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1 Introduction 

Many-sorted equationallogic is the basis for algebraic specifications [Goguen 

et al. 78, Meseguer/Goguen 85a, Ehrig/Mahr 85], rewriting techniques [Huet 

80, Huet/Oppen 80], unification theory [Siekmann 86], and equational pro­

gramming [Futatsugi et aL 85, O'Donnell 85, Goguen/Meseguer 86]. In the 

standard approach, sorts are unrelated and can be thought of as denoting dis­

joint sets. Order-sorted equationallogic, which originated with Goguen [78], 

improves the expressivity of many-sorted equationallogic by adding the notion 

of subsorts. The standard example of an abstract data type, stacks of natural 

numbers, can be specified in order-sorted equationallogic as follows: 

variables: N: nat, S: stack 

0: ~ nat, s: nat ~ nat 

empty-stack < stack, nonempty-stack < stack 

estack: ~ empty-stack, push: nat x stack ~ nonempty-stack 

top: nonempty-stack ~ nat pop: nonempty-stack ~ stack 

top(push(N, S)) . N pop(push(N, S)) . S 

The sorts empty...stack and nonempty-stack are declared as subsorts of 

stack. Semantically, declaring ~ as a subsort of "1 means that the denotation 

of emust be a subset of the denotation of "1. The important point of the 

example is that with the subsort nonempty-stack the correct domains of 

the selectors top and pop can be specified. In many-sorted equational logic 

without subsorts, one has to introduce two error elements for nat and stack 

and seven (1) equations to properly extend s, push, top, and pop, thus arriving 

at a very awkward specification of a very simple thing. 

Our second example, a specification of the integers shown in Figure 1.1, 

illustrates the second key feature of order-sorted equational logic: functions 

can have more than 'one declaration. A model satisfies a declaration for a 

function symbol f if the domain of the denotation of f includes the declared 
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1 Introduction

Many-sorted equational logic is the basis for algebraic specifications [Goguen
et al. 78, Meseguer/Goguen 85a, Ehrig/Mahr 85], rewriting techniques [Huet
80, Huet/Oppen 80], unification theory [Siekmann 86], and equational pro-
gramming [Futatsugi et al. 85, O’Donnell 85, Goguen/Meseguer 86]. In the
standard approach, sorts are unrelated and can be thought of as denoting dis—
joint sets. Order-sorted equational logic, which originated with Goguen [78],
improves the expressivity of many-sorted equational logic by adding the notion
of subsorts. The standard example of an abstract data type, stacks of natural
numbers, can be specified in order-sorted equational logic as follows:

variables: N:  nat, S : stack

0: -—+ nat, s :  nat -——> nat

empty_stack < stack, nonempty_stack < stack
estack: —-+ empty_stack, push: nat x stack ——> nonempty_stack

tOp: nonempty_stack ——> nat pop: nonemptystack —> stack

top(push(N, S)) =T= N pop(push(N, S)) & S

The sorts empty_stack and nonemptyßtack are declared as subsorts of
stack. Semantically, declaring £ as a subsort of 77 means that the denotation
of { must be a subset of the denotation of 77. The important point of the
example is that With the subsort nonemptyßtack the correct domains of
the selectors top and pop can be  specified. In many-sorted equational logic
without subsorts, one has to introduce two error elements for nat and stack
and seven (!) equations to properly extend 3, push, top, and pop, thus arriving
at a very awkward specification of a very simple thing.

Our second example, a specification of the integers shown in Figure 1.1,
illustrates the second key feature of order—sorted equational logic: functions
can have more than one declaration. A model satisfies a declaration for a
function symbol f if the domain of the denotation of f includes the declared



variables: I, 1' : int, Nat: nat, Negint: negint 

negint < inat, zero < inat, inat < int 

zero < nat, posint < nat, nat < int 

int 
o:~ zero 

s: nat ~ posint, s: int ~ int A 
inat nat 

p: inat ~ negint, p: int ~ int AA 
s(p(I» . I, p(s(I))· I negint zero posint 

true: ~ bool+: int x int ~ int 
false: ~ bool+: posint x nat ~ posint 

+: nat x posint ~ posint ::;: int x int ---+ bool 

+: nat x nat ~ nat p(I) ::; l' . I::; S(I') 

p(I) + l ' .:... p(I +1') o <Nat...:.. true 

0+1·1 o < Negint . false 

s(I) + l . s(I + 1' ) s(I) ::; l ' . I < p(I')' 

Figure 1.1. A specification in order-sorted equational logic. Ev­

ery integer can be represented by a ground term built from 0, the 

successor function s, and the predecessor function p. The elements 

of the sort inat are the negatives of the natual numbers (including 

zero). 

domain and the denotation of f maps every element of the declared domain 

to an element of the declared codomain. 

In the example, the declarations p: inat ~ negint and s: nat ~ posint 

generate the elements of the subsorts inat and nat, while the declarations 

p: int ---+ int and s: int ~ int extend p and s to all integers. Deleting the 
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variables: I , I ' : i n t ,  Nat: nat, Negintznegint

negint < inat, zero < inat, inat < int
zero < nat, posint < nat, nat < int

0: —> zero Ä

: ' : °  t ' ts nat ———> posmt ,  s 1n -—> 1n inat na t

p: inat —> negint, p: int ——> int A A

s(p(I)) é I, p(s(I)) & I negint zero posint

+:  int X int -——) int, true: ——) boo l

+:  posint >< nat —) posint false: _) bOOl
+:  nat >< posint ——> posint S :  int >< int —> bool
+:na t><na t—+na t  p ( I )S I I é ISS( I I )

p( I )+ I ' ép ( I+ I ' )  oSNa t i - t rue
o + I & I o _<_ Negint & false
s ( I )+ I ’ i s ( I+ I ' )  s ( I )5 I ' £ I_<_p( I ’ )

Figure 1 .1 .  A specification in order-sorted equational logic. Ev—

ery integer can be represented by a ground term built from 0, the
successor function s ‚  and the predecessor function p. The elements
of the sort inat are the negatives of the natual numbers (including
zero) .

domain and the denotation of f maps every element of the declared domain
to an element of the declared codomain.

In the example, the declarations p: inat —> negint and s :  nat —-> posint
generate the elements of the subsorts inat and nat, While the declarations
p: int _) int and s : i n t  —+ int extend p and 5 to  all integers. Deleting the



declaration s: nat --)- posint from the specification would make posint empty 

and collapse nat to zero. Deleting s: int --)- int would make all equations 

containing s ill-sorted. Keeping only the declaration +: int X int --)- int for + 
wouldn't change the initial model but results in a less expressive sort discipline. 

On the other hand, we could make the sort discipline more expressive-without 

changing the initial model-by adding the declarations 

+: negint x inat --)- negint, +: inat x negint --)- negint, 

+: inat x inat --)- inat, +: zero x zero --)- zero. 

The subspecification 

negint < inat, zero < inat, inat < int 

zero < nat, posint < nat, nat < int 

0: --)- zero, s: nat --)- posint, p: inat --)- negint 

of the specification in Figure 1.1 is an equation-free specification of the integers. 

Giving an equation-free specification of the integers in many-sorted equational 

logic without subsorts is a rather tedious exercise. 

The definition of the less or equal test for integers in Figure 1.1 is by 

induction over the term structure of the first argument, where the base cases 

make use of the subsorts nat and negint. It is known that defining a less 

or equal test for integers with unconditional equations not using subsorts is 

complicated: one has to introduce an auxiliary function and an auxiliary sort. 

These complications disappear if one uses conditional equations [Kaplan 84], 

but verification methods for the confluence of conditional rewriting systems 

are complicated and in most cases not practical. On the other hand, as we 

will show in this paper, the verification methods for confluence extend nicely 

to order-sorted unconditional rewriting systems. 

The examples illustrate several respects in which order-sorted equational 

logic is more expressive than many-sorted equational logic: 

•	 In many cases the correct domain of a function can be specified by defin­

ing the appropriate subsorts. For instance, the subsort nonempty....stack 
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declaration s :  nat —> posint from the specification would make posint empty

and collapse nat to zero. Deleting s :  int ——> int would make all equations
containing 3 ill-sorted. Keeping only the declaration + :  int >< int —> int for +
wouldn’t change the initial model but results in a less expressive sort discipline.
On the other hand, we could make the sort discipline more expressive—Without

changing the initial model—by adding the declarations

+: negint x inat —> negint, + :  inat x negint —> negint,

+:  inat >< inat ——> inat, + :  zero >< zero -—> zero.

The subspecification

negint < inat, zero < inat, inat < int
zero < nat, ..posint < nat, nat < int

o: _} zero, s :  nat ——> posint, p: inat ——> negint

of the specification in Figure 1.1 is an equation—free specification of the integers.
Giving an equation-free specification of the integers in many—sorted equational
logic Without subsorts is a rather tedious exercise.

The definition of the less or equal test for integers in Figure 1.1 is by
induction over the term structure of the first argument, Where the base cases
make use of the subsorts nat and negint. It is known that defining a less
or equal test for integers with unconditional equations not using subsorts is
complicated: one has to introduce an auxiliary function and an auxiliary sort.

These complications disappear if one uses conditional equations [Kaplan 84],
but verification methods for the confluence of conditional rewriting systems
are complicated and in most cases not practical. On the other hand, as we
Will show in this paper, the verification methods for confluence extend nicely
to order—sorted unconditional rewriting systems.

The examples illustrate several respects in which order—sorted equational
logic is more expressive than many—sorted equational logic:

. In many cases the correct domain of a function can be specified by defin-
ing the appropriate subsorts. For instance, the subsort nonemptystack



of stack is the correct domain of the selectors top and pop. See 

[Goguen/Meseguer 87b] for a thorough analysis of the constructor-selector 

problem. 

•	 The use of subsorts makes it easier to give equation-free specifications of 

types. For instance, while it is easy to give an equation-free specification of 

the integers in order-sorted equationallogic, giving an equation-free spec­

ification of the integers in many-sorted equationallogic without subsorts 

is a tedious exercise. 

•	 The use of subsorts often helps to avoid auxiliary functions or conditional 

equations. This is illustrated by the specification of the less or equal test 

for integers shown in Figure 1.1. 

Research in automated theorem proving [Cohn 83 and 85, Irani/Shin 85, 

Walther 83 and 85, Schmidt-Schau:B 85a] emphasizes another benefit obtained 

from subsorts, which applies as well to typed logic programming: employing 

order-sorted unification can drastically reduce the search spaces that come 

with resolution, paramodulation, and narrowing. 

Order-sorted equational logic and extensions of it are the basis of sev­

eral specification and programming languages. OBJ [Goguen 79, Futatsugi 

et al. 85] employs order-sorted conditional term rewriting modulo equa­

tions and has a powerful generic module system. Eqlog [Goguen/Meseguer 

86] extends OBJ to include relational programming a la Prolog. FOOPS 

[Goguen/Meseguer 87d] extends OBJ to accommodate object-oriented pro­

gramming. TEL [Smolka 87] integrates equational and relational program­

ming and has an expressive type system combining subsorts with parametric 

polymorphism a la ML. 

LOGIN [Alt-Kaci/Nasr 86] is a Prolog-like language, where ordinary terms 

are replaced with so-called 'l,b-terms that are unified with respect to a subsort 

lattice. Recent work [Smolka/Alt-Kaci 87] shows that LOGIN's type struc­

ture can be expressed in order-sorted equationallogic by so-called inheritance 

hierarchies and provides an initial algebra semantics for LOGIN. Inheritance 

hierarchies provide record notation and a taxonomic data organization scheme. 
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of stack is the correct domain of the selectors top and pop. See
[Goguen/Meseguer 87b] for a thorough analysis of the constructor—selector
problem.

. The use of subsorts makes i t  easier to give equation—free specifications of
types. For instance, While it is easy to give an equation—free sp ecification of
the integers in order-sorted equational logic, giving an equation-free spec-
ification of the integers in many-sorted equational logic Without subsorts
is a tedious exercise.

0 The use of subsorts often helps to avoid auxiliary functions or conditional
equations. This is illustrated by the specification of the less or equal test
for integers shown in Figure 1.1.

Research in automated theorem proving [Cohn 83 and 85, Irani / Shin 85,
Walther 83 and 85, Schmidt-Schauß 85a] emphasizes another benefit obtained
from subsorts, which applies as well to typed logic programming: employing
order—sorted unification can drastically reduce the search Spaces that come
with resolution, paramodulation, and narrowing.

Order—sorted equational logic and extensions of it are the basis of sev-
eral specification and programming languages. OBJ [Goguen 79, Futatsugi
et al. 85] employs order—sorted conditional term rewriting modulo equa—
tions and has a powerful generic module system. qog [Goguen/Meseguer
86] extends OBJ to  include relational programming a la Prolog. FOOPS

[Goguen/Meseguer 87d] extends OBJ to accommodate ob ject—oriented pro-—
gramming. TEL [Smolka 87] integrates equational and relational program-
ming and has an expressive type system combining subsorts with parametric
polymorphism a la ML.

LOGIN [Ai't—Kaci/Nasr 86] is a Prolog—like language, where ordinary terms
are replaced with so—called gb-terms that are unified with respect to  a subsort
lattice. Recent work [Smolka/Ai't—Kaci 87] shows that LOGIN ’s type struc—
ture can be expressed in order—sorted equational logic by so—called inheritance
hierarchies and provides an initial algebra semantics for LOGIN. Inheritance
hierarchies provide record notation and a taxonomic data organization scheme.



Unification in these hierarchies [Smolka/Ait-Kaci 87] combines order-sorted 

unification with 'l/J-term unification [Ait-Kaci 86, Ait-Kaci/Nasr 86], the op­

erational key ingredient of the unification grammars used in computational 

linguistics. 

The paper is organized in two parts and is aimed at readers familiar with 

the basic notions of algebraic specification and term rewriting. 

The first part starts with a self-contained and compact development of 

order-sorted equationallogic including deduction rules and initial algebra se­

mantics. We then present a theory of order-sorted term rewriting and show 

that the key results for unsorted rewriting extend to sort decreasing rewrit­

ing. Finally, we give a review of order-sorted unification and prove the basic 

results. Except for parts of the section on order-sorted rewriting, all of the 

results presented in the first part of the paper have been published before, but 

not in a single paper and not in a uniform notation. Every section of the first 

part ends with a subsection sketching the historical development and giving 

the relevant references. We hope that this comprehensive presentation makes 

life easier for newcomers and shows that order-sorted equationallogic is a quite 

simple formalism. 

The second part of the paper presents a theory of hierarchical order-sorted 

specifications with strict partial functions. We define the appropriate homo­

morphisms for strict algebras and show that every strict algebra is isomorphic 

to a strict algebra with at most one error element. For strict specifications, 

we show that their categories of strict algebras have initial objects. We val­

idate our approach to partial functions by proving that completely defined 

total functions can also be defined as partial functions without changing the 

initial algebra semantics. Finally, we provide decidable sufficient criteria for 

the consistency and strictness· of ground confluent rewriting systems. 

The extension of algebraic specification techniques to partial functions 

is not a new idea [Reichel 80 and 87, Broy/Wirsing 82, Kamin/Archer 84]. 

However, our approach, which builds on ideas in [Goguen/Meseguer 87c], is 

particularly simple and has the additional advantage of incorporating subsorts, 
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Unification in these hierarchies [Smolka/A'it-Kaci 87] combines order-sorted
unification with "gb—term unification [Ai't—Kaci 86, Ai't—Kaci/Nasr 86], the op-
erational key ingredient of the unification grammars used in computational

linguistics.

The paper is organized in two parts and is aimed at readers familiar with
the basic notions of algebraic specification and term rewriting.

The first part starts with a self-contained and compact development of
order—sorted equational logic including deduction rules and initial algebra se-
mantics. We then present a theory of order-sorted term rewriting and show
that the key results for unsorted rewriting extend to sort decreasing rewrit—
ing. Finally, we give a review of order-sorted unification and prove the basic
results. Except for parts of the section on order-sorted rewritiiig, all of the
results presented in the first part of the paper have been published before, but
not in a single paper and not in a uniform notation. Every section of the first
part ends with a subsection sketching the historical develOpment and giving
the relevant references. We hope that this comprehensive presentation makes
life easier for newcomers and shows that order-sorted equational logic is a quite
simple formalism.

The second part of the paper presents a theory of hierarchical order—sorted
specifications with strict partial functions. We define the appropriate homo-
morphisms for strict algebras and show that every strict algebra is isomorphic
to a strict algebra with at most one error element. For strict specifications,
we show that their categories of strict algebras have initial objects. We val—
idate our approach to partial functions by proving that completely defined
total functions can also be defined as partial functions without changing the
initial algebra semantics. Finally, We provide decidable sufficient criteria for
the consistency and strictness “of ground confluent rewriting systems.

The extension of algebraic specification techniques to  partial functions
is not a new idea [Reichel 80 and 87, Broy/Wirsing 82, Kamin/Archer 84].
However, our approach, which builds on ideas in [Goguen/Meseguer 87c], is
particularly simple and has the additional advantage of incorporating subsorts,



which allow modelling functions like pop or top as total. 
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which allow modelling functions like pop or top as total.



2 Order-Sorted Equational Logic 

This section presents a self-contained development of order-sorted equational 

logic, which should be easy to follow for readers familiar with the basic notions 

of equationallogic. 

2.1 Syntax 

Technically, it is convenient to stipulate the following pairwise disjoint and 

countably infinite sets of symbols: 

Sort Symbols ee, 'rJ, (). We use [, if and ( to denote possibly empty 

strings of sort symbols. 

Function Symbols (I, g, h). Every function symbol f comes with an ar­

ity If I specifying the number of arguments it takes. Function symbols having 

arity zero are called constant symbols. 

Variables (x, y, z). Every variable x comes with a sort ax, which is a 

sort symbol. For every sort symbol there exist infinitely many variables having 

this sort. 

A subsort declaration has the form e < 'rJ, where eand 'rJ are sort 

symbols. 

A function declaration has the form f: 6··· en --+ e, where n is the 

arity of f and 6, ... ,en and eare sort symbols. 

A signature E is a set of subsort and function declarations. We say that 

a sort or function symbol is a I:-symbol if it occurs in a declaration of E. A 

variable is a E-variable if its sort is a I:-symbol. 

The subsort order "e ~~ 'rJ" of E is the least quasi-order <~ on the sort 

symbols of E such that e~:E 'rJ if (e < 'rJ) E E. The subsort order is extended 

componentwise to strings of sort symbols. If the signature is clear from the· 

context, we will drop the index ~ in e:::;:E 'rJ. 
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2 Order-Sorted Equational Logic

This section presents a self-contained deve10pment of order-sorted equational
logie, which should be easy to follow for readers familiar with the basic notions

of equational logic.

2.1 Syntax

Technically, i t  is convenient to stipulate the following pairwise disjoint and

countably infinite sets of symbols:

Sort Symbols (€, 77, C). We use €; if and 5 to denote possibly empty
strings of sort symbols.

Function Symbols ( f ,  g, h). Every function symbol f comes with an ar—
ity If  I specifying the number of arguments it takes. Function symbols having
arity zero are called constant symbols.

Variables (a:, y ,  z ) .  Every variable &: comes with a sort am, Which is a
sort symbol. For every sort symbol there exist infinitely many variables having
this sort.

A subsort declaration has the form 6 < 17, Where { and 17 are sort
symbols.

A function declaration has the form f :El - - {„ —-—+ {, where n is the
arity of f and 61, .  . . ‚&,  and {' are sort symbols.

A signature Z) is a set of subsort and function declarations. We say that
a sort or function symbol is a E-symbol if it occurs in a declaration of E .  A
variable is a E-variable if its sort is a E-symbol.

The subsort order “5 $2  17” of 2 is the least quasi—order 53 on the sort
symbols of 2 such that £ _<_>3 77 if (€ < 77) E 2 .  The subsort order is extended
componentwise to strings of sort symbols. If the signature is clear from the-
context, we will drop the index 2 in E 52  77.



Let ~ be a signature. 

A I:-term of sort eis either a variable x such that ax :SI: e, or has the 

form f(Sb ••• ,sn), where there is a declaration (f: '171 ••• 'l7n --+ '17) E ~ such 

that '17 :SI: eand Si is a ~-term of sort "li for i = 1, ... ,n. The letters s, t, u 

and v will always denote terms. 

A ~-equation is an ordered pair of ~-terms written as S ....:... t. 

A syntactic ~-object is a ~-term or a ~-equation. A syntactic object 

is called ground if it contains no variables. We use V( 0) to denote the set of 

variables occurring in a syntactic object O. If V is a set of ~-variables, then a 

syntactic ~-object 0 is called a syntactic (~, V)-object if V(O) ~ V. 

A ~-stibstitution is a function from ~-terms to ~-terms such that 

1. if S is a ~-term of sort e, then es is a ~-term of sort e 

3. 1Je:= {x Iex =1= x} is finite. 

Following the usual abuse of notation, we call 1Je the domain of e. The 

letters e, '1/;, and </> will always range over substitutions. The composition 

of ~-substitutions is again a ~-substitution. ~-substitutionsare extended to 

~-equations as one would expect. 

Proposition 2.1. Let e and 'I/; be ~-substitutions. Then e= 'I/; ifand only if 

De = D'I/; and ex = 'l/;x for all x E 1Je. 

A ~-term s is called a ~-instance of a ~-term t if there exists a ~­

substitution e such that S = et. Note that, if t is a term of sort e, every 

instance of t is a term of sort e. 
A specification S = (~, £) consists of a signature ~ and a set £ of ~­

equations, called the axioms of S. We don't require that ~ or £ are finite 

since most definitions and results apply to infinite specifications as well. Given 
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Let )3 be a signature.

A Z—term of sort { is either a variable sc such that aa: SE  €, or has the
form f(31, . . . ,3”) ,  Where there is a declaration (f: 771 - - -n„ ——> 77) € 2 such
that 17 5); 5 and 35 is a E-term of sort 7;,- for 2' = 1 ,  . . . ‚n.. The letters s ,  t ,  u
and v Will always denote terms.

A E-equation is an ordered pair of E-terms written as s =-'- t .

A syntactic E-object is a E—term or a E-equation. A syntactic object
is called ground if it contains no variables. We use V(0) to denote the set of
variables occurring in a syntactic object 0 .  If V is a set of E—variables, then a
syntactic Zl-object 0 is called a syntactic (E,  V)-object if V(O) g V.

A E-sü‘bsti'tution is a function from E-terms to E-terms such that

1. if s is a E-term of sort 6, then 6.5 is a Zl-term of sort E

2 .  6 f (81 ,  . . . , 8n )  = f (681 ‚  . . . ‚68n )

3. 139 :=  {a: | 9x =,é 32} is finite.

Following the usual abuse of notation, We call 1349 the domain of 6. The
letters 9, 1,5, and 45 will always range over substitutions. The composition
of E-substitutions is again a E—substitution. E-substitutions are extended to
E—equations as one would expect.

Proposition 2 .1 .  Let 9 and tb be E—substitutions. Then 9 = “gb if and only if
D6 = Dzß and 9x = wa: for all a: 6 730.

A Z-term 5 is called a E-instance of a E-term t if there exists a 2-
substitution 6 such that s = 975. Note that, if t is a term of sort { ,  every
instance of t is a term of sort { .

A specification 8 = (Z, 8) consists of a signature E and a set 8 of E-
equations, called the axioms of S . We don’t require that 2 or 5' are finite
since most definitions and results apply to infinite specifications as well. Given
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a specification S = (L:, e), it is convenient to call L:-objects S-objects and L:­

instances S-instances. 

2.2 Semantics 

Let L: be a signature. A L:-algebra A consists of denotations eA and fA for 

the sort and function symbols of L: such that: 

1.	 eA is a set 

3.	 CA:= U {eA Ieis a sort symbol of L:} is called the carrier of A 

4.	 fA is a mapping Dt -+ CA whose domain Dt is a subset of C~I 

5.	 if U :6 ... en -+ e) E L: and ai E et for i = 1, ... , n, then (ab' .. , an) E 

Dt and fA(ab ... , an) E eA. 

C~I denotes the cartesian product CA x ... X CA having one factor for every 

argument of f. Note that a function symbol has only one denotation although 

there can be several declarations for it in the signature. Thus having several 

declarations for a function symbol does not mean that the function symbol is 

overloaded. 

Let A and B be L:-algebras. A mapping ,: CA -+ CB is called a homo­

morphism A -+ B if 

2.	 ,(Dj) ~ '07 for every L:-funetion symbol f 

3.	 ,UA(a1, ... , an)) = f B(r(a1), ... , ,(an)) for every L:-'function symbol f 

and every tuple (al, ... ,an ) E Dt. 

Proposition 2.2. Let L: be a signa.ture. Then the L:-algebras together with 

their homomorphisms comprise a category. 

11 

a specification S = (Z), 8 ) ,  it is convenient to call E-objects S-Objects and Z)-
instances S—instances.

2.2 Semantics

Let 2 be a signature. A Z—algebra A consists of denotations {“4 and fA for
the sort and function symbols of 2 such that:

1. {A is a set

2. i f (£<n)  e2  then &“ gar“

3-  CA == U {EA | 6 is a sort symbol of Z}  is called the carrier of A

4-  f"4 iS a mapping D“; --+ CA Whose domain D'? is a subset of CHI

5. i f ( f : £1 . . . {„  -—>£) 62  and a,- efig‘l f o r i=1 , . . . ‚ n ‚  t hen (a1 ‚ . . . , a „ )6
D3} and fA(a1 ‚ . . . , a „ )  E {A.

CHI denotes the cartesian product CA x - -- >< CA having one factor for every
argument of f .  Note that a function symbol has only one denotation although
there can be several declarations for it in the signature. Thus having several
declarations for a function symbol does not mean that the function symbol is
overloaded.

Let A and B be E—algebras. A mapping 7: C A —-> C3 is called a homo-
morphism A _) 13 if

1. fy(£'4) ; {B for every E—sort symbol £

2. 7(D‘?) g D? for every E-function symbol f

3. 7(fA(a1, . . . , a „ ) )  = fish/((11), . . . ‚')/(an)) for every E-‘function symbol f
and every tuple (a1, . . . , an) 6 D33.

Proposition 2 .2 .  Let 2 be a signature. Then the E—algebras together With
their homomorphisms comprise a category.
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A homomorphism ,: A -+ B is called an isomorphism if there exists a 

homomorphism ,': B -+ A such that ,,' = idcA and ,', = idcs' Two I:­

algebras are called isomorphic if there exists an isomorphism from one to the 

other. 

Example 2.3. A bijeetive homomorphism is not necessarily an isomorphism. 

To see this, consider the signature 

I: = {a: -+ S, b: -+ T}, 

the I:-algebra A 

SA = {a}, TA = {b}, aA = a, 

the I:-algebra B 

SB = {a,b}, TB = {a,b}, aB = a, bB = b, 

and the bijective homomorphism ,: A -+ B 

,Ca) = a, ,Cb) = b. 

The inverse mapping ,-1 is not a homomorphism B -+ A since, for instance, 

,-l(SB) ~ SA. 

Let A and B be I:-algebras. We say that a homomorphism ,: A -+ B is a 

covering A -+ B if the following two conditions are satisfied: 

1. if eis a I:-sort symbol and b E eB, then there exists a E eA such that 

,Ca) = b 

2. if f is a ~-function symbol and CbI,"" bn ) E D1, then there exists 
A . .

Cal,'" ,an) E DJ such that ,(ai) = bi for ~ = 1, ... , n. 

Proposition 2.4. An injective homomorphism is an isomorphism if and only 

if it is a covering. 

Construction 2.5. (Term Algebra Tr:., v) Let I: be a signature and V be 

a set of I:-variables. Then the following defines a I:-algebra Tr:.,v: 
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A homomorphism 'y: A —> B is called an isomorphism if there exists a
homomorphism 7’ :B —+ A such that 'n' = ic  and 7’7 = ides. Two 2-
algebras are called isomorphic if there exists an isomorphism from one to  the
other.

Example 2.3. A bijective homomorphism is not necessarily an isomorphism.
To see this, consider the signature

2 = {a:—> S ,  b:—-> T},

the E—algebra A

SA = {a}, TA = {b}, a"t = a ,  6‘4 = b,

the E-algebra 13

SB : {a,b}, T3 = {a,b}, aß = a, bß = b,

and the bijective homomorphism "y: A —> B

7(a) = a, 70») = &
The inverse mapping 7—

7“1(SB ) S; SA-

Let A and B be E-algebras. We say that a. homomorphism 'y: ‚A —-> B is a

1 is not a homomorphism B —-+ A since, for instance,

covering A —-> 13 if the following two conditions are satisfied:

1. if 5 is a E—sort symbol and I) E CB, then there exists a E {A such that

70%) = b
2. if f is a E-function symbol and (51,. . . ,bn)  E D?  , then there exists

(al,  . . . ,a„)  G D34 such that flag-) = bi for 2' = 1, . . . ‚n.

Proposit ion 2 .4 .  An injective homomorphism is an isomorphism if and only

if it  is a covering.

Construction 2.5. (Term Algebra Ey)  Let 2 be a signature and V be
a set of E—variables. Then the following defines a E—algebra 73y:
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• ~TI;,V := {S I s is a (~, V)-term of sort 0 

Proposition 2.6. Let ~ be a signature and V and W be sets of~-variables. If 

() is a ~-substitution such that V( ()x) ~ W for all x E V, then the restriction of 

() to (~, V)-tenns is a homomorphism TE,v ---7 TE,w. Furthennore, ifV is finite 

and F is a homomorphism TE,V ---7 TE,W, then there exists a ~-substitution () 

that agrees with F on all (~, V)-terms. 

Let A be a ~-algebra and V be a set of ~-variables. A (V, A)-assignment 

is a mapping a: V ---7 CA such that a(x) E (ux)A for all variables x E V. Given 

a (V, A)-assignment a and a (~, V)-term s, the denotation [sl~ of s in A 

under a is defined as follows: 

[xl~ = a(x) 

[f(SI,· .• ,sn)ll! = fA([sdall' .. , [snl~)· 

If s is ground, we write [sllA rather than [s]a since then the denotation only 

depends on A. 

Validity of ~-equations in a ~-algebra A is defined as follows: 

A ~ s . t : ~ V (V(s . t), A)-assignment a. [s]a = [tlla' 

If A ~ s . t, we say that s . t is valid in A or that A satisfies s . t. 

Let S = (~, £) be a specification and A be a ~-algebra. We say that A 
is an S-algebra or that A is a model of S if A satisfies every equation of 

£. We say that a ~-equation s . t is valid in S or that S satisfies s . t if 

s . t is valid in every S-algebra. We write 

S ~ s . t or s =s t 

if S satisfies s . t. 
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o €73” := {s  | 3 is a (E,V)-term of sort £}

. D?” := {(31, . . . , s„)  | f(31,  . . . ,s„) is a (E, V)-term}

. fTE»V(31‚...‚s„) :=  f (31 , . . . , s „ ) .

Proposition 2 .6 .  Let E be a signature and V and W be sets ofE-variables. If

6 is a E-substitution such that V(93:) g Wfor aH a: E V, then the restriction of
9 to (Z ,  V)-ter.ms is a homomorphism 73y —> TE,W- Furthennore, if V is finite

and 7 is a homomorphism 733,1; —> T2‚W, then there exists a E—substitution 9

that agrees With 7 on all ( 2 ,  V)—terms.

Let A be a E-algebra and V be a set of E-variables. A (V, A)-assignment
is a mapping a:  V —-—+ C _‚4 such that a(:‘c) E (am)”l for all variables a: E V. Given
a (V, A)-assignment a and a (2 ,  V)—term s ,  the denotation [[3]]a of s in A
under a is defined as follows;

llxlla : “($)

[f(‘s lv ' ' ' ‚%) l a  = qlsl-llota ' ' ' a [[snllcr)'

If s is ground, we write [[3]],4 rather than [[3]]0, since then the denotation only

depends on A.

Validity of Z—equations in a E—algebra A is defined as follows:

A |= s i t : <=} V (V(s & t), ‚A)—assignment &. [[3]]0, = [[t]|a.

If A I: s =“- t, we say that s & t is valid in A or that A satisfies s é t.

Let 8 = (2 ,8 )  be a specification and A be a E-algebra. We say that A
is an S-algebra or that A is a model of 8 if A satisfies every equation of
8 . We say that a E-equation s i t is valid in 8 or that S satisfies s i t if
s i t is valid in every S—algebra. We write

8 |: s & t or 3 =5 t

if 8 satisfies s & t .
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Proposition 2.7. Let s . t be a ~-equation. Then the equation-free specin­

cation CE, 0) satisnes s . t if and only if s = t. 

Proof. One direction is obvious. To see the other direction, suppose s . t 

is a (~, V)-equation that is valid in (~, 0). Then s . t is valid in TE,V since 

TE ,V is a (L;,0)-algebra. Since the identity id on V is a (V, TE,v)-assignment, 

we have s = [s]id = [t]hd = t. 0 

Proposition 2.8. Let s . t be a (~, V)-equation that is valid in a ~-algebra 

A. Then [sl~ = [tl~ for every (V, A)-assignment a. 

Example 2.9. The converse of the proposition does not hold since the deno­

tation of a sort ein a model can be empty if there is no ground term of sort 

e. To see this, consider the specification S 

true: -+ bool, false: -+ bool, foo: void -+ bool 

foo(xvoid)' true, foo(xvoid) . false 

where Xvoid is a variable having the sort void. Since the denotation of void 

in TE ,0 is empty, there exists no ({Xvoid}, TE,0)-assignment. Hence [true]a = 
[false]a for every ({Xvoid}, TE,0)-assignment a, although true . false is not 

valid in TE ,0' 

Another important consequence of the fact that sorts can be empty is that 

s =s t, in general, is not transitive. In the specification S above, for instance, 

true =s foo( Xvoid) and foo( Xvoid) =s false hold, but true =s false does not 

hold. 

We say that a sort symbol eof a signature ~ is inhabited if there is at 

least one ground ~-term of sort e. A signature is called fully inhabited if 

each of its sort symbols is inhabited. 

Proposition 2.10. Let ~ be a fully inhabited signature and A be a ~-algebra. 

Then a (~, V)-equation s . t is valid in A if and only if [s]a = [t]a for every 

CV, A)-assignment a. 
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Proposition 2.7.  Let s & t be a E—equation. Then the equation-free specifi—
cation (E, (l)) satisfies s & t if and only if s = t.

Proof One direction is obvious. To see the other direction, suppose s é t
is a (E, V)-equation that is valid in (E, (0). Then s i t is valid in TE"; since
72,1; is a (2 ,  (l)-algebra. Since the identity id 011 V is a (V, T3‚V)-assignment,
we have 3 = llsllid =: lltllid = t .  Ü

Proposition 2.8. Let s & t be a (Z ,  V)—equation that is valid in a E—algebra
A. Then [[S]]a = |[t]]a for every (V, A)—assignment oe.

Example 2 .9 .  The converse of the proposition does not hold since the deno-
tation of a sort { in a model can be empty if there is no ground term of sort
{ .  To see this, consider the specification S

true: ——> bool ,  false: ——> bool ,  foo: void —-—> bool

foo(a:void) & true, foo(a:void) & false

Where coid is a variable having the sort void. Since the denotation of void
in 72,9 is empty, there exists no ({$void}, Tgfi}assignment. Hence |[true]]a :
[[falsefla for every ({:cvoid}, 733,9)—assignment 0:, although true & false is not
valid in 733,9.

Another important consequence of the fact that sorts can be empty is that
3 =5 t ,  in general, is not transitive. In the specification 8 above, for instance,
true =5 foo($void) and foo(:cvoid) =5 false hold, but true =5 false does not
hold.

We say that a sort symbol & of a signature 2 is inhabited if there is at
least one ground E-term of sort £ . A signature is called fully inhabited if
each of its sort symbols is inhabited.

Prop osition 2 .10 .  Let 2 be  a fully inhabited signature and A be  a E—algebra.
Then a (E ,  V)—equation s i t is valid in A if and only if [S]!“ = [[75]]0, for every
(V, A)-assignment a .
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Proposition 2.11. Let S be a specification whose signature is fully inhabited. 

Then "s =8 t" is an equivalence relation. 

Theorem 2.12. (Denotation) Let A be a ~-algebra, V be a set of 'E­

variables, and Cl! be a (V, A)-assignment. Then: 

•	 the denotation function Ha is a homomorphism TE,V -+ A 

•	 if, is a homomorphism TE,v -+ A, then the restriction of, to V is a 

(V, A)-assignment 

•	 if, is a homomorphism TE,v -+ A such that, agrees with Cl! on V, then 

'=[-]a. 

Corollary 2.13. Let ~ be a signature. Then the term algebra TE ,0 is an initial 

object in the category comprised of the }J-algebras with their homomorphisms. 

Corollary 2.14. Let A and B be two }J-algebras and, be a homomorphism 

A -+ B. Then every ground E-equation that is valid in A is valid in 8. 

Corollary 2.15. Let A and B be two isomorphic }J-algebras. Then a }J­

equation is valid in A if and only if it is valid in B. 

Corollary 2.16. A ~-algebra A satisfies a }J-equation s ...:.. t if and only if A 

satisfies every }J-instance of s . t. 

Corollary 2.17. A specification S satisfies an S-equation s == t ifand only if 

it satisfies every S-instance of s ...:.. t. 

Let A be a }J-algebra. An equivalence relation I"o.J on the carrier of A is 

called a congruence on A if for every li-function symbol f 
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Proposit ion 2 .11 .  Let 8 be a specification whose signature is fizlly inhabited.

Then “3 =3 t” is an equivalence relation.

Theorem 2.12. (Denotation) Let A be a E—algebra, V be a set of 2—
variables, and a be a (V, A)—assignment. Then:

. the denotation function ”a is a homomorphism 753,1/ —+ A

. if 7 is a homomorphism %,V —+ A, then the restriction of 7 to V is a
(V, A) —assignment

. if 7 is a homomorphism 72y ——> A such that 7 agrees with a on V, then

7 = Ha

Corollary 2 .13 .  Let Z be asignature. Then the term algebra. Tag is an initial

object in the category comprised of the E—algebras with their homomorphisms.

Corollary 2.14.  Let A and B be two E—algebras and 7 be a homomorphism

‚A —> B. Then every ground Z-equation that is valid in A is valid in B.

Corollary 2.15. Let A and 3 be two isomorphic E-algebras. Then a 2—

equation is valid in A if and only if it is valid in B .

Corollary 2.16.  A E—algebra A satisfies a E-equation s i t if and only if A
satisfies every E—instance of s ::: t.

Corollary 2 .17  . A specification S satisfies an S—equation s & t if and only if

it satisfies every S—instance of 3 i t.

Let A be a E—algebra. An equivalence relation N on the carrier of A is
called a. congruence on A if for every E-function symbol f

al ~ 51 A A an ab,. :> fA(a1,...,a„) ~ fA(b1‚.„‚b„)

provided (a1, . . . ‚an) 6 D35 and (bl, . . . ,bn) 6 D33.
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Construction 2.18. (Quotient Algebra AI "') Let'" be a congruence on 

a ~-algebra A and let a denote the equivalence class of a E CA with respect 

to "', Then the following defines a ~-algebra AI "': 

Proposition 2.19. Let '" be a congruence on a ~-algebra A. Then the 

quotient algebra AI '" is a '2J-algebra and K(a) := a defines a covering A -+ 

AI'" called the canonical covering A -+ AI "', 

Let, be a homomorphism from a ~-algebra A to a '2J-algebra B. Then 

'. ..L--->­a "'-y a, 
~ ,(a) = ,(a') 

defines a congruence "'-y on A called the congruence induced by" 

Proposition 2.20. Let , be a homomorphism A -+ B and let '" be a con­

gruence on A such that "'~"''Y' Then there exists a unique homomorphism 

1: AI'" -+ B such that, = 1K, Furthermore, 

1. if "'="'-y, then 1 is injective 

2. if "'="'-y and, is a covering, then 1 is an isomorphism AI'" -+ B. 

2.3 Deduction and Initial Algebras 

Let ~ be a signature and V be a set of variables, We will show that the de­

duction rules in Figure 2.1 are sound and complete for order-sorted equational 

logic. The rules are similar to the rules for unsorted equational logic, but 

there is a subtle difference: the transitivity rule needs to restrict the involved 

variables because sorts can be empty. Since empty sorts are also possible in 
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Construction 2.18. (Quotient Algebra A/ N) Let N be a congruence on

a E-algebra A and let & denote the equivalence class of a E C ‚4 with respect
to ~. Then the following defines a E-algebra A/ N:

. gA/w ;: {'ä'| a 6 6,4}

0 Dig/N :: {(fia'flaä) l (61 , . - - , an )  E Df}

. fA/”(äT,... ‚53 := f-4(a1,. . . ‚an) if(a1,...,a„) 6 D35.

Proposition 2.19.  Let N be a congruence on a E—algebra A. Then the

quotient algebra A/ N is a. Zl-algebra and n(a) := E defines a covering A -—+
‚A/ N called the canonical covering A —} A/ N—

Let 7 be a homomorphism from a E—algebra A to a E—algebra 13. Then

a N.}, a' : (=> 7(a) = 7(a')

defines a congruence M, on A called the congruence induced by 7.

Proposition 2 .20 .  Let 7 be a homomorphism .A —> B and let N be a con—
gmence 011 A such that NQNT Then there exists a unique homomorphism

7: ‚A/ N —+ B such that 7 = 75. Furthermore,

1. if N=N.„‚ then 7 is injective

2. if N=N7 and 7 is a covering, then 7 is an isomorphism ‚A/ N —-> B.

2.3 Deduction and Initial Algebras

Let 2 be a signature and V be a set of variables. We will show that the de—

duction rules in Figure 2.1 are sound and complete for order—sorted equational

logie. The rules are similar to the rules for unsorted equational logie, but
there is a. subtle difference: the transitivity rule needs to restrict the involved
variables because sorts can be empty. Since empty sorts are also possible in
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(R) if 8 is a ~-term 
f-E,V8 . 8
 

f-E,V 8 ~ t
(S) f-E V t . 8, 

(T) if Vet) ~ V 

(C) 
if f( 81, ,8n ) and 

f( tl, , tn) are ~-terms 

(1) if () is ~-substitution 

Figure 2.1. The deduction rules for order-sorted equationallogic. 

many-sorted equationallogic, there is no explicit difference between the de­

duction rules for many-sorted and order-sorted equationallogic. 

Let S = (~, £) be a specification. Then we write 

S f- 8 . t : ~ £ f-E,V(s';"t) 8 . t. 

We say that an equation 8 . t is deducible in S if Sf- 8 . t.
 

Proposition 2.21. Let ~ be a signature, V be a set of~-variables, and £ be
 

a set of ~-equations. Then s . t is a ~-equation if£f-E,vs . t.
 

Theorem 2.22. Let S = (~, £) be a specification, A be an S-algebra, and 

£ f-E,v s . t, where V is a set of ~-variables. Then [st~ = [t]cx for every 

(V U V( s ..:... t), A)-assignment a. 

Proof By induction on the structure of the derivation £ rE,v s . t. D 
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(R) —— if 3 is a. Z-termI—E,V  s 7"— S

FELV s = t

(S )  "“)3,V t i s

(T) ”"/3:15 FMH” ifV(t)gV
I -gys  & u

(C)  I‘E,V 31  = t1 . . . l -E ,V 3n  = t n  if f (31 , .  . . , 5n )  and

|—E‚V f (81 , . . . , 3n )  = f ( t 1 , . . . , t n )  f ( t 1 ‚ . . . , t n )  areE—terms

I ‘gJ/S & t
(I) |_ 6 , 675 if 6 is E-substitution

2 ,v  8 =

Figure 2.1.  The deduction rules for order—sorted equational logic.

many—sorted equational logic, there is no explicit difference between the de-
duction rules for many—sorted and order—sorted equational logic.

Let S = (E ,  8) be a, specification. Then we write

S l - sé t  :=} £ |_2 ,V(s= t )  s= t .

We say that an equation s = t is deducible in  8 if S I- s = 75.

Proposition 2.21. Let 2 be a signature, V be a set of Z—Variables, and 8 be
a set of E—equations. Then s = t is a E-equation if Eff-2y s = t .

Theorem 2.22.  Let S = (2 ,8 )  be a specification, A be an S-algebra, and
5 l-gy s = t, Where V „is a set of E-Variables. Then |[s]|a = [i]]a for every
(V U V(.s = t), A)-a‚ssignment a .

Proof. By induction on the structure of the derivation 8 I-gy s = t .  [I
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Corollary 2.23. (Soundness) If S ~ S -:.... i, then S F S • i. 

Let S = (E, £) be a specification and V be a set of E-variables. Then 

s"-'s,vi : {:=:::} sand i are (E, V)-terms and £ h~,v S • i 

defines a congruence on rE,v. The quotient Ts,v := TE,v/"-'s,v is called the 

quotient term algebra of Sand V. 

Proposition 2.24. Let S = (E, £) be a specification, A be an S-algebra, and 

, be a E-homomorphism T~,v -+ A. Then "-'S,V ~"-'-y. 

Proof Let s"-'s,vi. Since the restriction of, to V is a (V, A)-assignment, 

we know by the Denotation Theorem and Theorem 2.22 that ,Cs) = [s]-y = 

[i]-y = ,(i). Thus S "-'-y i. 0 

Theorem 2.25. Let S = (E, £) be a specification and V be a set of E­

variables. Then Ts,v is an S-algebra. 

Proof Let S ..:... i be an axiom of S and a be a (V(s -:.... t), Ts,v )-assignment. 

We have to show that [s JIO' = [ill!' Let f3 be a (V(s . i), TE,V )-assignment 

such that a(x) = ",(f3(x» and f3(x) is a (E, V)-term of sort ax, where", is the 

canonical covering T~,v -+ Ts,v. By the Denotation Theorem we know that 

[.]0' = "'['],8' Since [·JI,8 is a homomorphism ~,v(s~t) -+ TE,V, we know by 

Proposition 2.6 that there exists a E-substitution B that agrees with ['],8 on all 

(E, V(s . i»-terms. Since s . i is an axiom of S, we know that £~E,V Bs . Bt. 

Hence ",(Bs) = ",(Bi) and [s]O' = "'([S],8) = ",(Bs) = ",(Bi) = ",([t],8) = [ill!' 0 

Theorem 2.26. (Initiality) Let S be a specification. Then Is := TS ,0 is an 

initial object in the category comprised of all S-algebras and their homomor­

phisms. 

Proof The claim follows from the fact that TE ,0 is an initial object in the 

category of E-algebras, Proposition 2.24 and Proposition 2.20. 0 
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Corollary 2.23.  (Soundness) E S  |- s = t, then S I: s = t .

Let 5 = (Z, 5)  be a specification and V be a set of E—variables. Then

s~3 , v t  : (=> s and t are (XL V)-terms and (gl-Ey s = t

defines a congruence on Tgy. The quotient 75y :=  TEy/Nsy is called the
quotient term algebra of 8 and V.

Proposition 2.24.  Let S = (Z), 8 ) be a specification, A be an S—algebra, and
”y be  a E—homomorphism Tgy —-+ A.  Then ~33; (_I~.Y.

Proof. Let Sm.;‚v t .  Since the restriction of 7 to V is a (V, A)-assignment,
we know by the Denotation Theorem and Theorem 2.22 that 7(3) = {[3],}, =
[M].Y = 7(t). Thus s N., t. EI

Theorem 2.25. Let 8 :  ( 2 ,5 )  be a specification and V be a set of 2-
variables. Then 733; is an S —a1gebra.

Proof Let s = t be an axiom of 8 and a be a (V(s’ = t),  Igy)—assignment.
We have to show that |[s]]a = [t]... Let ‚8 be a (V(s = t),7:g‚v)-assignment
such that a(:c) = ls(ß(a:)) and ß(:c) is a (E, V)—terrn of sort ax, where n is the
canonical covering Tgy -—> Tg‚v. By the Denotation Theorem we know that
MIC, = s[[-]|ß. Since [[o]],3 is a homomorphism %,Wsét) —-> 733,11, we know by
Proposition 2.6 that there exists a E-substitution 9 that agrees with „5  on all
( 2 ,  V(s = t))—terms. Since s = t is an axiom of 8, we know that fit-2,1; 63 = 6t.
Hence 5(93) = r.:(ßt) and [[s]|o, = h:([[s]|ß) == r5093) = n(6t) = f9(|[t]|ß) = [t]... El

Theorem 2.26. (Initiality) Let 8 be a specification. Then 15 :=  73,9 is an
initial object in the category comprised of all S-algebras and their homomor—
phisms.

Proof The claim follows from the fact that 73,9 is an initial object in the
category of E-algebras, Proposition 2.24 and Proposition 2.20. EI
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Theorem 2.27. (Soundness and Completeness) Let S be a specification. 

Then 

for every S-equation S • t. 

Proof The soundness direction has been already established. To show 

the completeness direction, let S 1= S • t. By the preceding theorem we know 

that S • t is valid in ~,V(s~t). Since the restriction of the canonical covering 

"': T~,V(s~t) --+ ~,V(s~t) to V(s . t) is a (V(s . t), TS,V(s~t»-assignment,we 

know that ",(s) = [s]1I: = [t]]1I: = ",(t). Hence & ~~,V(s~t) s .-:.. t, which implies 

S ~ s . t by definition. 0 

When order-sorted equationallogic is used as a specification or program­

ming language, a specification is written such that its initial algebra formalizes 

a given intuition. In short, a specification "specifies" its initial algebra. For 

instance, the specification in Figure 1.1 in fact specifies the integers. 

To support your intuition on initial algebras, we give an explicit construc­

tion of Is. 

Construction 2.28. (Initial Algebra Is) Let S = (~, &) be a specifica­

tion. Then the initial S-algebra Is can be obtained as follows: 

• eIs := {s I s is a ground ~-term of sort e} 

• D;s:= ((8'1, ... ,sn) I f(SI, ... ,Sn) is a ground ~-term} 

• fIs (8'1, ... , Sn) := f( SI, ... , sn) if f(s1, . .. , sn) is a ground ~-term 

where 

s:= {t I £ ~~,0 s .-:.. t and t is a ground :E-term} 

for every ground ~-term s. 
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Theorem 2.27.  (Soundness and Completeness) Let 8 be a specification.
Then

S != s i t  ¢=> S I— s i t

for every S—equation s %— t .

Proof The soundness direction has been already established. To show
the completeness direction, let S |: s i t .  By the preceding theorem we know
that s £ t is valid in 7:5,v(s_;_t). Since the restriction of the canonical covering
fs: fläwsét) -+ %,),(sét) to V(s & t) is a (V(s =°= t),TS‚v(sét))—assignment, we

know that 5(3) = [s]]„ = |[t]]„‚ = n(t). Hence 8 I-awsét) s i t ,  which implies
S i- s & t by definition. El

When order—sorted equational logic is used as a specification or program—
ming language, a specification is written such that its initial algebra formalizes
a given intuition. In short, a. specification “specifies” its initial algebra. For
instance, the specification in Figure 1.1 in fact specifies the integers.

To support your intuition on initial algebras, we give an explicit construc-
tion of Is.

Construction 2.28.  (Initial Algebra Is) Let 8 = (2 ,8 )  be a Specifica-
tion. Then the initial S—algebra 15 can be obtained as follows:

. 525 :=  {.'s'l 5 is a ground E-term of sort £}

0 D? :=  {($—f,. . . ‚3:3 | f(31, .  . . , s „ )  is a ground Z—term}

. f15(3'1', . . . , E) :=  f(31, . . . ‚an) if f(31‚ . . . , .3”) is a ground E-term

Where

3 : :  { t  | 8 I—2‚g s & t and t is a ground E—term}

for every ground E-term s .
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Theorem 2.29. Let S = (~, £) be a specification. A ~-algebra I is an initial 

object in the category of the S-algebras if and only if 

•	 I has no junk, that is, the denotation homomorphism [.]x is a covering 

~,0 -7 I 

• I	 has no confusion, that is, a ground ~-equation is valid in I ifand only 

if it is deducible in S. 

Proof By the Denotation Theorem we know that the denotation homo­

morphism ['hs is the canonical covering r;;: TE ,0 -7 Is. Thus Is has no junk. 

By the construction of Is it is clear that Is has no confusion. 

To show the other direction, let I be a ~-algebra without junk and confu­

sion. It suffices to show that I and Is are isomorphic. Since I has no junk, we 

know that the denotation homomorphism ['h: TE ,0 -7 I is a covering. Since 

I has no confusion, we know that ""1I:=""S,0=""[.]x, where r;; is the canonical 

covering TE ,0 -7 Is. Hence we know by Proposition 2.20 that there exists an 

isomorphism ,: 'Is -7 I such that [Ir = ,r;;. 0 

Theorem 2.30. (Structural Induction) Let S be a specification and s . t 

be an S-equation. Then s . t is valid in the initial algebra Is if and only if 

every ground S-instance of s . t is deducible in S. 

Proof One direction follows by Corollary 2.16 and the no confusion part 

of Theorem 2.29. To show the other direction, suppose that Is satisfies every 

ground S-instance of s . t and let a be a (V( s . t), Is )-assignment. Since 

Is has no junk, there exists an S-substitution () such that ()s . ()t is ground 

and a(x) = [()xhs for every x E V(s . t). By our assumption we know 

that [()shs = [Bths. By Proposition 2.6 we know that the restriction of () 

to (~, V(s . t))-terms is a homomorphism TE,V(s~t) -+ T E ,0' Furthermore, 

we know that the composition ['hsB agrees with a on V(s . t). Hence we 

know by the Denotation Theorem that ['l~ = [·]I::rsB. Thus [s]~ = [()shs 

[Bt]::rs = [t]~. 0 
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Theorem 2 .29 .  Let S = (2 ,  5) be a specification. A E—algebra I is an initial
object in the category of the S-aigebras if and only if

. I has no junk, that is, the denotation homomorphism [H]: is a covering
71w —+ I

o I has no confusion, that is, a ground E-equation is valid in I if and only
if it is deducibie in 8 .

Proof: By  the Denotation Theorem we know that the denotation homo-
morphism ii‘iils is the canonical covering is: 733,9 _) IS. Thus Is has no junk.
By  the construction of Is it is  clear that I; has no confusion.

To show the other direction, let I be  a E—algebra without junk and confu—

sion. It suffices to  show that I and Is are isomorphic. Since I has no junk, we
know that the denotation homomorphism |[-]|1-:Tg‚@ —> I is a covering. Since
I has no confusion, we know that N„=N3‚@=N[ . ] ] I ,  where &: is the canonical
covering 733,9 —> Is. Hence we know by Proposition 2.20 that there exists an
isomorphism 7:15 —> I such that [H]; = 7n. Ü

Theorem 2.30.  (Structural Induction) Let 8 be a specifiCation and 3 = t
be  an S-equation. Then s :1- t is valid in the initial algebra IS if and only if
every ground S—instance of 3 = t is deducibie in S .

Proofl One direction follows by Corollary 2.16 and the no confusion part
of Theorem 2.29. To show the other direction, suppose that I; satisfies every
ground S—instance of 3 = t and let a be a (V(s = t),I5)-assignment. Since
IS has no junk, there exists an S—substitution 6 such that 63 = 9t  is ground
and 05017) = [[9:23]];[5 for every a: E V(s = t ) .  By our assumption we know
that [[63]]1-5 = [[Ötflzs. By  Proposition 2.6 We know that the restriction of 9
to (2‚V(s = t))-terms is a homomorphism %,wsét) ——> 72,9. Furthermore,
we know that the composition [“1159 agrees with a on V(s = t). Hence we
know by the Denotation Theorem that [[]]a = |[-]]159. Thus |[s]|a = [[03]|1-S =
[[at]]zs = [[t]|a. Ü
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2.4 Remarks and References 

Order-sorted algebra originated with [Goguen 78]. This paper shows that 

order-sorted algebras are just the right solution for algebraic specification and 

proves many basic results, including the existence of initial algebras. However, 

its approach is more complicated than necessary. Gogolla [83, 86] improves 

and simplifies the approach of [Goguen 78] and studies several methods for 

error handling with subsorts. Poigne [84] discusses subsorts in the context of 

parameterized specifications. Independently, Oberschelp [62] argues for order­

sorted logic as a more natural logical language for expressing mathematics and 

presents models and deduction for an order-sorted predicate logic. 

Goguen and Meseguer [87c] give a broad development of order-sorted 

equational logic including conditional equations and a reduction to many­

sorted equationallogic. The algebras in [Goguen/Meseguer 87c] differ from 

the algebras in this paper in that functions with several declarations are over­

loaded, that is, every function declaration of the signature has a separate 

denotation in the algebra. Smolka [86] proves that nonoverloaded semantics 

as in this paper and overloaded semantics as in [Goguen/Meseguer 87c] define 

the same notion of validity. 

Smolka [86] and Goguen and Meseguer [87a] present order-sorted definite 

clause logics with equations and relations. Schmidt-SchauB [87] develops a 

generalized order-sorted logic that allows for so-called term declarations, for 

instance, Xnat + Xnat: evennat. Term declarations originated with [Goguen 

78] and are generalized to sort constraints in [Goguen et al. 85]. 
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2.4 Remarks and References

Order-sorted algebra originated with [Goguen 78]. This paper shows that
order-sorted algebras are just the right solution for algebraic specification and
proves many basic results, including the existence of initial algebras. However,
its approach is more complicated than necessary. Gogolla [83, 86] improves
and simplifies the approach of [Goguen 78] and studies several methods for
error handling with subsorts. Poigné [84] discusses subsorts in the context of
parameterized specifications. Independently, Oberschelp [62] argues for order-
sorted logie as a more natural logical language for expressing mathematics and
presents models and deduction for an order—sorted predicate logic.

Goguen and Meseguer [8 7c] give a broad development of order—sorted
equational logic including conditional equations and a reduction to many—
sorted equational logic. The algebras in [Goguen/Meseguer 87c] differ from
the algebras in this paper in that functions With several declarations are over-
loaded, that is, every function declaration of the signature has a separate
denotation in the algebra. Smolka [86] proves that nonoverloaded semantics
as in this paper and overloaded semantics as in [Goguen/Meseguer 87c] define
the same notion of validity.

Smolka [86] and Goguen and Meseguer [87a] present order—sorted definite
clause logics with equations and relations. Schmidt-Schauß [87] develops a
generalized order-sorted logic that allows for so—called term declarations, for
instance, xnat + xnat :  evennat. Term declarations originated with [Goguen
78] and are generalized to sort constraints in [Goguen et al. 85].
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3 Order-Sorted Rewriting 

In this section we generalize the most important notations and results of term 

rewriting [Huet 80, Huet/Oppen 80] to order-sorted equationallogic. It turns 

out that, in general, the key results for rewriting do not carry over to order­

sorted rewriting. However, for the class ofsort decreasing rewriting systems, 

all notations and results from unsorted rewriting generalize nicely. 

3.1 Basic Definitions 

The positions or occurrences of a term are defined as usual as finite se­

quences of postive integers. We use s/1r to denote the subterm of S at 

position 1r, and s[1r f- t] to denote the term obtained from S by replacing the 

subterm at position 1r with t. Note that, for ~-terms sand t and a position 

1r of S, s[1r f- t] is not necessarily a ~-term since sort constraints might be 

violated. This is one important difference from unsorted rewriting. 

A ~-rewrite rule S ----+ t is a ~-equation S ...:... t such that s is not a variable 

and every variable occurring in the right-hand side t occurs in the left-hand 

side s. A rewriting system is a specification R = (~, £) such that every 

equation in £ is a rewrite rule. A rewriting system R = (~, £) defines a binary 

relation ----+'R,. called rewriting relation on the set of all ~-terms as follows: 

s ----+'R,. t if and only if there exists a position 1r of s and a ~-instance u ----+ v of 

a rule of R such that s/1r = u and t = s[1r f- v]. We use ----+n to denote the 

reflexive and transitive closure of ----+'R,. on the set of all ~-terms. Note that we 

defined S ----+n t such that sand t must be ~-terms. 

Proposition 3.1. (Stability) Let R be a rewriting system. Tben tbe rewrit­

ing relation ----+'R,. is stable, tbat is, 

s ----+ 'R,. t :::} ()s ----+ 'R,. ()t 

if () is an R-substitution. 

Proposition 3.2. (Soundness) Let R be a rewriting system. Tben 

s ----+n t :::} s ='R,. t. 
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3 Order-Sorted Rewriting

In this section We generalize the most important notations and results of term
rewriting [Huet 80, Huet/Oppen 80] to order-sorted equational logic. It turns
out that, in general, the key results for rewriting do not carry over to order—
sorted rewriting. However, for the class of "sort  decreasing rewriting systems,
all notations and results from unsorted rewriting generalize nicely.

3.1 Basic Definitions

The positions or occurrences of a term are defined as usual as finite se-
quences of postive integers. We use s/7r to denote the subterm of 3 at
position 7r, and s[7r <— t] to denote the term obtained from 3 by replacing the
subterm at position 7r with t .  Note that, for E—terms 3 and t and a position
71' of s ,  s[7r (— t] is not necessarily a E-term since sort constraints might be
violated. This is one important difference from unsorted rewriting.

A E-rewrite rule 3 —> t is a E-equation s & t such that 3 is not a variable
and every variable occurring in the right—hand side t occurs in the left—hand
side s .  A rewriting system is a specification R = (2 ,5 )  such that every
equation in 8 is a rewrite rule. A rewriting system R = (E ,  S ) defines a binary
relation ——>R called rewriting relation on the set of all E-terms as follows:
s "+121 t if and only if there exists a position 7r of 3 and a E-instance u --+ v of
a rule of R such that s/vr = u and t = s[7r <— 22]. We use ——>*R to denote the
reflexive and transitive closure of —’R on the set of all E-terms. Note that we
defined s ——>*R t such that s and t must be E—terms.

Proposition 3.1. (Stability) Let R be a rewriting system. Then the rewrit-
ing relation —>«R‚ is stable, that is,

5 at}; 73 => 63 —>R Gt

if 9 is an R—substitution.

Proposition 3 .2 .  (Soundness) Let R be a rewriting system. Then

s—ß‘k t  => 321375 .
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Proof. The claim can be proved by induction on the length of the deriva­

tion s -7n t using the fact that rewriting does not introduce new variables. 

o 

To discuss order-sorted rewriting further, we need some notations and 

results for binary relations from [Huet 80]. Let -7 be a binary relation on 

some set. We use -7* to denote the reflexive and transitive closure of -7, and 

f-7* to denote the reflexive, symmetric, and transitive closure of -7. We write 

x t y (read "x and y converge") if there exists a z such that x -7* z and 

y -7* z. The relation -7 is called locally confluent if x -7 y and x -7 z 

always implies y t z. The relation --+ is called confluent, if x -7* y and 

x -7* z always implies y ! z. We say that the relation -7 is terminating if 

there are no infinite chains Xl -7 X2 -7 . ". An element x is called -7-normal 

if there is no y such x -7 y. An element x is called -7-reducible if there exists 

an element y such that x -7 y. We say that y is a -7-normal form of x if 

x -7* y and y is -7-normal. The following theorems are proven in [Huet 80]. 

Proposition 3.3. Let -7 be a confluent relation. Then no element has more 

than one -7-normal form. Furthermore, if -7 is confluent and terminating, 

then every element has exactly one -7-normal form. 

Theorem 3.4. Let -7 be a confluent relation. Then x f-7* y if and only if 

x! y. 

Theorem 3.5. A relation is confluent ifit is locally confluent and terminating. 

The specification in Figure 1.1 is a con:f:l.uent and terminating rewriting 

system. 

3.2 Compatibility and the Completeness Theorem 

Example 3.6. A key result for unsorted rewriting states that s =n. t if and 

only if s f-7n t. In general, this result does not hold for order-sorted rewriting. 
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Proof: The claim can be proved by induction on the length of the deriva-
tion s “’iz t using the fact that rewriting does not introduce new variables.
El

To discuss order-sorted rewriting further, we need some notations and
results for binary relations from [Huet 80]. Let —> be a binary relation on
some set. We use —>* to denote the reflexive and transitive closure of _), and
<——>* to  denote the reflexive, symmetric, and transitive closure of ——+. We write
x J, 3; (read “3 and y converge”) if there exists a z such that a: —>* z and
y ——>* z .  The relation —+ is called locally confluent if a: ——> y and a: _) z
always implies y 1, z .  The relation ——> is called confluent, if a: ——>* y and
a: -—+* 2 always implies y i z. We say that the relation ——> is terminating if
there are no infinite chains 3:1 ——> :32 -—-> - - -. An element &: is called ——>-normal

if there is no y such a: —+ y .  An element 1: is called —>—reducible if there exists
an element y such that m _) y .  We say that y is a —+-normal form of .7; if
cc ——+* y and y is ——>—normal. The following theorems are proven in [Huet 80].

Proposition 3 .3 .  Let ——> be a confluent relation. Then no element has more
than one ———>—norma1 form. Furthermore, if --a~ 1's confluent and terminating,
then every element has exactly one -—>-nonnal form.

Theorem 3 .4 .  Let —> be a confluent relation. Then a: H’“ y if and only if
a: J, y .

Theorem 3.5.  A relation is confluent if it is locally confluent and terminating.

The specification in Figure 1.1 is a confluent and terminating rewriting
system.

3.2 Compatibility and the Completeness Theorem

Example 3 .6 .  A key result for unsorted rewriting states that 3 :7; t if and
only if s Hf}; t .  In general, this result does not hold for order—sorted rewriting.
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To see this, consider the following confluent and terminating rewriting system 

R 

A < B, a:~ A, a':~ A, b:~ B, f:A ~ A 

a ~ b, a' ~ b, 

for which f(a) =n f(a') holds but f(a) +-+:R. f(a') does not hold. The incom­

pleteness of +-+:R. stems from the fact that f(b) is not an R-term. 

We say that a rewriting system R is compatible if, for every R-term s, 

every position 1r of s, and every R-instance u ~ v of a rule of R such that 

s/1r = U, we have that s[1r f- v] is an R-term. For a compatible rewriting 

system, the applicability of a rule to a term s doesn't depend on the overall 

structure of s, but solely on the existence of a subterm in s that is an instance 

of the left hand side of the rule. 

The rewriting system R in the preceding- example isn't compatible since 

f(b) isn't an R-term. The rewriting system in Figure 1.1 is compatible. 

Proposition 3.7. (Compatibility) Let R be a compatible rewriting system, 

sand t be R-terrns, and 1r be an position of s. Then: 

Proof By induction on the depth of s and the length of s/1r ~:R. t. 0 

Example 3.8. The relation +-+:R. can be unsound if there are empty sorts and 

R isn't confluent. Let R be the nonconfluent and compatible rewriting system 

true: ~ bool, false: ~ bool, foo: void ~ bool 

foo(xvoid) . true, foo(xvoid)' false. 

Then we have true +-+:R. false, but true . false isn't valid in the initial algebra. 

ofR. 
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To see this, consider the following confluent and terminating rewriting system
7?,

A<B,  a:—+A, a':——-:-A, b:——+B, f:A—-—>A

a-—>b, a'—>b,

for Which f(a) =R f(a '  ) holds but f(a) H3}, f(a’ ) does not hold. The incom—
pleteness of Hg‘a stems from the fact that f (6) is not an 'R-term.

We say that a rewriting system 'R is compatible if, for every ’R-term 3,
every position 7r of 3, and every R-instance v, —+ v of a rule of 'R such that
3/71" = u,  we have that s[7r <— v] is an R—term. For a compatible rewriting
system, the applicability of a rule to  a term s doesn’t depend on the overall
structure of 3, but solely on the existence of a subterm in s that is an instance
of the left hand side of the rule.

The rewriting system 7?, in the preceding- example isn’t compatible since
f (b) isn’t an R—term. The rewriting system in Figure 1.1 is compatible.

Proposition 3 .7 .  (Compatibility) Let R be a compatible rewriting system,
3 and t be R—terms, and 71' be  an position of 5 .  Then:

s/7r ~43; t => 3 “+3; s[7r <—t].

Proof. By  induction on the depth of 3 and the length of s/7r ""?z t .  [I

Example 3 .8 .  The relation H;  can be unsound if there are empty sorts and
'R isn’t confluent. Let ?, be the nonconfluent and compatible rewriting system

true: ——+ bool ,  false: _» bool ,  foo: void ——> boo l

foo(a:void) & true, foo(xvoid) & false.

Then we have true Hf}; false, but true é false isn’t valid in the initial algebra.
of 'R.
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Theorem 3.9. (Soundness and Completeness) Let R be a compatible 

and confluent rewriting system. Then 

for every R-equation.s . t. 

Proof. Let R = P::::, £) be a compatible and confluent rewriting system. 

Since the second equivalence holds for every confluent relation, it suffices to 

show the first equivalence. 

1. "~". Let S !n. t. Then there exists a term u such that S -lon u and 

t -lon u. By Proposition 3.2 we know that S =n. u and t =n u. Hence S =n. t 
since V(u) ~ V(s). 

2. ":::>". Let V be a set of .E-variables and £' 1-2:,vs . t. Since order­

sorted equational deduction is complete, it suffices to show that s !n t. We 

prove this claim by induction on the size of the derivation £ 1-2:,V s . t. If 

S . t is in £, then S -lon t. If S ...:... t is obtained by the reflexivity rule, then 

S -lon t. If s . t is obtained by the symmetry rule, we know by the induction 

hypothesis that t !n s. 

If S • t is obtained by the transitivity rule, there exists a term u such 

that £ 1-2:,VS ...:... u and £ 1-2:,vu . t. By the induction hypothesis we know that 

S !n u and u !nt. Hence there exist two terms VI and V2 such that S -lon VI, 

u -+n VI, u -lon V2, and t -+n V2. Since R is confluent, there exists a term 

V3 such that VI -lon V3, and V2 -+n V3' Hence we have S !n t. 

IfS . t is obtained by the congruence rule, there exist terms SI, ... , Sn and 

tl, ... ,tn such that s = f(sl, ... ,sn) and t = f(tl, ... ,tn) for some function 

symbol f and £ 1-2:,V Si . ti for i = 1, ... , n. By the induction hypothesis we 

know that Si !n ti for i = 1, ... , n. Hence f(SI"'" sn) !n f(tl, ... , tn) since 

n is compatible. 

If s . t is obtained by the instantiation rule, S !n. t follows from the 

induction hypothesis by the Stability Proposition 3.1. 
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Theorem 3 .9 .  (Soundness and Completeness) Let R be  a compatible

and confluent rewriting system. Then

s zn t  4:) s i n t  «(==> 3 HTRt

for every R-equation s %- t .

Proof: Let 'R = (2 ,8  ) be a compatible and confluent rewriting system.
Since the second equivalence holds for every confluent relation, it suffices to
show the first equivalence.

l .  “<= ”. Let s 1,7; t .  Then there exists a term u such that s a; n and
t ———>"‚“-‚' u .  By  Proposition 3.2  we know that s 7-12 u and t :7; u .  Hence s 2R t

since V(u) ; V(s).

2. “©”. Let V be a set of E—variables and {II-2,1; s é t .  Since order—
sorted equational deduction is complete, it suffices to show that s 1,7; t .  We

prove this claim by induction on the size of the derivation 8 l-gy s i t .  If
s i t is in 8 ,  then 3 an  23. If s & t is obtained by the reflexivity rule, then
s "93% 23. If s & t is obtained by the symmetry rule, we know by the induction
hypothesis that t i'R. 3 .

If s & t is obtained by the transitivity rule, there exists a term u such
that 8 bay  s & u and 8 l-gy u & t .  By  the induction hypothesis we know that
s 1,1; u and u iqa't. Hence there exist two terms '01 and '02 such that s 43;; v l ,
u “+33. v l ,  u ""äa v2,  and t ""iz '02. Since ’R is confluent, there exists a term
“03 such that v1 "";e v3,  and v2 4;; '03. Hence We have s iR  t .

If s & 75 is obtained by the congruence rule, there exist terms s l  , . . . , 3n and
t 1 , . . . ‚ t„  such that s = f ( s l ‚ . . .  ,s„) and t = f ( t 1 , . . .  ‚ t„) for some function
symbol f and € “E,V s.- é t,— for i = 1,  . . . , n .  By  the induction hypothesis we
know that 3517; t,- for i = 1‚ . .  . ‚n .  Hence f(31‚. . . , sn )  iR  f(t1‚ . . . , tn)  since
R is compatible.

If s & t is obtained by the instantiation rule, 5 ‚LR t follows from the
induction hypothesis by the Stability Proposition 3.1. EI
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Since we are mainly interested in initial algebra semantics, confluence is 

actually an unnecessarily strong requirement. We call a rewriting system n 
ground confluent if the restriction of the rewriting relation -7n to ground 

n-terms is confluent. 

Theorem 3.10. (Soundness and Completeness) Let n be a compatible 

and ground coniIuent rewriting system. Then 

s =n t s!n t 

for every ground n-equation s . t. 

Proof. Analogous to the proof of the preceding theorem.	 o 

In Section 7 we will show that for every rewriting system one can con­

struct a semantically equivalent rewriting system that is compatible. Thus, 

compatibility is no problem in practice. 

3.3 Sort Decreasingness and the Critical Pair Theorem 

The second key theorem for unsorted term rewriting says that -7n is locally 

confluent if all critical pairs of n converge. We will see that this result, in 

general, does not hold for order-sorted rewriting, even if n is compatible. We 

start by defining overlaps and critical pairs. 

We say that a syntactical ~-object 0' is a variant of a ~-objeet 0 if 

0' is obtainable from 0 by consistent variable renaming, that is, there exist 

~-substitutions Band ?/J such that 0' = BO and 0 = ?/JO'. 

An overlap of a rewriting system n is a triple (s -7 t, n, s' -7 t') such 

that 

1.	 s -7 t and s' -7 t' are variable disjoint variants of rules of nand n is an 

position of s such that sin is not a variable 

2.	 if sin = s, then s -7 t is not a variant of s' -7 t' 

3.	 there exist an n-substitution B such that (Bs)/1r = Bs'. 
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Since we are mainly interested in initial algebra semantics, confluence is
actually an unnecessarily strong requirement. We call a rewriting system ”R
ground confluent if the restriction of the rewriting relation _,R to ground
R—t erms is confluent.

Theorem 3.10. (Soundness and Completeness) Let 'R, be a compatible
and ground confluent rewriting system. Then

3 :7; t {ä 3 1,1; t <=} 8 Hill t

for every ground R-equation s i t .

Proof: Analogous to the proof of the preceding theorem. EI

In Section 7 we will Show that for every rewriting system one can con—
struct a semantically equivalent rewriting system that is compatible. Thus,
compatibility is no problem in practice.

3.3 Sort Decreasingness and the Critical Pair Theorem

The second key theorem for unsorted term rewriting says that “+71 is locally
confluent if all critical pairs of R converge. We will see that this result, in
general, does not hold for order-sorted rewriting, even if ’R. is compatible. We
start by defining overlaps and critical pairs.

We say that a syntactical E-object 0 '  is a variant of a E-object 0 if
0 '  is obtainable from 0 by consistent variable renaming, that is, there exist
E—substitutions 6 and gb such that O '  = 90 and 0 = 1,00’.

An overlap of a rewriting system ’R is a triple (3 —> t,7r,s' ——> t '  ) such
that

1. s _) t and 3 '  —-> t’ are variable disjoint variants of rules of R and 7r is an
position of 3 such that s/7r is not a variable

2. if s/7r = 5, then s —> t is not a variant of 3’ -> t’

3. there exist an 'R-substitution 6 such that (%)/7!“ = 93' .
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We say that an overlap (s -+ t,7r,S' -+ t') is a variant of an overlap (u-+ 

V, 7r, u' -+ v') if u -+ v is a variant of s -+ t and u' -+ v' is a variant of s' -+ t'. 

Proposition 3.11. A finite rewriting system has only finitely many overlaps 

up to variants. 

A critical pair of an overlap (s -+ t, 7r, S' -+ t') of R is a pair 

(Bt,B(s[7r f- t'D) such that (Bs)/7r = Bs', B(s[7r f- t'D is an R-term, and B 

is an R-substitution. We say that a pair (s, t) is R-critical if (s, t) is a critical 

pair of an overlap of R. We say that a pair (s, t) of R-terms converges in R 

if s ~R t. 

Proposition 3.12. Let R be a rewriting system. Every instance of an R­

critical pair is an R-critical pair. 

A set C of R-critical pairs is called complete for R if every R-critical 

pair is an R-instance of a pair in C. 

Proposition 3.13. Let R be a rewriting system and C be a complete set of 

R-critical pairs. Then every R-critical pair converges in R if every pair in C 

converges in R. 

For many-sorted rewriting without subsorts, it is well-known that all criti­

cal pairs of an overlap can be represented by a single "most general" pair. This 

isn't true, in general, for order-sorted rewriting, as we will see in the section 

on unification. However, under mild restrictions, every overlap has still a finite 

complete set of critical pairs, and such a complete set can be computed using 

an order-sorted unification algorithm. 
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We say that an overlap (s  —-—+ t ,7 r , s '  --> t’) is a variant of an overlap (u  -—>

v,7r,u’ —> v’) i fu—) v i sa  variant o f s  -——> t and u’ —> v’ is avariant o f s '  ——> t’.

Proposition 3.11.  A finite rewriting system has only finitely many overlaps
up to variants.

A critical pair of an overlap (s  -—> t ,  7r, 3' —> t’) of R is a pair
(6t,9(s[7r <—— t'])) such that (%)/71“ = 93', 6(s[7r (— t']) is an R-term, and 9
is an R—substitution. We say that a pair (s ,  t) is R—critical if (s ,  t )  is a critical
pair of an overlap of R. We say that a pair (s ,  t) of R—terms converges in  R
if 3 iR  t .

Proposition 3 .12 .  Let R be a rewriting system. Every instance of an R—
critical pair is an R—critical pair.

A set C of R—critical pairs is called complete for R if every R—critical
pair is an R—instance of a pair in C.

Proposition 3.13.  Let R be a rewriting system and 0 be a complete set of
R—critical pairs. Then every R—critical pair converges in R if every pair in C
converges in R.

For many-sorted rewriting without subsorts, it is well-known that all criti—
cal pairs of an overlap can be  represented by a single “most general” pair. This
isn’t true, in general, for order-sorted rewriting, as we Will see in the section
on unification. However, under mild restrictions, every overlap has still  a finite
complete set of critical pairs, and such a complete set can be computed using
an order-sorted unification algorithm.
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The overlaps of the rewriting system in Figure 1.1 are: 

(s(p(I» -+ I, 1, p(s(J» -+ J) (s(J), s(J»
 

(p( s(I» -+ I, 1, s(p(J» -+ J) (p( J), p( J»
 

(p(1) + I' -+ p(I + I'), 1, p(s(J» -+ J) (p( s( J) + I'), J + I')
 

(s(I) + I' -+ s(I +1'), 1, s(p(J» -+ J) (s(p(J) + I'), J + I')
 

(p(!) ~ I' -+ I < s(1'), 1, p(s(J» -+ J) (s(J) < s(I'), J ::; I')
 

(s(1) < I' -+ I < p(I'), 1, s(p(J» -+ J) (p( J) < p(1'), J ::; I').
 

The critical pairs to the right of the overlaps all converge and are complete for 

R. 

Example 3.14. Consider the following compatible rewriting system R: 

A < B, a:-+ A, b:-+ B, J:A -+ A, J:B -+ B 

a -+ b, J(XA) -+ XA. 

Since R doesn't have an overlap, every R-critical pair converges. However, R 

is not locally confluent since J(a) -+n- a, J(a) -+n J(b), and a and J(b) do 

not converge. 

Fortunately, there is a large class of order-sorted rewriting systems for 

which a critical pair theorem holds. We say that a rewriting system n is sort 

decreasing if, for every R-term s of sort e, s -+n t implies that t is an R-term 

of sort e. The rewriting system in the preceding example is not sort decreasing 

since, for instance, a has sort A, a -+n- band b has not sort A. 

Proposition 3.15. Every sort decreasing rewriting system is compatible. 

Theorem 3.16. (Critical Pairs) Let R be a sort decreasing rewriting sys­

tem. Then n is locally confluent if and only if all critical pairs ofn converge. 

Proof. The proof is identical to the proof of Lemma 3.1 in [Huet 80], 

where the sort decreasingness of R validates the used arguments. 
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0 

The overlaps of the rewriting system in Figure 1 .1  are:

(SMD) —* I. _1‚ p(S(J))  —> J) (SU). s ( JD

_(p(s(I)) —> I. 1 .  s(p(J  )) —+ J) (100). p(J) )

(29(1) + I’ —> p(I+ I ' ) .  1 .  P(3(J)) -+ J) (MSN) + I ' ) .  J+  I’)

(SU) + I '  -—+ s ( I+  F ) ,  1 .  8(P(J))  —> J) (8(P(J) +I'). J+I ' )

(29(1) _<._ I’ ——> I ‚<. 3(1"), 1. p(8(J))  —-> J)  (SU) S SU”), J S I ' )

(SU) S I' —> I ; p(I'). 1 .  3(p(J))  —> J) (p(J) £ p(I'). J S I ’ ) .

The critical pairs to the right of the overlaps all converge and are complete for
R.

Example 3.14.  Consider the following compatible rewriting system ’R:

A<B,  a:-——+A, b:—>B, f:A-—+A, f:B—->B

a _) 17: f ($A)  __} SDA.

Since R doesn’t have an overlap, every R—critical pair converges. However, R
is not locally confluent since f(a) _»); a, f(a) “+12, f(b), and a and f(b) do
not converge.

Fortunately, there is a large class of order-sorted rewriting systems for
which a critical pair theorem holds. We say that a rewriting system 'R is sort
decreasing if, for every 'R-term .3 of sort a ,  3 —>7; t implies that t is an R—term
of sort € . The rewriting system in the preceding example is not sort decreasing
since, for instance, a has sort A ,  a. _»); b and b has not sort A .

Proposition 3 .15 .  Every sort decreasing rewriting system is compatible.

Theorem 3.16. (Critical Pairs) Let 72 be 3 sort decreasing rewriting sys—
tem. Then R is locally confluent if and only if al] critical pairs of 72. converge.

Proof. The proof is identical to the proof of Lemma 3.1 in [Huet 80],
Where the sort decreasingness of R validates the used arguments. |]
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The rewriting system in Figure 1.1 is sort decreasing. However, if we add 

the declaration p: posint ~ nat, which is valid in the initial algebra, we obtain 

a system that isn't sort decreasing. The trouble is caused by the instance 

p(Xposint) +Yposint ~ p(Xposint +Yposint) of the rule p( I) + I' ~ p(I + I') and 

cannot be avoided by adding further declarations that are valid in the initial 

algebra. 

Next we outline a procedure for deciding whether a finite rewriting system 

is sort decreasing. 

A 2::-rewrite rule s ~ t is sort decreasing if, for every 2::-substitution () 

and every 2::-sort symbol e, Bt has sort eif Bs has sort e. 

Proposition 3.17. A rewriting system is sort decreasing if and only if each 

'of its rules is sort decreasing. 

Let V be a set of L:-variables. A sort assignment for V is a function 7 

mapping V to the sort symbols of 2:: such that 7(X) < O'x for all x E V. 

Proposition 3.18. Let:2:: be a finite signature. Then there exist only finitely 

many sort assignments for a set V of 2::-variables. 

Let 7 be a sort assignment for a set V of :2::-variables. A 7-weakening is 

a 2::-substitution () such that, for all x E V, Bx is a variable and O'(Bx) = 7(X). 

Proposition 3.19. Let 7 be a sort assignment for a set V ofL:-variables and 

let Band (}I be 7-weakenings. Then 

Bs has sort e B' s has sort e 
for every (2::, V)-tenn s and every :2::-sort symbol e. 

Proposition 3.20. A (:2::, V)-rewrite rule s ~ t is sort decreasing ifand only 

if 

()s has sort e ::} Bt has sort e 
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The rewriting system in Figure 1.1 is sort decreasing. However, if ”we add
the declaration p: posint ——> nat, which is valid in the initial algebra, We obtain

a system that isn’t sort decreasing. The trouble is caused by the instance

p($posint)  + yposint """ P($posint + yposint) Of the rule 29(1) + I, '" P(I+ I , )  and

cannot be avoided by adding further declarations that are valid in the initial
algebra.

Next we outline a procedure for deciding whether a finite rewriting system
is sort decreasing.

A E-rewrite rule 3 —> t is sort decreasing if, for every E-substitution 6

and every Z—sort symbol E , 6t has sort 5 if 63 has sort { .

Proposition 3.17.  A rewriting system is sort decreasing if and only if each
“of its rules is sort decreasing.

Let V be a set of E—Variables. A sort assignment for V is a function T
mapping V to the sort symbols of 2 such that T(£L‘) _<__ oa: for all a: E V.

Prop osition 3.18.  Let 2 be a finite signature. Then there exist only finitely
many sort assignments for a set V of E—Variables.

Let T be a sort assignment for a set V of E-variables. A T-Weakening is
a E—substitution 9 such that, fOr all :1: E V, 6:6 is a variable and 00951:) = T(a:).

Prop osition 3.19.  Let T be a sort assignment for a set V of E—Variables and
let 6 and 6’ be T—Weakenings. Then

93 has sort { <=} 6’s has sort 5

for every (2 ,  V)-—term 3 and every S.)-sort symbol & .

Proposition 3.20. A (E ,  V)-rewr1'te rule 3 ——> t 1's sort decreasing if and only
if

93 has sort { => 0t has sort €
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for every ~-sort symbol e, every sort assignment r for V, and some r-weakening 

e. 

Proposition 3.21. It is decidable whether a finite rewriting system is sort 

decreasing. 

A Knuth-Bendix completion procedure for order-sorted rewriting systems 

[Gnaedig et al. 87] has to orient equations with respect to termination and 

sort decreasingness. This adds an additional difficulty since an orientation that 

respects the termination order might not be sort decreasing. 

3.4 Optinlizing Sort Tests 

An interpreter for a sort decreasing rewriting system works like an interpreter 

for an unsorted rewriting system, except that it has to test that a term s has 

sort cyx before it can bind the variable x to s. In general, such a sort test 

can be rather expensive since a complete bottom up inspection of s might 

be necessary. Hence the optimization of sort tests is important for practical 

applications. Here we discuss two straightforward optimizations. 

Let ~ be a signature. A ~-sort symbol eis singular in ~ if for every 

~-function symbol f ~ contains at most one declaration f: "71 ... 'TJn ----. 'TJ such 

that 'TJ :::; e· 

Proposition 3.22. Let ebe a singular sort symbol in~. Then a ~-term 

f( SI, ••• ,sn) has sort eif and only if ~ contains a declaration f: 'TJl ••• 'TJn --+ 'TJ 

such that 'TJ :::; e· 

A variable x E V(s) is most general in a ~-term s if 

t = es :::::} ex has sort cyx 

for every ~-term t and every substitution e (not necessarily a ~-substitution). 

Proposition 3.23. If the sort ofa variable is maximal, then it is most general 

in every term. 
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for every E—sort symbol {, every sort assigmnent 7' for V,  and some T—Weakening
6.

Proposition 3.21.  It is decidable whether a finite rewriting system is sort
decreasing.

A Knuth—Bendix completion procedure for order-sorted rewriting systems
[Gnaedig et al. 87] has to  orient equations with respect to termination and
sort decreasingness. This adds an additional difficulty since an orientation that
respects the termination order might not be sort decreasing.

3.4 Optimizing Sort Tests

An interpreter for a sort decreasing rewriting system works like an interpreter
for an unsorted rewriting system, except that it has to test that a term s has

sort am before it can bind th‘e variable a: to s .  In general, such a sort test
can be rather expensive since a complete bottom up inspection of 3 might
be  necessary. Hence the Optimization of sort tests is important for practical
applications. Here we discuss two straightforward optimizations.

Let E be a signature. A E-sort symbol { is singular in  E if for every
E-function symbol f 2 contains at most one declaration f :  171 - - - 771: —-> n such
that n S € .

Proposition 3.22.  Let { be a Singular sort symbol in Z). Then a E-texm

f (31 ,  . . . , 3n)  has sort { if and only i fE contains a declaration f :  771 . . - nn -—> 17

such that n S €.

A variable a: E V(s) is most general in a E-term 3 if

t = 65 => 9:13 has sort 01'

for every E—term if and every substitution 6 (not necessarily a E-substitution).

Proposition 3.23.  If the sort of a variable is maximal, then it is most general
in every term.
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To apply a rewrite rule s -t t, it suffices to have a sort test only for those 

variables that aren't most general in s. 

In the rewriting system in Figure 1.1 all variables that aren't most general 

have singular sorts. 

3.5 Remarks and References 

Goguen et aL [85] give an operational semantics for order-sorted equational 

logic by compiling order-sorted rewriting systems into many-sorted rewriting 

systems without subsorts. This approach requires that the order-sorted rewrit­

ing system is sort decreasing and regular (regularity will be defined in the next 

section) and also handles sort constraints. Meseguer and Goguen [85b] study 

many-sorted rewriting without subsorts. Gogolla [86] gives a soundness and 

completeness theorem for sort decreasing rewriting systems. Schmidt-SchauB 

[87] studies rewriting in an order-sorted logic with term declarations. 

Kirchner et aL [87] study order-sorted rewriting modulo equations and 

give criteria for soundness and completeness. They devise a method for the 

efficient implementation of sort tests and develop conditions for the separate 

compilation of rewrite rules in different modules. Their approach is the theo­

retical foundation for the implementation of OBJ3. Gnaedig et al. [87] study 

completion procedures for order-sorted rewriting systems. 

Cunningham and Dick [85] investigate rewriting methods in a lattice of 

sorts that is a special case of regular signatures. They don't give a model 

theoretic semantics for their systems. Since they don't consider any equivalent 

of compatibility or sort decreasingness, their approach is at least incomplete. 
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To apply a rewrite rule 3 ——-+ t ,  it suffices to have a sort test only for those
variables that aren’t most general in 3.

In the rewriting system in Figure 1.1 all variables that aren’t most general
have singular sorts.

3.5 Remarks and References

Goguen et al. [85] give an operational semantics for order—sorted equational
logic by compiling order—sorted rewriting systems into many-sorted rewriting
systems Without subsorts. This approach requires that the order-sorted rewrit-
ing system is sort decreasing and regular (regularity Will be defined in the next
section) and also handles sort constraints. Meseguer and Goguen [85b] study
many—sorted rewriting without subsorts. Gogolla [86] gives a soundness and
completeness theorem for sort decreasing rewriting systems. Schmidt-Schauß
[87] studies rewriting in an order—sorted logic With term declarations.

Kirchner et al. [87] study order—sorted rewriting modulo equations and
give criteria for soundness and completeness. They devise a method for the
efficient implementation of sort tests and develop conditions for the separate
compilation of rewrite rules in different modules. Their approach is the theo-
retical foundation for the implementation of OBJ3. Gnaedig et al. [87] study
completion procedures for order-sorted rewriting systems.

Cunningham and Dick [85] investigate rewriting methods in a lattice of
sorts that is a special case of regular signatures. They don’t give a model
theoretic semantics for their systems. Since they don’t consider any equivalent
of compatibility or sort decreasingness, their approach is at least incomplete.
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4 Order-Sorted Unification 

Term unification in order-sorted signatures is quite different from unification 

in unsorted signatures. In fact, unification in order-sorted signatures has many 

properties in common with unsorted unification modulo equations [Fages/Huet 

86, Siekmann 86]. There are pathological order-sorted signatures in which 

infinitely many most general unifiers are needed to represent the unifiers of two 

terms. In regular signatures, a class that excludes pathological cases, finitely 

many most general unifiers suffice to represent the unifiers of two terms. Even 

in signatures in which the unifiers of two terms can be represented by a single 

most general unifier, the most general unifier may necessarily involve auxiliary 

variables. 

4.1 Regularity 

A signature ~ is called regular if 

1.	 the subsort order of ~ is a partial order 

2. every	 ~-term s has a least sort us, that is, there is a unique function u 

from the set of all ~-terms into the set of sort symbols such that 

2.1 if s is a ~-term, then s is a term of sort us 

2.2 if s is a ~-term of sort e, then us:::; e. 
The requirement that the subsort order is a partial order eases the notation 

but is not really essential. If ~ is a regular signature, we use (js to denote the 

least sort of a ~-term s. We call a specification or a rewriting system regular 

if its signature is regular. 

The signatures of all examples discussed so far are regular. An example 

for a nonregular signature is 

{a: -+ A, a: -+ B}. 

It seems that there are no natural examples of nonregular signatures. The class 

of regular signatures is important since unification in nonregular signatures is 

infinitary, while unification in regular signatures is finitary. 
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4 Order-Sorted Unification

Term unification in order-sorted signatures is quite different from unification
in unsorted signatures. In fact, unification in order-sorted signatures has many
properties in common with unsorted unification modulo equations [Fages/Huet
86, Siekmann 86]. There are pathological order—sorted signatures in which
infinitely many most general unifiers are needed to represent the unifiers of two

terms. In regular signatures, a class that excludes pathological cases, finitely
many most general unifiers suflice to represent the unifiers of two terms. Even
in signatures in which the unifiers of two terms can be  represented by a single
most general unifier, the most general unifier may necessarily involve auxiliary
variables.

4.1 Regularity

A signature 2 is called regular if

1. the subsort order of E is a partial order

2 .  every E-term 5 has a least sort as ,  that is, there is a unique function 0
from the set of all Z-terms into the set of sort symbols such that

2.1 if s is a E-term, then 3 is a term of sort as

2.2 if s is a E-term of sort { ,  then as  S €.

The requirement that the subsort order is a partial order eases the notation
but is not really essential. If )3 is a regular signature, we use as to denote the
least sort of a E—term 3.  We call a specification or a rewriting system regular
if its signature is regular.

The signatures of all examples discussed so far are regular. An example
for a nonregular signature is

{a:  —-+ A ,  a:  ——> B}.

It seems that there are no natural examples of nonregular signatures. The class
of regular signatures is important since unification in nonregular signatures is
infinitary, while unification in regular signatures is finitary.
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Theorem 4.1. A signature ~ whose subsort order is anti-symmetric is regular 

ifand only if for every ~-functionsymbol f and every string ( of~-sort symbols 

the set {'fJ I (f: ii -+ 'fJ) E ~ and ( <~ ii} is either empty or has a minimum 

with respect to the subsort order of~. 

Proof. 1. Let ~ be a regular signature, f be a ~-function symbol, and 

6, ... ,en be ~-sort symbols such that ~ contains a declaration f: 'fJ1 ... 'fJn -+ 'fJ 
such that ei < 'fJi for i = 1, , n. Furthermore, let XI, ... ,Xn be variables 

such that (TXi = ei for i = 1, , n. Then f( xl, ••• ,xn ) is a ~-term. Since 

~ is regular, ~ contains a declaration f: (I ... (n -+ ( such that ei < (i for 

i = 1, ,n and ( = (T f( XI, ••• ,xn ), where (T f( XI, ... ,xn ) is the least sort of 

f(X1' ' xn) in ~. Hence ( = min{'fJ I (I: ii -+ 'fJ) E ~ and 6··· en ~ ii}· 

2. Let ~ be a signature whose subsort order is a partial or­

der such that for every function symbol f and every string ( the set 

{'fJ I (f: ii -+ 'fJ) E ~ and (~ ii} is either empty or has a minimum. Then its 

easy to verify that 

r(x) := (TX 

r(l(sl, ... , sn)) := min{'fJ I (f: ii -+ 'fJ) E ~ and r(sl)··· r(sn) ~ ii} 

defines a unique least sort function r on the set of all ~-terms. o 

This theorem is also proved in [Goguen/Meseguer 87c], where regularity 

is called preregularity and regularity is defined as a slightly stronger condition. 

Corollary 4.2. Regularity of finite signatures is decidable. 

Corollary 4.3. Every signature without multiple function declarations is reg­

ular. 

Proposition 4.4. Let n be a sort decreasing, confluent and regular rewriting 

system. Then 

(T( s In) = min{(Tt I s =n t} 
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Theorem 4.1. A signature Z) whose subsort order is anti-symmetric is regular
if and only if for every E-function symbol f and every string gofE—sort symbols

the set {27 | ( f :  7? ——> 77) E E and 5 _<_>3 if} is either empty or has a minimum
With respect to the subsort order of 2 .

Proof. 1. Let E be a regular signature, f be a E—function symbol, and
£1 ‚ . . . ‚En be E-sort symbols such that 2 contains a declaration f :  771 - - - nn ——+ 17

such that {. S m for i = 1‚ . . . ‚n .  Furthermore, let :81, . . . ‚zen be variables

such that cm:.- = 52” for i = l , .  . . ‚n .  Then f (x l ,  . . . , xn )  is a E—term. Since
2 is regular, E contains a declaration f : ( 1  - - - (n ———> ( such that {f,- S C;- for
i = l , .  . . ‚n  and C = of(:c1‚ . . .,:cn), Where of(:c1, . . . , xn )  is the least sort of
f (x1 ‚ . . . , x„ )  in 2 .  Hence ( = min{17 | (f:1'7"——> 17) € Z and 51 ““Er; 5 ff}.

2. Let 2 be a signature whose subsort order is a partial or-
der such that for every function symbol f and every string E the set
{17 | ( ffi '  ———) 77) E E and 53  if} is either empty or has a minimum. Then its
easy to verify that

'r(a:) :=  am
f ( f (81 ‚ - - - ‚ sn ) )  == minh? | (f=fi'—-> n) € 2 and T(81)°-°T(8n)  S fi}

defines a unique least sort function 7“ on the set of all E-terms. EI

This theorem is also proved in [Goguen/Meseguer 87c], Where regularity
is called preregularity and regularity is defined as a slightly stronger condition.

Corollary 4 .2 .  Regularity of finite signatures is decidable.

Corollary 4 .3 .  Every signature Without multiple function declarations is reg—
uiar.

Proposition 4.4.  Let ??. be a sort decreasing, confluent and regular rewriting
system. Then

o(s  1,73,) = min{o*t | 3 =7z, t}
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for every R-term s having an R-normal form sln.. 

Proposition 4.5. Let R be a sort decreasing, confluent and regular rewriting 

system and let Tn be the initial algebra of R. Then: 

•	 if s is a ground R-term with the R-normal form s In., then [shn E (In 

if and only if 0-(S In) ::; e 
•	 if a E eIn n "7 In , then there exists a common subsort ( of eand "7 such 

that a E (In. 

4.2 Basic Definitions and Counterexamples 

A ~-equation system is either the empty equation system 0 or has the 

form SI . t 1 & ... & Sn ...:... tn, where Si ...:... ti is a ~-equation for i = 1, ... , n. 

For convenience, we assume that the conjunction operator & is associative, 

commutative and satisfies 0 & E = E for every equation system E. For in­

stance, (a ...:... b & a . c) and (0 & a ...:... c & 0 & a . b) denote the same equation 

system. An equation s . t is trivial if s = t. An equation system is trivial 

if each of its equations is triviaL The letter E will always range over equation 

systems. 

The ~-unifiers of a ~-equation system E are 

U~(E) := {B E SUB~ IBE is trivial}, 

where SUB~ is the set of all ~-substitutions. A ~-equation system is called 

~-unifiable if it has at least one ~-unifier. 

Let B be a :E-substitution. Then CB := {Bx I x E VB} is called the 

codomain of B and TB := V(CB) is called the set of variables introduced by B. 

A substitution B is called idempotent if BB = B. Note that B is idempotent if 

and only if VB and TB are disjoint. 

Let B be a ~-substitution. The equational representation of B is the 

~-equation system 
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for every R—term s having an R—norma] form 3 iR-

Proposition 4 .5 .  Let ’R be a sort decreasing, confluent and regular rewriting
system and let IR be the initial algebra of R. Then:

. if 3 is a ground 'R-term With the ’R—normal form 5112 ,  then [[sflzk € {IR

if and only ifo(s in) S E

. if a E 613; H 771'”, then there exists a common subsort ( of { and n such
that a E CIR .

4.2 Basic Definitions and Counterexamples

A E-equation system is either the empty equation system @ or has the

form 31 é tl & & s n  & tn, where 35 £ t,- is a E—equation for i = l,. . . ‚n.
For convenience, We assume that the conjunction operator & is associative,
commutative and satisfies 9) & E = E for every equation system E. For in—

stance, (a i b- & a & c) and (@ & a ='= c &(0 & a i b) denote the same equation
system. An equation s it t is trivial if s = t. An equation system is trivial
if each of its equations “is trivial. The letter E will always range over equation

systems.

The E—unifiers of a vZ-equation system E are

UE(E) := {9 E SUB; | 9E is trivial},

Where SUB); is the set of all E—substitutions. A E-equation system is called

E-unifiable if it has at least one E-unifier.

Let 9 be a Zl-substitution. Then C9 := {9:8 | a: € D9} is called the
codomain of 9 and 19 := V(C9) is called the set of variables introduced by 9.
A substitution 9 is called idempotent if 99 = 9. Note that 9 is idempotent if
and only if 139 and ‚7:9 are disjoint.

Let 9 be a E—substitution. The equational representation of 9 is the

E—equation system

[6 ]2=  ($1 i 9 3 3 1  & &&?“ =91:„),
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where {XI, ... ,Xn } = VB. Two ~-substitutions are equal if and only if their 

equational representations are equal. 

Proposition 4.6. Let Band 'ljJ be ~-substitutions. IfB is idempotent, then 

'ljJ E UE([B])	 ~ 'ljJ[B] is trivial ~ (~, 0) F'ljJ[B]
 

~ 'ljJ = 'ljJB ~ :3 <p E SUBE. 'ljJ = <pB
 

Let lj be a signature. The unsorted signature corresponding to ~ is 

~ := lj u He < 'T]) Ieand'T] are ~-sort symbols}. 

Every ~-term, equation or equation system is a ~-term, equation or equation 

system, respectively. 

Proposition 4.7. Let E be a ~-equation system. Then 

This proposition says that the order-sorted unifiers of E are exactly the 

unsorted unifiers of E that are order-sorted substitutions. 

Theorem 4.8. (Unsorted Unification) Let ~ be a signature and E be a 

~-equation system that is ~-unifiable. Then there exists an idempotent ~­

substitution B such that U~ (E) = U~ ([B]) and V([BD ~ V(E). 

This theorem is just a reformulation of Robinson's [65] unification theo­

rem. A substitution B such that U~ (E) = U~ ([B]) is usually called a most 

general unifier of E. 

Let V be a set of ~-variables. The (~, V)-unifiers of a ~-equation system 

E are 

uK(E) := {Blv I BE SUBE 1\ BE is trivial}. 
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where {ml, . . . ‚:cn} == D9. Two E-substitutions are equal if and only if their
equational representations are equal.

Proposition 4 .6 .  Let 9 and 1/2 be E-substitutions. If 9 is idempotent, then

gb E Ug([6]) <=) M9] is trivia] (=> (2 ,0 )  \: we]

<=> ¢=¢6  (=> 3¢ESUBE.¢=¢6

and UE( [9 ] )  = SUB}; ° 9 :=  {1,59 | tb E SUBE} .

Let Z} be a signature. The unsorted signature corresponding to 2 is

f) :=  Z) U {(E < 17) | { and n are E-sort symbols}.

Every E—term, equation or equation system is a E—term, equation or equation
system, respectively.

Proposition 4 .7  . Let E be  a E-equation system. Then

Ug(E) = UE(E) n SUBg.

This proposition says that the order—sorted unifiers of E are exactly the
unsorted unifiers of E that are order—sorted substitutions.

Theorem 4 .8 .  (Unsorted Unification) Let 2 be a signature and E be a
fi—equation system that is i-unifiable. Then there exists an idempotent :3—
substitution 9 such that U; (E) :: U2 ([9]) and V([9]) (_: V(E).

This theorem is just a reformulation of Robinson’s [65] unification theo-
rem. A substitution 9 such that U): (E) = U; ([9]) is usually called a most
general unifier of E .

Let V be a set of E—Variables. The (2 ,  V)-unifiers of a E—equation system
E are

U}; (E) := {9|V | 6 e SUB; A HE is trivial}.
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where the restriction of () to V is the substitution ()Iv satisfying 

()Iv(x) = {()x if x E ':
 
x otherwIse.
 

A	 signature ~ is called 

•	 unitary unifying if for every ~-unifiable ~-equation system E there 

exists an idempotent ~-substitution () such that U~(E)(E) = U~(E)([()]) 

•	 finitary unifying if for every ~-unifiable ~-equationsystem E there exist 

idempotent ~-substitutions ()1,' .. ,()n such that 

In practice, (~, V)-unifiers suffice and ~-unifiers are not really needed. This is 

very fortunate since the above definition of unitary unifying applies to many 

more order-sorted signatures than an analogous definition requiring UEC E) = 
UI;([()]). The need to restrict unifiers to a set of "interesting" variables also 

exists for unsorted unification modulo equations [Fages/Huet 86]. 

Example 4.9. Let ~ be the nonregular signature 

0: -4 A, 0: -4 B, s: A -4 A, s: B -4 B. 

The ~-equationx A = YB has the infinitely many ~-unifiers with the equational 

representations 

(XA ...:.. 0 & XB . 0)
 

(XA . s(o) & XB . s(o))
 

(XA ..:... S(8(0)) & XB . 8(S(0)))
 

Since the terms 0,8(0), ... don't have a least sort, U~XA'YB}(XA = YB) cannot 

be represented by finitely many idempotent substitutions. Hence ~ is not 

finitary unifying. 
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Where the restriction of (9 to _V is the substitution HIV satisfying

otherwise.

A signature 2 is called

. unitary unifying if for every E-unifiable E-equation system E there
exists an idempotent Z-substitution 9 such that U;(E)  (E) = U;(E)([9D

. finitary unifying if for every E—unifiable E-equation system E there exist
idempotent E-substitutions 91, . . . , ßn  such that

Uä‘E’w) = Uä<E>([611)u- .. u UE‘E’aanl).

In practice, (Z), V)—unifiers suffice and E—unifiers are not really needed. This is
very fortunate since the above definition of unitary unifying applies to many
more order-sorted signatures than an analogous definition requiring Ug(E)  =
Ug([6‘]). The need to  restrict unifiers to a set of “interesting” variables also
exists for unsorted unification modulo equations [Fages/Huet 86].

Example 4.9.  Let 2 be the nonregular signature

0:——> A,  0:-—> B,  s :A  —>A, 3 :3  ——> B .

The E—equation :cA = yB has the infinitely many E—unifiers With the equational
representations

(a,-A & o & asp, £ 0)
(:::A i 3(0) & 2:13 & s(o))

(17A & 3(8(0)) & $3  5 3(3(0)))

Since the terms o, s(o), . . . don’t have a least sort, UgA’yB}(xA = yB) cannot
be  represented by finitely many idempotent substitutions. Hence 2 is not '
finitary unifying.
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Proposition 4.10. There is a finite nonregular signature that is not finitary 

unifying. 

Example 4.11. Let E be the regular signature of the example in Figure 1.1. 

Then 

U~(Xposint . Ynat + Znat) = 
U V( . I &. / )

I; Xposint = Yposint + Znat Ynat = Yposint 

U U~ (Xposint . Ynat + Z~osint & Znat . Z~osint) 

for every set V of E-variables not containing the auxiliary variables Y~osint 

and Z~osint. Obviously, there exists no idempotent E-substitution () such that 

U~(Xposint . Ynat + Znat) = U~([(}J) for V = {Xposint, Ynat, Znat}. 

Proposition 4.12. There exists a finite regular signature with multiple ftmc­

tion declarations that is not unitary unifying. 

Example 4.13. This example demonstrates that, for order-sorted unification, 

it is crucial to consider (E, V)-unifiers rather than E-unifiers. Let E be the 

regular signature 

AB<A, AB<B, a:~AB. 

Then 

for every set V of E-variables not containing the auxiliary variable ZAB. How­

ever, 

since, for instance, (XA . a & YB . a) is a E-unifier of XA . YB but 

not of (XA . ZAB & YB . ZAB). Obviously, there exists no idempotent E­

substitution () such that UI;(XA . YB) = UI;([B]). Nevertheless, as follows 

from a general result to be proved later, E is unitary unifying. 
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Proposition 4 .10 .  There is a finite nonregular signature that is not finitary
unifying.

Example 4 .11 .  Let 2 be the regular signature of the example in Figure 1.1.
Then

[};],(xposint & ynat + zna t )  =

Ug($pos in t  & yiaosint  + Znat  & ynat & yiaos in t )

U Ug($pos in t  & ynat + zllaosint & Znat & z iaos in t )

for every set V of E-variables not containing the auxiliary variables ygosint
and Zimsint- Obviously, there exists no idempotent Z—substitution € such that
Ug($pos in t  & ynat + zna t )  = q61 )  for V : {xposin-t)  ynata a t } °

Proposition 4.12 .  There exists a finite regular signature With multiple fimc—
tion declarations that is not unitary unifying.

Example 4.13.  This example demonstrates that, for order—sorted unification,
it is crucial to consider (E ,  V)—unifiers rather than E-unifiers. Let 2 be the
regular signature

AB < A, AB < B,  a:-—> AB.

Then

UnA i 9B) = Ufa/(33A & ZAB & ?}B & zAB)

for every set V of E-variables not containing the auxiliary variable zAB. How-
ever,

U2($A & it,/13)?£ U2($A =°= ZAB & yB & ZAB)

since, for instance, (mA & a &yB i- a) is a E-unifier of cz: A & yB but
not of (mA é zAB &yB === zAB). Obviously, there exists no idempotent Z3-
substitution 6 such that Ug($A & 3/3) = U3([6]). Nevertheless, as follows
from a general result to be proved later, Z) is unitary unifying.
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4.3 Computing Order-Sorted Unifiers from Unsorted Unifiers 

Given a signature ~ and a ~-equation system E, we can compute with an 

unsorted unification algorithm an idempotent 'E-substitution () such that 

We will now show how one can compute finitely many idempotent ~­

subsitutions ()b ... ,Bn from the unsorted most general unifier B such that 

provided that ~ is finite and regular. 

A ~-containment s: eis a pair consisting of a 'E-term s and a ~-sort 

symbol e. A ~-containment system is a possibly empty, finite bag of ~­

containments. A disjunctive ~-containment system is a possibly empty, 

finite bag of ~-containment systems. 

A ~-substitution () satisfies a ~-containment s: e if ()s is a ~-term 

of sort e. A ~-substitution satisfies a ~-containment system if it satis­

fies each of its containments. A ~-substitution satisfies a disjunctive ~­

containment system if it satisfies at least one of its containment systems. 

Lemma 4.14. Let ~ be a signature and () be an idempotent 'E-substitution. 

Then 

Ut: ([()]) n SUB~ = {'IjJ() I 'IjJ E SUB~ and'IjJ satisfies {()x: o"x I x E VB}}. 

Proof. "~". Let cl> be a ~-substitution such that cI>[B] is triviaL Then 

cl> = cI>(). Hence cI>()x is a ~-term of sort o"x for every x E V(). Thus cl> satisfies 

the containment system {()x: O-X I x E VB}. 

"2". Let 'IjJ be a ~-substitution satisfying {()x: o"x I x E V()}. Then 'IjJ()x is 

a ~-term of sort o"x for all x E VB. Hence 'ljJB is a ~-substitution. Furthermore, 

'ljJB = 'ljJBB since () is idempotent. Thus 'ljJB E Ut: ([B]). 0 
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4.3 Computing Order-Sorted Unifiers from Unsorted Unifiers

Given a signature 2 and a E-equation system E ,  we can compute with an
unsorted unification algorithm an idempotent Ü—substitution 6 such that

U2(E)  = Ug([9])r1 SUBS.

We will now Show how one can compute finitely many idempotent E-
subsitutions 91, . . . , 6„ from the unsorted most general unifier 6 such that

V E V EUE‘ERE) == Uä‘ ’([61])U ---u U; )(lfinl),

provided that Z) is finite and regular.

A E-containment 3 :5  is a pair consisting of a Z-term s and a E-sort
symbol £ . A E-containment system is a possibly empty, finite bag of Z)—
containments. A disjunctive E-containment system is a possibly empty,
finite bag of E—containment systems.

A E-substitution 6 satisfies a E-containment 3 :6  if 9.9 is a E-term
of sort { . A E-substitution satisfies a ‚E)-containment system if it satis-
fies each of its containments. A E-substitution satisfies a disjunctive E-
containment system if it satisfies at least one of its containment systems.

Lemma 4.14. Let E be a signature and 9 be an idempotent Ü—substitution.
Then

U; ([9]) Fl SUB}: == {W9 | 1,5 E SUB}; and ?J) satisfies {9:12:03 | a: € 136“.

Proof. “g” .  Let 45 be a E-substitution such that 9:5[6] is trivial. Then
96 : 969. Hence 459.1: is a E-term of sort ara: for every so 6 D0. Thus gb satisfies
the containment system {6.76: da: | ::: € D6}.

“2”. Let @ be a E—substitution satisfying {9:63 am | a: E DG}. Then awn: is
a E-term of sort aa: for all a: E De. Hence 2,66 is a E-substitution. Furthermore,
1M9 = 1/)96 since 6 is idempotent. Thus 1,53 € U53 ([6]). EI
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A L:-containment x: e is solved if its left-hand side is a variable and 

e~.E CTX. A containment system is solved if each of its containments is solved 

and no variable occurs in more than one of its containments. A disjunctive 

containment system is solved if each of its containment systems is solved. 

Let L: be a finite and regular signature and let maxel.E be the function 

that yields the maximal elements (with respect to the subsort order of L:) of 

a set of L:-sort symbols or strings of L:-sort symbols. We define the following 

reduction rules for disjunctive L:-containment systems: 

(1) DU {{x: e} U C}	 -+.E DU {{x: (} U C I (' E X} 

if ei.E CTX and
 

X := maxel.E{( I (' ~.E CTX and (' :S.E 0 is nonempty
 

(2)	 DU {{x:e,x:'1]} UC} -+.E DU{{x:(}UCI(EX} 

if X := maxel.E {(' I (' ~.E eand (' ~.E '1]} is nonempty 

(3)	 D U {{I(SI, ..• ,sn): el U C} -+.E 

DU {{SI: '1]1, ... ,Sn: 7]n} U C I (7]1, ..• ,7]n) E X} 

if X := maxel.E{('1]b·'·' 7]n) I (1: '1]1'" 7]n -+ 7]) E L: and 7] <.E el 
is nonempty 

(4) D -+.E {0}	 if 0 E D # {0} 

(5)	 DU {Cl -+.E D 

if C is not solved and none of the rules above apply to C 

Proposition 4.15. Let	 L: be a finite and regular signature. Then: 

•	 there are no infinite chains D1 -+.E Dz -+.E ... issuing from a disjunctive 

L:-containment system D1 

•	 if D is a disjunctive L:-containment system and D -+.E D', then D' is a 

disjunctive L:-containment system and a L:-substitution satisfies D if and 

only if it satisfies D' 
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A E-containment. 58:5 is solved if its left—hand side is a variable and
5 53 0:8. A containment system is solved if each of its containments is solved
and no variable occurs in more than one of its containments. A disjunctive
containment system is solved if each of its containment systems is solved.

Let Z] be a finite and regular signature and let maxelg be the function
that yields the maximal elements (with respect to the subsort order of Z)  of
a set of E-sort symbols or strings of E-sort symbols. We define the following
reduction rules for disjunctive E-containment systems:

(1) DU{ {$ :§ }UC}  _); DU{{3::C}UC | C E X}

if 5 $): am and
X :=  maxelfi—C | C _<_-g aa: and ( _<_g € } is nonempty

(2) DU{{$:§,:I::77}UC} —>>3 DU{{:c:C}UC' | C E X}

if X :=  maxelE{C | C SE { and ( SE 77} is nonempty

(3) DU{{f (51 ‚ - -—‚3n)=€}UC}  —+s
DU{{51 :171‚ . . . , 3„ :77„}UC|  (m, . . . ‚ 17„ )6X}

if X :=  maxe12{(n1 , . . . , nn )  | ( f im  ' “fln  "" 7?) € )] and 77 SE 5}
is nonempty '

(4) D _»: {@} i fß  ED#{@}

if C is not solved and none of the rules above apply to C

Proposition 4.15.  Let 2 be a finite and regular signature. Then:

. there are no infinite chains D1 -—>)3 D2 -—>;3 - - - issuing from a disjunctive
E-containment system D1

. if D is a disjunctive E—containment system and D —>g D '  , then D'  is a
disjunctive E-containment system and a E-substitution satisfies D if and
only if it satisfies D'
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•	 for every disjunctive ~-containment system D there exists a solved dis­

junctive ~-containment system D' such that D -+E D'. 

The proposition says that the reduction rules for disjunctive containment 

systems constitute a solution algorithm. 

Proposition 4.16. Let ~ be a finite and regular signature and let B be an 

idempotent f.-substitution. Then 

Vf: ([B)) n SUBE =	 U {'ljJB I 'IjJ is a ~-substitution satisfying C} 
ceD 

if D is disjunctive	 containment system such that {{Bx: ax I x E VB}} -+f D. 

Let ~ be a regular signature, C be a solved ~-containment system, and V 

be a set of ~-variables. A weakening for C away from V is a ~-substitution 

w such that 

•	 Vw ~ V(C) and w is injective on Vw 

•	 if x E 1)w, then w(x) is a variable not contained in V 

•	 if (x: e) E C, then a(wx) = e. 
Proposition 4.17. Let ~ be a regular signature, C be a solved ~-containment 

system, and V be a finite set of ~-variables. Then there exists a weakening 

for C away from V. 

The following theorem is closely related to theorems in [Schmidt-SchauB 

85a] and [Meseguer et al. 87]. 

Theorem 4.18. (Order-Sorted Unification) Let ~ be a finite and regular 

signature, E be a ~-unifiable ~-equation system, and V be a finite set of~­

variables such that V(E) ~ V. Then there exists an idempotent f.-substitution 

B, which can be computed by an unsorted unification algorithm, such that 

V([B)) ~ V(E) and 

V~(E) = vK([B)) n SUBE. 

40 

. for every disjunctive E—containment system D there exists a solved dis-
junctive Z—containment system D' such that D —->§ D’ .

The proposition says that the reduction rules for disjunctive containment
systems constitute a solution algorithm.

Proposition 4.16.  Let E be a finite and regular signature and let 6 be an
idempotent Ü—substitution. Then

UE ([9]) fl SUBS = U {aßß | gb 1's a Z—substitution satisfying 0}
CED

if D is disjunctive containment system such that {{63: aa: | m 6 D9}} eg D.

Let E be a regular signature, C be a solved Z-containment system, and V
be a set of E—variables. A weakening for C away from V is a E—substitution

to such that

. Dw g ]}(C) and to is injective 011 'Dw

. if a: E Du:, then w(:c) is a variable not contained in V

0 if (x: &) E C, then 0‘(wx) = €.

Proposition 4 .17 .  Let 2 be a regular signature, C be a solved Z—containment
system, and V be a finite set of E-van'ables. Then there exists a weakening
for 0 away from V.

The following theorem is closely related to theorems in [Schmidt—Schauß

85a] and [Meseguer et al. 87].

Theorem 4.18. (Order-Sorted Unification) Let E be a finite and regular
signature, E be a E—unifiable E-equation system, and V be a finite set of Z-

variables such that V(E) _C_ V. Then there exists an idempotent Ü—substitution

9, which can be computed by an unsorted unification algorithm, such that

V([6]) ; V(E) and
UE (E) = U‘éqäl) n SUBE.
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Furthermore, one can compute solved ~-containment systems Cl, ... , Cn, 

n ~ 1, such that 

{{8x:ax I x E VB}} -ti; {Cl, ... ,Cn}. 

Then 

n 

Ut(E) = UUt([Wi B)) and V(Wi8) ~ V(E) for i = 1, ... ,n 
i=l 

if Wi is a weakening for Ci away from V for i = 1, ... , n. 

Proof The first claim follows from the Unsorted Unification Theorem 

and Proposition 4.7. The second claim follows from Proposition 4.15. To show 

the third cla.im, let Cl, ... , Cn be solved ~-coritainment systems such that 

{{8x: ax Ix E VB}} -ti; {Cl, ... , Cn}, and let Wi be a weakening for Ci away 

from V for i = 1, ... , n. 

"~". Let 't/J E uK(E). Then't/J is a ~-substitution such that 't/J = 't/JB. By 

Lemma 4.14 we know that 't/J satisfies {{Bx: ax I x E VB}}. Hence 't/J satisfies 

some Cj. Thus the following defines a ~-substitution </> 

</>x := {'t/JY if x E L.Wj and WjY = x
 
't/Jx otherWIse.
 

since, if WjY = x and x E LWj, there exists a containment (Y:"l) E Cj such 

that a('t/Jy) < "l = a(wjY) = ax. It's easy to verify that </>Iv = 't/J = (</>wj)lv. 

To show that </> = </>wj8, we distinguish two cases. If x rj. V, then </>wj8x = </>x 

since x rj. VB and x rj. VWj. If x E V, then </>wj 8x = 't/JBx = 't/Jx = </>x since 

V(8x) ~ V, (</>wj)lv = 't/J, 't/JB = 't/J, and't/J = </>Iv. Hence't/J = </>Iv E UK([wjB)). 

"~". Let 't/J be a ~-substitution such that 't/J = 't/JwjB for some j. Then 

't/JB = 't/Jwj8B = 't/JwjB = 't/J since Bis idempotent. Hence't/Jlv E U~ ([8])nSUBr; = 
UK(E). 0 

Corollary 4.19. Every finite and regular signature is finitary unifying. 

The following theorem was first proved by Schmidt-SchauB [87]. 
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Furthermore, one can compute solved E-containment systems Cl ,  . . . , Cm
n 2-1,  such that

{{Gmum: | 3: € D6}} 4;; {Öl ,  . . . ,Cn}.

Then

U; (E) = Ü U35 (p,-91) and mg,-9) g V(E) forz‘ = 1, . . . ‚n
i=1

ifwi is a weakening for 05 away from V forz' = 1, . . . , n .

Proof The first claim follows from the Unsorted Unification Theorem
and Proposition 4.7. The second claim follows from Proposition 4.15. To show
the third claim, let 01 , . . . , C„ be  sölVéd Eéc'ofitainmentsysteins such that
{{Öw: 0:1: | a: 6 D9}} _); {01, . . . , Cu}, and let w,— be a weakening for C5 away
f romor i=1 , . . . , n .

“g”. Let tß € U; (E) Then gb is a E—substitution such that gb = 1,09. By
Lemma 4.14 we know that gb satisfies {{ßwzaa: | a: 6 D0}}. Hence 7,5 satisfies
some Cj. Thus the following defines a E-substitution 45

gin: :=  @by i f x  € 1105 and (‚o,-y = a:
aba: otherwise.

since, if ua,-y = ::: and a: e 110,-, there exists a containment (y: 17) € Cj such
that a(7‚by) _<_ n == cr(wjy) = am. It’s easy to verify that ¢|V = ab = (¢wj)lv.
To show that (‚35 = 960.256, we distinguish two cases. If a: € V, then (bwjéla: = 453:
since sc € DG and 1: € i .  If a: E V,  then etc,-9:1: = 1,5950 = aba: = oa: since
V(9w) 9 V, (qßwfilv = gb, 1% = gb, and ab = qßlv. Hence ab = (‚blv E Ug([wj6]).

“Q”. Let «& be a E-substitution such that ab = 1,6i for some j. Then
QM = gbwjßß = gbwjß = 1,1: since 0 is idempotent. Hence 1‚b|V € Ug([0])flSUBE :

Ug  (E) U

Corollary 4.19.  Every finite and regular signature is finitary unifying.

The following theorem was first proved by Schmidt—Schauß [87].
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Theorem 4.20. For finite and regular signatures, deciding whether a con­

tainment s: eis satisnable is an NP-complete problem. 

Proof. Let ~ be the regular signature 

T < bool, F < bool, 

and:T x T ~ T, and:F x bool ~ F, and:bool x F ~ F, 

or:T x bool ~ T, or:bool x T ~ T, or:F x F ~ F, 

not:T ~ F, not:F ~ T. 

Obviously, every :E-term represents a boolean formula, where variables of sort 

T represent the truth value true, variables of sort F represent the truth value 

false, and variables of sort bool represent boolean variables. Vice versa, every 

boolean formula can be represented as a :E-term. Hence, deciding whether a 

~-containment s: T is satisfiable is equivalent to deciding whether the boolean 

formula represented by s is satisfiable. 0 

Since unsorted unification has linear complexity [Paterson/Wegman 78], 

we have: 

Corollary 4.21. For finite and regular signatures, deciding whether an equa­

tion is unifiable is an NP-complete problem. 

A signature ~ is called coregular if, for every ~-function symbol f and 

every ~-sort symbol e, the set 

maxel~{rtl ... rtn I (f: rtl ... rtn ~ rt) E ~ Art::; 0 

has at most one element. 

Proposition 4.22. Every signature without multiple function declarations is 

coregular. 

A signature ~ is called downward complete if, for every two ~-sort 

symbols eand rt, the set maxel~{( I( ::; e A (::; rt} of all common subsorts 

of eand rt has at most one element. 
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Theorem 4 .20 .  For finite and regular signatures, deciding whether a con«
tainment s :  5 is satisfiable is an NP—complete problem.

Proof. Let 2 be the regular signature

T < bool,  F < bool ,

and: T x T -—> T ,  and: F >< bool  —-+ F ,  and: bool  )( F —+ F ,

o r :T  )( bool  ——> T ,  o rzboo l  x T —> T,  o r zF  x F ———> F ,

not: T —> F ,  no t :F  -—+ T.

Obviously, every fi—term represents a boolean formula, where variables of sort
T represent the truth value true, variables of sort F represent the truth value
fälSe, and vaifiazßles of Sort Bö'öl fép'reséfit Böolean variables. Vice versa, every
boolean formula can be  represented as a fi—term. Hence, deciding whether a
E—containment s :  T is satisfiable is equivalent to deciding whether the boolean
formula represented by s is satisfiable. El

Since unsorted unification has linear complexity [Paterson/Wegman 78],
we have:

Corollary 4 .21 .  For finite and regular signatures, deciding whether an equa—
tion is unifiable is an NP—complete problem.

A signature Z is called cOregular if, for every E-function symbol f and
every E—sort symbol € , the set

maxe lz{m-~nn  | (flm “-nn —> 77) € E A n ..<.. 5}
has at most one element.

Proposition 4.22.  Every signature Without multiple function declarations is
coregular.

A signature E is called downward complete if, for every two E—sort
symbols { and 77, the set maxelg{C | C S € A C S n} of all common subsorts
of 5 and 77 has at most one element.
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Proposition 4.23. Let ~ be a finite, regular, coregular and downward com­

plete signature and let D be a disjunctive ~-containment system. Then there 

exists a solved ~-containment system C such that D ---+f {C}. 

The next two theorems were first proven in [Meseguer et a1. 87]. 

Theorem 4.24. Every finite, regular, coregular and downward complete sig­

nature is unitary unifying. 

Proof. Follows immediately from the Order-Sorted Unification Theorem 

and the preceding proposition. 0 

Th~Qrem 4.25. Unification in finite, regular, coregular and downward com­

plete signatures has quasi-linear complexity. 

This theorem is proved in [Meseguer et a1. 87] by giving an extension of 

Martelli and Montanari's [82] quasi-linear unification algorithm to order-sorted 

signatures with the listed properties. Note that in signatures with the listed 

properties the solved disjunctive containment system of the unsorted unifier 

can be computed in time linear to the size of the unsorted unifier. 

4.4 Computing Complete Sets of Critical Pairs 

We now outline how an order-sorted Knuth-Bendix completion procedure can 

compute finite and complete sets of critical pairs. 

Proposition 4.26. Let R = (~, £) be a rewriting system, s -7 t and u -7 v be 

rules ofR, 7r be a position of s such that s/7r is not a variable and s -7 t is not 

a variant of u -7 v if s / 7r = s. Furthermore, let u' ---+ v' be a variant of u -7 v 

such that s and u' don't have variables in common. Then (s -7 t, 7r, u' -7 v') 

is an overlap of R if and only if s / 7r = u' is ~-unifiable. 

Proposition 4.27. Let (s -7 t, 7r, U -7 v) be an overlap of a rewriting system 

R = (~, £) and let 81 , .•. ,8n be ~-substitutions such that 
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Proposition 4 .23 .  Let )3 be a finite, regular, coreguIar and downward com-
plete signature and Iet D be a disjunctive E—containment system. Then there

exists a solved E-containment system C such that D _)”5 {C}.

The next two theorems were first proven in [Meseguer et al. 87].

Theorem 4 .24 .  Every finite, regular, coregular and downward complete sig—

nature is unitary unifying.

Proof. Follows immediately from the Order—Sorted Unification Theorem
and the preceding proposition. Ü

Theorem. 4.25. Unificatiqn in finite, regular, coregular and downward com—
plete signatures has quasi—linear complexity.

This theorem is proved in [Meseguer et al. 87] by giving an extension of
Martelli and Montanari’s [82] quasi-linear unification algorithm to order-sorted
signatures With the listed properties. Note that in signatures with the listed
properties the solved disjunctive containment system of the unsorted unifier
can be computed in time linear to the size of the unsorted unifier.

4.4 Computing Complete Sets of Critical Pairs

We now outline how an order—sorted Knuth—Bendix completion procedure can
compute finite and complete sets of critical pairs.

Proposition 4.26.  Let R == (Z,  €) be a rewriting system, 3 —+ t and u ———> v be
rules 01°72, ar be a position of 3 such that s/7r is not a variable and 3 ——> t is not
a variant of u —-> v if 3/7!" = s .  Furthermore, Iet u’ —> v' be a variant of u ——+ '0
such that 3 and u’ don’t have variables in common. Then (s  _) t,7r,u' ———> v')
is an overlap of R if and Only if 3/71" = u’ is E—unifiable.

Proposition 4.27 .  Let ( s  ——+ t ,  71', u -—> v)  be an overlap of a rewriting system

”R. = (E,  8) and let 91, . . . , an be E-substitutions such that

Ute/«  & u)  = Um» u ... u Ugaenl) ,
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where V = V(s . u). Then {8i (t,s[7r f- v])}~l is a complete set of critical 

pairs for the overlap (s --t t, 7r, U --t v). 

Now the following two theorems are obvious. 

Theorem 4.28. For every regular and finite rewriting system R a finite, com­

plete set ofR-critical pairs can be computed using an order-sorted unification 

algorithm. 

Theorem 4.29. It is decidable whether a finite, regular, sort decreasing and 

terminating rewriting system is confluent. 

4.5 Remarks and References 

Walther [83, 84, 85, 86, 87] was the first to investigate order-sorted unification. 

He studies signatures without multiple function declarations and gives unifica­

tion algorithms for them. He proves that resolution and paramodulation with 

order-sorted unification are refutation complete for an order-sorted predicate 

logic with equality and without multiple function declarations. Walther [85] 

and others [Cohn 83 and 85, Irani/Shin 85] observe that the use of order­

sorted unification can drastically reduce the search space of a resolution-based 

theorem prover. 

Schmidt-SchauB [85a] extended Walther's work to multiple function dec­

larations. He gave the first unification algorithm for signatures with multiple 

function declarations and proved that regular signatures are finitary unify­

ing. Schmidt-SchauB [85b] also showed that in order-sorted signatures with 

term declarations the unifiability of two terms is undecidable. Furthermore, 

Schmidt-SchauB [86] studied order-sorted unification modulo equations and 

showed that, for a certain class of equational theories, the solution of the order­

sorted problem can be obtained from the solution of the unsorted problem in 

the same way as in the absence of equations. 

Meseguer et al. [87] give a categorical treatment of order-sorted unification 

modulo equations. They were the first to observe that unification in coregular 
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where V = V(s & u). Then {95(t,3[7r <— v])}§"’=1 is a complete set of critical
pairs for the overlap (3 —> t ,  7r, u —-> v ) .

Now the following two theorems are obvious.

Theorem 4.28 .  For every regular and finite rewriting system 'R a finite, com-
plete set of R-critical pairs can be computed using an order-sorted unification
algorithm.

Theorem 4.29 .  It is decidable whether a finite, regular, sort decreasing and
terminating rewriting system is confluent.

4.5 Remarks and References

Walther [83, 84, 85, 86, 87] was the first to investigate order—sorted unification.
He studies signatures without multiple function declarations and gives unifica—
tion algorithms for them. He proves that resolution and paramodulation with
order—sorted unification are refutation complete for an order-sorted predicate
logic with equality and without multiple function declarations. Walther [85]
and others [Cohn 83 and 85, Irani/ Shin 85] observe that the use of order—
sorted unification can drastically reduce the search space of a resolution-based
theorem prover.

Schmidt—Schauß [85a] extended Walther’s work to multiple function dec—
larations. He gave the first unification algorithm for signatures with multiple
function declarations and proved that regular signatures are finitary unify—
ing. Schmidt—S chauß [85b] also showed that in order-sorted signatures with
term declarations the unifiability of two terms is undecidable. Furthermore,
Schmidt—Schauß [86] studied order-sorted unification modulo equations and
showed that, for a certain class of equational theories, the solution of the order-
sorted problem can be obtained from the solution of the unsorted problem in
the same way as in the absence of equations.

Meseguer et al. [87] give a categorical treatment of order-sorted unification
modulo equations. They were the first to  observe that unification in coregular
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and downward complete signatures is unitary. They extend the results of 

[Schmidt-SchauB 86] by a decidable sufficient condition for when order-sorted 

equational unification can be related to unsorted equational unification. For 

the case where order-sorted equational unification can be related to unsorted 

equational unification, they give characterization theorems for when order­

sorted unification has· unitary, finitary and minimal families of most general 

unifiers. 

Feature Unification [Smolka/Ait-Kaci 87] combines order-sorted unifica­

tion with ~-term unification [Ait-Kaci 86, Ait-Kaci/Nasr 86] and is oriented 

towards applications in knowledge representation and computationallinguis­

tics. 
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and downward complete signatures is unitary. They extend the results of

[Schmidt-Schauß 86] by a decidable sufficient condition for when order-sorted
equational unification can be related to unsorted equational unification. For
the case Where order—sorted equational unification can be related to  unsorted
equational unification, they give characterization theorems for When order-
sorted unification has- unitary, finitary and minimal families of most general
unifiers.

Feature Unification [Smolka/Ai't-Kaci 87] combines order-sorted unifica-
tion With «ß-term unification [A'it-Kaci 86, A‘it-Kaci/Nasr 86] and is oriented
towards applications in knowledge representation and computational linguis—
tics.
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5 Hierarchical Specifications and Partial Functions 

For algebraic specification to be a practical tool, it is necessary to structure 

specifications. Hierarchical organization is about the most simple form of 

structuring specifications. For instance, a specification can be organized in 

two layers as follows: a basic layer defining a collection of data types and an 

extending layer defining functions on the basic types. While this. hierarchical 

organization scheme is built-in in programming languages such as Pascal or 

ML, it isn't explicitly present in the equational specifications we have consid­

ered so far. 

A hierarchical specification is a pair (13, S) consisting of two specifica­

tions 13, called t:hep(isic specifi~(ition, and S, called the full specification, 

such that 13 ~ S, that is, the signature of 13 is a subset of the signature of S 

and the axioms of 13 are a subset of the axioms of S. Following [EhrigjMahr 

85], we call a hierarchical specification (13, S) 

•	 consistent if every ground B-equation is valid in B if and only if it is 

valid in S 

•	 complete if for every B-sort symbol eand every ground S-term s of sort 

ethere exists a ground B-term t of sort esuch that s =$ t 

•	 conservative if it is consistent and complete. 

Consistency means that the initial algebra of the extension doesn't col­

lapse basic sorts, that is, doesn't identify elements of basic sorts. Completeness 

means that the initial algebra of the extension doesn't blow up basic sorts, that 

is, doesn't add new elements to basic sorts. Consistency and completeness of 

hierarchical specifications correspond to the no confusion and no junk require­

ments for initial algebras. 

The specification in Figure 1.1 can be organized as a conservative hierar­

chical specification by considering + and:::; as extending functions. 

Figure 5.1 provides some examples of inconsistent and incomplete hierar­

chical specifications. The specification 13 gives an equation-free definition of 
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5 Hierarchical Specifications and Partial Functions

For algebraic specification to be a practical tool, it is necessary to structure
specifications. Hierarchical organization is about the most simple form of
structuring specifications. For instance, a specification can be  organized in
two layers as follows: a basic layer defining a collection of data types and an
extending layer defining functions on the basic types. While this ‚hierarchical
organization scheme is built-in in programming languages such as Pascal or
ML, i t  isn’t explicitly present in the equational specifications we have consid-
ered so far.

A hierarchical specification is a pair (B  , S ) consisting of two Specifica-

tions 3, called the baSlc ‚specifigatioxl, and „S , called the full Specification,

such that B g 8 ,  that is, the signature of 13 is a subset of the signature of 5
and the axioms of B are a subset of the axioms of 8 . Following [Ehrig/Mahr
85], We call a hierarchical specification (B , S )

o consistent if every ground B-equation is valid in 3 if and only if it is
valid in 8

. complete if for every B—sort symbol E and every ground S-term 3 of sort
€ there exists a ground B-term t of sort { such that 3 =3 t

. conservative if it is consistent and complete.

Consistency means that the initial algebra of the extension doesn’t col—
Iapse basic sorts, that is, doesn’t identify elements of basic sorts. Completeness
means that the initial algebra of the extension doesn’t blow up basic sorts, that
is, doesn’t add new elements to basic sorts. Consistency and completeness of
hierarchical specifications correspond to the no confusion and no junk require—
ments for initial algebras.

The specification in Figure 1.1 can be organized as a conservative hierar-
chical specification by considering + and g as extending functions.

Figure 5.1 provides some examples of inconsistent and incomplete hierar-
chical specifications. The specification B gives an equation—free definition of

46



variables: M, N: nat 

true: ---7 bool, false: ---7 bool 
B { 0: ---7 nat, s: nat -+ nat 

le: nat X nat ---7 bool
 
le(0, N) . true
 
le(s(N),O) . false
 
le(s(N), s(M)) . le(N, M)
 
le(N, N) . true
 
le(s(N),N) . false
 

foo: nat ---7 nat
 
foo(N) . s(foo(N))
 

Figure 5.1. Consistency and completeness of hierarchical specifi­

cations: (B, B U £1) is consistent and complete, (B, B U£2) is consis­

tent but not complete, and (B,B U £1 U £2) is both incomplete and 

inconsistent. 

bool and nat and serves as basic layer. The extension £1 defines a less or equal 

test on nat. The last two equations of le are actually redundant since, in the 

initial model, they are consequences of the first three equations; one may think 

of them as sound optimizations. The hierarchical specification (B, B U £1) is 

consistent and complete. The hierarchical specification (B, B U £2) is consis­

tent but not complete: for instance, there is no B-term that equals foo(0) in 

B U £2. The hierarchical specification (B, B U £1 U £2) is both incomplete and 

inconsistent. To see the inconsistency, verify that 

true . le( foo( 0) ,foo(0)) . le(s( foo( 0)) ,foo(0)) . false 

IS valid in B U £1 U £2. Since true and false are distinct normal forms of 

le(foo(o),foo(o)) , B U £1 U £2 is not a confluent rewriting system. However, 

B U El U £2 is a locally confluent rewriting system since it is sort decreasing 

and each of its critical pairs converges. 
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variables : M, N:  nat

{ true: ——> bool ,  false: —+ bool
B o: —+ nat, s zna t  ——> nat

le: nat x nat. ——> boo l
le(o, N) i true

8 Ie(s(N),  0) é false
1 1e(s(N)‚ s<M)) i1e(N‚M)

le(N, N)  & true
le(s(N), N)  & false

8 foo: nat —> nat
2 foo(N) =‘= s(foo(N))

Figure 5.1.  Consistency and completeness of hierarchical specifi-
cations: (B, B U 81) is consistent and complete, (B, B U 82) is consis-
tent but not complete, and (B ,B  U 51 U 82) is both incomplete and
inconsistent.

bool  and nat and serves as basic layer. The extension 81 defines a less or equal
test on nat. The last two equations of le are actually redundant since, in the
initial model, they are consequences of the first three equations; one may think
of them as sound optimizations. The hierarchical specification (B, B U 51) is
consistent and complete. The hierarchical specification (3 ,  B U 82) is consis-
tent but not complete: for instance, there is no B-term that equals foo(o) in
B U 52. The hierarchical specification (B, B U 81 U 82) is both incomplete and
inconsistent. To see the inconsistency, verify that

true & le(foo(o)‚ foo(o)) & le(s(foo(o))‚ foo(o)) & false

is valid in B U 81 U 82. Since true and false are distinct normal forms of
le(foo(o),foo(o)), B U 81 U 82 is not a confluent rewriting system. However,
B U 81 U 82 is a locally confluent rewriting system since i t  is sort decreasing
and each of its critical pairs converges.

47



variables: M, N: nat 

true: -? bool, false: -? bool 
0: -? nat, s: nat -? nat 

bool <?bool, nat <?nat 
s: ?nat -??nat 

le: ?natx?nat -??bool
 
le(0, N) . true
 
le(s(N), 0) ...:. false
 
le(s(N), s(M» ...:. le(N, M)
 
le(N,N) . true
 
le(s(N),N) . false
 

foo: ?nat -??nat
 
foo( N) . s( foo( N»
 

Figure 5.2. The stratification of the specification in Figure 5.1, 

where le and foo are taken as extending functions. The hierarchical 

specification (B, B U £) is consistent and complete. 

Conservative hierarchical specifications in many-sorted equational logic 

without subsorts have a well-known flaw: it is not possible to define partial 

functions, for instance, an interpreter of a programming language or a theorem 

prover, since a partial function f: e-? "l would blow up its codomain "l by 

adding "error elements" for the elements of its domain efor which it is not 

"defined". One approach to overcome this limitation is to generalize many­

sorted equational logic to partial algebras [Reichel 80 and 87, BroyjWirsing 

82, KaminjArcher 84]. 

In order-sorted equationallogic, however, it is straightforward to accom­

modate partial functions. The key idea [GoguenjMeseguer 87c] is to equip 

every basic sort ewith an error supersort ?e having its base sort eas a sub­

sort. Furthermore, every declaration f: e-? "l of a possibly partial extending 

function f is replaced with its lifting f:?e -??"l to the corresponding error 
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variables : M, N:  nat.

0: ——> nat,  s :  nat -—> nat
B { t rue:—+bool ,  false:—-)bool

f bool  <?bool ,  nat <?nat
s :  ?nat —->?nat

le: ?natx?nat -—+?bool
le(o, N) i true
1e(s(N ), 0) i false
Ie(s(N), s(M))  =':1e(N, M)
Ie(N, N) 2': true
1e(s(N), N) é false

5<

foo: ?nat —->?nat
, foo(N) é s(foo(N))

Figure 5.2.  The stratification of the specification in Figure 5.1,
where le and foo are taken as extending functions. The hierarchical
specification (B, B U 8 ) is consistent and complete.

Conservative hierarchical specifications in many-sorted equational logic
Without subsorts have a well—known flaw: it is not possible to  define partial
functions, for instance, an interpreter of a programming language or a theorem
prover, since a partial function f : 5  —+ ?; would blow up its codomain 77 by
adding “error elements” for the elements of its domain { for Which it is not
“defined”. One approach to overcome this limitation is to  generalize many-
sorted equational logie to partial algebras [Reichel 80 and 87, Broy/Wirsing
82, Kamin/Archer 84].

In order—sorted equational logic, however, it is straightforward to accom—
modate partial functions. The key idea [Goguen/Meseguer 87c]- is to equip
every basic sort { with an error supersort ?6 having its base sort 5 as a sub—
sort. Furthermore, every declaration f : 5  —-> 97 of a possibly partial extending
function f is replaced With its lifting f :  ?E ——>?n to the corresponding error
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supersorts. With that we accomplish that the elements of efor which f is not 

"defined" are mapped to error elements in ?e - e, that is, to elements outside 

of the basic sort e. 
Figure 5.2 shows how this method, which we like to call stratification, 

applies to the specification in Figure 5.1. All difficulties caused by the partial 

function foo disappear: the hierarchical specification (B, B U £) is consistent 

and complete and the initial algebra of BU£ is in fact what we wanted to specify 

in the first place. Note that the rewriting system B U £ is sort decreasing and 

confluent although B U £1 U £2 is not confluent. 

5.1 Strict Specifications 

To accomodate partial functions, we assume from now on that the set of sort 

symbols is partitioned into two disjoint and infinite classes whose elements are 

called basic sort symbols and error sort symbols. 

Let E be a signature. A E-term s is called 

• admissible if every variable occurring in s has a basic sort 

• basic in E if there exists a basic sort symbol esuch that s has sort e 
A function symbol f is called basic in E if E contains a declaration 

f: 6 ... en ~ e such that e is basic. A E-equation s . t is called basic 

in E if sand t are basic in E. 

A signature E is called strict if the following conditions are satisfied: 

• if (e < 'fJ) E E and 'fJ is basic, then eis basic 

• if (I: 6 ... en ~ e) E E and eis basic, then 6, ... ,en are basic. 

Proposition 5.1. Let E be a strict signature. Then: 

• every subterm of an admissible E-term is an admissible E-term 

• every subterm of a basic E-term is a basic E-term 

• every function symbol occurring in a basic E-term is basic in E 
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supersorts. With that we accomplish that the elements of { for Which f is not
“defined” are mapped to error elements in ?E -— € , that is, to elements outside
of the basic sort {{ .

Figure 5.2 shows how this method, which we like to call stratification,
applies to the specification in Figure 5.1. All difficulties caused by the partial
function foo disappear: the hierarchical specification (B  , B U 8 ) is consistent
and complete and the initial algebra of BUS is in fact What we wanted to  specify
in the first place. Note that the rewriting system B U 8 is sort decreasing and
confluent although B U 51 U 82 is not confluent.

5.1 Strict Specifications

To accomodate partial functions, we assume from now on that the set of sort
symbols is partitioned into two disjoint and infinite classes Whose elements are
called basic sort symbols and error sort symbols.

Let E be a. signature. A Z-term s is called

o admissible if every variable occurring in s has a basic sort

. basic in  2 if there exists a basic sort symbol € such that 3 has sort {

A function symbol f is called basic in 2 if Z) contains a declaration
f :{1 mg„  ——> .5 such that € is basic. A E—equation s i t is Called basic
in 2 if 3 and t are basic in E .

A signature Z is called strict if the following conditions are satisfied:

. if (€ < 17) E 2 and 77 is basic, then { is basic

. if ( f :  51 " '51:  ——> €) E E and 5 is basic, then Eb .  . .,En are basic.

Proposition 5.1.  Let )3 be a strict signature. Then:

. every subterm of an admissible E—term is an admissible Z-term

. every subterm of a basic E-term is a basic E-term

. every function symbol occurring in a basic E-term is basic in 2
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•	 every :E-instance of an admissible :E-term is an admissible :E-term 

•	 every :E-instance of a basic :E-term is a basic :E-term. 

A specification is called admissible if its signature is strict and all its 

axioms are admissible. A rewriting system is called admissible if it is an 

admissible specification. In the rest of the paper, we will only consider ad­

missible specifications and admissible equations. Note that every specification 

that doesn't contain error sort symbols is admissible. 

Let S = (:E, £) be an admissible specification. Then the base SB 

(:EB, £B) of S is the specification defined as follows: 

•	 :EB ~ :E is the set of all declarations of :E that don't contain error sort 

symbols 

•	 £B ~ £ is the set of all axioms of S that don't contain function symbols 

that are nonbasic in :E. 

Proposition 5.2. Let S be an admissible specification. Then (SB,S) is a 

complete hierarchical specification. Furthermore, SB is regular if S is regular. 

We call an admissible specification S consistent if (SB, S) is a consistent 

hierarchical specification. 

Let S be an admissible specification. An S-term s is called sensible in S 

if, for every ground S-instance t of s, there exists a ground and basic S-term 

u such that t =s u. 

Proposition 5.3. Let S be an admissible specification. Then an S-term s is 

sensible in S if and only if every S-instance of s is sensible in S. 

An admissible specification S is called strict if every subterm of a sensible 

S-term is sensible in S. 
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o every Z-instance of an admissible Z—term is an admissible E—term

. every E-instance of a basic E-term is a basic E-term.

A specification is called admissible if its signature is strict and all its
axioms are admissible. A rewriting system is called admissible if it is an
admissible specification. In the rest of the paper, we Will only consider ad—
missible specifications and admissible equations. Note that every specification
that doesn’t contain error sort symbols is admissible.

Let S = (2 ,5 )  be an admissible specification. Then the base 83 =
(23 ,  813) of 8 is the specification defined as follows:

. EB ; 2 is the set of all declarations of Z that don’t contain error sort
symbols

o 813 Q 8 is the set of all axioms of 8 that don’t contain function symbols

that are nonbasic in 2 .

Proposition 5.2 .  Let 8 be an admissible specification. Then (813,8) is a
complete hierarchical specification. Furthermore, 83 is regular if 8 is regular.

We call an admissible specification S consistent if (SB, 8 ) is a consistent
hierarchical specification.

Let 8 be an admissible Specification. An S-term 3 is called sensible in  8
if, for every ground S-instance t of 5, there exists a ground and basic S-term
u such that t =5 u .

Proposition 5.3.  Let 8 be an admissible specification. Then an S-term 5 is
sensible in 8 if and only if every S-instance of s is sensible in S .

An admissible specification 8 is called Strict if every subterm of a sensible
S-term is sensible in 8.
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Proposition 5.4. Let S be an admissible specification. Then S is strict if 

and only if every subterm of a ground and sensible S-term is sensible in S. 

Proposition 5.5. Let S be a specification that doesn't contain error sort 

symbols. Then S is a consistent and strict specification and every S-term is 

sensible in S. 

It is of course undecidable whether an admissible specification is strict. 

However, in Section 7 we will give a decidable sufficient condition for the 

strictness of ground confluent rewriting systems. 

5.2 Stratification 

In practice, it is quite inconvenient to introduce the error supersorts needed to 

accomodate partial functions by hand. A convenient alternative is to declare 

partial functions as such and to not write any error supersorts at all. Such a 

sugared specification can then be translated automatically into an admissible 

specification with error supersorts where the functions declared as partial are 

lifted accordingly. We now give such a translation method, called stratification, 

that preserves· the sort discipline and yields an admissible specification. 

Let S be a specification not containing error sort symbols and let F be 

a set of function symbols. The functions in F are supposed to be the par­

tial functions of S. A stratification of S = (~, £) with repeet to F is a 

specification S' = (~', £) whose signature ~' can be constructed as follows: 

1.	 if eis a ~-sort symbol, then put e<?e into ~', where ?e is a new error 

sort symbol called the error supersort of e 
2.	 if e< "7 is a declaration of ~, then put e< "7 and ?e <?"7 into ~' 

3. if f: 6 ... en -+ eis a declaration of ~ and f E F, then put the lifted 

declaration f:?6" ·?en -+?e into ~' 

4.	 if f: 6 ... en -+ eis a declaration of ~ and f rf. F, then put f: 6 ... en -+ e 
into ~' 
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Proposition 5.4 .  Let 8 be an admissible specification. Then 8 is strict if

and only if every subterm of a ground and sensible S-term is sensible in $ .

Proposition 5 .5 .  Let 8 be a specification that doesn’t contain error sort
symbols. Then 8 is a consistent and strict specification and every S-term is

sensible in S .

It is of course undecidable whether an admissible specification is strict.

However, in Section 7 we will give a decidable sufiicient condition for the
strictness of ground confluent rewriting systems.

5.2 Stratification

In practice, it is quite inconvenient to introduce the error supersorts needed to

accomodate partial functions by hand. A convenient alternative is to declare
partial functions as such and to not write any error supersorts at all. Such a

sugared specification can then be translated automatically into an admissible
specification with error supersorts where the functions declared as partial are
lifted accordingly. We now give such a translation method, called stratification,
that preserves the sort discipline and yields an admissible specification.

Let 8 be a specification not containing error sort symbols and let F be
a set of function symbols. The functions in F are supposed to be the par—

tial functions of 5. A stratification of S = (2 ,8 )  with repect to F is a
specification 5’ = (2', €) whose signature 53 can be constructed as follows:

1. if 5 is a E—sort symbol, then put { <?é into E', where ?5 is a new error

sort symbol called the error sup ersort of {

2. if { < 77 is a declaration of 2, then put { < n and ?6 <??? into E'

3. if f: {1 - « {„ —-> 5 is a declaration of E and f E F, then put the lifted

declaration f: ?§1 - - -?§n -+?£ into 2'

4. iffzél -- {„ —+ EisadeclarationofE andf E’F, then put fzél m g n  —>£
into E'

51



5.	 if f: ~1 .•. ~n -t ~ is a declaration of ~, f ~ F, and n > 0, then put the 

lifted declaration f:?6 " '?~n -t?~ into :E'. 

We say that S' is a stratification of S if there exists a set F of function 

symbols such that S' is a stratification of S with respect to F. In the following 

we will tacitly assume that stratification is only applied to specifications not 

containing error sorts. 

The specification B U C in Figure 5.2 is a stratification of the specification 

B U Cl U £2 in Figure 5.1 with respect to le and foo. Stratication of the 

inconsistent and incomplete hierarchical specification (8, B U Cl U £2) thus 

yields the conservative hierarchical specification (8,8 U c). Note also that 

B U £ is a sort decreasing and confluent rewriting system. 

Proposition 5.6. Let S' be a stratification of S. Then S' is an admissible 

specification and (Sf3, S') is a complete hierarchical specification. Furthermore, 

S' is regular if and only if S is regular. 

Proposition 5.7. Let S' be a stratification of S. Then: 

~ ::; TJ in S13 ~ ~ ::; TJ in S' 

?~	 <?'T/ in S' {:=:} ~ ::;?'T/ in S' 

if ~ and TJ are S -sort symbols. 

Theorem 5.8. Let S' be a stratification of S. Then S and S' have equivalent 

sort checking disciplines: 

1.	 if s is an S -term of sort ~, then s is an admissible S' -term of sort ?e 
2.	 ifs is an admissible S'-term of sort ?~, then s is an S-term of sort ~. 

Proof. 1. Let s be an S-term of sort~. We show by induction on the 

term structure of s that s is an S'-term of sort ?~. If s = x, then (jX ::; ein 

S. Hence we know that (jX < ~ <?~ in S'. Thus s is an S'-term of sort ?f 
If s = f( 81, ••• ,sn), then S contains a declaration f: 'T/1 •"1Jn -t 'T/ such that 
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5 .  if f :  {1 ” - 5 . “  —-> { is a declaration of E ,  f Q’ F ,  and n > 0,  then put the
lifted declaration f: ?£1 - - 32’5” -—+?§ into E' .

We say that &" is a stratification of S if there exists a set F of function
symbols such that 8' is a stratification of 5 With respect to F. In the following
we will tacitly assume that stratification is only applied to specifications not
containing error sorts.

The specification 3 U 8 in Figure 5.2 is a stratification of the specification
B U 51 U 82 in Figure 5.1 with respect to 16 and foo. Stratication of the
inconsistent and incomplete hierarchical specification (B, B U 81' U 82) thus
yields the conservative hierarchical specification (B  , B U 8) .  Note also that
B U 8 is & sort decreasing and confluent rewriting system.

Pr0position 5.6.  Let 8’ be a stratification of 8 . Then 8' is an admissible
specification and ( 85, 8' ) is a complete hierarchical specification. Furthermore,
8’ is regular if and only if 8 is regular.

Proposition 5.7.  Let S’ be a stratification of 8 . Then:

55171315 <==> {51711183 <==> {Sn inS’

<==> ?§ 52%; in S’ (==> 5 527.17 in 8'

if {' and n are S-sort symbols.

Theorem 5.8.  Let 8' be a stratification of 8 . Then 8 and 8' have equivalent
sort checking disciplines:

1.  if 3 is an S-term of sort { , then s is an admissible 8'—term of sort ‘?C

2. if 5 is an admissible 8'-term of sort ?6‚ then s is an S—term of sort { .

Proof. 1. Let 3 be an S—term of sort €. We show by induction on the
term structure of 3 that 3 is an 8’—term of sort ?5. If s = :3, then 033 _<_ € in
S. Hence we know that acc S € 5% in 8’. Thus 3 is an S’—terrn of sort ?€..
If s = f ( s l ,  . . . , sn ) ,  then S contains a declaration fun - . 47,; ——> n such that
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'f/ < ~ in S and Si is an S-term of sort 'f/i for i = 1, ... , n. Hence we know by 

the induction hypothesis that Si is an S'-term of sort ?'f/i for i = 1, ... , n. If 

n = 0, then S' contains either f: -l- 'f/ or f: -l-?'f/. Hence S = f is an S'-term of 

sort ?'f/. If n > 0, then S' contains the declaration f: ?'f/l •• ·?'f/n -l-?'f/. Hence 

S = f(S11 ... ' sn) is an S'-term of sort ?ry. Since 'f/ < ~ in S, we know that 

?'f/ -:;.?e in S'. Thus S is an S'-term of sort ?e. 

2. Let S be an admissible S'-term of sort ?e, where?e is the error supersort 

symbol of the S-sort symbol e. We prove by induction on the term structure 

of S that S is an S-term of sort~. If S = x, then s is an S'-term of sort ax and 

ax -:;.n in S'. Since S is assumed to be admissible, ax is an S-sort symbol. 

Hence S is an S-term of sort ax. Since ax -:;. e in S, s is an S-term of sort ~. 

If s = f and f ~ F, then S' contains a declaration f: -l- 'f/ such that 'f/ -:;.?~ 

and 'f/ is an S-sort symboL Hence s is an S-term of sort 'f/. Since 'f/ < ~ in S, 

s is an S-term of sort e. If s = f( SI, .•• ,sn) and n > 0, then S' contains a 

declaration f: ?'f/l ••• ?'f/n -l-?'f/ such that ?'f/ <?e in S', Si is an S'-term of sort 

?'f/ for i = 1, ... ,n, and 'f/l, •• • , 'f/n and 'f/ are S-sort symbols. Hence we know by 

the induction hypothesis that Si is an S-term of sort 'f/ for i = 1, ... ,n. Since 

S contains the declaration f: 'f/l ... 'f/n -l- 'f/, we know that S = f( SI, •.• ,Sn) is 

an S-term of sort 'f/. Since 'f/ :::; ein S, s is an S-term of sort ( 0 

Stratification is a method to accommodate partial functions that don't add 

new data elements. Since total functions that don't add new data elements 

are also partial functions, one could also stratify with respect to them. We 

will prove in Section 7 that stratification with respect to total functions that 

don't add new data elements doesn't change the initial algebra semantics of a 

specification. 

5.3 Example: Algebraic Semantics for Programming Languages 

Figures 5.3 and 5.4 show an algebraic specification of the semantics of a very 

simple but Turing-complete imperative programming language. Since the lan­

guage allows for nonterminating programs, the specified interpreter evalp is a 

partial function. 
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17 _<_ € in S and 5,- is an S—term of sort in for i = 1, . . . , n .  Hence "we know by
the induction hypothesis that 35 is an S'—term of sort ?m for 2' = 1, . . . , n .  If
n = 0, then 8’ contains either f:  -—> n or f :  ——+?77. Hence s = f is an $'—term of
sort ?77. If n > 0, then 8' contains the declaration f :  ?m - - 53m, —->?97. Hence
s = f ( s l , . . .  , 3„ )  is an S'—term of sort 1%). Since 77 S { in 8, we know that
??] _<_?£ in 8'. Thus 3 is an S'—term of sort ?E.

2. Let 3 be an admissible S'—term of sort ?E , where ?5 is the error supersort
symbol of the S—sort symbol £ . We prove by induction on the term structure
of 3 that s is an S—term of sort {. If s = a:, then 5 is an S'—term of sort am and
ca: 5176 in S' . Since s is assumed to be admissible, cm: is an S-sort symbol.
Hence s is an S—term of sort ax.  Since 0:1: 5 € in 8 , 5 is an S—term of sort { .
If s = f and f € F, then 8' contains a declaration f :—+ 97 such that n _<_?{
and 77 is an S—sort symbol. Hence s is an S-term of sort 17. Since 17 S € in S ,
3 is an S-term of sort { .  If s = f ( s l ,  , s „ )  and n > 0, then S '  contains a
declaration f :  ?171 - - -?n„ -—>?17 such that ?17 _<__?£ in S ' ,  3,- is an S’-term of sort
?n for 2' = 1, . . . , n ,  and 171, . . . , nn and 77 are S—sort symbols. Hence we know by
the induction hypothesis that 35 is an S-term of sort n for i = 1, . . . , n .  Since
$ contains the declaration f :  771 . .  m„ ———> 7), we know that s = f(31‚ . . . , s „ )  is
an S-term of sort 17. Since 17 S € in 8, 3 is an S-term of sort {. El

Stratification is a method to accommodate partial functions that don’t add
new data elements. Since total functions that don’t add new data elements
are also partial functions, one could also stratify with respect to  them. We
will prove in Section 7 that stratification with respect to total functions that
don’t add new data elements doesn’t change the initial algebra semantics of a
sp ecification.

5.3 Example: Algebraic Semantics for Programming Languages

Figures 5.3 and 5.4 show an algebraic specification of the semantics of a very
simple but Turing—complete imperative programming language. Since the lan—
guage allows for nonterminating programs, the specified interpreter evalp is a
partial function.
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nat := {o, s: nat}
 

var := {v: nat}
 

exp := nat ++ var ++ {le: expxexp} ++ {inc: exp}
 

stat := assignment ++ conditional ++ loop
 

assignment := {':=': varx exp}
 

conditional := {if: expxprogxprog}
 

loop := {while: expxprog}
 

prog := stat ++ {';': statxprog}
 

configuration := {empty, c: varx nat x configuration}
 

bool := {true, false} 

==: natxnat --+ bool 

==: varX var --+ bool 

(N:nat == N':nat) = if N~N' then N'<N else false fi
 

(v(N) == v(N')) = (N==N')
 

~: natxnat --+ bool 

o~N = true
 

s(N)~o = false
 

s(N)~s(N') = N~N'
 

Figure 5.3. The data structures and auxiliary functions of an ab­

stract interpreter for a simple imperative programming language. 

The example is written in sugared syntax. The actual specification is 

obtained by applying stratification with respect to the functions declared as 

partial with the symbol rv>. 

The signature equation 

nat := {o, s: nat} 
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nat :=  {o, s: nat}
var := {v: nat}
exp :=  nat ++ var ++ {Ie: expxexp} ++ {me: exp}
stat := assigmnent ++ conditional ++ loop
assigmnent :=: { ’:=’: varx exp}
conditional := {11‘} epprogx prog}
loop :=: {While epprog}
prog := stat ++ {’;’: statxProg}
configuration := {empty _c: varxaatxconfiguration}

boo] :=  {trug false}

===: natXHat ——> boo]

===: varx var ——+ boo]

(Nmat == N ’:nat) = if  NSN ’ then N ’SN else false fi

(VW) ===—“ V(N’)) == (N==N’)

S:  natXHat -—> boo]

OSN = true
s(N)So = false

s(N)_<_s(N’) = NSN’

Figure 5.3.  The data. structures and auxiliary functions of an ab—
stract interpreter for a. simple imperative programming language.

The example is Written in sugared syntax. The actual specification is
obtained by applying stratification with respect to the functions declared as
partial with the symbol ~>.

The signature equation

nat :::: {0, s: nat}
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evalp: progx configuration I"V> configuration 

evalp(X:=E, C) = update(C, X, evale(E,C)) 

evalp(if(E,P,P'), C) = if evale(E,C)==s(o) then evalp(P,C) 

else evalp(P', C) fi 

evalp(wbile(E,P), C) = if evale(E,C)==s(o) 

then evalp((P;wbile(E,P)), C) 

else C fi 

evalp(S;P, C) = evalp(P, evalp(S,C)) 

evale: expxconfiguration I"V> nat 

evale(N:nat, C) = N 
evale(V:var, c(V',N,C)) = if V =V' then N 

else evale(V,C) fi 

evale(1e(E,E'), C) = if evale(E,C)~evale(E',C)then s(o) 

else 0 fi 

evale(inc(E), C) = s(evale(E,C)) 

update: configurationx varx nat ---7 configuration 

update(empty, V, N) = cry, N, empty) 

update(c(V,N,C), V', N') = if V-=V' then cry, N', C) 

else cry, N, update(C, V', N')) fi 

Figure 5.4. An abstract interpreter for a simple imperative pro­

gramming language. 

stands for the constructor declarations 

0: ---7 nat, s: nat ---7 nat 

and asserts that the sort nat is completely specified by its two constructors. 
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evalp: progx configuration ~>  configuration

eva1p(X:_—_E, C) = Update(C, X, evale(E, C))
eva1p(1'f(E,P,P’), C) = if eva1e(E,C)=:-=s(o) then eva1p(P, C)

else eva1p(P’, C) fi
eva1p(Whi1e(E,P), C) = if eva1e(E, C)===s(o) —

then eva1p((P;While(E,P)), C)
else C fi

eva1p(S;P, C) : eva1p(P, eva1p(S, C))

evale: expx configuration ~>  nat

eva1e(N:nat, C) = N
eva1e(V:Var, c( V’,N, C)) = if V==V’ then N

else eva1e(V, C) fi
evale(le(E,E’), C) = if evale(E, C)Sevale(E’, C) then s(o)

else 0 fl
evale(inc(E), C) = s(eva1e(E, C))

update: configurationxvarx nat —> configuration

update(empty, V, N) = c(V, N, empty)
update(c(V,N,C), V’, N’) = if V==V’ then c(V, N’, C)

else c( V, N, update( C, V’, N ’)) fi

Figure 5 .4 .  An abstract interpreter for a. simple imperative pro-
gramming language.

stands for the constructor declarations

o: ——-+ nat, s: nat —-> nat

and asserts that the sort nat is completely specified by its two constructors.
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The signature equation 

exp := nat ++ var ++ {le: expxexp} ++ {ine: exp} 

stands for the declarations 

nat<exp, var<exp, le: expxexp --+ exp, me: exp --+ exp 

and asserts that the sort exp is completely specified by the subtypes nat and 

var and the free constructors le and ine. 

The function == defines an equality test for the types nat and var. The 

equation 

(N:nat == N':nat) = if N<N' then N'5:N else false fi 

is syntactic sugar for the equation 

(N=-N') = foo(N<N', N, N') 

where Nand N' are variables of sort nat and foo is an automatically introduced 

auxiliary function defined as follows: 

foo: boolxnatxnat "'> bool
 

foo(true, N, N') = N'<N
 

foo(false, N, N') = false.
 

Here there is actually no need to declare the auxiliary function foo as partial. 

However, the auxiliary functions needed for the conditionals in the definitions 

of evalp and evale are in fact partial. 

Note that the standard solution for defining conditionals 

if: boolx boolx bool --+ bool
 

if(true,B:bool, B':bool) = B
 

if(false,B:bool,B':bool) = B'
 

doesn't work here since stratification would turn ifinto a strict function. How­

ever, our translation of conditionals preserves their nonstrictness. 
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The signature equation

exp :=  nat ++ var ++ {1e: expx exp} ++  {inc: exp}

stands for the declarations

nat<exp, var< exp, le: expx exp —+ exp, inc: exp ——> exp

and asserts that the sort exp is completely specified by the subtypes nat and
var and the free constructors le and inc.

The function == defines an equality test for the types nat and var. The
equation

(Nmat == N ’:nat) = if  NSN’ then N ’SN else false fi

is syntactic sugar for the equation

(N==N’) = foo(N£N’‚ N, N’)

Where N and N’ are variables of sort nat and foo is an automatically introduced
auxiliary function defined as follows:

foo: booIXnatxnat  ~>  booI

foo(true, N, N’) = N’_<_N
foo(false, N, N’) = false.

Here there is actually no need to declare the auxiliary function foo as partial.
However, the auxiliary functions needed for the conditionals in the definitions
of evalp and evale are in fact partial.

Note that the standard solution for defining conditionals

if? boolx boolx boo] —-> boo]

if(true‚B:booI‚ B ’:bool) = B
if(false‚B:bool‚B’:bool) = B’

doesn’t work 'here since stratification would turn if into a strict function. How-

ever, our translation of conditionals preserves their nonstrictness.
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6 Strict AIgebras and Base Homomorphisms 

So far our approach to strict specifications with partial functions has been of 

a syntactic nature. We will now define strict algebras and show that a speci­

fication is strict if and only if its initial algebra is strict. We also will discuss 

strict equality, which is an appropriate equality relation for strict algebras. 

6.1 Strict AIgebras and Strict Equality 

The base BA of a ~::-algebra A is 

BA := U{eA Ieis a basic sort symbol of L:}. 

The elements of BA are called the base elements and the elements of eA-BA 

are called the error elements of A. 

A ~-algebra A is called strict if for every ~-function symbol f and every 

tuple (ab"" an) E Dj 

In a strict algebra error elements are always mapped to error elements. A 

L:-algebra A is called total if BA = CA, and it is called partial if BA =f=. CA. 

Note that a total algebra is always strict. 

Proposition 6.1. Let ~ be a signature not containing error sort symbols. 

Then every ~-algebra is strict and total. 

Proposition 6.2. Let L: be a strict signature and V be a set of ~-variables. 

Then the term algebra TE,v is strict. 

Proposition 6.3. Let A be a strict 2]-algebra, 8 be a (2], V)-term and a be 

a (V, A)-assignment. Then 

[8Jl! E BA and t is a subterm of 8 ::::} [t]a E BA. 
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6 Strict Algebras and Base Homomorphisms

So far our approach to strict specifications With partial functions has been of
a syntactic nature. We will now define strict algebras and show that a speci—
fication is strict if and only if its initial algebra is strict. We also Will discuss
strict equality, which is an appropriate equality relation for strict algebras.

6.1 Strict Algebras and Strict Equality

The base B ‚4 of a E-algebra A is

BA :=  U{E‘A | € is a basic sort symbol of 2}.

The elements of B A are called the base elements and the elements of CA —B A
are called the error elements of A.

A E-algebra ‚A is called strict if for every Z—function symbol f and every
tuple (a1, . . . , an) E D}4

fA(a1,---,an)6B.4 => aleBA A A aneBA.

In a strict algebra error elements are always mapped to error elements. A
Z-algebra A is called total if B A = C ‚4, and it is called partial if B A 7E C A-
Note that a. total algebra is always strict.

Proposition 6 .1 .  Let 2 be & signature not containing error sort symbols.
Then every E-algebra is strict and total.

Proposition 6.2 .  Let 2 be & strict signature and V be a set of E-variables.
Then the term algebra 73-33; is strict.

Proposition 6.3.  Let ‚A be a strict E—algebra, 3 be a ( 2 ,  V)-term and a be
a (V, A)—assignment. Then

[3]]0, E BA and t is a subterm ofs  => [[t]lo‚ E BA.
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Theorem 6.4. The initial algebra Is ofan admissible specification S is strict 

if and only if S is a strict specification. 

Proof 1. Let S = (~, £) be a strict specification and let f(Sb"" sn) 

be a ground ~-term such that f( sI, ... ,sn) contains a basic ~-term u, where 

f( Sb' .. ,sn) is defined as in the construction of Is. To prove that Is is 

strict, it suffices to show that SI, ... ,Sn contain basic ~-terms. Since S f- u . 

f( SI, ... ,sn) and u is basic, we know that f( SI, ... ,sn) is sensible in S. Since 

S is strict, we thus know that SI, ... , Sn are sensible in S. Hence, there exist 

basic and ground ~-terms VI, • •• ,Vn such that Sf-vi . Si for i = 1, ... , n. 

Thus SI, ... ,Sn contain basic :E-terms. 

2. Let S be an admissible specification whose initial algebra Is is strict, 

s be a ground and sensible S-term, and u be a subterm of s. We have to show 

that there exists a ground and basic S-term V such that u =s v. Since s is 

sensible, there exists a ground and basic S-term t such that S =s t. Hence there 
zsis a basic S-sort symbol esuch that [8hs E e . Thus we know by Proposition 

6.3 that [u]lzs is a base element of Is. Hence there exists a ground and basic 

S-term V such that Sf- u . v. 0 

Corollary 6.5. Let S be a strict specification. Then Is is an initial object 

in the category comprised of the strict S -algebras and their homomorphisms. 

In strict algebras, we are not interested in equality between terms that 

denote error elements. Furthermore, we are only interested in equality between 

admissible terms, that is, terms all of whose variables range over basic sorts. 

Thus we actually need a three-valued logic where the the truthvalue of an 

equation can be "true", "false", and "undefined". 

The truth value [8 . t]A of a ~-equation S - t in a ~-algebra A is 

defined as follows: 

•	 [s . t]A:= tt if [s]la = [t]a E BA for every (V(s . t), A)-assignment a 

•	 [s . t]A := ff 'if [s],8 =1= [t],8 for some (V(s . t), A)-assignment f3 and 

[s ]a, [t]a E BA for every (V(s . t), A)-assignment a 
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Theorem 6.4 .  The initial algebra 1}; of an admissible specification 5 is strict
if and only if 8 is a strict specification.

Proo£ 1. Let S = (2 ,8 )  be a strict specification and let f(31, . . . , 3...)
be a ground E-term such that f (sl, . . . , sn) contains a basic ff.—term u, where

f(31, .  . .,sn) is defined as in the construction of 13. To prove that Is is
strict,  it suffices to show that 3—1', . . . ‚@ contain basic E-terms. Since S I— u &
f(sl, . . . , 3n) and u is basic, we know that f(sl, . . . ‚sn) is sensible in S. Since

8 is strict, we thus know that sl, . . . , s„ are sensible in 5. Hence, there exist

basic and ground E—terms vb.  . . ‚vn such that S i- v; & 3,- for i = 1, . . . ‚n .
Thus @, . . . , 33'; contain basic E-terms.

2. Let 8 be an admissible specification whose initial algebra Is is strict,
3 be a ground and sensible S-term, and u be a subterm of 3. We have to show

that there exists a. ground and basic S—term v such that 1}. =5 2). Since 3 is
sensible, there exists a ground and basic S-term t such that 3 =5 t. Hence there

is a basic S—sort symbol { such that [[S]]:[s € CIS. Thus we know by Proposition

6.3 that [[Ullzs is a base element of 1'3. Hence there exists a ground and basic

S—term '0 such that S l— u -°—- 2); Ü

Corollary 6 .5 .  Let 8 be a strict Specification. Then 15 is an initial object

in the category comprised of the strict Sfalgebras and their homomorphisms.

In strict algebras, we are not interested in equality between terms that
denote error elements. Furthermore, we are only interested in equality between

admissible terms, that is, terms all of whose variables range over basic sorts.

Thus we actually need a three—valued logie where the the truthvalue of an

equation can be “true”, “false”, and “undefined”.

The truth value [s i t]|_‚4 of a E—equation s :1- t in a E—algebra. A is
defined as follOws:

. [[s & t]]A := tt if [[s]]a = [[75]]0, € B A for every (V(s & t), A)-assignment oz

. [[s & t]]_4 := & 'if [[S]]ß 7E |[t]]ß for some (V(s & t),A)—assignment ‚6 and

[[s]|0„ ML. € B A for every (V(s é t), A)—assignment a
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• [8 . t]A:= uu otherwise. 

Proposition 6.6. Let A be a ~-algebra and 8 • t be a ~-equation. Then: 

• if [8 ...:... t]A = tt, then 8 . t is valid in A 

• if [8 . t]A = ff, then s ...:... t is not valid in A 

• if [8 . tllA =J:. uu, then 8 . t is valid in A ifand only if [8 . t]A = tt, and 

8 . t is not valid in A if and ouly if [8 . t]A = fr. 

Proposition 6.1. Let A be a ~-algebra. Then [8 . t]A =J:. uu if 8 and tare 

basic ~-terrns. 

Proposition 6.8. Let S be an admissible specification and A be an S-algebra. 

Then [8 . t]A =f. uu if 8 and t are ground sensible S-terms. 

Proposition 6.9. Let S be an admissible specification and A be an S-algebra 

without junk. Then [8 . t]A =J:. uu if8 and t are sensible S-terrns. 

6.2 Base Homomorphisms 

Base homomorphisms generalize ordinary homomorphisms in that they only 

relate nonerror elements. We will show that base homomorphisms are the 

appropriate homomorphisms for strict algebras since (1) strict base isomorphic 

algebras agree with respect to strict equality and (2) the initial algebra of a 

strict specification S is an initial object in the category comprised of the strict 

algebras and their base homomorphisms. 

Furthermore, base homomorphisms allow relating algebras with different 

signatures, and base isomorphisms will provide the right notion of semantic 

equivalence for the signature transformations presented in the next section. 

A presignature is a set of function and basic sort symbols. If ~ is a 

signature, the presignature I~I of ~ is the set of all function and basic sort 

symbols occurring in the declarations of 'E. If IT is a presignature, a ~-algebra 
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o [[s & tflA := uu otherwise.

Proposition 6.6.  Let ‚A be a E-algebra and s i t be a E—equation. Then:

. if[[s£t]|„4 =tt, thensét is validinA

. if[[s é t fl A  =fi ' ,  then s é t i s  not valid in/l

. if |[s & t]]‚4 # uu, then s & t is valid in A ifand only if [[s & t]]‚4 = tt, and

s i'- t is not valid in A ifand only if[[s & t]I_A = ff.

Proposition 6.7.  Let A be a E-algebra. Then |[s _;- tlA # uu if s and t are

basic E—tenns.

Proposition 6.8.  Let 8 be an admissible specification and A be an S-algebra.
Then [[s é t]|_A 7E uu if 3 and t are ground sensible S-terms.

Proposition 6 .9 .  Let 8 be an admissible specification and A be an S—algebra

without junk. Then |[s & t]|‚4 75 uu if 3 and t are sensible S—terms.

6.2 Base Homomorphisms

Base homomorphisms generalize ordinary homornorphisms in that they only
relate nonerror elements. We Will show that base homomorphisms are the

appropriate homomorphisms for Strict algebras since (1) strict base isomorphic
algebras agree with respect to strict equality and (2) the initial algebra of a
strict specification 5 is an initial object in the category comprised of the Strict

algebras and their base homomorphisms.

Furthermore, base homomorphisms allow relating algebras with difi'erent
signatures, and base isomorphisms will provide the right notion of semantic
equivalence for the signature transformations presented in the next section,

A presignature is a set of function and basic sort symbols. If E is a
signature, the presignature IEI of 2 is the set of all function and basic sort
symbols occurring in the declarations of 2. If H is a presignature, a E—algebra
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is called a IT-algebra if IT is the presignature of E. The letter IT will always 

range over presignatures. 

The basic domain BD1 of a E-function symbol f in a E-algebra A is 

A base homomorphism from a IT-algebra A to a IT-algebra B is a map­

ping ,: BA -+ BB such that 

1. if eis a basic sort symbol of IT, then ,(eA) ~ ~B 

2. if f is a function symbol of IT, then 

2.1 ,(BD1) ~ BD1 

2.2 if (aI, ... ,an) E BD?, then ,(fA(aI, ... ,an» = fB( ,(at), ... ,,(an»). 

A base homomorphism ,: A. -+ B is a base isomorphism if there exists 

a base homomorphism ,': B -+ A. such that ,,' = idBA and ,', = idBs . 

Two IT-algebras A and B are called base isomorphic if there exists a base 

isomorphism A -+ B. 

Proposition 6.10. Let IT be a presignature. Then the IT-algebras together 

with their base homomorphisms form a category. 

Proposition 6.11. The restriction of a homomorphism A. -+ B to the base 

of A is a base homomorphism A -+ B. 

Proposition 6.12. Let E be a signature not containing error sort symbols. 

Then a base homomorphism from a E-algebra A to a E-algebra B is a homo­

morphism A. -+ B. 

Theorem 6.13. Let S be a, specification. Then Is is an initial object in the 

category comprised of the S -algebras and their base homomorphisms. 

Proof Since Is is an initial object in the category comprised of the S­

algebras and their homomorphisms and the restriction of a homomorphism 
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is called a H-algebra if H is the presignature of Z.  The letter II will always
range over presignatures.

The basic domain BD}4 of a. 2-function symbol f in a E-algebra A is

BD}4 :={ (a1 ,  . . . , a „ )  G D}4 n (BA)”|  I f'A(a1, . . . ‚an)  E BA}.

A base homomorphism from a II-algebra A to a H-algebra B is a map—
ping 7: BA -—a> B3 such that

1. if { is a basic sort symbol of H, then 70514) g {3

2. if f is a function symbol of H, then

2.1 7(BD}4) g BD}?

2.2 if(a1, . . . ‚an)  E BDA, then 7(f"4(a1‚ . . . ‚ ann  :: flab/(cu), . . . ‚')/(an)).

A base homomorphism 7: A —-> B is a base isomorphism if there exists
a base homomorphism *y’: B —+ A such that 77’ = idBA and 3/7 = idBß.
Two H-algebras A and 3 are called base isomorphic if there exists a base
isomorphism A —-> 13.

Proposition 6 .10 .  Let II be  a presignature. Then the II-algebras together
With their base homomorphisms form a category.

Proposition 6.11. The restriction of a homomorphism .A —> B to the base
of A is a base homomorphism A —> B.

Proposition 6.12. Let E be a signature not containing error sort symbois.
Then a base homomorphism from a E-algebra A to a E-aigebra B is a homo—
morphism A —-> B.

Theorem 6.13. Let S be aspecification. Then .'[3 is an initial object in the
category comprised of the 8 —a1gebras and their base homomorphisms.

Proof Since Is is an initial object in the category comprised of the 8-
algebras and their homomorphisms and the restriction of a homomorphism
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Is --T A to the base of Is is a base homomorphism Is --T A, we know that 

there exists a base homomorphism Is --T A for every S-algebra A. 

Let A be an S-algebra and let, and " be two base homomorphisms 

Is --T A. We have to show that, = ,'. Let S be a ground and basic ~-term. 

It suffices to show that ,([shs) = ,/([S]Is ), which we prove by induction on 

the term structure of s. Let s = f( SI, .. . , sn). Then 

and ([slhs, ... , [Sn]Is) E BD;"s. Hence ,([shs) = f.A( ,([sdIs)," ., ,([snhs)) 

and ,/([s]]xs) = f.A( ,/([slhs),' .. , ,/([snhs )). Thus we have by the induction 

hypothesis that ,([shs) = ,/([shs)' D 

Corollary 6.14. Let S be a strict specification. Then Is is an initial object 

in the category comprised of the strict S -algebras with their base homomor­

phisms. 

Lemma 6.15. Let ~ and ~/ be two signatures such that I~I = I~/I, A be a 

strict ~-algebra, B be a ~' -algebra, and , be a base homomorphism A --T B. 

Furthermore, let V be a set of basic ~-variables and a be a (V, A)-assignment. 

Then ,a is a (V, B)-assignment and 

for every (~, V)-term s such that S is a ~/-term. 

Proof Let s be a (~, V)-term such that s is a ~/-term and [sl:\! E BA. 

We prove by induction on the term structure of s that [s]"Ya = ,([s]a) EBB. 

If S = x, then [s]"Ya = [x]"Ya = ,(a(x)) = ,([x]a) = ,([s]a) E BB. If 

S = f(s1, ... , sn), then [j(S1, , sn)]a = fA([SIJla, ... , [Sn]a) E BA. Since 

A is strict, we know that ([SI]a, , [Sn]a) E BDf. Hence we know by the in­

duction hypothesis that [Si]]"Ya = ,([Si]a) E BB for i = 1, ... , n. Hence [s]"Ya = 

[f(SI, ... ,Sn)]"Ya = fB([sd"Ya, ... , [Sn]"Ya) = fB( ,([SI]a), ... ,,([Sn]!a)) 
,UA([sdcn"" [Sn]a)) = ,([f(s1, ... ,Sn)]a) = ,([S]a)' D 
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13 —-+ A to the base of IS is a base homomorphism 15 -——> A,  we know that

there exists a base homomorphism 13 —-> A for every S -a1gebra A.

Let A be an S-algebra and let 7 and 7’ be two base homomorphisms
IS ——> A. We have to  show that 7 = 7' . Let 3 be a ground and basic Eéterm.
It suffices to Show that 7([[s]|15) : 7' ( [[S]]Is), which we prove by induction on
the term structure of s .  Let s = f(31, . .  ‚_,sn). Then

[[S]]Is = [ [ f (31 ,  ' ‘ ' : Snml's : fIS(I[31]l1'5, ' ° ' & [[sniil's)

and ([[31]]I.s, - - - : [[Snflrs) € Bf‘s- Hence ’Y([[3]Is) = fA(’Y([[31]lI.s-)a - . - ‚7([[8nilrs))
and 7'([[s]]15) = fA(7'(|[31]]zs), . . . ‚7'([[sn]|15)). Thus we have by the induction
hypothesis that 7( [[s]|1-s) == 7'([[s]]15). El

Corollary 6.14. Let 8 be a strict specification. Then 15 is an initial object
in the category comprised of the strict S —a1gebras With their base homomor—
phisms.

Lemma 6.15.  Let 2 and 2' be two signatures such that |Z |  = |2'I, ‚A bea
strict; Z-algebra, 13 be & E'—a1gebra, and 7 be a base homomorphism A —> B .
Furthermore, let V be a set of basic E-Variables and or be a (V, A)—assignment.
Then 7a is a (V, B)-assignment and

[[S]]a 6 BA => [[Sll-m = 7(|[5]]a) € BB

for every (Z), V)-—term s such that s is a E'—term.

Proof Let s be a (E,V)—term such that s is a E'—term and [[S]]o, € B _‚4.
We prove by induction on the term structure of s that [Silva = 7([[s]la) E B B.
If 3 = 3;: then [Siam : [diva : 7(a($))  : 7([[$]]a) : 'Y(|i3]|a) E 138-  If
3 = f(31‚. . . ,s„‚),  then [f(31,. . . ,s„)]]a = fA([[31]|a,.„,|[sn]|a) E BA. Since
A is strict, we know that (|[81]]a, . . . , flank) E BD? Hence we know by the in-
duction hypothesis that [[sifl'ya = 7(|[s‚-]|a) E B B forz' = 1, . , n.  Hence [[S]],m :

Iif(31a ' ' ' : 3n)]] ’¥a  = fßqislil‘von ' ' ' a [[311]]70) : fß('7(|[51]‘a)‚ ' ' ° : 7([[3n]la)) :"Y(fA([[31]]m° . . , Me,» = 7([[f(81‚—--‚sn)lla)= «ist). 1:1
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Theorem 6.16. (Invariance of Strict Equality) Let A be a strict :E­

algebra, B be a strict ~'-algebra, and I~I = I~'I. Then [8 . t]IA = [8 . tb if 

A and B are base isomorphic and 8 . t is an admissible :E- and :E' -equation. 

Proof. Let, be a base isomorphism A -+ B. Furthermore, let V be a set 

of basic :E-variables and 8 be a (:E, V)-term such that 8 is also a :E'-term and 

[81l! E BA for every (V, A)..'.assignment a. By the preceding lemma we know 

that it suffices to show that [8],8 E BB for every (V, B)-assignment (3. Let (3 be 

a (V, B)-assignment. Then ,-1(3 is a (V, A)-assignment. Hence [8]")'-1,8 E BA 

by our assumption. Since ,,-1 (3 = (3, we have by the preceding lemma that 

[8],8 = [8]")'(-y-1,B) EBB. 0 

We now give a construction that transforms a strict S-algebra into a base 

isomorphic strict S-algebra with at most one error element. 

Construction 6.17. (A1.) Let A be a strict :E-algebra, 1. be a symbol not 

occurring in the base of A, and let 

IaI := { a if a E BA 
1. otherwise. 

Then the :E-algebra A1. is defined as follows: 

• eA.L := {Iall a E eA} 

• D?.L:= Hla11, ... ,lan l) I (aI, ... ,an ) E D?} 

Proposition 6.18. Let A be a strict S-algebra. Then A1. is a strict S-algebra 

containing at most one error element and idB.A. is a base isomorphism A -+ A 1.. 

Furthermore, every S-equation that is valid in A is valid in A1.. 
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Theorem 6.16.  (Invariance of Strict Equality) Let A be a strict E—
algebra, 8 be a strict XII-algebra, and |E |  = IE’I. Then [.5 i 75]],4 = [[.s & 15]]3 if
A and B are base isomorphic and s é t is an admissible E-  and E'-equation.

Proof. Let 7 be  a base isomorphism A ——> B. Furthermore, let V be a set
of basic Z-Variables and s be a (2 ,  V)-term such that 3 is also a E'-term and
[[S]]a E B A for every (V, ‚A)—'assignment a .  By the preceding lemma. we know
that it suffices to  show that [[313 € B B for every (V, B)—assignment ‚B. Let ‚8 be
a (V, B)-assignment. Then 7—1ß is a (V, ‚A)-assignment. Hence [SL—15 E B A
by our assumption. Since 77—116 = 5 ,  we have by the preceding lemma that
llsflß = [[S]]‚flpy—lß) € B3.  Ü

We now- give a construction that transforms a strict S-algebra into a base
isomorphic strict 8 -a1gebra with at most one error element.

Construction 6.17. (A'L) Let A be a strict 2-algebra, J. be a symbol not
occurring in the base of A, and let

l a l_={a  i f aeBA

' J. otherwise.

Then the E—algebra A"- is defined as follows:

0 {AL == {Ial | a E {““}

. 1335* := {(Ia1|,...,|a„|) | (a1,...,a„) e 1353}

. f'A'L(a1,. . .  , a „ )  :=  | f ‘4(a1, . . . ,an) | .

Proposition 6.18.  Let ‚A be a strict S-algebra. Then AJ- is a strict S-algebra
containing at most one error element and idBA is a base isomorphism .‚4 -—> AJ“.
Furthermore, every S—equation that is valid in A is valid in AJ“.
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7 Changing the Sort Discipline 

In this section we will attack three problems that are specific to order-sorted 

logic: 

•	 meaningful terms can be ill-sorted; for instance, fac(8 - 7) is ill-sorted 

under the declarations nat < int, 7: --+ nat, 8: -+ nat, fac: nat --+ nat, 

and -: int x int --+ int, where fac is the factorial function 

•	 rewriting systems may not be compatible and thus the Completeness The­

orem may not apply 

•	 rewriting systems may not be sort decreasing and thus the Critical Pair 

Theorem may not apply. 

For the first two problems we will provide perfect solutions, while for the third 

problem we can only offer a partial solution. The tool for solving these sort 

problems are signature transformations that keep the semantics of a specifica­

tion in a sufficiently strong sense invariant. 

We will also validate our approach to partial functions by proving that 

defining completely defined total functions as partial functions does not change 

the inital algebra semantics. Furthermore, we will provide decidable sufficient 

criteria for the consistency and strictness of ground confluent rewriting sys­

tems. 

7.1 Compatibility by Construction
 

From now on we assume that T is an error sort symbol.
 

Construction 7.1. (~T and ST) Let ~ be a signature. Recall that we 

defined the base signature ~B of ~ as the set of all declarations of ~ that 

don't contain error sort symbols. The compatible signature ljT is defined 

as follows: 

~T :=~B 

U {e < Tie is a basic lj-sort symbol}
 

U {f: T··· T --+ T I f is a ~-function symbol}.
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7 Changing the Sort Discipline

In this section we Will attack three problems that are specific to order-sorted
logic:

o meaningful terms can be ill—sorted; for instance, fac(8 —-— 7) is ill-sorted
under the declarations nat < int, 7: ——> net, 8: ——+ nat, fac: nat ——> nat,
and —: int x int —> int, Where fac is the factorial function

o rewriting systems may not be compatible and thus the Completeness The-

orem may not apply

o rewriting systems may not be sort decreasing and thus the Critical Pair
Theorem may not apply.

For the first two problems we Will provide perfect solutions, While for the third
problem we can only offer a partial solution. The tool for solving these sort
problems are signature transformations that keep the semantics of a specifica-
tion in a sufficiently strong sense invariant.

We Will also validate our approach to  partial functions by proving that
defining completely defined total functions as partial functions does not change
the inital algebra semantics. Furthermore, we will provide decidable sufficient
criteria for the consistency and strictness of ground confiuent rewriting sys-
tems.

7.1 Compatibility by Construction

From now on we assume that T is an error sort symbol.

Construction 7 .1. (ET  and ST) Let 2 be a signature. Recall that we
defined the base signature 23 of Z as the set of all declarations of 2 that
don’t contain error sort symbols. The compatible signature ET  is defined
as follows:

2T :23
U {€ < T | € is a basic E—sort symbol}
U {fz T . . .  T —> T | f is a E-function symbol}.

63



If S = (~, E) is a specification, then ST := (~T, E). 

The construction of ~T identifies all error sorts and and extends all func­

tions to the top error sort T. Thus every term consisting of I:-variables and 

I:-function symbols is a I:T -term if it just equips every function symbol with 

the appropriate number of arguments. The title of this subsection is motivated 

by the fact that nT is a compatible rewriting system if n is a rewriting sys­

tem. Note that the construction of I:T is idempotent, that is, (~T)T = ~T. 

Similar constructions that do not identify existing error sorts can be found in 

[Goguen/Meseguer 87c] and [Schmidt-SchauB 87]. 

We will show that Sand ST have equivalent semantics, provided S is 

an admissible specification. The construction of ST is an important tool for 

proofs but is not intended for practical applications. However, if one changes 

an admissible specification S to S' by deleting and adding declarations not 

containing basic sorts, then Sand S' will still have equivalent semantics since 

ST = S'T. In other words, the semantical equivalence of Sand ST says that 

the error sort structure of an admissible specification is semantically irrelevant. 

Proposition 7.2. Let ~ be a strict signature. Then ~T is a strict signature 

and 

1. I:T is more permissive than I:, that is, every I:-term is a I:T -term 

2.	 ~ and ~T have the same basic terms, that is, every basic ~-term of sort e 
is a basic I:T -term of sort e, and every basic I:T -term of sort eis a basic 

I:-term of sort e 
3.	 ~ and ~T define the same instances for admissible ~-terms, that is, every 

I:-instance of an admissible I:-term s is a I:T -instance of s, and every 

I:T -instance of an admissible I:-term s is a I:-instance of s. 

Lemma 7.3. Let A be a ~-algebra. Then there exists a ~T -algebra B and a 

base homomorphism ,: B -+ A such that an admissible ~-equation is valid in 

A if and only if it is valid in B. 
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If 8 = (2 ,8 )  is a specification, then ST :=  (ET,  8 ) .

The construction of 2T  identifies all error sorts and and extends all func-
tions to the top'error sort T .  Thus every term consisting of Z-variables and
Z—function symbols is a ET—term if i t  just equips every function symbol with
the appropriate number of arguments. The title of this subsection is motivated
by the fact that 'RT is a compatible rewriting system if ’R, is a rewriting sys—
tem. Note that the construction of ET is idempotent, that is, (ET)T = ET.
Similar constructions that do not identify existing error sorts can be found in
[Goguen/Meseguer 87c] and [Schmidt—Schauß 87].

We will show that S and 8T have equivalent semantics, provided 8 is
an admissible specification. The construction of ST is an important ‚ tool  for
proofs but is not intended for practical applications. However, if one changes
an admissible specification 5 to 8' by deleting and adding declarations not
containing basic sorts, then S and 8' will still have equivalent semantics since

ST = S’T. In other words, the semantical equivalence of Sand  8T says that
the error sort structure of an admissible specification is semantically irrelevant.

Proposition 7 .2 .  Let E be a strict signature. Then 2T  is a strict signature
and

1 .  ET is more permissive than 2 ,  that is, every E-term is a KIT-term

2. Z and 2T  have the same basic terms, that is, every basic E-term of sort {
is a basic ET—term of sort E, and every basic ET-term of sort € is a basic
E—term of sort £

3. Z and ET  define the same instances for admissible E—terms, that is, every

E—instance of an admissible E—term 3 is a ET—instance of 3, and every
BT—instance of an admissible Z-tenn 3 is a E-instance of 3.

Lemma 7.3. Let A be a E-algebra. Then there exists a ET—algebra B and a
base homomorphism 7: B —-—> A such that an admissible E—equation is valid in

A if and only if it is valid in B.
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Proof We construct a ~T-algebra B as follows: 

- eB := eA if eis a basic ~-sort symbol 

- TB := CA Un}, where ~ ff. CA 

- D1 := (CB)I/I 

f B( ) ._ { fA( aI, ... , an) if (aI, ... ,an) E Dt 
- aI, ... ,an ·- Q otherwise. 

It is obvious that idBs = idB,A is a base homomorphism B ---t A. Furthermore, 

it's easy to verify that an admissible ~-equation is valid in A if and only if it 

is valid in B. 0 

Lemma 7.4. Let ~ be a strict signature and A be a ~T-algebra. Then 

there exists a ~-algebra B and a base homomorphism '"'(: B ---t A such that an 

admissible ~-equation is valid in A if and only if it is valid in B. 

Proof We construct a ~-algebra B as follows: 

- eB:= eA if eis a basic ~-sort symbol 

B-e := TA if eis an error ~-sort symbol 

DB .- DA 
- 1·- 1 

It is obvious that idBs = idB,A is a base homomorphism A ---t B. Furthermore, 

it's easy to verify that an admissible ~-equation is valid in A if and only if it 

is valid in B. 0 

Theorem 7.5. (Equivalence of Validity) Let S be an admissible speciE.­

cation. Then an admissible S -equation is valid in S if and only if it is valid in 

ST. 

Proof Let s . t be an admissible S-equation that is valid in S and let A 
be an ST-algebra. We have to show that s . t is valid in A. By the preceding 
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Proo£ We construct a ET—algebra [? as follows:

— {B :=  EA if { is a basic E—sort symbol

— TB :=  CAU {b}, Where [1 € CA

_ D? ;: (C3)|f |

otherwise.
.. f3(a1‚„-,an) :: {{A(a1,.„,an) if(a1,___’an) ED}?

It is obvious that idBB = idBA is a base homomorphism B —-> A. Furthermore,
it’s easy to verify that an admissible E—equation is valid in A if and only if it
is valid in B . Ü

Lemma 7 .4 .  Let 2 be a strict signature and A be a ET—algebra. Then
there exists a E-algebra B and a base homomorphism 7: B ——> A such that an
admissible E—equation is valid in A if and only if it is valid in B.

Proof. We construct a E-algebra 3 as follows:

— £3  :=: {A if 5 is a basic E-sort symbol

— {B :=  TA if 6 is an error E-sort symbol

B . _  A- D f .— D f

- f3(a1‚  . . . , a „ )  :=  fA(a1, . . . , an).

It is obvious that idBB = idßfil is a base homomorphism A ——> B . Furthermore,
it’s easy to verify that an admissible E-equation is valid in A if and only if it
is valid in B . Ü

Theorem 7.5. (Equivalence of Validity) Let 8 be an admissible specifi—
cation. Then an admissible S-equation is valid in 8 if and only if i t  is valid in
8T.

Proof. Let s i t be an admissible S—equation that is valid in S and let A
be  an ST-algebra. We have to show that s & t is valid in A. By the preceding
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lemma we know that there exists an S-algebra B such that s . t is valid in A if 

and only if it is valid in B. Since s . t is valid in S, we know that s . t is valid 

in B. Hence s . t is valid in A. The converse direction is shown analogously. 

D 

Similar theorems can be found in [Goguen/Meseguer 87c] and [Schmidt­

Schau:B 87]. 

Corollary 7.6. (Equivalence of Initial Validity) Let S be an admissible 

specification. Then an admissible S-equation is valid in Is if and only if it is 

valid in IST . 

Proof Follows from the Structural Induction Theorem (2.30), the pre­

ceding theorem, and Proposition 7.2. D 

Corollary 7.7. Let S be a specification not containing error sort symbols and 

let S' be a stratification of S with respect to F = 0. Then an S-equation is 

valid in S if and only if it is valid in S'. 

Proof Follows from the fact that ST = S'T. D 

Next we will show that the initial algebras of Sand ST are base isomor­

phic. 

We call two specifications base equivalent if they have the same presig­

nature and their initial algebras are base isomorphic. 

Lemma 7.8. Let S and S' be specifications that have the same presignature. 

Furthennore, let the following conditions be satisfied: 

• there exists an S' -algebra A and a base homomorphism a: A -+ Is 

• there exists an S-algebra B and a base homomorphism f3: B -+ Is" 

Then S and S' are base equivalent. 
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lemma we know that there exists an S—algebra B such that s & t is valid in A if
and only if i t  is valid in B. Since s & t is valid in 8 ,  we know that s i t is valid

in B .  Hence s & t is valid in ‚A. The converse direction is shown analogously.
EI

Similar theorems can be found in [Goguen/Meseguer 870] and [Schmidt-
Schauß 87].

Corollary 7.6. (Equivalence of  Initial Validity) Let 8 be  an admissible
specification. Then an admissible S—equation is valid in 13 if and only if it is
valid in IST .

Proof. Follows from the Structural Induction Theorem (2.30), the pre-
ceding theorem, and Proposition 7.2. [|

Corollary 7.7.  Let 8 be a specification not containing error sort symbols and
let 8' be a stratification of 8 With respect to F = @. Then an S—equation is
valid in 8 if and only if it is valid in 8' .

Proof. Follows from the fact that 5T = S'T.  [:|

Next we will show that the initial algebras of S and ST are base isomor-
phic.

We call two specifications base equivalent if they have the same presig—

nature and their initial algebras are base isomorphic.

Lemma 7.8. Let 5 and S’ be specifications that have the same presignature.
Furthermore, let the following conditions be satisfied}

. there exists an S'—algebra A and a base homomorphism (x: ‚A —+ IS

. there exists an S-algebra B and a base homomorphism ‚B: B —> IS:.

Then S and S’- are base equivalent.
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Proof. Let all assumptions be satisfied. Because of the initiality of Is and 

Is" there exist base homomorphisms ,: Is ~ Band 0: Is' ~ A. The initiality 

of Is and Is' furthermore yields that idxs = (OlO)(j3,) and idxs' = (j3'Y)(OlO). 
Hence 13, is a base isomorphism Is ~ Is' . 0 

Theorem 7.9. (Base Equivalence) IfS is an admissible specification, then 

Sand ST are base equivalent. 

Proof. Follows immediately from lemmas 7.3, 7.4 and 7.8. o 

The equivalence theorems entitle us to consider ST rather than S, which 

can be quite advantageous for deduction and rewriting. Furthermore, in ST 

meaningful terms like fac(8 - 7) don't cause problems anymore since they are 

always well-sorted. Of course, ST is too permissive for the user interface of 

a specification or programming system since one would loose all benefits of 

sort checking. A practical solution preserving the benefits of sort checking is 

to allow the programmer writing expressions like fac((8 - 7): nat). With the 

assertion (8 -7): nat the programmer states that he knows by reasoning that 

is beyond the possibilities of the sort checker that 8 - 7 in fact denotes an 

element in nat. 

7.2 Lifting Completely Defined Functions 

We now discuss a signature transformation that combines stratification with 

the construction of 'ET. This transformation is needed for a theorem that 

validates our approach to partial functions. It is also useful for practical ap­

plications since, when applied to rewriting systems, it can make rules sort 

decreasing. 

Construction 7.10. ('EF and SF) Let 'E be a strict signature and F be a 

set of 'E-function symbols. The lifted signature 'EF is defined as 

'E F := 'ET - {D E 'EB ID contains a symbol of F}. 

Furthermore, if S = ('E, £) is an admissible specification, then SF := ('EF , £). 

67
 

Proof. Let all assumptions be  satisfied. Because of the initiality of Is and

15:, there exist base homomorphisms 7:15 —> B and 5:15: ——> A. The initiality
of 1'3 and 15: furthermore yields that idzs = (a5)(ßfy) and idzs, = (ßfy)(a6).
Hence ‚37 is a base isomorphism Is —-> Ibn. EI

Theorem 7.9.  (Base Equivalence) If 8 is an admissible specification, then
S and ST are base equivalent.-

Proof Follows immediately from lemmas 7.3, 7.4 and 7.8. EI

The equivalence theorems entitle us to consider 8T rather than S , which
can be  quite advantageous for deduction and rewriting. Furthermore, in ST
meaningful terms like fac(8 -— 7) don’t cause problems anymore since they are
always well—sorted. Of course, ST is too permissive for the user interface of
a specification or programming system since one would loose all benefits of
sort checking. A practical solution preserving the benefits of ‚sort checking is
to allow the programmer writing expressions like fac((8 —— 7): nat).  With the
assertion (8 — .7): nat the programmer states that he knows by reasoning that
is beyond the possibilities of the sort checker that 8 —— 7 in fact denotes an
element in nat.

7.2 Lifting Completely Defined Functions

We now discuss a signature transformation that combines stratification with
the construction of 2T .  This transformation is needed for a theorem that
validates our approach to partial functions. It is also useful for practical ap—
plications since, when applied to  rewriting systems, it  can make rules sort
decreasing.

Construction 7.10. (EF and SF ) Let 2 be a strict signature and F be a
set of E-function symbols. The lifted signature EF is defined as

EF  :=  ET  — {D 6 EB | D contains a symbol of F}.

Furthermore, if S = (2 ,8)  is an admissible specification, then SF :=  (217,5).
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Figure 7.1 shows an example for the lifting construction. Intuitively, lift­

ing a function means to delete its sort declarations. We will prove that lifting 

completely defined functions does not change the initial algebra semantics. 

This means that the sort declarations of completely defined functions are re­

dundant. In other words, completely defined functions are already completely 

defined by the equations of a specification. 

Proposition 7.11. Let S be a specification not containing error sort symbols, 

F be a set of S-funetion symbols, and S' be a stratification of S with respect 

to F. Then SF = S'T esT. 

Proposition 7.12. Let S be an admissible specification and F be a set of 

S-function symbols. Then SF is an admissible specification and 

•	 every SF -term of a basic sort eis an S-term of sort e 

•	 every S-term of a basic sort enot containing symbols ofF is an SF -term 

of sort e 

•	 every ST-algebra is an SF -algebra 

•	 every admissible equation that is valid in SF is valid in ST, and every 

admissible S-equation that is valid in SF is valid in S. 

Let S be an admissible specification and F be a set of S-function symbols. 

We say that F is completely defined in S if 

for every declaration f: 6 ... en -----l- e of S such that f E F and e is basic,
 

and
 

for every tuple SI, ... ,Sn of ground S-terms not containing symbols of
 

F such that Si has sort ei for i = 1, ... , n
 

there exists a ground S-term t of sorte not containing symbols of F such that 

f(Sl"",Sn) =SF t. 

This definition captures our intuition of what it means for a function to 

be completely defined by equations. Our goal is to show that specifying com­

pletely defined functions as partial functions (that is, stratifying with respect 
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Figure 7.1 Shows an example for the lifting construction. Intuitively, lift—
ing a function means to  delete its sort declarations. We will prove that lifting
completely defined functions does not change the initial algebra semantics.
This means that the sort declarations of completely defined functions are re—
dundant. In other words, completely defined functions are already completely

defined by the equations of a specification.

Proposition 7 .11 .  Let 8 be a specification not containing error sort symbols,
F be a set of S-function symbols, and 8' be a stratification of 8 with respect
to  F .  Then SF = S'T ; ST .

Proposition 7 .12 .  Let 8 be  an admissible specification and F be a set of
S-function symbols. Then SF is an admissible specification and

. every (SF—term of a basic sort { is an S-tenn of sort €

. every S—term of a basic sort € not containing symbols of F is an SF-term
of sort {

. every ST—algebra is an SF-algebra

. every admissible equation that is valid in SF is valid in S T , and every
admissible S-equation that is valid in 8F is valid in 8 .

Let S be an admissible specification and F be a set of S-function symbols.
We say that F is completely defined in 8 if

for every declaration f :  51 - - - {„ _) { of 8 such that f G F and € is basic,
and

for every tuple s l ,  . . . , s „  of ground S—terms not containing symbols of
F such that 3,- has sort & for i = 1, . . . , n

there exists a ground S-term t of sort { not containing symbols of F such that
f (S l ,  . . . , 3” )  =31? t .

This definition captures our intuition of What it means for a function to
be  completely defined by equations. Our goal is to show that specifying corn—
pletely defined functions as partial functions (that is, stratifying with respect
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SpeciEcation S: 

Variables: N, N': nat 

0: -T nat true: -T bool 

s: nat -T nat false: -T bool 

+: nat x nat -T nat :::;: nat x nat -T bool 

o+N· N 0:::; N . true 

s(N) + N' . s(N + N') s(N) :::; 0 . false 

s(N) < s(N' ) . N:::; N' 

Specification SF, where F = {+, :::;}: 

Variables: N, N': nat 

nat < T bool < T 

0: -T nat, 0: -T T true: -T bool, true: -T T 

s: nat -T nat, s: T -T T false: -T bool, false: -T T 

+: T x T ----? T :::;: T x T -T T 

o+N· N o :::; N .:.... true 

s(N) + N' .:.... s(N + N') s(N) :::; 0 . false 

s(N) :::; s(N' ) . N < N' 

Figure 7.1. Lifting Completely Defined Functions. The declara­

tions 0: -T T, true: -T T and false: -T T are actually redundant; 

however, the declaration s: T -T T is needed to extend s to T. 

to them) does not change the initial algebra semantics of a specification. This 

result will be the major validation of the error supersorts approach to partial 

functions. 

Lemma 7.13. Let F be completely defined in an admissible speciEcation S. 
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Specification S :

Variables: N, N ' : nat

0: —-> nat

s :  nat ——+ nat.

+:  nat >< nat -—+ nat

0+  N i N

SUV) + N’ = s(N + N’)

true: —+ boo l

false: —> bool

__<_: nat >< nat —+ bool

o f  N i  true
SUV) g o i false
3(N)  S 3(N’) EN SN’

Specification SF , Where F = {+ ,  3}.-

Variables: N, N’: nat

nat <T

():—> nat, o:——> T
sznat—+ nat, s:T——>T

+ :T> (T—>T

0+NéN

3(N)+N '  és (N+N ’ )

bool < T
true: —+ bool ,  true: -—-> T
false: ——> bool ,  false: ——+ T

S:TXT—+T

ogNé t rue

s(N)_<_oéfalse
s (N)Ss (N ' )£NSN'

Figure 7.1 .  Lifting Completely Defined Functions. The declara—
tions 0: —> T ,  true: —-> T and false: —-> T are actually redundant;
however, the declaration s :  T —> T is needed to  extend 8 to T .

functions.

to  them) does not change the initial algebra semantics of a specification. This
result Will be the major validation of the error supersorts approach to  partial

Lemma 7 .13 .  Let F be  completely defined in an admissible specification S .
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Then the initial algebra ISF is an ST-algebra. 

Proof Let f: 6··· en --+ ebe a declaration of S such that f E F and 

el, ... ,en and e are basic. It suffices to show that ISF satisfies the dec­

laration f: 6 ... en --+ e. Let ai E e;SF for i = 1, ... , n. Since SF con­

tains the declarations f: T .. ·T --+ T and 6 < T, ... ,en < T, we know that 

(aI, ,an) E D~SF .. Since ISF has no junk, there exist ground SF-terms 

SI, ,Sn such that [Si]]TsF = ai and Si has sort ei for i = 1, , n. Since 

6, ,en are basic, Si is a ground S-term of sort ei for i = 1, , n. Since 

F is completely defined in 5, we know that there exists a ground S-term t 
of sort enot containing symbols of F such that f(SIl'" ,sn) =SF t. Since 

t doesn't contain symbols of F, t is also an SF-term of sort e. Hence we 

have fTsF (all" . ,an) = fTsF ([slhsF' ... , [SnhsF) = [f(SI, .. . ,Sn)]]TsF 

[thsF E eTsF . D 

Theorem 7.14. (Base Equivalence) Let F be completely defined in an 

admissible specification S. Then S, ST and SF are base equivalent. 

Proof Since every ST-algebra is an SF-algebra, we know that IST is an 

SF -algebra. Furthermore, idTsT is a base homomorphism IST --+ IST. By the 

preceding lemma we know that ISF is an ST-algebra. Furthermore, idxsF is 

a base homomorphism ISF --+ ISF. Hence we know by Lemma 7.8 that ST 

and SF are base equivalent. Since we know by Theorem 7.9 that Sand ST 

are base equivalent, we know that S and SF are base equivalent. D 

Corollary 7.15. Let S be a specification not containing error sort symbols 

and let F be completely defined in S. Furthermore, let S' be a stratification 

of S with respect to F. Then S, S', ST, and SF are base equivalent. 

Proof Follows from the preceding theorem and the fact that SF = S'T. 

D 

Theorem 7.16. Let F be completely defined in an admissible specification 
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Then the initial algebra ISP is an ST-aIgebra.

Proof. Let f : gl - - {„ —> { be a declaration of S such that f E F and
{b .  . .  , .fn and { are basic. It sufi'ices t o  show that IsF satisfies the dec—

laration f :  { ln -{„  ——+ 5. Let a,- E 52-151? forz '  = l , . . . ‚n .  Since SF con—
tains the declarations f :  T - - 5T —+ T and £1 < T,  . . . ‚(Sn < T ,  we know that
( ah .  . . ‚an)  E D3553, Since 13F has no junk, there exist ground SF—terms
31, . .  . , sn  such that [siiiisp = a,- and 35 has sort {. for i = 1 , . . . , n .  Since
61 , . .  . , {n  are basic, 35 is a ground S-term of sort 6,- for i = l , .  . . ‚n .  Since
F is completely defined in S , we know that there exists a ground S-term 75
of sort { not containing symbols of F such that f(31, . .  . , sn )  =SF t .  Since
t doesn’t contain symbols of F,  t is also an SF-term of sort € . Hence we

have fIsF (a1‚. . . , a „ )  = fISF([[sl]]1-SF,..., [en]];s) = [[f(31,. . . , sn ) ] ] s

[[15]]s € «5151?- D

Theorem 7.14. (Base Equivalence) Let F be completely defined in an
admissible specification 8 . Then S, ST and SF are base equivalent.

Proof Since every ST—algebra is an S F —a1gebra, we know that J's-r is an
SF—algebra. Furthermore, idl-S... is a base homomorphism IST —-> IST . By the

preceding lemma we know that IsF is an ST-algebra. Furthermore, ids is

a base homomorphism ‚TSF _) ISP. Hence we know by Lemma 7.8 that 5T
and 8F are base equivalent. Since we know by Theorem 7.9 that 8 and ST
are base equivalent, we know that 8 and SF are base equivalent. Ü

Corollary 7 .15 .  Let 8 be a specification not containing error sort symbols

and Jet F be completely defined in S . Furthermore, Iet 5’ be a stratification
of 8 With respect to F. Then S , 8' , ST, and SF are base equivalent.

Proof: Follows from the preceding theorem and the fact that SF = S'T.
|]

Theorem 7 .16 .  Let F be completely defined in an admissible specification
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S. Then, for every ground S-term S of a basic sort e, there exists a ground 

S-term t of sort enot containing symbols of F such that 8 =SF t and 8 =s t. 

Proof. Let s = f( 81, ... ,8n ) be a ground S-term of a basic sort ~. We 

prove by induction on the term structure of 8 that there exists a ground S­

term t of sort enot containing symbols of F such that S =SF t. If 8 doesn't 

contain a symbol of F, then the claim is trivial. Otherwise, S contains a 

declaration f: "71" . "7n -t "7 such that "7 ::::;; eand Si is an S-term of sort "7i for 

i = 1, ... , n. Since S is admissible and ~ is basic, we know that "71,···, "7n 

are basic. Hence we know by the induction hypothesis that there exist ground 

S-terms t1, ... , tn not containing symbols of F such that Si =SF ti and ti has 

sort "7i in S for i = 1, ... ,n. Hence f(t 1, .. . ,tn) is an S-term of sort ~ such 

that S =SF f(t!, ... , tn). If f t/: F, we have the claim immediately. If f E F, 

then we have the claim since F is completely defined in S. Furthermore, by 

Proposition 7.12 we know that every admissible S-equation that is valid in SF 

is valid in S. 0 

Theorem 7.17. (Equivalence of Initial Validity) Let F be completely 

defined in an admissible specification S. Then 

for every admissible ST-equation S • t and 

Is F S • t 

for every admissible S-equation S • t. 

Proof. 1. Let 8 . t be an ST-equation that is valid in IST. To show that 

8 . t is valid in ISF, it suffices to show that every ground SF-instance of S . t 
is valid in ISF. Let u . v be a ground SF-instance of S . t. Since u . v is 

also an ST-instance of 8 . t and we assumed 8 . t to be valid in IST, u . v is 

valid in IST. Hence we know that u . v is valid in ST since u . v is ground. 

Since we know by Lemma 7.13 that ISF is an ST-algebra, we have that u . v 

is valid in ISF. 
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8 . Then, for every ground S-term 3 of a basic sort { , there exists a ground

S-tenn t of sort { not containing symbols of F such that s =3F t and 3 =s t.

Proof. Let s : f ( s l ,  . . . , 3“ )  be  a ground S—term of a basic sort {. We
prove by induction on the term structure of s that there exists a ground 8—
term 13 of sort £ not containing symbols of F such that 5 :SF 75. If 3 doesn’t
contain a symbol of F, then the claim is trivial. Otherwise, S contains a
declaration f :  m - « . nn _) ?; such that 77 5 € and 3,: is an S-term Of sort m for
i = l , . . .  ‚n .  Since 8 is admissible and 6 is basic, we know that 171,.. . ‚nn
are basic. Hence we know by the induction hypothesis that there exist ground
S-terms t1, . . . , tn not containing symbols of F such that s.- =8F tz- and 13.- has
sort m in 8 for i = l , .  . . ‚n .  Hence f ( t1 , .  . . , t n )  is an S-term of sort 5 such
that s =5F f ( t l ,  . . . , tn). If f € F, we have the claim immediately. If f E F,
then we have the claim since F is completely defined in S. Furthermore, by
Proposition 7.12 we know that every admissible S—equation that is valid in SF
is  valid in 8 . El

Theorem 7.17. (Equivalence of Initial Validity) Let F be completely
defined in an admissible specification S . Then

I sv l=sé t  (=> I sp l z sé t

for every admissible ST-eq uation s & t and

I s l=s£ t  <=} I sp l=s i t

for every admissible S—equation .s =?- t .

Proof 1 .  Let s & t be an ST—equation that is valid in IsT . To show that
.3 i t is valid in 13F, it suffices to show that every ground SF-instance of s i t
is valid in ISP. Let u & 0 be a ground SF—instance of 5 i t .  Since u & v is
also an ST—instance of s & t and we assumed s & t to  be valid in IST , u :l- v is
valid in IST. Hence we know that u £ v is valid in ST since 'u. £: 2) is ground.
Since we know by Lemma 7.13 that 1'51» is an ST-algebra, we have that u & v
is valid in IS}? .
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2. Let s . t be an admissible ST-equation that is valid in ISF. To show 

that s . t is valid in IST, it suffices to show that every ground ST-instance 

of s . t is valid in IST. Let Os . Ot be a ground ST-instance of s ..:... t. By 

the preceding theorem we know that there exists a substitution 'lj; such that 

'lj;s . 'lj;t is a ground SF-instance of s . t and OX =ST 'lj;x for all x E V(s . t). 

We know that 'lj;s . 'lj;t is valid in ISF since s . t is valid in ISF. Hence we 

know that 'lj;s . 'lj;t is valid in SF since 'lj;s . 'lj;t is ground. Thus we know 

by Proposition 7.12 that 'lj;s . 'lj;t is valid in ST. Since we already know that 

OX =ST 'lj;x for all x E V( s . t), we know that Os . Ot is valid in ST. Hence 

Os . Ot is valid in IST. 

3. The second equivalence follows from the first equivalence and Corollary 

7.6. D 

Corollary 7.18. Let S be a specification not containing error sort symbols 

and let F be completely defined in S. Furthennore, let S' be a stratification 

of S with respect to F. Then an S-equation is valid in Is if and only if it is 

valid in Is' . 

Proof Follows from the preceding theorem and the fact that SF = S'T. 

o 

From the example in Figure 7.1 one can see that the semantic equiv­

alence of S and SF is a rather powerful result. It says that declarations 

of constructors, that is, functions that generate data elements (for instance, 

s: nat ---? nat), contribute to the structure of the initial algebra, while decla­

rations of extending functions, that is, completely defined or partial functions 

(for instance, +: nat x nat -+ nat), are semantically redundant. The pur­

pose of the declarations for extending functions is to set up an appropriate 

sort checking discipline. Furthermore, they are consistency constraints for the 

specification, that is, they must be satisfied by the initial algebra if the spec­

ification is "correct". Checking whether functions that don't contribute data 

elements are completely defined is an important validation of a specification. 

See Comon [86] for a method for automatically checking complete definedness 
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2. Let s é 75 be an admissible ST-equation that is valid in 1'31». To show
that s _;- t is valid in IST , it suffices to show that every ground ST—instance
of s & t is valid in IST.  Let 93 £: 615 be a ground (ST—instance of s i t .  By
the preceding theorem we know that there exists a substitution gb such that
zßs i tßt is a ground SF—instance of s :l- t and 491: =5-r «ba: for all 3: € V(s & t).
We know that abs é:- ¢ t  is valid in IsF since s & t is valid in fig .  Hence we
know that abs & "gbt is valid in 8F since tßs & «ßt is ground. Thus we know
by Proposition 7.12 that I/JS & gbt is valid in ST.  Since we already know that
0x =S-r t/Jw for all :1: E V(s # t) ,  we know that 93 é Gt is valid in ST.  Hence
63 i Gt is valid in IST .

3. The second equivalence follows from the first equivalence and Corollary
7.6. El

Corollary 7 .18 .  Let 8 be a specification not containing error sort symbols

and let F be completely defined in 5. Furthermore, let 6" be a stratification
of 8 With respect to F .  Then an S—equation is valid in 1'3 if and only if it is
valid in 15:.

Proof: Follows from the preceding theorem and the fact that 5F = S 'T.
EI

From the example in Figure 7.1 one can see that the semantic equiv-
alence of 8 and SF is a rather powerful result. It says that declarations
of constructors, that is, functions that generate data elements (for instance,

s :  nat —> nat),  contribute to the structure of the initial algebra, while decla—
rations of extending functions, that is, completely defined or partial functions
(for instance, + :  nat >< nat ——> nat),  are semantically redundant. The pur—
pose of the declarations for extending functions is to set up an appropriate
sort checking discipline. Furthermore, they are consistency constraints for the
specification, that is, they must be satisfied by the initial algebra if the spec-
ification is “correct”. Checking whether functions that don’t contribute data
elements are completely defined is an important validation of a sp ecification.
See Comon [86] for a method for automatically checking complete definedness
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(in a framework without subsorts) and for further references to this topic. In 

general, of course, complete definedness is undecidable. 

7.3 Order-Sorted Rewriting Revisited 

The signature transformations discussed in the preceding subsections are very 

useful for order-sorted rewriting systems. First of all, we don't have to worry 

about compatibility anymore since nT is always compatible and equivalent to 

n. Furthermore, the transformation nF provides a partial solution for the 

sort decreasingness problem sufficing for many practical applications. 

Proposition 7.19. Let n be an admissible rewriting system. Then n T is a 

compatible rewriting system having the same overlaps as n and every critical 

pair ofn is a critical pair ofnT . Furthennore, if s ---+1l t, then s ---+~T t. 

Example 7.20. Let n be the rewriting system 

A	 < B, a: ---+ A, f: A ---+ A, b: ---+ B 

a ---+ b, f( a) ---+ b. 

Then (I(a) ---+ b, 1, a ---+ b) is an overlap of nand nT. In n this overlap has 
Tno critical pair since f(b) is not an n-term, while in n this overlap has the 

critical pair (b,f(b)). 

Proposition 7.21. Let n be an admissible rewriting system. Then n T is 

sort decreasing if n is sort decreasing. Furthennore, n T is sort decreasing if 

and only if every rule of n whose left-hand side doesn't contain a nonba$ic 

function symbol is sort decreasing in n T. 

Proposition 7.22. Let F be completely defined in an admissible rewriting 

system n and let P be the set of the nonbasic function symbols of n. Then 

n F is sort decreasing if 

1.	 every rule of n that does not contain a function symbol of F or P is sort 

decreasing in n 
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(in a framework without subsorts) and for further references to  this t0pic. In
general, of course, complete definedness is undecidable.

7.3 Order-Sorted Rewriting Revisited

The signature transformations discussed in the preceding subsections are very
useful for order-sorted rewriting systems. First of all, we don’t have to  worry
about compatibility anymore since RT is always compatible and equivalent to

R.  Furthermore, the transformation RF provides a partial solution for the
sort decreasingness problem sufficing for many practical applications.

Proposition 7.19.  Let R be an admissible rewriting system. Then R'r is a
compatible rewriting system having the same overlaps as R and every critical
pair of R is a critical pair of RT.  Fbrthennore, if s 43% t, then s age-,- t .

Example 7.20.  Let R be  the rewriting system

A<B,  a:——>A, f:A—-—>A, b:——+B

a——>b, f(a)——>b.

Then ( f (a) —-> b, 1, a. ——-> 6) is an overlap of R and RT. In R this overlap has
no critical pair since f (6) is not an R—term, While in RT this overlap has the
critical pair (b, f (b))

Proposition 7 .21 .  Let R be an admissible rewriting system. Then RT is
sort decreasing if R is sort decreasing. Furthermore, R_r is sort decreasing if
and only if every rule of R whose left—hand side doesn’t contain a nonbasic
function symbol is sort decreasing in RT.

Proposition 7.22.  Let F be completely defined in an admissible rewriting
system R and let P be the set of the nonbasic function symbols of R. Then
RF is sort decreasing if

1. every rule of R that does not contain a fiinction symbol of F or P is sort
decreasing in R
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2. every rule	 of n that contains a function symbol of F or P contains a 

function symbol of F or P in its left-band side. 

In practice it turns out that nF is often sort decreasing although n cannot 

be made sort decreasing. Sort decreasingness is important since it is needed to 

automatically check the confluence of a specification. Below we will show that 

n T is ground confluent if nF is ground confluent. Thus, if this is preferable, 

one can rewrite in nT and use nF just for checking confluence. 

Of course, checking the confluence of nF to establish the ground conflu­

ence of nT is only possibly if one puts in the knowledge that F is completely 

defined, a property that is undecidable in general. However, complete defined­

ness is a semantic property that is independent of the particular equations used 

in a specification, while ground confluence is an operational property depend­

ing on the particular equations used in a specification. Hence n F allows us 

trading the automatic verification of an operational property for the assertion 

of a semantic property. 

Example 7.23. Kirchner et al. [87] give a specification of the complex ratio­

nal numbers as an order-sorted rewriting system. They define the square of 

the absolute value of a complex number by 

I: complex -+ rational
 

I(G) . G * conjugate(G),
 

where rational is a subsort of complex and * and conjugate come with the 

declarations 

*: complex x complex -+ complex 

conjugate: complex -+ complex. 

It is obvious that the rewrite rule defining I cannot be made sort decreasing 

by adding further declarations. However, since I is completely defined, the 

rule can be made sort decreasing by lifting I to T. 
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2. every rule of ??, that contains a function symbol of F or P contains a
function symbol of F or P in its left—hand side.

In practice it tums out that RF is often sort decreasing although 'R cannot
be  made sort decreasing. Sort decreasingness is important since it is needed to
automatically check the confluence of a specification. Below we Will show that
’RT is ground confluent if ’RF is ground confluent. Thus, if this is preferable,
one can rewrite in RT and use RF just for checking confluence.

Of course, checking the confluence of RF to establish the ground conflu—
ence of ’RT is only possibly if one puts in the knowledge that F is completely
defined, a property that is undecidable in general. However, complete defined—
ness is a semantic property that is independent of the particular equations used
in a specification, while ground confluence is an operational property depend—
ing on the particular equations used in a specification. Hence RF allows us
trading the automatic verification of an operational property for the assertion
of a semantic property.

Example 7.23.  Kirchner et al. [87] give a specification of the complex ratio-
nal numbers as an order—sorted rewriting system. They define the square of
the absolute value of a complex number by

f : complex —-> rational

f (C)  & C * conjugate(C),

Where rational is a subsort of complex and * and conjugate come with the
declarations

*: complex )( complex ——> complex

conjugate: complex ——+ complex.

It is obvious that the rewrite rule defining f cannot be  made sort decreasing
by adding further declarations. However, since f is completely defined, the
rule can be made sort decreasing by lifting f to T .
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Proposition 7.24. Let n be an admissible rewriting system and F be a set of 

n-function symbols. Then s -7iT t if S -7iF t. Furthermore, every critical 

pair of R F is a critical pair of RT. 

Although R F and R T have the same rules, the converse of the proposition 

doesn't hold since in R F -derivations the variables of a rewrite rule cannot be 

instantiated to terms containing function symbols of F because such terms 

have only the sort T and the variables in the rewrite rules range over basic 

sorts. Thus the lifted system R F admits only those RT-derivations that are, 

roughly speaking, innermost with respect to F. This is ofpratical interest since 

innermost rewriting can be implemented more efficiently than general rewrit­

ing. Furthermore, narrowing with the lifted system RP has a smaller search 

space than. narrowing with R T since the rewrite rules have fewer instances in 

R F than they have in RT. 

Nevertheless, the following theorem tells us that once we have established 

the ground confluence of R F we can as well rewrite in RT. 

Theorem 7.25. Let F be completely defined in an admissible rewriting sys­

tem R. Then R T is ground confluent if RP is ground confluent. 

Proof. Let nF be ground confluent. To show that R T is ground confluent, 

suppose that s -7~T u and s -7iT v, where s, u and v are ground terms. By 

Theorem 7.17 we know that the equations s . u and s . v are valid in nP . 

Since RF is ground confluent and compatible, we know s!n.FU and s!n.FV. 

Hence uln.Fv by the ground confluence of R F . Thus u In.T v since R F ~ RT. 

o 

7.4 Consistency and Strictness of Rewriting Systems 

Here we give decidable criteria for the consistency and strictness (defined in 

Subsection 5.1) of rewriting system with partial functions. 

Theorem 7.26. (Consistency) Let n be an admissible rewriting system
:+::-. 

such that 
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Proposition 7 .24 .  Let R be an admissible rewriting system and F be a set of

'R-function symbols. Then s ”"‚izT t if s 4;“? t .  Fhrthezmore, every critical

pair of RF is a critical pair of ’RT .

Although ’RF and RT have the same rules, the converse of the proposition
doesn’t hold since in 'RF-derivations the variables of a rewrite rule cannot be
instantiated to terms containing function symbols of F because such terms
have only the sort T and the variables in the rewrite rules range over basic
sorts. Thus the lifted system RF admits only those RT—derivations that are,
roughly speaking, innermost with respect to F .  This is of pratical interest since
innermost rewriting can be implemented more efficiently than general rewrit-
ing. Furthermore, narrowing with the lifted system 'RF has a smaller search
space than narrowing with ’RT since the rewrite rules have fewer instances in
RF than they have in RT.

Nevertheless, the following theorem tells us that once we have established
the ground confluence of RF we can as well rewrite in RT.

Theorem 7.25.  Let F be completely defined in an admissible rewriting sys-
tem R. Then RT is ground confluent if RF is ground confluent.

Proof Let RF be ground confluent. To show that ‘RT is ground confluent,
suppose that s “*n u and .s “";a'r @, Where s ,  n and v are ground terms. By
Theorem 7.17 we know that the equations s £: u and s & v are valid in RF .
Since RF is ground confluent and compatible, We know Si’RFu and SiRF‘U.
Hence ULRFU by the ground confluence of RF. Thus u 1731- v since RF g RT.
Cl

7.4 Consistency and Strictness of Rewriting Systems

Here we give decidable criteria for the consistency and strictness (defined in
Subsection 5.1) of rewriting system with partial functions.

Theorem 7.26. (Consistency) Let ’R. be an admissible rewriting system
such that “.
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1. the left-hand side of every nonbasic rule of n is nonbasic in n 

2. n T is ground confJ.uent. 

Then nand nT are consistent. 

Proof Let 8 . t be a ground nB-equation that is valid in n. By Theorem 

7.5 we know that S . t is valid in nT. Since nT is ground confluent and 

compatible, we know that there exists an nT -term u such that 8 -+~T U and 

t -+~T u. Since sand t are basic n-terms and the left-hand side of every 

nonbasic rule is nonbasic, we know that S -+~T U and t -+~T u. Thus 8 . t 
B B 

is valid in nI. Hence we know by Theorem 7.5 that 8 ~ t is valid in nB. 0 

Proposition 7.27. Let n be an admissible rewriting system. Then an admis­

sible n-term is sensible in n if and only if it is sensible in n T. Furthermore, 

n is a strict specification if n T is a strict specification. 

Proof Follows from Propositon 7.2 .nd Theorem 7.5. o 

Let ~ be a strict signature. We call a ~-term simple in ~ if it has the 

form f(Sl, ... ,Sn), where f is nonbasic and Sl, ... ,Sn are basic in~. Every 

'E-instance of a simple ~-term is simple in ~. 

We call an admissible rewriting system n respectful if the left-hand side 

of every nonbasic rule of n is simple in n. 

Lemma 7.28. Let n be a respectful rewriting system. Furthermore, let 8 be 

a ground n T -term and t be a basic n T -term such that 8 -+;'T t. Then, for 

every subterm s/1f of8, there exists a basic n T -term u such that s/1f -+;'T U. 

Proof Let s/1f be a subterm of s. We show by induction on the length 

of the derivation 8 -+;'T t that there exists a basic nT -term u such that 

s/1f -+;'T U. If 8 = t, then the claim is trivial. Otherwise, there exists a term 

SI such that S -+'R-T SI -+~T u, where S -+'R-T SI by a rewrite step at position 

1f1 of 8. If 1f is below 1f1, then s/1f is basic since 8/1f1 is simple because n is 
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1. the left-hand side of every nonbasic rule of R is nonbasic in R

2. RT is ground confluent.

Then R and RT are consistent.

Proof Let s & t be a ground RB-equation that is valid in R. By Theorem
7.5 we know that s ='= t is valid in RT. Since RT is ground confluent and
compatible, we know that there exists an RT—term u such that s —->*R.‚. n and
t “>33 u .  Since 3 and t are basic R-terms and the left-hand side of every
nonbasic rule is nonbasic, we know that s 4;;- u and t “+32; u.  Thus .s & 75

is valid in R; . Hence we know by Theorem 7.5 that s & t is valid in RB. [[

Proposition 7.27. Let R be an admissible rewriting system. Then an admis-
sible R—term is sensible in R if and only if it is sensible in RT. Furthermore,
R is a strict specification if RT is a strict specification.

Proof Follows from Propositon 7.2 and Theorem 7.5. El

Let E be a strict signature. We call a E-term simple in 2 if it has the
form f(.91,.  . . , s „ ) ,  where f is nonbasic and 31, . . . ‚ sn  are basic in E .  Every
E—instance of a simple E-term is simple in Z}.

We call an admissible rewriting system R respectful if the left-hand side
of every nonbasic rule of R is simple in R.

Lemma 7.28. Let R be a respectfiil rewriting system. Furthermore, let 3 be
&. ground RT—term and t be  a basic RT-term such that s ""36!“ t .  Then, for

every subterm s/7r ofs,  there exists a basic RT-term u such that s/7r Riff u .

Proof. Let s/vr be a subterm of 3. We show by induction on the length
of the derivation 3 “**RT t that there exists a basic RT—term u. such that
s/rr —>i'‚‘a.r u .  If s = t ,  then the claim is trivial. Otherwise, there exists a term
s '  such that s —>R-r s '  _);a-r u ,  where s ~473- s '  by a rewrite step at position
7r' of 5. If vr is below ';r', then 3/77 is basic since 3 /  71" is simple because R is
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respectful. Otherwise, there exists a subterm s" of s' such that s/7r -tnT s". 
By the induction hypothesis we know that there exists a basic nT -term u such 

that 8" -t~T u. Hence s/7r -t~T u. 0 

Theorem 7.29. (Strictness) Let R be a respectful rewriting system such 

that nT is ground confluent and every basic rule ofR is sort decreasing. Then 

n T and n are strict specifications. 

Proof. Because of Proposition 7.27 it suffices to show that nT is a strict 

specification. Let 8 be a ground and sensible nT -term. We have to show that 

every subterm of 8 is sensible in RT. Since s is sensible, there exists a ground 

and basic n T -term t such that 8 =nT t. Since R T is ground confluent, there 

exists an nT-term u such that s -t~T u and t -t~T u. Since t is basic in 

nT and every basic rule of n is sort decreasing, we know that u is a. basic 

nT-term. Hence we know by the preceding lemma that every subterm of s is 

sensible in nT. 0 

Example 7.30. Let n be a stratification of the specification in Figures 5.3 and 

5.4 with respect to the functions declared as partial (including the auxiliary 

functions for the conditionals). Then n is obviously a sort decreasing and 

respectful rewriting system. Furthermore, we know by a theorem in [Huet 

80] that nT is confluent since it has no overlaps and all left-hand sides are 

linear (that is, no variable occurs more than once). (Of course, the theorem 

in [Huet 80] is only proven for unsorted rewriting; so you have to believe us 

that is also holds for sort decreasing rewriting.) Thus n is a consistent and 

strict specification. Since ==, ~ and update are completely defined, one could 

in addition stratify with respect to them without changing the initial algebra 

semantics. In this case one would obtain an equation-free base specification 

just consisting of the signature equations in Figure 5.3. 
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respectful. Otherwise, there exists a subterm 3" of s’ such that .5/71' —+R-r s"  .
By the induction hypothesis we know that there exists a basic RT-term u such
that 3" ”**‘RT u.  Hence s/vr *iz'r u .  El

Theorem 7.29.  (Strictness) Let R be a respectfiil rewriting system such
that RT is ground confluent and every basic rule of ’R is sort decreasing. Then

RT and ??, are strict specifications.

Proof: Because of Proposition 7.27 it  suffices to show that RT is a strict
specification. Let s be a ground and sensible RT—term. We have to show that
every subterm of 3 is sensible in 721-. Since 3 is sensible, there exists a ground
and basic ’RT—term t such that s =R-r t. Since RT is ground confluent, there
exists an RT-term u such that .s ——>‚*R-‚- u. and t ”+33- u .  Since t is basic in
RT and every basic rule of 72, is sort decreasing, we know that u is a . basic
RT-term. Hence we know by the preceding lemma. that every subterm of 3 is
sensible in RT. I:]

Example 7.30. Let ‘R be a stratification of the specification in Figures 5.3 and
5 .4  with respect to the functions declared as partial (including the auxiliary
functions for the conditionals). Then ’R is obviously a sort decreasing and
respectful rewriting system. Furthermore, we know by a theorem in [Huet
80] that RT is confluent since it has no overlaps and all left-hand sides are
linear (that is, no variable occurs more than once). (Of course, the theorem
in [Huet 80] is only proven for unsorted rewriting; so you have to believe us
that is also holds for sort decreasing rewriting.) Thus R is a consistent and
strict specification. Since ===, S and update are completely defined, one could
in addition stratify with respect to them without changing the initial algebra
semantics. In this case one would obtain an equation—free base specification
just consisting of the signature equations in Figure 5.3.
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