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Abstract 
There are a number of debates in linguistic, psycholinguistic and 

neurolinguistic circles which have relevance to research on machine learning of 
natural language. Some of these concern where language lies on the spectrum 
between innate and learnt; how much can be learnt in the absence of semantics; 
how much can be achieved by neural self-organization without multi-layer back­
propogation; and how important negative information is to language learning. 

The computational research presented in this paper places a point of 
reference on each of these spectra, and indeed suggests that they are not 
independent. 

We present some computational experiments and results, and propose ideas 
towards a theory of language learning. More importantly we pose some 
traditional questions in a new light and suggest new avenues of research for the 
traditional cognitive science disciplines as well as modem computational 
linguistics. 

The concrete experiments presented use statistical techniques for lexical 
learning and were inspired by earlier experiments using statistical and neural 
techniques for syntactic learning and speech recognition. The interrelationships 
and significance of all of these experiments are discussed. 
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Introduction 

[Gold67] and [Mins69] produced results which demonstrated limitations on 

the possibility of learning. These were based on certain assumptions about the 

learning mechanisms and the problem domain, and were in various respects both 

intended and construed as criticisms of current approaches and claims. In the 

first case, [Gold67] showed that context free languages cou~dn't be learned 

without either a teacher or a critic. In the second case, [Mins69] showed that a 

class of (visually presented) group invariant relations could not be recognized by 

Perceptrons. 

Since then, the more powerful PDP (Parallel Distributed Processes) 

approach popularized by [Rume86] (and subsequent publications from the same 

group) has demonstrated overwhelmingly that useful learning (inter alii in the 

language and vision domains) can be done with neural nets. In a less focussed 

way, MLNL (Machine Learning of Natural Language) has also found renewed 

vigour [Lang87; Powe91]. 

But there are still things our machines can't yet do. And there are still things 

our machines can't ever do. The results hold. But there are things we, that is 

humans and other organisms, can do. And there are language, vision and speech 

features that earlier statistical and neural models did learn [Koh084,89,90; 

Powe83,89; Ritt89]. The trick is to characterize these accurately and discover 

appropriate mechanisms - whether they be the natural mechanisms, just similarly 

effective mechanisms, or better mechanisms. 

In [Powe83,89] one of several experimental language learning programs 

used self-organizing neural network techniques to learn word classes and 

syntactic rules in a total absence of critical input. There was simply multiple 

exposure to a set of legal phrases, with no teacher supplying anomalous input in 

the sense of [Gold67]. Nonetheless, the system managed to learn the word 
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classes correctly, as well as grammatical rules which, if not actually those the 

grammarians discovered, are nonetheless effective. Similar results were 

achieved in a statistical program applied to the same data. The neural program 

was shorter. The statistical program faster. 

[Koh090; Ritt89] independently showed that neural and comination 

statistical/neural self-organization techniques can learn word classes (but 

apparently not syntactic rules) of similar complexity in a different domain - again 

in the absence of critical input. (Similar techniques were applied by [Koh084] to 

mapping Finnish and Japanese phonemes - viz. achieving the feature/phone to 

phoneme classification.) 

What is interesting is not just what was learned in terms of word classes, but 

what was learned flIst and why these particular rules were learned. It turns out 

that the most closed classes were learned first. These then seemed to act as 

pointers to the more open word classes they were associated with. This paper· 

proposes that these results can give us insights as to why closed class words, 

such as articles, occur at all, how they are learned, and why they are not used 

early but are recognized. It also extends the experiments below the word level to 

see if there are closed classes there. 

None of these previous reports or reviews has fully considered the broader 

computational, linguistic and psycholinguistic significance of these particular 

results (although [Powe91] does point to most of the issues involved). Here we 

consider this significance in several respects: in relation to closed classes, in 

relation to symbolic properties of connectionist systems, in relation to the weak 

form of learning used, and in relation to more accurate characterization of natural 

language. 

Therefore, we will first summarize the methodology and results of the "noun 

phrase" experiments of [powe84] and the "sentence" experiments of [Ritt89; 
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Koho90], we then address some of the issues to which they are relevant and 

introduce some hypotheses to be tested. We fmally present a computational 

experiment using similar techniques in the new, sub word-level, domain of 

classification of letters/phonemes into the classes from which syllables and 

words are composed, giving our procedures, results and conclusions. 

Review of Syntactic Learning Experiments 

We do not wish to review statistical, neural or syntactic learning generally, 

but to take up certain experiments from [powe89] and [Koho90], and compare 

the application of similar techniques in one of the domains that bridges the gap. 

As mentioned in the introduction, the pedigree of such work extends back 

beyond the criticisms of [Gold67] and [Mins69] and are reviewed and 

represented adequately elsewhere (see, in addition, [Lang87; Powe91] for 

pointers). 

The experiments we wish to review were presented in the context of noun 

phrases and filtered sentences; the classes categorized and grammatical rules 

learnt were discovered with two different mechanisms, neither of which required 

critical input. 

We imagine that the computational model represents a child at the beginning 

of the stage where he learns some nouns and verbs and their meanings and that 

he is trying to make sense at the same time of the images he is faced with. We 

further suppose that there are prosodic and syntactic features which tend to 

highlight the significant words, e.g. that they occur stressed in phrase final 

position. We hypothesize further that what is far beyond the child's competence 

and far from these significant positions is flltered out, and that conversely the 

childfocuses on what is close to or within his competence. 

We actually make no use of these assumptions other than to provide some 

justification for the type of dataset used for the learning experiments, which we 
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present in figures 1 and 2 in the fonn used in the simulations of [Powe89] and 

[Koh090] resp. 

the cat. * 
a dog. * 
my dog? * 
this mat! * 
Fig. 1. Example dataset cl la [Powe89}. 

In the original experiments the '#' of Fig. 1 had some 'monitoring' 

significance. It also serves as a reminder of the elision. The prosody of speech 

is hypothesized to have some correspondence to the punctuation symbols used in 

these text experiments. 

Ma:ry likes meat 
Jim speaks well 
Ma:ry likes Jim 
Jim eats often 

Fig. 2. Example dataset cl la [Koho90}. 

Note that both of these datasets can be regarded as sets of "three word 

sentences" representing utterances from which the uninteresting parts have been 

filtered according to different theories, or different applications of a general 

theory. 

A first criticism can already be mentioned here: results with the omitted 

words included are not presented. Although the preliminary results from 

experiments with more complex data were (as could be expected) more complex 

and less conclusive, they would be interesting to see, and should give an idea of 

the degree of reliance placed on the above-mentioned assumptions. (A listing of 

one of the actual neural programs used is however presented in [Powe89], 

allowing the possibility of repetition or extension of the experiment.) 

It should be noted too that the learning, particularly for the (pure) neural 

simulations, is very slow. For example, the "semantic map" of [Koh090: 

Fig.l2] resulted from "2000 presentations of word-context-pairs derived from 
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10 000 random sentences of the kind shown". (It is therefore very time­

consuming and unrewarding to explore the more unlikely directions!) 

Statistical Psycholinguistic Model 

The first model [powe83,89] makes use of an additional psycholinguistic 

hypothesis. It uses the Magical number seven plus or minus two of [Mill56] to 

constrain the number of partial parse fragments (trees) kept around on tags and 

available for correlation. Unlike some of the earlier models, it then not only 

turns collocations of words into hypotheses of rules, but collocations of tags. 

A second technique, also motivated by psycholinguistic considerations, is 

used to consolidate rules, in an induction step, bring together into the same 

hypothesized class words with collate similarly, viz. with the same words or 

classes. Thus classes are formed initially as small consistent cosets of words. 

A thresholding step is used before rules are considered ready for production 

use - again a psycholinguistic hypothesis lies behind this terminolgy. It is 

proposed that the unthresholded grammar can play a role in guiding the 

recognition process in terms of indicating the likely class of a word, but that 

there is an implicit or explicit partitioning into recognition and production 

grammars mediated, in part, by some sort of threshold. 

We present in Fig. 3 only a sample thresholded, consolidated grammar to 

give the flavour of the results. 

Sense Class Thresh-Set:
 
Sense Class Thresh-Set
 

class (lang, 16, [a, the, ••• ]) 
formula (lang, 24, [[17, 10))) class (lang, 10, [rat, cat, ••• ]) 
formula (lang, 17, [[12, 16))) class (lang, 12, ['.','?','!']) 

Fig. 3. Sample output from [Powe89a}. 

The first observation to be made (to an extent observable in the structure of 

the rules) is that the fIrst class learnt is the punctuation/prosody. Next come the 

articles and fmally the nouns. The significant aspect is that the most closed (or 
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smallest) classes are learnt first and that these act as pointers (in the rules) to the 

more significant contentive and open classes. 

Self-Organizing Neural Net 

The above experiment was duplicated [powe83,89] with a self-organizing 

model inspired by the visual application of such a neural net by [Mals73], but 

based in some respects on the model of [Klop82]. Interestingly, this program 

did not make use of the magical number seven directly, but a similar effect result 

from the decay model used. Once a neuron had fired it decayed over a period of 

time allowing for the possibility of it interacting with the neurons firing as a 

result of subsequent "words". 

The results of this experiment were comparable with the statistical version, 

and a relationship between neurons and classes, synapses and grammatical rules 

was apparent in the comparison of the results. 

The experiments of [Ritt89; Koho90] used a similar model applied to their 

dataset. For efficiency they turned to a hybrid statistical/neural approach in 

which they first preprocessed the data to produce an "average context" for each 

word - an average of all code vectors of predecessor-successor-pairs 

surrounding the given word. Note that this windowing is very sensitive to the 

omitted words, but could be justified on the basis that these words really 

represent the phrases of which those words are the nucleus. 

The methodology of [Ritt89; Koho90] is explicitly exploiting the contextual 

similarity of items. The important feature is that the context is consistently 

dominant and recognizable in the learning process, and thus words may be 

classified by the contexts they occur in, and that then the classification of words 

together allows unification of contexts and consequent strengthening of the 

context consistency. 
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In these experiments the context taken was the pair of "words" preceding 

and succeeding the word in focus. In the experiments of [Powe84,89] the 

context was detennined by the decay mechanisms or the tag mechanism. In 

recent experiments based on the paradigm of [Ritt89], similar results have been 

produced with "contextual sensitivity" being provided by the addition of 

recurrence between layers [Scho91]. 

Hypotheses 

The experimental perspective taken here is concerned with understanding the 

nature of language learning enough to implement useful models by whatever 

means, whether neural or statistical, hybrid or novel. And we follow [powe89] 

in recognizing the importance of contributions from Cognitive Science, and our 

theoretical model confonns, in the main, to the hypotheses present in Chapter 13 

thereof. In particular, we recognize the importance of physiological restrictions 

for the determination of the nature of language, we learn language by making 

hypotheses which can prove useful irrespective of their validity, we envisage the 

negative information necessary for learning as coming from the natural 

restrictions of human physiology, environment and current hypotheses rather 

than from explicit teachers and critics. 

In neural networks this type of system behaviour is called self-organization. 

In other contexts it is called auto-correlation or emergence. It is can also be seen 

as a consequence of fundamental principles well known in Linguistics, and 

indeed the foundation of Phonology (and also its generalization to Tagmemics), 

namely: Contrast in Identical Environments (CIE) and Contrast in Analogous 

Environments (CAE). 

We wish to develop one hypothesis further here. It is beyond the scope of 

this paper to go over once more the psycholinguistic evidence reviewed in 

[powe89], but we note that the experiments we reviewed in the last section are 
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consistent with, or at least suggestive of, the complexity hypothesis, pivot 

grammars, and nucleus-margin coordination. These suggest respectively that the 

simplest concepts (and by extension here, constructs and classes) are learnt fIrst; 

that certain words in a child grammar function in a special way, as pivots, whilst 

not conforming precisely to adult grammatical classes; and that a binary 

grammar is evident, at many levels, in which the components differ in 

importance and may thus be designated as nucleus and margin. 

In tenns of gramatical classes, the natural complexity metric is the size of the 

class. A class that is always represented by a single exemplar, or a very small 

number of exemplars, but whose degree of occurence is comparable with other 

classes, will clearly provide a unmistakable context which can act as a boundary 

condition for the self-organizing process. That is, closed classes will act as 

pointers to the more open classes. This facilitates focussing on the open class 

"word" and hence the attachment of semantics. The broader scope and easy 

identification of the open class therefore makes it the ideal candidate to be the 

main infonnation carrier, or contentive, as well as the syntactic nucleus. 

Mem (Lev) Description 

?? (0) Several independent variables determining features 
11 (1) 4 to 6 feature single phone characters 
10 (2) 2 or 3 character (consonant or vowel) clusters 

8 (3) 2 or 3 cluster C*V+C* syllables 
7 (4) 2 or 3 syllable morphs 
6 (5) 2 or 3 morph words 
4 (6) 2 or 3 word phrases 
3 (7) 2 or 3 phrase clauses 
2 (8) 2 or 3 clause sentences 
1 (9) 1 or 2 sentence (nuclear or marginal) paragraph segments 

.5 (10) 2 or 3 segment paragraphs 

.2 (11) 1 or 2 paragraph monologues 

.1 (12) 2 or 3 monologue dialogues 

Fig. 4. Phono-morpho-phraseology. Levels of the speech-language hierarchy, from feature 
level through Phonology and Morphology to Phrase Structure and Discourse Grammar are 
illustrated with a level number for reference and an idea of the possible variation of the number 
of units stored and available at that level (decreasing as complexity increases). 

This process can be reflected at many levels, and is by no means limited to 

the speech hierarchy (Fig. 4). Similar processes were indeed fust observed in 

vision [Mals?3]. But in the context of speech, the prosodic features (including 
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main information carrier, or contentive, as well as the syntactic nucleus.

Mem (Lev) Description

??  (0 )  Several independent variables determining features
11  (1 )  4 t o  6 feature single phone characters
10  (2 )  2 or  3 character (consonant o r  vowel) clusters

8 (3 )  2 or  3 cluster C*V+C* syllables
7 (4 )  2 or  3 syllable morphs
6 (5 )  2 or  3 morph words
4 (6 )  2 or  3 word phrases
3 (7 )  2 or  3 phrase c lauses
2 (8 )  2 or  3 clause sentences
1 (9 )  1 or  2 sentence (nuclear o r  marginal) paragraph segments

.5  (10) 2 or  3 segment paragraphs

.2  (11) 1 or  2 paragraph monologues

.1  (12) 2 or  3 monologue dialogues

Fig. 4 .  Phono-morpho-phraseology. Levels of the speech-language hierarchy, from feature
level through Phonology and Morphology to Phrase Structure and Discourse Grammar are
illustrated with a level number for reference and an idea of the possible variation of the number
of units stored and available at that level (decreasing as complexity increases).

This process can be reflected at many levels, and is  by no means limited to

the speech hierarchy (Fig. 4) .  Similar processes were indeed first observed in

vision [Mals73]. But in the context of speech, the prosodic features (including
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stress, intonation, speech rate and pauses) form clear t(asily distinguishable 

classes of limited membership. This allows focussing on phonological phrases 

and syllables. These have a close relationship to the grammatical phrase and 

morph, where a similar process can identify repeated syllable/morphs as contexts 

which will cohere into a closed class. Similarly phrases subtended by a 

particular closed class can act as units in which the frequently occuring templates 

can provide boundary conditions for the self-organization at that level. 

The experiments reported above demonstrate these effects at several different 

levels. Phonemes have been mapped by neural self-organization; noun phrases 

have had their word components classified by the same and related statistical 

techniques; sentences have had their phrase/word components classified 

similarly. 

We proposed to explore one of the missing pieces from this features to 

sentence classification: the syllable is normally defined in terms of particular 

patterns (varying according to language) or consonant (C) and vowel (V) 

classes. The syllable and these consonant vowel classifications are missing from 

the above demonstrations. The consonants and vowels are determined by 

phonetic features, and a related prosody also helps to identify syllables. Our 

theory would suggest that these physiological characteristics should act as 

restrictions (or boundary conditions) defining logical closed classes which would 

be actual syntactic entities, and would thus adopt also the associated syntactic ° 

and semantic properties (open =contentive =nucleus). 

Why should we distinguish vowel and consonant - or indeed liquids, 

nasals, etc? Morphophonemics dictates some constraints, but why would we 

expect a grammatical function? This hypothesis provides an explanation. It 

further leads us to predict that we should discovering such a class by application 

of self-organization. To be more precise, we would expect the vowels to appear 

as a closed class rather than the consonants, being a smaller class - although 
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liquids or nasals or something else could be a candidate according to size, but are 

excluded by their lack of primary grammatical significance. As there is not a one 

to one correspondence between phonemes and graphemes (characters) we allow 

the possibility of groups of graphemes to function as a unit, and hence the 

possibility that diphthongs or modified characters (e.g. +h, +r, +1, etc.) might be 

present. 

There is also the question of how small a closed class should be - even 

those we have identified could conceivably be subclassified. We need not to 

introduce size as a parameter, however the magic number seven is again used as 

a memorylwindow constraint. The vowels happen, interestingly to fall into the 

magic number seven plus or minus two range. They may just be another 

addition to the catalogue of its magical properties! 

Algorithm 

We first note that clusters or phrases (coUationally significant class 

constructed from lower level units) are significant to the extent that: 

a. Units occur relatively frequently in conjunction with their predecessor(s); 

b. Units occur relatively frequently in conjunction with their successor(s); 

c. Prefixed units have a considerably modified class of successors; 

d. Suffixed units have a considerably modified class of predecessors; 

e. Suffrxed units have an almost unmodified class of successors; 

f. Prefixed units have an almost unmodified class of predecessors. 

Thus, Iqul is significant by a, Ithl is significant by b, c and e, Ickl is 

significant by b, c and d. In the case of properties a and b, one unit acts as a 

good predictor for the other member(s) of the cluster. Properties c and d indicate 

that the cluster does not simply inherit collations but has unique characteristics. 

The final pair of properties are related to apparent recursion, but are more general 

in that they extend to cohesive constraints. 
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Normally the modified succ/predecessors class is a reduction which 

excludes those which make up the other component of the structure. It may be 

that the class is as it would have been without the intervention (apart from such 

modifiers), or that it follows the modifier, or both. Thus /t/ can be followed by 

[b],[r],VOWEL; /th/ can be followed by [r],VOWEL; /tr/ can be followed by 

VOWEL; /thr/ can be followed by VOWEL. So: /th/ is a level 2 modification, 

/thr/ & /tr/ are level 3 clusters. 

The present algorithm looks for signs of the first of these three pairs of 

properties: it collects all the contexts for each character and group of character 

within SEVEN character strings (including word boundary and capitization 

codes); it then groups into classes all the common characters and character 

groups which occur in an identical context (left and right contexts separately), 

associating their sets of contextual distributions with the classes; it fmally seeks 

to correlate similar distributions (± TWO) and allows evaluation according to 

either symmetric or assymetric relevance, either weighted or unweighted by the 

size of the class found. 

SEVEN and TWO are parameters which may be varied slightly. Examples 

of the results and the intermediate stage associations will be presented in the next 

section, along with some more detail concerning the transformations at each 

stage. An overview is presented in Fig. 5. 

1. Read diet & produce Context-Char sets <= SEVEN chars - fsm 
2. Convert significant sets into Cluster-Cluster pairs - gsm 
3. Group left and right sets into g & h distributions - d?sm 
4.	 Group complementary clusters into g & h cosets/cnt - c?sm 
4a. Intersect gives distribution for both sides - cism 

5. Restrict all distribution size to SEVEN +/ - TWO - class? 
6.	 Autocorrelate for subset +/- TWO of distribution - coset'? 
6a. Intersect/Union for both/either side cosets - coseti 

7.	 Make best SEVEN of either Intersect or Union into classes 
7a. Make classes mutually exclusive, formulate hyperclasses 

Fig. 5. Outline of algorithm. The predicate names refer to PROLOG predicates from 
intermediate stages which are exemplified in subsequent figures. The '1' indicates where a 'g' 
or oh' is substituted for the left and right distributions respectively (and where the 'i' for the 
intersected distribution goes). 
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Results
 

The first stage of the processing can be viewed as the construction of a finite 

state machine in which each occuring string of less than SEVEN characters 

constitutes a state and the following character occurences define a transition 

possibility. This representation was used for pragmatic reasons, including 

efficient indexing and other uses of the structure. 

fsm(i,p,1,296). 
fsm(v,a,1,297). 
fsm(th,e,2,299). 
fsm(ab1,e,3,301). 
fsm(g,i,1,308) . 
fsm(ab,1,2,309). 
fsm('$co' ,n,3,310). 
fsm(ra,n,2,310). 

Fig. 6. Finite State Machine representation of context and next character. '$' marks a word 
boundary; 'A' indicates the following character was upper case. Arguments are context, focus, 
length of context, number ofoccurences in context. 

Examples are shown in Fig. 6 of the predicate Ism. Another predicate gsm 

provides a view of all pairs of clusters occuring with a combined total of SEVEN 

characters. Then for each left cluster the distribution of right clusters associated 

with it by gsm are extracted as dgsm and vice-versa (dhsm). A sample of these 

distributional classes is shown in Fig. 7, and it is already apparent there that the 

vowels, or something closely related, are a significant class. 

dgsm(4,189, [d,1,n,r],'$"a'). 
dgsm(6,385, [a,e,er,o,r,u], '$"b'). 
dgsm(l, 36, [r],' $"be') . 
dgsm (5,326, [a, ar, h, 1, 0] , '$"c ') • 
dgsm (1, 36, [r] , '$"ca' ) • 
dgsm(5,198, [a,e,i,o,u], '$"d'). 
dgsm (1, 35, [1] , '$"e ') . 
dgsm(2,61, [r,re], '$"f'). 
dgsm(1,20, [el, '$"fr'). 
dgsm(4,144, [a,e,o,r], '$"g'). 
dgsm(3,206, [a,e,o],'$"h'). 
dgsm (3, 106, [a, e, 0] , '$"j') . 

Fig. 7. Distribution classes subtended by a given left context (extract). Extract is for word 
initial contexts from proper nouns. Arguments are size of class, occurences of class+context, 
class, context. 
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Examples are shown in Fig. 6 of the predicate fsm. Another predicate gsm

provides a view of all pairs of clusters occuring with a combined total of SEVEN

characters. Then for each left cluster the distribution of right clusters associated

with it by gsm are extracted as dgsm and vice-versa (dhsm). A sample of these

distributional classes is shown in Fig. 7, and it is already apparent there that the

vowels, or something closely related, are a significant class.

dgsm(4 ,189 , [d ,1 ,n , r ] ,  ' $ "a ' )  -
dgsm(6 ,385 ,  [ a , e , e r , o , r , u ]  , ‘$"b ' )  .
dgsm(1‚36‚-tr1‚ '$*be').
d98m(5r  326 !  [ a l a r lh l l l o l  I 'sAc' ) -
d98m(1 l36r  [ r ]  I ' $ "ca '  ) .
dgsm(5 ,198 ,  [ a , e , i , o ,u ]  , '$"d') .
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Fig. 7. Distribution classes subtended by a given left context (extract). Extract is for word
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class, context.
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We now repeat the exercise with dgsm to group together the cosets of 

clusters which subtend the same distributional class. cgsm. and vice-versa 

(chsm). Although some small groups of very closely related clusters arise as 

cosets. as illustrated in Fig. 8. the sets can also often be described in tenns of 

common initial or fmal segments (cp. properties c tofabove). But as there are 

many similar distributional classes which are affected by sample error in the 

selection of a limited dataset as well as by memory constraints with the rejection 

of rare collations. 

cgsm(1,458, [a,an,e,i,ic,o,u], [pI]).
 
cgsm(1,2808, [a,ar,ara,as,at,e,en,er,h,ho,i,l,la,o,ol,or,os,ost,r,re, •.• ],['$p']).
 
cgsm(2,1031,[a,ar,c,'cA',e,i,0,on],['$Am','Am']).
 

Fig. 8. eosets of left contexts subtending the same distribution class (extract). Arguments 
are size of coset, number of occurences, distribution class of clusters, coset of subtending 
clusters. 

So far we have perfonned Contrast in Identical Environments (CIE) type 

classification. now we want to perfonn Contrast in Analogous Environment 

(CAE) type classification to bring together similar distribution classes and 

combine their cosets and assess the number of different collations and 

occurences for these fuzzier hypersets of distribution classes. ID fact. we use the 

sets of known distribution classes intersected with themselves to defme a kernel 

which must be within TWO of the size of the intersecting class. For efficiency. 

we use as intersecting classes only those with a size in the SEVEN±TWO range. 

As illustrated in Fig. 9. the vowel class emerges as one of the most important of 

these. 

classg(h, ['Sa' ,a,e,i,mi,o,u], [a,e,i,o,u], ['$Ad', '$oh', '$n', 'Ad', fl]).
 
classg(h, ['Sa' ,a,e,i,mi,o,u], [a,e,i,o,u], [er]).
 
classg(h, ['$co', 'Si' ,a,co,i,o,u], [a,co,i,o,u], [s]).
 
classg (h, [' $co' , '$i' , a, co, i, 0, u], [a, co, i, 0, u] , [n]) •
 

Fig. 9. SEVEN classes (right) and close intersections with left distribution classes(extract). 
Distribution classes (from either left or right context) of size SEVEN±TWO are used to fmd 
other distribution classes which are similar in that the intersection with that SEVEN class 
differs by no more than TWO from the SEVEN class. Arguments are source of selecting 
SEVEN class, SEVEN class, intersection with current (left) distribution class, cose! of 
distribution class. 
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Fig. 8. Cosets of left contexts subtending the same distribution class (extract). Arguments
are size of coset, number of occurences, distribution class of clusters, coset of subtending
clusters.

So far we have performed Contrast in Identical Environments (CIE) type

classification, now we want to perform Contrast in Analogous Environment

(CAE) type classification to bring together similar distribution classes and

combine their cosets and assess the number of different collations and

occurences for these fuzzier hypersets of distribution classes. In fact, we use the

sets of known distribution classes intersected with themselves to define a kernel

which must be within TWO of the size of the intersecting class. For efficiency,

we use as intersecting classes only those with a size in the SEVENiTWO range.

As illustrated in Fig. 9, the vowel class emerges as one of the most important of

these.

61388901, [ ' $a ' , a , e , i ,m1 ,o ,u ] , [a , e ,1 ,o ,u ] ,  [ ' $"d '  , ' $ch ' ,  ' $n ' ,  ” ‘d ' , f1 ]  ) .
°13999‘ (hr [ '33 '1819111m110ru1r [8191110111] ;  [ a t ] ) .
classg(h,  [‘$c0'‚ ' $ i ' l ar  ° °11 r ° lu l l  [ a lco l  1!  ° lu ]  I [3 ]  ) -
c -1 -3339(11I [ '$c° ' r  ' s i ' l a l co l i roru l l  [ a loo l i l o lu l l  [D ] )  .

Fig. 9. SEVEN classes (right) and close intersections with left distribution classes(extract).
Distribution classes (from either left or right context) of size SEVENiTWO are used to find
other distribution classes which are similar in that the intersection with that SEVEN class
differs by no more than TWO from the SEVEN class. Arguments are source of selecting
SEVEN class, SEVEN class, intersection with current (left) distribution class, coset of
distribution class.
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At this point, we combine the infonnation from left and right distributions 

and compute statistics based on the size of the common and total cosets of the 

SEVEN classes, or the number of actual occurences of subtended collations; On 

all four metrics, the vowels emerge as the most well defined class - with a 

significant lead over the runner up in second place, as shown with best seven 

scores for two of the metrics in Fig. 10. 

eoseti(28,84,4,12, [a,e,ea,i,in,o,u], [d,n,s,t], ['$l',b,e,d,h,l,n,p,r,s,st,t]l. 
eoseti (28, 112, 4, 16, [e, f, g,p, s, t, v] , [a,e, i, 0] , [' $a' , '$re' , A,a, al, an,e, en, er, i, ••• ] l • 
eoseti(30,144,5,24, [e,d,g,l,s,t], [a,ar,e,l,o], ['Sa' ,A,a,an,ar,e,en,er,i,in,l, .•• ] l. 
eoseti(30,168,5,28, [a,e,i,o,u,y], [b,e,m,p,s], ['$h', '$m', 'Ss', '$t',A,an,b,e, ••• ]). 
eoseti (48,156,8,26, [a, e, er, 0, r, u] , [b, e, e, f, g, i, n, t] , [ , $Ab' , '$f' , '$p' , '$t ' , ... ] l • 
eoseti(49,196,7,28, [a,e,i,o,r,ra,u], [b,e,d,f,g,r,t], ['$b','$e', '$d','$g', •.. ]l. 
eoseti (85,385,17,77, [a, e, i, 0, u] , [b, e, ch, d, e, f, g, 1, 11, ••• ] , [ , $Ad' , '$b' , , $e' , , ••• ] ) . 

Fig. lOa. Cosets of SEVEN classes of either context sorted by occurence in intersection 
(extract). Arguments are occurences of intersection coset, occurences of union coset, size of 
intersection coset, size of union coset, SEVEN class, intersection coset, union coset. 

eoseti(30,168,5,28, [a,e,i,o,u,y], [b,e,m,p,s], ['$h', '$m', '$s', '$t' ,A,an,b,e, ..• ] l. 
eoseti (49,196,7,28, [a, e, i, 0, r, ra, u] , [b, e, d, f, g, r, t] , [ , $b' , '$e' , '$d' , '$g' , ••• ] l • 
eoseti (3, 96,1, 32, [a,e,o], [y], [' $Ag ', '$Ah', '$Aj', I $Ap ', '$AS ',' $er', 'Ag ', 'Ah', ••• ]). 
eoseti(16,184,4,46, [a,e,o,u], [i,ll,mp,ri], ['$Ab', '$Ad', '$oh', '$1', '$m', '$n', ... ]). 
eoseti(15,245,3,49, [a,e,i,o,r], [ch,t,th], ['$b', '$e', '$d', '$f', '$g', '$p', .•. ]). 
eoseti(16,232,4,58, [a,e,i,o], [k,sp,u,v], ['$Al', '$Am','$An','$Ar','$br', ••• ]). 
eoseti (85, 385, 17,77, [a, e, i, 0, u] , [b, e, ch, d, e, f, g, 1,11, ••• ] , [' $Ad' , '$b' , '$e' , ••• ] ) • 

Fig. lOb. Cosets of SEVEN classes of either context sorted by size of union (extract). 
Arguments are occurences o/intersection coset, occurences o/union coset, size o/intersection 
coset, size 0/ union coset, SEVEN class, intersection coset, union coset. 

Conclusions 

In these experiments using statistical techniques and a single exposure to 

each word of the Unix dictionary, the vowel class emerged first, suggesting it as 

a closed class. The cosets were primarily consonant clusters, suggested 

analogously as an open class. This conftnned a prediction that the vowel­

consonant distinction was of significance in learning, that the vowels would 

emerge as a closed class providing a limited number of contexts, and that 

consonant clusters would emerge as open classes. 

One surprise was that diphthongs were not represented, and indeed vowel­

semivowel collations came nearer to achieving membership. 
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At this point, we combine the information from left and right distributions

and compute statistics based on the size of the common and total cosets of  the

SEVEN classes, or the number of actual occurences of subtended collations; On

all four metrics, the vowels emerge as the most well defined class -— with a

significant lead over the runner up in second place, as shown with best seven

scores for two of the metrics in Fig. 10.

coseti ( 28 ,84 ,4 ,12 ,  [ a ,e ,ea , i , i n , o ,u ]  , [ d , n , s , t ]  , [ ' $1 ' , b , c ,d ,h , l , n , p , r ‚ s , s t , t ]  ) .
coseti ( 28 ,112 ,4 ,16 ,  [ c ,  f , g , p , s , t , v ]  , [ a , e , i ‚ o ]  , [ ' $a ' ,  '$re' , “ , a , a l , an ‚e ‚ an ,e r , i ,  . . . ]  ) .
cose t i ( 30 ,144 ,5 ,24 ,  [ c , d ,g , l , s , t ]  , [a ,ar , e , l , o ]  , [ ' $a ' ," ,a ,an ,ar , e , en , er , i , in ,1 ,  . . . ]  ) .
cose t i ( 30 ,168 ,5 ,28 ,  [a , e , i , o ,u ,y ]  , [b , c ,m,p , s ]  , [ ' $h '  , ' $m' ,  ' $ s ' ,  ' $ t ' ," ,a .n ,b , c ,  . . . ]  ) .
coseti ( 48 ,156 ‚8 ,26 ,  [ a ,e ,e r , o ‚ r , u ]  , [ b , c , e , f , g , i ‚ n ‚ t ] ‚  ['$"b' , '$f'‚ '$p' , ' $ t '  , . . . ]  ) .
cose t1 (49 ,196 ,7 ,28 ,  [ a , e , i , o , r , r a ,u ] ,  [brcrd l f rgrr l t l l  [‘$b' r '$c'‚ ' $d '  7 '$9 '  I - - - ] ) -
coseti ( 85 ,385 ,17 ,77 ,  [ a ,e , i , o , u ]  , [ b , c , ch ,d ,e ,  f ‚ g , 1 , l l ,  . . . ] ,  [ ' $ "d ' ,  ' Sb '  , ' Sc ' ,  ' . . . l )  .

Fig. 10a. Cosets of SEVEN classes of either context sorted by occurence in intersection
(extract). Arguments are occurences of intersection coset, occurences of union coset, size of
intersection coset, size of union coset, SEVEN class, intersection coset, union coset.

cose t i (30 ,168 ,5 ,28 ,  [a , e , i , o ,u ,y ] ,  [b , c ,m,p , s ]  , [ ' $h ' ,  'Sm' ,  ' $ s ' ,  ' $ t ' ," ,an ,b , c ,  . . . ] ) .
cose t i (49 ,196 ,7 ,28 ,  [a , e , i , o , r , ra ,u ] ,  [b , c ,d , f , g , r , t ] ,  [ ' $h ' ,  '$C', '$d'‚ '$g'‚ . . . ] ) -
cose t i ( 3 ,96 ,1 ,32 ,  [ a ,e ,o ]  , [ y ] ,  [ ' $ “g ' ,  ' $"h '  , '$"j', ' $"p '  , ' $"s ' ,  ' $cr ' ,  " ‘g ' ,  " ‘h ' ,  . . . l )  .
coseti(16,184,4,46, [a ,e ,o ,u]  , [i,11,mp,ri] , [ '$‘b' ,  'S‘d',  '$ch', '$1' ,  'Sm', '$n',  . . . ] )  .
9039131 (1551245131491  [a l e l i l o l r l l  [ chr tr th ]  r ['$b'‚ '$c'‚ 'Sd'‚ ' $ f "  ' sg ' l  '$P'‚ - . . 1 ) .
coseti(16,232,4,58‚ [a,e,:L,o], [k,sp,u,v] , [ ' $ " l ‘ ,  '$"m', '$"n', '$"r', ‘$br‘, . . . 1 ) .
cose t i ( 85 ,385 ,17 ,77 ,  [ a ,e , i , o , u ] ,  [b , c , ch ,d , e , f , g ,1 , l l ,  . . . ] ,  ['$"d'‚ '$b' , ' Sc ' ,  . . . ]  ) .

Fig. 10b. Cosets of SEVEN classes of either context sorted by size of union (extract).
Arguments are occurences of intersection coset, occurences of union coset, size of intersection
coset, size of union coset, SEVEN class, intersection coset, union coset.

Conclusions

In these experiments using statistical techniques and a single exposure to

each word of the Unix dictionary, the vowel class emerged first, suggesting it as

a closed class. The cosets were primarily consonant clusters, suggested

analogously as an open class. This confinned a prediction that the vowel-

consonant distinction was of significance in learning, that the vowels would

emerge as a closed class providing a limited number of contexts, and that

consonant clusters would emerge as open classes.

One surprise was that diphthongs were not represented, and indeed vowel-

semivowel collations came nearer to achieving membership.
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We suggest that the magic number seven plus or minus two [Mill56] should 

also encompass the number of the vowels. It was indeed a parameter in the 

analysis, and variation of this parameter did vary the precise class learnt, but the 

relationship has not yet been analyzed. However, its application to the size of 

the selected class seemed least decisive - similar results were achieved with 6±2 

and 7±3 settings, for example. 

The exclusion of diphthongs may also be an indicator that they are 

recognized as complex, at least in the orthography and under the assumptions 

behind this program. Recent psychological studies indicate that familiarity with 

written language may necessary to the (conscious) recognition of segments 

[Read86; Mann86]. But are diphthongs recognized as complex? Are vowels 

recognized as having features? Is this totally acoustic or does it have a motor 

component? It will be very interesting to see what results of similar experiments 

achieve on speech! 

Although this experiment was performed using statistical techniques rather 

than neural networks, it was guided by previous work which achieved similar 

results using either or a mix, and it is expected that similar results could 

straightforwardly be achieved in a neural simulation. 

The success of back-propogation in multi-layer neural nets has perhaps 

overshadowed self-organization in simpler networks, despite the impressive 

early low-level results; the need for semantics has perhaps overshadowed the 

internal consistency of grammar at the lower levels; the theoretical need for 

negative information from the environment has perhaps overshadowed the 

effective supply of criticism from boundary conditions and system restrictions; 

and more generally the tendency to assume that basic linguistic distinctions are 

innate and very closely tied to the perceptual system itself may overshadow the 

fact that some of these distinctions can be learnt very easily with very basic 
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mechanisms. These alternative perspectives are worthy of more emphasis and 

study. 

This paper has presented some computational results and hypotheses about 

language learning. More importantly it poses some traditional questions in a new 

light and suggests new avenues of researcl;1 for the traditional cognitive science 

disciplines. 
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