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Abstract 

Given a signature (S,~) and a ~-term l' e Tl:(X)S of sort s e S, X = (Xs)s e S being a 

family of countably infinite sets of variables, we call a set 'B Si Tl:(X)S of ~-terms a 

representation for the non-instances oft (w.r.t. (S,E») iffthe ~-groundinstancesof the 

elements of 'B are precisely those ~-groundterms of sort s that are not a ~-instance of l' . 

We recursively define a family (2lr ),.cTl:(X)s,SCS of sets of~-terms (w.r.t. an implicit well 

ordering of the sets X of variables) in such a way, that for each linear L-term T, '1J, is a s 

representation for the non-instances of T (w.r.t. (S,E» that satisfies both a minimality 

and an embedding property. In particular, 'B,( is computable and finite if, in addition, ~ 

contains but a finite number of operation symbols. 
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Abstract

Given a signature (SZ)  and a Z—term ’l' e TZ(X)s of sort 5 e S ,  X = (XS)s G S being a -
family of countably infinite sets of variables, we call a set it E T2(X)s of Z-terms a
representation for the non-instances of T (w.r.t. (SZ)  ) iff the Z—groundinstances of the
elements of @ are precisely those Zagroundterms of sort 3 that are not a Z-instance of ' r .
We recursively define a family (mmgxms of sets of Z-terms (w.r.t. an implicit well
ordering of the sets )($ of variables) in such a way, that for each “_nea; Z—term T , $1. i s  a
representation for the non-instances of T (w.r.t.. (8 ,2))  that satisfies both a minimality
and an embedding property. In particular, 91 is computable and finite if, in addition, 2
contains but a finite number of operation symbols.
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H. Gerlach : A representation for the non-instances of linear tenns 

L Introduction 

JP: Given a signature (S,I:) and a "i.-term t e TI;(X)S of sort s e S. Is there a 

suitable representationfor the set ofall "i.-groundterms t I of sort s that are 

not a "f.-instance oft ? 

This problem was encountered by the author in the course of his work on the application 
of term rewriting techniques to the simulation and analysis of High Level Petri Nets over 
algebraic specifications with constructors that is part of the ESPRIT project GRASPIN 
(see [Ge 88]). In such a net, the enabling of a transition t in a given situation (essentially) 

depends on the availability of some groundinstance (w.r.1. a common substitution 6) of 
the terms labelling the input-arcs of t in the corresponding input-places, and the frring of t 

results in removing these groundinstances and in adding the 6-instances of the tenns 
labelling the output-arcs of t to the corresponding output-places. Assuming that the net 

has exactly n places PI""'Pn and that the current state of the system, Le. the current 
distribution of groundtenns over the places, is represented by the groundterm 

t I deF make (al'''''~) 

where ~ denotes the groundtenn residing in place Pi resp. ~ = EMPTY if Pi is empty, this 

availability-condition holds iff t 1 is an instance of the term 

t def= make (UI,""Un) 
where ui is the term labelling the input-arc joining Pi and t if Pi is an input-place of 
transition t, ui =EMPTY if Pi is an output-place of t, but no input place of t and all other 
u/s are pairwise different variables. Consequently, by choosing appropriate terms 
vl,...,vn derived from the labellings of the output-arcs of transition t, the effect of the 
firing of t in situations that satisfy the above availability-condition can be correctly 
described by a rewrite rule of the form 

t = make (Ul""'Un) ~ make (vI'''''vn). 
Thus, for instance, the firing of the transition t in the environment as represented in 
Figure 1 is described by the rewrite rule 

t = make (s(s(x»,true,cons(y,I),Empty,Empty) 

~ make (Empty,Empty,Empty,+(*(x,x),s(O»,cons(x,cons(y,I») 
(here, s denotes the successor operation on naturals, true one of the boolean constants and 
cons the cons operation on lists). Using this rewrite rule, the term 

t 1 deF make (s(s(s(O»),true,cons(O,NIL),Empty,Empty) 

representing the state illustrated in Figure 1 is rewritten to the term 

t 2 deF make (Empty,Empty,Empty,+(*(s(O),s(O»,s(O»,cons(s(O),cons(O,NIL») 

that, on his part, represents the state ensuing from the fIring of the transition 1. 
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minimum

IP : Given a signature (SE)  and a Z-term t e T2;(X)s of sort s e S. Is there a
suitable representation for the set of all Z-groundterms T1 of sort s that are
not a Z-instance of T ?

This problem was encountered by the author in the course of his work on the application
of term rewriting techniques to the simulation and analysis of High Level Petri Nets over
algebraic specifications with constructors that is part of the ESPRIT project GRASPIN
(see [Ge 88]). In such a net, the enabling of a transition t in a given situation (essentially)
depends on the availability of some groundinstance (w.r.t. a common substitution 6 )  of
the terms labelling the input-arcs of t in the corresponding input-places, and the firing of t
results in removing these groundinstances and in adding the 6-instances of the terms
labelling the output-arcs of t to the corresponding output-places. Assuming that the net
has exactly n places p1,...‚pnl and that the current state of the system, i.e. the current
distribution of groundterms over the places, is represented by the groundterm

T1 deF make (a1,...,an)
where ai denotes the groundterm residing in place pi resp. ai = EMPTY if pi is empty, this
availability-condition holds iff T1 is an instance of the term

1' def: make (u1,...,un)
where ui is the term labelling the input-arc joining pi and t if pi is an input—place of
transition t, 111 = EMPTY if pi is  an output—place of t, but no input place of t and all other
uj ’s are pairwise different variables. Consequently, by choosing appropriate terms
v1,...,vn derived from the labellings of the output-arcs of transition t, the effect of the
firing of t in situations that satisfy the above availability-condition can be correctly
described by a rewrite rule of the form

T = make (u1,...,un) —> make (v1,...,vn).
Thus, for instance, the firing of the transition t in the environment as represented in
Figure 1 is described by the rewrite rule

T = make (s(s(x)),true,cons(y,|),Empty,Empty)
—> make (Empty,Empty,Empty,+(>x(x,x),s(0)),cons(x,cons(y,|)))

(here, s denotes the successor operation on naturals, true one of the boolean constants and
cons the cons operation on lists). Using this rewrite rule, the term

T1 def:- make (s(s(s(0))),true,cons(0,NIL),Empty,Empty)
representing the state illustrated in Figure 1 is  rewritten to the term

T2 det: make (Empty,Empty,Empty,+(*(s(0),s(0)),8(0)),cons(s(0),cons(0,NIL)))
that, on his part, represents the state ensuing from the firing of the transition t.
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Figure 1:	 A transition t with input-places PI' P2 and P3 carrying the data 
s(s(s(O»), true and cons(O,NIL) and empty output-places P4 and Ps. 

However, in order to represent the "no-action" behavior of t in all remaining situations 
(by corresponding rewrite rules), it is desirable to have a suitable representation of all 
these situations, Le. a suitable representation of all groundterms that are not an instance of 

t . Thus, we arrive at the problem lP. 

The problem JP is easily seen to be a specialization of the following, more general repre­

sentation problem: 

JP':	 Given a signature (S,I:) and I: -terms t, t I ,...,t rE TI:(X)S of sort s E S. 

Is there a suitable representation for the set t/{t1v ...vtT}of aU'f.­

groundterms t 1 of sort s that are a 'f. -instance of t but not a 'f. -instance 

of any of the t i (i= I ,...,r) ? 

Clearly, JP corresponds to finding a suitable representation for x/{t}, where x is any 

variable of the same sort as t . Apart from the interest in JP, and hence also in JP', 
stemming from the sketched relation between the rewrite world and the Petri Net scenario, 

an even more lively interest in lP' is due to the fact that solving JP' corresponds to 
learning concepts from examples and counter examples, as is pointed out in the work of 

J.-L. Lassez and K. Marriott [La/Ma 87] (see also [Mic 83], [Mit 78] and [Ver 80]). 

Restricting to the case that S = {s} is single-sorted and the set U {'f. • ' Iw E S*, s' E S}w s 

of r-operation symbols is fmite, they provide an algorithm that decides whether or not an 
"implicit representation" t/{t1v ...vtr} has an "explicit representation" t1v...vtm (here, 

- 2­
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p1
s(s(s(om

&
t +( * (x‚X)‚S(0)) _

p5

p cons(x‚conS(Y‚')) _

Figure 1 : A transition t with input-places pl ,  p2 and p3 carrying the data
s(s(s(0))), true and cons(0,NIL) and empty output-places p4 and p5.

S(S(X ) )

cons (y , l )

However, in order to represent the "no-action" behavior o f t  in all remaining situations
(by corresponding rewrite rules), it is desirable to have a suitable representation of all
these situations, i.e. a suitable representation of all groundterms that are not an instance of
1'. Thus, we arrive at the problem IP.

The problem 1? is easily seen to be a specialization of the following, more general repre-
sentation problem :

]P' : Given a signature (8,2) and E-terms ‘l', T1,...,‘t' € T;;(X)s of sort 5 € S.
Is there a suitable representation for the set T [{T 1v  ...vT r ]  of all 2 -
groundterms 'f 1 of sort s that are a Iii-instance of T but not a 2-instance
of any of the T i (i=1,...,r) ?

Clearly, IP corresponds to finding a suitable representation for x/{T }, where x is  any

variable of the same sort as T .  Apart from the interest in IP, and hence also in ]P',
stemming from the sketched relation between the rewrite world and the Petri Net scenario,
an even more lively interest in IP'  is due to the fact that solving JP " corresponds to
learning concepts from examples and counter examples, as is pointed out in the work of
J .«L. Lassez and K. Marriott [La/Ma 87] (see also [Mic 83], [Mit 78] and [Ver 80]).
Restricting to the case that S = {3} is single-sorted and the set U {EMA w e S*, s’ e S]
of Z-Operation symbols is finite, they provide an algorithm that decides whether or not an
"implicit representation" r / { r  1v. . . \ f ' f '}  has an “explicit representation" wmv?“ (here,

-2 -
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t Iv ...vtm denotes the set of all ~-groundinstances of some of the terms t i) satisfying that 
t/{t Iv ...vt r } = t Iv ...vtm and, if so, calculates t I,...,tm• Their results (see [La/Ma 87], 
Proposition 4.5 and Proposition 4.6) also give evidence that nonlinear terms cause 

principal obstacles. 

Our work is related to that of J.-L. Lassez and K. Marriott [La/Ma 87] in that we consider 

the restricted problem of finding a suitable representation for the implicit representation 

xI{ t } in case of an arbitrary set S of sorts. Furthermore, apart from the results presented 

in [La/Ma 87], we prove that the kind of representation proposed in the work at hand 
enjoys some nice properties of minimality (both w.r.t. set inclusion and cardinality) and 

practicability. 

In Paragraph 1, we briefly resume our notations and some basic concepts and results of 
(sorted) universal algebra needed in the sequel. 

Paragraph 2 introduces the notion of a representation for the non-instances ofa ~-term 

t (w.r.t. a signature (S,I:) with variables X) as a set !Bc: TI;(Xt (s being the sort oft) 

satisfying that every r-groundterm t 1 of sort s is not a r-instance of t iff it is a r­

instance of some element of!B (Definition 2.1). It is noted that, as a matter of triviality,a 
representation for the non-instances of t (w.r.t. (S,r» always exists. Subsequently, two 

technical lemmata are anticipated (Lemma 2.2 and Lemma 2.3). 

In Paragraph 3, we recursively define, w.r.t. a signature (S,r), the family 

(1lr)'(ETI;(X)s,ses of sets of ~-terms that constitute the subject of the main results contained 

in this work (Definition 3.1). In particular, we prove that !B'( is a linear (Le. containing 

only linear ~-terms) representation for the non-instances of t (w.r.t. (S,I:» provided t is 
linear (Proposition 3.2). Moreover, !B'( is distinguished by the facts that it is a minimal 

representation (w.r.t. set inclusion) for the non-instances of t (w.r.t. (S,r» (Proposition 

3.3) and that it can be embedded in any other representation for the non-instances of t 

(w.r.t. (S,r» all of whose ~-terms having the same top-level symbol as t are linear 

(Proposition 3.4). Here again, t is assumed to be linear. As a corollary, no 

finite/countable representation of this type exists if!B'( is infinite/uncountable. Finally, we 
prove that all the sets 1lr are finite and can be effectively computed provided that the set 

U {rw,s' I wE S*, S' E S} ofr-operation symbols is fmite (Proposition 3.5). 

- 3­
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;lv...v;m denotes the set of all 2-groundinstances of some of the terms Li) satisfying that
’E/{T l v . . . v t l ' }  =§1v...v;m and, if so, calculates L1,...,§m. Their results (see [La/Ma 87],
Proposition 4.5 and Proposition 4.6) also give evidence that nonlinear terms cause
principal obstacles.

Our work is related to that of J .-L. Lassez and K. Marriott [La/Ma 87] in that we consider
the restricted problem of finding a suitable representation for the implicit representation
x/ {T } in case of an arbitrary set S of sorts. Furthermore, apart from the results presented
in [La/Ma 87], we prove that the kind of representation proposed in the work at hand
enjoys some nice properties of minimality (both w.r.t. set inclusion and cardinality) and
practicability.

In Paragraph 1, we briefly resume our notations and some basic concepts and results of
(sorted) universal algebra needed in the sequel.
Paragraph 2 introduces the notion of a representation for the non-instances of a 2-term
T (w.r.t. a signature (8,2) with variables X) as a set 1! s TZ;(X)s (s being the sort of 1: )
satisfying that every 2-groundterm T 1 of sort s is not a 2-instance of T iff it is a 2 -
instance of some element of 'B (Definition 2.1) .  It is noted that, as a matter of triviality,a

representation for the non-instances of “[ (w.r.t. (8,2)) always exists. Subsequently, two
technical lemmata are anticipated (Lemma 2.2 and Lemma 2.3).
In Paragraph 3, we recursively define, w.r.t. a signature (8 ,2  ), the family
(firkeTz(X)s,s<—:s of sets of 2-terms that constitute the subject of the main results contained
in this work (Definition 3.1). In particular, we prove that “3.: is a linear (i.e. containing
only linear 2-terms) representation for the non—instances of T (w.r.t. (8,2)) provided 1” is
linear (Proposition 3.2). Moreover, QT is distinguished by the facts that it is a minimal
representation (w.r.t. set inclusion) for the non-instances of T (w.r.t. (8,2)) (Proposition
3.3) and that it can be embedded in any other representation for the non-instances of 1:
(w.r.t. (8,2)) all of whose 2-terms having the same top-level symbol as { are linear
(Proposition 3.4). Here again, 1" is assumed to be linear. As a corollary, no
finite/countable representation of this type exists if ’31. is infinite/uncountable. Finally, we
prove that all the sets 9, are finite and can be effectively computed provided that the set
U {EMA w e 8*, s’ e S} of 2—operation symbols is finite (Proposition 3.5).
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L ]Sotations 

We assume that the reader is familiar with the basic concepts and results of (sorted) uni­

versal algebra as they can be found in the common literature (see, for instance, [Gra 79] 
or [Lug 76]). 

Essentially. we use the following notations and facts: A signature is a pair (S,t) where 

S is a set, t = (I:w,s)WES*,seS is a S*xS-indexed family of indexwise disjoint sets that are 

also disjoint from s.l The elements of S are called sorts and. for each (w,s) E S*xS, 

the elements f e tw,s are called ~-operation symbols of arity wand co-arity s. or. 

in short terms, of functionality (w,s). Usually, together with a signature (S.t), we are 

given a family of sets of variables, Le. a S-indexed family X = (XS)SES of indexwise 

disjoint sets that are also disjoint from S and any of the sets t ws with (w,s) E S*xS., 

Given a signature (S,t). a (S,I:)-algebra (or. alternatively, an algebra over (S,I:» is a 

pair .>l = «.>lS)ses ,(f~)wEs* seS fEE ), where each jls is a set and, for all w e S*, S E S 
, , w,s
 

W W
 
and f E tw,s' f~ :.>l 1 x ... x .>l Iwl ~ .>ls is a mapping. Given two (S,t)-algebras .>l and 

'1J, say .>l =«.>lS)SES,(pt)WES*,SES,fEEw,s) and 1J =«1J
S
)sEs,(f1i)WES*,SES,fEE ,s)' a homo­w

morphism G from jl into 'B is a S-indexed family G = (GS)SES of mappings Gs : jls ~ '1/ 
W W 

satisfying, for all w e S*, s E S, f E tw,s and (al,.o.,alwl) e jl 1 x ... x jl Iwl. the 

equation GS<f~(al,... ,alwl» =P(GW1 (al),...,GWlwl(alwl»' If there is no danger of confus­


ion, we usually drop the sort-index "s" in Gs'
 

Among all (S,I:)-algebras, we are particularly interested in the (S,I:)-algebra of terms,
 

Le. the (S,t)-algebra TE(X) = «TE(X)S)ses.(fTE(X»wEs*,SES,fEEw,s)' where (TE(X)S)SES
 

is the least family of sets of strings S.t. for all SE S, TE(X)S contains the variables and 

constants of sort s, Le. the set Xs u U {t 1\ ,s I s E S} 2, and, if w e S*, s e S, 

w1 w\wl s.(-r 1,o.o,-r Iwl) E TE(X) x ." x Tt(X) and f E tw,s' also f(-r 1•••• ;( Iwl) E Tt(X) , ac­

cordingly, the mapping fTE(X) : TE(X)w1x ... x Tt(X)w 1wl ~ Tt(X)S is defined by 

~OO sf (-r 1.....'( Iwl) deF f('( 1.... ''( Iwl)' We let TE deF TE«.0)seS)· The elements of TE(X) 

(resp. (Tt)S) are called ~-terms of sort s (resp. ~-groundterms of sort s). For a 

t-term '(, Var('() denotes the set of variables x E U {Xs I sE S} occurring in '(. '( is 

said to be linear iff no variable x E U {Xs I s E S} occurs more than once in the string '( . 

The (S,t)-algebra Tt(X) is distinguished by the fact that any family G = (Gs)seS of 

Note that, unless stated otherwise, no assumption is made on the cardinality of any of the sets S or 
tw,s (for WE S*, SE S); 

2 1\ denotes the empty word in S*; 
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LW

We assume that the reader is familiar with the basic concepts and results of (sorted) uni-
versal algebra as they can be found in the common literature (see, for instance, [Grä 79]
or [Lug 76]) .

Essentially, we use the following notations and facts : A signature is a pair (8,2) where
S is a set, 2 = (2w’s)west.,es is a 8*x8-indexed family of indexwise disjoint sets that are
also disjoint from S.1 The elements of S are called sorts and, for each (w,s) e 8*x8 ,
the elements f e Ems  are called 2-operation symbols of arity w and co—arity s, or,
in short terms, of functionality (w,s). Usually, together with a signature (8,2  ), we are
given a family of sets of variables, i.e. a S-indexed family X = (X98615 of indexwise
disjoint sets that are also disjoint from S and any of the sets 2W.s with (w,s) e S*xS.
Given a signature (8,2),  a (S,2)-algebra (or, alternatively, an algebra over (8,2)) is a
pair 51 = ((fls)ses‚(f2)w€S#'s€s,fezw,s), where each its is a set and, for all w e S*‚ s e S

and f e Ems, f“l : fllwl x x fiw'w' —> fits is a mapping. Given two (8,2)—a1gebras fit and
‘ß, say A = (MS)“s,(f“)wes„_s€s_fezw,s) and 9 = ((ßs)s€S‚(fg)wes*_ses,fezw,s), a homo-

morphism o from fll into (B is a S-indexed family 6 = (6,)563 of mappings 6 ,  : fits —-> 'B‘

satisfying, for all w € S*, s e S, f e  2W.s and (a1,...,alwl) e filwl x x fllw'w', the

equation 65(f”(a1,...,alw.)) = f'-3(6wl(al),...,6wlwl(a‚w‚)). If there is no danger of confus-
ion, we usually drop the sort~index "s" in 63.
Among all (S,2)-algebras, we are particularly interested in the (S,2)-algebra of terms,

i.e. the (8,2)-algebra TZ(X) = ((T;(X)S),,s15’2“)“,rsemw’s), where ('1‘Z(X)-°’),,_,s
is  the least family of sets of strings s.t. for all s e S ,  Tz(X)s contains the variables and
constants of sort s, i.e. the set Xs U U {Ems  | s € S]2, and, if w e S*‚ s e S,
(11,...,t,w,)e T2(X)w1 x x T£(X)w“”' and fe 2 also f(1'1,...,t|w,) e T2005; ac-

W,S’

cordingly, the mapping £13300 :Tz(X)w1x x T;(X)w'“" _» 'rzms is defined by
T Xf E‘ )(r „...,q def-.- f(‘t’ 1,...,tlwl). We let T: def: games). The elements of T2005

(resp. (T2?) are called 2-terms of sort s (resp. 2-groundterms of sort s). For a
2-term 1', Vera") denotes the set of variables x E U {)(S | s € S}  occurring in  t .  T is
said to be linear iff no variable x e U {X5 I s e S} occurs more than once in the string T .
The (S,2)-a1gebra TZ(X) is distinguished by the fact that any family 6 = (Ös)ses of

1 Note that, unless stated otherwise, no assumption is made on the cardinality of any of the sets S or
zw, s  (for w e 8*, s e S);

2 A denotes the empty word in 8*;
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mappings 5 s : Xs ~ 'Bs
, where 'B =«2f)SES,(f'B)wES*,SES,fEt ,s) is an arbitrary (S,I:)­

w

algebra, can be uniquely extended to a homomorphism Gfrom Tt(X) to 'B. 

A homomorphism 5 from Tt(X) to Tt(X) that moves only a finite number of variables 
x E U (Xs Is E S) is called a substitution. It is noted that G(t) =g(t) for a I:-terms t 
an(! all substitutions G, 9 satisfying G(x) = g(x) for all x E Var(t), i.e. G(t) only depends 
on the effect of 5 on the variables of t . Given I:-terms t and t' of equal sort, t' is called 
a ~ -instance of tiff t ' = 5 (t) for some substitution G, and t' is called a I:­

groundinstance of t ifl t ' is a I:-instance of t and t' is ground. 

- 5­
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mappings es  : Xs + '3‘, where (B = ((35365,(Mwest'sesxezw's) is an arbitrary (8,2)-

algebra, can be uniquely extended to a homomorphism € from T200 to 9.
A homomorphism 6 from T:;(X) to T2(X) that moves only a finite number of variables
x e U [)(3 I s e S] is called a substitution. It is noted that 60?) = 9(1‘) for a Z-terms T
and all substitutions e ,  9 satisfying 6(x) = 9(x) for all x e Var('t), i.e. 6(1') only depends
on the effect of 6 on the variables of T . Given Z-terms 1: and ‘l' ’ of equal sort, t " is called
a Z- instance  of { iff 1: ’ = 6(1’) for some substitution 6 ,  and 1’ ’ i s  called a Z-
groundinstance of 1’ iff t ’ is a Z-instance of 1 and it ’ is ground.
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L	 Representation of non-instances of terms 

Recalling that, if (S,I:) is a signature with corresponding variables X = (XS)SES' the sets 
of operation symbols and variables are sortwise disjoint and that substitutions preserve 

sorts (see Paragraph 1), it is easily recognized that if'( is a r-term of sort SE S, no r ­

groundterm '( 1 of some sort s' E S\{s) can ever be a r-instance of '(. Therefore, the 

problem of rmding a suitable representation for those r-groundterms '( 1 that are not a r ­

instance of the r -term t may be restricted to r -groundterms of the sort s of '(; for all 

other sorts s' E S\{s}, this problem is, trivially enough by the above remark, settled by 

saying that the "non-instances" of sort s' are precisely the r-groundinstances of some 

element of the set '.B deF {x}, x being any variable of sort s'. Sets '.B that enjoy this 

property in the nontrivial case s' = s are captured by the following definition. 

2.1 Definitjon ; 

Let	 1) (S,I:) be a signature with variables X; 

2) t E TI:(X)S with s E S. 

A set '.Bee TI:(X)S is a representation for the non-instances oft (w.r.t. (S,r») iff, for 

every r-groundterm '( 1 E (TI:)S, 

'( 1 is not a r-instance of '( t 1 is a r-instance of some element of flJ. • 

Note that, if (S,r) is a signature with variables X and t is a r-term of sort s E S, the set 

'.B deF {'( 1 E (TI:)S It 1 is not a r-instance of'(} 

is immediately seen to be a representation for the non-instances oft (w.r.t. (S,I:». Thus 

a representation for the non-instances oft (w.r.t. (S,I:» always exists! 

However, the above set flJ may be infinite even if r contains but a finite number of 
operation symbols (and therefore fail to be of any practical use). This can be easily seen 

by choosing a signature (Sfin,I:fm) with exactly one sort sE Sfm, two constant symbols a 

and b, and an unary function symbol f. Under these assumptions and letting '( deF b, we 

have 
'13 = {a,f(a),f(f(a»,f(f(f(a»), ... ,f(b),f(f(b»,f(f(f(b»), ... }. 
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Recalling that, if (S ‚X) is a signature with corresponding variables X = (X9565, the sets
of operation symbols and variables are sortwise disjoint and that substitutions preserve
sorts (see Paragraph 1), it is easily recognized that if 1." is a Z-term of sort s e S, no 2 -
groundterm ‘L‘ 1 of some sort s '  € S\[s] can ever be a Z-instance of 't . Therefore, the
problem of finding a suitable representation for those Z-groundterms T1 that are not a 2'.-
instance of the Z-term 1' may be restricted to Z-groundterms of the sort s of T; for all
other sorts s’ e S\{s ] ,  this problem is, trivially enough by the above remark, settled by
saying that the "non-instances" of sort 3’ are precisely the Z-groundinstances of some
element of the set ß def: {x}, x being any variable of sort 5’. Sets ß that enjoy this
property in the nontrivial case s’  = s are captured by the following definition.

Z lDf i ' l '  _

Let 1) (8,2) be a signature with variables X;
2) r e T>:(X)s with 3 e S.

A set ß e Tz()()’s is a representation for the non-instances of r (w.r.t. (8,2 )) iff, for

every Z-grouudterm T 1 e (Tz)‘,

r 1 is not a Z-instance of r fi T1 is a Z-instance of some element of B. I

Note that, if (8,2) is a signature with variables X and 1: is a Z-term of sort s € S, the set
9 der—' {r l  6 (T2)" | 1‘1 is not ail-instance of { }

i s  immediately seen to be a representation for the non-instances of { (w.r.t. (8.2)). Thus
a representation for the non-instances of r (w.r.t. (S II)) always exists!
However, the above set % may be infinite even if 2 contains but a finite number of
operation symbols (and therefore fail to be of any practical use). This can be easily seen
by choosing a signature (Sfinzfin) with exactly one sort s e 85", two constant symbols a
and b, and an unary function symbol f. Under these assumptions and letting r „= b, we
have

9 = {a,f(a),f(f(a)),f(f(f(a)))‚ ,f(b),f(f(b)),f(f(f(b))), }.
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In Paragraph 3 we will define a set 1J,- ofr-terms (in fact a family (1J,-)"tETL(X)s.s(;s) that 

evades this shortcoming (see Proposition 3.5) and also constitutes a representation for the 

non-instances of'( (w.r.t. (SJ:» provided '( is ~ (see Proposition 3.2). Moreover, 
!B"( is distinguished by some additional properties (see Proposition 3.3 and Proposition 

3.4). These properties will be proven by the use of the following two lemmata, the first of 

which states that the g-component !BIg of any representation !B for the non-instances of l' 

(w.r.t. (S,r» is not empty provided g is an operation symbol different from the top-level 

symbol of'( and all argument sorts of g are not empty (w.r.t. (S,r».3 

2.2 Lemma; 

Let	 1) (S,r) be a signature with variables X; 

2) l' = f ('t(l),...,'(lvl» with SE S, v E S*, f E r . and t(K) E TL(X)VKfor all v s 
K E {1,... ,lvl}; 

3) !BSi TL(X)S a representation for the non-instances oft (w.r.t. (SX». 

Then, for every w E S* S.t. Wt"",Wlwl are not empty (w.r.t. (S,r» and every operation 

symbol g E rw.s\{f}, the set 

!BIg deF {'( , E !B I l' ' is not a variable; g is the top-level symbol of'( , } 

is not empty. _ 

Proof; 

Assume that w E S* and Wt,... ,wlwl are not empty (w.r.t. (SX» and g,E I:w.s\{f}. Since 

wi is not empty (w.r.t. (S,I:», there exists a r-groundterm ui E (TL)Wi (i = 1,...,lwl). 

Now, since we have g *" f, the r-groundterm g (Ut,...,Ulwl) E (TLt is not a r-instance of 

'( , and hence. due to assumption 3) of Lemma 2.2, is a r-instance of some element of !B, 

Le. g (Ut,...,Ulwl) = G (1") for some 1" E !B and some substitution G : TL(X) ~ TL(X). 

Consequently, g must be the top-level symbol oft', and therefore, !BIg *" 0. _ 

The next lemma now explains how certain representations for the non-instances of a I:­

term l' = f ('t (1), ... ,1' (Ivl» induce representations for the non-instances of all of its 

argument terms t(i) provided l' is linear and at least one I:-instance oft is ground. Since 

these assumptions on '( are handed down to all of its non-variable subterms, this lemma 
may be used as a basis for a top-down strategy to construct representations for the non­

instances of all non-variable subterms of l' starting with a suitable representations for the 

non-instances of the I:-term t itself. 

3 A sort s e S is empty (w.r.t. (S,L» iff (TL)S = £1; 
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In Paragraph 3 we will define a set 31 of 2-terms (in fact a family (B.r )TeT£(X)s,seS) that
evades this shortcoming (see Proposition 3.5) and also constitutes a representation for the
non-instances of ‘t (w.r.t. (8,2)) Provided ‘l' is linear (see Proposition 3.2). Moreover,
fit is distinguished by some additional properties (see Proposition 3.3 and Proposition
3.4). These properties will be proven by the use of the following two lemmata, the first of
which states that the g-component 2318 of any representation 9 for the non-instances of T
(w.r.t. (8,2)) is not empty provided g is an operation symbol different from the top-level
symbol of T and all argument sorts of g are not empty (w.r.t. (8,2)).3

2.2.Lemma_;

Let 1) (8,2) be a signature with variables X;
2) T = f (1(1),...3' (M)) with s e S, v € S*, f € 2v.s and {(K) e TZ(X)"K for all

K e {1,...,|vl } ;

3) $ E T200S a representation for the non-instances of T (w.r.t. (8,2)).

Then, for every w e 8* 51. w1,...,wlwl are not empty (w.r.t. (8,2)) and every Operation

symbol g e 2w‘s\{ f }, the set

% def: {" € 9 '  T ' is not a variable: g is the tap-level symbol oft ’ ]
is not empty. 

.

EmQLE

Assume that w e S* and w1,...,w|w| are not empty (w.r.t. (8,2)) and ge 2w’s\{f}. Since
wi is not empty (w.r.t. (8,2)), there exists a 2-groundterm ui e (TE)Wi (i = 1,...,|w|).
Now, since we have g # f, the 2-groundterm g (u1,...,ulwl) € (TZ)s is not a 2-instance of
T , and hence, due to assumption 3) of Lemma 2.2, is a 2-instance of some element of 13,
i.e. g (u1,...,u.w.) = 6 (T ') for some ’l‘ ’ e 9 and some substitution 6 : T£(X) —> T:(X).
Consequently, g must be the top-level symbol of T ’, and therefore, 9318 at ß . l

The next lemma now explains how certain representations for the non-instances of a 2 -
term T = f (T (1 ) , . . . ,T  (M) )  induce representations for the non-instances of all of its
argument terms T @) provided 1" is linear and at least one 2-instance of ‘l' is ground. Since
these assumptions on 1' are handed down to all of its non-variable subterms, this lemma
may be used as a basis for a top-down strategy to construct representations for the non—
instances of all non—variable subterms of T starting with a suitable representations for the
non-instances of the 2-term T itself.

3 A sort s e S is empty (w.r.t. (8 ,2))  iff (T z ) s  = H;

-7 -
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2.3 Lemma; 

Let I) (SoL) be a signature with variables X; 

2) t = f (t (l), •.. ,t(lvl) be ~ with v E S*, SE S, f E I: v.s' t(K) E TL(X)VK 

for all KE {I,... ,lvl} s.t. some I;-instance of"( is ground; 

3) '13 S TL(X)S be an f-linear4 representation for the non-instances of t 

(w.r.t. (S,I:». 

Then, for every i E {l,... ,lvl}, the set 

'Bi der {b I 3uI,... ,Ui_I,Ui+I,... ,ulvl: f (uI, ... ,ui_l,b,ui+I,... ,u'vl) E '13; 

no I:-groundinstance of b is a I:­
instance oft(i); 

some I: -groundinstance of ~ is a 

I:-instance of t (K) (K=I,...,lvl, K:;ti)} 

is a ~5 representation for the non-instances of t (i) (w.r.t. (SoL». • 

PrQQf ; 

Clearly, 'Bi is linear since '13 is f-linear (assumption 3) of Lemma 2.3). Now let t i' E 

(TL)Vi. If we assume that t i' is a I:-instance of some element b E 'Bi , there exist 

u I,... ,ui-l ,ui+l , ,ulvl S.t. 

f (UI, ,ui_l,b,ui+I,... ,U'vl) E '13; 

no I:-groundinstance of b is a I:-instance of t(i); (1) 

some I:-groundinstance of ~ is a I:-instance of "(K) (K=I,... ,lvl, K:;ti) 

and a substitution Gi : TL(X} ~ TL(X} S.t. 

t i ' = Gi (b). (2) 

Hence, due to (1) and (2), t i' is not a I:-instance of t(i). Conversely assume that t i' is 

not a I:-instance of t (i). We have to show that l' i' is a I:-instance of some element b E ~. 

According to assumption 2) of Lemma 2.3 there exists a substitution 9 : TL(X) ~ TL(X) 

s.1. 

f (g (t(1»,...,g (t(lvl)) = 9 (f (1' (1),... ,1' (Ivl)) = 9 (1') E (T~Y. (3) 
We consider 

1'1 der f (g (1'(1»,... ,9 (1' (i.l)},t i',g (t(i+l)},... ,g (t(lvl») E (TL)s. (4) 

Since l' i' is not a I:-instance of t(i), 1'1 is not a I:-instance of l' (= f (1' (1), ... ,1' (Ivl»). 

Consequently, due to assumption 3) of Lemma 2.3 and Definition 2.1, 1'1 is a I:-instance 

of some element 

f (uI, ... ,ui_l,b,ui+I,... ,U\vl) E 'B. (5) 

Therefore, there exists a substitution G : TL(X} ~ TL(X} S.t. 

4 I.e. all L -terms ,.' e '1J with top-level symbol f are linear; 
5 I.e. all L -terms ,.' e '1Ji are linear; 
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Let 1) (8,2) be a signature with variables X;
2) T = f(‘t(1),...,‘t("")) be linear with v € S*, s e S, f e  2

for all K € {1,...,lvl} s.t. om -ins ance of is ound;
v,s’ {'00 e T,;(xr'x

3) $9  T2;(X)s be an f—linegr‘4 representation for the non—instances of T
(w.r.t. (3 ,2) ) .

Then, for every i e  {1,...,|vl}, the set
{Bi der-"' {b | Eu],...,ui_1,ui+1,...,u|v.: f (u1,...,ui_1,b,ui+1,...‚ulv‚)e @;

no Z—groundinstance of b is a Z-
instance of ’l’ (i);

some Z-groundinstance of uK is a
Z-instance of f (x)  (K=1,...,|vl, K¢i)}

is a m5 representation for the non-instances of T 6’ (w.r.t. (8,2)). I

Emm;

Clearly, Bi is linear since 3 is f-line‘ar (assumption 3) of Lemma 2.3). Now let T i '  e
(Tz)"i .  If we assume that T i ’  is a E -instance of some element b e 'ßi, there exist
u1,...,ui_1,ui+1,...,uM s.t. '

f (ul,...,ui_1‚b‚ui+1,...,u‚„|)€ %;
no Z-groundinstance of b is a Z-instance of t“); (1)
some Z-groundinstance of uK is a Z-instance of T (") (K=1,...,lv|, Kati)

and a substitution 6 i  : T:(X) —> TZ(X) s.t.
r ;  = si (b). (2)

Hence, due to (1) and (2), ‘t i ’  is not a Z-instance of 1:“). Conversely assume that Ti’ is
not a Z-instance of T (i). We have to show that Ti’ is a Z-instance of some element b e 6,.
According to assumption 2) of Lemma 2.3 there exists a substitution 9 : Tz(X) —> TZ(X)
s . t .

f (9 (1(1))..«9 (T("'")) = 9 (f (Im....‚fl'vßn = 9 (r) e (Taf. (3)
We consider

T1  af f (9 (t‘1)).....9 (t‘i'l’mi’s (t (i+1)).....9 «(M)» e (Tag. (4)
Since T { is not a Z-instance of 1' (i), ‘I:l is not a Z-instance of T (= f (t (1 ) , . . . ,T  (W)) .

Consequently, due to assumption 3) of Lemma 2.3 and Definition 2.1, 1’1 is a Z-instance
of some element

f (ul,...,ui_1,b‚ui+1‚...,uM) € B. (5 )
Therefore, there exists a substitution 6 : T2(X) » Tz(X) s.t.

Le. all Z-terms 1‘ ’ e 9 with top—level symbol f are linear;
5 Le.  all Z-terms 1” ' € ‘Bi are linear;

-8 -
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f (g (t(1», ... ,g (t(i-1»,t i',g (t(i+l),... ,g (t(lv!)) = 
t 1 = 

(see (4» (6) 

6 (f (ul, ,ui_l,b,Ui+l, ... ,u\vl» = 
f (6 (u1), ,6 (Ui_1),6 (b),6 (Ui+1),... ,6 (Ulvl»' 

In particular, 

t i ' = 6 (b). (7) 

Due to (6), 6 (lIt<) =9 (t(K», Le. some I:-groundinstance of lIt< is a I:-instance of t(K) 

(K=I,...,lvl, K:#:i). Thus, in order to prove that 

b e 1Ji, (8) 

we only have to show that no I:-groundinstance of b is a I:-instance of t (i). Assume the 

contrary, Le. that there exist substitutions 6', g': T~(X) ~ T~(X) s.t. 

6'(b) = g'(t(i» e (T~ti (9) 

is a I:-groundterm. Now both f (U1,... ,Ui_1,b,Ui+1,... ,Ulvl) and f (t (l),...,t (Ivl» are linear 

due to assumption 3) and assumption 2) of Lemma 2.3 resp.. Hence, there exist 

substitutions 6, § : T~(X) ~ T~(X) satisfying 

r 6 (x) x e UK=I.....lvl.K~i Var(uK) 

6 (x) = ~ 6' (x) x e Var(b) (10) 

L x in all remaining cases 

r 9 (x) x e UK=l .....lvl.K~i Var(t(K» 
§ (x) = ~ g' (x) x e Var(t(i» (11) 

L x in all remaining cases. 
From (10) and (11) we conclude that 

G (f (Ulo ... ,Ui_l,b,Ui+l, ... ,Ulvl» = 
f (G (Ul)'"'' G (Ui_l),6 (b), G (Ui+l)'"'' G (Ulv\» = 

f (6 (ul),... ,6 (Ui_l),6' (b),6 (ui+l),· .. ,6 (Ulvl» = 
(due to (10» 
f (g (t(1», ... ,g (t(i-1»,g' (t(i»,g (t(i+l),... ,g (t(lvl») (12)= 
(due to (6) and (9» 
f (§ (t (1»,... , § (t (i-I», § (t (i», § (t (i+1»,... , § (-r (Ivl») = 
(due to (11» 
§ (f (t (1), ... ,t (i-l),t(i),-r (i+l), ... ,t (Ivl») = 

§ (t) 
(assumption 2) of Lemma 2.3). 

Thus, due to (12), (3), (9) and (5), § (-r) e (T~)S is a I:-groundterm that is a I:-instance 

of -r and, at the same time, a I: -instance of some element of 1J. This, however, is a 

contradiction to assumption 3) of Lemma 2.3 and Definition 2.1. • 
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f (9 (1(1))...42 (t‘i'1)),T,’,9 (t‘i+1)).....9 «(M)» =
T1 =

(see (4)) (6)
6 (f (u1,...,ui_1,b,ui+1,...,uM)) =
f (6 (HD,-«ß (“i-1N5 (b)‚6 (Ui+1)‚m‚5 (“MD-

In particular,
‘t-’ = 6 (b). (7 )[

Due to (6), 6 (ox) = 9 (Too), i.e. some Z-groundinstance of uK is a Z-instance of fl")
(K=1‚...,Iv|, Kati). Thus, in order to prove that

b e 2%, (8)
we only have to show that no Z-groundinstance of b is a Z—instance of T (i). Assume the
contrary, i .e. that there exist substitutions 6 ’, 9 ’ : TZ(X) + T£(X) 's.t.

6 ' (b )  = 9'(T(i)) € (T2)vi (9)
is a Z-groundterm. Now both f (ul‚...,ui_1,b,ui+1,...‚u|v|) and f (T ( I ) , . . . ‚T  (M)) are linear
due to assumption 3) and assumption 2) of Lemma 2.3 resp.. Hence, there exist
substitutions €, § : T:(X) —> Tz(X) satisfying

r ‘5 (") x € UK=1,...,IVI,I<¢i Var(uK)
6 (x) = { 6'(x)  ear(b) (10 )

L x in all remaining cases

l 9 (") " e UK=1,...,IvI,Ka¢ival-(1(0)

§(x) = ( 9"(x) earam) (11)
L x in all remaining cases.

From (10) and (11) we conclude that
3 (f (u1,...,ui_1,b,ui+1,...,u.vl)) =
f ( 5 (HOW-,3 (um), 5 (119,3 (“m),-«, 5 (“1l =
f (6 (ul),...,6 (ui_1),6’ (b),6 (ui+1),...,6 (nm)) =
(due to (10))

f (9 «mm (104))? «(i))‚g ('t“+‘))....,9 ('t"‘"))) = (12)
(due to (6) and (9))
f ( Ö (T (1 ) ) , . . . ,  § (f(i'1))‚5 (T (”Lil  (T (i+1))‚m‚5 (T (M)» =
(due to (11))

’9‘ (f (T(1),...,T(i‘1),T(i),T(i+1),...,’f(""))) =
<3 (I)
(assumption 2) of Lemma 2.3).

Thus, due to (12), (3), (9) and (5), § (T) e (TE)S is  a Z-groundterm that is a Z-instance
of T and, at the same time, a Z—instance of  some element of ‘B. This, however, is a
contradiction to assumption 3) of Lemma 2.3 and Definition 2.1. I
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la.	 .Ih.t....fwni.J (~1),(ETt (X)S,SE S .of sets of terms 
BlliI its properties 

We now turn to the defmition of the family (lir)tETI;O<l,SES of sets ~'( ofL-tenns that are 

intended to be a suitable representation for the non-instances of'( (w.r.t. (S,L», at least 

for linear l:-terms l' . This definition requires the following additional assumptions on the 
family X = (Xs)seS of the sets of variables that will be tacitly assumed throughout this 
paragraph: 

for each sort sE S, the set Xs of variables of sort s is 
1.	 infinite 
2.	 well ordered (without making explicit reference to the well ordering) 

in such a way that for each finite subset Y c; Xs' the minimum 

min(Xs\Y) E Xs is effectively computable. 

Clearly, we may chose ~'( deF 13 if the sort oft is empty (w.r.t. (S,L», for in that case 

there are no l:-groundterms of the same sort as l' at all. If, however, the sort of'( is not 

empty (w.r.t. (S,L» but none of the l:-instances of l' is ground, obviously ~'( deF {xl 

(x a variables of the sort of1') serves as a representation for the non-instances of'( (w.r.t. 

(S,L ». In all remaining cases, except when l' itself is a variable, ~'( is defined by 
recursion. 

3.1 Definition; 

Let	 (S,L) be a signature with variables X. 

The family (1ir )HTI;(X)s,SES of sets of L-terms is recursively defined by : 

a) (i) if'( E TI;(X)S (with sE S) and s is empty (w.r.t. (S1:)), let
 

'E,( deF 13
 
(ii) if'( E TI;(X)S (with sE S), s is not empty (w.r.t. (S.4)) and no L-instance of 

l' is ID"ound, let 

~'( deF {x}
 
where x is the least element in the set Xs
 

b) if l' E TI;(X)S (with SE S), s is not empty (w.r.t. (S,4)) and some 4-instance 

of I is ID"ound, let 

~'( deF 13 
if l' is a variable of sort s, and let 
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L W ($1 ) t eTz(X)s , s e  s Elf—mum

n l l‘ I

We now turn to the definition of the family (‘31)teTz(X)s.ses of sets fit of 2-terms that are
intended to be a suitable representation for the non-instances of T (w.r.t. (8,2)), at least
for linear 2-terms T . This definition requires the following additional assumptions on the
family X = (Xs)s€S of the sets of variables that will be tacitly assumed throughout this
paragraph :

for each sort 5 e S, the set )(5 of variables of sort s i s
1. infinite
2. well ordered (without making explicit reference to the well ordering)

in such a way that for each finite subset Y s; XS, the minimum
min(Xs\Y) 6 XS is effectively computable.

Clearly, we may chose EB.t det: @ if the sort of T is empty (w.r.t. (8,2)), for in that case
there are no 2-groundtcrms of the same sort as T at all. If, however, the sort of 1: is not
empty (w.r.t. (8,2)) but none of the 2-instances of T is ground, obviously 931; def: {x}
(x a variables of the sort of 1:) serves as a representation for the non—instances of T (w.r.t.
(8,2  )). In all remaining cases, except when r itself is a variable, $1. is defined by
recursion.

3 l D [i ‚ | .  .

Let (8,2) be a signature with variables X.

The family (31)reTz(X)s,ses of sets of 2-terms is recursively defined by :

a) (i) if 1" € T:(X)s (with s E S)  and s is empty (w.r.t. (8 , :  )), let
g17 def: 6

(ii) if T e TZ(X)s (with s € S), s i s  ngt empty (w.r.t. (8 ,2  )) and no Z-instance of
I is  ground, let

3T def= {x}

where x is the least element in the set Xs

b) if T € T}:(X)s (with s e S), s is ng; empty (w.r,t, (8 ,2))  and some Z-instange
9f 1 is  ground, let

91‘ deF a
if T is a variable of sort s, and let

-10 -
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1J,. deF D U U i=l •...• lvl D i 

where 

D deF { g (xlt,,,,xlwl) I 

w e S*; g e ~ w,s\{ f}; wlt ... ,wlwl not empty (w.r.t. 

(S,~»; 

for every Ke {I,...,Iwl} : ~ is the least element in the 

set X
WK 

\ (xj.ll j.1=l,... ,K-l)} 

D·1 deF ( f (xl"",xi_l,b,xi+I,,,,,xlv/) I 
bE 1J,.(i); 

for every KE {l,... ,lvl}\{i} : ~ is the least element in 

the set X
VK 

\ (Var(b)u{xj.ll j.1=1,... ,K-1, j.1*i})} 

'f1 t - f «I)- t ,...,t (Ivl»' hwIt ve S* f '" (i) T (X)Vi (. - 1E ""v.s' t E ~ 1 ­, ,... , v.I I) • 

The following proposition now states that the sets 1ir in fact meet our primary intention, 

namely that ':8,. is a (linear) representation for the non-instances of t (w.r.t. (S,!:» 

provided t is~. 

3.2 PropositioD ; (basic property of 1J,. ) 

Let	 1) (S,!:) be a signature with variables X; 

2) '( E T!:(X)S linear with SE S. 

Then, the set 1J,. S; T~(X)S is a linear representation for the non-instances of t (w.r.t. 

(S,L». • 

Proof; 

If the sort s is empty (w.r.t. (S,L», we have 

1J,. deF 0 
and obviously, ':8,. is linear and a representation for the non-instances of t (w.r.t. 

(S,~».So, let us assume that 

s is not empty (w.r.t. (S,~». (1) 

We consider the following two cases : 

case 1 ; No L-instance oft is ground. 
Then, according to Definition 3.1, 

1J,. deF {x} 
where x is the least element in the set Xs' Clearly, 2J,. is linear. Furthennore, due to 

the assumption made in case 1, every L-groundtenn tiE (T~l is not a L-instance of 

- 11 ­
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9‘[ det‘= D U Ui=1  Di

where

D def= {g  (X1wuxlw1) |
w e S*; g e Zw_s\{f}; Wl,...,W|w| not empty (w.r.t.
(8,2));
for every K € {1,...,lw|] : xK is  the least element in the
set XWK \ (x}l | p=1,...,K-1} ]

Di  def: [ f ( x l , . . . , x i_1 ,b ,x i+1 , . . . ‚ x | v ‚ )  l

b € 3 (i);
‘l'

, . I l ‘ l v '

for every K e {1,...,lvl}\{i} : xK i s  the least element in

the set XVK \(Var(b)u{x11 |}.l=1,...,I<-1, p¢ i ] ) }

if r = f (r<1>,...,r<'V'>) with v e s*, f e z”, fü) e T200“ (i = 1,...,Ivl). I

The following proposition now states that the sets 58T in fact meet our primary intention,
namely that 'B.lr is a (linear) representation for the non-instances of ’l' (w.r.t. (8 ,2))
provided ‘t is  linear.

mm.; (basic property af 31)

Let 1) (8,2) be a signature with variables X;
2) T e Tz(X)s linear with s e S.

Then, the set BT 9: Tz(X)s is a linear representation for the non-instances of ‘t (w.r.t.
(3,2)). I

Email.;

If the sort s is empty (w.r.t. (8,2)),  we have
fit“ det: ,0

and obviously, 931 is  linear and a representation for the non-instances of T (w.r.t.
(8,2 )).So, let us assume that

s is not empty (w.r.t. (8,2 )). ( 1 )
We consider the following two cases :
9359 1 ; No 2 -instance of T is ground.

Then, according to Definition 3.1,

9T def= {X}
where x is the least element in the set XS. Clearly, 91 is linear. Furthermore, due to
the assumption made in case 1, every 2-groundterm T1 e (TE)S is not a 2-instance of

-11 -
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l' and a I:-instance of an element of 2J-p i.e. 2J-r: is a representation for the non­

instances of l' (w.r.t. (SJ:». 

case 2: Some I:~instance ofl' is ground. 

To prove the assertion of Proposition 3.2 under this assumption, we use induction 

on d(l'), the maximum depth of the r-term l'. To start with, we assume 

d(l') = 0 (2) 

Le. l' is either a variable or a constant of sort s. If l' is a variable of sort s, every I:­

groundterm l' I E (TI / is a I:-instance ofl', and consequently, 

2J'( deF 0 
is a linear representation for the non-instances of l' (w.r.t. (SJ:». The case that l' is 

a constant of sort s is included (by setting v deF /\) in the subsequent proof for the 

case "d(l') > 0". So let us assume that t is linear with 

d(t) > 0 (3) 

and that the assertion of Proposition 3.2 holds for every sort s' E S and every I:-term 

l" E TI:(X{ with d(l") < d(t). Now, referring to (3), we have 
l' = f (l'(l),...,l'(lvl» (4) 

with v E S*\{/\}, f E r v. ' t(i) E TI:(X)vi (i=I,...,lvl). s 
Furthermore, for every i E {1,... ,lvl}, we have d(t(i» < d(t) and t(i) is linear, since 

l' is, such that 2J-r:(i) is a linear representation for the non-instances of t (i) (w.r.t. 

(SJ:» according to the induction hypothesis. According to Definition 3.1, 

2J-r: deF D u U i=I .....lvl Di 
where 

D deF {g (xI"",xlwl) I 
WE S*; g e rw.s\{f}; wl,... ,Wlwl not empty (w.r.t. (S,r»; 

for every K E {I , ,Iwl} : ~ is the least element in the set 

XWK \ {xJ.I I!.L=I, ,K-l}} 

Di deF {f (Xl"",Xi_l,b,xi+l"",Xlvl) I 

bE 2J-r: (')'1 , 

for every K E {I,...,Ivl }\{ i} : ~ is the least element
 

in the set X
VK 

\ (Var(b)u [xJ.I I !.L=I,...,K-l, Jl;a!:i))}.
 

We have to to establish the following three assertions:
 

Assertion 1 :	 1ft I E (Tt}s is a r-instance ofan element of 'lie,
 
then l' I is not a r-instance oft.
 

Assume that '( 1 e (TI:)s is a I: -instance of an element of 2J-r:' i.e. there is a 

substitution G : TI:(X) ~ TI:(X) S.t. 

- 12­
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1" and a Z-instance of an element of fir, i.e. & is a representation for the non-
instances of T (w.r.t. (8,2)).

case 2 : Same E-Äinstance of T is ground.
To prove the assertion of Proposition 3.2 under this assumption, we use induction
on d(T ), the maximum depth of the Z-term T. To start with, we assume

d(t) = 0 (2 )
i.e. ‘l' is either a variable or a constant of sort s. If 1" is a variable of sort s, every 2—

groundterm T1 6 (TE)s is a Z-instance of ‘r , and consequently,
ß‘l‘ def: ‚@

i s  a linear representation for the non-instances of T (w.r.t. (8,2)). The case that T is
a constant of sort s i s  included (by setting v (‚°F A)  in the subsequent proof for the
case "d(’r ) > 0". So let us assume that T is linear with

d(’l') > 0 (3)
and that the assertion of Proposition 3.2 holds for every sort 5’ € S and every Z-term
a: ' e T2003" with dcr ') < d(’c). Now, referring to (3),  we have

r = f (t(1),...,t (M)) (4)
with v e S*\{A }, f e 2 {©  6 T‚:(X)"i (i=1,...,lvl).

Furthermore, for every i € { 1,...,|v|], we have d(‘t (i)) < d(‘t ) and I“) is linear, since
1' is, such that 916) is a linear representation for the non-instances of fü) (w.r.t.

v,s ’

(8,2)) according to the induction hypothesis. According to Definition 3.1,
3: def= D U Ui=l,...,lvl D i

where

D de? { g (xtw-oxlwl) '
w e 8*; g € Zw,s\{f]; w1,...,w|w| not empty (w.r.t. (S‚E));
for every K € [1 , . . . , l ]  : xK is  the least element in the set
XWK \ [xp I t1==1,...,K-1 ] ]

Di  def: { f (x l , . . . , x i_1 ,b ,x i+1 ‚ . . . , xM)  |

b € fifa);

for every K € [1,...,lv|}\{i] : x,< is the least element
in the set XVK \(Var(b)u[x11 l p=l,...,K-1, main] .

We have to to establish the following three assertions :

i n 1 : If T1 € (T2)5 is a Z—instance of an element of at,
then T 1 is not a Z-instance of T .

Assume that T1 e (T3)s is  a Z-instance of an element of fit, i .e .  there i s  a

substitution 6 : T2(X) —-> TZ(X) s.t.
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either 

'(1 = 6 (g (X1, ,X'wl» (5) 

= g (6 (Xl), ,6 (Xlwl)) 

where:	 wE S*; g E ~w.s\{f); 

w1,...,wlwl not empty (w.r.t. (S,!»; 

for every KE {l,... ,lwl} : 

~ is the least element in the set 

X
WK 

\ {x}ll j.l=l,... ,K-l} 

or 

= 6 (f (Xl '''''Xi-1 ,b'Xi+1,... 'Xlvi» (6) 

f (6 (xl),... ,6 (Xi_l),6 (b),6 (Xi+1),···,6 (Xlvi» 

where: bE 'B'(i); 

for every KE {l,...,lvl}\{i}:
 

~ is the least element in the set
 

X
VK 

\ (Var(b)u{x}ll j.l=l,... ,K-l, j.l;t:i}).
 

In the fIrst case, '( 1 is obviously not a ~-instance of '(, since '( satisfies (4) and 

we have g ;t: fin (5). However, if (6) holds and '( 1 were a r-instance of '( , there 

would be a substitution 6' : T~(X) ~ T~(X) satisfying 

f (6 (X1),...,6 (Xi_l),6 (b),6 (Xi+1),···,6 (Xlvi» = 

'(1 = 
(due to (6» 

6'('() (7)= 
6 ' (f ('( (1),... ,'( (i-I),'( (i),'( (i+1),... ,'( (Iv I» ) = 
(due to (4» 
f (6' ('((1», ... ,6' ('(i-l»,6' ('(i»,6' ('(i+l»,... ,6' ('(lvl») 

leading us to 

6 (b) = 6' ('( (i» 

E (T~)Vi 

(due to (7) and because '( 1 E (T~)s) 

and contradicting the fact that 6 (b) is a r-instance of an element of 'B'(i) and 

hence not a r-instance of '( (i) since 'B'(i) is a ~epresentation for the non-instances 

of '( (i) (w.r.t. (S,r». Therefore in either of the two cases, '( 1 is not a r-instance 

of '(. 

Assertion 2:	 If'( 1 E (T~)s is not a r-instance of'(,
 

then '( 1 is a ~-instance ofsome element of 'B.
 

Let '( 1E (T~t and '( 1 not be a ~-instance of '(. We have to show that '( 1 is a ~­

instance of some element of 'B,(. To this aim, we fIrst assume that 

- 13­
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either
T1 = 6 (g (x1,...‚x‚w|)) ( 5 )

= g (6 (x1)‚...,6 (x‚w‚))
where: w e S*; g e Zw,s\{f};

w1,...,w|w| not empty (w.r.t. (S‚Z));
for every |< € [1,...‚|wl} :
xK is the least element in the set
XWK \ [xH I ].1=1,...,K—1]

or
T1 = 6 (f (x1,...,xi_1‚b,xi+1‚...,x|v|)) ( 6 )

f (6 (x1),...,6 (xi_1),6 (b),o (xi+1),...,6 (xW)
where : b € fit“);

for every |< e {1,...,|v|]\[i} ':
xK is the least element in the set
Xvl< \ (Var(b)u{x11 | p=1,...,|<—1, man).

In the first case, 1' 1 is obviously not a Z-instance of T , since T satisfies (4) and

we have g at f in (5). However, if (6) holds and t ]  were a Z-instance of T , there

would be a substitution 6 ’ : Tz(X) a TZ(X) satisfying
f (6 (x1),...,6 (xi_1),6 (b),6 (xi+1),...,6 (xM))
T 1 =

(due to (6))
6’  (T ) = (7)
6 " (f (r (1 ) , . . . , r  ( “h r ( i ) , r ( i+1 ) , . „ , 1 : ( " " ) ) )  =
(due to (4))
f (s '  (r<1>),. . . ,e  ' ( t< i -1 ) ) , s '  (’l'(i)),6’ (r<i+1)),...,6' «(M)»

leading us to
6 (b) = 6’ (fm)

e (T2)vi
(due to (7) and because I ]  e (Tzf‘)

and contradicting the fact that 6 (b) is a Z-instance of an element of 8T6) and
hence not a Z-instance of T @) since $16) is a representation for the non-instances
of T ‘9 (w.r.t. (8,2)). Therefore in either of the two cases, 1'1 is not a Z—instance
of T.

Assertion 2 ; Ifrl e (T2)s is not a Z-instance off,
then T1 is a Z—instance of some element of B.

Let T1 6 (T2)8 and T1 not be a Z-instance of T. We have to show that T1 is a Z-
instance of some element of ‘31. To this aim, we first assume that

_13_
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t 1 = g (t 1(1)•...•t 1(lwl) (8) 

with w E S*. g E tw,s\{f}. t I(K) E (T~)wK (K=l •...•lwl). 

Since t(K) E (T~)wK. W K is not empty (w.r.t. (S,I:» (K=I, ... ,lwl) and conse­
quently, 

g (xl' ...•xlwl) E fJ3'{. (9) 

where ~ is the least element in the set XWK \ {xJlI J.1=I •...•K-l} (K = 1•... ,lwl). 

Now. defining the substitution 6 be by 

6 (x) deF t I(K) ifK E {l •...•lwl} and x = xK 
6 (x) deF x if x E U {Xs' I s' E S} \ {xl .... ,xlwl}. 

we arrive at 

= g (t 1(1)•••••t 1(Iwl» (10) 

(cf. (8»
 

= g (6 (xl)•...•6 (xlwl»
 

= 6 (g (xl .....xlwl».
 

Putting (9) and (10) together. we see that t 1 is a t-instance of an element of fJ3-r 

provided that (8) holds. So we still have to consider the case 
-r = f (-r (1) -r (Ivl» (11)
~1 ~1 ·····~1 

with t I(K) E (T~)vK (K=l •...•lvl). 

If, for every KE {l•...•lvl). there would be a substitution 6 K: T~(X) ~ T~ (X) 

with t l(K) = 6 K(t(K». the substitution 6 defined by 

6 (x) deF 6 K(x) ifK E {l •...•lvl} and x E Var(t(K» 

G(x) deF x ifxEU{Xs,ls'ES} \ U{Var(t(K»IK=I,...,lvl} 

would turn t 1 into a t-instance of t • since 
-r = f (-r (1) -r (Iv I» 
~1 ~1 ·····~1 

(cf. (11» 
= f (6 1 (t (1) •••• ,6 Ivl (t (Ivl») 

= f (6 (t (1), ...•6 (t (lvl») 

(since G~ar(t(K» = GK~ar(t(K» (K=l •...•lvl» 

= G (f (t (1)•.•••t (Ivl») 

= 6 (t) 

(cf. (4». 

and thus confront us with a contradiction (note that due to the assumption that t 

is linear. Var(t(K»nVar(t(J.l» = 0 for K. J.1 E {l •... ,lvl}, K~ p. so that 6 is well­

defined). As a consequence. there exists an index i E (l •...,lvl} s.t. t 1(i) is not a 

L-instance of t (i) and therefore a t-instance of some element of fJ3 (i), say-r 
tl(i) = Gi(b) (12) 

with b EfJ3-r(i) and a substitution Gi : T~(X) ~ T~(X). 

because fJ3'{(i) is a representation for the non-instances of t(i) (w.r.t. (S,t». 
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T1 = g (I 1(1 ) ," ;  10"”) (8)
with w e 8*, g e Zw_s\{f}, 1100 e m;)“K (K=1,...,|W|).

Since 100 e (T:)“'K, wK is not empty (w.r.t. (5 ,2  )) (|<=1,...,|wl) and conse-
quently,

g (x1,...,x‚w|) € 3T. (9)
where xK is  the least element in the set XWK \ {xH lp=1,...,K-1} (K = 1,...,lw|).

Now, defining the substitution 6 be by
6 (x) deF 12100 ifl< e [1,...,lwl} and x = xK
6 (x) der: x i f xe  U {Xs’l s ' e  S} \ {x1,...,xlw|},

we arrive at
11 = g (rl(1),...‚r1<'W')) (10)

(cf. (8))
= g (6 (x1),...,6 (X|w|))
= 6 (g (x1‚...‚x|w|)).

Putting (9) and (10) together, we see that TI is a Z-instance of an element of OST
provided that (8) holds. So we still have to consider the case

T1 = f (r1(1),...,r 10"”) (11)
with 110‘) e (Tz;)vK (K=1,...,|v|).

If, for every K e {1,...,lv|], there would be a substitution 6K : TZ(X) -> TZ(X)

with T 10‘) = 6K (1‘ (K)), the substitution 6 defined by
6 (x) dot: e„ (x) if|< e [l,...,lv|} and x e Var(T("))
6 (x) der—' x i f x  € U{Xs‚| 5’6  8}  \ U{Var(t'(")) | K==1,...,|v|}

would turn T1 into a Z-instance of T , since
T1 = f(‘E1(1),...,T1(""))

(cf. (11))
= f ( s1  (t<1>)‚ . . . ,6‚„‚  «(M)»
= as (r<1) ) , . . . , s  «(M)»

(since 6Wal‘(’l' (K)) = 6K|Var(‘l' (K)) (K=1,...‚|V|))

= 6 (f (f(1)‚...‚r("")))
= 6 (T)

(cf. (4))‚
and thus confront us with a contradiction (note that due to the assumption that T

is linear, Var(‘t("))nVar(T (P))  = 121 for K, 1.1 € {1,...,Ivl}, K # 11, so that 6 is well-
defined). As  a consequence, there exists an index i e {1,...,lvl} s.t. 1'16) is not a
Z-instance of 't (i) and therefore a Z-instance of some element of fifa), say

1,0) = 6i(b) (12)
with b e fifa) and a substitution 6i : TZ(X) —> Tz(X),

because 916)  is a representation for the non-instances of {(i) (w.r.t. (S,2)).
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Consequently, 

f (XI"",Xi_l,b,Xi+l,,,,,Xlvl) e ':8,( (13) 
where, for every K e {I ,...,Ivl }\{i}. the variable xK is the least element in the set 

X \ (Var(b)u{xj.l I j.J.=I,... ,K-l, j.J.:ti}). Since we have that the intersection 
VK 

{xl"",xi_l,xi+l"",Xlvl}(')Var(b) is empty and that xl"",xi-l,xi+l"",xlvl are 

pairwise different, the substitution G : TL(X) -+ TL(X) with 

G (x) deF Gi (x) if Xe Var(b) 

G (x) deF '( I(K) if K e {1,...,lvl}\{i} and x = xK 

G (x) deF x ifxe U{Xs,1 s'e S} \ 

(Var(b)u {xl"",Xi-l>xi+l"",Xlvl) ) 
is well-defmed and gives us 

'( 1 = f ('( 1(1), ••• ,'( 1(Ivl» (14) 

(cf. (11» 

= f (G (xl), ,G (xi-l)''( l(i),G (xi+l),..·,G (xlvi» 

= f (G (xl), ,G (Xi-l),G i (b),G (xi+l),.. ·,G (xlvi» 

(cf. (12» 

= f (G (xl),... ,G (xi_l),G (b),G (xi+l),... ,G (Xlvi» 

(since GlVar(b) = G~Var(b» 

= G (f (xl"",xi_l,b,xi+l"",Xlvl»' 
Thus, by (13) and (14), '( 1 is a I:-instance of an element of~. 

Assertion 3 : 'B,. is linear. 

This assertion is immediate from the fact that ':8'(i) is linear (i=I,... ,lvl) and the 

defmition of ':8,( in the present case. 

Thus, summarizing Assertion 1, Assertion 2 and Assertion 3, we have shown that 

~ is in fact a linear representation for the non-instances of'( (w.r.t. (S,I:». • 

Having established now the basic property of being a (linear) representation for the non­

instances of'( (w.r.t. (S,I:» if '( is a linear I:-term, the remainder of this paragraph is to 
point out some distinguishing features of the sets ':8'(, I particular we are going to prove 

the following three assertions, where '( is assumed to be linear in 1. and 2., but may be 

an arbitrary I:-term in 3. : 

1. No proper subset of ':8,( is a representation for the non-instances of '( 

(w.r.t. (S,I:» 
(minimality property of 2ir). 
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Consequently,
f (x1,...,xi_1,b,xi+1,...,xlvl) € fir (13)

where, for every K e {1,. . . , lvl}\{i}‚ the variable xK is  the least element in the set

XVK \ (Va1'(b)U{x}1 l 1.1=1,...,K-1‚ patil). Since we have that the intersection

{x1,...,xi_1,xi+1‚...,x‚V‚}nVar(b) is empty and that xl,...‚xi_1,xi+1,...,x‚„| are
pairwise different, the substitution 6 : TZ(X) —> Tz(X) with

6 (x) def: oi  (x) if x e Var(b)

6 (x) det: T100 ifK € {1,...,|v|}\{i} and x = xK
6(x )  def x i f xe  U[Xs i ls ’eS ]  \

(Var(b)U{Xpn—‚Xi-bxnlw—‚l])
is well-defined and gives us

T1 = f(1'1(1)„„;t1(|"|)) ( 14 )
(cf. ( II ) )

= f (6 (x1),...,6 (xi_1),'t 1( i ) ‚6  (xi+1),...,6 (XMD
= f (6 (x1),...,6 (xi_1)‚6i(b),6 (xi+1),...‚6 (x‚„‚))

(cf. (12))

= f (6 (x1)....,6 (mm (hm (xi+1)‚...‚_e (Km))
(since 6|Var(b) = 65]Var(b))

= 6 (f (x1,...,xi_1,b,xi+1,...,xlvl)).
Thus, by (13) and (14), ‘t 1 is a 2-instance of an element of fir.

Assertion 3 ; Gil. is linear.

This assertion is  immediate from the fact that $1“) is linear (i=l, . . . , lvl) and the

definition of B, in the present case.

Thus, summarizing Assertion 1, Assertion 2 and Assertion 3, we have shown that
QT is in fact a linear representation for the non—instances of 't (w.r.t. (8,2)).  l

Having established now the basic proPerty of being a (linear) representation for the non-
instances of T (w.r.t. (8,2)) if 1' is a linear 2—term, the remainder of this paragraph is to
point out some distinguishing features of the sets ’BT. I particular we are going to prove
the following three assertions, where { is assumed to be linear in 1. and 2., but may be
an arbitrary 2-term in 3. :

1. No proper subset of at is a representation for the non-instances of T
(w.r.t. (8 ,2 ) )
(minimality property of 53T).
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2.	 1ir can be embedded in any other representation 13 for the non-instances 

of'( (w.r.t. (S):» that is f-linear if'( is not a variable and fis the top­

level symbol of '( 
(embedding property of 13.r). 

3.	 If~ contains but a finite number of operation symbols, also 13.r is finite 
and can be effectively computed 
(computability of 13'(). 

The minimality property of 1\ is tackled in the following Proposition 3.3 : 

3.3 PropositiOD ; (minimality property of 1ir) 

Let	 1) (S,I:) be a signature with variables X; 

2) '( E TL(X)S ~ with SE S. 

Then, no proper subset of 13'( is a representation for the non-instances of'( (w.r.t. 

(S,l:)). • 

Proof; 

If the sort s is empty (w.r.t. (S,r)), then 

13'( deF 0 
and hence there is no proper subset of 1ir at all. Therefore let us assume that 

s is not empty (w.r.t. (S,r». (1) 

As in the proof of Proposition 3.2, we consider the following two cases: 

case 1 : No r-instance of'( is ground. 
Then, according to Definition 3.1, 

13'( deF {x} 
where x is the least element in the set X ' As we have assumed in (1), there exists a s 

~-groundterm '( 1 E (TE)s, and consequently, according to the assumption made in 

case 1, '( 1 is not a ~-instance of'(. But '( 1 cannot be a ~-instance of an element of a 

proper subset of 13'(, since 0 is the only proper subset of 13,(. Therefore, no proper 

subset of 13.r is a representation for the non-instances of'( (w.r.t. (S,~)). 

case 2: Some ~-instance of'( is ground. 
To prove the assertion of Proposition 3.3 under this assumption, we use induction 

on d('(), the maximum depth of the ~-tenn 't. To start with, let us assume that 

d('t)	 = 0 (2) 

i.e. '( is either a variable or a constant of sort s. If '( is a variable of sort s, 

13'( deF 0 
and again, there is no proper subset of 2i.c at all. The case that '( is a constant of sort s 
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2 .  m, can be embedded in any other representation {B for the non-instances
of T (w.r.t. (8,2)) that is 11mm if T is not a variable and f is the top-
level symbol of ‘l'
(embedding property of $1).

3 . If Z contains but a finite number of Operation symbols, also as, is finite
and can be effectively computed
(comparability of fit).

The minimality property of fit is tackled in the following Proposition 3.3 :

1.1mm (minimality properly af fir)

Let 1) (SZ)  be a signature with variables X;
2) r e T2(X)s linear with s e 3.

Then, no proper subset of {BT i s  a representation for the non-instances of 1' (w.r.t.

(SED. I

Enrol;

If the sort s i s  empty (w.r.t. (8,2)), then
ß‘l' def: ‚@

and hence there is no proper subset of fit at all. Therefore let us assume that
s is not empty (w.r.t. (3,2 )). ( 1 )

As in the proof of Proposition 3.2,  we consider the following two cases :

case 1 ; No Z-instance of T is ground.
Then, according to Definition 3.1,

9'l' def= [x ]
where x is the least element in the set XS. As we have assumed in (1), there exists a

Z-groundterm Tl € (Tz)s ,  and consequently, according to the assumption made in
case 1, T1 is not a Z-instance of 1‘ . But T1 cannot be a E-instance of an element of a
proper subset of (BT, since fl is the only proper subset of 931— Therefore, no proper
subset of ‘31 is a representation for the non-instances of T (w.r.t. (S,Z)).

casg' 2 : Some Z-instance of T is ground.
To prove the assertion of Proposition 3 .3  under this assumption, we use induction

on d(’r ), the maximum depth of the Z-term T. To start with, let us assume that
d(r) == 0 (2)

i.e. T is either a variable or a constant of sort s. If T is a variable of sort s,
3‘l’ def= @

and again, there is  no proper subset of ‘Br at all. The case that 1” is a constant of sort 5
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is included (by setting v deF /\) in the subsequent proof for the case "d(l) > 0". So 

let us assume that l is linear with 

del) > 0 (3) 

and that the assertion of the Proposition 3.3 holds for every sort s' E S and every 

linear L-term t' E T~(X{ with d(t') < d(t). Now, referring to (3), we have 
t = f (t (1), ••• ,t (Ivl» (4) 

with v E S*\{/\}, f E Lv,s' t(i) E T~(X)Vi (i=1,... ,lvl). 

Furthermore, for every i E {1,... ,lvl}, we have d(t(i» < d(t) and t(i) is linear, 

because t is, so that no proper subset of '13 
'( 

(i) is a linear representation for the non­

instances of t(i) (w.r.t. (S,L» according to the induction hypothesis. According to 

Definition 3.1 we have 

'13,( deF D U U i=l •...• lvl D i 

where 

D deF {g (xl,,,,,xlwl) I 

we S*; g e Lw,s\{f}; Wl""'Wlwl not empty (w.r.t. (S,L»; 

for every KE {1, ,lwl) : ~ is the least element in the set 

XWK \ {xJ.l I J..l=1, ,K-1} } 

Di deF {f (xl"",xi_l,b,xi+l,,,,,xlvl) I 
be '13'( (')'1 , 

for every KE {1,...,lvl)\{i} : ~ is the least element
 

in the set XVK \ (Var(b)u{xJ.l' J..l=I,...,K-1, J..l:;ti})}.
 

We have to to establish the following assertion :
 

Assertion 1 : If '13 c:. '13.r is a proper subset of '13.r,
 

then there exist a L-groundterm tIE (T~t S.t.
 

either
 

t 1 is not a L-instance oft and
 

t 1 is not a L-instance ofsome element of '13
 

or
 

t 1 is a L-instance oft and
 

t 1 is a L-instance ofsome element of '13.
 

Let '13 c:. '13.r be a proper subset of '13.r and assume fIrst that 

'13 Si	 '13,( \ {g (xl"",Xlwl)} (5) 

for some w E S*; g e Lw,s\{f} S.t. 

Wl""'Wlwl are not empty (w.r.t. (SoL» and, 
for every K E {l,o.. ,lwl), "K is the least element 

in the set XWK \ {xJ.l1 J..l=1,... ,K-l}. 
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is  included (by setting v def A)  in the subsequent proof for the case "d(T) > 0". So
let us assume that 1" is linear with

d(r ) > 0 (3 )
and that the assertion of the Proposition 3.3 holds for every sort s ’  e S and every
linear 2-term T ’ € TZ(X)S’ with d('r ’) < d(‘l'). Now, referring to (3), we have

t = f('r(1),...,1’("")) (4 )

with v e S*\{A } ,  fe };“8 ‚Im e T:(X)"i (i==1,...,lvl).
Furthermore, for every i € [l,...,lvll, we have d(‘l’(i)) < d(‘t) and T (i) is linear,
because 1' is, so that no proper subset of 316) is a linear representation for the non-

instances of 1: “) (w.r.t. (S,2)) according to the induction hypothesis. According to
Definition 3.1 we have '

where

D des { g (x1.....x.w.> I
w e S*; g e 2w‘s\[f}; W1,...,Wlwl not empty (w.r.t. (3,2));
for every K e [l,...,lwll : xK is the least element in the set
XWK \ {x}l lj.1=1,...,K-l } ]

i det-“— [ f (X1 , . . . , x i_ l ,b ,x i+1 , . . . , x lv l )  I

b € fifa);

D

for every K € [l,...,lvl}\{i} : xK is the least element
in the set XVK \ (Var(b)u{x}1 Ip=1,...,K-1‚ twin} .

We have to to establish the following assertion :

Asse_rtion_1_: If 9 = 9‘31 is a proper subset of fit,

then there exist a 2-groundterm T1 6 (Tz)s s.t.
either

{ 1 is not a 2-instance of T and
T1 is not a 2—instance of some element of 3

T1 is a 2-instance of 1' and
T1 is a 2—instance of some element of ‘B.

Let 3 = '23{ be a proper subset of air and assume first that
ß 9 $1- \ {g  (X1,...‚X|w|)} (5 )

for some w e S*; g € Zw,s\[f] s.t.
w1,...,w|w| are not empty (w.r.t. (8,2)) and,
for every K e {1,...,lw|}, xK is the least element
in the set XWK \ {)(}l I |.1=1,...‚l<-1].

_17_
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Now, since the sorts wI,...,wlwl are not empty (w.r.t. (S,I:» (cf. (5», there exist 

r-groundtenns l' l(i) e (TI;)wi (i=l,...,lwl). As a consequence we have that clearly 

"( 1 deF g ("( 1(1),···,1' 1(lwl» E (TIl and that "( 1 is not a ~-instance of"( since"( is 

of the fonn (4) and g E I:w.s\{f). However, 1'1 cannot be a I:-instance of some of 

the elements of 13, since, due to (5), they are of the fonn g' (1' 1'(1), ... ,1' 1'(lw'l) 

with I:-groundtenns 'tl'(i)e (TI;)W'i (i=l,...,lw'I), where g'":I: g. Therefore "( I 

satisfies the first alternative in Assertion 1. Now, assume that 

VK 

13 S 13'( \ {f (xl"",xi_l,b,xi+l"",X\vl)} (6) 

for some i e {1 ,...,Ivl} and some be 13'( (i), 

where, for every K e (l,... ,lvl)\{i), 

"t< is the least element in the set 

X \
VK 

(Var(b)u{xl! 1j.l=1,... ,K-1, j.l":l:i}) 

and let 

C(i) deF Cb' e 13'(i) I f (Xl"",xi_l,b',xi+l"",xlvl) e 13j (7) 

for every K e {l,... ,lvl}\{i}, 

"t< is the least element in the set 

X \ (Var(b')u{xl! 1j.l=l,...,K-l, j.l":l:i)}. 

(6) implies C(i) S 13'(i>'{b}, Le. C(i) is a proper subset of 13'(i), and since 13'(i) 

satisfies the assertion of Proposition 3.3 (due to the induction hypothesis), C(i) is 

not a representation for the non-instances of "( (i) (w.r.t. (S,I:», Le. there exists a 

t-groundterm l' l(i) E (TI;)vi S.t. 

either 

l' l(i) is not ar-instance of l' (i) and 
(8) 

1'1(i) is not a r-instance of some element of C(i) 

or 

l' l(i) is aI:-instance of l' (i) and 
(9) 

1'1(i) is a I:-instance of some element of C(i)' 

Furthennore, there is a I:-groundinstance of l' = f (1' (1), ,1' (Ivl) (cf. (4» due to 

assumption of case 2. This implies that, for every K e {I , ,Ivl }\{ i}, there exists 

a t-groundterm l' 1(K) e (TI;)VK that is a r-instance of l' (K), say 

t l(K) = G (t(K» (10)
K 

for all K e {l,...,lvl }\{i} and some substitution GK. 

Particularly, 

t 1 deF f(t 1(l), ... ,t 1(i-l),'t 1(i),t 1(i+l)'''·;(1(lvl» e (TI;)s. (11) 

Now assume (8). Then, due to (4) and (11), t 1 is not a t -instance of t. 

However, if t 1 were a t-instance of some element of 13 (s 13'(; see (6», there 

would be a pair (i',b') with i' E {l,...,lvl} and b' E 13'(i') S.t. (i',b') ":I: (i,b) and 
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Now, since the sorts w1,...,w,w. are not empty (w.r.t. (8,2)) (cf. (5)), there exist

Z-groundterms T 16) e (T2)wi (i=1,...,lw|). As a consequence we have that clearly
T 1 der—" g (T1(1),...,T1('W')) e (Ti—_)s and that T 1 is not a Z-instance of T since T is
of the form (4) and g e Zw’s\{ f} .  However, T 1 cannot be a Z-instancc of some of
the elements of 93, since, due to (5), they are of the form g’  (T1’(1),...,T1’(‘W"))
with Z-groundterms T1196 (Tz)""'i (i=1‚...‚|w’l), where g’  #: g. Therefore T 1
satisfies thefirst alternative in Assertion 1. Now, assume that

ß E {81— \ {f (x1,...,xi,1,b,xi+1,...,xM)} (6 )
for some i e {1,...,lvl} and some be  916),

where, for every K € [1,...,|v|}\{i},
xK is the least element in the set
XVK \(Var(b)u{xlJ Ip=l‚...‚|<—1, wei l )

and let
CG) def: [b '  G firml f (x1,...,xi_1,b’,xi+1,...,x,vl) € 9; ( 7 )

for every K e {.1,...,|vl}\{i],
xK is the least element in the set

. XvK \ (Var(b’)u{1r<‚1 I p==1,...,|<-1, pati} }.

(6) implies CG) (.: ßT(i)\[b], i.e. CG) is a proper subset of 516):  and since 581(1)
satisfies the assertion of Pr0position 3.3 (due to the induction hypothesis), CG) is
not a representation for the non-instances of T 6’  (w.r.t. (Sf-)), i.e. there exists a
Z-groundterm T1“) 6 (T2)vi s.t.
either

T 16) is not a Z-instance of T “) and (8)
T 16)  is not a Z—instance of some element of CG)

or
T 1(i)  is a Z-instance of T (i) and (9 )
T1“) is a Z‘-instance of some element of CG)-

Furthermore, there is a Z-groundinstance of T = f (T (1) , . . . ,T  (“’“) (cf. (4)) due to
assumption of case 2. This implies that, for every K e {l,...,lvl } \{ i] ,  there exists

a Z-groundterm T 10‘) e (TZY’K that is a Z-instance of T 00, say
110‘) = 6K (100) (10)

for all K e [l , . . . , |v|}\[i] and some substitution (5".
Particularly,

T1 deF f (rl(1),...,'t 10-1 ) ;1 ( i ) ,T1( i+1 ) , . . . ,T . . 1 ( 'V ' ) )  e (Tz)s. (11)
Now assume (8). Then, due to (4) and (11), T 1 is not a Z-instance of T.
However, if T1 were a Z-instance of some element of £8 (E- (Bf; see (6)), there
would be a pair (i’,b’) with i ’  e [l, . . . , |v|] and b’ € 316’) s.t. (i’,b’) at (i,b) and
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'( 1 is a I:-instance of 

f (xl,,,,,Xi'_l>b',Xi'+I,,,,,xlvl) e f}J (12)
 

where, for every KE {l,... ,lvl)\(i'}, ~ is the least element
 

in the set XVK \ (Var(bju(xjJ I Jl=l,... ,K-l, Jl;ti'}.
 

Hence for some substitution 6 : T~(X) ~ T~(X), we would have 

f (.... (1) .... (i-I) .... (i) .... (i+I) .... (Iv I» = (13)
~1 '''''~1 '~1 '~1 '''''~1 

'(1 = 
(cf. (11»
 

6 (f (Xl""'Xi'_I,b"Xi'+I""'Xlvl» =
 
f (6 (Xl),... ,6 (Xi'_1),6 (b'),6 (Xi'+1), .. ·,6 (Xlvi»' 

showing that '( l(i') (= 6 (b'» is a I:-instance of some element of f}J'(i') and 

consequently, since f}J
'(
(n is a representation for the non-instances of'(n (w.r.t. 

(S,I:» (see Proposition 3.2), that '( l(i') is not a I:-instance of '(~no Because of 

(10), this would imply 
i' = L (14) 

Finally, looking at (13) in the light of (14), we could infer 
'( l(i) = 6 (b') 

with f (xl>,,,,xi_l,b',Xi+l,,,,,Xlvl) = f (xl"",xi'_l,b',xi'+l"",xlvl) E f}J (cf. (14) 

and (12» and therefore b' e C(i) (cf. (7», in contradiction to (8). Therefore t 1 is 

not a I:-instance of t and also not a I: -instance of some element of f}J if (8) holds, 
Le. satisfies the first alternative in Assertion 1. Thus, to complete the proof of 
Assertion 1, we still have to look at the situation as given by (9). Now, assuming 

(9), K= i is no longer an exception in (10), Le. we have 

'( l(K) = 6 K(t(K» (15) 

for all Ke {1,... ,lvl }and some substitution 6K. 

Since'( is linear, Var(t (K»nVar(t (J.1» = 0 for K, Jl e {1,... ,lvl}, K;t Jl, so that 

the substitution 6 : T~(X) ~ T~(X) with 

6 (X) deF 6K(X) ifK e {l,...,lvl} and Xe Var(t(K» 

6(X) deF x ifxeU{Xs,ls'eS} \ U{Var(t(K»IK=I,...,lvl} 
is well-dermed and satisfies
 

t l = f('(l(l)''''''(l(lvl»
 

(cf. (11»
 
= f(6 (t(1»,... ,6 Ivl (t(lvl»)


1 

(cf. (15» 
= f (6 (t(1»,... ,6 (t(lvl») 

(since 6rvar(t(K» = 6KIVar('(K» (K=I,... ,lvl» 

= 6 (f ('((l), ... ,'((lvl») 

= 6 (t) 

(cf. (4». 
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TI is  a Z-instance of
f (X1 , . . . ,X i '„ l ,b ’ ,X i '+1 , . . . ‚X |v | )  € 9 (12 )

where, for every K e {1,. . . , |v |}\[i’}, xK is the least element

in the set XVK \ (Var(b')u[xll I t1=1,...,K—1, }.lati’].

Hence for some substitution 6 : TZ(X) -> T: (X), we would have
f (T1(1)‚...,T1(i'1)‚1‘1(i),‘f 1( i+1) , . . . , r l<""))

T1  =

(cf. ( I I ) )
6 (f (x l , . . . ‚ x i»_1 ,b ' , x i ‚+1 ‚ . . . , x | v | ) )  :

f (6 (X1) , . . . , 6  (x i ’_1 )96  (b ’ )96  (X i ’+1 ) , . . . , 6  (x lv l ' ) ) s

showing that T Im (= 6 (b’)) is a Z-instance of some element of 310’) and

(13)

consequently, since firm is a representation for the non-instances of T (i’) (w.r.t.
(5,2 )) (see Proposition 3.2), that t 10 ' )  is not a Z-instance of T (i'). Because of
(10), this would imply

i ’  = i. (14 )
Finally, looking at (13) in the light of (14), we could infer

11(1) = 6 (b’)
with f (x1,...,xi_1,b’,xi+1,...,xlvl) = f (x1,...‚xif_1,b',xi‚+1,...,xM) € ‘3 (of. (14)
and (12)) and therefore b ’  G C(i) (cf. (7)), in contradiction to (8).  Therefore T1 is
not a Z-instance of T and also not a Z-instance of some element of {B if (8)  holds,
i.e. satisfies the first alternative in Assertion 1. Thus, to complete the proof of
Assertion 1, we still have to look at the situation as given by (9). Now, assuming
(9), K = i is no longer an exception in (10), i.e. we have

1100 = 5K (100) ( 15 )
for all K e [1,...,|v| }and some substitution GK.

Since T is linear, Var(t' (“))nVar(T (P)) = @ for K, )1 e [1,...,lv|}, K 4: 1.1, so that
the substitution 6 : T:(X) —9 Tz(X) with

6 (x) def: 6|< (x) if K e {1,...,|v|] and x e Var(‘t‘ (K))

6 (x) def= x i f xe  U{xs‚| s’e  S} \ U{Var(r0<))n<=1,...,lvl}
is well—defined and satisfies

T1 = f(r1(1),...‚rl(""))
(cf. (11))

= f (61 (r<1>),...,c5‚„‚ «("")»
(cf. (15))

= f (6 (1(1)),...,6 (t“v')»
(since (aß/„(Tag) = 6K|VaI(T(K)) (K=1,...,Ivl))

= 6 (f (1 (1) , . . . , r<"" ) ) )
= 6 (1)

(cf. (4)).
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Hence t 1 is a t-instance of t. Furthennore, due to (9), t l(i) is a t-instance of 

some element b' E C(i)' that is 
t l(i) = Gi (b') (16) 

for some substitution Gi : TL(X) --) TL(X). 

From b' E lii) and (7) we conclude that 

f (xl"",xi_l,b',xi+l"",Xlvl) E 13 (17)
 

where, for every KE {1,... ,lvl}\{i}, "K is the least element
 

in the set XVK \ (Var(b')u{xjll Jl=I,...,K-l, Jl:;ti}).
 

Since (xI"",Xi_I,Xi+l,,,,,Xlvl}f1Var(b') = 0 and xI"",xi_l,xi+l>,,,,xlvl are 

pairwise different, the substitution G : TL(X) --) TL(X) with 

G (x) deF Gi (x) if x E Var(b') 

G (x) deF t I(K) ifK E {1,... ,lvl}\{i} and x = xK 
G (x) deF X ifxE U{Xs,1 s'E S} \ 

(Var(b')u (xI,,,,,xi_l,xi+1 "",xlvl}) 
is well-defmed and gives us 

t I = f (t 1(1),...,t I(i-l),t l(i),t I(i+l),... ,t 1(lvl» (18) 

(cf. (11» 
= f (G (xl), ,G (xi_l),t 1(i),G (xi+I), .. ·,G (xlvi» 

= f (G (xI), ,G (Xi-l),Gi (b'),G (xi+I),.·.,G (xlvi» 

(cf. (16» 

= f (G (xI), ... ,G (xi_I),G (b'),G (xi+I),· ..,G (xlvi» 

(since Grvar(b ') = GN ar(b '» 

= G (f (xI,,,,,xi_1 ,b',xi+l"",xlvl»' 
Thus, by (17) and (18), t I is also a r-instance of an element of 13 and therefore 

satisfies the second alternative in Assertion 1. 

This completes the proof of Proposition 3.3. • 

At this point we would like to point out that, given a signature (S,t) with variables X and 

a ~-tenn '( of sort s E S, also the minimality property stated in Proposition 3.3 is shared 
by the set 

13 deF {t I E (TL)S I '( I is not a r-instance of t ) 

that we have already considered in the discussion immediately following Definition 2.1. 
However, this is no longer true (in general) for the embedding property that is established 

for ~. in Proposition 3.4 below. Reusing for instance the signature (Sfin,t fin) specified 

in the above-mentioned discussion and again letting t deF b, we have seen that 
'B = (a,f(a),f(f(a»,f(f(f(a»), ... ,f(b),f(f(b»,f(f(f(b»), ... }. 

- 20­

H. Gerlach : A representation for the non—instances of linear terms

Hence T 1 is a Z-instance of 1'. Furthermore, due to (9), T I“)  is a Z-instance of
some element b’ € Qi), that is

T1“)  = 5103 ' )  (16)
for some substitution gi : TZ(X) -> Tz(X).

From b’ € CG) and (7) we conclude that
f (x1,...,xi_1,b’,xi+1,...,xlvl) e “3 (17 )

where, for every K e {1,...,|vl ] \ [ i ]  , xK is the least element

in the set X,K \ (Var(b’)u{xll Ip=1,...,K—1‚p;ei}).

Since {x1,...,xi_l,xi+1,...,x.vl}nVar(b’) = 9 and xl,...‚xi_1,xi+1,„.‚x|v‚ are
pairwise different, the substitution 6 : T:(X) —> TZ(X) with

e (x) deg é} (x) ifx e Var(b’)
6 (x) der: {100  ifK e [1,...,|vl]\{i} and x = xK
6(x) det= x ifxe U{xs‚|s'e S} \

(Var(b’)U{x1,...,xi_1,xi+1,...,xlvl})
is well-defined and gives us

T1 = f (T 1(1 ) , . . . ,T l ( i -1 ) ,T l ( i ) , ‘ t1 ( i+1 ) , . . . , 1 ' l ("") )  (18 )
(cf. (11))

= f (6 (xl)‚...‚6 (xi-1)‚r1(i>‚6 (xi+1)‚...‚6 (w))
= f (6 (x1)‚...,6 (xi_1)‚6i(b'),6 (xi+1)‚...‚6 (xM))

(cf. (16))
= f (6 (x1),...,6 (xi_1),6 (b’),6 (xi+1),...,6 (xM))

(since 6War(bl) = 6Wm(b’))

= 6 (f (x1‚...,xi_1,b',xi+1‚...‚x‚„|)).
Thus, by (17) and (18), f l  is also a Z-instance of an element of 3 and therefore
satisfies the second alternative in Assertion 1.

This completes the proof of Proposition 3.3. I

At this point we would like to point out that, given a signature (8,2) with variables X and
a Z-term T of sort s e S, also the minimality property stated in Proposition 3.3 is shared
by the set

% def= [T1 € (TE)s | T1 is not a Z-instance of T }
that we have already considered in the discussion immediately following Definition 2.1.
However, this is no longer true (in general) for the embedding property that is established
for 3,. in Proposition 3.4 below. Reusing for instance the signature (Sfiain) specified
in the above—mentioned discussion and again letting T der“ b, we have seen that

‘B = {ä‚f(a)‚f(f(a))‚f(f(f(a)))‚ ‚f(b)‚f(f(b))‚f(f(f(b)))‚ }—
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Furthermore, by Definition 3.1, 

'Et = {a,f(x) } 
where x is a variable of sort s. Both 'E and 'Et are representation for the non-instances of 

t (w.r.t. (Sfinj:fin» (see Proposition 3.2) that are even linear; however, 'E cannot be em­

bedded in 'B.r. 

3.4 PropositioD ; (embedding property of 'Et) 

Let	 1) (S,~) be a signature with variables X 

2) t e TI;(X)S linear with s e S. 

Then, if 'E s TI;(X)S is a representation for the non-instances of t (w.r.t. (S,L») that is f­

~ if t is not a variable and f is the top-level symbol of t , there exists an injection I : 

~~~ . 
Proof; 

Let 'E S TI;(X)S be an f-linear representation for the non-instances of t (w.r.t. (Sj:)). 

Due to Definition 3.1, if the sort s is empty (w.r.t. (S,I:)), then 

'Et deF 0 
and hence the empty mapping I deF 0 : 1lr ~ 'E is an injection. Therefore assume that 

s is not empty (w.r.t. (S,L)). (1) 

As in the proofs of the preceding Propositions, we consider the following two cases : 

case 1 : No L-instance oft is ground. 
Then, according to Definition 3.1, 

'Et deF {x} 
where x is the least element in the set Xs' Obviously, in the present situation, it 

suffices to show that 'E is not empty. Now, s is not empty (w.r.t. (S,I:)) (see (1)), 

Le. there exists a ~-groundterm tIe (TI;)S, and, due to the assumption made in case 

1, t 1 is not a ~-instance of t. Since 'E is a representation for the non-instances of t 

(w.r.t. (S,~)), t 1 is a ~-instance of some element of 'E (see Definition 2.1). In 

particular, 'E is not empty. 

case 2 : Some ~ -instance of t is ground. 

Now we use induction on d(t), the maximum depth of the ~-term t. Let us first 
assume that 

d(t) = O. (2) 

Then t is either a variable or a constant of sort s. If t is a variable of sort s, 

'E-r deF 0 
by Definition 3.1 and again, the empty mapping I deF KT : 'Et ~ 'E is an injection. 
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Furthermore, by Definition 3.1,

B1: = { a,f(x) }
where x is a variable of sort 8. Both 3 and 91 are representation for the non-instances of
T (w.r.t. (85152m (see Proposition 3.2) that are even linear; however, ‘3 cannot be em-
bedded in $1.

.‘iflmmzsifinn; (embedding Property 0f ‘31)

Let 1) (8,2) be a signature with variables X

2) T e T2005 linear with s e S.

Then, if 93 E T}3(X)s is a representation for the non-instances of 1: (w.r.t. (S ,2)) that is  &
linear if 1: is not a variable and f is the top-level symbol of T , there exists an injection I :
’BT —-> 9. I

Emu

Let 9 ; 'I'}-_(X)s be an f—linear representation for the non-instances of r (w.r.t. (8,2)) .
Due to Definition 3.1, if the sort s i s  empty (w.r.t. (8,2)), then

ß‘l’ def: fl

and hence the empty mapping I det: 0 : fir —> {B is an injection. Therefore assume that
s is not empty (w.r.t. (8,2 )). ( 1 )

As in the proofs of the preceding Propositions, we consider the following two cases :
gg; 1. ; No 2-instance of T is ground.

Then, according to Definition 3.1,
$1 def: {X}

where x is the least element in the set XS. Obviously, in the present situation, it
suffices to show that 9 is not empty. Now, s is not empty (w.r.t. (8,2)) (see (1)),
i.e. there exists a 2-groundterm T 1 e (Tz)s, and, due to the assumption made in case
1, TI is  not a 2-instance of T . Since @ is a representation for the non-instances of T
(w.r.t. (8 ,2  )), T1 is  a 2-instance of some element of ß (see Definition 2.1). In
particular, 3 is not empty.

gas; 2 : Some 2-instance of 1: is ground.
Now we use induction on d(1.'), the maximum depth of the 2-term 1:. Let us first
assume that

d(1') == 0. (2 )
Then T is either a variable or a constant of sort 5. If‘r is  a variable of sort 3,

ßT def= ‚@
by Definition 3.1 and again, the empty mapping I def- ß : fir —> 9 i s  an injection.
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The case that t is a constant of son s is again included (by setting v deF /\) in the 

subsequent proof for the case "d(t) > 0". Now assume that t is linear with 

d(t) > 0 (3) 

and that the assertion of Proposition 3.4 holds for every sort s' E S and every L-term 

t' E TI;CX{ with d(t') < d(t). Because of (3), we have 
t = f (t (1) ,•••,t (Ivl» (4) 

with v E S*\{/\ }"fE I:v,s' t(i) E TI;(X)vi (i=I,...,lvl) 

and, according to Defmition 3.1, 

tBt deF D u U i=l,...,lvl D i (5) 
where 

D deF {g (xl"",xlwl) I (6) 

WE S*; g E I:w.s\{f}; wl,... ,w\wl not empty (w.r.t. (S,I:»; 

for every K E {1, ,lwl} : "t< is the least element in the set 

X
WK 

\ {xj1 I J..l=I, ,K-l}} 

Di deF {f (xl"",xi_l,b,xi+l"",x'vl) I (7) 

bE tBt (')'1 , 

for every K E {I ,...,Ivl }\{i} : "t< is the least element 

in the set X
VK 

\ (Var(b)u{ xj1 I J..l =1 ,...,K-l, J..l#:i})}. 

We claim that 1ir is even the disjoint union of the sets D, D}>..., Dlvl : 

Assertion 1 : The sets D, D I ,... , Dlvl are pairwise disjoint. 

Clearly DnDi = 0 for every i E {1,...,lvl} since all I:-terms t' E D have some 

top-level symbol g ~ f, whereas all I:-terms t ' E Di have top-level symbol f. 

\ Now let i, j E {1,... ,lvl}, i #: j, and assume that DllDj ~ 0. By the definition of 

Dj (see (7» there exists b E tBt(j) S.t. 

. f (Xl"",xi_l,b,xi+l,,,,,xlvl) E Dj (8) 

where, for every K E {1,...,lvl}\{i}, the variable xK is the least element in the set 

X
VK 

\ (Var(b)u{xj1' J..l=I,...,K-l, J..l#:i}). However, since i #: j, the i-th argument 

term of any L-term in Dj is a variable. Consequently, by (8), b is a variable and 

therefore, every I:-groundterm t l(i) E (TI;)vj is a I:-instance of b. Since bE tBt(i) 

and tB (i) is a representation for the non-instances of t (i) (w.r.t. (S,I:» (see
t 

Proposition 3.2), no I:-groundterm t l(i) E (TI;)vi is a I:-instance of t(i) or, in 

other words, no I:-instance of t(i) is ground. Because of (4), this implies that 

also no I:-instance of t is ground, a contradiction to our assumption in case 2 ! 
Therefore, we must have DinDj = 0. 
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The case that T is a constant of sort s i s  again included (by setting v def= A)  in the
subsequent proof for the case "d(‘t) > 0". Now assume that 1" is linear with

d(r) > 0 (3)
and that the assertion of Pr0position 3.4 holds for every sort 8’ e S and every Z-term
T ' e TZ(X)S’ with d(‘l‘ ’) < d(‘l' ). Because of (3), we have

t = f (r (1), . . . ,r("")) (4)
with v e S*\{A }„fe ): rm 6 Tz(X)"i (i=1,...,lvl)

and, according to Definition 3.1,
v , s  ’

Br def D U Ui=l,...,lvl Di  (5)
where

D deF [ g (x1,...,x,w.)| (6)
w € S*; g € Zw,s\{f}; w1‚...,w|w| not empty (w.r.t. (8,2));
for every K e {1,...,lwl} : xK is the least element in the set

XWK \ {xJJl l].1=1,...,K-1}}

Di def { f (x1,...,xi_1,b,xi+1,...,xlv,) | (7 )
b € 91a);

for every K e {1,...,lvl }\{i} : xK is the least element
in the set XVK \(Var(b)u[xplj.1=1,„.‚K-1‚ we in} .

We claim that @ is even the disjoint union of the sets D,  D1,..., DM :

As i n 1 : The sets D,  D1,..., DM are pairwise disjoint.

Clearly DnDi = e for every i € {1,...,Ivl} since all Z-terms T ’ € D have some
top-level symbol g at f, whereas all Z-terms ‘t ’ 6 Di have t0p-level symbol f.

‘ Now let i, j € [1,...,|v|}, i at j, and assume that DinDj at fl . By the definition of
Di (see (7)) there exists b € 5316) 8.11.

' f (xl‚...,xi_1,b,xi+1,...,xwl) € Dj (8 )
where, for every K e { 1,...,|vl } \{ i ] ,  the variable xK is the least element in the set
Xi,“ \ (Var(b)u[xJJl I }.l=l,...,K-1, wein. However, since i # j, the i-th argument

term of any Z-term in Dj is a variable. Consequently, by (8), b is a variable and

therefore, every Z-groundterm T16) e (T2)vi is a Z-instance of b. Since b e 'BTü)
and 9316) is a representation for the non-instances of {(i) (w.r.t. (8,2 )) (see
Pmposition 3.2), no Z—groundterm 11(06 (TE)vi is a Z—instance of TÜ) or, in
other words, no Z-instance of “((i) is  ground. Because of (4), this implies that
also no Z-instance of “[ is ground, a contradiction to our assumption in case 2 !
Therefore, we must have DinDj = Q .
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We are now going to prove the existence of injections 

J D ~ '13 

J i Di ~ '13 (i=I,... ,lvl) 

whose ranges Im (J), Im (Jl)"'" Im (Jlvl) are pairwise disjoint. Once having estab­
lished this assertion, we may defme 

I deF J U J 1 U ... U J'vl 

and obtain an injection I : '13.r ~ '13 (cf. (5) and Assertion I). Now, due to the defini­

tion of D (see (6» and due to Lemma 2.2, for every r-term g (xl,... ,Xlwl) E D, the 

set 
lJIg deF {t ' E '131 t' is not a variable; g is the top-level symbol of t '} . 

is contained in '13 and not empty. Thus, the Axiom of Choice provides us with a 

mapping 

J D (9) 
satisfying 

J (g (xl,... ,xlw l» E '13lg for every g (xl,... ,xlwl) E D. (10) 

From (to) and (6) we infer that 

J is injective. (11) 

Now let i E {I ,...,Ivl }. Then, the mapping 

Ji ' : Di ~ '13'(i) (12) 

f (xl, ... ,xi_l,b,xi+l, ... ,xlvl) t-7 b 
is an injection (cf. (7». Furthermore, by Lemma 2.3, the set 

'13i deF (b I 3ul,... ,Ui_l>Ui+l, ... ,Ulvl: f (ul, ... ,Ui_l>b,Ui+l,... ,Ulvl) E '13; (13) 

no r-groundinstance of b is a r­
instance of t (i); 

some r-groundinstance of Ut< is a 

r-instance oft(K) (K=I,... ,lvl, K:;a!:i)} 

is a linear representation for the non-instances of t(i) (w.r.t. (S,r». Consequently, 

due to the induction hypothesis, there exists an injection 

Ji" '13'(i) ~ '13i. (14) 

Finally, for every b E '13i, the set 

C(b) deF (f (ul, ... ,ui_l,b,ui+l, ... ,Ulvl) E '131 
no r -groundinstance of b is a r -instance of t (i); some r­

groundinstance of uKis a r-instance of t(K) (K=I,... ,lvl, K:;a!:i)} 

is contained in '13 and not empty. Hence, again referring to the Axiom of Choice, 
there is a mapping 

J."'. m 
1 • :Vi '13. (15) 

satisfying 

Ji'" (b) E C(b) for every be '13i. (16) 

(16) immediately implies that Ji'" is injective. Now letting 

Ji deF Ji'''oJi''oJi' : Di ~ '13, (17) 
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We are now going to prove the existence of injections
J : D —+ EB
J i  : Di  —> 9 (i=1,...,|v|)

whose ranges Im (I), Im (Il),..., 1m (l.) are pairwise disjoint. Once having estab-
lished this assertion, we may define

I det: Ju  Jl U U JM
and obtain an injection 1 : £13,f —> ‘B (cf. (5) and Assertion 1). Now, due to the defini-
tion of D (see (6)) and due to Lemma 2.2, for every Z-term g (x1,...,x.w.) e D, the
set

’Blg def= {T ’ € {BI T " is not a variable; g is the top-level symbol of T " }  .
is contained in 9 and not empty. Thus, the Axiom of Choice provides us with a
mapping

J : D -> 9 (9 )
satisfying

J (g (X1,...,Xlwl)) e ‘B|g for every g (x1,...,x.wl) e D. (10)
From (10) and (6) we infer that

J is injective. ( 1  1 )
Now let i € {1‚...,|vl}. Then, the mapping .

J i ’  : Di -> 91:6) (12 )

f (x1,...,xi_1‚b,xi+1,...‚x|„|) H b
is an injection (cf. (7)). Furthermore, by Lemma 2.3, the set

Qi det“: {b ! 3u1,...‚ui_1,ui+1,...‚ulv|: f (u1,...,ui,1,b,ui+1,...,uM) € 93; (13)
no Z-groundinstance of b is a 2—
instance of 't (i);

some Z-groundinstance of uK is a
Z-instance of 100 (K=1,...,lv|, man]

is a linear representation for the non-instances of T @) (w.r.t. (5,2 )). Consequently,
due to the induction hypothesis, there exists an injection

J i”  : 91-6) -> Bi. ( 14 )

Finally, for every b € 9%, the set
C(b) def: { f  (Ills-naui—hbsumwuulvl) € ßl

no Z—groundinstance of b is a Z—instance of T“); some Z—
groundinstance of uK is a Z-instance of 11‘ (K) (K=1,...,Ivl, K¢i)]

is contained in {B and not empty. Hence, again referring to the Axiom of Choice,
there is a mapping

Ji '"  : Qi -—> 9. (15 )

satisfying
I i , ”  (b) € C(b) fOI' every b € ßi' (16 )

(16) immediately implies that Ji’” is injective. Now letting
Ji det: J im°J iH°J f  : Di “* 99 (17)
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the injectivity of Ji"', Ji" and Ji' implies that also 
Ji is injective. (18) 

Note that, due to (12), (16) and (17), for every f (Xl"",xi_l,b,xi+l,,,,,xlvl) e Di we 
have 

Ji (f (xl"",xi_l,b,Xi+l"",X\vl» =	 f (ul, ... ,ui_l,Ji" (b),Ui+l, ... ,Ulvl) (19) 

where Ji" (b) e TI:(X)vi, no ~-ground­

instance of Ji" (b) is a I;-instance of 
t (i), and, for every K e {l ,...,Ivl }\{ i} , 

~ e TI:(X)vK, some ~-groundinstance 

of ~ is a ~-instance of t (K). 

According to the foregoing remark, we still have to establish the following assertion: 

Assertion 2 ; The sets Im (J), Im (JI)'"'' Im (Jlvl) are pairwise disjoint. 

Since all values of J are ~-terms with some top-level symbol g * f (cf. (9) and 

(10» whereas the values of Ji are ~-terms with top-level symbol f (cf. (17) and 

(19», Im (J) n Im (Ji) =0 for every i e {l,... ,lvl}. Now let i, j e {1,...,lvl} 

with i * j, and assume that Im (Ji)nlm (Jj) *0. Referring to the representation 

(19) of the values of the mappings Ji and Jj resp. we infer that there exist ~-tenns 

Ul>""ui_l,Vi,ui+l"",Ulvl as well as ~-terms rl>... ,rj_l>Rj,rj+l, ... ,rlvl S.t. 

f (ul, ... ,ui_l,Vi,Ui+l,... ,Ulvl) = f (rl, ... ,rj_I,Rj,rj+l,... ,f\vl) (20) 
where 

Vi e Tr(X)\ no ~-groundinstance of Vi is a ~-instance oft(i), (21) 

and, for every K e {1,... ,lvl}\{i}, uKe T~(X)vK, some ~-ground­

instance of ~ is a ~ -instance of t (K) 
and 

Rj E Tr(X)Vj, no ~-groundinstance of Rj is a ~-instance of tU), (22) 

and, for every .J.l e {l,... ,lvl}\{j}, r.ll e Tr(X)v.ll, some ~-ground­

instance ofr.ll is a ~-instance oft(.Il). 

From (20) and i * j we further conclude that 

Vi = ri' 
Hence, by (22), some ~ -groundinstance of Vi is a ~ -instance of t (i), in 

contradiction to (21). Consequently, Im (Ji)nlm (Jj) *0 cannot hold, Le. we 

have Im (JDnIm (Jj) =0. • 

Note that, as a corollary to Proposition 3.4, if !Br is infinite/uncountable, there is no finite 

/countable representation '13 for the non-instances of t (W.f.t. (S,~» that is f-linear if t is 

not a variable and f is the top-level symbol of t (hypothesis of Proposition 3.4 assumed). 
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the injectivity of If”, Ji” and Ji’ implies that also
Ji is injective. ( 1 8 )

Note that, due to (12), (16) and (17), for every f (x1,...,xi_1,b,xi+1,...,xM) e Di we
have

Ji (f (xls-"axi-labaxi+lw°vxlvl)) = f (\11w-‚Ui-1Ji" (b)sui+1v°-9ulvl) (19)
where Ji” (b) e T2(X)vi, no Z—ground-
instance of J,” (b) is a Z-instance of
T“), and, for every K € {1,...,lv|}\{i],
uK € TZ(X)VK, some Z-groundinstance
of uK is a Z-instance of t (").

According to the foregoing remark, we still have to establish the following assertion :

As i n 2 ' The sets Im (J), Im (J 1) , . . . ,  Im (JM) are pairwise disjoint.

Since all values of J are Z-terms with some top-level symbol g at f (cf. (9) and
(10)) whereas the values of Ji are Z-terms with top-level symbol f (cf. (17) and
(19)), Im (J) m Im (li) = 0 for every i € {1,...,lv|}. Now let i , j  e {l,...,lv|}
with i at j, and assume that Im (Ji)nIm (Jj )  at ß . Referring to the representation
(19) of the values of the mappings J i and Jj resp. we infer that there exist Z-terms
ul,...,ui_1,Ui‚ui+1,...,u|v| as well as Z-terms rl‚...,e,Rj,rj+1‚...,rh„ s.t.

f (u1,...,ui_1,Ui,ui+1,...,uw|) = f (r1,...,rj_1,RJ-,rj+1,...,rM) (20)
where

Ui e T2(X)vi, no Z-groundinstance of U, is a Z—instance of T (i), (2 1)
and, for every K e {l,...,lvl }\[i}, uK € T2(X)V'<_‚ some Z-ground-
instance of 11K is a Zainstance of ‘t “"

and

Rj e T2(X)VJ', no Z-groundinstance of Rj is a Z—instancc of TG), (22)
and, for every 1.1 € [1,...,|v| N j}, rll € TE(X)"P‚ some Z-ground—
instance of r}1 is a Z-instance of T 0”.

From (20) and i at j we further conclude that
Ui

Hence, by (22), some Z-groundinstance of Ui is a Z -instance of T ( i ) ,  in
contradiction to (21). Consequently, Im (Ji)nIm (Jj) at @ cannot hold, i.e. we
have Im (Ji)r\Im (Jj )  = Q.  I

= I'i.

Note that, as a corollary to Proposition 3.4, if {BT is infinite/uncountable, there is no finite
/countable representation 9 for the non—instances of 1” (w.r.t. (S,Z)) that is f—linear if T is
not a variable and f is the top-level symbol of ‘t (hypothesis of Proposition 3.4 assumed).
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We conclude this paragraph with the following proposition that ensures the (finiteness 

and) computability of the sets 1lr in the situation that the signature (S,L) under considera­

tion contains but a finite number of operation symbols. Although this is a rigorous restric­
tion of generality, this situation is most common in practice. Note that Proposition 3.5 

does not assume that "( is linear. 

3.5 PropositioD ; (computability of ~'() 

Let (S,L) be a signature with variables X satisfying that the set U {rw,s,IWES*,S'ES} 

ofr-operation symbols is~. 

Then, for every r -term "( E TI;(X)S of sort s E S, the set ~'( (is finite and) can be 

effectively computed. • 

Proof; 

Since the set U {rws.' I wE S*, s' E S} ofr-operation symbols is assumed to be finite, 

it is obvious from Definition 3.1 that also ~'( is finite for every sort s E S and every r­

term "( E TI;(X)s. In order to prove that 1lr can be effectively computed, we first establish 
the following assertion: 

Assertion 1 : The set 

SI deF Is' E S I s' is not empty (w.r.t. (S,r))) 
can be effectively computed. 

Consider the following algorithm NONEMPTYSORTS: 

Input: r 1 deF {(g,w,sj I wE S*, s' E S, g E rw,s'} 

Output: SI deF Is' E S I s' is not empty (w.r.t. (S,I:))} 

Algorithm: 1) S2 := fJ 
2) N := Is' E S\S213w E S2*' g : (g,w,s') E rd 

3) If N =fJ 
then Output S2; 

STOP. 

else S2 := S2 uN; 
goto 2), 

Note that r 1 is finite and consequently, that only a finite number of sorts s' E S may 

occur as the third component of a triple in r l' Therefore NONEMPTYSORTS will 
eventually stop. Now, at any state of the computation of NONEMPTYSORTS, the set 
82 constructed so far satisfies 

S2 S {S'E S I s' is not empty (w.r.t. (S,L))} (1) 
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We conclude this paragraph with the following proposition that ensures the (finiteness
and) computability of the sets @ in the situation that the signature (3,2) under considera-
tion contains but a finite number of operation symbols. Although this is a rigorous restric-
tion of generality, this situation is most common in practice. Note that Proposition 3.5
does not assume that ‘l' is linear.

When; (computability 0f €31)

Let (SZ)  be a signature with variables X satisfying that the set U { Zw,s‚lw€S*, s'eS}

of Z-operation symbols is  finite.

Then, for every Z-term 1' € T:;(X)s of sort s e S, the set 91 (is finite and) can be
effectively computed. I

J

BLQQL;

Since the set U [ZW'SJ w e S*, s '  e S} of Z-operation symbols is assumed to be finite,
it is obvious from Definition 3.1 that also 91 is finite for every sort s e S and every Z-
term { e TZ(X)S. In order to prove that at can be effectively computed, we first establish
the following assertion :

AWL; The set
SI def: { s ’  e S I s ’  is  not empty (w.r.t. (8,2))}

can be efiectively computed.

Consider the following algorithm NONEMPTYS ORTS:
Input: 21M:- {(g,w,s’) | w E S*, s’  e S, g € Emi]
Output: SI det: {s'  e S I s ’  is not empty (w.r.t. (S£) )}
Algorithm : 1) 82 := ß

2) N := [s’e S\32 I Ewe 82*, g :  (g‚w,s')e 21]
3) I f  N = @

then Output 52;
STOP.

e l se  82 := Szu  N;
goto 2).

Note that 21  is finite and consequently, that only a finite number of sorts s ’  e S may
occur as the third component of a triple in 21. Therefore NONEMPTYSORTS will
eventually stop. Now, at any state of the computation of NONEMPTYSORTS, the set
52 constructed so far satisfies

82 s [ s ’ e  S I s ’  is not empty (w.r.t. (8,2)” ( l )
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since S2 is initialized by the empty set and, at each iteration, supplemented only by 
sorts s' which possess an operation SYmbol whose argument sorts belong to S2 and 
hence are not empty (w.r.t. (S,:E». Now let us assume that the inclusion (1) is 
proper, Le. 

{s' E S\S21 s'is not empty (w.r.t. (S,:E») ~ 0.
 
Then the set of natural numbers
 

(d(t')1 S'E S\S2,t'E (TI;t'), 

where d(t') denotes the maximum depth of the :E-term t', contains a least element, 
say 

If	 = d(t ') 

with t' E (TE{ for some s' E S\S2'
 

Since t' is a :E-groundterm, we have
 
t' = g (t(1)',... ,t(lwl)')
 

with wE S*, g E rw,s" t(i)' E (TE)Wi (i=l,... ,lwl). 

Furthermore, for every i E {l,... ,lwl), we know d(t(i)') < d(t') =n° and therefore, 

due to the minimality property of nO, wi E S2' Resuming these fact, we have found a 

sort s' E S\S2' a word w E S2* and an operation symbol g S.t. (g,w,s') E r l . As a 
consequence, if (1) is a proper inclusion, the set N constructed in step 2) of 
NONEMPTYSORTS is not empty so that NONEMPTYSORTS cannot stop unless 
(l)turns out to be an equality. This proves the correctness of NONEMPTYSORTS. 

Now, referring to Definition 3.1, the following algorithm NONINSTANCES actually 

computes the set 1ir for every sort s E S and every r-term t E TE(X)S : 

Input: deF {(g,w,s') I WE S*, S' E S, g E r ws,},r l ,
 

a I:-term t E TE(X)s with SE S
 
Output: $'(
 

Algorithm: l)a) If s is empty (w.r.t. (S,:E»
 

then 1ir:= 0 ;
 
Output 1ir;
 
STOP.
 

b) If	 for at least one variable y E Var(t), 

the sort s'ofy is empty (w.r.t. (S,r» 
then 2ir:= {x} 

where x is the least element in the set Xs; 
Output 1ir; 
STOP. 

2) a) If t is a variable 

then	 $'[:= 0; 
Output 1lr; 
STOP. 
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since 82 is initialized by the empty set and, at each iteration, supplemented only by
sorts s '  which possess an operation symbol whose argument sorts belong to 82 and
hence are not empty (w.r.t. (8,2  )). Now let us assume that the inclusion ( l )  is
proper, i.e.

[ s ’  e 8\82 | s ’  is not empty (w.r.t. (8,2))1 at ß .
Then the set of natural numbers

{d('t’) I s’e S\82, r’e (Tz)s’},
where d(1‘ ’) denotes the maximum depth of the Z-term T ’, contains a least element,
say

If = d(‘t ’)
with T ’ e (T295; for some 5’ € S\82.

Since I ’ is a Z-groundterm, we have
r ’  == g(‘t(1)',...,'t('“")')

with w e S*, g 6 zwar , {(i)’ e (Tz)“’i (i=1,...‚|wl).
Furthermore, for every i € [1 , . . . , l } ‚  we know d(’t'(i)’) < d(T ’) = n° and therefore,
due to the minimality property of n°, wi € 82. Resumin g these fact, we have found a
sort s’ e S\82, a word w € 82* and an operation symbol g s.t. (g,w,s’) e 21. As a
consequence, if  (1) is a proper inclusion, the set N constructed in step 2) of
NONEMPTYSORTS is not empty so that NONEMPTYSORTS cannot stop unless
(1)-turns out to be an equality. This proves the correctness of NONEMPTYSORTS.

Now, referring to Definition 3.1, the following algorithm NONINSTANCES actually
computes the set {Br for every sort s € S and every Z—term 1: e Tz(X)s :

Input: 21 def-'- {(g,w,s’) I w e 8*, s’ e S, g e img] ,
a Z-term 1" € T:(X)s with s E S

Output: 6,.
Algorithm: 1)a) I f  s i s  empty (w.r.t. (8,2))

then B, := ß ;
Output fit;
STOP.

b) I f  for at least one variable y € Var(‘t ),
the sort s’of y is empty (w.r.t. (8,2))
their 431 := {x}

i where x is the least element in the set XS;
Output fir;
STOP.

2) a) I f  T is a variable
then at := 6 ;

Output 3,;
STOP.

-26 -



H. Gerlach : A representation for the non-instances of linear tenns 

b) If	 '( =f ('((l), ... ,'((lvl» 

with V E S*, f E I: • ' '(i) E T~(X)Vi (i=I,...,lvl) v s 

then for every 
i E {1,... ,lvl} 

do 
compute ~"(i) by a recursive call of algorithm 

NONINSTANCES 

1lr := .0; 
for every 

(g,w,s') E I: 1 s.t. g:t: f, wI, ... ,wlwl 

not empty (w.r.t. (S,I:», s' =s 

do 

~"(:=	 ~"( U {g (xI"",xlwl)} 

where, for every K E {l,...,lwl}, 
~ is the least element in the set 

X
WK 

\ {x.J.11 jl=I,... ,K-l}; 

for every 

i E {l,...,lvl}. b E ~"(i) 

do 

~"(:= 1f"( U 

{f (Xl" "'Xi_I'b'Xi+1.... 'Xlvl) } 
where, for every K E {1 •... ,lvl )\{ i}, 

~ is the least element in the set 

X
VK 

\ (Var(b)u{xjll jl=I,... ,K-l, jl:t:i}); 

Output 1lr; 
STOP. 

Note that, due to Assertion 1. it can be decided whether or not a sort s E S is not empty 

(w.r.t. (S.I:». Furthermore, NONINSTANCES will eventually stop upon input r l and 

'( , since all recursive calls of NONINSTANCES use a proper subterm '( (i) of the original 

input r-term '( as input and since all loop statements in NONINSTANCES vary over a 

finite index set (see step 2)b) in NONINSTANCES). This establishes Proposition 3.5. • 
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b) If r = f (T(1),...,’l'(""))
with v e 3*, fe 2“  ,1:<i)e T:(X)"i (i=1,...,lvl)
then for every

i € {1,...,|v|]
do

compute 3:6) by a recursive call of algorithm
NONINSTANCES

931 := ‚0 ;
for every

(g,w,s’) e 21  s.t. g #: f, w1,...,w‚w|
not empty (w.r.t. (5,2 )), s ’  == 3

do
ßr := 9r U {g  (X1‚-.-‚x|w|)}

where, for every K E {1,...,|w|},
xK is the least element in the set
XWK \ {xp 1 p=1‚...,|<-1 };

for every
i E [1,...,|V|}‚ b € 916)

do
‘31 := {31 U

{f (xl,...‚xi_1,b‚xi+1,...,x|„|)}
where, for every K e [1,...,lv|]\[i],
xK is the least element in the set
XVK\  (Var(b)L.)[1Itl1 l jJ.=1,...,K-1‚ than);

Output fir;
STOP.

Note that, due to Assertion 1, it can be decided whether or not a sort s e S is  not empty
(w.r.t. (S,Z)). Furthermore, NONINSTANCES will eventually stop upon input 21  and
T , since all recursive calls of NONINSTANCES use a pr0per subterm T (i) of the original
input Z-term T as input and since all loop statements in NONINSTANCES vary over a
finite index set (see step 2)b) in NONINSTANCES). This establishes Proposition 3.5. I
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i... Conclusion 

Motivated by the problem of finding a set of rewrite rules that is appropriate to model the 
"no-action" behavior of disabled transitions in High Level Petri Nets over algebraic 
specifications with constructors, we have abstracted the general problem of finding a 

suitable representation for the set of all ground terms '( 1 that are not an instance of a given 

term '( over a sorted signature (S,~). Restricting to the case that S = {s) is a singleton, a 
more general version of this problem has already been considered by J.-L. Lassez and K. 

Marriott [La/Ma 87]. The solution we propose consists in a recursively defined family 

(1J1).(ET~(X)s.SES of sets of terms S.t. for every linear term '(, the non-instances of'( are 

precisely the ground instances of the elements of 1tr and, moreover, 1tr is minimal (both 
w.r.t. set inclusion and w.r.t. cardinality) among all sets of linear terms enjoying this 
property. As to the practicability of our approach, we prove that the sets 23'( are finite and 
can be effectively computed whenever the number of operation symbols presented by the 

signature (S~) is finite, an assumption which is usually satisfied in practice. 

Three lines along which the above results may be generalized are now offering for future 

work: extending J.-L. Lassez' and K. Marriotts results to arbitrary signatures (S~), 

incorporating equational theories and, last but not least, considering the case of nonlinear 

terms. This case has been excluded so far, not at least because of some results in [La/Ma 

87] (see Proposition 4.5 and Proposition 4.6) that show that the non-instances of 
nonlinear terms cannot be finitely represented in the above described way (unless, of 
course, the underlying Herbrand universe is finite). Hence, tackling nonlinear terms 
seems to require new ideas as to the representation of their non-instances. 
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LCJmcLusinn

Motivated by the problem of finding a set of rewrite rules that is appropriate to model the
"no-action" behavior of disabled transitions in High Level Petri Nets over algebraic
specifications with constructors, we have abstracted the general problem of finding a
suitable representation for the set of all ground terms T1 that are not an instance of a given
term T over a sorted signature (8,2).  Restricting to the case that S = {s} is a singleton, a
more general version of this problem has already been considered by J.-L. Lassez and K.
Marriott [La/Ma 87].  The solution we propose consists in a recursively defined family
(31)TeTZ(X)S‚ses of sets of terms s.t. for every linear term T , the non-instances of T are
precisely the ground instances of the elements of ET and, moreover, fir is minimal (both
w.r.t. set inclusion and w.r.t. cardinality) among all sets of linear terms enjoying this
property. As to the practicability of our approach, we prove that the sets BT are finite and
can be effectively computed whenever the number of operation symbols presented by the
signature (SZ) is finite, an assumption which is usually satisfied in practice.

Three lines along which the above results may be generalized are now offering for future
work : extending J .-L. Lassez’ and K. Marriotts results to arbitrary signatures (5,2),
incorporating equational theories and, last but not least, considering the case of nonlinear
terms. This case has been excluded so far, not at least because of some results in [La/Ma
87] (see Proposition 4.5 and Proposition 4.6) that show that the non-instances of
nonlinear terms cannot be finitely represented in the above described way (unless, of
course, the underlying Herbrand universe is finite). Hence, tackling nonlinear terms
seems to require new ideas as to the representation of their non-instances.
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