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Abstract

This report presents a proposal for a deduction component that supports the query mechanism of
relational databases. The query-subquery (QSQ) paradigm is currently very popular in the database
community since it focuses the deduction process on the relevant data. We show how to extend the QSQ
paradigm from Horn clauses to arbitrary predicate logic formulae such that disjunctions in the consequent
of an implication, negation in its logical meaning and arbitrary recursive predicates can be handled
without restrictions. Various techniques to improve the search behaviour, such as lemma generation,
query generalization etc. can be incorporated. Furthermore we show how to use clause graphs for
compile time optimizations in the presence of recursive clauses and to support the run time processing.
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1. Introduction

This report gives an outline for the design of a deductive component for a relational database (DB).
Deductive components are currently used in two ways for DBs: automated reasoning techniques are used
to check and prove integrity constraints (including access rights and the like) and secondly they are used
to deduce new facts from given explicitly stored facts in a relational database. This report addresses the -
second problem. We do not address problems concerning parallel access of several users to the same

database.

While there are plenty of special purpose techniques today for deductive components of DBs, including
the linkage of a logic programming language with a relational DB; we view this problem as a normal
theorem proving task - however with some special purpose deviations concerning the control regime.

A deductive DB is a special purpose theorem prover, since the queries are just existentially quantified
formulae that are proved in order to obtain an answer (as in logic based question answering systems that
were developed in the 1960s). However there are two essential differences between the application of a
theorem prover in mathematics and in the DB world:

1. In mathematics there are usually plenty of complex clauses but only a few unit clauses (clauses
with just one literal). Access to these unit clauses is not a particular problem as there are so few
that the access time is essentially negligable. In contrast a deductive DB contains a very large set
of unit clauses (the facts or relational entries) and access to these facts must be tightly controlled :
by focussing on those which are relevant for the particular query.

2. In mathematical applications one answer is usually sufficient (completeness), whereas in DB
applications all answers may be required (answer completeness):

Various techniques have been proposed for the deduction mechanism in deductive DBs. See [BR86].or
[Vi87] for an overview. As far as we know, all of them are restricted to Horn clauses and in order to
gain efficiency some of them are even restricted to special Horn clauses such as function free clauses or
clauses without recursive predicates. Two main groups of query evaluation methods can be
distinguished: ' '

1. The bottom up approach, a forward reasoning method using UR-resolution (Unit Resulting).
2. The top down approach, a backward reasoning method using SL-resolution (Sclected Linear).

In the first approach, a definite Horn clause A;,...,A = A is used to deduce from given facts
Ay%...,A " aninstance A” of A as a new fact. In the next steps this fact (or lemma) can be used to deduce
further facts until the desired answer has been derived. The advantage of this method is that the deduced
intermediate results can be reused several times whereas in many top down strategies the same fact must
be derived again and again. This bottom up approach is particularily useful in mathematical applications
where the formula to be proved often has the form ‘hypothesis = theorem” with a conjunction of a few
unit clauses as hypothesis. In database applications, however, there may be plenty of initial unit clauses
which have nothing to do with the actual query. Therefore an enormous amount of useless deductions
may be required until a single useful lemma is accidentally among the deduced facts. Thus, the bottom up
approach (sometimes called naive evaluation) is obviously not an adequate strategy for database
applications, at least without further refinements.



The top down approach uses Kowalski and Kuehner’s SL-resolution [KK71] to work backwards from
the query to the facts; it is therefore more goal directed. Since SL-resolution defines the search space
without a fixed selection of the strategy to explore it, there is plenty of room to develop and optimize
search strategies for different requirements and for various special cases. An advanced application of
SL-resolution is its usage as a filter for UR-resolution. The idea here is that SL-resolvents are not
actually created, but the backwards search imposed by SL-resolution is used to generate subqueries
from queries. At the bottom level, i.e. with unit clauses, the subqueries are answered and the answers
are combined using UR-resolution to get the answers for the requesting query. Thus, queries are
generated backwards whereas the answers are propagated forwards. This approach combines the
advantage of top down search - focusing on relevant data - with the advantage of bottom up deduction -
reusage of intermediate results.

SL-resolution is not restricted to Horn clauses. Only a few modifications are necessary to use
SL-resolution as a query - subquery deduction mechanism for the full predicate logic, i.e. negation in the
body of a “Hom clause” is permitted and disjunctions in the consequent of an implication are also
allowed as for example in “parent(x y) = father(x y) v mother(x y)”. Mark Stickel has shown with his
Prolog Technology Theorem Prover (PTTP) that this general application of SL-resolution can be
implemented in a Prolog like manner yielding almost the same efficiency as Prolog itself [St86].
Therefore it should be possible to extend the techniques that have been developed for Horn clause based
query evaluation systems, which usually do not apply depth first search as Prolog and the PTTP do, to
arbitrary formulae.

Some problems which can be neglected in the Horn case, however, become significant in the non Horn
case. For example finding an appropriate resolution partner for a given literal is no serious problem in the
Horn case - only the head literals of a few clauses must be checked. In the general case each literal in the
whole clause set may be a potential candidate for resolution. Thus there is a need for a sophisticated
indexing mechanism. We demonstrate in the following that the clause graph idea, first proposed by R.
Kowalski [Ko075], is not only an appropriate indexing mechanism, but it can be used as a “compilation”
mechanism to greatly improve the run time behaviour by various optimizations: Redundant clauses and
resolution possibilities (subsumption, tautology, purity) can be recognized and eliminated at “compile
time”, i.e. during the graph construction. Nonrecursive clauses can be compiled into the link structure of
the graph, thus leaving only the really hard recursive part of the clauses for the run time mechanism.

This paper is divided into six more parts. In the second chapter we briefly sketch the basic notions of
predicate logic and automated theorem proving. In the third chapter SL-resolution, both for Homn clauses
and for the general case is discussed and various improvements that restrict the search space are
presented. Predicate logic has no means to assign a predefined meaning to a certain symbol (other than
the appropriate axiomatization). Especially in database applications however there are frequently used
symbols with a fixed meaning, for example the arithmetic predicates and functions. In chapter four we
therefore present theory unification and theory resolution as a general means for building in special
knowledge about special symbols. Clause graphs are introduced in the fifth chapter and their application
to query evaluation systems is presented in chapter six. Finally in the last chapter a prototype
implementation of a deductive query evaluation system is described which solves nontrivial problems
with highly recursive clauses.



2. Predicate Logic and Automated Deduction.

Before we go into technical details it may be useful to recapitulate informally the main notions of
predicate logic and automated deduction. Detailed introductions can be found in [CL73], [Lo78],

[Wo84], [Bu83] or [BB87].
2.1 Basic Notions

The Syntax of First Order Formulae:

Terms are built inductively from constant, variable and function symbols (the signature ).

Examples: a,b,c We shall always use letters from the beginning of the alphabet to denote constants.
X,v,z We shall always usc letters from the end of the alphabet to denote variables.
f(x g(ab)), +(3 z) (composite terms) (we use prefix notation).
(Sometimes we omit the parentheses and write for instance Pfffa instead of P(f(f(f(a)))).)

Atoms are objects of the form P(t;,...,t ) where the t; are terms and P is an n-ary predicate symbol.
Examples: P(ab), father(mary joe),
finv(x) x) =x, 2<3 (we write equations and inequations in infix notation.)
Literals are negated or unnegated atoms.
Formulae are built from atoms, the universal quantifier V, the existential quantifier 3, and the boolean
connectives — (not), A (and), v(or), = (implies) and <> (is equivalent).
Examples: father(mary joe) A —mother(mary joe)
V x human(x) = mortal (x)
V x human(x) = Jy 3 z father(x y) A mother(x z)
(Vx Qi) = REx)) < (Vx-Q(x)vR(x))

An object is called ground if it contains no variables.

The Syntax of Clauses
Any formula can be normalized into a conjunction of disjunctions of literals by the following operations:
An equivalence is replaced by two implications: A < B - A=>BAB=A
An implication is replaced by a disjunction: A=B — —AVB.
Negations are moved before atoms: —~(AvB) —5-AA-B
~(AAB) —5-Av-B
=(Vx Q(x)) — 3 x—-Q(x))
—-3xQ(x)) - Vx-Qx))
Application of the distributivity law: AvBAC o AVB)A (AVD
“Skolemization” of existential quantifiers, i.e. replacing existentially quantified variables by composite
terms built form a new n-ary function symbol and the n variables bound by the embracing universal
quantifiers
Example: V x human(x) = 3y 3z father(x y) A mother(x z)
— YV x human(x) = father(x f(x)) A mother(x m(x)).
Due to the elimination of existentially quantified variables one may omit the universal quantifiers and take
all remaining variables to be universally quantified.



Most of the existing theorem proving systems work with this normal form which is usually called clause
form. A clause is a disjunction of literals . Due to the associativity and idempotence of the v connective
it is possible to regard clauses as sets of literals.

A unit clause is a clause with one literal only.

A Horn clause is a clause with at most one positive literal, a definite Hom clause is a clause with exactly
one positive literal. Horn clauses are usually written in implication form: A; A ... A A = A (or
backwards in Prolog notation A <= A; A ... A A)) where A is called the kead literal and the A, are called
the body literals.
Example: Parent(x y) A Ancestor(y z) = Ancestor(x z).

This is equivalent to ~ —Parent(x y) v —Ancestor(y z) v Ancestor(x z).
It is noted that every clause B;v ... v B can be written in implication form where any B; can serve as
head literal: =By A ...A =B, | A—B;,; A...A =B = B,. From a logical point of view this is not very
exciting. From an operational point of view where such a clause is viewed as a procedure to derive the
head literal from the body literals it means that a clause with m literals can be viewed as m procedures
where each of its m literals is selected as a head literal. This observation provides a first means to
generalize methods developed for Horn clauses to arbitrary clauses.

Substitutions

A substitution 1is a finitely representable mapping from variables to terms (actually an endomorphism on
the term algebra associated with the signature). The finite set of variables on which a substitution ¢ is not
identical, denoted DOM(0), is called the domain of o, COD(c) := 6(DOM(0)) is called the codomain of
©. The typical representation of a substitution ¢ with DOM(0) = {x,,...,x,} is a set {x; = Oxq,..., x>
ox,} = {x~ t5,..., X t_} of variable-image pairs. Substitutions may be applied to terms, atoms,
literals, clauses and clause sets and actually to any object containing variables.

A substitution © is idempotent iff 60 = 6. The domain and codomain of idempotent substitutions have
no variables in common. (for example {x - f(x)} is not idempotent, but {x - f(y)} is.)

A ground substitution consists of ground codomain terms only.

An object 0, (a term or a substitution) is an instance of a second object o, if there is a substitution ¢
such that 0, = 00,. In this case G is sometimes called a matcher.
Examples : g(a) is an instance of g(x) with ¢ = {x » a}.

g(g(x)) is an instance of g(x) with the non-idempotent substitution 6 = {x ~ g(x))}.

Unification
A unifier for two terms s and t is a substitution ¢ that makes the two terms equal: 6s = Gt.
A unifier is most general (mgu) if it is no nontrivial instance of another unifier.
Examples: {x~ a,yw— a} is a unifier for g(x) and g(y).
{x v} and {y » x} are most general unifiers for these terms.
A weak unifier for two terms s and t is a tupel (p,0) such that p is a variable renaming and ops = Ot.
Example: x and f(x) are not unifiable, but they are weakly unifiable with a weak unifier
({x >y} {y» fx)D.
A matcher (one sided unifier) from s to t is a substitution making s equal to t: s =t.
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2.2 Inference Operations

The main task in automated theorem proving is to derive a theorem from a set of axioms. This is logically
equivalent to the derivation of a contradiction from the axioms and the negated theorem, i.e. the
refutation of a formula set. In clause based systems the empty clause represents the contradiction,
therefore the theorem proving task is technically reflected as a search for the empty clause. In database
applications a typical formula to be proved is an existentially quantified formula 3x,...x, F whose
negation is Vx;...x, —7. A byproduct of a successful proof of such a formula is the answer substitution,
a binding of the variables x;,...,x to some terms. Finding all possible answers therefore means finding
all possible proofs. One inference operation which was explicitly designed for finding the empty clause
and which produces the desired substitutions is Robinson’s resolution rule [Ro635].

Resolution
Given two clauses C=L v A and D =K v B such that L and K are complementary unifiable, i.e. their
signs are different and there exists a unifier ¢ for the corresponding atoms, one can infer a new clause,
the resolvent, GA v oB, which is a logical consequence of the “parent” clauses C and D.
Example: C:= —Parent(xy) Vv —Ancestor(y z) v Ancestor(x z)
D .
Resolvent := — Father(x y) v —Ancestor(y z) v Ancestor(x z)

Parent(u v) v —Father(u, v) c={um Xx,vey}

Factoring

A factoring is an instantiation of a clause such that two or more literals become equal. The resulting
instance is called a factor.

Example: Pxy v Pyx v Qxy — Pxx v Qxx with the instantiation {y ~ x}.

Factoring and resolution are sometimes joined into one operation, which is also called resolution.

These two inference rules are sufficient for proving any theorem which can be formulated in first order
predicate logic. All other inference rules are either macrosteps, i.e. several resolution steps are comprised
into one step (like hyperresolution, UR-resolution etc.) or they are special purpose inference rules taking
into account the semantics of a particular symbol (like the equality symbol) if it is not expressed by the
given axiom set.

UR-Resolution
Given a clause C:=L;v...vL_ ;v L, the “nucleus”, and n-1 unit clauses Uy,...,U, ,, the “electrons”,
such that the pairs L, U, are complementary unifiable with a most general simultaneous unifier o, i.e.
oL;=oU; fori=1,...,n-1, one can infer 6L as a new unit clause.
Example: C = —Parent(x y) v —Ancestor(y z) v Ancestor(x z)
U, =Parent(tom, mary)
U, = Ancestor(mary, bill)
UR-resolvent = Ancestor(tom, bill)

UR-resolution is a complete inference rule for Horn clauses, i.e. every unsatisfiable Horn clause set can
be refutet using UR-resolution only. For a Horn clause the nucleus consists of the clause body such that
the UR-resolvent is an instance of the head literal. UR-resolution is not complete for arbitrary clause sets
asthe following example shows: shaves(x,x) v shaves(barber,x) and —shaves(barber,y) v —shaves(y,y).
A refutation must apply the factoring rule.



3.SL-Resolution

SL-resolution is not actually a new deduction rule, but a restriction strategy that blocks certain resolution
steps. An ordering strategy is used to select the next step from the set of admissible steps. The
significance of SL-resolution is that its search strategy allows a procedural “task - subtask” view of
resolution. We shall discuss the logical and the procedureal view of SL-resolution at first for Horn
clauses and then for the general case.

3.1 SL-Resolution for Horn Clauses

3.1.1 The Logical View

Suppose we have a set of “input” Horn clauses and a “goal clause” G with no head literal. Starting with
the goal clause as “center clause”, SL-resolution selects at each step the last resolvent as the new center
clause and determines the admissible resolution steps as follows: If the actual center clause is C= C; v
C, where C, is the block of literals introduced from the latest “side clause”, select among C, a literal L
and select a corresponding resolution partner among the input clauses (the actual “side clause”) and
generate a new resolvent. Thus, SL-resolution resolves only between the last resolvent and an input
clause. Furthermore it forces those literals to be “resolved away” which have been introduced most
recently, While the selection of the resolution literal in the center clause is deterministic - each literal must
eventually be resolved - the selection of the corresponding resolution partner among the input clauses is
nondeterministic - one successful resolution chain is sufficient. This generates a tree like search space of
resolvents that must be managed in some way by an actual implementation of SL-resolution.

Let us illustrate the method with an example:
Example 1: Consider the following clause set

Prolog notation; Clause notation:
Cl: Axy)<Pxy) Axy)v-Pxy)
C2: Axz) =PExy)AAFyz) Axz) v—Pxy)Vv-Aly z)
C3: P(ab)
C4: P
C5: P(cd)

Query: 3 v A(av) AP(vd)? Its negation in clause notation is:
—A(av) v—P(vd)

In the two figures below the search space is drawn for the negated query clause as goal clause and two
different selection functions of the next literal in the center clause to be resolved upon:

1. Select most instantiated literals first

2. Select least instantiated literals first.

The most recently introduced literals which must be resolved first are underlined.



—A(av) —P(vd) Search Tree for Example 1
C1 7 \CZ Selection function:
yd \ Most instantiated literals first.
—P(ay) —P(vd) —P(ay) —A(y v) —P(v d)

vis b C3 C3 ywrb
—P(b d) —A((b v) —P(vd)
/
;j ! \Cz
fail _P(bv)—P(vd) —P(by)—Aly v)—P(vd)
| \
ves> ¢ C4 4
' \
—lP(C d) —|A(C V) —|P(V d)
| N
G5 Ci 2
! /
success —P(cv) —P(vd) infinite recursion
|
ve d C|5
—P(d d)
|
fail

AGav) —P(v d) Search Tree for Example 1
Selection function:

Least instantiated literals first.

—P(av) —P(vd) —P(ay) Ay v) —P(vd)

c1 ™

v b 3
\ yd \
CM C5 ill/ﬁI[ll\tC recursion
I v b \
fail —P(aa)—P(bd) —=P(ab) —P(c d) —P(ac) —P(d d)
\
C3
\
fail —P(c d) fail
Cs
success

Since SL-resolution generates an ordinary search tree, the standard techniques for exploring search trees
are applicable [Ni 80]. For example depth first search, as applied in Prolog, has the advantage that only
one branch at a time is developed. Backtracking to previous choice points can be easily implemented
using stacks. However, depth first search is not complete when the search tree contains infinite
branches. Breadth first and especially heuristic search requires storing all open nodes, which may be
very expensive. For highly nondeterministic problems where the standard methods to influence the
depth first search by ordering of literals and clauses do not apply, however, heuristic search is much

more promising,



3.1.2 The Procedural View.

While SL-resolution in its original definition was viewed as a restriction strategy of ordinary resolution,
it soon turned out that a procedural interpretation is also possible and, at least in logic programming
languages like Prolog, much more successful. The idea is to use the implication form of Horn clauses,
where the body literals are positive, and to take the selected resolution literal L in the center clause, which
is now a positive instance of a body literal, to be a query of the form “deduce instances of L”. The
actual resolution with a head literal of the side clause is then viewed as a procedure call that activates its
body literals as a new bunch of related queries, i.c. their answers must not instantiate the same
variable differently.

The corresponding graph below for example 1 shows that the search space is exactly the same as in
SL-resolution, but there is no need to generate resolvents explicitly, just variable bindings are
propagated.

Search Tree for Example 1

A(av) P(vd) Procedural interpretation
D A, g Selection function:
C1 activated ,.". 2 activated Tl - .. Least instantiated literal first.
P(av) P(vd) < deferred solved—®P@y) A(y v) P(V d) < deferred
/1 with C3 b
solved yrb Vo
with C3 i !
v b ]
P d) A v) P(‘v' d)
activation fails! RN

Cl activatqd. --="C2activated *-._

solved - P(b v) P d solved _-plpb VAN IP d
g POV (v ) winca T y) (y. v) P(v d)

with '
\A=d¥ | : 1
1 . 1
P(c d) A(cv) P(vd)
sqlved
;‘3226(5355, Clactivated C2 activated
infinite recursion
solved —¥ P(c v) P(v d)
with C5
v d :
Pdd)
activation fails
Read the graphical notation as follows:
L means that the clause Cn allows to deduce L from L ... L.

The task to deduce L (or instances of L respectively) can therefore be
Cn activated achieved by deducing L; ... L, (or compatible instances respectively).
Instances of literals are called compatible if the same variable is not

L, ... L, instantiated differently.

Although this method has its success in logic programming where the amount of nondeterministic search
can be greatly reduced by the programmer using syntactic means like the ordering of literals and clauses,
there are still serious difficulties when the nondeterminism can not be controlled at the level of the initial
clauses.

10



The main difficulties are:

1. There are infinite search trees even when the clause set belongs to a décidable class of formulae.
Example 1 is of this type.

2. Multiple activation of the same query causes the same thing to be computed again and again. For
example the symmetry law P(x y) < P(y x) may cause the infinite sequence of queries P(a b),
P(ba), P(ab), ... to be generated.

3. The fixed ordering of activations of body literals in a clause as subqueries causes a producer -
consumer problem of the following kind:

Consider the clauses
Cl: Pf(x) <Px

C2: Pa
C3: Qb
and the query: PxAQx?

The activation of Px produces the infinite sequence of answers a, f(a), f(f(a)),... for x, but none
of them has a compatible solution to the second query Qx. Since the selection function is fixed in
SL-resolution there is no possibility to backirack to another sequence of query activations and to
give the “consumer” Qx a chance to tell the “producer” Px to look for a solution Pb, which would
immediately fail and terminate the process.

These problems are not new and some ideas have been proposed to solve them (c.f. [Vi 87]). Let us
briefly discuss some of the basic intuitions behind them:

Triggered UR-Resolution (Lemma Resolution)

Each answer to a query or a subquery represents an initial or deduced unit clause. Usually the
corresponding variable binding is the only thing that is exploited, but it is perfectly correct to add the
derived and not subsumed unit clauses to the database in order to make it reusable for later queries. We
shall illustrate the idea with an example:

Consider the clauses

Cl: loves(v v)
C2: knows(x y) <= loves (x y) which may be part of a larger clause set
and the subquery: knows(Tom, z)? which may be generated during the search.

Activation of clause C2 produces the binding x - Tom, y = z and the subquery loves(Tom, z)? which
can be answered by C1 yielding the binding x - Tom, y » Tom, z » Tom. Thus the new fact
knows(Tom, Tom) can be added to the database for later use.

This is the usual lemma resolution procedure. However, one can do better.

When the answer to a query not only produces variable bindings, but the answer literals themselves, it is
possible to compute a more general answer to the requesting query by unifying the answer literal with the
original atom of the activated clause instead of the already instantiated query.

In the above example the query loves(Tom, z) would be answered by loves(v v) which can be unified
with loves(x y) yielding the unifier {x » y, v~ y}. This unifier allows to deduce knows(y y) as an

intermediate result. As it is more general than the previous one it can be reused more often.

In this mode SL-resolution serves as a top down trigger for a bottom up UR-resolution: The main
inference rule is UR-resolution, but only those UR-resolvents are generated which are relevant to the
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query. In fact it can be shown that every top down SL-resolution chain can be turned upside down into a
bottom up UR-resolution chain where the query clause and the side clauses of the SL-resolution chain
are the nuclei and the initial and derived unit clauses are the electrons. We demonstrate this with the
successful resolution path of example 1:

SL-Resolution Chain for Example 1 | The corresponding UR-Resolution Chain

Query: {—A(av) —P(vd)} {A(x2-—Pixy)-A(yz)} C2
{—P(ay) -A(y v) —P(v d)} {P(ab)} C3
{Axy) -wP(Q)}/{P(b o)}

{—-A( V) —P(v d)} {Axy)-Pxy)} C1 3
C2
{Axz) -P(xy) -A(y2)} {A(b9} {P(ab)}
{~P( v) =P(v d)} {P(bc)} C4
Query

{(—A(av) —P(vd)} {A(ac)} {P(cd)} C5

{=P(c d)} {P(c d)} C5 \/

success Success

It is noted that the two versions of triggered UR-resolution coincide when there are only ground unit
clauses and each variable in the head literal of a non unit clause occurs also in its body literals.

Query Linking

When a query Q, is an instance of a query Q1, each answer to Q, is also an answer to Q;. Conversely, it
is possible to compute all answers for Q, just by forwarding the answers for Q; to Q,. Q, need not
activate any further clause by itself; potential infinite branches starting with Q, are therefore blocked.
Combined with triggered UR-resolution this forwarding mechanism is easily realized by resolving Q,
with initial or deduced unit clauses only. En exhaustive search started by Q, guarantees that all answers
which are relevant to Q, will eventually be computed and stored as intermediate lemma. Vielle [Vi87] has
shown for the function free case that the combination of the two ideas, triggered UR-resolution and
query linking is sufficient to keep the search tree finite.
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A finite search tree for example 1 using triggered UR-resolution and query linking:

A(av) P(vd)

b o il
Cl1 activate{i' i C2 activated”

.
L
-
-
- -~ -

Pav) Fvd) solved—® P(ay) A(y v) P(v d)
/ | & with C3 : (;@ o
IT
solved ; deferred yrb i efe
with C3 X .
veb P(b d) AGV) P d)
activation fails! w_ ..
Cl1 activated C2 activated  “-.

-
-
-
-

solved - P(b v) P(vd solved 4'P(hy*) A(y” v) P(vd
- (bv (\I/) with C4 by) Ay v)P(vad)

Ve C 1 :
X '
' I
solved with C5. —% P(c d) A(cv) P(vdy, ~query
rqtuming the result to C1 "\ linked
yields A(bc) as lemma. C1 activated C2 activated',
1

Al
A Y

| U |
P(c v) P(vd) P(c y") A(y" v) P(v d)
1 ey e
+ 1 N instance
solved with C5 : .+*" solved with A(b c).
P(d d) P(c b) P(c d) No other resolution
allowed

activation fails fail

Query Generalization

In the non function free case the SL-search tree is infinite in general, for otherwise either SL-resolution
would not be complete or Horn logic would be decidable. But there are still possibilities to prune infinite
parts in the search tree without losing answer completeness (c.f. [TS 86, KL 86])

Consider the example
CL Px < Pf(x)
C2: Pa

and the query: Pb?

Although there is not a single fact deducible from the database, SL-resolution would generate the infinite
sequence of queries: Pb?, Pf(b)?, Pf(f(b))?..... To prevent this effect, the SL-resolution sequence can be
stopped at a certain complexity limit, for example when the term depth in the query exceeds a threshold
or when the depth in the search tree becomes too large. Now replace all ground terms in the query by
variables, thus generalizing the query. Clearly each answer to the original query is also an answer to the
generalized query, but there may also be unusable answers. The advantage, however, is that the chance
to link a subquery to the generalized query is greatly increased. In the above example the generalized
query Pf(f(...f(z)...)) would be generated and the next recursion with C1 produces P{(f(...f(f(z))...))
which is an instance of Pf(f(...f(z)...)). As for this query only resolution with unit clauses is allowed
and no such resolution is possible, the process terminates with failure.

Vielle [Vi 87] has proved that the combination of triggered UR-resolution, query linking and query
generalization is still an answer complete proof procedure.
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Query Instantiation
Query instantiation addresses the producer - consumer problem mentioned above. It is based on a
combination of two ideas:
1. A subquery containing a variable is no longer seen as a request to derive all possible, but only a
representative set of answers which differ in their termstructure up to a certain nesting limit. As an
example consider the clauses

Cl: Pf(x) < Px

C2: Pa
A query Py? would usually be answered with a, f(a), f(f(a)),.... If we set the nesting limit to 1 and filter
out all equivalent answers, a and f(a) would be accepted, whereas all others would be rejected because
their term skeletons f(...) are identical with the skeleton of f(a).
2. Since the rejection of “equivalent” answers destroys the answer completeness, we must extend the
method with a mechanism for instantiating queries such that at least a sufficient subset of the lost
answers can be regained.
Again an example:

Cl: Pf(x) &= Px

C2: Pa

C3: Qf(f(a))
query: Py AQy ?

Suppose Py is activated first and gets the answers a and f(a). Instantiating Qy with any of the two
bindings fails. However, since f(a) is only a representative for all answers f(...) we do not instantiate Qy
with f(a) but with the generalized term f(z). In order to guarantee that the answers to Qf(z) are compatible
with answers to P(y) we must instantiate P(y) as well, thus restarting the whole process with the
instantiation Pf(z) A Qf(z)? of the original query, but activating Qf(z) first. For the example above the
whole procedure would work as follows:

1. The first answer a to Py? is not generalized and the second query Qa then fails.

2. The second answer f(a) to Py? is generalized to f(z). The whole query is then instantiated yielding
Pf(z) A Qf(z).

3. Qf(z) is activated and returns the answer z + f(a). Although in this case it is not necessary, f(a)
will again be generalized to f(z”) such that the second instantiated query is Pf(f(z")) A Qf(f(z"))?

4. Now Pf(f(z")) is activated returning z” ~ a which is compatible with the corresponding answer to
Qf(f(a)).

5. The second answer f(a) to Pf(f(z")) causes again an answer generalization and subsequent query
instantiation Pf(f(f(z"))) A Qf{f(f(z")))?, but this time there is no answer to Qf(f(f(z"))) and the
process stops. The process would also stop at this step if the clause C3 were Qf(f(b)), where
there is no solution at all.

In general the query instantiation method activates from a bunch of related queries QA...AQ,, one query
Qj according to the selection function, generalizes the answers to Qj and rejects those answers which are
instances of previously generalized answers. With the generalized variable binding o, the instantiated
queries 6Q;A...AGQ,, are created but the activation of GQj as the first subproblem is inhibited.

Since the answers to 6Q;A...A0Q, are also answers to Q;A...AQ, the procedure is obviously sound.
By induction on the termstructure it can easily be seen that any solution [t to Q;A...AQ, will be obtained
after a finite sequence 6,Q;A...Ac;Q,, of query instantiations where eventually some O} equals L.
Therefore query instantiation is still answer complete.
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Unfortunately the query instantiation reduces the possibilities for query linking. Only those queries Q,
which are instances of a query Q; can be linked to Q; whose terms have the same shape. For example a
query Pb? can be linked to a query Px?, but a query Pf(b)? cannot because Px? might be satisfied with an
answer f(a) and the equivalent answer f(b) which was the one Pf(b)? needed is discarded. It is currently
not clear whether the query generalization and the query instantiation methods can be combined.

3.2 SL-Resolution for Non Horn Clauses

3.2.1. The Logical View
In case of non Horn clauses three extensions must be added to the SL-resolution system.

1. Factoring
Binary resolution without factoring is complete for Horn clauses, but it is incomplete in the general case.
Therefore the factoring operation must also be included into the SL-resolution system.

2. Ancestor Resolution
It is not sufficient to resolve the center clause only with input clauses. Resolution with some of the
ancestor clauses in the search tree may be necessary as the following example demonstrates:

Formulas:
ClL: tax-increase = somebody-is-not-content
C2: —tax-increase = somebody-is-not-content
C3: somebody-is-not-content = problems-arise.

query:  somebody-is-not-content A problems-arise?
Abbreviated and written in conjunctive normal form the clauses are:
Cl1: —ti v snc C2: tivsnc C3: —sncvpa
negated query: —snc v —pa

The SL-resolution search tree looks as follows:

—Snc —n_&
/C3
—Snc
of \CZ ancestor resolution
AN
—ti ti
| forbidden |
C2 C1
| |
snc snc
success success
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There is no proof without “ancestor resolution” because resolution between clauses in different branches
of the search tree is not allowed. Although this restriction might require longer proofs, it usually
decreases the branching rate of the search tree considerably.

3. Different Copies of the Query Clause.
Since the literals in the resolvents may be positive or negative it may become possible - and necessary -
to reuse the initial query clause as side clause. (The reader can easily verify that this is not possible with
Horn clauses.)
An example is:

Cl: Pav Pb

Negated query: —Px?

The proof tree is: —Px
Cllxma
Pb
negated query | x—b
success
The answer substitution is now indefinite: x may be a or b. A decision is not possible. Here
SL-resolution offers an interesting choice to the user: Disabling the usage of the query clause as side
clause guarantees that at most one instance of it is used; the answer is therefore definite. Enabling the
usage of the query clause as side may produce indefinite answers. In the first case we always get a
constructive proof, in the second case we allow for inconstructive proofs.

3.2.2. The Procedural View

A clause C =L v...v L  can be written as n implications of the form L, <= =L A ... A=L; A
—L;A...Aa=L, 1= 1,...,n. Just like the implication form of Horn clauses can be interpreted
procedurally, we can give each of the implication forms of C a procedural interpretation: In order to
derive instances of L;, derive the corresponding compatible instances of —L,...,—L; , =L 5.l
A negated literal —L can be proved by refuting L. But it is not necessary then to actually multiply the
clauses: We leave the clause as it is and just change the procedural interpretation. In order to derive
instances of L, refute the corresponding simultaneous instances of L{,...,L; 4, L;,1,....L,. Hence it is
possible to view a non Horn clause also as a procedure for deriving instances of a literal, this time not of
a distinguished head literal, but just of any literal in the clause.

In the sequel we shall call a literal that is to be refuted a “task”, as opposed to “query” which is a literal to
be proved.

The incorporation of factoring and ancestor resolution into this procedural view, however, is not trivial.
With the help of some examples we demonstrate the method.
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Factoring

1. Factoring of Input Clauses
Consider the clause set

Cl: Pax v Pxa v Qx

C2: —Pxx

negated query: —Qv

An SL-resolution proof is:
—Qv Qx Pax Pxa

N

Pax Pxa
| Factoring, x+- a
Paa —Pzz

N

O
The corresponding procedural view is: The task —Qv activates the literal Qx of clause C1. This causes
the generation of the two related subtasks Pax, Pxa. It is recognized that they are unifiable such that
merging the two subtasks into Paa offers a new search path. (If instead of C2 the database contained the
two facts Pab and Pba, this search path would fail, but in this case the original tasks can succeed.) Thus,
factoring of the input clauses can be performed by unifying a set of related tasks.

Factoring of the Resolvents
We modify the above example slightly such that instead of factoring the input clauses, factoring the
resolvent is possible.

Cl: Pax v Qx

C2: —Qy v Pay vRy

C3: —Pzz

The negated query is —Rv

An SL-refutation is: —-Rv Ry Pya—-Qy

hd

Pva —Qv Qx Pax

NS

Pva Pav
| Factoring,ve a
Paa —Pzz

~_—

m]
The corresponding procedural interpretation is:
1. In order to satisfy the task —Rv, the literal Ry of C2 is activated (with substitution y » v),
generating the two subtasks Pva and —Qv.
2. —Qv is selected first. It activates the literal Qx of clause C1 which generates the subtask Pav.
3. This task must be checked against all “‘sibling tasks” of all ancestor tasks for possibilities to factorize.
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In this case the temporarily deferred task Pva is found which can be unified with Pav. Thus, one
solution for the current task is v a.
4. Control is given back to C2 which activates the deferred task Pva with the returned binding v - a.
5. This task can be solved by C3.

As we have seen, factoring of the resolvents requires access from the currently active bunch of related
tasks to the siblings of all ancestor tasks.

Ancestor Resolution

Kowalski and Kuehner have shown that the SL-resolution strategy allows to realize ancestor resolution
by just throwing away the resolution literal in the center clause, of course after instantiation with the
unifier. All other literals of the ancestor clause are, from the previous resolution with this ancestor
clause, still part of the current center clause and therefore automatically vanish by merging. The
following example illustrates this effect.

Clauses: Cl: PvQ
C2: —-QvRvS
C3: —=SvT
C4: —-Tv-=S

An SL-resolution path starting with C1 as initial center clause is as follows:

PQ —QRS
'PRS ST
v
' [
\ ]
\PRT ~T-S
1 [
1 [
\ \
\ \
\ R"ﬂS
ancestor resolution
PRPR b can be realized by cutting —S away
l merging
PR

Thus, ancestor resolution can efficiently be realized by scanning the ancestor center clauses for a
complementary unifiable literal that has already been used as resolution literal in the current resolution
chain. Since the corresponding partner literal in the side clause is just its negation, there is no difference
if instead of a complementary unifiable literal in an ancestor center clause, we look for a directly unifiable
literal in the ancestor side clause. In the above example, for instance, instead of looking for a literal S in
the ancestor center clauses, one can look for a literal —S in the ancestor side clauses. This has the
advantage that factoring and ancestor resolution can be joined into orne operation that scans the ancestor

side clauses for unifiable literals.
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Triggered Forward Resolution

In the case of Horn clauses we have shown how to turn a backward SL-resolution chain “upside down”
into a forward UR-resolution chain. This observation has been exploited to generate unit clauses as
intermediate results and to store them for further use. A very similar method can be applied in the
general case as well. When a task L has been solved, i.e. instances of L have been refuted or,
conversely, instances of —L have been proved, we want to generate them explicitly as new unit clauses
Unfortunately, in the general case, a task L can be solved by subtasks which applied merging and
factoring with literals of some ancestor clauses of L. From L’s point of view, these literals are still part
of a potential resolvent. Therefore, a solved task can only be used to generate a lemma when there is no
factoring and ancestor resolution “across” L. Let us again illustrate this with an example.

Clauses: Cl: PvQ A graphical representation:
C2: - Qv Ry S Links indicate potential resolution operations.
C3: =SvT PQ —QRS ~S T —T S
C4: —-Tv =S

Assume again that these clauses are part of a larger clause set.

As can easily be seen, resolution with C3 and C4 yields the unit clause —S. Finally resolution with —S,
C2 and C5 produces —Q v P which can be resolved with C1 yielding a second unit clause P. No other
unit clause is derivable. We shall show now how an SL-resolution chain, starting with a negated query
—P can be turned upside down such that just these two unit clauses and no others are produced.

An SL-resolution chain: The corresponding forward resolution chain:
—P PQ
—T =S =ST
Q —QRS N—""

lemma w —S —-QRS

=

NN

ST l/
—-QR -RP
—T =S l/
QP PQ
L —

lemma = P

\ A\

—-R P
success

T

AN

Success

The “lemma generating” procedure works as follows:

The initial task —P activates C1 with head literal P.

C1 generates the subtask Q.

Q activates C2 with head literal —Q.

C2 activates the related subtasks R and S.

. The selection function selects S as first task to be activated.
6. S activates C3 with head literal —S.

wn =W =
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7. C3 generates the subtask T
8. T activates C4 with head literal —T.
9. C4 generates the subtask —S.
10. The merging mechanism recognizes that the current subtask —S is unifiable with the “sibling”
literal =S of the ancestor task T (step 7). —S is taken to be solved.
Now control has to go back to step S:
11. C4 informes the ancestor task T that the activation for —T succeeded, but with a merging step
beyond T. Therefore no lemma can be generated.
12. C3 informes the ancestor task S that the activation for —S succeeded.
Since the former merging step did not go beyond S, —S can be generated as a new lemma.
13. The remaining task R is activated.
14. R activates C5 with head literal —R.
15. CS generates the subtask P. )
16. The merging mechanism recognizes that the current subtask P is unifiable with the “sibling” literal P
of the ancestor task Q (step 2). P is taken to be solved.
Now control has to go back until step 1:
17. C5 informes the ancestor task R that the activation for —R succeeded, but with a merging step
beyond R. No lemma can be generated.
18. There are no further subtasks to be solved, therefore C2 informes the ancestor task Q that the
activation for —Q succeeded, but again with a merging step beyond Q.
19. C1 informes the initial task —P that the activation for P succeeded. Since the former merging step
did not reach beyond —P, P can be generated as a new lemma.

We have demonstrated that the SL-resolution scheme can be used in the same way as for Hom clauses to
design a task - subtask oriented query evaluation mechanism. Factoring and ancestor resolution can be
integrated by allowing access from subtasks to related tasks of their ancestor tasks. A restricted form of
lemma generation can also be integrated where the restrictions are determined by the “range” of factoring
operations. The refinements like query linking, query generalization and query instantiation, that have
been described for the Horn clause case, can also be incorporated into the general scheme.

This terminates our discussion of SL-resolution. We come back to this subject in chapter 6 where a
method for realizing SL-resolution on the basis of a clause graph datastructure is presented.
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4. Built in Operators

Predicate Logic has no means for assigning a predefined meaning to a certain symbol other than by an
actual axiomatization. For example the literal < (a b) may mean “a is less than b” as well as “john loves
mary”. Especially in deductive database applications there are frequently used symbols with a fixed
meaning, for example the arithmetic predicates and functions which we do not want to axiomatize
explicitly, as this burdens the user of a deductive system with the task of writing down the same axioms
for frequently occurring symbols over and over again and the system with the task of explicitly reasoning
about them. Often there are more efficient specialized deduction procedures. Thus, it is usual practice to
extend a logic by incorporating the special meaning of certain symbols directly into its semantics and to
augment its inference mechanisms such that they respect this extended semantics.

There are different possibilities for incorporating theories into a deduction system. All of them influence
the kind of deductions which are possible, either with special inference rules or with special unification

algorithms.

4.1 Theory Unification

Theory unification is an extension of ordinary unification. It incorporates certain properties of functions
into the unification algorithms and can be used wherever ordinary unification is used. Typically the
properties are such that they can be expressed by equations like the commutativity or the associativity
axiom or simple clauses like the symmetry axiom Pxy <> Pyx for a predicate P.

A theory unifier for two terms s and t and an equationally defined theory T is a substitution ¢ making the
two terms equal under the theory T: 6s =1 O, i.e. 0s = 6t holds in the theory T.

Example: Let T be the theory describing the symmetry of the predicate married: married(x y) <
married(y x). The substitution {x + tom} is a T-unifier for the atoms married(x jane) and married(jane
tom), which are not unifiable in the normal sense. Furthermore there are two T-unifiers for the atoms
married(x y) and married(tom jane), namely {x - tom, y » jane} and {y ~ tom, x - jane}. Both of
them are most general.

There are theories with at most one most general unifier (called unitary), finitely many most general
unifiers (called finjtary theories), infinitely many most general unifiers (called infinitary theories) and non
existing most general unifiers (called nullary theories). An example for a theory with infinitely many
most general unifiers is the theory of associativity: g(g(x y) z) = g(x g(y 2))).

Example: The terms g(a x) and g(x a) have the following sequence of unifiers: {x  a}, {x » g(a a)},
{x g(g(aa)a)}, ..., {x— g(...g(aa)...a)}, ... None of them is an instance of another one.

N 4.2 Theory Resolution

Theory resolution is a general scheme for directly exploiting the information about the meaning of
predicate symbols and function symbols in the calculus. In its general form it has been formulated by
Mark Stickel at SRI [St85] but there were several special theory resolution rules known before, All the
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inference rules mentioned above and some more are instances of this general scheme. As a motivation for
this scheme consider again the ordinary resolution rule for the ground case.

clausel: LvK
clause2: —-LvM

resolvent: KvM

The main argument in the proof of the soundness of this rule is that either L or —L must be false and
therefore either K or M must be true whenever clause 1 and clause 2 are both true, hence, the resolvent
must also be true in this case. The essential fact is that literals L and —L are always contradictory. The
syntactic criterion for a contradiction - equal atoms and different signs - can be generalized by
incorporating special knowledge about the semantics of the predicate and function symbols into the
notion of contradictory literals. Under the usual interpretation of the predicate <, for instance the literals
a<b and b<a are not syntactically, but in a sense semantically contradictory. Therefore a resolution step

clause 1: a<bvK

clause2: b<avM

resolvent: KvM

should also be possible. As a further generalization we can give up the restriction that only two clauses
are involved in a resolution step. The three literals a<b, b<c and —a<c are contradictory when the <
relation is transitive. In this case the following deduction

clause 1: a<b vK
clause 2: b<c vM
clause 3: —a<cv N

resolvent: KvMVN
involving three clauses at once makes also sense.

In general the scheme for this type of inference, called total narrow theory resolution looks as follows:

/MA

4

1o | F;;;;;iq clause 1 ) e
O L3 o is the “unifier

s X

§ 1

=50 ] ——

CHEES

£ {oL,...,0 L_} is contradicory

\(f I‘.\\\“ clause n : in the theory

total narrow
o Eﬁ;;;ﬂHHHHHH naa ES\EE:‘:N resolvent
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Besides total narrow theory resolution there is total wide theory resolution which incorporates factoring
and therefore uses more than one resolution literal per clause. In addition Stickel defined partial theory
resolution which uses not a set of contradictory resolution literals but a set of literals that allow to deduce
other literals. These additional literals, the “residue”, are inserted into the resolvent.

The general scheme for partial narrow theory resolution is illustrated in the following figure:

/G-I ;41 LW/% clause 1

ol
E 1
21 o[LffII[IIII] ~ clause2
g0
FE
e :\0' Lol clausen  GLA ... AcL_implies residuc
partial narrow
I VoA =+ NN\ theory resolvent
“—« ©
residue
A concrete example is : a<b P

Resolvent: a=b P Q
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5. Clause Graphs

In this chapter we introduce clause graphs, first as a datastructure and indexing mechanism for clauses
and resolution operations, and then as a means for further reducing the search space during the query

evaluation .

5.1. Clause Graphs as a Datastructure and Indexing Mechanism

Clause graphs have been used by R. Kowalski and others for representing clauses and resolution
operations. Literals and clauses form the nodes of the graph and the edges (links) indicate the resolution
possibilities. They are labeled with the corresponding unifiers. An example for a clause graph a la
Kowalski for the three clauses —Pga, Px v —Pfx v Qx and —Qgy v Pfy is:

lglk x- fx72 3 Xy
1 4 [j
X ga_ Qx X gy ]ng
— [ —
litcrag node clause node

The links 1,3 and 4 are ordinary resolution links, whereas link 2 is an “intemal link™ that connects
complementary weak unifiable literals (unifiable after having renamed the variables of one literal).
Internal links are in principle not necessary because they indicate resolutions with a renamed copy of the
same clause. As we shall see below they are useful for finding links connecting a new resolvent with
their own parent clauses.

Clause Node Bunches
Considering copies of clauses with renamed variables and constructing links between these copies has
only efficiency reasons, but is in principle not necessary for representing ordinary resolution operations.
Clause copies, however, can no longer be neglected in the extension of the clause graph idea to theory
resolution because a theory resolution operation may involve arbitrarily many copies of the same clause
at once. The second clause, a conditioned equation, in the example

P(g(a))

g(y) = gfy), Qly)

=P(g(f(f(f(a)))))

Q(a), Q(f(a)), Q(f(f(a)))
must be used in three different instantiations {y ~ a}, {y» f(a)} and {y ~ f(f(a))}in order to find out
that P(a), —P(g(f(f(f(a)))) and g(y) = g(f(y)) are contradictory. Therefore we introduced the notion of a
“clause node bunch” as a conceptual entity for representing an infinite source of variable disjoint copies

of a clause. A link may then connect different clause nodes in a clause node bunch.

Example r aliteral node bunch

a clause node bunch

(In an implementation only a finite number of clause nodes in a clause node bunch is usually generated at

atime and indicated by the corresponding variable renaming substitution. )
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I-links

Links in the most general version of clause graphs represent partial narrow theory resolution operations.
Therefore the so called “I-links” (Implication links) usually connect two groups of literal nodes, the
“antecedent” and the “succedent”, the first ones serving as resolution literals and the second ones serving

as residue:

I-link l I I | T M 7T is the set of “link substitutions”
antecedent  succedent The notion “unifier” is no longer adequate

because in general nothing will be “‘unified”.

The graphical notation of an I-link is supposed to reflect the semantics of the antecedent and succedent:
The conjunction of the T-instances of the antecedent literals implies the disjunction of the corresponding
instances of the succedent literals. Therefore antecedent literals must belong to different clauses (which
are conjunctively connected) or at least to different copies of a clause, whereas succedent literals should
belong to the same clause. Since literals of different clauses may be transferred to the same clause during
a resolution operation, I-links with succedent literals in different clauses are useful as well.

Examples | | x-b y
for I-links fa<bl [a2x] |a=b [ Pab | |Pcd) lazclb=d

yP ffa,y'o fa,y o a

Pgfffa

1 three elements of a
clause node bunch

R-links and T-links

Two special types of I-links, those with an empty succedent and with an empty antecedent respectively
are of particular interest. Links of the first type (Resolution links or R-links) indicate total narrow theory
resolutions and links of the second type (Tautology links or T-links) indicate actual or potential (after
instantiation) tautologies.

Examples _ T-link xpb T-link m
for R- and T-links [Pa] ljil‘;k —Px] Pb] [a<b[a=b[a>b]

F-Links
A third special type of I-links is also of particular interest, links connected to one clause node only and

with one antecedent literal node and at least one succedent literal node. Links with this structure represent
a generalization of the factoring operation: Since the antecedent literal implies the succedent literal or the
corresponding instances respecitvely and they are disjunctively connected, one can create an instance of
the clause where the antecedent literal is removed.

Examples - Xy | ; ;
for F-links [azbl a<b]a>Db)
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Link Bunches

An obvious extension to the link concept that is analog to the concept of clause node bunches is the
concept of “link bunches”. Just as a clause node bunch is an infinite source for variable disjoint copies of
a clause, a link bunch is an infinite source for copies of a link which are connected to the corresponding
copies of a clause in a clause node bunch.

Examples link bunchpsec— « ©
for link bunches: - =
HdPx 7] X
—Px | Pfx

In this chapter no further details of clause node bunches and link bunches need to be explained because
the main principles of the operations on clause graphs can be described on the clause node and link level.
Clause node bunches and link bunches come into play when dealing with the non-trivial cases, self
resolution, recursion etc., that make life hard and first order logic undecidable.

Link Substitutions

To improve conceptual clarity we consider the link substitutions as a - possibly infinite - set of ground
substitutions. For example the substitution {x ~ y} is taken to be a representation of the set of ground
substitutions {{x+~ a, y> a}, {x» b,y b}, {x+ f(a), y» f(a)}...}. This view has the advantage
that operations on substitutions which are necessary in the algorithms described below can be easily
expressed with set operations. The merging of substitutions for example turns out to be the intersection
of sets of ground substitutions. (As an example consider the merging of 6 = {x~ y} and 1= {x - a}
yielding {x~a, y—a). In the ground substitution representation we obtain this substitution by
intersecting {{x » a,y a}, {xp b,y b}, {x f(a), y- f(a)}...} with {{x » a,y a}, {x+ a,
yp b}, {xp a,yw f(a)}...})

As a further advantage we can use the set-difference operation on the sets of ground substitutions for
representing “all o-instances except those which are also T-instances”. The T-instances of a link with link
substitution ¢ might for example represent tautologous resolvents and should therefore be removed.

It is only a technical problem to find an adequate representation for these ground substitution sets in an
actual implementation.

5.2 Clause Graph Inference Rules

The inference rules for clause graphs given below define a complete deduction system which can be used
as an alternative to SL-resolution. In the database application however, we apply the inference rules
together with the clause graph reduction rules as an optimization procedure that works on the initial graph
and reduces the size of the graph such that during query evaluation the search paths between query and
database become smaller. In case there are no recursive predicates the optimization with clause graph
inference and reduction rules is powerful enough to generate immediate access form the query to the
database.

In the sequel only simplified versions of the inference and reduction rules are presented. The exact
formulations are technically more complicated, but do not show new principles.
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Clause Resolution (cres)

The “traditional” inference rule for clause graphs is clause resolution as proposed by R. Kowalski. It

consists of two parts, the generation of the resolvent and a mechanism for “inheriting” the links

connecting the new resolvent with the rest of the graph from the links connected to their parent clauses.

The inheritance mechanism avoids searching the whole graph for resolvable literals. The formulation of

the algorithms for partial narrow theory resolution is technically more complicated, but the ideas are the

same. A partial narrow resolution is indicated by an I-link: The antecedent literals are the resolution

literals and the succedent literals are the residue. The link substitution is just the resolution substitution

(unifier).

Clause graph resolution works as follows:

1. Generation of a partial narrow resolvent from an I-link:

- Form a new clause node by joining the remainders of the antecedent clause nodes without the ante-
cedent literal nodes themselves with the succedent literal nodes and applying the link substitution.

- Make the new clause node variable disjoint with all other clause nodes.

Examples for the generation of resolvents

resolution R-link resolution I-link
8 X b
| P [a<b) [a> bRD] [P]a<b a > x|a = b{Rx|
; 1
YSoluﬁ:r/ \isolur.ion /
resolvent = resolvent

2. Link Inheritance
The idea for the link inheritance mechanism is very simple: In order to connect a link with a literal node
of the resolvent, “grasp” a link connected to its parent literal node and “pull it down” to the resolvent

literal node. The link substitution for the new link can be computed from the link substitution of the old

link and the link substitution of the resolved link (substitution merging).
resolved link

Example
for link inheritance

[a>d
< link to be inherited

Ity A
- // '« inherited link
resolvent

Of course only a copy of the original link is manipulated in this way. The original link itself remains
untouched.

The next example demonstrates that this idea is powerful enough to get the internal links of the resolvent
as well as the link connecting the resolvent with its parent clauses.

Example link inheritance after resolution upon link 4
2

link inheritance
to the first literal
of the resolvent |Pgy|-Pfey’|Pfy’| resolvent
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link inheritance
to the second literal
of the resolvent | Pgy 1—|Pfgy I Pfy’l

link inheritance

to the third literal

of the resolvent l Pgy 1ﬂPfgﬂ Pfy |
gore

As a final operation the resolved link can be removed in order to inhibit a repetition of the resolution.
(This shall not be further elaborated, c.f. [Ei86].)

Explicit generation of clause graph resolvents is very expensive because usually hundreds of new links
must be generated besides the new clause. Since the literals in the resolvent are just instances of literals in
the parent clauses and the links to these literals are essentially copies of the original links, a resolvent
contains mostly redundant information. However, there may be resolvents which trigger some of the
reduction operations explained below and cause the removal of clauses and links. Thus, clause graph
resolution can be applied in certain situations in order to shrink the graph.

Link Resolution ((res)

Link resolution is the main inference rule on our version of clause graphs. Just as clause resolution
derives from a set of clauses a new clause, link resolution derives from a set of links and a single clause
anew link. The basic idea shall be explained with a few examples.

Consider the graph for the symmetry axiom {—Pxy, Pyx} and the two clauses {—Pab}, {Pba}.

The links 1 and 2 have compatible unifiers {x + a, y = b}. Therefore it is possible to combine these
links yielding a new link 1-2 between Pab and —Pba which contains the information that both literals ai
contradictory with respect to the symmetry of the predicate P. Thus, the symmetry clause has been
“compiled” into the theory and is now contained in the semantics of the new link 1-2.

In the next example we “compile” the transitivity axiom for the relation < into the theory by combining
the three binary links to one link connecting three literals. The corresponding theory resolvent is Pb. This
clause could also be deduced with the three binary resolutions indicated by the three links of the
transitivity axiom.
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[—x<y]—y<z| x<z | [-x<y|oy<z] x<z |

X af ye b ’“—’A\ fres vishb

yHV-zr—)c zr—)c--—--___’ - -3 |

H|a<v|\ 1b<c| l—|a<c| / [Pv]a<v] [b<c] |——.a<c]
\ -

- -

The principle for the general link resolution operation is:

Take a clause node and for each literal node in the clause take just one link which is connected with its
antecedent to the literal node. Compute the new “resolved” link by intersecting all the unifiers attached to
the links joining all parent literals except those in the selected clause.

@1 resolved link
oy olmczm...mon
11: oT...-_TT11

base clause node
(Of course the original links remain untouched. They can only be removed when all possible resolutions
with these links are executed.)

Example A sequence of link resolutions that proves the unsatisfiability of the clause set {{P,Q},
{=Q,P}, {—P,R}, {—R,—P} is shown in the next figures.

o [FIQ—EQF] e [P P
link resolution:
links 1,4 —1-4
EP[R R-P] P[R p]
The links 1, 2 and 4 can be removed because all possible combinations are executed in graph @.
O[P[Q] CQ P ®(P]Q] EQ P
link resolution: . .
. link resolution: 0
12O pas  ag meisde2ss 3§ g
(=P| R —2—1-R-P| BPIR| —1REP|

The links 1-2-3 and 1-4-5 contain the information that P is false in the theory generated by the clauses
{P, Q} and {—Q, P}. Note that a resolution of links connected with the same literal, as for example 1-2
with 3, includes an implicit factoring operation.

Finally the “empty link” is generated in graph ®. The empty link states that the empty set has no model
in the theory generated by the axioms. This is the elementary contradiction which indicates that the
axioms are unsatisfiable.

link resolution: ®

links 1-2-3-6, 14-5
—1-2-3-6-1-4-5,

the Tempty” Hinke

¢ = 1-2.3-6.14-5

[
Some more examples show what happens, when different kinds of links are combined.
The resolved link in the graph
[=x<y|—y<z| x<z | x<y|—y<z| x<z |
fres v b I_ ﬁ =1 F-link
[Pv] a<vi-b<c]| a<c | [Pv] a<vl-b<e] a<c |

is actually an F-link stating that a < b implies =b < ¢ or a < c. This information could be used to generate
a shorter instance {Pb, —b < ¢, a < ¢} of the second clause.
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The three links in the left graph

[-x<y|ay<z| x<z | [=x<y|—y<z| x<z |
= fres
[Pv [—a<bl-b<c| a<c | [Pv |--a<bl-b<c| a<c |

indicate that the second clause is subsumed by the transitivity clause. The corresponding combined
T-link in the right graph states that the second clause is a tautology in the theory of the first clause. This
example shows the very tight correlation between subsumption and tautology.

The two successive link resolutions in the example below generate a link which represents the
information that b<c implies a<c under the theory a<b and the transitivity of <. Using this link and the
parallel one, it can be recognized that the clause {b<c, Pc} subsumes {a<c, Pc}. A further link
resolution would produce a T-link containing the same information.

a<b a<b

a<b

[Fx<y|=y<z] x<z | = |[=x<y|-y<z| x<z | —  |x<y|-y<z| x<z |

[res [res

(The first operation is a link resolution on the unit clause a<b which simply disconnects the link from the

unit clause. The shortened link contains the information that the corresponding instance —a<b of —x<y is
false in the theory of the unit clause.) u

Link Factoring (ffac)

The link factoring rule is the analog to the clause factoring rule. It is applicable to a single link which is
connected to two or more renamed copies of the same literal node and generates a new link with fewer
adjacent literals, but a stronger instantiating substitution. In the example below the links 1-3 and 2-4,
must be factorized in order to generate the empty link in a subsequent link resolution.

[=Pax[-Pya] 2 —Pax|—Pya —Pax|—Pya
E % 13 24 v —E & . p
= P a R HEN 137 24
° g fres us a usa o & fac ura U a
== Visa & v a Vi a

The factorized links 1-3” and 2-4” are not equivalent with 1-3 and 2-4 respectively because they
instantiate both variables u and v with a, whereas the original links 1-3 and 2-4 leave one variable
uninstantiated.

R-Link Resolution (rfres)

R-link resolution is just the special case of link resolution where R-links only are combined. The
interesting thing about R-link resolution is, that this restricted inference rule together with the link
factoring rule is refutation complete, i.e. for each unsatisfiable clause set C there exists a sequence of
R-link resolutions and link factorings on some initial clause graph over C that terminates with the empty
link. All other operations on clause graphs are in principle not necessary, however, they can
considerably increase the efficiency of the deduction system.
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The Link Cut Rule (feut)

The link cut rule is derived from the cut rule of Gentzen’s sequence calculus which states that a new
sequence can be derived from two sequences by joining the antecedents and succedents and removing the
common parts of the succedent of the first sequence and the antecedent of the second sequence. In the
clause graph version this operation works very similarly: Two I-links with a common succedent and
antecedent literal node may be joined into one new link if the two link substitutions merge. The joined
link consists of the union of both antecedents and both succedents respectively, with the common literal

node removed:
I-link 1 I-link 2 new I-link

T1 *[’E2 N ’tlfYCz
[ | | leut | [ | |

An example for an application of the cut rule:

v 1 L

Link Resolution with Cut Rule (frescut)
The link cut rule can be combined with the link resolution rule giving a more powerful inference rule

which contains an implicit clause factoring operation and is as easy to handle as the link resolution rule
itself. As the example below suggests,
1| * | 2 leut 1-2 J—Z_ = [res 1-2|
[a<bla<bl [a>b] [a<bla<b| [a>b] [a<bla<b] [a>Db]
F-links, i.e. I-links which are connected to one clause node only, can be treated during a link resolution
like R-links, just forgetting their succedent literals. The justification for this rule is, that the succedent

literal nodes can be removed applying the cut rule to the F-link and the link that is connected to the
succedent literal node used in the link resolution. Another viewpoint of this rule is, that the link
resolution uses instead of the original clause node the instance of the clause where the corresponding
antecedent literal node of the F-link has been removed.

Subsumption Factoring (subfac)

There are clauses which are subsumed by one of their own factors. Pax v Paa v Qx v Qa for instance is
subsumed by its factor {Paa, Qa} which can be generated just by removing the superfluous literals Pax
and Qx from the original clause. The removal of superfluous literal nodes together with all adjacent links
may considerably decrease the search space and should be performed as early as possible. Therefore this
operation, called subsumption factoring, has the status of a separate inference rule, although it could be
achieved with a (more expensive) resolution followed by a clause subsumption operation. Subsumption
factoring is applicable if the clause can be partitioned into two parts L and K such that all literals in L
may be removed by resolution and factoring operations without adding new literals and instantiating the
literals in K. A subsumption factoring possibility is indicated by a group of F-links and unary R-links
with a non empty common link substitution that instantiates only the antecedent literals. A typical
situation of this kind looks as follows:

Ty

. #3$ T:Tlmtzm3m4m5¢¢
||| vy

NEANEEENAE NN T instantiates L only
N———

L can be removed
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An example where link resolution makes a subsumption factoring step applicable is:
[ —Pay[Qy| —Pay| Q| —Pa
“fres | Xra ; suz;‘ac
[Pxa] Rx | Qa|Ra] [PxaRx[Qa[Ra]
Lx-af [xoa®

5.3. Clause Graph Reduction Rules

The clause graph inference rules defined above introduce new objects into the graph that represent
information explicitly which was contained implicitly in the previous state of the graph. Older clauses
and links may therefore become worthless because their information is fully contained in derived links
and clauses. They should be removed as soon as possible. In this section we therefore present a number
of rules for removing redundant objects from the graph. An object - a clause, a link or a link substitution
- is redundant if its removal turns a graph which is refutable by r-link resolution and link factoring into a
graph which is still refutable with these two rules.

In the sequel we mean by a “refutable clause graph” a clause graph which is refutable by the r-link
resolution rule and the link factoring rule.

Clause Deletion Rules

Clause Purity (cpur)

In the original definition of the clause purity rule, a clause can be removed, if one of its literals is not
connected to any R-link. The reason is that this literal would remain part of any further resolvent with
this clause, and could therefore never be used to generate the empty clause. The clause purity condition
can be slightly weakened: A clause can be removed if it contains a literal that is connected at most with
some recursive R-links. (Recursive R-links connect different literal nodes of different copies of a clause
node.)

Example pure clause nodes

i ~ pure literal nodes

h-- < recursive R-links
Pure clause nodes can never be used in a refutation because it can be shown that the link resolution rule
transforms recursive links always into recursive links, but the last usage of a clause node in a refutation

must involve nonrecursive links only.

Clause Tautology (ctaw)

A tautologous clause is true in every interpretation and can therefore be removed from a set of
unsatisfiable clauses without losing its unsatisfiability. A general clause may be regarded as a
representation for a certain set of its ground instances, some of those may be tautologies, some others
may not. For example the ground instances of {Px,—Py} which instantiate the variables x and y with
equal terms are tautologies and can be removed, all others are not. The whole clause can be removed if
no non tautologous ground instances remain. The general case, where only some ground instances can
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be removed makes not much sense in the basic resolution calculus because the clause still remains part of
the clause set. In the clause graph environment, however, this rule can be used to enable further link

deletions. Consider the following example:

¢ ¥
X~ a
C: [PxEPYIOoH— oo

All substitutions which are instances of x - y generate tautologous instances of the clause C. If these
substitutions are marked to be illegal all the link substitutions of the attached links which are themselves
instances of the removed substitutions become illegal too and must be removed as well. In the example
above, the whole R-link must be removed because {x — a, y+ a} is an instance of the “tautologous
substitution” {x = y}.

The ctau-rule consists of three parts: recognition - completion - deletion.

» Recognition

Tautologous instances of a clause are indicated by internal T-links, i.e. T-links which are connected only
with the corresponding clause node. All link substitutions of such a T-link denote tautologous instances
of the clause which therefore can be removed. The whole clause can be removed if the link substitution is

empty.
Tautology Recognition: A typical situation, an example:
T l l l
TheT instances
L1 1 1 1 1 1 —ctau areredudant [a<bla=bla>bl R] tautology

(In an actual implementation the redundant instances of a clause must be stored as a set of substitutions
which is a special component of the clause.)

» Completion

A tautologous clause can be removed from an unsatisfiable clause set without losing the unsatisfiability.
As the following example demonstrates, this does not imply, that a tautologous clause node can be
removed without further provisions from a refutable clause graph without losing its refutability:

R]  EX

a refutable the clause graph is

clause graph

no longer refutable
after deletion of the tautology

The problem is the missing “bridge link” between R and —R that would allow for another refutation.
(This link might have been removed in previous steps by some link reduction rules.) One could either
renounce on removing tautologies if such links are missing, or insert them before the clause node is
removed. Since removing a clause node usually shrinks the search space much more than the insertion of
some links increases it, we decided to formulate the clause tautology rule in the second way: tautology
removal with link insertion. Which of the links must actually be inserted before a tautology can be
removed, depends on the structure of the clause node s T-links.

> Deletion:

All “tautologous” instances of the clause are taken to be illegal. If there are no remaining clause
instances, the whole clause node is deleted. Furthermore the link substitutions of all adjacent links which
are instances of the illegal clause instances are also removed. Links with an empty link substitution are
deleted altogether.
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Clause Subsumption (csub)

A clause of an unsatisfiable clause set C which is implied by some other clauses in C can be removed
without losing unsatisfiability. A full application of this deletion rule is not only impossible because of
the undecidability of this implication problem, but it is also undesirable because derived clauses may be
very useful in finding the refutation. Therefore one is interested only in a restricted version where the
implication can be easily detected (subsumption) and where the removal of the implied clause does not
lengthen the refutation. Similar to the clause tautology rule, we do not only consider the case where a
subsumed clause can be completely removed, but it is also possible to declare some instances of a clause
as illegal which are subsumed by another clause. This rule can trigger further link deletions, as is shown

in the next example:
C: [Pz[RZ] All instances of D where x and y become equal
Yxoy are subsumed by C.
The R-link can therefore be removed.

%emove
X a
D [PRy[Qs}————{-0ad

The clause subsumption rule consists also of the three parts: recognition - completion - deletion:

» Recognition:

In the environment of clause graphs, a clause subsumption situation can be easily detected using binary
I-links: There must be a set of binary I-links with compatible link substitutions which map the literal
nodes of the subsumer injectively to the literal nodes of the subsumed clause:

A typical situation: an example:
subsumer
T =T, T3 @
1" ™2
x> b ~b
Tl 12 T3 —>csu5

The T instances
subsumed [J T | [ [ ] areredundant

a< bl R [Pb] %2 remove

» Completion:

Again clause nodes which are logically superfluous cannot be removed from a clause graph without
further ceremony. Due to certain link deletion rules, the subsumer may have lost some links which are
necessary for a refutation without the subsumed clause node or the removed instances, respectively.
These links must be reinserted before the subsumed clause node can be removed. The example below
shows such a situation. Before the subsumed clause node Pa can be removed, a link between —Pa and
Px must be inserted into the graph.

reinsert this link

........
arefutable Tesub pe graph is no longer refutable unless
clause graph | Pa| subsumed the link is reinserted.
% remove

» Deletion:

All “subsumed” clause instances are taken to be illegal. If there are no remaining clause instances, the
whole clause node is deleted. Furthermore the link substitutions of all adjacent links which are instances
of the illegal clause instances are also removed. Links with an empty link substitution are completely
deleted.
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Link Deletion Rules

A link or at least some of its link substitutions may be removed either if it can be shown that the link
cannot contribute to a refutation or if there is some other link in the graph which can take over its role in a

refutation.

Link Incompatibility (finc)

The general idea of this deletion rule is to instantiate the link substitutions such that they represent only
those ground substitutions which can actually be used in a link resolution. The example below illustrates
the idea.

The only possible link resolution

is 2,3,5 yielding a merge substitution
x+ b, y » b. The link substitution of
link 5 may therefore be reduced to

x— b,y b.

The rule works as follows: Given a link, select one of its antecedent clause nodes as base clause node.
Compute the merge substitutions of all possible link resolutions with this link and the selected base
clause node. Reduce the link substitutions to the computed set of merge substitutions.

Of course this might be very expensive, but it may be used to start a constraint propagation sequence
which can cause a very helpful snowball effect of further deletions.

Example Constraint propagation with the link incompatibility rule.

removed removed

Parallel Link - Link - Subsumption (pfsup)
Consider the following situation:

m two link m

3 —resultions —P» 3
EHEER{P[5] "2 ER

The combined link 1-2 contains the information that the literal P must be false, whereas the link 3

contains only the information that P and —P are contradictory. Link 3 is subsumed by link 1-2 and can
therefore be removed without losing information. The pfsub rule allows the deletion of any link which is
“larger” than another one, i.e. its antecedent and succedent literal nodes are supersets of the antecedent
and succedent literal nodes of a “parallel” link and its link substitution is an instance of the link
substitution of the parallel link.
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Link Tautology ({taw)

The link tautology rule is a consequent extension of the clause tautology rule. Each link represents a
resolvent and if this resolvent has tautologous instances which can be removed, these instances should
already be removed from the link substitution. Consider for instance the following graph:

The link 1 represents a tautologous resolvent and is therefore useless. Since resolution is not the main
operation of our procedure, we need another justification for such a removal. And in fact, link
resolutions involving the corresponding instance of the link substitution of link 1 and its successors
generate a combined link which is subsumed by the “bridge link™ 4:

* XPy * XPy

S, PRI ORI -, BRI EGERY
-

a

wx) A 5 235 &

4 subsumes

Fpal FRa 4 Ra EPa] ERa———Ra]

This effect is no coincidence and “tautologous” instances can be removed from link substitutions -

provided the graph contains enough “bridge links”.

Link tautologies can easily be recognized using T-links which are parallel to the considered R-link. A
typical situation is shown below.
\ AR | v A v
11 | [ 1| 1 pau | | 1 L | |
[o | I | o\ | | |

This terminates our list of operations on clause graphs. Inventing further useful operations is subject to
ongoing research.
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6. Using Clause Graphs for Supporting Database Query Evaluation.

In order to apply clause graphs in a deductive database environment we need three additional

components:

1. There must be an interface between the clause graph and the database such that unit clauses need not
be part of the graph, but can be accessed via this interface. For every relation in the database we assume
such an interface that can be viewed from the graph as one additional unit clause (DB-unit) which is
unifiable with every literal in the database with the corresponding predicate. Such a DB-unit is a
representative for all database entries with the corresponding relation and must therefore actually be a
clause node bunch, i.e. a source for arbitrary many copies of the clause.

2. There must be a “local database™ which temporarily stores some deduced unit clauses.

3. There must be a user interface for submitting the queries to the system. The user interface must also be
viewed from the graph as some additional negated clauses (U-units). The U-units are representatives for
all potential queries to the system.

An example: Assume there are three relations “brother”, “sister” and “father” in the database and an
additional predicate “grandfather” in the clauses. The initial state of the system looks as follows:

. N\
U-units &=

User
—Brother(u v) Interface

Clause Graph

[ links \

-[ —Grandfather(u vj

-

Father(x Brother(x Sister(x
[Father(x )] | || Xy [Sister® V)| | 2 5o
local database local database local database
"\ DBnterface ) \ DB-Interface \ DBnterface | N
Database
I I 1 T T T 1
I I I ] I 1 1
I I [ T - T T T 1 1
I I [ T T T T T - T -1
I I I [ T T T T T T -1
II IIIIIIITJllllllljlll
4

The U-units —Father(u v) etc. represent all negated queries that can be submitted to the system, i.e. the
user can actually ask “who is the father of whom?”. If also negative queries are to be allowed, i.e.
queries “‘who is not the father of whom” then also positive U-units ‘“Father(x y)” must be added to the
unser interface.
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6.1 Initial Optimizations

An initial clause graph may be optimized using the clause graph inference rules and reduction rules in the
following way:
1. Apply the reduction rules for clauses and links:
- clause purity
- clause tautology
- clause subsumption
- link incompatibility
- link tautology
- parallel link - link subsumption
2. For all clauses without internal links (links to copies of the clause):
- Apply the link resolution rule to all combinations of links connected to this clause.
Remove the clause afterwards.
- Apply again the reduction rules.
This may cause further deletions of internal links and therefore make step 2 applicable to new
clauses.
3. Create new resolvents only when enough reduction operations are applicable to the new graph
such that the final graph is smaller in size than the original one.

As an example consider a graph containing the symmetry axiom for the predicate “married”.

Initial v Tlink y
clause graph |-1married(x y) | married(y x)] =1 recursive clause
, [ Rdink | ‘
R-link tautologous R-link

( w |—1married(w z)| —single(w) |

- R-link
k DB-interface J
single(w”) |

married(tom jane)

user interface

The link tautology reduction rule recognizes and removes the tautologous R-link. That means the system
recognizes that the recursive symmetry axiom need not be applied recursively because recursive
application reproduces the original result. After removing this tautologous internal link, the link
resolution rule can be applied to both clauses.
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clause graph after
link tautology removal
and a first link resolution

i s e
%ﬁMﬁﬁﬁ% &3 remove

combined R-link U W, Ve 2
U 2z, Vo W
married(u v) I—imarried(w z)| —single(w) |
R-link
L DB-interface J

| single(w”) |

married(tom jane)

user interface

clause graph after remove
a second link combination B
combined R-link et f/" Syl
T A P S A

ues woor
k DB-interface I] Ve w

single(w”)

user interface

married(tom jane)

A negated user query “single(jane)?” can now be directly translated into an access “married(u,jane)?” to
the database. The two clauses are no longer necessary and may be removed.

It is noted that in case the clause set contains no recursive predicates, it is always possible to transform
the initial clause graph into a graph containing only R-links between the U-units and the DB-units. That
means an actual query can be immediately translated into a database access. The answers of the database
can immediately be transformed into answers of the query. No further inferences are necessary.

6.2 The Run Time System

A query can be evaluated using the procedural view of the optimized SL-resolution as proposed in
chapter 3 and using the links in the optimized clause graph as datapaths that transfer tasks into subtask
and collect the answers. The basic idea for using an R-link as datapath for tasks is as follows:

Assume an R-link connects a clause D with k clauses Cys---,Cy as indicated below
R-link

L1y Lin; Ly Lon,| ... |L Lin, K
G Ck D

(Let us assume for the moment that all clauses are ground.)

Assume further the current task is K, i.e. K is to be refuted. Since the literals connected by the R-link are
contradictory, this task can be transformed into the k queries L;4,...,Ly 4, i.e. Lyq,...,Ly4 are to be
proved. Since clauses are disjunctions of literals, each of these queries L;; can then be transferred into
the tasks to refute L,,...,L; . and the process continues with the links adjacent to the literal nodes Lij
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until the DB-interface has been reached and a query can be answered directly. When for a given query
L, the corresponding subtasks succeeded, L;; has been proved and as a side effect L;; can be added as a
lemma to the local database. Furthermore when all queries Lq1,....L4q have been answered in this way,
the literal K has been refuted and therefore —K must hold and can also be added as a lemma to the loca
database.

As a concrete example assume the current task is to refute a>c and the situation in the graph is as follows:

[ ]
La<b|P|  [b<c]Q]

The R-link transfers this task a>c into the two queries a<b and b<c. These two queries are then
transferred into the corresponding tasks to refute P and Q. As soon as P and Q have been refuted, a<b,

b<c and —a>c have been proved and can be added as lemmata.

In the non-ground case when a link substitution 7 is attached to the R-link, a task oK is transferred into
the k queries (MT)Ly,..., (6NT)Ly 4. Each of these queries (6NT)Ly; is then transferred into the tasks
to refute (GﬁT)Liz,. ves (GﬁT)Luu

The factoring and ancestor resolution operations which are necessary in the non Horn case are indicated
by I-links with nonempty consequence literals. When there is such an I-link pointing to a literal node
which is already processed in the current search path, these operations are realized by simply stopping
the splitting of the current task into subtasks and considering the current task (or corresponding instances
respectively) to be solved already. The justification is that a variant of the current task is already
processed in the search path that lead to the current task and each answer to this task is also an answer to
the current task.

A typical dataflow during query evaluation is visualized in the figure below. The arrows denote the
direction of the splitting of tasks into subtasks. In the opposite direction the answers of the subtasks are
collected and combined to answers of the supertasks.

user interface
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7. A Prototype Implementation

In this section an implementation of a deductive query evaluation mechanism is described which,
however, is currently still restricted to Horn clauses and does not yet use clause graphs as the basic
datastructure. (To read this chapter, it is therefore best to forget all previous paragraphs after 3.1.2,
SL.-resolution for Horn clauses.) The main purpose of this implementation is to test the optimizations of
SL-resolution such as lemma generation, query linking etc. and the selection strategies on nontrivial
examples. Furthermore the usefulness of advanced implementation techniques like object oriented
programming, demons etc. was to be evaluated.

7.1 Object Oriented Programming

The basic programming paradigm we used to implement the deductive database retrieval mechanism is
object oriented programming. Since the control flow in the system is extremely data driven, the object
oriented view is in this case a natural and elegant means to describe its working.

In most object oriented programming languages, there are object classes, objects, methods and
messages. An object class is a datastructure definition in the usual sense, i.e. a description of the objects
to be manipulated and the algorithms, usually called methods, working on these objects. What is specific
to the object oriented approach is the fact that an algorithm realized as a method is not a function that gets
an object belonging to the given class (together with other parameters) as an argument and reacts in some
way, but the piece of code representing the method is attached to the object itself and activated by
sending a “message” to this object. Therefore an object, as an instance of an object class, is an n-tuple
(a;,...,a;) of internal values together with a set of methods which are identified with method names.
Method names must be unique only within one object class. That offers the chance to define object
classes sharing the names of methods which do different, but in some more abstract sense analogous
things, with other object classes. Typical examples are streams, i.e. data channels. For instance one
stream class may be linked to terminals, another one to files on a disk. Both have to react on a request to
print something with completely different actions, but the program that wants to print need not know
“anything about the structure of the stream. It only sends a “print” message with the string to be printed as
an argument, and the overall control mechanism guarantees that the particular print method of the stream
the message was addressed to is applied to the argument.
(We did not mention the inheritance mechanisms which are part of most object oriented programming
languages because they are not necessary for the rest of the paper.)
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7.2 The System Components

The main components of the system are:
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Datastructures

The Database Interface

We assume the existence of an interface to a relational database that answers to a query in form of a
positive literal by returning all instances of this literal in the database. A query might be for example
Loves(John x)? and a possible answer might be {Loves(John Mary), Loves(John Sue)}. More
complicated qﬁeries, like for instance Loves(John x) A Loves(x Tom)? do not occur. (It is only a
technijcal problem to extend the inference mechanism such that also queries of this kind may occur which
can exploit the query optimization facilities of the database)

Term and Termlist Stores

A term or termlist store is very similar to a relational database. The - non-ground - terms in a term or
termlist store, however, are indexed such that for a given term (or termlist) s there is fast access to all
instances of s, all terms which are unifiable with s, all terms which are renamed variants of s and all
terms which are more general than s. Operations like “insert s if it is not an instance (renamed variant) of
an already existing term in the store” or “remove all terms which are instances of s from the store” etc.
are available. It is noted that atoms are also represented as terms and therefore they can be inserted into a
term store as well. Term and termlist stores are used at various places in the deductive database retrieval
mechanism to store temporary information. ;

It is beyond the scope of this paper to describe the ifxtcmal structure of these stores and the algorithms
working on them. %

42



Clauses
The object class “clause” represents Homn clauses with some additional information attached to them. A

clause basically consists of four components:

head-atom

body-atoms

variables

query codomain termlist store.

The component “variables” is a list of variables occurring in the clause. The ordering of the variables in
this list is arbitrary but fixed.

The component “query codomain termlist store” is a termlist store and stores information about previous
activations of the clause in order to prevent superfluous activations of the clause as follows: When the
clause is requested to deduce cG-instances of the head-atom for some substitution ¢, then the 6-instance
of the component “variables”, which is just the codomain of ¢ restricted to the clause’s variables is
inserted into the query codomain termlist store.

An example:

Consider the clause C := P(f(x) z) & P(x y) AP(y z)

The representation of C as a “clause” object is

head-atom = P(f(x) z)
body-atoms = {P(xy), Py 2)}
variables = (xy2z)

The initial query codomain termlist store is empty.

When for example a request to deduce c-instances with ¢ := {x > a, z+~ g(v)}, i.e. instances of
P(f(a) g(v)}, is sent to the clause, then the termlist 6(x y z) = (a y g(v)) is inserted into its query
codomain termlist store. Another request with 6= {x - a, z+ g(b)} which is an instance of the
previous one can then be rejected because 6°(x y z) = (a y g(b)) can easily be recognized as an instance
of (ay g(v)). (The overall control mechanism ensures that the answers to the more general request are
automatically forwarded to the rejected request.)

Fact Set

The object class “fact set” is used to store deduced unit clauses. It consists of the two components:

fact term store
query demons

The first component is a term store which actually contains the atoms. The second component is the list

of literal queries (see object class “literal query” below) waiting for new facts to be inserted into the fact
set.
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Queries
We distinguish two types of queries literal queries and clause queries.

Literal Queries
An object of this class represents a request to deduce instances of a given atom wherever it is possible.
Since a query has various relations to other objects, it consists of a whole bunch of components:

clause

atom

general substitution
instantiated substitution
sibling queries

more special queries
more general query
previous answers

For illustrating the components of a literal query with examples, we refer again to the clause
C:=P{(x)z) = P(xy) AP(y 2)

Assume C has been requested to deduce G-instances of the head literal P(f(x) z) with ¢ := {x » a,z

g(v)}. This causes the generation of two literal queries Q, and Q,, derived from the c-instances P(a y)

and P(y g(v)) of the two body atoms of C. As soon as for example Q, is told that the new fact P(ab) has

been derived, Q, will be instantiated to the query Q,- for the atom P(b g(v)) such that the answers to Q,-

are compatible with the answer P(ab) to Q;.

“Clause” is the clause that caused the activation of the query.
“Clause” for Q,, Q, and Q,- is the object representing the clause C.

“Atom” is the original atom in the requesting clause the query is an instance of.
Atom of Q, is P(x y) and
atom of Q, and Q,-is P(y z).

“General substitution” gathers the combined substitution for the UR-resolution step. It is represented as a
codomain termlist with the variables of the clause being the domain termlist.
When the variables of the clause object representing C are (X, y, z) then

general substitution of Q, and Q, is (a, y, z) and

general substitution of Q,-is (a, b, z).

“Instantiated substitution” gathers the combined substitution resulting from the initial substitution given
to the requesting clause and the answers to parts of the sibling queries. It is also represented as a
codomain termlist with the variables of the clause being the domain termlist.

When the variables of the clause object representing C are (x, y, z) then

instantiated substitution of Q, and Q, is (a, y, g(v)) and

instantiated substitution of Q,- is (a, b, g(v)).
It is noted that the literal which represents the actual query is the “Instantiated substitution”-instance of
atom.



(“Instantiated substitution” is used to ensure that only those subqueries are generated which answer the
original query whereas “general substitution” is used to deduce the full UR-resolvent as explained in the
“triggered UR-resolution” section of chapter 3.)

“Sibling queries” is the list of queries that are still to be served in order to enable a full UR-resolution
step.
Sibling queries of Q; is {Q,} and
sibling queries of Q, is {Q,} and
sibling queries of Q,-is {}.
(The information about the answer P(ab) to Q; that caused the instantiation of Q, to Q,- has been
gathered in the general and instantiated substitutions of Q,-.)

“More special queries” is a list of other queries whose instantiated atom is an instance of the current
query s instantiated atom. Answers to the current query are automatically forwarded to the queries in this
list. In our example, Q,- is not in the “more special queries” list of Q, although Q,-’s instantiated atom is
an instance of Q,’s. This has to do with the fact that Q, will never be activated itself, but only used to
generate instances fitting the answers of Q;. See below for more details.

“More general query” contains the query from which the current query gets its answers forwarded, if
there are some. If a query Q, contains a query Qj in its “waiting more special queries” then Q; is the
“more general query” of Qj. This link between queries is necessary when a query is killed.

“Answers” is a list which gathers all answer atoms to the query. This list must be available when a query
Q, has gathered some answers and at a later time another query Qj is generated and linked to Q, telling Q,
to forward all its answers to Qj. Since Qj never receives information from the database or the fact set
directly, this is the only channel to get previously retrieved facts.

The instantiated atom of a query, i.e. the actual atom that represents the query can be computed by
applying the instantiated substitution to the query’s atom. Therefore it need not be explicitly stored.

Clause Queries
A clause query represents a particular request to a particular clause.
The components of a clause query are:

clause
substitution

requesting query
“Clause” is a clause object.

“Substitution” is the restricted codomain of the unifier for the head atom of the clause and the instantiated
atom of the requesting query. The variables of the clause represent the corresponding domain of the
substitution.

“Requesting query” is the query that caused the activation of this clause.
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Query Store

In order to find queries which can be linked to a given query, i.e. which ask for a more general atom we
must store all relevant queries such that for a given query there is fast access to all more general queries.
We use a term store that stores for each query its instantiated atom and attaches the query itself as an

associated property. (Term stores may attach properties to each term.)

Initial Query
An object of this type represents the initial query to the system. Its components are:

body atoms
answer substitutions

“Body atoms” is just the list of atoms of the query clause.

“Answer substitutions” gathers the set of final answer substitutions.

An initial query is in principle nothing else than a literal query. It is however responsible for counting the
number of generated answers and aborting the process when - according to a user specification - enough
answers have been generated.

The Agenda
The agenda is a set of queries.

7.3 Algorithms

Our approach is data driven, that means, once activated the system acts by creating objects and
exchanging messages between objects. Control is therefore local to each object which decides for itself
what to do next. There is only a rudimentary global control structure consisting of the select - remove -
activate loop of the agenda. The behaviour of the whole system can therefore only be described by
presenting the set of methods associated with each object class.

The Database Interface
We need only the method “retrieve(atom)” returning the set of atoms in the database which are instances

of its atom.

Term and Termlist Stores

We need methods
insert (s) inserts s into the store
insert if no variant (s) inserts s if no renamed variant of s is in the store
insert if not subsumed (s) inserts s if there is no more general term in the store

insert with backward subsumption(s) inserts s if it is not subsumed and removes all t’s which are
subsumed by s
remove s from the store
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return s if it is in the store (together with its associated properties)
return the first or all variants of s

return the first or all instances of s

return the first or all more general terms than s.

Clauses

Method :activate (query)

This method checks if the clause may satisfy the query, i.e. if the head atom is unifiable with the
instantiated atom of the query and if there is no previous more general activation of the clause. In the
positive case a clause query is generated and inserted into the agenda. The query’s instantiated atom is
inserted into the clause’s query codomain termlist store.

Method :new-substitution (substitution-codomain)

A :new-substitution message tells the clause that a UR-resolution step can be performed because a
simultaneous unifier for the body atoms and appropriate unit clauses has been computed. Substitution-
codomain is the part of the unifier, together with the clause’s variables as the corresponding domain
which is relevant to the clause. (Substitution components of variables in the used unit clauses are
irrelevant.) The clause generates the new unit clause by instantiating its head atom and sends it to the fact

set.

Fact Set

Method :insert (atom)

An :insert message tells the fact set that a new unit clause has been deduced and can be stored for later
use. The atom is inserted into the fact term store with forward and backward subsumption test. That
means it is just ignored if a more general atom is already in the fact term store. On the other hand, if it is
not ignored all its instances in the fact term store are eliminated.

Finally if the atom is successfully inserted into the fact term store, a message :mew-fact (atom) is sent to
all waiting queries in the fact-set’s query demons list. All demon queries responding that they are fully
satisfied now are removed from the query demons list.

Method :retrieve (query)

A :retrieve message is a request to send all atoms in the fact set which are unifiable with the query’s
instantiated atom to the query. If the query does not respond at least once that it is fully satisfied now, it
is inserted into the fact set’s query demons list. The :retrieve message responds with a flag indicating
whether the query has been fully satisfied or not.
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Literal Queries

Method :activate
The :activate message is sent by the agenda to the selected query. It is processed as follows:
1. A :retrieve message is sent to the fact set
(which sends all suitable unit clauses to the query and installs the query as a query demon.)
2. If the query has not been fully satisfied
a :retrieve message is sent to the database (which also sends all suitable unit clauses to the query.)
3. If the query still has not been fully satisfied
:activate messages are sent to all clauses with unifiable head atoms.
If there is no such clause the query is killed (thus removed as query demon from the fact set.)

Method :new-fact (atom)

The atom is renamed, i.e. each variable is replaced by a new one, and unified with the query’s
instantiated atom. If it is not unifiable nothing else happens.

If the new atom can be accepted there are two main cases to be considered:

1. If the query has no further sibling queries this means that the atom is the last one to complete an
UR-resolution step. The atom is unified with the query’s original atom, i.e. the corresponding body
atom of the original clause that generated the query. The unifier is applied to the query’s general
substitution yielding the final substitution for the UR-resolution step. This step is executed by sending a
:new-substitution message with the final substitution as argument to the query s requesting clause.

2. If there are still sibling queries they are now instantiated by copying the old queries, replacing the
general substitution and the instantiated substitution with their corresponding instances, and removing
the current query from the list of sibling queries of the instantiated queries. The new bunch of sibling
queries must be installed now by the function install-sibling-queries (see below).

Finally the atom is forwarded to all more special queries and then inserted into the query’s answers list.
If the query s instantiated atom is an instance of atom then the query is fully satisfied. It kills itself and
the answer to the :new-fact message is “fully-satisfied” in this case.

We illustrate the method with an example.

Consider again the clause C :=P(f(x) z) < P(x y) A P(y z) with a “variables” list (x y 2).

Assume the clause has been requested to deduce instances of P(f(a) g(v)). Initially it generates the two
related queries Q, and Q,. Their components are:

Q,: atom: P(xy) Q,: atom: P(y z)
sibling queries Q, sibling queries Q
general substitution: (xyz) general substitution: (xyz)
instantiated substitution: (a y g(v)) instantiated substitution: (ay g(v))

(instantiated atom: P(ay) instantiated atom: P(y g(v)))

A message :new-fact (P(a b)) sent to Q, is processed as follows:
P(ab) is unified with P(a y) yielding the unifier{y ~ b}, i.e. the atom can be accepted. Since Q, has still
sibling queries, Q, must be instantiated as follows:

Q,: atom: P(y z)
sibling queries {}
general substitution: (abz) (The unifier of P(a b) and P(x y)
applied to the general substitution of Q,.)
instantiated substitution: (a b g(v)) (instantiated atom: P(b g(v)))
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A message :new-fact (P(b w)) sent to Q,- is processed as follows: P(b w) is renamed to P(b w"). (This is
in general necessary to avoid variable conflicts when the same literal can be used to answer several
related queries.)

Since P(b w") is unifiable with P(b g(v)) and there are no sibling queries, the unifier of P(b w”) with the
original atom P(y z) is applied to the general substitution (a b z) yielding (a b-w"). This substitution
codomain is sent to the requesting clause which can now generate the lemma P(f(a) w”).

Method :link (more-special-query)
The more-special-query is inserted into the query’s “more special queries” list.
All atoms in the answers list are sent to the more-special-query with the new-fact message.

Method :kill

A query is killed either if it is fully satisfied or if there is no unifiable clause head.

Killing a query means deleting it as well as all its sibling queries and all its more special queries.
Furthermore the killed queries must be removed from all the relevant lists.

Function install-sibling-queries (queries)

This function selects one of the queries and usually it inserts it into the agenda.

First of all it is tested if one of the queries can be linked to a more general query by scanning the query
store for a more general query and sending a :link message. If no linking is possible, the query
selection function is applied to select the query to be activated first. Usually the “most instantiated”
query is selected. In most examples this is the query with fewest number of variables in its instantiated
atom. For deeply nested terms, however, the nesting depth must also influence the selection. In case
query generalization is activated and the selected query Q exceeds the corresponding limit, a
generalized query QG is created by replacing the constants in the selected query “s instantiated atom with
variables. Q is linked to QG and QG is inserted into the agenda and the query store. When no query
generalization is possible, Q itself is inserted into the agenda and the query store.

Clause Queries

Method :activate

A bunch of sibling queries is generated from the body atoms in the clause query’s clause. The clause
query s substitution codomain becomes their combined substitution codomain. They are installed with
install-sibling-queries. Activating a clause query therefore means to link a new query to an old one or to
insert a new query into the agenda. Nothing more happens.

Query Store
Since the query store is just a term store, all operations on term stores are available.
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Initial Query

Method :activate
This method is identical with the :activate method for clause queries except that the combined substitution
codomain for the new queries is the identity.

Method :new-substitution (substitution-codomain)

This method is similar to the :new-substitution method for clauses. It tells the query that all queries
generated form the query clause’s atoms have succeeded in deducing compatible unit clauses. Therefore
substitution-codomain with the query clauses’s variables as the corresponding domain represents an
answer substitution. The method gathers the answer substitutions and terminates the process depending
on the user’s requirements.

Agenda

Besides the functions for inserting and removing tasks there is one function that performs the overall
select-remove-activate loop. A query is selected according to the task selection function. The task
selection function computes for both literal queries and clause queries a numerical value by combining
some characteristic values of the query with heuristic parameters as follows:

heuristic-value =

Csiblings * number of related queries (or number of body atoms respectively)
+  Cyariables * number of variables in the instantiated atom
+ Caepin * depth in the search tree
+ Clinking * number special queries linked to the current one (0 for clause queries.)

The query with smallest heuristic value is selected.

Function Query (clause maximum-number-of-answers)

This is the toplevel function which submits a user query to the system. The system is started as follows:
1. From the clause a query clause object is generated.

2. An :activate message is sent to this query clause (which puts one query into the agenda.)

3. Control is passed to the agenda loop function.

(The system is stopped inside the :new-substitution method of the query clause.)

Examples for a Query Evaluation

Example 1
A simple example will illustrate the control flow during the query evaluation.
Assume the database contains the following cyclic relations between the three objects a,b,c
P(a b), P(b c), P(c a)
Graphically b

/77

a4——ocC
Assume further we have only one clause expressing the transitivity law for P:
D:= Pxz)<=PxEy)AP(yz)
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Query : We ask P(a x)?
1. An initial query IQ =P(a x)? is generated.
2. From the single body atom a literal query LQ; = P(a x)? is generated and inserted into the agenda
and the query store.
3. The agenda has no other choice but selecting it and sending it an :activate message.
4. The :activate message is processed by LQ, as follows:
4.1 LQ; sends a :retrieve message to the fact set which is empty.
The :retrieve method inserts Q; as a query demon.
4.2 LQ, sends a retrieve message to the database which reacts with a :new-fact P(a b) message
sent to LQ;.
4.2.1 LQ, forwards this solution to IQ which records x - b as a first answer.
4.3 LQ, sends an :activate message to the clause D.
D generates a clause query CQ; = P(a x)? and inserts it into the agenda.
This is the last action of the :activate message sent to LQ;.
5. The agenda selects the single clause query CQ, sends an :activate message to it.
6. The clause query generates the two sibling queries LQ, =P(a y)? and LQ3 = P(y x)?.
LQ, is an instance of 1.Q; and therefore linked to LQ,.
6.1 The first answer P(a b) to LQ; is sent to LQ, which instantiates its sibling LQ; to
LQ; ; =P(bx). LQ; ; is inserted into the agenda and the query store.
This is the last action of the :activate message sent to CQ;.
7. The agenda selects LQ3,1 and sends an :activate message to it.
(This is again the only task in the agenda.)
7.1  LQj sends a retrieve message to the fact set which is still empty.
The :retrieve method inserts LQ5 ; as a query demon.
7.2 LQ3,1 sends a :retrieve message to the database which reacts with a :new-fact P(b c) message
sent to LQ3’1.

7.2.1 L.Qs ; has no more siblings, therefore it sends a :new-substitution message to the clause D.
7.2.2 D generates the new lemma P(a c) and inserts it into the fact set.

This new fact is sent to all query demons.
7.2.3 The query LQ; receives the message :new-fact P(a ¢) and forwards it to IQ which records

X ¢ as a second answer.
7.3 L.Qs ; sends an :activate message to the clause D.
D generates a clause query CQ, = P(b x)? and inserts it into the agenda.
The system closes the cycle by generating the two further queries P(c x)? and P(a x)? The first one gives
the last answer x + a. The last one is again an instance of LQ, and therefore linked to LQ,. All answers
are subsumed by previous ones and therefore the process stops.
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Example 2

The last example is taken from lattice theory and is known as SAM’s lemma in the theorem proving
literature [GOBS 69]. Although lattice theory is surely not a typical application for deductive database, it
is an interesting test example because the structure of the clauses is not atypical and the difficulty is their
terrible recursivity and its nondeterminism, i.e. there is no way to arrange the clauses without forcing a
PROLOG strategy into infinite loops. Since it is a rather hard problem, not because of the structure of the
relations in the database but because of the clause structure, it might be a good supplement to the
frequently stressed “‘same generation” problem. (Currently only a few theorem provers can solve SAM’s

lemma.)

Facts:

min(a b ¢) max(cd 1) min(b d ) min(a ¢ 0)

max(b a2 b2) max(ab2 1) max(abc2) min(a2 c¢2 0)
min(d a d2) max(a2 d2 e2) min(d b a3) max(a2 a3 b3)
Vxmax(1x1) Vx max(x x x) Vx max(0 x x) Vx min(0 x 0)
Vxmin(x x x) Vx min(l x x)

Clauses

Vx,y,2 min(x y z) < min(y x z)

Vx,y,z max(x y z) <= max(y x z)

VX,y,Z max(x z X) &< min(x y z)

VX,y,z min(x z x) < max(xy z)

VX,y,Z,u,V,w min(w x z) & min(u v w) A min(v x y) A min(u y z)
VX,¥,Z,u,V,W max(w x z) <= max(u v w) A max(v x y) A max(uy z)
VX,y,Z,u,V,W max(v y z) < min(u v v) Amax(w v X) Amin(u w y) A min(u x z)
VX,¥,Z,1,V,w min(u x z) < min(u v v) A max(w v x) A min(u w y) Amax(v y z)
Query:

min(b3 e2 a2)?

Our prototype implementation answers it in about 30 seconds CPU time on a Symbolics 3640 machine.
The statistical values are:

866 literal queries generated, 581 of them linked.

322 tasks selected by the agenda.

1021 facts deduced, 891 of them subsumed, 130 facts remaining.

130 accesses to the database.
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8. Summary

We have shown how to combine the advantages of several approaches to the query evaluation problem in
deductive databases: The SL-resolution strategy has the advantage to work in a query - subquery oriented
way backwards from the query to the facts and can therefore be strongly focused on the relevant data.
Using this strategy for triggering the “right” forward deductions instead of generating the resolvents
directly has the advantage that intermediate results can be reused several times. In some cases this can be
sufficient to shrink an infinite search tree to a finite subtree, i.e. to enforce the termination of the query
evaluation process. For the non Horn case we have shown how to use clause graphs as an efficient
indexing mechanism which guides the dataflow during query evaluation. Inference operations and
reduction operations on clause graphs can be used to optimize the data access paths at “‘compile” time.

A first prototype implementation, although still restricted to Horn clauses, shows a very good goal

directed behaviour and solves already nontrivial problems.
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