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Abstract

Given a signature (S,Z) and aZ-term T € Tg(X)* of sort s € S, X = (X)), s being a -
family of countably infinite sets of variables, we call a set B Ts(X)® of Z-terms a
representation for the non-instances of T (w.r.t. (S.X)) iff the 3-groundinstances of the
elements of B are precisely those Z-groundterms of sort s that are not a Z-instance of 1.
We recursively define a family (ﬂl')‘tcTz(X)s,sGS of sets of Z-terms (w.r.t. an implicit well

ordering of the sets X of variables) in such a way, that for each lingar Z-term T, B, isa
representation for the non-instances of T (w.r.t. (§,2)) that satisfies both a minimality
and an embedding property. In particular, B; is computable and finite if, in addition, Z
contains but a finite number of operation symbols.
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0. Introduction

P : Given a signature (S) and a Z-term T € Tx(X)® of sort s € S. Is there a
suitable representation for the set of all Z-groundterms T, of sort s that are
not a Z-instance of T ?

This problem was encountered by the author in the course of his work on the application
of term rewriting techniques to the simulation and analysis of High Level Petri Nets over
algebraic specifications with constructors that is part of the ESPRIT project GRASPIN
(see [Ge 88]). In such a net, the enabling of a transition t in a given situation (essentially)
depends on the availability of some groundinstance (w.r.t. a common substitution 6) of
the terms labelling the input-arcs of t in the corresponding input-places, and the firing of t
results in removing these groundinstances and in adding the 6-instances of the terms
labelling the output-arcs of t to the corresponding output-places. Assuming that the net
has exactly n places py,....p, and that the current state of the system, i.e. the current
distribution of groundterms over the places, is represented by the groundterm
T; der= mMmake (ay,...,a,)
where a; denotes the groundterm residing in place p; resp. a; = EMPTY if p; is empty, this
availability-condition holds iff T, is an instance of the term
T ge= make (uy,...,u,)
where u; is the term labelling the input-arc joining p; and t if p; is an input-place of
transition t, u; = EMPTY if p, is an output-place of t, but no input place of t and all other
u;’s are pairwise different variables. Consequently, by choosing appropriate terms
V1,...,Vp derived from the labellings of the output-arcs of transition t, the effect of the
firing of t in situations that satisfy the above availability-condition can be correctly
described by a rewrite rule of the form
T = make (ug,....,u;) = make (Vi,...,vp).
Thus, for instance, the firing of the transition t in the environment as represented in
Figure 1 is described by the rewrite rule
T = make (s(s(x)),true,cons(y,l),Empty, Empty)
- make (Empty,Empty, Empty,+(x(x,x),s(0)),cons(x,cons(y,|)))
(here, s denotes the successor operation on naturals, true one of the boolean constants and
cons the cons operation on lists). Using this rewrite rule, the term
Ty der= make (s(s(s(0))),true,cons(0,NIL),Empty,Empty)
representing the state illustrated in Figure 1 is rewritten to the term
T, 4= make (Empty,Empty,Empty,+(x(s(0),5(0)),s(0)),cons(s(0),cons(0,NIL)))
that, on his part, represents the state ensuing from the firing of the transition t.
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%

+(* (x,x),5(0))
\.pé
cons(x,cons(y,l))

Figure 1 : A transition t with input-places p;, p, and p; carrying the data
s(s(s(0))), true and cons(0,NIL) and empty output-places p, and ps.

t

cons(y,l)

However, in order to represent the "no-action" behavior of t in all remaining situations
(by corresponding rewrite rules), it is desirable to have a suitable representation of all
these situations, i.e. a suitable representation of all groundterms that are not an instance of

7. Thus, we arrive at the problem P.

The problem PP is easily seen to be a specialization of the following, more general repre-
sentation problem :

P’ : Given a signature (S,Z) and Z-terms T, t1,...,1" € Te(X)® of sorts€ S.
Is there a suitable representation for the set T/{T'v..vT1 }of all Z-
groundterms T, of sort s that are a Z-instance of T but not a Z-instance
of any of the T! (i=1,...,1) ?

Clearly, P corresponds to finding a suitable representation for x/{T }, where x is any
variable of the same sort as T. Apart from the interest in [P, and hence also in P”,
stemming from the sketched relation between the rewrite world and the Petri Net scenario,
an even more lively interest in P* is due to the fact that solving [P* corresponds to
learning concepts from examples and counter examples, as is pointed out in the work of
J.-L. Lassez and K. Marriott [La/Ma 87] (see also [Mic 831, [Mit 78] and [ Ver 80)).
Restricting to the case that S = (s} is single-sorted and the set U {Zw's,l weé S*,5s7¢ S}
of Z-operation symbols is finite, they provide an algorithm that decides whether or not an
"implicit representation” T/{Tlv...v1"} has an “explicit representation” {v...v{™ (here,

_2.
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Clv...v{™ denotes the set of all Z-groundinstances of some of the terms CY) satisfying that
t/{tv..vt*} ={1v..v{™ and, if so, calculates L!,....L™. Their results (see [La/Ma 87],
Proposition 4.5 and Proposition 4.6) also give evidence that nonlinear terms cause
principal obstacles.

Our work is related to that of J.-L. Lassez and K. Marriott [ La/Ma 87] in that we consider
the restricted problem of finding a suitable representation for the implicit representation
x/{1} in case of an arbitrary set S of sorts. Furthermore, apart from the results presented
in [La/Ma 87], we prove that the kind of representation proposed in the work at hand
enjoys some nice properties of minimality (both w.r.t. set inclusion and cardinality) and
practicability.

In Paragraph 1, we briefly resume our notations and some basic concepts and results of
(sorted) universal algebra needed in the sequel.

Paragraph 2 introduces the notion of a representation for the non-instances of a £-term
T (w.r.t. a signature (S,2) with variables X) as a set B¢ Ts(X)® (s being the sort of T)
satisfying that every Z-groundterm T, of sort s is not a Z-instance of T iff itis a Z-
instance of some element of B (Definition 2.1). It is noted that, as a matter of triviality, a
representation for the non-instances of T (w.r.t. (§,2)) always exists. Subsequently, two
technical lemmata are anticipated (Lemma 2.2 and Lemma 2.3).

In Paragraph 3, we recursively define, w.r.t. a signature (S,Z), the family
(Br)reTg(X) ses of sets of Z-terms that constitute the subject of the main results contained
in this work (Definition 3.1). In particular, we prove that B, is a linear (i.e. containing
only linear Z-terms) representation for the non-instances of T (w.r.t. (S,2)) provided T is
linear (Proposition 3.2). Moreover, B, is distinguished by the facts that it is a minimal
representation (w.r.t. set inclusion) for the non-instances of T (w.r.t. (S,2)) (Proposition
3.3) and that it can be embedded in any other representation for the non-instances of T
(w.r.t. (5,2)) all of whose Z-terms having the same top-level symbol as T are linear
(Proposition 3.4). Here again, T is assumed to be linear. As a corollary, no
finite/countable representation of this type exists if B, is infinite/uncountable. Finally, we
prove that all the sets B, are finite and can be effectively computed provided that the set
U {Z,,s-1 we S* 5" € 5} of Z-operation symbols is finite (Proposition 3.5).
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1. Notations

We assume that the reader is familiar with the basic concepts and results of (sorted) uni-
versal algebra as they can be found in the common literature (see, for instance, [Gri 79]
or [Lug 76]).

Essentially, we use the following notations and facts : A signature is a pair (S,Z) where
Sisaset,Z =X, Jwess,ses 18 a S*xS-indexed family of indexwise disjoint sets that are
also disjoint from S.! The elements of S are called sorts and, for each (w,s) € S*xS,
the elements f € ¥ | are called Z-operation symbols of arity w and co-arity s, or,
in short terms, of functionality (w,s). Usually, together with a signature (S,Z), we are
given a family of sets of variables, i.e. a S-indexed family X = (X{) s of indexwise
disjoint sets that are also disjoint from S and any of the sets Zw,s with (w,s) € S*xS.

Given a signature (S,X), a (S,2)-algebra (or, alternatively, an algebra over (S,22)) is a
pair 4 = ((-ﬁs)ses’(fﬂ)wes*,ses,fezw‘s)’ where each 4° is a set and, for all we S*,s€ §

and fe T, f1: A 1x ..x 4 ™ 5 is a mapping. Given two (S,Z)-algebras 4 and
B, say A = ((ﬂs)ses'(f”)wes*.ses.fez:w's) and B = ((gs)scs’(fg)wes*.ses,fezw's)’ a homo-
morphism 6 from 4 into B is a S-indexed family 6 = (6,)sg Of mappings 6, : 2* » B°
satisfying, for all w € §*,s€ §,fe X | and (8;,....8,y)) € A% .x 4 ™ the
equation 6,(f(ay,...,ay) = £3(6 w, (21),--8 v, (21w1))- If there is no danger of confus-
ion, we usually drop the sort-index "|" in 6.

Among all (§,X)-algebras, we are particularly interested in the (S,X)-algebra of terms,
i.e. the (S,)-algebra Te(X) = (Tg(X)ses f = Dyest ses tex,, ) Where (Tg(X)Vses
is the least family of sets of strings s.t. for all s € S, Ts(X)® cont,ains the variables and

constants of sort s, i.e. the set X,U U (Z, /Is€ )2, and, if we S*, s € S,

(T peensT ) € To(X) 1 oo x Tg(X) ™ and f € £, _, also £(T ,....T,,) € Tg(X)% ac-

w,s?
cordingly, the mapping £ 2 : Tg(X) 1 ...x Tg(X) ™ - Te(X)® is defined by

FEOUT T 0) der= T Ty ) We let Ty gor= T (@ )ses). The elements of Ty(X)*
(resp. (Tg)®) are called Z-terms of sort s (resp. Z-groundterms of sort s). For a
Z-term T, Var(t) denotes the set of variables x € U (X, | s € S} occurring in T. T is
said to be linear iff no variable x € \U{X | s € S} occurs more than once in the string T.
The (8,2)-algebra Tx(X) is distinguished by the fact that any family 6 = (6,).g Of
1

Note that, unless stated otherwise, no assumption is made on the cardinality of any of the sets S or
Ly, (forwe S* s€ S);

2 A denotes the empty word in S*;
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mappings 6, : X, » B°, where B = ((ﬂs)ses’(f’)wes*.seS.erw's) is an arbitrary (§,Z)-
algebra, can be uniquely extended to a homomorphism & from Tx(X) to B.

A homomorphism 6 from Ts(X) to Ts(X) that moves only a finite number of variables
x € U{X, s € S} is called a substitution. It is noted that 6(t) =g(T) for a Z-terms T
and all substitutions 6, ¢ satisfying 6(x) = g(x) for all x € Var(1), i.e. 6(T) only depends
on the effect of 6 on the variables of T. Given Z-terms T and T~ of equal sort, T~ is called
a &-instance of T iff T* = 6(t) for some substitution 6, and T~ is called a -
groundinstance of T iff T is a Z-instance of T and T~ is ground.
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2. Representation of non-instances of terms

Recalling that, if (S,X) is a signature with corresponding variables X = (X,)cs, the sets
of operation symbols and variables are sortwise disjoint and that substitutions preserve
sorts (see Paragraph 1), it is easily recognized that if T is a Z-term of sort s € S, no Z-
groundterm T, of some sort s” € S\{s} can ever be a Z-instance of T. Therefore, the
problem of finding a suitable representation for those Z-groundterms T, that are not a Z-
instance of the Z-term T may be restricted to Z-groundterms of the sort s of T; for all
other sorts s” € S\{s}, this problem is, trivially enough by the above remark, settled by
saying that the "non-instances" of sort s~ are precisely the £-groundinstances of some
element of the set B 4= {x}, x being any variable of sort s”. Sets B that enjoy this
property in the nontrivial case s” = s are captured by the following definition.

2.1 Definition :

Let 1) (S,2) be a signature with variables X;
2) TeTgX)® withseS.

A set B¢ Ty(X)*is a representation for the non-instances of T (w.r.t. (S,X)) iff, for
every Z-groundterm T, € (Ty)®,

T,isnotaXZ-instance of t  iff T, isaZ-instance of some elementof 3. m

Note that, if (S,X) is a signature with variables X and T is a Z-term of sort s € S, the set
B g= (T, € (Tg)’ 11, isnotaZ-instance of T}

is immediately seen to be a representation for the non-instances of T (w.r.t. (S,2)). Thus

a representation for the non-instances of T (w.r.t. (S,2)) always exists!

However, the above set B may be infinite even if £ contains but a finite number of

operation symbols (and therefore fail to be of any practical use). This can be easily seen

by choosing a signature (Sfin,Zfin) with exactly one sort s € Sfin, two constant symbols a

and b, and an unary function symbol f. Under these assumptions and letting T 4.¢= b, we

have

B = {af(a)f(f(2)).f(f(f(a))), ... .Eb).f(ED)).KEE(D))), ... }.
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In Paragraph 3 we will define a set ‘B, of Z-terms (in fact a family (Bodrers (%) ses) that

evades this shortcoming (see Proposition 3.5) and also constitutes a representation for the
non-instances of T (w.r.t. (8,2)) provided T is linear (see Proposition 3.2). Moreover,
B, is distinguished by some additional properties (see Proposition 3.3 and Proposition
3.4). These properties will be proven by the use of the following two lemmata, the first of
which states that the g-component B, of any representation 3 for the non-instances of T
(w.r.t. (S,2)) is not empty provided g is an operation symbol different from the top-level
symbol of T and all argument sorts of g are not empty (w.r.t. (S,2)).3

2.2 Lemma ;

Let 1) (S.X) bea signature with variables X;
2) t=f@W,. . 1™y withseS,ve S fe Z, ¢ and T® e Tg(X)'x for all
K€ {1,..vl};
3) B¢ Tx(X)* arepresentation for the non-instances of T (w.r.t. (§,2)).

Then, for every w € S* s.t. Wy,...,W},, are not empty (w.r.t. (5,)) and every operation
symbol g € Z, \{f}, the set

By ger= {1 € BlT isnota variable; g is the top-level symbol of T”}
is not empty. [

Proof :

Assume that w € S* and wy,...,w,,, are not empty (w.r.t. (§,X)) and g.€ Zw’s\{f}. Since
w; is not empty (w.r.t. (5,2)), there exists a Z-groundterm u; € (Tx)¥i (i = 1,...,Iwl).

Now, since we have g # f, the Z-groundterm g (u,,...,u;y,)) € (Tg)® is not a Z-instance of
T, and hence, due to assumption 3) of Lemma 2.2, is a Z-instance of some element of B,
i.e. g (ug,....u4) =6 (1) for some T € B and some substitution 6 : Ts(X) » Te(X).
Consequently, g must be the top-level symbol of T”, and therefore, B, # 9. [

The next lemma now explains how certain representations for the non-instances of a 2-
term T = f (T,..,t ™)) induce representations for the non-instances of all of its
argument terms T provided 7 is linear and at least one Z-instance of T is ground. Since
these assumptions on T are handed down to all of its non-variable subterms, this lemma
may be used as a basis for a top-down strategy to construct representations for the non-
instances of all non-variable subterms of T starting with a suitable representations for the
non-instances of the X-term T itself.

3 Asortse S is empty (wrt (S,2)) iff (Ty)® = &;

-7-



H. Gerlach : A representation for the non-instances of linear terms

Let 1) (S, 2) be a signature with variables X;
2) T=f@D,. ,t™) belinear withve S*,se S,feX
for allK € {1,...,Ivl} s.t. some 2, -instance of T is ground;

v.s? 1® e Tx(X)'
3) B¢ Ts(X)® bean f-linear® representation for the non-instances of T
(wr.t (§,2)).

Then, for every i € {1,...,lvl}, the set
B, qor= (b1 3up,uy Ui 15yl £ U0 10,0 15000 Upy) € B;
no X-groundinstance of bis a Z-
instance of T,
some Z-groundinstance of uy is a
T-instance of T® (k=1,...,Ivl, K#i)}
is a linear> representation for the non-instances of T® (w.r.t. (§,2)). u

Proof :

Clearly, B; is linear since B is f-linear (assumption 3) of Lemma 2.3). Now let T," €

(Tg)'i. If we assume that T ;" is a Z-instance of some element b € B;, there exist
UgyeeesljgsUjpqseeesUy) Site '

f (ug,ees050,b, U545, U € B;

no -groundinstance of b is a S-instance of TY; (1)

some Z-groundinstance of u, is a Z-instance of T 0 (k=1,...,Ivl, K#i)
and a substitution 6, : Tg(X) - Tg(X) s.t.

T = 6, (b). (2)
Hence, due to (1) and (2), T, is not a Z-instance of T(). Conversely assume that T,” is
not a Z-instance of T®. We have to show that T,” is a Z-instance of some element b € ‘B
According to assumption 2) of Lemma 2.3 there exists a substitution Q : Ts(X) - Ts(X)
5.t.

f@EM,.o@™) = ot @®,..t™) = g(©) € (Tp)*. (3)
We consider

Ty = £@@W)0 D)0 1), 0 M) € (Tx). (4)
Since T,” is not a Z-instance of T®, T, is not a T-instance of T (= f (tW,...,t™y),
Consequently, due to assumption 3) of Lemma 2.3 and Definition 2.1, T, is a Z-instance
of some element

f (ug,..5u5.9,b,u5,1500050y) € B. (5)
Therefore, there exists a substitution 6 : Tg(X) - Ts(X) s.t.

le. all Z-terms 1° € B with top-level symbol f are linear;

5 lc. all Z-terms T~ € B; are linear;

-8-
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f (@ @W),...o @@D)r;%0 (@), 0 (xtV)) =
T =
(see (4)) (6)
6 (f (uy,...,0;.1,0,8;,150050})) =
f (6 (uy),....6 (U;.1),6 (0),6 (Uj11)s...,.6 (Wy)))-
In particular,
T = 6 (). (7)

1
Due to (6), 6 (u,) =9 (T®), i.e. some E-groundinstance of u, is a Z-instance of T®)
(K=1,...,Ivl, K#i). Thus, in order to prove that

b € B, (8)
we only have to show that no &-groundinstance of b is a Z-instance of T®, Assume the
contrary, i.e. that there exist substitutions 67, Q" : Ts(X) - Ts:(X) s.t.

6’(b) = (V) e (Ty)'i (9)
is a Z-groundterm. Now both f (uy,...,u;.1,b,U;415..-,Uy) and £ (TD,...,t D) are linear
due to assumption 3) and assumption 2) of Lemma 2.3 resp.. Hence, there exist
substitutions 6, @ : Te(X) -» Tx(X) satisfying

[ 6 X¢€ UK=1.....IvI,K#i Var(u,)

6 (x) = { 6°(x) x € Var(b) (10)
L x in all remaining cases
[ 9 x€ U vigei Var@®)

9 (x) = { 9® x € Var(t®) (11)
L x in all remaining cases.

From (10) and (11) we conclude that

6 (f (Uy,eeesUy 1,D,U1 115 nolpy)) =

f (6 (1),.... 6 (W;.1), 6 (b),6 (W1),.... G (upy)) =

f© (u),....6 U;1),6° (b),6 (U 1)..0 U)) =

(due to (10))

f@@M),..0 @iD)e @ie (@), gty = (12)

(due to (6) and (9))

f (g @W),..,0 D), g @®),g @), g @) =

(due to (11))

3 (F (M, tED O G+ | vhyy =

q (1)

(assumption 2) of Lemma 2.3).
Thus, due to (12), (3), (9) and (5), @ (1) € (Tyx)® is a Z-groundterm that is a Z-instance
of T and, at the same time, a Z-instance of some element of B. This, however, is a
contradiction to assumption 3) of Lemma 2.3 and Definition 2.1. [ |
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3. The family (B, )‘teTz(X)s,se s of sets of terms

nda i I 1

We now turn to the definition of the family (Bo)reTs (X se$ of sets B, of Z-terms that are

intended to be a suitable representation for the non-instances of T (w.r.t. (S,2)), at least
for linear Z-terms 7. This definition requires the following additional assumptions on the
family X = (X)), of the sets of variables that will be tacitly assumed throughout this
paragraph :
for each sort s € S, the set X, of variables of sort s is
1. infinite
2. well ordered (without making explicit reference to the well ordering)
in such a way that for each finite subset Y € X, the minimum
min(X,\Y) € X is effectively computable.
Clearly, we may chose B, 4.;= @ if the sort of T is empty (w.r.t. (§,2)), for in that case
there are no Z-groundterms of the same sort as T at all. If, however, the sort of T is not
empty (w.r.t. (S,2)) but none of the Z-instances of T is ground, obviously B; 4.r= {x}
(x a variables of the sort of T) serves as a representation for the non-instances of T (wW.r.t.
(S$,2)). In all remaining cases, except when T itself is a variable, B, is defined by
recursion.

3.1 Definition :
Let (5,2) be a signature with variables X.

The family (3B, JreTs(x)ses Of sets of Z-terms is recursively defined by :

a) (i) if T € Tx(X)® (with s € S) and s is empty (w.r.t. (S.)), let
ﬂ( def™ %]
@) if T € Tx(X)® (with s € S), s is not empty (w.r.t. (S and no 3.-instance of
T_is ground, let
By qef {x}
where x is the least element in the set X

b) ift e Tg(X)® (with s € S), § is not empty (w.r.t. (S2)) and some J -instance
of 1 is ground, let
g‘r def= ﬂ
if T is a variable of sort s, and let

-10-
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B q= D U U,
where

D 4 {g8 &EpseeorXiwi) !
we S§*% ge X, Mf}; wy,...,wy, not empty (w.r.t.
S.2);
for every K € {1,...,]wl} : x, is the least element in the
set XwK \ {xle | p=1,....k-1)}

Di def= [f (xl,...,xi_l,b,xi+1,...,x,v,) i
be ﬂT(i);

D;

O\ V|

for every K € {1,...,IVI]\{i} : x, is the least element in
the set XVK\ (Var(b)u{x, | p=1,..K-1, p=i})}
ifT=fD,., 1My withve $*, feZ, , Ve Te(X)iG=1,..v). =

The following proposition now states that the sets B; in fact meet our primary intention,
namely that B, is a (linear) representation for the non-instances of T (w.r.t. (5,2))
provided T is linear.

3.2 Proposition : (basic property of By)

Let 1) (S.X) be asignature with variables X;
2) 1eTs(X)® linear withse S.

Then, the set B, € Ts(X)® is a linear representation for the non-instances of T (w.r.t.
(S,2)). ]

Proof :

If the sort s is empty (w.r.t. (§,2)), we have
g‘( def™ 1
and obviously, B, is linear and a representation for the non-instances of T (w.r.t.
(S,2)).S0, let us assume that
s is not empty (w.r.t. (S,2)). (1)
We consider the following two cases :
case1:  NoZ-instance of T is ground.
Then, according to Definition 3.1,
Br der= (X}
where x is the least element in the set X;. Clearly, B, is linear. Furthermore, due to

the assumption made in case 1, every Z-groundterm T, € (Tg)® is not a E-instance of

-11-
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T and a Z-instance of an element of B,, i.e. B, is a representation for the non-
instances of T (w.r.t. (S,X2)).
case2:  Some Z-instance of T is ground.

To prove the assertion of Proposition 3.2 under this assumption, we use induction
on d(1), the maximum depth of the Z-term T. To start with, we assume

d(t) = 0 (2)
i.e. T is either a variable or a constant of sort s. If T is a variable of sort s, every Z-
groundterm T, € (Tz)s is a Z-instance of T, and consequently,

By def= g
is a linear representation for the non-instances of T (w.r.t. (§,2)). The case that T is
a constant of sort s is included (by setting v 4eq= AA) in the subsequent proof for the
case "d(1) > 0". So let us assume that T is linear with

d(t) > 0 (3)
and that the assertion of Proposition 3.2 holds for every sort s” € S and every Z-term
T’e Tz(X)s' with d(T ") < d(T). Now, referring to (3), we have

T = £, M (4)

with ve S¥\{A), fe Z, , 1V e Tg(X)"l (i=1,...,VI).

Furthermore, for every i € {1,...,)vl}, we have d(T®) < d(t) and T® is linear, since
T is, such that B, (; is a linear representation for the non-instances of T® (w.r.t.
(8,2)) according to the induction hypothesis. According to Definition 3.1,

B a@r= D U Uy, wDi
where

D g~ {8 &peuxy)!

we S* geZ  Mf}; wy,..., W), not empty (w.r.t. (5,2));

for every K € {1,...,Iwl} : x, is the least element in the set

XWK \x, 1p=1,..x-1}}

i def™  {f RppennXi Do X0 X)) |
be B_ )

D

for every K € {1,...,IvIJ]\{i} : x is the least element
in the set X‘,K \ (Var(b)u{x}1 =1, k-1, p#i})}.
We have to to establish the following three assertions :

ionl; Ift, € (Tg)® is a Z-instance of an element of B,,
then T, is not a Z-instance of T.

Assume that 7, € (T‘-,-;)s is a Z-instance of an element of B, i.e. there is a
substitution 6 : Tg(X) - Tx(X) s.t.
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either
Ty, = 6 (g8 XppeensXjyp) (5)
= g6 (X1).-.6 X))
where: we S* ge Zw,s\{f};
W1se... Wy DOt empty (W.r.t. (S,2));
for every K € {1,...,lwl} :
Xy is the least element in the set
X, \{xy Tp=1,..K-1}
or
1, = 6 (f (XpseeesXj1pDsXip10ee s X)) (6)
f (6 (x1),...,6 (%;.1),6 (b),6 (X;11)-..,6 (Xy)))
where: be B_ (i)
for every K € {1,...IVI\{i} :
Xy is the least element in the set
XvK \ (Var(b)u{x, | p=1,...K-1, u=i}).
In the first case, T, is obviously not a Z-instance of T, since T satisfies (4) and
we have g # f in (5). However, if (6) holds and T, were a Z-instance of T, there
would be a substitution 6” : Tg(X) - Tg(X) satisfying
f (6 (x1)5...,.6 (%;.1),6 (b),6 (X;;1)s.,6 (Xy))
T, =
(due to (6))
6" (1) = (7)
6° (f (t D, @D @ G+ g vhy) =
(due to (4))
f6 @W),..6" @ EFNe D) (i), 67 (M)
leading us to
6 (b)) = 6 1D
e (Tp)'
(due to (7) and because T, € (Tx)")
and contradicting the fact that 6 (b) is a X -instance of an element of QBT(i) and

hence not a Z-instance of T® since B_(i) is a representation for the non-instances

of T® (w.r.t. (S,I)). Therefore in either of the two cases, T, is not a Z-instance
of T.

Assertion2;  IfT, € (Ty) is not aZ-instance of T,
then T is a Z-instance of some element of ‘B.

Lett, € (T z)s and T, not be a Z-instance of 1. We have to show that T,isaZ-
instance of some element of B. To this aim, we first assume that
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T, = g (1‘1(1),.";( 1(IWI)) (8)
withwe S*, ge Zw.s\{f}’ TI(K) € (T}:)WK K=1,...,]wl).

Since T® € (Tx)"X, w, is not empty (w.r.t. (S,2)) (K=1,...,lwl) and conse-
quently,

g (XppeesXp)) € Br. 9
where x, is the least element in the set XWK \ {x}1 [p=1,...k-1} K = 1,...,lwl).

Now, defining the substitution 6 be by

6 (X) ger= T, ifk € {1,...)wl} and x = x,
6 (X) ge= X ifxe U{X; 15"€ 8} \ {XgyeeerXppi}s
we arrive at
o= gt (10)
(cf. (8))

= g (6 (x1)5...6 (i)
= 6 (8 (XseesXiy))-
Putting (9) and (10) together, we see that T, is a Z-instance of an element of B;
provided that (8) holds. So we still have to consider the case
T, = f@W,.1,0) (11)
with T, € (Tg)"™* (K=1,...,Iv]).
If, for every K € {1,...,lvl}, there would be a substitution 6, : Tx(X) -» Tg(X)
with T,® =, (t®), the substitution & defined by
6 (X) gof= 6 (x) ifKE€ {L,..Ivl} and x € Var(t®)
6 (X) 4= X if xe U{X, 15" €S} \ U{Var(t®) Ik=1,...,Ivl}
would turn T, into a Z-instance of T, since
T, = f@,M,.,1,00)
(cf. (11))
= {6, D),..6, @)
=  f@©6 @EW),...6 (1))
(since G[Var(t®)) = GVar(t Q) K=L,...,lv}))
= 6 (@D, 1My
= 6(0
(cf. (4)),
and thus confront us with a contradiction (note that due to the assumption that T
is linear, Var(t®)nVar(t®) = & fork, p € {1,...,Ivl}, K # 14, so that 6 is well-
defined). As a consequence, there exists an index i € {1,...,Ivl} s.t. T l(i) is not a
Z-instance of T and therefore a Z-instance of some element of B (), say
1,0 = 6, (b) (12)
with b€ B () and a substitution 6; : Tg(X) » Tz(X),

because fBT(i) is a representation for the non-instances of @ (wr.t. (S,2)).
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Consequently,
£ (XppeeesXii1sDoXis 1o oXe) € By (13)
where, for every K € {1,...,IvI}\{i}, the variable x, is the least element in the set
X‘,K \ (Var(b)u{x, | p=1,..K-1, H#i}). Since we have that the intersection
{X{,ee0sXi15Xi415e- Xy J N Var(b) is empty and that Xq,...,X;_1,Xj 15 Xpy| 8F€
pairwise different, the substitution 6 : Ts:(X) - Ts(X) with
6 (X) ge= 6;(X) if x € Var(b)
6 (X) g= T,® ifk € {1,...,IvVI)\{i} and x = x,
6 (X) gef= X ifxe U{X;-1s"€ S} \
(Var(b)U{Xy,..es X 15Xis 100 s Xy} )
is well-defined and gives us
1, = f@;M.1,0h) (14)
(cf. (11))
= £6 (X1),6 (X1, T;D,6 (Xiy1)see0s6 (X))
= (6 (X)),....6 (X{1),6;(D),6 (Xj41)5--,8 (Xiy))
(cf. (12))
= £ (X8 Kp)S (0),6 (Kigp)seen® (K1)
(since 6y ar(b) = 6{Var(b))
= 6 (f (X150 0Xi 150X 55100000 Xpvi))-
Thus, by (13) and (14), T, is a Z-instance of an element of B..

Assertion3: B, is linear.

This assertion is immediate from the fact that ﬂt(i) is linear (i=1,...,Ivl) and the

definition of B, in the present case.

Thus, summarizing Assertion 1, Assertion 2 and Assertion 3, we have shown that
B, is in fact a linear representation for the non-instances of T (w.r.t. (§,2)). [ |

Having established now the basic property of being a (linear) representation for the non-

instances of T (w.r.t. (§,2)) if T is a linear Z-term, the remainder of this paragraph is to
point out some distinguishing features of the sets B,. I particular we are going to prove

the following three assertions, where T is assumed to be linear in 1. and 2., but may be
an arbitrary Z-termin 3. :

1. No proper subset of B, is a representation for the non-instances of T

(w.r.t. (§,2))
(minimality property of B;).
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2. B, can be embedded in any other representation B for the non-instances
of T (w.r.t. (S,2)) that is f-linear if T is not a variable and f is the top-
level symbol of T
(embedding property of B,).

3. IfZ contains but a finite number of operation symbols, also B, is finite
and can be effectively computed
(computability of B;).

The minimality property of B is tackled in the following Proposition 3.3 :

3.3 Proposition : (minimality property of B)

Let 1) (S8,2) be a signature with variables X;
2) TeTg(X)® linear withse S.

Then, no proper subset of B, is a representation for the non-instances of T (w.r.t.

(8,2)). u
Proof :
If the sort s is empty (w.r.t. (S,2)), then
ﬁl‘ def= ]
and hence there is no proper subset of B, at all. Therefore let us assume that
s is not empty (w.r.t. (S,2)). (1)

As in the proof of Proposition 3.2, we consider the following two cases :
case 1;  NoZ-instance of T is ground.
Then, according to Definition 3.1,
Br dqer= (X}
where x is the least element in the set X;. As we have assumed in (1), there exists a
Z-groundterm 1, € (T +)°, and consequently, according to the assumption made in
case 1, 7, is not a Z-instance of T. But T, cannot be a Z-instance of an element of a
proper subset of B, since & is the only proper subset of B,. Therefore, no proper
subset of B, is a representation for the non-instances of T (w.r.t. (S,2)).
case2:  Some Z-instance of T is ground.
To prove the assertion of Proposition 3.3 under this assumption, we use induction
on d(T7), the maximum depth of the Z-term 1. To start with, let us assume that
dt) = 0 (2)
i.e. T is either a variable or a constant of sort s. If T is a variable of sort s,
By gef= 7]
and again, there is no proper subset of &, at all. The case that T is a constant of sort s

-16 -



H. Gerlach : A representation for the non-instances of linear terms

is included (by setting v 4= A) in the subsequent proof for the case "d(1) > 0". So
let us assume that T is linear with

dt) > 0 (3)
and that the assertion of the Proposition 3.3 holds for every sort s” € S and every
linear Z-term T~ € Tz(X)s’ with d(T ") < d(t). Now, referring to (3), we have

T = f@, .t (4)

with ve SW\(A},feZ , 1D e Tg(X)'i (i=1,..., V).

Furthermore, for every i € {1,...,v]}, we have d(t W) < d(t) and ©® is linear,
because T is, so that no proper subset of B_) is a linear representation for the non-
instances of T® (w.r.t. (5,2)) according to the induction hypothesis. According to
Definition 3.1 we have ‘

B w@= D U Uy wDi
where

D der= {8 (XppoeesXiy) |
we S* geZ Mf}; wy,...,wyy, not empty (w.r.t. (§,2));

for every K € {1,...,]wl} : x is the least element in the set
XWK \Mxy T p=1,..k-1}}
Di def= { f (x1,...,xi_l,b,xi+1,...,x|v|) |
be fBT(i);
for everyK € {1,...,IVI}\{i} : x, is the least element
in the set X‘,K \ (Var(b)u{x, [ p=1,...K-1, p#ih}.
We have to to establish the following assertion :

Assertion1:  If B< B, is a proper subset of B,
then there exist a -groundterm T, € (Tx)’ s.t.
either
1, is not a Z-instance of T and
1, is not a Z-instance of some element of B
or
T, is a Z-instance of T and
T, is a Z-instance of some element of ‘B.

Let B< B, be a proper subset of B, and assume first that
B < B’l’ \ {g (Xl,...,X|w|)} (5)
for some w € §%; g€ 2, \{f} s.t.

W1,...,W}y| are not empty (w.r.t. (§,2)) and,
for everyK € {1,...,Jwl}, x, is the least element
in the set XWK\ {x, Tp=1,..x-1}.
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Now, since the sorts wy,...,Wj,, are not empty (w.r.t. (S,2)) (cf. (5)), there exist
£-groundterms T,® € (Tg)™ (i=1,...,wl). As a consequence we have that clearly
T, ger= € (T,D,...,T,("D) € (Tg)® and that T, is not a S-instance of T since T is
of the form (4) and g € Z_, \f}. However, T, cannot be a Z-instance of some of
the elements of B, since, due to (5), they are of the form g” (T;"M,...,t; (%)
with Z-groundterms 1, ® ¢ (Tz)w'i (i=1,...,)\w’N), where g” # g. Therefore 1,
satisfies the first alternative in Assertion 1. Now, assume that
B € Be \{f (Xp5eeesXi15DsXi 11500 X0 } (6)
for some i € {1,...,Ivl} and some b€ ’BT(i),
where, for every K € [1,...IvI}\{i},
X is the least element in the set
X‘,K \ (Var(b)u{x, | p=1,... k-1, H#i))
and let
Ch)  def™ {b’e @T(i)l f (X15-..9X5.15D X410 Xpw) € B (7)
for every K € {1,...,\vI}\{i},
X is the least element in the set
X‘,K \ (Var(b)u{x, | p=1,...K-1, p#i}}.
(6) implies Ciy € ﬂT(i)\{ b}, i.e. Ci) is a proper subset of ﬁT(i), and since gr(i)
satisfies the assertion of Proposition 3.3 (due to the induction hypothesis), C is
not a representation for the non-instances of T @ (w.r.t. (8,2)), i.e. there exists a
Z-groundterm T,® € (Tg)"i s.t.

either
1,® is not a £-instance of T® and (8)
T, is not a Z-instance of some element of

or
1,® is a Z-instance of T® and (9)

T,@ is a Z-instance of some element of ().
Furthermore, there is a Z-groundinstance of T = f (TD,...,t™) (cf. (4)) due to
assumption of case 2. This implies that, for every K € (1,...,IvI}\{i}, there exists
a Z-groundterm T,®) € (Tg)" that is a Z-instance of T®), say

O = e @) (10)

for allk € {1,...,lvI}\{i} and some substitution 6.

Particularly,

1, o= @M, 1,0D O 6D g,V e (Tg)®. (11)
Now assume (8). Then, due to (4) and (11), T, is not a & -instance of T.
However, if T, were a Z-instance of some element of B (¢ B;; see (6)), there
would be a pair (i",b”) withi1” € {1,...,Ivl]} and b" € B_ i) S-t. (i°,b") # (i,b) and
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1, is a Z-instance of
f (Xl,...,Xi'_l,b',Xi'+1,...,X|V|) € B (12)
where, for every K € {1,...,IVIJ]\[i"}, x, is the least element
in the set X"K \ (Var(p)u{x | p=1,...K-1, p=#i}.
Hence for some substitution 6 : Ts(X) -» Ts(X), we would have
f (T1(1),...,’(1(1'1),11@),‘(l(i"l),...,‘tl("")) = (13)
Tl =
(cf. (11))
(6] (f (xl,...,xi’_l,b,,xi’.;.]r--axlvl)) =
f (6 (xl)v--:G (xi’_l)a6 (b’),G (xi’+1)7~-°’6 (xlvl‘))’
showing that T,() (=6 (b")) is a Z-instance of some element of B_() and
consequently, since B (i) is a representation for the non-instances of 1) (w.r.t.

(S,Z)) (see Proposition 3.2), that T,4? is not a Z-instance of 1. Because of
(10), this would imply
i =i (14)
Finally, looking at (13) in the light of (14), we could infer
T,9 = 6 (b)
with f (X1,...,X;.150 X4 1seeeoXpyl) = £ (X5e0sXi7. 15D 75X 41500 X1y) € B (cf. (14)
and (12)) and therefore b” € (; (cf. (7)), in contradiction to (8). Therefore T, is
not a Z-instance of T and also not a Z-instance of some element of B if (8) holds,
i.e. satisfies the first alternative in Assertion 1. Thus, to complete the proof of
Assertion 1, we still have to look at the situation as given by (9). Now, assuming
(9),K =1iis no longer an exception in (10), i.e. we have
T,0 = 6, (1%) (15)
forallk € {1,...,lvl}and some substitution &, .
Since T is linear, Var(t ®)"Var(t®) = & fork, p € {1,...,Ivl}, K # J, so that
the substitution 6 : Ts(X) - Tx(X) with
6 (X) goi= 6, (x) ifke {1,..Iv]} and x € Var(T®)
6 (X) 4= X if x e U(X,-1s"€ S} \ U{Var(t®) | k=1,...,Ivl}
is well-defined and satisfies
1, = f@EO,..1,0)
(cf. (11))
= f, (W), 6, @)
(cf. (15))
= f@ (tW),..6 (1))
(since Gy ar(1®)) = 6Var(t Q) K=1,...,Ivl))
= 6 (@b, 1y
=  6(1)
(cf. (4)).
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Hence T, is a Z-instance of 1. Furthermore, due to (9), T, is a Z-instance of
some element b” € (;), that is
1, = & (b) (16)
for some substitution 6, : Ts(X) - Tg(X).
From b’ € ;) and (7) we conclude that
f (X15e0sX.15D "X 410000 X ) € B aa7)
where, for everyK € {1,...IVI]\{i}, x, is the least element
in the set X‘,K \ (Var(b)u(x, | p=1,...K-1, p=i}).
Since {X1,.c0sXi 1 Xjs15e- Xy }OVar(b?) = & and Xq,...,X;.1,X 41500, Xy ATE
pairwise different, the substitution 6 : Ts(X) - Ts(X) with
G (X) gof= éi (x) if x € Var(b")
6 (X) g= T,® ifk € {1,...,IVI]\{i} and x = x,
6 (X) o= X ifxe U{X,-1s"€ S} \
(Var(b)U{X e 0Xi 15X 1oee oo Xyl )
is well-defined and gives us
T, = f@W,.,0,6Dr 006D, 1, o) (18)
(cf. (11))
= (6 (x1)..6 (Xi.1),T1D,6 (Xi41)5006 (X101))
= £ X6 (Xi1),6; (0.6 (Ki1)ei (X))
(cf. (16))
= G (X)).,0 (X;.1)6 (0,6 (Xj41)s---s6 (X))
(since Gy ar(h) = 6ilVar(b 9)
= 6 (f (X{seeesXi1sD 3 X i 100000 Xpup))-
Thus, by (17) and (18), T, is also a Z-instance of an element of B and therefore
satisfies the second alternative in Assertion 1.

This completes the proof of Proposition 3.3. u

At this point we would like to point out that, given a signature (S,Z) with variables X and
a Z-term T of sort s € S, also the minimality property stated in Proposition 3.3 is shared
by the set
B 4= (7€ (Tg)’l1,is notaZ-instance of T}

that we have already considered in the discussion immediately following Definition 2.1.
However, this is no longer true (in general) for the embedding property that is established
for B, in Proposition 3.4 below. Reusing for instance the signature (Sfin,Zfin) specified
in the above-mentioned discussion and again letting T 4= b, we have seen that

B = (af(a),f(f(a)),f(f(f(@)), ... .Hb)EED))H(EED)), ... }.
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Furthermore, by Definition 3.1,
- B = {af(x))
where x is a variable of sort s. Both B and B, are representation for the non-instances of

T (w.r.t. (Sfin T fin)) (see Proposition 3.2) that are even linear; however, B cannot be em-
bedded in B,.

3.4 Proposition ; (embedding property of By)

Let 1) (5,2) be asignature with variables X
2) TeTs(X)® linear withseS.

Then, if B< Ts(X)® is a representation for the non-instances of T (w.r.t. (5,)) that is f-
linear if T is not a variable and f is the top-level symbol of T, there exists an injection I :
B, » B. u

Proof :

Let B< Tx(X)® be an f-linear representation for the non-instances of T (w.r.t. (S.2)).
Due to Definition 3.1, if the sort s is empty (w.r.t. (S,2)), then
Br  def= ]
and hence the empty mapping I 4= & : B, - Bis an injection. Therefore assume that
s is not empty (w.r.t. (S,2)). (1)
As in the proofs of the preceding Propositions, we consider the following two cases :
case1:  NoZ-instance of U is ground.
Then, according to Definition 3.1,
Br ger= (x}
where x is the least element in the set X,. Obviously, in the present situation, it
suffices to show that B is not empty. Now, s is not empty (w.r.t. (§,2)) (see (1)),
i.e. there exists a 2.-groundterm T, € (Tg)®, and, due to the assumption made in case
1,T,isnota Z-instance of T. Since Bis a representation for the non-instances of T
(w.r.t. (§,2)), T, is a Z-instance of some element of B (see Definition 2.1). In
particular, B is not empty.
case2:  Some Z-instance of T is ground.

Now we use induction on d(T), the maximum depth of the Z-term 1. Let us first
assume that

d(t) = 0. 2)
Then T is either a variable or a constant of sort s. If T is a variable of sort s,

ﬂf def— 4]
by Definition 3.1 and again, the empty mapping I 4= : B, » Bis an injection.
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The case that T is a constant of sort s is again included (by setting v 4= A) in the
subsequent proof for the case "d(T) > 0". Now assume that T is linear with

dt) > 0 (3)
and that the assertion of Proposition 3.4 holds for every sort s” € S and every Z-term
T°€ TZ(X)S’ with d(T ") < d(T). Because of (3), we have

T = f@aW,. gt (4)

with ve SW\A),feZ, ,1®e Te(X)" (i=1,...,Ivl)

and, according to Definition 3.1,

Br ar= DV Uy,

v,s’?

wi Di (5)

where
D 4= {8 &peuxyp! (6)
we S* geZ  Mf}; wy,...,Wyy not empty (w.r.t. (5,2));
for every K € {1.,...,Iwl} : x, is the least element in the set
XWK \Mx, T p=1,...k-1}}
i et U (XX 150X 100 X)) | (7
be @T(i);
for every K € {1,...,IWI}\{i} : x, is the least element
in the set XVK \(Var(b)u{xp [p=1,..K-1, p=i})}.
We claim that B_ is even the disjoint union of the sets D, Dy,..., Dy, :

Assertion1:  The sets D, Dy,..., Dy, are pairwise disjoint.

Clearly DND; = @ for every i € {1,...,Ivl} since all Z-terms T“ € D have some
top-level symbol g # f, whereas all &-terms T~ € D; have top-level symbol f.

' Now leti, j € {1,..,Ivl},1i# j, and assume that D;AD; # &J. By the definition of
D; (see (7)) there exists b € ﬂr(i) s.t.

XX DX Xy) € Dy (8)
where, for every K € {1,...,IvI}]\{i}, the variable x, is the least element in the set
X;,K \ (Var(byu{x, | p=1,...K-1, p#i}). However, since i # j, the i-th argument
term of any Z-term in D; is a variable. Consequently, by (8), b is a variable and
therefore, every Z-groundterm T,® € (Tx)"i is a Z-instance of b. Since b€ B ()
and B _() is a representation for the non-instances of T @ (w.r.t. (S,2)) (see
Proposition 3.2), no Z-groundterm T,® € (Tg)"! is a Z-instance of T® or, in
other words, no Z-instance of T( is ground. Because of (4), this implies that
also no Z-instance of T is ground, a contradiction to our assumption in case 2 !
Therefore, we must have D;ND; = J.
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We are now going to prove the existence of injections

J : D - B
' D, - B (i=1,...,Ivl)
whose ranges Im (J), Im (J,),..., Im (J},)) are pairwise disjoint. Once having estab-
lished this assertion, we may define

I 4= TUTJU ..Uy
and obtain an injection I : B, - B (cf. (5) and Assertion 1). Now, due to the defini-
tion of D (see (6)) and due to Lemma 2.2, for every Z-term g (Xy,....Xy) € D, the
set

By, 4= (T € BlT isnota variable; g is the top-level symbol of T°} .
is contained in B and not empty. Thus, the Axiom of Choice provides us with a

mapping

J] : D - B (9)
satisfying

J (g XppeXiy)) € By for every g (Xy,....Xw) € D. (10)
From (10) and (6) we infer that

J is injective. (11)
Now letie€ {1,...,Ivl}. Then, the mapping ,

AF D, - B_Gi) (12)

£ (XX 10X 10 X)) P b

is an injection (cf. (7)). Furthermore, by Lemma 2.3, the set
B, ger= {(bl1Iuq,c.,uy 1,050,000 £ @y,.00,05.0,D,U44q,..,u) € By (13)
no Z-groundinstance of b is a Z-
instance of T®,
some Z-groundinstance of u, is a
T-instance of T®) (k=1,....Ivl, K=i))
is a linear representation for the non-instances of T (w.r.t. (S,Z)). Consequently,
due to the induction hypothesis, there exists an injection
| RO g’t(i) - B;. (14)
Finally, for every b € B, the set
Coy der= {f (U050 0p) € B
no Z-groundinstance of b is a Z-instance of T®; some -
groundinstance of u, is a Z-instance of T ® (k=1,...,Ivl, K#i)}

is contained in B and not empty. Hence, again referring to the Axiom of Choice,
there is a mapping

L7 B - B. (15)
satisfying

Ji7"(b) € Cpy foreverybe B, (16)
(16) immediately implies that J,””” is injective. Now letting

L, go= 377Nl 2 Dy o B, (17)
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the injectivity of J;"”*, J,”" and J;” implies that also
J; is injective. (18)
Note that, due to (12), (16) and (17), for every f (X;,....,X;.1,D.Xj 4 15.---X}y)) € D; we
have
i (F (XpseesXi15DsXig1oeeoXy)) = £ (Ug,0005.0.8;77 (B),05405.5u)  (19)
where J;” (b) € Te(X)"}, no Z-ground-
instance of J;”” (b) is a Z-instance of
1®, and, for every K € {1,...,IVIN{i},
y, € Ts(X)', some Z-groundinstance
of u, is a Z-instance of T®),
According to the foregoing remark, we still have to establish the following assertion :

Assertion2:  The sets Im (J), Im (Jy),..., Im (J}) are pairwise disjoint.

Since all values of J are 2 -terms with some top-level symbol g = f (cf. (9) and
(10)) whereas the values of J; are &-terms with top-level symbol f (cf. (17) and
19), Im () " Im (J,) =9 for every i€ {1,..,Ivl}. Now let i, j € {1,..,lvl}
with i # j, and assume that Im (J)nIm (J) # o . Referring to the representation
(19) of the values of the mappings J; and J; resp. we infer that there exist Z-terms
Uy, U5 05415-.,Uy @S Well as Z-terms T el LRI 0Ty SUL
£ @yt UpUisgse oy = £ (0T s RyoTja 1o oTiw) (20)
where
U; € T(X)"}, no Z-groundinstance of U, is a Z-instance of T¥,  (21)
and, for every K € {1,..,IvI}]\{i}, u, € Tx(X)", some Z-ground-
instance of u, is a -instance of T®)
and
R; € Tx(X)"}, no Z-groundinstance of R; is a Z-instance of T, (22)
and, for every M € {1,...,IWI]\{j}, 1, € TZ(X)VP, some Z-ground-
instance of r, is a Z-instance of T®).
From (20) and i # j we further conclude that
U;
Hence, by (22), some Z-groundinstance of U, is a Z-instance of T®, in

= T
contradiction to (21). Consequently, Im (J;)NIm (Jj) # & cannot hold, i.e. we

have Im (J)NIm (J) = a. [ ]

Note that, as a corollary to Proposition 3.4, if B, is infinite/uncountable, there is no finite
/countable representation ‘B for the non-instances of T (w.r.t. (S,2)) that is f-linear if T is
not a variable and f is the top-level symbol of T (hypothesis of Proposition 3.4 assumed).
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We conclude this paragraph with the following proposition that ensures the (finiteness
and) computability of the sets B, in the situation that the signature (S,2) under considera-
tion contains but a finite number of operation symbols. Although this is a rigorous restric-
tion of generality, this situation is most common in practice. Note that Proposition 3.5
does not assume that T is linear.

3.5 Prooposition ; (computability of B;)

Let (SX) be a signature with variables X satisfying that the set U { ZW'SJ weS* s°€S}
of Z-operation symbols is finite.

Then, for every Z-term T € Ts(X)® of sort s € S, the set B, (is finite and) can be
effectively computed. |

Proof ;

Since the set U {Z, .| we S*, s” e S} of Z-operation symbols is assumed to be finite,
it is obvious from Definition 3.1 that also B, is finite for every sort s € S and every Z-

term T € Tx(X)®. In order to prove that B, can be effectively computed, we first establish
the following assertion :

Assertion1:  The set
Si1 4= {s"€ S1s”isnotempty (w.r.t. (S,2))}
can be effectively computed.

Consider the following algorithm NONEMPTYSORTS:
Input : 21 g~ ((gws)IweS* s"€S,geZ ]
Output : S| ¢e= {s”€ S|s”is not empty (wr.t. (S,X)))}
Algorithm: 1) S, =0
2) N =(s"eS\S,I3we S,*, g:(gw,s)eZ,}
) If N=g
then Output Sy;
STOP.
else S, = S,UN;
goto 2).
Note that Z, is finite and consequently, that only a finite number of sorts s~ € S may
occur as the third component of a triple in £;. Therefore NONEMPTYSORTS will

eventually stop. Now, at any state of the computation of NONEMPTYSORTS, the set
S, constructed so far satisfies

S, € {s"€ S!s”isnotempty (w.r.t. (§2))} (1)
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since S, is initialized by the empty set and, at each iteration, supplemented only by
sorts s which possess an operation symbol whose argument sorts belong to S, and
hence are not empty (w.r.t. (§,£)). Now let us assume that the inclusion (1) is
proper, i.e.
{s” € S\S, | s” is not empty (w.r.t. (§,Z))} = J.
Then the set of natural numbers
{dT) 15" € S\S,, 17 € (Ty)* ),
where d(T ") denotes the maximum depth of the 2-term T ", contains a least element,
say
i = d(t”)
with T” € (Tyx)* for some s” € S\S,.
Since 17 is a Z-groundterm, we have
T = g @@, 1lwh)
with we S¥, ge & 1M € (T)¥i (i=1,...,Iwl).
Furthermore, for every i € {1,...,lwl}, we know d(t®") < d(t ") = n° and therefore,
due to the minimality property of n°, w; € S,. Resuming these fact, we have found a
sort s” € S\S,, a word w € S,* and an operation symbol g s.t. (g,w,s") € ;. Asa
consequence, if (1) is a proper inclusion, the set N constructed in step 2) of

NONEMPTYSORTS is not empty so that NONEMPTYSORTS cannot stop unless
(1) turns out to be an equality. This proves the correctness of NONEMPTYSORTS.

w,s ?

Now, referring to Definition 3.1, the following algorithm NONINSTANCES actually
computes the set B, for every sort s € S and every Z-term T € Ts(X)® :

Input : Ly o= {(BWs) IweS*s7€S,geZ ),
aZ-term T € Te(X)  withs€ §
Output : B,
Algorithm: 1)a) If sis empty (w.r.t. (§,Z))
then B, = O;
Output B;;
STOP.

b) If for at least one variable y € Var(1),
the sort sof y is empty (w.r.t. (S,2))

then 3; = {x}
\ where x is the least element in the set X;
Output B;
STOP.

2)a) If 1 isavariable
then 3B, = ;
Output B;

STOP.
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b) If T =f @D, .1
withve §*, feZ ., 10e Te(X)" (i=1,...,Iv])
then for every
ie {1,.,vl}
do
compute 3B () by a recursive call of algorithm
NONINSTANCES
B = O
for every
(g8,w,s") €2 s.t. g#1f, wy,...,Wpy,
not empty (w.r.t. (§,2)),s" =s
do
By = Br U {8 Xpseeos X))
where, for every K € {1,...,lwl},
X is the least element in the set
X@K\{xulp=1,“x-1k
for every
ie {1,..,lvl}, be B‘t(i)
do
Bri= By U
{f (50X 105X 4 100000 X o) )
where, for every K € {1,...,IViI]\{i},
X is the least element in the set
X"x\ (Var(b)u{x, | p=1,...K-1, p=i});
Output B;;
STOP.
Note that, due to Assertion 1, it can be decided whether or not a sort s € S is not empty
(w.r.t. (S,2)). Furthermore, NONINSTANCES will eventually stop upon input £, and
T, since all recursive calls of NONINSTANCES use a proper subterm T® of the original
input Z-term T as input and since all loop statements in NONINSTANCES vary over a
finite index set (see step 2)b) in NONINSTANCES). This establishes Proposition 3.5. m
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4. Conclusijon

Motivated by the problem of finding a set of rewrite rules that is appropriate to model the
"no-action” behavior of disabled transitions in High Level Petri Nets over algebraic
specifications with constructors, we have abstracted the general problem of finding a
suitable representation for the set of all ground terms T, that are not an instance of a given
term T over a sorted signature (S,Z). Restricting to the case that S = {s} is a singleton, a
more general version of this problem has already been considered by J.-L. Lassez and K.
Marriott [ La/Ma 87]. The solution we propose consists in a recursively defined family
(Bu)reTg(x)"ses Of sets of terms s.t. for every linear term T, the non-instances of T are

precisely the ground instances of the elements of B; and, moreover, B, is minimal (both
w.r.t. set inclusion and w.r.t. cardinality) among all sets of linear terms enjoying this
property. As to the practicability of our approach, we prove that the sets B, are finite and
can be effectively computed whenever the number of operation symbols presented by the
signature (S,%) is finite, an assumption which is usually satisfied in practice.

Three lines along which the above results may be generalized are now offering for future
work : extending J.-L. Lassez” and K. Marriotts results to arbitrary signatures (S,2),
incorporating equational theories and, last but not least, considering the case of nonlinear
terms. This case has been excluded so far, not at least because of some results in [La/Ma
87] (see Proposition 4.5 and Proposition 4.6) that show that the non-instances of
nonlinear terms cannot be finitely represented in the above described way (unless, of
course, the underlying Herbrand universe is finite). Hence, tackling nonlinear terms
seems to require new ideas as to the representation of their non-instances.
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