
>
5n

.?.?

5235935—
33.0

m
vom

 com
—

„m
om

533.935!
“garages

55.525
292328“.

3228053
8

5
9

:9
5

fiel—
‚Fi

Adaptation Rules
Programming and

‚e

‚mam
.

1CeD
.C

.1nok

C!
m

ag....

Harold Boley
SEKI Report SR-88-04

ICONIC-DECLARATIVE PROGRAMMING AND ADAPTATION RULES

Harold Boley, FB Informatik, Univ. Kaiserslautern

Abstract: Functional and logical languages permit declarative program
ming, i.e. executable high-level problem specifications. However, to
obtain optimum intelligibility, programs should also be iconic, i.e.
directly model their domain, as illustrated imperatively by object
oriented languages. After a discussion of iconic aspects in pure LISP
(call nestings) and pure PROLOG (invocation patterns), an advanced
iconic-declarative technique in the functional/logical AI language FIT
is presented: adaptation rules join left-hand side invocation patterns
and right-hand side call nestings of transformation rules into single
pictorial contexts that process data by global tests and direct local
transformations. Their utility is exemplified in three domains (list
processing, set normalization, and graph searching). The conclusions
criticize the predominance of transformation rules and contrast
iconic-imperative with iconic-declarative developments.

1. Introduction

Programming has been renowned for involving multiple layers of manual
or automatic translation that mediate between the given problems and
machines. So-called 'high-level' or even 'very-high-level'
languages have attempted to shield application programmers from most of
the lower, machine-oriented levels, and to retain -- in the ideal case

the uppermost, 'problem-oriented' level only. Today, the equivalent
attribute 'declarative' is mainly claimed by two such groups of
languages, namely the -- purely -- functional and logical paradigms.
However, their principal realizations, LISP and PROLOG, in real live -
AI and otherwise are often applied in a quite non-declarative,
'imperative' fashion.

On the other hand, the object-oriented paradigm is ga~n~ng momentum in
AI via a third major group of programming languages. Their flagship,
SMALLTALK, ubiquitously employs imperative features such as instance
variables (hence a state concept) and PASCAL-like method definitions.
In our opinion, however, the potential of object-oriented programming
is not its imperative features themselves but a not necessarily
related, more essential characteristics: The directness of its (often
I-to-I) modeling of real-world objects by language objects.

This direct modeling is typical for what we will call 'iconic'
languages, which permit programs (representations) to mirror the struc
ture of the data (world) in the 'pictorial' or 'analogical' manner of a
homomorphic (in extreme cases, isomorphic) image.

ICONIC-DECLARATIVE PROGRAMMING AND ADAPTATION RULES

Harold Boley, FB Informatik, Univ. Kaiserslautern

Abstract: Functional and logical l anguages permit declarative program—
ming, i.e. executable high-level problem specifications. However, to
obtain optimum intelligibility, programs should also be iconic, i.e.
directly model their domain, as illustrated imperatively by object—
oriented languages. After a discussion of iconic aspects in pure LISP
(call nestings) and pure PROLOG (invocation patterns), an advanced
iconic-declarative technique in the functional/logical AI language FIT
is presented: adaptation rules join left-hand side invocation patterns
and right-hand side call nestings of transformation rules into single
pictorial contexts that process data by global tests and direct local
transformations. Their utility is exemplified in three domains (list
processing, set normalization, and graph searching). The conclusions
criticize the predominance of transformation rules and contrast
iconic—imperative with iconic-declarative developments.

I. Introduction

Programming has been renowned for involving multiple layers of manual
or automatic translation that mediate between the given problems and
machines. So-called ’high-level’ —- or even ’very-high-level’ --
languages have attempted to shield application programmers from.most of
the lower, machine~oriented levels, and to retain -- in the ideal case
-- the uppermost, ’problem—oriented’ level only. Today, the equivalent
attribute ’declarative’ is mainly claimed by two such groups of
languages, namely the —- purely —- functional and logical paradigms.
However, their principal realizations, LISP and PROLOG, in real live --
AI and otherwise -- are often applied in a quite non-declarative,
’imperative’ fashion.

On the other hand , the object-oriented paradigm is gaining momentum. in
AI via a third major group of programming languages. Their flagship,
SMALLTALK, ubiquitously employs imperative features such as instance
variables (hence a state concept) and PASCAL—like method definitions.
In our opinion, however, the potential of object-oriented programming
is not its imperative features themselves but a not necessarily
related, more essential characteristics: The directness of its (often
l—to-l) modeling of real-world objects by language objects.

This direct modeling is typical for what we 'will call ’iconic’
languages, which permit programs (representations) to mirror the struc-
ture of the data (world) in the 'pictorial’ or ’analogical’ manner of a
homomorphic (in extreme cases, isomorphic) image.

2

Our emphasis in this paper will be on

(1)	 what we call deep icons as opposed to the usual surface icons,
i.e. we are interested in internal, information-processing appli
cations of direct modeling, not in external information
presentation applications via graphics, even though this latter,
well-known sense of 'iconic' has contributed a lot to SMALLTALK's
popularity;

(2)	 iconic programs as opposed to the more general and well-known con
cept of iconic representations, although this distinction is not
very sharp since in SMALLTALK , for instance, representation of the
world happens to be done using program-like objects.

An obvious advantage of iconicity -- also inherent in the 'Wysiwyg'
("What you see is what you get") principle for text processing -- is
the self-explanatory 'meaning immanence' of iconic programs, not
requiring extraneous, 'symbolic-denotational' interpretation mappings
to reach the semantics.

Thus the present attempts at integrating functional/logical languages
on the one hand with object-oriented languages on the other hand
(hence, the three major AI paradigms) may be seen under the following
double perspective:

(1)	 Can object-oriented languages be made more declarative or,

(2)	 Can functional/logical languages be made more iconic?

Coming from a functional/logical background [Boley 1986 1987], in the
following sections we will concentrate on the second half of this ques
tion, i.e. on the issue of iconic-declarative languages. Our approach
is to complement the above-discussed object-oriented (imperative) tech
nique of data mirroring by a new functional/logical (declarative)
pattern-derived kind of iconic programs. These 'adaptation rules' or
'adapters' match data structures like patterns do, and simultaneously
process some of their parts by embedded functions.

Adaptation rules are the central construct of FIT, a LISP-implemented
declarative AI language; in our experience they blend nicely with the
more well-known, less iconic, transformation rules (including PROLOG's
Horn rules) and with the widespread non-iconic functions (including
LISP's lambda definitions).

Even though we want to proceed 'upward' the declarative axis, it is
also possible to look 'downward', while keeping on the iconic side of
computing: Instead of direct modeling on a (SMALLTALK-like) language
level, also direct models down to the hardware level can be employed,
as discussed from AI classics like [Minsky & Papert 1971] and [Sloman
1971] to many modern 'connectionist' papers since [Hillis 1985].

Our emphasis in this paper will be on

(1) what we call deep icons as opposed to the usual surface icons,
i.e. 'we are interested in internal, information-processing appli-
cations of direct modeling, not in external information-
presentation applications via graphics, even though this latter,
well-known sense of ’iconic’ has contributed a lot to SMALLTALK’S
popularity;

(2) iconic programs as opposed to the more general and well-known con-
cept of iconic representations, although this distinction is not
very sharp since in SMALLTALK, for instance, representation of the
world happens to be done using program-like objects.

An obvious advantage of iconicity -- also inherent in the ’Wysiwyg’
("What you see is what you get") principle for text processing -- is
the self-explanatory ’meaning immanence’ of iconic programs, ‘not
requiring extraneous, ’symbolic-denotational’ interpretation mappings
to reach the semantics.

Thus the present attempts at integrating functional/logical languages
on the one hand with object-oriented languages on the other hand
(hence, the three major AI paradigms) may be seen under the following
double perspective:

(1) Can object-oriented languages be made more declarative or,

(2) Can functional/logical languages be made more iconic?

Coming from a functional/logical background [Boley 1986 1987], in the
following sections we will concentrate on the second half of this ques-
tion, i.e. on the issue of iconic-declarative languages. Our approach
is to complement the above-discussed object—oriented (imperative) tech-
nique of data mirroring by a new functional/logical (declarative)
pattern—derived kind of iconic programs. These ’adaptation rules’ or
’adapters’ match data structures like patterns do, and simultaneously
process some of their parts by embedded functions.

Adaptation rules are the central construct of FIT, a LISP-implemented
declarative AI l anguage ; in our experience they blend nicely with the
more well-known, less iconic, transformation rules (including PROLOG’s
Horn rules) and with the widespread non-iconic functions (including
LISP’s lambda definitions).

Even though we want to proceed ’upward’ the declarative axis, it is
also possible to look ’downward’, while keeping on the iconic side of
computing: Instead of direct modeling on a (SMALLTALK-like) language
level, also direct models down to the hardware level can be employed,
as discussed from AI classics like [Minsky & Papert 1971] and [Sloman
1971] to many modern ’connectionist’ papers since [Hillis 1985].

3

Extrapolating from all these occurrences of iconicity on arbitrary lev
els of declarativeness we suggest that the 'declarative' "iconic' dis
tinction is indeed an orthogonal one, as illustrated by a summary of
this introductory section in the 'qualitative' diagram below.

*declarative

*
d

1-------------------- -----e--PROLOG ---------------FITI
1--------------LISPI Horn c clauses adaptation rules 1
Ilambda expressions 1 1 1

a1 I I
rI I I

1------------------1- -----a-------- ------------------1

non-iconic (symbolic) I t iconic

********1******************1* *iconIcity**** ***************************

I 1 v
I 1-----------1- -----e-------- ---------SMALLTALKI
lordinary imperative n object-oriented 1
1 programs 1 -----e-------- programs I
1 I-----------I-------s---------------------------I
1------------------1 s

*
*non-declarative (imperative)

2. Iconicity in functional and logical languages

In the sense conceived here, iconicity is not a yeslno property but
constitutes a fairly continuous scale, ranging from completely non
iconic to partially iconic, to completely iconic languages. Moreover,
there are several facets of iconicity, whose summarizing in a single
dimension must be taken as a first approximation. This section com
pares two such facets, operator calls and definitions, for functional
and logical languages. The next section will then proceed to the more
iconic adaptation rules of FIT.

2.1. Call iconicity

An operator (function) call in functional languages takes n arguments
and returns 1 value. Therefore, call nestings are permitted, i.e. n
inner function calls can be written directly at the argument positions
of an n-ary outer function call. We regard this standard method of
nesting as a simple but important kind of iconicity, because the
correct call correspondences are established automatically.

An analogous operator (predicate) call in logical languages takes n+l
arguments, where, say, the n first arguments are inputs and the last
argument is an output variable. Instead of call nestings, sequential

Extrapolating from all these occurrences of iconicity on arbitrary lev-
els of declarativeness we suggest that the ’declarative’l’iconic’ dis—
tinction is indeed an orthogonal one, as illustrated by a summary of
this introductory section in the ’qualitative’ diagram.below.

*declarative
*

d
- - - - - - - - - - - - - - - - - - - -	————— e--PROLOG	- - - - - - - - - - - - - - - FIT	
- - - - - - - - - - - - - - LISP		Horn c clauses	adaptation rules
lambda expressions		1	
		a I II I r I II -------------------	————— a -------- I ------------------

non-iconic (symbolic) | t | iconic
|

I | V |
| - - - - - e - - - - - - - - | - - - - - - - - - SMALLTALKI

|ordinary imperativ | n | object-oriented |
| programs | - - - - - e - - - - - - - - | programs |
| - - - - - - - - - - - - - - - - - - S --------------------------- |
l - - - - - - - - - - - - - - - - - - | S

*
*non-declarative (imperative)

g. Iconicity in functional and logical languages

In the sense conceived here, iconicity is not a yes/no property but
constitutes a fairly continuous scale, ranging from completely non-
iconic to partially iconic, to completely iconic languages. Moreover,
there are several facets of iconicity, whose summarizing in a single
dimension must be taken as a first approximation. This section com-
pares two such facets, operator calls and definitions, for functional
and logical languages. The next section will then proceed to the more
iconic adaptation rules of FIT.

g.;. Call iconicity

An operator (function) call in functional languages takes n arguments
and returns 1 value. Therefore, call nestings are permitted, i.e. n
inner function calls can be written directly at the argument positions
of an n-ary outer function call. We regard this standard method of
nesting as a simple but important kind of iconicity, because the
correct call correspondences are established automatically.

An analogous operator (predicate) call in logical languages takes n+1
arguments, where, say, the n first arguments are inputs and the last
argument is an output variable. Instead of call nestings, sequential

4

call conjunctions must be employed, where the first n calls bind n aux
iliary output variables and the last call uses their values as its
respective inputs. We regard this method of conjunction as a good
example of non-iconic programming, because only through the symbolic
links of the n output variables to their 'second occurrences' as input
variables are the correct call correspondences established.

For example, with LISP functions (-f) we can iconically use the nesting

(append-f (reverse-f '(1 2 3» (delete-f 'b '(a b»)

while with PROLOG relations (-r) we have to introduce symbolic names
like Aux, Auy, and Res:

reverse-r([1,2,3],Aux), delete-r(b,[a,b],Auy), append-r(Aux,Auy,Res).

We hope that the above discussion has made the 'flatness' critique of
PROLOG in, e.g., [McDermott 1980] and [Boley 1987] more precise: As
much as we estimate logical variables for non-ground functional pro
gramming [Boley 1986], we also critici~e their nesting replacement as a
typical non-iconic technique. We can even go one step further, con
tending that the sometimes vague scepticisms against the use of (sub
sets of) first-order logic in AI can be explicated by critici~ing its
dependence on lots of symbolic variables for establishing indirect,
non-iconic, hard-to-read correspondences across (potentially large con
junctive) formulas. Higher-order logics may be used to eliminate many
of these variables, e.g. replacing the first-order rules

uncle-r(Unc,Nep) :- brother-r(Unc,Aux), parent-r(Aux,Nep).
grandmother-r(Gma,Gch) :- mother-r(Gma,Aux), parent-r(Aux,Gch).

by the second-order facts

relation-product(brother-r,parent-r,uncle-r).
relation-product(mother-r,parent-r,grandmother-r).

but also introduce (a smaller number) of additional, higher-order vari
ables, as in the abstracted second-order rule (PROLOGish syntax, RELFUN
semantics)

Prod(Ind1,Ind3) :- relation-product(Rel1,ReI2,Prod),
Rel1(Ind1,Ind2), Rel2(Ind2,Ind3).

2.2. Definition iconicity

An operator (function) definition in functional languages associates
the function name with an entire function expression consisting of the
parameters and a call nesting, often written as a lambda expression.

call conjunctions must be employed , where the first n calls bind n aux-
iliary output variables and the last call uses their values as its
respective inputs. We regard this method of conjunction as a good
example of non-iconic programming, because only through the symbolic
links of the n output variables to their ’second occurrences’ as input
variables are the correct call correspondences established.

For example, with LISP functions (—f) we can iconically use the nesting

(append-f (reverse-f ’(l 2 3)) (delete-f ’b ’(a b)))

while with PROLOG relations (—r) we have to introduce symbolic names
like Aux, Any, and Res:

reverse—r([l,2,3],Aux), delete-r(b,[a,b],Auy), append-r(Aux,Auy,Res).

'We hope that the above discussion has made the ’flatness’ critique of
PROLOG in, e.g., [McDermott 1980] and [Boley 1987] more precise: As
much as we estimate logical variables for non-ground functional pro—
gramming [Boley 1986], we also criticize their nesting replacement as a
typical non-iconic technique. We can even go one step further, con-
tending that the sometimes vague scepticisms against the use of (sub-
sets of) first-order logic in AI can be explicated by criticizing its
dependence on lots of symbolic variables for establishing indirect,
nonsiconic, hard-to—read correspondences across (potentially large con-
junctive) formulas. Higher-order logics may be used to eliminate many
of these variables, e.g. replacing the first-order rules

uncle-r(Unc,Nep) :» bro the r—r(Unc ,Aux) , pa ren t - r (Aux ,Nep) .
grandmother-r(Gma,Gch) :- mother-r(Gma,Aux), parent-r(Aux,Gch).

by the second-order facts

relation-product(brother-r,parent-r,uncle-r).
relation-product(mother-r,parent-r,grandmother-r).

but also introduce (a smaller number) of additional, higher-order vari-
ables, as in the abstracted second-order rule (PROLOGish syntax, RELFUN
semantics)

Prod(Ind1,Ind3) :- relation—product(Rell‚Re12,Prod),
Rell(Indl,Ind2), Re12(Ind2,Ind3).

g .g . Definition iconicity

An operator (function) definition in functional languages associates
the function name with an entire function expression consisting of the
parameters and a call nesting, often written as a lambda expression.

5

This link is a paradigm of non-iconic techniques because an arbitrarily
chosen symbolic name is defined to denote a lambda function as a whole.

An analogous operator (predicate) definition in logical languages asso
ciates invocation patterns (containing the predicate name followed by
possible further fixed parts and the parameters) with call conjunctions
(empty for facts), i.e. it is a system of Horn clauses. While these
links themselves again are not iconic, each of the patterns is a very
iconic construct because it pictorially mirrors the set of operator
calls for which the associated call conjunction is applicable.

For example, let us consider a functional (-f) and a relational (-r)
version of an operator selecting the nth list element.
we must define the operator nth-f non-iconically by one
expression like

While
named

in LISP
lambda

(def nth-f (lambda (n 1)
(cond «eq 1 n) (car 1»

(t (nth-f (subl n) (cdr 1») »)

in PROLOG we can define the analogous operator nth-r iconically by two
Horn clauses like

nth-r(l,[FirstIRest),First).

nth-r(N,[FirstIRest),Found) :- Aux is N-l, nth-r(Aux,Rest,Found).

Obviously, the two cond clauses of the LISP definition correspond to
the two Horn clauses of the PROLOG definition, but the case analysis is
performed differently in these languages:

In the base case, LISP employs the function call (eq 1 n) while PROLOG
just uses the fixed pattern part 1 iconically in the position of the n
parameter.

In the recursive case, LISP employs the always true constant t (better:
a positive-integer check on n) and PROLOG uses the always matching
variable N (better: a variable with positive-integer type).

Note also that in a more complete LISP definition the 1 parameter would
require an additional non-emptiness check in a very first clause; in
PROLOG this is implicit in the subpattern [FirstIRest), which iconi
cally shows a list of at least one element, First, and an arbitrary
Rest. In addition to the more concise description of the case
analysis, the use of iconic patterns also saves selectors in the asso
ciated goal conjunctions: in the first case the selector call (car 1)
becomes the second variable occurrence of First; in the second case the
selector call (cdr 1) becomes the second variable occurrence of Rest.

This link is a paradigm of non-iconic techniques because an arbi t rar i ly
chosen symbolic name is defined to denote a lambda function as a whole.

An analogous Operator (predicate) definition in logical languages asso-
ciates invocation patterns (containing the predicate name followed by
possible further fixed parts and the parameters) with call conjunctions
(empty for facts), i.e. it is a system of Horn clauses. While these
links themselves again are not iconic, each of the patterns is a very
iconic construct because it pictorially mirrors the set of operator
calls for which the associated call conjunction is applicable.

For example, let us consider a functional (-f) and a relational (-r)
version of an operator selecting the nth list element. While in LISP
‘we must define the operator nth-f non-iconically by one named lambda—
expression like

(de f nth-f (lambda (n l)
(cond ((eq 1 n) (car 1))

(t (nth-f (subl n) (cdr 1))))))

in PROLOG we can define the analogous operator nth-r iconically by two
Horn clauses like

nth-r(1,[FirstIRest],First).
nth-r(N,[Firstest],Found) :- Aux is N- l , nth-r(Aux,Rest,Found).

Obviously, the two cond clauses of the LISP definition correspond to
the two Horn clauses of the PROLOG definition, but the case analysis is
performed differently in these languages: '

In the base case , LISP employs the function call (eq 1 n) while PROLOG
just uses the fixed pattern part 1 iconically in the pesition of the n
parameter.

In the recursive case, LISP employs the always true constant t (better:
a positive—integer check on n) and PROLOG uses the always matching
variable N (better: a variable with positiveuinteger type).

Note also that in a more complete LISP definition the l parameter would
require an additional non-emptiness check in a very first clause; in
PROLOG this is implicit in the subpattern [FirstIRest], which iconi-
cally shows a list of at least one element, First, and an arbitrary
Rest. In addition to the more concise description of the case
analysis, the use of iconic patterns also saves selectors in the asso-
ciated goal conjunctions: in the first case the selector call (car 1)
becomes the second variable occurrence of_First; in the second case the
selector call (cdr 1) becomes the second variable occurrence of Rest.

6

2.3. Call-and-definition iconicity

The advantages of the iconic techniques in LISP (nesting) and PROLOG
(patterns) can be combined by associating invocation patterns with call
nestings. This is not only done in programming languages like SASL, ML,
EQLOG, and RELFUN, but already in the mathematical language of recur
sion equations, where a complete version of our nth example could be
written as (list construction is viewed as a right-associative product
operator "*")

nth(l,f*r) = f
nth(n,f*r) nth(n-l,r) for n>l

Iconic 'pattern-match equations' like these provide a further piece of
evidence for the fact that mathematicians have often thought of
abstract entities like "the nth factor of a product" in concrete,
visual ways (and without auxiliary 'logical variables' for operator
results).

Let us end this section with an
definition, collapsing the earlie

even
r two

more
equati

iconic
ons into

mathematical
one:

nth

nth(n,fl* ... *fn* ... *fz*nil) = fn

Here, the ellipsis operator and variables (f) with variable
indexes (n and z) employed in the nth pattern permit a 'visual random
access' to the desired element (note that during a match the direct n
occurrence and the index occurrence of n in fn must be bound con
sistently). Such extremely iconic, varying-length ellipsis constructs
have only been rarely used in pattern-matching languages, although in
many cases they can be implemented via a binary form like the f*r used
earlier.

3. Adapters as rules without the 'symbolic link'

The most iconic kind of operator definition considered up to this point
employs so-called transformation rules or transformers, each consisting
of a pattern linked with a body: This well-known type of rule
transforms data via a left-hand-side pattern match followed by a
right-hand-side body instantiation. As mentioned earlier, the link
itself is arbitrary, hence symbolic, in nature.

Let us now proceed to the issue of eliminating this remaining major
non-iconicity from rules. If the structure of a rule pattern is similar
to that of the rule body, it is possible to employ adaptation rules or
adapters, consisting of a joined pattern/body expression: This new type
of rule 'adapts' data via a generalized pattern match that directly
applies the operators normally called only on the body side. Thus, the
global, symbolic pattern-to-body link is abolished and a local, iconic

;.§. Call-and-definition iconicity

The advantages of the iconic techniques in LISP (nesting) and PROLOG
(patterns) can be combined by associating invocation patterns with call
nestings. This is not only done in programming languages like SASL, mu”
EQLOG, and RELFUN, but already in the mathematical language of recur-
sion equations, where a complete version of our nth example could be
written as (list construction is viewed as a right-associative product
operator “*“)

nth(l,f*r) = f
nth(n,f*r) = nth(n-1,r) for n>1

Iconic ’pattern—match equations’ like these provide a further piece of
evidence for the fact that mathematicians have often thought of
abstract entities like "the nth factor of a product" in concrete,
visual ways (and ‘without auxiliary ’logical variables’ for operator
results).

Let us end this section with an even more iconic mathematical nth
definition, collapsing the earlier two equations into one:

nth(n,fl*...*fn*...*fz*nil) = fn

Here, the ellipsis operator “..." and variables (f) with variable
indexes (n and z) employed in the nth pattern permit a ’visual random
access’ to the desired element (note that during a match the direct n
occurrence and the index occurrence of n in fn.must be bound con-
sistently). Such extremely iconic, varying-length ellipsis constructs
have only been rarely used in pattern—matching languages, although in
many cases they can be implemented via a binary form like the f*r used
earlier.

ä. Adapters as rules without the ’symbolic link’

The most iconic kind of operator definition considered up to this point
employs so-called transformation rules or transformers, each consisting
of a pattern linked with a body: This 'well-known type of rule
transforms data via a left-hand-side pattern match followed by a
right-hand-side body instantiation. As mentioned earlier, the link
itself is arbitrary, hence symbolic, in nature.

Let us now proceed to the issue of eliminating this remaining major
non—iconicity from rules. If the structure of a rule pattern is similar
to that of the rule body, it is possible to employ adaptation rules or
adapters, consisting of a joined patternlbody expression: This new type
of rule ’adapts’ data via a generalized pattern match that directly
applies the operators normally called only on the body side. Thus, the
global, symbolic pattern-to-body link is abolished and a local, iconic

7

embedding of operators in the relevant positions of a pattern is
enabled. Besides iconicity, this also enhances parallelization: Essen
tially, while a transformer links in sequence a recognition part with a
separate processing part, an adapter comprises in parallel recognition
plus processing aspects as a single unit. This indicates that iconi
city (readability) and efficiency (parallelization) can go hand in
hand: Both for human and machine interpreters -- rather than represent
ing data by names that transport them from a left-hand side to their
operators on a right-hand side -- it appears advantageous to install
operators directly on a 'single-hand' side, where their data are
expected.

The declarative AI language FIT can be regarded as an attempt to maxim
ize the iconicity and parallelization of operator definitions. by using
the non-standard adaptation rules where possible. while keeping the
standard transformation rules for adapter-embedded processing and as a
fall-back definition method.

3.1. List adapters

Resuming an earlier list-processing example. the functional version of
the nth operator in FIT can be defined thus (the prefixes "1" and ">"
mark variables to which exactly one and arbitrarily many values can be
assigned, respectively, while "<" fetches variable values indiscrim
inately):

(>(NTH 1 (1FIRST >REST» <FIRST)
r(NTH SUBl CDR)

Here, the base case employs a transformer -- written in the assignment
form (>pattern body) -- because pattern and body are structurally dis
similar. On the other hand, the recursive case uses an adapter in
the form of a so-called 'result-reevaluating' or 'reva' (r) adapter -
because the pattern and body of the equivalent transformer

(>(NTH 1N 1L)
(NTH (SUBl <N) (CDR <L»

are structurally similar, hence can be joined, as shown by the vertical
alignment of the pattern variables 1N and 1L with the right-hand-side
operator applications (SUBl <N) and (CDR <L), respectively.

Iconicity is maximized here by eliminating symbolic variable links like
?N --> (SUB1 <N), and introducing direct adapter occurrences of opera
tors like SUBl. Thus the adapter r(NTH SUBl CDR) iconically mirrors
the structure of, and processes on, NTH calls like (NTH 3 '(A B CD».
For this call the adapter matches NTH to itself and simultaneously
applies SUBl and CDR to 3 and (A B C D), respectively, yielding
(NTH 2 '(B C D»; this "r" result is evaluated again by the adapter,

embedding of operators in the relevant positions of a pattern is
enabled. Besides iconicity, this also enhances parallelization: Essen-
tially, while a transformer links i3 seguence a recognition part with a
separate processing part, an adapter comprises ig parallel recognition
plus processing aspects as a single unit. This indicates that iconi-
city (readability) and efficiency (parallelization) can go hand in
hand: Both for human and machine interpreters —- rather than represent-
ing data by names that transport them from a left-hand side to their
Operators on a right-hand side —— it appears advantageous to install
Operators directly on a ’single-hand’ side, where their data are
expected.

The declarative AI language FIT can be regarded as an attempt to maxim-
ize the iconicity and parallelization of operator definitions, by using
the non-standard adaptation rules where possible, while keeping the
standard transformation rules for adapter-embedded processing and as a
fall-back definition method.

§,l. List adapters

Resuming an earlier list-processing example, the functional version of
the nth operator in FIT can be defined thus (the prefixes "?“ and “>"
mark variables to which exactly one and arbitrarily many values can be
assigned, respectively, While "<" fetches variable values indiscrimr
inately):

(>(NTH 1 (?FIRST >REST)) <FIRST)
r(NTH SUBl CDR)

Here , the base case employs a transformer -- written in the assignment
form. (>pattern body) -— because pattern and body are structurally dis-
similar. On the other hand, the recursive case uses an adapter -- in
the form of a so-called ’result-reevaluating’ or 'reva’ (r) adapter --
because the pattern and body of the equivalent transformer

(>(NTH ?N ?L)
(NTH (SUBl <N) (CDR <L)))

are structurally similar, hence can be joined, as shown by the vertical
alignment of the pattern variables ?N and ?L with the right-hand-side
operator applications (SUBl <N) and (CDR <L) , respectively.

Iconicity is maximized here by eliminating symbolic variable links like
?N --> (SUBl <N), and introducing direct adapter occurrences of Opera-
tors like SUBl. Thus the adapter r(NTH SUBl CDR) iconically mirrors
the structure of, and processes on, NTH calls like (NTH 3 ’(A B C D)).
For this call the adapter matches NTH to itself and simultaneously
applies SUBl and CDR to 3 and (A B C D), respectively, yielding
(NTH 2 ’(B C D)) ; this "r" result is evaluated again by the adapter,

8

yielding (NTH 1 '(C D», a base case which is then reduced to C by the
transformer. Note that in FIT -- unlike in PROLOG the order in
which rules are written is immaterial, because rule conflicts are
resolved on the basis of the "most specific first" principle; in our
example the transformer pattern is more specific than the adapter.

Instead of named functions like CDR also anonymous transformers like
(TRAFO (?FIRST >REST) @«REST» can be embedded into adapters, as in
the alternate NTH adapter r(NTH SUBl (TRAFO (?FIRST >REST) @«REST»),
which only accepts a non-empty list (?FIRST >REST) for replacement by
its "@"-instantiated REST list @«REST).

1.~. Set adapters

A somewhat more complex example is the following definition of SET, a
self-normalizing constructor for sets that eliminates duplicates and
sorts the remaining elements into a canonical order (for other 'basic
collections' such as BAG, HEAP, and STRING see [Boley 1987]).

(SET lID)
reSET lID ?X lID (COMPOSE AB ?X) lID)
reSET lID (TRAFO (COMPOSE GREATERP

?X (COMPOSE lAB >M) ?Y)
<Y <M <X)

lID)

This	 definition employs adaptation rules for all three of its cases:

(1)	 Termination: A constant adapter -- written without an "r" prefix
-- returns a SET call on zero or more (I) arbitrary arguments (ID)
unchanged if none of the more specific other adapters applies.

(2)	 Idempotence: One reva adapter mirrors SET calls with a duplicated
?X occurrence in any context (lID ?X lID ?X lID), and directly
removes the second occurrence (the ABsorption function is COMPOSEd
after the variable ?X).

(3)	 Commutativity: Another reva adapter mirrors SET calls with an
?X-GREATERP-?Y occurrence, in any context (lID ?X >M ?Y lID), and
directly exchanges these occurrences (the embedded TRAnsFOrmer
COMPOSEs the function GREATERP after the adapter
?X (COMPOSE lAB >M) ?Y in its left-hand side and uses <Y <M <X in
its right-hand side).

Let us consider a sample set normalization corresponding to the equali
ty {7,4,1,6,4,6,3} {1,3,4,6,7}. The trace below shows the purely
'adapter-driven' SET computation, where the arrows "=i=>" mean "derives
by rule i" and the set elements focused by the adapters are underlined:

yielding (NTH l ’(C D)) , a base case which is then reduced to C by the
transformer. Note that in FIT -- unlike in PROLOG -— the order in
which rules are written is immaterial, because rule conflicts are
resolved on the basis of the "most specific first“ principle; in our
example the transformer pattern is more specific than the adapter.

Instead of named functions like CDR also anonymous transformers like
(TRAFO (?F IRST >REST) @(<REST)) can be embedded into adapters, as in
the alternate NTH adapter r(NTH SUBl (TRAFO (?FIRST >REST) @(<REST))) ,
which only accepts a non-empty list (?FIRST >REST) for replacement by
its "@"-instantiated REST list @(<REST).

§.g. Set adapters

A somewhat more complex example is the following definition of SET, a
self-normalizing constructor for sets that eliminates duplicates and
sorts the remaining elements into a canonical order (for other ’basic
collections’ such as BAG, HEAP, and STRING see [Boley 1987]).

(SET # I D)

r(SET #ID 7X #ID (COMPOSE AB ?X) #ID)
r(SET #ID (TRAFO (COMPOSE GREATERP

? X (COMPOSE #AB >M) ? Y)
<Y <M <X)

#ID)

This definition employs adaptation rules for all three of its cases:

(l) Termination: A constant adapter -— written without an "r" prefix
—— returns a SET call on zero or more (#) arbitrary arguments (ID)
unchanged if none of the more specific other adapters applies.

(2) Idempotence: One reva adapter mirrors SET calls with a duplicated
?X occurrence in any context (# ID ?X #ID ?X #ID) , and directly
removes the second occurrence (the ABsorption function is COMPOSEd
after the variable ?X) .

(3) Commutativity: Another reva adapter mirrors SET calls ‘with an
?X-GREATERP-?Y occurrence, in any context (#ID ?X >M ?Y #ID) , and
directly exchanges these occurrences (the embedded TRAnsFOrmer
COMPOSEs the function GREATERP after the adapter
?X (COMPOSE #AB >M) ?Y in its left-hand side and uses <Y <M.<X in
its right-hand side).

Let us consider a sample set normalization corresponding to the equali—
ty {7,4,l,6,4,6,3} = {1,3,4,6,7}. The trace below shows the purely
’adapter—driven’ SET computation. where the arrows "=i=>" mean ”derives
by rule i" and the set elements focused by the adapters are underlined:

9

(SET	 7 i 1 6 i 6 3) =2=>
(SET	 7 4 1 £ £ 3) =2=>
(SET	 I i 1 £ 1) =3=>
(SET	 1 i 1 6 7) =3=>
(SET	 1 i 1 6 7) =3=>
(SET	 1 3 4 6 7) =1=>
(SET	 1 3 4 6 7)

It can be seen that in most derivation steps only selected pieces of
the set are involved. Of course, the above trace is idealized with
respect to non-determinism: in cases of multiple adapter applicability
it chooses an optimal one, whereas the real FIT implementation tries
them all in a breadth-oriented fashion.

3.3. Graph	 adapters

As a still more advanced application let us now discuss the definition
of BIDSEARCH, a program conducting a bidirectional search on a directed
graph. We represent a search problem as a call (BIDSEARCH (start) arc1
... arcN (goal», where (start) and (goal) represent the start and goal
nodes of the search and the sequence arc1 ... arcN represents a graph
with arcl = (fromI tol) representing a directed arc fromI--->tol.
idea is to reinterpret (start) and (goal) as length-one paths and
grow them together from both ends in parallel, until they meet.

The
to

r(BIDSEARCH (lID 1X (TRAFO : ~Y»

lID ABo(1X ?Y) lID ABo(?R 1S)
«TRAFO : ~R) 1S lID»

lID

r(BIDSEARCH	 (lID 1X (TRAFO : ~Y»

lID ABo(1R 1S) lID ABo(?X 1Y) lID
«TRAFO : ~R) 1S lID»

(>(BIDSEARCH (>LPATH 1M) >LARCS (?M ?N) >RARCS (1N >RPATH»
@«LPATH <M <N <RPATH»

(>(BIDSEARCH (>LPATH ?M) >ARCS (?M >RPATH»
@«LPATH <M <RPATH»

This	 definition employs two adapters and two transformers:

(1)	 Path growing using serial arcs: The first adapter depicts a left
path ending with 1X, a right path beginning with 1S, and an arc
(1X 1Y) to the left of an arc (1R 1S), and immediately forward
expands the left path by ~Y (this 'temporary value' of Y, obtained
through the arc (?X 1Y), is regenerated from the empty sequence by
(TRAFO : ~Y», backward-expands the right path by ~R (analogously
regenerated by (TRAFO : ~R», and absorbs the two used arcs (the
function AB is "o"-infix-COMPOSEd with the arc patterns).

(SET 7 g 1 6 g 6 3) =2=>
(SET 7 4 1 9_g 3) =z=>
(SET z 3. .1. 9. .3.) =3=>
(SET 3 ,5 l 6 7) =3=>
(SET 1 3_g 6 7) =3=>
(SET 1 3 4 6 7) =1=>
(SET 1 3 4 5 7)

I t can be s een that in mos t de r iva t ion s t eps only se l ec t ed p i eces of
the s e t a r e i nvo lved . Of cou r se , the above t r ace i s i dea l i zed with
re spec t t o non -de t e rmin i sm: in cases of multiple adapter app l i cab i l i t y
i t chooses an optimal one , whe reas the r ea l F IT implementation t r i e s
them a l l in a b readth-or ien ted f a sh ion .

§ ,§ . Graph adap te r s

As a s t i l l more advanced app l i ca t ion l e t u s now d i scus s the defini t ion
o f BIDSEARCH, a program conducting a b id i rec t iona l sea rch on a d i r ec ted
graph . We r ep re sen t a s ea rch p rob lem as a c a l l (BIDSEARCH (s t a r t) a r c l
. . . a r cN (goa l)) , where (s t a r t) and (goa l) r ep re sen t the s t a r t and goa l
nodes o f the s ea rch and the s equence a r c l . . . a r cN r ep re sen t s a graph
with a r c I = (f romI to I) r ep re sen t ing a d i r ec t ed a r c f romI - -—>to I . The
idea i s t o r e in t e rp re t (s t a r t) and (goa l) a s length-one paths and to
grow them together f rom bo th ends in pa ra l l e l , unt i l they mee t .

r (BIDSEARCH (# ID ?X (TRAFO : AY))

#ID ABO(?X ?Y) # ID ABO(?R ?S) # ID
((TRAFO : AR) 78 # ID))

r(BIDSEARCH (# ID ?X (TRAFO : AY))

#ID ABO(?R 73) # ID ABO(?X ?Y) # ID
((TRAFO : AR) ?S # ID))

(>(BIDSEARCH (>LPATH ?M) >LARCS (?M ?N) >RARCS (?N >RPATH))
@(<LPATH <M <N <RPATH))

(>(BIDSEARCH (>LPATH 7M) >ARCS (?M >RPATH))
@(<LPATH <M <RPATH))

This de f in i t i on employs two adap te r s and two t r ans fo rmer s :

(1) Path growing us ing s e r i a l a r c s : The f i r s t adapter dep i c t s a l e f t
path ending ‘with ?X, a right path beginning with ?S , and an a rc
(?X ?Y) t o the l e f t o f an a r c (?R ?S) , and immediate ly forward-
expands the l e f t path by AY (this ’ t emporary va lue ’ o f Y, obtained
through the a r c (7X ?Y) , i s r egenera ted from the empty sequence by
(TRAFO : “Y)) , backward-expands the r ight path by “R (ana logous ly
regenera ted by (TRAFO : AR)) , and abso rbs the two u sed a r c s (t he
function AB i s "o"-infix-COMPOSEd with the a r c pa t t e rns) .

10

(2)	 Path growing using crossed arcs: The second adapter is similar,
but with the arcs (?X ?Y) and (?R ?S) interchanged.

(3)	 Path meeting using an arc: The first transformer depicts a left
path ending with ?M, a right path beginning with ?N, and an arc
(?M ?N) acting as a 'missing link', and delivers the concatenated
result path (via the instantiation prefix "@").

(4)	 Path meeting using no !££: The second transformer is similar, but
requires no more intermediate arcs because the nodes ?M and ?N
coincide.

We consider a sample bidirectional search of a directed path from A to
B in the following directed graph:

A --------> E
I

\ I

\ /

\ /

\ v

C

" \

I \

I I

I I

I I
Iv

B <--------- D

The trace below shows the combined 'adapter/transformer-driven' BID

SEARCH computation, with the focused nodes underlined:

(BIDSEARCH '(~) '(C A) '(C D) '(D C) '(E C) '(~ E) '(D~) '(~» =1=>

(BIDSEARCH '(A~) '(C A) , (C Q) , (D C) '(~ C) '(Q B» =2=>

(BIDSEARCH ' (A E £) '(C A) '(D C) '(£ D B» =4=>

(A E C D B)

Notice the conciseness of the three-step derivation, due to the

bidirectional-parallel graph exploration. This sample problem permits

no non-determinism (A and E have only one outgoing arc, Band D have

only one incoming arc) except at the point where the two paths meet in

C: in addition to the successful rule 4 the real FIT system also tries
rule 1 here, but the resulting cycle-path call (BIDSEARCH '(A E C A)
'(D C D B» immediately fails, because no more rule applies. For
larger graphs FIT's breadth-oriented search strategy would cause BID
SEARCH to enumerate all paths between the given nodes in the partial
order of their lengths.

10

(2) Path growigg using crossed arcs: The second adapter is similar,
but with the arcs (?X ?Y) and (?R ?S) interchanged.

(3) Path meeting using gg Egg: The first transformer depicts a left
path ending with 7M, a right path beginning with ?N, and an arc
(?M ?N) acting as a ’missing link’, and delivers the concatenated
result path (via the instantiation prefix "9").

(4) Path meeting using gg arc: The second transformer is similar, but
requires no more intermediate arcs because the nodes 7M.and ?N
coincide.

we consider a sample bidirectional search of a directed path from.A to
B in the following directed graph:

B < - - - - - - - - - D

The trace below shows the combined ’adapter}transformer-driven’ BID-
SEARCH computation, with the focused nodes underlined:

(BIDSEARCH ’ (é) ’(C A) ’(C D) ’(D C) ’(E C) ’ (é_E) ’(D ä) ’ (§)) =l=>
(BIDSEARCH ’(A g) '(c A) '(c 9) ’(D o) '(g C) ’(Q B)) =2=>
(BIDSEARCH ’(A E g) '(c A) ’(D C) '(g D B)) =4=>
(A E o D B)

Notice the conciseness of the three-step derivation, due to the
bidirectional—parallel graph exploration. This sample problem.permits
no non-determinism.(A and E have only one outgoing arc, B and D have
only one incoming arc) except at the point where the two paths meet in
C: in addition to the successful rule 4 the real FIT system.also tries
rule 1 here, but the resulting cycle-path call (BIDSEARCH ’(A E C A)
’(D C D B)) immediately fails, because no more rule applies. For
larger graphs FIT’s breadth-oriented search strategy would cause BID—
SEARCH to enumerate all paths between the given nodes in the partial
order of their lengths.

11

i. Conclusions

Let us reformulate the main technical points of this paper. Transfor
mation rules as used in forward-chaining (OPS5) and backward-chaining
(PROLOG) systems can be more intelligible than the function definitions
of lambda-calculus (LISP) systems because the pattern sides of
transformers iconically reflect their applicability conditions. Howev
er, in many cases iconicity can be further raised by putting the opera
tors from the action side directly into the relevant positions of the
pattern side, thus leaving a single recognize/act context.

This can be illustrated in terms of a motion-picture metaphor: Rule
based programming need not employ 'before'/'after' snapshots
(transformers) but can also use 'during' exposures (adapters); while
the former simulate motion by entirely replacing one picture by a
second (even if only a tiny fraction of the picture is affected), the
latter move focused parts of a single picture inside a fixed frame. On
a closer look, transformation rules like animated cartoons seem to in
volve an unnatural, jerky technique for forcing change, historically
enabled by the relative cheapness of the 'copy' operation in both cel
luloid and core memory. Adaptation rules are more like fixing a work
piece on a workbench and applying tools where appropriate or like put
ting a liquid crystal into a display and applying electric currents for
local restructuring, i.e. they seem to involve
smoother technique for causing change.

a much more natural,

The predominance of the 'cartoon-like' transforme
science is highlighted by text editors: As

r concept in
far as we

computer
know the

string substitution command of all editors is transformer-style. Thus
to replace occurrences of 'examplify' by 'exemplify', without wrongly
changing 'example' to 'exemple', almost the entire word has to be re
typed using a transformation command equivalent to the rule
examp1ify -> exemplify. This is an error-prone procedure and we pro
pose to extend editors like Emacs by an adaptation command permitting
rules equivalent to ex(a->e)mplify. Moreover, the adapter concept of
FIT, which we also implemented in a depth-first mini version called
MUFIT, could be considered as a new, complementary option for existing
and developing programming languages (as we envision it for RELFUN).

Not only in programming but also in psychology do we regard the
transformer technique as a less plausible model of information process
ing than the adapter technique: It is evident that states of the mind
are not entirely copied in a 'before'/'after' fashion but locally reor
ganized from moment to moment with most parts of the state keeping nor
mally unaffected.

More generally, this paper has tried to argue that declarativeness is
not the only decisive scale on which proposed techniques for complex
information processing will be compared. In particular,
functional/logical programs can be quite unintelligible if not also

ll

‘3. Conclusions

Let us reformulate the main technical points of this pape r . Transfor-
mation rules as used in forward-chaining (OPSS) and backward-chaining
(PROLOG) systems can be more intelligible than the function definitions
of lambda—calculus (LISP) systems because the pattern sides of
transformers iconically reflect their applicability conditions. Howev-
er, in many cases iconicity can be further raised by putting the opera—
tors from the action side directly into the relevant positions of the
pattern side, thus leaving a single recognize/act context.

This can be illustrated in terms of a motion-picture metaphor: Rule-
based programming need not employ ’before’l’after’ snapshots
(transformers) but can also use ’during’ exposures (adapters); while
the former simulate motion by entirely replacing one picture by a
second (even if only a tiny fraction of the picture is affected), the
latter move focused parts of a single picture inside a fixed frame. On
a closer look, transformation rules like animated cartoons seem.to in-
volve an unnatural, jerky technique for forcing change, historically
enabled by the relative cheapness of the ’copy’ Operation in both cel-
luloid and core memory. Adaptation rules are more like fixing a work
piece on a workbench and applying tools where appropriate or like put-
ting a liquid crystal into a display and applying electric currents for
local restructuring, i.e. they seem to involve a much more natural,
smoother technique for causing change.

The predominance of the ’cartoon-like’ transformer concept in computer
science is highlighted by text editors: As far as we know the
string substitution command of all editors is transformer-style. Thus
to replace occurrences of ’examplify’ by ’exemplify’, without wrongly
changing ’example’ to ‘exemple’, almost the entire word has to be re-
typed using a transformation command equivalent to the rule
examplify —> exemplify. This is an error—prone procedure and 'we pro—
pose to extend editors like Emacs by an adaptation command permitting
rules equivalent to ex(a->e)mplify. Moreover, the adapter concept of
FIT, which we also implemented in a depth-first mini version called
MUFIT, could be considered as a new, complementary Option for existing
and developing programming languages (as we envision it for RELFUN).

Not only in programming but also in psychology do 'we regard the
transformer technique as a less plausible model of information process—
ing than the adapter technique: It is evident that states of the mind
are not entirely copied in a ’before'l’after’ fashion but locally reor-
ganized from moment to moment with most parts of the state keeping nor-
mally unaffected.

More generally, this paper has tried to argue that declarativeness is
not the only decisive scale on which proposed techniques for complex
information processing 'will be compared. In particular,
functionalllogical programs can be quite unintelligible if not also

12

taking good positions on another scale, here called iconicity. It
might well happen that newer imperative techniques such as object
oriented programming and even quantitative/qualitative simulation will
ultimately rate better on an overall account. The declarative program
ming community should not leave iconic programming techniques to these
other communities alone, but actively look for ways of incorporating
iconicity without loosing declarativeness.

Our proposal of adaptation rules is certainly not the only possibility
of iconic-declarative programming. Other iconic extensions of
functional/logical languages should be explored as well, e.g. via com
binations with object-oriented languages (including graphic surface
iconicity). Perhaps the present interest in attempts at introducing
type hierarchies into functional/logical languages, as exemplified by
[Goguen & Meseguer 1986], also derives partly from the iconicity dimen
sion: a SMALLTALK 'class hierarchy', a KRYPTON 'T-box', and a
functional/logical 'subsort tree' all act as a direct, central 'image'
of the conceptual 'is-a' relationships rather than relying on their in
direct, scattered 'encoding' in unary predicates.

References

[Boley 1986] H. Boley: RELFUN: A Relational/Functional Integration
with Valued Clauses. SIGPLAN Notices 21(12), Dec. 1986, pp. 87-98

[Boley 1987] H. Boley: FIT: Declarative Programming as Transformer
and Adapter Fitting. Univ. Hamburg, FB Informatik, Diss., Aug. 1987

[Goguen &Meseguer 1986] J. Goguen, J. Meseguer: EQLOG: Equality,
Types, and Generic Modules for Logic Programming. In: D. DeGroot & G.
Lindstrom (Eds.): Logic Programming - Functions, Relations, and
tions. Prentice-Hall, Englewood Cliffs, NJ, 1986, pp. 295-363

Equa

[Hillis 1985] W.D.
bridge, Mass., 1985

Hillis: The Connection Machine. MIT Press, Cam

[McDermott 1980] D. McDermott: The PROLOG Phenomenon. SIGART
Newsletter, No. 72, July 1980, pp. 16-20

[Minsky & Papert 1971] M. Minsky, S. Papert: On Some Associative,
Parallel, and Analog Computations. In: Jacks, E. (Ed.): Associative
Information Techniques. New York, 1971, pp. 27-47

[Sloman 1971] A. Sloman: Interactions between Philosophy and Artifi
cial Intelligence: The Role of Intuition and Non-logical Reasoning in
Intelligence. Artificial Intelligence 2, 1971, pp. 209-225

12

taking good positions on another sca l e , here called iconicity. It
might well happen that newer imperative techniques such as object-
oriented programming and even quantitative/qualitative simulation 'will
ultimately rate better on an overall account. The declarative program-
ming community should not leave iconic programming techniques to these
other communities alone, but actively look for ways of incorporating
iconicity without loosing declarativeness.

Our proposal of adaptation rules is certainly not the only possibility
of iconic-declarative programming. Other iconic extensions of
functionalllogical languages should be explored as well, e.g. via comp
binations with object-oriented languages (including graphic surface
iconicity). Perhaps the present interest in attempts at introducing
type hierarchies into functional/logical languages, as exemplified by
[Goguen & Meseguer 1986], also derives partly from the iconicity dimen-
sion: a SMALLTALK ’class hierarchy’, a KRYPTON ’T-box’, and a
functional/logical ’subsort tree’ all act as a direct, central ’image’
of the conceptual ’is-a’ relationships rather than relying on their in-
direct, scattered ’encoding’ in unary predicates.

References

[Boley 1986] H. Boley: RELFUN: A Relational/Functional Integration
with Valued Clauses. SIGPLAN Notices 21(12), Dec. 1986, pp. 87-98

[Boley 1987] H. Boley: FIT: Declarative Programming as Transformer
and Adapter Fitting. Univ. Hamburg, FB Informatik, Diss . , Aug. 1987

[Goguen & Mesegue r 1986] J. Goguen, J. Meseguer: EQLOG: Equality,
Types, and Generic Modules for Logic Programming. In: D. DeGroot & G.
Lindstrom.(Eds.): Logic Programming - Functions, Relations, and Equa—
tions. Prentice-Hall, Englewood Cliffs, NJ, 1986, pp. 295-363

[Hillis 1985] W3D. Hillis: The Connection Machine. MIT Press, Cam-
bridge, Mass., 1985

[McDermott 1980] D. McDermott: The PROLOG Phenomenon. SIGART
Newsletter, No. 72, July 1980, pp. 16-20

[Minsky & Papert 1971] M. Minsky, S. Papert: On Some Associative,
Parallel, and Analog Computations. In: Jacks, E. (Ed.): Associative
Information Techniques. New York, 1971, pp. 27-47

[Sloman 1971] A. Sloman: Interactions between Philosophy and Artifi-
cial Intelligence: The Role of Intuition and Non-logical Reasoning in
Intelligence. Artificial Intelligence 2, 1971, pp. 209-225

