

Presentation of Proofs

in an Equational Calculus

Christoph Lingenfelder Axel Pracklein
Fachbereich Infonnatik Fachbereich Infonnatik

Universitat Kaiserslautern Universitat Kaisers1autem
Postfach 3049 Postfach 3049

D-6750 Kaisers1autern D-6750 Kaisers1autem
phone: 49 631 205 3335 phone: 49 631 205 3344

emai1: 1ingenf@infonnatik.uni-kl.de email: prckln@infonnatik.uni-kl.de

Abstract

One of the main reasons why computer generated proofs are not widely accepted
is often their complexity and incomprehensibility. Especially proofs of mathematical
theorems with equations are normally presented in an inadequate and not intuitive
way. Often completion and rewrite proofs are only given in the form of a program
trace. This is even more of a problem for the presentation of inferences drawn by
automated reasoning components in other AI systems.

For first order logic, proof transformation procedures have been designed in
order to structure proofs and state them in a fonnalism that is more familiar to human
mathematicians. In this report we present a method to handle equational proofs in
such systems. To this end equation solution graphs are introduced to represent
paramodulation or rewrite proofs. In the process of transforming these proofs into
proofs with equation chains, the inherent structure can also be extracted by exploiting
topological properties similar to those of refutation graphs in the pure fIrst order case.

This research was supported by the Deutsehe Forschungsgemeinschaft (DFG), SFB 314

mailto:prckln@infonnatik.uni-kl.de
mailto:1ingenf@infonnatik.uni-kl.de

ii Proof Transformation with Built-in Equality Predicate

Contents

Abstract e ••••••••••••••••••••••••••••1

Contents 11
I

1 Introduction 3

2 Representation of Equality Proofs 5

2.1 General DefInitions 5

2.2 Basic Equality Reasoning Procedures 8

2.3 Decomposition Graphs , 11

2.4 Equality Chains , '" .. , 14

3 Transformation and Structuring 16

3.1 General Definition 16

3.2 Transformation Rules 18

3.3 A Proof Transfonnation System for Equality 19

3.4 ExlUIlple 21

4 Conclusion 30

5 Literature 31

Introduction 3

1 Introduction

With the increasing strength of Automated Deduction systems the length and
complexity of computer generated proofs has reached a degree where they become
almost impossible to understand even for the expert. To add to their incomprehen­
sibility, almost every research group uses its own format and style of stating a proof.
This has led to a state where only specialists, and sometimes only specialists in the
very method of automated reasoning, are capable to understand and check a proof
found by an automated deduction system.

But whenever human beings are addressed, the need of easily understandable
and clearly structured arguments becomes apparent. Therefore it is necessary to be
able to represent proofs in a more abstract and better -structured way. Ideally one
would like the proof to be given in natural language, with a large variety of inference
rules. As a preliminary step in this direction it seems to be useful to transform the
computer generated proof into a proof in a natural deduction system which, although
still a system of formal logic, has been devised to approximate as much as possible an
intuitive form of reasoning.

The transformation of proofs into a natural deduction formulation has solved
some of the problems, see [An80], [Mi83], or [Li86], but l;>y and large the increasing
length and complexity of the transformed proofs adds to their incomprehensibility
rather than to reduce it. It is therefore paramount to be able to state the proofs in a
hierarchically structured way, as mathematicians do, formulating subgoals and
lemmata. There has been some success in structuring computer generated proofs, cf.
[Li90], [PN90], or [Hu91], but all of these approaches are restricted to logics without
equality.

We feel, however, that this is a severe restriction, as equality is essential for any
natural coding of mathematical problems and of AI problems in general. Therefore, in
this report, we adopt Lingenfelder's approach, so that proofs involving equational
reasoning can also be structured automatically.

In chapter 2 the formal basis for this work is defined, especially the different
calculi and proof representations: equation solution graphs constructed by equality
theorem provers and equality chains as a better understandable form of equality
proofs. These equality solution graphs can be the result of paramodulation-based
reasoning, but can also easily be constructed from a proof using the Knuth-Bendix
completion algorithm [KB70]. The representation of equality proofs as equality
chains has been chosen for its naturalness and similarity to the reasoning of

4 Proof Transfonnation with Built-in Equality Predicate

mathematicians. Its role resembles the usage of a system of natural deduction in ftrst
order logic, as has been invented by Gerhard Gentzen for its simplicity and
systematic use of the connectives.

Chapter 3 develops a basic system of proof transformation covering equality
reasoning. In this report only pure equality proofs are handled, but the method fits
well into the transformation approach, so that it can also be used in conjunction with
proof transformation procedures for fIrst order logic. Furthermore we tackle the task
of fInding the underlying proof structure. As for the case of fIrst order logic this can
be accomplished by exploiting topological properties of the graphs representing the
computer generated proofs. Structure can be imposed upon the proofs by introducing
lemmata, both to avoid duplication of parts of the proof and to arrange a larger proof
in a sequence of subgoals easier to understand.

5 Representation of Equality Proofs

2 Representation of Equality Proofs

In this chapter we will define the logic and introduce all the necessary definitions
for the equality calculi used in this report. Everything is standard first order predicate
logic with a built-in equality predicate, however the equality predicate is the only
predicate needed. Then the paramodulation rule and the Knuth-Bendix completion
procedure are introduced. For the actual proof transformation we define equation
solution graphs as a starting point and equality chains as the final form of the proofs.
These equation solution graphs are well-suited for our purpose because they reflect
the inherent proof structure as do refutation graphs in the case of first order logic.
They are also independent of the method by which the proofs were found.

2.1 General Definitions

This section contains the basic definitions of the underlying logic. There are no
important differences from the usual way of defining these concepts; similar defi­
nitions can for instance be found in [Ga86] or in [Lo78].

2.1-1 Definition: (Signature, Terms)

We define a signature I.=(C, V, F) as a triple of a finite set of constant symbols
C, a countable set of variable symbols V, and a finite set F ofjunction symbols. F is
the union of sets Fn of n-ary function symbols (n =1,2, ...); all the Fn are finite and
only finitely many of them are non-empty. Then the set n of terms is the smallest
set with

H. if f E lFn and t1> tz, ... , tn ET~, then ftltZ ... tn E 'n:..l

If the signature is clear from the context the abbreviation T is often used instead
of T~. With ~gr= (C, 0, F) the set of all ground terms is ~gr or simply 1rgr­

V(t) is the set of variables occurring in a term 1. V(o) is an abbreviation for the set
of variables occurring in an arbitrary object 0, and the same convention is similarly
used for Fn, F, '1r, and 'fgr.

1 In some examples we will also use an infix notation for special two-place function symbols
like +.

6 Proof Transformation with Built-in Equality Predicate

2.1-2 Definition: (Substitutions)

A substitution is a mapping cr: V~ 'f with finite domain V:={veV I cr(v)~v};

cr(V) is called the codomain of cr. A substitution cr with domain {XbX2, ... ,xn} and

codomain {tht2, ... ,tnl is represented as {XIHtl, ... ,XnHtn}. A substitution is ex­

tended to a mapping 'f~T by the usual homomorphism on terms. The application of

a substitution to any other object containing terms is defined analogously.

A substitution (J is idempotent if (JO (J= (J. This is equivalent to the requirement
that none of the variables of its domain occurs in any of the terms of its codomain, cf.

[Re8?]. In this report all substitutions will be idempoten1. If a substitution maps into

'fgr it is called a ground substitution, if it is a bijection and maps into V it is called a
renaming.

Let s,t E 'f. A matcher from s to t is a substitution ~ with ~s = 1. A unifier of s

and t is a substitution a with as = m. If a unifier for s and t exists, then the two terms

are said to be unifiable.

2.1-3 Definition: (Formulae)

We introduce the set JP =UO~nJPln consisting of finite sets of n-ary predicate
symbols (n=O, 1, ...). There are two special zero-place predicate symbols, TRUE
(written T) and FALSE (written .J..), T, .J.. e Po, and a binary predicate symbol

EQUAL (written =), =e lP2. The objects of the form Ptlt2 ... tn with PE l?n and
tl,t2, ... ,tn eT constitute the set A of atoms.

To construct the formulae of First Order Predicate Logic, we use the following
additional signs:

(a) Unary connective negation sign
(b) Binary connectives conjunction sign

v disjunction sign

=> implication sign
(c) Quantifiers \::f universal quantifier

::I existential quantifier
(d) Structuring Signs (opening parenthesis

) closing parenthesis

The set ~ of formulae of First Order Predicate Logic is now defined as the
smallest set with:

(i) Ac~

(ii) If F, G E@>, then (FAG), (FvG), and (F=>G) are all in l@l.

(iii) If FE@J and x E V, then ..F, (\::fx F), and (::Ix F) are all in @l. •

7 Representation of Equality Proofs

In this report we consider purely equational proofs, that is, all formulae are of the
type ev\...Aen~en+h where all ~ are equations. An atom =s t is normally written in
infix form, s = t.

Parentheses are only used to indicate the, range of the connectives, as in

«...,A) /\ (Bv C». The outermost parentheses will be omitted most of the time, and we

adopt the usual convention to defme a binding order of the connectives. We assume
that..., binds more strongly than A and v, these in turn bind more strongly than ~

and *=>, and the quantifiers 'I:;f and 3 are the weakest. Parentheses may be omitted

according to this binding hierarchy, so that the above formula could be written as
-.A/\ (B vC).

In order to establish a well-defined connection between the original formula to be
proved and the term nodes and equations in the proof (when it is represented as an

equation solution graph), we need a relation between the elements ofthe graph (term
nodes and equations) and the terms occurring in the original formula. The following
definitions are made in order to formalize this correspondence. Similarly, to describe
equational transformations, we must be able to refer to subterms within terms or
atomic formulae.

2.1-4 Definition: (Subformulae. Subterms)

For any formula F, atom A, or term t, we define the sets S(F) of subformulae of
F and T(A) and T(t) of subterms of A and t as follows:

(0'1)	 IfFeA, then S(F)={F}.

(0'2)	 IfF is of the form GAH, GvH, or G=>H, then

S(F)={F}uS(G)uS(H).

G and H are called immediate subformulae ofF.

(0'3)	 If F is of the form ...,G, 'l:;fx G, or 3x G, then S(F)={F}uS(G).

In these cases G is the only immediate subformula of F.

(tl) If teCuV, then T(t)={t}.

('t2) 1ft is of the form ftlt2 ... tn with felFn and tl,t2, ... ,tne'JI', then
T(t)=Ui:<>n T(ti)U{t}.

(t3) If A is of the form Ptlt2... tn with PelPn and tl,t2, ... ,tneT, then
T(A)=Ui:<>n T(ti).

('t4) If Fe~, then T(F)=UAe S(F)MT(A).

If s is a subterm of a formula F, seT(F), we sometimes write F(s) to denote this
(act. An occurrence of F(t) in the same context will then represent the formula where

has been replaced by 1.

8 ProofTransfonnation with Built-in Equality Predicate

2.1-5 Deflnition: (Subterm and Subformula Occurrences)

In order to specify subterm occurrences of a given term te T (or formula
occurrences of a formula Fe~) we use finite sequences <kl.kz.....kn> of integers.
We defme the set of subterm occurrences net) as follows:

(a.) t<>e net)

(~) t<i.kz.....kn> e net) if ti<kz.....kn> E n(ti),

where t= ftltZ ... tn, fe lFn, and thtZ," .,tnE T

Subformula occurrences and subterm occurrences within formulae are defined
analogously. n(F) can be viewed as the set of partial paths through the formula tree
of F. By this definition a canonical mapping 0> from the set of subformula and
subterm occurrences into the set of formulae or terms is induced:

0>: O(F) ~S(F) U T(F), O(t) ~T(t)

If no confusion is possible we speak of the subterm occurrence 0 with o>(o)=s
only as an occurrence of s. The subset niF) of n(F) whose elements are mapped to
atoms is called the set of atom occurrences within the formula F.

2.1-6 ~x8Dnple: (Formula Occurrences)

With F= (V'u fiuu=e) 1\ (V'vfve =v) 1\ (V'xySx I\Sy ~ Sfiyx) ~ (V'z Sz~ Siz)
F<1.3.1.1.2> denotes the occurrence of Sy within F, and F<l.l.l.l.1> represents the
subterm occurrence of iu within F. The set of atom occurrences within F is na(F) =
{F<l.l.l>, F<1.2.1>, F<1.3. 1.1.1>, F<1.3. 1.1.2>, F<1.3.1.2>, F<2.1.1>, F<2.1.2>}.

Note, that in general identical formulae or terms may appear as different
occurrences within a given term or formula.

2.2 Basic Equality Reasoning Procedures

2.2-1 Paramodulation Method

Let F(t) be a formula with a subterm t, and e be an equation t' = s. e can be
paramodulated into F(t) if, for a renaming p such that F(t) and pe have no variables in

. common, there exists a unifier er of pt' and 1. Then the formula of(ps) is called a
paramodulant of F(t) and e.

Originally this rule was proved to be sound and complete in combination with
resolution and functional reflexive axioms [RW69]; the functional reflexive axioms
were later shown to be superfluous by D. Brand [Br75]. In addition, for the subterms
t in the above defmition no variables must be considered.

9 Representation ofEquality Proofs

Paramodulation is a deduction rule that is applicable "almost everywhere" making

search graphs very bushy [Bu83] and so it should only be used if the result is of

utmost importance for other arguments in the proof.

2.2-2 Knuth-Bendix Completion

The observation that equations can be "applied" to terms led to a term replace­

ment approach for the treatment of the equality relation, constraining the application
of the paramodulation rule drastically. The main idea for an algorithm is to consider
the equations as rules that can only be applied in one direction, which is determined

by a partial ordering on the set of terms.

A method to decide the equality of two terms under special equality theories can

then be obtained by "reducing" the terms to a unique normal form using the directed
equations. The set of theory axioms must obey certain conditions, it must be con­

fluent and Noetherian to ensure completeness and termination of the decision
procedure. The equations defining the theory must be directable and must have the
above properties or it must be possible to add other equations such that the new

system is equivalent to the old one and has the desired properties.

The procedure for this purpose developed by D. Knuth and P. Bendix [KB70] is
called completion. The resulting system of directed equations constitutes a set of
rewrite rules.

When computing a normal form of a term all situations where two rules can be
applied to derive different successors are "dangerous" because it must be ensured that

both cases lead to the same normal form later on. D. Knuth and P. Bendix showed
that it is sufficient to consider critical pairs between rules and to add the corre­
sponding equations to ensure this behaviour. Critical pairs can be constructed from
two rules or two instances of the same rule if the left hand sides of the rules overlap.
This means that some subterm of the left hand side can be unified with the other left

hand side. One term of the critical pair is the right hand side of the first rule with the
unifier applied to it. For the other term the unifiable subterm in the one left hand side
is replaced by the other right hand side and again the unifier is applied to the result.

In principle the Knuth-Bendix completion algorithm works as follows [KB70]:
Beginning with a set of undirected equations, an empty set of directed rules, and a
reduction ordering, it tries to derive a convergent set of rules from the equations. It

applies the following steps until no equations remain: take an equation, apply all rules

to the equation, direct the equation according to the given reduction ordering, and put

it into the set of rules. Generate all critical pairs, that is, terms for which rule appli­
cations overlap, between the new rule and the set of rules and put them into the set of

10 Proof Transfonnation with Built-in Equality Predicate

equations. If this algorithm terminates, it produces a set of rules that can be used to
decide the equality of arbitrary tenns of the given theory.

A rule is applicable to a tenn if the left hand side of the rule matches the tenn or
any of its subtenns. If a rule is applied to an object with subterms to which it is
applicable, then these are replaced by the right hand side of the rule with the matcher
applied to it. In the field of Automated Deduction the application of the rules is often
called demodulation [W067,W084], where an ordering for the actual orientation of

the equations is selected heuristically in most cases.

G. Peterson [Pe83] was the first to develop a resolution and paramodulation
calculus which reduces to the Knuth-Bendix algorithm when only given unit equality
axioms and theorems. M. Rusinowitch [HR86, Ru87] extended this work such that
only maxima11 literals of the clauses must be considered for paramodulation.

Both G. Peterson's and M. Rusinowitch' approaches allow only very restricted
reduction orderings and.only demodulation steps by unit reduction rules. In Hsiang's
and Rusinowitch' definition superpositions with the left and right hand side of an
equation in a maximal literal are allowed. The problem with ordered paramodulation
is that it does not reduce to Knuth-Bendix completion in the case when only unit
equations are present. In this case ordered paramodulation is weaker, in the sense that
is has a larger search space than completion. H. Zhang and D. Kapur [ZK88] extend
it to a larger number of orderings as well as contextual rewriting. But this calculus is
not complete in combination with tautology removaL Bachmair and Ganzinger
[BG90] propose how the system of inference rules can be repaired such that this
incompleteness no longer occurs.

The extensions of completion to the different versions of superposition calculi are
very powerful because of the constraints to the paramodulation rule application and
the reduction facility. In addition every resolution and paramodulation theorem prover
can be controlled in a way to simulate such a calculus so that all the features of the
underlying prover remain available in the absence of equations [De88,Pr90]. The
more equations occur in a proof the more a mechanism for proof structuring based on
resolution and refutation graphs as described in [LP90] is led astray. So we need a
special consideration of long sequences of equation applications.

1 It is straightforward to extend the term ordering needed for the orientation of equations to an
ordering on the literals.

11 Representation of Equality Proofs

2.3 Decomposition Graphs

In order to represent equational proofs and to detect their inherent structure we
want to use graphs similar to BUisius' decomposition graphs. They should be inde­
pendent of the underlying proof search method, whether it be paramodulation,
demodulation as in [BI86], or completion. If necessary they can be easily constructed
from other proof formats whenever all the proof steps are recorded in some sort of a
trace.

The main advantage of graphs for the purpose of proof representation is that they
only keep the essential information. They abstract from the procedure of searching for
a proof to its static skeleton, that is, no order of the proof steps is given, and they
omit all unnecessary intermediate results.

The graphs consist basically of two terms sand t and a set of equations, which
are connected by links. We will define two types of graphs, Decomposition Graphs
(DGs) and Equation Solution Graphs (ESGs). For DGs the terms connected by the
links must be unifiable. In ESGs we work in fact with ground instances of equations
and terms, and we demand in addition that every node has exactly one link. If these
links are constructed in a consistent way the graph constitutes a proof of s=t from the
equations occurring in the graph.

h(g(a) y) h(g(a) b)

~
ESG: g(a) = f(a) oo:g~1

" h(f(b) b) h(f(a) b)

Now we proceed to define the notion of decomposition and equation solution
graphs rigorously. For once we distinguish between terms and term occurrences that
are linke~ together in the graph. To this end we define term nodes as the basic
building blocks of decomposition graphs.

2.3-1 Deftnition: (Term Nodes)

For an arbitrary, finite set M a set N={ (x,t) I XE M and tE1I'~} is called a set of
term nodes if (x,s) E Nand (x,t) E N imply s = t. Alternatively a set of term nodes
can be described as a set M and a mapping £ from M into n.

Given a signature 1:=(C, V, F) which defines a set of terms ']['~, we use a set
F*=Ul~i~oo JPi, where the sets Ft are isomorphic to lFi. and a set N of term nodes in

12 ProofTransformation with Built-in Equality Predicate

order to define :I,*=1;(N)=(N, 0, l?*) and the resulting set of terms ']['1;*, or simply
T. The elements ofT are called abstract terms.

A subset of 'n:* with the property that every element of N occurs exactly once is
called monoform. The mapping £ induced by N is extended to the abstract terms in
y* in the obvious way.

2.3-2 Deflnition: (Decomposition Graph)

A decomposition graph (DG) is a structure r=(N, s*, t*, E*, A). N is a set of
term nodes, s* and t* are elements ofY*=n(N), E*c{l*=r* 11*, r*eY*}, such that
the set Y~={s*, t*}u{w*lw*=r* or l*=w* e E*} is a monoform subset of ']['~

A!;; {[A,B] I A, Be N where £A and £B are unifiable} is a set of links.

A decomposition graph r'=(N', s'·, t'·, E'·, A') is called a subgraph of
r=(N,s*, t,E*, A) if N'cN, E'*cE*, and A'cA. s'* and t'* can be any subterms

of the originall'~.

2.3-3 Deftnition: (Equation Solution Graph)

For a given equational theory E!;; {l=r I l,re T} a decomposition graph
r=(N, s*, t*, E*,A) is an equation solution graph (ESG)

if the function £ maps into Tgn

if for every abstract equation 1*=r*e E* there exists an equation l=re E such that
£*1 *=£*r* " IS an Instance 0 f 1=r,

and if it has one of the following forms:

1.	 Reflexivity
r=({A, B}, A, B, 0, [A, BD with
A=(A',tgr) and B=(B',tgr).

2.	 Decomposition

r= (l.:J lSisnNi, f*si ... s~, f*ti ...t~,

1°1 E* 1°1 A)
v lSiSn i, v lSiSn i

such that for all i (Ni. si. ti, Ei, Ai) is

a subgraph of r. l.:J indicates the

union of disjoint sets.

13 Representation ofEquality Proofs

3.	 Extended Transitivity
r=(Nl~N2,si, S2,

Eil.:JEi~{ti= ti}, All.:JA2)

such that r=(Nl, si, ti, Ei, AI) and

r=(N2, ti, si, Ei, A2) are subgraphs

ofr.

Such an equation solution graph represents a proof of the equation £*s *=£*t*
with respect to the equational theory E. IfE is given as a set {el, ... , en} of equations
this can be considered a proof of the fonnula e1/\ .•• /\ en => £*s *=£*t*.

In order to represent the proof of a universally quantified equation the notion of
ESGs is extended to allow variables, but these are considered constants, that is, any

given ground substitution for the variables must transform the extended ESG into a
ground ESG.

2.3-4 Example: (Equation Solution Graph)

Let A = (At, y), B = (B', y), C = (C', 0), D = (D', y), E = (E', 0), F =
(F', -x + x), G = (0', -x +x), H = (H', y), I = (1', -x + (x+ y», and J = (J', -x +x)
be a set of tenn nodes. Note that F' and G' are mapped onto the same term -x + x.

Then ({A, B, C, D, E, F, G, H, I, J}, A, J,
{B=C+*D, E=F, G+*H=I},
{[A, B], rC, E], [D, H], [F, G], [I, 1]})

is the ESG depicted below. In a more intuitive version the terms of the term
nodes are integrated into the notation of the nodes:

({A[y], B[y], C[O], D[y], E[O], F[-x+x],
G[-x+x], H[y], I[-x+x], J[-x+x]}, A, J,

{B=C+*n, E=F, G+*H=I},
{[A, B], [C, E], [D, H], [F, G], [I, J]})

And now this can be represented by the following figure:

A[y]

7
/ * B[y] =C[O] + D[y]

1
X /

G[-x + x] +H[y] = I[-x + (x + y)]

J[-x + (x + y)]

14 Proof Transformation with Built-in Equality Predicate

2.4 Equality Chains

2.4-1 Definition: (Equation Chains)

An equation chain relative to an equational theory E is a finite sequence of tenns
(t1, ... , tn) such that for each i with 2~Sn there exist subtenn occurrences ti-1<ki-1>,
substitutions cri, and equations li=ri in E with ro(ti-l<ki-1»=ai(li) or
ro(tj-l<ki-1» = (ji(ri). ti is constructed from its predecessor by replacing ro(ti-l<ki-l»
by a(q) or a(1i), respectively. The sequence (12 = r2, ... , In= rn) is called ajustification

of the equation chain.

Equation chains are written t1 = t2 = ... = tn to indicate that all the terms in an
equation chain are equal with respect to the theory E.

2.4-2 ~xar.nple: (Equation Chain)

(y, O+y, (-x+x)+y, -x+(x+y)) is an equation chain for E={x=O+x, O=-x+x,
x+(y+z) =(x+y)+z}.

2.4-3 De:f1nition: (Equation Proof)

An equation proof line consists of

i.	 an equation chain y: tl = t2 = ... = tn; its conclusion is t1 = tn, and

ii.	 a justification for the chain.

A finite sequence S of proof lines is an equation proof(EP) of an equation e from
equational assumptions E, if

iii.	 e is the conclusion of the last line of S,

iv.	 in each line', 'Y is an equation chain relative to E u { s = t I s = t is the
conclusion of a previous proof line in S}. •

In the following example we use an intuitive way to write proof lines with
equation chain and justification interleaving. A more formal notation is
tI =t2 =... =tn(j2,j3, ... ,jn).

2.4-4 Exar.nple: (Equation Proof)

A~ an example let us prove that Al:x=O+x, A2:0=-x+x, and
A3: x+(y+z) = (x+y)+z imply x = x+O. This is, that left and right inverses are the
same in groups:

15 Representation ofEquality Proofs

(1)	 y = O+y
= (-x+x)+y
= -x+(x+y)

(2) x	 = --x+(-x+x)

(3)	 x = --x+(-x+x)
= --x+O

(4) --x	 = ----x+O

(5) 0	 = ---x+(--x+O)

(6) ----x+(---x+x) =x

(7)	 x = --x+O
= (----x+O)+O
= (----x+(---x+(--x+O»)+O
= (----x+(---x+x»+O
= x+O

Al
A2

A3

I

2

A2

3

I

I

3'

4

5

3

6

Chains of length two are special, because they do not really derive anything
"new", but they are simply instances of previously generated equations. Often they
can be omitted altogether, and we will only insert them if the instance in case is rather
complicated.

16 Proof Transformation with Built-in Equality Predicate

3 Transformation and Structuring

The construction of equation proofs, by humans and computers alike, is con
ducted in single steps. To prove any valid equation e one always starts with a lin
s =t without correct justification. Such a line is obviously no proof, because it is no
correctly justified; it is assumed, however, that a proof of the equation is known, for
instance in fonn of an ESG. Now the proof is constructed by deriving subgoals until
it is completed. In the intennediate states one may find completed subproofs, but also
others that are not yet done. To fonnalize the procedure of the search for an equation
chain proof, we use Generalized Equation Proofs in analogy to Lingenfelder's
generalized natural deduction proofs [Li90] or Andrews' proof outlines for natural
deduction proofs.

3.1 General Definition

3.1-1 Definition: (Generalized Equation Proof)

A finite sequence S of proof lines is called a Generalized Equation Proof (GEP)
of an equation e, if

i. e is the conclusion of the last line of S,

ii. each line contains an equation chain relative to E u E ' u { s = t I s =t
is the conclusion of a previous proof line in S}.

This allows lines not correctly justified within the calculus, but it is assumed that
these lines are "sound", in the sense that the conclusions are valid if the justifying
equations E' are sound. Lines not correctly justified within the calculus are called
external lines, lines justified within the calculus are called internal. When no external
lines are present in a GEP, it is a nonnal EP.

A GEP consisting of just one external line with equation chain e justified by
e E E' is called a trivial GEP for e. +

When an equation in a justification is represented by an ESG we use the name of
the graph in the justification. Similarly the name or number of a proof line in a
justification replaces this line's conclusion.

3.1-2 Example: (GEP)

In this example we give first the initial GEP of the fonnula F: x = O+x /\ 0 =
-x+x /\ x+(y+z) = (x+y)+z => x=x+O corresponding to example 2.4-4, with a constant

17 Transfonnation and Structuring

symbol 0 and function symbols + and -. Inflx notation is employed for + and also for
the corresponding +* .

(7) x = x+O 'B

For a proof of 'B several equation solution graphs were derived by the system,

the following two and the graph J'l of example 2.3-4.

'B [x] c [x]

~ ~* [x] =....I:-(-x)] +* [0] [x] =[-(-x)] + [(-x + x)]

--------:-­ [-x~O][~-x)] =[-(-(-(-x»)] +* [0]

\~*
[-(-x)] +*/[0][0] = [-(-(-x»] +~+0)

[-(-x) + 0] = [x]

* \ * /[-(-(-(-x»))] + ([-(-(-x»)] + [xl) =[x]

/
[x] +* [0]

In order to fmd an equation proof of a formula F, a fmite sequence of generalized
EPs can be constructed whose fIrst element is a trivial GEP for e, and whose
justification is an ESG. To be able to generate such a sequence of GEPs it is
necessary to describe the rules by which a GEP is constructed from its predecessor in
the sequence. In the following example one such transition between two consecutive
GEPs is shown.

3.1-3 ~ple: (Proof Transformation)

During the proof transformation process the following GEP has been arrived at:

(3) x = --x+O	 C

(4) --x	 = ----x+O C

(5) 0	 = ---x+(--x+O) J'l

(6) ----x+(---x+x) = x	 .9l.

(7)	 x = --x+O 3
= (----x+O)+O 4
= (----x+(---x+(-x+O»)+O 5

= (----x+(---x+x»+O 3
= x+O 6

18	 Proof Transformation with Built-in Equality Predicate

Now the proof of the graph .9l must be expanded only once. This leads to the

next GEP.

(1)	 = -x+(x+y) .9lY
(3) x = --x+O	 C

(4) --x	 = ----x+O C

(5) 0	 = ---x+(--x+O) 1

(6) ----x+(---x+x) =x	 1

(7)	 x = --x+O 3

= (----x+O)+O 4
= (----x+(---x+(--x+O»)+O 5
= (----x+(---x+x»+O 3
= x+O 6

In the following section we will give a formal account of some of these transition
rules. In their description a. and 13 are used as labels for the lines and the justifications
.9l, .9l1' .9l2' ... , jIn represent proofs of the respective lines. For all these rules one
must make sure that the proofs .9l1' jI2' ... , .9ln can be constructed from .9l or are
otherwise known. How this can be done if the proof is given in form of an equation
solution graph will be shown later, when the automatic proof transformation
procedure is described.

3.2 Transformation Rules

In the description of the transformation rules the lines on the left hand side of the
arrow (~) are replaced by those on the right hand side in the next generalized EP of
the sequence.

Instantiation:
(ex) t=s (e)

(a.) .. t=s.. (..e..) {~ (13) ..t=s.. (.. ex ..)

if t=s is an instance of the axiom e E E modulo symmetry of the equality
predicate.

Elimination:
(ex) .. t=t.. (...9l••)	 (a.) .. t.. (....)

19 Transfonnation and Structuring

Insert:
(a) ..SI =S2•. (.•.9l••)

if .9l is an ESG constructed corresponding to case 3 of definition 2.3-3 and the
terms of the splitting equation tl=t2 represent instances of the top level terms of an

ESG.

Assumption:

(a) ..SI =S2.. (..J'l..)

if .9l is an ESG constructed corresponding to case 3 of definition 2.3-3 and the
splitting equation ti=t2 is an instance of an axiom e of the set of input equations E.

Decomposition:
~ ..ftl ...to=fslt2...to=.. ·=fsl· .. So·.{(a)

(..•J'lI •... 'J'ln'.·)

if .9l is an ESG constructed corresponding to case 2 of definition 2.3-3.

Lemma:
(a) t=s (J'l)

(f3) .. t'=s' .. (...9l .•)
~ { (~) .. t'=s' .. (.. ex ..)

If t'=s' is an instance of t=s. which is the pair of top level tenns of Jt

3.3 A Proof Transfonnatlon System for Equality

The set of transformation rules defined in the previous section constitutes a proof
system for equational proofs. This means that for any valid equation e, there is a
finite sequence of GEPs starting with e and ending with an EP for e. Every element in

this sequence can be constructed from its predecessor by application of one of the
transition rules.

This system could be used as a proof checker, the user choosing from a menu of
applicable rules. and the system correctly applying them. Some of the rules (called
"automatic") are always useful and can automatically be applied by the system. For
the others (called "user guided". normally Instantiation and Lemma) the user must
make a decision or provide more information. So the system can actually do much
more by preselecting a subset of the transfonnation rules and giving the user a much
smaller choice of rules.

20 Proof Transformation with Built-in Equality Predicate

Now the strategy for a semiautomatic proof system can be described by the
following algorithm:

3.3-1 Algorithm: (Basic Proof Transformation)

i.	 Start with a GEP e (;;I).

ii.	 Check whether the proof is already completed, in which case the GEP is
returned as final proof.

iii.	 Decide whether to apply any of the applicable "user guided" rules. If so,
do it.

iv.	 Apply "automatic" rules until some of the "user guided" rules are newly
applicable, then go to ti.

The decision about the application of any "user guided" transformation rules can
be resolved interactively by the user or according to appropriate heuristics, making
use of the information in a given proof, for instance a previously computed equation
solution graph. The selection between different rules that might be applicable is
guided by the equation solution graph representing the proof of the external lines in a
GEP.

In [Li90] it is shown how a proof represented as a refutation graph without
equality can guide the "search" for a natural deduction proof. In this context, search
means to transform the given, graph-represented proof into the natural deduction
calculus, rather than to find an original proof.

We assume that a proof of an equation e has already been found by an automated
deduction system. We will further assume that this proof is represented as an
equation solution graph r. Actually the proof is often represented by more than one
graph - resulting from its construction from paramodulation proofs. One of them
represents the main line of the argument, the others prove equations that are used
together with the original equational theory E in the main proof. These auxiliary
graphs can be considered lemmata in the proof, especially if they are used more than
once in different instantiations.

Up to now, the main incentive for the introduction of a lemma was to avoid an
unnecessary duplication of parts of the proof. But this is not the only reason why
mathematicians use lemmata. In many cases they are used purely to structure the
proof, so that the idea behind a proof becomes better visible.

In an automatic proof transformation the difficulty is obviously to find meaning­
fullemmata. And it is here again that the topological structure of the equation solution

Transfonnation and Structuring 21

graph may successfully be exploited. The task is to find parts of the equation solution
graph that are sufficiently complex in order to justify the introduction of a lemma.

Such lemma graphs can be isolated in two different settings, corresponding to the
recursive cases of definition 2.3-3. For decomposition, any of the subgraphs proving
the equality of two subterms may become a lemma graph. If the graph contains a
separating equation, as in the case of extended transitivity, any of the two subgraphs
can be considered a lemma.

In any of these cases a lemma is only introduced if the corresponding subgraph is
not trivial. An exact and meaningful definition of triviality is very difficult in this
context, so the choice must be made using a heuristic approach:

We consider a subgraph as non-trivial if it contains the instance of an
equation that is used in a different instantiation elsewhere in the graph.

Another criterion is the distinction between completion and rewriting steps,
which can be made if the underlying paramodulation rule discriminates these steps
according to the Knuth-Bendix algorithm. Completion steps are more important and
substantial while rewriting steps can usually be considered a calculation rather than a
proof. So a subgraph containing only rewriting steps can be treated as trivial.

And of course the absolute and the relative size of the subgraph, the depth of
the terms involved and other syntactical criteria should be taken into account.

3.4 Example

As an example we choose a standard text book example of linear algebra, the rule
of cancellation in a group. In first order notation with equality this law is represented
by the following formula:

'\I x,y,Z: x == x+O A X = O+x 1\ 0 ==-x+x 1\ 0 = x+-x 1\ x+(y+z) = (x+y)+z

=> '\Ix,y,a a+x=a+y ~x=y

1\ '\Ix,y,b x+b=y+b =>x=y

An automatically generated paramodulation1 proof of this formula is shown
below. a and b as well as the different occurrences of x and y become Skolem
constants in the normal form, and therefore also in the equation solution graph. They
are named cl through c6 in the sequel.

1 The final resolution step is only needed for technical reasons.

22 Proof Transfonnation with Built-in Equality Predicate

Axioms:	 All x,y,z + (+ (x y) z) + (x + (y z»

All x + (0 x) = x

All x + (x 0) = x

All x + (- (x) x) 0

All x + (x - (x» = 0

Theorems:	 All xl,x2,a + (a xl) + (a x2) Impl xl x2

All yl,y2,b + (yl b) + (y2 b) Impl yl y2

Set of Axiom Clauses Resulting from Normalization1

A1: All x:Any =(x x)
A2: All x,y,z:Any =(+(+(z y) x) +(z +(y x»)

A3: All x:Any =(+(0 x) x)

A4: All x:Any =(+(x 0) x)

AS: All x:Any =(+(-(x) x) 0)

A6: All x:Any =(+(x -(x» 0)

Set of Theorem Clauses Resulting from Normalization and Splitting

Splitpart l:2

T7: =(+(c1 c2) +(c1 c3»

T8: --, = (c2 c3)

Splitpart 2:
T9: =(+(cS c4) +(c6 c4»
T10: -, = (cS c6)

Refutation of Splitpart 1:

AS,l & A2,1 ~ P2: All x,y:Any =(+(0 y) +(-(x) +(x y»)

P2,1 & A3 ~ Rw3: All x,y:Any =(y +(-(x) +(x y»)

T7,1 & Rw3,1 ~ P4: =(c2 + (- (cl) +(c1 c3»)

P4,1 & Rw3 ~ RwS: =(c2 c3)

RwS,l & T8,1 ~ R6 : D

1	 In the proof all the clauses have names consisting of an abbreviation for the inference rule
used and a number as a running index. A means axiom, T theorem, R resolvent, P
paramodulant, and Rw rewrite.

2	 The system automatically divides the proof into separate parts for the two conjuncts of the
theorem.

23 Transformation and Structuring

Refutation of Splitpart 2: 1

AS,l & A2,1 ~ P8: All x,y:Any =(+(0 y) +(-(x) +(x y»)

P8,1 & A3 ~ Rw9: All x,y:Any =(y +(-(x) +(x y»)

AS,l & Rw9,1 ~ PlO: All x:Any =(x +(-(-(x» 0»

PIO,l & A4 ~ Rwll: All x:Any =(x -(-(x»)

T9,1 & Rw9,1 ~ P14: =(c4 +(-(cS) +(c6 c4»)

A6,1 & A2,1 ~ PIS: All x,y:Any =(0 +(y +(x -(+(y x»»)

P14,1 & PIS,I ~ P16: =(0 +(-(cS) +(+(c6 c4) -(c4»»

P16,1 & A2 ~ Rw17: =(0 +(-(c5) +(c6 +(c4 -(c4»»)

Rw17,1 & A6 ~ Rw18: =(0 +(-(c5) +(c6 0»)

Rw18,1 & A4 ~ Rw19: =(0 +(-(cS) c6»

Rw19,1 & Rw9,1~ P20: =(c6 +(-(-(c5» 0»

P20,1 & Rwll ~ Rw21: =(c6 +(c5 0»

Rw2l,1 & A4 ~ Rw22: =(c6 c5)

Rw22,1 & TIO,l~ R23: C

In the example we consider the proof of the second (more complicated) splitpart.2

It is first translated into an equation solution graph. The nodes labeled with '13 in the
upper graph are instances of the equation solution graph '13 below; a complete equation

solution graph can be obtained by inserting three copies of the equation solution
graph for Rw9: All x, y :Any = (y + (- (x) + (x- y») with corresponding

instantiation.

We begin the transformation with the graphs jf and '13, where Jil represents the

main proof, and the trivial GEP (13) c6 =cS Jil.

The proofs for the splitparts differ essentially although both parts of the theorem can be
proved analogously. The system generates a more complicated proof for the second part,
because it is based on the Knuth-Bendix algorithm. The axiom of associativity is directed,
and hence can not be used in the direction opposite to that in the first step of splitpart 1.

2	 We only strive to transform the representation of the proof into a more readable format, but
do not intend to change the structure from a complicated to a simpler proof. In the actual
example, a mechanism to detect analogies between theorems may be adequate to select a
shorter proof for the second splitpart.

24 Proof Transformation with Built-in Equality Predicate

J'l [c6] .'

/ * *
 [c6] = [-(--(;5)] + ([--(;5] + [c6]) 13

I * [c6] =[c6] + [0]

[-(--(;5)] + [0] =[-(--(;5)]	 [0] =[c4 + --(;4]*	
I ~/

-------= [(c6 + c4)] + -**[c4][c6] +*[(c4 + --(;4)]

/ "13[0] = [--(;5 + cS]	 [--(;5] +[(cS +~ [c4]/	 I [c6 \c4] = [cS +c4]

[-(--(;5)] .f [(--(;5 + cS)] [--(;5]'+ ([(c6 + c4)] +*-*([--(;5] +*[(c6 + c4)])
= [cS] = [(--(;5 + (c6 + c4» + -(--(;5 + (c6 + c4»]13
~ [0] =[(--<:5 + (c6 + c4)) L--<:5 + (c6 + c4))]

*/[cS] + [0] = [cS]

~
[cS]

[y]

[0] +*"[y] = [y]

I
[-x + x] = [0]

~* [(-x + x)] + [y] = [-x + (x + y)]

//
[-x + (x + y)]

One application of Assumption with a graph jl" and a trivial second graph C
yields:

(13)	 c6 = c5+0
= cS A4
= cS C

This is simplified by Elimination:

(13)	 c6 = c5+0
= cS A4

25 'Transfonnation and Structuring

An application of Insert with subsequent Elimination of the trivial first graph
eads to:

(13)	 c6 = --cS+(-cS+c6) '13
= cS+O 51'
= cS A4

with 51':

[-(-cS)] -+ ([-cS] -+ [c6]) '13
~' I	 I

[c6] =[c6] -+ [0]

*	 //[-(-cS)] + [0] = [-(-cS)] / _ [0] = [c4..! -c4]

[c6] +*[(c4 -t"-c4)] = [(c6 + c4)] +*-*[c4]
/

[0] - [-<:5 + cS]	 "'13[-cS] -t [(cS +~ [c4]

- /	 / [c6 \"4] = [cS +c4]

[-(-cS)] of [(-cS + cS)] [-cS] +([(c6 + c4)] +*-*([-cS] +*[(c6 + c4)])

= [cS] '.B = [(-cS + (c6 + c4» + -(-cS + (c6 + c4»]

~ [0] = [(-<:5 + (c6 + c4» l-<:5 + (c6 + c4))]

[cS] +*/[0]

Now a Decomposition step is possible on the top level teITI1S of JI':

(13)	 c6 = --c5+(-c5+c6) '.B

= c5+(-c5+c6) 511

== cS+O 512
=~	 M

26 Proof Transformation with Built-in Equality Predicate

with j!1 and)'[2:

[(--cS)] [--cS] -+ [c6])

-\	 [16] = [c6].{[0]

[-(--cS)] +/.[0] = [-(-c5)] [Z
AC:~~[C4]
~13

[0] - [-cS + cS]	 [--cS] -+ [(cS +~ [c4]-/	 I[C6 r] =[c5 +c4]

[-(--cS)] # [(--cS + cS)] [--cS] -+ ([(c6 + c4)] +*-*([--cS] +*[(c6 + c4)])
=[cS] 13 =[(~S + (c6 + C4)j-(--cS + (c6 + c4»]

[~--cS + (c6 + c4» + -(-cS + (c6 + c4»]

-[cS]	 [0]

Both subgraphs of the decomposition are not trivial and so both are used to
perform Lemma steps:

W -~	 =d ~

(12) ~S+c6	 = 0 j12

(13)	 c6 = -~S+(-cS+c6) 13
= cS+(--c5+c6) 4
= cS+O 12
=d M

The first equation of chain (13) is a proper instance of its justifying graph 13,

which has been proven as a separate ESG. Therefore a Lemma step is applied:

(2) y	 = -x+(x+y) 13

~ -~	 =d ~

(12) ~S+c6	 = 0 j12

(13)	 c6 = ---cS+(-cS+c6) 2
= c5+(--cS+c6) 4
= c5+0 12
=~	 M

27 Transfonnation and Structuring

After two Assumptions and the corresponding Eliminations for the first
proof line we have:

(2)	 y = O+y A3
= (-x+x)+y 13'

= -x+(x+y) A2

(4) --cS	 = cS .9l1

(12) -cS+c6	 = 0 .9l2

(13)	 c6 = --cS+(-cS+c6) 2
= cS+(-cS+c6) 4
= cS+O 12
= cS A4

13 ' [0] .([y]

I
with a graph 13':	 [-x +,[0]

[(-x + x)] +*[y]

Via one Decomposition, one Assumption, and the corresponding
Eliminations we get:

(2)	 y = O+y A3
= (-x+x)+y AS
= -x+(x+y) A2

(4) --cS	 = cS .9l1

(12) -cS+c6	 = 0 .9l2

(13)	 c6 = --cS+(-cS+c6) 2
= cS+(-c5+c6) 4
= cS+O 12
=d AA

As the application of Axiom A5 is somewhat hidden we apply an Instantiation
step:

(1) 0	 = -x+x AS
(2)	 y = O+y A3

= (-x+x)+y 1
= -x+(x+y) A2

(4) --cS	 = cS .9l1

(12) -cS+c6	 = 0 .9l2

(13)	 c6 = --cS+(-cS+c6) 2
= c5+(-cS+c6) 4
= cS+O 12
= cS A4

28 Proof Transformation with Built-in Equality Predicate

After further similar steps we come up with the final Equation Proof without graphs:

(1) 0 = -x+x A5

(2) y = O+y A3
= (-x+x)+y 1
= -x+(x+y) A2

(3) --c5+(-c5+c5) = c5 4
(4) --c5 = --c5+O A4

= --c5+(-c5+c5) A5
= ~ 3

(5) c6 = c6+0 A4
(6) 0 = c4+-c4 A6
(7) c6+(c4+-c4) = (c6+c4)+-c4 A2

(8) c4 = -c5+(c5+c4) 2

(9) c5+c4 = c6+c4 T9

(10) -c5+«c6+c4)+-(-c5+(c6+c4») = (-c5+(c6+c4»+-(-c5+(c6+c4» A2

(11) (-c5+(c6+c4»+-(-c5+(c6+c4» =0 A6
(12) -c5+c6 = -c5+(c6+0) 5

= -c5+(c6+(c4+-c4» 6
= -c5+«c6+c4)+-c4) 7
= -c5+«c6+c4)+-(-c5+(c5+c4») 8
= -c5+«c6+c4)+-(-c5+(c6+c4») 9
= (-c5+(c6+c4»+-(-c5+(c6+c4» 10
=0 11

(13) c6 = --c5+(-c5+c6) 2
= c5+(-c5+c6) 4
= c5+0 12
=~ M

Now the following global structure of the proof has become visible:

Jl1 -(-c5) = c5 -c5 + c6 = 0 ~

~/
tJ3 y = -x + (x + y) -(-cS) + (-cS + c6) = cS + 0

~/
c6=cS

29 Transfonnation and Structuring

A fonnulation in natural language might now be:

We prove left and right cancellation separately, for left cancellation .. , (not
shown explicitly here) ...

Right cancellation requires lemma '13: y =-x+(x+y) which holds because
y =O+y = (-x+x)+y =-x+(x+y) using left identity, left inverse, and associativity.

Next we prove)1[1: -~5 = -~5+O = -~5+(~5+c5) = c5 by right identity, left
inverse, and lemma '13.

Additionally -eS+c6 = -eS+(c6+0) = -eS+(c6+(c4+ ~4»

=-eS+«c6+c4)+-e4) =-e5+«c6+c4)+-(~S+(cS+c4»)

= ~S+«c6+c4)+-(-eS+(c6+c4))) = (-e5+(c6+c4»+-(~5+(c6+c4» = 0
with right identity, right inverse, associativity, lemma '13, assumption of the theorem,
associativity, and right inverse. This constitutes lemma 5f2: -eS+c6 = O.

Finally we complete the proof: c6 =--c5+(-e5+c6) = c5+(~S+c6) = c5+0 = cS
using lemmata '13, 5fl> 5f2 and right identity, q.e.d.

3 0 Proof Transformation with Built-in Equality Predicate

4 Conclusion

In this paper a method is described to transform equation solution graphs into
structured equation chain proofs. The steps of a paramodulation or Knuth-Bendix­
based proof are represented in the equation solution graphs by links for each
application of an equation. Starting from an idea like the one published in [Li90], the
necessary definitions and algorithms are given to meet the special needs of equality
reasoning.

The main question with respect to the structuring of proofs is how these proofs
could be structured in a different way than is given by the equation solution graph. As
suggested by our final example, analogy can lead to restructured graphs. The repre­
sentation of pure unconditional equality proofs in equality graphs, as in Karl-Hans
BUisius' dissertation, [BI86], was a promising starting point to construct a procedure
analogous to the algorithms known before.

The approach can also be added to the transformation of first order proofs into
natural deduction, for instance to Lingenfelder's system [Li90]. Whenever several
equations are successively applied to a formula, leading to chains of equality clause
nodes, these chains are handled using ESGs. It seems to be straightforward to extend
this method to the case where equations occur together with other theories.

Literature	 31

5 Literature

[An80] Peter B. Andrews Transforming Matings into Natural Deduction

Proofs
Lecture Notes in Comp. Sci. 87, Springer­
Verlag, Proc of 5th CADE (1980), pp. 281-292

[BG90] Leo Bachmair, Harald Ganzinger
On Restrictions ofOrdered Paramodulation with
Simplification
Proceedings 10th CADE, LNCS (1990)

[Bl86] Karl-Hans BUisius Equality Reasoning Based on Graphs

PhD Thesis, Universitiit Kaiserslautern (1986)
SEKI-Report SR-87-0l

[Br75] D. Brand Proving Theorems with the Modification Method

SIAM (Society for Industrial and Applied
Mathematics) Journal of Computing (1975)

[Bu83] A. Bundy The Computer Modelling ofMathematical
Reasoning
Academic Press, London (1983)

[De88] Jorg Denzinger EQTHEOPOGLES Ein Theorembeweiser flir die
Priidikatenlogik erster Stufe - basierend auf
Rewrite Techniken

Diplomarbeit, Universitat Kaiserslautern,
Postfach 3049, D-6750 Kaiserslautem (1988)

[Ga86] Jean H. Gallier	 Logicfor Computer Science
- Foundations ofAutomatic Theorem Proving
Harper & Row, Publishers, New York (1986)

[He87] Alexander Herold	 Combination ofUnification Algorithms in

Equational Theories
PhD Thesis, SEKI-Report SR-87-05,
UniversiUit Kaiserslautem (1987)

32 Proof Transfonnation with Built-in Equality Predicate

[HR86] J. Hsiang, M. Rusinowitch
A New Methodfor Establishing Refutational
Completeness in Theorem Proving
Proceedings 8th CADE, LNCS (1986)

[Hu91] Xiaorong Huang On a Natural Calculusfor Argument Presentation

to appear as SEKI-Report,
Universitiit Kaiserslautern (1991)

[KB70] Donald E. Knuth, Peter B. Bendix
Simple Word Problems in Universal Algebras
Computational Problems in Abstract Algebra,
Pergamon Press (1970)

[Li86] Christoph Lingenfelder Transformation ofRefutation Graphs into

Natural Deduction Proofs
SEKI-Report SR-86-1O, Universitat
Kaiserslautern (1986)

[Li90] Christoph Lingenfelder Structuring Computer Generated Proofs

PhD Thesis, Universitat Kaiserslautern (1990)

[LP90] Christoph Lingenfelder, Axel Pracldein
ProofTransformation with Built-in Equality
Predicate

SEKI REPORT SR-90-13, Universitat
Kaiserslautern (1990)

[Lo78] Donald W. Loveland Automated Theorem Proving: A Logical Basis

North Holland (1978)

[Mi83] Dale Miller Proofs in Higher Order Logic

Ph.D. Thesis, Carnegie Mellon University,
Tech Report MS-CIS-83-87, University of
Pennsylvania, Philadelphia (1983)

[Pe83] Gerald E. Peterson A Technique for Establishing Completeness

Results in Theorem Proving with Equality
SIAM (Society for Industrial and Applied
Mathematics) Journal of Computing (1983),
pp. 82-100

U~rnmre 33

[PN90] Frank Pfenning, Daniel Nesmith
Presenting Intuitive Deductions via Symmetric
Simplification
Lecture Notes in AI 449, Springer-Verlag, Proc
of 10th CADE (1990), pp. 336-350

[Pr90] Axel Pracklein Solving Equality Reasoning Problems with a
Connection Graph Theorem Prover
Fachbereich Informatik, Universiilit
Kaiserslautern, SEKI-Report SR-90-07 (1990)

[RW69] G. Robinson, Larry Wos
Paramodulation and Theorem Proving in First
Order Theories with Equality
Machine Intelligence (1969)

[Ru8?] M. Rusinowitch Demonstration automatique par des techniques de
re6criture

These de Doctorat d'Etat en Mathematique,
Nancy (1987)

[Wo67] Larry Wos, G. Robinson, D. Carson, L. Shalla
The Concept ofDemodulation in Theorem
Prooving
JACM (1967), pp. 698-706

[Wo84,] Larry Wos, R. Overbeek, E. Lusk, 1. Boyle
Automated Reasoning Introduction and
Applications
Prentice Hall (1984)

[ZK88] Hantao Zhang and D. Kapur

First Order Theorem Proving Using Conditional
Rewrite Rules
Proceedings 9th CADE (1988) pp. 1-20

