
593035n
83-0

oqom

cootm
oa

5939239.
E

tem
zc:

5565?.
52050500”.

Gert Smolka
SEKI Report SR-87-11

lau

9„m
Mnr

‚m
w

m
U

ed
w

m

an
T

o
D

..
eR

5.s

..

2m
m

SEKI Report SR-87-11, Universitiit Kaiserslautern, West Germany, February 1988

TEL (Version 0.9)

Report and User Manual

Gert Smolka

FE Informatik, Universitiit Kaiserslautern
6750 Kaiserslautern, West Germany

smolka@uklirb.uucp

Abstract

TEL is a second generation logic programming language integrating types and functions with
relational programming a la Prolog. Relations are defined as in Prolog and are executed by
typed resolution and backtracking. Functions are defined with conditional equations and are
executed by typed innermost rewriting.

The most innovative aspect of TEL is its type system, which accommodates parametric
polymorphism as in 1'.1L and subtypes as in OBJ2. Variables need not be declared since TEL's
type checker infers their most general types automatically. Types are present at runtime
through typed matching and unification: values are tested for membership in subtypes and
variables are constrained to subtypes.

TEL is not a toy language. Almost the entire TEL system has been written in TEL. TEL
has a module facility supporting the incremental construction of large programs. Furthermore,
TEL supports type-safe file handling and other extra-logical operations.

Acknowledgments: This research was funded by the Bundesminister fur Forschung
und Technologie under grant ITR8501A. Version 0.9 of TEL is being implemented by Costa
Moissiadis, Werner Nutt, Reinhard Praeger, Ralf Scheidhauer, and Georg Seu!. The first
version of TEL was implemented by Michael Schmitt.

SEKI Report SR-87-11 , Universität Kaiserslautern, West Germany, February 1988

TEL (Version 0.9)

Report and User Manual

Gert Smolka

FB Informatik, Universität Kaiserslautern
6750 Kaiserslautern, West Germany

smolka@uklirb. u 110p

Abstract

TEL is a second generation logic programing language integrating types and functions with
relational programming a la Prolog. Relations are defined as in Prolog and are executed by
typed resolution and backtracking. Functions are defined with conditional equations and are
executed by typed innermost rewriting.

The most innovative aspect of TEL is its type system, which accommodates parametric
polymorphism as in ML and subtypes as in OBJ 2. Variables need not be declared since TEL’s
type checker infers their most general types automatically. Types are present at runtime
through typed matching and unification: values are tested for membership in subtypes and
variables are constrained to subtypes.

TEL is not a toy language. Almost the entire TEL system has been written in TEL. TEL
has a module facility support ing the incremental construction of large programs. Furthermore,
TEL supports type-safe file handling and other extra-logical operations.

Acknowledgments: This research was funded by the Bundesminister für Forschung
und Technologie under grant ITR8501A. Version 0.9 of TEL is being implemented by Costa
Moissiadis, Werner Nut t , Reinhard Praeger, Ralf Scheidhauer, and Georg Seul. The first
version of TEL was implemented by Michael Schmit t .

mailto:smolka@uklirb.uucp

Contents

1 Introduction 1

2 Types 6

3 Functions 15

4 Built-in Types 20

5 Relations 26

6 Modules 36

7 Open Variables 53

8 Type Checking 63

9 Streams and Procedures 71

10 More on Conditions 79

11 Data Bases 84

Appendices

A Built-ins . 86

B Syntax . 94

C Manager Commands 103

D Limitations of the Current Implementation 107

Contents
(‚

D
m

‘Q
O

JO
I I

-Ä
w

lo
' r

- i

1

I-l
I -

‘O
U

0w
>

Introduction
Types
Functions
Built-in Types
Relations
Modules ‘
Open Variables
Type Checking
Streams and Procedures

More on Conditions . .

Data Bases

Appendices

Built—ins
Syntax
Manager Commands . .

. 1

. 6
. 1 5

. 20
. 26
. 36
. 53
. 63
. 71
. 79
. 8 4 .

. 86
94

. 103
Limitations of the Current Implementation 107

1 Introduction

TEL, an acronym for types, equations and logic, is a second generation logic

programming language. It is the practical outcome of a research effort aimed

at the integration of types and functions with logic programming a la Prolog.

Here are some highlights of TEL:

•	 TEL is a functional language. Functions are defined with conditional

equations and are executed by innermost rewriting.

•	 TEL is a relational language. Relations are defined with Horn clauses and

are executed by resolution and backtracking.

•	 Relations are declared with fixed input and output arguments, the con

sistent use of which is checked automatically at compile time. These data

flow declarations provide for a simple and clean operational interaction

between functions and relations.

•	 The data flow discipline can be weakened by declaring variables as open.

Thus the full generality of logical variables in Prolog is available if needed.

•	 TEL is a typed language. It is the first language supporting both subtypes

(as in OBJ2) and polymorphic type constructors (as in ML). Every well

typed term has a unique least type depending functionally on the types

of the variables occurring in the term.

•	 TEL computes with types. Types are present at run-time through typed

matching and unification: values are tested for membership in subtypes

and open variables are constrained to subtypes.

•	 TEL has a module facility supporting the incremental construction of

large programs. After the interface structure of a system has been fixed,

every module can be compiled separately.

•	 TEL is a logic programming language. TEL's kernel language is based

on a first-order, typed, definite clause logic with equality giving an initial

algebra semantics to programs.

Section 1 1

1 Introduction

TEL, an acronym for types, equations and logic, is a second generation logic
programming language. I t is the practical outcome of a research effort aimed
at the integration of types and functions with logic programming a la Prolog.
Here are some highlights of TEL:

. TEL is a functional language. Functions are defined with conditional
equations and are executed by innermost rewriting.

. TEL is a relational language. Relations are defined with Horn clauses and
are executed by resolution and backtracking.

. Relations are declared with fixed input and output arguments, the con-
sistent use of which is checked automatically at compile time. These data
flow declarations provide for a simple and clean operational interaction
between functions and relations.

. The data flow discipline can be weakened by declaring variables as open.
Thus the full generality of logical variables in Prolog is available if needed.

. TEL is a typed language. It is the first language supporting both subtypes
(as in OBJZ) and polymorphic type constructors (as in ML). Every well-
typed term has a unique least type depending functionally on the types
of the variables occurring in the term.

0 TEL computes with types. Types are present at run-time through typed

matching and unification: values are tested for membership in subtypes
and open variables are constrained to subtypes.

. TEL has a module facility supporting the incremental construction of
large programs. After the interface structure of a system has been fixed,
every module can be compiled separately.

. TEL is a logic programming language. TEL’s kernel language is based
on a first-order, typed, definite clause logic with equality giving an initial
algebra semantics t o programs.

Sec t ion 1 1

•	 TEL is a practical language. It supports type-safe file handling and other

extra-logical operations. Almost the entire TEL system is written in TEL.

•	 TEL is an interactive language. The user enters queries, which are type

checked, compiled, and executed. The results of a query are reported

together with their least types.

Most of the theoretical and practical effort was devoted to the development

of TEL's type system. So far TEL is the only language integrating parametric

polymorphism Et la ML [Harper et al. 86] with subtypes Et la OBJ2 [Futatsugi

85]. This combination regains much of the flexibility of untyped languages such

as Lisp and Prolog while providing the classical advantages of typed languages:

•	 The data structures used by a program can be defined explicitly. This

leads to clearer, much easier to understand programs. The explicit defi

nition of data structures is particularly beneficial if they are complex, as

it is typically the case in Artificial Intelligence.

•	 Type checking detects many programming errors at compile time, a fea

ture whose importance is proportional to the size of the program under

development.

The presence of subtypes makes TEL's type system more than a syntactic

discipline merely visible at compile time. TEL actually computes with types:

at run time values are tested for membership in subtypes and variables are

constrained to subtypes. Constraining variables to subtypes rather than bind

ing them tentatively to particular elements (as in Prolog) avoids expensive

backtracking.

The combination of parametric polymorphism with subtypes poses many

interesting research problems: the design of a logic supporting these features,

the development of the necessary type checking algorithms (which are nontriv

ial), and the development of an operational semantics having typed rewriting

and unification as its major components. These problems are adressed in my

thesis [Smolka 88], which provides the theoretical foundation for TEL. Another

paper contributing to the theoretical foundation of TEL is [Smolka et al. 87],

2	 Section 1

. TEL is a practical language. It supports type-safe file handling and other
extra—logical operations. Almost the entire TEL system is written in TEL.

. TEL is an interactive language. The user enters queries, which are type
checked, compiled, and executed. The results of a query are reported
together with their least types.

Most of the theoretical and practical effort was devoted to the deveIOpment
of TEL’s type system. So far TEL is the only language integrating parametric
polymorphism a la ML [Harper et al. 86] with subtypes a la OBJZ [Futatsugi
85]. This combination regains much of the flexibility of untyped languages such
as Lisp and Prolog While providing the classical advantages of typed languages:

. The data structures used by a program can be defined explicitly. This
leads to clearer, much easier to understand programs. The explicit defi-
nition of data structures is particularly beneficial if they are complex, as
i t is typically the case in Artificial Intelligence.

0 Type checking detects many programming errors at compile time, a fea-
ture whose importance is proportional to the size of the program under
development.

The presence of subtypes makes TEL’s type system more than a syntactic
discipline merely visible at compile time. TEL actually computes with types:
at run time values are tested for membership in subtypes and variables are
constrained to subtypes. Constraining variables to subtypes rather than bind-
ing them tentatively to particular elements (as i n Prolog) avoids expensive
backtracking.

The combination of parametric polymorphism with subtypes poses many
interesting research problems: the design of a logic supporting these features,
the development of the necessary type checking algorithms (which are nontriv—
ial), and the development of an operational semantics having typed rewriting
and unification as i t s major components. These problems are adressed in my
thesis [Smolka 88], which provides the theoretical foundation for TEL. Another
paper contributing to the theoretical foundation of TEL is [Smolka et a1. 87],

2 Sec t ion 1

which studies computational aspects of an equationallogic with subsorts.

The goal in designing TEL was to come up with a practical language that

is a significant improvement over Prolog and can be implemented efficiently

right now. The quest for practicability strongly constrained the design of TEL:

•	 Functions are executed by innermost rewriting rather than by the more

general narrowing. If there is a need to solve for variables, this still can be

done with relations. One advantage of executing functions with rewriting

is that the programmer doesn't need to worry about their control. Fur

thermore, executing functions with innermost rewriting can compete with

the efficiency of pure Lisp, which gains a magnitude in speed over current

Prolog implementations.

•	 Relations must be declared with fixed input and output arguments. This

ensures a clean operational interaction between functions and relations

and is in accordance with common Prolog programming style. Having

explicit data flow declarations and checking their consistent use at com

pile time contributes significantly to the clarity of programs. If the full

generality of logical variables is needed, which is typically the case only

at a few places in a large program, it can be obtained by bypassing the

data flow discipline by declaring variables as open. While this approach

is quite unsatisfactory from a theoretician's point of view, our program

ming experience in TEL suggests that it is very practical. One major

use of logical variables is the implementation of open data structures, for

instance, tables that are created incrementally at run time. In TEL open

data structures can be implemented as abstract data types, thus making

it possible to hide the use of open variables.

•	 Logic alone does not suffice for a practical programming language. Hence

TEL has several extra-logical features including modules, control struc

tures, stream-based file handling and data bases. All of TEL's extra

logical features are type safe.

To ensure TEL's practicability, I decided to implement TEL with a boot

strapped approach so that we could write most of the TEL system in TEL.

Section 1 3

which studies computational aspects of an equational logic with subsorts.

The goal in designing TEL was to come up with a practical language that

is a significant improvement over Prolog and can be implemented efficiently
right now. The quest for practicability strongly constrained the design of TEL:

o Functions are executed by innermost rewriting rather than by the more
general narrowing. If there is a need to solve for variables, this still can be
done with relations. One advantage of executing functions with rewriting
is that the programmer doesn’t need to worry about their control. Fur-
thermore, executing functions with innermost rewriting can compete with
the efficiency of pure Lisp, which gains a magnitude in speed over current
Prolog implementations.

o Relations must be declared with fixed input and output arguments. This
ensures a clean operational interaction between functions and relations
and is in accordance with common Prolog programming style. Having
explicit data flow declarations and checking their consistent use at com—
pile time contributes significantly to the clarity of programs. If the full
generality of logical variables is needed, which is typically the case only
at a few places in a large program, i t can be obtained by bypassing the
data flow discipline by declaring variables as open. While this approach
is quite unsatisfactory from a theoretician’s point of View, our program—
ming experience in TEL suggests that i t is very practical. One major
use of logical variables is the implementation of Open data structures, for
instance, tables that are created incrementally at run time. In TEL open
data structures can be implemented as abstract data types, thus making
it possible to hide the use of open variables.

0 Logic alone does not suffice for a practical programming language. Hence
TEL has several extra-logical features including modules, control struc—

tures, stream—based file handling and data bases. All of TEL’s extra—
logical features are type safe.

To ensure TEL’s practicability, I decided to implement TEL with a boot—
strapped approach so that we could write most of the TEL system in TEL.

Sec t ion 1 3

This still provides an excellent test case for TEL and many of the features of

version 0.9 of TEL grew out of the experience made when implementing earlier

versions of TEL.

At the time this report is published (February 1988), we have almost

finished an implementation of version 0.9 of TEL [Nutt/Smolka 88]. This im

plementation runs on Quintus Prolog under UNIX 4.2 BSD on Apollo work

stations and will be distributed freely including the program sources. Most of

the implementation is written in TEL. The frontend of the compiler produces

an intermediate language, which the backend translates to Quintus Prolog en

hanced with a small run-time system. TEL programs that are comparable to

Prolog programs run at the same speed as their Prolog equivalents.

Since the current implementation employs Prolog as the target language,

the backend ofthe compiler is simple and we could concentrate on the frontend

and the programming environment, which turned out to be complex due to

type and module checking. To achieve a reasonably efficient execution, we were

forced to map TEL's typed unification more or less directly to Prolog's untyped

unification. Consequently, the current implementation cannot constrain open

variables to subtypes. The solution to this problem will be the development of

an abstract machine tailored to TEL's needs. The abstract machine will also

allow for many optimizations exploiting the presence of functions and types

that aren't possible at the level of Prolog.

Currently we are investigating several extensions that could be part of

version 1.0 of TEL. Among them are feature types and inheritance hierarchies

[Smolka/A'it-Kaci 87], which would provide record notation and feature uni

fication. Another line of research tries to accommodate types as first-class

citizens and to allow for dependent types. Finally, we would like to have the

possibility to pass functions and relations as arguments.

This report describes version 0.9 of TEL from the viewpoint of a pro

grammer who has programming experience in Prolog but is not necessarily

interested in TEL's theoretical foundations. It is complemented by my the

sis [Smolka 88], which provides the theoretical foundations and develops, in a

4 Section 1

This still provides an excellent test case for TEL and many of the features of
version 0.9 of TEL grew out of the experience made when implementing earlier
versions of TEL.

At the time this report is published (February 1988), we have almost
finished an implementation of version 0.9 of TEL [Nutt/Smolka 88]. This im—
plementation runs on Quintus Prolog under UNIX 4.2 BSD on Apollo work—
stations and will be distributed freely including the program sources. Most of
the implementation is written in TEL. The frontend of the compiler produces
an intermediate language, which the backend translates to Quintus Prolog en-
hanced with a small run—time system. TEL programs that are comparable to
Prolog programs run at the same speed as their Prolog equivalents.

Since the current implementation employs Prolog as the target language,
the backend of the compiler is simple and we could concentrate on the frontend
and the programming environment, which turned out to be complex due to
type and module checking. To achieve a reasonably efficient execution, we were
forced to map TEL’s typed unification more or less directly to Prolog’s untyped
unification. Consequently, the current implementation cannot constrain open
variables to subtypes. The solution to this problem will be the development of
an abstract machine tailored to TEL’s needs. The abstract machine will also
allow for many optimizations exploiting the presence of functions and types
that aren’t possible at the level of Prolog.

Currently we are investigating several extensions that could be part of
version 1.0 of TEL. Among them are feature types and inheritance hierarchies
[Smolka/A'it—Kaci 87], which would provide record notation and feature uni—
fication. Another line of research tries to accommodate types as first-class
citizens and to allow for dependent types. Finally, we would like to have the
possibility to pass functions and relations as arguments.

This report describes version 0.9 of TEL from the viewpoint of a pro-
grammer who has programming experience in Prolog but is not necessarily
interested in TEL’s theoretical foundations. I t is complemented by my the—
sis [Smolka 88], which provides the theoretical foundations and develops, in a

4 Sec t ion 1

more general setting, the employed type checking and unification algorithms.

References

K. Futatsugi, J.A. Goguen, J.-P. Jouannaud and J. Meseguer, Principles of

OBJ2. POPL 1985, 52-66.

R. Harper, D. MacQueen, and R. Milner, Standard ML. Report ECS-LFCS

86-2, Edinburgh University, Scotland, March 1986.

W. Nutt and G. Smolka, Implementing TEL. SEKI Report, Universitat

Kaiserslautern, West Germany, 1988, forthcoming.

G. Smolka, Classified Logic: Semantics, Deduction, Type Checking and Com

putation. Dissertation, Universitat Kaiserslautern, West Germany, 1988, forth

commg.

G. Smolka and H. Alt-Kaci, Inheritance Hierarchies: Semantics and Unifica

tion. To appear in Symbolic Computation, Special Issue on Unification Theory,

1988. Report AI-057-87, MCC, Austin, Texas, May 1987.

G. Smolka, W. Nutt, J.A. Goguen and J. Meseguer, Order-Sorted Equational

Computation. Presented at the Colloquium on the Resolution of Equations

in Algebraic Structures, Austin, Texas, May 1987. SEKI Report SR-87-14,

Universitat Kaiserslautern, West Germany, December 1987.

Section 1 5

more general setting, the employed type checking and unification algorithms.

References

K. Futatsugi, J .A . Goguen, J .»P. Jouannaud and J . Meseguer, Principles of
OBJ2. POPL 1985, 52—66.

R. Harper, D. MacQueen, and R. Milner, Standard ML. Report ECS-LFCS—

86—2, Edinburgh University, Scotland, March 1986.

W. Nutt and G . Smolka, Implementing TEL. SEKI Report, Universität
Kaiserslautern, West Germany7 1988, forthcoming.

G . Smolka, Classified Logic: Semantics, Deduction, Type Checking and Com—
putation. Dissertation, Universitat Kaiserslautern, West Germany, 1988, forth-
coming.

G . Smolka and H . Ai't-Kaci, Inheritance Hierarchies: Semantics and Unifica-
tion. To appear in Symbolic Computation, Special Issue on Unification Theory,
1988. Report AI-057-87, MCC, Austin, Texas, May 1987.

G. Smolka, W. Nut t , J.A. Goguen and J . Meseguer, Order-Sorted Equational
Computation. Presented at the Colloquium on the Resolution of Equations
in Algebraic Structures, Austin, Texas, May 1987. SEKI Report SR-87-14,
Universität Kaiserslautern, West Germany, December 1987.

Sec t ion 1 5

2 Types

About the most simple kind of type definition you can write in TEL is

color := {red, blue, green}.

This definition introduces the type constructor color together with the three

value constructors red, blue and green. The definition states that the type

color has exactly three elements which are denoted by the given value con

structors.

Definitions cannot be given directly to TEL but must be part of a module.

After you have activated TEL, you can enter the command

TEL> #edit_module(test).

and an editor window will pop up on the screen containing an empty module

with the name test:

module test.

endmodule.

Now you can add definitions, for instance:

module test.

color := {red, blue, green}.

endmodule.

After you have saved the editor window you can enter the command

TEL> #open(test).

and TEL will type-check, compile, load, and open the module test. Now you

can type the term

YEL> red.

and TEL will respond

red : color

6 Section 2

2 Types

About the most simple kind of type definition you can write in TEL is

color := { r ed , b lue , green}.

This definition introduces the type constructor co lo r together with the three
value constructors r ed , blue and green. The definition states that the type
color has exactly three elements which are denoted by the given value con—
structors.

Definitions cannot be given directly to TEL but must be part of a module.
After you have activated TEL, you can enter the command

TEL> #ed i t_modu le (t e s t) .

and an editor window will pop up on the screen containing an empty module
with the name t e s t :

module t e s t .

endmodu le .

N ow you can add definitions, for instance:

module t e s t .

co lo r := { r ed , b lue , g r een} .

endmodu le .

After you have saved the editor window you can enter the command

TEL> #open(t e s t) .

and TEL will type-check, compile, load, and open the module t e s t . Now you

can type the term

TEL> r ed .

and TEL will respond

r ed : color

6 Sec t ion 2

which means that the term red reduces to the term red having the least type

color. In TEL every well-typed ground term, that is, a well-typed term not

containing variables, has a unique least type.

To obtain a type with infinitely many elements you need to use recursion.

For instance, try something like

tree := {etree,

netree: tree x %left subtree

tree}. %right subtree

The elements of tree are the closed terms that can be build with the value

constructors etree and netree, where the two arguments of netree must be

of type tree. The recursion comes in through the binary value constructor

netree: tree x tree --> tree.

After you have opened a module with the definition of tree you can type the

term

TEL> netreeCnetreeCetree, etree), etree).

and TEL will respond with:

netreeCnetreeCetree, etree), etree) tree

TEL>

An important feature of TEL is that types can be defined as the union of

types. For instance, you can define binary trees also as

tree := empty_tree ++ nonempty_tree.

empty_tree := {etree}.

nonempty_tree := {netree: tree x tree}.

With this definition empty_tree and nonempty_tree are subtypes of tree.

After you have opened a module containing this definition of tree you can

type

TEL> etree.

Section 2 7

which means that the term red reduces to the term red having the least type

color. In TEL every well—typed ground term, that is, a well~typed term not
containing variables, has a unique least type.

To obtain a type with infinitely many elements you need t o use recursion.
For instance, try something like

t ree := {e t r ee ,

ne t r ee : t r ee x %1ef t sub t r ee

t r ee} . %right subt ree

The elements of t ree are the closed terms that can be build with the value

constructors e t ree and ne t ree , where the two arguments of netree must be
of type t r ee . The recursion comes in through the binary value constructor

ne t r ee : t r ee x t r ee - -> t r ee .

After you have opened a module with the definition of tree you can type the
term

TEL> ne t r eeCne t r ee (e t r ee , e t r ee) , etree).

and TEL will respond with:

ne t r ee (ne t r ee (e t r ee , e t r ee) , e t r ee) : tree

TEL>

An important feature of TEL is that types can be defined as the union of
types. For instance, you can define binary trees also as

t r ee := empty_ t ree ++ nonempty_ t r ee .

empty_tree := {e t r ee} .
nonempty_tree := {ne t r ee r t r ee x t r ee} .

With this definition empty_tree and nonempty_tree are subtypes of t r ee .
After you have opened a module containing this definition of t ree you can
type

TEL> etree.

Sec t ion 2 7

and TEL will respond with

etree : empty_tree.

If you type

TEL> netree(netree(etree, etree), etree).

TEL will respond with:

netreeCnetreeCetree, etree), etree) nonempty_tree.

The possibility to define a type as the union of subtypes contributes sig

nificantly to the expressive power of TEL's type system. You can mix subtype

definitions with constructor definitions. For instance, you can write

strange_type :=	 color ++

tree ++

{other,

strange_tree: strange_type x strange_type}.

After you have opened a module containing the definition of strange_type

you can type the following queries:

TEL> red.

red : color

TEL> etree.

etree:empty_tree

TEL> strange_treeCblue, other).

strange_treeCblue, other) : strange_type

The query

TEL> red strange_type.

succeeded.

8	 Section 2

and TEL will respond with

e t r ee : empty_ t r ee .

If you type

TEL> netree(netree(etree, e t r ee) , etree).

TEL will respond with:

ne t r ee (ne t r ee (e t r ee , e t r ee) , e t r ee) : nonempty_ t ree .

The possibility to define a type as the union of subtypes contributes sig—
nificantly to the expressive power of TEL’s type system. You can mix subtype
definitions with constructor definitions. For instance, you can write

s t range_type := color ++

tree ++

{o the r ,

s t range_t ree : s trange_type x strange_type}.

After you have opened a. module containing the definition of s trange_type
you can type the following queries:

TEL) r ed .

red : color

TEL> etree.

etree:empty_tree

TEL> s t range_ t ree (b lue , o the r) .
s t r ange_ t r ee (b lue , o the r) : strange_type

The query

TEL> red : strange„type.
succeeded .

8 Sec t ion 2

is a so-called containment, which tests whether the value of the term given at

its left-hand side is an element of the type given at its right-hand side. If you

type

red:tree.

TEL	 will respond with

***	 type error in condition 1:

least type of red is color;

color and tree don't have a common subtype

since the type checker determines that the given containment cannot hold.

Trees labelled with colors can be defined as follows:

tree := empty_tree ++ nonempty_tree.

empty_tree := {etree}.

nonempty_tree := {netree: tree x tree x color}.

TEL also provides for polymorphic type definitions. The following is a

polymorphic definition of labelled trees:

tree(T) := empty_tree ++ nonempty_tree(T).

empty_tree := {etree}.

nonempty_tree(T) := {netree: tree x tree x T}.

The letter T is a variable that ranges over types and parameterizes the defini

tion of tree and non_emptytree with respect to the type of the labels. This

polymorphic definition introduces infinitely many types, for instance,

tree(color), tree(tree(color», tree(tree(tree(color»),

After you have opened a module containing the polymorphic definition of la-

Section 2 9

is a so—called containment, which tests whether the value of the term given at

its left—hand side is an element of the type given at i ts right-hand side. If you

type

r edz t r ee .

TEL will respond with

*** type error i n condition 1 :

l ea s t t ype o f red i s color;

color and t r ee don ’ t have a common subtype

since the type checker determines that the given containment cannot hold.

Trees labelled with colors can be defined as follows:

t r ee := empty_t ree ++ nonempty_ t ree .

empty_tree := {e t r ee} .
nonempty_tree := {ne t r ee : t r ee x t r ee x color}.

TEL also provides for polymorphic type definitions. The following is a
polymorphic definition of labelled trees:

t r ee (T) := empty_tree ++ nonempty_tree(T).
empty_tree := {e t r ee} .
nonempty_tree(T) := {netreez t ree x tree x T}.

The letter T is a variable that ranges over types and parameterizes the defini-
tion of t r ee and non_emptytree with respect to the type of the labels. This
polymorphic definition introduces infinitely many types, for instance,

t r eeCco lo r) , t r ee (t r ee (co lo r)) , t r ee (t r ee (t r ee (co lo r))) ,

After you have opened a module containing the polymorphic definition of 1a-

Sec t ion 2 9

belled trees and the definition of color, you can type the following queries:

TEL> etree.

etree : empty_tree

TEL> netreeCetree, etree, red).

netreeCetree, etree, red) : nonempty_treeCcolor)

TEL> netreeCetree, etree, etree).

netreeCetree, etree, etree) : nonempty_treeCempty_tree)

TEL> netreeCetree, etree, netreeCetree, etree, red».

netreeCetree, etree, netreeCetree, etree, red» :

nonempty_treeCnonempty_treeCcolor).

The syntax of variables that range over types is the same as for variables

that range over elements of types: they must start with a capital letter and

can then continue with capital and small letters, digits, and the underline

character '_' .

All type constructors you can define in TEL are monotonic with re

spect to the subtype order. For instance, tree Cempty_tree) is a subtype

oftreeCtreeCcolor» since empty_tree is asubtypeoftreeCcolor). Fur

thermore, empty_tree is a subtype oftree(tree(color» since empty_tree

is a subtype of tree (t) for every type t.

The following polymorphic definition of lists is built-in in TEL:

list(T) := elist ++ nelist(T).

elist := {nil}.

nelist CT) : = {. : T x list (T)}.

For syntactical convenience, TEL treats the value constructor' .' as a right

associative infix operator. For instance, if you have opened module with the

definition of color, you can type the query

TEL> red.blue.green.nil

and TEL will respond

red.blue.green.nil nelist(color).

10 Section 2

belled trees and the definition of co lo r , you can type the following queries:

TEL> e t r ee .

etree : empty_tree

TEL> ne t r ee (e t r ee , e t r ee , red).

netreeCetree, e t r ee , red) : nonempty_tree(color)
TEL> ne t r eeCe t r ee , e t r ee , e t r ee) .

ne t r ee (e t r ee , e t r ee , e t ree) : nonempty_tree(empty_tree)
TEL> netreeCetree, e t r ee , netreeCetree, e t r ee , r ed)) .
netreeCetree, e t r ee , netree(etree‚ e t r ee , r ed))

nonemptyfi t r ee (nonempty_ t r ee (co lo r)) .

The syntax of variables that range over types is the same as for variables
that range over elements of types: they must start with a capital letter and
can then continue with capital and small letters, digits, and the underline
character ‘_’ .

All type constructors you can define in TEL are monotonic With re—
spect to the subtype order. For instance, t ree-(empty_tree) is a subtype
of t r ee (t r ee (co lo r)) since empty_tree is a subtype of t reeCcolor) . Fur—
thermore, empty_tree is a subtype of t r ee (t r ee (co lo r)) since empty_tree
is a subtype of t r ee (t) for every type t .

The following polymorphic definition of lists is built—in in TEL:

l i s t (T) := e l i s t ++ ne l i s t (T) .

e l i s t := {n i l } .

ne l i s t (T) := { . : T x listCT)}.

7For syntactical convenience, TEL treats the value constructor ‘ . as a right—
associative infix Operator. For instance, if you have opened module with the
definition of co lo r , you can type the query

TEL> r ed .b lue .g reen .n i l

and TEL will respond

red .b lue .g reen .n i l : nelist(color).

10 _ Sec t ion 2

Pairs are another built-in polymorphic type of TEL:

L##R := {# : L x R}.

For syntactical convenience, TEL treats the binary type constructor '##' and

the binary value constructor '#' as right-associative infix operators.

A type definition whose right-hand side consists of a single type term

defines a type abbreviation. For instance,

assoc_list (Key, T) : = list (Key##T) .

introduces the type abbreviation assoc_list. You can now write as

soc_list (color, bool) for list (color##bool). Type abbreviations are syn

tactic sugar that is eliminated at compile-time.

Consider the type definition

ty(T) := {foo: list(T) x color}.

What do you think is the least type of foo (nil, red)? TEL will give you the

answer if you open a module with the definition of ty and pose the query:

TEL> foo(nil,red).

foo (nil, red) : ty (void) .

TEL solves the problem with the internal type void, which has no elements

and is a subtype of every type. TEL won't allow you to explicitly use void in

your programs.

By now you know TEL's basic machinery for type definitions. In later sec

tions we will discuss a few further built-in types and TEL's facility for defining

abstract types. In the rest of this section, we will state some restrictions that

type definitions in TEL must observe.

The c10sedness condition applies to all definitions you can write in TEL

and requires that in a module every occurring designator (a name for an object,

Section 2 11

Pairs are another built-in polymorphic type of TEL:

L##R := {# : L x R}.

For syntactical convenience, TEL treats the binary type constructor ‘##’ and
7the binary value constructor ‘# as right—associative infix operators.

A type definition whose right-hand side consists of a single type term
defines a type abbreviation. For instance,

as soc_ l i s t (Key ,T) := l i s t (Key##T) .

introduces the type abbreviation a s soc_ l i s t . You can now write a s -
soc_1 i s t (co lo r , boo l) for l i s t (co lo r##boo l) . Type abbreviations are syn-
tactic sugar that is eliminated at compile-time.

Consider the type definition

tyCT) := { fooz l i s t (T) x co lo r} .

What do you think is the least type of foo (n11 , r ed) ? TEL will give you the
answer if you open a module with the definition of t y and pose the query:

TEL> foo(nil,red).

foo(nil,red) : ty(void).

TEL solves the problem with the internal type vo id , which has no elements
and is a subtype of every type. TEL won’t allow you to explicitly use vo id in
your programs.

By now you know TEL’s basic machinery for type definitions. In later sec—
tions we will discuss a few further built—in types and TEL’s facility for defining
abstract types. In the rest of this section, we will s tate some restrictions that
type definitions in TEL must observe.

The closedness condition applies to all definitions you can write in TEL
and requires that in a module every occurring designator (a name for an object,

Sec t ion 2 11

for instance, a type or value constructor) must have one and only one definition.

In particular, TEL will complain if you use the same name for a type and a

constructor or if the same constructor occurs in the right-hand sides of two

different type definitions.

The minimality condition requires that

1.	 the variables occurring in the left-hand side of a type definition must be

pairwise distinct

2.	 every variable occurring in the left-hand side of a type definition must

occur in the right-hand side of the type definition, and every variable

occurring in the right-hand side of a type definition must occur in the

left-hand side of the type definition.

The completeness condition requires that two types have a greatest com

mon subtype if they have a common subtype. Thus TEL will complain if you

write

tya - {a}.

tyb := {b}.

tyc .- tya ++ tyb ++ {cl.

tyd .- tya ++ tyb ++ {d}.

since tyc and tyd have tya and tyb as common subtypes but do not have a

greatest common subtype. If you complete the above definition to

tya .- {a}.

tyb .- {b}.

tyab .= tya ++ tyb.

tyc .- tyab ++ {c}.

tyd .- tyab ++ {d}.

TEL will be happy since now tyab is the greatest common subtype of tyc and

tyd. Figure 2.1 gives a graphical representation of the two type hierarchies.

The well-foundedness condition requires that no type has infinitely many

subtypes. In contrast to the preceding conditions, which are more or less of a

12	 Section 2

for instance, a type or value constructor) must have one and only one definition.

In particular, TEL will complain if you use the same name for a type and a

constructor or if the same constructor occurs in the right-hand sides of two

different type definitions.

The minimality condition requires that

1. the variables occurring in the left—hand side of a type definition must be

pairwise distinct

2. every variable occurring in the left-hand side of a type definition must

occur in the right-hand side of the type definition, and every variable

occurring in the right—hand side of a type definition must occur in the

left-hand side of the type definition.

The completeness condition requires that two types have a greatest com-

mon subtype if they have a common subtype. Thus TEL will complain if you

vvrite

tya := {a}.

tyb := {b}.

tyc := tya ++ tyb ++ {c}.

tyd := tya ++ tyb ++ {d}.

since tyc and tyd have tya and tyb as common subtypes but do not have a

greatest common subtype. If you complete the above definition to

tya := {a}.

tyb := {b}.

tyab := tya ++ tyb.

tyc := tyab ++ {c}.

tyd := tyab ++ {d}.

TEL will be happy since now tyab is the greatest common subtype of tyc and

tyd. Figure 2.1 gives a graphical representation of the two type hierarchies.

The well-foundedness condition requires that no type has infinitely many

subtypes. In contrast to the preceding conditions, which are more or less of a

1 2 Sec t ion 2

tye tyd tye tyd

C><J V
tya tyb tyab

~

tya tyb

Figure 2.1. An incomplete type hierarchy and its completion.

cosmetic nature, this condition unfortunately excludes quite interesting type

definitions. For instance, TEL will scream at you if you write

mylist(T) := T##mylist(T) ++ {mynil}.

since, for instance, mylist (color) has infinitely many subtypes:

mylist (color) 2: color##mylist (color) 2:

The well-foundedness condition is needed so that TEL's type checker and uni

fication algorithm can work properly.

The coherence condition requires that two type terms are equal if their

outermost type constructors are equal and they both can be reached by fol

lowing subtype specifications starting from the righthand side of some type

definition. For instance, TEL will complain if you write the definitions

tyc(T) := tya(color) ++ tyb(T).

tya(T) := list(T) ++ {a: T}.

tyb(T) := list(tree(T» ++ {b: T}.

since, starting from tyc (T), one can reach both list (color) and list (tree (T»:

tyc(T) => tya(color) => list(color)

tyc(T) => tyb(T) => list(tree(T».

Section 2 13

t gc t gd t gc t gd

N \/
t ga t gh tgah

/\
t ya t yb

Figure 2.1. An incomplete type hierarchy and i ts completion.

cosmetic nature, this condition unfortunately excludes quite interesting type
definitions. For instance, TEL will scream at you if you write

myl i s tCT) := T##my1ist(T) ++ {myn i l} .

since, for instance, my l i s t (co lo r) has infinitely many subtypes:

my l i s to lo r) Z co lo r##myl i s t (co lo r) 2 — - -

The well—foundedness condition is needed so that TEL’s type checker and uni—
fication algorithm can work properly.

The coherence condition requires that two type terms are equal if their
outermost type constructors are equal and they both can be reached by fol-
lowing subtype specifications starting from the righthand side of some type
definition. For instance, TEL will complain if you write the definitions

tyc (T) = t yaCco lo r) ++ tybCT) .
tyaCT) = l i s tCT) ++ {a : T}.
tybCT) = l i s t (t r ee (T)) ++ {b : T}.

since, starting from tyc (T) , one can reach both l i s t (color) and list (tree (T)) :

tyc(T) =; t ya (co lo r) =? list(color)

tyc(T) => tyb(T) => 1ist(tree(T)).

Sec t ion 2 13

Like the well-foundedness condition, the coherence condition is needed so that

TEL's type checker and unification algorithm can work properly.

This gives you a good idea of the restrictions type definitions in TEL must

satisfy. All these restrictions are checked automatically by TEL.

In TEL it is possible to define types having no elements, for instance,

empty_type := {foo: empty_type x color}.

TEL checks for each type constructor whether it has elements and prints a

warning if it discovers an empty type constructor. We will see later that

empty types can make sense in conjunction with open data structures.

14 Section 2

Like the well-foundedness condition, the coherence condition is needed so that
TEL’s type checker and unification algorithm can work properly.

This gives you a good idea of the restrictions type definitions in TEL must
satisfy. All these restrictions are checked automatically by TEL.

In TEL it is possible to define types having no elements, for instance,

emptywtype := {fooz empty_type x co lo r} .

TEL checks for each type constructor whether i t has elements and prints a
warning if i t discovers an empty type constructor. We will see later that
empty types can make sense in conjunction with open data structures.

14 Sec t ion 2

3 Functions

Functions in TEL are defined by conditional equations and are executed by

typed rewriting. The following examples are functions for list processing, so

you may want to look again at the built-in definition of lists:

list(T) := elist ++ nelist(T).

elist := {nil}.

nelist(T) := {.: T x list(T)}.

A function that appends two lists can be defined as follows:

app: list(T) x list(T) --) list(T).

app(nil, L) = L.

app(H.T, L) = H.app(T,L).

The definition consists of three sentences: a function declaration stating the

types of the arguments and the result, and two equations defining app by

induction on the list structure of the first argument. A sentence is a sequence

of characters ending with a full stop, that is, a period followed by a layout

character, for instance, a space or a newline character. The scope of a variable

is always limited to the sentence in which it appears. Variables start with a

capital letter and can continue with letters, digits or the underline character

'_' . Thus T, L, H, and T are the variables that occur in the definition of app.

Since TEL derives the types of variables automatically, you don't have

to declare variables. The types TEL derives for the variables in the second

equation of app are:

TT:type, H:TT, T:list(TT), L:list(TT).

The type variable TT doesn't appear in the clause but is an auxiliary variable

generated by TEL's type checker. Note tat the occurrence of T in the dec

laration of app is unrelated to the occurrence of T in the second equation of

app, since the scope of a variable is always limited to the sentence in which it

occurs.

Section 3 15

3 Functions

Functions in TEL are defined by conditional equations and are executed by

typed rewriting. The following examples are functions for list processing, so

you may want to look again at the built-in definition of lists:

list(T) := elist ++ ne l i s tCT) .

e l i s t := {nil}.

nelist(T) := { . : T x list(T)}.

A function that appends two lists can be defined as follows:

app: l i s tCT) x list(T) - -> listCT).
L.

H.app(T,L).
app(n i l , L)
appCH.T , L)

The definition consists of three sentences: a function declaration stating the
types of the arguments and the result, and two equations defining app by
induction on the list structure of the first argument. A sentence is a sequence
of characters ending with a full stop, that is, a period followed by a layout
character, for instance, a space or a newline character. The scope of a variable
is always limited to the sentence in which it appears. Variables start with a
capital letter and can continue with letters, digits or the underline character
‘_’ . Thus T, L, H, and T are the variables that occur in the definition of app.

Since TEL derives the types of variables automatically, you don’t have
to declare variables. The types TEL derives for the variables in the second
equation of app are:

TT: type , HzTT, T : l i s t (TT) , L : l i s t (TT) .

The type variable TT doesn’t appear in the clause but is an auxiliary variable
generated by TEL’s type checker. Note tat the occurrence of T in the dec-
laration of app is unrelated to the occurrence of T in the second equation of
app, since the sc0pe of a variable is always limited to the sentence in which it
occu r s .

Sec t ion 3 15

TEL also supports a second, more compact syntax for function defini

tions:

app: list(T) x list(T) --> list(T).

nil, L I> L.

H.T, L I> H.app(T,L).

Since TEL has subtypes, it makes often sense to declare more than one

rank for a function, for instance:

app:	 list(T) x list(T) --> list(T),

nelist(T) x list(T) --> nelist(T),

list(T) x nelist(T) --> nelist(T).

nil, L I> L.

H.T, L I> H.app(T,L).

With this definition you can use app(s,t) as an argument for a function that

requires a nonempty list, provided s or t is a nonempty list. A fourth rank one

could declare for app is

elist x elist --) elist

but this rank will be of little use in practice.

After you have opened a module containing the definitions of color and

app, you can enter the query

app(red.blue.nil, green.blue.nil).

and TEL will respond:

red.blue.green.blue.nil : nelist(color).

The query is executed by rewriting the given term with the equations defining

app, that is, by applying them from left to right:

app(red.blue.nil, green.blue.nil)

red.app(blue.nil, green.blue.nil)

red.blue.app(nil, green.blue.nil)

red.blue.green.blue.nil.

%by

%by

%by

the

the

the

2nd equation

2nd equation

1st equation

16	 Section 3

TEL also supports a second, more compact syntax for function defini—
tions:

app : l i s tCT) x 1 i s t (T) —-> l i s t (T) .

n i l , L I> L .
H.T‚ L | > H.app(T‚L).

Since TEL has subtypes, i t makes often sense to declare more than one
rank for a function, for instance:

app : 1 i s t (T) x 1 i s t (T) ——> l i s tCT) ,

ne l i s tCT) x l i s t (T) —-> ne l i s tCT) ,

l i s t (T) x ne l i s tCT) —-> ne l i s t (T) .

n i l , L |> L .
H.T‚ L |> H .app (T ,L) .

With this definition you can use app(s , t) as an argument for a function that
requires a nonempty list, provided 3 or t is a nonempty list. A fourth rank one
could declare for app is

e l i s t x e l i s t -—> elist

but this rank will be of l i t t le use in practice.

After you have opened a module containing the definitions of co lo r and
app, you can enter the query

app(r ed .b lue .n i l , g r een .b lue .n i l) .

and TEL will respond:

r ed .b lue .g reen .b lue .n i l : ne l i s t (co lo r) .

The query is executed by rewriting the given term With the equations defining
app, that is, by applying them from left to right:

app(r ed .b lue .n i l , g reen .b1ue .n i l)
r ed . app (b lue .n i l , g r een .b lue .n i l) Zby the 2nd equat ion
red .b lue . app (n i l , g r een .b lue .n i l) %by the 2nd equat ion
red .b lue .g reen .b lue .n i l . %by the i s t equat ion

16 Sec t ion 3

Rewriting is done in an innermost order, that is, the arguments of a function

are reduced or evaluated before the function is applied. TEL's well-typedness

conditions ensure that rewriting never increases the least type of the term

being rewritten.

Another list function is the membership test

member: T x list(T) --> bool

_, nil I> false.

X, X._ I> true.

X, Y.R I> member(X,R) <-- X \= Y.

where

bool := {true, false}.

is a built-in type of TEL. This example illustrates several further features of

TEL. First, the underline character' _' can be used as a wildcard variable, that

is, as a variable that occurs only once in a sentence. It is good style to use

the underline character for every such variable. Second, the third equation of

member is conditional. Its condition is the disequation X\=Y, which is satisfied

if X and Y are different. Finally, the left-hand sides of the equations defining

a function need not be linear-for instance, X appears twice in the second

equation of member.

When a function is executed, its equations are considered in top down

order. An equation applies if its left-hand side matches and its conditions are

satisfied. The first equation that applies determines the result of the function.

Note that member is defined such that always exactly one equation applies.

Since the equations are tried in top down order, member could also be written

as

member: T x list(T) --> bool

_, nil I> false.

X, X._ I> true.

X, Y.R I> member(X,R). %<-- X \= Y.

Section 3 17

Rewriting is done in an innermost order, that is, the arguments of a function
are reduced or evaluated before the function is applied. TEL’s well-typedness
conditions ensure that rewriting never increases the least type of the term
being rewritten.

Another list function is the membership test

member : T x list(T) ——> bool

_ , n i l | > f a l s e .

X, X.w |> true.

X, Y.R |> memberCX,R) <—- X \= Y.

where

boo l := { t rue , false}.

is a built-in type of TEL. This example illustrates several further features of
TEL. First , the underline character ‘..’ can be used as a Wildcard variable, that
is, as a variable that occurs only once in a sentence. I t is good style to use
the underline character for every such variable. Second, the third equation of
member is conditional. Its condition is the disequation X\=Y, which is satisfied
if X and Y are different. Finally, the left-hand sides of the equations defining
a function need not be linear—for instance, X appears twice in the second
equation of member.

When a function is executed, i ts equations are considered in top down
order. An equation applies if i ts left—hand side matches and i ts conditions are
satisfied. The first equation that applies determines the result of the function.
Note that member is defined such that always exactly one equation applies.
Since the equations are tried in top down order, member could also be written
as

member: T x list(T) - -> bool
_ , n i l | > false.

X, X ._ |) true.

X, Y.R |> member (X ,R) . %<—- X \= Y.

Sec t ion 3 17

where the operationally redundant test X \= Y is omitted. The drawback of

this optimization is that the declarative semantics of the definition of member

is not correct anymore, that is, we have traded clarity for efficiency. It is good

style to list the conditions that are optimized away as comments.

The following defines a function computing the list of all sublists of a

list:

powerlist: list(T) --> list(list(T».

nil I> nil. nil.

H.T I> app(listcons(H,PL), PL) <-- PL = powerlist(T).

listcons: T x list(list(T)) --> list(list(T)).

_, nil I> nil.

X, H.T I> (X.H).listcons(X,T).

The second clause of powerlist shows that you can introduce new variables

in the condition part of a clause by binding them at the left-hand side of an

equation.

The canonical example of a recursive function is the factorial function for

the natural numbers. Since integers are built-in in TEL, one possibility is:

fac: nat --) posint.

o I> 1.

N I> N*fac(N-1) <-- N>O.

Another possibility is:

fac: nat --) posint.

0 I> 1.

N I> N*fac(N-l) <-- N:posint.

Here the condition of the second clause is the containment N: posint, which

is satisfied if N is a positive integer. The type posint is a built-in subtype of

nat, which in turn is a built-in subtype of into

18 Section 3

where the operationally redundant test X \= Y is omitted. The drawback of
this optimization is that the declarative semantics of the definition of member
is not correct anymore, that is, we have traded clarity for efficiency. I t is good
style to list the conditions that are optimized away as comments.

The following defines a function computing the list of all sublists of a
list:

power l i s t : l i s t (T) ——> list(list(T)).
n i l l> n i l . n i l .

H.T |> app(l i s tcons(H,PL) , PL) <—— PL = powerlist(T).

listcons: T x l i s t (1 i3 t (T)) - -> list(list(T)).

_ , n i l l) n i l .

X, H .T |> (X .H) . l i s t cons (X ,T) .

The second clause of power l i s t shows that you can introduce new variables
in the condition part of a clause by binding them at the left—hand side of an
equation.

The canonical example of. a recursive function is the factorial function for

the natural numbers. Since integers are built—in in TEL, one possibility is:

f ac : nat - -> pos in t .
0 |> 1 .

N | > N*fac(N-1) <-— N>0.

Another possibility is:

f ac : nat - -> pos in t .

0 I> 1 .

N [> N*fac (N-1) <—- sos in t .

Here the condition of the second clause is the containment N : pos in t , which
is satisfied if N is a positive integer. The type pos in t is a built—in subtype of
nat , which in turn is a built-in subtype of in t .

18 Sec t ion 3

In TEL a function must have at least one argument. Constants can be

defined as so-called parameters, for instance:

par length: nat = 22.

par width: nat = 56.

par area : nat = length*width.

The value of a parameter is computed exactly once when the module in which

the parameter is defined is loaded.

The left-hand side of an equation defining a function f must have the form

f(SI,· .. ,sn), where the formal arguments SI, ... ,Sn must be canonical terms,

that is, terms that only consist of variables and value constructors. For the

I>-syntax this means that every term that appears left from the I>-symbol

must be canonical.

For every well-typed tuple of arguments, at least one of the equations

defining a function should apply. Since TEL allows for conditional equations,

this property is undecidable. If at run-time a situation occurs in which no

equation of a function applies, TEL will print an error message and abort

execution.

Section 3 19

In TEL a function must have at least one argument. Constants can be

defined as so—called parameters, for instance:

par length : nat = 22 .
par width : nat = 56 .
par area : nat = l ength*width .

The value of a parameter is computed exactly once when the module in which
the parameter is defined is loaded.

The left-hand side of an equation defining a function f must have the form
f (31 , . . . , Sn), Where the formal arguments 31, . . . , 3n must be canonical terms,
that is, terms that only consist of variables and value constructors. For the
|>-syntax this means that every term that appears left from the |>-symbol
must be canonical.

For every well—typed tuple of arguments, at least one of the equations
defining a function should apply. Since TEL allows for conditional equations,
this property is undecidable. If at run—time a situation occurs in which no
equation of a function applies, TEL will print an error message and abort
execution.

Sec t ion 3 19

4 Built-in Types

This section presents most of TEL's built-in types.

4.1 Booleans

The following type definition is built-in:

bool := {true, false}.

Furthermore, the following boolean connectives are built-in:

and: bool x bool --> bool. %and is a right-associative

true, true I> true. %infix operator

false, _ I> false.

_, false I> false.

or: bool x bool --> bool. %or is a right-associative

false, false I> false. %infix operator

true, I> true.-
-, true I> true.

not: bool --> bool. %not is a prefix operator

true I> false.

false I> true.

4.2 Integers

Integers are built-in as follows:

int := negint ++ nat.

nat := zero ++ posint.

negint := {-1, -2, -3, ... }.

zero := {O}.

posint : = {1, 2, 3, ... }.

par minnegint negint = <implementation dependent>.

par maxposint posint = <implementation dependent>.

20 Section 4

4 Built-in Types

This section presents most of TEL’S built—in types.

4.1 Booleans

The following type definition is built-in:

boo l := { t rue , f a l s e} .

Furthermore, the following boolean connectives are built-in:

and: bool x bool —-> bool. %and i s a r igh t -assoc ia t ive
t rue , t rue |> true. %infix operator
f a l s e , _ l> false.

_ , f a l s e [> f a l s e .

or : bool x bool ——> bool. %or i s a r igh t -assoc ia t ive
f a l s e , f a l s e I> f a l s e . %infix ope ra to r

t rue , _ | > t r ue .

_ , true | > t r ue .

no t : bool - -> boo l . %not i s a pref ix operator
true I) f a l s e .
f a l s e [) true.

4.2 Integers

Integers are built—in as follows:

int := negint ++ nat.

nat zero ++ posint.

negint := {”1 , ”2 , ”3 , . . . } .

zero := {0} .
pos in t := {1 , 2 , 3 , . . . } .

par minnegint : negin t = (implementa t ion dependen t> .

par maxpos in t : posint = <implemen ta t i on dependent>.

20 Sec t ion 4

The following arithmetic functions are built-in:

+	 int x int --> int, % + is a right-associative

nat x nat --> nat, % infix operator

posint x nat --> posint,

nat x posint --> posint,

negint x negint --> negint.

int x int --> int, %- is a left-associative

nat x negint --> posint, %infix operator

negint x nat --> negint.

int --> int, %unary minus, - is a prefix operator

posint --> negint,

negint --> posint.

: int x int --> int, % * is a right-associative*
nat x nat --> nat, % infix operator

posint x posint --> posint,

posint x negint --> negint,

negint x posint --> negint,

negint x negint --> posint.

mod:	 int x int --> nat. % mod is an infix operator

II	 int x int >-> int, % II is an infix operator

nat x nat >-> nat,

posint x posint --> posint,

posint x negint --> negint,

negint x posint --> negint,

negint x negint --> posint.

Section 4 21

The following arithmetic functions are built—in:

+ : in t x int ——> in t , % + i s a r i gh t - a s soc i a t i ve
nat x nat - -> na t , % infix opera tor
pos in t x nat —-> pos in t ,
nat x pos in t ——> pos in t ,
negint x negint - -> negint.

- : int x in t - -> i n t , % — i s a l e f t - a s soc i a t i ve

nat x negint - -> pos in t , % infix operator
negint x nat ——> neg in t .

int - -> i n t , %unary minus , ” i s a p re f ix opera tor
posint - -> neg in t ,
negint -—> posint.

* : int x int - -> i n t , % * i s a r igh t—assoc ia t ive
nat x nat - -> na t , % infix operator
pos in t x pos in t 4-) pos in t ,
posint x negint ——> neg in t ,
negint x pos in t - -> neg in t ,

negint x negint ——> posint.

mod: int x int - -> nat. % mod i s an infix operator

/ / : int x int >-> in t , % / / i s an infix opera tor
nat x nat > -> na t ,

pos in t x posint -—> pos in t ,

posint x negint ——> neg in t ,

negint x posint - -> neg in t ,
negint x negint - -> posint.

Sec t ion 4 21

The first two ranks of the integer division function '/ /' are partial SInce

division by zero is undefined. You should use partial ranks for all functions

that are not defined for all arguments. Operationally, it makes no difference

whether you use total or partial ranks, but the correct use of partial ranks

makes it easier to understand your programs.

The usual comparisons for integers are built-in:

< : int x int --) bool. %< is an infix operator

=< : int x int --> bool. %=< is an infix operator

) : int x int --> bool. %> is an infix operator

)= : int x int --) bool. %>= is an infix operator

4.3 Characters

Characters are built-in as follows:

char := layout_char ++ alpha_char ++ symbol_char.

alpha_char := letter ++ digit ++ {"_"}.

letter := capital_letter ++ small_letter.

symbol_char := grouping_symbol ++ operator_symbol ++ {,,%,,}.

layout_char := {"bell", "eof", "nl",

" any character with ASCII-code less than 33"}.

capital_letter : = {"A", "B", , "Z"}.

small_letter := {"a", "b", ... , "z"}.

digit := {"O", "1", ... , "9"}.

grouping_symbol := {"C", ")", "[", "J", "{", "}",
"1111 fr' 11 ",If}.

It_It " uoperator_symbol - {"+", "*", "/11, " I I1 , 41\",

I1 C 11 11-11"<", ")11, "=" 11.11 , 11"
tI?" "(0", "#", "$", "&", tI!" ";"}.

22 Section 4

The first two ranks of the integer division function ‘ / / ’ are partial since
division by zero is undefined. You should use partial ranks for all functions
that are not defined for all arguments. Operationally, i t makes no difference
whether you use total or partial ranks, but the correct use of partial ranks
makes i t easier t o understand your programs.

The usual comparisons for integers are built—in:

< : int x int * -> bool. % < i s an in f ix opera tor
=< : int x int -—> bool. % =< i s an infix operator
> : int x int - -> boo l . % > i s an in f ix operator
>= : int x int - -> bool. % >= i s an inf ix Opera tor

4.3 Characters

Characters are built-in as follows:

22

char := layout_char ++ alpha_char ++ symbol_char .

a lpha_char := letter ++ d ig i t ++ {”_”} .

l e t t e r := cap i t a l_ l e t t e r ++ sma l l_ l e t t e r .

symbol_char := grouping_symbol ++ ope ra to r_symbo l ++ {"%"} .

l ayou t_cha r := { " b e l l " , "eo f" , "n l " ,

" any charac te r w i th ASCI I - code l e s s t han 33 “ } .

capital_letter := { "A" , "B“ , . . . , “Z"}.
smal l_ le t te r := {”a” , "b ” , . . . , "Z"}.
digit := {"o", "1", . . . , "9"}.

grouping-symbol == {" (" ‚ ">", "E”. "J”. "{", "}",
" I I " l l) " " l l

’ , .! } ‘

{ “+ " "_H "*" u /n „ ln “ \n "on
: a , : : : :

"<" “>" „ (u „ " " ”=" u . ” n n
: : a : a - ; °

operator_symbol

“?" , "©" , "#" , “$" , “&" , l l ! “ Nol l } .

Sec t ion 4

Every character has a natural number equivalent:

natequiv: char --> nat.

charequiv: nat >-> char.

4.4	 Lists

The following definition of lists is built-in:

list (T) := elist ++ nelist (T) .

elist := {nil}.

nelist (T) := {. : T x list (T)}.

Furthermore, a few list functions are built-in:

I	 : list(T) x list(T) --> list(T), % I is a right-assoc.

nelist(T) x list(T) --> nelist(T), %infix operator

list(T) x nelist(T) --> nelist(T).

nil, L I> L.

H.T, L I> H.TIL.

in: T x list(T) --> bool. %in is an infix operator

_, nil I> false.

X, X._ I> true.

X, Y.T I> X in T. %<-- X \= Y.

length: list(T) --> nat,

nelist(T) --> posint.

nil I> O.

_.T I> 1 + length(T).

4.5 Pairs

Pairs are built-in as follows:

S##T := {# : S x T}.	 %## and # are right-associative

%infix operators

Section 4 23

Every character has a natural number equivalent:

natequiv: char - -> nat.
charequiv: nat >—> char.

4.4 Lists

The following definition of lists is built-in:

l i s tCT) := e l i s t ++ ne l i s t (T) .

e l i s t := {n i l } .

ne l i s tCT) := { . : T x l i s tCT)} .

Furthermore, a few list functions are built-in:

l : 1ist(T) x l i s tCT) - -> list(T), % | i s a r i gh t - a s soc .
nelist(T) x l i s tCT) - -> ne l i s tCT) , % infix operator
l i s tCT) x nelist(T) —-> nelist(T).

nil, L | > L .
H.T, L I) H.T |L .

i n : T x l i s t (T) - -> boo l . % in i s an infix operator
_ , n i l I> false. ‘
X, X ._ |> true.

x, Y.T |> x in T. %<-- x \= Y.

length: list(T) ——> na t ,
nelist(T) - -> pos in t .

ni l | > O.
_.T |> 1 + l eng th (T) .

4.5 Pairs

Pairs are built—in as follows:

S##T := {# : S x T}. % ## and # are r igh t -a s soc ia t ive
% infix operators

Sec t ion 4 23

4.6 Strings

Strings are built-in as follows:

string := estring ++ nestring.

estring := {,,}.

nestring := a nonempty string starts with' , continues with at least one character,

where' is written as ' " and ends with'

Strings are ordered lexiographically and the following compansons are

built-in:

~< : string x string --) bool. %@< is an infix operator

~=< : string x string --) bool. %@=< is an infix operator

~) : string x string --) bool. %@> is an infix operator

~)= : string x string --) bool. %@)= is an infix operator

Strings can be converted to character lists and character lists can be con

verted to strings:

chartrans:	 string --) list(char),

nestring --> nelist(char).

stringtrans:	 listCchar) --> string,

nelistCchar) --> nestring.

A function that	 concatenates two strings is built-in:

~ : string x string --> string.

S1, S2 I> stringtrans(chartrans(S1) !chartrans(S2».

Furthermore, a function that converts natural numbers into strings IS

built-in:

genstring: string x nat --> nestring.

S, N I> S~stringtrans(genstring1(N,nil».

24	 Section 4

4.6 Strings

Strings are built-in as follows:

string := es t r ing ++ nes t r ing .
estr ing := {”} .
nestring := a. nonempty s t r ing star ts wi th ’ , cont inues w i th a t l ea s t one charac ter ,

! ’ }where i s wr i t ten a s , and ends wi th ’

Strings are ordered lexiographically and the following comparisons are
built—in:

@< : string x string —-> bool. % ©< i s an infix operator
©=< : string x s t r ing - -> boo l . % ©=< i s an in f ix Opera to r
©) : string x s t r ing - -> bool . % ©) i s an inf ix operator
@) string x string —-> bool. % ©>= i s an inf ix opera tor

Strings can be converted to character lists and character lists can be con—
verted t o strings:

cha r t r ans : s t r i ng ——> list(char),

nes t r ing ——> ne l i s t (cha r) .

s t r ingt rans : l i s thar) - -> s t r ing ,
ne l i s thar) -—> nes t r ing .

A function that concatenates two strings is built-in:

s t r ing x s t r i ng - -> s t r i ng .

31 , S2 |> s t r i ng t r ans (cha r t r ans (S l) I cha r t r ans (S2)) .

Furthermore, a function that converts natural numbers into strings is
builtsin:

gens t r i ng : s t r i ng x nat ——> nes t r i ng .

S , N [> S“stringtrans(genstring1(N,nil)).

24 Sectkn1 4

The auxiliary functions genstringl and gen_equiv are not built-in, but they

are included here to give two more examples for functional programming in

TEL.

genstringl: nat x list(char) --> list(char).

N, L I> gen_equiv(N).L <-- N < 10.

N, L I> genstringl(N//l0, gen_equiv(N mod 10).L).

%<-- N >= 1'0.

gen_equiv: nat >-> char. %only defined for O•• 9

0 I> "0".

1 I> "1".

2 I> "2".

3 I> "3".

4 I> "4".

5 I> "5".

6 I> "6".

7 I> "7".

8 I> "8".

9 I> "9".

Section 4 25

The auxiliary functions genst r ingl and gen_equiv are not built-in, but they
are included here to give two more examples for functional programming in
TEL.

gens t r ing l : nat x list(char) -—> list(char).
N,L

N,L

| > gen_equiv(N).L <—- N < 10 .
|> genstr inglCN//10, gen_equiv(N mod 10).L).

%<-— N >= Io .

gen_equiv: nat >—> char . Zonly def ined fo r 0 . . 9
O

m
oo

x l
m

m
op

-w
M

I-
n

Sec t ion 4

|> "o".
I> "1".
| > "".2
I> "3".
| > "4".
|> "5".
|> "6".
|> "7".
|> "8".
I> "9".

25

5 Relations

As in Prolog, relations in TEL are defined by a sequence of Horn clauses, which

are logical implications of the form

P +-- Cl & ... & Cn

and are read: P holds if Cl, ... , Cn hold. Since TEL is typed, you must declare

a type for every argument of a relation. Furthermore, you must declare for

every argument of a relation whether, operationally, it is used as an input or an

output argument. Compared to Prolog, this data flow declarations certainly

restrict the things one can do with relations, but, on the other hand, they make

it easier to understand the operational semantics of a program. Furthermore,

data flow declarations are needed for a clean and simple integration of the

functional and relational parts of the language. In a later section we will

discuss so-called open variables, which provide a means to bypass data flow

declarations and thus allow to regain the full power of Prolog if it is actually

needed.

A simple example is the definition of a membership relation for lists:

rel member: ?T x listCT).

memberCX, X._).

memberCX, _.T) <-- memberCX,T).

This definition can be read as follows: X is a member of a list whose head is

X, and X is a member of a list if it is a member of its tail. The first argument

of member is declared as an output argument and the second argument is

declared as an input argument. When a relational condition is executed, the

terms appearing as input arguments must be ground, that is, must not contain

variables. After a relational condition is executed, the terms appearing as

output arguments will be ground. TEL's type checker ensures that you can

define and use relations only in such a way that these conditions are always

satisfied at run-time.

If you have opened a module containing the definition of member, you can

type the following query:

TEL> memberCX, 1.2.3.nil).

26 Section 5

5 Relations

A3 in Prolog, relations in TEL are defined by a sequence of Horn clauses, which
are logical implications of the form

P 4—- 01 & . . . & C'n

and are read: P holds if 01 , . . . , Cn hold. Since TEL is typed, you must declare
a type for every argument of a relation. Furthermore, you must declare for
every argument of a relation whether, operationally, i t is used as an input or an
output argument. Compared to Prolog, this data flow declarations certainly
restrict the things one can do with relations, but, on the other hand, they make
i t easier to understand the operational semantics of a program. Furthermore,
data flow declarations are needed for a clean and simple integration of the
functional and relational parts of the language. In a later section we will
discuss so-called open variables, which provide a means to bypass data flow
declarations and thus allow to regain the full power of Prolog if it is actually
needed.

A simple example is the definition of a membership relation for lists:

re l member: ?T x l i s tCT) .
member (x , X._) .

member (X , _.T) <—— member (X‚T) .

This definition can be read as follows: it is a member of a list whose head is
X, and X is a member of a list if i t is a member of its tail. The first argument
of member is declared as an output argument and the second argument is
declared as an input argument. When a relational condition is executed, the
terms appearing as input arguments must be ground, that is, must not contain
variables. After a relational condition is executed, the terms appearing as
output arguments will be ground. TEL’s type checker ensures that you can
define and use relations only in such a way that these conditions are always
satisfied at run—time.

If you have opened a module containing the definition of member, you can
type the following query:

TEL) member (X, 1 .2 .3 .n i1) .

26 Sec t ion 5

Tel will compute the first solution for the variable X and respond with:

x = 1 : posint

more answers? (y/n).

If you now type 'n' , TEL will be ready for the next query. However, if you

type 'y' , TEL computes a further answer to your query:

x = 2 : posint

more answers? (y/n) y

X = 3 : posint

more answers? (y/n) y

failed.

Here	 are two further queries:

TEL> member(2, 1.2.3.nil).

succeeded

TEL> member(4, 1.2.3.nil)

failed.

TEL	 won't accept the query

TEL> member(X, 1.2.3.Y).

since the second argument of member is an input argument and thus must not

contain an unbound variable. TEL will respond with the error message:

***	 mode error in condition 1:

second argument 1.2.3.Y of member is declared input;

Y is not bound.

In TEL relations are executed as in Prolog. To execute a relational condi

tion r(81, ... , 8 n), the clauses defining r are tried in top down order. A clause

applies if its head unifies with r(81, ... ,8 n) and all its conditions, which are

Section 5 27

Tel will compute the first solution for the variable X and respond with:

X = 1 : posint
more answers? (y /n) .

If you now type ‘n’ , TEL will be ready for the next query. However, if you

type ‘y’ , TEL computes a further answer to your query:

X = 2 : posint

more answers? (y/n) y
X = 3 : pos in t

more answers? (y/n) y
f a i l ed .

Here are two further queries:

TEL> memberC2, 1 .2 .3 .n i l) .

succeeded

TEL> member (4 , 1 .2 .3 .n i l)

f a i l ed .

TEL won’t accept the query

TEL> memberCX, 1 .2 .3 .Y) .

since the second argument of member is an input argument and thus must not
contain an unbound variable. TEL will respond with the error message:

*** mode error i n condition 1 :
second argument 1.2.3.Y of member i s dec l a r ed i npu t ;

Y i s no t bound .

In TEL relations are executed as in Prolog. To execute a relational condi-
tion 'r(31, . . . , Sn), the clauses defining r are tried in top down order. A clause
applies if i t s head unifies with 'r(31‚ . . . ‚3„) and all i t s condit ions, which are

Sec t ion 5 27

executed from left to right, succeed. If a clause applies, the unification with

its head and the execution of its conditions will bind all variables occurring

in the output arguments of r(SI, ... , Sn) to ground terms. If no clause of r
applies, the execution of r(SI, . .. ,sn) fails. In contrast to functional condi

tions, a relational condition can be reactivated through backtracking and can

thus produce more than one set of bindings for the variables occurring in its

arguments. I won't offer more information on the execution of relations since

careful explanations can be found in textbooks on Prolog and logic program

mmg.

5.1 Example: A Tautology Checker

This example shows how one can implement a tautology checker for proposi

tional formulas in TEL. It illustrates determinate relations, negation as failure,

and the combination of relations and functions.

Propositional formulas are defined as follows:

propform .= bool ++ propvar ++

{a: propform x propform, % and connective

0: propform x propform, % or connective

n: propform}. % not connective

propvar := {v: string}. Ye propositional variable

Furthermore, we need assignments that assign truth values to propositional

variables:

assignment := list(propvar##bool).

Note that assignment is not a type constructor but a type abbreviation for

the type term list (propvar##bool). The definition of assignment reveals a

weakness that TEL shares with other typed programming languages: the type

definition cannot express the requirement that an assignment should assign

28 Section 5

executed from left to right, succeed. If a clause applies, the unification with
its head and the execution of i ts conditions will bind all variables occurring
in the output arguments of r(31, . . . , sn) to ground terms. If no clause of r
applies, the execution of r (s l , . . . , 3n) fails. In contrast to functional condi—
tions, a relational condition can be reactivated through backtracking and can
thus produce more than one set of bindings for the variables occurring in its
arguments. I won’t offer more information on the execution of relations since
careful explanations can be found in textbooks on Prolog and logic program-
ming.

5.1 Example: A Tautology Checker

This example shows how one can implement a tautology checker for proposi—
tional formulas in TEL. It illustrates determinate relations, negation as failure,
and the combination of relations and functions.

Prepositional formulas are defined as follows:

propform := bool ++ propvar ++

fa : propform x p rop fo rm, % and connec t ive

o : p ropform x p ropfo rm, % or connec t ive

n : propform}. % not connective

pr0pvar := {V: string}. % propos i t iona l var iable

Furthermore, we need assignments that assign truth values to propositional
variables:

ass ignment := l i s t ropva r##boo l) .

Note that ass ignment is not a type constructor but a type abbreviation for
the type term l i s t (propvarifltbool). The definition of assignment reveals a
weakness that T EL shares with other typed programming languages: the type
definition cannot express the requirement that an assignment should assign

28 Sec t ion 5

only one truth value to a propositional variable. All we can do is to define a

test that checks whether an assignment is consistent:

consistent: assignment --> bool.

nil I> true.

H.A I> consistentl(H,A) and consistent(A).

consistentl: propvar##bool x assignment --) bool.

_, nil I> true.

V#_, V#_.A I> false.

Vl#Bl, V2#_.A I> consistentl(Vl#Bl, A). %<-- Vl \= V2.

Next we define a relation truthvalue(F, A, CA, B) that holds if A can be

extended to CA such that F has the truthvalue B under CA:

reI truthvalue:	 propform x

assignment x

?assignment x %extended assignment

?bool. %truth value under extended ass.

truthvalue(B, A, A, B) <-- B:bool.

truthvalue(V, A, CA, B) <-- V:propvar &

extends (V, A, CA, B).

truthvalue(a(Fl,F2), A, CA, B) <-

truthvalue(Fl, A, CA1, Bl) &

truthvalue(F2, CA1, CA, B2) &

B = (Bl and B2).

truthvalue(o(Fl,F2), A, CA, B) <-

truthvalue(Fl, A, CA1, Bl) &

truthvalue(F2, CA1, CA, B2) &

B = (Bl or B2).

Section 5 29

only one truth value to a propositional variable. All we can do is t o define a

test that checks Whether an assignment is consistent:

cons i s t en t : ass ignment —-> bool.
ni l I> t rue .
H.A |> cons i s t en t1 (H ,A) and cons i s t en tCA) .

cons i s t en t l : propvar##bool x assignment - -> boo l .
_ , n i l | > t rue .
V#_ , V#_.A |> false.

V1#B1, V2#_.A |> cons i s t en t1 (V1#B1 , A) . % <—— V1 \= V2.

Next we define a relation t ru thvalue(F, A, CA, B) that holds if A can be
extended to CA such that F has the truthvalue B under CA:

re l t ru thva lue : propform x

assignment x

?assignment x % extended assignment
?bool. % t ru th value under ex tended a s s .

t r u thva lueCB, A, A, B) <—- s001 .

t ruthvalue(V, A, CA, B) <-— Vzpropvar &
ex tends (V‚ A, CA, B) .

t ru thva lue (a (F1 ,F2) , A, CA, B) <——

t r u thva lueCFl , A, CA1, B1) &
truthvalue(F2, CA1, CA, BZ) &

B = (B1 and 32).

t r u thva lue (o (F1 ,F2) , A, CA, B) <-—

tru thva lue (F1 , A , CA1, B1) &

truthvalueCF2, CA1, CA, B2) &
B = (B l o r B2).

Sec t ion 5 29

truthvalue(n(F), A, CA, B) <-

truthvalue(F, A, CA, Bl) &

B = not B1.

reI extends: propvar x assignment x ?assignment x ?bool.

extends(V, nil, V#true, true).

extends (V, nil, V#false, false).

extends(V, A, A, B) <-- V#B._ = A.

extends(V, W#BW.A, W#BW.CA, B) <-- V \= W &
extends(V, A, CA, B).

If you have opened a module containing these definitions, you can type

the query:

TEL>	 F = a(v('x'), v('y')) &

A = v('x')#true .nil &

truthvalue(F, A, CA, B).

CA = v('x')#true .v('y')#true .nil nelist(propvar##bool)

B = true : bool

more answers? (y/n) y

CA = v('x')#true .v('y')#false .nil nelist(propvar##bool)

B = false : bool

more answers? (y/n) y

failed.

We can now define a relation that holds if its argument IS a satisfiable

propositional formula:

reI satisfiable: propform.

satisfiable(F) <-- truthvalue(F, nil, _, true).

A relation is called determinate if it produces at most one collection of output

arguments' for any well-typed collection of input arguments. Since satisfi

able has no output arguments, it is necessarily determinate. In TEL you can

30	 Section 5

truthvalue(n(F), A, CA, B) (-—

truthvalue(F, A, CA, Bl) &

B = not B1.

rel extends: propvar x assignment x ?assignment x ?bool.
ex tends (V‚ nil, V#true, true).
extends(V, nil, V#false, false).
. e x t e n d s (V , A, A , B) <-— V#B._ = A.
extends(V, W#BW.A, W#BW.CA, B) <-- V \= W &

extends(V, A, CA, B).

If you have opened a module containing these definitions, you can type

the query:

TEL> F a(v(’x’), v(’y’)) &
A v(’x’)#true .nil &
truthvalue(F‚ A, CA, B).

CA = v(’x’)#true .v(’y’)#true .nil : nelistropvar##bool)
B = true : bool

more answers? (y /n) y
CA = v(’x’)#true .v(’y’)#fa1se .nil : nelist(propvar##bool)

B = false : bool

more answers? (y/n) y

failed.

We can now define a relation that holds if its argument is a satisfiable

propositional formula:

rel satisfiable: propform.

satisfiable(F) <-- truthvalue(F, nil, _, true).

A relation is called determinate if it produces at most one collection of output

arguments for any well-typed collection of input arguments. Since satisfi—

able has no output arguments, it is necessarily determinate. In TEL you can

30 Section 5

declare relations to be determinate by using drel instead of rel. Thus

drel satisfiable: propform.

satisfiable(F) <-- truthvalue(F, nil, _, true).

is a better definition of satisfiable since it makes explicit that satisfiable

is determinate. Furthermore, declaring satisfiable as determinate will speed

up the execution of your program, since it prevents backtracking the execution

of satisfiable, which would unnecessarily force truthvalue to search for a

further solution.

From what I have said it is clear that you can force relations to be deter

minate by declaring them determinate. This use of a drel-declaration corre

sponds to a weak form of Prolog's cut.

A boolean test for satisfiability can be defined as follows:

issatifiable: propform --> bool.

F I> true <-- truthvalue(F, nil, _, true).

F I> false <-- naf truthvalue(F, nil, _, true).

•

This example illustrates that TEL offers the possibility to negate relational

conditions. This is done by the reserved identifier naf, which stands for nega

tion as failure. A condition naf C succeeds if C fails and fails if C succeeds.

As in Prolog, TEL's negation as failure is in general not logical negation.

You can make the following optimization without changing the operational

semantics of issatisfiable:

issatifiable: propform --> bool.

F I> true <-- truthvalue(F, nil, _, true).

F I> false. %<-- naf truthvalue(F, nil, _, true).

Finally, you can write a tautology test as follows:

istautology: propform --> bool.

F I> not issatisfiable(n(F)).

Section 5 31

declare relations to be determinate by using drel instead of r e l . Thus

drel s a t i s f i ab l e : p rop fo rm.

sa t i s f i ab1e (F) < - - t ru thva lue(F , n i l , _ , true).

is a better definition of s a t i s f i ab l e since i t makes explicit that s a t i s f i ab l e
is determinate. Furthermore, declaring s a t i s f i ab l e as determinate will speed

up the execution of your program, since it prevents backtracking the execution
of s a t i s f i ab l e , which would unnecessarily force truthvalue t o search for a
further solution.

From what I have said it is clear that you can force relations to be deter—
minate by declaring them determinate. This use of a drel-declaration corre-
sponds to a weak form of Prolog’s cut.

A boolean test for satisfiability can be defined as follows:

i s sa t i f i ab l e : prOpform - -> boo l .

F I> t rue < - - t r u thva lue (F , n i l , _ , t r ue) .

F l> false <-— naf t ru thva lue (F , n i l , _ , true).

This example illustrates that TEL offers the possibility to negate relational

conditions. This is done by the reserved identifier naf , which stands for nega—
tion as failure. A condition naf C succeeds if C fails and fails if C succeeds.
As in Prolog, TEL’s negation as failure is in general not logical negation.

You can make the following optimization without changing the operational
semantics of i s s a t i s f i ab l e :

i s s a t i f i ab l e : propform - -> boo l .
F | > true <-— truthvalueCF, nil, _ , t r ue) .

F I> false. % <-— naf truthvalue(F‚ n i l , _ , true).

Finally, you can write a tautology test as follows:

i s t au to logy : propform - -> boo l .
F |> not i s s a t i s f i ab l e (n (F)) .

Sec t ion 5 31

5.2 Example: A Precedence Parser

This example implements a precedence parser for expressions built from inte

gers and prefix and infix operators. Operators and precedences are defined as

follows:

operator := prefix_operator ++ postfix_operator.

prefix_operator := {preop: string ~ %operator name

precedence x %prec. of operator

precedence}. %max. prec. of arg.

%the argument precedence must be =< the operator precedence

infix_operator := {inop: string x % operator name

precedence x % prec. of operator

precedence x % max. prec. left arg.

precedence}. %max. prec. right arg.

%the argument precedences must be =< the operator precedence

precedence := nat. %must be =< maxprecedence

par maxprecedence : precedence = 10000.

The parser translates lists of operators and integers to groups, which are de

fined as follows:

group := int ++

{pgroup: prefix_operator x group,

igroup: infix_operator x group x %left arg.

group}. %right arg.

op_or_int := operator ++ into

op_or_group := op_or_int ++ group.

group_or_error := group ++ {error}.

32 Section 5

5.2 Example: A Precedence Parser

This example implements a precedence parser for expressions built from inte—
gers and prefix and infix operators. Operators and precedences are defined as
follows:

operator := pre f ix ,opera tor ++ pos t f ix_opera tor .

prefix-operator := {preop: string x" Z Operator name
precedence x Z prec . o f Operator
precedence} . Z max. prec . o f arg .

Zthe argument precedence must be =< the Operator precedence

inf ix_operator := { inopz s tr ing x Z operator name
precedence x Z prec . o f operator
precedence x Z max. prec. le f t arg.
precedence}. Z max. prec. right arg.

Zthe argument precedences must be =< the operator precedence

precedence := nat. Z must be =< maxprecedence

par maxprecedence : precedence = 10000 .

The parser translates lists of operators and integers to groups, which are de- .
fined as follows:

group := in t ++

{pgroupz pref ix_operator x group,
igroup: in f ix_operator x group x Z l e f t arg .

group} . Z r ight arg .

op_or_ in t := opera tor ++ in t .

op,or_group := op_or_ int ++ group .
group_or_error := group ++ {error}.

32 Sec t ion 5

op_or-group 9 ro up_o r_e rro r

group

I
operator int

~ ~

prefiH_operator infiH_operator negint nat

A
zero posint

Figure 5.1. The subtype hierarchy of the precedence parser exam

ple.

These type definitions provide a nIce example for a nontrivial subtype

hierarchy, which is shown graphically in Figure 5.1. Note that op_or_int and

group have int as greatest common subtype. Next we define a function that

yields the precedence of operators and groups:

pre: op_or_group --> nat.

preopC,P,_) I> P.

inopC,P,_,_) I> P.

I I> 0 <-- I:int.

pgroup(O,_) I> pre(O).

igroup(O,_,_) I> pre(O).

Now we are ready to define the parser:

parse: list(op_or_int) --> group_or_error.

L I> G <-- parse1(L, maxprecedence, G, nil).

L I> error. %<-- naf parse1(L, maxprecedence, _, nil).

Section 5 33

op_ .or_group group_or_er ro r

op_oat group

opera to r

pre f io - opera tor inf iH_operator negint

/\
zero posh“

Figure 5 .1 . The subtype hierarchy of the precedence parser exam—
pk:

These type definitions provide a nice example for a nontrivial subtype
hierarchy, which is shown graphically in Figure 5.1. Note that op_or_int and
group have int as greatest common subtype. Next we define a function that
yields the precedence of operators and groups:

pre : op_or_group ——> nat.
preop (_ ,P ,_) l> P.
i nop (_ ,P ,_ ,_) | > P .
I | > O <- - I : in t .

pgroup(0,_) I> pre(0).
igroup(0,_,_) |> pre(0).

N ow we are ready to define the parser:

parse: 1ist(op_or_int) ——> group_or_error.
L |> G <-— pa r se1 (L‚ maxprecedence, G, n i l) .
L |) error. % <—— naf parse lCL , maxprecedence, _ , n i l) .

Section 5 33

drel parsel:	 list(op_or_group) x

precedence x % current precedence

?group x

?list(op_or_group). %unparsed tokens

parsel(G.nil. P, G. nil) <-- G:group & P >= pre(G).

parsel(o.R. p. G. R2) <-

preop(_.oP.AP) = 0 &

P >= OP &

parsei(R. AP, Gi, Ri) &

parsel(pgroup(o,G1).R1, P, G. R2).

parsel(G.o.R, P, G2, R2) <-

G:group &
inop(_,OP,LP,RP) = 0 &
OP =< P & pre(G) =< LP &
parsel(R, RP. Gi, R1) &
parsel(igroup(O,G,G1).Rl, P, G2, R2).

parsel(G.D.R. P, G. D.R) <-

G:group & o:infix_operator &

P < pre(o) & pre(G) =< P.

If you have opened a module with these definitions, you can enter

term

TEL> parse(4

. inop (, -, ,5,5,4)

.preop('-' ,2,1)

.5

. inop (, -, ,5,5,4)

.7 .nil) . %4 - -5 - 7

34	 Section

drel parsel: list(op_or_group) x

precedence x % current precedence
?group x

?list(0p_or_group). % unparsed tokens

parselCG.nil, P, G, nil) <-- nroup & P >= pre(G).

parsel(0.R, P, G, R2) <——

preop(_,0P,AP) = 0 &
P >= UP &

parse1(R, AP, G1, R1) &
parse1(pgroup(U,G1).R1, P, G, R2).

parseiCG.Ü.R‚ P, G2, R2) (——

G:group &
in0p(_ ,ÜP,LP,RP) = D &
GP =(P & pre(G) =< LP &
pa r se1 (R , RP, G1, R1) &

pa r se1 (ig roup(D ,G ,G1) ‚R1 , P, G2, R2).

parselCG.Ü.R‚ P, G, Ü.R) <——

nroup & D:infix_operator &

P < preCD) & preCG) =(P.

If you have Opened a. module with these definitions, you can enter the
Hamm

34

TEL> parse(4

. inop(’—’,5‚5,4)

.preop(’”’,2,1)

.5

. i nop (’—’‚5 ,5 ‚4)

.? .nil). % 4 - ”5 - 7

Sec t ion 5

and TEL will respond with

= igroup(inop('-',5,5,4),

igroup(inop('-',5,5,4),

4,

pgroup(preop('-' ,2,1), 5)),

7).

5.3 Total Relations

Every function can be formulated as a determinate relation by transferring the

result of the function through an output argument. Usually you won't want

to do this since functional notation allows for nesting. However, relational

notation can be convenient for functions whose result is a compound term

that must be decomposed for further processing. For instance,

foo: nat --> nat##nat.

N I> N//5 # N mod 5.

can be written as the total determinate relation

tdrel roo: nat x ?nat x ?nat.

roo(N, D, M) <-- D = N//5 & M = N mod 5.

A relation is total, if it produces at least one output for every well-typed

input. If you know that a relation is total, you should make this explicit by

declaring it as trel or, if you also know that it is determinate, as tdrel. If the

execution of a relation declared as total fails to produce at least one output,

TEL prints an error message and aborts execution. These error messages are

helpful during debugging.

If you want to write programs that are executed very efficiently, you should

know that the condition roo (N , D, M) is executed more efficiently than D#M =
foo (N) since in the functional case TEL has to construct a pair and then to

decompose it again, which costs time as well as memory.

Section 5 35

and TEL will respond with

= i g roup (inop (’ - ’ , 5 ,5 ‚4) ,

i g roup (inop (’ - ’ , 5 ,5 ,4) ,
4 ,

pgroup(p reop (’ ” ’ , 2 ,1) , 5)) ,

7) .

5.3 Total Relations

Every function can be formulated as a determinate relation by transferring the
result of the function through an output argument. Usually you won’t want

to do this since functional notation allows for nesting. However, relational
notation can be convenient for functions whose result is a compound term
that must be decomposed for further processing. For instance,

foo : nat - -> na t##na t .

N I> N//5 # N mod 5 .

can be written as the total determinate relation

t d re l r oo : nat x ?nat x ?nat.

roo (N , D , M) <—— D = N/ /5 & M = N mod 5 .

A relation is total, if i t produces at least one output for every well-typed
input. If you know that a relation is total, you should make this explicit by
declaring i t as t r e l or, if you also know that i t is determinate, as t d re l . If the
execution of a relation declared as total fails to produce at least one output,
TEL prints an error message and aborts execution. These error messages are
helpful during debugging.

If you want to write programs that are executed very efficiently, you should
know that the condition roo(N,D,M) is executed more efficiently than D#M =
foo (N) since in the functional case TEL has to construct a pair and then to
decompose i t again, which costs t ime as well as memory.

Sec t ion 5 35

6 Modules

TEL has a simple, nonparametric module facility supporting the incremental

construction of large systems. The module facility provides for information

hiding, abstract data types and separate compilation. A module consists of an

interface defining which modules are imported and which objects are exported,

and a body implementing the exported objects that aren't transferred from

imported modules. Modules must be organized hierarchically, that is, a module

cannot be imported by one of its submodules. To implement a system, one

starts by writing interfaces and continues by implementing the corresponding

bodies. After a hierarchy of interfaces has been compiled, the corresponding

bodies can be compiled separately.

6.1 An Example

Figure 6.1 shows the simplified module structure of a compiler. The module

abs_syntax_and_table defines the abstract syntax and the definition table of

the compiler. To make things easy, we assume that the definition table need

not be extended during compilation.

interface abs_syntax_and_table.

entry := abstract.

name: entry --) string.

address: entry --) nat.

drel entryof: string x ?entry.

term := {ter: entry x list(term)}.

endinterface.

Note that entry is exported as an abstract type, that is, an importing module

does not know which constructors and subtypes entry has. For every abstract

type equality and containment (for instance, X: entry) are available.

Views are special modules that don't have a body. The VIew

frontend_import defines which of the objects exported by the module

36 Section 6

6 Modules

TEL has a simple, nonparametric module facility supporting the incremental
construction of large systems. The module facility provides for information
hiding, abstract data types and separate compilation. A module consists of an
interface defining which modules are imported and which objects are exported,
and a body implementing the exported objects that aren’t transferred from
imported modules. Modules must be organized hierarchically, that is, a module
cannot be imported by one of i ts submodules. To implement a system, one
starts by writing interfaces and continues by implementing the corresponding
bodies. After a hierarchy of interfaces has been compiled, the corresponding
bodies can be compiled separately.

6.1 An Example

Figure 6 .1 shows the simplified module structure of a compiler. The module
abs_syntax_and_table defines the abstract syntax and the definition table of
the compiler. To make things easy, we assume that the definition table need
not be extended during compilation.

in te r face abs_syn tax_and_ tab1e .

entry := abstract.
name: entry —-> string.
address: ent ry -—> na t .

d re l en t ryo f : s t r i ng x ?entry.

term := {terz entry x l i s t (t e rm)} .
end in t e r f ace .

Note that entry is eXported as an abstract type, that is, an importing module

does not know which constructors and subtypes ent ry has. For every abstract

type equality and containment (for instance, X: entry) are available.

Views are special modules that don’t have a body. The View
f rontend_impor t defines which of the objects exported by the module

36 Sec t ion 6

compiler

frontend backend

+
fro nten d_import ba cken d_import

~ /

Figure 6.1. A module hierarchy.

abs_syntax_and_table can be seen by the front end of the compiler.

view frontend_import.

imports abs_syntax_and_table.

from abs_syntax_and_table: entry, entryof, term.

endview.

The relation entryof is used to obtain the entry of an identifier. Since it is a

relation that can fail, entryof can also be used to check whether an identifier

is defined in the table.

The VIew backend_import defines which of the objects exported by

abs_syntax_and_table can be seen by the back end of the compiler.

view backend_import.

imports abs_syntax_and_table.

from abs_syntax_and_table: entry, name, address, term.

endview.

Section 6 37

comp i l e r
“F»”"”r“~““*~g.

f ron t end backend

f ron ten tLJmpar t backend_ i rnpo r t

\ /
ahs_syntaa_and_tahle

Figure 6.1. A module hierarchy.

abs_syntax_and_table can be seen by the front end of the compiler.

View f rontend_impor t .
impor ts abs_syntax_and_table .
f rom abs_syn tax_and_ tab le : en t ry , en t ryo f , t e rm .

endv iew.

The relation entryof is used to obtain the entry of an identifier. Since it is a
relation that can fail, entryof can also be used to check Whether an identifier
is defined in the table.

The View backend_import defines which of the objects exported by
abs_syntax_and_table can be seen by the back end of the compiler.

v iew backend_ impor t .

impor t s abs_syn tax_and_ tab le .

f rom abs_syn tax_and_ tab l e : en t ry , name , add re s s , t e rm .

endv iew.

Sec t ion 6 37

Now we are ready for the interface of the front end:

interface frontend.

imports frontend_import.

from abs_syntax_and_table: term abstract.

error := abstract.

term_or_error := term ++ error.

parse: list(char) --> term_or_error.

error_msg: error --> string.

endinterface.

Since the top module of the compiler is not supposed to inspect the details

of the parser output, term is transferred as an abstract type although it is

imported as a nonabstract type from frontend_import. Note that the transfer

declaration

from abs_syntax_and_table: term abstract.

gives the name of the module where term is actually defined and not the name

of the module from which term is imported.

The interface of the back end is

interface backend.

imports backend_import.

from abs_syntax_and_table: term abstract.

code: term --) list(char).

endinterface.

and the interface of the top module of the compiler is

interface compiler.

imports frontend, backend.

endinterface.

Note that the type term is imported twice, once from frontend and once

from backend. This is the so-called sharing problem. To make sure that the

38 Section 6

Now we are ready for the interface of the front end:

in t e r face f ron t end .

imports f ron tend_ impor t .
f rom abs_syn tax_and_ tab l e : t e rm abstract.

e r ro r := abstract.

term_or_error := term ++ error.

pa r se : l i s t (cha r) - -> t e rm_or_e r ro r .

er ror ,msg: error ——> string.
end in t e r f ace .

Since the top module of the compiler is not supposed to inspect the details
of the parser output, t e rm is transferred as an abstract type although i t is
imported as a nonabstract type from front end_impor t . Note that the transfer
declaration

f rom abs_syn tax_and_ tab l e : t e rm abstract.

gives the name of the module where te rm is actually defined and not the name
of the module from which te rm is imported.

The interface of the back end i s

in terface backend.
impor t s backend_ impor t .

f rom abs_syn tax_and_ tab l e : t e rm abs t r ac t .

code : te rm -—> l i s t (cha r) .

end in t e r f ace .

and the interface of the top module of the compiler is

in te r face compi l e r .
impor ts f ron tend , backend .

end in t e r f ace .

Note that the type t e rm is imported twice, once from f rontend and once
from backend. This is the so-called sharing problem. To make sure that the

38 Sectknl 6

multiple import of an identifier is okay, TEL must find out in which module

an identifier is actually defined. A multiple import of an identifier is okay if

all imports refer to the same module.

To compile all these interfaces it suffices to type

TEL> compile_interface(compiler).

After you have compiled the interfaces you can compile and recompile the

module bodies in any order you like. However, before you can open a module,

all its submodules must have been compiled.

The body of the top module could be defined as follows:

module compiler.

output := {error_str: string,

code_list: list(char)}.

compile: list(char) --> output.

L I> compilel(parse(L)).

compilel: term_or_error --> output.

T I> code_list(code(T)) <-- T:term.

E I> error_str(error_msg(E)) <-- E:error.

endmodule.

The function compilel uses containments for the abstract types term and

error to find out whether the parser has detected an error.

6.2 Signatures

In a TEL module the following objects can exist:

• type constructors, for instance, bool or list

• type abbreviations

• value constructors, for instance, true, #, 63, 'a string', or "eof"

• parameters, for instance, maxposint or minnegint

Section 6 39

multiple import of an identifier is okay, TEL must find out in which module
an identifier is actually defined. A multiple import of an identifier is okay if
all imports refer to the same module.

To compile all these interfaces it suffices t o type

TEL> compi le_in ter face(compi ler) .

After you have compiled the interfaces you can compile and recompile the
module bodies in any order you like. However, before you can open a module,
all i t s submodules must have been compiled.

The body of the top module could be defined as follows:

module compi l e r .

output := {e r ro r_s t r : s t r ing ,
code_ l i s t : l i s t (cha r)} .

compi l e : l i s tha r) -—> output.
L |> compi1e1(parse(L)).

compi l e l : term_or_error ——> output.
T |> code_l i s t (code(T)) < - - T: term.
E I> e r ror_s t r (e r ror_msg(E)) < - - E : e r ro r .

endmodu le .

The function compilei uses containments for the abstract types term and
error to find out whether the parser has detected an error.

6.2 Signatures

In a TEL module the following objects can exist:

. type constructors, for instance, boo l or l i s t

. type abbreviations

o value constructors, for instance, t rue , # , 63 , ’ a s t r i ng ’ , or ”eo f "

o parameters, for instance, maxposint or minnegint

Sec t ion 6 39

• functions, for instance, +, mod, or natequiv

• relations

• procedures, which will be introduced in a later section.

For the sake of a short name, the term function is used in TEL only for func

tions that, more exactly, might be called extending value functions. Mathe

matically, type constructors, value constructors and parameters are functions

as well.

Every object has a name. Objects that can be defined in TEL must be

named by so-called designators, which are either identifiers or operators. The

syntactic details of identifiers and operators are spelled out in Appendix B.

Objects that are not built-in are introduced by definitions. Part of a defi

nition is a declaration, which states the kind of the object, fixes the designator

that names the object, and possibly states type and data flow information.

TEL allows for the following declarations:

declaration ~

type_declaration

I parameter_declaration

I function_declaration

I relation_declaration

I procedure_declaration.

Declarations of value constructors appear as part of type declarations.

The syntax of declarations is as follows:

type_declaration ~

abstract_type_declaration

type-abbreviation

type_definition

abstracLtype_declaration ---+

type_dec..1hs ': =' 'abstract'
, ,

40 Section 6

. functions, for instance, +, mod, or natequiv

. relations

. procedures, Which Will be introduced in a later section.

For the sake of a short name, the term function is used in TEL only for func-
tions that, more exactly, might be called extending value functions. Mathe-
matically, type constructors, value constructors and parameters are functions
as well,

Every object has a name. Objects that can be defined in TEL must be
named by so-called designators, which are either identifiers or operators. The
syntactic details of identifiers and operators are spelled out in Appendix B .

Objects that are not built—in are introduced by definitions. Part of a defi-

nition is a declaration, which states the kind of the object, fixes the designator

that names the object, and possibly states type and data flow information.
TEL allows for the following declarations:

declaration -——>
type_declaration

| parametendeclaration
| function-declaration
| relation_dec1ara‚tion
I proceduradeclaration.

Declarations of value constructors appear as part of type declarations.

The syntax of declarations is as follows:

type-declaration ——+
abstract..t ype_declarat1'on

I typenbbreviation
I type_definition

abstract-type_declaration —>
type_dec_lhs ‘ := ’ ‘ abs t r ac t ’ ‘ . ’

40 Sec t ion 6

type_decJhs --t

identifier ['(' { variable } ')']

I prefix_operator variable

variable infix_operator variable

variable postfix-Operator

the occurring variables must be pairwise distinct

type....abbreviation --t

type_decJhs ': =' nonvariable_type_term

every variable that occurs in the left-hand side must occur in the

right-hand side and vice versa

type_definition --t

type_decJhs ': =' type_def..rhs '. '

every variable that occurs in the left-hand side must occur in the

right-hand side and vice versa

type_def....rhs --t

(subtype...specification '++')*

subtype...specification '++'

subtype...specification

I (subtype...specification '++')*

'{' { constructor_definition} '}'

subtype...specification --t

nonvariable_type_term

constructor_definition --t

designator ['. , domain]

domain --t

type_term ['x' domain]

designator ---+

identifier I operator

A nonabstract type declaration is called a definition since it completely defines

the declared type constructor. Note that the right-hand side of a type definition

contains further declarations, namely, constructor declarations. Analogous to

Section 6 41

type-dec_1hs —+
identifierI ‘(’ { variable} ‘) ’]

| prefix_operator variable

I variable infix_operator variable
| variable postfixmperator

the occur r ing variables must be pairwise d is t inc t

typenbbreviation ——>
type..dec.lhs ‘ : = ’ nonvariable_type_term

every variable tha t occurs in the lef t-hand side must occur i n the

right-hand s ide and vice versa.

type_definition ——->
type_dec_lhs ‘:=’ type_def_rhs ‘. ’

every variable tha t occurs in the left-hand s ide must occur i n the

r ight-hand s ide and vice versa.

type_def_rbs ——>
(subtypeßpecification ‘++ ’)*

su btypeßpecification ‘++ ’
subtypespecification

I (subtypespecification ‘++’)*
‘{’ { constructondefinition } ‘}’

su b typespecification —->

nonvariab1e_type_term

constmctor.definition —>

designatorI ‘: ’ domain I

domain —->

type_term I ‘x’ domain I

designator ——>
identifier I operator

A nonabstract type declaration is called a definition since i t completely defines
the declared type constructor. Note that the right—hand side of a type definition
contains further declarations, namely, constructor declarations. Analogous to

Sec t ion 6 41

type declarations, constructor declarations are called d~finitions since they

define the declared constructor completely.

parameter_declaration ~

'par' identifier':' ground_type_term
, ,

function_declaration ~ , ,
designator':' {rank}

all ranks must specify the same number of arguments

rank	 ~

domain '-->' type_term

domain '>->' type_term
every variable occurring in the codomain of a rank must occur in

the domain of the rank

relation_declaration ~
, ,

reLclass designator':' io_domain

reLclass ~

'tdrel' I 'drel' I 'trel' I 'reI'

io_domain ~

['?'] type_term ['x' io_domain]

every variable occurring in the type term of an output argument

must occur in the type term of an input argument

procedure_declaration ~

proc_class designator':' [io_domain] , ,

proc_class ~

'tproc' I 'proc'

A signature is a set of declarations containing the declarations of all built

in objects, which are listed in Appendix A.

Given a signature, one can built two kinds of terms-type terms and

value terms. Type terms are terms that are built from type constructors and

variables. Types are type terms that do not contain variables. Value terms

are terms that are built from value constructors, functions, parameters, and

variables. Values are value terms that are built from value constructors only,

42	 Section 6

type declarations, constructor declarations are called definitions since they
define the declared constructor completely.

parametendeclaration ——>
‘par’ identifier ‘ : ’ ground_type_term ‘. ’

function_dec1aration —->
designator ‘: ’ { rank } ‘. ’

all ranks must specify the same number of arguments

rank -—>
domain ‘ —-> ’ type-„term

| domain ‘>—>’ typeierm
every variable occurr ing i n the codomain of a rank must occur i n

t he domain o f t he rank

relation-declaration ———->

rel..class designator ‘: ’ io_domain ‘. ’

rel._class —>
‘tdre l ’ I ‘dre l ’ | ‘ t r e l ’ I ‘ re l ’

io..domain ——>
["I” I type_term I ‘x’ io_domain]

every var iable occurr ing i n t he t ype term of an ou tpu t a rgumen t

must occu r i n the type te rm of an i npu t a rgument

procedure_declaration __;
proc_ciass designator ‘: ’ [io_domain I ‘. ’

pro crclass ——>

‘tproc ’ I ‘proc ’

A signature is a set of declarations containing the declarations of all built—
in objects, which are listed in Appendix A.

Given a signature, one can built two kinds of terms———type terms and
value terms. Type terms are terms that are built frOm type constructors and
variables. Types are type terms that do not contain variables. Value terms

are terms that are built from value constructors, functions, parameters, and
variables. Values are value terms that are built from value constructors only,

42 Sec t ion 6

that is, do not contain functions, parameters, or variables. The built-in values

of integer, char and string are nullary value constructors.

Every module comes with three signatures:

• an export signature defined by the interface of the module

• an import signature defined by the interface of the module

• a local signature defined by the body of the module.

Since views don't have a body, they have only an import and an export signa

ture.

There are several consistency requirements for the signatures of modules

and views, which are checked automatically. To define these requirements,

we need several technical definitions. This definitions make sense only with

respect to a given signature.

We write 8 =} t (read: 8 is directly outermost above t) if 8 and t are type

terms and the pair (8, t) is an instance of a pair (u, v), where the signature

contains a type definition whose left-hand side is u and whose right-hand side

contains v as a subtype specification.

We write 8 =}* t (read: s is outermost above t) if t is a type term and

there exist n > 0 type terms 81, ... ,Sn such that

Given the signature that belongs to the subtype hierarchy in Figure

5.1, we have, for instance, int=}*int, group=}int, group=}*posint,

list(group)=}nelist(group) , and list(group)=}elist.

We say that a type constructor f is a subconstructor of a type con

structor g, if there exist terms 81, ... , Sm and variables Xl, ..• , x n such that

g(X1,"" Xn) =:>* f(81,'" ,8m) and g(X1"" ,xn) is the left-hand side ofa type

definition. We say that a type constructor f is a superconstructor of a type

constructor 9 if 9 is a subconstructor of f.

Section 6 43

that is, do not contain functions, parameters, or variables. The built-in values

of in teger , char and s t r ing are nullary value constructors.

Every module comes with three signatures:

o an export signature defined by the interface of the module

o an import signature defined by the interface of the module

o a local signature defined by the body of the module.

Since views don’t have a body, they have only an import and an export signa-

ture.

There are several consistency requirements for the signatures of modules
and views, which are checked automatically. To define these requirements,
we need several technical definitions. This definitions make sense only with
respect to a given signature.

We write .9 ä t (read: .3 is directly outermost above t) if 3 and t are type
terms and the pair (s , t) is an instance of a pair (u,v), where the signature
contains a type definition whose left-hand side is u and whose right-hand side
contains ‘0 as a subtype specification.

We write .9 =>* t (read: 3 is outermost above t) if t is a type term and
there exist n > 0 type terms 31, . . . , s n such that

3 :31 :52 : =>sn= t .

Given the signature that belongs to the subtype hierarchy in Figure
5.1, we have, for instance, int=>*int, group=>int, group=>*posint,
l i s t (group) =>ne1ist (group), and l i s t (group) =>elis t .

We say that a type constructor f is a subconstructor of a type con-
structor 9, if there exist terms .31, . . . , 5m and variables 3:1, . . . , :cn such that
9(r1, . . . , sen) =>* f(31, . . . ,3m) and g(r1, . . . , :cn) is the left—hand side o fa type
definition. We say that a type constructor f is a superconstructor of a type
constructor g if g is a subconstructor of f .

Sec t ion 6 43

We write s ---+ t (read: s is directly above t) if t is a type term and scan

be obtained from t by replacing a subterm u with v, where u :::} v. VVe write

s ~ t (read: s is above t) if sand t are type terms and there exist n > 0 type

terms 81, ... ,Sn such that

8 = 81 ---+ 82 ---+ '" ---+ 8 n = t.

We say that a type 8 is a subtype of a type t if t is above s. We say that a

type s is a supertype of a type t if t is a subtype of 8. Every type is a subtype

and a supertype of itself.

The innmum s n t of two type terms sand t is the greatest type term u

such that s ~ u and t ~ u. The supremum s U t of two type terms sand t is

the least type term u such that u ~ sand u ~ t. The consistency requirements

we will discuss below ensure that ~ is a partial order on type terms and that

s n t [8 U t] exist if 8 and t have a common lower [upper] bound.

Most of the following consistency requirements for signatures were already

discussed informally in Section 2, which also gives counterexamples.

A signature is closed, if every designator occurring in it has one and only

one declaration, and every term occurring in one of its declarations as a type

term is in fact a type term.

A signature is well-founded, if there are no infinite chains

issuing from the left-hand side s of a type definition. In a well-founded signa

ture, every type has only finitely many subtypes.

A signature is coherent if for every left-hand side u of a type definition

and every two type terms f(Sl,'" ,srn) and g(i1, ... , in) that are outermost

below u we have f(81,"" srn) = g(t1, ... , in) if f = g.

A signature is complete if every t\VO type constructors that have Lt common

subconstructor have a greatest common subconstructor.

44 Section 6

We write s -—> t (read: 3 is directly above t) if t is a type term and s can
be obtained from t by replacing a subterm u with v, where u => 1). We write
5 _>_ t (read: s is above t) if s and t are type terms and there exist n > 0 type
terms 31 , . . . , sn such that

s=sl——>32——> ——>s„=t.

We say that a type .3 is a subtype of a type t if t is above s . We say that a
type 3 is a supertype of a type t if t is a subtype of 3. Every type is a subtype
and a supertype of itself.

The infimum s H t of two type terms 3 and t is the greatest type term u
such that s _>_ u and t _>_ u . The supremum .5 LI t of two type terms 3 and t is
the least type term u such that u 2 s and u 2 t . The consistency requirements
we will discuss below ensure that _>_ is a partial order on type terms and that
s n t [s LJ t] exist if s and t have a common lower [upper] bound.

Most of the following consistency requirements for signatures were already
discussed informally in Section 2, which also gives counterexamples.

A signature is closed, if every designator occurring in it has one and only
one declaration, and every term occurring in one of i t s declarations as a type

term is in fact a type term.

A Signature is well-founded, if there are no infinite chains

S—+31 _) .32 —>83—'>

issuing from the left-hand side 3 of a type definition. In a well-founded signa-
ture, every type has only finitely many subtypes.

A signature is coherent if for every left—hand side it of a type definition
and every two type terms f (31 , . . . , sm) and g(t1‚ . . . ‚ tn) tha t are outermost
below it we have f (31 ‚ . . . , sm)=g(t1 ‚„ . ‚ t n) i f f = g.

A signature is complete if every two type constructors that have a common
subconstructor have a greatest common subconstructor.

44 Sec t ion 6

A function definition is regular if for every two ranks (total or partial)

SI ... Sn -t sand t 1 ••. t n -t t one of the following two conditions is satisfied:

1.	 Si n ti exists for all i, SI n t 1 ••• Sn n t n -t u is one of the declared ranks,

S ~ u, and t~ u

2.	 there is an i such that Si = f(·· '), ti g(. ..), and there IS no type

constructor that is below f and g.

A	 signature is regular if each of its function declarations is regular.

Given a closed signature, the corresponding abbreviation-free signature is

obtained by deleting all abbreviation declarations and repeatedly expanding

the remaining occurrences of the abbreviations until all abbreviations are elim

inated. Of course, this elimination process only terminates if abbreviations are

used nonrecursively, a property that is checked by TEL.

A signature is consistent if it is closed and its corresponding abbreviation

free signature exists and is well-founded, coherent, complete, and regular.

6.3 Views

The syntax of views is as follows:

vlew -----t

'view' module-Ilame '. '

'imports' {module-Ilame} , ,

transfer_declaration

(transfer_declaration)*

'endview' '.'

transfer_declaration -----t

'from' module-Ilame ':' {designator ['abstract'] } '.'

The imports-sentence defines the import signature of the view. The mod

ule names listed in the imports-sentence must be pairwise distinct. If a desig

nator is exported by more than one of the imported modules, all exports must

be defined in the same module. The import signature of the view is obtained

Section 6 45

A function definition is regular if for every two ranks (total or partial)
.91 - - - 3n —-> s and t l . . - t n —-—> t one of the following two conditions is satisfied:

1. s,- Fl t,- exists for all i , 31 Fl t1 H-sn FI tn —> u. is one of the declared ranks,
s Z u , and t2 u

2. there is an i such that s,- = f(--—), t,- = g(---), and there is no type
constructor that is below f and g.

A signature is regular if each of its function declarations is regular.

Given a closed signature, the corresponding abbreviation—free signature is
obtained by deleting all abbreviation declarations and repeatedly expanding

the remaining occurrences of the abbreviations until all abbreviations are elim-
inated. Of course, this elimination process only terminates if abbreviations are
used nonrecursively, a property that is checked by TEL.

A signature is consistent if i t is closed and its corresponding abbreviation—
free signature exists and is well-founded, coherent, complete, and regular.

6.3 Views

The syntax of views is as follows:

View —>
‘view’ modulemame ‘ . ’

‘imports’ { modulemame } ‘. ’
transfer_dec1aration

(transfendeclaration) *
‘endview’ ‘ . ’

transfendeclaration —->

‘from’ modulemame ‘: ’ { designator[‘ abs t rac t ’] } ‘.‚’

The imports—sentence defines the import signature of the view. The mod-
ule names listed in the imports—sentence must be pairwise d is t inc t . If a desig-

nator is exported by more than one of the imported modules, all exports must
be defined in the same module. The import signature of the view is obtained

Sec t ion 6 45

as the union of the export signatures of the imported modules, where for a

designator that is exported abstract by some of the imported modules and

nonabstract by some other imported modules the nonabstract declaration is

taken. The thus obtained import signature of the view must be consistent.

An example of a view whose import signature is inconsistent is mod3:

interface modi.

tya := {a}. tyb:= {b}. tyc tya ++ tyb ++ {c}.

endinterface

interface mod2.

imports modi.

from modi: tya, tyb.

tyd := tya ++ tyb ++ {d}.

endinterface

view mod3.

imports modi, mod2.

from modi: tya, tyb.

from mod2: tyd.

endview.

The import signature of the view mod3 violates the completeness condition

since tyc and tyd don't have a greatest common subtype although they have

tya and tyb as common subtypes.

The from-sentences of a view define the export signature of the view.

There can be at most one from-sentence for a module. The designators listed

in a from-sentence for a module 1\;1 must be pairwise distinct and actually be

defined and exported by M. Thus the view

view mod4.

imports mod2.

from mod2: tya, tyb.

endview.

46 Section 6

as the union of the export signatures of the imported modules, where for a
designator that is exported abstract by some of the imported modules and
nonabstract by some other imported modules the nonabstract declaration is
taken. The thus obtained import signature of the View must be consistent.

An example of a View whose import signature is inconsistent is mods:

i n t e r f ace mod1 .

tya := {a} . tyb := {b} .

endin ter face

interface mod2 .

imports mod1.
f rom modlz t ya , t yb .

tyd := tya ++ tyb ++ {d} .
endin te r face

View mod3 .

impor t s mod1 , mod2 .

f rom mod l : t ya , t yb .

f rom mod2: t yd .

endv iew.

t yc := tya ++ tyb ++ {c} .

The import signature of the View mods violates the completeness condition
since tyc and tyd don’t have a greatest common subtype although they have
t ya and tyb as common subtypes.

The from-sentences of a View define the export signature of the View.

There can be at most one from—sentence for a module. The designators l i s ted

in a from-sentence for a module M must be pairwise dist inct and actually be

defined and exported by M. Thus the View

46

View mod4.

impor t s mod2.

f rom mod2: t ya , t yb .

endv iew.

Sec t ion 6

is inconsistent, while the view

view modS.

imports mod2.

from modi: tya, tyb.

endview.

is consistent.

Every designator listed in a from-sentence must be exported by at least

one of the modules imported by the view. If a designator in a from-sentence

for a module M is exported nonabstract by lvf but is declared abstract in

the import signature of the view, it must be qualified abstract in the from

sentence. On the other hand, a designator listed in a from-sentence can be

qualified abstract although it is declared nonabstractly in the import signature

of the view. The interface frontend discussed before gives you an example of

this kind of information hiding.

The export signature of a view is obtained from the import signature of

the view by deleting the declarations of the designators that are not listed in

a from-sentence. If a designator is qualified as abstract in a from-sentence of

the view but is declared nonabstractly in the import signature of the view, it

is declared as abstract in the export signature of the view. The thus obtained

export signature of the view must be consistent.

6.4 Interfaces

The syntax of interfaces is defined as follows:

interface --+

'interface' module..name '. '

, ,

['imports' {module..name}

[(transfer_declaration)*

declaration]]

(declaration)*

, ,

'endinterface'

Section 6 47

is inconsistent, while the View

View mod5.

imports mod2.

from modi: t ya , t yb .

endv iew.

i s consistent.

Every designator listed in a from-sentence must be exported by at least
one of the modules imported by the View. If a designator in a from-sentence
for a module M is exported nonabstract by 214 but is declared abstract in
the import signature of the View, it must be qualified abstract in the from—

sentence. On the other hand, a designator listed in a from-sentence can be
qualified abstract although it is declared nonabstractly in the import signature
of the View. The interface frontend discussed before gives you an example of
this kind of information hiding.

The export signature of a View is obtained from the import signature of
the View by deleting the declarations of the designators that are not listed in
a from-sentence. If a designator is qualified as abstract in a from—sentence of
the View but is declared nonabstractly in the import signature of the View, it
is declared as abstract in the export signature of the View. The thus obtained
export signature of the View must be consistent.

6.4 Interfaces

The syntax of interfaces is defined as follows:

interface ——+
‘interface ’ modulemame ; 7

[‘imports’ { modulemame } ‘. ’
[(transfendeclaration) *
declaration]]

(declaration)*
‘ end in t e r f ace ’ fl ’

Sec t ion 6 47

The imports-sentence of an interface must satisfy the same conditions

as the imports-sentence of a view and the import signature of an interface

is defined analogously to the import signature of a view. Furthermore, the

requirements for the from-sentences of an interface are the same as for the

from-sentences of a view.

The export signature of an interface is the signature defined by the from

sentences of the interface together with the other declarations appearing in

the interface. The export signature of an interface must be consistent. The

signature defined by the from-sentences of an interface is obtained in the same

way it is obtained for views and must be consistent.

A declaration of an interface must not declare a designator that is declared

in the import signature of the interface. For this reason the interface

interface mod6.

imports modi.

tye := {a}.

endinterface.

is inconsistent although its import and export signature are consistent.

A type constructor is called abstract if it is declared as abstract, or its

definition has the form

f(.. ·) := h("') ++ ... ++ In(" '),

where h, ... , fn are abstract type constructors. A type constructor is called

concrete if every type constructor appearing in the right-hand side of its defi

nition is concrete (taking the greatest fixed point of this inductive definition).

A type constructor is called mixed if it is neither abstract nor concrete. For

48 Section 6

The imports-sentence of an interface must satisfy the same conditions
as the imports—sentence of a View and the import signature of an interface
is defined analogously to the import signature of a View. Furthermore, the
requirements for the from—sentences of an interface are the same as for the
from-sentences of a View.

The export signature of an interface is the signature defined by the from-
sentences of the interface together with the other declarations appearing in
the interface. The eXport signature of an interface must be consistent. The
signature defined by the from—sentences of an interface is obtained in the same
way i t is obtained for views and must be consistent.

A declaration of an interface must not declare a designator that is declared
in the import signature of the interface. For this reason the interface

i n t e r f ace mod6 .

imports modl .
tye := {a} .

end in t e r f ace .

is inconsistent although its import and export signature are consistent.

A type constructor is called abstract if i t is declared as abstract, or i ts
definition has the form

f (. . .) := f1 (. . .) ++ ++ fn (" ') 7

Where f1 , . . . ‚ fn are abstract type constructors. A type constructor is called
concrete if every type constructor appearing in the right—hand side of its defi—
nition is concrete (taking the greatest fixed point of this inductive definition).
A type constructor is called mixed if i t is neither abstract nor concrete. For

48 Sec t ion 6

instance, in the export signature of the interface

interface mixed.

aty1 := abstract.

aty2 := abstract.

aty3 := aty1 ++ aty2.

cty := {a, f: cty}.

mty := {g: aty, h: cty}.

endinterface.

aty1, aty2 and aty3 are abstract, cty is concrete, and mty is mixed.

We need an additional requirement to ensure that abstract types cannot

be inspected. To see this, consider the illegal interfaces

interface mod7.

tya := abstract.

foo: int --) tya

endinterface.

interface mod8.

imports mod7.

tyb := tya ++ {b}.

endinterface.

If TEL would accept these interfaces, then a programmer could write the

equation foo(5)=b, which would allow him to find out whether the value of

foo (5) is b.

A type definition is called protecting if it has either the form

f(···) := JI(...) ++ ... ++ fn(" '),

where either all or none of the fi are abstract, or it has the form

f(-··) := JI(...) ++ ... ++ fn("') ++ { ... },

Section 6 49

instance, in the export signature of the interface

i n t e r f ace mixed .

a ty l := abstract.

aty2 := abstract.

aty3 := a ty l ++ a ty2 .

c ty := {a , f : c ty} .
mty := {g : a ty , h : cty}.

endin te r face .

a ty l , aty2 and aty3 are abstract, c ty is concrete, and mty is mixed.

We need an additional requirement to ensure that abstract types cannot
be inspected. To see this, consider the illegal interfaces

interface mod7.
tya := abs t r ac t .

foo : int - -> tya
end in t e r f ace .

in te r face mod8 .

impor ts mod7.

tyb := tya ++ {b} .
end in t e r f ace .

If TEL would accept these interfaces, then a programmer could write the
equation foo(5)=b, which would allow him to find out whether the value of
foo (5) is b .

A type definition is called protecting if i t has either the form

f (. . .) :=.- f1 (. . .) ++ ++ fn (° ") ‚

where either all or none of the f,- are abstract, or i t has the form

f (. . .) := f1 (. . .) ++ ++ fn (" ') ++ { . . . } ,

Sec t ion 6 49

where none of the h is abstract.

Every type definition of the corresponding abbreviation-free signature of

the export signature of an interface must be protecting.

6.5 Module Bodies

The syntax of module bodies is defined as follows:

module_body ~

'module' moduleJlame'.'

(definition) *
'endmodule' , ,

definition ~

type_definition

I type..abbreviation

I parameter_definition

I function_definition

I relation_definition

I procedure_definition

parameter_definition ~

'par' identifier':' ground_type_term '=' term

['<--' condition_part] , ,

function_definition ~

function_declaration

(functionaLclause) *

relation_definition ~

relation_declaration

(rela tionaLclause)*

procedure_definition ~

procedure_declaration

(relational-clause)*

The import signature of a module is the import signature of its interface

and the export signature of a module is the export signature of its interface.

50 Section 6

Where none of the f,- is abstract.

Every type definition of the corresponding abbreviation-free signature of
the export signature of an interface must be protecting.

6.5 Module Bodies

The syntax of module bodies is defined as follows:

modulabody ————->
‘module’ modulemame ‘ . ’

(definition) *
‘endmodule ’ ‘ . ’

definition ——>
typadefinit ion

| typeabbreviation
| parametendefinition
| functiondefinition
| relation_definition
| pro cedure_definition

parametendefinition ——>
‘par’ identifier ‘ : ’ ground_type_term ‘=’ term

[‘<-——’ condition_part] ‘ . ’

functiondefinition -—>
functionfieclaration

(functional_c1ause)*

relatiomdefinition ——>
relation_declaration

(relationalmlausef

pro cedure_definition ——>
procedure_dec1aration

(relational_clause) *

The import signature of a module is the import signature of its interface
and the export signature of a module is the export signature of its interface.

50 Sec t ion 6

A module body can be compiled only after its interface has been compiled.

If the interface of a module is empty, both the import and the export signature

of the module are the signature consisting of all built-in declarations. The

local signature of a module is its import signature joined with the declarations

appearing in its body. The local signature of a module must be consistent.

If the corresponding abbreviation-free signature of the local signature of

a module contains a type definition

such that f is not declared in the import signature of the module, then 9

must not be an abstract type constructor. This requirement corresponds to

the protection requirement for interfaces.

Every declaration that appears in the interface of a module must appear

in exactly the same form in the body of the module. The only exception to

this rule are abstract type declarations, where the body must contain a type

definition or a type abbreviation whose left-hand side equals the left-hand side

of the abstract type declaration in the interface.

6.6 Compiling Views, Interfaces and Module Bodies

Appendix D lists the commands for compiling views, interfaces and module

bodies.

A module body can be compiled only after its interface has been compiled.

However, if you ask TEL to compile a module body for which you haven't

written an interface yet, TEL will assume that the module has an empty

interface and compile the body under this assumption.

If you ask TEL to compile an interface or a view, it will first compile

all imported interfaces and vievls that haven't been compiled yet. Only after

all imported interfaces have been compiled successfully, TEL will attempt the

compilation of the importing interface or view.

If you recompile a module body, possibly after you have changed it, no

other module body or interface needs to be recompiled.

Section 6 51

A module body can be compiled only after its interface has been compiled.

If the interface of a module is empty, both the import and the export signature

of the module are the signature consisting of all built—in declarations. The

local signature of a module is its import signature joined with the declarations
appearing in its body. The local signature of a module must be consistent.

If the corresponding abbreviation—free signature of the local signature of
a module contains a type definition

f (3717__‚ ’xm) := . . . ++ g (317___‚3n) ++

such that f is not declared in the import signature of the module, then g
must not be an abstract type constructor. This requirement corresponds t o

the protection requirement for interfaces.

Every declaration that appears in the interface of a module must appear
in exactly the same form in the body of the module. The only exception to
this rule are abstract type declarations, where the body must contain a type
definition or a type abbreviation whose left-hand side equals the left—hand side
of the abstract type declaration in the interface.

6.6 Compiling Views, Interfaces and Module Bodies

Appendix D lists the commands for compiling views, interfaces and module
bodies.

A module body can be compiled only after i ts interface has been compiled.
However, if you ask TEL to compile a module body for which you haven’t
written an interface yet, TEL will assume that the module has an empty
interface and compile the body under this assumption.

If you ask TEL to compile an interface or a view, i t will first compile
all imported interfaces and views that haven’t been compiled yet. Only after
all imported interfaces have been compiled successfully, TEL will attempt the
compilation of the importing interface or view.

If you recompile a module body, possibly after you have changed i t , no
other module body or interface needs to be recompiled.

Sec t ion 6 51

If you recompile an interface or a view M, the body of M (if M isn't a

view) and all interfaces, bodies, and views importing M directly or indirectly

will be marked as uncompiled.

6.7 Opening Modules

A module can be opened only if it either has no interface or its interface

and all imported modules have already been compiled successfully. If these

requirements are met but the body of the module to be opened hasn't been

compiled successfully yet, TEL will attempt to compile the body. Once the

body of the module to be opened is compiled successfully, TEL starts loading

all imported modules that aren't loaded already and then loads the module to

be opened. Finally, after all modules have been loaded, TEL loads the local

signature of the module to be opened and prompts you for the next query.

Once a module is loaded (not necessarily opened), it remains loaded as

long as it is not marked as uncompiled. Of course, a module will be unloaded

if you recompile its body.

Parameter definitions are executed only once when the module in which

they are defined is loaded. At anyone time, at most one instance of a module

is loaded. Thus, if the value of a parameter is a data base (an imperative

concept that will be discussed later), all importing modules will use the same

data base.

52 Section 6

If you recompile an interface or a View M, the body of M (if M isn’t a
View) and all interfaces, bodies, and views importing M directly or indirectly
will be marked as uncompiled.

6.7 Opening Modules

A module can be opened only if i t either has no interface or its interface
and all imported modules have already been compiled successfully. If these
requirements are met but the body of the module to be opened hasn’t been
compiled successfully yet, TEL will attempt to compile the body. Once the
body of the module to be opened is compiled successfully, TEL starts loading
all imported modules that aren’t loaded already and then loads the module to
be opened. Finally, after all modules have been loaded, TEL loads the local
signature of the module to be opened and prompts you for the next query.

Once a module is loaded (not necessarily opened), it remains loaded as
long as i t is not marked as uncompiled. Of course, a module Will be unloaded
if you recompile its body.

Parameter definitions are executed only once when the module in which
they are defined is loaded. At any one time, at most one instance of a module
is loaded. Thus, if the value of a parameter is a data base (an imperative
concept that will be discussed later), all importing modules will use the same
data base.

52 Sec t ion 6

7 Open Variables

Relations in TEL must be declared with fixed input and output arguments.

TEL checks the consistent use of these data flow declarations and thus ensures

a clean integration of functions and relations. However, data flow declarations

restrict the possibilities of how one can compute with relations. To regain

the full power of Prolog, TEL offers the possibility to declare variables as

open. Since TEL's type checker considers variables declared as open as bound

to ground terms, open variables provide a means to bypass TEL's data flow

discipline. This provides for all the advanced programming techniques that

were developped for Prolog.

The philosophy behind data flow declarations is that programs without

open variables are far easier to understand than programs with open variables.

Since in large programs open variables are only used in a few places, declaring

them is not much effort.

In the literature on logic programming, open variables are called logical

variables. Since the practical use of "logical variables" almost always involves

the use of nonlogical operations (for instance, testing at run time whether a

variable is bound), this name is somewhat misleading.

Suppose you have opened a module containing the definition:

reI append: list(T) x list(T) x list(T).

append(nil, L, L).

append(H.T, L, H.TL) <-- append(T, L, TL).

Then you can pose the following query:

TEL> !L1 & !L2 & append(L1, L2, 1.2.nil).

L1 = nil elist

L2 = 1.2.nil : list(posint)

more answers? (y/n) y

L1 = 1.nil list(posint)

L2 = 2.nil list(posint)

more answers? (y/n) y

Section 7 53

7 Open Variables

Relations in TEL must be declared with fixed input and output arguments.
TEL checks the consistent use of these data flow declarations and thus ensures
a clean integration of functions and relations. However, data flow declarations
restrict the possibilities of how one can compute with relations. To regain
the full power of Prolog, TEL offers the possibility to declare variables as
open. Since TEL’s type checker considers variables declared as open as bound
to ground terms, open variables provide a means to bypass TEL’s data flow

discipline. This provides for all the advanced programming techniques that

were developped for Prolog.

The philosophy behind data flow declarations is that programs without
open variables are far easier to understand than programs with open variables.
Since in large programs open variables are only used in a few places, declaring
them is not much effort.

In the literature on logic programming, open variables are called logical
variables. Since the practical use of “logical variables” almost always involves
the use of nonlogical Operations (for instance, testing at run time whether a
variable is bound), this name is somewhat misleading.

Suppose you have opened a module containing the definition:

r e l append : l i s tCT) x listCT) x l i s tCT) .

append(ni l , L, L) .
appendCH.T, L , H.TL) < - - append(T , L , TL) .

Then you can pose the following query:

TEL) !L1 & !L2 & appendCLl, L2 , 1 .2 .n i l) .
Li = n i l : elist

L2 = 1 .2 .n i l : list(posint)
more answers? (y /n) y
L1 = 1 .n i1 : list(posint)
L2 = 2.ni1 : listosint)
more answers? (y /n) y

Sec t ion 7 53

Ll = 1.2.nil : listCposint)

L2 = nil : elist

more answers? Cy/n) y

failed.

Since all three arguments of append are input arguments, TEL won't accept

the query append CL1, L2, 1. 2. nil). However, since the variables Ll and L2

are declared as open in the query above, TEL's type checker considers them

as bound to ground terms. A term is ground or closed if it doesn't contain

variables, and a term is open, if it contains variables. The execution of append

binds Ll and L2 since the formal arguments in the clause heads are unified

with the actual arguments. Since append is not declared as determinate, TEL

can compute more than one answer. If append were declared as a drel, TEL

would compute only the first answer.

Here is another query you can pose using open variables:

TEL> !L1 & !L2 & !T & appendCL1, L2, 1.T).

Ll = nil elist

L2 = 1.T listCposint)

more answers? Cy/n) y

Ll = i.nil : listCposint)

L2 = T : listCposint)

more answers? Cy/n) y

Ll = i._i.nil : listCposint)

L2 = _2 : listCposint)

T = _1._2 : listCposint)

more answers? Cy/n) y

Ll = 1._1._3.nil : listCposint)

L2 ::: _2 : listCposint)

T = _1._3._2 : listCposint)

more answers? Cy/n).

For this query TEL could in fact compute infinitely many answers. The open

54 Section 7

L1 1 .2 .n i l : l i s t (pos in t)
L2 = n i l : e l i s t

more answers? (y /n) y
f a i l ed .

Since all three arguments of append are input arguments, TEL won’t accept
the query append(L1 , L2 , 1 . 2 . n i l) . However, since the variables L1 and L2
are declared as open in the query above, TEL’s type checker considers them
as bound to ground terms. A term is ground or closed if it doesn’t contain
variables, and a term is open, if i t contains variables. The execution of append
binds L1 and L2 since the formal arguments in the clause heads are unified
with the actual arguments. Since append is not declared as determinate, TEL
can compute more than one answer. If append were declared as a d r e l , TEL
would compute only the first answer.

Here is another query you can pose using open variables:

TEL> !L1 & !L2 & !T & appendCLi, L2, 1 .T) .
L1 = n i l : elist

L2 = 1 .T : list(posint)
more answers? (y /n) y
Li 1.nil : 1ist(posint)
L2 T : list(posint)

more answers? (y/n) y
L1 = 1._1.nil : list(posint)

L2 = „2 : list(posint)
T = _1._2 : l i s t (pos in t)
more answers? (y /n) y
L1 = 1 ._1 ._3 .n i l : list(posint)

L2 = 2 : list(posint)
_1._3._2 : l i s t (pos in t)H II

more answer s? (y /n) .

For this query TEL could in fact compute infinitely many answers. The open

54 Sec t ion 7

variables _1, _2 and _3 were not given in the query but were generated during

execution.

Another interesting query that makes use of TEL's typed unification is:

TEL> !L1 & !L2 & L2:list(negint) &
append(L1, L2, 1.2.0.-1.-2.nil).

L1 = 1.2.0.nil list(nat)

L2 = -1.-2.nil : listCnegint)

more answers? Cy/n) y

L1 = 1.2.0.-1.nil : list(int)

L2 = -2.nil : listCnegint)

more answers? Cy/n) y

L1 = 1.2.0.-1.-2.nil list(int)

L2 = nil : elist

more answers? Cy/n) y

failed.

7.1 Example: Tables as Open Data Structures

Without open variables the efficient implementation of tables allowing for in

sertion and deletion of entries is jmpossible. However, such tables can be

implemented quite efficiently by using open variables. Here we will implement

tables as an abstract data type with the interface:

interface table.

table(Entry) := abstract.

tdrel insert: string x Entry x table(Entry).

drel lookup: string x ?Entry x table(Entry).

drel remove: string x table(Entry).

allkeys: tableCEntry) --) listCstring).

compress: tableCEntry) --> tableCEntry).

endinterface.

Note that table is declared as a unary abstract type constructor and Entry

is used as a type variable. Furthermore, note that no function or relation is

Section 7 55

variables -

execution.

1 , _2 and _3 were not given in the query but were generated during

Another interesting query that makes use of TEL’s typed unification is:

TEL>

L1

L2
more
L1
L2
more
L i =
L2 =
more

!L1 & !L2 & L2 : l i s t (neg in t) &
append(L1 , L2, 1 .2 .0 . “1 . ”2 .n i1) .
1 .2 .0 .n i l : list(nat)
"1."2.nil : list(negint)
answers? (y/n) y
1 .2 .0 . "1 .n i l : l i s tC in t)
”2 .n i l : l i s tCneg in t)
answers? (y /n) y

1 .2 .0 . "1 . ”2 .n i l : l i s t (i n t)
n i l : e l i s t

answers? (y /n) y
f a i l ed .

7.1 Example: Tables as Open Data Structures

Without open variables the efficient implementation of tables allowing for in—
sertion and deletion of entries is impossible. However, such tables can be
implemented quite efficiently by using open variables. Here We will implement
tables as an abstract data type with the interface:

i n t e r f ace t ab l e .

t ab leCEnt ry) := abs t r ac t .
td re l i n se r t : s t r ing x Entry x t ab l eCEn t ry) .
drel l ockup : s t r ing x ?Entry x t ab1e (En t ry) .
drel remove: s t r ing x t ab1e(En t ry) .
a l lkeys : t ab1e(Ent ry) - -> l i s t (s t r i ng) .
compres s : t ab leCEnt ry) - -> t ab l e (En t ry) .

end in t e r f ace .

Note that t ab le is declared as a unary abstract type constructor and Entry
is used as a type variable. Furthermore, note that no function or relation is

Sec t ion 7 55

exported with which you can create an empty table. The reason for this has to

do with the fact that empty tables are implemented as open variables and will

be discussed thoroughly at the end of the section. From the above interface

definition you can see that the same name can be used for the module and an

object in the module.

We will implement tables with binary search trees, where empty trees are

represented as open variables. Every node of the tree comes with a delete flag

that is an open variable as long as the node is not deleted.

table (Entry) := {node: string x %key

Entry x

table(Entry) x Y. left subtree

table(Entry) x %right subtree

zero} %delete flag

Insertion of a new entry is defined as follows:

tdrel insert: string x Entry x table(Entry).

insert(K, E, T) <-- var(T) &
node(K, E, _, _, _) = T.

%the remaining clauses assume that the third argument

%is not a variable

insert(K, E, node(K,_,L,_,O)) <-

insert(K, E, L).

%an already existing entry for K will be deleted

insert(K, E, node(CK,_,L,_,_)) <-- K @< CK &
insert(K, E, L).

56 Section 7

exported with which you can create an empty table. The reason for this has to
do with the fact that empty tables are implemented as open variables and will
be discussed thoroughly at the end of the section. From the above interface
definition you can see that the same name can be used for the module and an
object in the module.

We will implement tables with binary search trees, where empty trees are
represented as open variables. Every node of the tree comes with a delete flag
that is an open variable as long as the node is not deleted.

tab leCEntry) := {nodez s t r ing x % key
Entry x

tab le(Entry) x % left subtree
tab le(Entry) x % right subtree
zero} % delete f lag

Insertion of a new entry is defined as follows:

tdrel i n se r t : s t r ing x Entry x t ab leCEntry) .

i n se r tCK, E , T) <—- va rCT) &

node (K , E , _ , _ , _) = T.

% the remaining c l auses assume that the th i rd argument

% i s no t a va r i ab le

i n se r t (K , E , nodeCK,_ ,L ,_ ,O)) <——

insertCK, E, L) .
% an already ex i s t i ng entry fo r K wi l l be de l e t ed

i n se r t (K , E , node (CK‚_‚L ,_ ‚_)) < - - K ©< CK &

inse r t (K , E , L) .

56 Sectkni 7

insert(K, E, node(CK,_,_,R,_)) <-- %CK @< K &
insert(K, E, R).

The built-in relation var

drel var: T

succeeds if and only if its argument is a variable. The equational condition

node(K, E, _, _, _) = T of the first clause of insert will always succeed

since it is executed only if T is a variable. Since equational conditions are exe

cuted by unifying their left-hand with their right-hand side, execution of this

equation will bind T to the term node (K, E, _, _, _). Note that this term

contains three new open variables for the left subtree, the right subtree and

the delete flag. You don't have to declare these variables as open since TEL's

type checker believes that T, which appears as an input argument, is bound to

a ground term. Since insert is forced by declaration to be determinate, the

clauses following the first clause will only be used if the third argument is not

a variable.

The lookup relation is defined as follows:

drel lookup: string x ?Entry x table(Entry).

lookup(K, E, T) <-- naf var(T) &

lookup1(K, E, T).

drel lookup1: string x ?Entry x table(Entry).

re the third argument must not be a variable

lookup1(K, E, node(K,E,_,_,D)) <-- var(D).

lookup1(K, E, node(K,E,L,_,D)) <-- %naf var(D) &
lookup(K,E,L).

lookup1(K, E, node(CK,_,L,_,_)) <-- K @< CK &
lookup(K, E, L).

Section 7 57

i n se r t (K , E , node (CK,_ ,_ ,R ,_)) < - - % CK ©< K &
i n se r t (K , E , H) .

The built—in relation var

drel var: T

succeeds if and only if i ts argument is a variable. The equational condition
node (K , E , _ , _ , _) = T of the first clause of inse r t will always succeed

since i t is executed only if T is a variable. Since equational conditions are exe—
cuted by unifying their left—hand with their right-hand side, execution of this
equation will bind T to the term node (K , E , _ , _ , _) . Note that this term

contains three new open variables for the left subtree, the right subtree and
the delete flag. You don’t have to declare these variables as open since TEL’s
type checker believes that T, which appears as an input argument, is bound to

a ground term. Since inser t is forced by declaration to be determinate, the
clauses following the first clause will only be used if the third argument is not
a variable.

The lookup relation is defined as follows:

drel l ookup : s t r ing x ?Entry x t ab l e (En t ry) .
l ookup(K, E , T) <—— naf va r (T) &

lookup1(K, E, T) .

drel l ookup l : s t r ing x ?Entry x t ab l e (En t ry) .
% the th i rd argument must not be a var iable

l ookup iCK, E , nodeCK,E ,_ ,_ ,D)) < - - va rCD) .

lookup1(K, E, nodeCK,E,L,_,D)) <-— % naf var(D) &
lookup(K,E,L).

l ookup1(K, E , node (CK,_ ,L‚_ ,_)) <—— K ©< CK &

lookupCK, E , L) .

Sec t ion 7 57

lookupl(K, E, node(CK,_,_,R,_» <-- %CK @< K &
lookup(K, E, R).

The relation lookup fails if the table doesn't contain an undeleted entry for

the given key. Thus it can be used to test whether a table contains an entry

for a key.

The definition of remove is quite similar to the definition of lookup:

drel remove: string x table(Entry).

remove(K, T) <-- naf var(T) &

removeiCK, T).

drel removel: string x table(Entry).

%the second argument must not be a variable

removel(K, E, node(K,E,_,_,D» <-- var(D) &

D = O.

removel(K, E, node(K,E,L,_,D» <-- %naf var(D) &
remove(K,E,L).

removel(K, E, node(CK,_,L,_,_» <-- K @< CK &
remove(K, E, L).

removel(K, E, node(CK,_,_,R,_» <-- %CK @< K &

remove(K, E, R).

Like lookup remove fails if there is no undeleted entry for the given key in the

table.

The function allkeys returns the list of all keys for which the argument

table contains an undeleted entry.

allkeys: table(Entry) --> list(string).

T I> nil

<-- var(T).

58 Section 7

l ookup1(K, E , node (CK, - ,_ ,R ,_)) <-— % CK ©< K &

lookupCK, E , R) .

The relation lookup fails if the table doesn’t contain an undeleted entry for
the given key. Thus i t can be used to test whether a table contains an entry
fbrzmkey

The definition of remove is quite similar to the definition of lookup:

drel remove: string x t ab l eCEn t ry) .
removeCK, T) <-— naf va r (T) &

remove1(K, T) .

drel removel: s tr ing x t ab l e (En t ry) .
% the second argument must not be a var iable

removelCK, E , nodeCK,E , - , _ ,D)) <—— va r (D) &
D = 0 .

remove1(K, E , node (K ,E ,L ,_ ,D)) <-— % naf varCD) &
r emove (K‚E ,L) .

removelCK, E, node (CK,_ ,L ,_ ,_)) < - - K ©< CK &

removeCK, E , L) .

removeiCK, E, node (CK,_ ,_ ,R ,_)) <—— % CK ©< K &

remove(K‚ E, R) -

Like lookup remove fails if there is no undeleted entry for the given key in the
table.

The function a l lkeys returns the list of all keys for which the argument
table contains an undeleted entry.

a l lkeys : t ab le (Ent ry) - -> l i s t (s t r i ng) .
T |> ni l

<—- var(T).

58 Sectknl 7

%the remaining clauses assume that the argument

%is not a variable

node(K,_,L,R,D)	 I> K.(allkeys(L)lallkeys(R»

<-- var(D). %entry is not deleted

node(K,_,L,R,D) I> allkeys(L) lallkeys(R).

%<-- naf var(D). %entry is deleted

The function compress builds a new table that doesn't contain deleted

entries.

compress: table (Entry) --> table(Entry).

T I> T

<-- var(T).

%the remaining clauses assume that the argument

%is not a variable

node(K,E,L,R,D)	 I> node(K, E, compress(L), compress(R), D)

<-- var(D). %entry is not deleted

node(K,_,L,R,D)	 I> compress1(L,compress(R».

%<-- naf var(D). %entry is deleted

compress1: table (Entry) x table(Entry) --> table(Entry).

T, T1 I> T1

<-- var(T).

%the remaining clauses assume that the argument

%is not a variable

Section 7 59

Z the remaining clauses assume that the argument

Z is not a variable

node(K,_,L,R,D) |> K.(allkeys(L)Iallkeys(R))

<—- var(D). Z entry is not deleted

node(K,_,L,R,D) |> allkeysCL)|allkeys(R).

Z<-— naf var(D). Z entry is deleted

The function compress builds a new table that doesn’t contain deleted

entries.

compress: tableCEntry) --> table(Entry).

T I) T
<-- var(T).

Z the remaining clauses assume that the argument

Z is not a variable

node(K,E,L,R,D) |> node (K , E, compress(L), compress(R), D)

<—- var(D). Z entry is not deleted

node(K,_,L,R,D) I> compressl(L,compress(R)).

Z<-— naf var(D). Z entry is deleted

compressi: table(Entry) x table(Entry) —-> table(Entry).

T, T1 |> T1

<—— varCT).

Z the remaining clauses assume that the argument

Z is not a variable

Section 7 59

node(K,E,L,R,D), T I> CT

<-- var(D) & r. entry is not deleted

CT = compress1(L, compress1(R,T» &
insert(K,E,CT).

node(_,_,L,R,D), T I> compress1(L, compress1(R,T».

%<-- naf var(D). %entry is deleted

Next	 we write a module importing table:

interface table_test.

imports table.

endinterface.

module table_test.

tdrel empty_int_table: ?table(int).

empty_int_table(T) <-- !T.

endmodule.

After you have opened the module table_test, you can, for instance, enter

the query

TEL>	 empty_int_table(T) &

insert('five', 5, T) & insert('four', 4, T) &

lookup('five', E, T).

and TEL will respond:

T = abstract : table(int)

E = 5 : posint.

Since the type of T is abstract, TEL doesn't print the actual value of T but

just tells you that it is abstract.

This example should give you a rough idea of what you can do with open

variables. In Prolog textbooks you can find further examples. Basically, open

60	 Section 7

node(K,E ,L ,R ,D) ‚ T |> CT

<-- var(D) & % entry is not deleted
CT = compressiCL, compressiCR,T)) &

insert(K,E,CT).

node (_ ,_ ,L ,R ,D) , T I> compressl(L, compressiCR,T)).

%<-— naf var(D). % entry is deleted

Next we write a module importing table:

interface table_test.

imports table.

endinterface.

module table_test.

tdrel empty_int_table: ?table(int).

empty_int_table(T) <-— !T.

endmodule.

After you have opened the module table_test, you can, for instance, enter

the query

TEL> empty_int_table(T) &

inse r t (’ f i ve ’ , 5, T) & insert(’four’, 4, T) &

lookup(’ f i ve ’ ‚ E, T).

and TEL will respond:

T abstract : table(int)

E 5 : posint.

Since the type of T is abstract, TEL doesn’t print the actual value of T but

just tells you that it is abstract.

This example should give you a rough idea of what you can do with open

variables. In Prolog textbooks you can find further examples. Basically, open

60 Section 7

variables are single-assignment pointers that become invisible once they are

bound. Since you can bind an open variable to a term containing further

open variables, open variables give you a means for building data structures

incrementally. For large applications, like the TEL system itself, the efficiency

gained from using open variables can be of vital importance. However, since

open data structures require much more care for the operational semantics

than closed data structures, I recommend the use of open data structures only

if a solution using closed data structures is significantly more complicated or

significantly less efficient.

Now let's discuss why I didn't equip the interface of the table module

with a relation that creates empty tables. Since table is an abstract data type,

it is in fact rather awkward to not hide the information that empty tables are

variables. The problem is that in TEL it is impossible to write a relation

tdrel empty_table: ?table(T).

empty_tableCTable) <-- !Table.

since every variable that occurs in an output position of a relational domain

must occur in at least one input position of the domain. This restriction is

essential for the operational semantics of TEL since at run time every open

variable must have a unique type not containing variables.

Introducing a dummy input argument

tdrel empty_table: T x ?table(T).

empty_table(_. Table) <-- !Table.

won't satisfy TEL's type checker either since this still doesn't allow to infer a

ground type term for Table at compile time. The type checker will accept an

open variable X only if at least one of the following conditions is satisfied:

• X occurs in the output argument of a relational condition

• X occurs at the left-hand side of an equational condition

• it is possible to infer a ground type term for X.

Section 7 61

variables are single-assignment pointers that become invisible once they are

bound. Since you can bind an open variable to a term containing further
open variables, open variables give you a means for building data structures
incrementally. For large applications, like the TEL system itself, the efficiency
gained from using open variables can be of vital importance. However, since
open data structures require much more care for the operational semantics
than closed data structures, I recommend the use of open data structures only
if a solution using closed data structures is significantly more complicated or
significantly less efficient.

Now let’s discuss Why I didn’t equip the interface of the t ab le module
with a relation that creates empty tables. Since table is an abstract data type,
i t is in fact rather awkward to not hide the information that empty tables are
variables. The problem is that in TEL it is impossible to write a relation

tdre l empty_tab le : ? t ab l e (T) .
empty_tab1e(Table) <-— !Tab le .

since every variable that occurs in an output position of a relational domain
must occur in at least one input position of the domain. This restriction is
essential for the operational semantics of TEL since at run time every open
variable must have a unique type not containing variables.

Introducing a dummy input argument

td re l emp ty_ tab l e : T x ? t ab1e (T) .

empty_ tab l e (_ , Table) < - - !Tab le .

won’t satisfy TEL’s type checker either since this sti l l doesn’t allow to infer a
ground type term for Table at compile time. The type checker will accept an
open variable X only if at least one of the following conditions is satisfied:

o X occurs in the output argument of a relational condition

0 X occurs at the left—hand side of an equational condition

. it is possible to infer a ground type term for X .

Sec t ion 7 61

The empty_table example shows a weakness of TEL's type system that

needs to be resolved in the future. The most promising solution seems to make

types first-class objects, which would allow the following elegant solution:

tdrel empty_table: T:type x ?T.

empty_table (ETYPE, T) <-- !T & T:table(ETYPE).

62 Section 7

The empty_tab1e example shows a weakness of TEL’S type system that
needs to be resolved in the future. The most promising solution seems to make
types first—class objects, which would allow the following elegant solution:

tdre l empty_tab le : type x ?T .

empty_tab1e(ETYPE, T) <—— !T & tableCETYPE).

62 Sec t ion 7

8 Type Checking

This section defines how the clauses of a module body are type checked. Before

you read this section you should be familiar with the notion of a consistent

signature and the definitions introduced in Subsection 6.2.

To type check the clauses of a module body, TEL uses the corresponding

abbreviation-free signature of the local signature of the module. All the follow

ing definitions are made with respect to a given consistent and abbreviation

free signature.

To type check the clauses of a module body, TEL extends the type terms

defined by the corresponding abbreviation-free signature of the local signature

of the module by the special nullary type constructor.L The above order

"8 ~ t" on type terms is extended such that ..1 becomes the least type term,

that is, 8 ~ ..1 for every type term 5. You may think of ..1 as an empty type

that is a subtype of every type. A program cannot explicitly use ..1, but ..1,

which is printed as void by TEL, can occur in the answer to a query (Section

2 gives an example for such a query).

In this section, we will use the term value function for value constructors,

parameters and functions. To ease our notation, we will use uniform ranks for

all value functions. These ranks have the form 51 ... 5 n -+ 5, where n ~ 0 and '

51, ... ,8n and 5 are type terms. No distinction is made between partial and

total ranks of functions.

We use V(s) to denote the set of all variables occurring in a term s.

A value term is called canonical if it consists only of variables and value

constructurs.

A variable qualification is a pair x: 5 consisting of a variable x and a type

term 5. A prefix is a set of variable qualifications such that no variable is

qualified more than once. We use 1J(P) to denote the set of all variables

qualified by a prefix P.

Section 8 63

8 Type Checking

This section defines how the clauses of a module body are type checked. Before

you read this section you should be familiar with the notion of a consistent

signature and the definitions introduced in Subsection 6.2.

To type check the clauses of a module body, TEL uses the corresponding
abbreviation-free signature of the local‘signature of the module. All the follow-
ing definitions are made with respect to a given consistent and abbreviation—

free signature.

To type check the clauses of a module body, TEL extends the type terms
defined by the corresponding abbreviation-free signature of the local signature
of the module by the special nullary type constructor _L. The above order
“s 2 t” on type terms is extended such that J. becomes the least type term,
that is, s 2 _L for every type term 3. You may think of J. as an empty type
that is a subtype of every type. A program cannot explicitly use J., but .L,
which is printed as vo id by TEL, can occur in the answer to a query (Section
2 gives an example for such a query).

In this section, we will use the term value function for value constructors,
parameters and functions. To ease our notation, we will use uniform ranks for
all value functions. These ranks have the form 31 - — — sn ————> s , where n 2 0 and
.31, . . . ,3.“ and s are type terms. No distinction is made between partial and
total ranks of functions.

We use V(s) to denote the set of all variables occurring in a term 3.

A value term is called canonical if i t consists only of variables and value
constructurs.

A variable qualification is a pair a:: .9 consisting of a variable a: and a type
term .9. A prefix is a set of variable qualifications such that no variable is
qualified more than once. We use D(P) to denote the set of all variables
qualified by a prefix P .

Sec t ion 8 63

8.1 Type Checking Terms

Given a value function f and n ~ 0 type terms SI, ... , Sn, where n is the arity

of 1, the least codomain of1 for SI, ' .. ,Sn is defined as follows:

leasLcodomain(J, (SI, ... , Sn)) :=

min{8t I t1 ••· tn ----+ t is a rank of 1 and 8t1 ~ SI,"" 8tn 2:: Sn}.

The letter 8 ranges over substitutions that replace variables with type terms.

The minimum is taken with respect to the above order "s 2:: t" for type terms.

Of course, the least codomain of 1 for SI, . .. ,Sn doesn't always exist. However,

the regularity condition for signatures ensures that the least codomain exists

if and only if there is at least one rank tl ... t n ----+ t of f and a substitution 8

such that 8ti 2:: Si for i = 1, ... ,n.

In TEL, every well-typed value term has a unique least type term. The

partial function Pis yields the least type term of a value term S under a prefix

P and is defined as follows:

1. Pix = t

if (x: t) E P

2. Pix = 1..

if x is not qualified in P

3. Pi 1(SI, ... , sn) = leasLcodomain(j, PiSI,.··, Pi sn)

A value term S is well-typed under a prefix P if V(s) ~ V(P) and Pi sexists.

A type term t is called proper if there exist a canonical value term sand

a prefix P not containing 1.. such that V(s) = V(P) and t 2:: (P is). For

instance, list(1..) is proper since 0inil = elist and list(1..) 2:: elist, while

the type term nat##1.. is not proper.

A prefix is called proper if each of its type terms is proper. If a value term

s is well-typed under a proper prefix P, then Pis is proper.

64 Section 8

8.1 Type Checking Terms

Given a value function f and n 2 0 type terms 31, . . . , Sn , where n is the arity
of f , the least codomain of f for 31, .- . . , sn is defined as follows:

least..codomain(f, (51 , . . . , s„)) :=

min{6 t | t 1 - - - t n —>t i sa r ank o f f and 9161 251 , . . . , 6 t „ 2 3"}.

The letter 9 ranges over substitutions that replace variables with type terms.
The minimum is taken with respect to the above order “s Z t” for type terms.
Of course, the least codomain of f for sh . . . , sn doesn’t always exist. However,
the regularity condition for signatures ensures that the least codomain exists
if and only if there is at least one rank t l -- ~ tn —> t of f and a substitution €
such that 91352 s,- for i = 1 , . . . ‚ n .

In TEL, every well—typed value term has a unique least type term. The
partial function PTS yields the least type term of a value term 3 under a prefix
P and is defined as follows:

1. PTazz t

if (: r z t)EP

2. PTs .

if a: is not qualified in P

3. PTf(31, . . . , Sn) : l eas txodomai11(f , PT31, . . . , PTsn)

A value term .3 is well-typed under a prefix P if V(s) ; D(P) and PTS exists.

A type term t is called proper if there exist a canonical value term 3 and
a prefix P not containing .1. such that V(3) =: D(P) and t 2 (P T 3). For
instance, l i s t (J_) is proper since @Tnil = elist and list(i) __>__ elist‚ while
the type term nat##J_ is not proper.

A prefix is called proper if each of i ts type terms is proper. If a value term
.9 is well-typed under a prOper prefix P , then PTS is prOper.

64 Sec t ion 8

The partial function Pis is a central component of TEL's type checker.

It is used for checking whether value terms are well-typed and for computing

their least type terms.

8.2 Inferring the Types of Variables

The noncanonical variables of a value term are defined as follows:

1. NCV(x) = 0

2. NCV(f(Sl,"" sn)) = NCV(sd U ... U NCV(sn)

if f is a value constructor

3. NCV(f(Sl, ... , sn)) = V(sI) U ... U V(Sn)

if f is not a value constructor.

A variable occurring in a value term s is called a canonical variable of s if it

is not a noncanical variable of s.

Given a type term s and a value constructor f with rank t1 ••. tn -+ t, the

greatest domain of f for s is

greatesLdomain(f,s):= max{e(t1 , ... ,tn) I s ~ et},

where the maximum is taken with respect to the order obtained by extending

the above order componenbvise to tuples of type terms. The greatest domain

of f for s exists if and only if there exists a substitution () such that s ~ et.

If s is proper, then the greatest domain of f for s is a tuple of proper terms

since the codomains of value constructors are linear, that is, no variable occurs

twice.

The partial function P 1M takes two arguments: P must be a proper

prefix and M must be a set of containments s: t such that s is a value term

and t is a type term. If P 1 M is defined, it yields a proper prefix that

extends the given prefix P by adding and strengthening qualifications for the

canonical variables occurring in the value terms of 111. The definition of P 1111

is as follows:

Section 8 65

The partial function PTS is a central component of TEL’s type checker.

I t is used for checking Whether value terms are well-typed and for computing
their least type terms.

8.2 Inferring the Types of Variables

The noncanonical variables of a value term are defined as follows:

1. NCV($) = 0

2. NCV(f(31,. . . , sn)) = NCV(31) U - - - U NCV(sn)

if f is a value constructor

3. NCV(f(s l , . . . ‚s,—‚)) : V(31) U - - - U V(.sn)

if f is not a value constructor.

A variable occurring in a value term 3 is called a canonical variable of 3 if i t
is not a noncanical variable of 3 .

Given a type term 5 and a value constructor f with rank t l - - - tn —> t , the
greatest domain of f for s is

greatestdomain(f ,s) :: max{9(t1, . . . ‚ tn) | s Z Gt},

where the maximum is taken with respect to the order obtained by extending
the above order componentwise to tuples of type terms. The greatest domain
of f for s exists if and only if there exists a substitution € such that 3 __>_ 9t .
If s is proper, then the greatest domain of f for 3 is a tuple of proper terms
since the codomains of value constructors are linear, that is, no variable occurs
twice.

The partial function P J, M takes two arguments: P must be a proper
prefix and M must be a set of containments s : t such that .3 is a value term
and t is a type term. If P i M is defined, i t yields a proper prefix that
extends the given prefix P by adding and strengthening qualifications for the
canonical variables occurring in the value terms of M. The definition of Pi l l !
i s as follows:

Sec t ion 8 65

1. P 10 = P

2. Pl({s:t}t±JM) = (P1{s:t})lM

3. P l{x:s} = P U {x:s}

if x is not qualified in P and s is proper

4. (Pl:tJ {x:t})l{x:s} =PU{x:(tlls)}

if t n s is proper

if f is a value constructor and (t1 , ... , tn) = greatesLdomain(f, t)

if f is not a value constructor.

If s is a term, P is a proper prefix such that NCV(s) ~ D(P), and Pi s

is defined and proper, then P 1 {s: (P is)} is defined and is a proper prefix

qualifying all variables in s and satisfying Pis = (P 1{s: (P is)}) is. Thus

P 1{s: t} is a function that infers types for the canonical variables of a term s.

8.3 Typechecking Conditions

The type checker for conditions is a partial function F.O.P[C] that takes four

arguments: a set of variables F, a set of variables 0, a prefix P, and a condition

C. The argument F is the set of "forbidden variables", that is, variables that

must not occur in C. The argument 0 is the set of variables that have been

declared as open in preceding conditions. The prefix P qualifies all variables

for which types have been already derived. And C is the condition to be type

checked under F, 0 and P. If F.O.P[C] is defined, then C is well-typed under

F, 0 and P. The result of F.O.P[C] is a triple F'.O'.P', which extends the

input triple F.O.P with the information obtained from the condition C.

The empty condition and conjunctions are the trivial cases:

• F.O.P[0] = F.O.P

66 Section 8

1. PH?) = P

2. Pl ({ s= t} ldJM) = (Pl{s=t})1M

3. Pl{:z:: 3} = P u {32: 3}

if 3: is not qualified in P and 3 is proper

4. (P a {m: mm;: 3} = P u {zu: (t n 3)}

if t r1 s is proper

5 . P i{ f (31 , . . . , 3n) : t } = P i{31 : t1 , . . . , 3n : tn}

if f is a value constructor and (t l , . . . , tn) = greatestdomainfi , t)

6. P i{ f (31 , . . . , 3n) : t } = P

if f is not a value constructor.

If 3 is a term, P is a proper prefix such that NCV(3) g ’D(P), and PTs
is defined and prop-er, then P T, {3: (P T 3)} is defined and is a proper prefix
qualifying all variables in 3 and satisfying P T 3 = (P i {3: (P T 3)}) T3. Thus
P l{3 : t} is a function that infers types for the canonical variables of a term 3.

8.3 Typechecking Conditions

The type checker for conditions is a partial function F.O.P [C] that takes four
arguments: a set of variables F , a set of variables 0 , a prefix P , and a condition
C. The argument F is the set of “forbidden variables”, that is, variables that
must not occur in C . The argument 0 is the set of variables that have been
declared as open in preceding conditions. The prefix P qualifies all variables
for which types have been already derived. And C is the condition t o be type
checked under F , O and P . If F.0.P[C'] is defined, then C is well-typed under
F , O and P . The result of F.O.P[C’] is a triple F ' .O ' .P ' , which extends the
input triple F.O.P with the information obtained from the condition C .

The empty condition and conjunctions are the trivial cases:

. F.O.P[@] z F.O.P

66 Sec t ion 8

• F.O.P[C&C'] = (PO.P[C])[C'].

Negation as failure is checked as follows:

• F.0.P[naf C] = (F' U (1J(P') -1J(P))).0.P

if F'.0.P' := F.O.P[C] is defined.

The type checking rule for negation as failure shows the purpose of the list F

of forbidden variables. Since variable bindings produced during the execution

of C are not propagated outside of naf C, variables introduced in C must not

be used outside of naf C.

Now we come to the type checking rules for primitive conditions. Decla

rations of open variables are easy to check:

•	 PO.P[! x] = F.O U {x }.P

if x rf. F U 0 U 1J(P).

Declaring a variable x as open is okay only if x did not appear so far.

Containments are checked as follows:

•	 F.O.P[s: t] = P0.(P1{s: t})

if t is a type,

o ~ V(s) ~ 0 U 1J(P),

NCV(s) ~ 1J(P), and

((P l{s:t})js) 2: t.

The right-hand side of a containment must be a type term not containing

variables.

Discontainments are checked as follows:

• F.0.P[s\: t] = F.O.P

if V(s) ~ 1J(P) and F.O.P[s:t] is defined.

Equations are checked as follows:

Section 8 67

. F.O.P[C&C"] = (F.0.P[C])[C’].

Negation as failure is checked as follows:

. nappies C] = (F’ u (D(P’) _ D(P))).@.P

if F'.@.P' :: F.0.P[C] is defined.

The type checking rule for negation as failure shows the purpose of the list F
of forbidden variables. Since variable bindings produced during the execution
of C are not propagated outside of naf C , variables introduced in C must not
be used outside of 118.26 C .

N ow we come to the type checking rules for primitive conditions. Decla-
rations of open variables are easy to check:

o F.0.P[!:z:] = F.O U {a:}.P

if a: QFUOUDUD).

Declaring a variable $ as open is okay only if 3: did not appear so far.

Containments are checked as follows:

. F.O.P[s : t] = F.@.(Pl{s: t})

if t is a type,

0 ; V(3) <; O U 'D(P)‚

NCV(3) Q D(P), and

((Pi{s=t})Ts) z t .

The right—hand side of a containment must be a type term not containing
variables.

Discontainments are checked as follows:

. F.@.P[s\:t] : F.O.P

if V(s) ; D(P) and F.0.P[s:t] is defined.

Equations are checked as follows:

Sec t ion 8 67

• F.0.P[s=t] = F.0.P1{s: (Pit)}

if	 NCV(s) u V(t) ~ 'D(P),

F and V(s) are disjoint, and

(P 1{s: (Pit)})i s n Pit exists and is proper.

The type checker treats equations asymmetrically to enforce a certain program

ming style: only the left-hand side can contain variables for which types have

not been derived so far. Of course, the logical semantics and the execution of

equations are symmetric.

Furthermore, an equation type checks only if the least type terms of the

left and the right-hand side have a proper infimum. The reason for this re

quirement is that in TEL two terms can denote the same value only if their

least type terms have a proper common lower bound.

Disequations are checked as follows:

•	 F.0.P[s\=t] = F.0.P

if V(s) ~ 'D(P) and F.O.P[s=t] is defined.

Boolean conditions are abbreviations for equations:

•	 F.0.P[s] = F.0.P[true=s]

if the top symbol of s is a variable or a function.

To check relational conditions, we need a further auxiliary function. Given

a relation p with the domain

and type terms S}, ... , Sk (k ~ 0), the least domain of p for S}, ... , Sk is defined

as follows:

leasLdomain(p, (S}, ... , Sk») :=

68	 Section 8

. F.@.P[s=t] = F.Ü.Pi{s: (PTt)}

if NCV(3) U V(t) g D(P),
F and V(s) are disjoint, and
(P l{ s : (PTt)})Ts F1 PT t exists and is proper.

The type checker treats equations asymmetrically to enforce a certain program-

ming style: only the left—hand side can contain variables for which types have
not been derived so far. Of course, the logical semantics and the execution of
equations are symmetric.

Furthermore, an equation type checks only if the least type terms of the
left and the right-hand side have a proper infimum. The reason for this re-
quirement is that in TEL two terms can denote the same value only if their
least type terms have a proper common lower bound.

Disequations are checked as follows:

0 F.@.P[s\=t] = F.@.P

if V(s) (_; 'D(P) and F.0.P[s=t] is defined.

Boolean conditions are abbreviations for equations:

o F.0.P[s] = F.0.P[true=s]

if the top symbol of 3 is a variable or a function.

To check relational conditions, we need a further auxiliary function. Given
a relation p with the domain

t l x ; - -x t ? tk+1 x- - -x ? tn

and type terms 31, . . . , 3}; (k Z 0), the least domain o fp for 31,. . . ‚sk is defined
as follows:

least..domain(p, (31j . . . ‚sk—)) :=

min{9(t1 , . . . , t n) | 9 t1 Z 31 A ° ' ' Aätk Z Sk} .

68 Sec t ion 8

Of course, the least domain of p for SI,' .. ,Sk doesn't always exist. To ease

the notation, we assume in this section that in a relational domain the input

arguments always appear before the output arguments. This assumption is

purely for notational convenience; in TEL one is of course free to arrange

input and output arguments in any order.

Relational and procedural conditions are checked as follows:

if p is a relation or a procedure having the positions 1, ... , k as input

and the positions k + 1, ... ,n as output arguments,

(t1, , tn) = leasLdomain(p, (Pi SI, ... , Pi Sk)) exists,

t1, ,tk are proper,

(Pi Si) n ti exists and is proper for i = k + 1, ... ,n,
NCV(sI) U U NCV(sn) ~ 'D(P),

a ~ V(sd U U V(Sk) ~ a U 'D(P),
V(Sk+I) U U V(sn) and F are disjoint, and

P1{Sl:t1, ,Sk:td qualifies every variable in a
with a ground type term.

8.4 Type Checking Clauses

A functional clause I(Sl,"" sn) = S <-- C is well-typed if

• 1 is a function and SI, . .. ,Sn are canonical value terms

• there exists a rank t1... tn -t t of 1 such that (01 {Si: ti} i=l) is defined

• for every rank t1 ... tn -t t of 1 such that (01 {Si: ti }i=l) is defined:

• F.a.p:= 0.0.(01{Si:tdi=1)[C] is defined and a = 0

• V(s) ~ 'D(P) and t ~ Pi s.

A relational clause P(Sl"" ,sn) <-- C, where p is a relation with the

domain

Section 8 69

Of course, the least domain of p for 31, . . . ‚ sk doesn’t always exist. To ease

the notation, we assume in this section that in a relational domain the input
arguments always appear before the output arguments. This assumption is
purely for notational convenience; in TEL one is of course free to arrange
input and output arguments in any order.

Relational and procedural conditions are checked as follows:

o F.O.P[p(.31, . . . ,sn)] = F.@.(Pi{312t1‚- . . ‚Snitn})

if p is a relation or a procedure having the positions 1 , . . . , k as input
and the positions k + 1 , . . . , n as output arguments,

(t l , . . . , t n) = least_domain(p, (PT31 , . . . , PTsk» exists,
t l , . . . ‚ t k are proper,

(PTsi) l‘l t,- exists and is proper for i = k + 1 , . . . , n ,
NCV(31) U - - - U ‚Mm/(Sn) ; ’D(P),
0 g V(s1) U - - - U V(sk) g 0 U D(P),
11(5),“) U . . . U V057,) and F are disjoint, and
Pi{31 : t1 , . . . ‚sk: t k} qualifies every variable in O

with a ground type term.

8.4 Type Checking Clauses

A functional clause f(.51, . . . ‚ an) = 3 <-— C is well—typed if

o f is a function and 31, . . . , 3,, are canonical value terms

. there exists a rank tl - . . tn -—-> t of f such that (@i{s,: ti}?=1) is defined

. for every rank t l . . — tn —> t of f such that ([fli{s,-: 23,-};1) is defined:

. F.0.P := @.Ü.(@_L{si:ti}?=1)[0] is defined and O “__—"®

. V(s) ; D(P) and t 2 PTS.

A relational clause p(31, . . . , 3 ”) <--- C, where p is a relation with the
domain

t l x -nx t ? tk+1 x- - -x ? tn ,

Sec t ion 8 69

is	 well-typed if

•	 SI, ••• , Sn are canonical value terms

•	 F.O.P:= 0.0.(01 {Si: tdf=I)[C] is defined

• 0 ~ V(sk+d U··· U V(sn) ~ 0 U D(P)

•	 ti ?: Pi Si for i = k + 1, ... , n

•	 P 1{Si: tdi=k+l qualifies every variable in 0 with a ground type term.

A parameter definition par p : t = s <-- C is well-typed if

•	 F.O.P:= 0.0.0[C] is defined and 0 = 0

• V(s) ~ V(P) and t?: Pi s.

TEL's type checker runs with polynomial complexity with respect to the

length of a clause. Furthermore, for every rank or domain, TEL's type checker

goes only once from left to right through a clause and decides immediately

whether a primitive condition is well-typed. Such a local and deterministic

strategy is crucial for the ability to give precise and localized error messages

in case a clause is not well-typed.

8.S Type Checking Queries

Queries have the same syntax and the same operational semantics as conditions

of clauses. A query C is well-typed if PO.P := 0.0.0[C] is defined and 0 = 0.

70	 Section 8

is well-typed if

o 31, . . . , 5,, are canonical value terms

. F.0.P := @.@.(@‚L{si: t5}£°=1)[C] is defined

. O§V(sk+1)U~-UV(sn)§0UD(P)

t iZPTs i fo r i=k+1‚„ . ‚n

Pi{s‚-: t i } ; k +1 qualifies every variable in O with a ground type term.

A parameter definition par p : t = 3 <-—— C is well-typed if

F.O.P := @.Ü.@[C] is defined and O = @

V(3) ; 'D(P) and t 2 PTS.

TEL’s type checker runs with polynomial complexity with respect to the
length of a clause. Furthermore, for every rank or domain, TEL’s type checker
goes only once from left t o right through a clause and decides immediately
Whether a primitive condition is well-typed. Such a local and deterministic
strategy is crucial for the ability to give precise and localized error messages
in case a clause is not well-typed.

8.5 Type Checking Queries

Queries have the same syntax and the same operational semantics as conditions
of clauses. A query C is well-typed if F.O.P z : @.@.@[C] is defined and O : @.

70 Sec t ion 8

9 Streams and Procedures

Streams are internal representations of files opened for reading or writing.

Streams are values of so-called stream types, which are obtained by two built

in abstract type constructors:

instream(T) := abstract.

outstream(T) := abstract.

There are three operations for opening a file and binding it to a newly created

stream:

proc open_instream: string x T:type x ?instream(T).

proc open_outstream: string x T:type x ?outstream(T).

proc append_outstream: string x T:type x ?outstream(T).

The first argument specifies the name of the file to be opened. The second

argument specifies the element type of the file. TEL considers a file to be a

list of values all belonging to the same type. The third argument returns a

new stream that is connected to the file that was opened.

Files whose elements are characters are text files and can be edited with

any text editor the system provides. All other files are kept in a special format

and should only be written and read by TEL.

The procedure open_instream opens a file for reading. If the file to be

opened doesn't exist, open_instream fails. The procedure open_out stream

opens a file for writing. If the file to be opened exists, open_outstream will

delete all elements of the file so that the file becomes empty. If the file to be

opened doesn't exist, open_outstream creates a new file with the given name.

The procedure append_out stream opens a file for writing without overwriting

its existing elements. If the file to be opened doesn't exist, append_outstream

creates a new file with the given name.

After input from or output to a stream is finished, a stream must be closed

with one of the built-in procedures:

tproc close_instream: instream(T).

tproc close_outstream: outstream(T).

Section 9 71

9 Streams and Procedures

Streams are internal representations of files opened for reading or writing.
Streams are values of so—called stream types, which are obtained by two built-
in abstract type constructors:

i n s t r eam(T) := abstract.

outstream(T) := abstract.

There are three operations for opening a file and binding it to a newly created
stream:

p roc open_ ins t r eam: s t r i ng x type x ? in s t r eam(T) .

proc open_ou t s t r eam: s t r i ng x type x ?outstreamCT).

proc append_outstream: string x type x ?outstreamCT).

The first argument specifies the name of the file to be opened. The second
argument specifies the element type of the file. TEL considers a file t o be a
list of values all belonging to the same type. The third argument returns a
new stream that is connected to the file that was opened.

Files whose elements are characters are text files and can be edited with
any text editor the system provides. All other files are kept in a special format
and should only be written and read by TEL.

The procedure open_instream opens a file for reading. If the file to be
opened doesn’t exist, open_ins t ream fails. The procedure open_ou t s t r eam
opens a file for writing. If the file to be opened exists, open_outs t ream will
delete all elements of the file so that the file becomes empty. If the file to be
opened doesn’t exist, open_outstream creates a new file with the given name.
The procedure append_out s t ream opens a file for writing without overwriting
its existing elements. If the file to be opened doesn’t exist, append_outstream
creates a new file with the given name.

After input from or output to a stream is finished, a stream must be closed
with one of the built—in procedures:

tp roc c lo se_ ins t r eam: i n s t r eam(T) .
tproc close_outs t ream: outs t ream(T) .

Sec t ion 9 71

The closing operations free the file connected to the given stream, so that the

file can be used again by other programs. After a stream is closed, an attempt

to access this stream will cause a run-time error.

The principal procedures for reading and writing are:

proc get: instream(T) x ?T.

tproc put: outstream(T) x T.

The procedure get fails if the given input stream contains no further element,

that is, the end of the file connected to the stream is reached. If get fails on an

input stream, a further call of get on this stream will cause a run-time error

and abort execution.

If you type the query

TEL>	 open_outstream('myfile', string#int ,SO) &

put (SO, 'Time is money'#3) &

put(So, 'and love is honey.'#4) &

close_outstream(SO) &

open_instream('myfile', string#int, SI) &

get (SI, E1) & get (SI, E2) &

close_instream(SI).

TEL	 will answer:

so = abstract outstream(string#int)

SI = abstract instream(string#int)

El = 'Time is money'#3 : nestring#posint

E2 = 'and love is honey.'#4 : nestring#posint.

It is possible to write terms containing open variables on a file. If such

terms are read in again, the occurring variables arc replaced consistently with

new variables, where the scope of variables is limited to the term read by get.

72	 Section 9

The closing operations free the file connected to the given stream, so that the
file can be used again by other programs. After a stream is closed, an attempt
t o access this stream Will cause a run-time error.

The principal procedures for reading and writing are:

proc ge t : instreamCT) x ?T.
tproc pu t : ou ts t ream(T) x T.

The procedure get fails if the given input stream contains no further element,
that is, the end of the file connected to the stream is reached. If get fails on an
input stream, a further call of ge t on this stream Will cause a run—time error
and abort execution.

If you type the query

TEL) open_ou t s t r eam(’myf i l e ’ , s t r i ng# in t ,SU) &

put(SU, ’Time i s money’#3) &
put(SÜ‚ ’and love i s honey.’#4) &
close_outstream(SU) &
open_ ins t r eam(’myf i l e ’ , s t r i ng# in t , S I) &
ge t (S I , E1) & getCSI, E2) &
close_instream(SI).

TEL will answer:

SD

SI

E1

E2

abs t rac t : ou t s t r eam(s t r i ng# in t)

abstract : instream(string#int)
’Time i s money’#3 : ne s t r i ng#pos in t
’ and love i s hone . ’#4 : nestrin # osint.Y 8 P

I t is possible t o write terms containing open variables on a file. If such

terms are read in again, the occurring variables are replaced consistently wi th

new variables, where the scope of variables is limited to the term read by ge t .

72 Sec t ion 9

For instance, the query

TEL>	 open_outstream('test', list(int) ,SO) &

!X & !Y & put(SO, X.Y) & put(SO, X.X.Y) &

close_outstream(SO) &

open_instream('test' , list(int), SI) &

get(SI, El) & get(SI, E2) &

close_instream(SI).

will be answered by TEL with:

SO = abstract outstream(list(int))

SI = abstract instream(list(int))

X = _1 int

Y = _2 list(int)

El = _3._4 : list(int)

E2 = _5._5._6 : list(int).

There are three character streams that are always open and cannot be

closed:

par user_input: instream(char).

par user_output: outstream(char).

par user_error: outstream(char).

You can use them to read from and to write on your TEL window. If you

write on a stream, the information is usually not immediately transferred to

the connected file but is kept in a buffer. With the procedure

tproc flush: outstream(T).

you can force TEL to actually write the buffer of the given stream on the file

connected to the stream. This is particulary useful for the standard streams

user_output and user_error.

Section 9 73

For instance, the query

TEL) open_ou t s t r eam(’ t e s t ’ , l i s t (i n t) ,SO) &

!X & !Y & pu t (SU, X.Y) & pu t (SÜ, X.X.Y) &

close_outstream(80) &
open_ ins t r eam(’ t e s t ’ , list(int), SI) &
ge t (S I , E1) & getCSI, E2) &
close_instream(SI).

Will be answered by TEL with:

SG = abstract : outstream(list(int))

SI = abstract : instreamClist(int))

X = _1 : int

Y = _2 : list(int)
E1 = _3 ._4 : list(int)

E2 = _5._5._6 : listCint).

There are three character streams that are always open and cannot be
closed:

par user_input : ins t reachar) .
par user_output : ou t s t reachar) .
par user_er ror : ou t s t r eam(cha r) .

You can use them to read from and to write on your TEL window. If you
write on a stream, the information is usually not immediately transferred to
the connected file but is kept in a buffer. With the procedure

tproc f lush : outstream(T)._

you can force TEL to actually write the buffer of the given stream on the file
connected to the stream. This is particulary useful for the standard streams
user_output and user_error .

Sec t ion 9 73

The following functions, which cannot be used on the standard streams

user_input, user_output and user_error, return information about the

state of character streams:

lineno: instreamCchar) --> nat,

outstreamCchar) --> nat.

charno: instreamCchar) --> nat,

outstreamCchar) --> nat.

linepos: instreamCchar) --> nat,

outstreamCchar) --> nat.

The function lineno yields the current line number of the stream. The func

tion charno yields the number of characters read from or written to a stream

so far. The function linepos yields the number of characters read from or

written to the current line of the stream.

The procedure

tproc print: outstreamCchar) x T.

can write values of every type on a character stream. For instance, if you enter

the query

TEL>	 printCuser_output, '1 don"t be'~'lieve it!'#5*7) &
flushCuser_output).

TEL	 will answer:

'1 don"t believe it'#35.

A use of print is only okay if TEL can infer a ground type term for the second

argument. Hence, the procedure

proc doesnt_work: T.

doesnt_workCX) (-- printCuser_output, X).

won't	 type check.

74	 Section 9

The following functions, which cannot be used on the standard streams
user_inpu1:, user_output and useruerror, return information about the
state of character streams:

lineno: instream(char) --> nat,

outstream(char) —-> nat.

charno: instream(char) -—> nat,

outstreachar) ——> nat.

linepos: instream(char) --> na t ,
outstreachar) -—> nat.

The function lineno yields the current line number of the stream. The func—

tion charno yields the number of characters read from or written to a stream

so far. The function linepos yields the number of characters read from or

written to the current line of the stream.

The procedure

tproc print: outstream(char) x T.

can write values of every type on a character stream. For instance, if you enter

the query

TEL> printCuser_output, ’I don”t be’“’1ieve it!’#5*7) &
f1ush(user_output).

TEL will answer:

’I d o n ” t believe it’#35.

A use of print is only okay if TEL can infer a ground type term for the second

argument. Hence, the procedure

proc doesnt_work: T.

doesnt_work(X) <-- print(user_output, X).

won’t type check.

74 Sec t ion 9

Of course, print does not print abstract values. For instance, the query

TEL>	 open_outstream('test', char ,SO) &

print (user_output , SO) &

flush(user_output) &

close_outstream(SO).

results in the answer:

abstract : outstream(list(int»

SO = abstract: outstream(list(int».

The procedure

proc	 parse: instream(char) x T:type x ?T.

is the inverse to print: it reads characters until it reaches a full stop, that is,

a period followed by a layout character, and then tries to build a ground term

of the required type. If parse can't build a ground term of the required type

from the characters read, it fails. Furthermore, parse fails if the end of the

file is reached. Analogous to get, a second attempt to read after the end of

the file has been reached will cause a run-time error.

Given the query

TEL>	 parse (user_input , list(int), L).

TEL prints the prompt> and waits until you type in a sentence, that is, a

sequence of characters followed by a full stop. For instance, if you type

> 6.7 .8.nil.

TEL	 will give the answer

L = 6.7.8. nil.

Of course, parse cannot read abstract values.

Section 9 75

Of course, print does not print abstract values. For instance, the query

TEL> open_outs t ream(’ tes t ’ , char ,SU) &
pr in t (user_output , SD) &
f lush(user_outpu t) &
c lose_ou t s t r eam(SD) .

results i n the answer:

abstract : outstream(list(int))

SD = abstract : outstream(list(int)).

The procedure

proc parse: ins t ream(char) x type x ?T .

is the inverse to pr in t : i t reads characters until i t reaches a full stOp, that is,
a period followed by a layout character, and then tries t o build a ground term
of the required type. If parse can’t build a ground term of the required type
from the characters read, it fails. Furthermore, parse fails if the end of the
file is reached. Analogous to get , a second attempt to read after the end of
the file has been reached will cause a run-time error.

Given the query

TEL> pa r se (use r_ inpu t , l i s t (i n t) , .L) .

TEL prints the prompt > and waits until you type in a sentence, that is, a
sequence of characters followed by a full s top. For instance, if you type

> 6 . 7 . 8 . n i l .

TEL will give the answer

L = 6.7.8.nil.

Of course, pa r se cannot read abstract values.

Sec t ion 9 75

Now we have seen all built-ins for stream handling. Many ofthem are pro

cedures, which were not discussed so far. Procedures are determinate relations

that possibly change the state of the TEL system. TEL treats and executes

procedures exactly like determinate relations, except for the following points:

•	 a procedure may have no argument, while a relation always must have at

least one argument

•	 clauses of functions and relations cannot have procedural conditions.

Starting from the built-in procedures you can define further procedures.

The following procedures, which are actually built-in, are examples for defined

procedures:

tproc nl: outstream(char).

nl(S) <-- put(S, \1 nl").

tproc put_string: outstream(char) x string.

put_string(OS, S) <-- put_chars(chartrans(S), OS).

tproc put_chars: outstream(char) x list(char).

put_chars(S, nil).

put_chars(S, H.T) <-- put(S, H) & put_chars(S, T).

The rest of this section spells out how stream types and the special pro

cedures open_instream, open_outstream, append_outstream, and parse are

type checked.

Stream types are obtained by the unary abstract type constructors

instream and outstream. These two type constructors are treated differently

from the other abstract type constructors in the following respects:

•	 instream(s) and outstream(s) are type terms if and only if s is a ground

type term

•	 s :::; instream(t) if and only if there exists a type u such that s

instream(u) and u :::; t

76	 Section 9

Now we have seen all builtvins for stream handling. Many of them are pro—
cedures, which were not discussed so far. Procedures are determinate relations
that possibly change the s ta te of the TEL system. TEL treats and executes
procedures exactly like determinate relations, except for the following points:

o a procedure may have no argument, while a relation always must have at
least one argument

o clauses of functions and relations cannot have procedural conditions.

Starting from the built-in procedures you can define further procedures.
The following procedures, which are actually built-in, are examples for defined
procedures:

tproc n l : outstream(char).

nl(S) <—— putCS, "nl").

tproc pu t_s t r i ng : outs t reachar) x string.

put_st r ing(ÜS, S) <—— put_chars(chartrans(3), OS).

tp roc pu t_cha r s : ou t s t reachar) x l i s t ha r) .

pu t_cha r s (S , n i l) .
pu t_cha r s (S , H.T) <—— putCS, H) & pu t_cha r s (S , T) .

The rest of this section spells out how stream types and the special pro—

cedures open - in s t r eam, Open_ou t s t r eam, append_outs t ream, and pa r se are

type checked.

Stream types are obtained by the unary abstract type constructors
ins t ream and outstream. These two type constructors are treated differently
from the other abstract type constructors i n the following respects:

. instreamCs) and outstream(s) are type terms if and only if s is a ground
type term

o s S i n s t r eam(t) if and only if there exists a type u such that s ==
instream(u) and u S t

76 Sec t ion 9

•	 instreamCs) ~ t if and only if there exists a type u such that t

instreamCu) and s ~ u

•	 s :s; outstreamCt) if and only if there exists a type u such that s

outstreamCu) and t ~ u

•	 outstreamCs) :s; t if and only if there exists a u such that t

outstreamC u) and u ~ s.

This means that the stream type constructors cannot be applied to type terms

containing variables. Furthermore, the type constructor instream is mono

tonic, while the type constructor outstream is anti-monotonic.

The built-in procedures

open_instream, open_outstream, append-Outstreamand parse

take a ground type term as argument. TEL won't allow you to use this kind of

domains for relations or procedures you define yourself. Procedural conditions

using these special procedures are type checked as follows:

•	 F.0.P[open-instreamCs, t ,x)] = F.0.(P U {x: instreamCt)})

if	 V(S) ~ V(P), Pi s ~ string,

t is a type, and

x is a variable not contained in F U V(P)

•	 F.0.P[open_outstreamCs,t,x)] = a.(PU {x:outstrearnCt)})

if V(S) ~ V(P), Pis ~ string,

t is a type, and

x is a variable not contained in F U V(P)

•	 append_outstream is type checked like open_outstream

•	 F.0.P[parseCs,t,u)] = F.0.P l{u:t}

if	 V(S) ~ V(P), Pi s :s; instreamCchar),

t is a type,

Section 9 77

. instream(s) g t if and only if there exists a type u such that t =

instream(u) and s _<_ u

o s g outstream(t) if and only if there exists a type u such that s :
outstreamCu) and t S u

. outstreamCs) £ t if and only if there exists a u such that t :
outstreamCu) and u g 3.

This means that the stream type constructors cannot be applied to type terms

containing variables. Furthermore, the type constructor instream is mono—

tonic, While the type constructor outstream is anti—monotonic.

The built-in procedures

openflinstream, open_outstream, appendfiutstreamand parse

take a ground type term as argument. TEL won’t allow you to use this kind of

domains for relations or procedures you define yourself. Procedural conditions

using these special procedures are type checked as follows:

. F.@.P[open_instream(s,t,x)] = F.Ü.(P U {33: instreamCt) })

if V(S) (_: PUD), PTS 3 string,
t is a type, and

:2: is a variable not contained in F U D(P)

. F.0.P[0pen.outstream(s,t,a:)] = O.(P U {372 outstream(t)})

if V(S') ; 'D(P), PTS S string,
25 is a type, and

a: is a variable not contained in F U D(P)

. append_outstream is type checked like open_outstream

. F.@.P[parse(s‚t‚u)] = F.@.Pi{u:t}

if V(S') ; 'D(P), PTS S instreachar),
t is a type,

Section 9 77

(P i u) n t exists and is proper,

NCV(u) ~ 1J(P) and F n V(u) = 0.

78 Section 9
 78

(PTu) FI t exists and is proper,
NCV(u) ; D(P) and F n V(u) = @.

Sec t ion 9

10 More on Conditions

So far we have not discussed all constructs that can be used in the condition

part of a clause. Let's start with the complete syntax of condition parts.

condition_part -+

condition ['&' condition_part]

condition -+

conditional

I simple_condition

conditional -+

'if' simple_conjunction 'then' cond_condition

('elsif' simple_conjunction 'then' cond_condition) *

['else' cond_condition 'fi'

simple_conjunction -+

simple_condition ['&' simple_conjunction]

cond_condition -+
'succeed'

I 'fail'

I condition-part

simple_condition -+

term '=' term

I term '\=' term

I term ':' c1osed_type_term

I term '\:' c1osed_type_term

I primitive_condition

'naf' primitive_condition

I '!' variable

I 'do' primitive_condition

I term 'islistof' term 'where' primitive_condition

primitive_condition -+

term

Section 10 79

10 More on Conditions

So far we have not discussed all constructs that can be used in the condition

part of a clause. Let’s start with the complete syntax of condition parts.

condition_part —+
condition [‘85’ condition..part]

condition —>
conditional

| simple_condition

conditional —->
‘ i f ’ simp1e_conjunction ‘ then’ cond_condition
(‘ e l s i f ’ simple_conjunction ‘ then’ cond_condition)*
[‘e lse’ cond_condition ‘ f i ’]

simp1e_conjunction —>
. . I ‘ ’ ‘ . I31mpIe_cond1tion [& s1mp16_conjunct10n]

cond_condition ——+
‘succeed’

l ‘ f a i l ’
| condition.part

simple_condition ———-—>
term ‘=’ term

| term ‘\=’ term
’ closed ..type_termI term ‘:

| term ‘ \ : ’ closed..type_term
| primitive_condition
| ‘naf’ primitive_condition
| ‘! ’ variable
| ‘do’ primitive_condition
| term ‘ i s l i s t o f ’ term ‘where’ primitive_condition

primitive_condition ———>

term

Sec t ion 10 79

The above syntax also applies to the condition part of parameter defini

tions. Since the condition part of a parameter definition must always succeed,

it must not contain the reserved identifier fail. The condition part of a pa

rameter definition is executed when the module in which it appears is loaded.

If the execution of a parameter definition fails, the module cannot be loaded

and TEL prints an error message.

A conditional

if Cl then C2 else C3 fi

is executed by first executing the condition Cl' If the execution of Cl succeeds,

Cl is left determinate, that is, it cannot be backtracked, and the condition C2

is executed. If the execution of Cl fails, all variable bindings produced during

its execution are retracted and the condition C3 is executed. The execution of

succeed always succeeds and the execution of fail always fails.

A one-handed conditional

if Cl then C2 fi

is an abbreviation for

if Cl then C2 else succeed fi.

A conditional with elseif

if Cl then C2

elsif C3 then C4

else Cs fi

is an abbreviation for

if Cl

then C2

else if C3 then C4 else Cs fi fi.

80 Section

The above syntax also applies to the condition part of parameter defini-
tions. Since the condition part of a parameter definition must always succeed,
i t must not contain the reserved identifier f a i l . The condition part of a pa-
rameter definition is executed when the module in which it appears is loaded.
If the execution of a parameter definition fails, the module cannot be loaded
and TEL prints an error message.

A conditional

i f C1 then C2 else C3 f i

is executed by first executing the condition C1. If the execution of Cl succeeds,
C1 is left determinate, that i s , i t cannot be backtracked, and the condition C2

is executed. If the execution of Cl fails, all variable bindings produced during
i ts execution are retracted and the condition 03 is executed. The execution of
succeed always succeeds and the execution of f a i l always fails.

A one—handed conditional

i f 01 then '02 f i

is an abbreviation for

i f C1 then C2 e l s e succeed f i .

A conditional with e l s e i f

i f Cl then Cg

e l s i f C3 then C4

e l se C5 f i

is an abbreviation for

i f Cl

then C2

e l se i f C3 then C4 e l s e C5 f i f i .

80 °L Sec t ion 10

The type checking rules for conditionals are:

• F.0.P[if Co then C t else C2 fi] = F'.0.P'

if neither Cl nor C2 is fail,

F l .0'Pl := F.0.P[CO&Cl J is defined,

F2.0'P2 := F.0.P[C2] is defined,

(Ft U D(Pt)) n (F2 U D(P2)),c;, F U D(P),

P' := {(x: SI U S2) I (x: sd E PI /\ (x: S2) E P2 } exists, and

F' := (Ft U F2 U D(Pl) U D(P2)) - D(P')

• F.0.P[if Co then fail else C2 fi] = F'.0.P2

if C2 is not fail,

Ft .0'Pl := F.0.P[CoJ is defined,

F2 .0'P2 := F.0.P[C2 J is defined,

(Ft U D(Pd) n (F2U D(P2)) c;, F U D(P), and

F' := (Ft U F2 U D(Pl)) - D(P2)

• F.0.P[if Co then Cl else fail fi] = F.0.P[Co&Cd

if 9t is not fail

• F.0.P[succeed] = F.0.P.

A do-condition

do C

is equivalent to the condition

if naf C then succeed else succeed fi.

All stack memory allocated during the execution of do C is released immedi

ately after its execution. TEL has do-conditions since in large systems that

run for a long time it can be essential to release memory. For instance, the

implementation of TEL, which is written in TEL itself, does the compilation of

modules within a do-condition. This works since all results of the compilation

are written on files within the do-condition.

Section 10 81

The type checking rules for conditionals are:

o F.0.P[if Co then Cl else 02 f i] = F'.@.P'

if neither C1 nor C2 is f a i l ,
F1.@.P1 := F.@.P[Co&01] is defined,

F2.@.P2 := F.@.P[C'2] is defined,
(F1 U D(P1)) fl (F2 U D(P2))‚g F U D(P) ,
P ' :: {(x:31 L] 32) | (55:31) E Pl A (32:32) 6 P2 } exists, and
F' := (F1 U F2 U D(P1) U D(P2)) — D(P')

. F.@.P[if Co then fa i l e l s e C2 f i] = F'.Ü.P2

if 02 is not fa i l ,
F1.@.P1 := F.0.P[C'o] is defined,
F2.@.P2 := F.(0.P[Cg] is defined,
(F1 U ’D(P1))fl(F2 U D(P2)) g F U D(P) , and
F' := (F1 U F2 U D(P1)) — D(P2)

. F.@.P[if Co then 01 e l s e fa i l f i] : F.@.P[CO&C1]

if C1 is not f a i l

. F.@.P[succeed] = F.@.P.

A do-condition

do C

is equivalent to the condition

i f naf C then succeed else succeed f i .

All stack memory allocated during the execution of do C is released immedi-
ately after its execution. TEL has do-conditions since in large systems that
run for a long time it can be essential to release memory. For instance, the
implementation of TEL, which is written in TEL itself, does the compilation of
modules within a do-condition. This works since all results of the compilation
are written on files Within the do-condition.

Sec t ion 10 81

With an islistof-condition one can collect into a list all answers the

execution of a relational condition can produce. For instance, if a module with

the definitions

person := {dick, harry, tom, cathy}.

beverage := {beer, wine, cider, water, brandy, coffee}.

reI likes: ?person x ?beverage.

likes(dick, beer).

likes(dick, cider).

likes(cathy, water)

likes(cathy, wine).

likes (harry, beer).

likes(tom, brandy).

is opened, the query

TEL> L islistof B where likes(P, B).

will produce the answer:

L = beer.cider.water.wine.beer.brandy.nil list(beverage).

Furthermore, for the query

TEL> L islistof P#B where likes(P, B).

TEL will compute the answer:

L =dick#beer .dick#cider .cathy#water .cathy#wine

.harry#beer .tom#brandy .nil : list(person ## beverage).

The execution of an islistof-condition always succeeds. For instance,

the query

TEL> L islistof P where likes(P, coffee).

82 Section 10

With an is l is tof—condi t ion one can collect into a list all answers the
execution of a relational condition can produce. For instance, if a module with
the definitions

person := {d i ck , harry, tom, ca thy}.
beverage := {bee r , w ine , c ide r , wa te r , brandy, co f f ee} .

re l l i ke s : ?person x ?beve rage .
l i ke s i ck , bee r) .
l i ke s i ck , c ide r) .

l ikecathy, water)
l ikecathy, wine) .
l i ke s (ha r ry , bee r) .
l i ke s (tom, b randy) .

is opened, the query

TEL> L i s l i s t o f B where l i ke s (P , B) .

will produce the answer:

L = bee r . c ide r .wa te r .w ine .bee r .b r andy .n i l : list(beverage).

Furthermore, for the query

TEL> L i s l i s t o f P#B where l i ke sCP , B) .

TEL will compute the answer:

L =d ick#bee r . d i ck#c ide r . c a thy#wa te r . c a thy#wine

.har ry#beer . tom#brandy . n i l : list(person ## beve rage) .

The execution of an i s l i s to f -condi t ion always succeeds. For instance,
the query

TEL> L i s l i s t o f P where likes(P, co f f ee) .

82 SectkNJ 10

produces the answer

L	 = nil : elist

since no person likes coffee.

The type checking rule for islistof-conditions is:

• F.0.P[x islistof s where r(t1 , ... , tn)] = F.0.(P U {x: list(Qj s)})

if	 x is a variable not occurring in F U D(P),

r is a relation,

F.0.Q := F.0.P[r(t1 , .•. , tn)] exists,

V(s) ~ D(Q), and

F' := F U (D(Q) -D(P)).

Operationally, a disequation s\=t is equivalent to naf s=t. As long as

sand t don't contain variables at execution time, naf s=t will in fact be

disequality in the initial model, provided none of the involved relations is

forced to be determinate.

Operationally, a discontainment s \ : t is equivalent to naf s: t. As long as

s doesn't contain variables at execution time, naf s: t will in fact be discon

tainment in the initial model, provided none of the involved relations is forced

to be determinate.

Section 10 83

produces the answer

L = ni l : e l i s t

since no person likes coffee.

The type checking rule for i s l i s tof-condi t ions is:

. F.@.P[:c islistof s where r(t1, . ‚t„)] = F.@.(P U { l i s t (QTs)})

if a: is a variable not occurring in F U 'D(P),
r is a relation,
F.@.Q := F.@.P['r(t1, . . . ,t„)] exists,
V(s) g D(Q), and
F' := F U (D(Q) —— D(P)).

Operationally, a disequation s \= t is equivalent t o naf s=t . As long as
s and t don’t contain variables at execution time, naf s= t will in fact be
disequality in the initial model, provided none of the involved relations is
forced to be determinate.

Operationally, a discontainment s \ : t is equivalent to naf s z t . As long as
‚s doesn’t contain variables at execution time, naf s :25 will in fact be discon—
tainment in the initial model, provided none of the involved relations is forced
t o be determinate.

Sec t ion 10 83

11 Data Bases

Data Bases are lists of canonical value terms, where additional elements can

be inserted and existing elements can be deleted. Data bases are elements of

so-called data base types, which are obtained by the abstract type constructor

database(T) := abstract.

An empty data base is obtained with the procedure

tproc emptydb: T:type x ?database(T).

The procedure

tproc assert: T x database(T).

inserts a term at the end of a data base. The procedure

proc	 retract: ?T x database(T).

deletes the first element of the given data base that unifies with the term given

as first argument. The relation

reI indb: ?T x database(T).

can be used to enumerate the elements of a data base. For instance, if you

type the query

TEL>	 emptydb(int##int, D) &

assert(l#l, D) & assert(2#2, D) &assert(3#l, D) &

assert(4#l, D) & retract(4#X, D) &

Y#X indb D.

TEL computes the following answers:

D = abstract : database(int##int)

X = 1 posint

Y = 1 posint

more answers? (y/n) y

D = abstract : database(int##int)

X = 1 posint

Y = 3 posint

more answers? (y/n) y

failed.

84	 Section 11

11 Data Bases

Data Bases are lists of canonical value terms, where additional elements can
be inserted and existing elements can be deleted. Data bases are elements of
so—called data base types, which are obtained by the abstract type constructor

da tabase (T) := abs t r ac t .

An empty data base is obtained with the procedure

tp roc emptydb: T : type x ?database(T).

The procedure

tproc a s se r t : T x da tabase (T) .

inserts a term at the end of a data base. The procedure

proc r e t r ac t : ?T x da tabaseCT) .

deletes the first element of the given data base that unifies with the term given
as first argument. The relation

re l i ndb : ?T x database(T).

can be used t o enumerate the elements of a data base. For instance, if you

type the query

TEL) emptydbCint##int, D) &
as se r t (1#1 , D) & a s se r t (2#2 , D) &asse r t (3#1 , D) &

asse r t (4#1 , D) & r e t r ac t (4#X, D) &

Y#X indb D .

TEL computes the following answers:

D = abs t r ac t : da tabase (in t## in t)

X = 1 : pos in t

Y = 1 : posint

more answers? (y /n) y
D = abs t r ac t : da t abase (in t## in t)

X = 1 : pos in t

Y = 3 : pos in t

more answers? (y /n) y
f a i l ed .

84 Sectknl 11

If a term in a database contains variables, the variables of the term are

replaced consistently by new variables each time the term is accessed with

retract or indb.

A	 counter can be realized as follows:

natcounter := database(nat).

par counter: natcounter = D ~-- emptydb(nat, D) &

assert(O, D).

tproc increment: natcounter x ?nat.

increment (C. N) <-- retract(N, C) & assert(N+l, C).

Data bases can be useful in large systems to store information that is ac

cessed by many components of the system but is changed by few components of

the system. Furthermore, data bases can be used to communicate information

outside that is computed within a do-condition.

The type constructor database is treated differently from other abstract

type constructors in the following respects:

•	 database Cs) is a type term if and only if s is a ground type term

•	 if the outermost type constructor of s or t is database, then s ::; t if and

only if s = t.

The type checking rule for the procedure emptydb, which takes a type as

argument, is:

•	 F.0.P[emptydb(t ,x)] = F.0.(P U {x: databaseCt)})

if	 t is a type and

x is a variable not contained in F U V(P).

Section 11 85

If a term in a database contains variables, the variables of the term are

replaced consistently by new variables each time the term is accessed with

r e t r ac t or indb .

A counter can be realized as follows:

natcounter := da t abaseCna t) .

par coun te r : natcounter = D $—— emptydb(na t , D) &

asse r t (0 , D) .

tp roc inc rement : natcounter x ?na t .
i nc remen t (C , N) <—— re t r ac t (N , C) & a s se r t (N+1 , C) .

Data bases can be useful in large systems to store information that is ac-
cessed by many components of the system but is changed by few components of
the system. Furthermore, data bases can be used to communicate information
outside that is computed within a do-condition.

The type constructor database is treated differently from other abstract
type constructors in the following respects:

0 databaseCs) is a type term if and only if s is a ground type term

. if the outermost type constructor of 3 or t is da tabase , then s g t if and
only if s = t .

The type checking rule for the procedure emptydb, which takes a type as
argument, is:

. F.@.P[emptydb(t‚cc)] = F.@.(P U {in: da tabase(t)})

if t is a type and
3: is a variable not contained in F U ’D(P).

Sec t ion 11 85

A Built-ins

This	 section lists all built-in objects of TEL.

A.I	 Booleans

bool := {true, false}.

and: bool x bool --) bool.

or: bool x bool --) bool.

not: bool --) bool.

A.2 Integers

int := negint ++ nat.

nat := zero ++ posint.

negint := {-1, -2, -3, . .. }.

zero := {a}.

posint := {1, 2, 3, ... }.

par minnegint negint.

par maxposint posint.

+	 : int x int --) int,

nat x nat --) nat,

posint x nat --) posint,

nat x posint --) posint,

negint x negint --) negint.

- .	 int x int --) int,

nat x negint --) posint,

negint x nat --) negint.

86	 Appendix A

A Built-ins

This section lists all built-in objects of TEL.

A.1 Booleans

boöl := { t rue , false}.

and : bool x boo l —-> boo l .

or: boo l x bool —-> bool.

no t : bool --> bool.

A.2 Integers

86

int negint ++ nat.

I
l

nat

negint := {"1 , "2, "3, ... }.
zero := {O}.

posint := {l, 2, 3, ... }.

zero ++ posint.

par minnegint : negint.
par maxposint : posint.

+ : int x int -—> i n t ,

nat x nat ——> na t ,

posint x nat -—> pos in t ,
nat x posint ——> pos in t ,

negint x negint ——> negint.

- : int x int ——> i n t ,

nat x negint -—> posint,
negint x nat ——> negint.

Append ix A

int --) int,

posint --) negint,

negint --) posint.

int x int --) int,* :

nat x nat --) nat,

posint x posint --) posint,

posint x negint --) negint,

negint x posint --) negint,

negint x negint --) posint.

mod:	 int x int --) nat.

II	 int x int)-) int,

nat x nat)-) nat,

posint x posint --) posint,

posint x negint --) negint,

negint x posint --) negint,

negint x negint --) posint.

< ; int x int --) bool.

=< ; int x int --) bool.

) ; int x int --) bool.

)= : int x int --) bool.

A.3 Characters

char ;= layout_char ++ alpha_char ++ symbol_char.

alpha_char ;= letter ++ digit ++ {"_"}.

letter := capital_letter ++ small_letter.

symbol_char := grouping_symbol ++ operator_symbol ++ {"X"}.

Appendix A 87

int --> i n t ,

posint -—> negin t ,
negint —-> p o s i n t .

* : int x int --> i n t ,

nat x nat —-> na t ,

posint x posint --> pos ifi t ,

posint x negint ——> neg in t ,
negint x posint -—> neg in t ,

negint x negint --> posint.

mod: int x int —-> nat.

// : int x int >—> i n t ,

nat x nat >—> na t ,

posint x posint -—> posint,

posint x negint --> neg in t ,

negint x posint -—> negin t ,
negint x negint ——> poéint.

< : int x int --> bool.

=< : int x int --> bool.

> : int x int ——> bool.

>= : int x int --> bool.

A.3 Characters

char := 1ayout_char ++ alpha_char ++ symbol_char.

alpha_char := letter ++ digit ++ { " _ " } .
letter := capital_letter ++ small_letter.

symbol_char := grouping_symbol ++ operator_symbol ++ {"Z"}.

Appendix A 87

{"bell", "eof", "nl",

11 any character with ASCII-code less than 33"}.

capital_letter := {"A", liB", , "Z"}.

small_letter ;= {"a", "b", , "z"}.

digit := {"O", "1", , "9"}.

grouping_symbol := {" (", 11) ", 11 [", IIJ ", "{", "}",

IIlttl 11'" , 11 u} .,

operator_symbol := {"+", "_" "*" "/11, U 1
1

' , "\11, "......
11 , I1 II-If 1f.1I 11 11"<", ")", "="

"?" "@", "#", "$", "&", "I" II;"}.

natequiv: char --) nat.

charequiv: nat >-) char.

A.4 Lists

list (T) := elist ++ nelist (T) .

elist := {nil}.

nelist (T) := {. T x list (T)} .

list(T) x list(T) --) list(T),

nelist(T) x list(T) --) nelist(T),

list(T) x nelist(T) --) nelist(T).

in: T x	 list(T) --) bool.

length:	 list(T) --) nat,

nelist(T) --) posint.

88	 Appendix A

layout_char := {“bell”, "eo f " , "n l " ,
" any character w i th ASCII—code less than 33"} .

capita1_letter := {“A", "B" , ... , “Z “ } .
small_letter := {"a“ , "b" , ... , "z“}.
digit := {"o", "1", ... , „9„}_

gro 'up ing_symbo l : : { | | (u , | |)" , "En , “] " , "{" , " } " ,

nun , n a n , u ’n} .

o p e r a t o r s y m b o l . : { “+" " _ u " * u n / n " l n „ \ n " A "
_ ' , ! 3 , .! 3 ,

€ " _ .“< " , ">" , " u , n ll, "_u , „ ‘n , u . "

„?" , "©" , "#" , “ $ “ , "&" , „ ! " , u r l } .

natequiv: char --> nat.

charequiv: nat >-> cha r .

A .4 Lists

listCT) := elist ++ nelistCT).

elist := {nil}.

nelist(T) := {. : T x listCT)}.

I : list(T) x listCT) -—> list(T),
nelist(T) x listCT) ——> nelistCT),

list(T) x nelistCT) ——> nelist(T).

in: T x 1ist(T) -—> bool.

length: listCT) --> na t ,
nelistCT) --> posint.

88 Append ix A

A.5 Pairs

S##T := {#	 S x T}.

A.6 Strings

string := estring ++ nestring.

estring :=	 {"}.

nestring :=	 a nonempty string starts with' , continues with at least one character,

where' is written as ' " and ends with'

~< : string x string --> bool.

~=< : string	 x string --> bool.

~> : string x string --> bool.

@>= : string	 x string --> bool.

chartrans:	 string --> list(char),

nestring --> list(char).

stringtrans:	 list(char) --> string,

nelist(char) --> nestring.

string x string --> string.

genstring:	 string x nat --> nestring.

A.7 Streams

instream(T) := abstract.

outstream(T) := abstract.

Appendix	 A 89

A.5 Pairs

S##T := {# : S x T} .

A.6 Strings

string := es t r ing ++ nes t r i ng .

es t r ing := {”} .
nes t r i ng := a. nonempty s t r ing s ta r t s w i th ’ , con t inues w i th a t l eas t one charac ter ,

’) ,where i s wr i t t en as , and ends w i th ’

©< : string x string ——> bool.
©=< : string x string —-> bool.
Q) : string x s t r ing - -> boo l .
©> string x s t r ing - -> boo l .

char t rans : s tr ing ——> list(char),
nes t r ing - -> l i s t ha r) .

s t r ingtrans: l i s thar) —-> s t r ing ,
ne l i s t (char) ——> nes t r ing .

“ string x s t r ing - -> s t r i ng .

gens t r ing : s t r ing x nat - -> nes t r i ng .

A.7 Streams

i n s t r eam(T) := abs t r ac t .

ou t s t r eamCT) := abs t r ac t .

Append ix A 89

proc open_instream: string x T:type x ?instream(T).

proc open_outstream: string x T:type x ?outstream(T).

proc append_outstream: string x T:type x ?outstream(T).

tproc close_instream: instream(T).

tproc close_outstream: outstream(T).

pr~c get: instream(T) x ?T.

tproc put: outstream(T) x T.

par user_input: instream(char).

par user_output: outstream(char).

par user_error: outstream(char).

tproc flush: outstream(T).

lineno: instream(char) --) nat,

outstream(char) --) nat.

charno: instream(char) --) nat,

outstream(char) --) nat.

linepos: instream(char) --) nat,

outstream(char) --) nat.

tproc print: outstream(char) x T.

proc parse: instream(char) x T:type x ?T.

tproc nl: outstream(char).

tproc put_string: outstream(char) x string.

tproc put_chars: outstream(char) x list(char).

90 Appendix A 90

proc open_instream: string x type x ?instream(T).

proc open_outstream: string x type x ?outstream(T).

proc append_outstream: string x type x ?outstream(T).

tproc close_instream: instream(T).

tproc close_outstream: outstreamCT).

prdc ge t : instreamCT) x ?T.

tproc pu t : outstream(T) x T.

par user_input: instream(char).

par user_output: outstream(char).

par user_error: outstreachar).

tproc flush: outstreamCT).

lineno: instreachar) ——> mat,

outstream(char) --> nat.

charno: instreachar) --> na t ,

outstreachar) -—> nat.

linepos: instream(char) -—> na t ,
outstreachar) ——> nat.

tproc print: outstreachar) x T.

proc parse: instream(char) x T:type x ?T.

tproc nl: outstream(char).

tproc put_string: outstreachar) x string.
tproc put_chars: outstream(char) x list(char).

Append ix A

A.8 Data Bases

database(T) abstract.

tproc emptydb: T:type x ?database(T).

tproc assert: T x database(T).

proc retract: ?T x database(T).

rel indb : ?T x database(T).

A.9 Variable Test

drel var: T.

A.IO Unix and Quintus Access

The current implementation of TEL has two built-in procedures for accessing

the UNIX operating system and the Quintus Prolog System on which TEL is

running. If your system needs to use these procedures, I recommend that you

use them only in a special module, say, unix_quintus_interface, so that it

is easy to see which low level features are used by your system. Since in future

implementations of TEL these two procedures may change, isolating them in

a single module will make it easier to port your TEL application.

The procedure

proc unix: string.

passes its argument to a newly created UNIX shell process for execution as a

shell command. The shell run depends on the current UNIX environment. If

the execution of the command fails, unix fails.

Appendix A 91

A.8 Data Bases

database(T) := abstract.

tproc emptydb: T:type x ?database(T).

tproc assert: T x databaseCT).
proc retract: ?T x databaseCT).

rel indb : ?T x databaseCT).

A.9 Variable Test

drel var: T .

A.10 Unix and Quintus Access

The current implementation of TEL has two built-in procedures for accessing

the UNIX operating system and the Quintus Prolog System on which TEL is

running. If your system needs to use these procedures, I recommend that you

use them only in a special module, say, unix_quintus_interface, so that it

is easy to see which low level features are used by your system. Since in future

implementations of TEL these two procedures may change, isolating them in

a single module will make it easier to port your TEL application.

The procedure

proc unix: string.

passes its argument to a newly created UNIX shell process for execution as a

shell command. The shell run depends on the current UN IX environment. If

the execution of the command fails, unix fails.

Appendix A 91

For the Quintus Prolog access TEL supports a type prolog_term allow

ing to express arbitrary Prolog terms in TEL.

prolog_term := refl_variable ++ refl_integer ++

{pterm: string x listCprolog_term)}.

refl_variable	 := {rvar: varname}.

varname := string. %must satisfy Quintus Prolog Syntax

refl_integer := {rint: int}.

The procedure

proc quintus:	 prolog_term x listCrefl_variable) x

?listCrefl_variable##prolog_term).

executes its first argument as a goal in the Quintus Prolog system on which

TEL is currently running. If the execution of the goal given in the first argu

ment succeeds, quintus returns the computed bindings for the variables given

in the second argument through the third argument. If the execution of the

given goal fails, quintus fails. Since quintus is a procedure, it is determinate,

that is, it cannot be backtracked.

'With quintus you can use all the goodies provided by Quintus Prolog.

You can even define your own Prolog predicates. If you do this, use only names

that (1) are not the names of Quintus Prolog built-ins, (2) do not start with

tel_, which is the prefix for the predicates comprising TEL's run time system,

and (3) are atoms that can be written without quotes.

For convenience, TEL has the following two procedures built-in although

they can be defined with quintus. The procedure

tproc statistics.

statistics <-- quintusCptermC'statistics' ,nil), nil, _).

prints information about the current memory allocation arid the used time on

92	 Appendix A

For the Quintus Prolog access TEL supports a type prolog_term allow—
ing to express arbitrary Prolog terms in TEL.

pro log_te rm := re f l_var iab le ++ r e f l_ in t ege r ++

{ptermz string x l i s t (p ro log_ te rm)} .
ref1_variable := {rvarz varname}.
varname := string. % must satisfy Quintus Prolog Syntax
ref1_integer := { r in t z i n t} .

The procedure

proc quin tus : prolog_term x l i s t (r e f l_va r i ab l e) x

?list(refl_variable##prolog_term).

executes its first argument as a goal in the Quintus Prolog system on which
TEL is currently running. If the execution of the goal given in the first argu-
ment succeeds, quintus returns the computed bindings for the variables given
in the second argument through the third argument. If the execution of the
given goal fails, quintus fails. Since quintus is a procedure, i t is determinate,

that is, i t cannot be backtracked.

With quintus you can use all the goodies provided by Quintus Prolog.

You can even define your own Prolog predicates. If you do this, use only names

that (1) are not the names of Quintus Prolog built-ins, (2) do not start with
t e1_ , Which is the prefix for the predicates comprising TEL’S run time system,

and (3) are atoms that can be written Without quotes.

For convenience, TEL has the following two procedures built—in although

they can be defined with quintus . The procedure

tp roc s t a t i s t i c s .
s t a t i s t i c s <—— qu in tus (p t e rm(’ s t a t i s t i c s ’ , n i l) , n i l , _) .

prints information about the current memory allocation and the used time on

92 Append ix A

user_output. The procedure

tdrel time: ?nat.

time (T) (-- %statistics (runtime, [_, T])

quintus(pterm('statistics',

pterm('runtime' ,nil)

.pterm('.' ,

rvar('_')

.pterm('.' ,

rvar(' T')

. pterm (, [] , , nil)

.nil)

.nil)

.nil) ,

rvar('T').nil,

#rint(T).).

returns the seconds of CPU-time used since the last call of time or statistics.

Appendix A 93

user_output. The procedure

tdrel time: ?nat.

t ime(T) < - - Zs t a t i s t iCSCrun t ime , [_ ,T])

qu in tus (p t e rm(’ s t a t i s t i c s ’ ,
p t e rm(’ run t ime’ ,n i l)

. p t e rm(’ . ’ ,
r va r (5_ ’)
. p t e rm(’ . ’ ,

r va rC’T’)
. p t e rm(’ [] ’ , n i l)
. n i l)

. n i l)
. n i l) ,

r va rC’T’) . n i l ,

#r in t (T) .) .

returns the seconds of CPU-time used since the last call of time or s t a t i s t i c s .

Appendix A 93

B Syntax

This section defines TEL's syntax using the following notation:

•	 Syntactic categories are printed slanted, for instance, type_definition.

•	 Every syntactic category is defined by a syntactic rule, which takes the

form

and states that the syntactic category C can take one of the alternative

forms FI, ... , Fn .

•	 A terminal form 'T' means that the token T must appear physically.

•	 An optional form [F) means that the form F is optional.

•	 A list form {F} means that the form F appears either once or more than

once separated by commas' " .

•	 A star form (F)* denotes a possibly empty sequence of Fs.

B.1 Modules

VIeW --+

'view' module..name '. '

'imports' {module..name} , ,

transfer_declaration

(transfer_declaration)*

'endview' , ,

interface --+

'interface' module..name '. '

['imports' {module...name} , ,

[(transfer_declaration) *

declaration]]

(declaration) *

'endinterface' , ,

94	 Appendix B

B Syntax

This section defines TEL’S syntax using the following notation:

o Syntactic categories are printed slanted, for instance, type_definition.

. Every syntactic category is defined by a syntactic rule, which takes the
form

.C ___-> SI ISZ lM ISn

and states that the syntactic category C can take one of the alternative
forms F1, . . . ,Fn.

. A terminal form ‘T’ means that the token T must appear physically.

0 An optional form [F] means that the form F is optional.

o A list form {F} means that the form F appears either once or more than
once separated by commas ‘ ‚ ’ .

o A star form (F)* denotes a possibly empty sequence of F s.

B.1 Modules

View ——+
‘view’ modulemame ‘ . ’
‘imports ’ { modulemame } ‘. ’

transfer_dec1aration

(transfer_declaration)*
‘ endv iew’ fi ’

interface —>
‘in te r face’ modulemame ‘. ’
[‘impor‘ts’ { modulemame } ‘. ’

[(transferde claration) *
declaration]]

(declaration)*
‘ end in t e r f ace ’ fl ’

94 Append ix B

module_body --*

'module' module...name'.'

(definition) *

'endmodule' , ,

module...name --*

identifier

transfer_declaration --*

'from' module...name ':' {designator ['abstract'] } , ,

declaration --*

type_declaration

I parameter_declaration

I function_declaration

I relation_declaration

I procedure_declaration

definition --*

type_definition

I type-abbreviation

I parameter_definition

I function_definition

I relation_definition

I procedure_definition

B.2 Declarations and Definitions

type_declaration --*

abstract_type_declaration

type-abbreviation

type_definition

abstracLtype_declaration --*

type_dec-lhs ': =' 'abstract' , ,

Appendix B 95

modulabody —+
‘module’ modulemame ‘ . ’

(definition)*
‘endmodule’ ‘ . ’

modulemame —>

identifier

transiendeclaration ——>

‘from’ modulemame ‘: ’ { designator[‘abs t rac t ’] } ‘. ’

declaration —+
type-declaration

[parameterdeclaration
| function_declarat1'on
| relation_declaration
| proceduradeclaration

definition ————>
typadefim'tion

| typeßbbreviation
| parameterdefinition
| functiondefinition
| relation_definition
| procedure_defin1't1'on

13.2 Declarations and Definitions

type_declaration —>
abstract-type.declaration

| typ efibbreviation
| type_defin1'tion

abstract-type_dec1aration ————>
___) ;type_dec_1hs ‘: abstract ’

Appendix B 95

type_dec-lbs ~

identifier ['(' { variable } ')']

I prefix_operator variable

variable infix_operator variable

variable postfix_operator

the occurring variables must be pairwise distinct

type...abbreviation ~

type_dec-lhs ': =' nonvariable_type_term

every variable that occurs in the left-hand side must occur in the

right-hand side and vice versa

type_definition ~

type_dec-lhs ': =' type_deLrhs'.'

every variable that occurs in the left-hand side must occur in the

right-hand side and vice versa

type_deE.rhs ~

(subtype~pecification '++')*

subtype~pecification '++'

subtype~pecification

I (subtype~pecification '++') *

'{' { constructor_definition} '}'

subtype~pecification ~

nonvariable_type_term

constructor_definition ~

designator ['. , domain]

designator ~

identifier I operator

domain ~

type_term ['x' domain]

parameter_definition ~

'par' identifier':' ground_type_term '=' term

['<--' condition_part] , ,

parameter_declaration ~

'par' identifier':' ground_type_term , ,

96 Appendix B

type_dec_1hs ———>

identifier[‘C’ { variable} ‘) ’]
| prefix_operator variable

| variable infix_operator variable

| variable postfix.operator

the occurr ing variables must be pairwise distinct

typenbbreviation —-+
type_dec_ihs ‘ : = ’ nonvariab1e_type_term

every variable tha t occurs in the left—hand side must occur in the

right-hand side and vice versa

type_definition ———>
type..dec_1hs ‘ : = ’ type_def_rhs ‘. ’

every variable that occurs in the left-hand side must occur in the

right-hand side and vice versa

type_def..rhs ——>

(subtype—Specification ‘++’)*
“wipe—Specification ‘++’

SUbtype—Specification

l (SUtPte—Specification ‘++’)*

‘{’ { constructondefinition} ?“

su btypeßpecification -—>

nonvariabie_type_term

constructondefinition ———>

designator [‘: ’ domain]

designator ——+

identifier I operator

domain ——+

type-term [‘x’ domain]

parametendefinition —+
‘par’ identifier ‘:’ ground_type_term ‘=’ term

[‘<--—’ condition..part] ‘. ’

paramete1'_deciaration —>

‘par’ identifier ‘: ’ ground_type_term ‘. ’

96 Appendix B

function_definition -----t

function_declaration

(functionaLclause) *

function_declaration -----t

designator':' {rank} '.'

all ranks must specify the same number of arguments

rank	 -----t

domain '-->' type_term

domain '>->' type_term
every variable occurring in the codomain of a rank must occur in

the domain of the rank

relation_definition -----t

relation_declaration

(relationaLclause)*

relation_declaration -----t

, ,
reLclass designator':' io_domain

reLclass -----t

'tdrel' I 'drel' I 'trel' I 'reI'

io_domain -----t

['?'] type_term ['x' io_domain]

every variable occurring in the type term of an output argument

must occur in the type term of an input argument

procedure_definition -----t

procedure_declaration

(relationaLclause)*

procedure_declaration -----t

, ,
proc_class designator':' [io_domain]

proc_class -----t

'tproc' I 'proc'

B.3 Clauses
functionaLclause -----t

nonvariable_term '=' term

['<--' condition_part]
, ,

I { term } 'I >' term

['<--' condition_part]
, ,

Appendix B 97

function_definition —>
function..deciaration

(functiona1_c1ause)*

function_deciaration —>
designator ‘: ’ { rank } ‘. ’

all ranks must specify the same number of arguments

rank —>
domain ‘ - -> ’ type_term

| domain ‘>->’ type_term
every variable occurring in the codomain of a rank must occur in

the domain of t he rank

relation_definition —>
relation-dec]aration

(relational..c1ause)*

reiation-deciaration —>
£ !’ io_domain .rei_ciass designator ‘:

reLcIass —>

‘ td re l ’ | ‘drel ’ | ‘ t r e l ’ | ‘ r e l ’
io_domain —>

[‘?’] type._term [‘x’ io_domain]
every variable occurring in the t ype term of an ou tpu t a rgumen t

must occur in the type te rm of an i npu t a rgument

pro cedure_definition ——>
procedure-dec1aration

(reiationa1_c1ause)*

procedure_deciaration —-—>

proc_class designator ‘: ’ [io_domain] ‘. ’

pro c_c1ass —>

‘tproc ’ | ‘proc ’

B.3 Clauses

functionaLcIause ——-+
nonvariabieierm ‘=’ term

[‘<—-’ condition_part] ‘. ’
| { t e rm} ‘|>’ term

[‘<--’ condition_part] ‘. ’

Appendix B 97

relational-clause ~

nonvariable_term

['<--' condition_part] , ,

condition_part ~

condition ['&' condition_part]

condition ~

conditional

I simple_condition

conditional ~

'if' simple_conjunction 'then' cond_condition

('elsif' simple_conjunction 'then' cond_condition)*

['else' cond_condition 'fi'

simple_conjunction ~

simple_condition ['&' simple_conjunction]

cond_condition ~

'succeed'

I 'fail'

I condition_part

simple_condition ~

term '=' term

term '\=' term

term ':' ground_type_term

term '\:' ground_type_term

I primitive_condition

'naf' primitive_condition

'!' variable

'do' primitive_condition

term 'islistof' term 'where' primitive_condition

primitive_condition -t

term

98 Appendix B

reiationalmlause ——->
nonvariableierm

[‘<——’ condition..part] ‘.’

condition._part —->

condition [‘85’ condition_pa,rt]

condition ———>
conditional

_ I simplexondition

conditional ——>
‘if’ simp1e_conjunction ‘then’ cond_condition

(‘elsif’ simp1e_conjunction ‘ then’ cond_condition)*
[‘ e l se ’ cond_condition ‘fi’]

simpIe_conjunction ——>

simp1e_condition [‘&’ simple_conjunction]

cond_condition ——+
‘succeed’

| ‘ f a i l ’
\ condition_part

simp1e_condition ——>

term ‘=’ term

| term ‘\=’ term
| term ‘: ’ ground_type_term
| term \ : ’ ground-type-term
| primitivemondition
| ‘naf’ primitive_condition

I ‘! ’ variable
| ‘do’ primitive_condition
l term ‘ i s l i s t o f ’ term ‘where’ primitivemondition

primitive_condition —+

term

Appendix B

BA Terms
term ----+

integer

I character

I string

I variable

I identifier ['(' {term} ')']

there must be no character between the identifier and' (,

prefix-Operator term

term infix_operator term

term post fix_op erator

'C' term ') ,

nonvariable_term ----+

a term that is not a variable

type_term ----+

a term not containing integers, characters or strings

a type term not containing variables

nonvariable_type_term ----+

a type term that is not a variable

B.5 Tokens
integer ----+

[,-,] natural...number

natural....number ----+

digit (digit)*

character ----+

'''bell'' , '''eaf'', I '''nl'' ,

'''0'' , I '''9'' , I '"a''' I ... I '" z" , I ill A" , I . .. I '''Z'' ,

'"
 ill
 " , " , '"%,,'
'11] 'Uti If , , 11 '"'tI(II' '")''' '11 [11 , 11 , '11 {" , '"}" , '11 , , " ,

'''+'' , '''-'' , '''*'' , 'It / IJ , '" -" , '''<'' , ,,,>,, , '11 = 11 ,

,,,,,,, ,,, ! " , '11 • 11 , ,,,'''?'' , , " ,
'''$'' , '"&''' ,,,@,,, ,,, #" , '11 I" , I ',,\"' I ''' 11' I '11 ell'

Appendix B 99

B.4 Terms
term ——>

integer
I character
I string
| variable
| identifierI ‘(’ { term } ‘) ’]

the re mus t be no charac te r be tween the identifier and ‘ (’

| prefix_operator term

| term infix.operator term

I term postfix..operator

I ‘(’ term ‘) ’

nonvariable_term —>

a term that is not a variable

type..term —>

a. term not conta in ing integers, characters or strings

ground_type_term —>

a type term not containing variables

nonvariab1e_type_term —>

a. type term that is not a variable

B.5 Tokens
integer -—>

[“"] naturaIJlumber
naturaLnumber —>

digit (digit)*

character ——>
"'bell"’ | "'eof"’ | "'n1"’

Appendix B

‘ | || ’ € | „ ’ {|} || } € J C ? (JI I 0 | _ , I | 9 a " Z " " A " I I Z I I

I (II II7 I i n II7 I („ ° /u?

_ .

‘n I I 7 { I I I I 7 (u I I 7 (I I I I 7 i n I I 7 ‘II II 7 m u I I 7 m 1 I I 7 € " I I 7| (|) | [] { } | ,
c ‚) c : c 7 c ~ : c :! c) c)I n+1 li! 7 I ” * I I I I l / I l I I I II I " < " I " > " I “ = “

I i n : " ! I “ !?" , I ‘ l l ! ! ! ’ I i n . 7 I (u . "?

I ("$ I I 7 I (“&") I („Qu i I ("#") I (" I n? I (" \ “) I ‘ n ' — u) I (“€")

99

string ---+
" , ,
nonempty...string

nonempty...string ---+

starts with' , contains at least one character, ' is written as ' , , and ends with'

variable ---+

capital.J.etter (alpha_character) *

wildcard

wildcard ---+
, ,

identifier ---+

small.J.etter (alpha_character)*

must not be a reserved...identifier or an operator

alpha_character ---+
, ,

digit I capital.J.etter I letter I

layout-token ---+

comment

I any nonempty sequence of ASCII characters with code $32

comment ---+

starts with %and ends with newline

end_of...sentence_token ---+

a period' .' followed by an ASCII character with code $32

operator -------+

prefix_operator I infix_operator I postfix_operator

prefix_operator ---+

user_defined_prefix_operator

'not' precedence 900

precedence 200

100 Appendix B

string ———->
C; , 7

I nonemptyzstring

nonempty/string „__,
1s t a r t s with ’, con ta in s at l ea s t one charac te r , is wr i t t en as

variable —->
capitaIJetter (alpha_character)*

. I Wildcard

Wildcard —>
€ !

identifier —>
smaHJet ter (alpha_character) *

must not be a. reservedn'dentifier or an operator

alpha_character —-+

digit I capitaLletter I letter I ‘_’

layout..token ——>
comment

I any nonempty sequence of ASCII characters with code 532

comment ———>

starts with % and ends with newline

end „ofßentencei oken —->

a period ‘ . ’ followed by an ASCII character with code S32

operator —>

prefix_operator I infix_operator | postfix_operator

prefix_operator -—>

user_defined_prefix_operator

I ‘not ’ precedence 900

I ‘" ’ precedence 200

100

1 J , and ends with ’

Appendix B

infix_operator -----+

user_defined-infix_operator

'indb' precedence 1200

'and' precedence 1100, right-associative

'or' precedence 1000, right-associative

'in' precedence 900

'<' '=<' I '>' I '>=' precedence 900

'I ' precedence 800, right-associative
, ,

precedence 700, right-associative

'# ' precedence 600, right-associative

'+ ' precedence 500, right-associative

'- , precedence 500, left-associative

precedence 400, right-associative'* '
'I I' 'mod' precedence 400

'##' precedence 300, right-associative

'@<' '@=<' I '@>' I '@>=' precedence 200

precedence 100, right-associative

post fix_op erator -----+

user_defined_postfix_operator

reserved-identifier -----+

'interface' I 'endinterface' I 'module' I 'endmodule' I 'view'

'endview' I 'imports' I 'from' 'abstract' I 'par'

'reI' I 'drel' I 'tdrel' I 'trel' I 'proc' I 'tproc' I 'do' I 'naf'

'if' I 'then' I 'elsif' 'else' 'fi' I 'succeed' I 'fail'

'islistof' I 'where' I 'void'

To see how operators are parsed, consider the text

x + 5 + -4 - 7 - 6* -Y

which is parsed as the term

((x + (5 + -4)) - 7) - (6 * (-Y)).

Appendix B 101

infix_operat or _)

user_defined_infix_operator

I ‘ i ndb ’ precedence 1200

I ‘ and’ precedence 1100 , r ight-associat ive

I ‘01” precedence 1000 , r ight -assoc ia t ive

I ‘ i n ’ precedence 900

I ‘< ’ I ‘=<’ I ‘) , I ‘>=’ precedence 900

I (I , precedence 800 , r ight-associat ive

I ‘ . ’ precedence 700 , r ight-associat ive

I (#3 precedence 600, right-associative

I (*" precedence 500, right-associative

I " ’ precedence 500 , left-associative

I "!" precedence 400, right-associative

I 7 / , I ‘mod’ precedence 400

I (## , precedence 300, right-associative

I ‘@<, I ‘@=<’ I (Q) , I ‘@>=’ precedence 200

| precedence 100, right-associative

postfix_operator —>
user_defined_postfix..operator

reservedidentifier ___->

‘ in terface’ | ‘endinterface’ | ‘module’ | ‘endmodule’ | ‘view’
| ‘endview’ | ‘imports’ | ‘from’ | ‘abs t rac t ’ I ‘par’
I ‘ re l ’ | ‘dre l ’ | ‘ tdrel ’ | ‘ t r e l ’ | ‘proc’ | ‘ tproc’ | ‘do’ | ‘naf’
I ‘ i f ’ I ‘then’ | ‘ e l s i f ’ | ‘e l se’ I ‘ f i ’ I ‘succeed’ I ‘ f a i l ’

| ‘islistof’ | ‘where’ I ‘void’

To see how operators are parsed, consider the text

X+5+"4-7 -6*"Y

which is parsed as the term

((X + (5 + "4)) " 7) - (6 * ("Y)).

Appendix B 101

B.6 User-defined Operators

When TEL is invoked, it looks in the current working directory for a file

rnyoperators. If this £le exists, TEL will treat the operators defined in it

just as it treats the built-in operators. The file rnyoperators must have the

following format:

my..operators ---+

(operator-definition) *

operator_definition ---+

'prefix' operator_text precedence ['right'] , ,

'infix' operator_text precedence [associativity] '.'

'postfix' operator_text precedence ['left'] '.'

operator_text ---+

identifier

must not be a reserved...identifier or a built-in operator

I any nonempty sequence of the characters

but not a built-in operator or any of the following:

++ --> >-> I> <-- & ! = \= \:.

precedence ---+

natural-number

associativity ---+

'left' I 'right'

102 Appendix B

B.6 User-defined Operators

When TEL is invoked, i t looks in the current working directory for a file
myoperators . If this file exists, TEL will treat the operators defined in i t
just as i t treats the built-in operators. The file myoperators must have the
following format:

myfiperators —>

(operat or_definition) *

operator_definition ——>
‘prefix’ operator_text precedence [‘right’] ‘ .’

| ‘ inf ix’ operator.text precedence [associativity] ‘ . ’
| ‘ pos t f i x ’ operatontext precedence [‘ l e f t ’] ‘ , ’

operator..t ext ——>
identifier

mus t no t be a. reservedidentifier o r a. built—in ope ra to r

| any nonempty sequence of t he characters

+—*/"<>=:? ! ; . $&@#| * ‘
but no t a bu i l t - i n Opera tor o r any of t he fol lowing:

:= ++ ——> >-> |> <-— & ! = \= : \ : .

precedence —>
naturalmumber

associativity ———>
‘ l e f t ’ | ‘ r ight ’

102 Append ix B

C Manager Commands

After you have invoked the TEL system, TEL's manager prints the prompt

TEL> and waits for your input. You can enter commands or queries. Com

mands are used, among other things, to request that a module be edited,

compiled or opened. Queries request TEL computations and are type checked

and executed in the environment defined by the local signature of the module

currently opened. If no module is opened, the signature consisting of all built

in objects is taken as environment. The manager accepts functional queries,

which consist of a term not containing variables, and relational queries, which

have the same form as clause bodies.

Commands start with the character # and end with a period followed by

the newline key. Here are the commands available in our implementation:

#halt. Ends the TEL session.

#help. Lists the available commands.

#show_definition d Prints the definitions of the designators

d, . .. in the current environment.

#show_module m Prints information about the modules m,

#show_system. Prints an alphabetical list of all known modules. For

instance, the first line of the list

C I B abstract_syntax_and_table %1
I CB) backend %7
V backend_import

L I B front end %8
V front end_import

module abstract_syntax_and_table is opened

says that the module abstract_syntax_and_table is consulted, its interface

and body have been compiled successfully, and the Prolog code for its objects

is disambiguated with the prefix %1. The second line says that the interface

Appendix C 103

C Manager Commands

After you have invoked the TEL system, TEL’s manager prints the prompt

TEL> and waits for your input. You can enter commands or queries. Com—

mands are used, among other things, to request that a module be edited,
compiled or opened. Queries request TEL computations and are type checked
and executed in the environment defined by the local signature of the module

currently opened. If no module is opened, the signature consisting of all built—

in objects is taken as environment. The manager accepts functional queries,
which consist of a term not containing variables, and relational queries, which
have the same form as clause bodies.

Commands start with the character # and end with a period followed by

the newline key. Here are the commands available in our implementation:

#halt . Ends the TEL session.

#help . Lists the available commands.

#show_defini t ion d Prints the definitions of the designators
d , . . . in the current environment.

#show_module m Prints information about the modules m,

#show_system. Prints an alphabetical list of all known modules. For
instance, the first line of the list

C I B abstract_syntax_and_table %1
I (B) backend %?

backend_import

frontend %8
frontend_import

r‘

<
H

< D
J

module abst rac t_syntax_and_table i s opened

says that the module abs t rac t_syntax_and_table is consulted, i t s interface
and body have been compiled successfully, and the Prolog code for i ts objects
is disambiguated with the prefix 7.1. The second line says that the interface

Append ix C 103

of the module backend has been compiled successfully, while the draft of the

body of backend has not been compiled successfully. The third line says that

the view backend_import has been compiled successfully. The fourth line says

that the interface and body of the module front end have both been compiled

successfully and that the module is loaded.

#edit_interface ID. Creates an edit window for the interface of module

ID. If the interface has been compiled successfully, the manager asks whether

you want the compilation of the interface to be retracted. If a compilation is

retracted, the compilation of all dependent module components is retracted.

Don't forget to save the editor buffer after you have finished editing, otherwise

TEL won't be able to access the interface file.

#edit_body ID. Creates an edit window for the body of module ID.

#edi t_view ID. Creates an edit window for the view ID.

#delete ID. Deletes the module (interface and body) or view m.

#coIDpile_interface ID. First, the compilation of all module components

depending on ID is retracted. Then the compilation of the interface of module ID

is attempted. If the interface of an imported module or an imported view has

not been compiled successfully so far, its compilation is attempted recursively.

#coIDpile_body ID. Attempts the compilation of the body of module ID.

If m is loaded or consulted and the compilation turns out to be successful, the

manager asks whether you want ID to be reloaded or reconsulted.

#coIDpile_ view ID. First, the compilation of all module components de

pending on ID is retracted. Then the compilation of the view ID is attempted. If

the interface of an imported module or an imported view has not been compiled

successfully so far, its compilation is attempted recursively.

#open ID. Attempts to open the module ID. If the body of ID has not been

compiled successfully so far, its compilation is attempted. If debugging mode

is on, ID is consulted rather than loaded.

104 Appendix C

of the module backend has been compiled successfully, While the draft of the
body of backend has not been compiled successfully. The third line says that
the View backend_import has been compiled successfully. The fourth line says
that the interface and body of the module frontend have both been compiled
successfully and that the module is loaded.

#ed i t_ in te r face m. Creates an edit Window for the interface of module
m. If the interface has been compiled successfully, the manager asks Whether
you want the compilation of the interface to be retracted. If a compilation is
retracted, the compilation of all dependent module components is retracted.
Don’t forget to save the editor buffer after you have finished editing, otherwise
TEL won’t be able to access the interface file.

#edit_body m. Creates an edit window for the body of module m.

#ed i t_v i ew m. Creates an edit Window for the View m.

#delete m. Deletes the module (interface and body) or view m.

#compi le_in ter f ace m . First , the compilation of all module components
depending on m is retracted. Then the compilation of the interface of module m
is attempted. If the interface of an imported module or an imported View has
not been compiled successfully so far, i ts compilation is attempted recursively.

#compi le_body m. Attempts the compilation of the body of module m.
If m is loaded or consulted and the compilation turns out to be successful, the
manager asks Whether you want m to be reloaded or reconsulted.

#compile_view m. First, the compilation of all module components de—
pending on m is retracted. Then the compilation of the view In is at tempted. If
the interface of an imported module or an imported View has not been compiled
successfully so far, i t s compilation is attempted recursively.

#open 111. Attempts to open the module m. If the body of m has not been
compiled successfully so far, its compilation is attempted. If debugging mode
is on, m is consulted rather than loaded.

104 Appendix C

#show_switches. Prints the settings of the switches of the TEL system.

The default settings are:

noise 2 (1, 2, 3, 4, 5)

time off (on, off)

types off (on, off)

debug off (on, off)

print_depth 30 (1, 2, 3, ...)

The switch noise determines how much TEL tells you about what it is doing.

If the switch time is on, TEL tells you how much CPU seconds it needs for its

actions. If the switch types is on, TEL prints the types it infers for variables

when it type checks clauses. If the switch debug is on, TEL is in debugging

mode. The switch print_depth determines up to which depth TEL prints

terms that appear as answers to queries.

#switch s v. Sets switch s to value v.

#save f. Saves the current state of the TEL system in a file f. You can

restart the TEL system in this state by typing f to the UNIX shell.

#generate f m p. Generates a user system on file f using the nullary

total procedure p defined in module m as start-up procedure. You can start

the generated system by typing f to the UNIX shell. The generated system

contains TEL's run-time system but not its manager and compiler.

#spy 0 ••. • Sets spypoints on the objects 0,... and turns the debug

ging mode on. An object in the module currently opened is specified by its

designator, while an object d in another module m is specified by m:d. Spy

points can be put on functions, relations and procedures. If you enter a query

and debugging mode is on, execution stops at every spypoint and the relevant

information is printed. You will be quite amazed at first since you are actu

ally debugging the Prolog code generated by TEL using the excellent Quintus

Prolog debugger. Don't worry, this works quite well in practice although it

may not seem so. Before you start debugging TEL programs, you better get

acquainted with the Quintus Prolog debugger.

Appendix C 105

#show_swi tches . Prints the settings of the switches of the TEL system.

The default settings are:

no i se 2 (1 , 2 , 3 , 4 , 5)

time off (on , o f f)

types of f (on, o f f)
debug off (on, o f f)
pr in t_depth 30 (1 , 2 , 3 , . . .)

The switch noise determines how much TEL tells you about what it is doing.
If the switch t ime is on, TEL tells you how much CPU seconds i t needs for i ts

actions. If the switch types is on, TEL prints the types i t infers for variables
when it type checks clauses. If the switch debug is on, TEL is in debugging
mode. The switch print_depth determines up to which depth TEL prints
terms that appear as answers to queries.

#swi tch 3 v'. Sets switch s to value v.

#save f . Saves the current state of the TEL system in a file f . You can
restart the TEL system in this state by typing f to the UNIX shell.

#generate f m p . Generates a user system on file f using the nullary
total procedure p defined in module 111 as start-up procedure. You can start
the generated system by typing 3? to the UNIX shell. The generated system
contains TEL’s run-time system but not i ts manager and compiler.

#spy o Sets spypoints on the objects 0, . . . and turns the debug—
ging mode on. An object in the module currently opened is specified by its
designator, while an object d in another module m is specified by m:d. Spy—
points can be put on functions, relations and procedures. If you enter a query
and debugging mode is on, execution stops at every spypoint and the relevant
information is printed. You will be quite amazed at first since you are actu-
ally debugging the Prolog code generated by TEL using the excellent Quintus
Prolog debugger. Don’t worry, this works quite well in practice although it
may not seem so. Before you start debugging TEL programs, you bet ter get
acquainted with the Quintus Prolog debugger.

Appendix C 105

#nospy 0 •.. • Removes the spypoints from the objects 0,

#nospyall. Removes all spypoints.

#show_spypoints. Prints all existing spypoints.

#consul t ID ••• Consults the modules ID, ••• , which must have been

compiled successfully. If a module is loaded, its Prolog code is compiled, while

the Prolog code is interpreted if the module is consulted. Interpreted Prolog

code is J;Iluch slower than compiled Prolog code, but the Prolog debugger can

do much more with interpreted code. If debugging mode is on, the open

command consults rather than loads the requested module.

#deconsult ID ••• • Deconsults and loads the modules ID, ••• , which

must be consulted currently.

#prolog. Starts a Prolog break shell from which you can return to TEL.

106 Appendix C

#nospy o Removes the spypoints from the objects 0,

#nospyall . Removes all spypoints.

#show_spypoints. Prints all existing spypoints.

#consult m Consults the modules In, . .. , which must have been

compiled successfully. If a module is loaded, its Prolog code is compiled, while

the Prolog code is interpreted if the module is consulted. Interpreted Prolog

code is much slower than compiled Prolog code, but the Prolog debugger can

do much more with interpreted code. If debugging mode is on, the open

command consults rather than loads the requested module.

#deconsul‘t m Deconsults and loads the modules m,... , which

must be consulted currently.

#prolog. Starts a Prolog break shell from which you can return to TEL.

106 Appendix C

D Limitations of the Current Inlplenlentation

Our current implementation of TEL Version 0.9 has the following limitations

(in order of their significance):

•	 Open variables cannot be constrained to subtypes. This is due to th~ fact

that for reasons of effiency TEL's typed unification is mapped more or

less directly to Prolog's untyped unification.

•	 No subtype of the built-in types char and string (including char and

string) can be a subtype of a user-defined type. This limitation is due to

the fact that characters are implemented as Prolog numbers and strings

are implemented as Prolog atoms. Without this limitation, integers could

not be distinguished from characters and nullary value constructors could

not be distinguished from strings.

•	 Relations declared with trel don't produce a run-time error if they fail to

yield at least one answer. Vile don't know how to implement this feature

efficiently in Prolog.

•	 User-defined operators are not implemented (yet).

•	 Of course, TEL inherits all limitations of Quintus Prolog.

Appendix D	 107

D Limitations of the Current Implementation

Our current implementation of TEL Version 0.9 has the following limitations
(in order of their significance):

Open variables cannot be constrained to subtypes. This is due to the fact

that for reasons of effiency TEL’s typed unification is mapped more or

less directly to Prolog’s untyped unification.

No subtype of the built—in types char and s t r ing (including char and
st r ing) can be a subtype of a user-defined type. This limitation is due to
the fact that characters are implemented as Prolog numbers and strings
are implemented as Prolog atoms. Without this limitation, integers could
not be distinguished from characters and nullary value constructors could
not be distinguished from strings.

Relations declared with t rel don’t produce a run—time error if they fail to
yield at least one answer. We don’t know how to implement this feature
efficiently in Prolog.

User—defined operators are not implemented (yet).

Of course, TEL inherits all limitations of Quintus Prolog.

Appendix D 107

	neu.pdf
	neu-1

