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I Introduction 

Term rewriting systems, also called sets of rewrite rules, gain more and more in 

importance, because they are a useful model for non-deterministic computations, 

with various applications in many areas of computer science and mathematics, 

including automatic theorem proving and program verification, data type 

specifications and algebraic simplification. Many of these fields require a 

terminating term rewriting system, i. e. no infinite derivation of terms should be 

possible. Termination of rewrite rules in general is an undecidable property, even if 

the number of rules is bounded by 2 ([HULA78], [DE85]). So the best we can hope 

for is, that we have different strategies at hand which together cope with many 

rewrite rule systems occuring in practise. A great many methods for proving 

termination of rewriting systems have been developed. All of them are based on the 

fact, that a rewrite system is terminating if and only if there exists a well-founded 

ordering> (a partial ordering without infinite descending sequences of terms) such 

that the left hand side is greater than (relative to » the corresponding right hand 

side for each rule and for any substitution of the variables of the rule with terms 

([DE82]). To illustrate this, let us consider a simple example: the system 

-> X 

XAX -> X 

is terminating, since the number of symbols is reduced by each application of a rule, 

and the ordering on the size of terms is well-founded: s > t (s and t are terms) if and 

only if the number of symbols in s is greater than the number of symbols in t. 
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There are two desirable characteristics in this ordering, as well as in many others: 

-the subterm property (any term is greater than any of its proper 

subterms) 

-the replacement property (decreasing a subterm decreases any 

superterm containing it). 

Orderings with these properties are called simplification orderings. 

In this paper, we first draw parallels between the operational methods (methods 

of comparing terms) of some of the most popular simplification orderings (in 

section Ill). Among them there will be the recursive path ordering of Dershowitz 

(1982) and one of its extensions proposed by Forgaard (1984), the Knuth-Bendix 

ordering (1970), the recursive decomposition ordering of Jouannaud, Lescanne and 

Reinig (1982) and Rusinowitch (1985), the path of subterms ordering of Plaisted 

(1978) and Rusinowitch (1985) and the path ordering proposed by Kapur, 

Narendran and Sivakumar (1985). As Rusinowitch has discovered, the path of 

subterms ordering and the decomposition ordering have several similarities. This 

observation leads to the redefinition of the former using decompositions. 

The second main point of this paper is the comparison of the power of these 

orderings, i. e. we will compare the sets of comparable terms for each combination 

of two orderings. This will be done under several prerequisites, including ground 

terms ([RU85]), (universal) terms ([RU85]), (universal) terms with an underlying 

total precedence and irrespective of a precedence, and monadic terms. 

Thus, the report in hand is an extension of [RU85]. 
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11 Notations 

We suppose the reader to be familiar with the features of term rewriting systems 

([HUOP80]). Nevertheless we will briefly repeat some fundamental definitions on 

terms and on orderings. 

Terms 

We consider the set r of all terms constructed from elements of a set :r of 

operator (or function) symbols and some denumerably infinite set X of variables. 

The leading function symbol and the tuple of the direct arguments of a term t is 

characterized as Top(t) and Args(t), respectively. Terms may be viewed as trees 

with positions which are sequences of non negative integers. The set of all positions 

of a term t is called the set of occurrences and its abbreviation is O(t). We write 

t[u~sJ to denote the term that results from t by replacing tlu (the subterm 

according to u) by s at occurrence u. 

A substitution 6 is considered as a multiple replacement, simultaneously 

replacing all variables of a term by terms. 

A term rewriting system (TRS, for short) 9\ over r is a finite or countably 

infinite set of rules, each of the form I ~9\ r, where I and r are terms in r, such that 

every variable that occurs in r also occurs in 1. Like this syntax, the semantic of 

rewrite systems is also very simple. A TRS 9\ generates a binary relation ~9\ on r 
as follows: s ~9\ t (term s rewrites to term t) if and only if s contains an instance 

6 (1) of the left hand side of a rule 1~9\ r E 9\ and t originates from s by 

replacing the subterm 6(1) by 6(r). 

A derivation in 9\ is a sequence to ~9\ tl ~9\ t2 ~9\ .... For the sake of 

readability, we will use the symbols ~ and ~ to denote the relations ~9\ and ~9\, 

respectively if there is no ambiguity. 
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infinite set of rules, each of the form leg; r, where 1 and r are terms in 1", such that
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as follows: s :93 t (term s rewrites to term t) if and only if  3 contains an instance

6(1) of the left hand side of a rule l eg ;  r e SR and t originates from s by
replacing the subterm 6(1) by 6(r).

A derivation in ER is a sequence to =>9it1 =><fi t2 =><fi . For the sake of
readability, we will use the symbols —> and => to denote the relations egg and :91,

respectively if there is no ambiguity.



Termination 

A TRS 9\ terminates if there is no infinite derivation in 9\. It is obvious that a 

rewrite system is not terminating if a derivation repeats a term: ...~ ti ~ ... ~ tk ~ 

... and ti =tk' A less special condition for nontermination is given if ti is a subterm 

of tk (i < k). This property is called looping. But 9\ needs not to be looping to be 

non-terminating. Consider the system consisting of the single rule 

x * y ~ (0 + x) * y, which produces the infinite derivation 

x * y ~ (0 + x) * y ~ (0 + (0 + x» * y ~ (0 + (0 + (0 + x») * y ~ '" . 

Certainly, this TRS does not terminate and does not loop. A more general property 

than looping which detects the nonterrnination of the last example is called 

homeomorphic embedding. This is a binary relation !: on terms. Let's write s!: t 

if s may be obtained from t by deletion of selected symbols. We shall say that 

a derivation t1 ~ t2 ~ ... is self-embedding if ti!: tk for some i < k. Note 

that nontermination allows a self-embedding derivation ([DE82]). Moreover, 

self-embeddingness does not imply nontermination: the rule (x2)2 ~ (_(x2»2 is 

self-embedding and nevertheless, terminates. But we can use homeomorphic 

embeddingness to specify a sufficient condition for the termination of rewrite 

systems. 

To express proofs of termination we use the straightforward method ([DE85]) : a 

TRS 9\ over r is terminating if and only if there exists a well-founded ordering > 

over r such that s ~9\ t implies s > t for all terms s and t in r. A (partial) ordering 

is a transitive and irreflexive binary relation> and it is said to be well-founded if 

there are no infinite descending sequences of elements. If we take advantage of the 

structure of terms the following equivalent formulation holds: a rewrite system 9\ 

over r terminates if and only if there exists a well-founded ordering> over r such 

that 6(1) > 6(r) for each rule 1~9\ r and for any substitution 6 of terms in r for the 

variables appearing in 1, and that furthermore> possesses the replacement property 
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([LA77]). An ordering > has the replacement property if t1 > t2 implies 

t[Uf-t1] > t[Uf-t2] for any t, t1, t2 E r and u E O(t). If we collect the properties of 

> mentioned above (partial ordering and replacement property), adding the 

subterm property (u;t£ ".. t> t/u), a useful class of well-founded orderings is 

defined, called simplification orderings (SO, for short) ([DE82]). According to the 

termination theorem of Lankford we can use any SO to prove termination. The 

relationship of a SO > to the homeomorphic embeddingness 5; is implied by the 

embedding lemma of Dershowitz: 5; is contained in ~ ([DE82]). 

Since terms are concatenations of function symbols it is near at hand to use a special 

ordering on function symbols (called precedence) to define a (simplification) 

ordering. A precedence is a partially ordered set er ,~) consisting of the set of 

operators ~ and an irreflexive and transitive binary relation ~ defined on elements 

of ~. Therefore we consider a SO > as parametrized with one argument p (the 

precedence), written as >(p). If there is no ambiguity, we will use the notation> 

instead of >(p). 

Originally, a partial ordering> works on elements of any set M. Since operators 

have terms as arguments we define an extension of >, called lexicographically 

greater (>lex), on tuples of elements as follows: (m1,m2,...,mp) >lex (n1,n2, ,nq) 

if either p>O & q=O or m1 > n1 or m1 = n1 & (m2,...,mp) >lex (n2, ,nq). 

If there is no order among the elements of such tuples then the structures over Mn 

are called multisets, which are like sets, but allow multiple occurrences of identical 

elements. The extension of > on multisets of elements is defined as follows: a 

multiset M1 is greater than a multiset M2 over M , denoted by M1 » M2 if M2 can 

be obtained from M1 by replacing one or more elements in M1 by any finite 

number of elements, each of which is smaller (with respect to> on M) than one of 

the replaced elements. For more details, the formal description in particular, see 

[DEMA79] or [ST86]. 
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A partial ordering > on any set M may also be extended in another way. An 

ordering >" on M is an extension of > if and only if s> t implies s >" t for all 

s,t E M. Given this fact, we say > is included in >" and denote it by the 

tenninology of sets: > ~ >". A partial ordering >" is said to be total if 

for any two distinct elements s, t (of M), either s >" t or t >" s holds. Given an 

ordering > with the property that for any precedence p and for any tenns with 

s >(p) t it also holds that s >(q) t for any extension q of p then > is said to be 

monotonic w.r.t. the precedence: p ~ q '.... >(p) ~ >(q). 
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A partial ordering > on any set M may also be extended in another way. An

ordering >’ on M is an extension of > if and only if s > t  implies s > ’ t  for all

s , t e  M. Given this fact, we say > is included in > ’  and denote it by the

terminology of sets :  > 9. >’. A partial ordering > ’  is said to be total if

for any two distinct elements s , t  (of M), either 3 > ’ t  or t> ’  3 holds. Given an

ordering > with the property that for any precedence p and for any terms with

s >(p) t it also holds that s >(q) t for any extension q of p then > is said to be

monotonic w.r.t. the precedence: p E q "» >(p) Q >(q).



In Simplification orderinl:s 

All orderings described in this paper are recursively defined simplification 

orderings. Comparing two terms means to compare the whole terms and then the 

multisets (or tuples) consisting of the direct arguments. The main constituent of this 

section is the description of some simplification orderings. For a better 

understanding, these methods of comparing terms will be demonstrated by 

examples. 

The following orderings satisfy properties that qualify them for proving 

termination of term rewriting systems: 

- well-foundedness 

- stability (with respect to substitutions) 

- monotonicity w.r.t. the precedence. 

We don't prove them here due to lack of space. However, the majority of the proofs 

are given in the respective references. 

In the rest of this paragraph, when writing s,t and t> we will always assume that 

sand t are terms over rand t> is a precedence on the set :r of operators. Permitting 

variables, we have to consider each and every one of them as an extra constant 

symbol uncomparable with all other operators in :r. 
We make the point that the notation of the extensions of an ordering (at the end 

of section II) will be applied here. To define the orderings, we need some more 

designations which will be introduced at the beginning of the corresponding 

ordering. 
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Recursive path ordering and extended recursive path ordering 

The idea of the comparison with respect to the recursive path ordering (rpo, for 

short) is that a term is decreased by replacing a subterm with any number of smaller 

terms which are connected by any structure of function symbols smaller (with 

respect to ~) than the leading function symbol of the replaced subterm. The method 

of comparing two terms depends on the leading function symbols. The relation of 

these operators w.r.t. ~ is responsible for decreasing one of the (or both) terms in 

the recursive definition of the rpo. If one of the terms is empty then the other is 

greater: 

DefInition ([DE82]): recursive path ordering 

S >rpo t 

if Args(s) ~~rpo {t}
 

or Top(s) ~ Top(t) & is} »rpo Args(t)
 

or Top(s) = Top(t) & Args(s) »rpo Args(t)
 

The relation s ~rpo t is valid if s >rpo t or sand tare permutatively congruent 

(s ;::: t) which means that sand t are equal syntactically when leaving out 

permutations of permutatively congruent subterms. Two zero-ary symbols 

(constants or variables) are permutatively congruent if they are syntactically equal. 

Example: Let 'f= {* ,+}. We wish to prove that the distributive law x*(y+z) ~ 

(x*y)+(x*z) terminates. We use the rpo with the operators total ordered by * ~ +. 

+* / \ / \ 
x + >rpo * * 

/ \ / \ / \ 
y z x y x z 
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permutations of permutatively congruent subterms. Two zero-ary symbols

(constants or variables) are permutatively congruent if they are syntactically equal.

Example: Let [7: {* , +}. We wish to prove that the distributive law x*(y+z) -—>

(x*y)+(x*z) terminates. We use the rpo with the operators total ordered by * » +.

+

/ \  * / \*
X+ >

/ \  “” / \ / \
y z xyxz



Since * ~ +, we must show 

* / \ * * 
x + / \ / \»rpo 

x y x z/ \ 
y z 

The single term on the left has to be greater than both terms on the right: it is greater 

than x*y, because we have to remove the leading function symbols and can show 

that 

»rpo 

After removing the variable x in both multisets, the immediate subterm y (of y+z) is 

equal to the variable y of the right multiset: Args(y+z) ;::::;::::rpo {y}. 

x*(y+z) >rpo x*z is proved the same way. 

An extension of this ordering (from Forgaard; we call it tpo) is very simple and 

bases on the fact that the rpo is monotonic w.r.t. the precedence. Only if a term s is 

greater than (with respect to the rpo) another term t for all total extensions of the 

given precedence, s is greater than t in this lifted ordering: 

Definition ([DE85]): lifted recursive path ordering 

s >tpo(~) t 

if ('i/~' total) ~ ~~' ".. s >rpo(~') t 

Realize that the distributive law treated in the example will be oriented in the same 

direction with the tpo, as we have to compare the terms with all total extensions 

of the precedence * l> + and, clearly, there is no other extension than itself (since 

* l> + is already total). 
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_ * _ T __

l \ /*\ /*\" X + f" » '” , -
/ \ rpo x y x z

L 3’ Z _ _ _
The single term on the left has to be greater than both terms on the right: it is greater

than x*y, because we have to remove the leading function symbols and can show

that

+

x , / \  » x ‚y
y Z rpo

After removing the variable x in both multisets, the immediate subterm y (of y+z) is

equal to the variable y of the right multiset: Args(y+z) ->-->-rpo {y}.

x*(y+z) >rpo x*z is proved the same way.

An extension of this ordering (from Forgaard; we call it tpo) is very simple and

bases on the fact that the rpo is monotonic w.r.t. the precedence. Only if a term 3 is

greater than (with respect to the rpo) another term t for all total extensions of the

given precedence, s is greater than t in this lifted ordering:

Definition ([DE85]): lifted recursive path ordering

s >tpo(l>) t

if (VI! total) (> 9 t>’ "" s >rpo(l>') t

Realize that the distributive law treated in the example will be oriented in the same

direction with the tpo, as we have to compare the terms with all total extensions

of the precedence * D + and, clearly, there is no other extension than itself (since
* r» + is already total).



Recursive decomposition ordering and an extension 

Like tpo, the recursive decomposition ordering (rdo in short) has arisen from the 

rpo. One of the important differences to the rpo is the fact that the rdo stops the 

comparison when it has to compare incomparable operators. The rdo is based on a 

preliminary analysis of terms, called decomposition, on which comparisons are 

recursively performed. The decomposition divides a term into three parts: 

- the leading function symbol 

- any selected immediate subterm 

- the rest of the immediate subterms. 

For instance 

Formally, it is defined as follows: the sub-decomposition Du(t,p) of a term t at the 

occurrence p according to the terminal occurrence u, with u ~o p, is the tripel 

Du(t,p) = < Top(t/p) ; t~ ; T> 

where t ~= t/suc(p,u) and T = Args(t/p) \ {f'}. 

A terminal occurrence is an occurrence of a leaf. We use the classical prefix 

ordering >0 to compare occurrences: u >ov if and only if U=V.w with w*£. 

For u~ov we define suc(v,u) =v.i if u=v.i.w with iEN+, and suc(v,v)=oo. By 

convention, t/oo is the empty term. Furthermore, if u=v.w we denote by 

dif(u,v) = w the right quotient of u by v. 
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Formally, it is defined as follows: the sub-decomposition Du(t,p) of a term t at the

occurrence p according to the terminal occurrence u, with u 20 p, is the tripel

Du(t,p) = < Top(t/p) ; t ’  ; T >

where t ': t/suc(p‚u) and T = Args(t/p)\ {t’}.

A terminal occurrence is an occurrence of a leaf. We use the classical prefix

ordering >O to compare occurrences: u >0V if and only if u=v.w with wee.

For uzov we define suc(v‚u) =v.i if u=v.i .w with i eN+ ,  and suc(v,v)=c>0. By

convention, t/oo is the empty term. Furthermore, if u=v.w we denote by

dif(u,v) = w the right quotient of u by v.
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Example: Let:F= {not, and} and t = and(not(not(x)),y,not(z)) the tenn shown as 

a tree on the preceding page. The sub-decomposition DIll (t,£) has the form 

<and; not(not(x)) ; {y , not(z)}>. D2(t,£) = <and; y; {not(not(x)) , not(z)}> and 

D31 (t,31) = <z; ; {}>. 

Now we extend this definition to a set of prefixes of u (the path-decomposition 

Du(t)) and then to the set of all tenninal occurrences (the decomposition D(t)): 

Du(t) = { Du(t,p) I Du(t,p) is a decomposition, u ~o p } 

D(t) = { Du(t) I u is a tenninal occurrence of t }. 

Now a tenn s is greater than t (with respect to rdo) if the decomposition of s is 

greater than the decomposition of t. The ordering on these multisets (»»D) is an 

extension of the basic ordering on sub-decompositions (>n) to multisets of 

multisets: 

Definition ([RU85]): recursive decomposition ordering 

s >rdo t 

if D(s) »»D D(t) 

with Du(s,p) = <f; s' ; S> >D <g; t' ; T> = Dv(t,q) 

if lexicographically 

- f t>.g 

- Ddif(u,suc(p,u)(s') »D Ddif(v,suc(q,v»(t') 

- S »rdo T 

Tenns are equal with respect to the rdo if they are pennutatively congruent. 

We will illustrate this slightly complicated definition by an example. Let 

s=and(not(not(x)),y,not(z)) and t=and(x,y,nand(x,z)) be tenns constructed by the 

boolean operators not, and, nand. Moreover, suppose the precedence asserts 

not ~ nand. To compare s and t, we first have to generate their decompositions: 
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s = and t= and 
/ 

not 
I 

I \ 
y not 

I 

/ 
x 

I \ 
y nand 

I \ 
not z x z 

I 
x 

D(s) == { DIll (s) , D2(s) , D31 (s) }
 

DIll(s) = {DIU(s,£) , 0l11(s,l) , D111(s,11) , 0111(s,111) }
 

D2(s) = { D2(s,£) , D2(s,2) }
 

D31 (s) = {D3I(s,E) , D3I(s,3) , D3I(s,3I) }
 

D(t) = { DI (t) , D2(t) , D31 (t) , D32(t) }
 

01(t) = {D1(t,E) , D1(t,!) }
 

D2(t) = {D2(t,£), D2(t,2) }
 

D3I Ct) = {D31(t,E) , D3I (t,3) , D31(t,3!) }
 

D32(t) = {D32(t,E), D32(t,3) , 032(t,32) }
 

We want to prove that s is greater than 1. Consequently, in accordance with the 

definition of the rdo, for every Dv(t) we have to find a Du(s) which is greater with 

respect to »D. By reason of stability for substitutions our search for Du(s) is 

restricted by the leaves slu and tlv, respectively. We can verify 

- DUI (s) »D D1 (t) : 

(i) DIll (s,lll) = DI (t,l) = <x; ; {}> 

(ii) DIll (s,£) == <and; not(not(x» ; {y , not(z)} > >D 

<and; x ; {y , nand(x,z)}> = D1 (t,£) 

because DII (not(not(x») »D D£(x) 

since D£(x) c: DI1 (not(not(x») 
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S:  and t=  and
/ I \ / | \ d

not not x nan
| y I y / \

not z x z

X

D(S)={  D111(S)  , D2(S) , D31(S) }
D111(S)  = {D111(S ,€ )  , D111(S ,1 )  , D111(S ,11 )  , D111(S ,111 ) }

D2(S) = {D2(S‚€) , D2(S‚2) }
D31(S) = {D31(S‚€ )  , D31(S‚3) , D31(S‚31 )}

D( t )={  D1( t )  , D2(t) , D31(t) , D32(t) }
D1(t) = {D1(t,8) , D1(t,1)}

D2(t) = {D2(t,£) , D2(t,2)}

D31(t) = {D31(t,e) , D31(t,3) , D31(t,31)}

D32(t) = {D32(t,£) , D32(t,3) , D32(t,32)}

We want to prove that s is greater than t .  Consequently, in accordance with the

definition of the rdo, for every Dv(t) we have to find a Du(s) which is greater with

respect to »D. By reason of stability for substitutions our search for Du(s) is

restricted by the leaves s/u and t/v, respectively. We can verify

'- D111(S)  >>D D1( t ) :

(i) D111(S,111) == D1(t,1) = <X;  ; {}>

(ii) D111(S,8) = <and;not(not(x)) ;  {y  ,not (z)}> >D

<and ; x ;  {y ,nand(x,z)}> = D1(t,£)

because D11(not(not(x))) ”D D8(x)

since D€ (x) E D11(not(not(x)))
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- Dlll(s) »D D3l(t): 

(i)	 Dlll(s,lll) = D3l(t,3l) = <x; ; {}> 

(ii)	 DIll (s,1l) = <not; x ; {}> >D <nand; x ; {z}> = D3l (t,3) 

because not ~ nand 

(iii) DIll (s,£) = <and; not(not(x» ; {y , not(z)} > >D 

<and; nand(x,z); {x, y}> = D3l(t,£) 

because DII (not(not(x») »D DI(nand(x,z» 

- D3l(s) »D D32(t): 

It is straightforward to prove this statement with the considerations of 

the latter. 

- What about D2(t) ? 

The only decomposition applicable is D2(s), since s/2 is the only leaf 

consisting of the variable y. 

(i)	 D2(s,2) = D2(t,2) = <y; ; {}> 

(ii) D2(s,£) = <and; y ; {not(not(x» , not(z)}> }D 

<and; y; {x ,nand(x,z)}> = D2(t,£) 

because neither not(not(x» nor not(z) can bound nand(x,z) and 

they cannot help each other to do that. Instead of comparing the 

multisets of subterms it would be possible to compare the multiset 

sums of decompositions. Let SI=not(not(x», s2=not(z) and 

tl=x, t2=nand(x,z). Consequently, S={sl,s2} and T={tl,t2}' 
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— D111(S) >>D D310“):

(i) D111(S,111) == D31( t ,3 l )  = <X;  ; {}>

(ii) D111( s , l l )  == <no t ;x ;  {}>  >D <nand ;x ;  {z}> = D31(t,3)

because not [> nand

( i i i )D111(s,8)  = <and;not(not(x)) ;  {y  ,not (z)}> >D

<and;nand(x,z) ;  {x  , y}>  = D31(t,€)

because D11(not(not(x))) >>D D1(nand(x,z))

- D31(S) >>D D320) :

It is straightforward to prove this statement with the considerations of

the latter.

- What about D2(t) ?

The only decomposition applicable is D2(s), since s/2 is the only leaf

consisting of the variable y.

(i) D2(S.2) = D202) = <y; ; {}>

(ii) D2(s,e) = <and ; y ;  {not(not(x)) , not(z)}> l>D

. ' <and ; y ;  {x  ,nand(x,z)}> = D2(t,€)

because neither not(not(x)) nor not(z) can bound nand(x,z) and

they cannot help each other to do that. Instead of comparing the

multisets of subterms it would be possible to compare the multiset

sums of decompositions. Let s1=not(not(x)) , sz=not(z) and

t1=x, t2=nand(x,z). Consequently, S={s1,32} and T={t1,t2}.
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Now we want to compare the multisets 

D(s!) CJ D(s2) = 
{ {Dll(sl'£)' Dll(sl,l), Dll(sl,ll)} , {Dl(s2'£), Dl(s2,l)} } 

and 

{{D£(tl'£)}' {Dl(t2,£),Dl(t2,1)} , {D2(t2,£),D2(t2,2)}} 

= D(tl) tJ D(t2) 

We can prove that D(sl)CJD(sZ) »»D D(tl)CJD(tZ). It follows 

from the other comparisons already considered. 

Summing up, we see that the companson of the third part of a 

sub-decomposition (S »rdo T), the multisets of subterms, is not ideal. A more 

successful test is to compare the multiset sums of the decompositions of these 

subterms. With this slight change we have a real extension of the rdo (ird in short). 

Concluding the example above, the following relations hold : s trdo t but s >ird 1. 

Definition ([RU85]): improved recursive decomposition ordering 

S >ird t
 

if D(s) »»ED D(t)
 

with Du(s,p) = <f; s~ ; S> >ED <g; t~; T> = Dv(t,q)
 

if in a lexicographical way 

- ft> g 

- Ddif(u,suc(p,u»(s~) »ED Ddif(v,suc(q,v»(t~) 

- U D(s") >>>>ED U D(t")
S"E S t"E T 

Remark: The original decomposition ordering works on decomposition-quadruplets instead of 

triples. An extra operator 0 is used to mark the place where a sub-decomposition is applied: 

du(t,p) = Du(t,p) . <t [ p ~ 0 ]>. This additional fourth component is called context. 

Rusinowitch proved that it is redundant. From this fact results the definition of the rdo presented 

here. 
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Now we want to compare the multisets

D(sl)  U D(sz) =

{ {D11(sl,€) , D11(51,1) , D11(s1,11)} , {D1(s2,£) , D1(s2,l)} }

and

{ {Dg(t1.€)} , {D1( t2 ‚€ ) ‚D1( t2 ‚1 )}  , {D2(t2‚8)‚D2(t2‚2)} }
= D(t1)  U D(t2)

We can prove that D(s1)UD-(s2) »»D D(t1)UD(t2).  It follows

from the other comparisons already considered.

Summing up, we see that the comparison of the third part of a

sub—decomposition (S ”rdo T), the multisets of subterms, is  not ideal. A more

successful test is to compare the multiset sums of the decompositions of these

subterms. With this slight change we have a real extension of the rdo (ird in short).

Concluding the example above, the following relations hold : s i>rdo t but s >ird t.

Definition ([RU85]): improved recursive decomposition ordering

S >ird t
if D(s) »»ED D(t)

with Du(s,p) = <f ; s’  ; S> >ED <g ; t’  ; T> = Dv(t,q)

if in a lexicographical way

- f D g

- Ddif(u,suc(p,u))(8’) »ED Ddif(v,suc(q,v))(t')

WU Us“

Remark: The original decomposition ordering works on decomposition—quadruplets instead of
triples. An extra operator D is  used to mark the place where a sub-decomposition is applied:
du(t ,p)  = Du(t ,p)  - <t [ p e- E! ]> .  This additional fourth component i s  called context .

Rusinowitch proved that it is redundant. From this fact results the definition of the rdo presented
here.
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Two	 path orderings 

The decomposition orderings and the ordering defined next, Plaisted's path of 

subterms ordering (pso, for short), have much in common. The pso is a predecessor 

of the rpo and its original definition d,epends on paths of subterms. Such a path of a 

term is a sequence starting with the whole term followed by a path from some 

argument: all paths of the term -(x*2) are [-(x*2); x*2 ; x] and [-(x*2); x*2 ; 2]: 

..J,l~
 
x 2 

The pso compares two terms by comparing all their paths. Its slightly modified 

version (equivalent to the original) of Rusinowitch is given next. 

Definition ([PL78] , [RU85]): path of subtenns ordering 

S >pso t
 

if SPATHS(s) »PO SPATHS(t)
 

with p >PO q
 

if MOS(p) »T MOS(q)
 

with	 s' >T t' 

if lexicographically 

- Top(s') ~ Top(t') 

- U SPATHS(si) »PO U SPATHS(ti) 
si E Args(s') ti E Args(t') 

SPATHS(t) denotes the multiset of paths of subterms oft: SPATHS(t)={[t;tl;...;tn] 

I tn is a leaf oft} and [t;tl; ... ;tn] is a path of t. MOS(p) is the multiset of subterms 

occuring in the path p : MOS([to;tl; ... ;tnD= {to, t1 ' ... ,tnl. 
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The pso compares two terms by comparing all their paths. Its slightly modified

version (equivalent to the original) of Rusinowitch is given next.

Definition ([PL7 8] , [RU85]): path of subterms ordering

s >pso t
if SPATHS(s) ”PO SPATHS(t)

with p >PO q

if MOS(p) >>T MOS(q)

with s’  >T t’
if lexico graphically

— Top(s’) D Top(t’)

- U SPATHS(Si) »PO U SPATHS(ti)
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SPATHS(t) denotes the multiset of  paths of subterms of t : SPATHS (t)={ [t;t1;...;tn]

| tn is a leaf of t }  and [t;t1;...;tn] i s  a path of t .  MOS(p) is  the multiset of subterms

occuring in the path p : MOS([t0;t1;...;tn]) = {to , t1 , , tn}.
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It is conspicuous that the pso is an extremely recursive ordering based on three 

suborderings (>PO, >T and ~). We succeeded in redefining this path ordering in a 

simpler manner using decompositions. The new method is called psd and is based on 

the fact that a path is a kind of an ordered path-decomposition: 

" 
Definition: path of subteIms ordering on decompositions 

s >psd t
 

if D(s) »»p D(t)
 

with <f·, s"·, S> >p <g., t"·, T>
 

if lexicographically
 

-	 f~ g 

- U D(s") )>»p U DCt")
s"e {s"}l:JS t"e {t"}l:JT 

The proof of the equivalence between the pso and the psd is given in the next 

chapter. More information about the pso is available in [PL78], [RU8S], [ST86]. 

This relatively simple definition of the complicated pso has two obvious 

advantages. First, we could compare the implementations relative to their 

efficiency. A closer look at this work will be done soon. 

Secondly, it is easy to compare the pso with the decomposition orderings. The 

essential difference is that the pso works breadth first and the rdo works depth first 

([RU8S]) . The new definition of the pso makes it clear: 

<f ,. s" ,. S> >D <f·, t" ,. T> <f; s"; S> >p <f; t" ; T> 

if	 U D(s") )>»P U D(t")
s"e {s"}l:JS t"e {t"}l:JT 

if Du"Cs") »D Dv ,,(t") 

If the leading function symbols of the terms to compare are identical, rdo chooses 

only one subterm (Du" and Dv", respectively). On the other hand, psd has regard to 

the decomposition multisets of all subtenns simultaneously. 
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suborderings (>p0, >T and D). We succeeded in redefining this path ordering in a

simpler manner using decompositions. The new method is called psd and is based on

the fact that a path is a kind of an ordered path-decomposition:
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Definition: path of subterms ordering on decompositions

S >d  t

if D(S) »»P D(t)

with < f ; s ’ ;S>  >P <g; t ’ ; ' [>

if lexico graphically

- f » g

s”e {sD}(l:sJ§ »»P t t"eU’{t D}Ull‘

The proof of the equivalence between the pso and the psd is given in the next

chapter. More information about the pso is available in [PL78], [RUSS], [ST86].

This relatively simple definition of the complicated pso has two obvious

advantages. First, we could compare the implementations relative to their

efficiency. A closer look at this work will be done soon.

Secondly, it is easy to compare the pso with the decomposition orderings. The

essential difference is that the pso works breadth first and the rdo works depth first

([RU85]) . The new definition of the pso makes it clear :

<f ; s ’ ;S>  >D <f ; t ;  T> | < f ; s " ;S>  >P <f ; t ’ ;T>

i fDu  (s)» DV ( t )  i fUDs  )»»  UDt" )
D s"e{sSUS P t"€{t'tSUT

If the leading function symbols of the terms to compare are identical, rdo chooses

only one subterm (Du! and DV», respectively). On the other hand, psd has regard to
the decomposition multisets of all subterms simultaneously.
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Like pso, kns is an ordering which compares terms using the paths in them. It has 

been devised by Kapur, Narendran and Sivakumar. They have implemented the rpo 

within their rewrite rule laboratory and have found it weak in handling terms which 

should intuitively be comparable. The kns was a consequence of these experiments. 

Rusinowitch proved that kns and ird are equivalent ([RU8S]) and therefore we 

renounce to give a description of the former. For the sake of completeness only, we 

have mentioned this path ordering. The gentle reader is refered to [KANASI8S], 

[RU8S], [ST86]. 
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Knuth-Bendix ordering 

A quite different type of technique for ordering terms is based upon assigning 

natural (or possibly real) numbers to the function symbols and then to terms by 

adding the numbers of the operators (called weight of a term) they contain. Two 

terms are compared by comparing their weights, and if the weights are equal, by 

comparing the subterms lexicographically. To describe this strategy, called 

Knuth-Bendix ordering (kbo, for short), we need some assumptions and helpful 

definitions. 

If L\ is a function symbol or a variable and t is a term we denote by #L\ (t) the 

number ofoccurrences of A in 1. We assign a non negative integer ep(t) (the weight 

of t) to each operator in 'f and a positive integer epO to each variable, such that 

- ep(c) ~ <PO if c is a constant 

- <p (f) > 0 if f has one argument. 

Now we extend the weight function to terms. For any term t =f(tl, ... ,tn) let 

n 
ep(t) = ep(f) + 2. ep(tj). 

i=1 

For example, let 'f= {nil , car, cdr , cons}. The weight function 

x nil car cdr conssymbol 

cp 1 0221 

IS correctly defined, whereas <PO=2, <p(nil)=l, ... isn't allowed. The weight of 

the term cons(car(cdr(x»,nil) is 0+1+1+2+2 = 6. 
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Definition ([KNBE70] , [MA87]): Knuth-Bendix ordering 

S >kbo t
 

if ('Ix EX) #x(s) ~ #x(t)
 

and lexicographically
 

<pes) > <pet)
 

Top(s) ~ Top(t)
 

Args(s) >kbolex Args(t) 

The variable condition guaranteeing the stability certainly is a very strong
 

restriction. Note that, for example, the distributive law cannot be oriented in the
 

usual direction.
 

We also want to remark that there exists a slight improvement of the ordering,
 

allowing at most one unary operator f with weight zero ([KNBE70J). To conserve
 

the well-foundedness all other operators from ~ have to be smaller than f (with
 

respect to the precedence).
 

We conclude this section with an example : let ~ = { - , *} and X = { x }.
 

xsymbol * 
~ 110 

~ is the empty precedence. 

Consider the terms s = (-x)*x and t =x*(-x). Since <pes) = <pet) = 3 and 

ITop(s) =Top(t) = * we have to apply the kbo recursively on the first arguments and 

ihave to verify: -x >kbo x .This is true because <pc-x) =2 > 1 =<p(x) and therefore 

s >kbo 1. 
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Definition ([KNBE70] , [MA87]): Knuth-Bendix ordering

S >kbo  t
if (Vx E x) #x(s) 2 #x(t)

and lexicographically

- <P(S) > @(t)
- Top(s) D Top(t)

— ArgS(S) >kbol‘?’X Args(t)

The variable condition guaranteeing the stability certainly is a very strong

restriction. Note that, for example, the distributive law cannot be oriented in the

usual direction.

We also want to remark that there exists a slight improvement of the ordering,

allowing at most one unary Operator f with weight zero ([KNBE70]). To conserve

the well—foundedness all other operators from ? have to be smaller than f (with

respect to the precedence).

We conclude this section with an example : let 9F:- { - , * } and x = { x }.

symbo l  X - *

(P 1 1 0

D is the empty precedence.

Consider the terms s = (-x)*x and t = x*(-x). Since (p(s) = (p(t) == 3 and

Top(s) = Top(t) = * we have to apply the kbo recursively on the first arguments and

have to verify : -x >kbo x ‚This is true because <p(-x) = 2 > 1 = qJ(x) and therefore
' S  >kb0 t .
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IV Comparison
 

In this chapter we compare the power of the orderings presented. The power of an 

ordering is the set of comparable terms. We do not compare the size of these sets but 

examine the relation between two sets. There are three possible relations. Two 

orderings could be equivalent (> =>'), one ordering may be properly included in 

the other (> c >') or they overlap (> # > '). The orderings> and>' overlap if there 

exist some terms such that sI > tl & -,(sl >' tl) and s2 >' t2 & -,(s2 > t2)' 

Consequently, the proof of such an overlapping is composed by specifying two 

counter-examples. These kinds of proofs together with a synopsis of the previous 

lemmata will be listed as diagrams at the end of this chapter. 

Note that the orderings described in this report depend on the parameter of the 

precedence. This parameter may be either partial or total. For that reason we have 

diagrams with an underlying partial precedence and with an underlying total 

precedence. Furthermore, the dependences of the orderings will be checked on 

additional premises where the set of terms is restricted to ground terms (terms 

without variables) and monadic terms (terms built up with zero-ary and unary 

symbols only), respectively. 

Ground terms 

If r is the set of all ground terms and ~ is total, then the path orderings (pso and 

kns), the decomposition orderings (psd, rdo and ird) and the recursive path ordering 

are total on r/~ and therefore equivalent ([RU8S] and the results on the following 

pages). The Knuth-Bendix ordering is total on r ([KNBE70J) and overlaps with 

the others, since 1 >kbo not(O) if <p(l) > <p(not) + <p(O) and not(O) >' 1 for 

any of the remaining orderings >' under the total precedence not ~ 0 ~ 1. 
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Terms with an underlying partial precedence 

A (universal) term is an element of the set r of all terms. Most of the considerations 

significant for this section are made by Rusinowitch ([RU8S]). An overview of hi 

results will be given and some new outcomes will be proved explicitly. 

For the rest of this section, we assume that r is the set of all terms and ~ is a partial 

precedence. Then the recursive path ordering is properly included in the recursive 

decomposition ordering ([REJ081]) and the path of subterms ordering. 

Furthermore, it is less powerful than its lifted version from Forgaard: 

Lemma 1 >rpo c: >tpo. 

Proof: Let s >rpo(~) t. Since the rpo is monotonic w.r.t. the precedence, we 

can conclude that 

s >rpo(~') t if ~ c: ~'. 

This fact is valid particularly if~' is total and therefore s >tpo t (according to the 

definition of the tpo). 

o 

The recursive decomposition ordering is properly included in its improved variant
 

which is equivalent to the path ordering of Kapur, Narendran and Sivakumar. The
 

lother path ordering (pso) is the connection link to the decomposition orderings,
 

since it is equivalent to the psd:
 

[Lemma 2 >pso =>psd'
 

~roof: Proving the equivalence of the two different definitions, we change the
 

briginal pso step by step to obtain the form built up by decompositions.
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Terms with an underlying partial precedence

A (universal) term is an element of the set F of all terms. Most of the considerations

significant for this section are made by Rusinowitch ([RUSSD. An overview of his

results will be given and some new outcomes will be proved explicitly.

For the rest of this section, we assume that F is the set of all terms and [> is a partial

precedence. Then the recursive path ordering is properly included in the recursive

decomposi t ion ordering ( [REJ  081 ] )  and the path of  subterms ordering.

Furthermore, it is less powerful than its lifted version from Forgaard:

Lemma 1 >rpo = >tp0°

Proof : Let s >rp0(l>) t . Since the rpo is monotonic w.r.t. the precedence, we

can conclude that

s >rp0(1>’) t if D E b’.

This fact is valid particularly if D’ is total and therefore s >tpo t (according to the

definition of the tpo).

CI

The recursive decomposition ordering is properly included in its improved variant

which is equivalent to the path ordering of Kapur, Narendran and Sivakumar. The

other path ordering (pso) is the connection link to the decomposition orderings,

since it is equivalent to the psd:

Lemma 2 >ps0 = >psd-

Eroof : Proving the equivalence of the two different definitions, we change the

original pso step by step to obtain the form built up by decompositions.
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Let MOS*(t) = {MOS(p) I P E SPATHS(t)} be the multiset of all multisets of 

subterms, then 

s >pso t
 

if MOS*(s) »»Tl MOS*(t)
 

with S" >Tl t"
 

if in a lexicographical way
 

- Top(s") ~ Top(t")
 

- U MOS*(si) »»Tl U MOS*(ti)
 
si E Args(s") ti E Args(t')
 

The multiset MOS(p) = {to,t1 ,...,tn } of subterms occuring in a path p only contains 

terms. Guiding to decompositions, we modify these terms in such a way that they are 

vectors consisting of the leading function symbol and the list of arguments : 

ti --> <Top(ti); Args(ti». This transformation of MOS(p) changes the definition 

of the pso in the following way : 

S >pso t
 

if MOS*(s) >)»T2 MOS*(t)
 

with <f ; S> >T2 <g; T>
 

if lexicographically
 

- f ~ g 

- U MOS*(si) »»T2 U MOS*(ti) 
Si E S ti ET 

Splitting up the second component of an element of MOS(p) leads us to a 

sub-decomposition: let MOS(p) = { <Top(ta) ; TO> , <Top(t1) ; Tl> , ... , 

<Top(tn_l); Tn-l> , <Top(tn); {}> }. Moreover, let to=t and t/u=tn, then 

DuCt) = {<Top(ta) ; tl ; TO'> , <Top(tl); t2 ; Tl'> , ... , 

<Top(tn_l) ; tn ; {}> , <Top(tn); ; {}> } 

,,'* Du(t) ={<Top(ti); ti+l ; T(> I<Top(ti); {ti+Ill:JT(> E MOS(p)} 
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Let MOS*(t) = {MOS(p) | p e SPATHS(t)} be the multiset of all multisets of

subterms, then

s >pso t
if MOS*(S) »»T1 MOS*(t)

with s’ >T1 t’
if in a lexicographical way
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- U MOS*(Si) »»T1 U MOS*(ti)
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The multiset MOS(p) = {t0,t1,...,tn} of subterms occuring in a path p only contains

terms. Guiding to decompositions, we modify these terms in such a way that they are

vectors consisting of the leading function symbol and the list of arguments :

ti --> <Top(ti) ; Args(ti)>. This transformation of MOS(p) changes the definition

of the pso in the following way :

s >pso t
if MOS*(S) »»T2 MOS*(t)

with < f ;  S> >T2 <g ; T>

if lexico graphically

- f D g

.. U MOS*(Si) >>>>T2 U MOS*(ti)
Si E S ti € T

Splitting up the second component of an element of MOS(p) leads us to a

sub-decomposition: let MOS(p) = { <Top(t0) ; T0> , <Top(t1) ; T1>  , ,

<Top(tn_1) ; T _1> , <Top(tn);  {}>  }. Moreover, let t0=t and t/u=tn, then

Du(t) = { <Top(t0) ; t 1  ; T0’> , <Top(t1) ; t2 ; T1’> , ,

<T0p(tn-1);tn; {}> , <T0p(tn); ;{}>]
.... Du(t) == {<Top(ti) ; t i+1  ;T i ’>  I <Top(ti) ; {ti+1}I:JTi’> e MOS(p)}

22



"...	 s >pso t 

if D(s) »»T3 D(t) 

with	 <f; s"; S> >T3 <g; t"; T>
 

if in a lexicographical way
 

- f ~ g
 

- U D(s") »»T3 U D(t") 
S" E {s"} lJS t" E {1'} lJ T 

This definition is identical with that on page 16, leaving out the denotation of >T3 

and >p, which concludes the proof. 

o 

All other combinations of two orderings are overlappings. 

Terms with an underlying total precedence
 

If we assume an underlying total precedence, one of these overlappings turns into a
 

proper inclusion:
 

Lemma 3 >psd C >ird'
 

Proof: We have to show that s >psd t "... s >ird t
 

+--* D(s) »»P D(t) ,,-+ D(s) >>>>ED D(t) (definition of >psd and >ird)
 

D(s) »»p D(t) +--* (\::Iv E Ot(t» (3u E Ot(s» Du(s) »p Dv(t)
 

with Ot(t) denotes the set of all terminal occurrences of the term t. 

We have to show: Du(s) »p Dv(t) (*) 

,,-+ (3u" E Ot(s» Du"(s) »ED Dv(t) 
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s >ps0 t
if D(S) »»T3 D(t)

with < f ; s ’ ;S>  >T3 <g ; t ’ ;T>

if in a lexicographical way

- f [> g

- U D(S") »»TS U D(t")
s "e  {s’}US t" e {t’}UT

This definition is identical with that on page 16, leaving out the denotation of >T3

and >1), which concludes the proof.

Ü

All other combinations of two orderings are overlappings.

Terms with an underlying total precedence

If we assume an underlying total precedence, one of these overlappings turns into a

proper inclusion:

Lemma 3 >d = >ird°

Proof : We have to show that s >d t "" s >ird t
<—> D(S) »»P D(t) "" D(s) »»ED D(t) (definition of >psd and >ird)

D(s) >>>>P D(t) ++ (VV 6 Ot(t)) (Elu € Ot(s)) Du(s) >>p Dv(t)

with Ot(t) denotes the set of all terminal occurrences of the term t.

We have to show: Du(s) »P DV(t) (*)

""-> (Elu’ e Ot(s)) Du'(s) ”ED Dv(t)
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Let Du(s) = { <fi ; si+1 ; Si> liE [O,m] } with si+1 E Args(si) & s/ui = si 

Dv(t) = { <gi ; ti+1 ; Ti> liE [O,n] } with ti+1 E Args(ti) & t/vi = ti 

,,.. (Vi) (3j) fj ~ gi v fj=gi, since (*) and ~ total 

case (i) : (Vi) (3j) ~ ~ gi ,,.. u' = u V 

case (ii): Let gp=fq n'" UD(s") »»P UD(t") , since (*) 
s" E {Sq+l}\:JSq t" E {tp+IJ\:JTp 

n'" (3s' E {Sq+l }\:JSq) (3u" E O(s» Ddif(u",suc(Uq,u"»(s') = Ds' 

~~p Dt, = Ddif(v,suc(vp,v»(tp+l) 

(ii.l) D ' »p D( ,,.. u'= u" Vs 

(ii.2) D ' = Dt ,s 

n'" we have to show: U D(s") »»ED U D(t") 
s" E S t" ETq P 

this is valid by induction if we choose u' =u", since 

U D(s") »»p U D(t") 
s" ESt" ETq P 

o 

The superiority of the tpo in relation to the rpo (>rpo C >tpo) expires: 

Lemma 4 >rpo =>tpo·
 

Proof: Since ~ is total, there is no other extension than itself. This fact leads to the
 

assertion of the lemma.
 

o 

The relations being left are the same as under a partial precedence. 
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case (ii): Let gp==fq I» UD(s") »»p UDÜ") , since (*)
s" e {sq+1}USq t" e {tp+1}UTp

"" (38' € {Sq+1}USq)  (Ein" € 0(3)) Ddif(u",suc(uq,u"))(sI) = Ds’
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(ii.2) DS: = D„
"=> we have to show: U D(s") »»ED U 1303")

s"  e Sq t" (—2 TI)

this is valid by induction if we choose u '  = 11", since

U D(S") »»P U D(t")
S" 6 Sq t" E Tp

D

The superiority of the tpo in relation to the rpo (>rpo c >tpo) expires:

Lemma 4 >1'p0 : >tp0°

Proof : Since [> is  total, there is no other extension than itself. This fact leads to the

assertion of the lemma.

EI

The relations being left are the same as under a partial precedence.
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Terms irrespective of a precedence 

Our results would be stronger and more general if we could give some declaration 

about the comparisons of orderings separated from the precedence. The following 

proposition summarizes these reflections. 

Proposition Let > and >' be some orderings monotonic w.r.t. the precedence. 

Furthermore, let > be included in >' over any total precedence. Then, having 

s >(p) t for some precedence p, there exists a precedence q so that s >'(q) t. 

Proof: We prove this proposition by specifying q. Let s >(p) t, then s >(p") t for 

each extension p" of p, since> is monotonic w.r.t. the precedence. Let q be one 

of the total extensions: s >(q) 1. With the additional premise> s >' over any total 

precedence, the terms s and t are ordered in the same direction under >'. 

o 

This statement will get practical importance if we consider it together with the 

relations between orderings with an underlying total precedence (see figure 2 on 

page 28): only two (ird and kbo or kns and kbo) of the eight orderings collected in 

the diagram are sufficient to cover the union of comparable terms of all orderings 

presented here. In other words, if terms can be oriented with any ordering (of 

figure 2) there exists a precedence so that the terms are also comparable with the ird 

(kns) or the kbo. Consequently, if you are implementing a system where termination 

of rewriting must be guaranteed, then you only have to make available to the user 

two of the eight orderings. 
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This statement will get practical importance if we consider it together with the

relations between orderings with an underlying total precedence (see figure 2 on

page 28): only two (ird and kbo or kns and kbo) of the eight orderings collected in
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Monadic terms 

A monadic term only contains unary function symbols and either a constant or a 

variable. The subset of the monadic terms without constants can be unequivocally 

transformed into strings and vice versa. For this reason the subsequent results refer 

to the corresponding orderings on string rewriting systems. The proofs 

cannot be explicitly given ?ere due to lack of space, but may be found in [ST86]. We 

assume that ~ is a partial precedence. 

Lemma 5	 - >rdo = >ird 

- >pso =>kns 

- >pso c: >tpo' 

Proof: [ST86] 

o 

These three lemmata and the relations between orderings on terms with an 

underlying partial precedence yield the dependences as follows: the path orderings 

and the decomposition orderings coincide. They are more powerful than the rpo and 

properly included in the tpo. 

Having a total precedence, all orderings with the exception of the kbo are the same. 

The counter-example on page 20 is responsible for the overlapping of the kbo with 

the others. 
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In order to retain these relations and to find one of them easily we use slightly 

modified Hasse diagrams: 

" > = > 
9\1 

This diagram represents the facts 
. . J' ." '" 

~c:>=>, >#~ 

We have two different kinds of arrows: if >- c: > then we arrange> above >

joining them with a thick arrow; if two orderings overlap, we use a thin arrow. If an 

ordering > is not included in another ordering >- then there must be a rule that 

can be oriented by > but not by >-. Such a rule is named by 9\i and is given 

explicitly on page 29. For instance, the rule 9\1 is orientable by > and not by ~. The 

rules 9\2 and 9\3 are interpreted analogously. 

~6 " 9\~ 

IP§erD~IP§IID + IIIRIID~JKN§ ~ TIPerD 
~ ~ ~ 9\8 ~ 

Figure 1: Universal terms and partial precedence 
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In order to retain these relations and to find one of them easily we use slightly

modified Hasse diagrams:

> = > <— 9%. ’

931

This diagram represents the facts
> c > = > ’  , > '#  y’

>

We have two different kinds of arrows: if > = > then we arrange ) above >>

joining them with a thick arrow; if two orderings overlap, we use a thin arrow. If an

ordering > is not included in another ordering > then there must be a rule that

can be oriented by > but not by > .  Such a rule is named by Elli and is given

explicitly on page 29. For instance, the rule im is orientable by > and not by >. The

rules ‘32 and SR3 are interpreted analogously.

+ \r 4939 9; anal

PSQEPSD 4%» Histograms 43435 “FIND

im \ 916/ 
m

934 T 4
@@ % mo

{7

K BIND J

Figure 1: Universal terms and partial precedence

27



Figure 2: Universal terms and total precedence 

9\9 

JP § CD) ~ JP§ ID) ~ IT ffi ID) ~ JK N§ ~ ffi rID CD) .9\59\5~ JKID ({J) 

9\7 

Figure 3: Monadic terms and partial precedence 
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( HRDEKN “
‘.R4 SR6

EDS©§JPS|D w %»Rm «We» Kl©
SR6 4

RP©2TP© }
Figure 2 :  Universal terms and total precedence

r \TIP©
9 i9 '

PS©äPSDäHRDäKNSäRD© 4% Kl©
SR7

Hill—FCC)
L }

Figure 3 : Monadic terms and partial precedence
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Figure 4: Ground tenns and total precedence 

Counter-examples 

The following pairs of terms are witness for the overlappings of the orderings. 

9\1	 (-x)*x ~ x*(-x) 

9\2	 x * (y + z) ~ (x * y) + (x * z)
 
with * ~ +
 

9\3	 0+-1 ~ -(0+1)
 
with + ~ 0, -1 ~ - ~ 1
 

9\4	 ((x A x) A (x A x)) A ((y A y) A (y A y)) ~ (x A y) A (x AY) 

9\5	 not(O) H 1 
with cp(l)=3, cp(O)=cp(not)=1 and not ~ 0 ~ 1 

9\6	 a~d(not(not(x)),y,not(z)) ~ and(x,y,nand(x,z))
WIth not ~ nand 

9\7	 first(rest(x)) ~ car(cdr(x))
 
with first ~ cdr, rest ~ car
 

9\8	 cons(car(x),cdr(x)) ~ first(list(x))

with car ~ first, cdr ~ list
 

9\9	 sqrt(sqr(sqr(x))) ~ sqr(-(x))
 
WIth sqrt ~ 
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KBCO)
5R5 5

f \

PS©§PSD23RD§KNSERD©§TP©§1RP©

L )

Figure 4 : Ground terms and total precedence

Counter-examples

The following pairs of terms are witness for the overlappings of the orderings.

931 (-X) * x —> X * (-x)

932 kfl1(Y+Z)_l_-9(X*Y)+(X*Z)
Wlth

5R3 0+  -1 -—9 - ( 0+  1)
with + [> 0,  —1 [> - [> 1

924 ((XAX)A(XAX))A((YAY)A(YAy))—>(XAWMXAY)

915 not(0)<-—>
with (p(1)=3, (p(0)=(p(not)= 1 and not > 0 r> 1

SR6 and(not(not(x)),3!,,not(z)) —-> and(x,y,nand(x‚ z))
with not [> nan

5R7 first(rest(x)) —> car(cdr(x))
with first £> cdr, rest 1> car

SKS war;? rims tritium»
‘39 sqrt(sqr(sqr(X))) -9 sqr(—(x))

w1th sqrt [> -
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V Concludin2 remarks 

Various methods for proving the termination of term rewriting systems have been 

suggested. Most of them are based on the following notion of a simplification 

ordering : any term that is syntactically simpler than another is smaller than the 

other. 

A collection of simplification orderings has been pointed out, including 

recursive path ordering and recursive decomposition ordering. Four of the 

orderings presented are part of an implementation of the Knuth-Bendix completion 

procedure, called COMTES. A series of experiments have been conducted to study 

the time complexity of the orderings kbo, rpo, kns and pso (the last two orderings 

are implemented over paths). The implementation of the ird is in progress just 

now. Summarizing, we obtained the average time factors 

kbo: 1 rpo: 5 kns: 25 pso: 165. 

Orderings might also be compared in another way. The chief ingredient of this 

paper was the confrontation of their powers. The quintessence of this comparison is 

the fact that the extended recursive decomposition ordering proposed by 

Rusinowitch is one of the most powerful simplification orderings on terms. 

Finally, let us remark a supplementary aspect not yet noted. A simple extension 

to some of the orderings has been developed: each operator f has a status which fixes 

the order of comparing the subterms of f ([KALE80] , [LE84] , [LE87]). This 

concept is useful for instance in proving termination of the associative law. 
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Summary 

Termination is an important property of term rewriting systems. Simplification 

orderings are often used methods which guarantee termination. We describe the 

basic ideas of comparing terms and present the formal definitions and some 

examples of the most popular simplification orderings. A new definition of one of 

them is given which is simpler than the original and therefore better to handle. 

Furthermore, we complete the comparison found in the literature, i. e. we mark off 

the power (the sets of comparable terms) of the orderings. 
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