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Abstract 

Until now, expert systems only have been little successful in planning and construction domains. Es
pecia.lly, when optimal solutions are required they fail. On the other side, algorithmic methods proposed 
in the field of Operations Research only work on single problems, or if designed for a wider range of 
problems, are highly inefficient. In this paper we show that some of this problems can be avoided by 
combining the techniques of expert systems and Operations Research. 

The system proposed in this paper generates an optimal solution to a construction problem in two 
phases. In the first stage the given concrete problem will be mapped to a mathematical problem; in the 
second stage an algorithm is applied to this problem and the result is transformed back by the expert 
system and presented to the user. 

Introduction 

The construction process in general has a determining influence on the costs of a future product. For this 
reason already many different approaches using optimization algorithms were presented to improve the re
sults of this process. In the field of Operations Research several solutions to different domains like scheduling 
and storekeeping were suggested. Well-known algorithms like "linear programming" and "dynamical opti
mization" yield optimal solutions to formally specified problems. Nevertheless, several serious restrictions 
prevent them from successful applications: 

•	 Mostly, reasonable efficient methods insufficiently reflect reality; additional expressive power, e.g. to 
ensure integer solutions, discards this efficiency. Additionally, the majority of the OR-algorithms are 
already at least NP-complete in their unmodified version. 

•	 Human experts in construction and planning hardly use algorithms of this kind themselves and therefore 
refuse to cooperate with systems they cannot understand. 

Expert systems represent an alternative way of solving such problems. Like a human expert, expert systems 
use individual properties of a given problem to reduce the overall complexity of this kind of problems. In 
contrast to the OR-Systems where the knowledge is coded implicitly in the particular algorithms, expert 
systems contain an explicit representation of knowledge which is more comprehensive and allows to cover 
a broader range of problems. However, the system has to extract the procedure of solving a particular 
problem from this knowledge, which can result in various, perhaps rather inefficient methods. Therefore the 
performance of expert systems heavily depends on the knowledge about the reduction of the complexity. 
Expert systems are successful in domains where such kind of knowledge can easily be obtained. 

Additionally, expert systems yield explanations of their behavior which correspond to the methods the 
experts use themselves. This improves the cooperation between the expert and the system. 

Frequently, these two approaches are regarded competing and mutual exclusive. First, this point of view 
cannot be supported by their original intention, since OR-methods are used to cope with problems man 
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cannot handle very well, while expert systems simulate human behavior, and therefore, in a first step, 
cannot exceed them. Second, it prevents from a perhaps beneficial amalgamation. 

The following sections present a system for construction and conception of mechanical devices. The system 
is divided in two parts: an expert system and an optimizing algorithm. The expert system part has to 
extract wishes and demands from the engineer to build up an optimizing problem which can be given to the 
second part. To perform this task the expert system uses different types of knowledge: general technical 
knowledge and knowledge about the special problem as well as knowledge about the algorithms used by the 
second part. 

2 Conceptional tasks in technical applications 

The process of construction in mechanical engineering can be subdivided in the following four phases: 

•	 First, during planning, the requirements on the product which is to be constructed, and its overall 
function have to be defined. 

•	 Based on this analysis, during conception, primitive functions and their realizations have to be 
determined. 

•	 During design further decisions like geometrical order have to be made. 

•	 During the last phase, detailing, all informations which are necessary for production are added to the 
design. 

At present, only the last two stages of this process are partly supported by the computer. Since many 
important decisions relevant for the whole process of construction have to be made in the first stage, this is 
especially regrettable. 

2.1 The problem 

Designing a complex technical device means to propose a technical realization for a given set of require
ments. Additionally, as much as possible certain wishes have to be considered. In technical domains 
requirements mostly are stated as a functional description with given properties or constraints. These 
requirements necessarily have to be fulfilled by the final product. Wishes, however, are goals of any op
timization performed during construction. Therefore the system has to perform two main tasks: first, all 
requirements and wishes have to be ascertained from the user; second, a satisfactory realization has to be 
generated. 

2.2 The solution 

To solve this problem properly the system proceeds in the following manner: Starting at the initial set of 
functions, the abstract representation of the requirements stated above, a stepwise refinement of the functions 
is performed recursively. The decomposition stops whenever a technical device can be found which yields 
the function considered currently. During this process all necessary information, like wishes and properties, 
are asked from the user. 

To proceed in that way the system needs several types of knowledge: 

•	 Knowledge about the decomposition of functions. 
A function may be related to one or more subfunctions, which, if assembled in a proper way, will exactly 
yield the original function. Additionally, some new constraints may be added to the subfunctions. 
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•	 Knowledge about the technical realizations of functions. 
Every primitive function is related to several technical devices which perform this function. These so
called technical realizations can be differentiated by the properties they have and that are required 
by the functions. 

Every function either has a technical realization or can be decomposed into subfunctions. 

•	 Knowledge about incompatibilities of technical realizations. 
Some technical devices are mutual exclusive. To avoid inconsistent solutions the systems has to know 
about them. 

•	 Knowledge about objects and their properties. 
Besides the relations between the objects the system has to know the objects themselves and their 
individual properties. 

The method sketched in this section basicly reflects the expert system IDA (Intelligent Design Assistant) for 
which a more detailed description can be found in [Kratz 89]. 

2.3 The conception of fixture elements 

An example for a problem like described above is the construction of fixture elements. During processing a 
working piece has to be hold in a certain position to allow the necessary operations; simultaneously, resulting 
forces have to be absorbed. Fixtures in general consist of several fixture elements which fix the working piece 
at different positions. 

The general functionality is presented in figure 1. It can be subdivided into six, partially optional sub
functions. Goals of optimization are size, weight and costs; properties which have to be met by the chosen 
technical realizations are precision, forces which have to be absorbed, etc. Every function is related to several 
technical realizations as it is shown in figure 2. 

3 The expert system approach 

As a rule, problems with synthetical characteristics are formalized as search problems defined on a state 
space of (partial) solutions. The main task is either to find any complete solution or the optimal solution1. 

Therefore systems designed to solve such problems can be characterized by the following points: 

•	 The knowledge is mainly attached to so-called objects. This can be regarded as true for structural 
knowledge which describes the "world" as well as for procedural knowledge which describes the methods 
to proceed within this world. 

•	 Dependencies between objects can be represented by so-called constraints; constraints constitute valid 
combinations of parameter values or subcomponents. 

•	 To allow retraction of decisions which have been shown to be wrong, either in the sense of consis
tency or optimality, a "truth maintenance system" has to maintain dependencies between values and 
objects. Presently, most systems employ some restricted mechanism, which only allows chronological 
backtracking, rather than dependency directed backtracking [DeKleer 86]. 

In general it can be said that until now the representation of the domain knowledge, i.e. the structural 
knowledge, has been regarded as essential. The procedural knowledge is mainly hidden in the inference 
engine, which mostly is a general purpose engine. Therefore serious problems concerning efficiency occur. 

1 In this context one usually has to discuss the notion of optimality. We will not go into this discussion here for two reasons. 
First, in technical domain many of the problems like evaluating of properties do not arise; second, reInaining probleIns like 
contrary optilnization goals have not really been tackled by expert systems so far. 
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Figure I: Functional decomposition of a fixture element 

3.1 Construction viewed as constraint satisfaction 

Most of todays systems are concerned with searching for "any" complete and permissible solution 
[Owsnicki-Klewe 88]. Especially in the early stages of the expert system research systems which employ 
deterministic search were realized; XCON (RI) [McDermott 80] was one of the first of this kind. 

Unfortunately, in reality most problems require an indeterministic search method, because interactions 
between different parts of the solution cannot be predicted whenever it is necessary. Therefore all alternatives 
concerning every past decision have to be maintained to allow backtracking whenever a failure occurs. To 
identify the real cause of such a failure, the system also has to maintain all dependencies and preconditions 
of any object or value. 

3.2 Construction viewed as an optimization problem 

To solve problems of the second type, i.e. problems which require some kind of optimal solution, systems we 
described above are "augmented" twice: 

• If a decision has to be made, the system chooses the more promising alternative. Since almost every 
system employs a decompositional method of generating the solution, this only yields an optimal 
solution if it is the sum of the optimal solutions of the partial problems. 
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Figure 1: Functional decomposition of a fixture element

3 .1  Construct ion viewed as constraint satisfaction

Most of todays systems are concerned with searching for “any” complete and permissible solution
[Owsnicki—Klewe 88]. Especially in the early stages of the expert system research systems which employ
deterministic search were realized; XCON (R1) [McDermott 80] was one of the first of this kind.
Unfortunately, in reality most problems require an indeterministic search method, because interactions
between different parts of the solution cannot be predicted whenever it is necessary. Therefore all alternatives
concerning every past decision have to be maintained to allow backtracking whenever a failure occurs. To
identify the real cause of such a failure, the system also has to maintain all dependencies and preconditions
of any object or value.

3.2 Construction viewed as an optimization problem

To solve problems of the second type, i.e. problems which require some kind of optimal solution, systems we
described above are “augmented” twice:

. If a decision has to  be  made, the system chooses the more promising alternative. Since almost every
system employs a decompositional method of generating the solution, this only yields an optimal
solution if it is the sum of the optimal solutions of the partial problems.
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Figure 2: Technical Realizations of "power transmission" 

•	 Backtracking also becomes activated whenever a (partial) solutions is reached which seems to be worse 
than another more promising one. This is some kind of top level description of the well-known A*
Algorithm [Nilsson 80]. 

Systems which behave in that way are only of little success. The assumptions made by them are only 
seldomly justified by real problems. Especially the second one mostly fails, because it requires, that there 
are no interactions between any partial problems at any level. If there are any interactions which is the rule 
in technical construction problems, predictions made by the system tend to be wrong. As a consequence, 
either suboptimal solutions are provided or an exhaustive search has to be performed. 

Optimizing systems in construction 

Looking at the facts stated so far, successful expert system applications in this domain seem rather unlikely. 
But these facts only form the surface of the underlying problem; the problem of the lack of real expert 
knowledge. Therefore expert systems which exclusively base on expert knowledge obviously have to be 
shaky. As we stated above, the main deficiency is the lack of procedural knowledge, which at first, results 
in an oversimplified behavior of the experts, and finally led to poor expert systems. 

The lack of expert knowledge was one reason for introducing the methods of Operations Research in the 
past. Based on mathematical models of real world problems algorithms were developed which, theoretically, 
yield an optimal solution to these problems. The reasons for the little success of this approach until now are 
the following: 

•	 In general, most potential users of OR-algorithms lack the sound mathematical knowledge which would 
be necessary to understand them as a whole. This leads to several consequences: 

-	 OR-methods are used rarely; 

-	 the potential of OR-methods is left unused. 

Finally, results cannot been explained in any natural way like humans explain to each other. 

• Variations	 of any problems need new or modified models which results in clumsy tools, even for a 
restricted range of applications. 

•	 OR-methods often show unexpected behavior w.r.t. efficiency when confronted with slightly modified 
problems, e.g. linear programming vs. integer linear programming. 
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. Backtracking also becomes activated whenever a (partial) solutions is reached which seems to be worse
than another more promising one. This is some kind of top level description of the well—known A‘ -
Algorithm [Nilsson 80].

Systems which behave in that way are only of little success. The assumptions made by them are only
seldomly justified by real problems. Especially the second one mostly fails, because it requires, that there
are no interactions between any partial problems at any level. If there are any interactions which is the rule
in  technical construction problems, predictions made by the system tend to  be  wrong. As  a consequence,
either suboptimal solutions are provided or an exhaustive search has to be performed.

4 Optimizing systems in construction

Looking at the facts stated so far, successful expert system applications in this domain seem rather unlikely.
But these facts only form the surface of the underlying problem; the problem of the lack of real expert
knowledge. Therefore expert systems which exclusively base on expert knowledge obviously have to be
shaky. As we stated above, the main deficiency is the lack of procedural knowledge, which at first, results
in an oversimplified behavior of the experts, and finally led to poor expert systems.
The lack of expert knowledge was one reason for introducing the methods of Operations Research in the
past. Based on mathematical models of real world problems algorithms were developed which, theoretically,
yield an optimal solution to these problems. The reasons for the little success of this approach until now are
the following:

. In general, most potential users of OR—algorithms lack the sound mathematical knowledge which would
be necessary to understand them as a whole. This leads to several consequences:

— OR—methods are used rarely;

—- the potential of OR—methods is left unused.

Finally, results cannot been explained in any natural way like humans explain to each other.

o Variations of any problems need new or modified models which results in clumsy tools, even for a
restricted range of applications.

. OR—methods often show unexpected behavior w.r.t. efficiency when confronted with slightly modified
problems, e.g. linear programming vs. integer linear programming.
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The aim of any use of OR-methods within expert systems is to free the user from deciding whether and 
how to use them for solving a particular (sub-) problem. This means that the expert system has to be a 
technical expert and an OR expert. 

4.1 The process of conception 

Analyzing the process of conception yields the following subprocesses: 

•	 Elucidation of the relevant data; 

•	 Generation of the functional structure; 

•	 Mapping this structure onto a set of technical realizations; 

•	 Search for an optimal solution w.r.t. to possible constraints. 

The first three stages represent the deterministic part of the search process described above. Conflicts based 
on multiple possible subfunctions for decomposing a particular function can be resolved by means of the 
properties which are already known. Therefore this process is chiefly determined by structural knowledge 
about the domain. Since this type of knowledge is of declarative nature, expert system techniques are well 
suited to cope with this part of conceptional tasks. As a result a set of technical realizations is delivered 
without being concerned with any technical constraints between them. On the other hand, all constraints 
which stem from the properties of the functions are taken into account. 

Finally, as a last step, we have to find an optimal solution regarding to the wishes and the constraints 
neglected so far. 

4.2 The optimization problem 

In this section we describe how the problem of searching for an optimal realization can be viewed as an 
linear programming problem and we provide a mapping from the structures of the technical domain onto 
the terms of this formalism: 

•	 Maximize the benefit of the construction 
The particular benefit of a construction results from summing up the benefit of any single technical 
realization used in the construction. The benefit value of a technical realization can be computed 
from the degree of it's appropriateness w.r.t. a single property represented by numbers from 0 to 10 
multiplied with the significance represented by numbers, too. This products are summed up for every 
individual property to form the benefit of the technical realizations w.r.t. to certain wishes of the user. 
(The benefit values of each technical realization are represented by the Cj below.) 

•	 Satisfy every subfunction 
Every solution has to supply exactly one technical realization for every primitive function. (This 
demand is represented by the array A'.) 

•	 Avoid incompatibilities 
Every solution has to obey each mutual restriction between every technical realization added to the 
final construction. (These restrictions are represented by the array A".) 

In the subsequent formulation of our problem the following assumptions hold: 

1.	 Each construction consists of n subfunctions. 

2.	 Each subfunction i (i = 1 ... n) can be realized by a set realj of technical realizations. Each set realj 
consists of numj elements. Therefore we have to choose from m = L:~1 numj technical realizations. 
An index j is attached to each technical realization; identical technical realizations in different sets 
realj are named differently. 
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3.	 Each technical realization j is related to a set conf1j (j = 1 ... m) which contains the index of every 
technical realization which is incompatible with j. This results in k = LJ=1 conf1j pairs of incompati
bilities. (incompl (l= I. .. k).) 

The problem we have to solve is the following integer linear programming problem: 

maximize: ctx, 

where
 
c E lRm , x E Bm, B = {O, I}
 

subject to: 

A'x = b',
 
A"x <- b",
 

where 
b' E lRn,A' E lRnxm,b" E lRn,A" E lRkxm , 

b~ = b'f = 1 Vi E {I. .. n},Vj E {I. . .k}. 

a~ . = { 1 if i :s; n and technical realization j E real;
 
Z,) 0 otherwise
 

a~'. = {I if i = 1 and technical realization jE incomPl
 
Z,) 0 otherwise
 

4.3 Implernentation 

To build a system which employs the method suggested so far we modified the expert system IDA in the 
following manner: 

The first stages described in section 4.1 were left unchanged, so IDA builds up the functional structure of the 
fixture element the user wants. Rather than selecting a particular technical realization for each subfunction 
IDA creates a LP-problem shown in section 4.2 and hands it over to the optimization part. 

Since the meaning of the variable values is selecting the corresponding technical realization (1) or not (0) 
only integer (binary) values are allowed. As practical experiments using the simplex algorithm have shown 
us, only a few variables have non-integer values; exceptionally, all variables have integer values. So we could 
employ the "branch & bound" method to ensure proper solutions. 

In our domain, the construction of fixture elements, we have to cope with up to 22 individual subfunctions, 
each with an average number of technical realizations of eight. Hence, the number of variables is between 
50 and 200. Our algorithm, a version of the revised simplex method [Best, Ritter 85], only requires a few 
seconds to deliver the results we need. 

The results of this step are presented graphically to the user and enables him to modify it and return it for 
further optimization. 

5 Summary 

In this paper we argued that in constructive applications, expert systems in a "pure" style only perform 
poorly. Alternatively, we presented an approach in which we integrated different techniques to overcome 
the difficulties of lacking expert knowledge. The example we selected in this paper is the conception of 
fixture elements in mechanical engineering, a less complex application than configuration which is another 
widely investigated application. Therefore the question arises whether this approach is well suited for more 
complex tasks requiring a large amount of (binary) variables. In our future work we will concentrate on 
configuration tasks and more sophisticated methods to solve large integer linear programming problems like 
genetic algorithms or simulated annealing. 
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technical realization which is incompatible with j .  This results in k = 22.11 conflj pairs of incompati-
bilities. (incomp, (I = 1.  . .h).)

The problem we have to solve is the following integer linear programming problem:

maximize: c’z,

where
ce  iR'",:cEB"',B={O,1}

subject to:

A’rz: : b’,
AH$ < b l ] ,

where
bl E %",A '  E iRnmJ" E $71 ,111]  6 %kxm’

b;=b ; ’=1Vi6{1 . . .n} ,VjE{1 . . .k} .
a’ _ { 1 if i 5 n and technical realization j € real.-

i‚j _ 0 otherwise
,, 1 if i = I and technical realization j .E incomp,a- - = ."J 0 otherwrse

4.3  Implementation

To build a system which employs the method suggested so far we modified the expert system IDA in the
following manner:
The first stages described in  section 4 .1  were left unchanged, so IDA builds up the functional structure of the
fixture element the user wants. Rather than selecting a particular technical realization for each subfunction
IDA creates a LP-problem shown in section 4.2 and hands it over to the optimization part.
Since the meaning of the variable values is selecting the corresponding technical realization (1) or not (0)
only integer (binary) values are allowed. As practical experiments using the simplex algorithm have shown
us, only a. few variables have non—integer values; exceptionally, all variables have integer values. So we could
employ the ”branch & bound“ method to  ensure proper solutions.

In our domain, the construction of fixture elements, we have to cope with up to 22  individual subfunctions,
each with an average number of technical realizations of eight. Hence, the number of variables is between
50 and 200. Our algorithm, a version of the revised simplex method [Bad, Ritter 85], only requires a few
seconds to deliver the results we need.
The results of this step are presented graphically to the user and enables him to modify i t  and return i t  for
further optimization.

5 Summary

In this paper we argued that in constructive applications, expert systems in  a ”pure“ style only perform
poorly. Alternatively, we presented an approach in which we integrated different techniques to  overcome
the difficulties of lacking expert knowledge. The example we selected in this paper is the conception of
fixture elements in mechanical engineering, a less complex application than configuration which is another
widely investigated application. Therefore the question arises whether this approach is well suited for more
complex tasks requiring a large amount of (binary) variables. In our future work we will concentrate on
configuration tasks and more sophisticated methods to solve large integer linear programming problems like
genetic algorithms or simulated annealing.
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