
F
oc

h
b

er
e i

chI
n

f o
rm

a
t i

k

E
.93
3

9e
9-—o~oXS

3660

_C’58(D.235,
C0

30 .

S
E

K
I

—

R
E

P
O

R
T

D-
67

50

Ka
ise

rs
la

ut
er

n

Compartmentalized Connection Graphs for
Logic Programming 1: Compartmentalization,

Transformation and Examples

David M. W. Powers

SEKI Report SR—90-16

COMPARTMENTALIZED CONNECTION GRAPHS

FOR

CONCURRENT LOGIC PROGRAMMING

I: Conlpartmentalization, Transfonnation and Examples

David M. W. Powers l

UniversiHit Kaiserslautern

D-6750 KAISERSLAUTERN

WEST GERMANY

SEKI Report SR-90-16

Abstract
The research reported in this paper and its sequels represents a revolt against the

explicit and restricitve control ofPROLOG and the present generation of Concurrent and
Parallel Logic Programming Languages. It returns to the original Connection Graph
paradigm of Kowalski and provides a methodology for logic programming in this
framework.

An elementary analysis of where the expenses in executing a logic program occur
shows how processing of each of the linear components in a proof (or execution trace)
can be executed in (non-deterministic) logarithmic time within the CONG system. Our
implementation demonstrates that lemmatization can result in even more dramatic
improvement.

This paper deals primarily with recursion both in relation to connection graphs and
in relation to Horn logic programs. In the first case a modified "compartmentalized"
connection graph framework emerges, which allows proofs which are in general
logarithmic in the size of a conventional connection graph proof. Furthermore, in the
latter case we exhibit a technique allowing arbitrary recursive predicates in a logic
program to be reduced to a canonical form involve only one single recursive predicate.

The method is demonstrated on standard PROLOG examples.

The work reported here was in the main undertaken while the author was at Macquarie University

NSW 2009 AUSTRALIA, and was supported in part by IMPACT Ltd, PETERSHAM NSW

2049 AUSTRALIA, the Australian Telecommunications and Electronics Research Board, arId the

Australian Research Council (Grant No. A48615954). The author is currently supported under

ESPRIT BRA 3012: COMPULOG.

CONG I: Transformational Examples - 1 - D. M. W. Powers

1

COMPARTMENTALIZED CONNECTION GRAPHS
FOR

CONCURRENT LOGIC PROGRAMMING

I: Compartmentalization, Transformation and Examples

David M. W. Powers‘
Universität Kaiserslautern

D-6750 KAISERSLAUTERN
WEST GERMANY

SEKI Report SR-90-16

Abstract

The research reported in this paper and its sequels represents a revolt against the
explicit and restricitve control of PROLOG and the present generation of Concurrent and
Parallel Logic Programming Languages. It returns to the original Connection Graph
paradigm of Kowalski and provides a methodology for logic programming in this
framework.

An elementary analysis of where the expenses in executing a logic program occur
shows how processing of each of the linear components in a proof (or execution trace)
can be executed in (non-deterministic) logarithmic time within the CONG system. Our
implementation demonstrates that lemmatization can result in even more dramatic
improvement.

This paper deals primarily with recursion both in relation to connection graphs and
in relation to Horn logic programs. In the first case a modified “compartmentalized”
connection graph framework emerges, which allows proofs which are in general
logarithmic in the size of a conventional connection graph proof. Furthermore, in the
latter case we exhibit a technique allowing arbitrary recursive predicates in a logic
program to be reduced to a canonical form involve only one single recursive predicate.

The method is demonstrated on standard PROLOG examples.

‘ The work reported here was in the main undertaken while the author was at Macquarie University

NSW 2009 AUSTRALIA, and was supported in part by IMPACT Ltd, PE’I'ERSHAM NSW
2049 AUSTRALIA, the Australian Telecommunications and Electronics Research Board, and the

Australian Research Council (Grant No. A48615954). The author is currently supported under

ESPRIT BRA 3012: COMPULOG.

CONG I: Transfonnatianal Examples - 1 - D. M. W. Powers

ABSTRACT 1

INTRODUCTION 4

MODEL 5

Restrictions 5

Non-deterministic proof 5

Horn clauses 5

Unification " '.' '" 5

Costs 5

ALGORITHMS 6

Standard Connection Graph 6

Links 6

Pseudolinks 6

Resolution rule " '" ,.. 7

Inheritance rule 7

Factoring rule 7

Proofs 8

Purity deletion " 8

Tautology deletion 8

Subsumption deletion 8

Logic Programming 8

Example of lemmatization 9

Extended Connection Graph 10

Links and Pseudolinks , .10

Factor-links " , 11

Subsumption links 11

Orderings & Restrictions " .11

Compartmentalized Connection Graph 12

Pseudolinked clauses '" , , 12

CONG I: Transformational Examples -2- D. M. W. Powers

ABSTRAC T 1

INTRODUCTION 4

MODEL 5

Restrictions 5
Non-deterministic proof ... 5

Horn clauses . 5

Unification ... 5

Cost s 5

ALGORITHMS 6

Standard Connection Graph 6

Links ... 6

Pseudolinks ... 6

Resolution rule ... 7

Inheritance rule ... 7

Factoring rule ... 7

Proofs . 8

Purity deletion .. 8

Tautology deletion . 8

Subsumption deletion . 8

Logic Programming .. 8

Example of lemmatization ... 9

Extended Connection Graph 1 0

Links and Pseudolinks ...10

Factor-links ..11

Subsumption links .. I I

Orderings & Restrictions . 11

Compartmentalized Connection Graph 1 2

Pseudolinked clauses ... 12

CONG I: Tramformational Examples - 2 - D. M. W. Powers

Static purity 13

Corridors - links connecting compartments 13

Self-resolution : 13

Positive-to-parent inheritance 13

Delayed composition 14

Example ofDoubling 14

Example ofExplication , , .. , 15

CHARACTERIZATION OF COMPARTMENTALIZATION 17

Definitions 1 7

Links and Pseudolinks 17

False links 18

Legality and Freshness 18

Static and Dynamic 18

HEURISTICS & CONTROL 18

Use of Cuts and Guards 18

PREPROCESSING 19

Extra-Logical Predicates 19

Not 19

Bagof, Setofand FindaII " 19

Input/Output 21

Assert/Retract , 21

Multiple recursion 21

Elimination of multiple recursive clauses , .21

Elimination ofmultiple recursive goals .22

ACKNOWLEDGEMENTS 23

REFERENCES. 24

CONG I: Transformational Examples - 3 - D. M. W. Powers

Static purity . 13

Corridors — links connecting compartments . 13

Self-resolution......................................: 13

Positive-to-parent inheritance .. 13

Delayed composition .. 14

Example of Doubling . 14

Example of Explication . 15

CHARACTERIZATION OF COMPARTMENTALIZATION 1 7

Definit ions 1 7

Links and Pseudolinks ... 17

False links .. 18

Legality and Freshness ... 18

Static and Dynamic .. 18

HEURISTICS & CONTROL 1 8

Use of Cuts and Guards 1 8

PREPROCESSING 1 9

Extra-Logical Predicates 1 9

Not .. 19

Bagof, Setof and Findall ... 19

Input/Output ... 21

Assert/Retract .. 21

Multiple recursion 2 1

Elimination of multiple recursive clauses _. 21

Elimination of multiple recursive goals .22

ACKNOWLEDGEMEN TS 23

REFERENCES 2 4

CONG I: Transformational Examples - 3 - D. M. W. Powers

Introduction

PROLOG has proven an exceptionally interesting language. It allows
programming in an entirely new style, or in a fairly conventional style. The new
declarative logic programming style has a number of theoretical advantages, but the
explicit pragmatic specification of control tends to pervade any major application. The
SLD control of a Horn clause theorem prover made the use of automated reasoning
technology practical- using a technique of known efficiency and recognized limitation.
It also admitted the possibility of a conceptually simple 'cut' mechanism through which
the programmer could maintain or regain control.

The most common generalizations of PROLOG have held fast to its general control
regime, possibly allowing some relaxation, but mostly constraining the programmer to
use even more explicit control. In particular, the parallel or concurrent PROLOG
systems generally fall into this category. Most generalizations also tend to adhere
largely to the Horn clause paradigm.

This work starts from the opposite extreme, a completely general clausal theorem
prover without control, and seeks to understand the behaviour of logic programs
expressed in such an environment, including how to implement the environment
efficiently and whether it is possible to use general search heuristics rather than an
explicit control paradigm. The CONG system [Powe88] for CONcurrent logic
programming is based on a CONnection Graph theorem prover [Kowa79] and can
accept pure PROLOG programs (cutless Horn clauses without builtin predicates) as well
as general clause form logic program (again pure without bOOtins).

This paper presents an elementary analysis of where the expenses in executing a
logic program occur and shows how processing of each of the linear components in a
proof (or execution trace) can be executed in (non-deterministic) logarithmic time within
the CONG system. A lemmatization side-effect can result in even more dramatic
improvement in specific cases.

Our techniques both provide an effective proof procedure for theorem proving with
full clauses in the connection graph framework (strong completeness is examined in
Part ID) and show how standard PROLOG logic programs can be transformed to execute
efficiently and more completely in this framework (characterizing proof length
requirements in this case).

The final two sections examine the handling of logic programming control and
metapredicates in the context of a theorem prover which does not depart from pure logic
in any way.

CONG I: Transformational Examples -4- D. M. W. Powers

Introduction

PROLOG has proven an exceptionally interesting language. It allows
programming in an entirely new style, or in a fairly conventional style. The new
declarative logic programming style has a number of theoretical advantages, but the
explicit pragmatic specification of control tends to pervade any major application. The
SLD control of a Horn clause theorem prover made the use of automated reasoning
technology practical — using a technique of known efficiency and recognized limitation.
It also admitted the possibility of a conceptually simple ‘cut’ mechanism through which
the programmer could maintain or regain control.

The most common generalizations of PROLOG have held fast to its general control
regime, possibly allowing some relaxation, but mostly constraining the programmer to
use even more explicit control. In particular, the parallel or concurrent PROLOG
systems generally fall into this category. Most generalizations also tend to adhere
largely to the Horn clause paradigm.

This work starts from the opposite extreme, a completely general clausal theorem
prover without control, and seeks to understand the behaviour of logic programs
expressed in such an environment, including how to implement the environment
efficiently and whether it is possible to use general search heuristics rather than an
explicit control paradigm. The CONG system [Powe88] for CONcurrent logic
programming is based on a CONnection Graph theorem prover [Kowa79] and can
accept pure PROLOG programs (cutless Horn clauses without bufltin predicates) as well
as general clause form logic program (again pure without builtins).

This paper presents an elementary analysis of where the expenses in executing a
logic program occur and shows how processing of each of the linear components in a
proof (or execution trace) can be executed in (non-deterministic) logarithmic time within
the CONG system. A lemmatization side-effect can result in even more dramatic
improvement in specific cases.

Our techniques both provide an effective proof procedure for theorem proving with
full clauses in the connection graph framework (strong completeness is examined in
Part 111) and show how standard PROLOG logic programs can be transformed to execute
efficiently and more completely in this framework (characterizing proof length
requirements in this case).

The final two sections examine the handling of logic programming control and
metapredicates in the context of a theorem prover which does not depart from pure logic
in any way.

CONG I: Transformational Examples - 4 - D. M. W. Powers

Model

Restrictions

Non-deterministic proof

At this point we will consider only a non-deterministic model. We assume that
through some oracle, heuristics, or committed-choice style control, we find a shortest
proof if one exists. This assumption is primarily useful once we leave the realm of
propositional Horn clauses. The proof is the trace of a non-deterministic execution,
the execution itself is assumed to have found the proof at no cost (by oracle, etc.) and
the cost is therefore the cost of checking it, including unification testing of the
grounding of the clauses used in the proof.

Horn clauses

We furthermore pay particular attention to the special case where we do have only
Horn clauses. This restriction leads to a convenient linear bound on the length of the
shortest proof when used in combination with a restriction to ground forms, and
admits useful properties even when extended to full predicate forms. We note the
possibility of broadening our restriction from Horn clause systems to arbitrary clause
systems with linearly refutable grounded predicate forms. Indeed it is hypothesized
that what we might more conventionally regard as 'programs', as opposed to
'automated reasoning applications', do admit such linear grounded forms (cf.
SATCHMO).

Unification

The process of unifying terms is used in the generation of our proof. A proof
need not be completely ground - some variables may not be restricted in the course of
a particular proof. Unification of terms, with identification of the substitutions that
will make the terms identical, can be achieved in linear (parallel or sequential) time.
Unification is one of the main expenses of a logic programming system, and is a
primary contributor to LIPS rates, the reciprocal of the overhead being effectively what
is measured as Logical Inferences Per Second.

It is therefore a major topic of Part IT of this series of reports. It turns out that
deferring unification is the one of the best ways of dealing with it. Better still is
avoiding it completely by using indexing. In this paper we will continue to use
resolution steps as the basic metric.

Costs

Let us assume that the number of literals is n, that the maximum depth of any term
is d, that the maximum number of copies used of any clause is c. Because of our

assumption that we are using a linearly resolvable system of Horn clauses, we know

CONG I: Transformational Examples - 5 - D. M. W. Powers

Model

Restr ic t ions

Non-deterministic proof

At this point we will consider only a non-deterministic model. We assume that
through some oracle, heuristics, or committed-choice style control, we find a shortest
proof if one exists. This assumption is primarily useful once we leave the reahn of
propositional Horn clauses. The proof is the trace of a non-deterministic execution,
the execution itself is assumed to have found the proof at no cost (by oracle, etc.) and
the cost is therefore the cost of checking it, including unification testing of the
grounding of the clauses used in the proof.

Horn clauses

We furthermore pay particular attention to the special case where we do have only
Horn clauses. This restriction leads to a convenient linear bound on the length of the
shortest proof when used in combination with a restriction to ground forms, and
admits useful properties even when extended to full predicate forms. We note the
possibility of broadening our restriction from Horn clause systems to arbitrary clause
systems with linearly refutable grounded predicate forms. Indeed it is hypothesized
that what we might mare conventionally regard as ‘programs’, as opposed to
‘automated reasoning applications’, do admit such linear grounded forms (cf.
SATCHMO).

Unification

The process of unifying terms is used in the generation of our proof. A proof
need not be completely ground - some variables may not be restricted in the course of
a particular proof. Unification of terms, with identification of the substitutions that
will make the terms identical, can be achieved in linear (parallel or sequential) time.
Unification is one of the main expenses of a logic programming system, and is a
primary contributor to LIPS rates, the reciprocal of the overhead being effectively what
is measured as Logical Inferences Per Second.

It is therefore a major topic of Part 11 of this series of reports. It turns out that
deferring unification is the one of the best ways of dealing with it. Better still is
avoiding it completely by using indexing. In this paper we will continue to use
resolution steps as the basic metric.

Cos t s

Let us assume that the number of literals is n, that the maximum depth of any term
is d, that the maximum number of copies used of any clause is c . Because of our
assumption that we are using a linearly resolvable system of Horn clauses, we know

CONG I: Transformational Examples - 5 - D. M. W. Powers

that it is possible to express a resolution proof using each ground instance of a clause
at most once, and we therefore assume that c is an indicator of the amount of recursive
expansion and that we can ignore 'subroutine' style usage of a predicate - which could
be compiled into lemmata, macros, theories or the like, and are not primary
contributors to the complexity of the proof.

We can now roughly characterize the complexity of the proof as bounded by
c*n*d operations. This reflects the subdivision oflabour between (recursive) copying,
(unit) resolution of (ground) Horn clauses, and instantiation (unification testing) of the
proof. In the following sections we address the cost of these three components in
parallel and/or sequential implementations.

Algorithms

Standard Connection Graph

Links

A set of clauses to be proven inconsistent are linked into a graph by connecting
clauses with a link whenever they have unifiable complementary literals. The links
may at times most conveniently be regarded as connecting clauses. However, they
actually indicate potential resolutions, or equally well potential resolvents. The
substitution giving rise to the most general unifier of the linked literals is associated
with the link.

Under this defmition a link is formally defmed only between distinct clauses,
although loosely used it may, when the context permits, include pseudolinks. In
certain syntactic contexts all forms of links, including, e.g. factor links, may be
intended. When we want be absolutely clear we can refer to these links between
complementary literals of distinct clauses as resolution links.

Pseudolinks

The connections between unifiable literals of opposite sign within a single clause
are termed pseudolinks. These links represent the potential for copies of the clause to

resolve, but are themselves never actually resolved on. They are restricted to

inheritance and can inherit to standard resolution links or to new pseudolinks. The
substitution giving rise to the most general unifier of the linked literals is associated
with the pseudolink.

In this case unification is interpreted as unification in distinct environments. That
is, unifiable after renaming of the variables of one or both clauses, or equivalently,
weakly unifiable. The sense of this is that clauses are internally universally quantified
and the same variable name represents distinct variables when it occurs in distinct
clauses. This defmition of pseudo link arises as we wish to capture the fact that
distinct copies of the clause would have a resolution link between the corresponding
terms.

CONG I: Tran ormational Examples -6- D. M. W. Powers

that it is possible to express a resolution proof using each ground instance of a clause
at most once, and we therefore assume that c is an indicator of the amount of recursive
expansion and that we can ignore ‘subroutine’ style usage of a predicate —— which could
be compiled into lemmata, macros, theories or the like, and are not primary
contributors to the complexity of the proof.

We can now roughly characterize the complexity of the proof as bounded by
c*n*d operations. This reflects the subdivision of labour between (recursive) copying,
(unit) resolution of (ground) Horn clauses, and instantiation (unification testing) of the
proof. In the following sections we address the cost of these three components in
parallel and/or sequential implementations.

Algorithms

Standard Connection Graph

Links

A set of clauses to be proven inconsistent are linked into a graph by connecting
clauses with a link whenever they have unifiable complementary literals. The links
may at times most conveniently be regarded as connecting clauses. However, they
actually indicate potential resolutions, or equally well potential resolvents. The
substitution giving rise to the most general unifier of the linked literals is associated
with the link.

Under this definition a link is formally defined only between distinct clauses,
although loosely used it may, when the context permits, include pseudolinks. In
certain syntactic contexts all forms of links, including, e.g. factor links, may be
intended. When we want be absolutely clear we can refer to these links between
complementary literals of distinct clauses as resolution links.

Pseudolinks

The connections between unifiable literals of opposite sign within a single clause
are termed pseudolinks. These links represent the potential for copies of the clause to
resolve, but are themselves never actually resolved on. They are restricted to
inheritance and can inherit to standard resolution links or to new pseudolinks. The
substitution giving rise to the most general unifier of the linked literals is associated
with the pseudolink.

In this case unification is interpreted as unification in distinct environments. That
is, unifiable after renaming of the variables of one or both clauses, or equivalently,
weakly unifiable. The sense of this is that clauses are internally universally quantified
and the same variable name represents distinct variables when it occurs in distinct
clauses. This definition of pseudo link arises as we wish to capture the fact that
distinct copies of the clause would have a resolution link between the corresponding
terms. '

L CONG I: Transfonnational Examples - 6 - D. M. W. Powers

Note that the strong unifier, representing the potential to unify in the same
environment without renaming, represent the substitution under which the linked terms
make the clause tautologous. Some authors, rather unhelpfully, use the term tautology
link to denote any pseudolink, even those that admit no tautology or have
interpretations (substitutions) which are not tautologous. .

Resolution rule

Upon resolving on a link, the resolvent is the clause containing copies of all
literals other than those linked by the selected link substituted by the substitution
associated with the resolved link. The linked clauses (resp. terms) are termed the
positive and negative parents according to the sign of the respective linked term. Once
it has been resolved upon, a link is deleted, as there is no need ever to repeat this
resolution step. There is a sense in which a link already represents the resolvent and in
an implementation the same structure may actually be used with just the complementing
of a bit to indicate the difference: the resolvent literally replacing the link.

Inheritance rule

Following resolution on a link, the copies of the literals need to be connected in to
the rest of the graph. Rather than trying unification with all possible complements, the
potential of the connection graph comes from the inheritance of new links from those
which have not yet been resolved on (or otherwise deleted) and remain extant as links.
The links represent work remaining to be done.

Upon copying a literal, all links associated with that literal are also copied, but the
type will change to that appropriate to the new link. Thus links (and pseudolinks)
between other terms of the parents will inherit as pseudolinks, and pseudolinks
impinging on one of the parent terms will inherit to links from the parent term to the
copy of the other term.

Factoring rule

Applied to general clauses (unrestricted to Horn), resolution is incomplete without
factoring (or merging). This means that terms of the same sign in the same clause can
be unified and all but one discarded as redundant. In the case of merging, no
information is lost, and there is no advantage in delay. But in the case of multiple
faetorable literals in the clause, a whole family of factors would be generated, along
with all inherited successors. The obvious, but explosive, factoring rule is to insert all
possible factors as soon as factoring is possible - viz. initially, and when a resolvent
inherits unifiable terms of the same sign.

As we defer discussion of factoring to later parts of this series, we can assume this
naive approach to factoring in relation to any discussions without the Horn restriction.

CONG I: Transformational Examples -7- D. M. W. Powers

Note that the strong unifier, representing the potential to unify in the same
environment without renaming, represent the substitution under which the linked terms
make the clause tautologous. Some authors, rather unhelpfully, use the term tautology
link to denote any pseudolink, even those that admit no tautology or have
interpretations (substitutions) which are not tautologous. '

Resolution rule

Upon resolving on a link, the resolvent is the clause containing copies of all
literals other than those linked by the selected link substituted by the substitution
associated with the resolved link. The linked clauses (resp. terms) are termed the
positive and negative parents according to the sign of the respective linked term. Once
it has been resolved upon, a link is deleted, as there is no need ever to repeat this
resolution step. There is a sense in which a link already represents the resolvent and in
an implementation the same structure may actually be used with just the complementing
of a bit to indicate the difference: the resolvent literally replacing the link.

Inheritance mle

Following resolution on a link, the copies of the literals need to be connected in to
the rest of the graph. Rather than trying unification with all possible complements, the
potential of the connection graph comes from the inheritance of new links from those
which have not yet been resolved on (or otherwise deleted) and remain extant as links.
The links represent work remaining to be done.

Upon copying a literal, all links associated with that literal are also copied, but the
type will change to that appropriate to the new link. Thus links (and pseudolinks)
between other terms of the parents will inherit as pseudolinks, and pseudolinks
impinging on one of the parent terms will inherit to links from the parent term to the
copy of the other term.

Factoring rule

Applied to general clauses (unrestricted to Horn), resolution is incomplete without
factoring (or merging). This means that terms of the same sign in the same clause can
be unified and all but one discarded as redundant. In the case of merging, no
information is lost, and there is no advantage in delay. But in the case of multiple
factorable literals in the clause, a whole family of factors would be generated, along
with all inherited successors. The obvious, but explosive, factoring rule is to insert all
possible factors as soon as factoring is possible — viz. initially, and when a resolvent
inherits unifiable terms of the same sign.

As we defer discussion of factoring to later parts of this series, we can assume this
naive approach to factoring in relation to any discussions without the Horn restriction.

CONG I: Transformational Examples - 7 - D. M. W. Powers

Proofs

The clauses in a connection graph are inconsistent if and only if there exists a
sequence of resolutions on links (inheriting and factoting as required) such that the
empty clause (containing no literals) is derived.

Purity deletion

An important pruning of the graph may be achieved by observing that clauses

containing a literal without links cannot contribute to a derivation of the empty clause.
Such a term and the containing clause are said to be pure. Pure clauses and associated
links may thus be deleted.

Tautology deletion

A clause which is true in all interpretations can never be essential to any proof.

Thus tautologous clauses may in principle also be deleted. However, it is possible that
in the connection graph paradigm such a clause is part of a bridge of remaining links

essential to a proof, and the associated links cannot indiscriminately be discarded.

Moreover, tying links together to inherit new links may lead to cyclic behaviour.

Precise conditions have been defmed under which tautology deletion is safe, but in
general it is unnecessary, and tautologies are moreover rare in logic programs. Thus
we define the connection graph without tautology deletion.

Subsumption deletion

A clause which is a special case of another clause is said to be subsumed by it and
may also be deleted. However similar problems arise and similar special conditions
must be adhered to to make use of it. Again we prefer to do without for the present
purposes.

Logic Programming

The execution of straightforward cutless PROLOG programs without library
predicates is straightforward in a connection graph theorem prover. However note that
without explicit control and in the absence of adequate heuristics we must for now

appeal to an oracle to choose an appropriate sequence of link resolutions.

At this point, however, we can already observe some of the advantages of
programming in a control free (Horn) theorem prover. In particular, the macro effect

means that in some sequences of resolutions performed toward the solution of one goal

may actually have produced a lemmas as resolvent which is useful in the solution of

other goals.

This is not pure theory; but emerged in the very fIrst implementation of CONG as

the following example shows. Here we see a very clear advantage of CONG over

PROLOG.

CONG I: Transformational Examples - 8 - D. M. W. Powers

Proofs

The clauses in a connection graph are inconsistent if and only if there exists a
sequence of resolutions on links (inheriting and factoring as required) such that the
empty clause (containing no literals) is derived.

Purity deletion

An important pruning of the graph may be achieved by observing that clauses
containing a literal without links cannot contribute to a derivation of the empty clause.
Such a term and the containing clause are said to be pure. Pure clauses and associated
links may thus be deleted.

Tautology deletion

A clause which is true in all interpretations can never be essential to any proof.
Thus tautologous clauses may in principle also be deleted. However, it is possible that
in the connection graph paradigm such a clause is part of a bridge of remaining links
essential to a proof, and the associated links cannot indiscriminately be discarded.
Moreover, tying links together to inherit new links may lead to cyclic behaviour.

Precise conditions have been defined under which tautology deletion is safe, but in
general it is unnecessary, and tautologies are moreover rare in logic programs. Thus
we define the connection graph without tautology deletion.

Subsumption deletion

A clause which is a special case of another clause is said to be subsumed by it and
may also be deleted. However similar problems arise and similar special conditions
must be adhered to to make use of it. Again we prefer to do without for the present
purposes.

Logic Programming

The execution of straightforward cutless PROLOG programs without library
predicates is straightforward in a connection graph theorem prover. However note that
without explicit control and in the absence of adequate heuristics we must for now
appeal to an oracle to choose an appropriate sequence of link resolutions.

At this point, however, we can already observe some of the advantages o f
programming in a control free (Horn) theorem prover. In particular, the macro effect
means that in some sequences of resolutions performed toward the solution of one goal
may actually have produced a lemmas as resolvent which is useful in the solution of
other goals.

This is not pure theory, but emerged in the very first implementation of CONG as
the following example shows. Here we see a very clear advantage of CONG over
PROLOG.

CONG I: Transformational Examples - 8 - D. M. W. Powers

Example oflemmatization

Note that in the listings irrelvant lines of the trace (including all E, R and F lines of
the PROLOG trace) are removed to give a fairer indication of what is achievable with
cuts and tail recursion optimization and a better basis for comparison, not to mention
keeping it to a reasonable length. Moreover since comparison of the general look of
the proofs, and in particular their shape and relative lengths, is the main purpose of
showing the listings, lines have been truncated to avoid wrapping them.

Figure 1 illustrates how once CONG has expanded the unit clause up to a certain
size, so that in effect it can handle lists of that size in one hit, it need never repeat the
work. For larger lists it just keeps on expanding from where it was up to.

The PROLOG proof procedure traced in figure 2, by contrast, always starts from
scratch for each new goal and clearly redoes a great deal of work even in this small
example<- hence the serrated effect.

> cat append.cong.1
append ([a, b, c, d,e], [f,g, h] , L) ,
append ([1,2, 3,4,5, 6, 7,8 J , M, [1,2,3, 4,5,6,7,8,9,10,11,12]) ,
append (N, [f, g, h] , (1,2,3,4,5, 6, 7,8, a, b, c, d, e, f, g, h]) /?

append([],W,W) .
append([HIX], Y, [HIZ) :- append(X, Y, Z).

> cong append.cong.1

CONG MQU/UKL$Revision: 1.3.1.3 $$State: Exp $

Copyright (C) DMWP,MQU 1983-84,87-89,90 Version$Date: 88/12/15 15:27:17 $

Cong> units, trace, go!

append((H'1],Y'3, [H'1IY'3]).
append([H'l,H'5],Y'3, [H'l,H'5\Y'3]).
append ([H' I, H' 5, H' 9] , Y' 3, [H 'I, H' 5, H' 91 Y' 3J) .
append ([H ' I, H' 5, H' 9, H' 13] , Y' 3, [H' I, H' 5, H' 9, H' 13 1Y, 3]) .
append ([H' I, H' 5, H' 9, H' 13, H' 17] , Y' 3, [H' I, H' 5, H' 9, H' 13, H' 171 Y' 3]) .

• - append ([1,2,3,4, 5, 6, 7, 8] ,M ' 2, [1,2,3,4,5,6,7,8,9,10,11,12]),
append (N' 3, [f, g, h] , [1,2,3,4,5, 6, 7,8, a, b, c, d, e, f, g, h]) ?
append ([H 'I, H' 5, H' 9, H' 13, H' 17, H' 21] , Y' 3, [H' I, H' 5, H' 9, H' 13, H' 17, H' 211 Y' 3]) .
append ([H' I, H' 5,H' 9,H' 13, H' 17,H'21,H'25], Y' 3, [H'l,H' 5,H' 9,H'13,H ' 17,H ' 21,H ' 2SI Y'3]) .

append ([H' I, H' 5, H' 9, H' 13, H' 17, H' 21, H' 25, H' 29] , Y, 3, [H' I, H' 5, H' 9, H' 13, H' 17, H' 21, H' 25, H' 29 1Y
:- append(N'3, [f,g,h], [1,2,3,4, S,6,7,8,a,b,c,d,e, f,g,h])?

append ([H' I, H' 5, H'9, H' 13, H' 17, H' 21, H' 25, H' 29, H' 33] , Y' 3, [H'l, H' 5, H' 9, H' 13, H' 17, H' 21, H' 25, H

append ([H'l, H' 5, H' 9, H'13, H' 17, H' 21, H' 25, H' 29, H' 33, H' 37] , Y' 3, [H' l,H' 5, H' 9, H'13, H' 17, H' 21, H

append ([H' I, H' 5, H' 9, H' 13,.H' 17, H' 21, H' 25, H' 29, H' 33, H' 37, H' 41], Y' 3, [H' I, H' 5, H' 9H' 13, H' 17, H'

append ([H' l,H' 5,H' 9,H'13,H'17,H'21,H'25,H'29,H'33,H' 37,H' 41,H' 44], Y' 3, [H'l,H' 5,H' 9H'13,H'

append ([H' I, H' 5, H' 9, H' 13, H'17, H' 21, H' 25, H' 29, H' 33, H' 37, H' 41, H' 44,H' 47], Y' 3, [H' I, H' 5, H' 9H'

** yes **

L = [a,b,c,d,e,f,g,hJ

M = [9,10,11,12]

N = [l,2,3,4,5,6,7,8,a,b,c,d,e]

Figure 1. Triple append executed under CONG

CONG I: Transformational Examples - 9- D. M. W. Powers

Example of lemmatization

Note that in the listings irrelvant lines of the trace (including all E, R and F lines of
the PROLOG trace) are removed to give a fairer indication of what is achievable with
cuts and tail recri‘rsion optimization and a better basis for comparison, not to mention
keeping it to a reasonable length. Moreover since comparison of the general look of
the proofs, and in particular their shape and relative lengths, is the main purpose of
showing the listings, lines have been truncated to avoid wrapping them.

Figure 1 illustrates how once CONG has expanded the unit clause up to a certain
size, so that in effect it can handle lists of that size in one hit, it need never repeat the
work. For larger lists it just keeps on expanding from where it was up to.

The PROLOG proof procedure traced in figure 2, by contrast, always starts from
scratch for each new goal and clearly redoes a great deal of Work even in this small
example<— hence the serrated effect.

> cat append . cong .1
append([a lb rC /d re] r [f l gph] ,L) ,

append([1,2,3,4‚5,6,7,8],M‚[1,2,3‚4‚5‚6,7,8‚9‚10‚11,12]),
append(Nl [f ig /h] ! [l l z l3 I4 I5 l6 I7 I8 Ia lb l c ld l e l f l g lh]) / ?

append([] ,W,W) .
append([H |x] , Y, [l l) 1‘ append(Xl Y, Z)»

> cong append . cong .1
CONG MQU/UKLsRevision: 1.3.1.3 $$S ta t e : Exp $
Copyright (C) DMWP,MQU l983 -84 ,87—89 ,90 VersionSDate: 88/12/15 15:27:17 $
Cong> units, t race , go !

append([H '1] ,Y '3 , [H ' l lY '3]) .
append([H'1,H'5],Y'3, [H'1,H'51Y'3]).
append([H'1‚H'5,H'9]‚Y'3,[H'1‚H'S‚H'9IY'3]).
append([H'l‚H'5‚H'9‚H'l3],Y'3,[H'1,H'5,H'9‚H'l3IY'3]).
append([H'1,H'5,H'9,H'l3,H'17],Y'3,[H'l,H'5,H'9,H'13,H'l7IY'3]).

: - append([l‚2,3‚4,5‚6‚7‚8],M'2,[l‚2‚3‚4,5‚6‚7‚8,9‚10‚11,12]),
append(N '3 , [f , g ,h] , [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 , a ,b , c ,d , e , f , g ,h]) ?
append([H'1,H'5‚H'9,H'l3,H'17,H'21],Y'3,[H'1,H'5‚H'9,H'13,H'17,H'21IY'3]).
append([H'1‚H'5‚H'9‚H'l3‚H'l7,H'21‚H'25]‚Y'3,[H'1,H'5,H'9,H'13,H'17,H'21‚H'25|Y'3]).

append([H'1‚H'5‚H'9‚H'13,H'17‚H'21,H'25,H'29],Y'3,[H'1,H'5,H'9‚H'13‚H'l7‚H'21‚H'25,H'29IY
: - append(N'3‚[f,g,h],[l,2,3,4,5,6,7,8,a,b,c‚d,e,f,g‚h])?

append([H'l‚H'5,H'9,H'13,H'17,H'21,H'25,H'29,H'33]‚Y'3,[H'1,H'5,H'9,H'13,H'17‚H'21,H'25,H

append([H'1,H'5,H'9,H‘13,H'17,H'21‚H'25,H'29‚H'33,H'37],Y'3,[H'1‚H'5,H'9,H'l3‚H'17,H'21,H

append([H'l‚H'5,H'9‚H'l3;H'17,H'21‚H'25‚H'29,H'33‚H'37‚H'41],Y'3,[H'1‚H'5,H'9H'13‚H'17,H'

append([H'1,H'5‚H'9‚H'13,H'17,H'21‚H'25‚H'29,H'33,H'37‚H'41‚H'44]‚Y'3,[H'1,H'5,H'9H'13,H'

append([H'1‚H'5‚H'9,H'13‚H‘17‚H'21‚H'25,H'29,H'33,H'37,H'41,H'44,H'47]‚Y'3,[H'1,H'5‚H'9H'

** yes **

[a,b,c,d‚e,f,g‚h]
[9 ,10 ,11 ,12]
[l l z l3 /415 I6 I7 I8 Ia lb l c ld l e]

zZ
H

H
H

H

Figure 1. Triple append executed under CONG

CONG I: Transformational Examples - 9 - D. M. W. Powers

> cat append.prolog.l

append([],W,W) .

append([HIX], Y, [HIZ]) :- append(X, Y, Z).

trace append!

?- append ([a,b,c,d,e], [f,g,hJ ,L),

append([l,2,3,4,5,6,7,8],M, [1,2,3,4,5,6,7,8,9,10,11,12]),

append(N, [f,g,h], [1,2,3,4,5,6,7,8,a,b,c,d,e,f,g,hJ).

> prolog append.prolog.l
UNSW PROLOG MQV4.3 (C) 1983,5,7
CI>append([a, b, c, d, e], [f, g, hj, [a, ., 5J)
CI/>append([b, c, d, e], [f, g, h], Cb, .. 9])
C I1 I>append(Cc, d, e], [f, g, h], Cc, . ,_13])
C/III>append([d, e], [f, g, h], Cd, .. 17])
CIIIII>append([e], [f, g, h], re, .. if])
CIIIIII>append([J, [f, g, h], [f, g,-h])
CI>append([l, 2,3,4,5,6,7,8], _1, [1,2,3,4,5,6,7,8,9,10,11,12])
CII>append([2, 3, 4, 5, 6, 7, 8], 1, [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
Cl I l>append([3, 4, 5, 6, 7, 8], 1-; [3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
CIIII>append([4, 5, 6, 7, 8], 1-; [4, 5, 6, 7, 8, 9, 10, 11, 12])
C I I I I I>append ([5, 6, 7, 8], 1-; [5, 6, 7, 8, 9, 10, 11, 12])
CIIIIII>append([6, 7, 8], 1-; [6, 7, 8, 9, 10, 11, 12])
CIIIIIII>append([7, 8J, 1-; (7, 8, 9, la, 11, 12J)
CIIIIIIII>append([8J, 1-; (8, 9, 10, 11, 12])
CIIIIIIIII>append«(], [9, la, 11, 12], [9,10,11,12])
CI>append([l, .. 57], [f, g, h], [1,2,3,4,5,6,7,8, a, b, c, d, e, f, g, h])
CII>append«(2, .-:- 61], [f, g, h], [2,3,4,5, 6, 7, 8, a, b, c, d, e, f, g, hJ)
Cl I l>append([3, .-:- 65], (f, g, hJ, (3, 4, 5, 6, 7, 8, a, b, c, d, e, f, g, h])
CIIII>append«(4, .-:- 69], (f, g, h], (4, 5, 6, 7, 8, a, b, c, d, e, f, g, h])
CIIII I>append([5, .-:- 73], [f, g, h], (5, 6, 7, 8, a, b, c, d, e, f, g, hJ)
CIIIIII>append([6, .-:- 77], [f, g, h], [6, 7, 8, a, b, c, d, e, f, g, hJ)
CIIIIIII>append([7, .-:- 81], [f, g, h], [7, 8, a, b, c, d, e, f, g, h])
CIIIIIIII>append([8, .-:- 85], [f, g, h], (8, a, b, c, d, e, i, g, h])
CIIIIIIIII>append«(a, .-:- 89J, [f, g, hJ, [a, b, c, d, e, f, g, h])
CIIIIIIIIII>append([b, .-:- 93], [f, g, h], [b, c, d, e, f, g, h])
CIIIIIIIIIII>append([c, .-:-97], [f, g, h], Cc, d, e, f, g, h])
CIIIIIIIIIIII>append([d, .-:-101J, [f, g, h], Cd, e, f, g, h])
Clltllllllllll>append([e, .-:-105], [f, g, h], [e, f, g, h])
CIIIIIIIIIIIIII>append([], [t, g, h], [f, g, h])
N = [I, 2, 3, 4, 5, 6, 7, 8, a, b, c, d, e]
M = [9, 10, 11, 12]
L = [a, b, c, d, e, f, g, h]

Figure 2. Triple append executed under PROLOG.

Extended Connection Graph

Links and Pseudolinks

The extended connection graph is a graph with the same clauses, links and
pseudolinks as the standard form. It may however have additional types of links, or
additional subclassification of the standard clauses, terms and links. In this section we
introduce the new types of links and the concept of filters which governs the use of
subclassifications of links.

The links we introduce now are analogous to the original resolution links and
pseudo links, but connect lit~rals of the same sign rather than literals of opposite sign.

CONG I: Transformational Examples - 10- D. M. W. Powers

> cat append .p ro log .1
append([]‚W‚W)- ’
append([HlX], Y, [HIZ]) : — append(X, Y, Z).
trace append!
? - append([a,b,c,d,e],[f,g,h],L),

append([1,2,3,4,5,6,7,8],M,[l,2,3,4,5,6,7,8,9,10,11,12]),
append(N,[f,g,h],[1,2,3,4,5,6,7,B,a,b,c,d,e,f,g,h]).

> prolog append .p ro log .1
UNSW PROLOG MQV4.3 (C) 1983,5,7
C|>append([a l b l CI d ! e] ; [fl g; h] ! [a t ~~_5])
Cl l>append([b , c, d, e], [f, g, h], [b, .._9])
Cl | |>append([c , d, e], [f, g, h], [c, .._}3])
C I I I I > a P P e n d ([d ‚ 9] ! [£] 9, h] ! [dr - -_17 l)
Cl l l l l>append([e] ‚ [f, g, h] , [e, .._21])
Cl l l l l l>append([] ‚ [fr g, h] ; [f, g, h])

C|>append([l , 2, 3, 4, 5, 6, 7, 8], _}, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
C| |>append([2 , 3, 4, 5, 6, 7, 8], _1, [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
Cl] |>append([3 , 4, 5, 6, 7, 8], _1, [3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
C| |H>append([4 , 5, 6, 7, 8], _1, [4, 5, 6, 7, 8, 9, 10, 11, 12])
C| | | | | >append([5 , 6 , 7 , 8 1 , _1, [5‚ 6 , 7 , 8 , 9 , 1 0 , 1 1 , 121)

Cll l l l l>append([6‚ 7, 8], __1, [6, 7, 8, 9, 10, 11, 12])
C| | | l | | | >append([7 ‚ 8], _1, [7‚ 8, 9, 10, 11, 121)
Cl l l l l l l l>append([8] , _1, [8, 9, 10, 11, 12])
Cl l l l l l l l l>append([] , [9, 1 0 , 1 1 , 1 2 1 , [9, 1 0 , 1 1 , 121)

C|>append([1 , .._57], [f, g , h], [1, 2 , 3, 4, S, 6, 7, 8 , a, b , C, d, e , f , g, h])
C| |>append([2 , .._61], [f, g, h], [2, 3, 4, 5, 6, 7 , 8, a , b, c, d, e , f , g, h])
C| l |>append([3 , .._65], [f, g, h], [3, 4, 5, 6, 7, 8, a, b, c, d, e, f, g, h])
Cl l l l>append([4 , .._69], [f, g, h], [4, 5, 6 , 7, 8 , a, b , C, d, e, f , g, h])
C] i>append([5 , .._73], [f, g , h], [5, 6, 7, 8 , a , b , c , d, e , f , g , h])

| >append([6 , - -__77 l l [fl 9! h] : [6’ 7r 8 ’ a ! b l c I d I e l f l 9 : h])

|>append([7, .._81], [f, g, h], [7, 8, a, b , c, d, e , f, g , h])
l>append([8‚ „ _85] / [£] 9, h] ! [8] a l b l CI d : e l f r 9, h])

l>append([a , .._89], [f, g , h], [a, b, c, d, e, f, g , h])
l>append< lb r "__93] I [f l 9/ h] ! [bl C! d ! e r f I 91 h])

| >append([c , --_97]l [f l 9/ h] ! [C I d! e r f l g l h])

l l>append([d , .._101], [f, g, h], [d, e , f , g, h])
| l l>append([e , .._105], [f, g, h], [e, f, g, h])
l l l l > a p p e n d ([] ‚ [f l 9 / h] ! [f l g l h])

3 1 4r 5 ! 6r 7 1 8 , a r b l CI d ! e]

[9, 10, ll, 12]

[3, b l CI d l e l f r 9: h]

l
l
l
]

F
Z

Z
O

O
O

O
O

O
O

O
O

Figure 2. Triple append executed under PROLOG.

Extended Connection Graph

Links and Pseudolinks

The extended connection graph is a graph with the same clauses, links and
pseudolinks as the standard form. It may however have additional types of links, or
additional subclassification of the standard clauses, terms and links. In this section we
introduce the new types of links and the concept of filters which governs the use of
subclassifications of links.

The links we introduce now are analogous to the original resolution links and
pseudo links, but connect literals of the same sign rather than literals of opposite sign.

CONG I: Transformational Examples - 10 - D. M. W. Powers

Factor-links

Two unifiable literals in the same clause may be linked by afactor link which has a
substitution associated with it. In this case unifiability without renaming is required.

The substitution must produce the most general unifier of the terms within the
environment of a single clause as it defines the condition under which the terms are
identical and can be merged. Only identical terms may be merged. Unifiable terms
indicate that under the corresponding substitution the clause has a simpler special case,
called afactor.

Factor links are used so that factor possibilities can be quickly identified, but also
so that factoring can be delayed until one of the factor-linked terms is resolved on
when the factorizing requirement can be instantly detected. They can also participate in
restrictions (see below) - e.g. that terms without factor-links should be resolved before

tenns with factor-links.

Factoring is probably not necessary in logic programming applications. Factoring
must be handled very carefully if the purity and tautology deletion rules are both being
used. It is safe, but explosive, if performed as soon as the possibility exists.

Subsumption links

Special links can be kept between unifiable literals of the same sign from different
clauses, which will help when subsumption tests are performed, and will inherit as
factor links if both terms end up in the same descendant clause. These we call
subsumption links for want of a better name. As we have mentioned, subsumption is
dangerous in the connection graph paradigm. Corresponding links may have been
used for a term from one clause but not the other - taking the union can cause looping
and taking the intersection can cause incompleteness (losing a potential proof)
[Ei86,88].

Orderings & Restrictions

Within the scope of the extended connection graph procedure there is the
possibility of imposing additional conditions to ttlter out the less helpful choices of
next link to resolve (or factor) on. The procedure has a property called confluence
which says that whichever non-deterministic path through proof-space you take there
is always a common successor graph. Soundness says the procedure is valid,
completeness says there is a way of finding a proof if there is one, bilt there is nothing
said about getting you there.

Strong completeness adds the condition that the procedure guarantees to get you

there. Even strong completeness however may not even be strong enough. Ideally we
want our oracle or heuristics to tell us the fastest way to get our proof. Strong
completeness is discussed in detail in [Eisi88] and in Part ill of this series.

CONG I: Transformational Examples - 11 - D. M. W. Powers

Factor-links

Two unifiable literals in the same clause may be linked by afactor link which has a
substitution associated with it. In this case unifiability without renaming is required.
The substitution must produce the most general unifier of the terms within the
environment of a single clause as it defines the condition under which the terms are
identical and can be merged. Only identical terms may be merged. Unifiable terms
indicate that under the corresponding substitution the clause has a simpler special case,
called a factor.

Factor links are used so that factor possibilities can be quickly identified, but also
so that factoring can be delayed until one of the factor-linked terms is resolved on
when the factorizing requirement can be instantly detected. They can also participate in
restrictions (see below) — e.g. that terms without factor-links should be resolved before
terms with factor-links.

Factoring is probably not necessary in logic programming applications. Factoring
must be handled very carefully if the purity and tautology deletion rules are both being
used. It is safe, but explosive, if performed as soon as the possibility exists.

Subsumption links

Special links can be kept between unifiable literals of the same sign from different
clauses, which will help when subsumption tests are performed, and will inherit as
factor links if both terms end up in the same descendant clause. These we call
subsumption links for want of a better name. As we have mentioned, subsumption is
dangerous in the connection graph paradigm. Corresponding links may have been
used for a term from one clause but not the other — taking the union can cause looping
and taking the intersection can cause incompleteness (losing a potential proof)
[Ei86,88].

Orderings & Restrictions

Within the scope of the extended connection graph procedure there is the
possibility of imposing additional conditions to filter out the less helpful choices of
next link to resolve (or factor) on. The procedure has a property called confluence
which says that whichever non-deterministic path through proof-s pace you take there
is always a common successor graph. Soundness says the procedure is valid,
completeness says there is a way of finding a proof if there is one, bt‘1t there is nothing
said about getting you there.

Strong completeness adds the condition that the procedure guarantees to get you
there. Even strong completeness however may not even be strong enough. Ideally we
want our oracle or heuristics to tell us the fastest way to get our proof. Strong
completeness is discussed in detail in [Eisi88] and in Part HI of this series.

CONG I: Transformational Examples - 11 - D. M. W. Powers

For now we note that there are two types of fIlters which can be distinguished.
Those which say never are said to be restrictions, and those which say first are called
orderings. The first are quite dangerous - they do not preserve confluence and may
actually exclude the part of the search space which contains the proof, affecting
completeness. The second are more advisory and preserve the properties of
soundness, completeness and confluence. Whether they guarantee termination,
fmding the proof, is another question.

Ordering restrictions aim to force towards the proof. An ordering which
systematically avoids any possibility of the proof escaping is said to be exhaustive. An
exhaustive ordering leads automatically to strong completeness. Unfortunately none
are known for either the standard or the extended connection graph. There may be

none!

An example of a restriction is the unit restriction. Unit clauses are clauses with
exactly one literal. The unit restriction says all resolution steps undertaken must
involve.

An example of an ordering strategy is predicate elimination: you resolve only on
terms with a particular functor, resolving away occurence by occurence, until none are
left. That it can't help is obvious if you consider that any program or problem could be

rewritten with a single unary predicate p (..) wrapped around the original literals. In
this case the ordering gives no help.

Compartmentalized Connection Graph

We turn now to a modification of the connection graph algorithm which reverses
some of the basic principles and changes some of its properties dramatically.

Pseudolinked clauses

Recall that in the standard and extended defmitions we are permitted only to
resolve on links and pseudolinks may only be inherited from. Here we change this

around and specify that in the case of clauses with pseudolinks the only permitted
operation is resolution on the pseudolink and links may only be inherited from.

Self-resolving clauses with pseudolinks are restricted to self-resolution on these
pseudolinks, and links between clauses containing unresolved pseudolinks are
declared illegal. This ensures that pseudolinks cannot inherit and allows the distinction
between two types of operation, resolution on normal links and resolution on
pseudolinks, to be extended to a differentiation of distinct phases of the algorithm - a
static phase in which legal normal links are resolved, and a dynamic phase in which
legal pseudolinks are resolve,d.

CONG I: Transformational Examples - 12- D. M. W. Powers

For now we note that there are two types of filters which can be distinguished.
Those which say never are said to be restrictions, and those which say first are called
orderings. The first are quite dangerous — they do not preserve confluence and may
actually exclude the part of the search space which contains the proof, affecting
completeness. The second are more advisory and preserve the properties of
soundness, completeness and confluence. Whether they guarantee termination,
finding the proof, is another question.

Ordering restrictions aim to force towards the proof. An ordering which
systematically avoids any possibility of the proof escaping is said to be exhaustive. An
exhaustive ordering leads automatically to strong completeness. Unfortunately none
are known for either the standard or the extended connection graph. There may be
none!

An example of a restriction is the unit restriction. Unit clauses are clauses with
exactly one literal. The unit restriction says all resolution steps undertaken must
involve.

An example of an ordering strategy is predicate elimination: you resolve only on
terms with a particular functor, resolving away occurence by occurence, until none are
left. That it can’t help is obvious if you consider that any program or problem could be
rewritten with a single unary predicate p (. .) wrapped around the original literals. In
this case the ordering gives no help.

Compartmentalized Connection Graph

We turn now to a modification of the connection graph algorithm which reverses
some of the basic principles and changes some of its properties dramatically.

Pseudolinked clauses

Recall that in the standard and extended definitions we are permitted only to
resolve on links and pseudolinks may only be inherited from. Here we change this
around and specify that in the case of clauses with pseudolinks the only permitted
operation is resolution on the pseudolink and links may only be inherited from.

Self-resolving clauses with pseudolinks are restricted to self-resolution on these
pseudolinks, and links between clauses containing unresolved pseudolinks are
declared illegal. This ensures that pseudolinks cannot inherit and allows the distinction
between two types of operation, resolution on normal links and resolution on
pseudolinks, to be extended to a differentiation of distinct phases of the algorithm - a
static phase in which legal normal links are resolved, and a dynamic phase in which
legal pseudolinks are resolved.

CONG I: Transformational Examples - 12 - D. M. W. Powers

Static purity

A clause is of no further use in the current static phase once all legal links from a
single term have been deleted. The clause is then said to be statically pure.

Corridors -links connecting compartments

Clauses with and without pseudolinks are said to be respectively in the dynamic
and static compartments. The links between clauses in different compartments are

illegal and are said to defme a corridor between the two compartments.

Clearly, if the corridor.is empty, the algorithm will terminate at the end of the

current resp. next static phase, and there is no need to continue work in any current
dynamic phase. This is the way termination is achieved in satisfiable clause sets,
although it cannot be guaranteed in general, but is usual for logic programs.

Self-resolution

As was implicit in our definition of pseudolink originally, a self-resolvent is the
result of a resolution of two distinct copies of the clause with variables renamed apart.
A consequence of this is that self-resolution seems to introduce additional variables. In
fact severy resolvent always has a brand new (but possibly empty) set of variables.
However we tend to reuse the names. In the case of self-resolution we may be forced
to think up new ones! In the CONG and PROLOG examples it will be noted that the
systems always distinguish variables uniquely with numbers.

Positive-to-parent inheritance

The definition of self-resolution allowed in the extended connection graph has the
property that the pseudolink inherits to only one normal link after its resolution. There
is a sense in which it is only half there to inherit because it is currently selected for
resolution and deletion, and if we allowed both descendants of the parent literals in the
resolvent to inherit links to the parent literals, resolving on these links would produce
identical clauses (mutually subsumable with links to same literals).

We call the original recursive clause the order 1 form, the first resolvent is the
order 2 form. Resolving on either of these normal links inherited from the pseudolink
would produce an order 3 form, while resolving on the pseudolink inherited from the
original pseudolink would produce an order 4 form. The order is in fact the count of
the number of copies of other literals of the original clause whiCh are found in a
descendant in the absence of factoring.

In fact, we have defined self-resolution in terms of copies. [Eisi88,p128] shows
that the self-resolution operation can be added to the connection graph and is then
equivalent to making a copy and inheriting links, performing a resolution on one of the

two descendants of the pseudolink, and then subsuming away the copy (although it
could equally well have been the original). The arbitrary choice of which descendant
to resolve on (or equally which copy to resolve away) affects whether the pseudolink

CONG/:TraniformationaIExampks - 13 - D. M. W. Powers

Static purity

A clause is of no further use in the current static phase once all legal links from a
single term have been deleted. The clause is then said to be statically pure.

Corridors -— links connecting compartments

Clauses with and without pseudolinks are said to be respectively in the dynamic
and static compartments. The links between clauses in different compartments are
illegal and are said to define a conidor between the two compartments.

Clearly, if the corridor. is empty, the algorithm will terminate at the end of the
current resp. next static phase, and there is no need to continue work in any current
dynamic phase. This is the way termination is achieved in satisfiable clause sets,
although it cannot be guaranteed in general, but is usual for logic programs.

Self-resolution

As was implicit in our definition of pseudolink originally, a self-resolvent is the
result of a resolution of two distinct copies of the clause with variables renamed apart.
A consequence of this is that self-resolution seems to introduce additional variables. In
fact severy resolvent always has a brand new (but possibly empty) set of variables.
However we tend to reuse the names. In the case of self-resolution we may be forced
to think up new ones! In the CONG and PROLOG examples it will be noted that the
systems always distinguish variables uniquely with numbers.

Positive-to—parent inheritance

The definition of self-resolution allowed in the extended connection graph has the
property that the pseudolink inherits to only one normal link after its resolution. There
is a sense in which it is only half there to inherit because it is currently selected for
resolution and deletion, and if we allowed both descendants of the parent literals in the
resolvent to inherit links to the parent literals, resolving on these links would produce
identical clauses (mutually subsumable with links to same literals).

We call the original recursive clause the order 1 form, the first resolvent is the
order 2 form. Resolving on either of these normal links inherited from the pseudoa
would produce an order 3 form, while resolving on the pseudolink inherited from the
original pseudolink would produce an order 4 form. The order is in fact the count of
the number of copies of other literals of the original clause which are found in a
descendant in the absence of factoring.

In fact, we have defined self-resolution in terms of copies. [Eisi88,p128] shows
that the self-resolution operation can be added to the connection graph and is then
equivalent to making a copy and inheriting links, performing a resolution on one of the
two descendants of the pseudolink, and then subsuming away the copy (although it
could equally well have been the original). The arbitrary choice of which descendant
to resolve on (or equally which copy to resolve away) affects whether the pseudolink

CONG I: Transformational Examples - 13 — D. M. W. Powers

inherits from the positive term of the resolvent to the negative term of the original
parent, or vice-versa.

Our positive-to-parent inheritance rule arbitrarily disambiguates this in a consistent
fashion by requiring that the link to inherit goes from the positive term of the resolvent
to the negative term of the parent. This has, in a sense, the side effect of biasing the
links in the corridor toward goal direction.

Interestingly [Eisi88] only introduces self-resolution to simplify proofs of formal
properties, and elsewhere [Eisi89] shows that it is an unnecessary operation.

Delayed composition

For various reasons pertinent to both efficiency and strong completeness, we note
that the composing of new substitutions need not be performed immediately. The link
may simply be inherited and retain information about the substitutions which compose
to give the associated substitution.

In the case of links which may not actually inherit with a valid substitution this can
meanfalse links are present in the graph. False links may delay recognition of purity

t

of a clause. On the other hand, false pseudolinks may accelerate termination of the
current static phase and thus tighten the ordering conditions relating to pseudolinks.

In this context the orderings are regarded as more important than purity, which is
in any case largely superceeded by the concept of static purity.

We specify that composition for links is done only in the static phase, and
possibly lazily (that is a false link may actually be resolved on), and that composition
for pseudolinks is done only in the dynamic phase, and always eagerly (that is a false

pseudolink may never actually be resolved on).

Example ofDoubling

We again use append as our example to show the speed at which append can now
get up to big lists - the number of resolutions being logarithmic in the length of the list.

(The number of lines and the general flavour is again more important than the details
and lines have thus again been truncated for clarity.)

CONG I: Transformational Examples - 14- D. M. W. Powers

inherits from the positive term of the resolvent to the negative term of the original
parent, or vice-versa.

Our positive-to-parent inheritance rule arbitrarily disambiguates this in a consistent
fashion by requiring that the link to inherit goes from the positive term of the resolvent
to the negative term of the parent. This has, in a sense, the side effect of biasing the
links in the corridor toward goal direction.

Interestingly [Eisi88] only introduces self-resolution to simplify proofs of formal
properties, and elsewhere [Eisi89] shows that it is an unnecessary operation.

Delayed composition

For various reasons pertinent to both efficiency and strong completeness, we note
that the composing of new substitutions need not be performed immediately. The link
may simply be inherited and retain information about the substitutions which compose
to give the associated substitution.

In the case of links which may not actually inherit with a valid substitution this can
mean false links are present in the graph. False links may delay recognition of purity
of a clause. On the other hand, false pseudolinks may accelerate termination of the
current static phase and thus tighten the ordering conditions relating to pseudolinks.

In this context the orderings are regarded as more important than purity, which is
in any case largely superceeded by the concept of static purity.

We specify that composition for links is done only in the static phase, and
possibly lazily (that is a false link may actually be resolved on), and that composition
for pseudolinks is done only in the dynamic phase, and always eagerly (that is a false
pseudolink may never actually be resolved on).

Example of Doubling

We again use append as our example to show the speed at which append can now
get up to big lists — the number of resolutions being logarithmic in the length of the list.
(The number of lines and the general flavour is again more important than the details
and lines have thus again been truncated for clarity.)

CONG l: Transformational Examples - 14 — D. M. W. Powers

>eat append

append([],W,W) .

append([HIX], Y, [HIZ]) :- append(X, Y, Z).

append ([a,b, e, d, e, f,g, h] , [i, j, k, 1], L) I?

>eong append.eong.2

CONG MQU/UKL$Revision: 1.3.1.3 $$State: Exp $

Copyright (C) DMWP,MQU 1983-84,87-89,90 Version$Date: 88/12/15 15:27:17 $

Cong> pseudores, hyper, minterm, hyperfae, unit, trace, go!

:- append ([a,b,c,d,e, f,g,h], [i, j,k,l] ,L'l) I?

append ([H' 11 X' 2] , Y' 3, [H' 11 z' 4]) : ­
append(X'2,Y'3,Z'4) .

append ([] , W' 1, W' 1) .
append ([H ' 1, H' 5 IX' 6] , Y, 3, [H' 1, H' 5 1Z' 8]) : ­

append(X'6,Y'3,Z'8).
:- append([b,c,d,e,f,g,hl, [i,j,k,1],Z'5)?

append ([H'1,H'5,H' 9,H'13IX'14], Y'3, [H'1,H'5,H'9,H'13! Z'16]): ­
append(X'14,Y'3,Z'16) .

: - append (Cd, e, f, g, hI, [i, j, k, 1] , Z' 13) ?
:- append ([e,d,e, f,g,h], [i, j,k,l] ,Z'9)?

append ([H' 1, H' 5, H' 9, H' 13,H' 17 ,H'21, H' 25, H'291 X' 30] , Y'3, [H'l, H' 5,H' 9, H' 13,H'17, H'21, H'25, H
append(X'30,Y'3,Z'32) .

append([H'l,H'5,H'9,H'13,H'17,H'21,H'25,H'29,H'33,H'37,H'41,H'45,H'49,H'53,H'57,H'61IX'62
append(X'62,Y'3,Z'64) .

:- append([], [i,j,k,1],Z'33)?
** yes **
L = [a,b,c,d,e,f,g,h,i,j,k,l]

Figure 3. Self-resolving append executed in CONG.

Example ofExplication

The big advantage of compartmentatilzation over any other resolution theorem
proving or logic programming effect is the doubling effect realizable on explicitly
recursive clauses as just shown. Later we show ho~ multiply recursively defined
PROLOG predicates can be reduced to a canonical form to reduce the amount of explicit
recursion. The canonical form has only a single singly recursive clause and doubling
produces only one form of a given size.

But multiply recursively defmed predicates also hide implicit recursion, where one
clause can call the other and vice versa (in PROLOG terms). Thus not only do we have
a family of forms generated from each one, but we can have an exponential number of
such families. Even once the pseudolinks have been resolved on, the clauses are in
general cross linked, and resolution on anyone of those links inherits the others as a
pseudolink.

We illustrate with a set of Horn clauses which is beyond the power of PROLOG

and which has this property.

CONG I: Transformational Examples -15 - D. M. W. Powers

>ca t append
append([] ,W,W) .
append([HlX] , Y , [H IZ]) :— append(x‚ Y, Z) .
append([a lb l c ld l e l f l g lh] I [i l j l k l l] lL) /?

>cong append.cong.2
CONG MQU/UKLSRevision: 1.3.1.3 $$State: Exp $
Copyright (C) DMWP‚MQU 1983—84,87—89‚90 V9rsion$Datez 88/12/15 15:27:17 $
Cong> pseudores, hyper, minte rm, hyperfac , un i t , trace, go!
:— append([a ,b , c ,d , e , f , g ,h } , [i , j , k , l] ,L '1) /?

append([H'1 lX '2] ,Y '3 , [H' l lZ '4]) : -
append(X'2‚Y'3‚Z'4).

append([]‚W'1,W'1).
append([H'1‚H'5lx’6],Y'3,[H'1,H'5|Z'8]):—

append(X'6,Y'3‚Z'8) .
: - append([b,c‚d,e‚f‚g,h]‚[i,j,k‚l]‚Z'5)?

append([H'1 ,H'5 ,H'9 ,H'13IX'14] ,Y '3 , [H'1 ,H'5 ,H'9 ,H‘13 lZ '16]) : -
append(X'14 ,Y '3 ,Z '16) .

: - append([d,e‚f‚g,hl,[i,j,k‚l],Z'l3)?
:— append([c ,d , e , f , g ,h] , [i , j , k , 1] ,Z '9)?

append([H'1‚H'5‚H'9‚H'13,H'17,H'21‚H'25‚H'29|X'30],Y'3‚[H'1‚H'5‚H'9,H'13‚H'17,H'21‚H'25,H
append(X'30,Y'3‚Z'32).

append([H'1,H'5,H'9,H'l3,H'17‚H'21‚H'25‚H'29‚H'33‚H'37,H'41,H'45‚H'49‚H'53,H'57‚H'6l|X'62
append(X'62 ,¥ '3 ,Z '64) .

: - append([] , [i , j , k , l] ,Z '33)?
** ye s **

L = [a lb l c ld l e l f l g lh l i l j l k l l]

Figure 3. Self-resolving append executed in CONG.

Example of Explication

The big advantage of compartmentatilzation over any other resolution theorem
proving or logic programming effect is the doubling effect realizable on explicitly
recursive clauses as just shown. Later we show how multiply recursively defined
PROLOG predicates can be reduced to a canonical form to reduce the amount of explicit
recursion. The canonical form has only a single singly recursive clause and doubling
produces only one form of a given size.

But multiply recursively defined predicates also hide implicit recursion, where one
clause can call the other and vice versa (in PROLOG terms). Thus not only do we have
a family of forms generated from each one, but we can have an exponential number of
such families. Even once the pseudolinks have been resolved on, the clauses are in
general cross linked, and resolution on any one of those links inherits the others as a
pseudolink.

We illustrate with a set of Horn clauses which is beyond the power of PROLOG
and which has this property.

CONG I: Transformational Examples - 15 - D. M. W. Powers

q(g(f(g(f(g(f(a»»») .

q (X) : - q (f (X)) •

q(Y) :- q(g(Y»).

:- q(a).

Note that if the positive and negative terms were interchanged. so that the query
was complex and the unit clause simple. it would run under PROLOG. But as it stands
PROLOG will only search for unit clauses of the form q (f (f (. . f (a) . .))) • which
no g functors.

Resolving on· the pseudolinks produces the fust of a family of recursive clauses
containing exclusively one functor or the other. But resolving on a link between the
two recursive clauses produce the zero form of one of two families with alternating
functors. Confluence and completeness guarantees that CONG can succeed in finding
the proof in this way. But the explosion in the number of families is exponential.

We noted that the problem was the implicit recursion which was not already
expressed by pseudolinks. Such recursion can also occur in clauses which are not
directly recursive. but indirectly or implicitly. If we make a slight modification to the
above algorithm we will see such an example.

q(g(f(g(f(g(f(a»»») .
q (X) : - p (f (X)) •
p (Y) : - q (g (Y)) •
: - q (a) •

We would like to make this recursion explicit so that we may deal with it
efficiently. Careful ordering of our choice of links in the compartmentalized
connection graph can explicate such recursion.

Consider what happens if we use straight forward goal directed search as PROLOG

does. We generate a sequence of goals: p (f (a) . q (g (f (a)) •

p (f (g (f (a))) . •. This will eventually fmd the unit clause in this case. If we
used unit resolution in a data driven way we would produce a similar but reducing set
of positive unit clauses. In both cases the process is linear in the size of the complex
term. If we could explicate the recursion and then use doubling it could be done in a
logarithmic number of steps.

We can achieve explication very simply in the static phase of the algorithm: we
introduce a rule. technically an ordering strategy. which prohibits resolving on a link
before it parent link (that is the link it was inherited from) is resolved upon. This stops
the above unit resolution series after the first step. The generated unit clause has a link

only because it was inherited from somewhere - one of the cross links. This forces

resolving on the parent of the new link fust. on a cross link. and forces generation of
an explicitly recursive clause containing a pseudolink.

CONG I: Transformational Examples - 16- D. M. W. Powers

Q(g(f (g (f (g (f (a))))))) .
q(X) : - q (f (X)) .
cm!) =- q(q(Y)).
=- q (a) .

Note that if the positive and negative terms were interchanged, so that the query
was complex and the unit clause simple, it would run under PROLOG. But as it stands
PROLOG will only search forunit clauses ofthe form q (f (f (. . f (a) . .))) , which
no g functors.

Resolving on- the pseudolinks produces the first of a family of recursive clauses
containing exclusively one functor or the other. But resolving on a link between the
two recursive clauses produce the zer-o form of one of two families with alternating
functors. Confluence and completeness guarantees that CONG can succeed in finding
the proof in this way. But the explosion in the number of families is exponential.

We noted that the problem was the implicit recursion which was not already
expressed by pseudolinks. Such recursion can also occur in clauses which are not
directly recursive, but indirectly or implicitly. If we make a slight modification to the
above algorithm we will see such an example.

q(g(f(g(f(g(f(a))))))).
<;(X) : “ p(f(X)).
p(Y) :— q (g (Y)) .
=- q (a) .

We would like to make this recursion explicit so that we may deal with it
efficiently. Careful ordering of our choice of links in the compartmentalized
connection graph can explicate such recursion.

Consider what happens if we use straight forward goal directed search as PRODOG
does. We generate a sequence of goals: p (f (a) . q (g (f (a)) .
p (f (g (f (a))) . . . This will eventually find the unit clause in this case. Ifwe
used unit resolution in a data driven way we would produce a similar but reducing set
of positive unit clauses. In both cases the process is linear in the size of the complex
term. If we could explicate the recursion and then use doubling it could be done in a
logarithmic number of steps.

We can achieve explication very simply in the static phase of the algorithm: we
introduce a rule, technically an ordering strategy, which prohibits resolving on a link
before it parent link (that is the link it was inherited from) is resolved upon. This stops
the above unit resolution series after the first step. The generated unit clause has a link
only because it was inherited from somewhere — one of the cross links. This forces
resolving on the parent of the new link first, on a cross link, and forces generation of
an explicitly recursive clause containing a pseudolink.

CONG I: Transformational Examples - 16 - D. M. W. Powers

Characterization of Compartmentalization

We now characterize the Compartmentalized Connection Graph procedure more
precisely in terms of ordering restrictions on a weakened version of the standard

algorithm.

Formally, we have the standard connection graph algorithm, weakened by
removal of two restrictions, and strengthened by definition of five ordering filters.
These filters are presented in terms of the freshness and legality attributes on links,
which are defined in the next section.

The standard connection graph procedure is weakened so that

(i) resolution on pseudolinks is permitted but

(ll) composition of unifying substitutions is delayed while a link or pseudolink
is illegal (so illegal links may actually also befaise).

It is strengthened with the compartmentalizing ordering filter which classifies the
clauses into two compartments, those having pseudolinks, and those not. Links may
also be totally in one compartment or another. If, however, they connect clauses from
different compartments they are said to be in the corridor. The two compartments are
processed in alternating phases of the algorithm, termed dynamic in the case when
pseudolinks are being processed, and static when pseudolinked clauses are excluded.
The compartmentalizing ordering filter

(i) prohibits resolving on a link involving a pseudolinked clause (i.e. before
all pseudolinks of that clause have been resolved upon),

(ll) prohibits resolving on a link while.the parent link is still present (Le.
before it is orphaned),

(ill) prohibits resolving on a link while it is fresh (Le. during the dynamic
phase in which it became legal),

(iv) prohibits resolving on afresh pseudolink (Le. during the dynamic phase in
which it was created), and

(v) prohibits resolving on a pseudolink while a normal link may legally be
resolved upon (Le. during a static phase).

Definitions

We now summarize the definitions of the terms we have introduced:

Links and Pseudolinks

Unifiable tenns of opposite sign in distinct clauses are initially cOIlllected by links.

Unifiable terms of opposite sign in the same clause are connected by pseudolinks. The

CONG I: Transformational Examples - 17 - D. M. W. Powers

Characterization of Compartmentalization
We now characterize the Compartmentalized Connection Graph procedure more

precisely in terms of ordering restrictions on a weakened version of the standard
algorithm.

Formally, we have the standard connection graph algorithm, weakened by
removal of two restrictions, and strengthened by definition of five ordering filters.
These filters are presented in terms of the freshness and legality attributes on links,
which are defined in the next section.

The standard connection graph procedure is weakened so that

(i) resolution on pseudolinks is permitted but

(ii) composition of unifying substitutions is delayed while a link or pseudolink
is illegal (so illegal links may actually also be false).

It is strengthened with the compartmentalizing ordering filter which classifies the
clauses into two compartments, those having pseudolinks, and those not. Links may
also be totally in one compartment or another. If, however, they connect clauses from
different compartments they are said to be in the corridor. The two compartments are
processed in alternating phases of the algorithm, termed dynamic in the case when
pseudolinks are being processed, and static when pseudolinked clauses are excluded.
The compartmentalizing ordering filter

(i) prohibits resolving on a link involving a pseudolinked clause (i.e. before
all pseudolinks of that clause have been resolved upon),

(ii) prohibits resolving on a link while.the parent link is still present (i.e.
before it is orphaned),

(iii) prohibits resolving on a link while it is fresh (i.e. during the dynamic
phase in which it became legal),

(iv) prohibits resolving on afresh pseudolink (i.e. during the dynamic phase in
which it was created), and

(v) prohibits resolving on a pseudolink while a normal link may legally be
resolved upon (i.e. during a static phase). ‘

D e fi n i t i on 5

We now summarize the definitions of the temrs we have introduced:

Links and Pseudolinks

Unifiable terms of opposite sign in distinct clauses are initially connected by links.
Unifiable terms of opposite sign in the same clause are connected by pseudolinks. The

GONG I: Tramfonnational Examples - l 7 - D. M. W. Powers

links and pseudolinks together with the clauses form the connection graph. The links
basically keep track of potential resolutions and the pseudolinks of potential self­
resolution or explicit recusrsion. Together they keep track of what work can and must
be done to complete the proof.

False links

A link which is present in the graph but for which the associated substitution has
not yet been composed and checked could be spurious. Such a link which turns out
not to have a valid substitution (that is which does not connect unifiable literals) is
termed false.

Legality and Freshness

Links which do not impinge on a pseudolinked clause against are designated legal.

Links which become legal as a result of resolving on a pseudolink are marked fresh, as
are links and pseudolinks which are inherited in this way. Only once all remaining
pseudolinks are fresh are the fresh designations removed. The negative forms of fresh
and legal are the obvious stale and illegal.

Resolution is prohibited on any link which is fresh or not legal. In fact, while any
fresh links exist, only pseudolinks may be resolved upon; and while any stale legal
links exist, no pseudolinks may be resolved upon. These leads us to distinguish
alternate phases of the algorithm.

Static and Dynamic

The designation static is applied to the phases during which the biting part of the
ordering requires that no pseudolink be resolved upon (some links are legal and not
fresh). While a clause has no legal links it is said to be s-pure (for statically pure).
While a term and its descendants have no legal links it is said to have been
s-eliminated.

The term dynamic phase refers to a period during which the ordering requires that
no ordinary link be resolved upon (all links are fresh or not legal).

Heuristics & Control

Use of Cuts and Guards

There are many features of PROLOG and its derivatives which take them away
from first order logic. Perhaps the most obvious, most abused and most unnecessary
are the cuts and guards. These should not be used in good programs, but should be
relegated to the dirty library predicates which are used but not seen. Here we will omit
discussion of them.

Note however that the primary use of cut is to achieve negation as failure. We
consider not below. A secondary use is to indicate that no further search is required

CONG I: Transformational Examples - 18- D. M. W. Powers

links and pseudolinks together with the clauses form the connection graph. The links
basically keep track of potential resolutions and the pseudolinks of potential self-
resolution or explicit recusrsion. Together they keep track of what work can and must
be done to complete the proof.

False links

A link which is present in the graph but for which the associated substitution has
not yet been composed and checked could be spurious. Such a link which turns out
not to have a valid substitution (that is which does not connect unifiable literals) is
termed false. ‘

Legality and Freshness

Links which do not impinge on a pseudolinked clause against are designated legal.
Links which become legal as a result of resolving on a pseudolink are marked fresh, as
are links and pseudolinks which are inherited in this way. Only once all remaining
pseudolinks are fresh are the flesh designations removed. The negative forms of fresh
and legal are the obvious stale and illegal.

Resolution is prohibited on any link which is fresh or not legal. In fact, while any
fresh links exist, only pseudolinks may be resolved upon; and while any stale legal
links exist, no pseudolinks may be resolved upon. These leads us to distinguish
alternate phases of the algorithm.

Static and Dynamic

The designation static is applied to the phases during which the biting part of the
ordering requires that no pseudolink be resolved upon (some links are legal and not
fresh). While a clause has no legal links it is said to be s-pure (for statically pure).
While a term and its descendants have no legal links it is said to have been
s-eliminated.

The term dynamic phase refers to a period during which the ordering requires that
no ordinary link be resolved upon (all links are fresh or not legal).

Heuristics & Control

Use of Cuts and Guards

There are many features of PROLOG and its derivatives which take them away
from first order logic. Perhaps the most obvious, most abused and most unnecessary
are the cuts and guards. These should not be used in good programs, but should be
relegated to the dirty library predicates which are used but not seen. Here we will omit
discussion of them. '

Note however that the primary use of cut is to achieve negation as failure. We
consider not below. A secondary use is to indicate that no further search is required

CONG I: Transformational Examples - 18 - D. M. W. Powers

since we are on the right track. This is heuristic infonnation which we wish to express
more clearly and will deal with in a subsequent paper. The third use is to indicate that
only one solution is required. CONG actually has two modes, one in which one

solution is found, one in which all solutions are found. The latter effect can also be

achieved and controlled using bagof or findall, which are also discussed below.

Preprocessing

Extra-Logical Predicates

As in this series of reports a familiarity with PROLOG is assumed, no introduction

is provided to the library predicates which are or are not standard. The purpose of this

section is to indicate that the four major classes of such predicates can be handled by
transfonnation or interpretation in the CONG paradigm.

Not

Moving from Horn clauses to the general paradigm gives us classical negation.
Negation as failure is often, however, more characteristic of the way we think and
program, and is a special case of both default reasoning and abductive reasoning.

Again this is not discussed in detail in this paper, but we show the operational

equivalence of not andfindall.

We first show how not can be implemented given findall.

not (p (X» ; - findall (X, p (X), []).

And now we show how findall can be implemented given not.

findall(X, p(X), L) ;- sbagof(X, p(X), [], L).

sbagof(X, p(X), T, L) ;- c«p(X)op(Xl)L
p(Xl), not(in(p(Xl),T),
sbagof (X, p (X), [p (Xl) IT], L).

sbagof(X, p(X), T, L);- not«p(X),not(in(p(X),T»»

The in predicate is the well known membership predicate (also known as
member) and the c predicate operationally acts as a copy with renaming of variables.
This is non-logical, but the equivalent effect can be achieved at a meta-level in the
transformational approach.

This particular technique is not advocated especially, and alternative approaches
will be examined in a later part.

Bagof, Setof and Findall

In the last section we showed that findall is in a sense equivalent to not. It is

well known that it can also be simulated by append (and less well known that assert
could be simulated by reversing findall given higher order unification). We show
here, however, how the effect of these predicates can be obtained straightforwardly by

CONG I: Transformational Examples - 19- D. M. W. Powers

since we are on the right track. This is heuristic information which we wish to express
more clearly and will deal with in a subsequent paper. The third use is to indicate that
only one solution is required. CONG actually has two modes, one in which one
solution is found, one in which all solutions are found. The latter effect can also be
achieved and controlled using bagof or findall, which are also discussed below.

Preprocessing

Extra-Logical Predicates

As in this series of reports a familiarity with PROLOG is assumed, no introduction
is provided to the library predicates which are or are not standard. The purpose of this
section is to indicate that the four major classes of such predicates can be handled by
transformation or interpretation in the CONG paradigm.

Not

Moving from Horn clauses to the general paradigm gives us classical negation.
Negation as failure is often, however, more characteristic of the way we think and
program, and is a special case of both default reasoning and abductive reasoning.
Again this is not discussed in detail in this paper, but we show the operational
equivalence of not and findall.

We first show how not can be implemented given f i nda l l .

no t (p (X)) :— f inda l l (X , p (X) , []).

And now we show how f indal l can be implemented given no t .

findall(x, p(X), L) :— sbagof(x, p(X) , [] , L) .

sbagof(X‚ p(X) ‚ T, L) :— Mp (X) op (xl) » ,
p(X1)‚ no t (in (p (x1) ,T) ,
sbagof (x, p(X) , [p (x1) IT], L) .

sbagof (x , p (X) , T , L):— not((p(X)‚not(in(P(X)‚T))))

The i n predicate is the well known membership predicate (also known as
member) and the c predicate operationally acts as a copy with renaming of variables.
This is non-logical, but the equivalent effect can be achieved at a meta-level in the
transformational approach.

This particular technique is not advocated especially, and alternative approaches
will be examined in a later part.

Bagof, Setof and Findall

In the last section we showed that f i nda l l is in a sense equivalent to no t . It is
well known that it can also be simulated by append (and less well known that a s se r t
could be simulated by reversing f i nda l l given higher order unification). We show
here, however, how the effect of these predicates can be obtained straightforwardly by

CONG I: Transformational Examples - 19 - D. M. W. Powers

preprocessing and interpretation of the original program, without any additional
assumptions.

In this exemplification of the technique we use a set of examples which is familiar,
that of father, mother, parent and ancestor predicates. For compactness the
predicate names are however abbreviated to their fITst letter. We could assume that any
recursive predicates are in canonical form, viz. that they have exactly one singly
recursive clause and exactly one unit clause. This is actually stronger than the
condition used here which is simply that there are no multiply recursive clauses.

The technique is based on reexpressing the databases as lists, trivial at a metalevel
and a common implementation technique for predicates in any case. So here we add
new predicates with the bag of clauses associated with our father and mother

databases.

f (mary, tom) .	 m (mary, jane) •

b_f([f(mary,tom), ...])	 b_m([m (mary, jane) , ••.]).

Any bagof or findall goal is now either directly transformed into the
appropriate scanning and flattening of the bagged databases, or interpreted by a
scanning procedure with similar access to the predicate representation. This is
straightforward when the goal concerns database facts directly or through a datalog
view:

p(C,X) :- f(C,X).

p(C,X) :- m(C,X).

cbagof (X, f (M, X), L) : - b_f (LL) ,	 scan (X, f (M, X), LL, L).

cbagof(X, p(M,X), [FL,ML])	 cbagof(X, f(M,X), FL),
cbagof(X, m(M,X), ML).

bagof(X, P, L):- cbagof(X, P, GL), flatten (GL, L).

scan (X, P, [] , []) .
scan (X, P, [HIT], [HILl) :-	 C«(X,P)o (Xl, Pl) », Xl H,

scan {X, P, T, L) .
scan {X, P, [], [1) •
scan (X, P, [HIT], L) :-	 C «(X, P) 0 (XI,PI)>> , not (Xl = H),

scan (X, P, T, L) .

Note the use of not. The equals predicate is used in both the scan clauses only
for the sake of clarity (and in this case symmetry), and is trivially defmed.

The last example was a simple disjunctive example. We no exhibit an example
which is both conjunctive and recursive.

CONG I: Transformational Examples - 20-	 D. M. W. Powers

preprocessing and interpretation of the original program, without any additional
assumptions.

In this exempljfication of the technique we use a set of examples which is familiar,
that of fa ther , mother, parent and ances tor predicates. For compactness the
predicate names are however abbreviated to their first letter. We could assume that any
recursive predicates are in canonical form, viz. that they have exactly one singly
recursive clause and exactly one unit clause. This is actually stronger than the
condition used here which is simply that there are no multiply recursive clauses.

The technique is based on reexpressing the databases as lists, trivial at a metalevel
and a common implementation technique for predicates in any case. So here we add
new predicates with the bag of clauses associated with our fa ther and mother
databases.

f (mary , tom) . m(mary , jane) .

h_ f ([f (mary , tom) , . . .]) b_m([m(mary , jane) , ...]).

Any bagof or f inda l l goal i s now either directly transformed into the
appropriate scanning and flattening of the bagged databases, or interpreted by a
scanning procedure with similar access to the predicate representation. This is
straightforward when the goal concerns database facts directly or through a datalog
v1ew:

p (C I X) : - f (c l x) .

p(C,X) :— m(C,X) .

cbagof (X , f (M,X) , L) :— b_f(LL), scan(X, f (M,X) , LL, L) .

cbagof (X , p (M,X) , [FL ,ML]) :— cbagof (X , f (M,X) , FL) ,
cbagof (X , m(M,X) , ML) .

bagof (x ‚ P , L) :— cbagof (X , P , GL) , f l a t t en (GL, L) .

s can(X, P , [] , []).

scan(x‚ P. [HIT], [HIL]):— GULF)» (X1 .P1) l . X1 = H.

scan(X, P , T , L) .
scan(X, Pl []] []) -

s c a n (X , P, [HIT] , L) :— G((X ,P)p (X1 ,P l)) , no t (Xl =
scan(X, P , T , L) .

Note the use of no t . The equa l s predicate is used in both the scan clauses only
for the sake of clarity (and in this case symmetry), and is trivially defined.

The last example was a simple disjunctive example. We no exhibit an example
which is both conjunctive and recursive.

CONG I: Transformational Examples - 20 - D. M. W. Powers

a (C, X) : ­ p (C, X) .
a(C,X) :- p(c,Y), a(Y,X).

cbagof{X, a{M,X), L) cbagof{X, p(M,X), L).
cbagof {X, a (M, X), L) : ­ cbagof {Y, P (M, Y), PL),

scanap{X, Y, a{Y,X), PL, L).

scanap (X, Y, P, [], []).
scanap(X, Y, P, [HIT], HLIL]): ­ C«X,Y,P)n (Xl,Yl,Pl)L YI H,

cbagof(Xl, PI, HL),
scanap{X, Y, P, T, L).

Input/Output

Another fundamental clause of builtin predicates concerns I/O. In this paper we
wish to add nothing to the work on logical approaches to JlD, but assume streams by
which files are treated as lists.

Assert/Retract

The fmal major class of builtins to deal with are those which modify the clause
database. We again defer full treatment of this, but note that the connection graph
method already defines conditions under which new clauses may be added to the
database and existing clauses may be removed. These may be used achieving certain
monotonic effects, but in general we have to consider non-monotonicicty, and
techniques proposed for backtrackable assert and retract are also applicable here and
will be dealt with in a subsequent report.

Multiple recursion

We present our techniques for handling multiple recursion with a sequence of
examples based on well known predicates.

Elimination ofmultiple recursive clauses

The predicate flatten (used above) would naturally have the form:

flatten{[], []).
flatten{[HIT],L):- flatten(H,FH), flatten{T,FT),

append(FH,FT,L).

This has two directly recursive calls as well as an independently recursive
subpredicate. In fact the append makes it o(n*n). And it seems th':!t in avoiding the
explicit append, it is naturally broken up into two separate types of single recursion
one for flattening the head, the other for further processing of the tail.

flatten ([], []).

flatten ([[] IT] , L) : - flatten (T, L) .

flatten([[HHIHT] IT],L):- flatten([HH,HTIT],L).

flatten([A!T], [AIL]):- not(flist(A», flatten(T,L).

This could therefore be reduced to a single tail recursive call!

CONG I: Transformational Examples - 21 - D. M. W. Powers

a (C ,X) =— P(C‚X).
a(C‚x) :— p(c,Y), a (Y ,X) .

cbagof tx , a (M,X) , L) :— cbagof (x , p(M,X), L) .
cbagof (X , a (M,X) , L) :— cbagof (Y , p(M,Y), PL),

scanap(x, Y, a(Y;x), PL, L) .

scanap (X , Y , P . [L [I) .
s canap (x , Y, P, [HIT], HLIL]):— e((x,Y,P)‚ (x1,r1,1>1)), Y1 =

cbagof (Xl , P l , HL),
scanap(x‚ Y, P , T, L) .

Input/Output

Another fundamental clause of builtin predicates concerns I/O. In this paper we
wish to add nothing to the work on logical approaches to I/O, but assume stream by
which files are treated as lists.

Assert/Retract

The final major class of builtins to deal with are those which modify the clause
database. We again defer full treatment of this, but note that the connection graph
method already defines conditions under which new clauses may be added to the
database and existing clauses may be removed. These may be used achieving certain
monotonic effects, but in general we have to consider non-monotonicicty, and
techniques proposed for backtrackable assert and retract are also applicable here and
will be dealt with in a subsequent report.

Multiple recursion

We present our techniques for handling multiple recursion with a sequence of
examples based on well known predicates.

Elimination of multiple recursive clauses

The predicate f l a t t en (used above) would naturally have the form:

f l a t t en ([] , []) .
f 1a t t en ([H |T] ,L) :— f l a t t en (H ,FH) , f l a t t en (T ,FT) ,

append(FH,FT ,L) .

This has two directly recursive calls as well as an independently recursive
subpredicate. In fact the append makes it o(n*n). And it seems that in avoiding the
explicit append, it is naturally broken up into two separate types of single recursion
one for flattening the head, the other for further processing of the tail.

f l a t t en ([] , []) .
f l a t t en ([[] |T] ,L) :— f l a t t en (T ,L) .
f l a t t en ([[HH|HT] lT] ,L) : - f l a t t en ([HH,HT |T] ,L) .
f l a t t en ([AlT] , [A |L]) : - no t (f l i s t (A)) , f l a t t en (T ,L) .

This could therefore be reduced to a single tail recursive call!

CONG I: TranJormational Examples - 21 - D. M. W. Powers

flat flatten ([] , []) .

flatflatten(LI,LO) :- flat(LI,LO,LRI,LRO),

flat flatten (LRI,LRO) .

flat ([[] IT] ,L, T, L) .

flat([[HHIHT] IT],L, [HH,HT!T],L).

flat ([A IT] , [A IL] ,T, L) : - not (flist (A)) .

Tree search is typical and common case where the natural form has two singly
recursive clauses.

find(X,t{A,X,B» .

find(X,t(A,Y,B»:- It(X,Y), find(X,A).

find(X,t(A,Y,B»:- It(Y,X), find(X,B).

It is straightforwardly expressed with a single singly recursive clause.

rfind(X,t(A,X,B» .

rfind(X,Y):- sfind(X,Y,Z), rfind(X,Z).

sfind(X,t(A,Y,B) ,A) :- It(X,Y).

sfind(X,t(A,Y,B),B):- It(Y,X).

It is easy to see that this method can always be applied to predicates composed of

at most singly recursive horn clauses. If the original clauses were not tail recursive, it
might be necessary to add an index to the first new predicate so that the right choice for
the second can be made:

a(O,O).

a(X,Z):- cl(X), a(X,Y), dl(Y,Z).

a(X,Z):- c2(X), a(X,Y), d2(Y,Z).

The above general framework can be transformed into the following:

a(O,O).

a(X,Z):- c(N,X), a(X,Y), d(N,X,Z).

e(l,X):- el(X). d(l,X):- dl(X,Y).

e(2,X):- e2(X). d(2,X):- d2(X,Y).

We now turn from multiple singly recursive clauses within a predicate to multiple
recursion within a single clause.

Elimination ofmultiple recursive goals

A typical case where two recursive calls seem to be required in the same clause is
in quicksort. The partition predicate is similar to the find predicate, acting to create a
tree (non-nil partitions). The sort predicate itself is naturally expressed with double
recursion and append. This is reminiscent of our original flatten. (We don't bother
showing choice of pivot - it isn't necessary in CONG.)

CONG I: Transformational Examples - 22- D. M. W. Powers

f l a t f l a t t en ([l . [l) .
f l a t f l a t t en (L I , LO) : — flat (L I , LO, L R I , LRO) ,

f l a t f l a t t en (LRI ,LRO) .

flat([[]|T]‚L‚T‚L):
flat([[HH|HT]IT],L,[HH,HTIT],L).
flat([A|T],[A|L]‚T,L):— no t (f l i s t (A)) .

Tree search is typical and common case where the natural form has two singly
recursive clauses.

f i nd (X , t (A,X,B)) .
f i nd (X , t (A ,Y ,B)) : - l t (X ,Y) , f i nd (X ,A) .
f i nd (X , t (A ,Y ,B)) : - l t (Y ,X) ‚ find(X,B).

It is straightforwardly expressed with a single singly recursive clause.

rfind (x, t (A, x, B)) .
r f i nd (X ,Y) :— s f ind (X ,Y ,Z) , r f i nd (X ,Z) .
s f ind(x , t (A,Y,B) ,A) :— l t (X‚Y).
sfind(X,t(A,Y,B)‚B):— l t (Y‚X) .

It is easy to see that this method can always be applied to predicates composed of
at most singly recursive horn clauses. If the original clauses were not tail recursive, it
might be necessary to add an index to the first new predicate so that the right choice for
the second can be made:

a (0 ,0) .
a(X,Z) :— c l (X) , a(X,Y) , dl (Y,Z) .
a(X,Z) :— c2 (X), a (x,!) , d2 (Y,Z) .

The above general framework can be transformed into the following:

a (0 ,0) .
a (X ,Z) :— c(N,X), a (X ,Y) , d(N,X,Z).

c(1,X):— c1 (x) . d (l ,X) : - d l (X ,Y) .
c(2,X):- c2 (X) . d(2‚X):— d2(X,Y).

We now turn from multiple singly recursive clauses within a predicate to multiple
recursion within a single clause.

Elimination of multiple recursive goals

A typical case where two recursive calls seem to be required in the same clause is
in quicksort. The partition predicate is similar to the find predicate, acting to create a
tree (non-nil partitions). The sort predicate itself is naturally expressed with double
recursion and append. This is reminiscent of our original flatten. (We don't bother
showing choice of pivot _ it isn’t necessary in CONG.)

CONG I: Transformational Examples - 22 — D. M. W. Powers

qsort ([] , []) .
qsort ([H] , [H]) .
qsort(LI,LO):- part(LI,LLI,LRI),

qsort(LLI,LLO), qsort(LRI,LRO),
append (LLO,LRO,LO) .

The append is again expensive but easily removed - by using e.g. difference lists.
But for simplicity, let us not bother now. We can distinguish four stages in the
processing of the recursive clause: p (partition), I (left recurse), r (right recurse), a

(append).

However using dummy predicates with these names would only hide the
recursion, and it would later reappear in all its glory (making implicit recursion
explicit) or simply prevent exploitation of doubling of self-recursive clauses (without

the use of a technique to expose recursion).

Can we flatten out this extra recursion by means of a simulated stack?

Yes! It is then exactly like flatten. Instead of giving qsort a list to sort, we
give it a list of lists to sort & append. This is just flatten with the difference that
sublists are only of one level, and that they are partitioned until they are singletons.

qflatten([], []).

qflatten([HIT],L);- part(H,HH,HT), qflatten([HH,HTIT],L).

qflatten ([[A] I T], [A IL]) ; - qflatten (T, L) .

fqsort ([] , []) .

fqsort(X,Y):- qflatten([X],Y).

Note that this form of quicksort is actually more efficient than the original- as we
have got rid of the append. It is moreover simpler than the difference list version,
and it is tail recursive. The two recursive clauses can be combined using the technique
of the previous subsection.

Again the method is completely general: part & append here represent the parts of
the clause that come before and after the recursive calls. If there's something between
the (two or more) calls, then use the multiple recursion reduction if necessary, with the
dummy call coming before the in-between predicate(s). Note that order is in any case
of no significance without SLD control- we just need to make sure we preserve our
semantics, keeping corresponding parts of clauses together in some sense.

This defines a linear deterministic algorithm to reduce arbitrary recursive
predicates to exactly one singly-recursive 3-literal fonn. We also reduce unit clauses to
a single clause with database access link.

Acknowledgements

I wish to acknowledge the participation of Graham Wrightson, Debbie Meagher,
Laz Davila, David Menzies, Martin Wheeler, Graham Epps, Richard Buckland and

Philip Nettleton in the MARPIA project at Macquarie University, and their varying

CONG I: Transformational Examples - 23- D. M. W. Powers

q$0r t ([l , []) .
qsor t ([H] ‚ [H]) -
qsor t (LI ‚LO):— part(LI,LLI‚LRI),

qsor t (LLI‚LLO) , qsort(LRI,LRO)‚
append(LLO,LRO,LO) .

The append is again expensive but easily removed - by using e . g. difference lists.
But for simplicity, let us not bother now. We can distinguish four stages in the
processing of the recursive clause: p (partition), 1 (left recurse), r (right recurse), a
(append).

However using dummy predicates with these names would only hide the
recursion, and it would later reappear in all its glory (making implicit recursion
explicit) or simply prevent exploitation of doubling of self-recursive clauses (without
the use of a technique to expose recursion).

Can we flatten out this extra recursion by means of a simulated stack?

Yes! It is then exactly like f l a t t en . Instead of giving q so r t a list to sort, we
give it a list of lists to sort & append. This is just f l a t t en with the difference that
sublists are only of one level, and that they are partitioned until they are singletons.

qf l a t t en ([] , []) .
q f l a t t en ([H |T] ,L) :— pa r t (H ,HH,HT) , q f l a t t en ([HH,HT |T] ,L) .
qf la t t en ([[A]IT] ‚ [AIL]) :— qf la t t en (T‚L) .

qort ([] ‚ []) .
qort (X ,Y) :— qf l a t t en ([X] ,Y) .

Note that this form of quicksort is actually more efficient than the original - as we
have got rid of the append. It is moreover simpler than the difference list version,
and it is tail recursive. The two recursive clauses can be combined using the technique
of the previous subsection.

Again the method is completely general: part & append here represent the parts of
the clause that come before and after the recursive calls. If there's something between
the (two or more) calls, then use the multiple recursion reduction if necessary, with the
dummy call coming before the in-between predicate(s). Note that order is in any case
of no significance without SLD control -— we just need to make sure we preserve our
semantics, keeping corresponding parts of clauses together in some sense.

This defines a linear deterministic algorithm to reduce arbitrary recursive
predicates to exactly one singly-recursive 3-litera1 form. We also reduce unit clauses to
a single clause with database access link.

Acknowledgements
I wish to acknowledge the participation of Graham Wrightson, Debbie Meagher,

Laz Davila, David Menzies, Martin Wheeler, Graham Epps, Richard Buckland and
Philip Nettleton in the MARPIA project at Macquarie University, and their varying

CONG I: Transformational Examples - 23 - D. M. W. Powers

contributions to the development of CONGo Laz Davila wrote the first version of the
present incarnation of CONGo Debbie Meagher has been responsible for its further
development including the addition of compartrnentalization.

In addition I thank Norbert Eisinger and Hans Jiirgen Ohlbach for helpful
discussions during my time in Kaiserslautem.

References

[Eisi88] Norbert Eisinger, "Completeness, Confluence and Related Properties of
Clause Graph Resolution", Doctoral Dissertation, SEKI Report SR-88-07, FB
Informatik, University of Kaiserslautem FRG (1988)

[Eisi89] Norbert Eisinger, "A Note on the completeness of resolution without self­
resolution.", Information Processing Letters 31, pp323-326 (1989)

[Kowa79] Robert Kowalski, "Logic for Problem Solving", North Holland (1979)

[Powe88] David M. W. Powers, Lazaro Davila and Graham Wrightson,
"Implementing Connectiong Graphs for Logic Programming", Cybernetics and
Systems '88 (R. Trappl, Ed), Kluwer (1988)

CONG I: Transformational Examples - 24- D. M. W. Powers

contributions to the development of CONG. Laz Davila wrote the first version of the
present incarnation of CONG. Debbie Meagher has been responsible for its further
development including the addition of compartmentalization.

In addition I thank Norbert Eisinger and Hans Jürgen Ohlbach for helpful
discussions during my time in Kaiserslautern.

References

[Eisi88] Norbert Eisinger, “Completeness, Confluence and Related Properties of
Clause Graph Resolution”, Doctoral Dissertation, SEKI Report SR-88-07, FB
Informatik, University of Kaiserslautern FRG (1988)

[Eisi89] Norbert Eisinger, “A Note on the completeness of resolution without self—
resolution.”, Information Processing Letters 31, pp323—326 (1989)

[Kowa79] Robert Kowalski, “Logic for Problem Solving”, North Holland (1979)

[Powe88] David M. W. Powers, Lazaro Davila and Graham Wrightson,
“Implementing Connectiong Graphs for Logic Programming”, Cybernetics and
Systems ’88 (R. Trapp], Ed), Kluwer (1988)

CONG [: Transformational Examples - 24 - D. M. W. Powers

