
99:29n
ow

ned
2 .8

69 ,58
5932829.

333525
„___„oEöE.5298509

Manfred Kerber

SEKI Report SR-90-19 (SFB)

r.edr0r.ehg
.lHeVOr.P0tw0H

Theorems in First Order Logic

E
O

n
m

E

-
_

vm
m

How TO PROVE HIGHER ORDER THEOREMS

IN FIRST ORDER LOGIC

Manfred Kerber

Fachbereich Informatik, Universitiit Kaiserslautern

D-6750 Kaiserslautern, West Germany

uUCP: kerber@informatik.uni-kl.de

Abstract

In this paper we are interested in using a first order theorem prover to prove theorems that are
formulated in some higher order logic: To this end we present translations of higher order logics
into many sorted first order logic with equality and give a sufficient criterion for the soundness
of these translations. In addition translations are introduced that are sound and complete with
respect to L. Henkin's general model semantics. Our higher order logics are based on a restricted
type structure in the sense of A. Church, they have typed function symbols and predicate symbols,
but no sorts. The translation results are finally generalized to handle such a logic with equality.

Keywords: higher order logic, second order logic, general model semantics, translation, sorted first
order logic, morphism, soundness, completeness

CONTENTS

1 Introduction 2

2 Higher Order Logic 4
3 Sorted Logics 7
4 Logic Morphisms 8

5 Soundness 9
6 The Standard Translation 11

7 Equality 16
8 Summary and Open Problems 18

References IS
Appendix 20

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2,D3)

How TO PROVE HIGHER ORDER THEOREMS
IN FIRST ORDER LOGIC

Manfred Kerber
Fachbereich Informatik, Universität Kaiserslautern

D-6750 Kaiserslautern, West Germany
UUCP: kerber@inform atik. uni—k1.de

Abstract

In this paper we are interested in using a first order theorem prover to prove theorems that are
formulated in some higher order logic. To this end we present translations of higher order logics
into many sorted first order logic with equality and give a sufficient criterion for the soundness
of these translations. In addition translations are introduced that are sound and complete with
respect to L. Henkin’s general model semantics. Our higher order logics are based on a restricted
type structure in the sense of A . Church, they have typed function symbols and predicate symbols,
but no sorts. The translation results are finally generalized to handle such a logic with equality.

Keywords: higher order logic, second order logic, general model semantics, translation, sorted first
order logic, morphism, soundness, completeness

CONTENTS

Introduction

Higher Order Logic
Sorted Logics
Logic Morphisms
SoundneSs
The Standard Translation
Equality
Summary and Open Problems

oo
q

oa
cn

ß
oo

w
r—

n

References
Appendix

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2,D3)

{O
O

O
'Q

D
R

M

11
16
18
19
20

mailto:kerber@informatik.uni-kl.de

2 Introduction

1 INTRODUCTION

Die Grenzen meiner Spache bedeuten die
Grenzen meiner Welt.
Ludwig Wittgenstein,

Traetatus logico-philosophicus 5.6

First order logic is a powerful tool for expressing and proving mathematical facts. Nevertheless
higher order expressions are often better suited for the representation of mathematics and in fact
almost all mathematical text books rely on some higher order fragments for expressiveness. In order
to prove such theorems mechanically there are two options: either to have a theorem prover for
higher order logic such as TPS (of P. ANDREWS [2]) or to translate the higher order constructs into
corresponding first order expressions and to use a first order theorem prover. As important as the
first development is - which may be the way of the future - we follow the second approach because
strong first order theorem provers are available today.

THE LIMITATIONS OF FIRST ORDER LOGIC

First order logic and the set theories of ZERMELO-FRAENKEL [17, 7] or VON NEUMANN-GODEL
BERNAYS [8] have been developed for the formalization of mathematical concepts and for reasoning
about them. Other approaches are RUSSEL'S ramified theory of types [14] and CHURCH'S simple
theory of types [5] which formalize higher order logic. Mathematicians use a (compared to the formal
approaches) informal technical language that is much closer to higher order logic augmented by "naive"
set theory than to first order logic. They know about the antinomies and avoid them, for example
by the ommission of expressions like "{xix f/:. x}". They also know that there is a (hopefully) clean
foundation of set theory, how this is done in detail is in general however not of much interest to
a working mathematician (if he is not working on the foundations of mathematics like logic or set
theory).

Formal set theory is of course a very strong tool, especially when higher concepts are introduced by
abbreviations. Beginning with the binary relation "E" one can (and this is really done by N. BOUR
BAKI [4]) define the concepts subset, intersection, union, function, relation, powerset, and so on. The
definition of a function as a left-total, right-unique relation is rather complex and remote from the
construct of a function symbol that is provided originally in logic in order to express functions. The
representation of concepts using functions is more adequate in a higher order language. For instance
in higher order logic it is possible to write:
'1+ associative(+) {:=} Vx,y,z (x+y)+z::x+(y+z).
Here + is a function variable, and associative is a predicate constant, which expects a function term
as its argument. This cannot be written immediately in first order logic, because we quantify over
+, so + would have to be a variable. On the other hand Lt must be a function because of the term
x + y, hence a function variable, and this is excluded in first order logic. Nevertheless this definition
is expressable in first order logic. Many concepts cannot be axiomatized in first order logic at all,
for example the set IN of natural numbers is not first order characterizable. G. PEANO uses in his
axiomatization of the natural numbers the following induction axiom, which is second order:
VP P(O) /\ ('Inn at P(n) ~ P(s(n))) ===} ('Inn at P(n))

Another example of the inadequacy of first order logic comes from the theorem of LOWENHEIM
SKOLEM: Every (countable) axiomatization of a set which has an infinite model also has a countable
model. Therefore every first order axiomatization of the real numbers lR has a countable model.

WHY AND How TRANSLATION

Representing knowledge in an adequate way - adequate with respect to the naturalness of the rep
resentation of the object - is one thing, the other thing is to have an adequate and strong form of
reasoning. If one uses higher order logic there are two possibilities: either to build strong higher order

2 Introduction

1 INTRODUCTION
Die Grenzen meiner Spache bedeuten die
Grenzen meiner Welt.
Ludwig Wittgenstein,
'Dactatus logico-pbilosophicus 5.6

First order logic is a powerful tool for expressing and proving mathematical facts. Nevertheless
higher order expressions are often better suited for the representation of mathematics and in fact
almost all mathematical text books rely on some higher order fragments for expressiveness. In order
to prove such theorems mechanically there are two options: either to have a theorem prover for
higher order logic such as TPS (of P . ANDREWS [2]) or to translate the higher order constructs into
corresponding first order expressions and to use a first order theorem prover. As important as the
first development 1s — which may be the way of the future — we follow the second approach because
strong first order theorem provers are available today.

THE LIMITATIONS OF FIRST ORDER LOGIC

First order logic and the set theories of ZERMELO-FRAENKEL [17, 7] or VON NEUMANN-GODEL-
BERNAYS [8] have been developed for the formalization of mathematical concepts and for reasoning
about them. Other approaches are RUSSEL’S ramified theory of types [14] and CHURCH’S simple
theory of times [5] which formalize higher order logic. Mathematicians use a (compared to the formal
approaches) informal technical language that is much closer to higher order logic augmented by “naive”
set theory than to first order logic. They know about the antinomies and avoid them, for example
by the ommission of expressions like “{zlz $ a:}”. They also know that there is a (hopefully) clean
foundation of set theory, how this is done in detail is in general however not of much interest to
a working mathematician (if he is not working on the foundations of mathematics like logic or set
theory).

Formal set theory i s of course a very strong tool, especially when higher concepts are introduced by
abbreviations. Beginning with the binary relation “6” one can (and this is really done by N . BOUR-
BAKI [4]) define the concepts subset, intersection, union, function, relation, powerset, and so on . The
definition of a function as a left-total, right-unique relation is rather complex and remote from the
construct of a function symbol that i s provided originally in logic in order to express functions. The
representation of concepts using functions is more adequate in a higher order language. For instance
in higher order logic it is possible to write:
V + associative(+) => Vs, y, z (:|: + y) + z E z + (y + z).
Here + is a function variable, and associative is a predicate constant, which expects a function term
as i ts argument. This cannot be written immediately in first order logic, because we quantify over
+ , so + would have to be a variable. On the other hand it must be a function because of the term
a: + y, hence a function variable, and this is excluded in first order logic. Nevertheless this definition
is expressable in first order logic. Many concepts cannot be axiomatized i n first order logic at all,
for example the set lN of natural numbers is not first order characterizable. G . PEANO uses in his
axiomatization of the natural numbers the following induction axiom, which is second order:
VP P(0) A 0111"” P (n) => P(s(n))) => (Vn’m P(n))

Another example of the inadequacy of first order logic comes from the theorem of LÖWENHEIM—
SKOLEM: Every (countable) axiomatization of a set which has an infinite model also has a countable
model. Therefore every first order axiomatization of the real numbers 13. has a countable model.

WHY AND How TRANSLATION

Representing knowledge in an adequate way — adequate with respect to the naturalness of the rep-
resentation of the object — is one thing, the other thing is to have an adequate and strong form of
reasoning. If one uses higher order logic there are two possibilities: either to build strong higher order

3

theorem provers or to translate into first order logic. We shall follow the second approach in this
paper.

A common translation of our formula above in a first order logic with equality is:
'11+ associative(+) ~ 'v'x,y,z apply(+,apply(+,x,y),z) == apply(+,x,apply(+,y,z))

Here apply is a new function constant and + an object variable. Although apply is interpreted
freely it is intended that the interpretation of apply(+, x, y) is exactly the same as the interpretation
of the higher order term x + y.

Another translation, which does not use equality is:
'11+ associative(+) ~ 'v'x,y,z,u,v,w apply(+,x,y,u) /\ apply(+,u,z,w) /\ apply(+,y,z,v)

==} apply(+,x,v,w)
Here apply is a predicate; again it is interpreted freely, although it is intended that z is the sum of

x and y in apply(+,x,y,z). In other words different translations from higher to first order logic are
possible.

Hence the following problems:
- Under what conditions can such a trans~ation be correct? That is, if we translate a formula and

we obtain a tautology, when is the original formula a tautology too?
- In what sense can such a translation be complete? That is, if we translate a tautology, do we

always obtain a tautology?

1.1 Example: Consider the following tautology:

'v'P,Q «'v'x P(x) ==} Q(x)) /\ 'v'x P(x) ==} 'v'x Q(x))

This can be translated into the first order formula

'v'P,Q «'v'x apply(P,x) ==} apply(Q,x)) /\ 'v'x apply(P,x) ==} 'v'x apply(Q,x))

This is obviously a tautology again, hence in this case the translation is sound and complete.

1.2 Example: Consider the following tautology with function constants I and g:
'v'x I(x) == g(x) ==} I == g
This is a tautology because functions which have the same results for all arguments are equal (exten
sionality). It is translated to
'v'x apply(f, x) == apply(g, x) ==} I == g
But this is not a tautology: by interpreting apply as the projection to the second component and I
and g as different elements we obtain a counterexample. This translation is obviously not complete.

For general considerations concerning the expressiveness of higher order logic, it is obvious that
if we find a translation from higher order to first order logic, it cannot be complete in the general
sense, especially since the theorem of LOWENHEIM-SKOLEM must hold and because of K. GODEL'S

incompleteness result. In principle such a translation must be equivalent to some set theoretical
formulation as stated in A. MOSTOWSKI'S isomorphism theorem [10].*

RELATED WORK

J. VAN BENTHEM and K. DOETS [3] give a translation of a restricted higher order logic without
function symbols and without higher order constants· and identities to a standard first order logic.
They introduced the general idea of a translation, and its soundness and completeness. The translation
to standard first order logic leads to more complicated formulae than the translation to a sorted version,
because it is necessary to relativize quantification with respect to the corresponding type.

Of great influence for the present paper are the translation techniques of H. J. OHLBACH [12], who
translates modal logics and other non-classical logics to a context logic; where contexts are restricted
higher order expressions. These contexts are translated to a order sorted first order logic.

Here a translation of (almost) full higher order logic with function symbols to a many sorted first
order logic with equality is given. We do not need a general order sorted logic as long as we do not
use a sorted higher order source logic. In chapter 7 we give an extension for a higher order logic with
equality.

*1 like to thank Heinrich Herre for introducing me to this work of Mostowski.

theorem provers or t o translate into first order logic. We shall follow the second approach in th is
paper.

A common translation of our formula above in a firs t order logic with equality is:
V+ associaiive(+) => Vain»! app ly (+ ‚app1y(+‚z ‚y) ‚ z) E app ly (+ ‚z ‚app ly (+ ‚y ‚z))

Here apply is a new function constant and + an object variable. Although apply is interpreted
freely it is intended that the interpretation of apply(+, 2,31) is exactly the same as the interpretation
of the higher order term a: + y.

Another translation, which does not use equality is:
V + associative(+) «=> Vz,y. z, u , v , w apply(+‚ z, y, n) A app ly (+ ‚u ‚ z , 10) A apply (+‚y ‚ z , v)

=> app ly (+ ‚x ‚v ‚ 10)

Here apply is a predicate; again i t is interpreted freely, although i t i s intended tha t z is the sum of
:c and y in apply(+, :c, y, z). In other words difi'erent translations from higher to first order logic are
possible.

Hence the following problems:
— Under what conditions can such a translation be correct? That is, if we translate a formula and

we obtain a tautology, when is the original formula a tautology too?
— In what sense can such a translation be complete? That is, if we translate a tautology, do we

always obtain a tautology?

1.1 Example: Consider the following tautology:
VP,Q ((Va: P(z) => Q(z)) AVx P(:z:) = V:: Q(z))
This can be translated into the first order formula
VP,Q ((Va: apply(P, a:) = apply(Q‚ :o)) AV: apply(P,:c) => Va: apply(Q,z))
This is obviously a tautology again, hence in this case the translation is sound and complete.

1 .2 Example: Consider the following tautology with function constants f and g :
Vrc f (x) Eg(z) = f 59
This is a tautology because functions which have the same results for all arguments are equal (exten-
sionality). It is translated to
V2 (mph/(f, x) E app1y(y‚ 3) => f E 9
But this is not a tautology: by interpreting apply as the projection to the second component and f
and g as different elements we obtain a counterexample. This translation is obviously not complete.

For general considerations concerning the expressiveness of higher order logic, it is obvious that
if we find a translation from higher order to first order logic, it cannot be complete in the general
sense, especially since the theorem of LÖWENHEIM-SKOLEM must hold and because of K . GÖDEL’S
incompleteness result. In principle such a translation must be equivalent to some set theoretical
formulation as stated in A . MOSTOWSKI’S isomorphism theorem [10] .*

RELATED WORK

J . VAN BENTHEM and K . DOETS [3] give a translation of a restricted higher order logic without
function symbols and without higher order constants “and identities to a standard first order logic.
They introduced the general idea of a translation, and i t s soundness and completeness. The translation
to standard first order logic leads to more complicated formulae than the translation to a sorted version,
because i t is necessary to relativize quantification with respect to the corresponding type.

Of great influence for the present paper are the translation techniques of H. J . OHLBACH [12], who
translates modal logics and other non—classical logics t o a context logic; where contexts are restricted
higher order expressions. These contexts are translated to a order sorted first order logic.

Here a translation of (almost) full higher order logic with function symbols to a many sorted first
order logic with equality is given. We do not need a general order sorted logic as long as we do not
use a sorted higher order source logic. In chapter 7 we give an extension for a higher order logic with
equality. '

" I like to thank Heinrich Hem for introducing me to this work of Mostowski.

4 Higher Order Logic

2 HIGHER ORDER LOGIC

In this section we define formally a higher order logic based on CHURCH'S simple theory of types,
much of the notation is taken from [1]. However, we shall write the types in a different way. For
example if a and b are individual constants and P is a binary predicate symbol on individuals, we
write its type as (£ x £ -+ 0) instead of (ou) for better readability. Apologies to all who are familiar
with CHURCH'S original notation.

THE SYNTAX

Let us introduce type symbols first, then define terms and formulae for the logics £w. The n-th order
predicate logics £n are then defined as subsets of £w.

2.1 Definition (Types of £W):

1.	 £ is a type of order 0 that denotes the type of the individuals.

2.	 0 is a type of order 1. It denotes the type of the truth values.

3.	 If 71, ... , 7 m , and u are type symbols not equal to 0 (with m ;::: 1) then (71 x ... X 7m -+ u) is a
type of order 1 + maximum of the orders of 71, ... , 7m, U. It denotes the type of m-ary functions
with arguments of type 71, ... , 7m, respectively, and value of type u.

4.	 If 71, ... , 7m are type symbols not equal to 0 (with m;::: 1) then (71 x ... X 7m -+ 0) is a type
of order 1 + maximum of the orders of 71, ... , 7 m . It denotes the type of m-ary predicates with
arguments of type 71, •.. , 7 m , respectively.

2.2 Remark: We exclude - unlike CHURCH and ANDREWS [5, 1] - types like (0 -+ 0), because
these expressions are not translatable by our method, see remark 6.2. Therefore in our restricted
langu,!-ge it is not possible to define the connectives -, and /I. and the quantifier 'ri, and hence they
must be introduced as primitives. Nevertheless we assume that the languages £n - defined below
- are adequate for expressing most mathematical facts. For instance we can have predicates like
ordered_group(G, +, 5J of type (£ X (£ X £-+ £) X (£ X £-+ 0) -+ 0)*.

2.3 Definition (Signature of LW): The signature of a logic in £w is a set S = UT s;on.t U UT s~ar

where each set s;on.t is a (possibly empty) set of constant symbols of type 7 and s~ar a countable
infinite set of variable symbols of type 7. We assume that the sets ST are all disjoint, in addition
we sometimes mark the elements of a set ST by its type 7 as index. A logic in £w is defined by its'
signature S and is denoted £W(S). If there is only one signature and no danger of confusion we also
write £w instead of £W(S).

2.4 Definition (Terms of LW):

1.	 Every variable or constant of a type 7 is a term.

2.	 If f(TIX"'XTm --+<7)' tT" • .• , t Tm are terms of the type indicated by their subscripts,

then f(T,X"'XTm --+<7)(t T1 , •.• , t Tm) is a term of type u.

2.5 Definition (Formulae of LW):

1.	 Every term of type 0 is a formula.

2.	 If I.{' and t/J are formulae and x is a variable of any type, then (-'1.{') , (I.{' /I. t/J), and ('VXI.{') are
formulae. As long as there is no danger of confusion we sometimes omit parentheses.

'It is also possible to represent the set G as object of type (t -+ 0).

4 Higher Order Logi_c

2 HIGHER ORDER LOGIC

In this section we define formally a higher order logic based on CHURCH’S simple theory of types,
much of the notation is taken from [1] However, we shall write the types in a different way. For
example if a and b are individual constants and P is a binary predicate symbol on individuals, we
write its type as (L x L ——> 0) instead of (01.1.) for better readability. Apologies to all who are familiar
with CHURCH’S original notation.

THE SYNTAX

Let us introduce type symbols first, then define terms and formulae for the logics £“ . The n—th order
predicate logics ß" are then defined as subsets of L:”.

2.1 Definition (Types of £“) :
1. 1. is a type of order 0 that denotes the type of the individuals.

2. 0 is a type of order 1 . It denotes the type of the truth values.

3. If 11, . , . , rm, and a are type symbols not equal to o (with m 2 1) then (7'1 xx Tm -+ 0') is a
type of order 1 + maximum of the orders of 1'1, . . . , rm, or. It denotes the type of m-ary functions
with arguments of type 1'1, . . . , rm, respectively, and value of type 0'.

4 . If 11, . . . , Tm are type symbols not equal to o (with m Z 1) then (T1 x x Tm ——> 0) is a type
of order 1 + maximum of the orders of 7'1, . . . , rm. It denotes the type of m-ary predicates with
arguments of type T1, . . .,‘rm, respectively.

2.2 Remark: We exclude — unlike CHURCH and ANDREWS [5, 1] — types like (0 —> o), because
these expressions are not translatable by our method, see remark 6.2. Therefore in our restricted
language it is not possible to define the connectives -I and A and the quantifier V, and hence they
must be introduced as primitives. Nevertheless we assume that the languages LI" — defined below
— are adequate for expressing most mathematical facts. For instance we can have predicates like
ordered_group(G, + , _<_) of type (L x (I. x I, -—-> L) x (I. x 1. —> o) —> o)“'.

2.3 Definition (Signature of ß“) : The signature of a. logic in ß‘" is a set S = U, 83"” U U, 83‘"
where each set Sim" is a (possibly empty) set of constant symbols of type 1- and S:!” a countable
infinite set of variable symbols of type ‘r. We assume that the sets &, are all disjoint, in addition
we sometimes mark the elements of a set ST by its type 7 as index. A logic in ‚CW is defined by its'
signature S and IS denoted LI” (8). If there is only one signature and no danger of confusion we also
write ß‘" instead of ß‘"(S).

2.4 Definition (Terms of 0“) :
1. Every variable or constant of a type 1' i s a term.

2. If f(, . ,x.. .x,.m_,,),tn, . . . , t„" are terms of the type indicated by their subscripts,
then f(‚lx...x7„__.„)(t„‚ . . . ‚ t„„) is a term of type a'.

2.5 Definition (Formulae of ß“) :
1. Every term of type o is a formula.

2. If cp and aß are formulae and z is a variable of any type, then (-up), ((p [\ ib), and (Vega) are
formulae. As long as there is no danger of confusion we sometimes omit parentheses.

' I t is also possible to represent the set G as object of type (6 —+ o).

5

2.6 Definition (Formulae of £~):

1. Every term of type 0 is a formula.

2. If tl and t2 are terms of type T with T # 0 then (t l =(TXT-+O) t2) is a formula.

3. If cp and 1/; are formulae and x is a variable of any type, then (-,cp), (cp /\ 1/;), and ('Vxcp) are
formulae.

Of course we have to add =(TXT-+O) to S(:~~t-+o). We use the "=" as elements of the signature and
for the equalities in sets. They have the usual semantics. ":::::" is used as equality symbol at the
meta-level.

2.7 Remark: As usual one can define V, ===>, {::::::}, and 3 in terms of -', /\, and 'V and use formulae
containing these symbols as abbreviations.

2.8 Definition (£n, for n 2: 1): £2n (£~n) is a subset of £w (£~) so that every variable and every
constant is of order less or equal to n, £2n-l (£~n-l) is a subset of £2n (£~n) such that no variable
of order n is quantified.

THE SEMANTICS

The standard semantics is due to A. TARSKI and has been extended by 1. HENKIN [9] to the general
model semantics, we shall follow these concepts.

We use the following notation: Let Al , ... , Am, and B be sets, then F(A 1 , ... , Am; B) denotes the
set of all functions from A1 x ... x Am to B.

2.9 Definition (Frame): A frame is a collection {"PT}T of nonempty sets "PT' one for each type
symbol T, such that "Po::::: {T,F} and "P(T,X"'XT~-+q) ~ :F("PTll ... ,"PT~;"Pq). The members of "Po are
called truth values and the members of "Pt are called individuals.

2.10 Definition (Interpretation): An interpretation ({"PT }T,:I) of £w consists of a frame and a
function :I that maps each constant of type T of £w to an element of "PT.

2.11 Definition (Assignment): An assignment into a frame {DT}T is a function { that maps each
variable of type T of £w to an element of "PT. An assignment into an interpretation is an assignment
into the frame of the interpretation. In contexts where a particular interpretation is under discussion,
it will be assumed that all assignments are into that interpretation unless otherwise indicated. Given
an assignment {, a variable XT, and an element dE "PT' {[XT f-- d] is defined as {except for XT where
it is d.

2.12 Definition (Weak Interpretation): An interpretation M ::::: ({"PT }T,:I) is a weak interpre
tation (weak model, general model) for £w (£~) iff there is a binary function VM so that for every
assignment { and term t of type T, vtt E"PT and the following conditions hold:

1. for all variables XT, VtXT ::::: {xT

2. for all constants CT, vtt CT ::::: :JCT

3. for composed terms vtU(T, X"'XT~-+q)(tTll ... , tT~»::::: VtU(Tl X"'XT~-+q»(VttT"... , vtttT=)

4. vt (cp /\ 1/;) ::::: vtcp /\ vt1/; *

5. vtt (-,cp) ::::: -,vt cp

·We use the connectives and quantifiers in a naive way at the rneta-Ievel.

2.6 Definition (Formulae of 12%):
1 . Every term of type 0 is a formula.

2 . If t l and 132 are terms of type 1 with 'r # 0 then (t l E(-‚„.‚o) t2) is a. formula.

3 . If so and 1/) are formulae and 3 is a variable of any type, then (-up), (<p A 1/1), and (V290) are
formulae.

Of course we have to add E(.‚-x‚-_.o) to 8:32:10). We use the “E” as elements of the signature and
for the equalities i n sets . They have the usual semantics. “=” is used as equality symbol at the
meta-level.

2 .7 Remark: As usual one can define V, =>, 4:) , and El in terms of -1, A, and V and use formulae
containing these symbols as abbreviations.

2.8 Definition (C“, for n 2 1) : £2“ (1:25") is a subset of L‘" (5 ;) so that every variable and every
constant is of order less or equal to n, Can—1 (fig—1) is a subset of £2” (5%”) such that no variable
of order n is quantified.

THE SEMANTICS

The standard semantics is due to A . TARSKI and has been extended by L. HENKIN [9] to the general
model semantics, we shall follow these concepts.

We use the following notation: Let A1, . . . , Am, and B be sets, then ‚7:(A1, . . . , Am; B) denotes t he
set of all functions from A1 x - . . x Am to B .

2.9 Definition (Frame): A frame is a collection {D,-},- of nonempty sets 'Df, one for each type
symbol 7-, such that Do : {T,F} and D(„x...,„„__.„) g f'(DT1 , . . . , 'DTm;D„). The members of Do are
called truth values and the members of D, are called individuals.

2.10 Definition (Interpretation): An interpretation ({Df}r‚ .7) of L‘" consists of a frame and a
function J that maps each constant of type T of ß‘" t o an element of D , .

2.11 Definition (Assignment): An assignment into a frame {D,-}, is a function € that maps each
variable of type 1' of U" to an element of DT. An assignment into an interpretation is an assignment
into the frame of the interpretation. In contexts where a particular interpretation is under discussion,
it will be assumed that all assignments are into that interpretation unless otherwise indicated. Given
an assignment £ , a variable z„ and an element d € D„ {[xT (— d] is defined as £ except for a:, where
i t is d.

2.12 Definition (Weak Interpretation): An interpretation M = ({‘D.‚.}‚.„7) is a weak interpre—
tation (weak model, general model) for L” (tig) iff there is a binary function VM so that for every
assignment { and term t of type T, lift € 1), and the following conditions hold:

1. for all variables z„ vg“ :|:, = im,

2. for all constants c-‚-‚ VEM c., = J c,

3. for composed terms vg“ (f(„x...„‚__.„)(tr„ . . . , t,.„_))='l}é"'(f(.‚1 x___„__‚„)) (1}é \4 tn , _ _ . , vn tv -m)

4- Vä"(soA1/))= V§”<p/\Vg‘"¢ *
5— Vé“('190)= _"?n

'We use the connectives and quantifiers in a naive way at t he meta-level.

6 Higher Order Logic

6.	 vtCV:r:r<p) = Vd E 'Pr V~r_d]<P

7. for a model of .c~ we have additionally for all terms t1, t2 of type T with T f. 0,

vt(t1 =erxr..... o) t2) = vt(td =vr Vt(t2)*

2.13 Definition (Strong Interpretation): An interpretation M = ({'Pr }r,:1) is a strong inter
pretation (strong model, standard model) iff it is a weak interpretation and for all occuring types T

with T = (T1 X ... X Tm -+ 0'"), 'Pr =F('Pr1 , ... ,'PTm;'Pq).

2.14 Remark:

-	 Every strong interpretation is in particular a weak interpretation.

-	 In order to fix a strong interpretation we only have to fix 'P, and :1.

2.15 Remark: Of course equality at level n (for odd n) can be defined at level n+1 by G. W. LEIBNIZ'
identitas indiscernibilium, that is, by the formula
V:r:rVYT(:r: =(rxr.....o) y) : -<==> (VP(HO) P(:r:) -<==> P(y».
But if the underlying semantics is weak we would get by this definition a non-standard semantics for
the equality predicate, For instance if we have two constants a, and b, and the equality predicate
==e'x o) defined by LEIBNIZ' identitas indiscernibilium in the signature of a logic. Now suppose we
have the equality a == b as axiom, we could interprete the formula by 'P, ={I, 2}, :1(a) = 1, :1(b) = 2,
and De...... o) as the set that maps everything to T. Then we have Vt(a == b) = T although a and bare
interpreted by different elements. In other words we do not force that a and b are equal in all models
by writing a == b. In the logics .c= we want the predicate constants == to be interpreted strongly.
That is, if we have an equality like ~ == b, then a and b must be mapped onto the same element in the
corresponding universe.

2.16 Definition:

1.	 Let <P be a formula, M a weak (strong) interpretation. M is a weak (strong) model of <P if for
every assignment einto M, vt (<p) = T

2.	 A model for a set r of formulae is a model of each formula of r.

3.	 If every weak (strong) model of a formulae set r is also a weak (strong) model of a formula <p,
we write r Fweak <p (respectively r F.trong <p).

2.17 Example: Let P be a constant of type (£ -+ 0) and a be an object constant, that is, a constant of
type £. Then the formula <p := Vfe')P(f(a» /\ -'P(a) is u~satisfiable in the standard interpretation,
because it is possible to choose the identity function for f. But we can find a weak model M. For
instance with D, = {I, 2}, DC,..... ,) consists of the one function that maps everything to 2, :1(P)(l) = F,
:1(P)(2) = T, and :1(a) = 1, we get vt(l,O) = T for all assignments e.

2.18 Theorem: In .cl (.c~) for every weak model of a formula set there is a strong model with the
same interpretation function :1.

Proof" Let r be a set offormulae in .cl and M = ({'PT}T,:1) be a weak model of r. If we define D, as
D" Do as Do, and for all occuring types T with T = (T1 x··· X Tm -+ 0'"), DT := F(Drl, ... ,Drm;Dq),
then M = ({Dr }T,:1) is a strong model ofr. We have DT ~ DT for all types T. With VM = VM the
definition 2.12 is fulfilled automatically (because the interpretation function:1 is the same) except for
2.12.6. But 2.12.6 is satisfied, since in.c1 we can quantify only over variables of type £ and D, ='P,.
Therefore M is a strong model of r. •

"Here and in the following we use for all sets A, =A as equality for elements in the set A.

6 Higher Order Log

6. V£4(f<p) : Vd E ’Drvmrhdyp

7. for a model of L; we have additionally for all terms t1,t2 of type 1' with r 96 0,
VE“ (t1 ; (TX ' r—oo) t2) = Vg“ (t1) ED, vg“ (t z) .

2.13 Definition (Strong Interpretation): An interpretation M = ({DT}T, J) is a strong inter—
pretation (strong model, standard model) ifi' it i s a weak interpretation and for all occuring types 1'
with r : (1'1 x - -x Tm —> a), D,. : f (D„, . . . ,DT„_;D„) .

2 .14 Remark:
- Every strong interpretation is in particular a weak interpretation.

— In order to fix a strong interpretation we only have to fix D, and J .

2.15 Remark: Of course equality at level 11 (for odd n) can be defined at level n+1 by G. W. LEIBNIZ’
identitas indiscernibilium, that is, by the formula
VxTVy-‚(z Ebner—+0) y) :=} (VP(-‚__.o) P(:c) => P(y)).
But if the underlying semantics is weak we would get by this definition a non-standard semantics for
the equality predicate. For instance if we have two constants a , and b, and the equality predicate
50“.“) defined by LEIBNIZ’ identitas indiscernibilium in the signature of a logic. Now suppose we
have the equality a E b as axiom, we could interprete the formula by D, = {1, 2}, J (a) = 1, J (b) = 2,
and ’D(,_,o) as the set that maps everything to T. Then we have vg“ (a ‚=. b) = T although a and b are
interpreted by different elements. In other words we do not force that a and b are equal in all models
by writing a E b. In the logics ‚CE we want the predicate constants E to be interpreted strongly.
That is, if we have an equality like a E b, then a and b must be mapped onto the same element in the
corresponding universe.

2 .16 Definition:
1. Let <p be a formula, M a weak (strong) interpretation. M is a weak (strong) model of cp if for

every assignment { into M, VE“ (90) = T
2. A model for a set I‘ of formulae is a model of each formula of l".

3. If every weak (strong) model of a formulae set 1" is also a weak (strong) model of a formula (p,
we write I‘ hm“ <p (respectively I‘ |=„„‚„_„ (p).

2.17 Example: Let P be a constant of type (1 —> o) and a be an object constant, that is, a constant of
type L. Then the formula (p := Vf(‚_„)P(f(a)) A -nP(a) is unsatisfiable in the stand interpretation,
because it is possible to choose the identity function for f . But we can find a weak model M. For
instance with D,—__ { l , 2}, D(,_„) consists of the one function that maps everything to 2, J (P) (1) _
J (P) (2)—__ T, and J(a)—_ 1, we get VM (<p)—_ T for all assignments €.

2.18 Theorem: In £1 (LIE) for every weak model of a formula set there is a strong model with the
same interpretation function J .
Proof: Let I‘ be a set offormulae in ‚Cl and M = ({D, } , J) be a weak model ofI‘ . If we define D as
D. , D., as D.„ and for all occuring types 7' w i th T : (T1 x -X rm —> a) , D , . : f(D,1 ‚ . . ,DTm;D. ‚) ‚

then 7W: ({D , }„ J) is a strong model of 1". We have Dr C D, for all types r . With VM= VM the
definition 2.12 is fulfilled automatically (because the interpretation function J is the same) except för
2. 12. 6. But 2. 12. 6 18 satisfied, since in £1 we can quantify only over variables of type L and D,—__ D . .
Therefore M is a strong model of I‘. .

'Here and in the following we use for all sets A , E A as equality for elements in the set A .

7

3 SORTED LOGICS

In this section we introduce our target language, a many-sorted first order logic with equality predicates
on all sorts. Let SORT be a (finite) set of sorts. We define .the signature S30rt of a logic in £;ort as
a union of possibly empty sets S(31, ... ,3 m):3 (m-ary function constants), S(31, ... ,3 m) (m-ary predicate
constants), S~on3t (object constants), and the infinite countable sets S~ar (object variables), where
Sl, ... ,Sm,s E SORT. In each S(3,3) we have the binary predicate symbol =(3,3). We index the
elements of S30rt sometimes by their sort. For instance a function symbol f of sort (Sl, ... , sm) : S is
written as jC31,... ,3 m):3.

The order sorted logic of OBERSCHELP [11], operationalized by WALTHER [16] and SCHMIDT
SCHAUSS [15] covers thi~ simple situation and therefore the input language of a theorem prover like
the Markgraf Karl Refutation Procedure [13] is well-suited for dealing with the now defined logic.

3.1 Definition (Sorted Terllls):

-	 all elements of S~on3t and S~ar are sorted terms of sort S

- if t1, , tm are terms of sort Sl, ... , Sm, respectively, and if f is a function symbol of sort
(Sl, , Sm) : s, then f(t1, ... , tm) is a term of sort s.

3.2 Definition (Sorted Forlllulae):

-	 if t 1, , tm are terms of sort Sl, ... , Sm respectively, and if P is a predicate symbol of sort
(Sl, , sm) then P(t1, ... , tm) is an (atomic) formula.

-	 ift1,t2 are terms of sort s, then (t1 =(3,3) t 2) is an (atomic) formula.

-	 if <p and 'I/; are formulae and x3 is a variable of sort s, then (-'<p), (<p 1\ '1/;), and (Vx<p) are formulae.

3.3 EXaInple: Vnnateven(n) 1\ Vhhumanmortal(h) is a sorted formula.

Vnnat3iintegern =i is not a well-defined sorted formula, because we have only flat sorts and so we

cannot relate expressions of different sorts. Especially we cannot express the subset relation.

3.4 Definition (Selllantics of Sorted Forlllulae): For every sort sin S we have a non-empty set
1Y. All1Y are disjoint. (We can choose them disjoint, because we have only unstructured sorts.) An
interpretation of £30rt is a pair ({D3} 3'..1) where ..1 maps each object-constant of sort S to an element
of D3, each function constant of sort (Sl, ... , sm) : S to an element of F(D31, ... ,D3m; D3), and each
predicate constant of sort (Sl, ... , Sm) to an element of F(D31, ... ,D3m; Do). Do is defined as above
as {T,F}.
Let the assignments be defined as above. An interpretation M = ({D3}3,..1) is a (strong) interpre
tation for £;ort if there is a binary function VM so that for every assignment eand term t3 of sort
s, VfI(t3) E D3, for every assignment e and for every formula <p, VfI(<p) E Do and the following
conditions hold:

1.	 for all variables x3, VfI x3 = ex3

3 3
2. for all constants c , VfI c3 = ..1c

3. for other terms VfI (j(3 1,... ,3 m):3 (t 31 , ... , t 3m »=VfI (j(3 1,... ,Sm):3)(VfltS1, ... ,Vflt Sm)

4. for non-equality atomic formulae

VfI (p(3 1,... ,3 m)(t&1, ... , t 3m»=VfI (p(31, ... ,3m»(VfltSl, ... ,Vflt 3m)

5.	 VfI(t1 =(3,S) t2) =VfI(td =1)8 Vt(t2)

6.	 VfI(<p 1\ '1/;) = VfI<p 1\ VfI'I/;

7.	 VfI(-'<p) = -'VfI<p

8.	 VrCVx'<p) =Vd E V'V~<-dl<P

3 SORTED LOGICS

In this section we introduce our target language, a many-sorted first order logic with equality predicates
on all sorts. Let SORT be a (finite) set of sorts. We define ‚the signature S,”, of a logic in r im as
a union of possibly empty sets S(’1"""m)i’ (m-ary function constants), S(" " " " " ‘) (m-ary predicate
constants), 530m, (object constants), and the infinite countable sets 5,3“, (object variables), where
81, . . . , sm , s € SORT. In each SG,“) we have the binary predicate symbol 5“") . We index the
elements of 8,0” sometimes by their sort. For instance a function symbol f of sort (s l , . . . , sm) : 5 is
written as f (’1"""" ') “ .

The order sorted logic of OBERSCHELP [11], operationalized by WALTHER [16] and SCHMIDT-
SCHAUSS [15] covers this simple situation and therefore the input language of a theorem prover like
the Markgraf Karl Refutation Procedure [13] is well—suited for dealing with the now defined logic.

3.1 Definition (Sorted Terms):
— all elements of Siam, and 8;” are sorted terms of sort 8

— if t 1 , . . . , tm are terms of sort 81, . . . , sm , respectively, and if f is a function symbol of sort
(s l , . . . ‚ sm) : 3, then f (t 1 ‚ . . „ im) is a. term of sort s .

3.2 Definition (Sorted Formulae):
— if t 1 ‚ . . . ‚ tm are terms of sort 31 , . . . , sm respectively, and if P is a. predicate symbol of sort

(.91, . . . , sm) then P(t1, . . . ,tm) is an (atomic) formula.

— if t 1 , t 2 are terms of sort 8, then (t1 ; (”) t2) is an (atomic) formula.

— if go and 1/) are formulae and 3’ is a. variable of sort 3, then (-ucp), ((p/VP), and (Vzgo) are formulae.

3.3 Example: Vn"“‘even(n) A Vh’"""“”mortal(h) is a sorted formula.
Vn"“‘3i‘”‘°9°'n E i is not a well-defined sorted formula, because we have only flat sorts and so we
cannot relate expressions of different sorts. Especially we cannot express the subset relation.

3.4 Definition (Semantics of Sorted Formulae): For every sort s in S we have a non-empty set
D’ . All D’ are disjoint. (We can choose them disjoint, because we have only unstructured sorts.) An
interpretation of £80,, is a pair ({‘D’ }, , J) where J maps each object-constant of sort 3 to an element
of D’ , each function constant of sort (s l , . . . , sm) : 5 to an element of f (D‘ l , . . . , ’D"" ;D’) , and each
predicate constant of sort (s l , . . . , sm) to an element of f (D" , . . . ‚ 'D’";Do) . Do is defined as above
as {T,F}.
Let the assignments be defined as above. An interpretation M = ({D‘}„J) is a (strong) interpre-
tation for Li", if there is a binary function VM so that for every assignment £ and term t" of sort
S, V?“ (t’) e ‘D‘, for every assignment E and for every formula (,p, vg‘4(<p) € D., and the following
conditions hold:

1._ for all variables a:”, vg" z ‘ = Ez'

. for all constants c“, V?“ c‘ = Jc’

. for other terms 11g“(f(‘1v“"m)"(t‘1,...,t‘"')) : vg“(f(‘1"°""")")(vg“t'1‚ . . . , Vgut‘M)

. for non-equality atomic formulae
vE'M (p(81‚...‚8m)(t81, . . . ’ tSm)) : véM (p(“"“"""))(V'€Mt“, _ _ . , vg‘4t’m)

. sul 5“") tz) = vg“(t1) 51" vg” (‘2)

.vg‘4(soA1/») = VQ‘PAVE‘W

. mw) = WW

. mvw) = w e Wet—a]?

sh
co

n)
W

N
O

D
O

' I

8 Logic Morphisms

4 LOGIC MORPHISMS

Now we shall define those concepts that are necessary to describe the relation between formalizations
in different logics. The important concepts are: logic, morphism, quasi-homomorphism, and soundness
and completeness of amorphism.

4.1 Definition (Morphism of Logics): Let F l and F 2 be two logical systems (£W, £~, £n, £~,

or £;ort), then amorphism 0 is a mapping that maps the signature S of a logic Fl(S) in F l to a
signature of a logic F 2(0(S» in F 2 and that maps every formula set in Fl(S) to a formula set in
F 2 (0(S».*

4.2 Definition (Soundness): Let 0 be a morphism from F l to F 2 • 0 is called strongly (weakly)
sound iff the following condition holds for every formula set r in F l :

if r has a strong (weak) model in F l then there is a strong (weak) model of 0(r) in F 2 •

4.3 Definition (Completeness): Let 0 be a morphism from F l to F 2 . 0 is called strongly (weakly)
complete iff the following condition holds for every formula set r in F l :

if 0(r) has a strong (weak) model in F 2 then there is a strong (weak) model of r in F l .

4.4 Definition (Quasi-HOIllomorphism): Let Fl(St} and F 2(S2) be two logics. A mapping 0

that maps every fomula and every term of F l (Sl) to a formula respectively to a term of F 2(S2) is

called a quasi-homomorphism iff the following conditions are satisfied:

1. For all terms:

1.1 if x is a variable of F1(St} then 0(x) is a variable of F 2(S2)'

1.2 if c is a constant of Fl(St} then 0(c) is a constant of F 2(S2)'

1.3 if J(tl, ... , tm) is a term of F1 (St} then 0 (I(t!, ... , tm» = {} (0(1), 0(t1), ... , 0(tm»with
.Q()_{a(a1, ... ,am) or
'U a,a1, ... ,am - ()

aa a,a1,·· .,am
The a have to be chosen appropriately out of S2, especially they have to be new, that
is, there must be no element a' E Sl so that aa = 0(a'). The case which is chosen can
depend only on the a not on the a1, ... , am- (a stands for apply.)

2. For all formulae rp1, rp2 and for all variables x:

2.1 0(rp1 /\ rp2) = 0(rp1) /\ 0(rp2)

2.2 0(-.rp) = -.0(rp)

2.3 0(Vxrp) =V0(x)0(rp)

3. All terms that are not formulae of F 1(St} are mapped to terms that are not formulae of F 2(S2)'

4.5 Remark:

- Of course we can extend the definition of a quasi-homomorphism to formula sets r by the
requirement that the property must be fulfilled for every formula in r.

- We have excluded as quasi-homomorphism those mappings that map a formula like P(a) onto
a formula pea, a). That is, arguments cannot be doubled. We could allow this without losing
anything essential in the sequel, but the proofs would become more teditious, without gaining
really in expressive power.

• A formula is regarded as a formula set with one element. Especially we write 8('P) instead of 8({'P}).

8 Logic Morphisms

4 LOGIC MORPHISMS

Now we shall define those concepts that are necessary to describe the relation between formalizations
in different logics. The important concepts are: logic, morphism, quasi-homomorphism, and soundness
and completeness of a. morphism.

4 .1 Definition (Morphism of Logics): Let .7-"1 and f2 be two logical systems (C", €;, £ " , ng ,
or £30"), then a morphism 9 is a mapping that maps the signature 8 of a logic ‚7:1(8) in .7-'1 to a
signature of a logic .7-‘2(@(S)) in 172 and that maps every formula set in .7-"1(8) to a formula set in
f2 (9 (5)) -*

4.2 Definition (Soundness): Let 9 be a morphism from ‚7:1 to f2 . 0 is called strongly (weakly)
sound ifi' the following condition holds for every formula set 1" in f 1 :

if 1" has a strong (weak) model in f l then there is a strong (weak) model of O(I‘) in .72.

4 .3 Definition (Completeness): Let 6 be a morphism from .7-‘1 to f “ . 9 is called strongly (weakly)
complete ifi' the following condition holds for every formula set I" in 7“:
if 0(1‘) has a strong (weak) model in }"2 then there is a strong (weak) model of I‘ in .731.

4 .4 Definition (Quasi-Homomorphism): Let .7-'1(81) and .7-'2(Sg) be two logics. A mapping 9
that maps every fomula and every term of .7-‘1 (81) to a formula respectively to a term of 72(82) is
called a quasi-homomorphism ifi' the following conditions are satisfied:

1 . For all terms:

1.1 ifs: is a variable of .7-‘1 (81) then €)(z) is a variable of 772092).
1.2 if c is a constant of $1091) then 9(a) is a constant of $2092).
1.3 iff(t1, . . . ,tm) is a term ofJ-‘1(81) then 9(f(t1, . . . ,tm)) = 19 (®(f), ®(t1), . . . , 6(tm)) with

_ a(a1 , . . . , am) or19(a , a1 , . . . , am) _ aa (a , a l , . . . , am)

The a have to be chosen appropriately out of 82 , especially they have to be new, that
is, there must be no element a’ E 81 so that aa = 9(a’) The case which is chosen can
depend only on the a not on the a l , . . . , am. (a s tands for apply.)

2. For all formulae (pl, (‚02 and for all variables :c:

2-1 9(301 A <P2) = 9(901) A 9(902)

2 .2 e('1(p) : —|9(tp)

2.3 90/290) = V6(z)6(<p)

3. All terms that are not formulae of f1 (81) are mapped to terms that are not formulas of $2092).

4 .5 Remark:

— Of course we can extend the definition of a quasi-homomorphism to formula sets I‘ by the
requirement that the property must be fulfilled for every formula in I‘.

— We have excluded as quasi-homomorphism those mappings that map a formula like P (a) onto
a formula P (a , a) . That is, arguments cannot be doubled. We could allow this without losing
anything essential in the sequel, but the proofs would become more teditious, without gaining
really in expressive power.

'A formula is regarded as a formula set with one element. Especially we write 9((p) instead of 9({cp}).

9

5

- If we translate into a first order logic, the first case for t?(a, a1, ... , am) can only be chosen
correctly if one is not going to quantify on a.

4.6 Lemma: If e is a strongly (weakly) sound quasi-homomorphism from £n to £~ort' r the deriv
ability relation relative to a sound calculus of £~ort' r a formula set and <p a formula in £n with
e(n r e(<p), then r F.trongly <p (resp. r Fweakly <p).
Proof: Because of e(n r e(<p) we have that e(nu{-,e(<p)} is unsatisfiable. Because of homomorphy
in -, there is no model of e(r u {-'<p}). Hence by soundness there is no model of r u {-'<p}. In other
words every model of r is a model of <po Because of theorem 2.18 this conclusion holds for both strong
and weak models. •

4.7 Remark: We are especially interested in the situation where we can translate into £1 or £~ort'
because there are well-known complete calculi and strong theorem provers for these calculi. If we
find a sound translation the lemma above guarantees that we can prove theorems in £n by proving
them in £1 or £~ort. Strong completeness of such a translation is not obtainable because of GODEL'S

incompleteness result, but a priori nothing speaks against weak completeness, that is, there might be
amorphism e from £n to £1 such that, if r Fweak <p then e(n r e(<p) in £1.

£1 is not really appropriate as the target logic for a translation, but a sorted version £~ort is usually
preferable. For a translation directly into £1 see BENTHEM and DOETS [3, p.316-320].

A SUFFICIENT CRITERION FOR SOUNDNESS

In this section we give a sufficient criterion for the soundness of translations of formulae of £n onto
formulae of £;ort' which is strong enough to cover most requirements. In addition we give an example
for such a sound translation.

5.1 Theorem: If 8 is an injective quasi-homomorphism from £n(s) to £~ort(S'), then e is weakly
sound.

Proof: Let M be a weak model of a formula set r, then M = (fDr}r,.:l) is a weak model for any <p out

of r, that is, Vr <p =T for every assignment ~. We are going to construct a model M = ({'br' }r" j)

of 8(<p). We define the sets jj"r" := 'Dr. j is defined as j(8(e)) := .:l(e) for all constants e in
S. (Here and in the sequel we make use of the injectivity of e. In addition we use the fact that
constants are mapped onto constants.) The assignments t are defined by t(e(x)) := ~(x). Because of
jj"r" = 'Dr we get all assignments in this way. Recall that we have no function or predicate variables
in £;ort. We also use the fact that variables are mapped onto variables. For the functions a~r"
with 7 = (71 X ••. X 7m --+ (7) we can define the interpretation so that it takes the interpretation
of the first argument, which is a function, and applies it to the other arguments. We can do this,
because these functions are new. Formally this interpretation can be written: for all f E jj"r", for

..... "T 11 AII T 11 M(11 711)() () ""T"allx1E'D 1 , ••• ,xmE'D m Vt a} f,t1, ... ,tm :=ft1, ... ,tm . NotethatfE'D ='Dr

is a function and hence applicable. By f(h, ... , tm) we mean the value and not the string as in the
definition of its syntax.

Analogously we define the interpretation for the predicates a;r" so that it takes the interpretation
of the first argument, which is a predicate, and applies it to the other arguments:
Vf (a~'r")(p, Xl,···, Xm) = p(X1, ... , xm).

Now M is a model of e(<p), which is proved by induction on the construction of terms and formulae.

Let M be a model of <p for all assignments ~. We show that M is a model of e(<p) for all assignment

t, that is, if Vr (<p) = T then vt (e(<p)) = T. This can be proved by showing that for all terms and

formulae vt 0 e =vt·
For terms we have:

— If we translate into a first order logic, the first case for 19(a,a1‚ . . . , am) can only be chosen
correctly if one is not going to quantify on a .

4.6 Lemma: If ® is a strongly (weakly) sound quasi-homomorphism from ß" to E lm, l- the deriv-
ability relation relative to a sound calculus of Lilo", I‘ a formula set and (p a formula in ‚C" with
90‘) '- 9((p), the“ P i=strongly ‘P (resp. r l=weakly ‘P)°
Proof: Because of 9(I‘) I- 9(<,o) we have that 6(I‘)U{-O(<p)} is unsatisfiable. Because of homomorphy
in -v there is no model of 0(I‘ U {-I<p}). Hence by soundness there is no model of I‘ U {-up}. In other
words every model of I‘ is a model of (p. Because of theorem 2.18 this conclusion holds for both strong
and weak models. I

4 .7 Remark: We are especially interested in the situation where we can translate into ‚Cl or Ego”,
because there are well-known complete calculi and strong theorem provers for these calculi. If we
find a sound translation the lemma above guarantees that we can prove theorems in C” by proving
them in Lil or L im. Strong completeness of such a translation is not obtainable because of GÖDEL’S
incompleteness result, but a priori nothing speaks against weak completeness, that is, there might be
a morphism 9 from £" to £1 such that, if 1" |=.,,¢a1c (‚0 then 6(I‘) I- 9(<p) in ‚Cl.
£1 is not really appropriate as the target logic for a translation, but a sorted version Liar, is usually
preferable. For a translation directly into C l see BENTHEM and DOETS [3‚ p.316—320].

5 A SUFFICIENT CRITERION FOR SOUNDNESS

In this section we give a. sufficient criterion for the soundness of translations of formulae of £" onto
formulae of CL,", which is strong enough to cover most requirements. In addition we give an example
for such a sound translation.

5.1 Theorem: If 6 is an injective quasi—homomorphism from [."(S) to ß}„‚.‚(8’), then @ is weakly
sound.
Proof: Let M be a weak model of a formula set I‘, then M = ({D‚}„ J) is a weak model for any <p out
of I‘, that is, vg“? = T for every assignment £ . We are going to construct a model M : ({Ö'I }Tl, j)
of 9((p). We define the sets 'Ö"7" :: D.,. j is defined as j (6(c)) :: J(c) for all constants c in
S . (Here and in the sequel we make use of the injectivity of 6 . In addition we use the fact that
constants are mapped onto constants.) The assignmentsé are defined by £(6(:c)) :: £(x). Because of
'Ö""' : D,- we get all assignments in this way. Recall that we have no function or predicate variables
in ‚630,1. We also use the fact that variables are mapped onto variables. For the functions 1127'"
with 1- : (1'1 x - . . x rm —> 0) we can define the interpretation so that i t takes the interpretation
of the first argument, which is a function, and applies it to the other arguments. We can do this,
because these functions are new. Bormally this interpretation can be written: for all f e 15"”, for
all 31 E fin' l" , . . . ,:cm & Ö"T“" Vé‘4(a;'")(f,t1, . . . ‚tm) :: f(t1,. . .,tm). Note that f € 15""' = D,-
is a function and hence applicable. By f (t 1 , . . . , tm) we mean the value and not the string as in the
definition of its syntax.
Analogously we define the interpretation for the predicates as?" so that it takes the interpretation
of the first argument, which is a predicate, and applies it to the other arguments:
Véwwipf)(p, 1:1, . . . ,zm) = p(:c1, . . . , zm) .

Now M is a model of 00,0), which is proved by induction on the construction of terms and formulae.
Let M be a model of cp for all assignments £ . We show that M is a model of 6(50) for all assignment
£ , that is, if V5“ (<p) = T then v?“ (®(so)) : T. This can be proved by showing that for all terms and
formulae vg“ o 6 : vg“.

For terms we have:

10 Soundness

T1	 For all variables XT, Vt(8(xT)) = €(8(xT» d~~J e(xT) = vtt(xT).

T2	 For all constants CT, Vf(8(cT)) = j(8(cT)) de~/ :J(cT) =vtt(cT).

T3	 For all composed terms that start with an m-ary function term f so that 1'J(I, tl, ... , tm) is
defined as f(tl' , t Tn) we have:

Vt(8(1T(tl, ,tm))) =Vt(1'J(8(1), 8(t1), ... , 8(tm))) =Vt(8(1)(8(td, ... , 8(tm))) ~f

vt8(1)(vt8(td, ... ,vt8(tm)) Ind,4'YP vtt(l)(Vtt(tl), ... ,Vtt(tm)) =
vtt(IT(tl, .. . ,tm)).

T4	 For all composed terms that start with an m-ary function term f so that 1'J(I, tl, ... , tm) isII
defined as 0:;T	 (I, t1 , •.. , tm) we have:

vt (8(1T (tl' ... , tm))) = Vt(1'J(8(1), 8(t1), ... ,8(tm») =

Vt(o:?" (8(1), 8(td,· .. ,8(tm))) ~ Vt(0:;TII)(Vt8(1), Vt8(t1)"'" vt8 (tm» Ind,4'YP

vt (o:;TII)(Vtt(l), vtt(td,···, vtt(tm)) ~f vtt (I)(vtt (tl), ... ,Vtt(tm)) =
vtt(IT(tl, .. . ,tm)).

For formulae we get:

F1 An atomic formula is a special term, hence we have already proved the required property above.

F2 For a conjunction we have:
• •	 •• Ind hyp

Vr(8('Pl A 'P2)) =Vr(8('Pl) A 8('P2)) =Vr(8('Pd) A Vr(8('P2)) ==
vtt('Pd AVtt('P2) = Vtt('Pl A 'P2)'

F3 For a negation we have:

V~ (8(-''P)) =V~ (-,8('P» = -,V~ (8('P)) Ind,4'YP -,vfl ('P) =vfl (-''P).

{	 { { "

F4	 For a quantification we have:

V~(8(VXT'P)) = V~(VX"TI8('P)) = Vd E 'bIT"Vft l 11 (8('P)) =

{{	 {[x r +-d]

Vd E 1)TV€f0(Xr)+-d] (8('P)) Ind,4'YP Vd E 1)T V~r+-d]('P) = vtt('fIx'P).

Here we use that to 8 =efor all assignments and hence t[8(xT) dJ 08 =e[xT dJ·
Hence for all formulae we have shown that vt 0 8 =Vr. So we can conclude: if Vr ('P) = T then

Vt(8('P)) = T. •

5.2 Theorem: If 8 is an injective quasi-homomorphism from .cn(S) to .c;ort(S'), then 8 is strongly
sound.

Proof: If there is a strong model of a formula set r in .cn(S) then this model is also a weak model.

By the previous theorem there is hence a weak model of 8(r) in .c;ort(S'). By a sorted version of

theorem 2.18 there is also a strong model of 8(r). •

5.3 Example: Let us see how to translate the predicative definition of a group into first order logic.

We drop the type information for readability, group is of type (£ x (£ X £ X £ --+ 0) --+ 0), G of type £,

+ of type (£ X £ X £ --+ 0), - of type (£ X £ --+ 0), and so on. In the translation this transforms into the

sorts ("L", 11(£ X LX L--+ 0)11) for group, and so on. A group can be defined as follows:

1. VG, + group(G, +) {::::::::} associative(G, +) A
30	 (0 E G A neutraLelement(G, +, 0) A

3- inverse(G,+,O,-))

2. VG,+ associative(G,+) ~

Vu,v,w,x,y,z	 u,v,w,x,y,zEG A +(x,y,u) A +(u,z,w) A +(y,z,v) ===}

+(x, v, w)

10 Soundness

T1 For all variables :cf, VM (O(z,-))= E(9($BT)) déé {(331)—— VM (31')

T2 For all constants c„ vg“ (6(c7)) = J(®(c‚)) def=j J (c ‚) = vg“ (c,-).

T3 For all composed terms that start with an m-ary function term f so that 19(f,t1, . . . , tm) is
defined as f (t 1 , . . . ‚ t „ .) we have:

defv€M<e(f.(tl, . . . ‚ tmm = nwem, em) , . . . , au...») = vg-‘*(e(f)(e(t1),.,—e(tm)))—
vg*6(f)(vg*e(t1),...‚neamn “€” veM (fxn (t1), . . . , Wm» =
vg‘4(f‚(t1, . . .,L„)).

T4 For all composed terms that start with an m—ary function term 1" so that 19(f,t1, . . . ‚ tm) is
defined as a?" (f, t1, . . . , tm) we have:
VM(9(f r (t l ‚ - - .,t,,.))) = VM(‘9(9(f) 6 (*1) 90m») =
vM(a ""'(®(f) e(t1)e(tm)»dé‘ vM(a"*")(V{‘e(f),129901), vMe<tmn

vM(aa;)(VMU’), vM<t1>,. . ,vM(t‚„>>dévM<r><vM(t1>,...,v£4<tm))——
V: (f , (t 1 , . . , tm))

For formulae we get:
F1 An atomic formula is a special term, hence we have already proved the required property above.

Ind_hyp

F2 For a. conjunction we have:v€M(e(so1 A w)) = n A em» = vflew) A v3“) “dä"?
Vé"(<P1)/ \ WAG/’2) = V?” ($01 A 602)-

F3 For a negation we have:

vEM(e(w>> = neeuo» = fivflew» “dä” ~12w = veMeso).

F4 For a quantification _we have: .
Vg”(9(esO)) = Vi“ (V "'"9(¢)) = W € Ö""'Vg“[„v-,--_d](6(so)) =
Vd & avi/EX,)_d](9(<‚oso)) ““=hyp va e DVV?‘[„„_d](<p) = vnw).
Here we use that £ o 6 = € for all assignments and hence 516m) (— d] o 6 = £[z, 4— d].

Hence for all formulae we have shown that V'Eiq o 9 = Vé“. So we can conclude: if vg" ((p) = T then
V,M(e(so)) = T. -

5.2 Theorem: If 0 is an injective quasi-homomorphism from ,C"(S) to £};„(8’), then @ is strongly
sound.
Proof: If there is a strong model of a formula set~ I‘ in (TCS) then this model is also a weak model.
By the previous theorem there is hence a weak model of OO“) in £}O„(S’). By a sorted version of
theorem 2.18 there is also a strong model of @(I‘). ‘ I

5 .3 Example: Let us see how to translate the predicative definition of a group into first order logic.
We drop the type information for readability, group is of type (L x (L x L x L —> o) —> o), G of type L,
+ of type (L x L x L —» o), — of type (L x L _» 0), and so on. In the translation this transforms into the
sorts ("L", "(L X L X L ——+ a)") for group, and so on. A group can be defined as follows:

1. VG,+ group(G, +) => associative(G,+) A
30 (0 E G A neutralxlement(G,+,0) A

3— inverse(G, + ,0 , —))
2. VG,+ associative(G, +) (=>

VUWL'U’J 'LMZ u‚v ‚w ,x , y , zEG A +(z iy iu) A +(u , z ,w) A +(yvz iv) =>

+(z,v‚w)

11

3.	 'v'G, +, °neutraLelernent(G, +, 0) ~ 'Ix x E G ==> +(x, 0, x) /\ +(0, x, x)

4.	 'v'G,+,O,- inverse(G,+,O,-) -<===} 'v'x,y :r:,yEG /\ -(x,y)==>+(:r:,y,O) /\ +(y,:r:,O)

This formula set is a subset of .e3 . Now we give a translation into a formula set of .e~ ort. The signatures
are obvious, hence ommitted. The translation is sound, because it is an injective quasi-homomorphism.

1.	 'v'G,+ group(G,+) ~ associative(G,+) /\
30	 (0 E G /\ neutraLelernent(G, +, 0) /\

3 - inverse(G, +, 0, -»
2.	 'v'G,+ associative(G,+) ~

'v'u, v, w, x, y, z u E G /\ v E G /\ wE G /\ x E G /\ yE G /\ z E G /\
a"('x,x,-o)"(+,x,y,u) /\ a"('x,x,-o)"(+,u,z,w) /\
a"('x,x,-o)"(+,y,z,v) ==>

"(,x,x,-o)" (+)a ,x,v,w

3. 'v'G, +, °neutraLelernent(G, +, 0) ~ 'Ix x E G ==>
,a"('x,x,-o)"(+,x,O,x) /\ a"('x,x,-o)"(+,O,x,x)

4.	 'v'G,+,O,- inverse(G,+,O,-) -<===}'v'x,y xEG /\ yEG /\ a"('x,-o)"(_,x,y)==>
.	 a"('x,x,-o)" (+, x, y, 0) /\

a "(,x,x,-o)" (+, y, x, 0)

This translation is clumsy, because we cannot use equality; a translation with equality can be found
in example 7.3.

5.4 Remark: Note that the formulae that are obtained by these translations are pot essentially more
difficult as the original, the structure ofthe formulae (number and position of quantifiers and junctors)
is respected. In the image the terms are never more nested than in the original. The only thing that
can change, is that the number of arguments in a term is increased by one.

5.5 Remark: For the final proof presentation proofs can easily be translated back, because the
mappings 0 are injective. In other words if we have a first order calculus then this calculus provides
a calculus for .en by 0- 1.

6	 THE STANDARD TRANSLATION FROM UNSORTED HIGHER ORDER

LOGIC TO SORTED FIRST ORDER LOGIC

Now we want to define morphisms 0n from .en to .e~ort which are not only sound but also complete.
We define the morphisms for odd n, for even n they are obtained as the restriction of the next higher
odd n, that is 0 2n := 0 2n+1 1.c2n. The morphisms 0 are defined as E>(rp) = 0'(rp) U %AXIOMS,
where 0'(rp) is a quasi-homomorphism and %AXIOMS is the set of extensionality axioms which
depends only on the signature of the logic. In the following we drop the index n. Again we abbreviate
apply as a.

6.1 Definition (Standard Translation E>2n-t>: Let s2n-1 = UT ST be the signature of a logic in
.e2n - 1

• We define a signature S.ort of a logic in .e~ort by assigning to each predicate constant of order
n, arity rn, and type T = (T1 X ... X Tm -+ 0) a predicate constant of order 1, arity m (that is, of type
(t X •.. X t -+ 0»* and sort ("Tl ", ... , "Tm ")**. All constants and variables of order less than nand
of a type (J' are mapped onto constants and variables of type t and sort "(J'''. Because we assumed all
members in s2n-l to be disjoint, we can use the same names for the images.

*Recall: In £2n-l there are no function constants of order n.

**By "TI! we mean the string after expanding the abbreviation for T, for instance, if T = (I,. X t -+ 0) then liT" is
II{£ X t -+ 0)11.

11

3. VG, + , 0 neutral_element(G, +, 0) 4:) Va: 2: E G => +(z , 0, z) A +(0, z , x)

4. VG, + ,0 , — inverse(G, + ,0 , —) => Vz,y z , y e G A —(a:, y) => +(z , y, 0) A +(y, 2,0)
This formula set is a subset of La. Now we give a translation into a. formula set of Lim. The signatures
are obvious, hence ommitted. The translation is sound, because it i s an injective quasi-homomorphism.

1. VG,+ group(G,+) <=> associative(G, +) A
30 (0 G G A neutral_element(G,+,0) A

3 — inverse(G, + , 0, —))
2. VG‚+ associative(G,+) <=)

Vu,v ,w ,x ‚y ‚z uEG A 1160 A 11160 A xEG A yeG A zEGA
a"(rxrxr—+o)"(+’z ,y , u) /\ a"(LXLXL—>a)“(+’ u , z , w) /\
auOXLXt—to)" (+ , y , z , U) =

“Nixon—on)" (+ , 3 , v , w)

3. VG,+,0 neutral-element(G,+,0) 4=>Vm a: E G=>
‘a"(l -X l .XL—*0)“ (+ , 12 ,0 ,1 !) A a"(LXLXL—>0)"(+‚ 0 , (C, z)

4 . VG,+’0 ,_ i nve r s€ (G‚ +103—) <=>V$!y 3 GG A yGG A a"(‘x"’ °)" (_ ’x ’y)=>
. a" (lx tx ‘—’°)" (+ iz?y ’0) Aa"(¢xaxb"°)" (+ ,y i z ’0)

This translation is clumsy, because we cannot use equality; a translation with equality can be found
in example 7.3.

5 .4 Remark: Note that the formulae that are obtained by these translations are _not essentially more
difficult as the original, the structure of the formulae (number and position of quantifiers and junctors)
is respected. In the image the terms are never more nested than in the original. The only thing that
can change, is that the number of arguments in a term is increased by one.

5 .5 Remark: For the final proof presentation proofs can easily be translated back, because the
mappings 6 are injective. In other words if we have a first order calculus then this calculus provides
a calculus for £" by (9‘1 .

6 THE STANDARD TRANSLATION FROM UNSORTED HIGHER ORDER
LOGIC TO SORTED FIRST ORDER LOGIC

Now we want to define morphisms Ön from ß” to Li” , which are not only sound but also complete.
We define the morphisms for odd n , for even n they are Obtained as the restrictipn of the next higher
odd n, that is 62,, := (927.44 | ßfin. The morphisms ® are defined as @@) = 9’(<p) U %AXIOMS,
where Ö’(<p) is a quasi-homomorphism and %AX I OM S is the set of extensionality axioms which
depends only on the signature of the logic. In the following we drop the index n . Again we abbreviate
apply as a .

6.1 Definition (Standard Translation Öz‚._1): Let 82”'1 = U,. 81 be the signature of a logic in
£2""1. We define a signature 8,0" of a logic in [23m by assigning to each predicate constant of order
n , arity m, and type T = (11 x - - - x Tm —+ o) a predicate constant of order 1, arity m (that is, of type
(L x ~ -- x L ——> o))* and sort ("T1 ", . . . , "Tm")'*. All constants and variables of order less than n and
of a. type 0' are mapped onto constants and variables of type 1. and sort "0'". Because we assumed all
members in 82" ‘1 to be disjoint, we can use the same names for the images.

‘Recall: In [?”—1 there are no fimction constants of order n.

"By "T" we mean the string after expanding the abbreviation for 1“, for instance, i f T = (I. X L -—> 0) then "T" i s
"(L x L -> 0)".

12 The Standard Translation

In addition we have in S80rt for each type T of .order less than n with T = (Tl X .•. X Tm - 0) a
new (m + l)-ary predicate constant a"T" of sort ("T", "Tl ", ••• , "Tm ,,) and for each type T of order
less than n with T = (Tl X .•• X Tm - u), uf::o a new (m + l)-ary function constant a"T" of sort

liT, v(liT" , "'Tl" , ... , m ").11_11. •

Now we are going to define a quasi-homomorphism e'. For terms it is defined inductively by:

Tl for all variables XT, E>'(xT) = X"T"

. () "() C"" " ")T2	 for all constants CT of order equal n WIth T = Tl X •. , X Tm _ 0 , e cT =c T1 ,"', T~

T3	 for all constants Cr of order less than n, E>'(cT) = C"T"

T4	 For a term with an m-ary function term 1 of type T as top expression we define
E>'(/(tl, ... ,tm)) = a"T" (6'(/), E>'(tl),"" B'(tm))

For formulae we define B' inductively by:

Fl	 For an atomic formula with predicate constant p of order n as top expression we define

B'(P(tl"'" tm)) = E>'(p)(0'(tI), ... ,E>'(tm))

F2	 For a term with an m-ary predicate term p of type T and order less than n as top expression we
define
B'(p(tl, ... , tm)) = a"T" (E>'(p), E>'(tI), ... , E>'(tm))

F3 For a conjunction we define

E>' ()?l /I.)?2) = B'()?l) /I. B'()?2)

F4	 For a negation we define

E>'(.....)?) = -.E>'()?)

F5 For a quantified formula we define
E>'(VX)?) = VE>'(x)E>'()?)

%AXIOMS is the set consisting of the following formulae of .c;ort:

Al	 For every function constant a"T" with T = (Tl X ... X Tm - u), u f:: 0:

V/"r"V IIr"(V "Tl" V "Tm " "T"(I) =("<1","0'") "T"())g Xl"'" Xm	 a ,Xl, .. ·,Xm _ a g,Xl,···,Xm ==>
1 =C"1"","T") g

A2 For every predicate constant a"T" with T = (Tl X ... X Tm - 0):

V "r"v "T
II (V "T1 It V tiT	 11 liT" () liT" ())P q Xl , ... , Xm~	 a P,Xl,···,Xm {=:} a q,Xl, ... ,Xm ==>

p =C"1"","1"") q

We define e()?) = B'()?) U %AXIOMS. Analogously for formula sets e(r) = e'(r) U %AXIOMS.

6.2 Remark: It should become obvious now, why we excluded types like (0 _ 0): Let P be a predicate
of this type, Q be a predicate of type (L - 0), and c be a constant of type L. Then B'(P(Q(c)) /I. Q(c))
would be a"Co-.o)" (P, a"CHO)" (Q, c)) /I. a "C,-.o)" (Q, c) or P(a"CHO)" (Q, c)) /I. a"CHO)" (Q, c) which
is not well-formed, because a"C,-,o)"(Q,c) has to be a formula and a term at once. Even worse in
general a uniform (quasi-homomorphic) translation is not possible, because Q(c) must be translated in
the first case to a term and in the second to a formula,'what is not allowed in first order logic. I think
that this example is also a counterexample for the correctness of the translation given by BENTHEM

and DOETS [3] for a language without function symbols.

A possible translation of the unrestricted typed higher order logic has also to provide a translation
of formulae of the kind P(Q(c)) /I. Q(c). This is possible by having only function symbols a"T" and
translating all other symbols into object variables or object constants. Especially the junctor "/I." has
also to be translated to a constant. A possible translation would be:
a"Co-,o)"(/I.,a"Co-.o)"(P,a"C,-,o)"(Q,c)),a"C,-,o)"(Q,c)) =TRUE. That is, the whole problem. is
encoded into an equality problem. In order to gain completeness it would be necessary to add axioms
for the junctor "/I.".

wWe have not defined translations of arbitrary formula sets of .c • For instance with the unary pred
icate symbols PCl,-.o)' Pc1,-.0)-.0)' PC~CHO)-'O)-'o)"'" the formula set r = Un~l {pn+l(pn)} is not

12 The Standard Translation

In addition we have m 8,0" for each type 7' of order less than n with T : (71 x - . - x rm —> o) a
new (m + 1)--ary predicate constant a " " " of sort ("T", "71", ‚"Tm") and for each typeI T of order
less than 11 with 1 ' -_ (1'1 x x T.,. —+ (7), cr # o a. new (m + 1)-ary function constant 01"" of sort
("T " , 117-111). _ " "Tm") 2 "0'"

Now we are going to define a quasi-homomorphism é ’ . For terms i t is defined inductively by :

T1 for all variables w„ é’(:c‚) : zur"

T2 for all constants c, of order equal n with 1' = (1'1 x x rm _» o), Ö’(cr) : c(""1"'°""'7"'")

T3 for all constants c,- of order less than n , Ö'(c.‚) = c" " '

T4 Ii‘or a term with an m-ary function term f of type 1' as top expression we define
6 ' (f (t 1 , . . . , tm)) : a " " " (6 ’ (f) , 6 ’ (t1) , . . . , 6 ’ (tm))

For formulae we define Ö’ inductively by:

F1 Eor an atomic formula wi th predicateflconstant p of order n as top expression we define
6’(p(t1,...,tm)) = ®'(p)(®’(t1), . . . , 8’(tm))

F2 For a term with an m-ary predicate term p of type 1' and order less than n as top expression we
define
Ö'(p(t1, . . .‚t„.)) : a"f"(é'(p),é'(t1), . . .,Ö’(t„,))

F3]ä‘or a conjunction we define
6’(101 A <x92) = 9’(sv1) A G’Wz)

F4 For a negation we define
Ö’HO) = fié’ßo)

F5 Ifor a quantified formula we define
®’(Vmp) = V9’(w)9'(<p)

%AX I OM S is the set consisting of the following formulae of 53m:
A1 For every function constant 01”" with 1' = (n x -x rm —> o‘), a ;E o:

VfNTI IVgI ITH (V31 'T l ' l ’ . . . ’ vzÄTml l an . , " (f , 1:1 , " m m) — _ =(l l a l l . l o i l) a "1 l l (g ‚ 21 , . . . ’ zm)) =>

f E("T") "T")g

A2 For every predicate constant a""'" with 1' : (T1 x - - - x 1'm —> 0):
Vp"""Vq"T" 011131TI , . . .,Vx;;,"""a""'(p,:c1, . . .,:cm) (:> a"""(q‚ 2:1, . . . ,zm)) =>

p— =(l l 1 -H ’ I IT ")

We define @@): 6’(<p) U %AX I OM S Analogously for formula sets Ö(I ‘) : 9’(I‘) U %AX I OM S

6. 2 Remark: It should become obvious now, why we excluded types like (0 —> a): Let P be a predicate
of this type, Q be a predicate of type (I, _» a), and c be a constant of type L. Then Ö’(P(Q(c)) AQ(c))
would be a" (°"°)" (P , a " (" ' °) " (Q, c)) A a"(“ ' °) " (Q, c) or P(a"(“"°)" (Q e)) A a"(‘_'°)"(Q, 0) which
is not well—formed, because a ("“0" (Q c) has to be a formula and a term at once. Even worse in
general a uniform (quasi-homomorphic) translation lS not possible, because Q(c) must be translated in
the first case t o a term and 1n the second to a formula, what 1s not allowed 1n first order logic. I think
that this example is also a counterexample for the correctness of the translation given by BENTHEM
and DOETS [3] for a language without function symbols.
A possible translation of the unrestricted typed higher order logic has also t o provide a translation
of formulae of the kind P(Q(c)) A Q(c). This is possible by having only function symbols a"’"' and
translating al l other symbols into object variables or object constants. Especially the junctor “A” has
also to be translated to a constant. A possible translation would be :

"(°-w)" (A "(°-">>" (P «(„...)» (Q c,)) a"("'*°)" (Q e))—= 1mm. That is, the whole prob lem. is
encoded into an equality problem. In order t o gain completeness i t would be necessary to add axioms
for the junctor “A” .
We have not defined translations of arbitrary formula sets of £“ . For instance with the unary pred-
icate symbols P(i—oy P(zt‘__o)__o), Pä(‘_‚o)__o)_‚o), . . ., the formula set I‘ = Un21{P"+1(P")} is not

13

translatable. Of course our mappings 8n could be extended to a mapping 8w in such a way that
we have as predicates only the o:"T". We have not done this, because in all practical cases only
finitely many formulae are involved and so we can have a translation 8n . This gives a translation
that preserves the property of being a predicate for as many symbols as possible.

6.3 LelUlUa: 8 2n- 1 is a quasi-homomorphism from .c2n - 1(S) to .c;ort(8(S)).

Proof: We have to prove that for every formula <p in a logic .c2n - 1(S), 8 2n - 1(<P) is a well-sorted

formula of .c;ort(82n-1(S)). Instead of 8 2n- 1 we write shortly 8'. We prove this by induction on the
construction of terms and formulae:

- If x is a variable of type T, then 8'(x) is a variable of sort "T" hence well-sorted.

- If c is a constant of type T and order less then n, then 8'(c) is a constant of sort "T" hence
well-sorted.

- If c is a constant of type T = (T1 X ••• X Tm -+ 0) and order equal n, then 8'(c) is a constant of
sort ("T1 ", , "Tm ,,) hence well-sorted..

- If fT' tT" , t Tm are terms of the types indicated by their subscripts with T = (T1 X ... X Tm -+ 0")
and order less then n, then 8'(IT (tT" , tTm)) = 0:"T" (8'(1), 8'(t T1), ... , 8'(tTm)) where o:"T"
has sort ("(Tl X ... X Tm -+ 0")", "Ti", , "Tm ") : "0"", 8'(f) has sort "T", and the 8'(tTJ have
sorts "Ti", hence the term is well-sorted.

- If PT' tT1 , ... ,tTm are terms of the types indicated by their subscripts with T = (Tl X ... X Tm -+

0) and order n, then 8'(PT(tTl"'" tTm)) = (8'(p)(8'(tTJ, ... ,8'(tTm)), where 8'(p) has sort
("T1 ", ... , "Tm ,,), and the 8'(tTJ have sorts "Ti", hence the whole formula is well-sorted.

- If PT' tT" ... ,tTm are terms ofthe types indicated by their subscripts with T = (T1 X ... X Tm -+ 0)
and order less then n, then 8'(PT(tTl"'" t Tm)) = o:"T" (8'(p), 8'(tTl)"'" 8'(tTm)), where o:"T

Il

has sort ("(Tl X .•• X Tm -+ 0)", "Tl ", •.. , "Tm "), 8'(p) has sort "T", and the 8'(tTJ have sorts
"Ti", hence the whole formula is well-sorted.

This shows the well-sortedness for atomic formulae, for composed formulae this property is immediate.
The properties of a quasi-homomorphism follow trivially from the definition of 8'. Constants and
variables are mapped onto constants respectively variables. Terms fulfill the required property and
the homomorphy of the junctors and the quantifier is also given. •

2n6.4 RelUark: It is easy to show inductively that 8~n_l is an injective mapping on .c - 1(S). Hence

it is a bijective mapping from .c2n- 1(S) to 8~n_1(.c2n-l(S)).

6.5 TheorelU: 8 is weakly sound.

Proof: Let M = ({VT}T,:1) be a weak model of a formula set r, hence M is a weak model for any <p
out of r, that is, vtt<P =T for every assignment~. We are going to show that M = ({VT'}T" j) (as

in theorem 5.1) is a model of 8(<p). By theorem 5.1 and remark 6.4 we have that 8' is sound. So it

rema,ins to be shown that for all elements <p in %AXIOMS we have vt(<p) = T. That is, we have to

show that
. . ("f"T""v vg"T"("vX"Tl"1 , ... , "VX "Tm") _

VM m
i IITU(f) =("O'","O'U) ttrll(.)) f =("T","T") - T. , 0: ,X1, ... ,Xm _ Q: g,Xl, ... ,Xm ==> _ g

Therefore it is necessary to prove that for all F, G in V"T", we get V~['I F](1) = v~[·](g)
, ,g+- ,G € I,g+-F,G

(th t IS,· F = G)'f, I r 11 X V' "Tl" , ... , X m E V'"T " a lor alE m

VM ("T"(f)) - VM ("T"())'[1 FGX X] Q: ,X1,···,Xm - '[0: g,X1,···,Xm · € ,g,XIJ, .. ,Xm~ , J 1,···, m € !,g,xl, ... ,x m +-F,G,X1, ,Xm]

By the definition ofV€t,g,:l:l, ... ,:l:m+-F,G,Xl, ... ,Xm] this is equivalent to F(X1 , , X m) = G(X1 , ... , X m).

Because two functions are the same, if they have the same values on all arguments we get F = G,
what was to prove.

The axioms for the predicates can be proved to be true analogously. •

l 3

translatable Of course our mappings 9,, could be extended to a mapping éw in such a way that
we have as predicates only the a " ' " . We have not done this, because in all practical cases only
finitely many formulae are involved and so we can have a translation Ön. This gives a translation
that preserves the property of being a predicate for as many symbols as possible.

6.3 Lemma: Ö’2„_1 is a quasi-homomorphism from C2"'1(S) to ß}„„(Ö(S)).
Proof: We have to prove that for every formula cp in a logic £2"'1(S), Ö’2„_1(4p) is a well-sorted
formula of £}m(égn_1(8)). Instead of éIZn—l we write shortly é’ . We prove this by induction on the
construction of terms and formulae:

— If 1: is a variable of type T, then Ö’(z) is a variable of sort "T" hence well—sorted.

— If c is a constant of type 1' and order less then 71, then Ö’(c) is a. constant of sort " r " hence
well-sorted.

— If c is a constant of type r = (1-1 x x rm -—+ o) and order equal n , then 9’ (c) is a constant of
sort ("1'1" . . . ‚"rm") hence well—sorted.

— If f „ tn , . .‚t.‚m are terms of the types indicated by their subscripts with r.—— (7'1 x x rm —> a')
and order less then n, then Ö'(f‚- (tT_l , . .‚—t‚-„_))— a"""(Ö’(_f), ®'(t-‚-,),.. .,Ö'(t‚-m)) where a """
has sort (" (n x- x rm —-+ a')", "1'1", . . .,"Tm" : "v" , Ö’(f) has sort "T", and the Ö'(t‚-.) have
sorts "rg", hence the term is well-sorted.

- If p„ t n , . . . , tr... are terms of the types indicated by their subscripts with 1' : (nnx ~ - - X Tm —>
0) and order n, then ®’(pz(t‚„...,t„„)) : (G’ (p)(6’(t1,), . . .,O’(t„„)), where 9’ (p) has sort
("7'1", . . . ,"rm"), and the 6’(t„) have sorts "r,-", hence the whole formula is well-sorted.

— If pr,t . ,1 , . „t,-m are terms of the types indicated by their subscripts with 1 ' -- (1'1 x - -x Tm —> 0)
and order less then 11, then Ö’ (p‚(t‚-„ . . „t‚m))—_ a""'"(Ö’(p)‚ Ö'(t.„),.. .,Ö’(tz‚„)), where a"T"
has sort ("(1-1 x -x rm —> 0)", "11" . . .,"Tm "), Ö'(p) has sort "T", and the Ö'(t7_.) have sorts
"T,-", hence the whole formula is well-sorted.

This shows the well-sortedness for atomic formulae, for composed formulae this property is immediate.
The properties of a quasi—homomorphism follow trivially from the definition of Ö’ . Constants and
variables are mapped onto constants respectively variables. Terms fulfill the required property and
the homomorphy of the junctors and the quantifier is also given. I

6.4 Remark: It is easy to show inductively that é;,,_1 is an injective mapping on [?"—KS). Hence
it is a bijective mapping from £2”'1(S) to é§n_1(£2"‘1(8)).

6 . 5 Theorem: Ö is weakly sound.
Proof. Let M: ({D } , J) be a weak model of a formula set I‘, hence M 1s a weak model for any so
out of 1", that is, VE go-_ T for every assignment £. We are going to show that M: ({D7 }T:, J) (as
in theorem 5.1) 1s a model of 9(<p). By theorem 5.1 and remark 6.4 we have that 9’ 1s sound. So it
remains to be shown that for all elements (p in %AX I OM S we have Véfi ((p) = T. That is, we have t o
show that „ " " " „ __ ..
V410”.- ' Vg ’(‘17’121’1 ‚ . . . ,Vs) :T
E a ""(f,a:1, .,lrm)=("”"’"”") a"""(g,'a:1,. . .,:cm)) => f E("""'""") '

Therefore it 1s necessary to prove that for all F, G in D T , we get véif
g_ F G](f) vg” “_F, G] (gg)

(that IS, F : G), if for all X1 € D"“" , .,Xm € D"T"' ..
a . . . „ l l = VM " I Ivé[f‚g.z.... ‚MM-FG x1.„.".x„.](“’ ”1’ ”3“» viii g.an... Ma...—FG x.....X...1(" T (9 ' 21 ' ' ' . . zm)) .

By the definition of v$,g ‚m , . „ .wme—F‚G .X1 ‚ . . . ‚Xxm l this 1s equivalent to F (X1 , . . . , Xm)—.. G'(X1, . . . , Xm).
Because two functions are the same, if they have the same values on all arguments we get F = G',
what was to prove.
The axioms for the predicates can be proved to be true analogously. l

14 The Standard Translation

6.6 Remark: 0 is strongly sound, anal~gously to theorem 5.2.

6.7 Theorem: 0 is weakly complete.
Proof" Let r be a formula set in .c2n - l (S). Let M be a weak model of 0(r). Then M is a model
of 6C'P) for every formula 'P in r. Let M be (fVO}.,.:J) and { be an arbitrary assignment. Then
we have Vr(0(SO)) = T. We want to construct a model M of SO, so that for all assignments e
we have vt(SO) = T. Therefore we define V, := V"," and Vo := {T,F}. For all other types T with

T = (Tl X ... X Tm --> IT) we have to define Vr ~ :F(Vrll ... ,Vrm ;Vq). We do it by inductively defining
InJec lve . . t' unctions. "f~r -n"(r X "'xrm to :F("" ... , "" Vrm;"")Vq d setting. Vr " vf rom v 1 --+0')" Vr" an "" := ~r (-n"r ll) .

Hence qr is a bijective function from V" r " to Vr .*
We define qr as bijective functions inductively:

1.	 q, : V"," --> V, as the identity mapping (This function is obviously bijective).

2.	 Let qr; and qq be defined for V" r, ", ... ,V" rm ", and V""". We are going to define a function qr
with T = (Tl X .•• X Tm --> IT), IT # 0, for·V"r ll . For all x E V" r" qr(x) is defined as the function
qr(X)(XI,"" xm) := qq(Vr(o:"r")(x, q;:/(xI), ... , q;~(xm))) for all Xl E Vrll ... , Xm E Vrm
The following diagram may help to see the involved mappings at a glance:

Vr(o:" r") :V" r " X V" r, " X .,. xV" rm 11 -----+v 11 ,,"

!1~· J~;t' J~;~ l~v
Vr '---+:F(VT1 , ... , VTm V,,)

In order to show the injectivity of qr we use that we have in %AXIOMS the formula
\.IfttTII\.J 11 7 11(\.1 " T1 " "'Tm " UT"(f) =(II U ","(7I1)\J
V vg vX l , ... ,vXm 0: ,XI,."'Xm

"T" ()) f -(liT" I "'Tit)
0: g,Xl, ... ,Xm ==> = g

Therefore we have in a model for all x, x' in V"r "

\.I -n"r," \.I " rm 11 M (II r")() _
VYl E v , ... , VYm E V	 V€ 0: x, Yl,···, Ym =v"v ll

VM (IIrll)(,) - ,
€	 0: X,Yl, ... ,Ym ==>x=v"'" x

Let qr(x) =1). qr(X') for arbitrary x and x' in v"r
ll

Then we have by definition for all •

Xl E Vr" ... , Xm E Vrm
qq Vr(o:" r")(x, q;,!(xI), ... , q;~(Xm)) =1)v qqVr(o:" T")(x', q;,!(xd,···, q;~(xm)). Since the

." "" 11 b" t' t ~lor a 11 -n"r1 11 ••• , -n"r 11mappIngs ~r""" ~rm' ~q are a IJec lve, we ge Yl E v , Ym E v m :
Vfi(o:"r")(X,YI, ... ,Ym) =V" v " Vfi(O:" r")(X',YI, ... ,Ym). Because by (*) x =v"r" x', the
injectivity is shown. Since the surjectivity is given by definition, we have proved that qT is
bijective.

3. Let qri be defined for V" r1 ", ... , V" rm ". We define a function qr (for order of T is equal to n)
. h () ~ -n(" r 11 ") 11 -n("" "r ")" (). d fi d11 DWIt T = Tl X ... x Tm --> 0 lor v 1 , ... , rm . ror apE v r, ,... , m ~r P IS e ne as

the predicate qr(P)(Xl' ... , Xm) := p(q:;:,/(xd, ... , q;~(Xm)) for all Xl E Vrll ... , Xm E Vrm . The
bijectivity of qr follows trivially.

4. Let	 qr; be defined for V" r1 ", ... ,V" rm ". We are' going to define a function qr (for order of T is
less than n) with T = (Tl x··· x Tm --> 0) for V" r". For all x E V"T" qr(x) is defined as the pred
icate qr(X)(Xl,' .. ,xm):= V(l(O:" r")(X,q;,!(Xl)' ... ,q;~(xm)) for all Xl E Vrll ... ,Xm E V rm ·
Analogously to case 2 we get the bijectivity of qr by the corresponding formula in %AXlOMS.

q is the polymorphic mapping defined by all the individual qT' Now we are going to show that if M

is a model of 0(SO), that is, for all assignments ewe have Vr(El(SO)) = T, we have M is a model of SO,

that is, for all assignments t. we have vt (SO) = T with M = ({VT}T'.1) . .1 is defined as qo:J 0 0'.

The assignments t. are defined as q0 e0 0'. Because qand El' are bijective, we get all assignments this

way.

We now prove by induction on the construction of terms, that for all terms: vt =q0 V(l 0 0'.

'Since we cannot achieve bijectivity from 1J"T" to :F(15T1 , ... ,15Tm ;15".) we do not get strong completeness.

14 The Standard Translation

6 .6 Remark: @ is strongly sound, analogously to theorem 5.2.

6. 7 Theorem. G) is weakly complete.
Proof. Let I‘ be a formula set in Kan—1(8). Let M be a weak model of 6(1‘). Then M 1s a model
of Ö(<p) for every formula cp in I‘ Let M be ({D°}„J) and { be an arbitrary assignment Then
we have VM (®(go))= '1'. We want to construct a model M of so, so that for all assignments &
we have VEM ((p)—.. T. Therefore we define D = 'D""' and D , -.= {T, F}. For all other types 1' with
r—_ (1-1 x- x rm —> 0') we have to define DT C (DT„...7—' . ,TD7"».-;DT) . We do i t by inductively defining
injective functions hT from D"("'1x ”'n—")" to f (DT„ . . .‚T„_D „,D) and setting DT .——hT(D"’")
Hence hT 1s a bijective function from D 'T " to D . "
We define hT as bijective functions inductively:

1 . h, :DD"‘ " —->D, as the identity mapping (This function IS obviously bijective).

2. Let hT, and h„ be defined for D""1"‚ . . . ,D ' '"T'" , and D"”". We are going to define a function hT
with 7- = (7-1 x - . . x rm —> a) , aT 96 o, for—D""'". For all z E D""' hT(:c) is defined as the function
hr(r)(a‘:l, . . . , «“.-„.) := h„(VE"'(a""')(w‚h?.1(il)‚ — - -, hiflfim)» for 31151 € D,“ - - - , "”m € ”m
The following diagram may help to see the involved mappings at a glance:

véM (au fn) :D I IT " x Du, -1 l . . . XD' IT ’ I " DUO"

111, T1: T12: 11:.
DT =>?(DT1 ‚ . . . , DTM ; D,)

In order t o show the injectivity of hT we use that we have '1n %AX I OM S the formula
Vf " " "Vg " " " ' (Vz ' 1 'T " ' , . . . ‚ vzä rml la " . , - l l (f , 31 , „=xm) =(l l a a” Hal l)

a'T"(g, z...» => f sw >,
Therefore we have in a model for all a:, x’ i n D"T"

Vyl € Dun" ; - . ' ‚Vym€D"T""VM(‘1"T") ($13 /1 ‚ - - - ‚ym) =D"v"
(*)vM(a"T") (z ’ ‚y1 ‚ - - ‚ym) : 2 =D"r" £]

Let hT(x) =1> hT(:n’) for arbitrary a: and :1:’ in D"T". Then we have by definition for all
5:1 eDT„ . . ,5:mEDTm
hovä“(a""')(z‚h;1(51)‚o-‚hf“,.(5m)) =D, hoVM(a"'")($'h?,1(f1) - ‚h?‚„ (5m)) - . Since the
mappings hT„ . . .,hTm, h„ are all bijective, we get for all y l € D ""' . . . , gm € D "" '
lie/"(a """)(z, y1,. ..,ym) :Du,u V“ (a " ")(z’‚y1,....,ym) Because by (*) :1: ED" n x’, the
injectivity i s shown. Since the surjectivity is given by definition, we have proved that 'hT is
bijective

3. Let hr.- be defined for D"Tl " , . . .‚D"T"'". We define a function hT (for order of T is equal to n)
with Tr = (1'1 x . . . x rm -—> o) for D(""1""""'T'°"). For all p € D("T"' ' "'Tmu) hT (p) '1s defined as
the predicate hT(p)(:i:1, . . .,:i'm) := p(h;11(5:1),.. . , h;m(':ém)) for all 5:1 6 DT„.. .,:ETT. € DTM. The
bijectivity of hT follows trivially.

4 . Let hr.- be defined for D""1 " , . . . ‚D"T"‘". We are going to define a function hT (for order of 1' is
less than n) with ' r—_ (7'1 x - -x Trm _» 0) for D ' ' .T" For all a: e D"T" [q,-(z) 1s defined as the pred—
icate hf(:8)(521,.. ‚3m) - : 1"'N'“! "T") (31h hr—11($1)7'“ 33(m for all ill 6 D71!” ‚ am 6 'DTm'

Analogously to case 2 we get the bijectivity of hT by themcorresponding formula'1n %AX I OM S
h 13 the polymorphic mapping defined by all the individual hT. Now we are going to show that if M
is a model of (:)(ga), that 1s, for all assignments € we have VM (Ö(<p))__ T, we have M 1s a model of so,
that 15, for all assignments 5 we have V64“ (<p)—__ T with M: ({DT }T„_7). j IS defined as h o J o 6 '
The assignments f are defined as no : 0 Ö’ . Because &} and Ö’ are bijective, we get all assignments this
way.
We now prove by induction on the construction of terms, that for all terms: VE“ = ho vg“ o Ö’.

”Since we cannot achieve bijectivity from D"" ' to f (DT, , . . . , DTM ; Do) We do not get strong completeness.

15

- - , M'
T1 For all variables XT, Vr(xT) = ~(XT) = ~(~(e'(XT») = ~Ve e'(x T).

. _ , M"
T2	 For all constants CT, Vr(cT) =J(cT) = ~(J(e'(CT») = QVe e (cT).

T3	 For all composed terms beginning with an m-ary function term f we have:

Vt(lT(t1, ... ,tm» = vt(l)(vt(td, ... ,Vt(tm» Ind~yp

Q(Vr 0 '(I»(QVt 0'(tI), ... , Qvt 0'(tm» def Q~ase 2.

Q[vt (a"T")(vt0'(1), q-1 qvt 0'(t1), ... , Q-1Qvr 0'(tm»] def~r
Q[vt(a"T" (0'(1), 0'(tI), ... , 0'(tm»)] de~e' qVt0'(I(t1' ... , tm».

We now prove inductively, that for all formulae: vt = vt 0 0'.
F1 For an atomic formula that starts with a predicate constant P of order n we have:

vt(PT(t1, ... ,tm» = vt (p)(vt (t1), ... ,vt(tm» Ind~yp

q[Vr 0 '(p)](qVr 0 '(td, ... , qVr 0 '(tm »def ~ ~ase 3.

M" -1l, M") ~-1~ M' '(» def Vr M(e"()(e"() e''(») def e'V	 e(p)(q 4Ve e(t1 "",4 4Ve e t m = Ve - p - t1 , ... ,- tm = e

vt0'(p(t1"'" t m ».

F2 For an atomic formula that starts with a predicate term P of order less than n we have:

Vf(PT(tl, ... , tm » = Vf(p)(Vf(tI), ... ,Vf(tm » In1J'YP

q[Vr 0 '(p)](QVt 0 '(td, ... ,QVr 0 '(tm» def Q~ase 4.

, M ' M ' def vtA

vt (a"T")(Vre'(p), q-1QVe e'(t1), ... , q-1QVe e'(tm» ='

M "T'" , , , , '(» def e' M"((»
V	 (a (e (p),e (t1), ... ,e t m) = Ve e P t1, ... ,tm .e
F3	 For a conjunction we have:

• ., Ind hyp' ,.,
Vr(<P1 A <P2) = Vr(<P1) A Vr(<P2) == Vre'(<P1) A Vr e '(<P2) = Vte'(<P1 A <P2).

F4 For a negation we have:

vt(-.<p) = -.vt(<p) Ind~YP -.Vr0'(<p) = Vr0'(-,<p).

F5 For a quantification we have:

M(V) Vd 1)- VM () Ind.hyp vd 1)- VM e"()
 Ve vXT<p = VET €[r-d] <P = VET e[e'(r)_~-l(d)l- <P =

Vd E 1)"T"V~'(r)_d]0'(<p) = Vr0'(Vx<p).

Here we use that ~ = qo~o0' for all assignments and hence ~[XT ~ d] = qoe[0'(xT) ~ q-1(d)]o0'.

(In the strict sense we had to do the induction proof for assigments ~[x ~ d] as well.)

Summarizing we have: if Vr(0(<p» = T then Vr(0'(<p» = T then Vf(<p) = T. •

6.8 Remark: For n > 1 there is no sound morphism e from £n to £;ort which is strongly complete.
If there were such a morphism it would provide a complete calculus for £n which is impossible because
of GODEL'S incompleteness theorem.

6.9 Remark: As already noticed in remark 5.5, 0'-1 provides a calculus for £n. If we add rules that
enforce that function symbols and predicate symbols are equal if they agree in all arguments, we can
transform every sound and complete first order calculus of £;ort by 0 to a sound and weakly complete
calculus for £n. We can execute the proof in £;ort and then lift it to a proof in £n.

6.10 Remark: One might wonder why we proposed a sufficient criterion for the soundness of transla
tions, when we have a translation that is sound and complete and hence could be used always. However
in a concrete situation it can be better not to translate into the full sound and complete formulae,

15

T1 For all variables x„ V?“ (z,-) = 5(37) = h(§((:)’(1:7))) = hVéM 61:0,).

T2 For all constants a„ V?“ (c,-) : j(c‚-) = [1(J (Ö'(c‚))) = WE“ Ö’(c‚.).
T3 For all composed terms beginning with an m-ary function term f we have:

vg'4(f‚(tl, . . . ,t‚„)) : vgi(f)(vgä (t1), . . .,vg" am)) ““-=“?
h(Vé“Ö’(f))(hvg“é’(t1)‚—.-‚hvg“é’(tm)) “‘ “€” 2'

h[V?4(a""')(Vé“é’(f)‚h'lhvä‘é’fil),-- ‚h 1WMÖ'ÜmD]

h[Vä“(a""'(Ö’(f). %.). é'anom “‘:é'hWye/(m1, . . ., m)).
We now prove inductively, that for all formulae: V? = VE“ o Ö’ .

defIf“

F1 For an atomic formula that starts with a. predicate constant p of order n we have:

vg'4(p,(tl, . . .‚tm)) = vg'qvg“ (t1), . . . , vgfiam» In?"

M é'(p)1(uv.M 6'01), . . . , hn @@...» “f "3“ 3'

V?‘®’(p)(h‘1hv?‘é’(t1)w-,h'1hV?‘é’(tm)) “’3‘“ v91(é'<p)(é'(t1)‚...‚é'<tm>>> “°‘=°'
vg“ <i>/(WI, . . .,tm)). ~

F2 For an atomic formula that starts with a predicate term p of order less than n we have:

vg“ (12,01, . . .,tm)) = vg“ (1902663 (tl), . . . , v!“ am)) Ind-é"?

n[vé‘é'(p)1(uVä‘é'(t1)‚. . -‚hvä“'é’(tm)) “‘ "é“ 4'

vg"(a"f">(v£‘ @@), u-lhvg“ em. - ‚h‘ luv“ é'um))
vg“<a"f"(é>'(p>‚ 9'01), . . . ‚ é 'am)» “=“ 1231 expel, . . „im».

F3 For a conjunction we have:
Véfifioi A m) = V320”) A V'éqßßz)

F4 For a negation we have: .

are?) = we) ”3” „EM em = n é 'w) .

F5 For a quantification we have:
vM (VM): Vol 6 15vEMA <p) "‘d1‘” Vd e 15 W[é'(=)—u-„(mo ((p):
Vd E D""" 11%,“) 419’ (cp) VM 6’(V24p).
Here we use that { : hoéoé’ for all assignments and hence {[zT <— (fl : ho£[Ö'(zT) 4— }] 1(d)]OÖ' .

(In the strict sense we had to do the induction proof for assigments {[a: <— d] as well.)
Summarizing we have: if VEM (Ö(<p)) = '1' then vg“ (Ö’(<p)) = T then VE“ ((p) = T. I

def vg“

“di?" vg‘é'cpl) A n'é’(s)'= va'é'm A <92)-

6.8 Remark: For n > 1 there is no sound morphism (9 from ß” to £30,, which is strongly complete.
If there were such a morphism it would provide a complete calculus for ß" which is impossible because
of GÖDEL’S incompleteness theorem.

6.9 Remark: As already noticed in remark 5.5, é"1 provides a calculus for ß". If we add rules that
enforce that function symbols and predicate symbols are equal if they agree in all arguments, we can
transform every sound and complete first order calculus of [lim by © to a sound and weakly complete
calculus for ß". We can execute the proof in Elm and then lift it to a proof in £".

6.10 Remark: One might wonder Why we proposed a sufficient criterion for the soundness of transla-
tions, when we have a translation that is sound and complete and hence could be used always. However
in a concrete situation it can be better not to translate into the full sound and complete formulae,

16	 Equality

because the search space may become too big. It would not .be a good idea to add the extensionality
axioms if they are not really needed. In addition we can prevent instantiation if we translate certain
constants not by an apply or if we use different apply functions or predicates although we could use
the same. On the other hand the completeness result guarantees that we can find a translation at all.
Which one we choose may be very important for the theorem prover to find a proof.

7 EQUALITY

In this chapter we discuss a possible extension from .en to £~, by extending the soundness criterion
and an extension of the morphisms en to morphisms e:,n, which are mappings form.e~ to £;o1't. As
usual we fix n and drop the corresponding index. We show that e: is sound and weakly complete.
In the following we write f for (T X T -+ 0).

7.1 Definition (Equality Quasi-Homomorphism): The inductive case of the condition for terms
has to be replaced in definition 4.4 by: if f(tl, ... , t m) is a term of ;:-1(81), then 0 (f(tl, ... , t m)) =
{) (0(f), 0(tl),"" 0(tm)) with

.Q(or) _	 {a(a l ,"" am)
'U a,ali ... ,am - ()

£la a,al,···,am
The et have to be chosen appropriately out of 8 z, especially they have to be new, that is, there must
be no element 0:' E 8 1 so that £la = 0(0:'). The case which is chosen can depend only on the a not
on the aI, ... , am. If the first case is chosen for equality, equality must be mapped onto equality.

7.2 Theorem: If 0 is an injective equality quasi-homomorphism from £~(8) to £;o1't(8'), then 0 is
weakly sound.

Proof: The proof is analogous to the proof of theorem 5.1. We only add the following cases to the
proof (analogously to the cases T3, T4):

- For an atomic formula with the equality symbol as top symbol that is mapped onto the equality
predicate:

V.ft(0(t l =1' tz)) := V.ft(0(tI) =("1"","1"") 0(tz)) = V.ft(0(tI)) =-n"r" V.ft(0(tz)) Ind,4'YP
{{	 {v {

vt(tl) =Dr vt(tz) = Vt(tl =1' tz)
- For an atomic formula with an equality symbol as top symbol that is not mapped onto the

equality predicate we have:

Vf(0(tl =1' tz)) := Vf(£l" 1'1l (0(=1')' 0(tl), 0(t z))) =

vf (£l"l'l)(Vf (0(=1'))' Vf(0(tI)), Vf(0(t z))) Ind,4'YP

vf (£l"l'lI)(Vt (=1'), vtCtI), vtCtz)) ~ vt(tI) =D.r vtCtz) =
Vt(tl =1' tz)	 •

7.3 Example: We shall use example 5.3, however in a formulation with equality and translate it then
in the usual way. (In order to show that both representations are equivalent it would be necessary

. to show that there is a souQd and complete morphism that maps them to one another.) We drop
the type information for readability, group is of type (t x (t X t -+ t) -+ 0), G of type t, + of type
(t x t -+ t), - of type (t -+ t), and so on. Also for readability we sometimes use infix notation. In the
target the sorts are ("t", lI(t X t -+ t)lI) for group, and so on. A group can be defined as follows:

1. VG, + group(G, +) -<===> associative(G, +) 1\

30	 (0 E G 1\ neutraLelement(G, +, 0) 1\

3 - inverse(G, +, 0, -))

2. VG, + associative(G, +) -<===> "Ix, y, z x, y, z E G ==> (x + y) + z =x + (y + z)

3. VG, +, 0 neutraLelement(G, +, 0) -<===> "Ix x E G ==> x + 0 =x 1\ 0 + x =x

16 Equality

because the search space may become too big. I t would not .be a good idea to add the extensionality
axioms if they are not really needed. In addition we can prevent instantiation if we translate certain
constants not by an apply or if we use different apply functions or predicates although we could use
the same. On the other hand the completeness result guarantees that we can find a translation at all.
Which one we choose may be very important for the theorem prover to find a proof.

7 EQUALITY

In this chapter we discuss a possible extension from ß" to cg , by extending the soundness criterion
and an extension of the morphisms Ön to morphisms (95m, which are mappings form [3; to £30". As
usual we fix n and drop the corresponding index. We show that @; is sound and weakly complete.
In the following we write 1" for (T x r —> 0).

7 .1 Definition (Equality Quasi-Homomorphism): The inductive case of the condition for terms
has to be replaced in definition 4.4 by: if f(t1, . . . ,tm) is a term of 171(81), then @ (f(t1, . . . ‚tm)) :
19 (GU), ®(t1), . . . , 9(tm)) with

a(a1, . . . , am) or
a„(a‚a1, . . . , am)

The a have‘to be chosen appropriately out of 82 , especially they have to be new, that is, there must
be no element a ’ 6 S1 so that a a : 9 (a ’) . The case which is chosen can depend only on the a not
on the a l , . . . , am. If the first case is chosen for equality, equality must be mapped onto equality.

19(a,a1,-...,am)=

7.2 Theorem: If 6 is an injective equality quasi-homomorphism from ‚C; (S) to ß}„„(8’), then ® is
weakly sound.
Proof: The proof is analogous t o the proof of theorem 5.1. We only add the following cases to the
proof (analogously to the cases T3, T4):

— For an atomic formula wi th the equality symbol as top symbol that is mapped onto the equality
predicate:
vé“(e(t1 2, t2» := vä“(e(t1)a("*""'*") 902)) = vg‘4(e(t1))s,,«.-- ”32902” will”vg"(t1)a‚„ vg‘4(t2) = vg“(t1 Er t2)

— For an atomic formula with an equality symbol as top symbol that is not mapped onto the
equality predicate we have:

vg“ (9031 E? 32)) == Vf‘ (a"*" (6 (5 r) , e (t 1) , e (t 2))) =
V“(a"*")(vg‘(e(s.)). vg"(e(t1)),v{4(e(tz))) New

€ .
vg*(a"*")<v;4(sr). v ea l) , mt») @ mu) so, 129402) =
Vguul ET ig) '

7 .3 Example: We shall use example 5.3, however in a formulation with equality and translate i t then
in the usual way. (In order t o show that bo th representations are equivalent i t would be necessary

~to show that there is a sound and complete morphism that maps them to one another.) We drop
the type information for readability, group is of type (L x (L x L _» L) —-> 0), G of type L, + of type
(L x L —-> L), — of type (L -—> L), and so on. Also for readability we sometimes use infix notation. In the
target the sorts are ("L", "(L x L _» L)") for group, and so on. A group can be defined as follows:

1. VG,+ group(G,+) => associative(G, +) A
30 (0 E G A neutral.element(G,+,0) A

3— inverse(G,+,0,——))
2. VG, + associative(G‚ +) <=) Vz',y‚ z x, y, z € G => (:c + y) + z E a: + (y+ z)

3. VG, + , 0 neutral_element(G, + ,0) <= V:: z E G => .1: + 0 E z A 0 + a: E a:

17

4. VG, +, 0, - inverse(G, +, 0, -) {::::::} "Ix x E G ==> x + (-x) =0 /\ (-x) + x =0

This formula set is a subset of £;;. Now we give a translation into a formulae set of £~ort. The
signatures are obvious, hence omrcitted. The translation is sound, because it is an injective equality
quasi-homomorphism.

1. VG, + group(G, +) {::::::} associative(G, +) /\
30	 (0 E G /\ neutraLelement(G, +, 0) /\

3- inverse(G,+,O,-»

2.	 VG, + associative(G, +) {::::::} "Ix, y, Z x E G /\ yE G /\ Z E G ==>

"(,x'-')"(+ "(,x'-')"(+ »
a ,a ,x,y,Z
"(,x,-,)" (+ "(,x,-,)" (+ »a ,x,a ,y,z

3. VG, +, 0 neutraLelement(G, +, 0) {::::::} "Ix x E G ==>
a "(,x,-,)" (+,x, 0) =_ x /\ a "('Xt-,)" (+, 0 ,x) = x

4.	 VG, +, 0, - inverse(G, +, 0, -) {::::::} Vx x E G ==>

"(,x,-,)" (+ "('-')"(_»
a	 , ,x,a ,x = 0/\

a"(,x'-')"(+,a"('-')"(-,x),x) = o

7.4 Definition (Standard Translation 0=):
- At first we define the mapping on the signature. We proceed as in definition 6.1, but add for

•	 • '" ".,". .. 11each =T III ST of order less than n an object-constant symbol = III ST. We cannot name
it =("T","T") because this is already defined as a binary predicate symbol.

-	 Like above on formula sets we define 0=(f):= 0~(r) U %AXIOMS=.

- The inductive definition of 0~(f) is the definition of 0'(r) in definition 6.1 plus
A (" t1 .. ")	 A, () liT 11
e~(=1') == ,T for order of T equal to nand e= =1' = ~ for order of T less than n.T

In' addition we have:

If tl and t2 are terms of type T with T :I 0 and order of T is equal to n, then 0~(tl =1' t2) =

A (It .. tI 11)	 AA)

e~(tl) = T, T e~(t2). This term is well-sorted, because e=(ti are both of sort "T".
If tl and t2 are terms of type T with T :I 0 and order of T less than n, then 0~(tl =1' t2) =
a"(TXT-O)" (~"1''', 0~(tl)' 0~(t2». This term is again well-sorted, because 0=(ti) are both of

"r "sort "T" and ~ is of type" (T X T -+ 0) ".

- %AX10M S= is defined as %AX10M S plus the set of all formulae (with order of T less than
n):
\.J	 ".,"\.J ".," IIf"(~lIf") _("r",".,II)vX vy a = ,x,y==>x= y.

7.5 TheoreIIl: 0= is weakly sound.

Proof: As above we have that 0~ is sound because it is an injective equality quasi-homomorphism.

We still have to show that every formula in %AXIOMS= is satisfied, that is, it remains to be shown:

V.M(W "T"W "T" "1'''(-''-''1''') -"1''') - T
e vX vy a = ,x,y==>x= y-

Therefore it is sufficient to show that for all X, Y E V 'IT
"

M 11-11 "" " r " tf-II

Ve[x,y_X,YI(a (= ,x, y) ==> x = T	 y) = T.T

By the definitions of a"1''' and V~,y_X,YI that is equivalent to

X =1)r Y ==> X =1)r Y, which is obviously true. •

7.6	 TheoreIIl: 0= is weakly complete.

Proof"	 In the completeness theorem 6.7 we have to add to the proof:

- For order equal to n:

Vt«tl =1' t2» := Vt(tl) =vr Vt(t2) Ind,4'YP QVf0'(tI) =v QVf 0 '(t2) Q"gijr

Vf0'(tI) =1)"r" Vf 0 '(t2) =Vf(8'(tI) =("T","T") 8'(t2) = Vf8'(tl =1' h).

17

4 . VG,+ ,0 ,— i nve r se (G ,+ ‚0 ,—) <=) Va: :1: € G=> :c+(—a:) E 0 A(—1:)+1 : E 0

This formula set is a subset of L‘; Now we give a translation into a formulae set of £10”. The
signatures are obvious, hence ommitted. The translation is sound, because it is an injective equality
quasi—homomorphism.

1. VG,+ group(G,+) <=> associative(G, +) A
30 (0 E G A neutraLeIemenflG, + , O) A

3 — inverse(G, + , 0 , —))

2 . VG,+ associati'ue(G‚ +) <=) Vz,y , z x 6 GA y 6 GA 2 E G::—
a"(‘x‘_“)"(+‚ a"(‘x" '“)"(+, a:, y), z) Ea"<1><~11"(+,x, a"<1><1~11"(+, y, z»

3. VG, + ,0 neutral_element(G,+,0) <=>Vx 1: E G =>
a" (" ‘ "”) " (+ ,x ,0) E xA a" (‘x“") " (+ ,0 ,x) E a:

4 . VG, + , 0 , — inverse(G, + , 0 , —) <=} Va: :1: E G =>
an ! ;x r—ur l (+ , I , an (, , _ . ;) u (_ , €))

a" (tx1—u)" (+ , a " (t—+t) " (_ , I) , 1.)

0A
0

7 .4 Definition (Standard Translation Ö:_) .
— At first we define the mapping on the signature. We proceed as in definition 6.1, but add for

each = , in 8, of order less than n an object-constant symbo lE m" .S"T We cannot name
i t -=("T " ' n ’ ") because this 18 already defined as a binary predicate symbol.

— Like above on formula sets we define Ö; (P) :: Ö’E (I‘) U %AXIOMSE .
— The inductive definition of é{=_(r) is the definition of Mr) in definition 6.1 plus

Ö’_ ‘ =E("T"""") for order of '7' equal to n and 955(E7) = Eu?" for order of 1" less than n.
In addition we have:
If t 1 and t2 are terms of type 1' with 1' 96 o and order of 1' is equal to n , then ÖL_E(t1 t—2)=
6’=_(t1)_=("7" " T") é’._(t2) This term IS well-sorted, because 9:_(ti) are both of sort "T".
If t 1 and t2 are terms of type 1' with 1' 76 o and order of 1' less than n , then 9’:_ (t1_21—- t 2)=
'ct'(7xr"°)"(EA "T"_",6'=_(t1), Ö’____(t2)). This term ls again well-sorted, because 6:__(t-) are both of
sort "1'" and :—— is of type "(T x T _» o)".

— %AX I OM SE is defined as %AX I OM 3 plus the set of all formulae (with order of 'T- less than
n):
vzn r l l v y l l T l l a l l f " (ä ' l 1_ - " , z , y) : z E("T" , "T") y

7 .5 Theorem: ®; is weakly sound.
Proof: As above we have that é]; is sound because i t is an injective equality quasi—homomorphism.
We still have to show that every formula in %AX I OM SE is satisfied, that is, i t remains to be shown:
VM (v r I I T I IV y l lT" a l l . ? “ (é T ‚ z ‚y) => x— = I I7 - ‘ I l y) =T

Therefore i t is suflicient t o show that for all X , Y E D'

VE[a:‚y._x,Y](a0‘"7" (= T 1° it!) => $511711 31:) T-

By the definitions of 01%" and vg“„[; _X Y] that IS equivalent to
X ED, Y :> X Ep, Y , Which rs obviously true. I

7 .6 Theorem: (3)5 is weakly complete.
Proof: In the completeness theorem 6.7 we have to add to the proof:

— For order equal to n :

Watt :. t2)) -= vg‘“(ti) E15, 12,4202) “€” hvg'é 'u.) ED, hné 'uz) “£“
VEMÖ’Ul) EDI-‚n VM6’(t2) : VE“ (Ö’(t1) E("’"1"T") Ö’(t2) : VäMÖ’ül E.,—- t2).

18

8

Summary and Open Problems

- For the equalities of order less than n we use at first the additional axioms in %AXIOMS::
\.I "T"\.I "T" "T" (..:::... ",.") _("T", "T")vX	 vy a = ,x,y ==:}x= y.
Hence we have in a model for all X, Y in V"T":

M 11-11 ,,"T"
Ve[:>:,y+-x,y](a T (= ,x,y» ==:} X =v"r" Y
Since the direction ~ is trivially satisfied, we have:

M 11 11 ,.,fl r "
Ve[:>:,y+-x,y](a (= ,x,y» = X =v"r" Y	 (*)T

Now we can prove:

Vt(t1 =1' t2) =Vt t1 =15
r
Vtt2 =~vte~(t1) =15

r
~vte~(t2) Q"gij

Me'/()- M:/()~M ("1'''(-''-''1''' »_
Ve	 : t1 =v"r" Ve e: t2 - Ve[:>:,y+-vtE>k(tl),vtE>k(t2)] a = ,x, y
vt (a"T" (:§:"1''', e~(t1), e~(t2))) =vt (a"T" (e~(=T)' e~(tI), e~(t2))) =

vte~(t1 =1' t2) •

7.7 Remark: We do not translate =1' immediately to =("T","T"), because then it could not become

the argument of higher order predicates, we would also lose completeness. Consider the case of the

following induction schema:

'tIp(,xt-+o)(P(O, 0) A ('tin P(n, 0) ==:} P(s(n), 0» A ('tin, m P(n, m) ==:} P(n, s(m)))

==:} 'tin, m P(n, m»,
where in addition we have the formulae °= 0, 'tin n =°==:} s(n) = 0, and 'tin, m n = m ==:}

n = s(m). If we want to prove 'tin, m n = m we have to instantiate the predicate variable P in the
induction schema by the equality predicate. But if we translate P by an object variable and =by a
predicate constant we cannot instantiate in the first order target formulation P by =.

7.8	 Example: We translate the examples 5.3 and 7.3 from above. Using e~,3 this is translated to:

1. 'tIG, +	 group(G, +) <:==> associative(G, +) A
30 (0 E G	 A neutraLelement(G, +, 0) A

3 - inverse(G, +, 0, -»
2. 'tIG,+	 associative(G,+) <:==>

'tIx,y,z	 a"('x' o)"(E,x,G)A a"('x'o)"(E,y,G)A a"('x'.....o)"(E,z,G) ==:}

"('x, o)"(= "('x,..... ,)"("('x,..... ,)"(+ »a _,a +,a ,x,y ,z ,
a "('x,..... ,)"(+,x,a"('x,..... ,)"(+ ,y,z»)

3. 'tIG, +,°neutraLelement(G, +, 0) <:==>

'tIx a"('x' o)"(E, x, G) ==:}

"('x, o)"(= "('x,..... ,)"(0»
1\a _,a +,x, ,x A

4. 'tIG,+,O,- inverse(G,+,O,-) <:==>
'tIx	 a"('x' o).. (E,x,G)==:}

"('x, o)" (= "('x,..... ,)" (+ "(, ,)" (_ » 0) Aa _,a ,x,a ,x, 1\

"('x,o)"(= "('x,..... ,)"("(,.....,)"(_» 0)a _, a +, a ,x ,x ,

Of course this translation is more complicate than that of example 7.3.

SUMMARY AND OPEN PROBLEMS

In the sections above we introduced the basic machinery for translating higher order formulae to first
order logic. We introduced a sufficient criterion for the soundness of such a translation, namely that
it has to be an injective quasi-homomorphism. Then we gave a complete translation for the restricted
higher order language. In the last section we generalized these results to logics with equality.

An interesting and useful generalization would be to a higher order sorted logic. Then the first
order logic should of course have a sort structure at least as powerful as that of the higher order source
logic. The results should be transferable although the formal treatment can become strenuous.

18 Summary and Open Problems

— For the equalities of order less than n we use at first the additional axioms in %AX I OM S'—
vz l l r l l v y I I T l I a I IT I 'A = " " f ‚ z , y) => z_=(ll1- T" ‚ I I T I I) y

Hence we have in a model for all X, Y 1n PM":
Effigy—x, ggf“: ' z y)) = X =p'-‚-- Y
Since the irection <= is trivially satisfied, We have
v31 y .__x Y1(a "T " (E "T ' I , 3 z , y))—_ X =‚an Y (*)

Now we can prove: ..
vg"(t1 ;, t2)-— vfitl :„ vftz =tMé’Eul) 5,5, hvg‘é'aaz) "€“

vMé): —(t1) =‘D"'" VMÖI-—(t2)=€(l)vvar, y...vMé’ (tr),VMé'= (32)] (a" f " (é , 3 , y)) :
V£‘(„a"*"(a"*"‚é'5<t1)‚é'auz»)= vM(a"*"(é'E(=r),é'E(t1),@562») =
Vg‘49’5(t1 E.;- t 2) '

l l f l l

E("T" , "T7 .7 Remark: We do not translate E7 immediately to ") , because then it could not become
the argument of higher order predicates, we would also lose completeness. Consider the case of the
following induction schema:
VP(‚XL_‚0)(P(0, 0) A (Vn P(n , D) => P(s(n)‚ D)) A (Vu, m P(n , m) => P(n, s(m)))

=> Vn,m P(n,m)),
where in addition we have the formulae 0 E 0, Vn n E 0 => s (n) E 0, and Vn,m n E m =>
n E s (m) . If we want to prove Vn, m n E m we have to instantiate the predicate variable P in the
induction schema by the equality predicate. But if we translate P by an object variable and E by a
predicate constant we cannot instantiate in the first order target formulation P by E .

7.8 Example: We translate the examples 5.3 and 7.3 from above. Using é'=‚3 this is translated to:
1. VG,+ group(G, +) (=> associative(G‚ +) A

30 (0 E G A neutraLelement(G,+,0) A
3-— inverse(G,+,0,—))

2. VG,+ associative(G‚ +) =>
Vz,y,z a"(‘Xl—>o)"(e, x, G)A a"(‘x‘-*°)"(€,y,'(;)/\ a"(‘>‘"’°)"(e‚z‚G)=>

a l l (, , x , , _ .o) " (Ea" (rx1 .—~L)" (+a" (‘x"") " (+ , z , , y) z) ,a " (‘x"_") " (+ !! an (1 ‚x t—u)" (+ ’y ’ z)))

3. VG,+,0 neutral.element(G, + , 0) :>
V:: a"(‘x"*°)"(€, a:, G) =>

MWH)" (= , wowed" (+ , a:, 0), a:) A d'un-w)" (e, a"<‘>“-">“ (+, 0, a:), z)

4. VG, + , 0,— inverse(G, +,0 , —) {=>
Va: a"("‘"*°)"(€, 1'‚G)=>

“é ," (LXl—bo)“ (‘1 '" (LXL—u) ' (+ ’z ‚a"(L—>L)"(_ ‚z)) 0) A
a" (‘x ‘_ ’ °) " (= : (1 , " (‘x ‘fi ‘) " (+ (1 , " (‘_" ') " (—,£) , : c) 0)

Of course this translation is more complicate than that of example 7.3.

8 SUMMARY AND OPEN PROBLEMS

In the sections above we introduced the basic machinery for translating higher order formulae to first
order logic. We introduced a sufficient criterion for the soundness of such a translation, namely that
i t has to be an injective quasi-homomorphism. Then we gave a complete translation for the restricted
higher order language. In the last section we generalized these results to logics with equality.

An interesting and useful generalization would be to a higher order sorted logic. Then the first
order logic should of course have a sort structure at least as powerful as that of the higher order source
logic. The results should be transferable although the formal treatment can become strenuous.

19 References

ACKNOLEWDGEMENT

I like to thank AXEL PRACKLEIN for many discussions and thorough reading of a draft and J ORG

SIEKMANN for his advice that resulted in numerous improvements.

REFERENCES

[1]	 Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth through
Proof. Academic Press, Orlando, Florida, USA, 1986.

[2]	 Peter B. Andrews, Sunil Issar, Dan Nesmith, and Frank Pfenning. The TPS theorem proving
system. In M.E. Stickel, editor, Proc. of the 10th CADE, pages 641-642, Kaiserslautern, Germany,
July 1990. Springer Verlag, Berlin, Germany. LNAI449.

[3]	 Johan van Benthem and Kees Doets. Higher Order Logic, volume I: Elements of Classical Logic of
Handbook of Philosophical Logic, D. Gabbay, F. Guenthner" editors, chapter lA, pages 275-329.
D.Reidel Publishing Company, Dodrecht, Netherlands, 1983.

[4]	 Nicolas Bourbaki. Theorie des ensembles. Elements de mathematique, Fascicule 1. Hermann,
Paris, France, 1954.

[5]	 Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56-68,
1940.

[6]	 Peter Deussen. Halbgruppen und Automaten, volume 99 of Heidelberger Taschenbiicher. Springer
Verlag, Berlin, Germany, 1971.

[7]	 Adolf Abraham Fraenkel. Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre. Mathema
tische Annalen, 86:230-237, 1922.

[8]	 Kurt Godel. The Consistency of the Axiom of Choice and of the Generalized Continuum
Hypothesis with the Axioms of Set Theory, volume 3 of Annals of Mathematics Studies. Princeton
University Press, Princeton, New Jersey, eighth printing 1970, 1940.

[9]	 Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15:81-91, 1950.

[10]	 Andrzej Mostowski. An undecidable arithmetical statement. Fundamenta Mathematicae, 36:143
164, 1949.

[11]	 Arnold Oberschelp. Untersuchungen zur mehrsortigen Quantorenlogik. Mathematische Annalen,
145:297-333, 1962.

[12]	 Hans Jiirgen Ohlbach. Context logic. SEKI Report SR-89-08, Fachbereich Informatik, Univer
sitiit Kaiserslautern, Kaiserslautern, Germany, 1989.

[13]	 Karl Mark GRaph. The Markgraf Karl Refutation Procedure. Technical Report Memo-SEKI
MK-84-01, Fachbereich Informatik, Universitiit Kaiserslautern, Kaiserslautern, Germany, J an
iIary 1984.

[14]	 Bertrand Russell. Mathematical logic as based on the theory of types. American Journal of
Mathematics, XXX:222-262, 1908.

[15]	 Manfred Schmidt-SchauB. Computational Aspects of an Order-Sorted Logic with Term Declara
tions, volume 395 of Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin, Germany,
1989.

[16]	 Christoph Walther. Ein mehrsortiger Resolutionskalkiil mit Paramodulation. Interner Bericht
35/82, Fakultiit fiir Informatik, Universitiit Karlsruhe, Karlsruhe, Germany, 1982.

[17]	 Ernst Zermelo. Untersuchungen iiber die Grundlagen der MengenIehre. I. Mathematische An
nalen, 86:230-237, 1922.

References 19

ACKNOLEWDGEMENT

I like to thank AXEL PRÄCKLEIN for many discussions and thorough reading of a draft and JÖRG
SIEKMANN for his advice that resulted in numerous improvements.

REFERENCES

[1] Peter B . AndreWS. An Introduction t o Mathematical Logic and Type Theory: To Truth through
Proof. Academic Press, Orlando, Florida, USA, 1986.

[2] Peter B . Andrews, Sunil Issar, Dan Nesmith, and Frank Pfenning. The TPS theorem proving
system. In M.E. Stickel, editor, Proc. of the 10th CADE, pages 641-642, Kaiserslautern, Germany,
July 1990. Springer Verlag, Berlin, Germany. LNAI 449.

[3] Johan van Benthem and Kees Doets. Higher Order Logic, volume I: Elements of Classical Logic of
Handbook of Philosophical Logic, D. Gabbay, F. Guenthner, l ed i t o r s , chapter 1.4, pages 275—329.
D.Reidel Publishing Company, Dodrecht, Netherlands, 1983.

[4] Nicolas Bourbaki. The’orie des ensembles. Eléments de mathématique, Fascicule 1. Hermann,
Paris, France, 1954.

[5] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic, 5:56—68,
1940.

[6] Peter Deussen. Halbgruppen und Automaten, volume 99 of Heidelberger Taschenbücher. Springer-
Verlag, Berlin, Germany, 1971.

[7] Adolf Abraham Fraenkel. Zu den Grundlagen der Cantor—Zermeloschen Mengenlehre. Mathema—
tische Annalen, 86:230—237, 1922.

[8] Kurt Gödel. The Consistency of the Aziom of Choice and of the Generalized Continuum-
Hypothesis with the Axioms of Set Theory, volume 3 of Annals of Mathematics Studies. Princeton
University Press, Princeton, New Jersey, eighth printing 1970, 1940.

[9] Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15:81—91, 1950.

[10] Andrzej Mostowski. An undecidable arithmetical statement. Fundamenta Mathematicae, 36:143—
164, 1949.

[11] Arnold Oberschelp. Untersuchungen zur mehrsortigen Quantorenlogik. Mathematische Annalen,
145:297—333, 1962.

[12] Hans Jürgen Ohlbach. Context logic. SEKI Report SR—89-08, Fachbereich Informatik, Univer-
sität Kaiserslautern, Kaiserslautern, Germany, 1989.

[13] Karl Mark G Raph. The Markgraf Karl Refutation Procedure. Technical Report Memo-SEKI—
MK—84—01, Fachbereich Informatik, Universität Kaiserslautern, Kaiserslautern, Germany, J an-
uary 1984.

[14] Bertrand Russell. Mathematical logic as based on the theory of types. American Journal of
Mathematics, XXX2222—262, 1908.

[15] Manfred Schmidt-Schauß. Computational Aspects of an Order—Sorted Logic with Term Declara-
tions, volume 395 of Lecture Notes in Artificial Intelligence. Springer Verlag, Berlin, Germany,
1989.

[16] Christoph Walther. Ein mehrsortiger Resolutionskalkül mit Paramodulation. Interner Bericht
35/82, Fakultät für Informatik, Universität Karlsruhe, Karlsruhe, Germany, 1982.

[17] Ernst Zermelo. Untersuchungen über die Grundlagen der Mengenlehre. I . Mathematische An-
na len , 86:230—237, 1922 .

20 Appendix

ApPENDIX: AN EXAMPLE OF A PROOF

In this appendix we give an example for a theorem and a proof that was actually generated by the
MKRP-prover [13]. The example is part oftheorem (4.12) in [6, pAl]. The theorem can be formulated
as follows:

Theorem:	 Let S be a set, let PI and P2 be equivalence relations, let <P be a surjective mapping
from Slpl onto Slp2, and let Qi be the canonical projections from S to Slpi, such that
<P 0 Ql = Q2, then PI ~ P2·

A possible axiomatization is:

1.	 set(S)

2. Definition of a rest class modulo an equivalence relation:

\ht VPt set(z) 1\ equivalence.relation(p, z) ==> set(xlp)

3. Definition of a canonical.projection:

VPt equivalence.relation(p, s) ==> mapping(canonical.projection(p, S), S, Sip)

4.	 Theorem 4-11-1:

VUt , V; V<Ptt_t) ' <P~t-t) set(U) 1\ set(V) 1\ mapping(<pI, S, U) 1\ mapping(<p2, S, V) ==>

V<P(Ht) mapping(<p, U, V) 1\ (W t t E S ==> <p(<pl(t» = cp2(t» ==>
induced.equivalence.relation(<pl, S, U) ~ induced.equivalence.relation(<p2, S, U)

5.	 Part of Definition of surjectivity:

V<p(t_t) VUt , V; set(U) 1\ set(V) ==> (surjective(<p, U, V) ==> mapping(<p, U, V»

6.	 Lemma:
VPt equivalence.relation(p, S) ==>

induced.equivalence.relation(canonical.projection(p, S), S, SI p) = p

7.	 Theorem to prove: THEOREM 4-12-1:

VPZ, p; equivalence.relation(pl, S) 1\ equivalence.relation(p2, S) ==>
((V<P(Ht) surjective(<p,Slpl,Slp2) 1\
(Vat a E S ==><p(canoncical.projection(pl, S)(a» =

canonical.projection(p2, S)(a))) ==>
pl ~ p2).

Translated by (33 into the Markgraf Karl notation (with L written as I, 0 as 0, x as X, and -+ as T):

Formulae given to the editor
==::========================

Axioms: SORT I,ITI,ITO,IXITI,IXITO,[ITI]XIIITI,IXIT[ITI] AIY
TYPE S : I
TYPE SET : ITO
TYPE SUBSET	 : IXITO
TYPE CAIOIICAL.PROJECTIOI : IXIT[ITI]
TYPE KODULO	 : IIITI
TYPE II : nno
TYPE IIDUCED.EQUIVALEICE.RELATIOI [ITI]IIXITI
TYPE EQUIVALEICE.RELATIOI : IXITO
TYPE KAPPIIG	 (ITI I I)
TYPE SURJECTIVE (ITI I I)
TYPE APPLY-IIITI (IXITI I I) : I
TYPE APPLY-ITI (IT1 I) : I
TYPE APPLY-IIITO (IXITO I I)
TYPE APPLY-[ITI]XII1TI ([ITI]IIXITI ITI I I) : I
TYPE APPLY-IXIT[ITI] (IIIT[ITI] I I) : ITI
TYPE APPLY-ITO (ITO I)
APeLY-ITO (SET S)
* PART OF DEFIIITIOI OF REST CLASSES KODULD AI EQUIVALEJCE RELATIOI *
ALL X : I ALL RHO : I APPLY-ITD (SET I) AID APPLY-IIITO (EQUIVALEICE.RELATIOI RHO X)

IKPL APPLY-ITO (SET APPLY-IIITI (MODULD X RHO»

20 Appendix

APPENDIX: AN EXAMPLE OF A PROOF

In this appendix we give an example for a theorem and a proof that was actually generated by the
MKRP-prover [13]. The example is part of theorem (4.12) in [6, p.41]. The theorem can be formulated
as follows:

Theorem: Let S be a. set, let pl and p; be equivalence relations, let <I> be a surjective mapping
from S/p1 onto S/pg, and let hi be the canonical projections from S to S/pg, such that
{> ° hi = 112, then P1 S P2-

A possible axiomatization is:

1. set(S)
2 . Definition of a rest class modulo an equivalence relation:

Van Vp‘ set(x) A equivalence.relation(p, :::) => set(:c/ p)
. Definition of a canonical.projection:

Vp‘ equivalence.relation(p, 3) => mapping(canonical.projection(p, S), S, S/p)
. Theorem 4-11-1:

VU“ V‘ Vgog‘q‘), ?ä—u) set(U) A set(V) A mapping(<p1 , S, U) A mappingßo2 , S, V) =
V<I>(L_„) mapping(<I>, U, V) A (Vt, t € S = <I>(<p1 (t)) : <p2(t)) =>

induced.equiva1ence.relation(gal, S, U) (_; induced.equivalence.relation(902, S, U)
. Part of Definition of surjectivity:

Weg...) VU„ V‚ set(U) A set(V) => (surjective(<p‚ U, V) = mapping(go, U, V))
. Lemma:

Vp, equivalence.relation(p, S) =>
induced.equivalence.relation(canonical.projection(p, S) , S, S/ p) = p

. Theorem to prove: THEOREM 4—12-1:
Vp‘l,p‘2 equivalence.relation(p1 ‚S) A equivalence.re1ation(p2, S) =>

((V‘I>(‘_„) surjective(<I>,S/p1,S/p2) A
(Vat a E S =><I>(canoncical.projection(p1, S)(a)) =

canonical.projection(p2, S)(a))) =>
p1 Q p2)-

Translated by (:95 into the Markgraf Karl notation (with 1. written as I , o as 0, x as X, and —> as T):

Formulae given t o the edi tor
========I====Iz===“=-==

Axioms: sonT I‚ITI,ITD‚IXITI,IXITO,[ITIJXIXITLIXITHTI] : nY
TYPE s : I
TYPE SET : ITu
TYPE SUBSET : IXITO
TYPE CAEOEICAL.PEOJECTIDI : IXITEITI]
TYPE HUDULD : 11111
TYPE TE : 11110 .
TYPE INDUCED.EQUIVALEICE.RELATIOI ; [111]111111
TYPE EQUIVALEICE.RELATIOI : 11110
TYPE HAPPIIG (ITI I I)
TYPE sunJEcTTYE (IT I I 1)
TYPE APPLY-IIITI (1x111 I I) : I
TYPE APPLY-ITI (ITI I) : 1
TYPE APPLY-IXITO (I en I I)
TYPE APPLY-[ITIJXIXITI ([1111111111 ITI I I) : 1
TYPE APPLY-IXIT[ITI] (IXIT[ITI] I I) : 111
TYPE APPLY-ITO (110 I)
APELY—ITD (SET S)
* PART OF DEFIIITIOI uP REST cLASSEs Hanuro Al EQUIVALEICE EELATIOI .
ALL x : I ALL EEO : I APPLY-ITO (SET 1) AID APPLY-IXITO (EQUIVALEICE.RELATIDI ala x)

IEPL APPLY-ITO (SET APPLY-IXITI (nunuro x nEu))

21

* DEFIIITIOI 11 THEOREM 4.1 *

ALL RHO : I APPLY-IIITO (EQUIVALEICE.RELATIOI RHO S)

IKPL KAPPIIG (APPLY-IXIT[ITI] (CAIOIICAL.PROJECTIOI RHO 5)
S
APPLY-IIITI (MODULO S RHO»

* THEOREM 4-11-1 *
ALL U,V: I ALL PHI1,PHI2 : ITI

APPLY-ITO (SET U) AID APPLY-ITO (SET V) AID MAPPIIG (PHI1 S U) AID MAPPIIG (PHI2 S V)
IMPL (ALL PPHI: ITI MAPPIIG (PPHI U V)

AID (ALL T : I APPLY-IIITO (11 T S)
IMPL APPLY-ITI (PPHI APPLY-ITI (PHI1 T»

APPLY-ITI (PHI2 T»
IMPL APPLY-IIITO (SUBSET

APPLY-[ITI]IIIITI (IIDUCED.EQUIVALEICE.RELATIOI PHI1 S U)
APPLY-[ITI]IIIITI (IIDUCED.EQUIVALEICE.RELATIOI PHI2 S V»)

* PARTIAL DEFIIITIOI OF SURJECTIVITY *
ALL PHI: ITI ALL U,V : I APPLY-ITO (SET U) AID APPLY-ITO (SET V)

IMPL (SURJECTIVE (PHI U V) IMPL MAPPIIG (PHI U V»
* LEMMA *
ALL RHO : I APPLY-IIITO	 (EQUIVALEICE.RELATIOI RHO S)

IMPL APPLY-[ITI]IIIITI (IIDUCED.EQUIVALEICE.RELATIOI
APPLY-IIIT[ITI] (CAIOIICAL.PROJECTIOI RHO S)
S APPLY-IIITI (MODULO S RHO» = RHO

Theorems: * THEOREM TO PROVE : THEOREM 4-12-1 *
ALL	 RH01,RH02: I

APPLY-IIITO (EQUIVALEICE.RELATIOI RH01 S) AID

APPLY-IIITO (EQUIVALEICE.RELATIOI RH02 S)

IMPL «ALL PPHI: ITI SURJECTIVE (PPHI

APPLY-IIITI (MODULO S RH01)
APPLY-IIITI (MODULO S RH02» AID

(ALL A I APPLY-IXITO (11 A S) IMPL
APPLY-ITI (PPHI APPLY-ITI

(APPLY-IIIT[ITI] (CAIOIICAL.PROJECTIOI RH01 S) A» =
APPLY-ITI (APPLY-IXIT[ITI] (CAIOIICAL.PROJECTIOI RH02 S) A») IMPL

APPLY-IXITO (SUBSET RH01 RH02»

Set	 of Axiom Clauses ReSUlting from lormalization

A1: All x:Any + =(x x)
* A2: + APPLY-ITO(set	 s)
* A3: All x:I - APPLY-IIITO(equivalence.relation x s)

+ MAPPIIG(apply-ixit[iti] (canonical.projection x s) s apply-ixiti(modulo s x»
* A4: All x:I - APPLY-IIITO(equivalence.relation x s)

+	 =(apply-[iti]xixiti(induced.equivalence.relation
apply-ixit [iti] (canonical.projection x s)
s
apply-ixiti(modulo s x»

x)

* A5: All x,y:I - APPLY-ITO(set y) - APPLY-IIITO(equivalence.relation x y)
+ APPLY-ITO(set apply-ixiti(modulo y x»

*	 A6: All x:lti y,z:I - APPLY-ITO(set z) - APPLY-ITO(set y)
- SURJECTIVE(x z y) + MAPPIIG(x z y)

* A7: All x,y,z:Iti u,v:I - APPLY-ITO(set v) ~ APPLY-ITO(set u)
- MAPPIIG(z s v) - MAPPIIG(y 8 u)
- MAPPIIG(x v u) + APPLY-IIITO(in f_1(x u Y v z) s)
+	 APPLY-IIITO(

subset
apply-[iti]xixiti(induced.equivalence.relation z s v)
apply-[iti]xixiti(induced.equivalence.relation y s u»

*	 A8: All x,y,z:Iti u,v:I - APPLY-ITO(set v) - APPLY-ITO(set u) - MAPPIIG(z s v)
- MAPPIIG(y s u) - MAPPIIG(x v u)
- =(apply-iti(x apply-iti(z f_1(x·u y v z»)

apply-iti(y f_1(x u y v z»)
+	 APPLY-IXITO(

subset
apply-[iti]xixiti(induced.equivalence.relation z s v)
apply-[iti]xixiti(induced.equivalence.relation y s u»

Theorems :

21

t DEFIIITIOI I l “som 4.1 #
ALL tum : I APPLY-Into (EQUIVAL-CE.RELATIOI ano s)

IHPL nAPPIlG (APPLY-IXITL'ITI] (CAIDIICALJROJECTIDI ua s)
s
APPLY-Inn (nunULu s ua))

. mom 4-11—1 .
ALL u‚v: I ALL PnI1,Pn12 : m

APPLY-ITO (sm- u) AID APPLY-ITO (SET v) nn HAPPIIG (mm s u) All) HAPPIIG (Pan 5 v)
WL (ALL PPKI: rrI luPPIlG (PPHI u v)

All) (ALL 'r : I APPLY-Ixn'u (I l 1' s)
1:a APPLY-1T1 (PPnI APPLY-III (Pan '1')) =

APPLY-1T1 (PEIZ T))
IHPL APPLY-IXITO (SUBSET

APPLY-[III] XIIIII (IIDUCED.EQUIVALEICE.RELATIOI 91111 S U)
APPLY-[1T1] mm (IIDUCED.EQUIVALEICE.RELATIOI PHI2 s V)))

t PAa'rIAL DEFIIITIOI DF SURJECTIVITY .
ALL PHI : ITI ALL U‚v : I APPLY-ITO (SET U) AID APPLY-ITO (SET v)

InPL (sunmcnvs (PHI U V) InPL HAPPIIG (PEI 0 V))
t LEI!“ .
ALL Bao : I APPLY-111m (EQUIVALEICEJELATIDI Run 5)

IIIPL APPLY-[ITIJXIXITI (IIDUCED.EQUIVALEICE.RELATIOI
APPLY-HIT [III] (CAIUIICAL.PBDJECTIOI mm 5)
s APPLY—IXITI (HDDULU s ua)) = mm

ar TEEOREH TO PROVE : TEEOREH 4 -12 -1 .
ALL H01‚RH02: I

APPLY-IXITO (EQUIVALEICE.RE[.ATIOI 111101 S) All)
APPL'I-IXITO (EQUIVALEICE.RELATIOI H02 S)
IHPL ((ALL PPHI: ITI SURJECTIVE (PPBI

APPLY-IXITI (HDDULO S R1101)
APPLY-IXITI (HDDULO S 3302)) All)

(ALL A : I APPLY-IXITD (I I A 8) IHPL
APPLY-1T1 (PPEI APPLY-ITI

(APPLY-IXITHTI] (CAIOIICALJROJECTIOI 111101 S) A)) =
APPLY-III (APPLY-IXITEITI] (CAIOIICAL.PRDJKCTIOI “02 S) A)” IHPI.

APPLY-111m (SUBSET M01 3002))

Set o f Axiom Clauses Resulting from Normalization

A1: A11 min! + = (: x)
A2: + APPLY-11'0““ s)
A3: All s - APPLY-IXITO(equivalence.relat ion x s)

+ HAPPIIG(apply- ixit [i t i] (canonica1.project ion x s) s apply-ixitflnodulo s x))
A4: A11 s - APPLY-IXITO(equivalence.relat ion x s)

+ =(apply- [it i lxixitiünduced . equivalence . relation
apply-kit [i t i] (canonical .projection x s)
s
npply-ixiti(nodulo s x))

x)
A5: All x ,y : I - APPLY-ITMset y) - APPLY-IXITMequivalence‚relation x y)

+ APPLY-ITMset apply-ixiti(modulo y x))
A6: A11 s t i y , z : I - APPLY-ITMset z) - APPLY-ITMset y)

' SURJECTIVE(X z y) + HAPPIIG(X z y) a
A7: A11 x ‚y ‚z : I t i u ‚v : I - APPLY-I'l'Mset v) - APPLY-110831: u)

" HAPPIIG(Z s v) ' HAPPII‘K’ s u)
- HAPPIIIK: v u) + APPLY-IXITMin f_1 (z u y v z) s)
+ APPLY-IXITD(

subset
apply- [it i] xixiti(induced.equivalence‚relation z s V)
apply-[11:1] xixiti(induced.equivalence.relation y s u))

A8: All x ,y , z : I t i u , . v : I - APPLY-11'0““ v) - APPLY-11'0““ u) - HAPPIIG(z : v)
' KAPPII‘K] s v.) - HAPPIIGCI v u)
- =<app1y-iti<x apply-it“: 1-1 (in y ' :)))

apply-121:5.“ f -1 (x u y v z)))
+ APPLY-IXITO(

subset
apply- [it i]xixit i(induced.equivalence.relation z s v)
npply- [itflxixit i(induced.equivalence‚relation y s u))

22 Appendix

Set	 of Theorem Clauses Resulting from lormalization
===

• T9: + APPLY-IIITO(equivalence.relation c_1 s)
• T10: + APPLY-IIITO(equivalence.relation c_2 s)
• T11: All x:Iti +	 SURJECTIVE(x apply-ixiti(modulo s c_1) apply-ixiti(modul0 s c_2»
• T12: -	 APPLY-IIITO(subset c_1 c_2)
• T13: All x:Iti y:I - APPLY-IIITO(in y s)

+	 =(apply-iti(x apply-iti(apply-ixit[iti] (canonical.projection c_1 s) y»
apply-it i (apply-ixit [iti] (canonical.projection c_2 s) y»

The proof is even more unreadable than ordinary resolution proofs, because of. the APPLY-IXITO,
APPLY-IXITI , and so on. So we have edited the proof and abbreviated APPLY-IXITO(in x s) by
in(x s) and so on. Elsewise the proof is unchanged and originally MKRP-generated. Of course by
this method we obtain clauses that are not first order, these are the clauses Ti3 and Ri.

Edited Refutation in "Higher Order" Clauses

Initial Clauses: U: All x:Any + =(x x)
+ set(s)•	 A2:

All x:I - equivalence.relation(x s)
• A3:

+ MAPPIIG(canonical.projection x s)(s modulo(s x»
All x:I - equivalence.relation(x s)• A4:

+	 z(induced.equivalence.relation(canonical.projection(x s)
s modulo(s x»

x)

All x,y:I - set(y) - equivalence.relation(x y) + set(modulo(y x»• A5:
All x:Iti y,z:I - set(z) - set(y) - SURJECTIVE(x z y) + MAPPIIG(x z y)•	 A6:
All x,y,z:Iti u,v:I - set(v) - set(u) - MAPPIIG(z s v) - MAPPIIG(y s u)• A7:

- MAPPIIG(x v u) + in(f_1(x u y v z) s)
+ subset(induced.equivalence.relation(z s v)

induced.equivalence.relation(y s u»
All x,y,z:Iti u,v:I - set (v) - set(u) - MAPPIIG(z s v) - MAPPIIG(y s u)• A8:

- MAPPIIG(x v u)

- =(x(z(f_1(x u y v z») y(f_1(x u y v z»)

+	 subset(induced.equivalence.relation(z s v)

induced.equivalence.relation(y s u»
+ equivalence.relation(c_1 s)• T9:
+ equivalence.relation(c_2 s)• no:
All x:Iti + SURJECTIVE(x modulo(s c_1) modulo(s c_2»• T11:
- subset(c_1 c_2)• T12:
All x:Iti y:I - in(y s) + =(x(canonical.projection(c_1 s)(y»

canonical.projection(c_2 s)(y»
• T13:

A7,6 ~ T13,1 --> • Ri: All x,y,z,u:Iti v,v:I	 - set (v) - set(v) - MAPPIIG(u s v)
- MAPPIIG(z s v) - MAPPIIG(y v v)
+	 sUbset(induced.equivalence.relation(u s v)

induced,equivalence.relation(z s v»
+	 =(x(canonical.projection(c_1 s)(f_1(y v z vu»)

canonical.projection(c_2 s)(f_1(y v z vu»)

T11,1 ~ A6,3 --> All x:Iti - set(modulo(s c_1» - set(modulo(s c_2»• R2:
+ MAPPIIG(x modulo(s c_1) modulo(s c_2»

R2,2 ~ A5,3 --> All x:Iti - set(modulo(s c_1» + MAPPIIG(x modulo(s c_1) modulo(s c_2»•	 R3:
- set(s) - equivalence.relation(c_2 s)

R3,3 ~ A2,1 --> All x:Iti - set(modulo(s c_1» + MAPPIIG(x modulo(s c_1) modulo(s c_2»• R4:
- equivalence.relation(c_2 s)

R4,3 ~ nO,1 --> All x:Iti - set(modulo(s c_1» + MAPPIIG(x modulo(s c_1) modulo(s c_2»• R5:

R5,1 ~ A5,3 --> All x:Iti + MAPPIIG(x modulo(s c_1) modulo(s c_2» - set(s)• R6:
- equivalence.relation(c_1 s)

22 Appendix

Se t of Theorem Clauses Resulting from lonelization

**
!!

!

111:
T12:
T13:

1‘9: + APPLY-1111'!)(equivalence. :elet ion c -1 s)
T10: + APPLY-IXITO(equivnlence‚relat ion c_2 s)

All x : I t i + SURJECTIVB<X upply-ixiti(nodulo s c_1) apply-ixitiCnodulo s c_2))
- APPLY-IXITO(subset c_1 c_2)
All x : I t i y:I — APPLY-Ixn‘nün y s)

+ =(app1y-i t i (x spply-iti(epp1y-ixit [i t i] (canonicalyrojection 6 -1 s) y))
apply-iti(epp1y-ixit [i t i] (canonical.projection c_2 s) y))

The proof is even more unreadable than ordinary resolution proofs, because of_ the APPLY-IXITO,
APPLY-IXITI, and so on. So we have edited the proof and abbreviated APPLY-IXITO(in x s) by
i n (x s) and so on . Elsewise the proof is unchanged and originally MKRP-generated. Of course by
this method we obtain clauses that are not first order, these are the clauses T13 and R1.

Edi ted Refutation in “Higher Orde r” Clauses

Init ial C lauses :

A7,6 a 113,1

T11 ‚1 I 16 ,3

R2,2 & A5‚3

R3 ,3 l A2‚1

R4,3 ! T10 ,1

115,1 & 15,3

II
ID

O
G

H

A1:
A2:
‘3 :

A4:

A5:
16 :
A7:

A8:

T9 :
1'10:
1'11:
T12:
1'13:

RI :

R2 :

R4 :

R5 :

R6 :

All lny + =(: x)
+ se t “)
All x : I - equivalence.relation(x e)

+ HAPPIlMcmonicul.projection x s) (s module“ :>)
All 2 :1 - equivulencemehtion“ s)

+ =(induced . equivalence . re le t ion(cenonicel . p ro j ec t i on (x s)
s nodulo(s x))

x)
All x ‚y : I - se t (y) ' equivalencexelntiolü! y) + set(modulo(y x))
All l t i y ,z : I - se t (z) - se t “) - SURJECTIVE“ z y) + HAPPIIG<x z y)
All x ,y , z : I t i u ,v : I - se t (v) - se t “) - HAPPIIG“ s v) - HAPPIlMy s u)

- HAPPIIG“ v u) + in(:E_1(x u y v z) s)
+ subset(induced.eqnivelence.reletion(z s v)

induced.equivalence.relation(y s n))
All x ,y , z : I t i ‘1,s - Bet (') - se t (u) - HAPPIIG(z s v) - MPPIIGG s u)

- HAPPIIG“ v u)
- =(x (z (f_1 (x u y v z))) y(f_1 (x u y v z)))
+ subsetünduced.equivalonco.relation(z s v)

induced.eqnivslence.relation(y s n))
+ equivalence.relat ion(c_1 s)
+ equivalence.re1stion(c_2 s)
All x : I t i + SURJECTIVE“ nodulo“ c_1) nodulo“ c_2))
- subse t (c_1 c_2)
All x : I t i ‚ :] : — in(y s) + =(: (cunon ica l . p ro j ec t i on (c_1 s) (y))

canonica l .pro jec t ion(c_2 s) (y))

All x ‚y ,2 ,u : I t i v ‚w: I - se t “) - se t “) - MPPIIG“ s I)
- HAPPIlt s v) - MPPIIGG u v)
+ eubset(induced.equivalence.relst ion(u s v)

induced .equiva lence . re1a t ion(z s V))
+ =(x(ca .nonical .project ion(c_1 s) (f_1(y v z u u)))

canonica l .p ro jec t ion(c_2 s) (f_1 (y v z v u)))

All l t i - set<nodulo(s c_1)) ‘- s e t (modulo(s c_2))
+ HAPPIIG“ module“ c_1) module“ c_2))

All x : I t i - set (-odulo(s c_1)) 4- HAPPIIG“ module“ c_1) modulo“ c_2))
- se t “) - equivalence.relst ion(c_2 8)

All x : I t i - se t (nodu lo (s c_1)) + HAPPIIG“ modulo“ c_1) module“ c_2))
- equivalence.relet ion(c_2 3)

All l t i - set<nodulo(s c_1)) + HAPPIIG“ module“ c_1) module“ c_2))

All l t i + HAPPIIG“ module“ c_1) module“ c_2)) - se t “)
- equivalence . re ln t ion(c_1 s)

23

R6,2 I: A2,1 --> * R7: All x:Iti + MAPPIIG(x modulo(s c_1) modulo(s c_2»
- equivalence.relation(c_1 s)

R7,2 I: T9,1 --> * R8:

nO,1 I: A5,2 --> * &9: - set(s) + set(modulo(s c_2»

R9,1 I: A2,1 --> * R10: + set(modulo(s c_2»

T9,1 I: A5,2 --> * R11: - set(s) + set(modulo(s c_1»

R11,1 I: A2,1 --> * R12: + set(modulo(s c_1»

R1,7 I: A8,6 --> * &13: All x:Iti y,z:I - set(z) - set(y)
- KAPPIIG(canonical.projection(c_1 s) s z)
- KAPPIIG(canonical.projection(c_2 s) s y)
- KAPPIIG(x z y)
+ subset(induced.equivalence.relation(

canonical.projection(c_1 s) s z)
induced. equivalence. relation(

canonical.projection(c_2 s) s y»
- set(z) - set(y)
- KAPPIIG(canonical.projection(c_1 s) s z)
- MAPPIIG(canonical.projection(c_2 s) s y)
- MAPPIIG(x z y)
+ subset(induced.equivalence.relation(

canonical.projection(c_1 s) s z)
induced.equivalence.relation(

canonical.projection(c_2 s) s y»

&13 6=12 --> * D14: All x,y:I z:Iti - set(y) - set (x)
- MAPPIIG(canonical.projection(c_1 s) s y)
- KAPPIIG(canonical.projection(c_2 s) s x)
- MAPPIIG(z y x)
+ subset(induced.equivalence.relation(

canonical.projection(c_1 s) s y)
induced.equivalence.relation(

canonical.projection(c_2 s) s x»
- set(y) - set (x)
- KAPPIIG(canonical.projection(c_l s) s y)
- KAPPIIG(canonical.projection(c_2 s) s x)
- KAPPIIG(z y x)

D14 5=11 --> * D15: All x,y:I z:Iti - set(y) - set(x)
- KAPPIIG(canonical.projection(c_1 s) s y)
- KAPPIIG(canonical.projection(c_2 s) s x)
- KAPPIIG(z y x)
+ subset(induced.equivalence.relation(

canonical.projection(c_l s) s y)
induced.equivalence.relation(

canonical.projection(c_2 s) s x»
- set(y) - set (x)
- KAPPIIG(canonical.projection(c_l s) s y)
- KAPPIIG(canonical.projection(c_2 s) s x)

D15 4=10 --> * D16: All x,y:I z:Iti set(y) - set (x)
- KAPPIIG(canonical.projection(c_1 s) s y)
- MAPPIIG(canonical.projection(c_2 s) s x)
- KAPPIIG(z y x)
+ subset(induced.equivalence.relation(

canonical.projection(c_1 s) s y)
induced.equivalence.relation(

canonical.projection(c_2 s) s x»
- set(y) - set (x)
- KAPPIIG(canonical.projection(c_1 s) s y)

36 ,2 & 12 ,1

R7‚2 & 19 ,1

T10 ‚1 & 15 .2

39 ,1 . 12 ,1

T9 ‚1 I A5,2

R11,1 & [2 ,1

R1‚7 & 18 ,8

R13 6812

D14 5=11

D15 4=10

-—>. e R10 :

- -> e 311:

- -> t R12:

- -> e 313 :

--> e D14:

") . DIE:

-—> t D16:

m uni + 1119911“: mdnlo(s c_1) man“: c_2)>
- equivalence.rehtion(C_1 s)

111 x : I t i + mPPIlM: nodule“ c - !) modul“: c_2))

- se t“) + set(nod:ulo(s c_2))

+ set (nodulo(s c_2))

- s e t“) + set(lodu10(s c_1))

+ set(nodulo(s c_1))

All s t i y , s : I - se t (z) - se t (y)
- MPPIIMcenonicel .projectiou(c_1 s) s z)
- HAPPIlMcenonicsl.projection(c_2 s) s y)
- MPPIIG(x z y)
+ subset (induced. equivalence . relet ion<

canonical .projection(c_1 I) s 1)
induced . equivalence . reletion(

csnonicel.projection(c_2 e) s y))
- se t (z) - se t (y)
- IAPPIlMcunonicul.projection(c_1 s) s z)

' — nPPIlG(cenonice1.prujection(c_2 s) s y)
- “puree: z y)
+ subset (induced . equivalence . relet ion(

cunenicel.projection(c_1 s) s 3)
induced. equivalence . relution(

cenouicul.projection(c-2 e) I y))

All x ,y : I z : I t i - se t (y) - se t“)
— HAPPIIG(cmonical .projection(c_1 s) s y)
- luPPIlMcenouical .project ion(c-2 I) s x)
- nPPIl y x)
+ subset (induced . equivalence . relet ion(

cunenicel .projection(c_1 s) s y)
induced . equivalence . rollt ion(

canonical .projection(c_2 s) s x))
- se t (y) - se t (x)
- HAPPIIMcuuonicsl.projection(c_1 e) I y)
- MPPIlMcsnonicel.projection(c_2 s) s x)
- HlPPIlG(z y x)

All x ,y : I z : I t i - se t (y) - se t (x)
- MPPIIMcenonicel.projection(c-1 I) s y)
- nPPIlG(cunonice1.projectiou(c-2 s) s x)
- unpack y x)
+ subset (induced . equivalence . reletien(

canonical.projection(c_1 s) s y)
induced . equivalence . relut ion(

cenonical.projection(c-2 s) s x))
- se t“) ' se t (x)
- MPPIIG(canonica1.projection(c_1 e) s y)
- HAPPIIMcanonical.projection(c_2 s) s x)

All x ,y : I z : -I t i - s e t (y) - se t (x)
- HAPPIIMcsnonicel.projectiou(c_1 s) s y)
- HAPPI!6(canonical.projection(c_2 s) s x)
— HAPPIIM: y x)
+ subset (induced .equivulence . rd.-tim“

csnonicel .projection(c_1 s) s y)
induced . equivalence . relat ion(

canonical .project ion(c-2 s) s !))
- s e t“) - Both)

HAPPIlMculonicll.projoction(c_1 s) s y)

23

24 Appendix

D16 3=9 --> • D17: All x,y:1 z:1ti - set(y) - set (x)
- MAPP1IG(canonical.projection(c_1 s) s y)
- MAPP1IG(canonical.projection(c_2 s) s x)
- MAPP1IG(z y x)
+ subset(induced.equivalence.relation(

canonical.projection(c_1 s) s y)
induced.equivalence.relation(·

canonical.projection(c_2 s) s x»
- set(y) - set (x)

D17 2=8 --> • D18: All x,y:1 z:1ti - set(y) - set (x)
- MAPP1IG(canonical.projection(c_1 s) s y)
- MAPP1IG(canonical.projection(c_2 s) s x)
- MAPP1IG(z y x)
+ subset(induced.equivalence.relation(

canonical.projection(c_1 s) s y)
induced.equivalence.relation(

canonical.projection(c_2 s) s x»
- set(y)

D18 1=7 --> • D19: All x,y:1 z:1ti - set(y) - set (x)
- MAPP1IG(canonical.projection(c_1 5) 5 y)
- MAPP1IG(canonical.projection(c_2 5) s x)
- MAPP1IG(z y x)
+ subset(induced.equivalence.relation(

canonical.projection(c_1 5) 5 y)
induced.equivalence.relation(

canonical.projection(c_2 5) 5 x»

T9,1 t A4,1 --> • R20: + =(induced.equivalence.relation(canonical.projection(c_1 s)
s
modulo(s c_1»

T10,1 t A4,1 --> • R22: + =(induced.equivalence.relation(canonical.projection(c_2 s)
s
modulo(s c_2»

R8,1 t D19,5 --> • R49: - set(modulo(s c_1» - set(modulo(s c_2»
- MAPP1IG(canonical.projection(c_1 s) s modulo(s c_1»
- MAPP1IG(canonical.projection(c_2 s) s modulo(s c_2»
+ subset(induced.equivalence.relation(

canonical.projection(c_1 s) s modulo(s c_1»
induced.equivalence.relation(

canonical.projection(c_2 s) s modulo(s c_2»)

R49,5 t R22 --> • RV50: - set(modulo(s c_1» - set(modulo(s c_2»
- MAPP1IG(canonical.projection(c_1 s) s modulo(s c_1»
- MAPP1IG(canonical.projection(c_2 5) 5 modulo(s c_2»
+ sUbset(induced.equivalence.relation(

canonical.projection(c_1 5) s modulo(s c_1»
c_2)

RV50,5 l R20 --> • RV51: - set(modulo(s c_1» - set(modulo(s c_2»
- MAPP1IG(canonical.projection(c_1 s) s modulo(s c_1»
- MAPP1IG(canonical.projection(c_2 s) s modulo(s c_2»
+ subset(c_1 c_2)

RV51,5 t T12,1--> • R52: - set(modulo(s c_1» - set(modulo(s c_2»
- MAPP1IG(canonical.projection(c_1 s) s modulo(s c_1»
- MAPP1IG(canonical.projection(c_2 s) s modulo(s c_2»

R52,4 t A3,2 --> • R53: - set(modulo(s c_1» - set(modulo(s c_2»
- MAPP1IG(canonical.projection(c_1 s) s modulo(s c_1»
- equivalence.relation(c_2 s)

24 Appendix

D16 3=9 - -> t n17: All] : , s z:It:'L - s e t (y) - se t“)
- HAPPIIG(canonical.projoction(c_1 s) s y)
- HAPPIIG(canonical.projcction(c_2 s) s x)
- HAPPIIG(2 y x)
+ subset(inducod.equivalence.relntion(

canonica1 .projec t ion(c_1 s) s y)
induced.equivalence.relation(

canonica l .projec t ion(c_2 s) s x))
- s e t (y) - s e t (x)

D17 2=8 - -> t D18: All x ,y : I z : I t i - set(y) - sot(x)
- HAPPIIMcuonical.projoction(c-1 s) s y)
- HAPPIIG(canonical.projection(c_2 s) s x)
- MPPIIMz y x)
+ subset (induced.equivalence .re lat ion(

canonica1 .projec t ion(c_1 s) s y)
inducod.equivalence.relntion(

canonical .projection(c_2 s) s x))
- s ed !)

D18 1=7 - -> t D19: All x„zI : : I t i - se t (y) - set(x)
— HAPPIIG(canonical.projection(c_1 s) s y)
- HAPPIIG(canonica l .projec t ion(c_2 s) s x)
- HAPPIIG<z y x)
+ subset (induccd.equivalenco.re1at ion(

cmonica1 .projec t ion(c_1s) s y)
induced.equivalenco .ro lat ion(

canonical .projection(c-2 s) a :”

T9‚1 t A4‚1 -—> # R20: + =(induced.oqpivalenco.relation(canonica1.projoction(c_1 s)
' s

modulo(s c_1))
c_1)

T10‚1 & 14 ,1 - -> t 322: + =(inducod.equiva1ence .ro lat ion(cnnonica l .project ion(c_2 3)
s
nodulo(s c_2))

c_2)

38 .1 . 319 .5 ° -> ' 349: - set (modulo(s c_1)) - so t ‘nodnlo<s c_2))
- HAPPIIG(canonical .project ion(c_1 s) : .odulo(s c_1))
- HAPPIIG(c-nonical.projoction(c-2 s) : nodulo(s c_2))
+ subset(induced.equivalenco.rolation(

canonica1.projoction(c_1 s) s nodulo(s c_1))
induced.equiva1ence.rolntion(

canonica1.projoction(c_2 s) s Iodulo(s c_2)))

349 ,5 & R22 -> # RHSO: - set(nodulo(s c_1)) - set(nodmlo(s c_2))
- HAPPIIG(canonica1.projoction(c_1 s) s lodulo(s c_1))
- HAPPIIG(canonica1.projoction(c_2 s) : lodulo(s c_2))
+ subset (induced.equivnlonce .ro lat ion(

canonica l .projec t ion(c_1 s) s modulo(s c_1))
c_2)

RH50,5 I 120 - -> # RH51: - se t (nodulo (s c_1)) - se t (lodulo(s c_2))
- HAPPIIG(canonical.projection(c_1 a) : nodulo<s c_1))
- HlPPIlG(canonica1.projection(c_2 :) : nodulo<s c_2))
+ subset(c_1 c_2)

RH51,5 ! T12,1—-> I B52: - set (modu10(s c_1)) ' se t (lodulo(s c_2))
- HlPPIlG(canonical.projection(c_1 :) s nodula<s c_1))
- HAPPIIG(cnnonical.projection(c_2 s) ; modnlo(s c_2))

R52 ,4 & 13 ,2 - -> t 353: - se t (nodulo(a c_1)) - sot<nodulo(s c_2))
- HAPPIIG(canonica1.projoction(c_1 s) s .odulo(s c_1))
- equiva lenco .re la t ion(c -2 :)

25

R53,4 t Tl0,l --> - set(modulo(s c_l» - set(modulo(s c_2»• R54:
- M1PPIIG(canonical.projection(c_1 s) s modulo(s c_l»

R54,3 t 13,2 --> - set(modulo(s c_l» - set(modulo(s c_2» - equivalence.relation(c_l s)• R55:

R55,3 t T9,l --> - set(modulo(s c_l» - set(modulo(s c_2»• R56:

R56,2 t Rl0,l --> - set(modulo(s c_l»• R57:

R57,l t R12,l --> []• R58:

q.e.d.

Time Used for Refutation: 238 seconds

This example shows some shortcomings: .

We have no sorts, so we have to use clauses like + set (s).

Because we have no partial functions, we cannot express the relation ~ 0 Ql = Q2 in the canonical
way, but instead we have to write Va, a E S ==:} ~(Ql(a)) =Q2(a).
We cannot write the equivalence relation as a set, that is, as object of type t, and as a binary
relation, that is, as objects of type (t x l --+ 0).

Nevertheless we have here a correct treatment, and an automated theorem prover like the MKRP
system can solve the problem in this representation.

25

353 ,4 t r1o ,1 - -> . 1154: - set(nodulo(s c_1)) - set(modnlo(s c_2))
MPPIlMcmnical .projec t ion(c_1 s) s modulo“ c_1))

354 ,3 & 13 ,2 -—> * R55: set(modulo(s c_1)) - set(modulo(s c_2)) - equivalence.relat ion(c_1 3)

355 ,3 I T9,1 - -> ‘- I 56 : set(nodulo(s c_1)) - set(modulo(s c_2))

356 ,2 & R10‚1 - -> . BS'I: se t (noduloül c_1))

R57‚1 & 312 ,1 - -> . E58: []

q . e .d .

Time Used for nefutation: 238 seconds

This example shows some shortcomings: '
— We have no sorts, so we have to use clauses like + se t (s) .
— Because we have no partial functions, we cannot express the relation <I> o hl : in in the canonical

way, but instead we have to write Va, a e 5 => @(hl (a)) = h2(a).
— We cannot write the equivalence relation as a set, that is, as object of type L, and as a binary

relation, that is, as objects of type (1. x l. —> a).

Nevertheless we have here a. correct treatment, and an automated theorem prover like the MKRP
system can solve the problem in this representation.

