4 Comparison 

In this chapter we compare the power of the presented orderings. For completeness, we are 

additionally including the basic orderings restricted to multiset status. The power of an ordering is 

represented by the set of comparable terms. We do not compare the size of these sets but examine the 

relation between two sets. There are three possible relations: Two orderings can be equivalent 

(> = .), one ordering can be properly included in the other (> c .) or they overlap (> # .). 

The orderings > and • overlap if there exist some terms such that SI > tl A 

SI ~ tl and s2. ~ A S2 ~~. Consequently, the proof of such an overlapping is 

composed by specifying two counter-examples. At the end of this chapter a synopsis of the 

previous lemmata will be listed in the form of a diagram. 

Note that the orderings described in this report depend on a parameter; The precedence. This 

parameter may be either partial or total. For the following reason we are only interested in the latter: 

Our results would be more general if we could give some information about the comparisons of 

orderings separated from the precedence. The following proposition summarizes these reflections. 

4.1 Proposition Let > and • be orderings which are monotonous w.r.t. the precedence. 

Furthermore, let > be included in • w.r.t. total precedences. Then, if s >(p) t holds for 

some precedence p, there exists a precedence q (possibly different from p) so that s .(q) 1. 

Proof: We prove this proposition by specifying q. Let s >(p) t, then s >(p') t for every 

extension p' of p, since > is monotonous w.r.1. the precedence. Let q be one of the total 

extensions: s >(q) 1. With the additional premise > ~. over any total precedence, the terms s 

and t are ordered in the same direction under •. 0 

This statement will be of practical importance if we consider it together with the relations between 

orderings with an underlying total precedence (see figure 4.12 on page 27) : Only two (either IRDS 

(KNSS) or KBOS) of the thirteen orderings collected in the diagram are needed to cover the 

union of comparable terms of all the orderings presented here. In other words, if terms can be 

oriented with any ordering (of the figure) there exists a precedence such that the terms are also 

comparable with either the IRDS (KNSS) or the KBOS. Consequently, if you are implementing a 

system where the termination of a rewriting system must be guaranteed, only two of the thirteen 

orderings will have to be made available for the user. The cause of it is that the IRDS (resp. the 

KNSS) is stronger than all other path orderings irrespective of the precedence. 
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4 Comparison-

In this chapter we compare the power of the presented orderings. For completeness, we are
additionally including the basic orderings restricted to multiset status. The power of an ordering is
represented by the set of comparable terms. We do not compare the size of these sets but examine the

relation between two sets. There are three possible relations : Two orderings can be equivalent
(> = »), one ordering can be properly included in the other (> C >) or they overlap (> #r) .
The orderings > and > overlap if there exist some terms such that 51 > t1 A
31 I t1 and s2 > t2 A 8215. Consequently, the proof of such an overlapping is

composed by Specifying two counter-examples. At the end of this chapter a synopsis of the
previous lemmata will be listed in the form of a diagram.

Note that the orderings described in this report depend on a parameter : The precedence. This
parameter may be either partial or total. For the following reason we are only interested in the latter :
Our results would be more general if we could give some information about the comparisons of
orderings separated from the precedence. The following proposition summarizes these reflections.

4 .1  Proposi t ion Let > and v. be orderings which are monotonous w.r.t. the precedence.
Furthermore, let > be included in > w.r.t. total precedences. Then, if s >(p)t holds for
some precedence p, there exists a precedence q (possibly different from p) so that s >(q) t.

Proof : We prove this proposition by specifying q. Let s >(p) t, then s >(p‘) t for every
extension p '  of p, since > is monotonous w.r.t. the precedence. Let q be one of the total
extensions: 3 >(q) t. With the additional premise > <; » over any total precedence, the terms 5
and t are ordered in the same direction under ». El

This statement will be of practical importance if we consider it together with the relations between
orderings with an underlying total precedence (see figure 4.12 on page 27) : Only two (either IRDS
(KNS S) or KBOS) of the thirteen orderings collected in the diagram are needed to cover the
union of comparable terms of all the orderings presented here. In other words, if terms can be
oriented with any ordering (of the figure) there exists a precedence such that the terms are also
comparable with either the IRDS (KNSS) or the KBOS. Consequently, if you are implementing a
system where the termination of a rewriting system must be guaranteed, only two of the thirteen
orderings will have to be made available for the user. The cause of it is that the IRDS (resp. the
KNS S) is stronger than all other path orderings irrespective of the precedence.
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The relations c:, = and # W.r.t. a total precedence have the following meanings: Let p (resp. p' 

and pI!) be a total precedence, 't (resp. 't' and 'tl!) a status, s and t terms. 

i) > c:. iff S >(p,'t) t ".. S ~(p,'t) t 1\ 

(3p','t') (Bplt,'t lt) S .(p','t') t 1\ S >(plt,'tit) t 

ii) > =. iff S >(p,'t) t +-+ S .(p,'t) t 

ill) > #. iff (3p','t') (llpft,'t lt) s >(p','t') t 1\ S .(plt,'tlt) t 1\ 

(3p','t') (llplt,'t lt ) S .(p','t') t 1\ S >(plt ,'tft) t 

4.2	 Lemma Let l> be total : 

i) RPO c: RPOS 

ii) PSD c: PSDS 

iii) RDO c: RDOS 

iv) IRD c: IRDS 

v) KBO c: KBOS 

Proof: see 6.16 (pp. 42 - 43) 

4.3	 Lemma Let l> be total: 

i) RPO c: PSO 

ii) PSO = PSD 

iii) PSD c: IRD 

iv) IRD = KNS 

v) IRD ::> RDO 

vi) RDO ::> RPO 

Proof: see 6.17 (on page 43) 

4.4	 Lemma Let l> be total: RPOS c RDOS. 

Proof: see 6.18 (pp. 43 - 45) 

4.5	 Lemma Let l> be total: RDOS c: IRDS. 

Proof: see 6.19 (pp. 45 - 46) 
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and # w.r.t. a total precedence have the following meanings : Let p (resp. p'
and p") be a total precedence, ‚|: (resp. 'n' and 1:") a status, s and t terms.

D >C>

ii) >=)
i i i )>#>

4.2 Lemma
i) RPO
ii) PSD
iii) RDO
iv)IRD

v) KBO

nn
nn

n

iff s >(p,’l:) t "" s >(p,’l:) t

(Elp'rc') 611321") s >(p'xt') t
iff s >(p,'c) t ++ s >(p,t) t
iff (3p',1:‘) (Ep",'c") s >(p‘‚'c‘) t

Gp'fl') (£p"‚'=") s >(p'rr') t

Let :> be total :

RPOS
PSDS
RDOS
IRDS
KBOS

Proof : see 6.16 (pp. 42 - 43)

4.3 Lemma
i) RPO
ii) PSO
iii) PSD
iv) IRD

' v )  IRD
vi) RDO

nu
n

U 
U

Let D be total :
PSO

PSD
IRD
KNS
RDO

RPO

Proof : sec 6.17 (on page 43)

4 .4  Lemma Let b beto ta l :  RPOS C RDOS.

Proof : see 6.18 (pp. 43 - 45)

4.5 Lemma Let l> be to ta l :  RDOS = IRDS.

Proof : see 6.19 (pp. 45 - 46)

A S >(p",1:") t

S ' ( pn ’ tn )  t

S >(P"‚’t") t
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4.6 Lemma IRDS = KNSS. 

Proof: see 6.20 - 6.21 (pp. 46 - 48) 

4.7 Lemma Let ~ be total: IRDS 

Proof: see 6.22 - 6.24 (pp. 48 - 51) 

::J PSDS. 

4.8 Lemma Let ~ be total: 

Proof: see 6.25 (on page 51) 

PSDS ::J RPOS. 

4.9 Lemma Let ~ be total : 

i) #RDO , PSD , IRD RPOS 

ii) PSD, PSDS # RDO,RDOS 

iii) IRD # RDOS ,PSDS 

iv) KBOS, KBO # RPO , RPOS , PSD , PSDS , RDO , RDOS , IRD , IRDS 

Proof: see 6.26 (on page 52) 

In order to retain these relations and to find one of them easily we use a kind of Hasse diagrams. If 

> c. then we arrange • above > joining them with a thick arrow: 

t
 
> 

The diagram of 4.12 on page 27 summarizes the previous lemmata. Arbitrary terms provided, we 

have compared the orderings. It is a question now whether the relations among the orderings will 

endure if this precondition is restricted. We have investigated the restrictions to ground terms and to 

monadic terms. 
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4 .6  Lemma IRDS = KNSS.

Proof: see 6.20 — 6.21 (pp. 46 - 48)

4 .7  Lemma Let [> be total :  IRDS == PSDS.

Proof : see 6.22 - 6.24 (pp. 48 - 51)

4.8 Lemma Let » be tota l :  PSDS = RPOS.

Proof : see 6.25 (on page 51)

4.9 Lemma Let I> be total :
i) RDO , PSD , IRD # RPOS
ii) PSD , PSDS # RDO , RDOS
iii) IRD RDOS , PSDS#
iv) KBOS , KBO # RPO , RPOS , PSD , PSDS , RDO , RDOS , IRD , IRDS

Proof : see 6.26 (on page 52)
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In order to retain these relations and to find one of them easily we use a kind of Hasse diagrams. If
> c » then we arrange » above > joining them with a thick arrow :

>

The diagram of 4.12 on page 27 summarizes the previous lemmata. Arbitra_ry terms provided, we
have compared the orderings. It is  a question now whether the relations among the orderings will
endure if this precondition is restricted. We have investigated the restrictions to ground terms and to
monadic terms.
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Ifwe consider r G (the set of ground terms) instead of r and take a total precedence ~, then the 

path and decomposition orderings are total on r01-. The orderings with multiset status are 

equivalent and included in the orderings on arbitrary status which themselves are equivalent. The 

Knuth-Bendix ordering is also total on rd- (KBO c KBOS) and overlaps with the others. 

f(g(a)) >KBO g(f(f(a))) and g(f(f(a))) ~ f(g(a)) hold under the following presumptions: 

cp(t) =0, the total precedence f ~ g ~ a and ~ is any of the remaining orderings. The 

graph of the results on ground terms can be found on the following page. 

A monadic term only contains unary function symbols and either a constant or a variable. The 

subset of the monadic terms without constants can unequivocally be transformed into strings and 

vice versa. Therefore, the subsequent result refers to the corresponding orderings on string 

rewriting systems. Note that, on monadic terms, an ordering with status and the version without 

status coincide. On condition of a total precedence, all orderings with the exception of the 

KBO(S) are the same. The counter-example taken from ground terms is responsible for the 

overlapping of the KBO(S) with the others. Due to lack of space, the proofs cannot explicitly be 

given here but may be found in [St86]. Analogous with arbitrary terms, a synopsis in the form of a 

diagram is presented below. 

It is mentionable that the class of path and decomposition orderings on monadic terms is equivalent 

to the syllabled or collected ordering >co (see [Si8?], [Wi88] or [Ba8I]) on the reverse 

words: u >RPO,... v iff reverse(u) >co reverse(v). 

4.10 Total precedence and monadic terms 

RPO =PSO =PSD =RDO = 
11 ~ 

Z 
'J:l Vl 
~ 

/I~ 
~ KBOS KBO 

~ =
/I Z 

Vl
 
Vl
 

11 
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Ifwe consider I'G (the set of ground terms) instead of 1" and take a total precedence », then the
path and decomposition orderings are total on TG/~. The orderings with multiset status are
equivalent and included in the orderings on arbitrary status which themselves are equivalent. The
Knuth-Bendix ordering is also total on I'G/~ (KBO = KBOS) and overlaps with the others.
f(g(a)) >1:BO g(f(f(a))) and g(f(f(a))) > f(g(a)) hold under the following presumptions:
q3(f) = 0, the total precedence f [> g » a and » is any of the remaining orderings. The
graph of the results on ground terms can be found on the following page.

A monadic term only contains unary function symbols and either a constant or a variable. The
subset of the monadic terms without constants can unequivocally be transformed into strings and
vice versa. Therefore, the subsequent result refers to the corresponding orderings on string
rewriting systems. Note that, on monadic terms, an ordering with status and the version without
status coincide. On condition of a total precedence, all orderings with the exception of the
KBO(S) are the same. The counter—example taken from ground terms is responsible for the
overlapping of the KBO(S) with the others. Due to lack of space, the proofs cannot explicitly be
given here but may be found in [St86]. Analogous with arbitrary terms, a synopsis in the form of a
diagram is presented below.
It is  mentionable that the class of path and decomposition orderings on monadic terms is equivalent
to the syllabled or collected ordering >CO (see [Si87] , [Wi88] or [Ba8l]) on the reverse
words : u >RPO,... v iff reverse(u) >CO reverse(v).

4 .10  Total precedence and monadic terms

RPO : PSO : PSD
II N

ll

75 U O n

IR
D

S

KBOS = KBO
l N

H
IR

D

SOGEI = SGSd  SOdH
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4.11 Total precedence and ground terms 

KBOSRPOS = PSDS = RDOS = KNSS = IRDS 

KBORPO =PSO = PSD = RDO = KNS = IRD 

4.12 Total precedence and arbitrary terms 

KNSS = IRDS 

RDOS KBOSPSDS KNS = IRD 

PSO = PSD RPOS RDO KBO 

RPO 

4 Comparison 
27

4 .11  Total precedence and ground terms

RPOS = PSDS = RDOS : KNSS : IRDS KBOS

RPO = PSO : PSD : RDO = KNS : IRD KBO

4.12 Total precedence and arbitrary terms

KNSS : IRDS

\

PSDS KNS = IRD RDOS KBOS

PSO : PSD RPOS RDO KBO

\

RPO
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5 Implementation and Conclusion 

The TRSPEC is a system for algebraic specifications based on term rewriting techniques and 

developed at the university of Kaiserslautern from the research group PROGRESS (Projektgruppe 

Reduktionssysteme). It is implemented in Common Lisp and currently running on Apollo Domain 

Systems as well as on SUN workstations. It consists of approximately 8000 lines of source code 

(without documentation) corresponding to 400 KB of compiled code. 

The kernel of the TRSPEC-system is COMTES, an extended Knuth-Bendix completion procedure. 

Furthermore, the TRSPEC contains the following tools : A parser for transforming hierarchical 

structured specifications into an internal representation and for checking the syntax of the 

specification. A checker for testing the completeness and uniqueness of function definitions. A 

compiler for transforming function definitions into executable lisp code. A prover for proving 

inductive properties of the defined functions. 

COMTES can be viewed as a parametric system that is particularly suited for efficiency 

experiments. Beside different reduction strategies, the parameters also include various termination 

methods. 

The three main topics of this chapter are the following: 

i) The comparison between the definition and the implementation of the orderings, 

ii) The study of the time complexity of the orderings guided by a series of experiments and 

iii) Concluding remarks. 

5.1 Differences between the definitions and their implementations 

The path orderings RPOS, PSO, KNSS, IRDS, PSDS and the Knuth-Bendix ordering are 

implemented. Each technique only checks whether a term s is greater (w.r.t. the technique) than a 

term 1. Consequently, if the test s > t stops with negative result, we have to repeat it in reverse 

order: t > s? 

Before comparing the methods and their implementations let us note that we made a general multiset 

ordering available. It depends on the following parameters: An equality relation (for example the 

term congruence ""), an ordering, a precedence, a status and a weight function (the latter is empty if 

the second parameter is a path ordering). 
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5 Implementation and Conclusion

The TRSPEC is a system for algebraic specifications based on term rewriting techniques and
developed at the university of Kaiserslautern from the research group PROGRESS (Projektgruppe
Reduktionssysteme). It is implemented in Common Lisp and currently running on Apollo Domain
Systems as well as on SUN workstations. It consists of approximately 8000 lines of source code
(without documentation) corresponding to 400 KB of compiled code.
The kernel of the TRSPEC-system is COMTES, an extended Knuth—Bendix completion procedure.
Furthermore, the TRSPEC contains the following tools : A me; for transforming hierarchical
structured specifications into an internal representation and for checking the syntax of the
specification. A checker for testing the completeness and uniqueness of function definitions. A
§o_m_p_il_er for transforming function definitions into executable lisp code. A pm for proving
inductive properties of the defined functions.
COMTES can be viewed as a parametric system that is particularly suited for efficiency
experiments. Beside different reduction strategies, the parameters also include various termination
methods.

The three main t0pics of this chapter are the following :

i) The comparison between the definition and the implementation of the orderings,
ii) The study of the time complexity of the orderings guided by a series of experiments and
iii) Concluding remarks.

5 .1  Differences between the  definitions and their  implementations

The path orderings RPOS, PSO, KNSS, IRDS, PSDS and the Knuth-Bendix ordering are
implemented. Each technique only checks whether a term 5 is greater (w.r.t. the technique) than a
term t. Consequently, if  the test s > t stops with negative result, we have to repeat i t  in reverse

order: I > s ?

Before comparing the methods and their implementations let us note that we made a general multiset
ordering available. It depends on the following parameters : An equality relation (for example the
term congruence N), an ordering, a precedence, a status and a weight function (the latter is empty if

the second parameter is  a path ordering).
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The implementation and the definition of the RPOS are essentially equal. Additionally, a 

process will previously be performed which checks the subterm property. The 

non-determinism in the definition will be evaded by testing the fourth condition only if the 

three previous cases failed. 

The PSO compares two terms by comparing all their paths. Like the definition on page 7, a 

pilth as well as the multiset of all paths of a term will be explicitly produced and composed of 

terms. The implementation of the PSO is also identical to its definition. 

We utilized some ideas of the KNSS given in [KNS85]. These notions are based on the 

RPOS since KNSS originates from the RPOS. Before constructing the paths of two terms s 

and t, case distinctions relative to the leading function symbols will be performed: If 

top(s) ~ top(t), then {s} »KNSS args(t) must hold (therefore, we can renounce with the 

construction of the paths). Only if top(s) = top(t) we use the demand (path({s}) »LK 

path({t} » of the definition 2.5. Two additional checks are installed to enhance the efficiency: 

i) The test of the subterm property (cf. RPOS). ii) Before comparing two paths their ends will 

be checked (Le. if the seemingly smaller path ends with a variable the other path must have the 

same end). 

The definition and the implementation of the IRDS coincide except for the data structure of an 

elementary decomposition. A component of a path-decomposition used in the definition is a 

term. Such an elementary decomposition is divided and implemented as a list. It has been 

attuned to the definition of the IRDS. An elementary decomposition (a term) t consists of the 

following elements (only important ones) : 

Itop(t) a-----.k e args(t) a---.I args(t) \ {t'} ~ldeC(argS(t)\{t'}) Ir 
Note that this is an extremely recursive structure (cf. the fourth cell). The direct access to any 

component used in the definition of the IRDS is its advantage. 

The implementations of the PSDS and the IRDS only differ in the principle of comparing the 

subterms of terms with equal top symbols: The PSDS works breadth-first while the IRDS 

works depth-first. 

The definition and the implementation of the KBOS coincide. As an additional trick, the 

subterm property will previously be tested. 

5.2 Time behaviour 

We chose 18 pairs of terms. Each pair is comparable w.r.t. all orderings implemented. The 

chronometries are entered in the table on page 31. The column at the left margin contains the sizes of 

the terms sand t of a pair. More precisely, the first value denotes the addition of both sizes (lsl + Id ) 
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- The implementation and the definition of the RPOS are essentially equal. Additionally, a

process will previously be performed which checks the subterm property. The

non-determinism in the definition will be evaded by testing the fourth condition only if the
three previous cases failed.

- The PSO compares two terms by comparing all their paths. Like the definition on page 7 ,  a
path as well as the multiset of all paths of a term will be explicitly produced and composed of

terms. The implementation of the PSO is also identical to its definition.

- We utilized some ideas of the KNSS given in [KNSSS]. These notions are based on the

RPOS since KNSS originates from the RPOS. Before constructing the paths of two terms s
and t, case distinctions relative to the leading function symbols will be performed : If
top(s) » top(t), then {s} »KNSS args(t) must hold (therefore, we can renounce with the
construction of the paths). Only if t0p(s) = top(t) we use the demand (path({s}) »LK
path({t})) of the definition 2.5. Two additional checks are installed to enhance the efficiency :
i) The test of the subterm pr0perty (cf. RPOS). ii) Before comparing two paths their ends will
be checked (i.e. if the seemingly smaller path ends with a variable the other path must have the
same end).

- The definition and the implementation of the IRDS coincide except for the data structure of an
elementary decomposition. A component of a path-decomposition used in the definition is a
term. Such an elementary decomposition is divided and implemented as a list. It has been
attuned to the definition of the IRDS. An elementary decomposition (a term) t consists of the
following elements (only important ones) :

top(t) : > t ' e  argS(t) = !» a rgs ( t ) \ { t ’}  -— deC(argS(t ) \{ t ’})  °-—>

Note that this is an extremely recursive structure (cf. the fourth cell). The direct access to any
component used in the definition of the IRDS is its advantage.

- The implementations of the PSDS and the IRDS only differ in the principle of comparing the
subterms of terms with equal top symbols : The PSDS works breadth—first while the [RDS
works depth-first.

- The definition and the implementation of the KBOS coincide. As an additional trick, the
subterm property will previously be tested.

5 .2  Time behaviour

We chose 18 pairs of terms. Each pair is comparable w.r.t. all orderings implemented. The
chronometries are entered in the table on page 31. The column at the left margin contains the sizes of
the terms s and t of a pair. More precisely, the first value denotes the addition of both sizes ( Isl + Itl )
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while the second number (enclosed in parenthesis) stands for the size of the greater (w.r.t. the 

ordering) term (lsl). The values of the other sections of the table have the following meanings: 

A a
 

B b
 

A is the mean (or average) of a series of four experiments (with the same pair) and a is the 

corresponding standard deviation. The values refer to a positive test, Le. we conjectured that 

s> t, and really s > t holds. B and b are responsible for the negative test (the hypothesis 

was incorrect). The values A, a, B and b represent internal run time measured in milliseconds. 

The table is somewhat difficult to survey. But we would not renounce it since there are many details 

which can explain the time complexity of an ordering. Nevertheless, we now want to summarize the 

informations of the table into a lucid one: 

RPOS PSO KNSS IRDS PSDS KBOS 

average standard 
deviation (in %) 

11,8 2,6 6,5 4,8 3,2 5,9 

average time for the posi
tive test divided by the 
time for the negative test 

0,6 2,2 1,6 1,2 1,6 0,9 

total factors 1,0 19,0 4,1 8,1 16,0 1,7 

The total factors are the average factors of all (positive and negative) tests related to the 

RPOS. 

An amazing fact is that, in contrast to the other orderings, the RPOS needs more time for the 

negative test (the cause of it could be the non-determinism of condition iv). Compared to the other 

orderings, the RPOS and the KBOS come off well (see total factors) : The KBOS indeed is 

slower than the RPOS by factor 1,7 but all other orderings are slower by minimum factor 4. The 

probable reason is the time for constructing the paths and the decompositions, respectively. In 

general, it is more expensive to build up a path-decomposition than the corresponding path (since the 

data structure of a path-decomposition is more complex than that of a path, cf. 5.1). The time 

difference between the KNSS and the IRDS confrrrns our observation. In contrast to that, the total 

factors of the PSDS and the PSO do not agree with the previous evaluation (that the time for the 

construction of a path is lower than that of the corresponding path-decomposition). This originates in 

the fact that the average values distort the measurements: In 75% of the cases the PSDS is slower 
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while the second number (enclosed in parenthesis) stands for the size of the greater (w.r.t. the
ordering) term ( Isl ). The values of the other sections of the table have the following meanings :

A a

A is the mean (or average) of a series of four experiments (with the same pair) and a is the
corresponding standard deviation. The values refer to a positive test, i.e. we conjectured that
s > t, and really s > t holds. B and b are responsible for the negative test (the hypothesis
was incorrect). The values A, a,  B and b represent internal run time measured in milliseconds.

The table is somewhat difficult to survey. But we would not renounce it since there are many details
which can explain the time complexity of an ordering. Nevertheless, we now want to summarize the
informations of the table into a lucid one :

RPOS PSO KNSS IRDS PSDS KBOS

average standard
deviation (in %) 11’8  2 ’6  6 ’5  4 ' 8  3 :2  5 :9

average time for the posi-
tive test divided by the 0,6 2,2 1,6 1,2 1,6 0,9
time for the negative test

total factors 1,0 19,0 4,1 8,1 16,0 1 ,7

The total factors are the average factors of all (positive and negative) tests related to the
RPOS.
An amazing fact is that, in contrast to the other orderings, the RPOS needs more time for the
negative test (the cause of it could be the non-determinism of condition iv). Compared to the other

orderings, the RPOS and the KBOS come off well (see total factors) : The KBOS indeed is
slower than the RPOS by factor 1,7 but. all other orderings are slower by minimum factor 4. The
probable reason is the time for constructing the paths and the decompositions, respectively. In
general, it is more expensive to build up a path-decomposition than the corresponding path (since the
data structure of a path-decomposition is more complex than that of a path, cf. 5.1). The time
difference between the KNSS and the IRDS confirms our observation. In contrast to that, the total
factors of the PSDS and the P80 do not agree with the previous evaluation (that the time for the

construction of a path is lower than that of the corresponding path-decomposition). This originates in
the fact that the average values distort the measurements : In 75% of the cases the PSDS is  slower
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PSO KNSS IRDS 
2101 360 167 99 95 13 

978 139 123 11 2475 573 

2270 505 2538 587 4466 14 

3305 294 2721 420 4946 687 

2850 78 

2282 714 

8510 78 

7722 648 

5936 122 

4699 119 

16839 602 

11414 52 

5845 645 

6875 875 

18431 1706 

12752 148 

5889 42 

5682 454 

5708 557 

5819 874 

6644 545 

5345 540 

7674 605 

6934 117 

17284 121 

17131 89 

172 11 

118 9 

7308 114 

6853 542 

2135 481 

3463 20 

12517 98 

7886 522 

6051 888 

2598 287 

12465 1652 

3222 523 

4400 496 

3479 505 

2618 511 

5314 1059 

5078 638 

4936 784 

4947 536 

5486 149 

12722 1121 

11431 264 

156 11 

4699 448 

10056 176 

10135 44 

8170 104 

7939 567 

17338 1163 

10475 897 

9544 811 

8944 919 

17954 1903 

12634 90 

9354 106 

10144 1489 

9243 1084 

9222 802 

14075 184 

8195 83 

14414 1574 

9343 699 

23344 559 

19961 426 

66782 903 21450 1165 25992 185 

26911 266 13616 108 18488 152 

32300 2499 14274 1321 24581 2264 

22359 364 6317 508 18441 434 

60837 4045 17560 402 38248 534 

39555 3066 6395 376 34471 2326 

196710 9998 66610 3768 61486 4812 

106686 4934 26425 2601 39529 3696 

691861 3498 32844 113 119854 534 

245187 3888 26548 1023 98380 5351 

PSDS KBOSRPOS
size~ 

91 1 110 11102 10 

72 0 

3 (2) 
2694 168 113 1 

4463 97 2329 3643 10 

975 159 

5 (2) 

4624 387 3365 558 

166 23 170 11163 9 

80 16 

6 (5) 
4199 402 113 1 

9437 439 2547 121396 123 

3310 1320 

6 (3) 
10276 83 2635 131 

7550 662 2603 3 

947 2 

695 276 (2) 

7554 494 2539 8 

7 (4) 17593 273 2656 87 

2431 580 

1785 637 

12915 570 2603 29 

7 (3) 9459 847 3252 550 

2768 252 

2285 292 

9037 1002 3828 463 

8 (4) 20034 2143 4553 753 

2921 57 

1073 17 

15648 476 3846 136 

8 (4) 9093 568 4126 635 

1571 238 

1393 1 

8612 1406 3737 3 

8 (4) 9760 900 3786 2 

1199 525 

867 153 

8705 653 4921 111 

8 (4) 14067 52 3802 13 

687 9 

887 12 

8479 617 3841 101 

8 (4) 13762 1783 4375 613 

958 9 

1155 144 

8960 305 3788 1 

8 (4) 26882 180 4628 491 

3553 713 

1994 465 

19826 1923 3787 2 

10 (6) 2372 23 45005 460 4813 653 

2105 503 24283 189 5157 471 

11 (6) 29806 2671 4350 82 

3641 154 

2419 442 

20362 481 5377 87 

12 (6) 3992 339 76899 5223 6028 585 

5792 513 51600 2819 5855 590 

12 (6) 168641 9808 15115 454 

9114 525 

5203 698 

74628 337 14674 248 

17 (5) 422582 6383420 504 7306 678 

14959 991 251430 6041 7234 500 
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"rd" RPOS PSO KNSS IRDS PSDS KBOS
811€
_5 (2) 102 10 2101 360 167 99 95 13 91 1 110 11

72 0 973 139 123 11 2475 573 2694 168 113 1
s (2) 643 10 2270 505 2538 587 4466 14 4463 97 2329 3

975 159 3305 294 2721 420 4946 687 4624 387 3365 558
6 (5) 163 9 2850 78 172 11 156 11 166 23 170 11

so 16 2282 714 118 9 4699 448 4199 402 113 1
—6 (3) 1396 123 8510 78 7308 114 10056 176 9437 439 2547 12

3310 1320 7722 648 6853 542 10135 44 10276 83 2635 131
6 (2) 695 27 5936 122 2135 481 8170 104 7550 662 2603 3

947 2 4699 119 3463 20 7939 567 7554 494 2539 8
7(4) 1785 637 16839 602 12517 98 17338 1163 17593 273 2656 87

2431 580 11414 52 7886 522 10475 897 12915 570 2603 29
7 (3) 2285 292 5845 645 6051 888 9544 811 9459 847 3252 550

2768 252 6875 875 2598 287 8944 919 9037 1002 3828 463
8(4) 1073 17 18431 1706 12465 1652 17954 1903 20034 2143 4553 753

2921 57 12752 148 3222 523 12634 90 15648 476 3846 136
8(4) 1393 1 5889 42 4400 496 9354 106 9093 568 4126 635

1571  238 5682 454 3479 505 10144  1489 8612  1406 3737 3

8(4 )  867 153 5708 557 2618 511 9243 1084 9760 900 3786 2

1199 525 5819 874 5314 1059 9222 802 8705 653 4921 111
8(4) 887 12 6644 545 5078 638 14075 184 14067 52 3802 13

687 9 5345 540 4936 784 8195 83 8479 617 3841 101
8(4) 1155 144 7674 605 4947 536 14414 1574 13762 1783 4375 613

958 9 6934 117 5486 149 9343 699 8960 305 3788 1
8(4) 1994 465 17284 121 12722 1121 23344 559 26882 180 4628 491

3553 713 17131 89 11431 264 19961 426 19826 1923 3787 2
10 (6) 2372 23 66782 903 21450 1165 25992 185 45005 460 4813 653

2105 503 26911 266 13616 108 18488 152 24283 189 5157 471
11 (5) 2419 442 32300 2499 14274 1321 24581 2264 29806 2671 4350 82

3641 154 22359 364 6317 508 18441 434 20362 481 5377 87
12 (6) 3992 339 60837 4045 17560 402 38248 534 76899 5223 6028 585

5792 513 39555 3066 6395 376 34471 2326 51600 2819 5855 590
12 (6) 5203 698 196710 9998 66610 3768 61486 4812 168641 9808 15115 454

9114 525 106686 4934 26425 2601 39529 3696 74628 337 14674 248
17(5) 3420 504 691861 3498 32844 113 119854 534 422582 638 7306 678

14959 991 245187 3888 26548 1023 98380 5351 251430 6041 7234 500
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than the PSO. Generally, the PSDS and the IRDS have approximately the same time behaviour. 

The reason why the IRDS is much better than the PSDS in the last three experiments could be the 

following: The selection of a direct subterm (second condition of 2.11) is directly successful. 

Considering the remarks of this section we come to the conclusion that the implementation of the 

RPOS, the KNSS and the KBOS is the most favourable solution. The RPOS serves as a 

pre-processor for the KNSS since the RPOS is faster than the KNSS. 

5.3 Concluding remarks 

Various methods for proving the termination of term rewriting systems have been suggested. Most 

of them are based on the following notion of a simplification ordering: Any term that is syntactically 

simpler than another is smaller than the other. In this paper, a collection of simplification orderings 

has been pointed out, including the well-known recursive path and decomposition ordering, the 

improved decomposition ordering of Rusinowitch, the path of subterms ordering (and an equivalent 

version on decompositions), the path ordering of Kapur/Narendran/Sivakumar and the 

Knuth-Bendix ordering. Most of the original defmitions of those orderings cannot orient for example 

the associative laws. However, this is possible by using the principle of status (cf. [KL80]) in 

conjunction with the orderings. A variant with status exists as RPOS ([KL80]), RDOS (two 

versions: [Le84] and [Ru8?]) and KNSS ([KNS85]). A part of our work consisted of adding the 

principle of status to existing orderings and therefore, of creating the following new orderings: A 

new RDOS, PSDS (PSO with status) , IRDS (IRD of Rusinowitch with status) and KBOS. It 

turned out that the IRDS (= KNSS) is the most powerful ordering of the class of path and 

decomposition orderings presented. Since the KBOS and the IRDS overlap only two (resp. three) 

of the thirteen orderings must be exposed: IRDS = KNSS and KBOS. The definition of 

the KNSS is more suitable for an implementation than the IRDS. On the contrary, we prefer the 

IRDS to twig the technique of comparing terms. The cause of it is that the definitions of the various 

orderings based on decompositions have a new outward: The used decompositions only contain 

terms instead of vectors with three (or even four) components. 

This report extends the considerable set of different decomposition orderings. To preserve the 

survey we finish with the comparison between the well-known and new decomposition orderings. 

Due to lack of time, we can only conjecture the following dependencies: 

- The RDOS of [Le84] is included in our RDOS. 

- The RDS of [Ru87] is a technique which connects the notions of the PSO (the principle 

of breadth-first), the IRD (the principle of depth-first) and lexicographical status. We 

suppose that the RDS and the IRDS overlap. 

- The PSDS is included in the RDS of [Ru87]. 

A closer examination of these conjectures as well as the exact time complexities of the orderings will 

be part of the future plans. 
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of them are based on the following notion of a simplification ordering : Any term that is syntactically
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principle of status to existing orderings and therefore, of creating the following new orderings : A
new RDOS , PSDS (PSO with status) , IRDS (IRD of Rusinowitch with status) and KBOS. It
turned out that the IRDS (= KNSS) is the most powerful ordering of the class of path and
decomposition orderings presented. Since the KBOS and the IRDS overlap only two (resp. three)

of the thirteen orderings must be exposed: IRDS = KNSS and KBOS. The definition of
the KNSS is more suitable for an implementation than the IRDS. On the contrary, we prefer the
IRDS to twig the technique of comparing terms. The cause of it is that the definitions of the various
orderings based on decompositions have a new outward : The used decompositions only contain
terms instead of vectors with three (or even four) components.
This report extends the considerable set of different decomposition orderings. To preserve the
survey we finish with the comparison between the well-known and new decomposition orderings.

Due to lack of time, we can only conjecture the following dependencies :
- The RDOS of [LeS4] is  included in our RDOS.
— The RDS of [Ru87] is a technique which connects the notions of the PSO (the principle

of breadth-first), the IRD (the principle of depth—first) and lexicographical status. We

suppose that the RDS and the IRDS overlap.
- The PSDS is included in the RDS of [Ru87].

A closer examination of these conjectures as well as the exact time complexities of the orderings will

be part of the future plans.
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6 Proofs 

At the beginning we want to point to a general fact: The proof of a lemma based on an ordering with 

status contains the proof of the same lemma relative to the corresponding ordering without status. 

In this chapter, when writing a numeral in a circle (e.g. <D, @, ...) we will refer to a 

counter-example. All examples are given on page 52. 

6.1 Lemma IRDS is irreflexive. 

Proof: We must show that t ~IRDS 1. It obviously follows from the definition.	 o 

6.2 Lemma IRDS is transitive. 

Proof: It is clear that if an ordering is transitive then its extension to multisets preserves this
 

property (*) (cf. [DM79]). Thus it is sufficient to show that >EL is transitive:
 

r >EL s >EL t ,,.. r >EL 1. We prove it by induction on I r I + I s I + I t I.
 

Let be r = f(rl' ... ,rk), s = g(sl'... ,sm) and t = h(tl' ...,t ) with rE decu(r'), SE decv(s') and
n

t E decw(t'). We have to consider four cases: 

i)	 f ~ g v g ~ h 

,,.. f ~ h because ~ is a partial ordering and r >EL s >EL t 

,,.. r >EL t by definition of >EL 

ii) f =g =h A 't(f) = mult A 

[sub(decu(r') , r) »EL sub(decv(s') , s) v sub(decv(s') , s) »EL sub(decw(t') , t)] 

".. sub(decu(r'), r) »EL sub(decw(t') , t) 

by induction hypothesis (since (V"{ E sUb(decljf(S), L\» I "{ I < I L\ I) and (*)
 

,,.. r >EL t by defmition of >EL
 

ill) f = g = h A t(t) = mult A sub(decu(r') , r) = sub(decv(s') , s) = sub(decw(t') , t) A 

dec(args(r» >)»EL dec(args(s» »»EL dec(args(t» 

,,.. - sub(decu(r'), r) = sub(decw(t'), t) 

- dec(args(r» »»EL dec(args(t» 

by induction hypothesis (since (V"{ e dec(args(L\») I "{ I < I L\ I) and (*) 

'... r >EL t by definition of >EL 
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6 Proofs

At the beginning we want to point to a general fact : The proof of a lemma based on an ordering with
status contains the proof of the same lemma relative to the corresponding ordering without status.

In this chapter, when writing a numeral in a circle (e. g. © , ® , ...) we will refer to a
counter-example. All examples are given on page 52.

6 .  1 Lemma IRDS is  irreflexive.

Proof : We must show that t IRDS t. It obviously follows from the definition. CI

6 .2  Lemma IRDS is transitive.

Proof : It i s  clear that if an ordering i s  transitive then its extension to multisets preserves this
property (*) (cf. [DM79]). Thus it is  sufficient to show that >EL is transitive:
r >ELs >ELt _ r >ELt .Weprovei tbyinduct ionon I r l+  I s l+  l t l .
Let be r = f(r1,...,rk), s = g(s1,...‚sm) and t=  h(t1,...,tn) with r e  decu(r'), s e decv(s') and
t e decw(t'). We have to consider four cases :
i) f l> g v g D h

"" f D h because l> is a partial ordering and r >EL s >EL t
"" r >EL t by definition of >EL

ii) f=g=h  A 1:(f)=mult A

[sub(decu(r’) , r) »EL sub(decv(s') , s) v sub(decv(s') , 5) »EL sub(decw(t') , t)]
"" sub(decu(r') , r) »EL sub(decw(t') , t)

by induction hypothesis (since (Vy € sub(decw(A') , A)) M < | A|  ) and (*)
** r >};L t by definition of >EL

iii) f = g = h A ':(D = mult A sub(decu(r') , r) = sub(decv(s') , s) = sub(decw(t') , t) A
dec(args(r)) »»EL dec(args(s)) »»EL dec(args(t))
"' - sub(decu(r‘) , r) = sub(decw(t') , t)

- dec(args(r)) »»EL dec(args(t))
by induction hypothesis (since (V7 € dec(args(A))) I'yl < I A l )  and (*)

"— r >EL t by definition of >EL
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iv) f =g =h A 't(t) *mult 1\ args(r) >IRDS,'t(f) args(s) >IRDS,'t(f) args(t) 1\ 

{r} »IRDS args(s) 1\ {s} »IRDS args(t)
 

'... - args(r) >IRDS,'t(f) args(t)
 

because >IRDS is equivalent with »»EL on decompositions, the lexicographical 

extension of an ordering is transitive if the ordering is, and by induction hypothesis 

since (Vy e dec(args(~») I y I < I~ I 

-	 {r} »IRDS args(t) 

because r >IRDS s (,... {r} »IRDS {sI »IRDS args(t», by induction hypothesis and 

(*). It remains to be shown that r >IRDS s. This is equivalent to 

dec({r}) »»EL dec({s}): dec({r}) ={d U {r} I de dec(args(r»} and dec({s}) = 
{du{s} I dedec(args(s»}. Since dec({r}) »»EL dec(args(s» (precondition), it 

remains to be shown that r >EL s which is also a precondition. 0 

6.3 Lemma IRDS has the subterm property. 

Proof: We have to prove that £ * u e O(t) implies t >IRDS tlu, Let u e O(t) and u * e. 
Then, t >RPOS tlu (see [KL80]). This fact implies that t >IRDS tlu because RPOS c IRDS 

(see 6.18 and 6.19). 0 

6.4 Lemma IRDS has the replacement property. 

Proof: The following has to be shown : 

(Vi e [l,nD S >IRDS S' '... t:= f(tl' ... ,tJe ~ s],... ,t )n

Note that t >IRDS t' iff dec({t} ) »»EL dec({t'} ).
 

dec({t}) = {d u {t} dE dec(args(tj», j e [1,n], j * i} u {du{t} d e dec( {s})} and
 

dec({t'}) = {du {t'} dedec(args(tj»,je [1,n], j * i} u {d u {t'} de dec({s'})}.
 

Therefore, we have to prove 

i)	 decu(t) 3 t >EL t' e decu(t') , Vu e Ot(t) \ {i.v Iv e Ot(s)} 

If this statement is valid the path-decompositions of {d u {t} Id e dec(args(t), j e [l,n], 

j * i} are greater than those of {d u {t'} Id e dec(args(tj», j e [l,n], j * i} 

ii) dec( {s}) »»EL dec( {s'}) : 

This requirement directly follows from the precondition that s >IRDS s'. 

The proof of i) is divided into two parts depending on the status of the leading function symbol f 

of t and t' : 
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iv) f = g = h A 1:(f) :|: mult A args(r) >IRDS,1:(r) args(s) >IRDS,1:(f) args(t) A

{r} »IRDS args(s) A {s} »IRDS args(t)
'“ - args(r) >IRDS,'I:(f) args(t)

because >IRDS is equivalent with »»EL on decompositions, the lexicographical
extension of an ordering is transitive if the ordering is, and by induction hypothesis
since (V7 e dec(args(A))) l'yl < IA I

" {T} »IRDS args(t)
because r >IRDS s ("-> {r} »IRDS {s} »IRDS args(t) ) , by induction hypothesis and
(*). It remains to be shown that r >IRDS s. This is equivalent to

dec({t}) »»EL dec({s}): dec([r}) = {du  {r} I de  dec(args(r))} and dec({s})=
[du  {s} | de  dec(args(s))}. Since dec({t}) »»EL dec(args(s)) (precondition), it
remains to be shown that r >EL 3 which is  also a precondition. EI

6 .  3 Lemma IRDS has the subterm property.

Proof: We have to prove that a :2: u e O(t) implies t >IRDS t/u. Let 11 € O(t) and u # 8.
Then, t >RPOS t/u (see [KL80]). This fact implies that t >IRDS t/u because RPOS C IRDS

(sec 6.18 and 6.19). CI

6 .4  Lemma IRDS has the replacement property.

Proof : The following has to be shown :
(Vi € [1,n]) s >IRDS s' "'" t := f(t1,...,ti[t-:e— s],...,tn) >IRDS f(t1,...‚ti[£<—— s'],...,tn) =: t'.
Note that t >IRDS tl iff dec([t]) »»EL dec({t']).
dec({t}) = {dU[t}  | dedec(args(tj)),j€ [1,n], j  $ i} U [dU{t }  | dedec(['s})} and
dec({t']) = {du  {t'} l dedec(args( t j ) ) , j€  [1 ,n ] , j  a: i} u {du  {t'} | de  dec({s'])}.

Therefore, we have to prove
i) decu(t) 3 t >EL € € decu(t') , Vue  Ot(t) \{i .v  l v  € Ot(s)]

If this statement is valid the path-decompositions of {d U [ t} | d € dec(args(tj)), j € [1,n],
j t i} are greater than those of [ d  U [t'] | de  dec(args(tj)), j e [1,n], j =t: i }

ii) dec({s}) »»EL dec({s'}) :
This requirement directly follows from the precondition that s >IRDS s‘.

The proof of i) is divided into two parts depending on the status of the leading function symbol f

of t and t' :
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- 't(i) =mult : 

Obviously, sub(decu(t), t) =sub(decu(t') ,t') if u is restricted to the set of the precondition. 

Therefore, the question is whether dec(args(t» »»EL dec(args(t'» is true which is equivalent 

to the statement that dec( {s}) »»EL dec( {s'}) (which is proved in ii) since the remaining 

arguments of t and t' are identical. 

- 't(i) = left 

'.- We must show that a) args(t) >IRDS;t(f) args(t') and P) {t} »IRDS args(t'): 

ex) is true because args(t) 3 tj = tj E args(t'), for all j < i and args(t) 3 ti =s >IRDS S' 

= ti E args(t') which is the precondition. 

~) is valid since args(t) »IRDS args(t') (cf. previous case), {t} »IRDS args(t) (subterm 

property of the IRDS, see 6.3), and the IRDS is transitive (6.2). 

- 't(i) =right: 

analogous with the previous case o 

6.5 Lemma IRDS is stable w.r.t. substitutions. 

Proof (cf. [RJ8I]) : We have to show that s >IRDS t implies a(s) >IRDS a(t), for any
 

substitution a. Strictly speaking, we must prove: 0tv E Ot(t» (3u E Ot(s» decu(s) »EL decv(t) '.


('tv' E Ot(a(t») (3u' E Ot(a(s») decu,(a(s» »EL decv·(a(t».
 

Let i E Ot(a(t», then (3i,v E IN*) v' = v.i " v E Ot(t)
 

Since s >IRDS t there exists u E Ot(s) such that decu(s) »EL decvCt). To prove that
 

(3'1Jf E Ot(a(s») decljI(a(s» »EL decv.(a(t» we have to distinguish two cases:
 

i) tlv Et X ".. v' = v 

- slu Et X
 

' u E Ot(a(s»
 

' decu(a(s» »EL decv(a(t»
 

since decu(s) »EL decv(t)
 

'... 'IJf=u 

- slu=xEX
 

'.- ('tw E Ot(a(x») decu.w(a(s» »EL decv(a(t»
 

because decu(s) »EL decv(t)
 

'... 'IJf =u.w' with w' E Ot(a(x»
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- f(f) = mul t :
Obviously, sub(decu(t) , t) = sub(decu(t‘) , t‘) if u i s  restricted to the set of the precondition.

Therefore, the question is whether dec(args(t)) »»EL dec(args(t')) is true which is equivalent
to the statement that dec({s}) »»EL dec({s'}) (which is proved in ii) since the remaining
arguments of t and t' are identical.

— ”5(1) = left
"— We must show that a) args(t) >IRDS;r(f) args(t') and ß )  {t} »IRDS args(t'):

Ct) is true because args(t) at]. = t j e  args(t'), for all j< i  and args(t) ati-= s >IRDS s '
= ti e args(t') which is the precondition.
B) is valid since args(t) »IRDS args(t') (cf. previous case), {I} »IRDS args(t) (subterm
property of the IRDS, see 6.3), and the IRDS is transitive (6.2).

- 126) = right :
analogous with the previous case CI

6 .5  Lemma IRDS is  stable w.r.t. substitutions.

Proof (cf. [R181]) : We have to show that s >IRDS t implies 6(s) >IRDS G(t)‚ for any
substitution 0'. Strictly speaking, we must prove : (VV e Ot(t)) (Elu e Ot(s)) decu(s) »EL decv(t) ""
(VV‘ 6 Ot(o(t))) (ilu' e Ot(o(s))) decu.(0'(s)) »EL decv.(o(t)).
Let v"e oma», then (am e N“) v' =v.i A v e om)
Since s >IRDS t there exists u e Ot(s) such that decu(s) »EL decv(t). To prove that
(Ely: e Ot(o(s))) decw(0'(s)) »EL decv.(o(t)) we have to distinguish two cases:

i) t / v¢x  "— v '=v

- s/u € x
"— u e Ot(o(s))
"" decu(o(s)) »EL decv(o(t))

since decu(s) »EL decv(t)
.... “I:—_u

— s/u = x e X
"" (VW 6 Ot(o(x))) decu_w(o(s)) »EL decv(o(t))

because decu(s) »EL decv (t)
L "" w = u.w' with W‘ e Ot(o(x))
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ii) tlv =x eX'''' slu =x (otherwise decu(s) ~EL decv<t» 

... v' =v.i 

'... decu.i(a(s» »EL decv./a(t» 

because decu(s) »EL decv(t) and a(s)/u =a(t)/v =a(x) 

'.. '¥ = u.i a 

6.6	 Lemma A partial and monotonous (w.r.t. the precedence) ordering> is well-founded 

if there exists a well-founded ordering ~ which contains> w.r.t. total precedences. 

Proof: Assume that p is a partial precedence and > is not well-founded 

'.. 3 t1 >(p) ~ >(p) ... 

'... 3 t1 >(q) ~ >(q) . . . with pc: q and q is total 

because> is monotonous w.r.t. the precedence 

'... 3 t1 ~(q) ~ .(q) ... 

because > c: ~ w.r.t. total precedences 

~ to • is well-founded o 

6.7	 Lemma RPOS is monotonous w.r.t. the precedence. 

Proof: We show by induction on I s I + I t I that s >RPOS(q) t if s >RPOS(P) t and pc: q. 

The requirements i), ii) and iii) of the definition of the RPOS (on page 9) are fulfilled by the 

induction hypothesis and the fact that f ~ g (resp. f =g) e p implies f ~ g (resp. f =g) e q. The 

only crucial case is iv) : 

args(s) ~RPOS(P) {t} 

'.. - args(s) »RPOS(P) It} 

'.. args(s) »RPOS(q) {t} 

by induction hypothesis 

or 

- args(s) = {s'} A S' -(p) t 

'... s' -(q) t 

because f =g e p implies f =g e q 

'.. args(s) ~RPOS(q) {t} (*) 

Let s, t be s = f(sl' ...,sm) and t = g(tl'... ,t ) with f # g e p and h g e q (the other cases n

f ~ g, g ~ f e p are very easy to prove). The definition of the RPOS must be unequivocal and 

therefore, we have additionally to show that Is} »RPOS(q) args(t). 
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ii) t/v = x e x "" s/u = x (otherwise decu(s) $>EL decv(t))
"" v '  = v.i
'" decu_i(o(s)) »EL dec„_i(6(t))

because decu(s) »EL decv(t) and o(s)/u = o(t)/v = (f(x)
"" I}! = u.i Cl

6 .6  Lemma A partial and monotonous (w.r.t. the precedence) ordering > is well-founded
if there exists a well—founded ordering > which contains > w.r.t. total precedences.

Proof : Assume that p is a partial precedence and > is not well-founded
"" El t1 >(p) t2 >(p) . . .
.... 3 t1>(q) t2>(q) . . . with pe; q and q is total

because > is monotonous w.r.t. the precedence
"" 3 t1>(q) 1:2»(q) . . .

because > ; > w.r.t. total precedences
& to » is well—founded D

6 .7  Lemma RPOS is monotonous w.r.t. the precedence.

Proof :We  show by induction on | s |+ l t l  that s >RPOS(q) t if s >RPOS(p) t and p9  q.
The requirements i), ii) and iii) of the definition of the RPOS (on page 9)  are fulfilled by the
induction hypothesis and the fact that f p g (resp. f = g) e p implies f D g (resp. f = g) e q. The

only crucial case is iv) :

a1'35“) BRposÜ’) {t}
". " aIgS(S) »Rpos(P) { t}

"" args(s) »RPOS(q) [ t ]
by induction hypothesis

or

- a rgs ( s )={s ' }  A s '  ~(p) t
'“ S‘ ~(q) I

because f=  ge  p implies fr- ge  q

"" figs“) 22330361) {I} (*)

Let s , t  be s=f(sl,...,sm) and t=g(t1,...,tn) with f #ge  p and f :>q  (the other cases

f» g , gb f e  p are very easy to prove). The definition of the RPOS mustbe unequivocal and
therefore, we have additionally to show that [s} »RPOS(q) args(t).
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Assume that there exists a ti such that s )RPOS(q) ti . 

"... s )RPOS(q) t 
because the RPOS is transitive and possesses the subtenn property ([KL80J) 

"... args(s) ~RPOS(q) {t} 

G- to (*) o 

6.8 Lemma RDOS is monotonous w.r.t. the precedence. 

Proof: Since >RDOS is equivalent to »»LD on elementary decompositions and »»LD is the 

extension of >LD to multisets of multisets, it is sufficient to show that >LD is monotonous w.r.t. 

the precedence: s >LD(P) t "... s >LD(q) t if P ~ q. The proof consists of the 

induction on I s I+ I t I and of the case distinctions on the leading function symbols of s 

and t. Let s = f(sl' ...,sm)' t = g(tl' ... ,tn) and se decu(s'), t e decv(t'). 

i) h g E P 

- hg eq 

because p~ q 

"... S >LD(q) t 

ii) f= g E P A 't(f) = mult A 

""'f=geq A 't(f) = mult 

because p ~ q 

"...	 We have to show sub(decu(s'), s) »LD(q) sub(decv(t'), t) : This is valid because of the 

induction hypothesis (since (V'Y e sub(decljl(S), ,1)) I 'Y I< 1,1 I ) and because the 

extension of >LD to multisets preserves the required condition. 

ill) f = g e p A 't(f) = mult A sub(decu(s') , s) =(p) sub(decvCt'), t) A 

args(s) »RDOS(P) args(t) 

'... - f = g e q A 't(f) = mult A sub(decu(s') , s) =(q) sub(decvCt'), t) 

because p ~ q and sub(decu(s'), s) = sub(decv(t'), t) 

- args(s) »RDOS(q) args(t) 

because »RDOS is the extension of ~DOS to multisets and ~DOS is equivalent to 

»»LD and because of the induction hypothesis (since (V'Y e args(.1) I'Y I< 1.11 ) 

iv)f=gep A 't(t) * mult A args(s) >RDOS;t(f)(p) args(t) A {s} »ROOS(P) args(t) 

'... args(s) >RDOS;t(f)(q) args(t) A {s} »RDOS(q) args(t) 

with the help of the considerations of the previous cases 0 
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Assume that there exists a tit such that s 112130331) ti.

""' S 1RP0$© t
because the RPOS is transitive and possesses the subterm property ([KL80])

"" args(s) !Rposül) “ }
5 to (*) Cl

6 .8  Lemma RDOS is monotonous w.r.t. the precedence.

Proof : Since >RDOS is equivalent to »»LD on elementary decompositions and »»LD is the
extension of >LD to multisets of multisets, it is sufficient to show that >LD is  monotonous w.r.t.
the precedence:  s >LD(p) t M s >LD(q) t if p E q. The proof consists of the
induction on Is  | + | t l  and of the case distinctions on the leading function symbols of s
and t. Let s=f(sl,.. . ,sm), t=  g(t1,...,tn) and se  decu(s'), t e  decv(t').

i) f bg  Ep
.... f bgeq

because p sq
"* s >LD(q) t

ii) f = g e p A 1:(f) == mult A sub(decu(s') , s) >>LD(p) sub(decv(t') , t)
"— f=ge  q A 1:(f)=mult

because p E q
"* We have to show sub(decu(s') , s) >>LD(q) sub(decv(t') , t) : This is valid because of the

induction hypothesis (since (V7 6 sub(decw(A') , A)) | 7 |  < | A I ) and because the
extension of >LD to multisets preserves the required condition.

iii) f = g e p A 13(D = mult A sub(decu(s') , s) =(p) sub(decv(t') , t) A
args(s) »RDOS(p) argSÜ)

“> - f = g e q A 1(0 = mult A sub(decu(s') , s) =(q) sub(decv(t') , t)
because p 9 q and sub(decu(s') , s) = sub(decv(t') , t)

- args(s) >>RDos(q) args(t)

because »RDOS is the extension of >RDOS to multiscts and >RDOS is equivalent to
»»LD and because of the induction hypothesis (since (W € args(A)) M < I A!  )

_ args(s) >RDOS,T(f)(q) args(t) A {s} »RDOS(q) args(t)
With the help of the considerations of the previous cases Cl
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6.9 Lemma RPOS is stable w.r.t. substitutions. 

Proof: We have to prove that, for arbitrary terms s and t, s >RPOS t implies o(s) >RPOS o(t) 

for any substitution o. We show this statement inductively on I s I + I t I. Let s = f(sl' ...,sm) 

and t =g(tl' ... ,trJ. 

i) f ~ g 1\ {s} »RPOS args(t) 

,,.. {o(s)} »RPOS args(o(t» 

by induction hypothesis 

'. o(s) >RPOS o(t) 

because top(o(s» = f ~ g = top(o(t» 

ii) f = g 1\ 't(£) = mult 1\ args(s) )}RPOS args(t) 

,,.. args(o(s» »RPOS args(o(t» 

by induction hypothesis 

'. o(s) >RPOS o(t) 

because top(o(s» =top(o(t» =f 1\ 't(f) =umlt 

ill) f = g 1\ 't(£) *mult 1\ args(s) >RPOS,'t(t) args(t) 1\ {s} )}RPOS args(t) 

,,.. - args(o(s» >RPOS;t(t) args(o(t» 

by induction hypothesis and since s ..... t implies o(s)..... o(t) 

- toes)} )}RPOS args(cr(t» 

by induction hypothesis 

'. o(s) >RPOS cr(t) 
because top(cr(s» = top(cr(t» = f 1\ 't(£) *mult 

iv)args(s) ~RPOS (t}: 

- (3i e [I,m]) Si >RPOS t
 

,,.. (3i E [I,m]) O(si) >RPOS o(t)
 

by induction hypothesis
 

,,.. o(s) >RPOS o(t)
 

by definition of the RPOS
 

- (3i e [I,m]) Si =RPOS t 

'.. (3i e [I,m]) o(s) =RPOS o(t) 

because s =RPOS tiff S"'" t and S"'" t implies o(s)..... cr(t) 

,,.. o(s) >RPOS o(t) 

by definition of the RPOS o 
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6 .9  Lemma RPOS is stable w.r.t. substitutions.

Proof: We have to prove that, for arbitrary terms s and t, s >RPOS t implies 0(3) >RPOS O'(t)
for any substitution o: We show this statement inductively on l s  I + I t  |. Let s = f(s1,...,sm)
and t = g(t1,...,tn).

i) f > g A [S} »RPOS args(t)

"" {G(S)} »RPOS axgs(o(t))
by induction hypothesis

"— o(s) >RPOS o(t)
because top(o(s)) = f b g = t0p(0'(t))

ii) f = g A 1:0?) = mult A args(s) >>RPOS args(t)
"" args(o(s)) »RPOS args(0'(t))

by induction hypothesis
“- o(s) >RPOS o(t)

because top(o(s)) =top(0'(t)) = f A 1:(f) =rnu1t

iii) f = g A im 1: mult A args(s) >RPOS,'c(t) args(t) A {s} ”RPOS args(t)

"" " args(o'(s)) >RPOS,t(t) args(6(t))
by induction hypothesis and since s ~ t implies 6(5) ~ 0'(t)

- {6(8)} »RPOS args(6(t))
by induction hypothesis

""-> 0'(S) >RPOS o(t)
because top(0(s)) = top(0(t)) = f A Id) :|: mult

iv) args(s) RRPOS {t} :

--> (Elie [1,m]) C(31) >RPOS 0'(t)
by induction hypothesis

„. O'(S) >”,OS o(t)
by definition of the RPOS

"" (H ie  [19111]) C(51) =RPOS 0“)

because s =RPOS t iff s „ t and s “' t implies O'(S) ~ 0'(t)

"— 6(S) >RPOS o(t)

by definition of the RPOS El
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6.10 Lemma KBOS is irreflexive. 

Proof: We must show that t ~KBOS t. This is easily proved by induction on the size of t. 0 

6.11 Lemma KBOS is transitive. 

Proof: We have to prove that r >KBOS s >KBOS t '. r >KBOS t. It is clear that 

(Vx EX) #/r) ~ #/t) if ('\Ix EX) #x(r) ~ #x(s) ~ #x(t) because> on IN is a partial ordering. 

We have to consider three cases which will be proved by induction on Irl + Isl + ItI. 

i) <per) > <pes) v <pes) > <pet) 

".. <per) > <pet) 

because > is a partial ordering 

".. r >KBOS t 

ii) <per) =<pes) =<pet) /\ [toper) ~ top(s) v top(s) ~ top(t)] 

'.... <per) = <pet) /\ toper) ~ top(t) 

because ~ is a partial ordering 

".. r >KBOS t 

iii) <per) = <pes) = <pet) /\ toper) = top(s) = top(t): 

Let be r = f(rl' ...,rn), s = f(sl' ...,sn) and t = f(tl' ... ,t ).n

- 1:(f) = left
 

'. (3i, j) (Vk < i) (VI < j) rk '" sk /\ SI'" tl /\ ri >KBOS Si /\ 

a.) i *j
 

'... ri >KBOS Si =KBOS ti v rj =KBOS Sj >KBOS tj
 

'... ri >KBOS ti v rj >KBOS tj
 
because si '" ti (resp. rj '" s)
 

'... r >KBOS t
 

by definition of the KBOS
 

~) i =j 

'. f i >KBOS si >KBOS ti
 

'. f i >KBOS t i
 

by induction hypothesis
 

'... r >KBOS t
 

by definition of the KBOS
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6 .  10  Lemma KBOS is  irreflexive.

Proof : We must show that t }KBOS t. This is easily proved by induction on the size of t. CI

6 .11  Lemma KBOS is  transitive.

Proof: We have to prove that r >KBOS s >KBOS t "" r >KBOS t. It is clear that
(Vxe  X) #x(r) 2 #x(t) if (Vxe  x) #x(r) 2 #x(s) z #x(t) because > on IN is a partial ordering.
We have to consider three cases which will be proved by induction on Irl + Isl + Itl.

i)  tp(r) > (p(s) v <p(s) > (p(t)

"" <P(I‘) > (W)

because > is a partial ordering

"" r >KBOS t

ii) cp(r) = (p(s) = q>(t) A [t0p(r) » top(s) v top(s) [> top(t)]

"" “(P(1") = W) A t0P0“) > t0P(t)

because [> is a partial ordering

iii) (p(r) = q)(s) = (p(t) A t0p(r) = top(s) = top(t) :
Let be r = f(r1,...,rn) , s = f(sl,...,sn) and t = f(t1,...,tn).
- 1:(f) = left

«» (Eli, j) (Vk< i )  (V l<  j) r k~  sk A s1~tl  A ri >KBOS si A sj >KBOS t.

a) i=l= j

'“ ri >KBos Si =KBOS t ' V fj =KBos Sj >KBos tj

"" ri >KBos ti V rj >KB'OS tj
because si “' ti (resp. rj ~ sj)

by definition of the KBOS

ß) i= j

"" ri >KBOS Si >KBos  ti

"" r11 >KBOS ti

by induction hypothesis

by definition of the KBOS
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- 1:(0 = right: 

analogous with the case 1:(0 =left 

- 1:(0 = mult 

,,,. {r1' ,rn} »KBOS {sl' ,sn} »KBOS {tl'... ,tn} 

'... {rl' ,rn } »KBOS {tl' ,tn } 

by induction hypothesis and since the extension of an ordering to multisets is transitive 

(see [DM79]) 

'... r >KBOS t 

by definition of the KBOS o 

6.12 Lemma KEOS has the subterm property. 

Proof: We have to show that E * u E O(t) '... t >KBOS tlu. Let us consider a term t and an
 

occurrence u E OCt), top(t) =f and top(tlu) =g. It is clear that ('Vx EX) #x(t) ~ #xCtlu).
 

We must distinguish two cases which will be proved by induction on I t I:
 

i) <pet) > <p(t/u)
 

,,..	 t >KBOS tlu 

ii) <pCt) = <p(tlu) 

'... <p(t) =0 1\ f is a unary function symbol 

- f* g 
,,.. f ~ g 

(see 3.2 on page 21) 

'... t >KBOS tlu 
by definition of the KBOS 

- f= g: 

Let t =fCt'), tlu =fCt") 

'... t' > t"KBOS 

by induction hypothesis since t' (resp t") is a proper subterm of t (resp. t') 

'...	 t >KBOS tlu 
by definition of the KBOS 0 

6.13 Lemma KBOS has the replacement property. 

Proof: It is to show ('Vi E [l,n]) S >KBOS S' '... t:= f(tl' ... ,tJ£ t- s],...,tn) >KBOS 

f(tl' ... ,tJ£ t- S'],... ,t ) : f.n
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- f(f) = right:
analogous with the case 13(f) = left

- 'c(f) : mult
"" {r1‚...‚1'n} »KBOS {S l ’m'sn}  »KBOS {t1,...,tn}
"" {r1,...,rn} »KBOS {t1,...,tn}

by induction hypothesis and since the extension of an ordering to multisets is transitive
(see [DM79])

"" r >KBOS t

by definition of the KBOS D

6.12 Lemma KBOS has the subterm property.

Proof : We have to show that € =: u e 0(t) "" t >KBOS t/u. Let us  consider a term t and an

occurrence u e 0(t), top(t) = f and top(t/u) = g. It is clear that (Vx 6 X) #x(t) 2 #x(t/u).
We must distinguish two cases which will be proved by induction on | t | :
1) <P(t) > (PU/11)

"" t >KBOS t/u

m®©=MW)
"" ‘P(Ü = 0 A f is  a unary function symbol

-- f # g

"" f [> g
(see 3.2 on page 21)

"" t >KBOS t/u
by definition of the KBOS

- f = g :
Let t = f(t'), t/u = f(t")

"" t' >KBOS t"
by induction hypothesis since t' (resp t") is a proper subterm of t (resp. t')

"" t >KBos Vu
by definition of the KBOS D

6.13 Lemma KBOS has the replacement pr0perty.

Proolt i s  to show (Vie  [1 ,n])  s >KBOS s '  "" t :=  f(t1,...‚ti[£<—- SL,—„An) >KBOS

f(t1,...,ti[£ <— s'],...,tn) =:  t'.
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Clearly, (Vx EX) #x(s) :?: #x<s') ,,.. (Vx E X) #x(t) ~ #X<t'). 

We have to examine two cases: 

i)	 <pes) > <pes') 

,,.. <pet) > <pet') 

,,.. t >KBOS t' 

ii)	 <pes) = <pes') 

,.,. <pet) = <pet') 

,,..	 We have to show that args(t) >KBOS,'t(t) args(t') (because top(t) = top(t'»: 

Since the arguments of t and t' are equal except the ti's, the requirement above is fulfilled 

irrespective of the status of f. 0 

With the help of the following lemma we will prove that the KBOS is stable w.r.t. substitutions. 

6.14 Lemma Let be s, t Er and (Vx EX) #x(s) ~ #x(t). 

Then, (Vcr) i) (Vx EX) #x(cr(s» ~ #x<cr(t»
 

ii) <pes) > <pet) ".. <p(cr(s» > <p(cr(t»
 

iii) <pes) = <pet) ".. <p(cr(s» ~ <p(cr(t»
 

Proof: 

i) Let x E X. we have to show that #x(cr(s» - #x(cr(t» ~ O. 

Note that #x(cr(s» = L #yCs) * #x(cr(y» 
yex 

'...	 #x(cr(s» - #x(cr(t» = L #/s) * #x(cr(y» - L #/t) * #x(cr(y» = 
yex	 yex 

= L [#/s) - #yCt)] * #x(cr(y» ~ 0 
yex 

which follows from the precondition (Vx EX) #x(s) ~ #X<t) 

ii) We must prove that <p(cr(s» - <p(cr(t» > 0: 

Note that <p(cr(s» = <pes) + L #x(s) * [<p(cr(x» - <Po]' 
xeX 

,,.. <p(cr(s» - <p(cr(t» = <pes) + L #x(s) * [<p(cr(x» - <Po] - <pet) - L #x(t) * [<p(cr(x» - <Po] = 
xeX	 xeX 

= <pes) - <pet) + L [<p(cr(x» - <Po] * [#x(s) - #it)] 
xeX 

This expression is greater than zero because <pes) - <pet) > 0 (precondition), <p(cr(x» - <Po ~ 0 

since <p(x) = <Po' #x(s) - #it) :?: 0 (precondition). 
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Clearly, (Vxe  x) #x(s) 2 #x(s') "* (Vxe  X) #x(t) 2 #x(t').

We have to examine two cases :

i )  <P(S) > <P(S')
“" (PG) > <P(t')
"'" t>KBOS "

ii) (MS) = <P(S')
“" W) = <P(t')
"" We have to show that args(t) >KBOS,’C(f) args(t') (because top(t) = top(t') ) :

Since the arguments o f t  and t' are equal except the ti's, the requirement above is fulfilled
irrespective of the status of f. Ü

With the help of the following lemma we will prove that the KBOS is stable w.r.t. substitutions.

6.14 Lemma Letbe s, t e  1" and (Vxe  X) #x(s) 2 #x(t).
Then, (V0) i) (Vxe  ‚X) #x(o(s)) 2 #x(o(t))

ii) (13(8) > <P(t) "" <P(6(S)) > <P(6(t))
'iii)<P(S) = (PG) "" <P(G(S)) 2 (985(0)

Proof:

i) Let xe  x, we have to show that #x(0'(s)) - #x(6(t)) 2 0.

Note that #x(0‘(s)) = Z #y(s) * #x(0'(y))
yex

"" #x(G(S)) - #x(6(t)) = Z #y(S) * #x(6(y)) - Z #y(t) * #x(6(y)) =
yex yex

= z [#y<s> - #‚ml * #x(c(y)) 2 o
yex

which follows from the precondition (Vx e x) #x(s) 2 #x(t)

ii) We must prove that (p(o(s)) - (p(o(t)) > 0 :

Notethat <P(6(S)) = <p(S) + Z #x(S) * [<P(G(X))- (Pol.

xex

"" <P(0(S)) - €P(<5(t)) = <P(S) + 2 #X(S) * [<P(0(X)) '- (Pol - <P(t) - Z #x(t) * [<P(6(X)) - %] =
xex xex

:. <p(s) - q)(t) + Z [(p(o(x)) - (pol * [#X(S) ' #X(t)]
xex

This expression is  greater than zero because <p(s) - (p(t) > O (precondition), (p(0'(x)) — (Po 2 O
since (p(x) = (p0, #x(s) - #x(t) 2 0 (precondition).
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ill) This fact is proved the same way as before.	 o 

6.15	 Lemma KBOS is stable w.r.t. substitutions. 

Proof: We have to show that (Va) s >KBOS t '... a(s) >KBOS aCt). This will be accomplished 

by induction on Isl + ItI. Let be s = f(sl' ... ,sm) and t = g(tl' ... ,t ). Note that the variable n 

condition is fulfilled: #ia(s» ~ #x(a(t» (see 6.14 i). 

i)	 <pes) > <pet) 

'... <p(a(s» > <p(a(t» (cf. 6.14 ii) 

- a(s) >KBOS aCt) 

ii)	 <pes) = <pet) 1\ h g 

"... <p(a(s» ~ <p(a(t» 1\ top(a(s» = f ~ g = top(a(t» (cf. 6.14 iii) 

- a(s) >KBOS aCt) 

iii) <pes) = <pet) 1\ f = g 1\ 't(f) = mult 

'... {sl' ... ,sm} »KBOS {tl' ... ,tn} 

,- {a(sl),···,a(sm)} »KBOS {a(t1),···,a(t )}n

by induction hypothesis and the fact that s =KBOS t '... a(s) =KBOS aCt)
 

"... a(s) >KBOS aCt)
 

iv) <pes) = <pet) 1\ f = g 1\ 't(f) = left 

,- (3i) (V'j < i) Sj =KBOS tj 1\ Si >KBOS ti 

'... (3i) (V'j < i) a(sj) =KBOS a(tj) 1\ a(si) >KBOS a(ti) 

by induction hypothesis and the fact that S =KBOS t ,- a(s) =KBOS aCt)
 

"... a(s) >KBOS aCt)
 

v)	 <pes) = <pet) 1\ f = g 1\ 't(±) = right: 

This can be proved with the help of the considerations of the previous case. o 

6.16	 Lemma Let ~ be total: 

i) RPO c RPOS 

ii) PSD c PSDS 

iii) RDO c RDOS 

iv) IRD c IRDS 

v) KBO c KBOS 
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iii) This fact is proved the same way as before. Ü

6 .15  Lemma KBOS is stable w.r.t. substitutions.

Proof: We have to show that (V6) 3 >KBOS t .... 6(s) >KBOS 0'(t). This will be accomplished
by induction on Isl + ltl. Let be s = f(sl,...,sm) and t = g(t1,...,tn). Note that the variable
condition is fulfilled: #x(0'(s)) 2 #x(0'(t)) (see 6.14 i).

1) (MS) > (Mt)

"" <P(6(s)) > (p(6(t)) (cf. 6.14 ii)
_ o(s) >KBOS o(t)

ii) tp<s>=<ptt> A ng
«» <p(0'(s)) z (p(o(t)) A top(o(s)) =f v g=top(6(t)) @ 6-14 iii)
«» 6(s) >KBOS o(t)

iii) <p(s) = (p(t) A f = g A td) = mult
""" {Sl,...,Sm} »KBOS {t1,...,tn}

'" {6(31),...,o(sm)} »KBOS {6(t1),...,0'(tn)}
by induction hypothesis and the fact that s =KBOS t "" o(s) =KBOS 6(t)

"* o(s) >KBOS o(t)

iv) (p(s) = (p(t) A f = g A 1:(f) = left

.... (3i) (Vj < i) o(sj) =KBOS o(tj) A o(si) >KBOS (;(ti)
by induction hypothesis and the fact that s =KBOS t "" (!(s) ==KBOS 0'(t)

"" 0(5) >KBOS O'(t)

v) (p(s) = (p(t) A f = g A 1(0 = right :

This can be proved with the help of the considerations of the previous case. CI

6.16 Lemma Let » be total:
i) RPO : RPOS
ii) PSD c PSDS
iii) RDO c: RDOS
iv)IRD c IRDS
v) KBO c: KBOS
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Proof: - (V<ord> E {RPO, PSD, RDO, IRD, KBOn <ord> =- <ord>.S: 

trivial, according to the definition of <ord>.S relative to <ord> 

_ (V'<ord> E {RPO, PSD, RDO, IRD}) <ord> * <ord>.S: ® 

o 
- KBO * KBOS: @ 

6.17	 Lemma Let ~ be total:
 

i) RPO c PSD
 

ii) PSO = PSD
 

ill) PSD c lRD
 

iv) IRD = KNS
 

v) IRD ~ RDO
 

vi) RDO ~ RPO
 

PSO: [Ru8?]Proof: i)	 RPO c:
 
RPO * PSO : @
 

ii) PSO = PSD : [St88]
 

in) PSD c: IRD : [St88]
 

PSD * IRD : <D
 

iv) IRD = KNS:	 [Ru8?] 
trivial, according to the definition of the IRD (cf. 2.12 on page 14)v) IRD 2 RDO:
 

IRD * RDO: ®
 

vi) RDO 2 RPO: [RJ81]
 
0RDO* RPO: <D 

6.18	 Lemma Let ~ be total: RPOS c RDDS. 

Proof: We have to show that s >RPOS t '... S >RDOS t. The proof is performed by using
 

induction on I s I + I t I. Let s, t be s =f(sl, ...,srn> and t = g(tl'...,tn)·
 

i) f~ g " Is} »RPOS {tl'... ,tn }
 

".. S >RDOS ti' for all i E [I,n]
 
by induction hypothesis
 

".. dec({s}) »»LD dec({tJ), for all i E [l,n]
 

by defmition of the RDDS
 

Note that dec({ t}) ::: {d U {t} Id E dec({tin, i E [l,n]}. 

‘6 Proofs 
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Proof: - (V<ord> 6 {RPG ‚PSD ,RDO ‚IRD ,KBO})  <ord> _t_=_ <ord>.S :

trivial, according to the definition of <ord>.S relative to <01d>

- (V<ord> € {RPO , PSD , RDO , IRD}) <ord> # <ord>.S : ©

-KBO¢KBOS:® C!

6.17 Lemma Let > be total:

i) RPO = PSO

ii) PSO = PSD

iii) PSD = IRD

iv) IRD = KNS

v) IRD = RDO

vi) RDO 3 RPG

Proof : i) RPO E PSO : [Ru87]

RPO :: PSO : @

ii) PSO = PSD:  [St88]

iii) PSD <.=. IRD : [St88]

PSD # IRD : @

iv) IRD = KNS:  [Ru87]

v) IRD ;? RDO: trivial, according to the definition of the IRD (cf. 2.12 on page 14)

IRD :|: RDO: ©
vi) RDO a RPO:  [RJ81]

RDO # RPO:  © D

6.18 Lemma Let » be total :  RPOS = RDOS.

Proof : We have to show that s >RPOS t “> s >RDOS t. The proof is  performed by using

induction on | s |+  I t I. Let s ‚ t  be s=f(sl,...,sm) and t=  g(t1‚...‚tn).

i) f b  g A {s}  »RPOS {t1‚...‚tn}

"* s >RDOS ti, for all i e  [1,n]

by induction hypothesis

"=> dec({s}) »»LD dec({ti}), for all i e  [1,n]

by definition of the RDOS

Note that dec([t}) = {d U {t} l de  dec({ti}), i e  [1,n]}.
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,,..	 dec({s}) »»LD dec({t}) 

because top(s) =f ~ g =top(t) and there does not exist a subterm of t equivalent to s 

(otherwise s would not be greater than all the ti's). 

,,..	 s >RDOS t
 

by defmition of the RDOS
 

ii) g ~ f /\ {sl'... ,sm} ~RPOS it} 

'... (3i E [I,m]) si ~RDOS t 

by induction hypothesis 

'... (3i E [I,m]) dec({si}) »»LD deceit}) 

by defmition of the RDOS 

,- dec({s}) »»LD dec({t}) 

because (Vu E Ot(si» decu(s) c deci.u(s) 

- s >RDOS t 
by defmition of the RDOS 

ill) f = g /\ 't(f) = mult /\ {sl'...,sn} »RPOS {tl'...,tn} 

,,~ {sl'...,sn} »RDOS {tl'...,tn} 

by induction hypothesis 

,,.. (Vt)(3si) si ~RDOS tj A {Sl'... ,Sn} * {tl' ... ,tn} 

by definition of multiset orderings 

- (V' tj )(3si) dec({sJ) »»LD dec( (tj }) (*) 

by definition of the RDOS 

Note that dec({s}) = {du{s}ldEdec({si}),iE[I,n]} and
 

deceIt}) = {d u It} I dE dec({ti}), iE [I,n]}.
 

,,.. We have to show that (Vv E Ot(t» (3u E Ot(s» decu(s) 3 s >LD t E decy(t)
 

since (*) holds
 

,,~	 We have to prove that 

sub(decu(s) , s) »LD sub(decy(t), t) v [sub(decuCs) , s) =LD sub(decv(t), t) 1\ 

args(s) »RDOS args(t)] (by definition of >LD) : 

This can easily be shown with (*) and the fact that 

args(s) = {sl'... ,sn} »RDOS {tl' ... ,tn} = args (t). 

iv) f = g /\ 't(f) :I: mult /\ args(s) >RPOS;t(f) args(t) /\ {s} »RPOS args(t) 

- - args(s) >RDOS,'t(f) args(t) 

by induction hypothesis and s =RPOS tiff s - tiff S =RDOS t 

- is} »RDOS args(t) 

by induction hypothesis 
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"" dec({s})  »»LD dec({t})

because top(s) = f :> g = top(t) and there does not exist a subterm of t equivalent to 5
(otherwise 3 would not be greater than all the ti's).

by definition of the RDOS

ii) gb f  A [31,...,sm} aRPOS {t}
_ (Elie [1,m]) si —>-'RDOS t

by induction hypothesis
'" (Elie [1‚m]) dec ({s i} )  am deC({ t} )

by definition of the RDOS
"" dec({s}) »»LD dec({t})

because (V u € Ot(si)) decu(si) = deci_u(s)

by definition of the RDOS

i i i)f= g A 1(0 =mu1t A [51,...,sn} »RPOS {t1,...,tn}
"" {Sl,...‚sn] »RDOS {t1,...,tn}

by induction hypothesis
.. (t)(38i)si Znoos tj A {s1,...,sn} * {t1,...,tn}

by definition of multiset orderings

"'" (t)(381) deC( [S i} )  2’2n dec({tj}) (*)
by definition of the RDOS

Note that dec([s}) {d U {s} Ide  dec({si}), i e  [1,n]} and
dec([t])  {d  u {t} l de  dec({ti]), i e  [1,n]}.

"" We have to show that (VV € Ot(t)) (Eu 6 Ot(s)) decu(s) 3 s >LD t E decv(t)
since (*) holds

"" We have to prove that
sub(decu(s) , s) »LD sub(decv(t) , t) v [sub(decu(s) , s) =LD sub(decv(t) , t) A
args(s) »RDOS args(t)] (by definition of >LD):
This can easily be shown with (*) and the fact that

args(s) = {sl,...,sn} >>RDOS {t1,...,tn} = args (t).

iv) f = g A t(f) # mult A args(s) >RPos;r(f) args(t) A {s} >>Rpos args(t)
_ - args(s) >RDOS,t(t) args(t)

by induction hypothesis and s =RPOS t iff s * t iff s =RDOS t
- {s} »RDOS args(t)

by induction hypothesis
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"... s >RDOS t 
by defmition of the RDOS 

The RDOS and the RPOS are not equivalent : The termination of the rule <D of the counter

examples 6.27 (on page 52) can be proved with the RDOS but cannot be proved with the 

RPOS. 

6.19 Lemma Let ~ be total: RDOS c IRDS. 

Proof: It is sufficient to show that s >LD t implies s >EL t because >RDOS (resp. >IRDS) is 

equivalent to )})}LD (resp. )})}EL) on elementary decompositions. Therefore, let sand t be 

s = f(sl' ...,sm) and t = g(tl' ... ,tn). Furthermore, s E decu(s') and t E decv(t'). The proof 

will be performed by using induction on I s I + 1t I. 

i) h g 

"... S >ELt 

by definition of >EL 

ii) f = g /\ 't(f) = mult /\ sub(decu(s') , s) )}LD sub(decv(t') , t) 

- sub(decu(s'), s) )}EL sub(dec/t') , t) 

by induction hypothesis since (Vy E sub(dec\jf(~')' M) 1Y1< 1.11 

'.... s >EL t 

by definition of >EL 

ill) f= g /\ t(f) = mult /\ sub(decu(s'), s) =LD sub(decv(t') , t) args(s) )}ROOS args(t) 

'.... - sub(decu<s') , s) ~L sub(dec/t') , t) 

because s =LD tiff s..., tiff S =EL t 

- args(s) )}IRDS args(t) 

by induction hypothesis and the fact that >IRDS is equivalent to )})}EL on elementary 

decompositions 

'.... (Vj E [I,n]) (3i E [I,m]) si ~IRDS tj A args(s) =I: args(t) 

by definition of multiset orderings
 

'.... (Vj E [I,n]) (3i E [I,m]) dec({si}) )}»EL dec({t))
 

by definition of the IRDS
 

'.... dec(args(s)) )}»EL dec(args(t))
 

'.... s >EL t
 

by definition of >EL
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"" S >RDos t
by definition of the RDOS

The RDOS and the RPOS are not equivalent : The termination of the rule @ of the counter-
examples 6.27 (on page 52) can be proved with the RDOS but cannot be proved with the
RPOS. EI

6 .19  Lemma Let t he  to ta l :  RDOS = IRDS.

Proof : It is sufficient to show that s >LDt implies s >ELt because >RDOS (resp. >IRDS) is
equivalent to »»LD (resp. »»EL) on elementary decompositions. Therefore, let s and t be
s=f(s1,...,sm) and t=  g(t1‚...‚tn). Furthermore, s e decu(s') and t e decv(t'). The proof
will beperformed by using induction on Is | + | t l.

i) f b g
"» s >EL t

by definition of >EL

ii) f = g A 1(0 = mult A sub(decu(s') , s) »LD sub(dec„(t‘) , t)
"" sub(decu(s') , 5) »EL sub(decv(t') , t)

by induction hypothesis since (V7 6 sub(decw(A') , A)) I’yl < IAI
.... s >EL t

by definition of >EL

iii) f = g A t(f) = mult A sub(decu(s') , s) =LD sub(decv(t') , t) A args(s) >>RDOS args(t)
"* - sub(decu(s') , s) =EL sub(decv(t') , t)

because 5 =LD t iff s ~ t iff s =EL t

- args(s) »IRDS args(t)
by induction hypothesis and the fact that >IRDS is equivalent to »»BL on elementary
decompositions
"" (Vje [ l ,n])  (Elie [1,m]) s].l ZIRDS tj A args(s) # args(t)

by definition of multiset orderings

"" (Vj€[1‚n]) (3i€[1‚m]) deC({si})  1’15]. deC({t j})

by definition of the IRDS
_ dec(args(s)) »»EL dec(args(t))

"" s >EL t
by definition of >EL



6 Proofs	 46 

iv) f = g /\ 't(f) = left /\ args(s) >RDOS,left args(t) /\ {s} »ROOS args(t) 

'. - (3ie [l,n]) (V'j <i) Sj =RDOS tj /\ dec({s) )}»LD dec({t) 

'... (3i e [l,n]) (V'j < i) Sj =mDS tj /\ dec({si}) »»EL dec({tJ) 

because s =RDOS t iff s - tiff S =mDS t and by induction hypothesis 

'... (3i e [l,n]) (V'j < i) Sj =mDS tj /\ si >IRDS ti 
by definition of the IRDS 

'. args(s) >IRDS,left args(t) 

- {s} »IRDS args(t) 

since >IRDS (resp. >RDOS) is equivalent to »»EL (resp. »»LD) on elementary 

decompositions and by induction hypothesis 

'...	 s >EL t
 

by definition of >EL
 

v) f = g /\ 't(f) = right /\ args(s) >ROOS,right args(t) /\ {s} »ROOS args(t): 

analogous with iv) 

IRDS * RDOS: The termination of the rule ® in 6.27 (on page 52) can be proved with the 

IRDS but not with the RDOS. 0 

With the help of the following lemma (the idea originates from [KNS85]) we will prove that the 

IRDS and the KNSS are equivalent. 

6.20	 Lemma Let be p, q and r (parts of) paths. 

Then, p >LK q iff p.r >LK q.r . 

Proof: Let s be a term. 

- p >LK q '... p.r >LK q.r: 

We show that p >LK q "... p.[s] >LK q.[s]. This is true because p.[s] 3 s >LT se q.[s] : 

i)	 't(top(s» = mult 
'....	 sub(p.[s] , s) = sub(q.[s] , s) = [ ] /\
 

path(args(s e p.[s]) = path(args(s e q.[s]) /\
 

pt := sup(p.[s] , s) sup(q.[s] , s) =: q'
>LK
 
because p'= p , q'= q and p >LK q
 

ii) 't(top(s» *mult 

'...	 args(s e p.[s]) = args(s e q.[s]) /\
 

p' := sup(p.[s] , s) >LK sup(q.[s], s) =: q'
 

because p'= p , q'= q and p >LK q
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iv) f = g A “cm = left A args(s) >RDOS,left args(t) A {s} >>RDOS args(t)

"'" - (Sie [1,n]) (Vj < i )  sj =RDOS tj A dec({si}) »»LD dec({ti})
"" (Hie [1,n]) (Vj < i )  sj =IRDS tj A dec({si}) »»EL dec({ti])

because s =RDOS t iff s ‘“ t iff s =IRDS t and by induction hypothesis
"* (Hie  [1,n]) (Vj < i )  sj =IRDS tj A Si  >1”)S t-1

by definition of the IRDS

"" arg 5(3) >IRDS,left 3133“)
— {S} ”IRDS args(t)

since >IRDS (resp. >RDOS) i s  equivalent to »»BL (resp. »»LD) on elementary

decompositions and by induction hypothesis
_ s >EL t

by definition of >EL

V) f = g A 't(f) =right A args(s) >RDos,right args(t) A {s} »RDOS args(t):
analogous with iv)

IRDS =3: RDOS : The termination of the rule © in 6.27 (on page 52) can be proved with the

IRDS but not with the RDOS. Ü

With the help of the following lemma (the idea originates from [KNS 85]) we will prove that the

IRDS and the KNSS are equivalent.

6 .20  Lemma Let be p ,q  and r (parts of) paths.
Then, p >LK q iff p.r >LK q.r.

Proof : Let s be a term.

We show that p >LK q ..... p.[s] >LK q.[s]. This is true because p.[s] 3 s >LT s & q.[s] :

i) 'c(top(s)) = mult

"" sub(P—[S] , S)  sub (Q- [S ] ‚S )= [ ]

path(args(s e p.[s])) path(args(s € q.[s])) A

p' := sump-[s] , 5) >u< sap(q.[s]  , s) == q'
because p'= p , q '=q and p >„( q

>

ii) 'E(t0p(s)) a: mult
"" args(s e p.[s]) = args(s e q . [s])  A

p’ == sum—[s]  , s) >u< sup(q.[s] , 90 == (1'

because p '=p , q'=q and p >LK q
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- p.r >LK q.r '.... 

Analogous with the if-part we prove that p.[s] >LK q.[s] implies p >LK q, i.e. 

(\ft' E q) (3s' E p) S' >LT t'. Proving this statement by contradiction we assume that 

(3t' E q) (J3s' E p) S' >LT t' . 

".. p.[s] 3 S >LT t' E q 

because p.[s] >LK q.[s] and therefore, p.[s] >LK q 

'. p.[s] 3 S >LT SE q.[s] (*) 

because (lls' E p) S' >LT SE q.[s], otherwise s' >LT t' E q since s' >LT s >LT t' 

and >LT is transitive (>LT is transitive since ~'>LK and >KNSS are transitive) 

i) 't(top(s» = mult 

".. sub(p.[s], s) = sub(q.[s] , s) =[] /\ 

path(args(s E p.[s]) = path(args(s E q.[s]) /\ 

sup(p.[s] ,s) >LK sup(q.[s] , s) 

because (*) holds 

'.... P >LK q 

because sup(p.[s], s) =p and sup(q.[s], s) =q 

~ to the assumption 

ii) 't(top(s» *mult
 

".. args(s E p.[s]) = args(s E q.[s]) /\
 

sup(p.[s] , s) sup(q.[s] , s)
>LK 

because (*) holds 

".. P >LK q 

analogous with i) o 

6.21 Lemma IRDS = KNSS. 

Proof: The proof is divided into two parts. In the first one, we will give an alternative definition of 

the KNSS denoted by KNSS*, using the previous lemma. Then, we will show the equivalence of 

the IRDS and the KNSS*. Like Rusinowitch (cf. [Ru87]), we are able to make the check 

'sup(p , s) >LK sup(q, t)' in ii) and iii) of definition 2.5 (on page 11) redundant by requiring 

that p and q have no common suffIx. Thus, we need the denotation e of removing equivalent 

suffixes. e is recursively defined as follows: p.[s] e q.[t] = p e q if s - t, and 

p.[s] e q.[t] = p.[s] otherwise. The lemma 6.20 now leads to another (but equivalent to the 

original) definition of the KNSS : 
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— p.r >LK q.r ..... p >LK q :

Analogous with the if-part we prove that p.[s] >LK q.[s] implies p >LK q, i.e.
(Vt' E q) (35’ e p) s '  >LT t ' .  Proving this statement by contradiction we assume that

(Elt'e q) (Bs‘ € p) s‘ >LT t ' .

"* p.[s] 3 s >LT t’e q
because p.[s]  >LK q.[s] and therefore, p.[s]  >LK q

"* p.[s] 3 s >LT se  q.[s] (*)
because (Es‘e p)  s'  >LT se  q.[s], otherwise s‘ >LT t ‘e  q since s '  >LT s >LT t'
and >LT is transitive (>LT is transitive since t>, >LK and >KNsS are transitive)

i)  T(top(s)) = mult

"" sub(p.[S] ‚ s )  sub(q—[s] , s) = [ ]
path(args(s e p.[s])) path(args(s & q.[s])) A
sup(p.[s] , s)  >LK sup(q.[s] , s)

because (*) holds

"'" P >LK q
because sup(p.[s] , s) = p and sup(q.[s] , s) = q

5 to the assumption

ii) 1:(top(s)) * mult
"" args(s e p.[s]) = args(s e q.[s]) A

sup(p.[s]  ... s) >u< sup(q—[s] ‚s)
because (*) holds

"" P >LK q
analogous with i) D

6 .21  Lemma IRDS = KNSS.

Proof : The proof is divided into two parts. In the first one, we will give an alternative definition of
the KNSS denoted by KNSS*, using the previous lemma. Then, we will show the equivalence of
the IRDS and the KNSS*. Like Rusinowitch (cf. [Ru87]), we are able to make the check
'sup(p , s) >LK sup(q , t)‘ in ii) and iii) of definition 2.5 (on page 11) redundant by requiring
that p and q have no common suffix. Thus, we need the denotation @ of removing equivalent
suffixes. ® is recursively defined as follows : p.[s] @ q.[t] = p @ q if s «« t, and
p.[s] @ q.[t] = p.[s] otherwise. The lemma 6.20 now leads to another (but equivalent to the
original) definition of the KNSS :
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s >KNSS* t 
iff path({s}) )}LQ path({t} ) 

with p >LQ q 

iff (Vt'eq8p)(3s'ep8q) s' > t'LU 
with P 8 q 3 s >LU t e q e p 

iff i) top(s) ~ top(t) 

ii) top(s) = top(t) 1\ 't(top(s» = mult 1\ 

- sub(p 8 q , s) >LQ sub(q8 P , t) 

- path(args(s» )}LQ path(args(t» 

ill) top(s) = top(t) 1\ 't(top(s» *mult 1\ 

args(s) >KNSS*;t(top(s» args(t) 1\ 

{s} »KNss* args(t) 

The proof of the equivalence of both definitions (KNSS and KNSS*) follows directly frOIP 6.20.
 

The equivalence of the KNSS* and the IRDS is based on the following two statements:
 

i) (Vt' e q e p) (3s' e p e q) s' >LU t' iff set(p) )}LU set(q)
 

ii) decu(t) = set(pa~(t» (cf. defmition of dec on page 7)
 

The proof of i) is easy because
 

set(p) »LU set(q) iff (Vt' e set(q)\set(p» (3s' e set(p)\set(q» s' >LU t' 1\ set(p) * set(q).
 

Furthennore, Si - tj implies [sl;... ;sm] 8 [t1;· ..;t ] = [sl; ... ;si_l] and [t1;···;tn] 8 [sl;···;sm] =
 n

[t1; ... ;tj _1]. 0 

With the help of the following two lemmata we will show that the PSDS is included in the IRDS. 

6.22	 Lemma Let ~ be total, decu(t) = {ti lie [O,nl}, gi = top(t), ti+1a direct subtenn of ti 
and k =min {i I gi t gj' j e [O,n]}. Then, (tI i e [O,nl) i *k '... tk >LP ti if 't(gk) = mult. 

Proof: i) (lIj e [O,nl) gk =gj with j * k 

,- (v'i e [O,nl) i *k- tk >LP ti 
because CV i *k) gk ~ gi and by definition of >LP 

ii) (3j e [O,nl) gk =gj with j * k 

,- We have to prove that dec(args(tk» »»LP dec(args(tj» (because 't(gk) = mult) : 

This is fulfilled since tj is a subterm of tk (because k = min...) and therefore, for 

each path-decomposition dec of dec(args(t) there exists a path-decomposition w 

dec (w is a suffix of v, i.e. wand v mark the same leaf) of dec(args(tk» v 

which	 is greater because decw c dec :v 
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S >KNSS* ‘
iff path({s}) »LQ path({t})

with p >LQ q
iff (Vt 'e q®p) (3s ' €p®q)  s '  >LU t'

with p ® q 3  s >LU t Eq®p
iff i) top(s) :> t0p(t)

ii) top(s) = top(t) A :t(top(s)) = mult A

- sub(p @ q , s) >LQ sub(q® p , t)

- path(args(s)) »LQ path(args(t))

iii) top(s) = top(t) A 1:(top(s)) # mult A

args(s) >KNSS*,1:(top(s)) args(t) A
{s} »KNSS* args(t)

The proof of the equivalence of both definitions (KNSS and KNSS*) follows directly from 6.20.
The equivalence of the KNSS* and the IRDS is based on the following two statements :

i) (Vt' 6 q @ p) (El s' € p @ q) s '  >LU t' iff set(p) »LU set(q)
ii) decu(t) = set(pathu(t)) (cf. definition of dec on page 7)

The proof of i) is easy because
set(p) »LU set(q) iff (Vt' e set(q)ßet(p)) (Els' € set(p)\set(q)) s'  >LU t' A set(p) =: set(q).

Furthermore, sif—vtj implies [sl;...;sm]®[t1;...;tn] = [sl;...;si_1] and [t1;...;tn]@ [sl;...;sm] =
[t1;...;tj_1]. . Ü

With the help of the following two lemmata we will show that the PSDS is included in the IRDS.

6 .22  Lemma Let t> be total, decu(t) = {ti l i e  [0,n]}, g i=  t0p(ti)‚ t i+1a  direct subterm Of t i

and k=min {i l giggj,je [0,n]}.Then, (Vie [0,n])i=t= k «- tk >LP ti if 1:(gk)==mu1t.

Proof : i) (lilj e [0,n]) gk = gj with j :|: k
.... (Vie [0,n])i =: k .... tk >”, tiL

because (Vi :|: k) gk {> gi and by definition of >LP

ii) (Bj € [O,n]) gk = gj with j # k
"" We have to prove that dec(args(tk)) »»LP dec(args(tj)) (because 1(gk) = mult):

This is  fulfilled since tj is  a subterm of IR (because k=min.. .)  and therefore, for

each path—decomposition decW of dec(args(tj)) there exists a path-decomposition

dec (w is  a suffix of v, i.e. w and v mark the same leaf) of dec(args(tk))
V

Wth IS greater because decW c decv:
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t = 

: de<;. 

• : leaf 

Remark:	 If gn is a variable, the lemma does not hold. However, this does not bring discredit 

since the variable case is irrelevant and will not be considered (see 6.24 ii). The 

following lemma must also be restricted in this way. 0 

6.23	 Lemma Let ~ be total, decu(t) = {ti liE [O,n]}, gi =top(ti), ti+1 a direct subterm of ti 
and k =min {i Igi ~ gj' j E [O,n]}. Then, (Vi E [O,n]) i *k '... tk >EL ti if 't(gk) =mult. 

Proof: i) (lIj E [O,n]) gk = gj with j * k 

'... (Vi E [O,n]) i * k '... tk >EL ti 
because (Vi *k) gk ~ gi and by definition of >EL 

ii)	 (3j E [O,n]) gk = gj with j * k 

"...	 We have to prove that sub(decu(t) ,tk) »EL sub(decu(t), tj) (because 't(gk) = 
mult): This is fulfilled since tj is a subterm of tk and therefore, 

sub(decu(t) ,tk) ::J sub(decu(t), 9. (cf. proof of 6.22) 0 

6.24	 Lemma Let ~ be total: IRDS ::J PSDS. 

Proof: We have to prove that s >PSDS t implies s >IRDS t which is equivalent by definition of
 

PSDS and IRDS to dec({s}) »»LP deceIt}) '... dec({s}) »»EL deceIt}). W.l.o.g. let
 

dec({s}) n dec({t}) =0. By definition of multiset orderings, dec({s }) »»LP dec({t}) if and
 

only if (Vv E Ot(t» (3u E Ot(s» decu(s) »LP decv(t). We show that decu(s) »LP decv(t) '...
 

(3ljf E Ot(s» dec\jl(s) »EL decv(t) by induction on max {ls'll s' E decu(s)} +
 
max {It'll t' E decv(t)} = Is I + It I which implies the inclusion IRDS ::J PSDS.
 

Let be decu(s) = {Si liE [O,m]} with si+l is a direct subterm of Si and tOP(si) =fi . Furthermore,
 

let be decv(t) = {ti liE [O,n]} with ti+1 is a direct subterm of ti and top(ti) = gi'
 

6 Proofs 49

—- decw

o : leaf

Remark: If gn is a variable, the lemma does not hold. However, this does not bring discredit
since the variable case is irrelevant and will not be considered (sec 6.24 ii). The
following lemma must also be restricted in this way. D

6 .23  Lemma Let t> be total, decu(t) = { t i l i e  [O,n]}, gi =top(ti), ti+1 a direct subterm of ti

and k = min {i  I giggj, j € [0,n]]. Then, (V ie  [0,n]) i 1: k "" tk >EL ti if 17(gk) = mult.

Proof: i) (Bj e [0,n]) gk = gj with j a: k
«» (V ie  [0,n])i=t= k «» tk >EL ti

because (V i := k) gk l> g].l and by definition of >EL

ii) (Elj € [O,n]) gk = gj with j # k
"" We have to prove that sub(decu(t) , tk) »EL sub(decu(t) , t-) (because 1:(gk) =

mult) :  This is fulfilled since tj is a subterm of tk and therefore,
sub(decu(t) , tk) = sub(decu(t) , tj). (cf. proof of 6.22) CI

6 .24  Lemma Let bbe to t a l :  IRDS => PSDS.

Proof : We have to prove that s >PSDS t implies s >IRDS t which is equivalent by definition of
PSDS and IRDS to dec({s}) »»LP dec({t}) _ dec({s}) »»EL dec({t}). W.1.o.g. let
dec({s}) n dec({t}) =D’.  By definition of multiset orderings, dec({s}) »»LP dec({t}) if and
only if (VV € 0t(t)) (Elu e Ot(s)) decu(s) »LP decv(t). We show that decu(s) »LP decv(t) '—
(3141 € Ot(s)) decw(s) »EL decv(t) by induction on max {ls'l I s' G decu(s)] +
max {It'l It '  e decv(t)} = | s I + | t l  which implies the inclusion IRDS = PSDS.
Let be decu(s)= {sil i e  [0,m]} wit-h si+1 is adirect subterm of si and t0p(si) = fi. Furthermore,
let be decv(t) = {ti | i e  [0,m]} with ti+1 is  a direct subterm of ti and top(ti) = gi.
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Note that - (3k e [O,m]) (Vie [O,m]) fk ~ fi 
(31 e [O,n])~ (V'i e [O,n]) gl ~ gi 

because l> is total 

- fk ~ gl
 

otherwise decu(s) )LP dec/t)
 

I i) fk l> gl 

'... decis) »EL decv(t) if \!f =u 

by definition of >EL 

i{	 fk = gl /\ 't(fJ = mult : 

Let l*,k* be k*=min{ilfk=fi,ie[O,m]} and 1*=min{ilg1=gi,ie[0,n]}. 

'... sk* >LP tl* 
because >LP is transitive and lemma 6.22 

,- dec(args(sk*» »»LP dec(args(tl*» 

because tOP(sk*) = top(tl*) = fk and by definition of >LP 

,- (Vw' e Ot(t)) (3w e Ot(s» sub(decw(s), sk*) ~LP sub(decw.(t) , tl*) 

because dec(args(~*» = {sub(decw(s), ~*) Iwe Ot(s)} and 

dec(args(tl*» = {sub(decw(t), tl*) Iwe Ot(t)} 

... (3we Ot(s» sub(decw(s), sk*) ~LP sub(decv(t) , tl*) 

because v E Ot(t) 

- sub(decw(s), 8tc*) »LP sub(dec/t) , t1*) 

'... sub(decw(s), Sk*) »EL sub(dec/t) , tl*) 

by induction hypothesis 

,- decw(s):3 ~* >EL tl*E decv(t) with \!f = w 

by definition of >EL 

".. decw(s) »EL dec/t) 

because >EL is transitive and lemma 6.23 

- sub(decw(s), Sk*) =LP sub(decv<t), t1*) 

".. sub(decw(s), sk*) =EL sub(dec/t), tl*) 

because the argument of sk* which belongs to the path with the terminal occurrence 

w is equivalent to tl*+l 

,- We have to show (cf. definition of >EL) that dec(args(sk*» »»EL dec(args(t1*» : 

This is valid because dec(args(sk*» »»LP dec(args(tl*» and by the induction 

hypothesis and the definition of multiset orderings. 

- decw(s):3 ~* >EL t1*e decv<t) with '¥ = w 

by definition of >EL 

- decw(s) »EL dec/t) 

because >F.T is transitive and lemma 6.23 
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\
\
‘Note that - (Elke [0,m]) (V ie  [0,m]) fk g fi A

(316  [0,1111 (V ie  [Dal-11) g] ?. gi

because :> is  total

' fk 9 gl

otherwise decu(s) ‚LP decv(t)

i) fk :> gl

"" decw(s) »EL decv(t) if I]! = u
by definition of >EL

ii) fk = g1 A ":(fk) = mult:
Let 1*, k* be k* =min  {i  | fk=fi ,  i e  [0,m]} and 1* =rnin { i l  g1 :  gi, i e  [0,n]}.

"" Sk* >LP t1*

because >LP is transitive and lemma 6.22
_ dec(args(sk*)) »»LP dec(args(tl,..))

because top(sk*) = t0p(t1,..) = fk and by definition of >LP
.. (Vw' e Ot(t)) (3w 6 Ot(s)) sub(decw(s) , sk‚..) am, sub(decw.(t) , t1...)

because dec(args(sk„‚)) = {sub(decw(s) , 3k...) Iwe  Ot(s)} and
dec(args(tl*)) = {sub(decw(t) , tl„‚) lw  € Ot(t)}

"" (Elwe Ot(s)) sub(decw(s) , sit...) am, sub(decv(t) , t1...)
because v e Ot(t)

- sub(decw(s) , sw) »LP sub(decv(t) , t1...)

'" sub(decw(s) , 3k...) »EL sub(decv(t) , t r )

by induction hypothesis
"" decw(s) a sw >EL t1‚„e decv(t) with u! = w

by definition of >EL

"" decw(s) »EL deÜ)
because >EL is transitive and lemma 6.23

— sub(decw(s) , 5k...) =LP sub(decv(t) , t1...)
"" sub(decw(s) , 3k...) =EL sub(decv(t) , t1...)

because the argument of 3k... which belongs to the path with the terminal occurrence
w is equivalent to t1*+1

_ We have to show (cf. definition of >131) that dec(args(sk*)) >>>>EL dec(args(t1*))I
This is valid because dec(args(sk,..)) »»LP dec(args(tl..)) and by the induction

hypothesis and the definition of multiset orderings.

"" decw(s) 3 Stet >EL t i l e  decv(t) with I}! = w

by definition of >EL

"'" decw(s) »EL decv(t)
because >EL is transitive and lemma 6.23
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iii)	 fk = gl 1\ t(fk) = left 

".. (3k' e [O,m]) args(sk') >PSDS,left args(tl) 1\ {sk'} »PSDS args(tl ) 

because decu(s) »LP decv(t) and by definition of >LP 

W.Lo.g let be k' = k. We have to show that there is an '¥ e Ot(s) with dec\jl(s) »EL decv(t). 

We prove: 'Jf = u. If we could show that args(sk) >IRDS.left args(t1) and {~} »IRDS args(9, 

this would imply the desired aim since the other ti's are smaller (w.r.t. >EL) than Sk
 

(because tOP(Sk) = fk ~ fi = top(ti»·
 
Let ~, t1 be sk = gl(Sl',... ,Sp') and t1 = gl(t1', •.. ,tp'). Then,
 

- (3i E [l,p]) ('Vj < i) Sj' =PSDS tj' 1\ Si' >PSDS ti'
 

because args(sk) >PSDS,left args(t1)
 

'... (3i E [1,p]) CV'j < i) Sj' '" tj ' 1\ dec({ Si'}) »»LP dec({tit})
 

since =PSDS is equivalent to '" and by definition of the PSDS 

'...	 (3i E [l,p]) ('Vj < i) Sj' =IRDS tj ' 1\ dec({s/}) »»EL dec({ti'}) 

since '" is equivalent to =rRDS and by the induction hypothesis (Si' is a proper 

subterm of s) 

'...	 args(sk) >IRDS,left args(t1)
 
by definition of the lexicographical extension of the IRDS
 

- ('Vi E [1,pJ) ~ >PSDS ti'
 

because {sk} »PSDS args(t1) and by definition of multiset orderings
 

'... ('Vi e [1,p]) dec({sk}) »»LP dec({tit})
 

by definition of the PSDS
 

'... ('Vi E [1,p]) dec({sk}) »»EL dec({ti'})
 

by induction hypothesis
 

'... {Sk} »IRDS args(t1)
 
by definition of the IRDS and its extension to multisets
 

iv) fk = gl 1\ t(fk) = right: 

analogous with iii) 

The IRDS and the PSDS are not equivalent: The termination of the rule (j) of the counter

examples (on page 52) can be proved with the IRDS but cannot be proved with the PSDS. 0 

6.25 Lemma Let ~ be total: PSDS ~ RPOS. 

Proof: The proof of this statement is the same as that of lemma 6.18 except for 

exchanging >RDOS (resp. >LD) for >PSDS (resp. >LP)' The inclusion is proper with the 

counter-example @ (on the next page). 0 l
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iii) fk = g1 A 't(fk) = left

""-° (Hk'e [0,m]) args(sk.) >PSDS,left args(tl) A {sw} »PSDS args(t1)
because decu(s) »LP decv(t) and by definition of >LP

W.l.o.g let be k' = k .  We have to show that there is an n! e Ot(s) with decw(s) »EL decv(t).
We prove : u! = u. If we could show that args(sk) >IRDSMt args(t1) and {sk} »1.RDs args(tl),
this would imply the desired aim since the other ti's are smaller (w.r.t. >EL) than sk
(because top(sk) = fk :> fi = top(ti)).

Let sk , t l  be sk=gl(sl',...,sp') and t1=gl(t1',...,tp'). Then,

_ (Elie [1,p]) (Vj <i) sj' =PSDS tj' A s; >PSDS t;
because args(sk) >PSDS,1eft args(t1)
_ (Elie [l,p]) (V j< i )  sj' ~ tj' A dec({si'}) »»LP dec({ti'})

since :PSDS is equivalent to ~ and by definition of the PSDS
"" (Hie [1,p]) (Vj < i )  sj' =IRDS tj' A dec({si'}) »»EL dec({ti'})

since ~ is equivalent to =IRDS and by the induction hypothesis (si' is a proper
subterm of s)

"" args(sk) >IRDS,1eft args(t1)
by definition of the lexicographical extension of the IRDS

" (Vie [LPD Sk >PSDS ti'

because {sk} »PSDS args(t1) and by definition of multiset orderings
«» (Vie [1,p]) dec({sk}) »»LP dec({ti'})

by definition of the PSDS
""-° (Vie  [1‚p]) dec({sk}) »»EL dec({ti'})

by induction hypothesis

"" {Sk}  »IRDS arg—ml)

by definition of the IRDS and its extension to multisets

iv) fk = gl A 13(fk) = right :
analogous with iii)

The IRDS and the PSDS are not equivalent : The termination of the rule © of the counter-
examples (on page 52) can be proved with the IRDS but cannot be proved with the PSDS. Cl

6.25 Lemma Let [> be to ta l :  PSDS = RPOS.

Proof: The proof of this statement i s  the same as that of lemma 6.18 except for
exchanging >RDOS (resp. >LD) for >PsDS (resp. >LP). The inclusion is proper With the
counter-example @ (on the next page). El
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6.26 Lemma Let ~ be total : 

i) RDO, PSD , IRD # RPOS 

ii) PSD , PSDS # RDO,RDOS 

ill) IRD # RDOS ,PSDS 

iv) KBOS , KBO # RPO , RPOS , PSD , PSDS , RDO , RDOS , IRD , IRDS 

Proof: i)	 RDO , PSD , IRD $ RPOS @ 

RPOS $ RDO , PSD ,IRD : @ 

ii)	 PSD ,PSDS $ RDO,RDOS ®
 

RDO,RDOS $ PSD, PSDS <D
 

iii)	 IRD $ RDOS ®
 

IRD $ PSDS <D
 
RDOS ,PSDS $ IRD @
 

iv) KBOS, KBO $ RPO, RPOS , PSD , PSDS , RDO , RDOS , IRD , IRDS @ 

RPO , RPOS , PSD , PSDS , RDO , RDOS , IRD ,IRDS $ KBOS, KBO 

x2 ~ X * x, with 2 ~ * D 

6.27	 Counter-examples 

<D	 (-x - (-x» - (-y - (-y» ~ (x - y) - (x - y) 

with 'CC-) = mult 

®	 x*«-y)*y) ~ (-y*y)*x 

with * ~ - and 'C(*) = muIt 

@	 (XAy)AZ ~ XA(yAZ) 

with 't(A) = left 

®	 'x :::) (y :::) z) ~ y :::) (x v z) 

with , ~:::) ~ v 

@	 ('x:::) y) v Z ~ (y v z) v x 

with <p(:::) > <p(v) 

®	 and(not(not(x»,y,not(z» ~ and(y,nand(x,z),x) 

with not ~ nand and 't(and) = mult 

6 Proofs @

6.26 Lemma Let » be total :

i) RDO , PSD , IRD # RPOS

ii) PSD , PSDS # RDO , RDOS

iii) IRD # RDOS , PSDS

iv) KBOS , KBO # RPO , RPOS , PSD , PSDS , RDO , RDOS , IRD , IRDS

Proof: i) RDO,PSD, IRD $ RPOS : @

RPOS q; RDO,PSD, IRD:  @

ii) PSD , PSDS ¢ RDO , RDOS : ©

RDO , RDOS ; PSD , PSDS : ©

üi) IRD $ RDOS . ©

IRD $ PSDS ' : @

RDOS , PSDS sl; IRD ' @

iv) KBOS ,KBO $ RPO,RPOS ,PSD,PSDS ‚RDO‚RDOS , IRD, IRDS : @

RPO,RPOS‚PSD,PS_DS,RDO,RDOS, IRD, IRDS $ KBOS ,KBO :

X2 -> x*x ,wi th  2D*  C]

6.27 Counter-examples

@ (-x- (-X)) - (-y - (W)) —>
with 1:(-) =mult

(x-y)- (x-y)

® x*( ( -y )*y )  a ( -y*y )*x
with * :> - and 't(*) =mul t

@ my)”  + “(w—z)
with 15(A) = left

@ fix=(y=>z)  -> y3 (xvz )
with "IDDDV

© (1x=y)vz —> (yVZ)vx
with <p<=) > «um

© and(not(not(x))‚y,not(z)) —> and(y,nand(x,z),x)
with not » nand and ":(and) = mult
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