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Abstract 
This report.continues to document the development of a logic programming paradigm 

with implicit control, based· in a compartmentalized connection graph theorem prover. 
Whilst the research has as it main goal the development of a language in which programs 
can be written with much less explicit control than PROLOG and its existing successors, a 
secondary goal is to exploit the immense parallelism inherent in the connection graph. 

The focus of this paper is the documentation of the extent of the parallelism inherent in 
the proof procedure. We characterize six different forms of parallelism These various 
forms of parallelism can be further classified into two classes: those associated with the 
performance of resolution steps, and those which are more concerned with unification. 

Unification is thus also a major topic of this report. In the first report of this series 
unification was identified as a major source of the cost of executing a logic program, or of 
proving a theorem. It turns out that deferring unification is the one of the best ways of 
dealing with it: hashing to perform it, and indexing to avoid it. 

Indexing and hashing, therefore, is the third topic covered in this report. 

1 The work reported here was in the main undertaken while the author was at Macquarie University NSW 

2009 AUSTRALIA, and was supported in part by IMPACT Ltd, PETERSHAM NSW 2049 

AUSTRAliA, the Australian Telecommunications and Electronics Research Board, and the Australian 

Research Council (Grant No. A48615954). The author is currently supported under ESPRIT BRA 

3012: COMPULOG. 
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Introduction 

Our previous repons [powe88,90] discussed the advantages and disadvantages of 
PROLOG, focussing particularly on logic and control - the advantages of a clean 
declarative semantics and the disadvantages of a rigid predetermined control. It then 
presented some of the advantages and possibilities of logic programming in an automated 
theorem prover without cuts, annotations, builtins and other embellishments of clausal 
logic: in particular advantages relating to efficient treatment of recursion and examples of 
programming around major classes of builtin. This goals were achieved either directly in 
the compartmentalized connection graph theorem prover or in combination with 
preprocessing transfonnations. 

The most common generalizations of PROLOG have held fast to its general control 
regime, whilst allowing relaxation as well. In particular, the parallel or concurrent 
PROLOG systems generally fall into this category. Most generalizations also tend to 
adhere largely to the Horn clause paradigm, while perhaps allowing more general fODDs 
with some specific model. 

This work has approached logic progranuning from the opposite extreme, a completely 
general clausal theorem prover without control, and seeks to understand the behaviour of 
logic programs expressed in such an environment, including how efficiently to implement 
the environment and whether it is possible to use general search heuristics rather than an 
explicit control paradigm. The CONG system [powe88] for CONcurrent logic programming 
is based on a CONnection Graph theorem prover and can accept pure PROLOG programs 
(cutless Horn clauses without builtin predicates) as well as general clause fonn logic 
program (again pure without builtins). 

This paper moves on to address some of the efficiency issues which remain. Clearly 
the heuristics will be major determiners of efficiency, and even efficacy, and [powe90] 
showed that given appropriate heuristics CONG caD achieve reduction in proof lengths to 
logarithmic or less compared with PROLOG. But [Powe90] also characterized the 
complexity of the proof as being of order by c*n*d operations, where the number of 
literals in the program is n, the maximum depth of any term is d, and the maximum 
number of copies of any clause is c. This reflects the subdivision of labour between 
(recursive) copying, (unit) resolution of (ground) Horn clauses, and instantiation 
(unification testing) of the proof. In the following sections we address the cost of these 
three components in parallel and/or sequential implementations. 

The techniques in [Powe90] showed that in a theorem prover is was possible to 
approach this ideal in a way PROLOG does not, and that the recursive resolution copying 
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PROLOG, focussing particularly on logic and control — the advantages of a clean
declarative semantics and the disadvantages of a rigid predetermined control. It then
presented some of the advantages andpossibilities of logic programming in an automated
theorem prover without cuts, annotations, builtins and other embellishments of clausal
logic: in particular advantages relating to efficient treatment of recursion and examples of
programming around major classes of builtin. This goals were achieved either directly in
the compartmentalized connection graph theorem prover or in combination with
preprocessing transformations.

The most common generalizations of PROLOG have held fast to its general control
regime, whilst allowing relaxation as well. In particular, the parallel or concurrent
PROLOG systems generally fall into this category. Most generalizations also tend to
adhere largely to the Horn clause paradigm, while perhaps allowing more general forms
with some specific model.

This work has approached logic programming fiom the opposite extreme, a completely
general clausal theorem prover without control, and seeks to understand the behaviour of
logic programs expressed in such an environment, including how efficiently to implement
the environment and whether it is possible to use general search heuristics rather than an
explicit control paradigm. The CONG system [Powe88] for CONcurrent logic programming
is based on a CONnection Graph theorem prover and can accept pure PROLOG programs
(cutless Horn clauses without builtin predicates) as well as general clause form logic
program (again pure without builtins).

This paper moves on to address some of the efficiency issues which remain. Clearly
the heuristics will be major determiners of efficiency, and even efficacy, and [Powe90]
showed that given appropriate heuristics CONG can achieve reduction in proof lengths to
logarithmic or less compared with PROLOG. But [Powe90] also characterized the
complexity of the proof as being of order by c*n*d operations, where the number of
literals in the program is n, the maximum depth of any term is d, and the maximum
number of copies of any clause is c.  This reflects the subdivision of labour between
(recursive) copying, (unit) resolution of (ground) Horn clauses, and instantiation
(unification testing) of the proof. In the following sections we address the cost of these
three components in parallel and/or sequential implementations.

The techniques in [Powe90] showed that in a theorem prover is was possible to
approach this ideal in a way PROLOG does not, and that the recursive resolution copying
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component could be achieved by pseudo-resolution resulting in clause doubling to the 
appropriate number of copies in log c steps. But the number of copies of the terms of a 
clause is still in general c, so the work in unification can remain of order c*n*d operations. 

Whilst PROLOG traditionally measures speed of PROLOG implementations in LIPS 
(Logical Inferences Per Second), or resolutions per second, this hides the cost of 
unification inherent in the problem, and the benchmarks with trivial unification will 
demonstrate far greater speeds than those with complex unification characteristics. Indeed, 
the unification can be optimized away by a compiler in the trivial cases, but never in the 
complex problems where complex unification is inherent in the nature and purpose of the 
program. 

Similarly with CONG, trivial unifications will not slow the resolution and 
pseudoresolution processes. But mostly one unification operation linear in c will be 
required at the point where a pseudoresolvent is resolved non-recursively. But in a parallel 
context, the reasonably trivial examples should be unifiable in unit time on o(c ) 
processors. In a typical complex logic program this may grow to logarithmic time, whilst 
in the most artfully constructed automated reasoning problems it may remain linear (in 
c*n*d). 

We have therefore identified unification as the major remaining bottleneck. This paper 
explores the complexity characterization of unification and provides examples with the 
various behaviours just outlined. It further examines the feasibility of avoiding and 
delaying unification where the unifiability is not yet known or unifier is not yet required. 
In particular, we note the separability of unifiability testing and unifier determination. 

The above calculations were also based on a deterministic discovery of the proof ­
whether guided by oracle, heuristics or control. In an Artificial Intelligence application 
with blind search characteristics, most unifications will fail, or at least the proof strand of 
which they form a part will fail. In this case the time expended on accurate unifiability 
testing and unifier determination is totally wasted. We therefore explore the possibility of 
trial unification in which unification work is undertaken in a way designed to expedite the 
detection of failure, and allowing the proof to proceed with only a certain likelihood of the 
eventual success of the unification. This allows also the concept of a trial proof in which 
unifiability and unifiers are only finally accurately determined when it appears that a proof 
has been found. 

We have already given a indication of the complexity and potential of parallel 
unification. The importance of unification also emerges when we characterize the various 
sorts of parallelism which are achievable in CONGo 
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clause is still in general c, so the work in unification can remain of order c*n*d operations.

Whilst PROLOG traditionally measures speed of PROLOG implementations in LIPS
(Logical Inferences Per Second), or resolutions per second, this hides the cost of
unification inherent in the problem, and the benchmarks with trivial unification will
demonstrate far greater speeds than those with complex unification characteristics. Indeed,
the unification can be optimized away by a compiler in the trivial cases, but never in the
complex problems where complex unification is inherent in the nature and purpose of the
program.

Similarly with CONG. trivial unifications will not slow the resolution and
pseudoresolution processes. But mostly one unification operation linear in c will be
required at the point where a pseudoresolvent is resolved non-recursively. But in a parallel
context, the reasonably trivial examples should be unifiable in unit time on o(c )
processors. In a typical complex logic program this may grow to logarithmic time, whilst
in the most artfully constructed automated reasoning problems it may remain linear (in
c*n*d).

We have therefore identified unification as the major remaining bottleneck. This paper
explores the complexity characterization of unification and provides examples with the
various behaviours just outlined. It further examines the feasibility of avoiding and
delaying unification where the unifiability is not yet known or unifier is not yet required.
In particular, we note the separability of unifiability testing and unifier determination.

The above calculations were also based on a deterministic discovery of the proof -
whether guided by oracle, heuristics or control. In an Artificial Intelligence application
with blind search characteristics, most unifications will fail, or at least the proof strand of
which they form a part will fail. In this case the time expended on accurate unifiability
testing and unifier determination is totally wasted. We therefore explore the possibility of
trial unification in which unification work is undertaken in a way designed to expedite the
detection of failure, and allowing the proof to proceed with only a certain likelihood of the
eventual success of the unification. This allows also the concept of a trial proof in which
unifiability and unifiers are only finally accurately determined when it appears that a proof
has been found.

We have already given a indication of the complexity and potential of parallel
unification. The importance of unification also emerges when we characterize the various
sorts of parallelism which are achievable in CONG.
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Proof Algorithm 

Compartmentalized Connection Graph 

We now recapitulate the algorithm used by CONG as presented in [Powe90], with 

references back to the differences from the original algorithm of [Kowa79]. 

Unification 

In the following, unless specifically stated otherwise, unifiable and unifier, refer 

respectively to weak unification and the resulting most general unifier. In PROLOO 

tenninology, these are unification in distinct environments and the unifying substitution. 

Weak unification can also be described in tenns of unifiability after renaming. 

Links 

A set of clauses to be proven inconsistent are linked into a graph by connecting 

distinct clauses with a link whenever they have unifiable complementary literals. A link 

may at times most conveniently be regarded as two connecting clauses, at other times as 

connecting the two literals which gave rise to it. However, they actually indicate potential 

resolutions, or equally well potential resolvents. The substitution giving rise to the most 

general unifier of the linked literals is associated with the link. 

Resolution links 

Under this above definition a link is formally defined only between distinct clauses, 

although loosely used it may, when the context permits, include internal links. In certain 

syntactic contexts all forms of links, including even links between non-complementary 

unifiable literals may be intended. When we want be absolutely clear we can refer to the 

links between complementary literals of distinct clauses as resolution links. 

Pseudolinks 

Additional connections between unifiable literals of opposite sign within a single 

clause are added and are termed pseudolinks. These internal links represent the potential 

for copies of the clause to resolve, but are themselves never actually resolved on. They 

may thus also be referred to as self-resolving links. The substitution giving rise to the 

most general unifier of the linked literals is associated with the pseudolink. 

Initial graph 

The graph resulting from the addition of resolution links and pseudolinks to a set of 

clauses is called the initial graph. Figure 1 shows the initial graph and substitutions for a 

simple append example. 
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Proof Algorithm

Compartmentalized Connection Graph

We now recapitulate the algorithm used by CONG as presented in [Powe90], with
references back to the differences from the original algorithm of [Kowa79].

Unification

In the following, unless specifically stated otherwise, unifiable and unifler, refer
respectively to weak unification and the resulting most general unifier. In PROLOG
terminology, these are unification in distinct environments and the unifying substitution.
Weak unification can also be described in terms of unifiability after renaming.

Links

A set of clauses to be proven inconsistent are linked into a graph by connecting
distinct clauses with a link whenever they have unifiable complementary literals. A link
may at times most conveniently be regarded as two connecting clauses, at other times as
connecting the two literals which gave rise to it. However, they actually indicate potential
resolutions, or equally well potential resolvents. The substitution giving rise to the most
generalunifierofthelinkedliteralsis associatedwiththelink.

Resolution links

Under this above definition a link is formally defined only between distinct clauses,
although loosely used it may, when the context permits, include internal links. In certain
syntactic contexts all forms of links, including even links between non-complementary
unifiable literals may be intended. When we want be absolutely clear we can refer to the
links between complementary literals of distinct clauses as resolution links.

Pseudolinks

Additional connections between unifiable literals of opposite sign wimin a single
clause are added and are termed pseudolinks. These internal links represent the potential
for copies of the clause to resolve, but are themselves never actually resolved on. They
may thus also be referred to as self-resolving links. The substitution giving rise to the
most general unifier of the linked literals is associated with the pseudolink.

Initial graph

The graph resulting from the addition of resolution links and pseudolinks to a set of
clauses is called the initial graph. Figure ] shows the initial graph and substitutions for a
simple append example.
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I_ w=y=z
X=[] 

• X1 =[H2 IX2] 
Y1 ...Y2 
Z1=[H21 Z2] 

6) R=[H IXl 
Y=[E] 
L-[H Iz] 

e H=a 
X...[b, c] 
Y=[d, e, f] 
L=[a Iz] 

F~9. 1. Initial graph for append. 

Resolution rule 

A link may be resolved upon by resolving upon the linked clauses (the parents) and 

replacing the link by a new clause (the resolvent) obtained from the union of terms of the 
two clauses excluding the linked terms with the application of the associated substitution. 

In the compartmentalized connection graph a constraint is added, that neither of the 
parent clauses may contain a pseudolink. But a complementary constraint is lifted, in that 
pseudolinks may themselves be resolved upon as if it linked two separate copies of its 
parent clause. The terms of the resolvent are said to have inherited from its parents. 

Inheritance rule 

Upon resolution, links and pseudolinks impinging on the inheriting terms of the 
parent also inherit to give new links and pseudolinks attached to the inherited terms which 
have the composition of the resolving link's substitution and that of the original links, and 
will be a resolution link or a pseudolink according to whether the link connects distinct 
clauses or is internal to one clause, respectively. 

We defme the composition operator as performing unification of the substituted 
variables occuring in two link: substitutions. That is, when the substitutions both 
instantiate the same variable, the bound structures are unified. 

Figure 2 shows the results of resolving on each of the four links of Fig. I and in the 

case of the clause Q (resulting from link Q) the inherited links are also shown. 

CONG II: Parallelism and Unification -7- D. M. W. Powers 

0 W=Y=ZX=l 1
0 X1 =[H2 | X2]

Y1=Y2
Z1=[H2 | 22]

o Fl=[H IX]
Y=[E]
L=IH IZI

0 H=a
X-[b, c]
Y=[d, e ,  f]
L=la | 2]

'19. 1 .  Initial graph for append .

Resolution rule

A link may be resolved upon by resolving upon the linked clauses (the parents) and
replacing the link by a new clause (the resolvent) obtained from the union of terms of the
two clauses excluding the linked terms with the application of the associated substitution.

In the compartmentalized connection graph a constraint is added, that neither of the
parent clauses may contain a pseudolink. But a complementary constraint is lifted, in that
pseudolinks may themselves be resolved upon as if it linked two separate copies of its
parent clause. The terms of the resolvent are said to have inherited from its parents.

Inheritance rule

Upon resolution, links and pseudolinks impinging on the inheriting terms of the
parent also inherit to give new links and pseudolinks attached to the inherited terms which
have the composition of the resolving link’s substitution and that of the original links, and
will be a resolution link or a pseudolink according to whether the link connects distinct
clauses or is internal to one clause, respectively.

We define the composition operator as performing unification of the substituted
variables occuring in two link substitutions. That is ,  when the substitutions both
instantiate the same variable, the bound structures are unified.

Figure 2 shows the results of resolving on each of the four links of Fig. 1 and in the
case of the clause 0 (resulting from link 0 )  the inherited links are also shown.
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• append([H],W, [H I W]). 

•11~~!gjjl~I~'t e aJ4>e$lt(.--0_ 
r-e---·_· ­

i_fit,! I~ =8. 0 I 
e fi), 

\@ 
;fJ§tjJ.~'ii;'!¥tJfjjJti!~!J~H~l:ij,~_I*"j(I{;i~)· 

r~g. 2. Inheriting and Composing Links 

Positive-to-parent rule 

In the compartmentalized connection graph, pseudolinks will not be inherited from 
during a link resolution as a consequences of the restriction against parents containing 
pseudolinks. However they may be inherited from during a pseudoresolution. In this 
case the pseudolink currently being resolved could give rise to a new pseudolink and two 
new links connecting the parent clause and the resolvent - as the parent clause is playing a 
dual role and resolving with a copy of itself producing a redundant link [Eisi88]. This is 
resolved arbitrarily by the positive to parent rule [powe90] which says that, apart from the 
pseudolink, only the resolution link connecting the positive literal of the resolvent to (the 
negative literal of) the parent clause is inherited from the pseudolink undergoing 
pseudoresolution (which is in the process of being processed and removed). 

r·---·--'·-··_·~- @_··-·-·_·_---·--l 
• tlppend«(H1. H I Xl. Y. [H1. H I 2]):- erprpend(X. Y. Z). 

L--._. @_.__-...,
 

r- e --'-'--'---'--'-'-1
 1~=8081•••~~(ttf;fjl;;i!f'ljJJ,JjJti;9jJj••;Jj~W]"~>;"
 
12=~o~1


F=: r 
~ append([H3, H2, H1, H I X], Y, [H3, H2, H1, H I Zn:- append(X, Y, Z) 

Fig. 3. The Doubling Effect and Pseudoinheritance. 

The pseudoresolution operation leads to particularly efficient handling of recursion 
through the doubling effect, reaching a point in the logarithm of the number of steps 
required by resolution, as illustrated in Fig. 3. 
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° append([H],w, [H | WI) -

([H1,H|X], Y, [H1,H|Z]):- append(X‚ Y. Z).

@ = 9 "o 0

"d([a. b .  0]. [d. 9J1. [H IZl). append“. (51.2)-
@ = 9 o 0

@ = 9 o °

° I- appendflfi. [E]. [a | Zl). appendflb. 0]. [d. 9-  fl. Z)-

r ig .  2 .  Inheriting and Composing Links

Positive-to-parent rule

In the compartmentalized connection graph, pseudolinks will not be inherited from
during a link resolution as a consequences of the restriction against parents containing
pseudolinks. However they may be inherited from during a pseudoresolution. In this
case the pseudolink currently being resolved could give rise to a new pseudolink and two
new links connecting the parent clause and the resolvent — as the parent clause is playing a
dual role and resolving with a copy of itself producing a redundant link [Eisi88]. This is
resolved arbitrarily by the positive to parent rule [Powe90] which says that, apart from the
pseudolink, only the resolution link connecting the positive literal of the resolvent to (the
negative literal of) the parent clause is inherited from the pseudolink undergoing
pseudoresolution (which is in the process of being processed and removed).

®I !
e appondqm. H | X], Y, [m .  H |21):- appomux, Y, z).

LMW (am

®=9o6

2=®o®

N

2 I
® append([H3, H2, H1, H | X], Y, [ua, H2, H1, H | 2]):- append(x, Y, 2)

Fig. 3 .  The Doubling Effect and Pseudoinher i t ance .

The pseudoresolution operation leads to particularly efficient handling of recursion
through the doubling effect, reaching a point in the logarithm of the number of steps
required by resolution, as illustrated in Fig. 3.
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Factoring, purity, tautology and subsumption rules 

Applied to general clauses (unrestricted to Horn), resolution is incomplete without 
factoring (or merging). Also there are various optimizations whereby certain clauses 
which are inessential to the proof may be deleted. These considerations are irrelevant to 

this paper and the rules are therefore not presented. See [Eisi88; Powe90]. 

Ordering and restriction filters 

Certain heuristics may be used to further specify the selection of links, which are left 
considerable latitude under both the original and the compartmentalized connection graph 
procedures. In fact, strong completeness cannot be assured without such fIlters, and even 

with filters no proofs of strong completeness have yet survived scrutiny [Eisi88]. 

This is again not an issue for the Horn case, where strong completeness is assured by 

a variety of strategies. Filters recommend· include unit resolution, hyperresolution and 
orphaning [Eisi88; Powe90]. The standard and compartmentalized connection graph 

procedures presented may also be seen as the results of applying particular filters to the 

generalized procedure of [Eisi88], in which no restrictions are applied to when or whether 

one can resolve on particular types of links (viz. resolution links or pseudolinks). 

The compartmentalized filter was specifically designed to take advantage of the power 

of treating recursion separately and in view of apparent strong completeness properties in 

combination with the parent-before-child (orphaning) and other filters - a draft proof exists 

must has not yet been subject to sufficiently rigourous examination. 

Latent Parallelism 

While the primary motivation for choosing to consider Logic Programming in the 

context of a Connection Graph Theorem Prover was to allow escape from the strictness of 
PROLOG control and the possibility of concurrent solving of independent parts of the 
problem (e.g. working around unknowns in Machine Learning and Natural Language 

applications), a secondary motivation was that not only this application level parallelism, 

but the fme grained parallelism of a graph in which all links could in principle be resolved 

in parallel. 

Therefore, ignoring application level parallelism, we now look at half a dozen possible 
ways of exploiting parallelism within the connection graph formalism itself. We start by 

looking at the system from the traditional Parallel Logic Programming perspective. 
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which are inessential to the proof may be deleted. These considerations are irrelevant to
this paper and the rules are therefore not presented. See [Eisi88; Powe90].

Ordering and restrictionfilters

Certain heuristics may be used to further specify the selection of links, which are left
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This is again not an issue for the Horn case, where strong completeness is assured by
a variety of strategies. Filters recommend include unit resolution, hyperresolution and
orphaning [Eisi88; Powe90]. The standard and compartmentalized connection graph
procedures presented may also be seen as the results of applying particular filters to the
generalized procedure of [Eisi88], in which no restrictions are applied to when or whether
one can resolve on particular types of links (viz. resolution links or pseudolinks).

The compartmentalized filter was specifically designed to take advantage of the power
of treating recursion separately and in view of apparent strong completeness properties in
combination with the parent-before-child (orphaning) and other filters — a draft proof exists
must has not yet been subject to sufficiently rigourous examination.

Latent Parallelism

While the primary motivation for choosing to consider Logic Programming in the
context of a Connection Graph Theorem Prover was to allow escape from the stn'ctness of
PROLOG control and the possibility of concurrent solving of independent parts of the
problem (e.g. working around unknowns in Machine Learning and Natural Language
applications), a secondary motivation was that not only this application level parallelism,
but the fine grained parallelism of a graph in which all links could in principle be resolved
in parallel.

Therefore, ignoring application level parallelism, we now look at half a dozen possible
ways of exploiting parallelism within the connection graph formalism itself. We start by
looking at the system from the traditional Parallel Logic Programming perspective.
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OR-Parallelism 

A :-a 

B:- b "" a bed 
7AAAA

C:- e 

Abed
 

Bbed
 

Cbed
 

,,: Links totally Independent 

r~9. 4. Or-Parallelism 

The concept of OR-parallelism in relation to PROLOG encompasses the idea that given 
a (sub)goal, all matching clauses can be pursued in parallel- and indeed a set of (partial) 

solutions is returned. In the PROLOG context, this set of parallel solutions can be carried 

forward independently, effectively replacing backtracking. 

OR-parallelism is trivially modelled in the connection graph by resolving all links on a 
term in parallel, producing independent resolvents and inheriting links straightforwardly 
(Fig. 4). 

AND-Parallelism 

a bed 

IABCDI4 ~ ~ ~ 
A :- a B :- b C:- c D :- d 

X: Can't remove links - links not used up 
1: Compose combination of substitutions 

r~9. 5. And-parallelism 

AND-Parallelism in PROLOG involves solving ~e present set of subgoals in parallel. 
This incurs the difficulty that substitutions must later be composed, and that those which 
might have been far more tightly specified (e.g. deterministically instantiated) with the 

PROLOG goal ordering may now fmd many irrelevant bindings. 

In CONO the difficulty manifests itself in that the indexing function of the links cannot 

be maintained, as links are only partially used.. The substitutions on the set of selected 
links must be composed to produce the resolvent and inherited links. The additional 
overhead required to index the partial use of links negates the point of the graphical 

marking of work to be done, unless it is part of a complete elimination of the clause 
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OR-Parallelism

Az-a Abcd

B: -b  abcd  Bbcd
AMA

Cz-c Cbcd

~l: Llnks totally Independent
'19. 4 .  Or-Parallelism

The concept of OR-parallelism in relation to PROLOG encompasses the idea that given
a (sub)goal, all matching clauses can be pursued in parallel — and indeed a set of (partial)
solutions is returned. In the PROLOG context, this set of parallel solutions can be carried
forward independently, effectively replacing backtracking.

R-parallelism is trivially modelled in the connection graph by resolving all links on a
term in parallel, producing independent resolvents and inheriting links straightforwardly
(Fig. 4).

AND-Parallelism

4444AB°°
A: - : - aB  C:—cD: -d
X: Can't remove llnks — links not used up
?: Compose comblnatlon of substltutlons

f ig .  5 .  And-Paral le l ism

AND-Parallelism in PROLOG involves solving the present set of subgoals in parallel.
This incurs the difficulty that substitutions must later be composed, and that those which
might have been far more tightly specified (e.g. detexministically instantiated) with the
PROLOG goal ordering may now find many irrelevant bindings.

In CONG the difficulty manifests itself in that the indexing function of the links cannot
be maintained, as links are only partially used.. The substitutions on the set of selected
links must be composed to produce the resolvent and inherited links. The additional
overhead required to index the partial use of links negates the point of the graphical
marking ofworktobedone, unless itispartofacomplete eliminationofthe clause
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CLAUSE Parallelism 

But the most effective use of AND-Parallelism in CONG comes about when one 
eliminates the whole clause in parallel. This eliminates the problem of indexing which 
combination of links has been used - or uses sub-indexing of highly linked clauses in a 
progressive way which precludes redundancy. And it combines OR-Parallelism into the 
solution as progress is being made through resolution with every matching clause for 
every term of the target clause, as illustrated in Fig. 6. 

A :-C 
A:- 0A:-a> a :- b<b:-C 
B:- C 

B :- a b :- C B:- 0 

Binary: Can replace by theory links 

General: Compose all AND combinations 
of substitutions and generate clauses 

F~9. 6. Clause Parallelism 

Note that, where clauses are multiply linked, that is in the one pair of clauses there is 
more than one distinct pair of linked terms, new links would normally be inherited back 
(reflecting the implicit recursion). This problem is avoided by the combination of 

orphaning and compartmentalization [powe90]. 

The composition operation logically takes place before further work on deepening the 
search, and many of the resulting combinations tend to be incompatible - that is the 
unification of substitutions during composition fails. This acts to prune the search. 

As a further special case, binary clauses can be eliminated in a totally different way by 
compilation into theory links [Ohlb90], extending the defInition of unification with a 
theory represented as a substitution tree. In combination with unit resolution and 
reformulation into at most ternary clauses, whole Horn programs can be compiled into 
unification. This approach is presently being investigated in combination with other 
optimizations of representation. 

LINK Parallelism 

The application level parallelism, that evident through having completely independent 
problem parts, or at least parts linked through a very well defmed and relatively small 
interface, is available by the straightforward observation that if two links have no clause in 
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CLAUSE Parallelism

But the most effective use of AND-Parallelism in CONG comes about when one
eliminates the whole clause in parallel. This eliminates the problem of indexing which
combination of links has been used — or uses sub—indexing of highly linked clauses in a
progressive way which precludes redundancy. And it combines OR-Parallelism into the
solution as progress is being made through resolution with every matching clause for
every term of the target clause, as illustrated in Fig. 6.

A:-a  b : -C
>a  :- b<

B:-a  b : -C

Blnary: Can replace by theory Ilnks

General: Compose all AND eomblnatlons
of substltutlons and generate clauses

Fig .  6 .  C lause  Para l l e l i sm
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Note that, where clauses are multiply linked, that is in the one pair of clauses there is
more than one distinct pair of linked terms, new links would normally be inherited back
(reflecting the implicit recursion). This problem is avoided by the combination of
orphaning and compartmentalization [Powe90].

The composition operation logically takes place before further work on deepening the
search, and many of the resulting combinations tend to be incompatible — that is the
unification of substitutions during composition fails. This acts to prune the search.

As a further special case, binary clauses can be eliminated in a totally different way by
compilation into theory links [Ohlb90], extending the definition of unification with a
theory represented as a substitution tree. In combination with unit resolution and
reformulation into at most ternary clauses, whole Horn programs can be compiled into
unification. This approach is presently being investigated in combination with other
optimizations of representation.

LINK Parallelism

The application level parallelism, that evident through having completely independent
problem parts, or at least parts linked through a very well defined and relatively small
interface, is available by the straightforward observation that if two links have no clause in
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common, there is no possibility of interference with the creation of the resolvent, the 
inheritance of the new links, or the removal of old links. 

Note that this parallelism involving independent links can be combined with clause 
parallelism with the independence condition being modified so as to allow parallel clause 
elimination only where the sets of clauses linked with each pair of clauses are disjoint. 
Again this makes best sense in combination with compartmentalization. 

zyxwa bed 

i~\ 1\ /\ t\AA/\t\ 
General: Any set of links with no clauses 

In common may be resolved In parallel 
without any Interference with link 
removal or Inheritance processes 

Corollary: Gross application level
 
parallelism may be exploited
 

Fig. 7. Link Parallelism 

Inheritance Parallelism 

The introduction of a graph, however, introduces a form of indexing overhead which 
is itself parallelizable. As illustrated in Fig. 8, the inheritance, and the composition and 
unification involved, can be performed in parallel. However, we can do better still by 
looking at the decomposition of this work of inheritance. 

aA:- a ---8 bed 

G.:O
 0 0 
la b C d I 

...J: Inheritance of new links can always
 
be done Independently In parallel
 

Fig. 8. Inheritance Parallelism 

Composition Parallelism 

The actual work involved in resolution on links is primarily the inheriting of new 
links, which in tern involves composition of substitutions using unification. Thus the 
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common, there is no possibility of interference with the creation of the resolvent, the
inheritance of the new links, or the removal of old links.

Note that this parallelism involving independent links can be combined with clause
parallelism with the independence condition being modified so as to allow parallel clause
elimination only where the sets of clauses linked with each pair of clauses are disjoint.
Again this makes best sense in combination with compartmentalization.

abcd  zyxw

' AAA/‚\ AAA/Ä
General: Any set of llnks wlth no clauses

In common may be resolved In parallel
wlthout any Interference with link
removal or  inheritance processes

Corollary: Gross application level
parallelism may be exploited

Fig. 7 .  Link Para l l e l i sm

Inheritance Parallelism

The introduction of a graph, however, introduces a form of indexing overhead which
is itself parallelizable. As illustrated in Fig. 8, the inheritance, and the composition and
unification involved, can be performed in parallel. However, we can do better still by
looln'ng at the decomposition of this work of inheritance.

b c d
't .

6.1: -

b c d

«I: Inheritance of new links can always
be done Independently in parallel

Fig. 8 .  Inheri tance  Para l l e l i sm

A:-a

a

Composition Parallelism

The actual work involved in resolution on links is primarily the inheriting of new
links, which in tern involves composition of substitutions using unification. Thus the
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parallelism represented in the AND- and OR- parallelism can be combined into Clause 
Parallelism and can be multiplied by taking advantage of Link: Parallelism, which results in 

a multiplied plethora of Inheritance Parallelism. 1bis boils down to us doing a lot of 

unification in parallel. 

ex·f3·1·0·£·~·11·9 Substitutions are by 
default composed «««ex. (3).1)·0).£)·~)·11).9) sequentlally and are 
thus left associated 

«ex. (3).(1. 0».«£ . ~).(11 . 9» If associated palrwise 
substitutions can be 
composed with only 
logarithmic delay 

. Subcomposltlons are 
reusable 

r~9. 9. Composition Parallelism 

But there are dependencies within the composition and unification work which cut 
across the other forms of parallelism. In PROLOG and its concurrent and parallel variants, 
composition would tend to be done sequentially, but as shown in Fig. 9, it can best be 
done in a pairwise parallel fashion. Clause Parallelism already allows this, because the 
AND-Parallel composition admits precisely this form of parallelization. Link: Parallelism 
excludes direct dependency. But a sequence of such parallel steps would still tend to be 
combining (composed) substitutions in a linear way. 

Trial Proofs 

Delayed Unification 

By introducing a lazy unification scheme, we can allow composition to be delayed in 
ways which allows advantage to be taken of composition parallelism. One extreme is that 
we could produce a propositional-style proof based just on the initial graph (viz. without 

. further composition of substitutions), and then check this trial-proofonce found, by using 
efficient composition parallelism. 

A blind implementation of this extreme scheme, however, eliminates the possibility of 
pruning on the way through. Whilst for some programs this may not bea problem, in 
others an explosion could occur in cases which should be deterministic. In such 

programs, most unification attempts actually fail. We want to have the failure information 
as soon as possible, but to delay the full unification expense as long as possible, and 
minimize the total expense as much as possible. 

CONG 1I: Parallelism and Unification - 13- D. M. W. Powers 

parallelism represented in the AND- and OR- parallelism can be combined into Clause
Parallelism and can be multiplied by taking advantage of Link Parallelism, which results in
a multiplied plethora of Inheritance Parallelism. This boils down to us doing a lot of
unification in parallel.

oc . f i . ' y .5 . e .§ .n .9  Substlttitlons are bx

«((«oc.ß).v).ö>.e).9.n).e) 333113333: „„
thus left associated

( (a .  B).(y. 6)).((s. 0.01 . 6)) If associated palrwise
substltutions can be
composed wlth only
Iogarlthmlc delay

' Subcomposltlons are
reusable

l'lg. 9 .  Composit ion Para l l e l i sm

But there are dependencies within the composition and unification work which cut
across the other forms of parallelism. In PROLOG and its concurrent and parallel variants,
composition would tend to be done sequentially, but as shown in Fig. 9, it can best be
done in a pairwise parallel fashion. Clause Parallelism already allows this, because the
AND-Parallel composition admits precisely this form of parallelization. Link Parallelism
excludes direct dependency. But a sequence of such parallel steps would still tend to be
combining (composed) substitutions in a linear way.

Trial Proofs

Delayed Unification

By introducing a lazy unification scheme, we can allow composition to be delayed in
ways which allows advantage to be taken of composition parallelism. One extreme is that
we could produce a propositional-style proof based just on the initial graph (viz. without

. further composition of substitutions), and then check this trial-proof once found, by using
efficient composition parallelism.

A blind implementation of this extreme scheme, however, eliminates the possibility of
pruning on the way through. Whilst for some programs this may not be 'a problem, in
others an explosion could occur in cases which should be deterministic. In such
programs, most unification attempts actually fail. We want to have the failure information
as soon as possible, but to delay the full unification expense as long as possible, and
minimize the total expense as much as possible.
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This leads to the concept of trial unification as an extension of clause indexing 
[Powe88]. If we can eliminate 99% of the non-unifiable cases with I% of the expense, 
we will make a huge saving in those cases where the failure infonnation is important, both 
in tenns of our trial proof and our eventual unification bill. If we can further use the 
infonnation gained in the trial unification to gain a head start with the actual unification, so 
much the better. And ideally as we find ourselves searching more and more explosive 
paths, it would be nice to be able to become increasingly certain that we are not predicating 
our search on afalse drop. 

And if this trial unification can be done in a way which both extends to full unification 
(and appropriately represented substitutions) and is consistent with our pairwise 
composition parallelism ideal, then we can achieve several orders of magnitude 
improvement, quite apart from the speedup directly due to parallelism. 

Trial unification requires the obtaining of some sort of approximate indication of 
unifiability based on incomplete samples or inexact associations. Fast unification requires 
some way of quickly identifying which atomic subtenns need to be compared. We show 
below how this can be achieved using indexing and hashing techniques. 

Intersected Composition 

As we have defmed it, our composition operator is not only associative but 
commutative. 

Composition parallelism exploits associativity by taking the original links, the first 
level of (weight 1) substitutions, and combining them pairwise to fonn the double weight 
substitutions of the next level, repeating until the single substitution representing the 
composition of the multiple composition task has been obtained. In general, not all of 
these paired substitutions correspond to actual links in the graph, although in general one 
multiple composition (e.g. trial proofor AND-combination) will have significant overlap 
with others. 

Thus it would be advantageous also to choose pairs to compose which are subsets of 
other required compositions. In the case of AND-combinations, this is automatic. In the 
case of trial proofs, it may be advantageous to exploit the commutativity of composition to 
allow the precise choice of which pairs to unify can be selected to be those which are 
useful in more compositions. However, again given the sequential component and tree 
structuring in the growth of partial proofs, some advantage may be had from intennediate 
substitutions found simply by the heuristic of combining substitutions of similar weight as 
they become available. 

A composition failure or substitution produced in one context can thus be made 
available for re-use when, via some other path through the graph, the same initial links are 

CONG II: Parallelism and Unification - 14- D. M. W. Powers 

This leads to the concept of trial unification as an extension of clause indexing
[Powe88]. If we can eliminate 99% of the non-unifiable cases with 1% of the expense,
we will make a huge saving in those cases where the failure information is important, both
in terms of our trial proof and our eventual unification bill. If we can further use the
information gained in the trial unification to gain a head start with the actual unification, so
much the better. And ideally as we find ourselves searching more and more explosive
paths, it would be nice to be able to become increasingly certain that we are not predicating
our search on a false drop.

And if this trial unification can be done in a way which both extends to filll unification
(and appropriately represented substitutions) and is  consistent with our pairwise
composition parallelism ideal, then we can achieve several orders of magnitude
improvement, quite apart from the speedup directly due to parallelism.

Trial unification requires the obtaining of some sort of approximate indication of
unifiability based on incomplete samples or inexact associations. Fast unification requires
some way of quickly identifying which atomic subterms need to be compared. We show
below how this can be achieved using indexing and hashing techniques.

Intersected Composition

As we have defined it, our composition operator is not only associative but
commutative.

Composition parallelism exploits associativity by taking the original links, the first
level of (weight 1) substitutions, and combining them pairwise to form the double weight
substitutions of the next level, repeating until the single substitution representing the
composition of the multiple composition task has been obtained. In general, not all of
these paired substitutions correspond to actual links in the graph, although in general one
multiple composition (e.g. trial proof or AND-combination) will have significant overlap
with others.

Thus it would be advantageous also to choose pairs to compose which are subsets of
other required compositions. In the case of AND-combinations, this is automatic. In the
case of trial proofs, it may be advantageous to exploit the commutativity of composition to
allow the precise choice of which pairs to unify can be selected to be those which are
useful in more compositions. However, again given the sequential component and tree
structuring in the growth of partial proofs, some advantage may be had from intermediate
substitutions found simply by the heuristic of combining substitutions of similar weight as
they become available.

A composition failure or substitution produced in one context can thus be made
available for re—use when, via some other path through the graph, the same initial links are
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again brought into a multiple composition - which can itself be restructured to take 
advantage of existing compositions. Moreover, the failed compositions may be used to 
identify and prune incompatible links. Any attempt to make use of this preexisting 
unification and composition information will only be reasonable if links and compositions 
are efficiently indexed and/or sorted. 

The result of using information from intersecting or subset compositions would be 
that information obtained in the checking of one trial proof could prune away part of the 
remaining resolution search space, or act as a non-link substitution at the beginning of 
subsequent parallel compositions. 

If all sub-compositions of a multiple composition were available, this would clearly 
have more potential for effective pruning than if only power-of-two weight compositions 
are performed through the use of pairwise composition to obtain composition parallelism. 
Whilst additional processors could be allocated to check other combinations, or in 
particular, other initial compositions, it is most productive to have the allocation guided by 
other parts of the connection graph procedure, and processors are therefore better allocated 
to discovering other, preferably related, trial proofs. 

Trial Unification 

Superimposed Code Words 

The key to trial unification is indexing in a way which allows a selection of bits cutting 
across the terms structure to be used to assess the potential for a match. This type of 
approach was originally introduced for database search with superimposed codes. 

Here we use a special form of hashing, the Superimposed Code Word (SCW), to 
overlay hash type codes in a word, and use a subset operation to determine if the code for 
the key we are seeking has been ordered in. This is fine for databases, but we need to 
handle both variables and term position information. Hence we have defined a special 
variant for Logic Programming applications [Wise84; Powe88]. 

Interestingly, indexing with sews can itself be construed as exploiting the parallelism 
inherent in even a single sequential processor. A processor with 32-bit data paths and 
logical operations gains advantage from superimposed coding in part because it allows 32 
logical operations to precede in parallel. 

Field Encoded Words 

In the Field Encoded Words (FEWs), we retain the subset operation, but allocate 
fields of the word to subterms down to a certain depth, and use a ternary tree for each 
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again brought into a multiple composition — which can itself be restructured to take
advantage of existing composin’ons. Moreover, the failed compositions may be used to
identify and prune incompatible links. Any attempt to make use of this preexisting
unification and composition information will only be reasonable if links and compositions
are efficiently indexed and/or sorted.

The result of using information from intersecting or subset compositions would be
that information obtained in the checking of one trial proof could prune away part of the
remaining resolution search space, or act as a non-link substitution at the beginning of
subsequent parallel compositions.

If all sub-compositions of a multiple composition were available, this would clearly
have more potential for effective pruning than if only power-of—two weight compositions
are performed through the use of pairwise composition to obtain composition parallelism.
Whilst additional processors could be allocated to check other combinations, or in
particular, other initial compositions, it is most productive to have the allocation guided by
other parts of the connection graph procedure, and processors are therefore better allocated
to discovering other, preferably related, trial proofs.

Trial Unification

Superimposed Code Words

The key to trial unification is indexing in a way which allows a selection of bits cutting
across the terms structure to be used to assess the potential for a match. This type of
approach was originally introduced for database search with superimposed codes.

Here we use a special form of hashing, the Superimposed Code Word (SCW), to
overlay hash type codes in a word, and use a subset operation to determine if the code for
the key we are seeking has been ordered in. This is fine for databases, but we need to
handle both variables and term position information. Hence we have defined a special
variant for Logic Programming applications [Wise84; Powe88].

Interestingly, indexing with SCWs can itself be construed as exploiting the parallelism
inherent in even a single sequential processor. A processor with 32-bit data paths and
logical operations gains advantage from superimposed coding in part because it allows 32
logical operations to precede in parallel.

Field Encoded Words

In the Field Encoded Words ( FEWs), we retain the subset operation, but allocate
fields of the word to subterms down to a certain depth, and use a ternary tree for each
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functor to index into tenns. This is illustrated in Fig. 10, where the saving by using this 
technique on a particular set of benchmarks (about 20 subtenns down to depth 5). 

a(b,c): a b c 
active: 01011001110101100 10010110 11010001 A1 
passive: 01011001110101100 10010110 11010001 P1 

a(X,c): a X c 
active: 01011001110101100 10010110 11010001 A2 
passive: 01011001110101100 10010110 11010001 P2 

Quick Unification Check: (A1~ B~ & (A2~ B1) 
Quick 3·Tree Indexing: left: (A1 <B~ right: (A2< B1) mid: rest 

Tree .. 0;;; .. US'1lI~ Mate
 
Sea.rch'\: 

.. < 
." ~ lint
~ 

67% 28.2% 0.5% 0.6% '"
 
l'.1g. 10. Field Encoded Words & Tree Indexing 

We now need to consider how to extend it usefully to deeper structures, and in 
particular linear structures. We should also note that by keeping the fields as powers of 

two, it is possible to do variable substitution totally with the codes. 

Unification Algorithm 
We now go on to report on some preliminary investigations on the application of 

hashing and indexing techniques to full unification. In particular, we sketch a unification 

algorithm (not yet fully implemented or specified) which has the potential for expected unit 
time unification on an expected linear number of processors. It is trivial to specify if we 
allow cubic order processors. We need very careful hashing if we hope to achieve near 
unit unification on linear processors or unit unification on near linear processors. 

In trying to develop an algorithm for unit-time unification on a number of processors 
linear in the size of the problem, we are dealing with a task which is known to be 
impossible in the general case [Dwor84] - which even in the cases which are not 
pathological still requires careful treatment. 

In the following we spend some time exploring the possibilities for hashing and show 

that given perfect hashing we can fmd some simple characterizations of the conditions 

under which parallel unification exhibits particular worst case orders. We further show 
how to develop a hashing function which we would expect to provide unit-time association 
on regular logic programming examples, leading to an "expected" unit-time unification 
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functor to index into terms. This is illustrated in Fig. 10, where the saving by using this
technique on a particular set of benchmarks (about 20 subterms down to depth 5).

a (b , c ) :  a b c
active: 01011001110101100 10010110 11010001 A1
passive: 01011001110101100 10010110 11010001 P1

a(X,c) :  a X c
active: 01011001110101100 10010110 11010001 A2
passive: 01011001110101100 10010110 11010001 P2

Qulck Unmcatlon Check: (A1932) & (A2; B1)
Qulck 3-Tree Indexlng: left: (A1<Ba  right: (A2< B1) mid: rest

Tree > _ c _ Unity Make
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Fig .  10 .  F i e ld  Encoded Words & Tree Indexing

We now need to consider how to extend it usefully to deeper structures, and in
particular linear structures. We should also note that by keeping the fields as powers of
two, it is’possible to do variable substitution totally with the codes.

Unification Algorithm
We now go on to report on some preliminary investigations on the application of

hashing and indexing techniques to full unification. In particular, we sketch a unification
algorithm (not yet fully implemented or specified) which has the potential for expected unit
time unification on an expected linear number of processors. It is trivial to specify if we
allow cubic order processors. We need very careful hashing if we hope to achieve near
unit unification on linear processors or unit unification on near linear processors.

In trying to develop an algorithm for unit-time unification on a number of processors
linear in the size of the problem, we are dealing with a task which is lmown to be
impossible in the general case [Dwor84] — which even in the cases which are not
pathological still requires careful treatment.

In the following we spend some time exploring the possibilities for hashing and show
that given perfect hashing we can find some simple characterizations of the conditions
under which parallel unification exhibits particular worst case orders. We further show
how to develop a hashing function which we would expect to provide unit-time association
on regular logic programming examples, leading to an “expected” unit-time unification
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algorithm (in the sense that pathological examples are by definition "unexpected", but 
without defIDing how we would characterize the probability of a particular tenn structure). 

Hashed Unification 

The answer to the problem of deep and linear structures is to use another fonn of 
hashing: hashing of the tenns into field positions.of the FEW. This extends the capability 
to an extent. To go further would clearly require more bits, as we simply don't have 
enough infonnation. When we add the capability of extension, of adding these extra bits, 
we have the possibility of extending to exact unification. Or looking at in from the point of 
view of parallel unification, if we can hash our tenns into processor space so that subterms 
in corresponding positions hash into the same processor, we have the capability of 
performing a large class of unifications in unit time, and another large class in logarithmic 
time. Or looking at it yet another way, we want to associate corresponding heap addresses 
for the two terms (or sequences oflefts and rights). 

Ifwe can do this association in unit time, then in unit time we can do simple matching 
of ground structures or tenns without repeated variables. The problems related to 
association or hashing are illustrated in Fig. 11 and the inherent linear and logarithmic 
nature of some unification problems are illustrated Fig. 12. 
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rig. 11. Worst Case Example for Unification Hashing 

In Fig. 11, we see the problems of attempting to hash tenns simply by depth. H the 
actual bit detennining whether a left or right position is being occupied occurs either in the 
addressing or the content of a hash entry, unambiguous matching of degenerate (viz list) 
structures is possible. However, all of these degenerate structures can also match against 
the balanced structure of the same depth. Thus we want to match a term linear in the depth 
of the tree with another term exponential in the depth of the tree, and in general mapping, 
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algorithm (in the sense that pathological examples are by definition “unexpected”, but
without defining how we would characterize the probability of a particular term structure).

Hashed Unification

The answer to the problem of deep and linear structures is to use another form of
hashing: hashing of the terms into field positionsof the FEW. This extends the capability
to an extent. To go further would clearly require more bits, as we simply don’t have
enough information. When we add the capability of extension, of adding these extra bits,
we have the possibility of extending to exact unification. Or looking at in from the point of
view of parallel unification, if we can hash our terms into processor space so that subterrns
in corresponding positions hash into the same processor, we have the capability of
performing a large class of unifications in unit time, and another large class in logarithmic
time. Or looking at it yet another way, we want to associate corresponding heap addresses
for the two terms (or sequences of lefts and rights).

If we can do this association in unit time, then in unit time we can do simple matching
of ground structures or terms without repeated variables. The problems related to
association or hashing are illustrated in Fig. 11 and the inherent linear and logarithmic
nature of some unification problems are illustrated Fig. 12.

Problem: Term skeletons of order N may take many forms
and several may match the same tree of order exp(N).

|7| a(X, b(Y‚ C(Z‚  d)»  and a(b(c(d, Z), Y), X)

both match
I15| a(b(c(d,d)‚ °(d‚d))‚ b(°(d‚  d) .  °(d‚d)))
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Fig .  11 .  Worst Case Example for Unif ication Hashing

In Fig. 11, we see the problems of attempting to hash terms simply by depth. If the
actual bit determining whether a left or right position is being occupied occurs either in the
addressing or the content of a hash entry, unambiguous matching of degenerate (viz list)
structures is possible. However, all of these degenerate structures can also match against
the balanced structure of the same depth. Thus we want to match a term linear in the depth
of the tree with another term exponential in the depth of the tree, and in general mapping,
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even superimposing, the balanced tree into a table bounded according to its depth loses too 
much information. 

But not always! Note that if the b's, c's and d's in Fig. 11 are actually the same, 
folding to the same hash position is no clash. But, ifeven just the d's are distinct we must 
use some method such as a common index and replace them by pointers (instantiated 

variables) to an overflow area. If we do this at every level we have no gain over 
descending the term nonnally. 

Another alternative is to hash into a balanced tree structure linear in the size of the 
tenn, but then tenns of degenerate structures won't have addresses in the hash table which 
correspond to those to which occur in the same position in the balanced tree of the same 
depth. We we both schemes the worst cases involve a mismatch of the order of the table 
and the tree we are trying to hash into it. 

A separate problem is that the attempt to associate keys based on the sequences of lefts 
and rights (or indexes into a virtual heap) must recognize that the length of these keys (or 
virtual) addresses is linear in the case of the degenerate term, and that we can no longer 
hide behind the charitable assumption that we can manipulate addresses in unit time ­
which we do when they are logarithmic in the size of our data structures, as is the case 
with the balanced tree. An associative memory looks for one key amongst n in linear time, 

and involves n active memory units in doing so. To match n such keys simultaneously 

requires n of these, and by the time we take into account that the match involves n bits, we 
are up to a n3processing units! 

The linear length of our keys is of course still a problem even if we were to use special 

hardware and/or language features (0 la Linda). 

Even during hashing, we must be careful that we don't try to use an n bit quantity. 

In view of all of these pitfalls, we must be very careful to choose a hash function 
which is perfect for the sort of structures which are likely to occur. Moreover, we would 

like to ensure that dependencies between addresses in a structure are minimized by 

ensuring that a clash at one point in the tree doesn't imply it continues for all descendants 
of a node. But unless we take into account every bit of the address key, the bit which is 
omitted could be the only one which is different between two keys, and all subtrees 
subtended by them. 

Note, moreover, that in many practical cases the functors (and arities) of the interior 

nodes are identical, and it is thus sufficient to ensure that the leaves can be matched 
effectively. Indeed, any structure can be mapped into a binary tree, thus ensuring 
satisfaction of the condition for such leaf matching. 
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even superimposing, the balanced tree into a table bounded according to its depth loses too
much information.
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use some method such as a common index and replace them by pointers (instantiated
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A separate problem is that the attempt to associate keys based on the sequences of lefts
and rights (or indexes into a virtual heap) must recognize that the length of these keys (or
virtual) addresses is linear in the case of the degenerate term, and that we can no longer
hide behind the charitable assumption that we can manipulate addresses in unit time -
which we do when they are logarithmic in the size of our data structures, as is the case
with the balanced tree. An associative memory looks for one key amongst n in linear time,
and involves n active memory units in doing so. To match n such keys simultaneously
requires n of these, and by the time we take into account that the match involves n bits, we
are up to a n3 processing units!

The linear length of our keys is of course still a problem even if we were to use special
hardware and/or language features (d la Linda).

Even during hashing, we must be careful that we don’t try to use an n bit quantity.

In view of all of these pitfalls, we must be very careful to choose a hash function
which is perfect for the sort of structures which are likely to occur. Moreover, we would
like to ensure that dependencies between addresses in a structure are minimized by
ensuring that a clash at one point in the tree doesn’t imply it continues for all descendants
of a node. But unless we take into account every bit of the address key, the bit which is
omitted could be the only one which is different between two keys, and all subtrees
subtended by them.

Note, moreover, that in many practical cases the functors (and arities) of the interior
nodes are identical, and it is thus sufficient to ensure that the leaves can be matched
effectively. Indeed, any structure can be mapped into a binary tree, thus ensuring
satisfaction of the condition for such leaf matching.
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And then, not only must different size structures be able to match specified parts of the 
different sized hash tables, but the unifying substitutions and/or the unified terms must be 
made available in hash table form for subsequent use by the algorithm. In the ftrst case, 
this limits the extent to which we can pervert the actual values for the depth of a term, if we 
aim at hashing into a table linear in depth. In the second case, there is the problem of the 

redundant representation upon instantiation of multiple variables (as we have given up the 

advantages of a DAG). We look at this later on. 

As a fmal comment on the question of hashing and association, we note that it is 
possible to superimpose the entries destined for a hash address in the event of a clash, and 
to have additional structures which store the two variants for checking if the imprecise 

subset-matching uniftcation succeeds - viz. applying ideas from FEWs again. IT we 

introduced tables of double the size after each clash, we would end up with a number of 

passes logarithmic in the maximum numb~r of clashes at anyone hash address, and an 
squared order worst case memory overhead. 

Sliced Unification 

But before we turn to the development of a hash function, let us look at the other use 
we want to make of these hash tables. We not only want to perfonn full unification in unit 
tiIDe (when the processor resources are available and the problem complexity allows), but 

to do trial unification which gives a fITst approximation of uniftability and aims to detect 
unification failure as soon as possible. 

By actually using only one random bit of each row of the tree in Fig. 11, a bit slice, 

we achieve matching of two degenerate ground structures (like the 171 examples). with a 
probability of not detecting nonuniftability which reduces exponentially in the depth of the 

tree. This probability itself reduces exponentially with each subsequent bit slice we take. 

Thus with depth d and taking b bits the probability of detecting an inequality is (1-2bd). 
When b actually is the full number of bits required to represent the symbols, the 

probability is that of them not actually being equal, and failure to detect an inequality 
therefore is a guarantee of unifiability (remembering that in this ground case life is not 

complicated by multiple variables and occur checks). 

Thus providing we can slice through the terms, we can approach full matching as 
closely as desired. With enough processors, linear in the total number of bits in the terms, 

we can establish the match in unit time. Where there are variables, by adopting the same 
technique as for variables in the PEWs, we can again have a match in unit time. Since we 

can also establish the proposed bindings for variables, we can then continue with a 

pairwise unification of repeated variables as illustrated in Fig. 12. 
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And then, not only must different size structures be able to match specified parts of the
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made available in hash table form for subsequent use by the algorithm. In the first case,
this limits the extent to which we can pervert the actual values. for the depth of a term, if we
aim at hashing into a table linear in depth. In the second case, there is the problem of the
redundant representation upon instantiation of multiple variables (as we have given up the
advantages of a DAG). We lo‘ok at this later on.

As a final comment on the question of hashing and association, we note that it is
possible to superimpose the entries destined for a hash address in the event of a clash, and
to have additional structures which store the two variants for checking if the imprecise
subset-matching unification succeeds - viz. applying ideas from FEWs again. If we
introduced tables of double the size after each clash, we would end up with a number of
passes logarithmic in the maximum number of clashes at any one hash address, and an
squared order worst case memory overhead:

Sliced Unification

But before we turn to the development of a hash function, let us look at the other use
we want to make of these hash tables. We not only want to perform full unification in unit
time (when the processor resources are available and the problem complexity allows), but
to do trial unification which gives a first approximation of unifiability and aims to detect
unification failure as soon as possible.

By actually using only one random bit of each row of the tree in Fig. 11, a bit slice,
we achieve matching of two degenerate ground structures (like the WI examples). with a
probability of not detecting nonunifiability which reduces exponentially in the depth of the
tree. This probability itself reduces exponentially with each subsequent bit slice we take.
Thus with depth d and taln‘ng b bits the probability of detecting an inequality is 0—2“).
When b actually is the full number of bits required to represent the symbols, the
probability is that of them not actually being equal, and failure to detect an inequality
therefore is a guarantee of unifiability (remembering that in this ground case life is not
complicated by multiple variables and occur checks).

Thus providing we can slice through the terms, we can approach full matching as
closely as desired. With enough processors, linear in the total number of bits in the terms,
we can establish the match in unit time. Where there are variables, by adopting the same
technique as for variables in the FEWs, we can again have a match in unit time. Since we
can also establish the proposed bindings for variables, we can then continue with a
pairwise unification of repeated variables as illustrated in Fig. 12.

CONG II: Parallelism and Unification - l9  - D. M. W. Powers



Characterization of Unification 

These hashed unification and sliced unification algorithms leads to unit, logarithmic 
and linear parallel unification complexity for the algorithm, depending on various features 

of the terms which we now proceed to characterize. 

p(X,X, X,X) & p(a(...), a(...), a(...), a(...». Log Case 

p X X X X 

P 8 •.. 8 ... a.•• 8 .•. 

p(X, X) & p(f(Y, V), f(g(Z, Z), g(a,b». Linear Case 

p X X 

P f y y f 9 Z Zg 8 b 

Fig. 12. Log and Linear Cases wi th Perfect Hash 

In general, the algorithm will be worst case unit if there are no repeated variables, 

logarithmic in the maximum number of repetitions of a variable and linear in the number of 
distinct repeated variables, as illustrated in the example of Fig. 12. The logarithmic results 

arises from the possibility of dealing with the multiple instances of a variable pairwise as 

separate unification problems. The linear limit is a sequential result, and the example of 

Fig. 12 show that this algorithm does exhibit linear behaviour on this case. The unit result 

in the absence of repeated variables is a trivial consequence of perfect hashing - but note 

that some schemes introduce additional pointers when the hashing is not perfect. 

The hashing scheme explained below (see Fig. 13) has been designed so as to be 

perfect for most common, and in particular regular, sparse (towards degenerate) or dense 

(towards balanced) subterm allocations. 

Development of a Hash Function 

The first observation to be drawn from our discussion above is that a hashing function 

which is optimized for sparse trees will be worst c~e for balanced trees, and vice-versa. 

But our superimposing concept allows us still to derive some information in either of these 

mismatch situations. Furthermore it is straightforward to add an additional bit to warn of a 

clash, or even a field to track them number of clashes or maintain an overflow list, as in 

traditional hash tables. 

But failure to detect a clash means that matching of the hash tables is completely 

reliable. Thus if we has into two tables, one optimized for the more balanced tree, and one 

for the more degenerate, we know that if either fails to note a clash, the unification has 

been reliable. 
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Characterization of Unification

These hashed unification and sliced unification algorithms leads to unit, logarithmic
and linear parallel unification complexity for the algorithm, depending on various features
ofthe terms which we now proceed to characterize.

p(X. X. X. X) & p(a(...), a(...), a(...), a(...)). Log Case
p X X X X
p a . . .  a . . .  a . . .  a . . .

P(X. X) & P(f(Y‚ Y). f(9(Z‚ Z). 9(a.b))- Linear Case
p X x
P t Y Y f g z Zg  a b

Fig .  12 .  Log and Linear Cases with Perfect Hash

In general, the algorithm will be worst case unit if there are no repeated variables,
logarithmic in the maximum number of repetitions of a variable and linear in the number of
distinct repeated variables, as illustrated in the example of Fig. 12. The logarithmic results
arises from the possibility of dealing with the multiple instances of a variable pairwise as
separate unification problems. The linear limit is a sequential result, and the example of
Fig. 12 show that this algorithm does exhibit linear behaviour on this case. The unit result
in the absence of repeated variables is a trivial consequence of perfect hashing — but note
that some schemes introduce additional pointers when the hashing is not perfect.

The hashing scheme explained below (see Fig. 13) has been designed so as to be
perfect for most common, and in particular regular, sparse (towards degenerate) or dense
(towards balanced) subterm allocations.

Development of a Hash Function

The first observation to be drawn from our discussion above is that a hashing function
which is optimized for sparse trees will be worst case for balanced trees, and vice—versa.
But our superimposing concept allows us still to derive some information in either of these
mismatch situations. Furthermore it is straightforward to add an additional bit to warn of a
clash, or even a field to track them number of clashes or maintain an overflow list, as in
traditional hash tables.

But failure to detect a clash means that matching of the hash tables is completely
reliable. Thus if we has into two tables, one optimized for the more balanced tree, and one
for the more degenerate, we know that if either fails to note a clash, the unification has
been reliable.
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But note too, that if a structure is close to one or other extreme, the ratio of the actual 
size of the tree to the size of either the degenerate or balanced tree must be close to 1. If 
we allocate space for a table generously whenever the ratio is bounded by some constant, 
then (given an appropriate hash function) the most common and regular structures should 
avoid clashes in that table. Furthermore, if overflow structures are developed in the form 
of addition of new variables, local balance or linearity can be taken into account at the cost 

of an additional time step. 

Heap addresses Left-O Right-1 addresses Sum Hash (Left-Right) 

1 0 0 

10 11 00 01 0 1 

100 101 110 111 000 001 010 011 0 1 1 2 

4 x Sum + Depth Hash 4 x Depth + Sum Hash Depth Hash 

1 4 0 

2 6 8 9 1 1 

3 7 7 11 12 13 13 14 2 2 2 2 

Fig. 13. Examples of hash function for unification. 

This optimization is illustrated in Fig. 13, working towards a list optimal hash 
function. Here we note that allocation of a key either as an index into a heap or as a left­
right string is equivalent - within a bit. In the first case the ftrst bit is always a I, in the 
second a O. The ftrst gives all positions distinct for a balanced tree, the second all leaves 
distinct. The sum of the bits is the same ± 1 (taking into account the ftrst bit). The 
number of clashes in the leaves is distributed normally (the number of clashes is given by 
the binomial coefficients), and there are also additional clashes taking interior nodes into 
account. The depth hash has all leaves clashing, indeed all leaves at the same depth but 
none between different depths. 

The example continues with the supposition that the structure actually contains about 
four times as many elements as the depth, and shows two ways of combining the basic 
hashes so as to combine the favourable features. We cannot expect to eliminate clashes 
amongst the elements of a level in this way, as the number of clashes in a level is still 
basically exponential in its depth and. hence the size of the table. However, note that 
(within the size of the table represented) all lists can be represented without clash (for 
either interior or exterior nodes), and that the most likely cases of bifurcating degeneracy 
can also be represented (viz. both second level positions can subtend lists of the same 
type). 
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This optimization is illustrated in Fig. 13, working towards a list optimal hash
function. Here we note that allocation of a key either as an index into a heap or as a left-
right string is equivalent - within a bit. In the first case the first bit is  always a 1, in the
second a 0 .  The first gives all positions distinct for a balanced tree, the second all leaves
distinct. The sum of the bits is the same :|: 1 (taking into account the first bit). The
number of clashes in the leaves is distn'buted normally (the number of clashes is given by
the binomial coefficients), and there are also additional clashes taking interior nodes into
account. The depth hash has all leaves clashing, indeed all leaves at the same depth but
none between different depths.

The example continues with the supposition that the structure actually contains about
four times as many elements as the depth, and shows two ways of combining the basic
hashes so‘ as to combine the favourable features. We cannot expect to eliminate clashes
amongst the elements of a level in this way, as the number of clashes in a level is still
basically exponential in its depth andhence the size of the table. However, note that
(within the size of the table represented) all lists can be represented without clash (for
either interior or exterior nodes), and that the most likely cases of bifurcating degeneracy
can also be represented (viz. both second level positions can subtend lists of the same
t)’P¢)~
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To handle the need for compatibility among different sized structures, as well as rapid 
copying and expansion upon substitution, it is helpful to increase the allocated size to a 
power of two.as we did with the FEW. This introduces at most a factor of two additional 
overhead. H we allocate copies at all smaller powers of two, with clashes superimposed, 
then we have for the cost of another power of two a family of faster approximations, and 
compatibility with all smaller structures. Or we can simply define matching routines which 
virtually reduce the table to the appropriate size for a given match. We can similarly 
arrange for slices of these tables to be obtained virtually for trial unification. 

Finally, we point out that the number of processors required for the detection of the 
occasional clash and its resolution, along with the logarithmic and linear overheads 
resulting from examples with multiple variable, usually do not require.the full ,?rder of 
processors for their completion, and that this can be perfonned in parallel with other work 
not dependent on full knowledge of the resulting substitution. 

Hashed Composition 

Now the question is whether we can handle composition and ensure that results of the 
unification are presented in a fonn appropriate to subsequent unification. The case where 
the unified term is no larger than its parents is straight forward, as processors have already 
been allocated.to these terms. When it grows, we need to ensure that the appropriate 
copying takes place. This, like the original set up of the terms, requires that the 
information about where subterms will end up re~ches the appropriate processors for 
copying. Because we deal with multiple unifications pairwise, we can be sure that each 
term will not need to be multiply copied because of repeated variables. And the 
propagation through multiple variables is already linear. Thus the copying can be achieved 
without worsening the order of the algorithm. 

Asking Uncle 

The parallel traversing and in situ placement of the elements of an arbitrary tree 
structure can be performed by linear order proce~sors in logarithmic time. This is by 
application of techniques well known in parallelism for dealing with linked lists. 

This algorithm involves having each algorithm pass back or forward information 
successively to its immediate parent, (one generation), its grandparent (two generations), 
and all its other ancestors a power of two removed. This information includes the number 
of known levels of descendants/ancestors, and whether that information is complete. Thus 
after time logarithmic in the depth of the tree (that is, if degenerate logarithmic in the size of 
the structure, and if balanced logarithmic in the logarithm of that size), the number of 
levels of descendants/ancestors is known. 

In the case of a CONG tenn, there is the possibility of termination in a variable as well 
as termination with an atom (such as nil). Thus there are three cases which can be stored 
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processors for their completion, and that this can be performed in parallel with other work
not dependent on full lmowledge of the resulting substitution.
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Now the question is whether we can handle composition and ensure that results of the
unification are presented in a form appropriate to subsequent unification. The case where
the unified term is  no larger than its parents is straight forward, as processors have already
been allocated.to these terms. When it grows, we need to ensure that the appropriate
copying takes place. This, like the original set up of the terms, requires that the
information about where subterms will end up reaches the appropriate processors for
copying. Because we deal with multiple unifications pairwise, we can be sure that each
term will not need to be multiply copied because of repeated variables. And the
propagation through multiple variables is already linear. Thus the copying can be achieved
without worsening the order of the algorithm.

Asking Uncle '
The parallel traversing and in situ placement of the elements of an arbitrary tree

structure can be performed by linear order processors in logarithmic time. This is by
application of techniques well known in parallelism for dealing with linked lists.

This algorithm involves having each algorithm pass back or forward information
successively to its immediate parent, (one generation), its grandparent (two generations),
and all its other ancestors a power of two removed. This information includes the number
of known levels of descendants/ancestors, and whether that information is  complete. Thus
after time logarithmic in the depth of the tree (that is, if degenerate logarithmic in the size of
the structure, and if balanced logarithmic in the logarithm of that size), the number of
levels of descendants/ancestors is lmown.

In the case of a CONG term, there is the possibility of termination in a variable as well
as termination with an atom (such as nil). Thus there are three cases which can be stored
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in a trit called UNCLE: UNComputed, Longer (variable termination) and Exact (nil 

tennination). It is recommended that this trit, along with the number of descendants 
currently known, be not only calculated during hashing, but stored permanently with 
subterms and variable bindings. 

This not only allows faster determination of composed structures, but is useful itself 
as a quick unification check, the UNCLE check. In this check, two constraints are available 
for quick determination: Exact pairs must compare exactly; Exact terms must be at least as 
long as Longer terms (or UNComputed terms). 

This check is extremely useful in the Compartmentalized Connection Graph as it is 
usually sufficient to prevent Pseudoresolution proceeding beyond what is necessary for the 
problems at hand. 

Application 

The Compartmentalized Connection Graph has been applied, as presently 
implemented, to a small number of standard PROLOG benchmarks. Furthermore some of 
these benchmarks have been analyzed in relation to their behaviour under the further 
techniques of this paper - in particular the ability to match lists in unit time and unfold 
recursion in unit time. 

One of these standard algorithms is QuickSort. As no standard sequential sorting 
algorithm was known to be amenable to optimal speed up through parallelization, it was a 
surprise to discover that our analyses predicted that running QuickSort on CONG using the 
techniques described here will in fact produce linear speedup given linear processors. To 
verify this quickly, in the absence of a version of CONG implementing the parallel 
unification, the predicted behaviour was further analyzed and used to design a 
conventional in situ style parallel sorting algorithm which did indeed demonstrate this 
behaviour [powe89]. 

Further analysis, tracing through the maze of unifications, developed an even more 
efficient version based on linked lists [powe9l]. We will report on the analysis of the 
CONG performance of QuickSort in due course. 
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in a trit called UNCLE: UNComputed, Longer (variable termination) and Exact (nil
termination). It is  recommended that this trit, along with the number of descendants
currently known, be not only calculated during hashing, but stored permanently with
subterms and variable bindings.

This not only allows faster determination of composed structures, but is useful itself
as a quick unification check, the UNCLE check. In this check, two constraints are available
for quick determination: Exact pairs must compare exactly; Exact terms must be at least as
long as Longer terms (or UNComputed terms).

This check is extremely useful in the Compartmentalized Connection Graph as it is
usually sufficient to prevent Pseudoresolution proceeding beyond what is necessary for the
problems at hand.

Application
The Compartmentalized Connection Graph has been applied, as presently

implemented, to a small number of standard PROLOG benchmarks. Furthermore some of
these benchmarks have been analyzed in relation to their behaviour under the further
techniques of this paper — in particular the ability to match lists in unit time and unfold
recursion in unit time.

One of these standard algorithms is QuickSort. As no standard sequential sorting
algorithm was known to be amenable to optimal speed up through parallelization, it was a
surprise to discover that our analyses predicted that running QuickSort on CONG using the
techniques described here will in fact produce linear speedup given linear processors. To
verify this quickly, in the absence of a version of CONG implementing the parallel
unification, the predicted behaviour was further analyzed and used to design a
conventional in situ style parallel sorting algorithm which did indeed demonstrate this
behaviour [Powe89].

Further analysis, tracing through the maze of unifications, developed an even more
efficient version based on linked lists [Powe9].]. We will report on the analysis of the
CONG performance of QuickSort in due course.
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