
C
._®

._.30_m
._®

w
0v

D
O

N
O

ID

03m
cootm

oa
5959239.

‚55525
„_

_
_

o
E

ö
E

.
co_m

_®
n

coo„_

Computer Generated Proofs

Christoph Lingenfelder

SEKI Report SR-90-26

fo8n.n.mmSdnanoInmofsmn

E
O

n
m

E

-
_vm

w

Transformation

and Structuring of

Computer Generated Proofs

vom Fachbereich Informatik der Universitlit Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation von

Christoph Lingenfelder

Datum der wissenschaftlichen Aussprache: 16. November 1990
Berichterstatter: Prof. JOrg Siekmann, Ph.D.

Prof. Dr. Klaus Madlener
Dekan: Prof. Dr. Gerhard Zimmermann

Transformation
and Structuring of

Computer Generated Proofs

vom Fachbereich Informatik der Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation von

Christoph Lingenfelder

Datum der wissenschaftlichen Aussprache: 16. November 1990
Berichterstatter: Prof. Jörg Siekmann, Ph.D.

Prof. Dr. Klaus Madlener
Dekan: Prof. Dr. Gerhard Zimmermann

Abstract

Abstract

One of the main disadvantages of computer generated proofs of mathematical

theorems is often their complexity and incomprehensibility. This is even more of a

problem for the presentation of inferences drawn by automated reasoning components

in other AI systems. Proof transformation procedures have been designed in order to

state these proofs in a formalism that is more familiar to a human mathematician. But

usually the essential idea of a proof is still not easily visible.

We describe a procedure to transform proofs represented as abstract refutation

graphs into natural deduction proofs with a special emphasis on an "intelligent"

selection of inference rules. In particular the frequent use of proofs by contradiction is

avoided. During this process topological properties of the refutation graphs can be

successfully exploited in order to obtain well-structured proofs. This is accomplished

by dividing a large proof into a set of hierarchically arranged subproofs which are

more easily comprehensible. This may be achieved by formulating lemmata that are

then applied more than once in the subsequent proof, but also by simply inserting

subgoals or by breaking up a substantial part of a proof into a case analysis.

Abstract i

Abstract

One of the main disadvantages of computer generated proofs of mathematical
theorems is often their complexity and incomprehensibility. This is even more of a
problem for the presentation of inferences drawn by automated reasoning components
in other AI systems. Proof transformation procedures have been designed in order to
state these proofs in a formalism that is more familiar to a human mathematician. But
usually the essential idea of a proof is still not easily visible.

We describe a procedure to transform proofs represented as abstract refutation
graphs into natural deduction proofs with a special emphasis on an “intelligent”
selection of inference rules. In particular the frequent use of proofs by contradiction is
avoided. During this process topological properties of the refutation graphs can be
successfully exploited in order to obtain well-structured proofs. This i s accomplished
by dividing a large proof into a set of hierarchically arranged subproofs which are
more easily comprehensible. This may be achieved by formulating lemmata that are
then applied more than once in the subsequent proof, but also by simply inserting
subgoals or by breaking up a substantial part of a proof into a case analysis.

Contents

Abstract	 i

Contents	 11

Acknowledgements	 v

1	 Introduction 1

2	 Logical Calculi and Proof Representations:

Resolution, Clause Graphs, Natural Deduction Systems 5

2. 1 General Definitions	 5

2.2 Fonnula ()ccurrences ., , "	 8

2.3 Resolution	 10

2.4 Clause Graphs and Refutation Graphs	 12

2.5 Properties of Deduction and Refutation Graphs	 18

2.6 Natural Deduction Proofs	 24

2.7 Derived Natural Deduction Rules	 28

3	 The Transformation of Refutation Graphs

into Natura1 Deduction Proofs 31

3.1 Definitions	 31

3.2 Basic Set of Transformation Rules	 33

3.3 Additional Transformation Rules	 40

3.4 A Semiautomatic Proof System	 44

3.5 The Automatic Transfonnation Procedure	 46

3.6 Updating the Refutation Graph	 53

3.7 Example	 " , '" 59

Contents

Abstract i

Contents ... ii

Acknowledgements . v

Introduction . l

Logical Calculi and Proof Representations:
Resolution, Clause Graphs, Natural Deduction Systems 5

2. 1 General Definitions -. 5

2 .2 Formula Occmrences . 8

2 .3 Resolu t ion . 10

2.4 Clause Graphs and Refutation Graphs 12
2.5 Properties of Deduction and Refutation Graphs . 18

2 .6 Natural Deduction Proofs . 24

2.7 Derived Natural Deduction Rules . 28

The Transformation of Refutation Graphs
into Natural Deduction Proofs . 31

3.1 Definitions . 31

3 .2 Basic Set of Transformation Rules 33

3 .3 Additional Transformation Rules 40

3.4 A Semiautomatic Proof System . 44

3.5 The Automatic Transformation Procedure . 46

3.6 Updating the Refutation Graph . 53

3.7 Example . 59

Contents Hi

4 Discovering the Internal Structure of a Proof 63

4.1 Ordering Natural Deduction Proofs 63

4.2 Trivial Subproofs , 67

4.3 Shared Subgraphs as Lemmata 69

4.4 Subgoals DefIned by Separating Links 72

4.5 Structuring Proofs Using Proof by Case Analysis 76

4.6 Example & Funher Processing 77

5 Conclusions and Open Problems 85

APPENDIX

A Literature 89

B Table of Transformation Rules 95

B.1 External Rules 95

B.2 Mixed Rules 97

B.3 Internal Rules , , 98

C Example of the Unstructured Linearization Process 101

D Table of Definitions, Examples, and Lemmata 107

E Table of Symbols 111

E.1 Signature and Elementary Sets of Symbols. " 111

E.2 Objects Denoted by Single Letters 111

E.3 Combinations of Letters and Special Symbols 112

F Index 113

Contents n i

4 Discovering the Internal Structure of a Proof 63

4.1 Ordering Natural Deduction Proofs . 63

4 .2 Trivial Subproofs . 67

4 .3 Shared Subgraphs as Lemmata . 69

4 .4 Subgoals‘ Defined by Separating Links . 72

4.5 Structuring Proofs Using Proof by Case Analysis 76

4.6 Example & Further Processing .. 77

5 Conclusions and Open Problems .. 85

APPENDIX

A Literature ... 89

B Table of Transformation Rules .. 95

B. 1 External Rules . 95

B.2 Mixed Ru le s . 97

B.3 Internal Rules . 98

C Example of the Unstructured Linearization Process 101

D Table of Definitions, Examples, and Lemmata . 107

E Table of Symbols ... l l l

E.1 Signature and Elementary Sets of Symbols . 111

B.2 Objects Denoted by Single Letters 111

E.3 Combinations of Letters and Special Symbols 112

F Index ..._ 1 13

v Acknowledgements

Acknowledgements

First of all I want to express my gratitude to JOrg Siekmann who accepted me as

a Ph.D. student in his ·group in Karlsruhe after my graduation. As a physicist and

mathematician I had had no previous knowledge of Artificial Intelligence or even

computer science. Jorg did a great job to introduce me to the appealing ideas and

interesting research problems of Artificial Intelligence and especially of Automated

Deduction.

Of course I was not the only person who had been attracted by this excellent

research environment. So in Karlsruhe and later in Kaiserslautern a large group of

researchers had gathered, every one of which had some influence, more or less
important, on this work. Of all the people in the automated deduction group I can
only name a few explicitly.

I am very much indebted to Norbert Eisinger for sharing with me his profound

knowledge of clause graphs, which helped to develop my intuitive feeling for this

fonn of proof representation. He was always there to construct a counter-example to

any of my favorite conjectures. Talking to Xiaorong Huang helped a lot; he had never

worked in the classical parts of theorem proving, and thus - as a mathematically

trained scientist - has maintained a natural feeling for the difficulty and naturalness

of proofs. We had many discussions on the processing of natural deduction graphs,

which made me realize what was needed to make proofs understandable. After

several years of handling resolution proofs and refutation graphs, there is an apparent

danger of ending up regarding these proof representations as the most obvious

available.

Thanks to Christoph Weidenbach for the energy with which he helped to imple

ment all the new ideas in the proof transfonnation program. He was always fast at

pointing out why something couldn't work as easily as planned, which had the effect

of an intensified search for better solutions. He is the only one, who really knows all

the internals of the program and without his help it would not have been possible to

do many of the examples. As is customary for the acknowledgements, I take upon

my shoulders all the blame for any errors left in the system, both programming bugs

and systematic errors.

Modern desk top publishing has taken away the chance to reproach a secretary or

typist with all the errors remaining in the text of this thesis. The only thing I can say

is that Dan Nesmith, Jorg Siekmann, and Rolf Socher must have overlooked them

Acknowledgments v

Acknowledgements

First of all I want to express my gratitude to Jörg Siekmann who accepted me as
a Ph.D. student in his group in Karlsruhe after my graduation. As a physicist and
mathematician I had had no previous knowledge of Artificial Intelligence or even
computer science. Jörg did a great job to introduce me to the appealing ideas and
interesting research problems of Artificial Intelligence and especially of Automated
Deduction.

Of course I was not the only person who had been attracted by this excellent
research environment. So in Karlsruhe and later in Kaiserslautern a large group of
researchers had gathered, every one of which had some influence, more or less
important, on this work. Of all the people in the automated deduction group I can
only name a few explicitly.

I am very much indebted to Norbert Eisinger for sharing with me his profound
knowledge of clause graphs, which helped to develop my intuitive feeling for this
form of proof representation. He was always there to construct a counter-example to
any of my favorite conjectures. Talking to Xiaorong Huang helped a lot; he had never
worked in the classical parts of theorem proving, and thus — as a mathematically
trained scientist — has maintained a natural feeling for the difficulty and naturalness
of proofs. We had many discussions on the processing of natural deduction graphs,
which made me realize what was needed to make proofs understandable. After
several years of handling resolution proofs and refutation graphs, there is an apparent
danger of ending up regarding these proof representations as the most obvious
available.

Thanks to Christoph Weidenbach for the energy with which he helped to imple-
ment all the new ideas in the proof transformation program. He was always fast at
pointing out why something couldn’t work as easily as planned, which had the effect
of an intensified search for better solutions. He is the only one, who really knows all
the internals of the program and without his help, it would not have been possible to
do many of the examples. As i s customary for the acknowledgements, I take upon
my shoulders all the blame for any errors left in the system, both programming bugs
and systematic errors.

Modern desk top publishing has taken away the chance to reproach a secretary or
typist with all the errors remaining in the text of this thesis. The only thing I can say
is that Dan Nesmith, Jörg Siekmann, and Rolf Socher must have overlooked them

vi Transfonnation and Structuring of Computer Generated Proofs

when reading earlier draft versions of this thesis. I want to thank them for their exact
reading and the many suggestions they made.

Last but not least I want to give credit to the DFG (Deutsche Forschungs

gemeinschaft) for financing part of the research environment in Kaiserslautern. I have

worked in the SFB 314 (Sonderforschungsbereich "Ktinstliche Intelligenz - wissens

basierte Systeme) for almost four years and profited from the good climate of

research and many internal meetings.

Vi Transformation and Structuring of Computer Generated Proofs

when reading earlier draft versions of this thesis. I want to thank them for their exact
reading and the many suggestions they made.

Last but not least I want to give credit to the DFG (Deutsche Forschungs-
gemeinschaft) for financing part of the research environment in Kaiserslautern. I have
worked in the SFB 3 14 (Sonderforschungsbereich , ünstliche Intelligenz — Wissens-

basierte Systeme) for almost four years and profited from the good climate of
research and many internal meetings.

1 Introduction

1 Introduction

Artificial Intelligence and especially Knowledge-Based Systems have had an

increasing success in recent years. Such systems are now capable of doing more and
more tasks for which intelligence of some sort is deemed necessary. To obtain better
performance and to cope with their increasing complexity most systems felt the need

to incorporate some form of automated inferencing system, which today form a

crucial part of almost all Knowledge-Based Systems.

At the same time Automated Deduction Systems have gone through a

surprisingly fast enhancement by employing specialized datastructures, better search

strategies, and reasoning algorithms highly adapted to the special field they were

designed for. In this context one has to name all the different unification algorithms
and strategies for searching a proof which no longer "construct" a proof in single and

rather simple steps, but reduce the proof to a small number of highly concentrated

macro-steps. Modern automated theorem proving has even put away with inter

mediate proof steps altogether and tries to detect sufficient conditions for a proof by

showing certain properties of specialized graph or matrix structures.

With the increasing strength of Automated Deduction Systems the length and

complexity of computer generated proofs has also reached a degree where they

become almost impossible to understand. To add to their incomprehensibility, almost

every research group uses its own format and style of stating a proof. It may be given

as a pure Resolution Proof, but when the proof is not actually found in distinct single

steps, the result may be as complex as an abstract graph or a matrix with some

additional conditions imposed on it such as acyclicity or the "spanning" property.

This has led to a state where only specialists, and sometimes only specialists in the

very method of automated reasoning, are capable to understand and check a proof
found by an automated deduction system.

If this has been an obstacle for mathematicians to accept automatic help, when

proving technical lemmata, or trying to find proofs interactively, it has even more

hindered the explanation of results in other knowledge based systems. Expert

systems for instance depend heavily on the quality of their "explanation component"

if they want to be accepted for practical use. For the communication of "cooperating

agents" or robots it might be sufficient to exchange information in a low-level

language, but whenever contact to a human being must be made, the need of easily
understandable and clearly structured arguments becomes apparent.

Introduction 1

1 Introduction

Artificial Intelligence and especially Knowledge-Based Systems have had an
increasing success in recent years. Such systems are now capable of doing more and
more tasks for which intelligence of some sort is deemed necessary. To obtain better
performance and to cope with their increasing complexity most systems felt the need
to incorporate some form of automated inferencing system, which today form a
crucial part of almost all Knowledge-Based Systems.

At the same time Automated Deduction Systems have gone through a
surprisingly fast enhancement by employing specialized datastructures, better search
strategies, and reasoning algorithms highly adapted to the special field they were
designed for. In this context one has to name all the different unification algorithms
and strategies for searching a proof which no longer “construct” a proof in single and
rather simple steps, but reduce the proof to a small number of highly concentrated
macro-steps. Modern automated theorem proving has even put away with inter—
mediate proof steps altogether and tries to detect sufficient conditions for a proof by
showing certain properties of specialized graph or matrix structures.

With the increasing strength of Automated Deduction Systems the length and
complexity of computer generated proofs has also reached a degree where they
become almost impossible to understand. To add to their incomprehensibility, almost
every research group uses its own format and style of stating a proof. It may be given
as a pure Resolution Proof, but when the proof is not actually found in distinct single
steps, the result may be as complex as an abstract graph or a matrix with some
additional conditions imposed on it such as acyclicity or the “spanning” property.
This has led to a state where only specialists, and sometimes only specialists in the
very method of automated reasoning, are capable to understand and check a proof
found by an automated deduction system.

If this has been an obstacle for mathematicians to accept automatic help, when
proving technical lemmata, or trying to find proofs interactively, it has even more
hindered the explanation of results in other knowledge based systems. Expert
systems for instance depend heavily on the quality of their “explanation component”
if they want to be accepted for practical use. For the communication of “cooperating
agents” or robots it might be sufficient to exchange information in a low-level
language, but whenever contact to a human being must be made, the need of easily
understandable and clearly structured arguments becomes apparent.

2 Transfonnation and Stmcturing of Computer Generated Proofs

Therefore it is necessary to be able to represent proofs in a more abstract and

better structured way. Ideally one would like the proof to be given in natural

language, with a large variety of inference rules. As a preliminary step in this

direction it seems to be useful to transform the computer generated proof into a proof

in a natural deduction system which, although still a system of formal logic, has been

devised to approximate as much as possible an intuitive form of reasoning. With this

purpose in mind Stanislaw Jaskowski [Ja34] and Gerhard Gentzen [Ge35] invented

calculi of natural deduction whose inference rules, as Dag Prawitz formulates in

[Pr65],

correspond closely to procedures common in intuitive
reasoning, and when informal proofs - such as are
encountered in mathematics for example - are formalized
within these systems, the main structure of the informal
proof can often be preserved.

Proof Transformation is an old problem of logic, but it has been neglected in a

quest for automatically finding proofs. The problem of how to search for a proof

became so prevalent that the original incentive for formal arguments, that is to

convince someone else of the correctness of a proposition, became almost forgotten.

The main aspects of proof transformation used to be theoretical in nature, but now

stylistic aspects should begin to play a more important role. Peter Andrews was the

first to take up these issues again, when he proposed a method to transform matrix

proofs into natural deduction proofs [An80].

The transformation of proofs into a natural deduction formulation has solved

some of the problems, see [An80], [Mi83], or [Li86], but by and large the increasing

length and complexity of the transformed proofs adds to their incomprehensibility

rather than to reduce it. It is therefore paramount to be able to state the proofs in a

hierarchically structured way, as mathematicians do, formulating subgoals and

lemmata. It should also be avoided to overload the proofs with a large number of

trivial steps that hide the interesting ideas of the proof.

We aim to simplify and transform proofs that are found automatically into that

subset of natural language a mathematician might use. This shall be done in several

steps.

The figure on the next page shows the different tasks that need to be performed

when an automated deduction system tries to find a proof. Starting from an informal

description of the problem or the theorem to prove, a formal (first order) formulation

of the problem is generated. It is here where classical theorem provers begin their job,

2 Transformation and Structuring of Computer Generated Proofs

Therefore it is necessary to be able to represent proofs in a more abstract and
better structured way. Ideally one would like the proof to be given in natural
language, with a large variety of inference rules. As a preliminary step in this
direction it seems to be useful to transform the computer generated proof into a proof
in a natural deduction system which, although still a system of formal logic, has been
devised to approximate as much as possible an intuitive form of reasoning. With this
purpose in mind Stanislaw Jaskowski [Ja34] and Gerhard Gentzen [Ge35] invented
calculi of natural deduction whose inference rules, as Dag Prawitz formulates in
[Pr65],

correspond closely to procedures common in intuitive
reasoning, and when informal proofs —- such as are
encountered in mathematics for example _— are formalized
within these systems, the main structure of the informal
proof can often be preserved.

Proof Transformation is an old problem of logic, but it has been neglected in a
quest for automatically finding proofs. The problem of how to search for a proof
became so prevalent that the original incentive for formal arguments, that is to
convince someone else of the correctness of a proposition, became almost forgotten.
The main aspects of proof transformation used to be theoretical in nature, but now
stylistic aspects should begin to play a more important role. Peter Andrews was the
first to take up these issues again, when he proposed a method to transform matrix
proofs into natural deduction proofs [An80].

The transformation of proofs into a natural deduction formulation has solved
some of the problems, see [An80], [Mi83], or [Li86], but by and large the increasing
length and complexity of the transformed proofs adds to their incomprehensibility
rather than to reduce it. It is therefore paramount to be able to state the proofs in a
hierarchically structured way, as mathematicians do, formulating subgoals and
lemmata. It should also be avoided to overload the proofs with a large number of
trivial steps that hide the interesting ideas of the proof.

We aim to simplify and transform proofs that are found automatically into that
subset of natural language a mathematician might use. This shall be done in several
steps.

The figure on the next page shows the different tasks that need to be performed
when an automated deduction system tries to find a proof. Starting from an informal
description of the problem or the theorem to prove, a formal (first order) formulation
of the problem is generated. It is here where classical theorem provers begin their job,

3 Introduction

most of them transforming the fonnulae into a nonna! fonn before proving them. The

output is a proof in a fonnat that is best suited for the computer, a resolution proof for

instance or a refutation graph, but not necessarily for a human.

Natural Language,
Imonnal Problem Description

Automatic

Theorem

Prover

Now proof transformation comes into the picture. The proof can then be

rewritten in a natural deduction calculus. But if one is not careful to lay open the

internal structure of the proof during this process, the resulting natural deduction

proof is often not easier to understand than the original. Therefore, at the same time,

the proof has to be reorganized and presented in a structured fonn using inference

rules of natural deduction. From this intermediate representation where the infor

mation has been made explicit of how different parts of the proof are logically

connected, one can then start to generate a proof in natural language.

Introduction 3

most of them transforming the formulae into a normal form before proving them. The

output is a proof in a format that i s best suited for the computer, a resolution proof for

instance or a refutation graph, but not necessarily for a human.

Natural Language,
Informal Problem Description

1st Order Logic

Automatic
Theorem

Prover

Resolutlon Proof
Refutation Graph

Structured Natural
Deduction Proof

Structured Natural
Deduction Graph

Natural Language

Now proof transformation comes into the picture. The proof can then be
rewritten in a natural deduction calculus. But if one is not careful to lay open the
internal structure of the proof during this process, the resulting natural deduction
proof i s often not easier to understand than the original. Therefore, at the same time,
the proof has to be reorganized and presented in a structured form using inference
rules of natural deduction. From this intermediate representation where the infor-
mation has been made explicit of how different parts of the proof are logically
connected, one can then start to generate a proof in natural language.

4 Transfonnation and Structuring of Computer Generated Proofs

In this thesis we want to examine the transformation step from refutation graphs
into structured natural deduction proofs and further on into natural deduction graphs;

these are the steps marked with bold arrows in the figure above. The thesis is

organized in three main chapters.

In chapter 2 the formal basis for this work is defined, especially the different

calculi and proof representations, as resolution proofs, refutation graphs, and as

natural deduction proofs. Then some important properties of clause graphs, and more
specifically of deduction and refutation graphs are developed. Finally the system of

natural deduction, that has been chosen by Gerhard Gentzen for its simplicity and

systematic use of the connectives, is extended by some further rules with the objec

tive of allowing shorter proofs by avoiding long series of trivial proof steps.

Chapter 3 contains the basic system of proof transformation with a special

emphasis on an "intelligent" selection of inference rules. In particular, we try to avoid

proofs by contradiction, and the need to break up the formulae into single literals in

the resulting natural deduction derivations.

The task of finding the underlying proof structure is presented in chapter 4. This

can be accomplished by the elegant expedient of exploiting topological properties of

the refutation graphs in order to come up with a well-organized proof. Structure can

be imposed upon the proofs by introducing lemmata, both to avoid duplication of
parts of the proof and to arrange a larger proof in a sequence of subgoals easier to
understand. Another means of structuring proofs is its division into several disjoint

parts by employing a case analysis. This constitutes very often the only possibility to

prove an existentially quantified formula without having to fall back on a proof by
contradiction.

4 Transformation and Structuring of Computer Generated Proofs

In this thesis we want to examine the transformation step from refutation graphs
into structured natural deduction proofs and further on into natural deduction graphs;
these are the steps marked with bold arrows in the figure above. The thesis i s

organized in three main chapters.

In chapter 2 the formal basis for this work is defined, especially the different
calculi and proof representations, as resolution proofs, refutation graphs, and as
natural deduction proofs. Then some important properties of clause graphs, and more
specifically of deduction and refutation graphs are developed. Finally the system of
natural deduction, that has been chosen by Gerhard Gentzen for its simplicity and
systematic use of the connectives, is extended by some further rules with the objec-
tive of allowing shorter proofs by avoiding long series of trivial proof steps.

Chapter 3 contains the basic system of proof transformation with a special
emphasis on an “intelligent” selection of inference rules. In particular, we try to avoid
proofs by contradiction, and the need to break up the formulae into single literals in
the resulting natural deduction derivations.

The task of finding the underlying proof structure i s presented in chapter 4. This
can be accomplished by the elegant expedient of exploiting topological properties of
the refutation graphs in order to come up with a well-organized proof. Structure can
be imposed upon the proofs by introducing lemmata, both to avoid duplication of
parts of the proof and to arrange a larger proof in a sequence of subgoals easier to
understand. Another means of structuring proofs is its division into several disjoint
parts by employing a case analysis. This constitutes very often the only possibility to
prove an existentially quantified formula without having to fall back on a proof by
contradiction.

5 Logical Calculi and Proof Representations

2 Logical Calculi and Proof
Representations:

Resolution, Clause Graphs,
Natural Deduction Systems

In this chapter we will define the logic and introduce all the basic definitions for

the logical calculi used in this thesis. Everything is standard first order predicate

logic, and we need resolution and a natural deduction system based on Gerhard

Gentzen's calculus NK [Ge35]. Additionally, as our actual starting point of the proof

transformation will not be a resolution proof, but rather the result of a graph-based

theorem prover, we must introduce the representation of proofs as graphs, i.e. as

so-called refutation graphs.

2.1 General Definitions

This section contains the basic definitions of the underlying logic. There are no

important differences from the usual way of defining these concepts; similar
definitions can for instance be found in [Ga86] or in [Lo78].

2.1-1 Definition: (signature. terms)

We define a signature IF as the union of the sets of constant symbols Fa, and the

sets lFn of n-ary function symbols (n = 1, 2, ...); all the lFn are finite. Let V be a

countable set of variable symbols. Then the set l' of terms is the smallest set with

(i) V, lFo c l'

(ii) if f E lPn and t1> t2, ... , tn E1', then ft1 t2... tn E1'.

V(t) is the set of variables occurring in a term 1. A term containing no variables is

called a ground term. l'gr is the set of all ground terms. V(o) is an abbreviation for the

set of variables occurring in an arbitrary object 0, and the same convention is

similarly used for lPn, lP, T, and Tgr•

2.1-2 Definition: (substitutions)

A substitution is a mapping a: V---:;.l' with finite domain V:={VEV I a(v)#v};

a(V) is called the codomain of a. A substitution cr with domain {XI,X2'''''Xn} and

codomain {tbt2, ... ,tn} is represented as {X1Ht1, ... ,XnHtn}. A substitution is

extended to a mapping 1'---:;.1' by the usual homomorphism on terms. The application

of a substitution to any other object containing terms is defined analogously.

Logical Calculi and Proof Representations 5

2 Logical Calculi and Proof
Representations:

Resolution, Clause Graphs,
Natural Deduction Systems

In this chapter we will define the logic and introduce all the basic definitions for
the logical calculi used in this thesis. Everything is standard first order predicate
logic, and we need resolution and a natural deduction system based on Gerhard
Gentzen’s calculus NK [Ge35]. Additionally, as our actual starting point of the proof
transformation will not be a resolution proof, but rather the result of a graph-based
theorem prover, we must introduce the representation of proofs as graphs, i e . as
so—called refutation graphs.

2 .1 General Definitions

This section contains the basic definitions of the underlying logic. There are no
important differences from the usual way of definin g these concepts; similar
definitions can for instance be found in [Ga86] or in [L078].

2 .1 -1 Definition: (signature. terms)

We define a signature IF as the union of the sets of constant symbols F0, and the
sets IFn of n-ary function symbols (n = 1, 2, . . .); all the]Fn are finite. Let V be a
countable set of variable symbols. Then the set T of terms is the smallest set with

(i) V, lFo g T

(ii) if f e F“ and t1, tz, tIl eT , then ftltz...tn eT .

V(t) is the set of variables occurring in a term t. A term containing no variables i s
called a ground term. Tgr is the set of all ground terms. V(o) i s an abbreviation for the
set of variables occurring in an arbitrary object o, and the same convention i s
similarly used for IF“,]F, T , and T3,.

2 .1 -2 Definition: (substitutions)

A substitution i s a mapping 0': V—> T with finite domain V:={ve V I o(v)¢v};
6(V) i s called the codomain of G. A substitution 0' with domain {x1,x2,.. .,xn} and
codomain { t1,t2,... ,tn} i s represented as { l t1 , . . . , a tn} . A substitution i s
extended to a mapping T—>T by the usual homomorphism on terms. The application
of a substitution to any other object containing terms is defined analogously.

6 Transfonnation and Structuring of Computer Generated Proofs

A substitution (f is idempotent if (fO 0"=0. This is equivalent to the requirement

that none of the variables of its domain occurs in any of the terms of its codomain, cf.

[Re87]. In this thesis all substitutions will be idempotent. If a substitution maps into

Tgn it is called a ground substitution, if it is a bijection and maps into V it is called a

renaming.

Let s,t E ']['. A matcher from s to t is a substitution ~ with ~s = 1. A unifier of s

and t is a substitution s with os = O't. If a unifier for sand t exists, then the two terms

are said to be unifiable.

2.1-3 Definition: (formulae)

We introduce the set lP'= UO:5nlP'n consisting of finite sets ofn-ary predicate

symbols (n = 0, 1, ...). There are two special zero-place predicate symbols, TRUE

(written T) and FALSE (written .l.). The objects of the form Ptlt2...tn with PE lP'n

and tl,t2, ... ,tnET constitute the set A of atoms.

To construct the formulae of First Order Predicate Logic, we use the following

additional signs:

(a) Unary connective negation sign

(b) Binary connectives A conjunction sign

disjunction sign

implication sign

(c) Quantifiers V universal quantifier

3 existential quantifier

(d) Structuring Signs (opening parenthesis

) closing parenthesis

The set ~ of formulae of First Order Predicate Logic is now defined as the

smallest set with:

(i) Ac~

(ii) If A, B E~, then (AAB), (AvB), and (A~B) are all in $>.

(iii) If A E ~ and x E V~ then -,A, ('v'x A), and (3x A) are all in @J.

(A~B) is used as an abbreviation for (A=>B)A(B=>A). Furthermore we write

(VXl,X2, ... ,xnA) as an abbreviation for ('v'Xl(\7'x2... ('v'xnA» ...) and similarly for the

existential quantifier. If M={M1,M2, ... ,Mn} is a finite set of formulae, we write

(/\911) or (/\l:5i:5nMi) instead of (MIA(M2A ... A(Mn» ...) and likewise (V9I1) or

(V1:5i:5nMJ instead of (MIV(M2V... v(Mn» ...).

6 Transformation and Structuring of Computer Generated Proofs

A substitution 0' is idempotent if oo O'=O'. This is equivalent to the requirement
that none of the variables of its domain occurs in any of the terms of its codomain, cf.
[He87]. In this thesis all substitutions will be idempotent. If a substitution maps into
Tgr, it is called a ground substitution, if it is a bijection and maps into V it is called a
renaming.

Let s,t ET . A marcher from s to t is a substitution [1 with u s : t. A unifier of s
and t i s a substitution s with cs = O't. If a unifier for s and t exists, then the two terms

are said to be unifiable.

2 . 1-3 Definition: (formulae)

We introduce the set IP = U05“ Pn consisting of finite sets of n-ary predicate
symbols (n = O, 1 , . . .) . There are two special zero-place predicate symbols, TRUE

(written T) and FALSE (written .L). The objects of the form Putz. . .tn with P e IP“
and t1,t2,. . . ,tn e T constitute the set A of atoms.

To construct the formulae of First Order Predicate Logic, we use the following
additional signs:

(a) Unary connective —1 negation sign
(b) Binary connectives A conjunction sign

v disjunction sign
=> implication sign

(c) Quantifiers V universal quantifier
3 existential quantifier

(d) Structuring Signs (opening parenthesis
) closing parenthesis

The set «ID of formulae of First Order Predicate Logic i s now defined as the
smallest set with:

(i) A g «11»
(ii) If A , B e db, then (AAB), (AvB), and (A=>B) are all in @.
(iii) If A e ® and x EV, then —1A‚ (Vx A), and (3x A) are all in @.

(A:)B) is used as an abbreviation for (A=B)A(B=A). Furthermore we write
(Vx1,x2,. . . ,a) as an abbreviation for (Vx1(Vx2. . . (Va)) . . .) and similarly for the
existential quantifier. If M={M1,M2,...,Mn} i s a finite set of formulae, we write
(AM) or (AlsgnMi) instead of (M1A(M2A...A(Mn))...) and likewise (VM) or
(VlsiSnMi) instead of (M1v(M2v... v(M„))...).

7 Logical Calculi and Proof Representations

Parentheses are only used to indicate the range of the connectives, as in

«-,A) /\ (BvC)). The outermost parentheses will be omitted most of the time, and we
adopt the usual convention to define a binding order of the connectives. We assume

that -, binds more strongly than /\ and v, these in turn bind more strongly than =>

and <=>, and the quantifiers "if and 3 are the weakest. Parentheses may be omitted
according to this binding hierarchy, so that the above formula could be written as
-,A/\(BvC).

2.1-4 Definition: (rank of formulae)

We can now inductively define the rank r of a formula Fe 0:

(i) if Ae A, then reA) = r(-,A) = O.

(ii)	 if F,Ge 0, then r(F/\G) = r(FvG) = 1 + max(r(F), r(G»,

r("ifxF) = r(3xF) = 1 + r(F),

r(-,F) = 1 + r(F), if F~ A, and

r(F=>G) = 3 + max(r(F), r(G».

The implication is treated differently from the other connectives in order to make

subsequent proofs easier. This definition ensures that the rank of an implication can
be decreased by rewriting it as a disjunction, as r(-,FvG) < r(F=>G).

2.1-5 Definition: (interpretations)

A variable assignment is a mapping v: V --) Tgr; v is extended to a mapping

A --) Age similar to substitutions, cf. definition 2.1-2. An interpretation 3 is a pair

(3gr, v), where 3 grcAgr is a subset of the set of ground atoms and v is a variable

assignment. 3 satisfies an atom Ae A if v(A) e 3 gr andfalsifies A otherwise. An

interpretation 3 satisfies a compound formula H if

H = (-,F) and .3 does not satisfy F,

H=(F/\G) and.3 satisfies both F and G,

H=(FvG) and.3 satisfies at least one of F and G,

H=(F=>G) and .3 falsifies F or satisfies G,

H = ("ifxFx) and .3 satisfies Ft for all t e Tgr, or

H=(3xFx) and .3 satisfies Ft for at least one t e ']['gr;

otherwise .3 falsifies the formula. Any object is satisfiable if there exists an inter

pretation satisfying it and is unsatisfiable otherwise. An object satisfied by all inter
pretations is said to be valid and called a tautology.

Logical Calculi and Proof Representations 7

Parentheses are only used to indicate the range of the connectives, a s in
((—.A) A (BvC)). The outermost parentheses will be omitted most of the time, and we
adopt the usual convention to define a binding order of the connectives. We assume
that —. binds more strongly than A and v, these in turn bind more strongly than =>
and @, and the quantifiers V and El are the weakest. Parentheses may be omitted
according to this binding hierarchy, so that the above formula could be written as
-1AA(BVC).

2 . 1-4 Definition: (rank of formulae)

We can now inductively define the rank r of a formula Fe «11»:

(i) if A6 A, then r(A) = r(fiA) = 0 .

(ii) if F,Ge «ID, then r(FAG) = r(FvG) = 1 + max(r(F), r(G))‚
r(VxF) = r(3xF) = 1 + r(F),
r(—.F) = 1 + r(F), if Fe A, and
r(F=>G) = 3 + max(r(F), r(G)).

The implication is treated differently from the other connectives in order to make
subsequent proofs easier. This definition ensures that the rank of an implication can
be decreased by rewriting it as a disjunction, as r(—-.FvG) < r(F=>G).

2 .1 -5 Definition: (interpretations)

A variable assignment i s a mapping v : V——> Tgr; v i s extended to a mapping
A —>Agr similar to substitutions, cf. definition 2.1-2. An interpretation 8 is a pair
(Sgt, v), where S grgAgr is a subset of the set of ground atoms and v i s a variable
assignment. ES satisfies an atom AeA if v(A) & sgr and falsifles A otherwise. An
interpretation 3 satisfies a compound formula H if

H =(—1F) and S does not satisfy F,

H = (FAG) and S satisfies both F and G,
H = (FvG) and 3 satisfies at least one of F and G,

H = (F=>G) and 3 falsifies F or satisfies G,
H = (Vx) and 3 satisfies Ft for all t e Tgr, or

H = (Bx) and 8 satisfies Ft for at least one t e ']I‘gr;

otherwise 3 falsifies the formula. Any object is satisfiable if there exists an inter-
pretation satisfying it and is unsatisfiable otherwise. An object satisfied by all inter-
pretations is said to be valid and called a tautology.

8	 Transfonnation and Structuring of Computer Generated Proofs

A set of objects is satisfied by an interpretation S iff S satisfies all of its

members. Often 3 is used instead of 3 gr, if the variable assignment is of no

importance.

2.2 Formula Occurrences

The task of an automated deduction system is normally described as proving that

a given formula <pE ~ is a tautology. Most traditional automatic theorem proving

systems take the formula cp, negate it, transform it into conjunctive normal form, and

then prove its unsatisfiability. The proof is then stated as a resolution proof or in the
form of a graph, [Sh79], or matrix, [An81] and [Bi81], but often starts directly with

a normalized set of formulae for instance the clausal normal form. As a human proof

usually starts from the formula as it was originally given, it is necessary to be able to

relate the parts of the refutation graph to parts of the original formula.

In order to establish a well-defined connection between the original formula to be

proved and the literal and clause nodes in the proof (when it is represented as a

refutation graph), we need a relation between these literal nodes and the atoms

occurring in the original formula. The following definitions are made in order to

formalize this correspondence.

2.2-1 Definition: (subfonnulae. fonnula trees)

For any formula A, we define the set SeA) of subformuiae of A as follows:

(a)	 if A E A, then S(A)={A}.

(13)	 If A is of the form BAC, BvC, or B==>C, then

S(A)={A }uS(B)uS(C).

B and C are called immediate subformuiae of A.

(r)	 If A is of the form -,B, \Ix B, or 3x B, then S(A)={A}uS(B).

In this case B is the only immediate subformula of A.

A formula A can be written as aformula tree teA), where the leaf nodes are

labeled with an atom and the other nodes are labeled with a connective or quantifier,

in the following way.

(i)	 If A E A, then teA) is the one node tree labeled with A.

(ii)	 If A is of the form B*C, *E {A, v, ~ }, then the root of teA) is

labeled with *, and its two successors are the roots of t(B) and

t(C), respectively.

8 Transformation and Structuring of Computer Generated Proofs

A set of objects is satisfied by an interpretation 8 iff S satisfies all of its
members. Often S i s used instead of Sgt , if the variable assignment i s of no
importance.

2 .2 Formula Occurrences

The task of an automated deduction system is normally described as proving that
a given formula (pe «ID is a tautology. Most traditional automatic theorem proving
systems take the formula (p, negate it, transform it into conjunctive normal form, and
then prove its unsatisfiability. The proof i s then stated as a resolution proof or in the
form of a graph, [Sh79] , or matrix, [An81] and [Bi81], but often starts directly with
a normalized set of formulae for instance the clausal normal form. As a human proof
usually starts from the formula as it was originally given, it is necessary to be able to
relate the parts of the refutation graph to parts of the original formula.

In order to establish a well-defined connection between the original formula to be
proved and the literal and clause nodes in the proof (when it is represented as a
refutation graph), we need a relation between these literal nodes and the atoms

occurring in the original formula. The following definitions are made in order to
formalize this correspondence.

2 .2 - l Definition: (subformulae, formula trees)

For any formula A, we define the set S(A) of subformulae of A as follows:

((x) i fA e A, then S(A)={A}.
(ß) If A is of the form BAC, BvC, or B=>C, then

S(A)={A}US(B)US(C).
B and C are called immediate subformulae of A.

(y) I fA is of the form —1B‚ Vx B, er 3x B, then S(A)={A}US(B).
In this case B is the only immediate subformula of A.

A formula A can be written as a formula tree 1 (A) , where the leaf nodes are

labeled with an atom and the other nodes are labeled with a connective or quantifier,
in the following way.

(i) If A e A, then “C(A) is the one node tree labeled with A.

(ii) If A i s of the form B*C, *e [A , V, :>} , then the root of t (A) i s
labeled with * , and its two successors are the roots of 1(B) and
1(C), respectively.

9 Logical Calculi and Proof Representations

(iii)	 If A is of the form *B, *E {-" V'x, 3x}, then the root of't(A) is

labeled with *, and its only successor is the root of 't(B).

2.2-2 Definition: (formula occurrences)

A finite sequence (0 =<<Pl><P2, ... ,<Pn> of formulae is called aformula occurrence
of a formula <Pn within a formula <PI E <@>, if every element of (0 is an immediate

subformula of its predecessor. 0) is called an atom occurrence within <PI, if in addition

the last element of (0 is an atom.

(01 is a specialized formula occurrence of (02 within a formula <P, COl ::> CO2, if

both are formula occurrences within a common formula <p, and (02 is a subsequence

of COl. Q(co) and Qa(co) denote the sets of formula (atom) occurrences within cp, that

are specialized formula occurrences of (0. Q(<<p» and Q a(«P» are sometimes

simply written as Q(cp) and Qa(CP)'

In most cases there will be no ambiguity as to the first formula of a formula

occurrence co, but when it is important to indicate this formula, it is done using a

superscript, as in (OC9. Unlike term access functions, formula occurrences do not make

a distinction between several identical immediate subformulae, as the position in

AAA, AvA, or A:::::>A is unimportant.

2.2-3 Ex~ple: (formula occurrences)

Let cp = (V'x Px v Qx) => (3x Px) v (3x Qx),

CPl =V'x Px v Qx,

<P11 = Px v Qx,

<P2 =(3x Px) v (3x Qx).

Q(cp) can be viewed as the set of partial paths through the formula tree of <p:

=>

~ Qa(CP) = { <cP, CPl, CP11, Px> <<P, CPl, CP11, Qx>
V'	 v

<cP, CP2, 3xPx, Px> <<P, CP2, 3xQx, Qx>}
I A Q (cp) = Qa(<P) v {<<p, <PI, <P11> <cp, CPl> <cP>
v 3:3 <CP,CP2, :3xPx> <CP, CP2, :3xQx> <cp, CP2>}

A I I
Px Qx Px Qx

Note, that the same atom Px may be the last element of different atom occurrences.

Logical Calculi and Proof Representations 9

(iii) If A is of the form *B, *e {"-|, Vx, 3x} , then the root of 1(A) is
labeled with * , and its only successor is the root of 1(B).

2.2-2 Definition: (formula occurrences)

A finite sequence a) = <(p1,(p2,. . .,(pn> of formulae is called a formula occurrence
of a formula (pn within a formula (p16 «][», if every element of co is an immediate
subformula of its predecessor. to i s called an atom occurrence within (pl, if in addition
the last element of 0) is an atom.

m1 is a specialized formula occurrence of (oz within a fonnula q), (913 (92, if
both are formula occurrences within a common formula (p, and 032 is a subsequence
of (01. 9(0)) and (Mm) denote the sets of formula (atom) occurrences within (p, that
are specialized formula occurrences of a). Q(<q>>) and 9‚(<q>>) are sometimes
simply written as flap) and Qa(q>).

In most cases there will be no ambiguity as to the first formula of a formula
occurrence co, but when it i s important to indicate this formula, it is done using a
superscript, as in 0)". Unlike term access functions, formula occurrences do not make
a distinction between several identical immediate subformulae, as the position in
AAA, AVA, or A=>A is unimportant.

2.2-3 Example: (formula occurrences)

Let (p=(VxvQx)=>(Elx)v (3xQx) ,
(pl = Vx Px v Qx,

(911 = PX V QX.
(p2 = (3x Px) v (3x Qx).

Slap) can be viewed as the set of partial paths through the formula tree of (p:

:}

V/ \v Qa((p)=(<q), (Pi, (Du, PX> <q), (Pb (P11. QX>
| <q), oz, 3xPx, Px> <<p, (p2, SxQx, Qx>}
v / \ 9 ((P) = Qaflp) U («P, CPI, (P11> <q), (P l> <‘P>

/ \ ? 3| <<p,(p2, 3xPx> «[3, (p2, 3xQx> <<p, (p2>}

PX QXPx Qx

Note, that the same atom Px may be the last element of different atom occurrences.

1 0 Transformation and Structuring of Computer Generated Proofs

2.3 Resolution

2.3-1 Definition: (Uterals, clauses)

If A is an atom, then +A and -A are (complementary) literals. The set of all

literals is lL. A finite set of literals is called a clause, the number of literals in a clause

C is denoted by ICI, and CC is the set of all clauses. The clause without any literals is

called the empty clause and is denoted by D.

Let 3=(3gr, v) with 3gr ~gr be an interpretation. Then 3 satisfies a literal +A

iff it satisfies A, it satisfies -A iff it falsifies A. A clause C is satisfied by 3 iff 3
satisfies at least one literal in C.

Two literals are unifiable if their signs are equal and their atoms are unifiable.
They are called resolvable whenever their signs are different and their atoms

unifiable.

The cross-product x of two clause sets Sand T is the set of clauses consisting of

all the clauses combining the literals of a clause in S with the literals of a clause in T,

S x T = { CuD ICE S, 0 ET}. From this definition we can easily derive the

following distributive law needed later on:

S X (Tl U T2) = (S x Tl) U (S x T2)

2.3-2 Definition: (normal forms)

A formula FE ~ is said to be in Negation Normal Form (NNF) if it contains no

equivalence or implication signs and all its negation signs appear directly before an

atom. It is in Prenex Normal Form (PNF) if all the quantifiers (together with the

variables they bind) are placed at the beginning of the formula, Le. before any atom

or connective; the string of quantifiers (together with the variables they bind) is called

the prefix, the quantifier-free rest of the formula is called the matrix. A formula Fin

PNF can be transformed into Skolem Normal Form (SNF); all the variables Yi bound

by existential quantifiers are replaced by terms fiXl ...xni' where the function symbols

fi are distinct Skolemfunctions and the variables Xj are all the universally quantified

variables that are bound before Yi in the prefix of F.

A formula FE ~ in Skolem normal form can be transformed into a set of clauses,

the so-called clause form C(F) , applying the following definition. Note that the

construction of the clause form is not a function on interpreted formulae, but on the

formulae viewed as strings.

l 0 Transfonnation and Structm'ing of Computer Generated Proofs

2 .3 Resolution

2 .3 -1 Definition: (literals, clauses)

If A is an atom, then +A and —A are (complementary) literals. The set of all

literals i s L. A finite set of literals is called a clause, the number of literals in a clause
C is denoted by ICI, and (C is the set of all clauses. The clause without any literals is
called the empty clause and is denoted by El.

Let 3=(3gr , v) with SggAg, be an interpretation. Then 8 satisfies a literal +A
iff it satisfies A , it satisfies —A iff it falsifies A. A clause C i s satisfied by 3 iff 3
satisfies at least one literal in C.

Two literals are unifiable if their signs are equal and their atoms are unifiable.
They are called resolvable whenever their signs are different and their atoms
unifiable.

The cross—product >< of two clause sets S and T i s the set of clauses consisting of
all the clauses combining the literals of a clause in S with the literals of a clause in T,
S xT= { CUDIC e S , De T }. From this definition we can easily derive the
following distributive law needed later on: '

SX(T1UT2)=(SXT1)U(SXT2)

2.3-2 Definition: (normal forms)

A formula Fe «ll» i s said to be in Negation Normal F arm (NNF) i f it contains no

equivalence or implication signs and all its negation signs appear directly before an
atom. It is in Prenex Normal Form (PNF) if all the quantifiers (together with the
variables they bind) are placed at the beginning of the formula, i.e. before any atom
or connective; the string of quantifiers (together with the variables they bind) is called
the prefix, the quantifier-free rest of the formula is called the matrix. A formula F in
PNF can be transformed into Skolem Normal Form (SNF); all the variables y i bound

by existential quantifiers are replaced by terms fixl. . .xni, where the function symbols
fi are distinct Skolem functions and the variables xj are all the universally quantified
variables that are bound before yi in the prefix of F.

A formula Fe «ID in Skolem normal form can be transformed into a set of clauses,
the so-called clause form C(F), applying the following definition. Note that the
construction of the clause form i s not a function on interpreted formulae, but on the

formulae viewed as strings.

11 Logical Calculi and Proof Representations

(i) C(L) = {{L} }, if L is a literal.

(ii) C(F /\ G) = C(F) u C(G)

(iii) C(FvG)=C(F) x C(G)

A fonnula F is unsatisfiable iff its clause fonn C(F) is unsatisfiable, i.e. if there

exists no interpretation simultaneously satisfying all of the clauses in C(F).

By the construction of the clause fonn of a fonnula F, a relation is established

between the atom occurrences within F and the literal occurrences in the clause set

C(F). The distinction between literals and occurrences of literals must be made, since

a literal can be contained in several clauses. This relation will be needed when the

notion of a clause graph is introduced in the next section in order to specify how a

clause graph represents a fonnula. .

2.3-3 Definition: (resolution method)

Two clauses C and D are resolvable if, for a renaming p such that C and pD have

no variables in common, there exists a pair of resolvable literals Le C, Ke pD. If cr

unifies the atoms of Land K, then the clause cr(C\L) u cr(pD\K) is called a resolvent

of C and D. In the case where C = D the clause C is said to be self-resolvable.

A finite sequence So, SI, ... , Sn of clause sets is called a resolution derivation of

Sn from So if for all i there exist clauses Ci and Dh such that Ci and Di are resolvable

with resolvent Ri and Si+l = Si U Ri. A resolution derivation is called a resolution

refutation or a resolution proofif the final clause set Sn contains the empty clause. +

The resolution method for automated theorem proving relies on the fact that a

clause set S is unsatisfiable if and only if there exists a resolution refutation starting

with S. This means that a fonnula F is valid if and only if there is a resolution
refutation for the clause set C(-,F).

From the beginning of the "age of resolution" in 1965, [Ro65], a major effort

has been to improve on the basic resolution method by developing refinements,

restriction strategies, and better datastructures to ease the search and to cut down the

search space. Of the older restriction strategies, "Unit-Preference" and "Set-of

Support" [WCR64], [WCR65], "Linear Resolution" [L078], "First-Literal

Resolution" [KH69], and "SL-Resolution" [KK71] must be mentioned. Many of

these refinements are still widely used, but today the most promising procedures are

based on highly adapted datastructures. OTTER, the theorem prover developed at

Argonne National Lab, [McC88], uses standard resolution, but employs a fast

Logical Calculi and Proof Representations 1 1

(i) C(L)={{L}},ifLisa1i teral .

(ii) C(F A G) = C(F) U C(G)

(iii) C(F v G) = C(F) x C(G)

A formula F is unsatisfiable iff its clause form C(F) is unsatisfiable, i .e . i f there

exists no interpretation simultaneously satisfying all of the clauses in C(F).

By the construction of the clause form of a formula F , a relation i s established

between the atom occurrences within F and the literal occurrences in the clause set
C(F). The distinction between literals and occurrences of literals must be made, since
a literal can be contained in several clauses. This relation will be needed when the
notion of a clause graph is introduced in the next section in order to specify how a
clause graph represents a formula. '

2.3-3 Definition: (resolution method)

Two clauses C and D are resolvable if, for a renaming p such that C and pD have
no variables in common, there exists a pair of resolvable literals L e C, K e pD. If 6
unifies the atoms of L and K, then the clause 6(C\L) U c(pD\K) is called a resolvent

of C and D . In the case where C = D the clause C is said to be self-resolvable.

A finite sequence So, 81, . . . , Sn of clause sets is called a resolution derivation of
Sn from So if for all i there exist clauses Ci and Di, such that Ci and Di are resolvable
with resolvent R; and Si+1 = Si URi . A resolution derivation is called a resolution
refutation or a resolution proof if the final clause set Sn contains the empty clause. 0

The resolution method for automated theorem proving relies on the fact that a
clause set S is unsatisfiable if and only if there exists a resolution refutation starting
with S . This means that a formula F i s valid if and only if there i s a resolution
refutation for the clause set C(~—1F).

From the beginning of the “age of resolution” in 1965, [R065], a major effort
has been to improve on the basic resolution method by developing refinements,
restriction strategies, and better datastructures to ease the search and to cut down the
search space. Of the older restriction strategies, “Unit-Preference” and “Set—of-
Support” [WCR64], [WCR65], “Linear Resolution” [L078], “First—Literal-
Resolution” [KH69], and “SL-Resolution” [KK71] must be mentioned. Many of
these refinements are still widely used, but today the most promising procedures are
based on highly adapted datastructures. O'I'I‘ER, the theorem prover developed at
Argonne National Lab, [McC88] , uses standard resolution, but employs a fast

12 Transfonnation and Structuring of Computer Generated Proofs

indexing scheme to find all the possible resolution steps. This system, though

probably the most powerful automatic theorem prover to date, is still in line with the

tradition of classical logic calculi, in that it derives new formulae to finally prove a

theorem or refute its negation.

Modern (automated) theorem proving, however, has altogether put away with the

derivation of new formulae, whether they are clauses or not. Instead, the original set

of formulae, or its clause form, is arranged in a matrix or a graph structure, and

finding a proof amounts to checking certain conditions in this structure. The two

competing approaches are the matrix method by Andrews [An76], [An81], and Bibel

[Bi81], [Bi82] and the connectiongraph method introduced by Kowalski in [K075].

Both methods result in an even more abstract notion of a proof than resolution

does, because a proof is no longer viewed as a dynamic process leading from a set of

original formulae to a desired goal formula (or a contradiction). Instead, a proof

consists of a matrix or a graph containing the given set of formulae, which must be

linked in a specific way. In the next section, the notion of a refutation graph will be

introduced as a means to formulate proofs found with the connection graph method.

These graphs are the final result of the "Markgraf Karl Refutation Procedure",

"MKRP", a theorem prover developed in Karlsruhe and Kaiserslautern, [MKRP84],

[E088] or [OS89].

2.4 Clause Graphs and Refutation Graphs

2.4-1 Definition: (clause graph)

A clause graph is a quadruple r = (N, [H], £, ll), where

Ca) H is a finite set. Its members are called the literal nodes of r.
Cb) [H] c 2 H is a partition of the set of literal nodes. The members of

[H] are called the clause nodes of r. Contrary to the standard

definition of a partition, 0 E [W] is allowed. The (unique) clause

node containing LE H is denoted by rLl, and a clause node

consisting of literal nodes L1 through Ln is denoted by [Ll .. , Ln].

(c) £: N~ L is a mapping, which labels the literal nodes with literals,

such that if L, KEN belong to different clause nodes, then

VeiL) (\ V(£K) = 0.

l 2 Transformation and Structuring of Computer Generated Proofs

indexing scheme to find all the possible resolution steps. This system, though
probably the most powerful automatic theorem prover to date, is still in line with the
tradition of classical logic calculi, in that it derives new formulae to finally prove a
theorem or refute its negation.

Modern (automated) theorem proving, however, has altogether put away with the
derivation of new formulae, whether they are clauses or not. Instead, the original set
of formulae, or its clause form, is arranged in a matrix or a graph structure, and
finding a proof amounts to checking certain conditions in this structure. The two
competing approaches are the matrix method by Andrews [An76], [An81], and Bibel
[Bi81], [Bi82] and the connectiongraph method introduced by Kowalski in [Ko75].

Both methods result in an even more abstract notion of a proof than resolution
does, because a proof is no longer viewed as a dynamic process leading from a set of
original formulae to a desired goal formula (or a contradiction). Instead, a proof
consists of a matrix or a graph containing the given set of formulae, which must be
linked in a specific way. In the next section, the notion of a refutation graph will be
introduced as a means to formulate proofs found with the connection graph method.
These graphs are the final result of the “Markgraf Karl Refutation Procedure”,
“MKRP”, a theorem prover developed in Karlsmhe and Kaiserslautern, [MKRP84],
[E088] or [0S89] .

2.4 Clause Graphs and Refutation Graphs

2.4- 1 Definition: (clause graph)

A clause graph is a quadruple I‘ = (N, [N] , £ , I'll), where

(a) N i s a finite set. Its members are called the literal nodes of F.

(b) [N] c: 2N is a partition of the set of literal nodes. The members of
[N] are called the clause nodes of I‘. Contrary to the standard
definition of a partition, {Ze [N] is allowed. The (unique) clause
node containing LeN is denoted by [L] , and a clause node
consisting of literal nodes L1 through Ln i s denoted by [L1 Ln].

(c) £: N-) ll. is a mapping, which labels the literal nodes with literals,
such that i f L , K e N belong to different c lause nodes , then
V(£L) n V(£K) = Q.

13 Logical Calculi and Proof Representations

(d)	 The set of polylinks n is a partition of a subset ofN, such that for

all AE n the following po1y1ink condition holds:

(1t1) All the literal nodes in one po1ylink are 1abe1ed with literals

whose atoms are unifiab1e.

(1t2)	 There must be at least one positive and one negative literal

in a polylink.

Literal nodes belonging to no po1ylink at all are called pure; Np is the set of all

pure literal nodes. Each po1ylink A has two opposite shores, a positive shore S+(A),

and a negative shore S-(A), constituted by the literal nodes with positive and negative

literals, respectively. As a literal node belongs to at most one polylink, it is possible

to use A(N) to denote this polylink;.ifN E Np A(N) =0.

These clause graphs, developed by N. Eisinger in [Ei88], are a generalization ci

Kowa1ski's connection graphs, [K075], and Shostak's refutation graphs, [Sh76).

Unlike Eisinger we have no need for any links different from the polylinks defined

above, so that we will often simply use the term link to denote a po1ylink. Similarly

the term "graph" is used as a synonym for clause graph.

2.4-2 Definition: (interpretation of clause graphs)

An interpretation .3 satisfies a literal node L if it satisfies the literal £L. .3 satisfies

a clause node C if it satisfies at least one of the literal nodes LE C. A clause graph r
is satisfied by .3 if S satisfies all of its clause nodes.

A clause graph r =(N, [N] , £, n) is said to represent a clause set S if for every
I

clause node C E [N] there is a parent clause C E S and a ground substitution "(such

that the restriction of £ to C is a bijection between its literal nodes and the literals of

"(C'.	 •

Note that if a clause graph r representing a clause set S is unsatisfiable there is a

finite unsatisfiable set of instances of clauses in S, hence S itself is unsatisfiable.

2.4-3 ~xaDnple: (clause graph)

Here is an example of a clause graph. Literal nodes are drawn as boxes with the

appropriate literals inside. It can be seen that the same literal may belong to several

literal nodes. Therefore literal nodes cannot be identified by their literals and the

labelling outside of the boxes is for their identification. The example contains seven

clause nodes, built up by bordering literal nodes. There are four polylinks, tU, LlD,

L16, Lll}, {L2, L3, L6, L9}, {L7, L8, L12}, and {L13, LIS}. Polylinks are

Logical Calculi and Proof Representations i 3

(d) The set of polylinks H is a partition of a subset of N, such that for

all A e H the following polylink condition holds:

(1:1) All the literal nodes in one polylink are labeled with literals
whose atoms are unifiable.

(1:2) There must be at least one positive and one negative literal
in a polylink.

Literal nodes belonging to no polylink at all are called pure; Np is the set of all
pure literal nodes. Each polylink A has two opposite shares, a positive shore S+(A),

and a negative shore S'(A), constituted by the literal nodes with positive and negative
literals, respectively. As a literal node belongs to at most one polylink, it i s possible
to use A(N) to denote this polylink; if N e Np A(N) = @.

These clause graphs, developed by N. Eisinger in [Ei88], are a generalization cf
Kowalski’s connection graphs, [K075], and Shostak’s refutation graphs, [Sh76].
Unlike Eisinger we have no need for any links different from the polylinks defined
above, so that we will often simply use the term link to denote a polylink. Similarly
the term “graph” is used as a synonym for clause graph.

2.4-2 Definition: (interpretation of clause graphs)

An interpretation 8 satisfies a literal node L if it satisfies the literal fl. 8 satisfies
a clause node C if it satisfies at least one of the literal nodes L e C. A clause graph F
is satisfied by S if 3 satisfies all of its clause nodes.

A clause graph I"= (N, [N] , £ , H) is said to represent a clause set S if for every
clause node C e [N] there is a parent clause de S and a ground substitution 7 such
that the restriction of £ to C i s a bijection between its literal nodes and the literals of
yC'. .

Note that if a clause graph I‘ representing a clause set S is unsatisfiable there is a
finite unsatisfiable set of instances of clauses in S , hence S itself is unsatisfiable.

2.4-3 Example: (clause graph)

Here is an example of a clause graph. Literal nodes are drawn as boxes with the
appropriate literals inside. It can be seen that the same literal may belong to several
literal nodes. Therefore literal nodes cannot be identified by their literals and the
labelling outside of the boxes is for their identification. The example contains seven
clause nodes, built up by bordering literal nodes. There are four polylinks, {L4, L10,
L16, L11}, {L2, L3, L6, L9}, {L7, L8, L12}, and {L13, L15}. Polylinks are

14 Transformation and Suucturing of Computer Generated Proofs

drawn as lines with a little dot, which branch on each side to connect the different

literal nodes of the opposite shores. The literal nodes Ll, L5, and L14 are pure.

It is often necessary to change a given clause graph r by adding or removing

some of its parts. Since this usually involves several sets of nodes, one has to define

carefully what the resulting graph is to be. Adding a set of polylinks 'P to a clause

graph r means to change n by adding a set of links consisting of previously pure

literal nodes; the polylink conditions 1t1 and 1t2' cf. 2.4-1 (d), must of course be

obeyed.

Adding a set of literal nodes means adding new pure literal nodes to one of the

existing clause nodes. And to add a set of clause nodes is to insert a new set of pure

literal nodes to r making up the new clause nodes. Since there is normally no

ambiguity, all of these operations are written using the same + sign.

Similarly, to remove a set of polylinks 8 from a clause graph r means to make

pure all the literal nodes belonging to a link in 8, Le. to add these literal nodes to Np.

Removing a set of literal nodes M c N from r is to remove them from their respective

clause nodes and to change their polylinks accordingly. The literal nodes are simply

removed from their shores and, if the shore becomes empty, the whole polylink is

removed. Note that if the last literal node in a clause node is removeD, then the clause

node is deleted altogether, rather than to keep the empty clause in the graph.

A set of clause nodes is removed by removing it from [N] and all of the literal

nodes from N. Removal of any part of a clause graph is written using the - sign. We

will now give a rigorous definition.

1 4 Transformation and Structuring of Computer Generated Proofs

drawn as lines with a little dot, which branch on each side to connect the different

literal nodes of the opposite shores. The literal nodes L1, LS, and L14 are pure.

L5 L6 L7

L12
L13 '
L14 -Q L15 L16

L8 L9 L10 L11

It is often necessary to change a given clause graph F by adding or removing
some of its parts. Since this usually involves several sets of nodes, one has to define
carefully what the resulting graph is to be. Adding a set of polylinks ‘? to a clause
graph I‘ means to change H by adding a set of links consisting of previously pure
literal nodes; the polylink conditions 1:1 and 1:2, cf. 2.4-1 (d), must of course be
obeyed.

Adding a set of literal nodes means adding new pure literal nodes to one of the
existing clause nodes. And to add a set of clause nodes is to insert a new set of pure
literal nodes to F making up the new clause nodes. Since there i s normally no
ambiguity, all of these operations are written using the same + sign.

Similarly, to remove a set of polylinks E from a clause graph I‘ means to make
pure all the literal nodes belonging to a link in E, i.e. to add these literal nodes to Np.
Removing a set of literal nodes M g N from I‘ is to remove them from their respective
clause nodes and to change their polylinks accordingly. The literal nodes are simply
removed from their shores and, if the shore becomes empty, the whole polylink is
removed. Note that if the last literal node in a clause node is removed, then the clause
node is deleted altogether, rather than to keep the empty clause in the graph.

A set of clause nodes is removed by removing it from [N] and all of the literal
nodes from N. Removal of any part of a clause graph is written using the — sign. We
will now give a rigorous definition.

15 Logical Calculi and Proof Representations

2.4-4 Definition: (subgraphs)

Let r=(N,[N],£, n) be a clause graph, and let De [N] be a clause node in r.
Let L be a set of literal nodes not in r, i.e. L nN = 0, and let S be a partition of the

literal nodes in L. For 1 ~ i ~ n let Ai eNp with Ai n Aj = 0 fulfil the polylink

conditions 1tl and 1t2' Let "1'={AI ' ... , An}. Then

r+LD	 := (NuL, [N]\{D} u {DuLL£',][]),

where £' is an extension of £ with £'LelL.

r+s	 := (Nu L, [N]uS,£,
I

][]),

where £' is an extension of £ with £'LeJL.

r+"I'	 := (N,[:N'],£, nu"l'),

Now let MeN be a set of literal nodes, and let T~ [N] be a set of clause nodes

in r. Funhermore let S = {e1 ' ... , en} e][] be a subset of the links of r. Then

r - M	 := (N\M, [N\M], £ IMM' n') with

[N\M] = ([N]\{rN1INe M}) u({rNl\MINe M} \{o}) and

n r =(D\{A(N)INeM})

u {A(N)\MINeM, S+(A(N)\M):;e0, S-(A(N)\M):;e0}

r - T	 := (N', [N]\T, £ IN', nil) with

N'= N\UCETC, and where nil is constructed similar to n r
by

removing all literal nodes of clause nodes in T.

r-3	 := (N,[N],£, n\3)
,

r is a subgraph of a clause graph r if it can be obtained from r by removing

sets of clause nodes and polylinks.

2.4-5 Definition: (separating links)

A walk in a clause graph r is an alternating sequence COll1C1•••Cn-1ITnCn (n;:::l)

of clause nodes and polylinks such that for every pair of clause nodes Cj, Cj+1 one

contains a literal node of the positive shore of the connecting polylink llj and the

other contains a literal node of its negative shore. Regarding clause nodes and

polylinks as sets of literal nodes this means for all neither Cn-1n S+(lln):;e 0 and

Cnn S-(ITn):;e 0 or Cn-1n S-(IIn):;e 0 and Cnn S+(IIn):;e 0.

Logical Calculi and Proof Representations 1 5

2.4-4 Definition: (subgraphs)

Let I‘=(N‚[N]‚£‚ H) be a clause graph, and let De [N] be a clause node in F .

Let L be a set of literal nodes not in I“, i.e. LAN =Q, and let S be a partition of the
literal nodes in L . For 1 Sign let A in with A inAj=® fulfil the polylink
conditions M and n2. Let ‘P={A1 , , An}. Then

r+LD := (NUL, [N]\{D} u {DUL}, £', i t) ,
where £' is an extension of £ with £’L;1L.

r+s := (Nu L, [N]US,£', H),
where £' i s an extension of £ with nIL.

I‘+‘I’ := (N,[N],£, HUT) ,

Now let MgN be a set of literal nodes, and let T; [N] be a set of clause nodes
in F. Furthermore let E = {81 , , 9n} ; H be a subset of the links of P. Then

r—M := (N\M, [N\M], £ | MM, n') with
[NM]=([N] \ (FNl |NeM})u ({FNl \M|Ne M}\{n}) and
H'= (H\{A(N) INe M})

u {A(N)\M| Ne M, S+(A(N)\M) # @, S-(A(N)\M) ge @}

I‘-—T := (N', [N]\T, £ | N ', n") with
N ‚= N\Uc€T C, and where H" is constructed similar to H. by
removing all literal nodes of clause nodes in T.

F—E := (N,[N],£,]ÜI\E)

]" is a subgraph of a clause graph I‘ if it can be obtained from I‘ by removing
sets of clause nodes and polylinks.

2.4-5 Definition: (separating links)

A walk in a clause graph 1" is an alternating sequence COIIICI. . .C„_11'I„Cn (n21)
of clause nodes and polylinks such that for every pair of clause nodes Cj, Cj+1 one
contains a literal node of the positive shore of the connecting polylink Hj and the
other contains a literal node of its negative shore. Regarding clause nodes and
polylinks as sets of literal nodes this means for all n either Cn_1 n S+(Hn) at {5 and
Cnn S'(II„) # @ or Cn_1n SKI-In) # (ö and CH 0 S+(l’ln) # @.

16 Transfonnation and Structuring of Computer Generated Proofs

A set '¥ of links is separating r if there exist two clause nodes C and D
connected by a walk in r which are no longer connected in r-'P. If'P consists of

only a single link A one can also say that A separates r.

2.4-6 Definition: (deduction and refutation graphs)

A trail in a clause graph r is a walk where all the links used are distinct. A trail

joins its start and end clause nodes Co and Cn'

A cycle is a trail joining a clause node to itself. If a clause graph r contains such

a cycle it is called cyclic, otherwise acyclic. It is called connected if each pair of clause

nodes is joined by a trail.

A component of a clause graph r is a maximal connected subgraph of r.

Let A and IT be polylinks in a clause graph. A is less nested than IT, A -< JI, if

there exist clause nodes C and D, containing literal nodes of the same shore of A, and

joined by a trail using n. ~ is the reflexive and transitive closure of -<.

A deduction graph is a non-empty, ground, and acyclic clause graph. A

refutation graph is a deduction graph without pure literal nodes. We sometimes speak

of deduction or refutation graphs even if they are not ground, but then the existence

of a global substitution is required that transfonns them into ground graphs without

destroying the polylink conditions for any of its links.

A minimal deduction (refutation) graph is one containing no proper subgraph

which is itself a deduction (refutation) graph.

2.4-7 ~xaDnple: (deduction graphs)

In the above graph, all the literal nodes belong to a link. Only A and e are
separating the graph; they are also maximal links with respect to the nesting order -< .

Q is less nested than A (0-< A), and both 0 and IT are less nested than A. There is no

cycle, since it is :1ot allowed to use a link more than once in a trail, and when a link is

entered, it must be exited via the opposite shore. So the graph constitutes an example

for a (minimal) refutation graph.

l 6 Transformation and Structuring of Computer Generated Proofs

A set ‘I’ of links i s separating F if there exist two clause nodes C and D
connected by a walk in F which are no longer connected in F—‘l’. If ‘I’ consists of
only a single link A one can also say that A separates l".

2.4-6 Definition: (deduction and refutation graphs)

A trail in a clause graph I‘ is a walk where all the links used are distinct. A trail
joins its start and end clause nodes C0 and C“.

A cycle is a trail joining a clause node to itself. If a clause graph I‘ contains such
a cycle it is called cyclic, otherwise acyclic. It is called connected if each pair of clause
nodes is joined by a trail.

A component of a clause graph I‘ is a maximal connected subgraph of I".

Let A and H be polylinks in a clause graph. A is less nested than H, A—<H, if
there exist clause nodes C and D, containing literal nodes of the same shore of A, and
joined by a trail using H. ”"—< i s the reflexive and transitive closure of —<.

A deduction graph is a non—empty, ground, and acyclic clause graph. A
rdutation graph is a deduction graph without pure literal nodes. We sometimes speak
of deduction or refutation graphs even if they are not ground, but then the existence
of a global substitution is required that transforms them into ground graphs without
destroying the polylink conditions for any of its links.

A minimal deduction (refutation) graph i s one containing no proper subgraph
which is itself a deduction (refutation) graph.

2.4-7 Example: (deduction graphs)

I-Iflfl-o—L—Tl-SJ—fi—hsjilm
. . g

In the above graph, all the literal nodes belong to a link. Only A and 6) are
separating the graph; they are also maximal links with respect to the nesting order —< .
(2 is less nested than A (El—< A), and both 9 and H are less nested than A. There i s no
cycle, since it is not allowed to use a link more than once in a trail, and when a link is
entered, it must be exited via the opposite shore. So the graph constitutes an example
for a (minimal) refutation graph.

17 Logical Calculi and Proof Representations

deduction graph [- Q, S]

The subgraph marked in the above figure, consisting of the clause nodes
[+5 +P +R], [-R], and [-Q -P +R], as well as the links A and n, is an example of

a deduction graph; obviously there can be no cycle, for there are no additional1inks,

but the literal nodes marked -Q and +5 are pure. The subgraph is also connected.

This property could be destroyed by removing {Q}, then there would no longer exist

a trail between [+5 +P +R] and [-Q -P +R].

Below the subgraphs are drawn without specifying their internal clause nodes

and links. We will often do so, when the internal structure is unimportant. It is

understood, however, that such subgraphs are connected and that all the links having

a shore outside are indicated in the drawing. In the second case, there is a special

emphasis on the nature of the pure literal nodes of the subgraph.

Logical Calculi and Proof Representations 1 7

deduction graph [- Q, S]

The subgraph marked in the above figure, consisting of the clause nodes
[+S +P +R], [—R], and [—Q —P +R], as well as the links A and 9 , i s an example of

a deduction graph; obviously there can be no cycle, for there are no additional links,
but the literal nodes marked —Q and +S are pure. The subgraph is also connected.
This property could be destroyed by removing {Q}, then there would no longer exist
a trail between [+S +P +R] and [—Q —P +R].

Below the subgraphs are drawn without specifying their internal clause nodes
and links. We will often do so, when the internal structure is unimportant. It is
understood, however, that such subgraphs are connected and that all the links having
a shore outside are indicated in the drawing. In the second case, there i s a special
emphasis on the nature of the pure literal nodes of the subgraph.

II
' subgraph

18 Transfonnation and Structuring of Computer Generated Proofs

2.5	 Properties of Deduction and Refutation Graphs

In this section we want to examine some of the properties of clause graphs, and

especially deduction and refutation graphs. Most of the following lemmata have been

proved by Shostak [Sh79] and Eisinger [Ei88], and will be cited here without proof.

Care has been taken, however, to change the presentation of the lemmata to meet our

slightly different definitions. For all the new theorems, which are needed later on for

the proof transformation, proofs will of course be given.

2.5-1 Lemmata: (N. Elslnger)

The following graph theoretic properties of deduction graphs are all proved in

N. Eisinger's thesis. The numbers 5_6 through 5_16 are Eisinger's original numbers

for the theorems.

5_6:	 In a deduction graph the relation ~ is a partial ordering.

5_7:	 In a deduction graph, if a link IT is ~-minimal it is separating.

5_8:	 If a clause graph is acyclic, then each of its components is acyclic.

5_9:	 A deduction graph is connected iff it is a minimal deduction graph.

5_10:	 Each component of a deduction (refutation) graph is a minimal
deduction (refutation) graph.

5_11:	 Let D be a link in a deduction graph r. Then r -{D} is a deduction
graph, and if D is separating, then any two clause nodes intersecting
with different shores of IT belong to different components of r -(Il}.

5_12:	 Let D be a ~-minimallink in a deduction graph r; let r -{D} have m-,
m+, and mO components containing a negative, a positive, and no
shore of D, respectively, then r has mO+m'om+ components.

5_13:	 In a deduction graph with p links, c clause nodes, and m components,
the inequality p<c:5;p+m holds.

5_14:	 A deduction graph is minimal iff it has exactly one more clause node
than it has links.

5_15:	 A deduction graph has exactly two components iff it has exactly two
more clause nodes than it has links.

5_16:	 Let n be a link in a minimal deduction graph r. Then r -{D} has
exactly two components, each a minimal deduction graph containing
exactly one of the shores of IT. If IT is ~-minimal, then each of the two
subgraphs is a component ofr {D}. •

l 8 Transformation and Structuring of Computer Generated Proofs

2 .5 Properties of Deduction and Refutation Graphs

In this section we want to examine some of the properties of clause graphs, and
especially deduction and refutation graphs. Most of the following lemmata have been
proved by Shostak [Sh79] and Eisinger [Ei88], and will be cited here without proof.
Care has been taken, however, to change the presentation of the lemmata to meet our
slightly different definitions. For all the new theorems, which are needed later on for
the proof transformation, proofs will of course be given.

2 .5 -1 Lemmata: (N. Eisinger)

The following graph theoretic properties of deduction graphs are all proved in
N. Eisinger’s thesis. The numbers 5_6 through 5__16 are Eisinger’s original numbers
for the theorems.

5_6: In a deduction graph the relation & is a partial ordering.

5_7: In a deduction graph, if a link H is *—<—minimal it is separating.

5_8: If a clause graph is acyclic, then each of its components is acyclic.

5_9: A deduction graph is connected iff it is a minimal deduction graph.

5_10: Each component of a deduction (refutation) graph i s a minimal
deduction (refutation) graph.

5_11: Let H be a link in a deduction graph P . Then F—{II} is a deduction
graph, and if H is separating, then any two clause nodes intersecting
with different shores of H belong to different components of F—IH}.

5__12: Let l'I be a £«minimal link in a deduction graph 1"; let F—{H} have m‘,
m+, and m0 components containing a negative, a positive, and no
shore of H, respectively, then F has m0+m"om+ components.

5_13: In a deduction graph with p links, c clause nodes, and m components,
the inequality p<cSp+m holds.

5_14: A deduction graph is minimal iff it has exactly one more clause node
than it has links.

5_15: A deduction graph has exactly two components iff it has exactly two
more clause nodes than it has links.

5_16: Let H be a link in a minimal deduction graph F . Then P—{II} has
exactly two components, each a minimal deduction graph containing
exactly one of the shores of H. If H i s "—‘<—minima1, then each of the'two
subgraphs is a component of F—{H}. - I

19 Logical Calculi and Proof Representations

An important operation on clause graphs and especially deduction graphs, which

will be needed later on to construct graphs representing subproofs, is to split the

graph by "cutting" a clause node into parts.

2.5-2 Deftnition: (graph splitting)

A clause graph r = (N , [N] , £, n) can be split by splitting a clause node C E [N]

into several disjoint parts leaving the link structure unchanged. With

C = CI ~ C2 ~ ... ~ en where ~ denotes the disjoint union, Le. Ci n Cj = 0 for i -:t:- j,

the graph changes to r'= (N, ([N]\{C}U{CI,C2, ... ,Cn}),£,TI).

2.5-3 Lemma: (graph splitting)

Let r=(N,[N],£,TI) be a deduction graph and Ce [N] a clause node. If the graph

is split by C = Cl ~ C2 ~ ... ~ Cn, then

(i) all the new clause nodes Ci lie in different components of the split graph.

(ii) If r is minimal, there are exactly n resulting components.

(iii) All the components are themselves deduction graphs.

Proof: (i) If for any pair i, j (i -:t:- j) q and q are in the same component of

the split graph, then there must be a trail joining Ci and Cj' But since the literal nodes

of Ci and Cj are in the same clause node in r, this proves that r contains a cycle,
which is a contradiction to the assumption that r is a deduction graph.

(ii) Let c be the number of clause nodes in r, and let p be the number oflinks. As

the deduction graph is minimal, we know that c=p+l (lemma 5_14). The proof is

now conducted by induction on the number n of splitparts.

Induction base (n=2): After splitting, the deduction graph r' has the same

number of links but one additional clause node, therefore c'=p'+2. By lemma 5_15
r' must have exactly two components.

Induction step (n-m+1): Splitting a clause node into n+1 parts can be done by

splitting it into n parts, which leads to exactly n components ~b"" ~n in the

resulting deduction graph by induction hypothesis, and then further splitting the

clause node en into two parts. From (i) we know that Cn does not lie in any of the

other components, so splitting it will split ~n into two parts without affecting the

other components. Hence the total number of splitparts is n+1.

Logical Calculi and Proof Representations 1 9

An important operation on clause graphs and especially deduction graphs, which
will be needed later on to construct graphs representing subproofs, is to split the
graph by “cutting” a clause node into parts.

2.5-2 Definition: (graph splitting)

A clause graph F: (N , [N] , £ ,H) can be split by splitting a clause node C e [N]
into several disjoint parts leaving the link structure unchanged. With
C = C1 U Czw 0 C“ where 0 denotes the disjoint union, i.e. Cm Cj = @ for ine j ,
the graph changes to r'= (N, ([N]\{C}U{C1,C2,...,Cn}),£,]1‘ll).

2.5-3 Lemma: (graph splitting)

Let F=(N,[N],£,l'll) be a deduction graph and Ce [N] a clause node. If the graph
is split by C=C10 C20 ...U C“, then

(i) all the new clause nodes Ci lie in different components of the split graph.

(ii) If I‘ is minimal, there are exactly 11 resulting components.

(iii) All the components are themselves deduction graphs.

Emil (i) If for any pair i, j (# j) Ci and Cj are in the same component of
the split graph, then there must be a trail joining Ci and Cj. But since the literal nodes
of Ci and C5 are in the same clause node in I‘, this proves that I‘ contains a cycle,
which is a contradiction to the assumption that I‘ is a deduction graph.

(ii) Let c be the number of clause nodes in I‘, and let p be the number of links. As
the deduction graph i s minimal, we know that c=p+1 (lemma 5_14). The proof i s
now conducted by induction on the number n of splitparts.

Induction base gn=2): After splitting, the deduction graph F' has the same
number of links but one additional clause node, therefore c'=p'+2. By lemma 5_15
I" must have exactly two components.

induction step tn—9n+l): Splitting a clause node into n+1 parts can be done by
splitting it into n parts, which leads to exactly n components A1,...‚ An in the
resulting deduction graph by induction hypothesis, and then further splitting the
clause node Cn into two parts. From (i) we know that Cn does not lie in any of the
other components, so splitting it will split An into two parts without affecting the
other components. Hence the total number of splitparts is n+1.

20 Transfonnation and Structuring of Computer Generated Proofs

(iii) It is easily seen that no cycle can be introduced by the splitting operation, for

no links are added and no literal nodes are joined to new clause nodes. Therefore

splitting a deduction graph always leads to another deduction graph. Additionally, as

no link is removed, no literal node can become pure, and hence the splitparts of
refutation graphs are also refutation graphs. _

It is not the case that splitting a clause node into n parts always increases the

number of components by n-1 as can be seen in the following example, where we

start with four components and the graph resulting from a cut through C still has four

components.

At this point it is necessary to explain how refutation graphs and deduction

graphs represent (refutation) proofs and derivations. Shostak and Eisinger prove that

refutation graphs are always unsatisfiable (cf. theorem 4.1 in [Sh79] or lemma 6.1_1

in [Ei88]), and therefore any clause set represented by a refutation graph must itself

be unsatisfiable. So the existence of a refutation graph can guarantee the unsatis

fiability of a clause set. Furthermore Eisinger shows how a resolution refutation can

be constructed from a given refutation graph.

As a corollary of Eisinger's lemma 6.1_6 it is known that every interpretation

satisfying a deduction graph must satisfy one of the pure literal nodes. Again a

resolution derivation of the clause node consisting of the pure literal nodes from the

set of all clause nodes in r can be constructed. In this sense a deduction graph with

pure literal nodes L1, .•. , Ln represents the derivation of £LIV ... v£Ln from the

underlying clause set.

Here we are not so much interested in proofs of the unsatisfiability of clause sets,

but prefer to state the problem in its positive fonn, Le. to give a proof of the validity

of a formula F (usually not in clause form), when a refutation graph representing

C(--.F) is known. One important thing to know therefore is a relation between the

literal nodes in the graph and the atom occurrences of the original formula.

2 0 Transformation and Structuring of Computer Generated Proofs

(iii) It i s easily seen that no cycle can be introduced by the splitting operation, for
no links are added and no literal nodes are joined to new clause nodes. Therefore
splitting a deduction graph always leads to another deduction graph. Additionally, as
no link i s removed, no literal node can become pure, and hence the splitparts of
refutation graphs are also refutation graphs. I

It is not the case that splitting a clause node into n parts always increases the
number of components by n—l as can be seen in the following example, where we
start with four components and the graph resulting from a cut through C still has four
components.

At this point it is necessary to explain how refutation graphs and deduction
graphs represent (refutation) proofs and derivations. Shostak and Eisinger prove that
refutation graphs are always unsatisfiable (cf. theorem 4.1 in [Sh79] or lemma 6.1_1
in [Ei8 8]), and therefore any clause set represented by a refutation graph must itself
be unsatisfiable. So the existence of a refutation graph can guarantee the unsatis-
fiability of a clause set. Furthermore Eisinger shows how a resolution refutation can
be constructed from a given refutation graph.

As a corollary of Eisinger’s lemma 6.1_6 i t i s known that every interpretation
satisfying a deduction graph must satisfy one of the pure literal nodes. Again a
resolution derivation of the clause node consisting of the pure literal nodes from the
set of all clause nodes in F can be constructed. In this sense a deduction graph with
pure literal nodes L] , , Ln represents the derivation of 51l v£Ln from the
underlying clause set.

Here we are not so much interested in proofs of the unsatisfiability of clause sets,
but prefer to state the problem in its positive form, i.e. to give a proof of the validity
of a formula F (usually not in clause form), when a refutation graph representing
C(—1F) i s known. One important thing to know therefore i s a relation between the

literal nodes in the graph and the atom occurrences of the original formula.

21 Logical Calculi and Proof Representations

2.5-4 Definition: (clause graph relation)

For a formula F and a clause graph r=(N, [N],£,n) representing C(F) or

C(-,F), a relation ~ C {(ooa, L) IooaE Qa(F), L E N} is a clause graph relation if it is

compatible with the relation established by the normalization process (cf. 2.3-2) when

the clause form is constructed from the formula. •

~ is in general not a function, which can easily be seen when one envisages the

process of constructing the clause form of a formula F. It is often useful, however, to

be able to use ~ as a function to denote the set of literal nodes related to a given

formula occurrence. In this sense we use ~ as a symbol for one of the two functions

defined by the relation ~,

~: Qa(F) ~ 2N and ~: N ~ 2o .(F)

~(ro) = {LE N I(roa, L) E~} ~(L)= {ooaEQa<F)I(roa,L)E~}

2.5-5 Example: (refutation graph for subgroup criterion)

In this example a refutation graph is given representing a proof of the formula

F = (V'u Puiue) A (V'w Peww) A (V'xyz Sx A Sy A Pxiyz ~ Sz) ~ (\Iv Sv ~ Siv). This

is a formulation of part of the subgroup criterion, see for instance [De? 1] :

Let G be a group, sce; ijfor all x,y in S, y10x is also in
S, then for every v in S its inverse is also in S.

In this formulation e represents a constant (the unit element of the group) and i a

unary function (the inverse); Pxyz means that x o y= z in the group and Sx stands for

x E S. The constant a is introduced during the skolemization of -,F, which leads to a

clause set S = {Cl, C2, C3, C4, C 5} with Cl = {+Puiue}, C2 ={+Peww},

C3 = {-Sx,-Sy,-Pxiyz, +SZ}, C4 = {+Sa}, and C5 = {-Sia}.

The relation ~ is obvious in this small example. It can be seen here that ~ is not a

function as both the literal nodes labeled with +Se and +Sia are related to the atom

Logical Calculi and Proof Representations 2 1

2.5-4 Definition: (clause graph relation)

For a formula F and a clause graph F: (N , [N],£,Il'JI) representing C(F) or
C(—:F), a relation A <; {((03, L) l was Qa(F), L e N } i s a clause graph relation if it i s
compatible with the relation established by the normalization process (cf. 2.3-2) when
the clause form is constructed from the formula. 0

A is in general not a function, which can easily be seen when one envisages the
process of constructing the clause form of a formula F. It i s often useful, however, to

be able to use A as a function to denote the set of literal nodes related to a given
formula occurrence. In this sense we use A as a symbol for one of the two functions
defined by the relation A,

A: g„(F) —> 2N and ' A: N _) 2mm
A(03) = {Le N|(m„L)e A} A(L) = {m,e Qa(F)l((oa,L)eA}

2.5-5 Example: (refutation graph for subgoup criterion)

In this example a refutation graph is given representing a proof of the formula
F = (Vu Puiue) A (VW Peww) A (nz Sx A Sy A Pxiyz => Sz) = (VV Sv => Siv). This
is a formulation of part of the subgroup criterion, see for instance [De71]:

Let G be a group, SgG; iffor all x,y in S, y‘1 ox is also in
S, then for every v in S its inverse is also in S.

In this formulation 6 represents a constant (the unit element of the group) and i a
unary function (the inverse); nz means that X° y= z in the group and Sx stands for
x e S . The constant a i s introduced during the skolemization of fiF, which leads to a

clause set S = {C1, C2, C3, C4, C 5} with C1 = {+Puiue } , C2 = {+Peww},
C3 = {—Sx,—Sy,-—Pxiyz, +Sz}, C4: {+Sa}, and C5 = {~Sia}.

I I .

9
L-Sej -Sa]- Peiaia ESQ—o—LSia—I

' Q

The relation A is obvious in this small example. It can be seen here that A i s not a
function as both the literal nodes labeled with +Se and +Sia are related to the atom

22 Transformation and Structuring of Computer Generated Proofs

occurrence <F, AX1 /\ AX2 /\ AX3, AX3, Sz >1. On the other hand the literal node -Sa

in the same clause node as +Se is related to both < F , Ax1 /\ AX2 /\ AX3, AX3, Sx> and

< F, AXl /\ AX2 /\ AX3, AX3, Sy >.

According to Eisinger in [Ei88], a resolution proof can be generated by

repeatedly choosing a maximal link (with respect to the nesting order !.<) and

performing the appropriate resolution step. Starting with link n the following

resolution proof is constructed:

C3,4 & C3,1: add RI: {-SX,-Sy,-Pxiyz,-Sy' ,-Pziy'z',+Sz'}

RI,1 & C4,1: add R2: {-Sy,-Paiyz,-Sy' ,-Pziy'z' ,+Sz'}

R2,1 & C4,1: add R3: {-Paiaz,-Sy',-Pziy'z',+Sz' }

R3,2 & C4,1: add R4: {-Paiaz,-Pziaz',+Sz' }

R4,1 & CI,1: add R5: {-Peiaz',+Sz'}

R5,1 & C2,1: add R6: {+Sia}

R6,1 & C5,1: add R7: D

Only the fIrst resolution step is required by Eisinger's method, all the other steps

can be done in any order, so the refutation graph does not only represent a single

resolution proof but a whole class of resolution proofs differing in the order of the

resolution steps.

At this point we want to prove two technical lemmata regarding clause graphs

and their relation to formulae. In the fIrst lemma below the link structure of the graph
is of no importance, so it can also be seen as a property of clause sets where the

relation ~ is transcribed in the obvious way.

2.5-6 Lemma: (literal removal)

Let F and G be two formulae in Skolem normal form. Let r be a clause graph

representing FvG and ~ a clause graph relation for FvG and r.

Then the graph r' constructed from r by removing all the literal nodes related

only to atom occurrences in Oa«FvG, G» is a clause graph representing F.

r'= r -(~(Qa«FvG, G»)\~(Qa«FvG, F»»

1 We denote by AXj the formula Vu Puiue, by AX2 the formula Vw Peww , and by AX3 the
formula Vxyz Sx 1\ Sy 1\ Pxiyz => Sz.

2 2 Transformation and Structuring of Computer Generated Proofs

occurrence <F , Axl A AX2A AX3, Ax3, Sz >1. On the other hand the literal node —Sa
in the same clause node as +Se i s related to both <F , Axl AAX2 AAX3, AX3, Sx> and
< F , Ax1 A AX2A AX3, AX3, Sy> .

According to Eisinger in [Ei88], a resolution proof can be generated by
repeatedly choosing a maximal link (with respect to the nesting order &) and
performing the appropriate resolution step. Starting with link H the following
resolution proof is constructed:

C3,4 & C3 ,1 : add R1 : {—Sx,—Sy,—Pxiyz,—Sy',—Pziy'z'‚+Sz'}

R1, l & C4,1: add R2 : {—Sy,—Paiyz,-—Sy',—Pziy'z'‚+Sz']
R2,1 & C4 ,1 : add R3 : {—Paiaz‚—Sy'‚—Pziy'z',+Sz'}

R3,2 & C4,1: add R4: {—Paiaz‚—Pziaz',+Sz'}
R4,1 & C1,1: add R5 : {—Peiaz',+Sz'}
R5‚1 & C2,1: add R6 : {+Sia}
R6‚1 & C5,1: add R7 : D

Only the first resolution step i s required by Eisinger’s method, all the other steps
can be done in any order, so the refutation graph does not only represent a single
resolution proof but a whole class of resolution proofs differing in the order of the
resolution steps.

At this point we want to prove two technical lemmata regarding clause graphs
and their relation to formulae. In the first lemma below the link structure of the graph
is of no importance, so it can also be seen as a property of clause sets where the
relation A is transcribed in the obvious way.

2.5-6 Lemma: (literal removal)

Let F and G be two formulae in Skolem normal form. Let F be a clause graph
representin g FVG and A a clause graph relation for FVG and F.

Then the graph I" constructed from F by removing all the literal nodes related
only to atom occurrences in Qa(<FvG, G>) is a clause graph representing F.

1": r— (A(Qa(<FvG, G>))\A(Qa(<FvG, F>)))

1 We denote by Ax] the formula Vu Puiue, by Ax2 the formula Vw Peww , and by Ax3 the
formula n2 Sx A Sy A Pxiyz => Sz.

23 Logical Calculi and Proof Representations

Proof: The proof is conducted by induction on the rank of the fonnula G.

If r(G) = 0, G is a literal Land C(G) = {{L} }. Then r represents the clause set

S = C(FvG) = C(F) x {{L}} = {C U {L} ICe C(F)}. All the clause nodes in r must

have a parent clause in S. After removing all the literal nodes stemming only from L, ,
all the clause nodes have a parent in C(F), so r represents F.

If r(G) = n > 0, we consider first the case where G is a conjunction GlI\G2.

Then by definition C(FV(GlI\G2)) = C(F) X C(GlI\G2) = C(F) x (C(Gl) UC(G2)'

By the law of distributivity this equals (C(F) x C(Gl») U (C(F) x C(G2))

= C(FvG1) U C(FvG2). Every clause node in r must have a parent clause in this

clause set. From the graph we must then remove the literal nodes in

~(Qa«FvG, G»)\~(QaC<FvG,F»)

= (~(Qa«FvG, G, Gl») u~(Qa«FvG,G, G2»))\~(Qa«FvG,F»)

= (~(Qa«FvG, G, Gl>))\~(Qa«FvG,F»)) u

(~(Qa«FvG, G, G2»)\L\(Qa«FvG, F»)).

We can now simply remove ~(Qa«FvG,G,Gl>))\~(Qa«FvG,F>)) from

the subgraph whose parent clauses are in C(FvGl), as the rest of the graph cannot

contain any of these literal nodes. The resulting clause graph represents C(F) by

induction hypothesis, for r(Gl) < r(G). The same argument applies to the removal of

~(Qa(<F vG, G, G2»)\~(QaC<F vG, F») from the subgraph whose parent clauses

are in C(FvG2)'

If G=G1vG2 is a disjunction, then C(FV(G1vG2)) =C(F)XC(GlvG2)

= C(F) X(C(Gl) x C (G2)) = (C(F) x C(Gl)) x C (G 2) = C(FvGl) x C (G2)' An

argument similar to the previous case allows us to remove

~(Qa«FvG,G,Gl>))\~(Qa«FvG,F>))from the subgraph of r representing

C(FvGl) before computing the cross-product. The remaining clause graph represents

C(F) x C(G2) = C(FvG2) by induction hypothesis. From this graph we must remove

~(QaC<F vG, G, G2») \L\(QaC<F vG, F>)), and another application of the

induction hypothesis leads to a graph representing C(F). •

Previously Shostak [Sh79] has mentioned that there are unsatisfiable ground

clause sets, for which every refutation graph contains at least one of its clauses twice.

But in this case one can always inhibit the duplication of any specific clause.

Logical Calculi and Proof Representations 2 3

mt: The proof i s conducted by induction on the rank of the formula G.

Ifr(G) = 0, G is a literal L and C(G) = {{L} }. Then I‘ represents the clause set
S = C(FVG) =C(F) x { {L} } = {CU {L} ICE C(F)}. All the clause nodes in F must
have a parent clause in S. After removing all the literal nodes stemming only from L,
all the clause nodes have a parent in C(F), so 1" represents F.

If r(G) = n > 0, we consider first the case where G i s a conjunction GlAGz.
Then by definition C(FV(G1AG2)) = C(F) x C(GlAGz) = C(F) X (C(G1) UC(G2)).
By the law of distributivity this equals (C(F) xC(G1)) U(C(F) X C(62))
= C(FVGl) UC(FVG2). Every clause node in 1" must have a parent clause in this
clause set. From the graph we must then remove the literal nodes in

A(Qa(<F V G, G>))\A(Qa(<F V G , F>))
(A(Qa(<F v G, G , G1>)) U A(Q„(<F V G , G , G2>)))\A(Qa(<F v G , F>))
(A(Qa(<F V G , G , G1>))\A(Qa(<F v G, F>))) U
(A(Qa(<F V G , G , G2>)) \A(Qa(<F V G , F>))) .

We can now simply remove A(Qa(<FVG, G,G1>)) \A(Qa(<FVG,F>)) from
the subgraph whose parent clauses are in C(FVGl), as the rest of the graph cannot
contain any of these literal nodes. The resulting clause graph represents C(F) by
induction hypothesis, for r(Gl) < r(G). The same argument applies to the removal of
A(Qa(<F VG , G , G2>))\A(Qa(<F VG , F>)) from the subgraph whose parent clauses
are in C(FVGz).

If G=G1VG2 i s a disjunction, then C(FV(G1VG2)) = C(F)xC(G1VG2)
= C(F)>< (C(G1)>< C (G 2)) = (C(F) x C(G1)) x C (G 2) = C(FVG1)X C (G2) . An
argument s imi la r to the p rev ious ca se a l l ows us t o r emove
A(Qa(<F VG,G,G1>)) \A(Qa(<FVG,F>)) from the subgraph of F representing
C(FVG1) before computing the cross-product. The remaining clause graph represents
C(F) x C(Gz) = C(FVGz) by induction hypothesis. From this graph we must remove
A(Qa(<F VG , G , G2>))\A(Qa(<F VG , F>)) , and another application of the
induction hypothesis leads to a graph representing C(F). I

Previously Shostak [Sh79] has mentioned that there are unsatisfiable ground
clause sets, for which every refutation graph contains at least one of its clauses twice.
But in this case one can always inhibit the duplication of any specific clause.

24 Transformation and Structuring of Computer Generated Proofs

2.5-7 Lemma: (choose clause not to duplicate)

For every unsatisfiable ground clause set S containing a clause C, one can

construct a refutation graph r which contains C only once.

Proof: Let C= {Ll ~ ... Lnl, and let S'= S \ {Cl. Then Si =S'u {[LiJ} is

also unsatisfiable. For this clause set there exists a refutation graph using [~] only

once, for otherwise the copies of [~] could be combined using a branching link. This

holds for all i. We now construct a refutation graph for S by combining all the

refutation graphs for Si so that all the single graphs are only connected via C, which

by construction appears only once. _

2.6 Natural Deduction Proofs

In 1933, Gerhard Gentzen developed a formal system for mathematical proofs

with the intention to describe as closely as possible the actual logical inferences used

in mathematical proofs. To quote from [Ge35]:

der moglichst genau das richtige logische Schliefien bei
mathematischen Beweisen wiedergibt

The main difference between these natural deduction proofs (NDPs) and proofs

in the earlier axiomatic systems by Frege, Russell, and Hilbert is that inferences are

drawn from assumptions rather than from axioms.

Prawitz describes such systems of natural deduction in [Pr65]:

The inference rules of the systems of natural deduction
correspond closely to procedures common in intuitive
reasoning, and when informal proofs - such as are
encountered in mathematics for example - are formalized
within these systems, the main structure of the informal
proofs can often be preserved.

We use a linearized form of Gentzen' s calculus NK, where the dependencies

between formulae are explicitly included as justifications, and where for every

formula we give the set of assumption formulae it depends on. The actual form of the

proof lines is taken from Andrews [An80], but they differ only in their syntax from

Gentzen's rule system for NK in [Ge35].

2 4 Transformation and Structuring of Computer Generated Proofs

2.5-7 Lemma: (choose clause not to duplicate)

For every unsatisfiable ground clause set S containing a clause C, one can
construct a refutation graph P which contains C only once.

m Let c = {L1 L2 Ln}, and let S'=S\{C}. Then si=s’u {[Li]} is
also unsatisfiable. For this clause set there exists a refutation graph using [Li] only
once, for otherwise the copies of [Li] could be combined using a branching link. This

holds for all i. We now construct a refutation graph for S by combining all the
refutation graphs for Si so that all the single graphs are only connected via C, which
by construction appears only once. I

2 .6 Natural Deduction Proofs

In 1933, Gerhard Gentzen developed a formal system for mathematical proofs
with the intention to describe as closely as possible the actual logical inferences used
in mathematical proofs. To quote from [Ge35]:

der möglit genau das richtige logische Schließen bei
mathematischen Beweisen wiedergibt

The main difference between these natural deduction proofs (NDPs) and proofs
in the earlier axiomatic systems by Frege, Russell, and Hilbert is that inferences are
drawn from assumptions rather than from axioms.

Prawitz describes such systems of natural deduction in [Pr65]:

The inference rules of the systems of natural deduction
correspond closely to procedures common in intuitive
reasoning, and when informal proofs — such as are
encountered in mathematics for example — are formalized
within these systems, the main structure of the informal
proofs can often be preserved.

We use a linearized form of Gentzen’s calculus NK, where the dependencies

between formulae are explicitly included a s justifications, and where for every
formula we give the set of assumption formulae it depends on. The actual form of the
proof lines i s taken from Andrews [An80], but they differ only in their syntax from
Gentzen’s rule system for NK in [Ge35].

25 Logical Calculi and Proof Representations

2.6-1 Definition: (Natural Deduction Proof)

A natural deduction proof line consists of

(a) a finite, possibly empty set of fonnulae, called the assumptions

(b) a single fonnula, called conclusion

(c) a justification.

A proof line with assumptions .,q, conclusion F and justification "Rule 9\" is

written {Jl t- F Rule 9\}. Sometimes comments are given to make the proof easier

to read; these comments are then written as if they were proof lines.

A finite sequence S of proof lines is a natural deduction derivation of a fonnula F

from assumptions 5t, if

(a) F is the conclusion of the last line of S,

(13) Jl is the set of assumptions of this last line, and

(y) every line in S is correctly justified by one of the rules given in 2.6-2.

A proof line A= {Jlt- F Rule 9\} within a sequence of proof lines is correctly

justified iff .,q t- F matches the lower part of Rule 9\ and there are proof lines before

A in the sequence matching the upper part of Rule 9t

A finite sequence S of proof lines is a natural deduction proofof a fonnula F if it

is a natural deduction derivation of F from an empty set of assumptions.

2.6-2 Rules of the Natural Deduction System:

In the following defmition of the rules of the natural deduction calculus the letters

F, G, and H represent fonnulae and Jl represents a finite set of fonnulae.

Assumption Rule (Ass):
.,q, F t- F

This rule introduces a new assumption. For the intuitionistic calculus NI it replaces
the axioms of other calculi. To obtain the full power of classical logic one needs to
add an additional axiomatic rule, the law of the excluded middle:

Tertiam non datur (Axiom):
.,q t- Fv---, F

The following rules are introduction and elimination rules for the various logical

connectives. Only the rule of contradiction does not fit into this scheme.

Logical Calculi and Proof Representations 2 5

2.6-1 Definition: (Natural Deduction Proof)

A natural deduction proof line consists of

(a) a finite, possibly empty set of formulae, called the assumptions

(b) a sin gle formula, called conclusian

(c) a justification.

A proof line with assumptions 2, conclusion F and justification “Rule 9?” is
written {54 +- F Rule 93 }. Sometimes comments are given to make the proof easier
to read; these comments are then written as if they were proof lines.

A finite sequence S of proof lines is a natural deduction derivation of a formula F
from assumptions 2, if

(at) F is the conclusion of the last line of S ,

(ß) fl i s the set of assumptions of this last line, and

(7) every line in S is correctly justified by one of the rules given in 2.6—2.

A proof line Ä: { Ä-l— F Rule 9i} within a sequence of proof lines is correctly
justified iff m—F matches the lower part of Rule ER and there are proof lines before
A. in the sequence matching the upper part of Rule SR.

A finite sequence S of proof lines is a natural deduction proof of a formula F if it
is a natural deduction derivation of F from an empty set of assumptions.

2.6-2 Rules of the Natural Deduction System:

In the following definition of the rules of the natural deduction calculus the letters
F, G, and H represent formulae and fll represents a finite set of formulae.

. : _
Assumption Rule (Ass) 54, F F F

This rule introduces a new assumption. For the intuitionistic calculus NI it replaces
the axioms of other calculi. To obtain the full power of classical logic one needs to
add an additional axiomatic rule, the law of the excluded middle:

Tertiam ngn datur gAxiom); . _—
Ä |- FV—l F

The following rules are introduction and elimination rules for the various logical
connectives. Only the rule of contradiction does not fit into this scheme.

26 Transfonnation and Stmcturing of Computer Generated

~, F I- G
Deduction Rule (=>1):

A f- F=>G

A I- F '13 f- F=>G
Modus Ponens (=>E):

A, '13 I- G

AND-Introduction (1\1):

AND-Elimination (I\E): and

Af-F Af-G
OR-Introduction (vI): and

51 f- FvG 5l. I- FvG

5l.,F f-.l.
NOT-Introduction (,I):

5l. 1-, F

~ I- ,-,F
Rule of Double Negation (,E):

AI-F

~I-F '13I-,F
Rule of Contradiction (Contra):

~, '13 I-.L

51l-FvG '13,FI-H C,GI-H
Rule of Cases (vE):

A, '13,' C I- H

5t I- Fc
Universal Generalization CVI):

51. I-V'x Fx

provided that c does not occu; in any of the assumption
formulae in J!, and Fc ={Xf--7c} Fx.

5t I- Ft
Existential Generalization (::Ill:

.J! r::JX Fx

where Ft ={Xf--7t }Fx.

26 Transformation and Structuring of Computer Generated Proof

fl ,F+—G
' :_D_e£1uctlgn Rule (31) E F F: G

d P E 1 f -F ß +-F=>G: ‚__—___J—i—(ä—LM"°“ “S ‚m; ;— G

fi l l -F ß r -G
AW **—54,13 l—FAG

fl i—FAG % FPAG_ __AND Elimination {AB}, ‚q ‚_ F and 2 ‚_ G

R - 521 |- F d 54 +— G_ . , __ ___.
MMI-D“ % l—FVG “1 ‚q I—FVG

NOTI odgg (D ———'q'FH"
- . :mr non —« ‚q l——1F

R l fD N . Ä l—°-r—|F
g g b]; g (—-.): _u o u e atlon E 54 +- F

fl l—F {B I—fiF. . :Rule of Congdlctlgn (Conga) 54, 93 +- L

R1 fC E flh—FVG {B ,F l—H c ,G}-H
u ° ses V mam—H

flH—Fc
Universal ngmliz Lion (V1): ___—'

a Fl l -Vx Fx

provided that c does not es:“: : in any of the assumption
formulae in :4, and PC = { XHC}FX.

awe
Existential Generalization (31): “‘—

fl. i— 3 x F x
where Ft = { x1—>t}Fx.

27 Logical Calculi and Proof Representations

JiI I- V'x Fx
Universal Instantiation (V'B):

jl t- Ft

where Ft= {xl-7t}Fx.

JiII-:lxFx 13,FcI-G
Rule of Choice (:lE): JiI,13 t- G

provided that Fe = {Xl-7c} Fx and c does neither occur in G,
nor in :lx Fx, nor in any of the assumption formulae in JiI.

2.6-3 ~xaxnple: (Natural Deduction Proof)

As an example let us prove that (V'x .,Px) ~ .,(:ly Py). Note that no axiom is

introduced, so this formula is also valid in intuitionistic logic.

(1) 1 I- V'x .,Px Ass

(2) 2 I- Pa Ass

(3) 3 1 :ly Py Ass

(4) 1 1 .,Pa V'E(I)

(5) 1, 2 1 .L Contra(2,4)

(6) 1, 3 1 .1. :lE(3,5)

(7) 1 I .,:ly Py .,1(6)

(8) 1 (V'x -,Px) => .,(3y Py) =>1(7)

The proof lines have numbers, which are used for two purposes:

(a)	 in the justification, to indicate which other lines a given line depends on, and

(b)	 to abbreviate an assumption formula; a number in the place of an assumption

fOlTImla stands for the formula introduced by the assumption rule in the line

with this number.

Note that the reasoning is done exclusively with the conclusion formulae, while

the assumptions are only carried along to emphasize the interdependencies between

the formulae. This is characteristic of Gentzen's natural deduction system NK,

whereas the calculi of sequents, as for example Gentzen's LK, also change the

formulae of the antecedent.

Logical Calculi and Proof Representations 2 7

_ __ fi l l -Vx
1vr I sn rnVE. _——fl |—Ft

where F t : (xr—>t}Fx.

fl l—Eix Fx $,Fc *- G
fl , (B +- G

provided that Fc = {xrec}Fx and c does neither occur in G,
nor in Ex Fx, nor in any of the assumption formulae in fl.

Rul f ic E ‘

2.6-3 Example: (Natural Deduction Proof)

As an example let us prove that (Vx -.Px) => —|(3y Py). Note that no axiom is
introduced, so this formula is also Valid in intuitionistic logic.

(1) l _ +— Vx —1Px Ass
(2) 2 l— Pa Ass
(3) 3 l— Hy Py Ass
(4) 1 I— —1Pa VE(1)
(5) 1, 2 |— .L Contra(2,4)
(6) 1, 3 |— .L 3E(3,5)
(7) 1 +— —Eiy Py —.I(6)
(8) !- (Vx —IPX) => —.(3y Py) =>I(7)

The proof lines have numbers, which are used for two purposes:

(a) in the justification, to indicate which other lines a given line depends on, and

(b) to abbreviate an assumption formula; a number in the place of an assumption
formula stands for the formula introduced by the assumption rule in the line
with this number.

Note that the reasoning i s done exclusively with the conclusion formulae, while

the assumptions are only carried along to emphasize the interdependencies between
the formulae. This is characteristic of Gentzen’s natural deduction system NK,
whereas the calculi of sequents, as for example Gentzen’s LK, also change the
formulae of the antecedent.

28 Transformation and Structuring of Computer Generated Proofs

2.7 Derived Natural Deduction Rules

Gentzen chose his original set of natural deduction inference rules for its

systematic introduction and elimination of the logical connectives. It is very cumber

some, though, to do proofs using only these rules. Therefore, we will introduce a

number of derived rules in this section, which will facilitate some often recurring

proof processes.

.9l 1 f-F 1 ., . .9ln f-F n
Rule of PrCWositional Calculus (Tau):

.9l 1 , ... , .9ln f- G

provided that F1 /\ ... /\ Fn ::::> G is a tautology.

This rule substitutes any reasoning that can entirely be done in propositional

logic. It is, however, not meant to hide complicated proof sequences, but to shorten

many obvious derivations, as for instance in the example below:

2.7-1 ~~ple: (Rule of Propositional calculus)

In order to prove that (FvG) follows from (-.F::::>G) one would have to go

through the following derivation

(a) .9l I -.F::::>G Rule 9\

(f3) 5l 1 Fv-.F Axiom

Case 1:

(y) 5l, F I F Ass

(8) 5l, F 1 FvG vI(y)

Case 2:

(c) .9l,-.F 1 -.F Ass

(~) .9l,-.F 1 G ::::>E(a,c)

(11) .9l,-.F 1 FvG vI(~)

End of Cases(1.2)
I,~)\ '4

; i- FvG vE(f3,8,n)

•

2 8 Transformation and Structuring of Computer Generated Proofs

2 .7 Derived Natural Deduction Rules

Gentzen chose his original set of natural deduction inference rules for its
systematic introduction and elimination of the logical connectives. It is very cumber—
some, though, to do proofs using only these rules. Therefore, we will introduce a
number of derived rules in this section, which will facilitate some often recurring

proof processes.

fi l l l -F l . . . Änl -Fn

Alp“ , flnl - G
provided that F1 A.../\ Fn=$Gis atautology.

Rul si ion u T

This rule substitutes any reasoning that can entirely be done in propositional
logic. It is, however, not meant to hide complicated proof sequences, but to shorten
many obvious derivations, as for instance in the example below:

2 .7 -1 Example: (Rule of Propositional Calculus]

In order to prove that (FvG) follows from (—-.F=>G) one would have to go
through the following derivation

(oz) H I— —.F=>G RuleSI
(ß) 2 |— Fv—‘F Axiom

Case 1°
(7) fit, F I- F Ass
(ö) 2,1? |- FvG vIW)

Case 2:
(8) flmF |— —.F Ass

(C) 51,—.F I— G =>E(oc,e)
(n) ‚q,—1F |— FvG vI(C)

End f 12
('Ö) ‚9! +— FVG vE(ß,ö,n)

O

29 Logical Calculi and Proof Representations

The rule below handles negation in connection with quantifiers. Similar to the

rule of propositional calculus it leads to considerably shorter proofs. A natural

deduction proof of -(:3x H) from (Vx ...,H) is shown in example 3.2-2. The other

pairs can be shown to be valid by similar proofs.

jIl-F

Negation Rule (Neg):

5ll-G

where F equals ...,(Vx H), ...,(3x H), Vx ...,H, or 3x ...,H,

and G equals ::Ix ...,H, Vx ...,H, ...,(3x H), or ...,(Vx H),

respectively.

Another often recurring proof scheme is the isolation of a universally quantified

formula from a conjunction by means of the A-Elimination followed by a subsequent

instantiation, especially if the axioms of a problem are formulated as the conjunction

of a set of single axiom formulae. Similarly an instantiation of a universally quantified

formula can be coupled to an A-Elimination, mainly if only one of the subterms is

needed in this instance. Therefore we state the rules

jI I- FA Vx Gx AH

AND-Instantiation (AVB):
 jI I- Gt

where Gt= {Xl-+t}Gx.

jI I- V x (Fx AGx) jI I- V x (Fx AGx)
Instantiation-AND (VAB): andjI I- Ft jI I- Gt

where Ft = {X1-+ t} Fx and Gt= {Xl-+t}Gx.

If a universally quantified formula is part of a disjunction it cannot be instantiated

with the current set of natural deduction rules. Instead, a proof by case analysis has to

be performed even if the desired result would follow from the instantiated disjunction

by simple propositional reasoning. This can be remedied by allowing rule

jI I- F v Vx Gx v H

OR-Instantiation (vVB):

jI I- FvGtvH

where Gt= {Xl-+t}Gx.

Logical Calculi and Proof Representations 2 9

The rule below handles negation in connection with quantifiers. Similar to the
rule of propositional calculus it leads to considerably shorter proofs. A natural
deduction proof of —1(3x H) from (Vx —1H) i s shown in example 3.2-2. The other
pairs can be shown to be valid by similar proofs.

_ 54 |— F
Negatton Rule (Meg): 2 F G

where F equals —.(Vx H), fiGlx H), VX —.H, or Elx —.H‚
and G equals 3x ——.H, Vx fiH, —.(E!x H), or fi(Vx H),
respectively.

Another often recurring proof scheme is the isolation of a universally quantified
formula from a conjunction by means of the A-Elimination followed by a subsequent
instantiation, especially if the axioms of a problem are formulated as the conjunction
of a set of single axiom formulae. Similarly an instantiation of a universally quantified
formula can be coupled to an A-Elimination, mainly if only one of the subterms i s
needed in this instance. Therefore we state the rules

fll +- F A Vx Gx A H
AND-Instantjation (AVE): __ fl l—Gt

where Gt= {xv—>t}Gx.

_ _ AND E % I -Vx (FXAGX) d fit l-VX(FXAGX)
Instanttatlon- A . _——x I- F t an ___-2 +- Gt

whereFt={xr->t}Fx and Gt={xr—>t}Gx.

If a universally quantified formula is part of a disjunction it cannot be instantiated
with the current set of natural deduction rules. Instead, a proof by case analysis has to
be performed even if the desired result would follow from the instantiated disjunction
by simple propositional reasoning. This can be remedied by allowing rule

A l— FvvH
LR-I Ltall' ' ; VE):

n “anon V fi l l -FVGtVH
where Gt = {XI—>t}Gx.

31 PToofTransfonnation

3 The Transformation of
Refutation Graphs into

Natural Deduction Proofs

The construction of natural deduction proofs (NDPs), by humans and computers

alike, is conducted in single steps. To prove any valid formula F one always starts

with a line {t- F}. Such a line is obviously no proof, because it is not correctly

justified. Now the proof is constructed by deriving subgoals until the proof is

completed. In the intermediate states, called proof outlines by Andrews in [An80],

one may find completed subproofs, but also others that are not yet done. To formalize
the procedure of the search for such a natural deduction proof, we introduce the

notion of Generalized Natural Deduction Proofs.

3.1 Definitions

3.1-1 Definition: (Generalized Natural Deduction Proof)

A finite sequence S of proof lines is called a Generalized Natural Deduction

Proof(GNDP) of a formula F, if

(i)	 F is the conclusion of the last line of S,

(ii)	 the last line of S has no assumptions, and

(ill)	 every line is either justified by a rule of the calculus (see 2.4-1), or

it is justified by a proof (possibly in a different calculus) of its

conclusion from its assumptions.

This allows lines not correctly justified within the calculus, but it is assumed that

these lines are "sound", in the sense that the formula (J\assumptions => conclusion)

is valid. Such lines are called external lines, lines justified within the calculus are

called internal. When no external lines are present in a GNDP, it is a normal NDP.

A GNDP consisting of just one line, which is an external line without

assumptions and with conclusion F, is called the trivial GNDP for F.

3.1-2 Example: (Generalized NDP)

In this example we give one possible generalized NDP for the formula

F = (Vu Puiue) 1\ (Vw Peww) 1\ (Vxyz Sx 1\ Sy 1\ Pxiyz => Sz) => (Vx S x => Six), with

a constant symbol e and a unary function symbol i. This is a formulation of part of
the subgroup criterion:

Proof Transformation 3 1

3 The Transformation of
Refutation Graphs into

Natural Deduction Proofs

The construction of natural deduction proofs (NDPs), by humans and computers

alike, is conducted in single steps. To prove any valid formula F one always starts
with a line { +- F}. Such a line i s obviously no proof, because it is not correctly
justified. Now the proof is constructed by deriving subgoals until the proof is
completed. In the intermediate states, called proof outlines by Andrews in [An80],
one may find completed subproofs, but also others that are not yet done. To formalize
the procedure of the search for such a natural deduction proof, we introduce the
notion of Generalized Natural Deduction Proofs.

3 .1 Definitions

3. 1-1 Definition: (Generalized Natural Deduction Proof)

A finite sequence S of proof lines i s called a Generalized Natural Deduction
Proof (GNDP) of a formula F, if

(i) F is the conclusion of the last line of S ,

(ii) the last line of S has no assumptions, and

(iii) every line is either justified by a rule of the calculus (see 2.4-1), or
it is justified by a proof (possibly in a different calculus) of its
conclusion from its assumptions.

This allows lines not correctly justified within the calculus, but it is assumed that
these lines are “sound”, in the sense that the formula (Aassumptions => conclusion)
is valid. Such lines are called external lines, lines justified Within the calculus are
called internal. When no external lines are present in a GNDP, it is a normal NDP.

A GNDP consisting of just one line, which i s an external l ine without
assumptions and with conclusion F, i s called the trivial GNDP for F.

3 .1 -2 Example: (Generalized NDP)

In this example we give one possible generalized NDP for the formula
F = (Vu Puiue) A (VW Peww) A (ni Sx A Sy A Pxiyz => Sz) = (Vx S x => Six), with
a constant symbol e and a unary function symbol i. This is a formulation of part of
the subgroup criterion:

32 Transfonnation and Structuring of Computer Generated Proofs

Let G be a group, sea; iflor all x,y in S, ylox is also in
S, then for every x in S its inverse is also in S.

(1) 1 f- (V'uPuiue) /\ (\7'wPeww) /\ (\7'xyz Sx/\ Sy /\ Pxiyz => Sz) Ass

Let a be an arbitrary constant

(2) 2 f-	 Sa Ass

(3) 1, 2 f-	 Sia 1t

(4) 1 f-	 Sa => Sia =>1(3)

(5) 1 f-	 V'x Sx => Six V'1(4)

(6)	 f- (V'uPuiue)/\(V'wPeww)/\(V'xyz Sx/\ Sy /\ Pxiyz => Sz)

=> (\7'x Sx => Six) =>1(5)

For a proof of 1t see the refutation graph in example 2.5-5.

In the following we always assume that for a refutation graph r proving a

formula <p we know a clause graph relation ~ ~ Qa(<p) x N establishing a clear

connection between the formula cp and the literal nodes of the refutation graph. When

the proof is automatically generated by a computer, this relation has to be computed

during the process of transforming <p into clause form and must be maintained

throughout the search for the proof.

Whenever new formulae are introduced during the process of proof transfor

mation, that are not subformulae of the original formula, one must make sure that its

relation to the literal nodes of r can be computed. To achieve this, the new formulae

must be anchored in cp.

3.1-3 Definition: (anchored formulae)

Two formula occurrences (J)q> and 00'" within formulae cp and 'If share a tail, if the

two sequences coincide in their last m elements, m~1.

A formula 'If is anchored in a formula cp, if all the atom occurrences within 'If

share a tail with an atom occurrence within <p, i.e. for every oo"'E Qa(\jf) there is a

formula occurrence ooq>E Qa(<P) such that oo'l' and oo<P share a taiL An anchorage is

described as a function v: Qa('If)~Qa(CP) that maps atom occurrences to atom

occurrences.

3 2 Transformation and Structuring of Computer Generated Proofs

Let G be a group, SgG; iffor all x‚y in S, y'1 ox is also in
S, then for every x in S its inverse is also in S.

(1) 1 }- (V uPuiue) .A (VwPeww) A (nz SXA Sy A Pxiyz = 82) Ass
Let a be an arbitrary constant

(2) 2 l— Sa Ass

(3) 1, 2 l— Sia n:
(4) 1 }— Sa = Sia =I(3)
(5) 1 l- Vx Sx = Six VI(4)
(6) I— (V uPuiue)A(VwPeww)/\(Vxyz SXA Sy A Pxiyz = Sz)

=> (Vx Sx => Six) =>I(5)

For a proof of a: see the refutation graph in example 2.5-5.

In the following we always assume that for a refutation graph l" proving a
formula (p we know a clause graph relation A;9a(<p)><N establishing a clear
connection between the formula (p and the literal nodes of the refutation graph. When
the proof i s automatically generated by a computer, this relation has to be computed
during the process of transforming (p into clause form and must be maintained
throughout the search for the proof.

Whenever new formulae are introduced during the process of proof transfor—
mation, that are not subforrnulae of the original formula, one must make sure that its
relation to the literal nodes of I‘ can be computed. To achieve this, the new formulae
must be anchored in (p.

3 .1 -3 Definition: (anchored formulae)

Two formula occurrences 03‘” and („W within formulae (p and \y share a tail, if the
two sequences coincide in their last m elements, m21.

(0‘9: <(p’ $1 , " " ‘Pn ’ (p l , " " ¢m>

of”: <\|I, w], Wk,q>1 ,<pm>

A formula \V is anchored in a formula (p, if all the atom occurrences within 1;;
share a tail with an atom occurrence within (p, i.e. for every (owe (230]!) there is a
formula occurrence (0‘96 (23((p) such that w‘" and (D‘? share a tail. An anchorage is
described as a function v : Qa(\y)-—>Qa(q>) that maps atom occurrences to atom
occurrences. |

33 Proof Transformation

3.1-4 Definition: (basis of a formula)

The set a(ro) = {ffiaE Q a(<p) I roa::) ro} of atom occurrences under a common

formula occurrence ro E Q(<p) is called the atomic closure of ro.

A set {rol""'ron} is said to span <p if Oa(<P) = Ur=l a(roj). A spanning set is

called a basis of <p if it contains no pair of formula occurrences roi, roj with roi => roj

3.1-5 Lemma: (anchored if tails are shared for a basis)

Let <p and", be formulae and {ro'i, ... , ffi~}cQ(",) a basis of",. Then", is

anchored in <P if for all ro{' there is a formula occurrence O\~E Q(<p) which shares a tail
°th 'l'WI ~. •

3.1-6 Definition: (Polarization of Clause Nodes)

Given a refutation graph r justifying an external line a of a GNDP with

assumptions Ai, conclusion F, and a clause graph relation ~, relating all the literal

nodes of r to atom occurrences within <p: = All\. A21\. ... I\. An =:} F. Then a clause

node is positively polarized if all of its literal nodes are related to atom occurrences

which are specializations of <<p, All\. A21\. .•. I\. An>. Otherwise the clause node is said

to be negatively polarized.

If a refutation graph is drawn and the polarization of its clause nodes must be

emphasized, then a negatively polarized clause node is drawn with a double box as in

3.2 Basic Set of Transformation Rules

In order to find a natural deduction proof of a formula F, a finite sequence of

generalized NDPs can be constructed whose first element is the trivial GNDP for P,

and whose last element is a natural deduction proof of F. To be able to generate such

a sequence of GNDPs it is necessary to describe the rules by which a GNDP is

constructed from its predecessor in the sequence. In the following example such a

sequence is shown for the NDP of the valid formula (\;fx Px =:} Qx) I\. Pa =:}::Iy Qy.

This example should shed some light on the nature of the transition rules.

Proof Transformation 3 3

3 .1 -4 Definition: (basis of a formula)

The set 0t((u) = {(Dae 93((p) I 03a: 00} of atom occurrences under a common

formula occurrence 0) e Q(<p) i s called the atomic closure of 03.

A set {m1,...,(on} is said to span (p if Qa((p)=U?=1a(coi). A spanning set i s
called a basis of (p if i t contains no pair of formula occurrences mi, coj with mi 3 (Dj.

3 .1 -5 Lemma: (anchored if tails are shared for a basis)

Let (p and ‘V be formulae and {a)‘f, ml ,}gQW) a basis of \|l. Then w is
anchored in (p if for all (or, there is a formula occurrence (0:95 (2(4)) which shares a tail
with m‘f’. o
3 .1 -6 Definition: (Polarization of Clause Nodes)

Given a refutation graph I‘ justifying an external line on of a GNDP with
assumptions Ai, conclusion F, and a clause graph relation A, relating all the literal

nodes of I‘ to atom occurrences within (p : =A1A A2A AAn=>F. Then a clause

node is positively polarized if all of its literal nodes are related to atom occurrences
which are specializations of <q), A1/\ A2/\ AAn>. Otherwise the clause node is said
to be negatively polarized.

If a refutation graph is drawn and the polarization of its clause nodes must be
emphasized, then a negatively polarized clause node is drawn with a double box as in

m—nam—[ä

3.2 Basic Set of Transformation Rules

In order to find a natural deduction proof of a formula F, a finite sequence of
generalized NDPs can be constructed whose first element is the trivial GNDP for F,
and whose last element is a natural deduction proof of F. To be able to generate such
a sequence of GNDPs it i s necessary to describe the rules by which a GNDP i s
constructed from its predecessor in the sequence. In the following example such a
sequence i s shown for the NDP of the valid formula (Vx Px => Qx) A Pa = Ely Qy.
This example should shed some light on the nature of the transition rules.

34 Transfonnation and Structuring of Computer Generated Proofs

3.2-1 Example: (Proof Transformation)

We start with the trivial GNDP for the fonnula to be shown. During this example

it is assumed that the proofs 1ti are always known.

GNDP 1:

(7) f- (Vx Px ~ Qx) 1\ Pa ~ 3y Qy 1t1

To prove this implication, we are entitled to assume its left hand side. The proof

of the right hand side together with the deduction rule will then complete the proof..

GNDP2:

(1) 1

(6) 1

(7)

f (Vx Px ~ Qx) 1\ Pa

f 3y Qy

f (Vx Px ~ Qx) 1\ Pa ~ ::Jy Qy

Ass

1t2

~I(6)

To show the existence of Qy, a witness must be found.

GNDP3:

(1) 1 f- ('\Ix Px ~ Qx) 1\ Pa Ass

(5) 1 f- Qa 1t3

(6) 1 f- ::Jy Qy 31(5)

(7) f- ('<;fx Px ~ Qx) 1\ Pa ~ ::Jy Qy ~1(6)

Now a subformula containing Q is isolated from an internal formula by applying

propositional rules.

GNDP4:

(1) 1 f- ('\Ix Px ~ Qx) 1\ Pa Ass

(2) 1 f- ('\Ix Px ~ Qx) I\E(l)

(5) 1 f- Qa 1t4

(6) 1 f- 3yQy 31(5)

(7) f- ('\Ix Px v Qx) 1\ Pa ~ 3y Qy ~1(6)

The next step is to instantiate the universally quantified formula, such that Qa

appears in it.

3 4 Transformation and Structuring of Computer Generated Proofs

3.2-1 Example: (Proof Transformation]

We start with the trivial GNDP for the formula to be shown. During this example
it is assumed that the proofs ni are always known.

GNDP 1:
(7) l- (VxPx2Qx)APa2ElyQy 1:1

To prove this implication, we are entitled to assume its left hand side. The proof
of the right hand side together with the deduction rule will then complete the proof. .

Q_N_ DP 2:
(1) 1 +- (Vx Px 2Qx)APa Ass

(6) 1 i- 3)’ Qy 7‘2

(7) +- (Vx Px = Qx) A Pa 2 Ely Qy 21(6)

To show the existence of Qy, a witness must be found.

GNDE 3:
(1) 1 +- (Vx Px => Qx) A Pa Ass
(5) 1 +- Qa 1:3

(6) 1 +- 3y Qy 31(5)

(7) I- (Vx Px = Qx) A Pa = 3y Qy 21(6)

Now a subformula containing Q i s isolated from an internal formula by applying
propositional rules.

GNDP 4:
(1) 1 +- (‘v’x Px2Qx)APa Ass
(2) 1 l- (Vx Px = Qx) AE(1)
(5) 1 l- Qa n4
(6) 1 F 3y Qy 31(5)

(7) +- (Vx Px v Qx) A Pa = 3y Qy =I(6)

The next step is to instantiate the universally quantified formula, such that Qa
appears in it.

35 Proof Transfonnation

GNDP5:

(1) 1 I- ('Vx Px => Qx) 1\ Pa Ass

(2) 1 I- ('Vx Px => Qx) I\E(1)

(3) 1 I- Pa=>Qa 'VE(2)

(5) 1 I- Qa 1t5

(6) 1 I- 3yQy ::11(5)

(7) I- ('Vx Px => Qx) 1\ Pa => ::Iy Qy =>1(6)

Now Qa holds, if Pa can be shown.

GNDP6:

(1) 1 I- ('Vx Px => Qx) 1\ Pa Ass

(2) I I- ('Vx Px => Qx) I\E(1)

(3) I l- Pa => Qa 'VE(2)

(4) I l- Pa 1t6

(5) 1 I- Qa =>E(3,4)

(6) I I- 3yQy 31(5)

(7) I- ('Vx Px => Qx) 1\ Pa => 3y Qy =>1(6)

And Pa follows directly from (1) by I\-Elimination, which leads to the desired

natural deduction proof.

GNDP 7 CNDP):

(1) I I- ('Vx Px => Qx) 1\ Pa Ass

(2) 1 I- ('Vx Px => Qx) "E(1)

(3) 1 l- Pa=> Qa 'VE(2)

(4) 1 l- Pa "E(l)

(5) 1 I- Qa =>E(3,4)

(6) 1 I- 3yQy ::11(5)

(7) I- ('Vx Px => Qx) 1\ Pa => ::Iy Qy =>1(6)

There are three largely different groups of transformation rules. Rules of the first

group, external rules, insert a justification within the calculus for a previously

external line, and insert one or more external lines with different conclusion formulae.

It is in fact a form of backward reasoning, and internal lines are not affected.

Examples for this type are the transitions between GNDP1 and GNDP2 or between

GNDP2 and GNDP3

Proof Transformation

NDP ‘
(1) 1 I— (Vx Px => Qx) A Pa
(2) l I- (Vx Px => Qx)
(3) 1 I- Pa => Qa
(5) 1 I- Qa

(6) 1 I- 3? Qy
(7) I- (Vx Px => Qx) A Pa = Ely Qy

Now Qa holds, if Pa can be shown.

SiNDP 6:
(1) 1 |- (VxPx=>Qx) / \Pa
(2) 1 :— (vx Px => Qx) '
(3) 1 I- Pa => Qa
(4) 1 I— Pa
(5) 1 l- Qa
<6) 1 F Ey Qy
(7) |- (Vx Px => Qx) A Pa => 3y Qy

35

Ass

AE(1)
VE(2)

31(5)
=>I(6)

Ass
AE(1)
VE(2)

"6
=>E(3,4)

EII(5)
=>I(6)

And Pa follows directly from (1) by A—Elimination, which leads to the desired
natural deduction proof.

GNDP 7 NDP :
(1) 1 +- (Vx Px : Qx) A Pa
(2) 1 +- (Vx Px => Qx)
(3) 1 I- Pa => Qa
(4) 1 |— Pa
(5) 1 |— Qa

(6) 1 F Ey Qy
(7) l— (Vx Px => Qx) A Pa => Ely Qy

Ass
AE(1)
VE(2)
AE(1)

=>E(3,4)
3I(5)

=>I(6)

There are three largely different groups of transformation rules. Rules of the first
group, external rules, insert a justification within the calculus for a previously
external line, and insert one or more external lines with different conclusion formulae.
It i s in fact a form of backward reasoning, and internal lines are not affected.
Examples for this type are the transitions between GNDPI and GNDPZ or between
GNDP2 and GNDP3.

36 Transfonnation and Structuring of Computer Generated Proofs

For the second type, mixed rules, both internal and external lines are used to
change the GNDP. This type has been used in the construction of GNDP6 from

GNDPs. The conclusion formula of the externalline(s) remains unaltered, but the set

of assumption formulae is changed.

Rules of the third group, internal rules, only apply rules of the calculus to

internal lines, deducing further internal lines, but do not affect any external line. This

last type of rules uses axioms or previously proved formulae to derive new ones by

means of forward reasoning. This type of rules induces forward reasoning, either

simply in propositionallogic or for instance by computing instances of universally

quantified formulae.

In the following sections we shall give a formal account of these transition rules.

In their description, 5t is a list of assumption formulae, capital letters indicate single

formulae, small Greek letters are used as labels for the lines, the justification Rule 9\

stands for an arbitrary rule of the natural deduction calculus, and the justifications 1t,

1t', 1tI, and 1t2 represent proofs of the respective lines. For all these rules one must

make sure that the proofs 1t', 1tI, or 1t2 can be constructed from 1t or are otherwise

known. How this can be done if the proof is given in form of a refutation graph will

be shown later, when the automatic proof transformation procedure is described.

3.2-2 External Rules

The transformation rules are to be read as follows: the lines on the left hand side

of the arrow (~) ar~ replaced by those on the right hand side in the next generalized

NDP of the sequence.

{
EA:

(a) 5l r F 1tl
(y) 5l r F/\G 1t (J3) 5l" r G 1t2

(y) 5l r F/\G /\I(a,J3)

Ev1:	 (a) 5l,-,F r -,F Ass
(J3) 5l,-,F r G 1t'

(8) 5l I- FvG 1t	 5l i- -,F=:}G =:}I(p){
(~() 5l r FvG Tau(y)

E:::::> :

{ (a) 5l,F r F	 Ass
(y) 5l r F=:}G 1t	 (J3) 5l,F I- G 1t'

(y) 5l r F=:}G =:}I(J3)

3 6 Transformation and Structuring of Computer Generated Proofs

For the second type, mixed rules, both internal and external l ines are used to
change the GNDP. This type has been used in the construction of GNDP6 from
GNDP5. The conclusion formula of the external 1ine(s) remains unaltered, but the set
of assumption formulae is changed.

Rules of the third group, internal rules, only apply rules of the calculus to
internal lines, deducing further internal lines, but do not affect any external line. This
last type of rules uses axioms or previously proved formulae to derive new ones by
means of forward reasoning. This type of rules induces forward reasoning, either
simply in propositional logic or for instance by computing instances of universally
quantified formulae.

In the following sections we shall give a formal account of these transition rules.
In their description, 2 is a list of assumption formulae, capital letters indicate single
formulae, small Greek letters are used as labels for the lines, the justification Rule 9?

stands for an arbitrary rule of the natural deduction calculus, and the justifications TC,
tt', n l , and 7t2 represent proofs of the respective lines. For all these rules one must

make sure that the proofs 1t', n l , or 1:2 can be constructed from 1t or are otherwise

known. How this can be done if the proof is given in form of a refutation graph will
be shown later, when the automatic proof transformation procedure is described.

3 .2-2 External Rules

The transformation rules are to be read as follows: the lines on the left hand side
of the arrow (—+>) are replaced by those on the right hand side in the next generalized
NDP of the sequence.

EA:
(0t) Ä |" F 131

(y) fl +— FAG 1t —i> (ß) 2 ' »— G 1:2
(7) fit I- FAG AI(a,ß)

Evl : (or) ‚q, ~11: l- at: Ass
(ß) 2, —:F +- G 1t '

(ö) 91 r- FvG 1: —> (g) 2 i— —1F=>G =>I(ß)
() a ‚_ FvG Taum

E=>:
(or) fl , F |— F Ass

(7) ‚91 |- F=>G « —+ (ß) AF +- G 7t'
(7) A l— F=>G =>I(ß)

37 Proof Transformation

E'd:
{ Let c be an arbitrary constant

(~) .9l I- \ixFx 1t	 (a).9l I- Fc 1t'

(~).9l I- \ixFx \ilea)

c must be a "new" constant, not occurring in .9l or Fx.

E::J:

{(a) .9l I- -,\ix-,Fx 1t '

(~) .9l I- 3xFx 1t
(~) .9l I- 3xFx 3G(a)

E-,:

{(a) .9l,F l- F	 Ass
(y) .9l I- -,F 1t	 (~) 51,F I- ..L 1t'

(y) .9l I- -,F -,l(~)

All these external rules are sound in the sense that a GNDP is always trans

formed into a GNDP, i.e. if 1t exists, then the resulting proofs 1t' , 1tl, and 1tz (in any

correct calculus for first order logic) are guaranteed to exist as well.

3.2-3 Mixed Rules

M-Cases:

(a).9l I- FvG Rule 9t
}~

(~).9l I- H 1t

M-Choose:
(a) .9l I- 3xFx	 ~:o1e9\ }

(a).91 I- FvG Rule 9t
We consider separately the cases of (a)
Case 1:
(~) .9l, F I F Ass
(y) .9l, F I H 1t1
Case 2:
(0) 51, G I G Ass
(E) .9l, G I H 1t2
End of eases (l, 2) of (a)
(~).91 I H vE(a,y,E)

(a) .9l I- 3xFx Rule 9t
(~) 51,Fc I- Fe Ass

(0) .9l I- G	 51,Fc I- G 1t '(t
() .9l I- G 3E(a,y)1

e may not occur in .9l. Fx, or G.

Proof Transformation 37

EV:
Let c be an arbitrary constant

(ß) % |— Vx n —> (a) fit)- Fc 1t'
(B) il t— Vx VI(0t)

c must be a “new” constant, not occurring in 54 or Fx.

EEI:
(0t) Ä I— —IVX—1FX R'

(ß) 2 l— 3!x 11: _»

(ß) 2 I- 3x EIG(0t)

E—IZ
(a) fll, F &- F Ass

(y) fit I- _.F 1t —I> (ß) K, F }- .L n '
(y) it I- —1F —11(B)

All these external rules are sound in the sense that a GNDP i s always trans-
formed into a GNDP, i.e. if it exists, then the resulting proofs Tt', 1:1, and 1:2 (in any
correct calculus for first order logic) are guaranteed to exist as well.

3.2-3 Mixed Rules

M—Cases: (a) :2! l- FvG Rule‘fi
We consider separately the cases of ((x)
Case 1 :
(B) 54, F t- F Ass

(005! |— FvG RuleSI } (7) AF l— H n1
_» gage 2 :

(C) H |— H 1c (8) 51, G +- G Ass
(8) fit, G I— H 1:2
End of cases (1, 2) of (a)
(C) 2 F H vE(oc,Y,6)

M-Choose:
(a) A I— 3x Rule???

(a) 2 l- EIx Rule9i } (ß) JILFc l- Fc Ass
_»

(8) 31 |— G n (%) flLFc !— G 7c'
(> a + G 3E(oc,v)

c may not occur in fl, Fx, or G.

38 Transfonnation and Structuring of Computer Generated Proofs

3.2-4 Internal Rules

All of these deducing rules use internal lines and add a new internal line to the

generalized proof. Here the new lines are marked with an arrow, "----t", and written

below their parent lines. Rule 9\ can be any rule of the natural deduction calculus.

1.L: (a) 5l l- F Rule 9\
(p) 5l I- -,F Rule 9\'

----t ("'{) 5l I- .1. Contra(a,p)

IAleft: (a) 5l I- F/\G Rule 9\
----t (p) 5l l- F /\E(a)

IAright: (a) 5l I- F/\G Rule 9\
----t (p) 5l I- G /\E(a)

I==>: (a) 5l I- F=>G Rule 9\
----t (p) 5l I- -,FvG Tau(a)

1-,1\: (a) 5l I- -,(F /\ G) Rule 9\
----t (p) 5l I- -,F v-,G Tau(a)

I-,v: (a) 5l I- -,(F v G) Rule 9\
----t (13) 5l I- -,F /\-,G Tau(a)

I-,==>: (a) 5l I- -,(F => G) Rule 9\
----t (p) 5l l- F /\-,G Tau(a)

1-,-,: (a) 5l I- -,(-,F) Rule 9\
----t (p) 5l l- F -,E(a)

1-,'\7': (a) 5l I- -,(V'xFx) Rule 9\
----t (p) 5l I- ::3x(-,Fx) Neg(a)

1-,3: (a) 5l I- -,(::3xFx) Rule 9\
----t (p) 5l I- Vx(-,Fx) Neg(a)

1'\7': (a) 5l I- VxFx Rule 9\
----t (p) 5l Ft VE(a)

for an arbitrary term t.

-ן

3 8 Transformation and Structuring of Computer Generated Proofs

3.2-4 Internal Rules

All of these deducing rules use internal lines and add a new internal line to the
generalized proof. Here the new lines are marked with an arrow, “—v”, and written

below their parent lines. Rule SK can be any rule of the natural deduction calculus.

L; (a)
(B)

-> (Y)

IAleft: (cc)
—> (B)

IAright: (0c)
—> (B)

I=>: (on)
—+ (B)

I_I/\: (a)
—> (B)

I v : (a)
—> (B)

I—1=>: (a)
—> (B)

I—r—fl (a)

—> (B)

I—fiVI ((x)
_» (B)

1—3 : (a)

—+> (B)

m; (a)
—> (B)

for an arbitrary term t.

.‘f’l

%

fl

54

‚9!

54

|_

‘.

|_.

T

F
_.F

J.

FAG

FAG

G

F=>G

_IFVG

—|(F A G)

"1F V _IG

fiF A —1G

FA_IG

-—1(-1F)
F

—I(VXFX)

3x(—.Fx)

—-|(3x)

Vx(——.Fx)

Vx

Ft

Rule 93
Rule SR.

Contra(a,ß)

Rule 9?
AE(0L)

Rule 9?
AE((X)

Rule ER
Tau(0()

Rule 9?
Tau (a)

Rule SK
Tau(a)

Rule 9?
Tau(oz)

Rule 91
—1E(0L)

Rule SK
Neg(a)

Rule 9?
Neg(a)

Rule ER
VE(a)

39 Proof Transformation

3.2-5 Lemma: (Completeness of the Rule System)

If there exists an ND-derivation of a formula Fe <QOJ from assumptions

A1, A2, ... , An, then there is a finite sequence of GNDPs starting with

(al) Al 1- Al Ass

(a2) A2 1- A2 Ass

(an) An 1- An Ass

(00) Ab A2, ... , An I- F 1t

and ending with an ND-derivation for F, such that every element in the sequence

is derived from its predecessor by application of one of the transformation rules

above.

Proof: The proof is by induction on the rank of the formula to be derived.

We will first consider the case where r(F) = 0; this is the case if F is an atom or

the negation of an atom. In this case we have to use induction on the maximum rank

rmax of previously derived (or assumed) formulae that can still be needed in the proof.

Ifrmax =0, then F must be one of the previously derived (or assumed) formulae, in

which case the proposition holds trivially. Let rmax > 0 be the rank of the maximal

derived formula Gmax• We must then show that a rule can be applied such that rmax

decreases. If Gmax is a conjunction, IAleft and IAright can be applied and the proof

can be conducted using only the two resulting subformulae with strictly smaller rank.

If Gmax is a disjunction, M-Cases can be applied, and in both of the resulting

subproofs the disjunction is no longer needed, as one of its parts (with smaller rank)

is an assumption. If the top symbol of Gmax is a universal quantifier, I'v can be

applied as often as needed (finitely many times), and the proof can be conducted

using only the results obtained. All the results have strictly smaller rank. If the top

symbol of Gmax is an existential quantifier, M-Choose can be applied, thus adding an

extra assumption, but lowering the maximal rank. If Gmax is the negation of a

negation then 1-.-. removes two negations leading to an equivalent formula of smaller

rank; if Gmax is the negation of a composed formula the negation can be moved inside

by the appropriate variant of 1-. leading to an equivalent formula of equal rank that is

not an implication. Finally, if Gmax is an implication A=>B, it can be transformed into

-.AvB; now r(-.AvB) = l+max(r(-.A), r(B)) :::; 2+max(r(A), r(B)) < 3+max(r(A),

r(B)) =r(A=>B). This completes the base case of the induction.

Proof Transformation _ 3 9

3.2-5 Lemma: (Completeness of the Rule System)

If there exists an ND-derivation of a formula Fe @ from assumptions
A1, A2, . . . , An, then there i s a finite sequence of GNDPs starting with

((1.1) A1 I~ A1 Ass

(012) A2 |- A2 Ass

(an) An I- An Ass
(0)) A1, A2, . . . , An I- F 1:

and ending with an ND-derivation for F, such that every element in the sequence
is derived from its predecessor by application of one of the transformation rules
above.

Proof: The proof is by induction on the rank of the formula to be derived.

We will first consider the case where r(F) = 0; this i s the case if F i s an atom or

the negation of an atom. In this case we have to use induction on the maximum rank
rmax of previously derived (or assumed) formulae that can still be needed in the proof.
If rmax =0 , then F must be one of the previously derived (or assumed) formulae, in
which case the proposition holds trivially. Let rmx> 0 be the rank of the maximal
derived formula Gm“. We must then show that a rule can be applied such that rmax
decreases. If Gmax is a c0njunction, IAleft and IAI‘ight can be applied and the proof
can be conducted using only the two resulting subformulae with strictly smaller rank.
If Gmax i s a disjunction, M-Cases can be applied, and in both of the resulting
subproofs the disjunction is no longer needed, as one of its parts (with smaller rank)
i s an assumption. If the top symbol of Gmax is a universal quantifier, IV can be
applied as often as needed (finitely many times), and the proof can be conducted
using only the results obtained. All the results have strictly smaller rank. If the top
symbol of Gmax is an existential quantifier, M-Choose can be applied, thus adding an
eXtra assumption, but lowering the maximal rank. If Gmax i s the negation of a
negation then I—I—I removes two negations leading to an equivalent formula of smaller
rank; if Gmax is the negation of a composed formula the negation can be moved inside
by the appropriate variant of 1—. leading to an equivalent formula of equal rank that is
not an implication. Finally, if Gmax is an implication A=>B, it can be transformed into
-—.AvB; now r(—-.AVB) = 1+max(r(—wA), r(B)) S 2+max(r(A), r(B)) < 3+max(r(A),
r(B)) = r(A=>B). This completes the base case of the induction.

40 Transformation and Structuring of Computer Generated Proofs

If r(F) > 0, Then EA, Ev, E=>, EV, and E..., easily handle the cases where F is a

conjunction, a disjunction, an implication, a universal quantification, or a negation,

respectively. If the top symbol of F is an existential quantifier, E3 followed by E...,

does the job, after which.!. (FALSE) with rank °(a contradiction) has to be shown.

•
The completeness of the rule system for natural deduction proofs is now a simple

special case of lemma 3.2-5, where the set of assumptions is empty. Therefore:

3.2-6 Corollary: (Completeness of the Rule System)

For any valid formula Fe <@l there is a finite sequence <gl, g2, ... gn> of GNDPs

starting with the trivial GNDP for F and ending with a natural deduction proof of F,

such that every element in the sequence is derived from its predecessor by application

of one of the transformation rules above.

3.3 Additional Transformation Rules

The procedure to construct natural deduction proofs that is suggested by the

completeness proof in the previous section is actually very similar to the construction

of a tableau proof, see [Sm68]. The resulting proofs suffer from two major stylistic

shortcomings, though. For once, almost all the composed formulae have to be broken

up until the literal level is reached. This problem can be partly solved by avoiding the

division into subgoals whenever it seems possible to derive a composed formula as a

whole. A method to do just that is proposed in section 3.4.

Secondly, the relatively rich choice of inference rules inherent in the original

natural deduction system is much reduced when the search strategy imposed by the

rule system is applied. This is very annoying, because it takes away one of the most

important features of natural deduction and tends to produce too many proofs by

contradiction. The only remedy for that problem seems to be the introduction of

additional transformation rules, allowing a broader choice of rules during the

construction of a proof.

Whenever a negation (of a composed formula) has to be proved, the basic system

of transformation rule forces a proof by contradiction. This is not necessary in most

cases, and can be dealt with by introducing the following transformation rules:

4 0 Transformation and Structuring of Computer Generated Proofs

If r(F) > 0, Then EA, Ev, E=>, EV, and E-. easily handle the cases where F is a
conjunction, a disjunction, an implication, a universal quantification, or a negation,
respectively. If the top symbol of F i s an existential quantifier, EE! followed by E—\
does the job, after which _L (FALSE) with rank 0 (a contradiction) has to be shown.

I

The completeness of the rule system for natural deduction proofs i s now a simple
special case of lemma 3.2-5, where the set of assumptions i s empty. Therefore:

3.2-6 Corollary: (Completeness of the Rule System]

For any valid formula Fe @ there is a finite sequence <g1, g2, gn> of GNDPs
starting with the trivial GNDP for F and ending with a natural deduction proof of F,
such that every element in the sequence is derived from its predecessor by application
of one of the transformation rules above.

3 .3 Additional Transformation Rules

The procedure to construct natural deduction proofs that i s suggested by the
completeness proof in the previous section is actually very similar to the construction
of a tableau proof, see [Sm68]. The resulting proofs suffer from two major stylistic
shortcomings, though. For once, almost all the composed formulae have to be broken
up until the literal level is reached. This problem can be partly solved by avoiding the
division into subgoals whenever it seems possible to derive a composed formula as a
whole. A method to do just that is proposed in section 3.4.

Secondly, the relatively rich choice of inference rules inherent in the original
natural deduction system is much reduced when the search strategy imposed by the
rule system is applied. This is very annoying, because it takes away one of the most
important features of natural deduction and tends to produce too many proofs by
contradiction. The only remedy for that problem seems to be the introduction of
additional transformation rules, allowing a broader choice of rules during the

construction of a proof.

Whenever a negation (of a composed formula) has to be proved, the basic system
of transformation rule forces a proof by contradiction. This is not necessary in most
cases, and can be dealt with by introducing the following transformation rules:

41 PToofTransfonnation

E-,-,:

{ (a) J{ I- F	 1t'

(~) 51 I-F 1t
(~) 51 I-F Tau(a)

E-,I\:

{ (a) 51 I- ..Fv..G 1t'

(~) 51 I- ..(FAG) 1t --I>

(~) 51 I- ..(FAG) Tau(a)

E-,v:

{ (a) 51 I- ..FA..G 1t'

(~) 51 I- ..(FvG) 1t
(~) 51 I- ..(FvG) Tau(a)

E-,=>:

{ (a) 51 I- FA..G 1t'

(~) 51 I- ..(F:=}G) 1t --I>

(~) 51 I- ..(F:=}G) Tau(a)

E-,:3:

{ (a) 51 I- 'v'x..Fx 1t'

(~) 51 I- ..3xFx 1t
(~) 51 I- ..3xFx Neg(a)

All of these external rules handling negation are sound and can always be used if

applicable.

There are three further rules which can be applied when a disjunction has to be

shown. The fIrst one, Ev2, is a symmetric variant of Evl. There is nothing to choose

between Evl and Ev2, so that the choice can be done entirely for stylistic reasons.

The other two, Evleft and Evright, are obviously not sound, as they proceed to a

stronger proposition. But if the stronger proposition actually holds, the ensuing proof

is much more natural. The same is the case for E3-constructive.

Ev2:	 (a) 51,..G I- ..G Ass
(~) 51,..G l- F 1t'

(8)	 51 I- FvG 1t
51 I- ..G:=}F :=}I(~){(t
() 51 I- FvG Tau(r)

Evleft:

{(a) 51 I- F 1t'
(~) 51 I- FvG 1t

(~) 51 I- FvG vE(a)

Proof Transformation

“TI—Tl.

(ß) 2 t- —l—'IF 1t _»

E-|/\Z

(B) 54 !— —1(FAG) 1t —t>

E—‚v:
(ß) fl! I— —1(FVG) 1t _» { ()

5232;
(B) A |— fi(F=>G) 1: —+

E23;
(B) a :- 3x n _» {

(a)

(B)

(B)

OC)

()B

(a)

(ß)

(en)

(B)

%

fll

'.

|_

F

_ITF

—1Fv—|G

-1(FAG)

fiFA—IG

FA-‘G

Vx-q

—13x

41

Neg(oc)

All of these external rules handling negation are sound and can always be used if
applicable.

There are three further rules which can be applied when a disjunction has to be
shown. The first one, Ev2, i s a symmetric variant of Ev l . There i s nothing to choose

between Ev l and Ev2, so that the choice can be done entirely for stylistic reasons.
The other two, Evleft and Evright, are obviously not sound, as they proceed to a
stronger proposition. But if the stronger proposition actually holds, the ensuing proof
i s much more natural. The same is the case for EEl-constmctive.

Ev2:
(ö) 54 t— FvG 1t: _»

Evleft:
(ß) 2 t- FVG 1t _» {

(a) flr-IG
(ß) z,—.G

()
()

(0°)

2
3

Fl

(B) F!

T
TTTT

T

—.G
F

FvG

FVG

Ass
n !

=>I(ß)
Tall(7)

vE(0t)

42 Transfonnation and Structuring of Computer Generated Proofs

Evright:

{(a) Jl. f- G	 n'
(13) 51 f- FvG n

(13) 51 f- FvG vE(a)

E:3-constructive:

(13) 51 f- 3xFx n { (a)

(13)

51
 -ן Ft	 n'

51 f- 3xFx , 3G(a)

If the fonnula to be shown is the negation of a universal quantification and a

tenn can be constructed constituting a counterexample, the negation can be moved

inside in combination with rule E~-constructive; this leads to

E-,'\I:
(a) 51 f- -,Ft	 n'

(y) 51 I- -,VxFx	 (13) 51 I- 3x-,Fx 3I(a)
{

(y) 51 f- -,VxFx Neg(l3)

The external rules can be divided into two categories. Et\, E=>, EV, E-,-" E-,t\,

E-,v, E-,=>, and E-,3 are called automatic, because no further infonnation is needed

for their application. The four variations of the rule Ev, as well as E3, E-,V,

E3-constructive, and E-, may only be applied with the pennission of the user or with

additional infonnation, for example if the tenn t in the case of E3-constructive is

explicitly given. These external rules are therefore called user-guided, or proof

driven, if the transfonnation is governed by a proof such as a refutation graph

previously established.

M-Unless is useful as a variation of M-Cases if one of the cases is trivial. It is

sound and simply adds an additional assumption.

M-Unless:
51 f- FvG Rule 9\

}~
raj(a) 51 f- FvG Rule 9\	 (13) 51,F f- F Ass

(y) 51,F f- G	 n'
(~)	 51 f- G n (e) 51 f- F=>G =>I(y)

(~) 51 f- G Tau(a,e)

4 2 Transformation and Structuring of Computer Generated Proofs

Ev ght:
(a) fi I- G 1t '

(B) fll !- FvG 1: —v {
(B) 54 l- FVG VE(0t)

E3-construct1ve:
’ (on) fl I— Ft n '

(B) It I- 3x 1r, —t>
(B) A |— 3x ,EG(a)

If the formula to be shown is the negation of a universal quantification and a
term can be constructed constituting a counterexample, the negation can be moved
inside in combination with rule Ea-constructive; this leads to

EfiV:
(a) fit I— —-Ft 1c'

('Y) Ä *- —tFx 1C _» { (B) fl t- Eix—q Elm)
(Y) fl t- —1Vx Neg(B)

The external rules can be divided into two categories. EA, E=>, EV, E—l—I, E—|A‚
E""IV, E—|=>, and E—E are called automatic, because no further information i s needed

for their application. The four variations of the rule Ev , as well as EE, E—.V‚
EE-constructive, and Ba may only be applied with the permission of the user or with
additional information, for example if the term t in the case of EEl-constructive is
explicitly given. These external rules are therefore called user-guided, or proof-
driven, if the transformation i s governed by a proof such as a refutation graph
previously established.

M-Unless is useful a s a variation of M—Cases if one of the cases i s trivial. It i s

sound and simply adds an additional assumption.

M-Unless:
(0t) A |- F vG Rule?

(0c) fll t- FvG RuleSR } (B) fll, F I- F Ass
—+ (y) 54, F F- G 1c'

(C) It +— G 7: (a) fit !- F=>G =>I(y)
(C) fll I- G Tau(a,e)

43 Proof Transfonnation

Often it is necessary to prove a theorem using case analysis, assuming a formula

G in one case and its negation -,G in the other. This is formalized by

(a) 5f I- G v -,G Axiom

We consider separately the cases of (a)

Case 1:

(~) .5f, G I- G Ass

(~) 5f I- F 1t

M-Divide:

(y) 5f, G I- F 1t1
Case 2:
(8) 5f,-,G I- -,G Ass
(e) .5f, -,G I- F 1t2
End of cases (1, 2) of (a)
(~).5f I- F vE(a,y,e)

M-Divide is obviously sound, and could therefore always be applied, but its

automatic application is hindered by the need to find a suitable formula G. In many

cases, M-Divide can be used instead of M-Cases, when there is no suitable dis

junction that can be used for a case analysis.

The following rule, M-Inf, formalizes a common type of inference. If it is

possible to prove the left hand side of a (known) implication, then the right hand side

also holds. This rule is, of course, not sound, as there is no reason to believe that F

can always be shown. Therefore it can only be applied when the validity of F (with

assumptions .5f) is known before.

M-Inf:
(a) 5f I- F:=}G (a) >I I- F:=}G Rule 9\

(~) >I I- F 1t'{
(y) >I I- G (y) >I I- G :=}E(a,~)

Similar to rule Tau in the Natural Deduction Calculus, one can define a transfor

mation rule I-Tau combining all possible derivations in propositionallogic.

1-Tau: (al) >II I- FI Rule 9\1

(a2) >I2 I- F2 Rule 9\2
(an) ~ I- Fn Rule 9\n

~ (~) U5ti I- F Tau(al'" .,an)
provided that F is a consequence of F1 through Fn in propositionallogic.

For practical purposes rule I-Tau must be further divided into smaller rules.

Three types are possible, namely analytic rules, breaking up formulae, synthetic
rules, constructing formulae from others, and finally converting rules, which

Proof Transformation 4 3

Often it is necessary to prove a theorem using case analysis, assuming a formula
G in one case and its negation —G in the other. This is formalized by

M-D1V1de: (a) ‚at |— G v —.G Axiom
We consider separately the cases of (a)
gm

(ß) :21, G I- G Ass
(C) fit I- F 1: _» ('y) AG I- F n l

Case 2:
(5) fl,_lG |- _IG ASS
(e) ‚q,—.G t- F 1:2
End of cases (1, 2) of (at)
(C) a F F vE(oc‚7‚e)

M—Divide is obviously sound, and could therefore always be applied, but its
automatic application is hindered by the need to find a suitable formula G. In many
cases, M—Divide can be used instead of M-Cases, when there is no suitable dis-
junction that can be used for a case analysis.

The following rule, M-Inf, formalizes a common type of inference. If i t i s
possible to prove the left hand side of a (known) implication, then the right hand side
also holds. This rule is, of course, not sound, as there is no reason to believe that F
can always be shown. Therefore it can only be applied when the validity of F (with
assumptions 2) is lmown before.

M-Inf:
(a) x l- F=>G Rule‘fi } { (a) at +- F=>G RuleSi

—-> (B) A I- F 1c'
(7) a I— G 1: (y) ‚q 1-- G =>E(oc,ß)

Similar to rule Tau in the Natural Deduction Calculus, one can define a transfor-
mation rule I-Tau combining all possible derivations in propositional logic.

I—Tau: (al) 541 |- F1 Rule em
. (a2) 12 l- F2 Rule EKZ

(an) an +- Fn Rule St„
_» (ß) uni I- F Tau(a1,...,0tn)

provided that F is a consequence of F1 through Fn in propositional logic.

For practical purposes rule I—Tau must be further divided into smaller rules.
Three types are possible, namely analytic rules, breaking up formulae, synthetic
rules, constructing formulae from others, and finally converting rules, which

44 Transfonnation and Structuring of Computer Generated Proofs

transform a formula into an equivalent form. A complete list of these rules can be

found in appendix B. Here is just one example of each of the different types.

I/\left:
-t

(a)

(J3)
5l

5l

I

l-

FAG

F

Rule 9\

AE(a)

18/\:

-t

(a)

(J3)
(r)

511

512

5l1>5l2

l-

I

I

F

G

FAG

Rule 9\1

Rule 9\2

AI(a. J3)

Icv/\:
-t

(a)

(J3)
5l

5l

I

I

Ev(FAG)

(EvF)A(EvG)

Rule 9\

Tau(a)

3.4 A Semiautomatic Proof System

The set of transformation rules defined in the previous section constitutes a proof

system for natural deduction proofs. This means that for any valid formula F, there is

a finite sequence of GNDPs starting with I- F and ending with an NDP for F. Every

element in this sequence follows from its predecessor by application of one of the

transition rules (Completeness of the set of transition rules).

This system could be used as a proof checker, the user choosing from a menu of

applicable rules, and the system correctly applying them. However the system can

actually do much more by preselecting a subset of the transformation rules and giving

the user a much smaller choice of rules.

In the previous section, we mentioned the problem that almost all composed

formulae had to be broken up until the literal level is reached. This happens if external

rules are always applied first as suggested by the completeness proof in 3.2-5. To

inhibit this behaviour we introduce the notion of "integral formulae" which should not

normally be separated into subformulae. Then, starting from the trivial GNDP,

external rules are applied - if necessary with the help of the user - until all of the

conclusion formulae of external lines are either literals or suitable subformulae of

internal conclusions. In this way we avoid having to break down the formula to prove

into its literals and to build it up again later. If a complex formula is contained as a

whole in some axiom, then there is hope that a shorter, more comprehensive proof is

available.

4 4 Transformation and Structuring of Computer Generated Proofs

transform a formula into an equivalent form. A complete list of these rules can be
found in appendix B. Here is just one example of each of the different types.

IAleft: (a) n I— F A G Rule EK
—> (B) 2 I- F AE((X)

Is : (a) al I- F Rule 9%]
(ß) 12 t- G Rule EKZ

—t> (y) 311,22 |— F A G AI(0t, ß)

ICVA: (a) n I- Ev(FAG) Rule 9t
_» (5) ‚q t— (EVF)A(EVG) Tau(0t)

3.4 A Semiautomatic Proof System

The set of transformation rules defined in the previous section constitutes a proof
system for natural deduction proofs. This means that for any valid formula F , there i s

a finite sequence of GNDPs starting with t-F and ending with an NDP for F. Every
element in this sequence follows from its predecessor by application of one of the
transition rules (Completeness of the set of transition rules).

This system could be used as a proof checker, the user choosing from a menu of
applicable rules, and the system correctly applying them. However the system can
actually do much more by preselecting a subset of the transformation rules and giving
the user a much smaller choice of rules.

In the previous section, we mentioned the problem that almost all composed
formulae had to be broken up until the literal level is reached. This happens if external
rules are always applied first as suggested by the completeness proof in 3.2—5. To
inhibit this behaviour we introduce the notion of “integral formulae” which should not
normally be separated into subformulae. Then, starting from the trivial GNDP,
external rules are applied — if necessary with the help of the user —- until all of the
conclusion formulae of external lines are either literals or suitable subformulae of
internal conclusions. In this way we avoid having to break down the formula to prove
into its literals and to build it up again later. If a complex formula is contained as a
whole in some axiom, then there i s hope that a shorter, more comprehensive proof i s

available.

45 PToofTransfonnation

3.4-1 Definition: (integral formulae)

In the context of (generalized) natural deduction proofs, integral formulae ofan

external line are defined as follows. We distinguish between strongly integral and

weakly integralformulae:

(a)	 Any conclusion fonnula F of an internal line is a strongly integral

fonnula for an external line E, if it depends only on assumptions

which E also depends on.

(b)	 Any strongly integral fonnula is also weakly integral for the same

external line.

(c)	 IfF is a strongly (weakly) integral fonnula, then with

F = A 1\ B, A and B are strongly (weakly) integral,

F = A v B, A and B are weakly integral,

F = A ~B, B is weakly integral, strongly, if both F and A

are strongly integral,

F = ...,(...,A), A is strongly (weakly) integral,

F = 'r;/x Ax, At becomes strongly (weakly) integral, if it is known,

that the tenn t must be inserted for x during the proof,

F =3xFx Fc becomes strongly (weakly) integral, if it is known,

that c is inserted for x during the proof.

If F = ...,(AI\B), ...,(AvB), ...,(A~B), or ...,3xAx, then ...,Av...,B, ...,AI\...,B,

AI\...,B, or'r;/x...,Ax are strongly (weakly) integral, respectively.

In the following, for each of the external lines in a GNDP there are sets of

strongly and weakly integral fonnulae. External rules must not be applied if the

conclusion of the external line is among its strongly integral fonnulae, for in this case

it is possible to derive the goal without further breaking up the fonnula. If the fonnula

to prove is only weakly integral, then there is no guarantee that a direct proof exists,

but in this case there is a good chance that the proof can be conducted by case

analysis if the goal fonnula is a subfonnula of a disjunction, or by an application of

M-Inf if it appears on the right hand side of an implication. Then mixed rules may be

used, and only when no more external or mixed rules can be applied does the system

start using internal rules.

Proof Transformation 4 5

3 .4-1 Definition: (integral formulae]

In the context of (generalized) natural deduction proofs, integral formulae of an
external line are defined as follows. We distinguish between strongly integral and

weakly integralformulae:

(a) Any conclusion formula F of an internal line is a strongly integral
formula for an external line 8, if it depends only on assumptions
which 8 also depends on.

(b) Any strongly integral formula i s also weakly integral for the same
external line.

(c) If F is a strongly (weakly) integral formula, then with
F = A A B, A and B are strongly (weakly) integral,
F = A v B, A and B are weakly integral,
F = A =>B, B i s weakly integral, strongly , if both F and A

are strongly integral,
F = _1(fiA) , A is strongly (weakly) integral,
F = Vx Ax, At becomes strongly (weakly) integral, if i t is known,

that the term t must be inserted for x during the proof,
F = €!x Fc becomes strongly (weakly) integral, if it is known,

that c i s inserted for x during the proof.
If F = -.(AAB), —.(AvB), fi(A=>B)‚ or —Elx, then fiAV'fiB, —1AA—|B,
AA—|B‚ or Vx—IAx are strongly (weakly) integral, respectively.

In the following, for each of the external lines in a GNDP there are sets of
strongly and weakly integral formulae. External rules must not be applied if the
conclusion of the external line is among its strongly integral formulae, for in this case
it is possible to derive the goal without further breaking up the formula. If the formula
to prove is only weakly integral, then there i s no guarantee that a direct proof exists,
but in this case there is a good chance that the proof can be conducted by case
analysis if the goal formula is a subformula of a disjunction, or by an application of
M-Inf if i t appears on the right hand side of an implication. Then mixed rules may be
used, and only when no more external or mixed rules can be applied does the system
start using internal rules.

46	 Transfonnation and Structuring of Computer Generated Proofs

Now the strategy for a semiautomatic proof system can be described by the
following algorithm:

3.4-2 Algorithm: (basic proof transformation)

1.	 Start with GNDP =0 l- F. Initialize strongly and weakly integral
formulae for this external line as empty sets.

2.	 Apply automatic external rules as long as possible, until all of the external
lines conclude in weakly integral formulae. Whenever new assumptions
are added, they become strongly integral formulae for the external line in
case. As always, the complete sets of integral formulae are computed.

If the external line is now integral, go to 4.

3.	 If possible, ask the user whether any of the user-guided external rules
should be applied. If so, do it and update the sets of integral formulae,
then go to 2.

4.	 Now apply mixed rules at the user's discretion until no longer possible.
After every application the sets of integral formulae have to be updated. If
M-Infwas applied, go to 2.

5.	 Check whether the proof is already completed, in which case the GNDP
is returned as final proof.

6.	 Let the user choose which of the internal rules shall be applied. Then go
to 4.

3.5 The Automatic Transformation Procedure

Of course, there is no reason why "the user" could not be the computer itself,

which selects the transformation rule according to appropriate heuristics, making use

of the information in a given proof, for instance a previously computed refutation

graph.

The selection between different rules that might be applicable is guided by the

refutation graph representing the proof of the external lines in a GNDP. The

assumptions of such external lines may then be treated as axioms for this particular

proof. In a refutation graph there is a priori no distinction between clause nodes

representing axioms and others representing (negated) theorem parts. In order to

formalize such a distinction we use the notion of polarization of clause nodes defined

in 3.1-6, so that clause nodes are positively polarized, if they stem from an axiom (or

an assumption), and negatively polarized, if they represent a part of the (negated)

theorem.

4 6 Transformation and Structuring of Computer Generated Proofs

Now the strategy for a semiautomatic proof system can be described by the
following algorithm:

3.4-2 Algorithm: (basic proof transformation)

1 . Start with GNDP =6 l-F. Initialize strongly and weakly integral
formulae for this external line as empty sets.

2 . Apply automatic external rules as long as possible, until all of the external
lines conclude in weakly integral formulae. Whenever new assumptions
are added, they become strongly integral formulae for the external line in .
case. As always, the complete sets of integral formulae are computed.

If the external line is now integral, go to 4.

3 . If possible, ask the user whether any of the user-guided external rules
should be applied. If so, do it and update the sets of integral formulae,
then go to 2.

4 . Now apply mixed rules at the user’s discretion until no longer possible.
After every application the sets of integral formulae have to be updated. If
M-Inf was applied, go to 2 .

5 . Check whether the proof is already completed, in which case the GNDP
is returned as final proof.

6 . Let the user choose which of the internal rules shall be applied. Then go
to 4 .

3 .5 The Automatic Transformation Procedure

Of course, there is no reason why “the user” could not be the computer itself,
which selects the transformation rule according to appropriate heuristics, making use
of the information in a given proof, for instance a previously computed refutation
graph.

The selection between different rules that might be applicable i s guided by the
refutation graph representing the proof of the external lines in a GNDP. The
assumptions of such external lines may then be treated as axioms for this particular
proof. In a refutation graph there i s a priori no distinction between clause nodes
representing axioms and others representing (negated) theorem parts. In order to
formalize such a distinction we use the notion of polarization of clause nodes defined
in 3.1—6, so that clause nodes are positively polarized, if they stem from an axiom (or
an assumption), and negatively polarized, if they represent a part of the (negated)
theorem.

47 Proof Transfonnation

In this section we show how a proof represented as a refutation graph can guide

the "search" for a natural deduction proof. In this context, search means to transfonn

the given, graph-represented proof into the natural deduction calculus, rather than to

find an original proof.

To this end, we use the above rule system and gradually change generalized

NDPs in order to complete the natural deduction proof. To achieve this, all the tasks

formerly done by the user have to be taken over. This includes the choice between

several applicable transformation rules and the update of the deduction graph during

the whole process. The information about the automatically generated proof consists

of a refutation graph, a ground substitution for all the formulae needed, which

contains the information about skolemization and duplication of clauses, and a

relation L\ between the literal nodes of the refutation graph and the atom occurrences

of the input formulae, indicating where the literal nodes stem from.

In this section, external rules will only be considered applicable if their

conclusions are not integral. The first point of choice in algorithm 3.4-2 comes up,

when rule Ev is applicable. In this case one of its four versions can always be used,

so in order to decide which one, we use information from the graph. Whenever

Ev-Ieft or Ev-right can be applied, that is when one part of the disjunction is directly

provable, then the other part does not appear in the refutation graph, which is a

property easy to check. The choice between Evl and Ev2 is only a stylistic one; in

this case there are always two clause nodes in the graph representing the two parts of

the disjunction, so the problem appears to be symmetric. In fact, both Ev1 and Ev2

always work. But the structure of the refutation graph may help to make a good

choice as can be seen in the following example where FvG must be proved:

3.5-1 Example Graph: (disjunctive theorem)

The above refutation graph represents a proof of F v G from axiom formulae

H l l\H2 =>F, Hl vG, and H2 vG. Evl and Ev2 allow to choose either -,G or-,F

as an additional assumption. A good heuristic is to choose the one with a larger

number of literal nodes in its shore, -,G in this example, as an additional assumption.

In this way the rest of the proof can be divided into two independent parts, while

choosing -,F would lead to a subsequent application of the Rule of Cases. This

Proof Transformation 4 7

In this section we show how a proof represented as a refutation graph can guide
the “search” for a natural deduction proof. In this context, search means to transform
the given, graph-represented proof into the natural deduction calculus, rather than to
find an original proof.

To this end, we use the above rule system and gradually change generalized
NDPs in order to complete the natural deduction proof. To achieve this, all the tasks
formerly done by the user have to be taken over. This includes the choice between
several applicable transformation rules and the update of the deduction graph during
the whole process. The information about the automatically generated proof consists
of a refutation graph, a ground substitution for all the formulae needed, which
contains the information about skolemization and duplication of clauses, and a
relation A between the literal nodes of the refutation graph and the atom occurrences
of the input formulae, indicating where the literal nodes stem from.

In this section, external rules will only be considered applicable if their
conclusions are not integral. The first point of choice in algorithm 3.4-2 comes up,
when rule Ev is applicable. In this case one of its four versions can always be used,
so in order to decide which one, we use information from the graph. Whenever
Ev-left or Ev-right can be applied, that is when one part of the disjunction is directly
provable, then the other part does not appear in the refutation graph, which is a
property easy to check. The choice between Ev l and Ev2 is only a stylistic one; in
this case there are always two clause nodes in the graph representing the two parts of
the disjunction, so the problem appears to be symmetric. In fact, both Ev l and Ev2
always work. But the structure of the refutation graph may help to make a good
choice as can be seen in the following example where FvG must be proved:

3.5-1 Example Graph: (disjunctive theorem)

‘Hl—o—IH1IG. F .
H2°_|H2|G

The above refutation graph represents a proof of FvG from axiom formulae
H1 A H2 => F, H1 vG, and H2 vG. Ev l and Ev2 allow to choose either —1G or —-:F
as an additional assumption. A good heuristic is to choose the one with a larger
number of literal nodes in its shore, —IG in this example, as an additional assumption.
In this way the rest of the proof can be divided into two independent parts, while
choosing —.F would lead to a subsequent application of the Rule of Cases. This

48 Transformation and Structuring of Computer Generated Proofs

heuristic can also be generalized to cases where the fonnulae F and G are not literals.

Another heuristic is to use the formula as an assumption that appears in the graph in
several copies.

When an existentially quantified formula is to be proven, one has to consult the

total unifier of the refutation graph. If the variable has been instantiated only once,

that is, no copy of the formula has been needed, then E-::lconstructive can be set to

work. If copies have been made, one way to continue is always to construct a proof

by contradiction starting with an application of E-::l. But there are certain cases, when

this is not necessary.

3.5-2 Example Graphs: (existentially quantified theorem)

In the upper graph the proof can be done in two cases with Fa and Fb as

assumptions, while in the lower one M-Divide can be applied for G and -.G, and so

the refutation graph is cut into two parts. Another possibility in the second case is to

derive Fa v Fb first, and continue as in case one.

More complex situations arise, when a decision about mixed rules has to be

made. After all, it is certainly not useful to divide the proof into cases every time a

disjunction has been derived. And we have seen earlier, that some of these rules may

lead into dead ends when applied incautiously. This is not desired, however, and

large classes of graphs have to be found where an application of such rules is safe

and leads to nice proofs.

In the following section we use the rule M-Inf as an example to show how
certain structural properties of the refutation graph can be sufficient to guarantee the

safety of the application of such rules. The rule M-Inf is repeated below as a

reminder:

M-lnf:
(a) 51 f- F:::>G (a) 51 f- F:::>G Rule 9\

(13) 51 f- F 1t'
{

(y) 51 f- G (y) 51 f- G :::>E(a,13)

Let as assume that we have to decide about the application of M-Inf. The danger

is to apply it, when a proof of F is not known or when F is not provable at all. So we

have to make sure that F is valid and its proof can be constructed from the graph.

4 8 Transformation and Structuring of Computer Generated Proofs

heuristic can also be generalized to cases where the formulae F and G are not literals.
Another heuristic is to use the formula as an assumption that appears in the graph in
several copies.

When an existentially quantified formula i s to be proven, one has to consult the
total unifier of the refutation graph. If the variable has been instantiated only once,
that is, no copy of the formula has been needed, then E-Econstructive can be set to
work. If copies have been made, one way to continue is always to construct a proof
by contradiction starting with an application of E3. But there are certain cases, when
this is not necessary.

3.5-2 Example Graphs: [existentially quantified theorem)

DIS- -
m-- -1

In the upper graph the proof can be done in two cases with Fa and Fb as
assumptions, while in the lower one M-Divide can be applied for G and —.G‚ and so
the refutation graph is cut into two parts. Another possibility in the second case is to
derive Fa v Fb first, and continue a s in case one.

More complex situations arise, when a decision about mixed rules has to be
made. After all, it i s certainly not useful to divide the proof into cases every time a

disjunction has been derived. And we have seen earlier, that some of these rules may

lead into dead ends when applied incautiously. This is not desired, however, and
large classes of graphs have to be found where an application of such rules is safe
and leads to nice proofs.

In the following section we use the rule M-Inf as an example to show how
certain structural properties of the refutation graph can be sufficient to guarantee the
safety of the application of such rules. The rule M-Inf is repeated below as a
reminder:

M-Inf:
(a) 54 I- F=>G RuleSR } { (a) 54 +— F=>G Rulefli_»

(13) ‚q |- F n'
(7) fl l- G 1: (y) a I- G =>E(a,ß)

Let as assume that we have to decide about the application of M-Inf. The danger
i s to apply it, when a proof of F is not known or when F is not provable at all. So we
have to make sure that F is valid and its proof can be constructed from the graph.

49 Proof Transformation

This can be seen from the graph, provided the automatically found proof has used the

formula F => G. The simplest case is when the formulae F and G involved are both

literals.

3.5-3 Example Graphs: (graph condition for M-Inf)

~ ...

Whenever the graph has the first structure, the rule may be applied. Should the

clause [-F G] be missing in the graph, the rule can obviously not be applied, but

there are also situations, where [-F G] is part of the graph, but F is still not derivable

from axioms, as in the second example graph. In this case one could, for instance,

break up the proof into cases with assumptions L 1 and ~, but only in the first case

does the proof use the implication F=>G.

3.5-4 Example Graphs: (graph condition for M-Inf)

The two refutation graphs above cover the cases, where F is a conjunction or

disjunction. In the first case (F=F1AF2) there must not be a trail between -F1 and

-F2, since then the graph would be cyclic, and therefore not a refutation graph. If in

the second case (F=F1vF2) there were no such trail, then the refutation graph would

not be minimal, since anyone of the branches could be omitted. This leads to a

situation where either F1 or F2 can be derived independently as in Evleft or Evright.

If, on the other hand, there is such a trail, then Ev1 or Ev2 can be applied after
M-Inf.

When G = G1 v G2 is a disjunction and F either literal, conjunction, or dis

junction, then the following refutation graphs allow an application of M-Inf:

Proof Transformation 4 9

This can be seen from the graph, provided the automatically found proof has used the
formula F => G. The simplest case i s when the formulae F and G involved are both
literals.

3.5-3 Example Graphs: [graph condition for M-Inf)

- ---—o—L‚
‘ fi - ' ' _ °4 |_2

Whenever the graph has the first structure, the rule may be applied. Should the
clause [—F G] be missing in the graph, the rule can obviously not be applied, but
there are also situations, where [—F G] i s part of the graph, but F is still not derivable
from axioms, as in the second example graph. In this case one could, for instance,
break up the proof into cases with'assumptions LI and 14, but only in the first case
does the proof use the implication F=G.

3.5-4 Example Graphs: (graph condition for M-Infl

— F1 _ .- e—F2—°- -_F2 .

The two refutation graphs above cover the cases, where F is a conjunction or
disjunction. In the first case (F=F1AF2) there must not be a trail between —F1 and
—F2, since then the graph would be cyclic, and therefore not a refutation graph. If in
the second case (F=F1vF2) there were no such trail, then the refutation graph would
not be minimal, since any one of the branches could be omitted. This leads to a
situation where either F1 or F2 can be derived independently as in Evleft or Evright.
If, on the other hand, there is such a trail, then Ev l or Ev2 can be applied after
M—Inf.

When G=G1 VG2 is a disjunction and F either literal, conjunction, or dis-
junction, then the following refutation graphs allow an application of M-Inf:

50 Transfonnation and Structuring of Computer Generated Proofs

3.5-5 Example Graphs: (graph condition for M-Inf)

As in the first case of 3.5-4 there must not be a trail between -FI and -F2 in the

refutation graph in the second of the example graphs; and the last graph is only

minimal if there is such a trail.

The set of examples is completed with the case where G is a conjunction. Again

F may be either literal, conjunction, or disjunction.

3.5-6 Example Graphs: (graph condition for M-Inf)

~ ... --<:1----1,-----,-,----...-... ~--=:...&----:.~-o--

L..---=-L...-...=.....II-Cl--

~

<:§:bgrap§)C§graP9'"

When F is a disjunction, there are two essentially different possible graphs. They

correspond to the cases of the subsequent applications of different versions of rule

Ev. The first one - subsequent application of Ev-Ieft or Ev-right - is of course

isomorphic to the case, where F is a literal. The second case is the last one illustrated

above; for this graph to become a refutation graph, trails must exist both between

subgraph I and subgraph 2 as well as between subgraph 3 and subgraph 4.

Otherwise the graph would not be minimal.

5 0 Transformation and Structuring of Computer Generated Proofs

3.5-5 Example Graphs: (graph condition for M-Inf)

. -G1

“Ga G1 G1 G1
—F + - _“ -F1 -F2 —°—

-G2 G2 G2 G2

As in the first case of 3.5—4 there must not be a trail between —F1 and —F2 in the
refutation graph in the second of the example graphs; and the last graph is only
minimal if there is such a trail.

The set of examples is completed with the case where G i s a conjunction. Again
F may be either literal, conjunction, or disjunction.

3.5-6 Example Graphs: (graph condition for M—Inf)

‘ .'- __ .

"Ge [ä-.

When F i s a disjunction, there are two essentially different possible graphs. They
correspond to the cases of the subsequent applications of different versions of rule
Ev . The first one — subsequent application of Ev-left or Ev-right — i s of course
isomorphic to the case, where F is a literal. The second case is the last one illustrated
above; for this graph to become a refutation graph, trails must exist both between
subgraph 1 and subgraph 2 as well as between subgraph 3 and subgraph 4.
Otherwise the graph would not be minimal.

Proof Transfonnation	 51

The cases where F or G are implications can always be seen as one of the

disjunction cases above. And also when F or G are quantified formulae, there is no

essential difference. We will now prove a general condition which guarantees a

successful application of rule M-Inf.

3.5-7 Lemma: (Graph Condition for M-Inf)

Given a GNDP with an internal line {(A) .5l I- F => G Rule 9\} and an external

line {(~).51 I-G r}, where r is a minimal refutation graph representing a proof of

/\..51 => G with a clause graph relation L\ between the atom occurrences of /\.Jl => G

and the literal nodes of r.

If all the literal nodes in L\«/\..51=>G,G» are directly adjacent exclusively to

literal nodes of ~«/\..51=>G, /\..51~ ... , F=>G>)1, then a refutation graph r' repre

senting a proof of /\..51 => F can be constructed by

r' =r - UNE~(na«/\?l=)G.G») A(N).

Proof: In order to prove the lemma we must show that the resulting clause

graph is a refutation graph, and that all of its clause nodes represent assumption

formulae or have parent clauses in the clause form of the negation of F.

Let us first assume that (F => G) E .5l, then (a subset of) the clause form of F=>G

is directly present in the refutation graph r. No links are added, so no cycle can be

introduced. r' cannot be empty, because it still contains at least the literal nodes

~(QaC</\..51=>G,/\..51, ... , F=>G, F»), and as any links are deleted (automatically)

only if all of the literal nodes of one shore have been removed, no literal node can

have become pure. Hence the graph r' is still a refutation graph.

All the clause nodes stemming from the negation of G have been completely

removed from r, so all the clause nodes in r' have parents in the clause form of Jl or

have been constructed by deleting ~(Qa«F=>G,G») from the subgraph r -,FvG

representing F=>G. Now by lemma 2.5-6, r-,FvG - ~(Qa«-,FvG, G») is a clause

graph representing -,F. So r' contains only clause nodes describing the negation of F

or assumption formulae.

If (F=>G)e .5l, it must have been previously derived from the assumptions .5l.

Therefore the refutation graph r must contain a deduction graph proving F=>G as a

1	 If 1l(F~G) is only contained as a deduction graph in r, then ll«/\.JI~ G,I\Jl,... ,F=>G»)
means the pure literal nodes of this subgraph.

Proof Transformation 5 1

The cases where F or G are implications can always be seen as one of the
disjunction cases above . And also when F or G are quantified formulae, there i s no

essential difference. We will now prove a general condition which guarantees a
successful application of rule M—Inf.

3.5-7 Lemma: (Graph Condition for M-Infl

Given a GNDP with an internal line {(1) filt- F=> G RuleEK} and an external
line {(€) fll l—G I‘}, where 1" is a minimal refutation graph representing a proof of
Afl=> G with a clause graph relation A between the atom occurrences of Afl=> G
and the literal nodes of I‘.

If all the literal nodes in A(</ \fl=>G, G>) are directly adjacent exclusively to

literal nodes of A(</\fll=>G, AA; , F=>G>)1, then a refutation graph 1" repre-
senting a proof of A312) F can be constructed by

I" = 1" — UNE A(Q.(<An=> G, G>)) A(N)°

Proof: In order to prove the lemma we must show that the resulting clause
graph i s a refutation graph, and that all of its clause nodes represent assumption
formulae or have parent clauses in the clause form of the negation of F.

Let us first assume that (F = G) e 2, then (a subset of) the clause form of F=>G
is directly present in the refutation graph F. No links are added, so no cycle can be
introduced. I" cannot be empty, because it still contains at least the literal nodes
A(Qa(< / \fl=G, Afl l , , F=>G, F>))‚ and as any links are deleted (automatically)

only if all of the literal nodes of one shore have been removed, no literal node can
have become pure. Hence the graph 1" i s still a refutation graph.

All the clause nodes stemming from the negation of G have been completely
removed fi'om I‘, so all the clause nodes in 1'" have parents in the clause form of ‚91 or
have been constructed by deleting A(Qa(<F=>G,G>)) from the subgraph 11,v
representing F=>G. Now by lemma 2.5-6, 129,6 —- A(Qa(<—tG, G>)) i s a clause
graph representing —.F. So I" contains only clause nodes describing the negation of F
or assumption formulae. _

If (F=>G)e 54, i t must have been previously derived from the assumptions 51
Therefore the refutation graph I‘ must contain a deduction graph proving F=>G as a

1 If A(F=G) is only contained as a deduction graph in 1", then A(</\:4=> G‚/\fll‚. ..‚F=>G>))
means the pure literal nodes of this subgraph.

52 Transfonnation and Structuring of Computer Generated Proofs

subgraph. In this case F=>G can be derived first from this deduction graph (as a
subproblem)1, the clause form of F=>G will then actually appear in the graph and the
problem is reduced to the first case above. Q.e.d. •

For the other proof-driven transformation rules, E3-constructive, E-,"it, Evleft,

and Evright, the conditions for applicability are easier to check. If a line

{51I-FvG r} is in the GNDP, Evleft can be applied, if .1«FvG, G» is empty,

and the case of Evright is symmetrical. If a line {511- 3xF r} is in the GNDP, then

E3-constructive can be applied, if in all the literal nodes in .1(3xF) the variable x has

been substituted by the same ground term 1. The case of E-,"it behaves similar.

No graph properties need to be checked before an application of the rules

M-Cases, M-Divide, or M-Unless, for these rules are sound and the refutation graph

required will always exist. But one can give "necessary conditions" for their appli

cation to be useful. The example graphs below cover only the case, where F, G, and

H are literals, but they can be generalized just as those for rule M-Inf.

M-Cases:

For rule M-Cases the idea is to "cut" through a disjunction F v G to obtain

refutation graphs for a proof assuming F and G respectively. This is only useful,

however, when the resulting graphs both contain (parts of) the original theorem H, as

in the upper example graph. If one of the resulting graphs does no longer contain

(parts of) H then the subsequent proof can only be completed as a proof by contra

diction. It is not always necessary that all of .1(H) should appear in both resulting

graphs; if for instance H = A v B, then one part might prove A and the other B.

~.--o::.~E-Divide: ...--o...~

This rule M-Divide is only a variation of the rule M-Cases, which can be applied

when no suitable disjunction for M-Cases is available. A removal of the link between

G and -G must separate the graph into two components, both of which contain (parts

of) F. This effect could also be reached by introducing the axiom Gv.o and then use

1 Cf. the chapter on proof structuring, especially the transfonnation rule E-Lemma.

5 2 Transformation and Structm‘ing of Computer Generated Proofs

subgraph. In this case F=>G can be derived first from this deduction graph (as a
subproblem)1, the clause form of F=>G will then actually appear in the graph and the
problem is reduced to the first case above. Q.e.d. I

For the other proof-driven transformation rules, Bil—constructive, E—1V, Evleft,

and Ev right, the conditions for applicability are easier to check. If a line
{fl &— FvG F} is in the GNDP, Evleft can be applied, if A(<FvG, G>) i s empty,
and the case of Evright is symmetrical. If a line {m— ExF I‘} i s in the GNDP, then
EH-constructive can be applied, if in all the literal nodes in A6 xF) the variable x has
been substituted by the same ground term t. The case of E—IV behaves similar.

No graph properties need to be checked before an application of the rules
M—Cases, M-Divide, or M-Unless, for these rules are sound and the refutation graph
required will always exist. But one can give “necessary conditions” for their appli-
cation to be useful. The example graphs below cover only the case, where F , G , and
H are literals, but they can be generalized just as those for rule M—Inf.

M-Cases: E ' - ‘ “ ‘ - -

arm--
For rule M-Cases the idea is to “cut” through a disjunction FvG to obtain

refutation graphs for a proof assuming F and G respectively. This i s only useful,
however, when the resulting graphs both contain (parts of) the original theorem H, as
in the upper example graph. If one of the resulting graphs does no longer contain
(parts of) H then the subsequent proof can only be completed as a proof by contra-
diction. I t i s not always necessary that all of A(H) should appear in both resulting
graphs; if for instance H = A vB, then one part might prove A and the other B.

"**-Eli:-
E-Divide: '

This rule M-Divide is only a variation of the rule M—Cases, which can be applied
when no suitable disjunction for M—Cases i s available. A removal of the link between
G and -G must separate the graph into two components, both of which contain (parts
of) F. This effect could also be reached by introducing the axiom GvfiG and then use

1 Cf. the chapter on proof structuring, especially the transformation rule E-Lemma.

53 Proof Transformation

it for case analysis. Such a rule is also suggested by Frank Pfenning and Daniel

Nesmith in [PN90].

M-Unless:

M-Unless is also a special case of M-Cases, where one of the cases is trivial.

Here a cut through F and G in [F G] leads to the desired linearization of the proof.

The problem of selecting the correct internal rules remains to be dealt with. When

all the external formulae are integral and none of the mixed rules can be applied, then

the task is either to derive the external formulae by forward reasoning, using internal

rules, or to derive new internal lines in order to apply mixed rules later on.

In case of strongly integral formulae one only has to apply 1-, IV, or analytic

propositional rules in order to derive the desired formula. When a weakly integral

formula is to be proved, then one starts just as for strongly integral formulae, but

stops when the subformula is reached, where further subformulae become only

weakly integral. This must be a disjunction, an implication, or an existentially

quantified formula, containing the original formula as a subformula. Now the appro

priate mixed rule must be applied, and then the process has to be repeated.

3.6 Updating the Refutation Graph

In the rest of this chapter, the process of updating the refutation graph after each

application of a rule is described. There are essentially five tasks to be done:

1.	 Update the total substitution.

2.	 Ensure that the conclusion formula of every proof line is anchored

in the formula F originally to be proved, so that the corresponding

literal nodes can be obtained using ~.

3.	 Update the sets of integral formulae for the external line currently

worked with.

4.	 Add parts of the refutation graph to the set of positively polarized

clause nodes, when new assumptions are introduced.

Proof Transformation 5 3

i t for case analysis. Such a rule i s also suggested by Frank Pfenning and Daniel
Nesmith in [PN90].

M-Unless:

M-Unless i s also a special case of M-Cases, where one of the cases i s trivial.
Here a cut through F and G in [F G] leads to the desired linearization of the proof.

The problem of selecting the correct internal rules remains to be dealt with. When
all the external formulae are integral and none of the mixed rules can be applied, then
the task is either to derive the external formulae by forward reasoning, using internal
rules, or to derive new internal lines in order to apply mixed rules later on.

In case of strongly integral formulae one only has to apply 1—, IV, or analytic
propositional rules in order to derive the desired formula. When a weakly integral
formula is to be proved, then one starts just as for strongly integral formulae, but
stops when the subformula is reached, where further subformulae become only
weakly integral. This must be a disjunction, an implication, or an existentially
quantified formula, containing the original formula as a subformula. Now the appro-
pn'ate mixed rule must be applied, and then the process has to be repeated.

3.6 Updating the Refutation Graph

In the rest of this chapter, the process of updating the refutation graph after each
application of a rule is described There are essentially five tasks to be done:

1 . Update the total substitution.

2 . Ensure that the conclusion formula of every proof line i s anchored
in the formula F originally to be proved, so that the corresponding
literal nodes can be obtained using A.

3 . Update the sets of integral formulae for the external line currently
worked with.

4 . Add parts of the refutation graph to the set of positively polarized
clause nodes, when new assumptions are introduced.

54 Transfonnation and Structuring of Computer Generated Proofs

5.	 Construct refutation graphs for newly created external lines, this

means to remove parts from the graph or to divide it.

For these tasks we will give examples and prove that the graphs resulting from

task five above have all the necessary properties to prove the new external lines.

The substitution has to be altered whenever one of its components has been used.

This is the case for rule IV, when the component x~t can be removed from the

substitution. Similarly, when E3-constructive or E--,\i are applied, a component x~t

can be removed. Finally, when EV or M-Choose are used, the component x~c can

be removed, where c is the Skolem constant having been introduced when the

Skolem normal form of the formula to prove was constructed.

The handling of Skolem terms, i.e. terms with a Skolem function depending on

one or more variables, may seem to be a problem, as both transformation rules EV

and M-Choose always introduce Skolem constants. This is not the case, however, as

can be seen for the (axiom) formula Vx3yPxy, which is skolemized to Pxfx with a

Skolem function f. Now rule M-Choose can only be applied after the variable x has

been instantiated by a ground term tg and the formula became 3yPtgy. Now the

Skolem constant introduced in the next step, when M-Choose is applied, corresponds
to the Skolem term ftg. So for every ground instantiation of the Skolem term fx there

will be a different Skolem constant in the natural deduction proof.

It is necessary to map the conclusion formula of every proof line to a formula

anchored in the formula F to prove, so that the corresponding literal nodes in the

refutation graph can be localized using ~. The anchorage is trivial if only analytic

transformation rules are applied, where the new conclusion formulae are always

immediate subformulae of their predecessors. For synthetic and converting rules,
however, and also for some of the external rules, this is not the case. But an

anchorage can always be obtained; with the help of lemma 3.1-5 it suffices to find a
basis of the new formula that shares a tail with atom occurrences in F.

3.6-1 Example: (anchorage)

As an example we assume that -,(FvG) is transformed into -,F A-,G. Now the
two formula occurrences <:.op=<-,FA-.G, -,F, F> and COG = <-,FA-,G, -,G, G> form
a basis of -,FA-,G. They obviously share a tail with <-,(FvG),(FvG),F> and

<-,(FvG), (FvG), G> which were anchored before in the formula to prove, so that

an anchorage can be constructed. The two formula trees are shown below

5 4 ' Transformation and Structuring of Computer Generated Proofs

5 . Construct refutation graphs for newly created external lines, this
means to remove parts from the graph or to divide it.

For these tasks we will give examples and prove that the graphs resulting from
' task five above have all the necessary properties to prove the new external lines.

The substitution has to be altered whenever one of its components has been used.
This is the case for rule IV, when the component xv—>t can be removed from the
substitution. Similarly, when EEl-constructive or E—IV are applied, a component xn—>t
can be removed. Finally, when EV or M-Choose are used, the component x»—>c can

be removed, where c is the Skolem constant having been introduced when the
Skolem normal form of the formula to prove was constructed.

- The handling of Skolem terms, i.e. terms with a Skolem function depending on
one or more variables, may seem to be a problem, as both transformation rules EV
and M-Choose always introduce Skolem constants. This is not the case, however, as
can be seen for the (axiom) formula Vx3ny, which is skolemized to Pxfx with a
Skolem function f. Now rule M—Choose can only be applied after the variable x has
been instantiated by a ground term tg and the formula became 3yPtgy. Now the
Skolem constant introduced in the next step, when M—Choose is applied, corresponds
to the Skolem term ftg. So for every ground instantiation of the Skolem term fx there
will be a different Skolem constant in the natural deduction proof.

It is necessary to map the conclusion formula of every proof line to a formula
anchored in the formula F to prove, so that the corresponding literal nodes in the
refutation graph can be localized using A. The anchorage i s trivial if only analytic
transformation rules are applied, where the new conclusion formulae are always
immediate subformulae of their predecessors. For synthetic and converting rules,
however, and also for some of the external rules, this i s not the case . But an

anchorage can always be obtained; with the help of lemma 3 .1-5 i t suffices to find a
basis of the new formula that shares a tail with atom occurrences in F.

3.6-1 Example: (anchorage)

As an example we assume that -1(FvG) i s transformed into —1FA-—.G. Now the
two formula occurrences (01: = <—-FA—16, —1F‚ F> and (‚OG = <-1FA—|G‚ —-nG, G> form

a basis of —IFA—1G. They obviously share a tail with <—w(FvG),(FvG),F> and
<—.(FvG), (FvG) , G> which were anchored before in the formula to prove, so that

an anchorage can be constructed. The two formula trees are shown below

55 Proof Transfonnation

-.(Fv G) -. I\. -.FI\.-.G

I ~
v -.-.

~/
F G •

New sets of integral formulae must be computed, whenever new assumptions are

introduced or new internal lines are derived with conclusion formulae, which were

not integral before. This is the case for the external rules E=>, E-., Evl, Ev2, and

M-Divide, for the mixed rules M-Cases, M-Unless, and M-Choose, and for rule IV.

The rule E=> is an example, where a new assumption is introduced. In this case this

formula and its integral closure is added to the set of integral formulae.

For the other external rules and M-Inf, the set of integral formulae of the parent

line is passed on to its successors. For rule El\. for example, the lines {511- F 1t 1 }

and {511- F 1t2} inherit the set of integral formulae from {511- F I\. G 1t} • None of

the internal rules computing derivations in propositional logic change the sets of

integral formulae, as these were integral before.

The set of positively polarized literal nodes in the graph must be augmented, if

the rule applied makes an additional assumption, which has previously been a

subformula of the theorem to prove. The most common example is rule E=>;

originally all the literal nooes in ~«F=>G» were negatively polarized, but when F is

assumed as an axiom in the proof of G, all of ~«F=>G, F» becomes positively

polarized. The same has to be done analogously for rules E-., Evl, and Ev2. One

has to understand, that positively polarized parts represent "axioms". This neatly

reflects the general idea of natural deduction proofs, where new assumptions are

introduced during the proof process.

The most difficult part of the updating process is the division of the graph, when

the proof can be split into two independent parts. This is the case after an application

of El\., M-Divide, or M-Cases. With literals F and G, a graph might have the

following form before application of El\.:

Proof Transfonnation 5 5

fi(FV G) _l A _IF A _IG

v _,/\.

VQC/
New sets of integral formulae must be computed, whenever new assumptions are

introduced or new internal lines are derived with conclusion formulae, which were

not integral before. This i s the case for the external rules E:», E—u, Ev l , Ev2, and

M-Divide, for the mixed rules M-Cases, M-Unless, and M-Choose, and for rule IV.
The rule E=> is an example, where a new assumption is introduced. In this case this
formula and its integral closure is added to the set of integral formulae.

9

For the other external rules and M-Inf, the set of integral formulae of the parent

line i s passed on to its successors. For rule EA for example, the lines {m— F 1C1 }
and {A +—F 1:2} inherit the set of integral formulae from {flu-FAG n} . None of
the internal rules computing derivations in propositional logic change the sets of
integral formulae, as these were integral before.

The set of positively polarized literal nodes in the graph must be augmented, if
the rule applied makes an additional assumption, which has previously been a
subformula of the theorem to prove. The most common example i s rule E : ;
originally all the literal nodes in A(<F=>G>) were negatively polarized, but when F i s
assumed as an axiom in the proof of G, all of A(<F=>G, F>) becomes positively
polarized. The same has to be done analogously for rules Efi , Ev l , and Ev2. One
has to understand, that positively polarized parts represent “axioms”. This neatly
reflects the general idea of natural deduction proofs, where new assumptions are
introduced during the proof process.

The most difficult part of the updating process is the division of the graph, when
the proof can be split into two independent parts. This is the case after an application
of EA, M-Divide, or M«Cases. With literals F and G, a graph might have the
following form before application of EA:

5 6 Transformation and Structuring of Computer Generated Proofs

3.6-2 Example Graph:

The refutation graph must now be split into two parts. This is done by dividing

the clause nodes [-F -G] into two clause nodes [-F] and [-G]. The remaining graph

is obviously still a refutation graph, since no literal node becomes pure and no cycle

can be introduced, but the graph is no longer minimal. It can be seen, that its two

components are independent refutation graphs for F and G. If these components have

a non-empty intersection (subgraph 3), then this subgraph must be duplicated. This is

not desirable, however, when it is too large. In this case one should work with the

subgraph first, in order to generate a lemma, which can later be used in both the

proofs of F and G. Lemma generation is dealt with in the next chapter.

3.6-3 Example Graph:

The structure of the graph becomes more complex, when F and G are

disjunctions. The cut must now be fourfold, separating -F from -G in four different

clause nodes. Now any of the (four) isomorphic components containing parts of G

together with subgraphl represents a proof of G. To prove F one has a choice of

adopting the component containing subgraph2 or the one containing subgraphi. To

add to the complexity, any two subgraphs may intersect.

The structure of the refutation graphs resulting from rule M-Cases or M-Divide is

"dual" to those from EA. This can be seen in the graphs below, where F, G and H are

assumed to be literals.

5 6 Transformation and Structln'ing of Computer Generated Proofs

3.6-2 Example Graph:

The refutation graph must now be split into two parts. This is done by dividing
the clause nodes [—F ——G] into two clause nodes [—F] and [—G]. The remaining graph

is obviously still a refutation graph, since no literal node becomes pure and no cycle
can be introduced, but the graph is no longer minimal. It can be seen, that its two
components are independent refutation graphs for F and G. If these components have
a non-empty intersection (subgraph 3), then this subgraph must be duplicated. This is
not desirable, however, when it is too large. In this case one should work with the

subgraph first, in order to generate a lemma, which can later be used in both the
proofs of F and G. Lemma generation is dealt with in the next chapter.

3.6-3 Example Graph:

I‘Fll-Gll I'Gll'Ffl |‘F2|'GZ| l-G2I-F1I

subgraph2 subgraph2'

The structure of the graph becomes more complex, when F and G are
disjunctions. The cut must now be fourfold, separating —F from —G in four different
clause nodes. Now any of the (four) isomorphic components containing parts of G
together with subgraphl represents a proof of G. To prove F one has a choice of
adopting the component containing subgraph2 or the one containing subgraphZ'. To
add to the complexity, any two subgraphs may intersect.

The structure of the refutation graphs resulting from rule M—Cases or M-Divide is
“dual” to those from EA. This can be seen in the graphs below, where F, G and H are

assumed to be literals.

57 Proof Transfonnation

3.6-4 Example Graphs: (M-Cases. M-Divide)

G
-G

This time one must cut through the positively polarized clause node [F 0], and

the resulting two graph components are both proofs for H, assuming ForO as an

additional assumption. In case of M-Divide one can insert a clause node [0 -0] for

the link A between -D and 0 and properly connect it to the rest of the graph; then it is

possible to continue by cutting through [0 -D] and continue with cases 0 and -.0.

We will now rigorously prove that the graphs resulting from the splitting

procedure really are refutation graphs for the formulae in question. To this end we

prove the following lemma:

3.6-5 Lemma: (Splitting the graph)

Let r be a minimal deduction graph representing a formula H = (F v 0) 1\ H rest

with clause graph relation~. Then after splitting all the clause nodes corresponding to

F vG, the resulting graph has a component rp representing F 1\ H rest and a

component r G representing G 1\ Hrest.

Proof: Because of the symmetry it is sufficient to prove that one of the

resulting components represents 01\ Hrest. The proof can be done by induction on the

number n of clause nodes related to F v O'

If n=l, the graph is split in exactly two components, one of which contains no

F.,parts according to Jemma 2.5-3. Now lemma 2.5-6 guarantees that this component

represents G 1\ H rest.

If F v 0 is represented by n+1 clause nodes Cl, ... , Cn+l in r, we can split the graph

by splitting Cl> ... , Cn fIrst. Then by induction hypothesis, there is a component r G

containing no F-literal-nodes of the clause nodes Cl, ... , Cn; rG could still contain

Cn+l, of course. If this is the case we split 4+1 in rG into two components, one of

which contains no F-literal-nodes as in the induction base, which completes the

proof. •

Proof Transformation 5 7

3.64 Example Graphs: (M-Cases, M-Divide)

subgraphl

- F subgraph3 H
- G subgraph2

~- subgraphl -
subgraphZ

This time one must cut through the positively polarized clause node [F G], and
the resulting two graph components are both proofs for H , assuming F or G as an
additional assumption. In case of M-Divide one can insert a clause node [G ——G] for
the link A between —G and G and properly connect it to the rest of the graph; then it is
possible to continue by cutting through [G —G] and continue with cases G and ‘1G.

We will now rigorously prove that the graphs resulting from the splitting
procedure really are refutation graphs for the formulae in question. To this end we
prove the following lemma:

3.6-5 Lemma: (Splitting the graph]

Let I‘ be a minimal deduction graph representing a formula H : (F v G) A Hrest
with clause graph relation A. Then after splitting all the clause nodes corresponding to
F v G, the resulting graph has a component 1"}: representing FA Hrest and a
component FG representing G A Hrest.

% Because of the symmetry i t i s sufficient to prove that one of the

resulting components represents G A Hrest. The proof can be done by induction on the
number n of clause nodes related to F v G .

If n_=_1_, the graph i s split in exactly two components, one of which contains no
F—.parts according to lemma 2.5-3. Now lemma 2.5—6 guarantees that this component
represents G A Hrest.

If F v G i s represented by n_+l clause nodes C1, . . . , Cn+1 in F, we can split the graph
by splitting C1, , Cn first. Then by induction hypothesis, there is a component FG
containing no F—literal—nodes of the clause nodes C1, . . . , Cn; I}; could still contain
Cn+1, of course. If this is the case we split Cn+1 in FG into two components, one of
which contains no F-literal—nodes as in the induction base, which completes the
proof. I

58 Transfonnation and Structuring of Computer Generated Proofs

3.6-6 Corollary: (Splitting theorem)

Let r be a minimal refutation graph proving F/\G from assumptions 5t Then one

of the components resulting from splitting the clause nodes corresponding to F/\G is

a minimal refutation graph for 5t~F and one is a minimal refutation graph for J'l~G.

Proof: r proves J'l~F/\G, therefore r represents 5t/\(-,Fv-,G). The

previous lemma tells us that, after splitting all the clause nodes corresponding to

-,F v -,G, there is a component containing no G-parts and a component without any

F-parts. Both these components are minimal (by definition) and refutation graphs (by

Lemma 2.5-1), therefore they prove 5t~F and 5t~G, respectively. _

As suggested by example 3.6-4, splitting is not confined to breaking up the

formula to be proved into several parts. The mechanism is exactly the same, when the

proof is done by case analysis. In this case the splitting has to be done using a

disjunctive assumption (or derived) formula.

3.6-7 Definition: (Distributed Formulae)

Let r be a clause graph representing a formula H =H1/\ (F vG) /\ Hrest. Then

lemma 3.6-5 guarantees the existence of clause graphs rpand rGif r is split between

F and G, such that rp contains no G-parts and rG no F-parts. The formula HI is said

to be distributed in r with respect to the disjunction F v G if both rpand rGcontain

literal nodes corresponding to HI.

3.6-8 Lemma: (Graph Condition for M-Cases)

Given a GNDP with an internal line {(A) J'l \- FvG Rule9\} and an external line

{(~) 5t \-H r}, where r is a minimal refutation 'graph proving 5t~H with a clause

graph relation A

Then, if H is distributed in r with respect to F v G, splitting the graph by

splitting all the clause nodes in ~(Qa(FvG» between their F- and G-parts, leads to a

component proving .5l, F~H and a component 5l, G~H, so that M-Cases can be

applied.

Proof: As in the proof of lemma 3.5-7 we assume that (F v G) E 5l,

otherwise F v G can be derived as a subgoal first. Hence r represents the formula

J'lrest/\(FvG)/\-,H. From lemma 3.6-5 we know that splitting leads to components

representing 5frest /\ F /\ -,H and 5lrest /\ G/\ -,H, which are refutation graphs proving

J'l, F ~ Hand J'l, G ~ H, respectively. _

5 8 Transformation and Structuring of Computer Generated Proofs

3.6-6 Corollary: (Splitting theorem)

Let I‘ be a minimal refutation graph proving FAG from assumptions flL Then one
of the components resulting from splitting the clause nodes corresponding to FAG is
a minimal refutation graph for fit=>F and one is a minimal refutation graph for J4=>G.

BLof: I‘ proves A=FAG, therefore T represents a (—IFVfiG) . The
previous lemma tells us that, after splitting all the clause nodes corresponding to
fiF v fiG, there is a component containing no G-parts and a component without any
F-parts. Both these components are minimal (by definition) and refutation graphs (by
Lemma 2.5-1), therefore they prove fll=>F and fll=>G‚ respectively. I

As suggested by example 3.6-4, splitting i s not confined to breaking up the
formula to be proved into several parts. The mechanism is exactly the same, when the
proof i s done by case analysis. In this case the splitting has to be done using a
disjunctive assumption (or derived) formula.

3.6-7 Definition: (Distributed Formulae]

Let I‘ be a clause graph representing a formula H : H1 A (FvG) AHrest. Then
lemma 3.6-5 guarantees the existence of clause graphs FF and I}; if F is split between
F and G, such that I]: contains no G-parts and PG no F-parts. The formula H1 is said
to be distributed in l" with respect to the disjunction Fv G if both P 1: and FG contain
literal nodes corresponding to H1.

3.6-8 Lemma: (Graph Condition for M—Cases]

Given a GNDP with an internal line {(7L) flu- FvG RuleSK} and an external line
{ (€) A l -H F }, where I‘ is a minimal refutation graph proving fl=>H with a clause

graph relation A.

Then, if H is distributed in I‘ with respect to FVG, splitting the graph by
splitting all the clause nodes in A(§Za(FvG)) between their F- and G—parts, leads to a
component proving flLF=>H and a component 54, G=>H, so that M—Cases can be

applied.

mt As in the proof of lemma 3 .5 -7 we assume that (FvG) e fl ,

otherwise FvG can be derived as a subgoal first. Hence F represents the formula
fllrest A (F VG) A ——.H. From lemma 3.6-5 we know that splitting leads to components
representing Aes tAF A~—.H and firestAGA —1H, which are refutation graphs proving

fll, F :> H and 541, G => H, respectively. l

Proof Transformation	 59

3.7 Example

As an example of the automatic proof transformation procedure, we use again a

part of the subgroup criterion (cf. example 2.5-5). The formula to prove is

F = \iu Puiue A \iw Peww A (\ixyz Sx A Sy A Pxiyz'=> Sz) => (\iv Sv => Siv). In order
to develop a natural deduction proof of this formula we start with the following

information:

•	 a refutation graph r proving F (repeated below)

•	 a clause graph relation ~ c Qa(F) x N

•	 a ground substitution 'Y mapping the variables in C(-,F) to the ground

terms occurring in corresponding clause nodes of the refutation graph.

The variables of the formula \ixyz Sx A Sy A Pxiyz => Sz, which is

instantiated twice, are renamed to Xl, YI, Zl, and X2, Y2, Z2.

All of this information, the refutation graph, the clause graph relation, and the

ground substitution has been automatically generated by the theorem prover MKRP,

see [MKRP84] and [Le88]. Below the refutation graph r is repeated:

~ is the relation explained in example 2.5-5.

The transformation process is now started with the trivial GNDP for F

(16)	 1- (\iu Puiue A \iw Peww A (\ixyz Sx A Sy A Pxiyz => Sz»
=> (\iv Sv => Siv) r

Proof Transformation 5 9

3.7 Example

As an example of the automatic proof transformation procedure, we use again a
part of the subgroup criterion (cf. example 2.5-5). The formula to prove i s
F = Vu Puiue A Vw Peww A (nz Sx A Sy APxiyz'=> Sz) => (Vv Sv => Siv). In order
to develop a natural deduction proof of this formula we start with the following
information:

° a refutation graph I‘ proving F (repeated below)

o a clause graph relation A ; Qa(F)xN

° a ground substitution 7 mapping the variables in CBF) to the ground
terms occurring in corresponding clause nodes of the refutation graph.
The variables of the formula nz Sx A Sy A Pxiyz=> 82, which i s
instantiated twice, are renamed to x l , y1, z1, and x2, y2, 22.

All of this information, the refutation graph, the clause graph relation, and the
ground substitution has been automatically generated by the theorem prover MKRP,
see [MKRP84] and [Le88]. Below the refutation graph I‘ is repeated:

' y= {ul—> a, Wl—> ia, v» a, x1 I——> a , y1t—> a , 2ft» e , x2I—> e , y2I—> a, 22H ia}

A is the relation explained in example 25-5.

The transformation process is now started with the trivial GNDP for F
(16) I— (Vu PuiueAVw PeWWA(nz SXASyAPxiyz=>Sz))

=> (Vv Sv => Siv) I‘

60 Transformation and Structuring of Computer Generated Proofs

The ftrst rule to be applied is E~, which leads to the next GNDP:
(1) 1 1 Vu Puiue AVw Peww A(Vxyz Sx ASy APxiyz ~ Sz) Ass

(15) 1 1 Vv Sv ~ Siv r
(16) 1 (Vu Puiue AVw Peww A(Vxyz Sx ASy APxiyz ~ Sz»

~ (Vv Sv ~ Siv) ~I(15)

The new external line is justified by the same refutation graph r, .1 and y have

also not changed, but now we can compute the set I of integral formulae for the

external line (15) according to deftnition 3.4-1. With the ground terms for the

instantiations from y, I ={Vu Puiue AVw Peww A(Vxyz Sx ASy APxiyz ~ Sz),

VuPuiue, Paiae, VwPeww, Peiaia, VxyzSxASYAPxiyz~Sz, SaAPaiae~Se,

SeA SaAPeiaia ~ Sia}.

The conclusion of line 15 is not in I, so the next external rule is applied (EV), the

variable v being replaced by the constant a.

(1) 1 I- Vu Puiue AVw Peww A(Vxyz Sx ASy APxiyz ~ Sz) Ass

Let a be an arbitrary constant

(14) 1 1-	 Sa ~ Sia r
(15) 1 1-	 Vv Sv ~ Siv VI(14)

(16)	 I- (Vu Puiue AVw Peww A(Vxyz Sx ASy APxiyz ~ Sz»

~ (Vv Sv ~ Siv) ~I(l5)

Again r and .1 remain unchanged, but now the component v ~ a is removed from

y. The next step is another application of E~, and the following GNDP is

constructed:

(1) 1 1- VuPuiueAVwPewwA(VxYZSXASYAPxiyz~Sz) Ass

Let a be an arbitrary constant

(2) 2 1- Sa	 Ass

(13) 1, 2 1-	 Sia r
(14) 1 1-	 Sa ~ Sia ~I(13)

(15) 1 1-	 Vv Sv ~ Siv VI(14)

(16)	 1- (VuPuiueAVwPewwA(VxyzSxASYAPxiyz~Sz»

~ (Vv Sv ~ Siv) ~I(15)

With the introduction of a new assumption the set of integral formulae is

augmented by Sa; but with Sa APaiae ~ Se and Se ASa APeiaia ~ Sia being integral,

the formulae Se and Sia become integral as well.

6 0 Transformation and Structuring of Computer Generated Proofs

The first rule to be applied is E=‚ which leads to the next GNDP:
(1) 1 I- Vu Puiue A Vw Peww A (nz Sx A Sy A Pxiyz => Sz) Ass

(15) 1 |- Vv Sv => Siv I‘
(16) |- (Vu Puiue A Vw Peww A (nz Sx A Sy A Pxiyz => Sz))

= (Vv Sv = Siv) =I(15)

The new external line is justified by the same refutation graph 1‘, A and 7 have
also not changed, but now we can compute the set I of integral formulae for the
external line (15) according to definition 3.4-1. With the ground terms for the
instantiations from 7, I = {Vu Puiue A Vw Peww A (V xyz Sx A Sy A Pxiyz => Sz),
Vu Puiue, Paiae, Vw Peww, Peiaia, nz Sx A Sy A Pxiyz => Sz , Sa A Paiae => Se ,

SeA SaAPeia ia=Sia} .

The conclusion of line 15 is not in I, so the next external rule is applied (EV), the
variable v being replaced by the constant a.

(1) 1 |- Vu Puiue A Vw Peww A (nz Sx A Sy A Pxiyz = 82) Ass
Let a be an arbitrary constant

(14) 1 I— Sa = Sia F
(15) 1 I— Vv Sv = Siv VI(14)
(16) |- (Vu Puiue/\Vw PcWWA (nz SXASy APxiyz = Sz))

= (VV SV = Siv) =I(15)

Again F and A remain unchanged, but now the component VH a is removed from
7. The next step i s another application of E=>, and the following GNDP is
constructed:

(1) 1 I- Vu Puiue A Vw Peww A (nz Sx A Sy A Pxiyz = 82) Ass
Let a be an arbitrary constant

(2) 2 l- Sa Ass
(13) 1, 2 |- Sia l"
(14) 1 |— Sa = Sia =I(13)
(15) 1 I— VV Sv = Siv VI(14)
(16) |—— (Vu Puiue A Vw Peww A (nz Sx A Sy A Pxiyz = Sz))

= (Vv Sv = Siv) =I(15)

With the introduction of a new assumption the set of integral formulae i s
augmented by Sa; but with Sa A Paiae = Se and Se A Sa A Peiaia = Sia being integral,
the formulae Se and Sia become integral as well.

61 PToofTransfonnation

Up to here only automatic transformation rules were applied. As this is no longe:

possible at this stage and the current goal formula is integral, we try to apply one ::..

the mixed rules. With the implication Se ASa APeiaia ~ Sia being an instance of an

assumption formula, M-Inf can be applied after checking the graph condition (3.5-7).

Here the only link from [Sia] connects to the clause node representing the

implication, so M-Inf may be applied and the GNDP changes to

(1) 1 1- Vu Puiue AVw Peww A(Vxyz Sx ASy APxiyz ~ Sz) Ass

Let a be an arbitrary constant

(2) 2 1 Sa Ass

(3) 1 1 VxyzSxASYAPxiyz~Sz AE(I)

(4) 1 1 Se ASa APeiaia ~ Sia VE(3)

(12) 1 1 Se ASa APeiaia r'
(13) 1, 2 1 Sia ~E(4, 12)

(14) 1 1 Sa ~ Sia ~1(13)

(15) 1 1 Vv Sv ~ Siv Vl(14)

(16) I (Vu Puiue AVw Peww A(Vxyz Sx ASy APxiyz ~ Sz))

~ (Vv Sv ~ Siv) ~I(15)

Actually, it took three rules to derive this GNDP, IAright and IV were applied in

order to isolate the implication needed for M-lnf. This could be done by using the fact

that (and the reason why) Sia was integral. After this the graph has changed for the

first time, it is no longer a graph proving Sia, but a graph proving Se ASa APeiaia:

~ is now the restriction of the previous relation to the remaining literal nodes,

and 'Y has shrunk to {u r7 a, w r7 ia, Xl r7 a, YI r7 a, zl r7 e}.

Continuing to construct the sequence of GNDPs, rule EA can be applied, after

which the GNDP has three external lines and the refutation part has to be broken up

in order to construct three graphs proving these three lines. One of these graphs is not

needed, however, as the formula Sa already appears as the conclusion of line 2.

Proof Transformation 6 1

Up to here only automatic transformation rules were applied. As this is no longer
possible at this stage and the current goal formula is integral, we try to apply one of
the mixed rules. With the implication Se A Sa A Peiaia => Sia being an instance of an
assumption formula, M-Inf can be applied after checking the graph condition (3.53).
Here the only link from [S ia] connects to the clause node representing the

implication, so M—Inf may be applied and the GNDP changes to

(1) 1 I— Vu PuiueAVw PeWWA(nzSXASyAPxiyz=> Sz) Ass
Let a be an arbitrary constant

(2) 2 I— Sa Ass
(3) 1 |— nzSXASyAPxiyz=> Sz AE(1)
(4) 1 |— Se A Sa A Peiaia _=> Sia VE(3)

(12) l I— SeASaAPeiaia l"
(13) 1, 2 l— Sia =>E(4, 12)
(14) 1 l— Sa => Sia =>I(13}
(15) 1 I- VV Sv : Siv VI(14)
(16) t- (Vu Puiue A Vw Peww A (V xyz Sx A Sy A Pxiyz => Sz))

=> (Vv SV => Siv) =>I(15)

Actually, it took three rules to derive this GNDP, IAright and IV were applied in
order to isolate the implication needed for M-Inf. This could be done by using the fact
that (and the reason why) Sia was integral. After this the graph has changed for the
first time, it is no longer a graph proving Sia, but a graph proving Se A Sa A Peiaia:

E“

-

A i s now the restriction of the previous relation to the remaining literal nodes,
and yhas shrunk to {UH a , WH ia, x1 H a, y1I-> a, z1 He} .

COntinuing to construct the sequence of GNDPs, rule EA can be applied, after
which the GNDP has three external lines and the refutation part has to be broken up
in order to construct three graphs proving these three lines. One of these graphs is not
needed, however, as the formula S a already appears as the conclusion of line 2.

62 Transformation and Structuring of Computer Generated Proofs

II-peiaiaIH+Peiaia I

(1) 1 I- "ituPuiuel\ "itwPewwl\("itxyzSxI\SYI\Pxiyz~Sz) Ass

Let a be an arbitrary constant

(2) 2 1- Sa	 Ass

(3) 1 I- "itxyz Sx 1\ Sy 1\ Pxiyz ~ Sz	 AE(I)

(4) 1 1- Se 1\ Sa I\Peiaia ~ Sia	 VE(3)

(9) 1, 2 1- Se	 rl
(11) 1, 2 1-	 Peiaia r3
(12) 1,2 1-	 Se 1\ Sa 1\ Peiaia 1\1(9,2, 11)

(13) 1, 2 1-	 Sia ~E(4, 12)

(14) 1 1-	 Sa => Sia =>1(13)

(15) 1 1-	 "itv Sv => Siv "itl(14)

(16)	 1- ("itu Puiue 1\ "itw Peww A("itxyz Sx ASy 1\ Pxiyz => Sz»

=> (\:Iv Sv ~ Siv) ~I(15)

This procedure finally ends with a natural deduction proof of F:

(1) 1 1- "itu Puiue A"itw Peww 1\ ("itxyz Sx 1\ Sy 1\ Pxiyz ~ Sz) Ass

Let a be an arbitrary constant

(2) 2 1- Sa	 Ass

(3) 1 1- "itxyz Sx ASy APxiyz => Sz	 AE(1)

(4) 1 1- Se 1\ Sa 1\ Peiaia => Sia	 "itE(3)

(5) 1 1- "itu Puiue	 AE(1)

(6) 1 1- Paiae	 VE(5)

(7) 1, 2 1- Sa 1\ Paiae	 Al(2,6)

(8) 1 1- Sa 1\ Paiae => Se	 "itE(3)

(9) 1, 2 1- Se	 =>E(7,8)

(10) I 1- "itwPeww	 I\E(I)

(11) 1 1- Peiaia	 "itE(lO)

(12) 1, 2 1- Se ASa APeiaia	 /\1(9,2,11)

(13) 1, 2 I- Sia	 =>E(4, 12)

(14) 1 1-	 Sa ~ Sia =>1(13)

(15) 1 1-	 "itv Sv => Siv "itl(14)

(16)	 1- (Vu Puiue A"itw Peww 1\ (Vxyz Sx 1\ Sy 1\ Pxiyz => Sz»

=> ('Iv Sv => Siv) ~I(l5)

62

F1

Transformation and Structuring of Computer Generated Proofs

1‘3

“Meal—Pammsw- -
(1) 1 |- Vu PuiueAVw PeWWA(nz SXASyAPxiyz=>Sz) Ass

Let a be an arbitrary constant
(2) 2 I- Sa Ass

(3) 1 I— nz Sx A Sy A Pxiyz = Sz AE(1)
(4) 1 I— Se A Sa A Peiaia => Sia VE(3)
(9) 1, 2 I— Se F1

(11) 1, 2 +— Peiaja 1‘3
(12) 1 , 2 l— SeASaAPeia ia AI (9 ,2 ,11)

(13) 1, 2 I— Sia ‘ =>E(4, 12)
(14) 1 !- Sa => Sia :>I(13)
(15) 1 |— Vv Sv => Siv VI(14)
(16) I- (Vu PuiueAVwPeWWA(nzSXA SyAPxiyz => Sz))

=> (Vv Sv => Siv) ' =>I(15)

This procedure finally ends with a natural deduction proof of F:

(1) 1 |— Vu PuiueAVw PCWWA(nz SXASyAPxiyz=Sz) Ass
Let a be an arbitrary constant

(2) 2 |- Sa ASS
(3) 1 +- nzSXASyAPx i yz =>Sz AE(1)

(4) 1 ;- SeASaAPeiaia=> Sia VE(3)

(5) 1 »— Vu Puiue AE(1)

(6) 1 !— Paiae VE(5)

(7) 1 , 2 !- Sa A Paiac . AI(2‚ 6)

(8) 1 |- Sa A Paiae => Se VE(3)

(9) 1, 2 |- Se =>E(7. 8)

(10) 1 1- VW Peww AEÜ)

(11) 1 !- Peiaia VE(10)

(12) 1, 2 I— SeASaAPeiaia AI(9‚2‚ 11)

(13) 1 , 2 l— Sia =>E(4‚ 12)

(14) 1 1- Sa => Sia =>I(13)
(15) 1 |- Vv Sv = Siv VI(14) —
(16) l— (Vu PuiueAVwPeWWA(nzSXA SyAPxiyz => Sz))

= (Vv Sv => Siv) =>I(15)

63 Internal Proof Structure

4 Discovering the Internal
Structure of a Proof

4.1 Ordering Natural Deduction Proofs

After the transformation process from a refutation graph into a natural deduction

formalism the proof may now be represented as a directed acyclic graph (dag) in the

following way: The nodes are labeled with proof lines of the NDP, incoming edges

represent the proof lines from which the proof line of a node was derived, and

outgoing edges represent steps, for which this line was needed itself. Thus axioms

(or lines justified by the Assumption Rule) have no incoming edges, and the only

node with no outgoing edge represents the theorem. This idea, first used by Chester

in [Ch75] is defined more precisely below.

4.1-1 Definition: (NDPs represented as dags)

A directed acyclic graph (dag) with a set of nodes N, a set of edges E ~ NxN

and a reachability relation E*~ NxN, defined as the transitive closure of E, is called a

Natural Deduction Graph (NDG), if there is

(a)	 a bijection between the set of nodes N and the set of proof lines of

an NDP. Therefore the nodes may be labelled with proof lines, and

one may speak. of the node instead of the proof line.

(13)	 (nI, nz) E E* whenever the proof line of nl appears in the
justification of that in nz. If (n}, nz) E E, then the edge is labelled

with the respective rule.

(y)	 (n}, nz) E E* when

(Yl) both nl and nz introduce new assumptions (by rule Ass),

which are removed (by Rules =>1, -,1, vE, or 3E) in nodes

114 and n3, respectively.

(yz) n3 is used in the derivation of 114, Le. there is a chain of edges

from n3 to 114.

(0) (nI, nz) E E*, in the case of rule 3E, when

nl = {5l I- 3x Fx Rule 9\}

nz = { 5l, Fc I- Fc Ass}

n3 = { 5l, Fc I G Rule 9\'}

n4 = {5l I G 3E(nl, n3)}

Internal Proof Structure 6 3

4 Discovering the Internal
Structure of a Proof

4.1 Ordering Natural Deduction Proofs

After the transformation process from a refutation graph into a natural deduction
formalism the proof may now be represented as a directed acyclic graph (dag) in the
following way: The nodes are labeled with proof lines of the NDP, incoming edges
represent the proof lines from which the proof line of a node was derived, and
outgoing edges represent steps, for which this line was needed itself. Thus axioms
(or lines justified by the Assumption Rule) have no incoming edges, and the only
node with no outgoing edge represents the theorem. This idea, first used by Chester
in [Ch75] is defined more precisely below.

4 .1 -1 Definition: [NDPs represented as dags)

A directed acyclic graph (dag) with a set of nodes N, a set of edges E Q NxN
and a reachability relation E‘E N><N , defined as the transitive closure of E, is called a
Natural Deduction Graph (NDG), if there i s

(oz) a bijection between the set of nodes N and the set of proof lines of
an NDP. Therefore the nodes may be labelled with proof lines, and
one may speak of the node instead of the proof line.

(ß) (n1, ng) 5 E“ whenever the proof line of n l appears in the
justification of that in ng. If (n1, n2) 6 E , then the edge i s labelled
with the respective rule.

(7) (nl, n2) e E* when
(7;) both nl and 112 introduce new assumptions (by rule Ass),

which are removed (by Rules =>I, -wI, vE, or EIE) in nodes
M and mg, respectively.

(72) n3 is used in the derivation of n4, i.e. there is a chain of edges
from n3 to n4.

(ö) (n1, ng) e E“, in the case of rule 3E, when
n1 = {31 l— 3x Fx Rule‘X}
n2 = { JLFc +- Fc Ass}
H3 = {z ,Fc l- G Rule ‘.R'}
n4= {% l- G 3E(n1‚n3)}

64 Transfonnation and Structuring of Computer Generated Proofs

The reachability relation E* defines a partial order on the prooflines, which must
always be obeyed when the proof is written down in a linear form. In the next step

the proof lines will be totally ordered, so that the proof can be stated in sequential

form. This total order may be different from the rather accidental order of the original

NDP.

Both conditions (y) and (8) ensure that new assumptions are not made before

they are actually needed, or that subproofs are completely nested in the superior

proof. This is sometimes enforced by natural deduction calculi such as Jaskowski's

box formalism [Ja33].

4.1-2 Definition: (Generalized NDGs)

A dag with nodes N' and edges E' ~ N'x N' is called a Generalized NDG

(GNDG), if it is an NDG or if it can be derived from an NDG with nodes Nand

edges E as follows:

(a)	 N' must be a partition of N.

(~)	 There must be an ordering Ei on the internal nodes NiE N'

compatible with E*, i.e. (nI, nz) E E* implies (nI, nz) E Ej for all

nI, nz E Ni.

(y)	 E' = {(n1,n 2) 13nl En'l'nZEn2 with (nl,nz)EE}.

The size of a node n' is the number of original proof lines appearing in it, its rank

is the number of its immediate predecessors {n I (n,n')E E}. •

In order to linearize natural deduction proofs, Chester [Ch75] starts with an

NDG and constructs a sequence of GNDGs until the graph is (almost) linear. A new

element in this sequence is obtained by application of one of the following rules. If

both rules can be applied, rule 1 is always preferred.

Rule 1:	 Combine nodes nl and nz, if (nI, nz) E E, and if for all

nE N (nI, n) EE implies n = nz, and (n, n2) E E implies

n = n1. The nodes from n1 will be smaller in the internal

order than those from nz.

Rule 2:	 Combine nodes nl and nz, if (nI, nz) EE, nl contains no

line justified by =>1, size(nl) ~ maxsize, and for all nE N

(n 1, n) E E implies n = nz. In doing so, use nodes with

6 4 Transformation and Structuring of Computer Generated Proofs

The reachability relation E" defines a partial order on the proof lines, which must
always be obeyed when the proof is written down in a linear form. In the next step
the proof lines will be totally ordered, so that the proof can be stated in sequential
form. This total order may be different from the rather accidental order of the original
NDP.

Both conditions (7) and (ö) ensure that new assumptions are not made before
they are actually needed, or that subproofs are completely nested in the superior
proof. This is sometimes enforced by natural deduction calculi such as J askowski’s
box formalism [Ja33].

a

4 .1 -2 Definition: (Generalized NDGs)

A dag with nodes N' and edges E' Q N'>< N’ is called a Generalized NDG
(GNDG) , if it is an NDG or if i t can be derived from an NDG with nodes N and
edges E as follows:

(ct) N' must be a partition of N.

(ß) There must be an ordering Ei on the internal nodes Nie N '
compatible with E“, i.e. (n1,n2)e E“ implies (n1,n2)e E ; for all
n l , 112 & Ni .

(y) E' = {(n '1 ,n ' 2) | _=]n len '1 ,nzen '2 with (n1 ,n2)eE} .

The size of a node n' is the number of original proof lines appearing in it, its rank
i s the number of its immediate predecessors {n I (n,n‘)e E}. O

In order to linearize natural deduction proofs, Chester [Ch75] starts with an
NDG and constructs a sequence of GNDGs until the graph is (almost) linear. A new
element in this sequence is obtained by application of one of the following rules. If
both rules can be applied, rule 1 i s always preferred.

Rule 1: Combine nodes n1 and 112, if (nl, n2) 6 E, and if for all
n e N (m, n) e E implies n = ng, and (n, ng) e E implies
n = n1. The nodes from n l will be smaller in the internal
order than those from ng.

Ru 2 . Combine nodes n l and 112, if (n1, n2) 6 E , n l contains no

line justified by =>I, size(n1) s maxsize, and for all n e N
(n l , n) eE implies n=n2 . In doing so, use nodes with

65 Internal Proof Structure

least rank first. Again the nodes from nl will be smaller

in the internal order than those from n2.

The following two drawings illustrate the situations of the two rules above. In

rule 1 the first node is the only direct reason for the second node, which itself is the

only immediate successor of the first node. This is the case, when the first line of n2

follows directly from the last line of nl. The second rule applies, when all the reasons

for n2 are only used in this instance, no assumption is removed (by Rules =>1, -,1,

vB, or :::lE), and nl is not too large. Otherwise the last line of nl is considered a

lemma.

Rule 1:

Rule 2:

rank(n l) ~ rank (n
t

l)

size(n l) ~ maxsize

4.1-3 Example: (Natural Deduction Graph)

As an example we start with the natural deduction proof automatically

constructed in example 3.7 by the basic proof transformation procedure (see

algorithm 3.4-2). Below, the natural deduction graph is shown representing the

dependency relation between the lines of the natural deduction proof. In line 2 a new

(arbitrary) constant 'a' is introduced, so all the lines using this constant actually

depend on line 2. The link between (1) and (2) has been introduced in order to fulfill

property (y) of definition 4.1-1.

Internal Proof Structure 6 5

least rank first. Again the nodes from n1 will be smaller
in the internal order than those from n2.

The following two drawings illustrate the situations of the two rules above. In
rule } the first node is the only direct reason for the second node, which itself is the
only immediate successor of the first node. This is the case, when the first line of 112
follows directly from the last line of n1. The second rule applies, when all the reasons
for n2 are only used in this instance, no assumption i s removed (by Rules =>I, —nI‚
VE, or EE), and n1 i s not too large. Otherwise the last line of n1 is considered a
lemma.

Rule 1 :

Rule 2:

rank(n1) 5 rank (n'1)
size(n1) S maxsize

4 .1 -3 Example: [Natural Deduction Graph)

As an example we start with the natural deduction proof automatically
constructed in example 3.7 by the basic proof transformation procedure (see
algorithm 3.4-2). Below, the natural deduction graph i s shown representing the
dependency relation between the lines of the natural deduction proof. In line 2 a new
(arbitrary) constant ‘a’ i s introduced, so all the lines using this constant actually
depend on line 2. The link between (1) and (2) has been introduced in order to fulfill
property (7) of definition 4.1—1.

66 Transfonnation and Structuring of Computer Generated Proofs

Now rule I can be applied several times, combining nodes 6 with 7 and 13
through 16, which leads to the following generalized natural deduction graph.

13-14-15-16

No further applications of rule 1 being possible, rule 2 must be set to work.

There are several nodes with only one successor, but only (5) and (10) have a

minimal number of predecessors (one in this case). Therefore we combine (5) and

(10) with their respective successors. After this the direct links from one to (5) and

(l0) are no longer needed, as both of the new nodes also depend on (2), viz.

13-14-15-16

Rule 1 can still not be applied, and, with only one predecessor, (5-6-7) and

(l0-11) are the minimal nodes for rule 2, so that the graph becomes

10-11-12
13-14-15-16

6 6 Transformation and Structuring of Computer Generated Proofs

Now rule 1 can be applied several times, combining nodes 6 with 7 and 13
through 16, which leads to the following generalized natural deduction graph.

13—14—15—16

No further applications of rule 1 being possible, rule 2 must be set to work.
There are several nodes with only one successor, but only (5) and (10) have a

minimal number of predecessors (one in this case). Therefore we combine (5) and

(10) with their respective successors. After this the direct links from one to (5) and
(10) are no longer needed, as both of the new nodes also depend on (2), viz.

13—14—15—16

Rule 1 can still not be applied, and, with only one predecessor, (5-6-7) and
(10-11) are the minimal nodes for rule 2, so that the graph becomes

13—14—15—16

67 Internal Proof Structure

Next rule 1 is used to combine (8), (5-6-7-9), and (10-11-12), after which some

further applications of rule 2 result in the following linearized version of the proof:

(1-2--3--8-5---&-7-9--10-11-12--4--13-14-15-16)

The method of structuring natural deduction proofs described above does not

always lead to nicely structured proofs. Even in this small example there are choice

points where the rules do not suggest a unique continuation, and although the result is

a totally ordered sequence no internal structure has become visible at alL The proof

may be too short for the introduction of a lemma, but it is still sensible to regard line

9, the fact that the unit element e is a member of the subset S, as a natural subgoal.

With Chester's method, [Ch75], this is difficult to arrive at, as he starts his

transformation process from a given natural deduction proof having no information of

how the proof was found. However, if the information is exploited of how the

original proof was constructed, subgoals and proof structure can be achieved in a

more natural way. Lemmata can either be found during the process of finding the

proof, or later by analyzing the topological structure of the refutation graph.

The new method proposed to find the underlying structure of the proofs by

detecting lemmata and dividing the proof into several cases is developed in the

following sections 4.3 through 4.5, but before we must insert a section on "trivial"

and "obvious" proofs in order to be able to decide whether a subgoal is complicated

enough to make it worth while to be mentioned explicitly in the full proof.

4.2 Trivial Subproofs

In the following sections 4.3 through 4.5, subgraphs of the original refutation

graph will be viewed as deduction graphs representing lemmata in a larger proof.

Obviously, this only makes sense, when the deduction graph in question is complex

enough to warrant the introduction of a lemma. Otherwise it may be better to repeat a

trivial argument instead of using a lemma. It is of course not straightforward to decide

which deduction graph (or lemma) is non-trivial. To make a decision we use a

heuristic approach taking into account several properties of the refutation graph and

its subgraph, the deduction graph proving the lemma.

Internal Proof Structure 6 7

Next rule 1 is used to combine (8), (5—6-7-9), and (10-11-12), after which some
further applications of rule 2 result in the following linearized version of the proof:

@2—3—3—5—6—7—9—10—41—1 2—4—13—14—15—16 j

The method of structuring natural deduction proofs described above does not
always lead to nicely structured proofs. Even in this small example there are choice
points where the rules do not suggest a unique continuation, and although the result is
a totally ordered sequence no internal structure has become visible at all. The proof
may be too short for the introduction of a lemma, but it is still sensible to regard line
9, the fact that the unit element e is a member of the subset S, as a natural subgoal.

With Chester’s method, [Ch7.5], this i s difficult to arrive at, as he starts h i s

transformation process from a given natural deduction proof having no information of
how the proof was found. However, if the information is exploited of how the
original proof was constructed, subgoals and proof structure can be achieved in a
more natural way. Lemmata can either be found during the process of finding the
proof, or later by analyzing the topological structure of the refutation graph.

The new method proposed to find the underlying structure of the proofs by
detecting lemmata and dividing the proof into several cases is developed in the
following sections 4.3 through 4.5, but before we must insert a section on “trivial”
and “obvious” proofs in order to be able to decide whether a subgoal is complicated
enough to make it worth while to be mentioned explicitly in the full proof.

4.2 Trivial Subproofs

In the following sections 4.3 through 4.5, subgraphs of the original refutation
graph will be viewed as deduction graphs representing lemmata in a larger proof.
Obviously, this only makes sense, when the deduction graph in question is complex
enough to warrant the introduction of a lemma. Otherwise it may be better to repeat a
trivial argument instead of using a lemma. It is of course not straightforward to decide
which deduction graph (or lemma) i s non-trivial. To make a decision we use a
heuristic approach taking into account several properties of the refutation graph and
its subgraph, the deduction graph proving the lemma.

68 Transfonnation and Structuring of Computer Generated Proofs

It is indeed not easy to find objective criteria to decide when a proof is trivial. In
[Da81] Martin Davis proposes that

"an inference is obvious, precisely when a Herbrand proof
of its correctness can be given involving no more than one
substitution instance ofeach clause" .

Jeffrey Pelletier and Piotr Rudnicki argue along the same line in [PR86], but

point out that in general it may be difficult to decide if any proof of a given fact is

non-obvious because this requires to check a property of all possible proofs. This

doesn't pertain to our case, however, since we are only concerned with the question

if a given proof is trivial as opposed to the question whether an obvious proof can be

found for a given theorem.

So Davis' approach seems to be a good starting point, however there is an

additional complication. We have to figure out whether a given proof (deduction

graph) is a substantial part of a larger proof. When this is the case, it is normally

desirable to use the subgraph as a lemma or as an intermediate step in the overall

proof. Therefore we must check if the rest of the proof - after removing the proof of

the lemma - has become "easier". According to Davis, this will be the case when the

subgraph contains an instance of a clause, of which a different instance appears

somewhere else in the rest of the proof. It may even be the case that both resulting
proofs are obvious although the total proof wasn't. But that's what dividing large

proofs into steps is all about.

Finally, when it comes to make someone understand a proof, other non-logical

properties must also be taken into consideration. For example its absolute length and

the length in relation to the total proof must be taken into account. When the subproof

is relatively long, it will always pay to prove it separately as a lemma. If this lemma is

already known to the reader one may later dispense with its proof altogether. Doing

this intelligently requires a database of known lemmata and a model of the reader's

knowledge about the field of mathematics under consideration. When a freshman

uses the system as an explanation for a proof one may not omit arguments which a

graduate student might consider trivial. Conversely, it may obscure the idea of a

complex proof to mention all the applications of lemmata that have been thoroughly

understood long before.

As one never knows, however, who will read the proof later, it is useful to

postpone this decision as long as possible. At this stage it is not yet necessary to take

a user model into account, this will only be done when the natural deduction proof is

6 8 Transformation and Structuring of Computer Generated Proofs

It i s indeed not easy to find objective criteria to decide when a proof is trivial. In
[Da81] Martin Davis proposes that

“an inference is obvious, precisely when a Herbrand proof
of its correctness can be given involving no more than one
substitution instance of each clause”.

Jeffrey Pelletier and Piotr Rudnicki argue along the same line in [PR86], but
point out that in general i t may be difficult to decide if any proof of a given fact i s
non-obvious because this requires to check a property of all possible proofs. This
doesn’t pertain to our case, however, since we are only concerned with the question
if a given proof i s trivial as opposed to the question whether an obvious proof can be
found for a given theorem.

So Davis’ approach seems to be a good starting point, however there is an
additional complication. We have to figure out whether a given proof (deduction
graph) i s a substantial part of a larger proof. When this is the case, i t is normally
desirable to use the subgraph as a lemma or as an intermediate step in the overall
proof. Therefore we must check if the rest of the proof — after removing the proof of
the lemma — has become “easier”. According to Davis, this will be the case when the
subgraph contains an instance of a clause, of which a different instance appears
somewhere else in the rest of the proof. It may even be the case that both resulting
proofs are obvious although the total proof wasn’t. But that’s what dividing large
proofs into steps i s all about.

Finally, when it comes to make someone understand a proof, other non-logical

properties must also be taken into consideration. For example its absolute length and
the length in relation to the total proof must be taken into account. When the subproof
is relatively long, it will always pay to prove it separately as a lemma. If this lemma is
already known to the reader one may later dispense with its proof altogether. Doing
this intelligently requires a database of known lemmata and a model of the reader’s
knowledge about the field of mathematics under consideration. When a freshman
uses the system as an explanation for a proof one may not omit arguments which a
graduate student might consider trivial. Conversely, it may obscure the idea of a
complex proof to mention all the applications of lemmata that have been thoroughly
understood long before.

As one never knows, however, who will read the proof later, i t is useful to

postpone this decision as long as possible. At this stage it is not yet necessary to take
a user model into account, this will only be done when the natural deduction proof is

69 Internal Proof Slructure

finally linearized by applying the method described in section 4.1 to arrange the

lemmata in a linear order and, of course, to linearize their internal structure if they are

considered complex enough for the prospective reader.

4.3 Shared Subgraphs as Lemmata

Now we assume that a proof of a formula <p has already been found by an auto

mated deduction system. We will further assume that this proof is represented as a
refutation graph f'; this representation can easily be constructed from a given

resolution proof, see [P085] or [Le88]. In addition to the refutation graph, in order to

establish a correspondence between the literal nodes of f' and the atom occurrences

within cp, we need a clause graph relation /). ~ Qa (<p) x N, which must of course have

been maintained throughout the search for a proof, especially during the process of

normalization of the original formula.

An initial "trivial" generalized natural deduction proof (GNDP) can then be

constructed to start a transformation process as described in chapter 3. Now some of
the transformation rules, EA for instance, lead to additional external lines, and as a

consequence to a division of the refutation graph according to the splitting theorem

3.6-6. In the simplest case the refutation graph proving F 1\ G is "cut" through the

clause [-F -0], such that the two resulting components are refutation graphs for F

and G, respectively. In general, however, the two components may have a non

empty intersection, and this is similarly the case for the other rules leading to a

division of the refutation graph. The splitting theorem does not take this into account,

so that these shared subgraphs are always duplicated and therefore processed more

than once.

This does not matter if the intersection is comparatively small, when it may easily

be copied and later used several times in the resulting subproofs. If it is relatively

large and complex, however, it may be sensible to prove a lemma fIrst and then use it

in all the proof parts. In order to formalize such a procedure, a new transformation

rule E-Lemma is introduced.

E-Lemma:
(a) (l.9l.i I- G 1to

(J3d .91.1 I- F 1 1t1
(P1) .91.1 I- F1 1t'1{
(I3n) .9I.n I- F n 1tn
(I3n) .9I.n I- Fn 1t' n

Intemal Proof Structure 6 9

finally linearized by applying the method described in section 4.1 to arrange the
lemmata in a linear order and, of course, to linearize their internal structure if they are
considered complex enough for the prospective reader.

4.3 Shared Subgraphs as Lemmata

Now we assume that a proof of a formula (p has already been found by an auto-
mated deduction system. We will further assume that this proof i s represented as a
refutation graph I‘; this representation can easily be constructed from a given
resolution proof, see [P085] or [Le88]. In addition to the refutation graph, in order to

establish a correspondence between the literal nodes of F and the atom occurrences
within cp, we need a clause graph relation A g; Q,(q>) XN, which must of course have
been maintained throughout the search for a proof, especially during the process of
normalization of the original formula.

An initial “trivial” generalized natural deduction proof (GNDP) can then be
constructed to start a transformation process as described in chapter 3. Now some of
the transformation rules, BA for instance, lead to additional external lines, and as a

consequence to a division of the refutation graph according to the splitting theorem
3.6—6. In the simplest case the refutation graph proving FAG is “cut” through the
clause [—-F —G], such that the two resulting components are refutation graphs for F
and G , respectively. In general, however, the two components may have a non—
empty intersection, and this is similarly the case for the other rules leading to a
division of the refutation graph. The splitting theorem does not take this into account,
so that these shared subgraphs are always duplicated and therefore processed more
than once.

This does not matter if the intersection is comparatively small, when it may easily
be copied and later used several times in the resulting subproofs. If it i s relatively
large and complex, however, it may be sensible to prove a lemma first and then use it
in- all the proof parts. In order to formalize such a procedure, a new transformation
rule E-Lemma is introduced.

E—Lemma:
((I) flit, l- G 1E0

(131)5‘11 '-F1 151

_” (B1) 21 l- F1 1!:1'
(ßn) fin FF“ “11

(ßn) fin I- Fn n,;

70 Transfonnation and Structuring of Computer Generated Proofs

This rule must of course be used with discretion, Le. only when specifically
called for by a heuristic. In particular it may only be applied when all the literal nodes

in the refutation graph 1to are positively polarized, so that it is possible to prove G

from axioms and current assumptions only. It goes without saying that 1to must be a
common subgraph of all the graphs 1ti. In constructing the graphs rti one is entitled to

use the formula G as an additional axiom. The case n =1 may also be meaningful,

when a lemma is introduced as a subgoal, see section 4.3.

Let us consider now what these shared subgraphs may look like. We always

assume that a cut is being made in order to apply E/\ to an external proof line with

conclusion F1/\ F2. In the simplest case the lemma consists of just one atom G. Then

the graph has the form

The case where G is a conjunction G1/\ G2 is almost as simple. It only means

that there are now two independently shared parts, viz.

When 0 is a disjunction G1 v G2, however, things are no longer as easy. At this

point one should recall, that a deduction graph constitutes a derivation of the dis

junction of its pure literal nodes from the set of clauses it contains, cf. chapter 2.

Therefore one might think that it suffices to introduce a link between the su bgraphs 3

and 4 cf L1.e previous case, combining them to a new deduction graph. It is true that

we would then l(now a derivation for the disjunction 01 v G2, but we have also

introduced a cycle into the graph, which therefore ceases to be a refutation graph. As

7 0 Transformation and Structuring of Computer Generated Proofs

This rule must of course be used with discretion, i.e. only when specifically
called for by a heuristic. In particular it may only be applied when all the literal nodes
in the refutation graph no are positively polarized, so that it i s possible to prove G
from axioms and current assumptions only. It goes without saying that no must be a
common subgraph of all the graphs ni. In constructing the graphs n; one is entitled to
use the formula G as an additional axiom. The case n= 1 may also be meaningful,
when a lemma is introduced as a subgoal, see section 4.3.

Let us consider now what these shared subgraphs may look like. We always
assume that a cut is being made in order to apply EA to an external proof line with
conclusion F; A F2. In the simplest case the lemma consists of just one atom G. Then
the graph has the form

subgraphl I ' 1 _I ' subgraph2’1
'1

The case where G is a conjunction G1 AG2 is almost as simple. It only means
that there are now two independently shared parts, viz.

subgraph3 subgraph4

When G is a disjunction G1 v G2, however, things are no longer as easy. At this
point one should recall, that a deduction graph constitutes a derivation of the dis-
junction of i ts pure literal nodes from the set of clauses i t contains, cf. chapter 2 .

Therefore one might think that it suffices to introduce a link between the subgraphs 3
and 4 of the previous case, combining them to a new deduction graph. It is true that
we would then know a derivation for the disjunction G1 n . but we have also
introduced a cycle into the graph, which therefore ceases to be a refutation graph. As

71 Internal Proof Structure

a matter of fact, a shared subgraph representing a disjunction can only happen, when

the theorem FI /\ F2 appears more than once in the graph, as in the following

example:

After cutting through both clause nodes [-FI -F2l the graph divides into four

components, only two of which are needed. The "mixed" components containing

both clause nodes [-Fd and [-F2] may be discarded. The other two components

represent proofs for FI and F2, respectively. Both proofs can then for instance be

done by case analysis after the lemma G1 v G2 has been introduced.

According to theorem 2.5-7 every refutation graph can be rewritten such that a

given (ground) clause corresponds to just one clause node in the graph. If one

chooses the theorem clause [-FI -F2l to appear only once, the refutation graph of the

last example takes a form as shown below. Now the subgraph proving GI vG2 is no

longer really shared, but two copies of it exist in the refutation graph.

So in general one has to search for isomorphic subgraphs that are complex

enough to warrant the introduction of a lemma. In addition to an isomorphic graph

structure all the literal nodes must represent identical literals and they must be related

to the same atom occurrences.

We have now seen how a deduction graph A (as a subgraph of a refutation
graph r) must look like in order to represent a conjunctive or a disjunctive lemma. If

a quantified formula is to be represented it is useful to leave the variables in the graph,

Le. all the clause nodes are (renamed) copies of their parent clauses, and a ground

substitution 'Y transforms r into a (ground) refutation graph.

Internal Proof Structure 7 1

a matter of fact, a shared subgraph representing a disjunction can only happen, when
the theorem F1 A F2 appears more than once in the graph, as in the following

example:

A
F1 subgraphs “G 2 subgraph2 F1 \

_ F V A V ' F1
1 subgraphl G.2 .. a

subgmpm -G 2 subgraph3 F2
V

After cutting through both clause nodes [—F1 —F2] the graph divides into four

components, only two of which are needed. The “mixed” components containing
both clause nodes [—F1] and [—F2] may be discarded. The other two components
represent proofs for F1 and F2, respectively. Both proofs can then for instance be
done by case analysis after the lemma 61 v G2 has been introduced.

According to theorem 2.5-7 every refutation graph can be rewritten such that a
given (ground) clause corresponds to just one clause node in the graph. If one
chooses the theorem clause [—F1 —F2] to appear only once, the refutation graph of the
last example takes a form as shown below. Now the subgraph proving G1 v G2 is no
longer really shared, but two copies of it exist in the refutation graph.

subgraphs -_.°..J

So in general one has to search for isomorphic subgraphs that are complex
enough to warrant the introduction of a lemma. In addition to an isomorphic graph
structure all the literal nodes must represent identical literals and they must be related
to the same atom occurrences.

We have now seen how a deduction graph A (as a subgraph of a refutation
graph F) must look like in order to represent a conjunctive or a disjunctive lemma. If
a quantified formula is to be represented it is useful to leave the variables in the graph,
i.e. all the clause nodes are (renamed) copies of their parent clauses, and a ground
substitution 7 transforms F into a (ground) refutation graph.

72 Transfonnation and Structuring of Computer Generated Proofs

If an existentially quantified formula is represented the pure literal nodes of the

corresponding deduction graph will contain a constant symbol that does not occur

anywhere in the rest of the refutation graph (before applying y). This means that the

proof is independent of the actual constant symbol.

•
More interesting are deduction graphs representing a universally quantified

formula. In this case it must be possible to replace a subterm s of a pure literal node

by any ground term and change 'Y accordingly without violating the polylink

condition. Then the lemma is the formula where s is replaced by a universally

quantified variable.

If such a lemma is used in different instantiations during the proof the

corresponding deduction graph will have to be duplicated as in the case of a

disjunctive lemma above. Now all these subgraphs are isomorphic in structure, but

they represent literals that may differ in the terms that were inserted in the place of s.

Such a lemma corresponds to a resolvent used more than once (and in different

instantiations) during the resolution proof. Thus, if the refutation graph was

originally constructed from a resolution proof one should keep this information in

order to obviate the search for that kind of lemma. An example can easily be

constructed by slightly altering the above graph where the atoms G and G' may differ

in some of their arguments.

4.4 Subgoals Defined by Separating Links

In the previous section, the main incentive for the introduction of a lemma was to

avoid an unnecessary duplication of parts of the proof. But this is not the only reason

why mathematicians use lemmata. In many cases they are used purely to structure the

proof, so that the idea behind a proof becomes better visible.

In an automatic proof transformation the difficulty is obviously to find

meaningful lemmata. And it is here again that the topological structure of the

refutation grapri may successfully be exploited. The task is to find parts of the

refutation graph that are sufficiently complex in order to justify the introduction of a

7 2 Transformation and Structuring of Computer Generated Proofs

If an existentially quantified formula is represented the pure literal nodes of the
corresponding deduction graph will contain a constant symbol that does not occur
anywhere in the rest of the refutation graph (before applying 7). This means that the
proof is independent of the actual constant symbol.

}

More interesting are deduction graphs representing a universally quantified
formula. In this case it must be possible to replace a subterm s of a pure literal node
by any ground term and change 7 accordingly without violating the polylink
condition. Then the lemma i s the formula where s is replaced by a universally
quantified variable.

If such a lemma is used in different instantiations during the proof the
corresponding deduction graph will have to be duplicated as in the case of a
disjunctive lemma above. Now all these subgraphs are isomorphic in structure, but
they represent literals that may differ in the terms that were inserted in the place of 5.

Such a lemma corresponds to a resolvent used more than once (and in different
instantiations) during the resolution proof. Thus, if the refutation graph was
originally constructed from a resolution proof one should keep this information in
order to obviate the search for that kind of lemma. An example can easily be
constructed by slightly altering the above graph where the atoms G and G' may differ
in some of their arguments.

F1 subgraphl _G G subgraph
- F1 V

- F2 ‘ .
subgraph2 -G ' G subgraph

V

4.4 Subgoals Defined by Separating Links

In the previous section, the main incentive for the introduction of a lemma was to

avoid an unnecessary duplication of parts of the proof. But this is not the only reason
why mathematicians use lemmata. In many cases they are used purely to structure the
proof, so that the idea behind a proof becomes better visible.

In an automatic proof transformation the difficulty i s obviously to find
meaningful lemmata. And i t is here again that the topological structure of the
refutation graph may successfully be exploited. The task is to find parts of the
refutation graph that are sufficiently complex in order to justify the introduction of a

73 Internal Proof Structure

lemma, while they should at the same time be easily separable from the rest of the

graph. Besides, all the parts belonging to the proposed lemma must of course have

been positively polarized before.

If it were possible to find a link: or a small set of links separating the refutation

graph, and fulfilling the above requirements, one might use the positively polarized

part as a lemma. So, during the process of proof transformation, when no more

automatic external rules nor E3-constructive can be applied, the search for such links

is done using the following algorithm:

4.4-1 Algorithm: (find separating links to define lemmata)

1.	 Starting with a non-trivial refutation graph r=(N,C,£,n), we want

to compute a set'¥ of candidates for a lemma. The process is

initialized by setting 'P:={}.

2.	 Compute the set 'Pmin:={AEn I A is minimal with respect to the

nesting order ~ on n}. These are the links separating the graph.

The removal of a given A E'Pmin from r results in two deduction

+

graphs r A and rA •

3.	 Compute 'Po:={AE'Pmin I exactly one ofr~ or r~ is trivial}. These

are useless for lemma purposes, since they can only lead to trivial

lemmata. Therefore let'Pmin:='Pmin\'PO'

4.	 Let 'P:='PU'Pmin.

5.	 For each AE'Po duplicate the trivial subgraph r~, if A is branching

on the non-trivial side. Note that r is changed by this operation. Let

'Pmin:={El E n~r\ 'Pmin I El is minimal with respect to the nesting

order!< on n~tr}. These are the links that additionally separate the

graph after the duplication of a subgraph.

6.	 If'Pmin is non-empty, go to 3, otherwise continue with 7.

7.	 Now '¥ is the complete set of candidates for lemma purposes.

Internal Proof Structure

lemma, while they should at the same time be easily separable from the rest of the
graph. Besides, all the parts belonging to the proposed lemma must of course have
been positively polarized before.

If it were possible to find a link or a small set of links separating the refutation
graph, and fulfilling the above requirements, one might use the positively polarized
part as a lemma. So, during the process of proof transformation, when no more
automatic external rules nor E3-constructive can be applied, the search for such links
is done using the following algorithm:

4.4-1 Algorithm:

1 . Starting with a non—trivial refutation graph I‘=(N,C,£,ll'll), we want

to compute a set ‘I’ of candidates for a lemma. The process is
initialized by setting ‘I’:={ }.

Compute the set ‘Pmin:={ A e H | A i s minimal with respect to the
nesting order >'—‘< on ll'l}. These are the links separating the graph.
The removal of a given A 5 Train from I‘ results in two deduction
graphs FX and IR.

Compute ‘I‘o:={Ae ‘I’min | exactly one of I‘X or I; is trivial}. These
are useless for lemma purposes, since they can only lead to trivial
lemmata. Therefore let ‘I’min:=‘I‘m\‘l’o.

Let ‘I‘:=‘I’U‘I‘min.

For each A e ‘I’o duplicate the trivial subgraph PX, if A is branching
on the non-trivial side. Note that I‘ is changed by this operation. Let
‘I’min:={® e HTVPmin l ® i s minimal with respect to the nesting
order & on HRH}. These are the links that additionally separate the
graph after the duplication of a s'ubgraph. .

If‘I’min is non-empty, go to 3, otherwise continue with 7.

Now ‘I’ is the complete set of candidates for lemma purposes.

[find separating links to define lemmata)

74 Transfonnation and Structuring of Computer Generated Proofs

4.4-2 ~xaDnple: (links defining a lemma)

The set of separating links in the example graph is o/min={Al, A7, Ag, A9}. All
of them separate a trivial part from the rest of the graph, though, therefore none of

them is among the candidates for a lemma. Only Ag is branching on the non-trivial

side, which means that the appropriate trivial part has to be duplicated. This leads to

the following refutation graph.

Q
-Pa
R

S

Now J4 is an additional separating link, which divides the graph into two trivial

parts. So ,¥={J4} is the set of candidate links for a lemma. +

Now the set '¥ of candidate links for the construction of a lemma has been

computed, and unless it is empty, we must define an actual lemma by choosing one

or several of these links and their related subgraphs. In order to do this, we must try

to isolate parts of the graph containing only positively polarized clause nodes, which
are connected to the rest of the graph only via \fJ-links. The following algorithm

describes, how this is done.

4.4-3 Definition: (maximal connected subgraphs)

Let r =(N,C,£,TI) be a clause graph and let :E(r) be the set of all subgraphs of

r. Let 'YeTI be a set of links. Then for C E C we can define I,IJI(C) as the maximal

connected subgraph of r,which includes C but does not contain any AE 'P.

7 4 Transformation and Structuring of Computer Generated Proofs

4.4-2 Example: (links defining a lemma)

A
-S-Pc 9Pc

The set of separating links in the example graph i s ‘Pmin={A1, A7, Ag, A9}. All
of them separate a trivial part from the rest of the graph, though, therefore none of
them is among the candidates for a lemma. Only Ag is branching on the non-trivial
side, which means that the appropriate trivial part has to be duplicated. This leads to
the following refutation graph.

Now A4 is an additional separating link, which divides the graph into two trivial
parts. So ‘I’={A4} i s the set of candidate links for a lemma. 0

Now the set ‘I’ of candidate links for the construction of a lemma has been

computed, and unless it is empty, we must define an actual lemma by choosing one
or several of these links and their related subgraphs. In order to do this, we must try
to isolate parts of the graph containing only positively polarized clause nodes, which
are connected to the rest of the graph only via ‘F—links. The following algorithm
describes, how this is done.

4.4-3 Definition: (maximal connected subgraphs)

Let F=(N,C,£,H) be a clause graph and let 2(1") be the set of all subgraphs of
I‘. Let “ICH be a set of links. Then for C6 C we can define EMC) as the maximal
connected subgraph of I‘,Which includes C but does not contain any A5 ‘I’.

75 Internal Proof Structure

4.4-4 Algorithm: (choose lemma from separating links)

1.	 For all negatively polarized clause nodes C- compute ~(C-). These

graphs are deduction graphs, whose pure literal nodes were

connected to the rest of r with '¥-links.

2.	 For all positively polarized clause nodes C+, not belonging to any

of the L'¥(C), compute L'I'(C+). Now the graph is divided into

"positive" and "negative" subgraphs in one of three basically

different ways:

a) G----CD
b)~

c)

In all three cases, variations may occur due to separating links that

are branching.

3a)	 If there is only one L'I'(C-), the set of links attached to its pure

literal nodes in r is used as a lemma, which can be derived from the
rest of the graph, i.e. directly from axiom formulae or assumptions.

In this case the lemma is the conjunction of the literal nodes in the

opposite shores of the pure literal nodes.

b)	 If two of the .r.'¥(C-) are adjacent, then the proof is separated into

cases (see next section).

c)	 If there is a .r.'I'(C+) between two of the L'I'(C), then one has to

check, if the positive part consists only of a trivial chain of 'V-links,

in which case one proceeds as in b). Otherwise the positive

subgraph defines a disjunctive lemma, which will then be used to

perform a proof by case analysis.

4.4-5 Example: (choosing the actual lemma)

In the case of the previous example 4.4-2, the only link suggesting a lemma was

~. The polarity of the resulting parts now decides the actual form of the lemma. If,

for instance, [Pb] is the only negatively polarized clause node, then L is the lemma. If

Internal Proof Structure 7 5

4.4-4 Algorithm: (choose lemma from separating links)

1. For all negatively polarized clause nodes C‘ compute Zw(C‘). These
graphs are deduction graphs, whose pure literal nodes were

connected to the rest of I‘ with ‘P-links.

2 . For all positively polarized clause nodes C+, not belonging to any
of the 211(6), compute Z—y(C+). Now the graph i s divided into
“positive” and “negative” subgraphs in one of three basically

different ways:

In all three cases, variations may occur due to separating links that
are branching.

3a) If there is only one 2314C), the set of links attached to its pure
literal nodes in I‘ is used as a lemma, which can be derived from the
rest of the graph, i.e. directly from axiom formulae or assumptions.
In this case the lemma is the conjunction of the literal nodes in the
opposite shores of the pure literal nodes.

b) If two of the Zw(C') are adjacent, then the proof is separated into
cases (see next section).

0) If there is a q(C+) between two of the Ety(C'), then one has to
check, if the positive part consists only of a trivial chain of Ill—links,
in which case one proceeds as in b). Otherwise the positive
subgraph defines a disjunctive lemma, which will then be used to
perform a proof by case analysis.

4.4-5 Example: [choosing the actual lemma)

In the case of the previous example 4.4-2, the only link suggesting a lemma was
A4. The polarity of the resulting parts now decides the actual form of the lemma. If,
for instance, [Pb] is the only negatively polarized clause node, then L is the lemma. If

76	 Transfonnation and Structuring of Computer Generated Proofs

[Pa] and [Pb] are both negatively polarized, it is best to conduct the proof by the

cases Land -L.

4.5 Struct1;lring Proofs Using Proof by Case Analysis

M-Cases, one of the transfonnation rules defined in chapter 3, leads to a division

of the refutation graph by dividing an assumption fonnula. This rule can always be

applied, when a disjunction has been derived earlier. An application is however

undesirable in many cases, as can be seen from the following examples:

(a)	 If only one of the resulting components contains negatively

polarized literal nodes, then an extra and unnecessary proof by

contradiction must be perfonned.

Here the case B is straightforward, but A needs a proof by

contradiction.

(b)	 If both of the resulting parts overlap widely, including negatively

polarized literal nodes, then large parts of the proof will be

duplicated in both cases.

A good case for the application of M-Cases appears, when both of the resulting

components contain parts of the theorem, and their overlap is either small or restricted

to positively polarized pans, in which case a lemma can be defined to avoid the

duplication (cases 3b and 3c in the previous section).

This is the case when the formula to prove is distributed in the refutation graph

with respect to the disjunctive fonnula which shall be used for case analysis, so that

the graph meets the condition of lemma 3.6-8.

The most important case for the rule M-Cases comes up, when an existentially

quantified formula cannot be proven constructively. In the refutation graph, this fact

is reflected by the existence of several different instances of the theorem clauses.

Similarly, when a disjunction has to be proven, case analysis may be the best

solution. M-Cases can be applied with advantage if any of the components resulting

from splitting contains only literal nodes related to one instance of the existentially

quantified theorem or one part of the disjunction.

7 6 Transformation and Structuring of Computer Generated Proofs

[Pa] and [Pb] are both negatively polarized, it is best to conduct the proof by the
cases L and —L.

4 .5 Structuring Proofs Using Proof by Case Analysis

M-Cases, one of the transformation rules defined in chapter 3, leads to a division
of the refutation graph by dividing an assumption formula. This rule can always be
applied, when a disjunction has been derived earlier. An application i s however
undesirable in many cases, as can be seen from the following examples:

(a) If only one of the resulting components contains negatively
polarized literal nodes, then an extra and unnecessary proof by
contradiction must be performed.

' ' negative

Here the case B i s straightforward, but A needs a proof by
contradiction.

(b) If both of the resulting parts overlap widely, including negatively
polarized literal nodes, then large parts of the proof will be
duplicated in both cases.

A good case for the application of M-Cases appears, when both of the resulting
components contain parts of the theorem, and their overlap is either small or restricted
to positively polarized parts, in which case a lemma can be defined to avoid the
duplication (cases 3b and 3c in the previous section).

This is the case when the formula to prove is distributed in the refutation graph
with respect to the disjunctive formula which shall be used for case analysis, so that
the graph meets the condition of lemma 3.6—8.

The most important case for the rule M-Cases comes up, when an existentially

quantified formula cannot be proven constructively. In the refutation graph, this fact
i s reflected by the existence of several different instances of the theorem clauses.
Similarly, when a disjunction has to be proven, case analysis may be the best
solution. M—Cases can be applied with advantage if any of the components resulting
from splitting contains only literal nodes related to one instance of the existentially
quantified theorem or one part of the disjunction.

77 Internal Proof Structure

4.6 Example & Further Processing

A famous example in the literature on automatic theorem proving is a problem

which Lenhart Schubert formulated in 1978 as a challenge to automated deduction

systems. It became well-known as "Schubert's Steamroller" and for several years

presented a hard problem even for the best automatic theorem provers.

For two reasons it is also an interesting problem for proof transformation and

structuring. For once it is a problem stated in natural language so that there is an

obvious semantics for all the formulae, which makes it easy to check whether any

lemmata or subgoals are "intuitive" or not. Secondly, the problem is combinatorially

difficult, and computer generated proofs involve many clauses and are difficult to

understand.

Schubert's original problem,

Wolves, foxes, birds, caterpillars, and snails are
animals, and there are some ofeach of them. Also there are
some grains, and grains are plants. Every animal either likes
to eat all plants or all animals much smaller than itself that
like to eat some plants. Caterpillars and snails are much
smaller than birds, which are much smaller than foxes,
which in turn are much smaller than wolves. Wolves do not
like to eat foxes or grains, while birds like to eat cater
pillars, but not snails. Caterpillars and snails like to eat
some plants.

Therefore there is an animal that likes to eat a grain
eating animal.

has been coded in first order logic in several different ways. We adopt a

formulation proposed by Mark Stickel in [St86] where "a grain-eating animal" means

an animal that eats some grain. To make the example easier to understand we use

sorts, and the names of the variables and constants indicate of which sort they are. E

and M are binary relations, where Exy means "x likes to eat y" and Muv means "u is

much smaller than v". Then the following first order formula represents the

steamroller problem:

«Va (VpEap) v (Va'Ma'a 1\ 3p'Ea'p' => Eaa'»

1\ (Vc,s,b,f,w Mcb 1\ Msb 1\ Mbf 1\ Mfw)

1\ (Vw,f,g -,Ewf 1\ -,Ewg)

1\ (Vb,c,s Ebc 1\ -,Ebs)

Internal Proof Structure 7 7

4 .6 Example & Further Processing

A famous example in the literature on automatic theorem proving i s a problem
which Lenhart Schubert formulated in 1978 as a challenge to automated deduction
systems. It became well-known as “Schubert’s Steamroller” and for several years
presented a hard problem even for the best automatic theorem provers.

For two reasons it i s also an interesting problem for proof transformation and
structuring. For once i t is a problem stated in natural language so that there is an
obvious semantics for all the formulae, which makes it easy to check whether any
lemmata or subgoals are “intuitive” or not. Secondly, the problem i s combinatorially
difficult, and computer generated proofs involve many clauses and are difficult to
understand.

Schubert’s original problem,

Wolves, foxes, birds, caterpillars, and snails are
animals, and there are some of each of them. Also there are
some grains, and grains are plants. Every animal either likes
to eat all plants or all animals much smaller than itself that
like to eat some plants. Caterpillars and snails are much
smaller than birds, which are much smaller than foxes,
which in turn are much smaller than wolves. Wolves do not
like to eat foxes or grains, while birds like to eat cater-
pillars, but not snails. Caterpillars and snails like to eat
some plants.

Therefore there is an animal that likes to eat a grain-
eating animal.

has been coded in first order logic in several different ways. We adopt a
formulation proposed by Mark Stickel in [St86] where “a grain-eating anim ” means
an animal that eats some grain. To make the example easier to understand we use
sorts, and the names of the variables and constants indicate of which sort they are. E
and M are binary relations, where Exy means “x likes to eat y” and Muv means “u is
much smaller than v”. Then the following first order formula represents the
Steamroller problem:

((Va (Vp Eap) v (Va'Ma‘a A 3p’ Ea'p' = Eaa'))
A (Vc,s,b,f ,w Mcb A Msb A b A Mfw)

(Vw,f,g —.w A fiEwg)
A (Vb,c ,s Ebc A -Ebs)

>

78 Transfonnation and Structuring of Computer Generated Proofs

1\ ('vIc3p Ecp 1\ V's3p'Esp'»
~ (3a,a',p Eaa' 1\ Ea'p)

A refutation graph proving this formula is shown below. A resolution proof has

been automatically found by our theorem prover "Markgraf Karl Refutation

Procedure" [MKRP84], and the graph was generated automatically as described in

[Le88].

The polarization is shown as it is after application of the first rule, E~, which

moves all the axioms to the left side as assumptions. At this point the formula to

prove is an existentially quantified formula, and the total substitution tells us that the

proof is not done constructively. Therefore algorithm 4.4-1 is used to find any

separating links defining a lemma. Only A and e separate non-trivial parts from the

refutation graph, and an analysis of the polarization shows that e segregates a

positive part from the rest, so that a first lemma Ebg, i.e. "birds eat grain" can be

generated.

Actually there is a universally quantified lemma 'vip Ebp as discussed in section

4.3. The subterm g can be replaced by a variable without violating the polylink

condition in the deduction graph proving Ebg. As this formula is not needed in any

other instantiation there is nothing to choose between Ebg and 'vip Ebp as a lemma.

After the lemma has been proven, the clause node [Ebg] representing it can be

duplicated with the effect that in addition to A, n becomes separating, viz.

7 8 Transformation and Structuring of Computer Generated Proofs

A (Vc Ep Ecp A Vs Ep’ Esp?)
=,» (Ela‚a'‚p Eaa' A. Ea'p)

A refutation graph proving this formula is shown below. A resolution proof has
been automatically found by our theorem prover “Markgraf Karl Refutation
Procedure” [MKRP84], and the graph was generated automatically as described in
[Le8 8].

+Msb +Esfs —Ebs

[+EbQ —Msbj 439.51 +Ebfl

The polarization is shown as it is after application of the first rule, E=:>, which
moves all the axioms to the left side as assumptions. At this point the formula to
prove is an existentially quantified formula, and the total substitution tells us that the
proof i s not done constructively. Therefore algorithm 4.4-1 i s used to find any
separating links defining a lemma. Only A and @ separate non-trivial parts from the
refutation graph, and an analysis of the polarization shows that ® segregates a
positive part from the rest, so that a first lemma Ebg, i.e. “birds eat grain” can be
generated.

Actually there is a universally quantified lemma Vp Ebp as discussed in section
4.3. The subterm g can be replaced by a variable without violating the polylink
condition in the deduction graph proving Ebg. As this formula i s not needed in any
other instantiation there i s nothing to choose between Ebg and Vp Ebp as a lemma.
After the lemma has been proven, the clause node [Ebg] representing it can be
duplicated with the effect that in addition to A, I'I becomes separating, viz.

79 Internal Proof Structure

This time situation 3b) of algorithm 4.4-4 is present, so we derive the lemma

Efg v Efb, which means that a fox eats either grain or birds. This fonnula is then used

to divide the rest of the proof into two cases. In the fIrst case (Efg) the theorem holds

because wolves eat foxes and these eat grain; in the other case (Efb) foxes eat birds,
which in turn eat grain, so that the theorem is fulfilled. The basic structure of the

proof turns out to be:

Axioms

Birds eat grain (Lemma 1)

~

Foxes eat birds OR Foxes eat grain

Case 1: ok Case 2:~
Wolves eat foxes

~ ~
Therfore: ::3 a, a', p a eats a' AND a' eats p

Here one might ask why the proof had to be done in such a roundabout way, the

second of the cases above seems to make no sense. And indeed, there is a

constructive proof of the theorem, which uses the fact that "wolves don't eat foxes"

to show that case 2 is impossible. But then the proof would be completely different

Internal Proof Structure 7 9

‘[+Ewg [—Mfw] —Efg l +w

l
m

!

cn

This time situation 3b) of algorithm 4.4-4 i s present, so we derive the lemma
Efg v Efb, which means that a fox eats either grain or birds. This formula is then used
to divide the rest of the proof into two cases. In the first case (Efg) the theorem holds
because wolves eat foxes and these eat grain; in the other case (Efb) foxes eat birds,

which in turn eat grain, so that the theorem is fulfilled. The basic structure of the
proof turns out to be:

Axioms

l
Birds eat grain (Lemma 1)

Foxes eat birds OR Foxes eat grain

Easel; ok l se 2—

\ Wolves eat foxes

Therfore: 3a , a', p a eats a' AND a' eats p

Here one might ask why the proof had to be done in such a roundabout way, the
second of the cases above seems to make no sense. And indeed, there is a
constructive proof of the theorem, which uses the fact that “wolves don’t eat foxes”
to show that case 2 i s impossible. But then the proof would be completely different

80 Transfonnation and Structuring of Computer Generated Proofs

from the one found by MKRpl, where this fact was not used at all. And proof

transfonnation is not supposed to find the "best" proof, but to rewrite a given proof

in a different fonn.

The transfonnation results in a: natural deduction proof, where it is known that

certain lines are lemmata or subgoals in the proof.

(1) 1 r 'v'a Cv'p Eap) v ('ita' Ma'a /\ 3p' Ea'p' :::} Eaa') Ass

(2) 2 r 'v'c,s,b,f,w Mcb /\ Msb /\ Mbf /\ Mfw Ass

(3) 3 r Vw,f,g,Ewf /\,Ewg Ass

(4) 4 r Vb,c,s,Ebs /\ Ebc Ass
(5) 5 t Vc3p Ecp /\ 'v's~Esp' Ass

(6) 2 r Msb V/\E(2)

(7) 5 I ::Ip'Esp' /\'itE(5)

(8) 4 I -,Ebs V/\E(4)

(9) 2,4,5 I -, (Msb /\ 3p' Esp' :::} Ebs) Tau(6,7,8)

(1.0) 2,4,5 I ::la' -, (Ma'b /\ ::Ip'Ea'p' :::} Eba') 31(9)

(11) 2,4,5 I -, 'ita' (Ma'b /\ 3p'Ea'p' => Eba') Neg(lO)

(12) 1 I- Vp Ebp v (Va' Ma'b /\ 3p' Ea'p' :::} Eba') 'itE(l)

(13) 1,2,4,5 r Vp Ebp Tau(II,12)
(14) 1,2.4.5 I- Ebg VECI3)

(15) 2 f- Mbf V/\E(2)

(16) 1,2,4,5 f 3p' Ebp' ::11(14)
(17) 1 f (Vp Efp) v (Va' Ma'f /\ 3p' Ea'p' :::} Efa') 'v'E(1)

(18) 1 f (Vp Efp) v (Mbf /\ 3p' Ebp' :::} Efb) v'v'E(17)

(19) 1,2,4,5 f (Vp Efp) v Efb Tau(15,16,18)
(20) 1.2.4.5 I- Efg v Efb VE(19)

1 The Markgraf Kar! Refutation Procedure finds this proof first because of the "Set-of-Support"
strategy. There are even problems, where certain proofs cannot be found at all, if the "Se!-of
Support" strategy is used in combination with subsumption.

80 Transformation and Structuring of Computer Generated Proofs

from the one found by MKRPl, where this fact was not used at all. And proof
transformation is not supposed to find the “best” proof, but to rewrite a given proof
in a different form.

The transformation results in a natural deduction proof, where it i s known that

certain lines are lemmata or subgoals in the proof.

(1) 1 +- Va (Vp Eap) v (Va' Ma'a A Elp‘ Ea‘p' => Eaa') Ass
(2) 2 +- Vc,s,b,f,w Mob A Msb A b A Mfw Ass
(3) 3 I— Vw,f,g —-.w A fiEwg Ass
(4) 4 t- Vb,c,s ——.Ebs A Ebc Ass
(5) 5 t: 31039 EcpAVsflEEsn ' Ass
(6) 2 t- Msb VAE(2)
(7) 5 t- Elp' Esp ' AVE(5)
(8) 4 :— —.Ebs VAE(4)

(9) 2,4,5 t- —-. (Msb A Ep' Esp' => Ebs) Tau(6,7,8)
(1.0) 2,4,5 1- Ela' —1 (Ma’b A Bp'Ea'p' => Eba') 31(9)
(11) 2,4,5 I— —1 Va‘ (Ma‘b A Ep‘Ea‘p‘ => Eba') Neg(10)
(12) 1 t- ‘v’p Ebp v (Va' Ma'b A Ep' Ea'p' = Eba') VE(1)
(13) 1,2,4‚5 t— Vp Ebp Tau(11,12)
14 12 4 !— Eb Vßlßj

(15) 2 +- b VAE(2)
(16) 1,2,4‚5 I— ap' Ebp' 31(14)
(17) 1 #- (Vp Efp) v (Va' Ma'f A Sp' Ea'p' => Efa') VE(l)
(18) 1 |— (Vp Efp) v (b A Eip' Ebp' => Efb) vVE(l7)
(19) 1,2,4,5 t— (Vp Efp) v Efb Tau(15,16,18)
(2Q) 12.4.5 t— Efgv Efb VL! 12)

1 The Markgraf Karl Refutation Procedure finds this proof first because of the “Set-of-Support"
strategy. There are even problems, where certain proofs cannot be found a t all, if the “Set-of—
Support” strategy is used in combination with subsumption.

81 Internal Proof Structure

We consider separately the cases of (20)

Case I:

(21) 1,2,4,5,20 f- Efg Ass

(22) 3 f- -,Ewg VI\E(3)

(23) 1 f- (Vp Ewp) v (Va'Ma'w 1\ ::lp' Ea'p' => Ewa') VE(l)

(24) 1 f- Ewg v (Va' Ma'w 1\ ::lp' Ea'p' => Ewa') vVE(23)

(25) 1,3 f- Va' Ma'w 1\ ::Jp' Ea'p' => Ewa' Tau(22,24)

(26) 1,3 f- Mfw 1\ ::lp' Efp' => Ewf VE(25)

(27) 2 f- Mfw VI\E(2)

(28) 1,2,4,5,20 f- ::l p' Efp' ::lI(21)

(29) 1-5,20 f Ewf Tau(26,27,28)

(30) 1-5,20 f Ewf 1\ Efg 1\1(29)

(31) 1-5.20 f- ::la,a',p Eaa' 1\ Ea'p ::lIOO)

Case 2:

(32) 1,2,4,5.30 f- Efb Ass

(33) 1,2,4,5,30 f- Efb 1\ Ebg 1\1(14,32)

(34) 1,2,4,5,30 f-::l a,a',p Eaa' 1\ Ea'p ::lI(33)

End of Cases (23.34)

(35) 1-5 f-::J a,a',p Eaa' 1\ Ea'p vE(20,31,34)

We can then start the process of linearization with a prestructured generalized

natural deduction graph, where only the lemmata have to be arranged in a linear

order, and of course, their internal structure must, be linearized. Using this

information, our starting point is the following GNDG:

6,
7 - 9-10-11-13-14

8/ 12/

32- 33 - 34

22-25-26,
23-24/ 27-29-30-31

21-28/

Now the problem of imposing a total order on the natural deduction proof has

become much simpler. At first a total order is imposed upon the global proof

structure, for which the only decision to be made is the sequential order of the two

cases in the case analysis. Then the internal structure of the nodes has to be

linearized, which again is not difficult as their structure is simple enough.

Internal Proof Structure 8 1

We consider separately the cases of (20)

(21) 1,2,4,5,20 !- E f g Ass
(22) 3 +- fiEwg VAE(3)
(23) 1 }- (Vp Ewp) v (Va’Ma'w A Ep' Ea'p' => Ewa') VE(1)
(24) 1 }— Ewg v (Va' Ma'w A Elp' Ea'p' => Ewa') vVE(23)

(25) 1,3 !- Va' Ma'w A Elp' Ea'p' => Ewa' Tau(22,24)
(26) 1,3 +- Mfw A 3p“ Efp' = w VE(25)
(27) 2 l- Mfw VAE(2)
(28) 1,2,4,5,20 !- Elp' Efp' 31(21)

(29) 1-5,20 l- w Tau(26‚27,28)
(30) 1-5,20 |— w A Efg ‘ AI(29)
(31) 1-5‚29 |; 3a,a',p Eaa' A Ea'p EIIClO)

£23552;
(32) 1,2,4,5,30 }- E fb Ass
(33) 1,2,4,5,30 !- Efb A Ebg AI(14,32)
(34) 1,2,4,5,30 !- 3a , a ' , p Eaa' A Ea'p 31(33)

w
(35) 1-5 l- Ela,a‘,p Eaa ' A Ea'p vE(20,31,34)

We can then start the process of linearization with a prestructured generalized
natural deduction graph, where only the lemmata have to be arranged in a linear
order, and o f course, their internal structure must be linearized. Using this
information, our starting point is the following GNDG:

22—25—26\
23—24 / 27—29—30—31

21-28 ’
59 6 \ 1 \

7 - 9—10—1 1—13—14 17—1 8—19—20
° 8 / 12 / 15 ’
(9/ 32—33 _ 34

Now the problem of imposing a total order on the natural deduction proof has
become 'much simpler. At first a total order i s imposed upon the global proof
structure, for which the only decision to be made i s the sequential order of the two
cases in the case analysis. Then the internal structure of the nodes has to be
linearized, which again is not difficult as their structure i s simple enough.

82 Transformation and Structuring of Computer Generated Proofs

The linearization of this proof starting with an unstructured natural deduction

graph by the method explained in 4.1-2 also leads to the subgoals 20 and 31, but

misses 14 and ends up with two additional meaningless lemmata. The details of the

linearization process are described in Appendix D.

Now that the natural deduction graph has been linearized, some further steps are

required in order to make the proof really understandable. The main drawback of
natural deduction proofs is their length, and the size of the individual steps is too

small, remaining altogether on a purely syntactical level. One has to raise therefore the

granularity of single reasoning steps to a "conceptual level", which is not straight

forward, as the solution depends on the context of the proof as well as on the

knowledge of the intended reader.

An interesting approach has been put forward by Xiaorong Huang in [Hu89a]

and [Hu89b], who builds upon the work proposed in this thesis. He combines

several steps in the natural deduction system so that they represent the "application"

of an axiom or a lemma. This typically involves the combination of the instantiation

of premise formulae together with some propositional reasoning to a single proof

step.

When all of this is done one can then tackle the problem to state the formal proof

in the natural language of a mathematician. The following is the result of a hand

simulation of Huang's proposed transformation steps. A proof in (mathematical)

natural language might then read as follows, the numbers in parentheses indicate the

line number of the natural deduction proof.

Wolves, foxes, birds, caterpillars, and snails are Axioms:
animals, and there are some ofeach ofthem. Also there are
some grains, and grains are plants. Every animal either likes
to eat all plants or all animals much smaller than itself that
like to eat some plants (1). Caterpillars and snails are much
smaller than birds, which are much smaller than foxes,
which in turn are much smaller than wolves (2). Wolves do
not like to eat foxes or grains (3), while birds like to eat
caterpillars, but not snails (4). Caterpillars and snails like to
eat some plants (5).

Theorem: Therefore there is an animal that likes to eat a grain
eating animal (35).

8 2 Transformation and Structuring of Computer Generated Proofs

The linearization of this proof starting with an unstructured natural deduction
graph by the method explained in 4.1-2 also leads to the subgoals 20 and 31, but
misses 14 and ends up with two additional meaningless lemmata. The details of the
linearization process are described in Appendix D.

Now that the natural deduction graph has been linearized, some further steps are
required in order to make the proof really understandable. The main drawback of
natural deduction proofs i s their length, and the size of the individual steps i s too
small, remaining altogether on a purely syntactical level. One has to raise therefore the
granularity of single reasoning steps to a “conceptual leve ” , which is not straight-
forward, as the solution depends on the context of the proof as well as on the
knowledge of the intended reader.

An interesting approach has been put forward by Xiaorong Huang in [Hu89a]
and [Hu89b], who builds upon the work proposed in this thesis. He combines

several steps in the natural deduction system so that they represent the “application”
of an axiom or a lemma. This typically involves the combination of the instantiation
of premise formulae together with some propositional reasoning to a single proof
step.

When all of this i s done one can then tackle the problem to state the formal proof
in the natural language of a mathematician. The following i s the result of a hand-
simulation of Huang’s proposed transformation steps. A proof in (mathematical)
natural language might then read as follows, the numbers in parentheses indicate the
line number of the natural deduction proof.

- . Wolves, foxes, birds, caterpillars, and snails are
m animals, and there are some of each of them. Also there are

some grains, and grains are plants. Every animal either likes
to eat all plants or all animals much smaller than itself that
like to eat some plants (I). Caterpillars and snails are much
smaller than birds, which are much smaller than foxes,
which in turn are much smaller than wolves (2). Wolves do
not like to eat foxes or grains (3), while birds like to eat
caterpillars, but not snails (4). Caterpillars and snails like to
eat some plants (5).

Th : Therefore there is an animal that likes to eat a grain-
—m—m eating animal (35).

83 Internal Proof Structure

It is given that snails are much smaller than birds (6)
and they eat some plant (7), but birds don't eat snails (8).
Now every animal either likes to eat all plants or all herbiv
orous animals much smaller than itseif (1). Therefore birds
like to eat all plants (13), and in particular, they like to eat
grains (14). [lemma 1]

Birds are also much smaller than foxes (15), hence
foxes eat birds or they eat all plants (19), especially grains
(20). [lemma 2]

Let us assume first that foxes eat grains (21). Now
wolves don't eat grain (22) and must therefore eat all
smaller herbivorous animals (25), in particular they eat
foxes (29). Hence there is an animal (the wolf) eating a
grain-eating animal (thefox) (31). [end ofcase 1]

If on the other hand foxes eat birds (32), which by
lemma 1 are known to eat grains (14), we know again ofan
animal (thefox) who eats grain-eating animals (34) [end of
case 2], which completes the proof

q.e.d.

Inwmal Proof Structure

hoof: It is given that snails are much smaller than birds (6)
and they eat some plant (7), but birds don’t eat snails (8).
Now every animal either likes to eat all plants or all herbiv-
orous animals much smaller than itself (1). Therefore birds
like to eat all plants (13), and in particular, they like to eat
grains (14). [lemma 1]

Birds are also much smaller than foxes (15), hence
foxes eat birds or they eat all plants (19), especially grains
(20). [lemma 2]

Let us assume first that foxes eat grains (21). Now
wolves don’t eat grain (22) and must therefore eat all
smaller herbivorous animals (25), in particular they eat
foxes (29). Hence there is an animal (the wolf) eating a
grain-eating animal (the fox) (31). [end of case I]

If on the other hand foxes eat birds (32), which by
lemma 1 are known to eat grains (14), we know again of an
animal (the fox) who eats grain-eating animals (34) [end of
case 2], which completes the proof. '

q.e .d .

83

Conclusions and Open Problems 8 5

5 Conclusions and
Open Problems

In this thesis a method is described to transform a proof represented in the

resolution calculus or as a refutation graph into a natural deduction proof in Gentzen's

system NK. Starting from a basic proof transformation mechanism as published by

Peter Andrews [An80], Dale Miller [Mi83], Christoph Lingenfelder [Li86], Amy

Fe1ty [Fe86], or Frank Pfenning [Pf8?], the necessary changes and additions are

made to meet the special needs of the transformation guided by refutation graphs.

The proof representation in form of refutation graphs lends itself perfectly well to

avoiding proofs by contradiction and to deciding when an "integral" formula can be

proven undivided, i.e. without breaking it up into its very literals. The introduction

and formalization of additional, and sometimes incomplete, transformation rules, as

for instance M-Inf, is made possible because the topology of the refutation graph, in

connection with the clause graph relation that ties it to the original formula, allows an

efficient check of their applicability. The refutation graph also helps to decide in an

intelligent way, when to do a proof by case analysis using a disjunction, or it helps to

choose a suitable formula G when an axiom (G v,G) must be introduced.

In addition to the technical questions of proof transformation this thesis shows

how to organize a proof by breaking it up into smaller lemmata, thereby laying open

its general structure and its main ideas. In particular this may avoid the need to prove

a subgoal more than once, when it is shared by different branches of the proof. To

this end both the information implicit in the topological properties of refutation graphs

and the history of finding the proof is used, for instance in form of resolvents that

were used in different instantiations during the proof.

This is done by dividing the graph into disjoint parts to be proved separately,

either sequentially, as a lemma cited later in the proof, or as a proof by case analysis.

In order to achieve this, the algorithm for the transformation of refutation graphs into

natural deduction proofs had to be extended.

The same information also facilitates the process of linearizing natural deduction

proofs. The parts to be linearized (lemmata) are much smaller, thus reducing the

number of arbitrary decisions that have to be made in order to choose an actual

sequence of proof lines. In fact one has to solve several smaller linearization

problems instead of a single large one; of course one also has to linearize the

sequence of lemmata or proof cases in the end.

Conclusions and Open Problems 8 5

5 Conclusions and
Open Problems

In this thesis a method i s described to transform a proof represented in the

resolution calculus or as a refutation graph into a natural deduction proof in Gentzen’s

system NK. Starting from a basic proof transformation mechanism as published by
Peter Andrews [An80], Dale Miller [Mi83] , Christoph Lingenfelder [Li86] , Amy

Felty [Fe86], or Frank Pfenning [Pf87], the necessary changes and additions are
made to meet the special needs of the transformation guided by refutation graphs.

The proof representation in form of refutation graphs lends itself perfectly well to
avoiding proofs by contradiction and to deciding when an “integral” formula can be
proven undivided, i.e. without breaking i t up into its very literals. The introduction
and formalization of additional, and sometimes incomplete, transformation rules, as
for instance M-Inf, is made possible because the topology of the refutation graph, in
connection with the clause graph relation that ties it to the original formula, allows an
efficient check of their applicability. The refutation graph also helps to decide in an
intelligent way, when to do a proof by case analysis using a disjunction, or it helps to
choose a suitable formula G when an axiom (G v —1G) must be introduced.

In addition to the technical questions of proof transformation this thesis shows
how to organize a proof by breaking it up into smaller lemmata, thereby laying open
its general structure and its main ideas. In particular this may avoid the need to prove
a subgoal more than once, when it is shared by different branches of the proof. To
this end both the information implicit in the topological properties of refutation graphs
and the history of finding the proof i s used, for instance in form of resolvents that
were used in different instantiations during the proof.

This is done by dividing the graph into disjoint parts to be proved separately,
either sequentially, as a lemma cited later in the proof, or as a proof by case analysis.
In. order to achieve this, the algorithm for the transformation of refutation graphs into
natural deduction proofs had to be extended.

The same information also facilitates the process of linearizing natural deduction
proofs. The parts to be linearized (lemmata) are much smaller, thus reducing the
number of arbitrary decisions that have to be made in order to choose an actual
sequence of proof lines. In fact one has to solve several smaller linearization
problems instead of a single large one; of course one also has to linearize the
sequence of lemmata or proof cases in the end.

86 Transfonnation and Structuring of Computer Generated Proofs

Parallel to the development of the theory we implemented a proof transfonnation

system to check many of the ideas and heuristics, which made it possible to evaluate

the additional transfonnation rules and the lemma mechanism. In a large number of

examples the resulting lemmata actually made sense semantically.

An open question with respect to the structuring of proofs is the presentation of

equality proofs, regardless whether they were found by rewriting techniques or by

paramodulation. The represen~tionof pure unconditioned equality proofs in equality

graphs, as in Karl-Hans BHisius' dissertation, [BI86], seems to be a promising

starting point to construct a procedure analogous to the algorithm developed in this

thesis.

Also the extension of the proof transformation process to resolution with

paramodulation and to theory resolution in general remains to be dealt with, but this

appears to be a straightforward affair. The main problem will be to extract the

necessary infonnation. Theory resolution was invented to incorporate the use of

algorithmic knowledge for decidable subproblems; therefore not all the proof steps

are made explicit and a more or less important part of the proof will be hidden by the

algorithm.

The most important future research topic is, of course, the further transfonnation

into natural language. The final natural language proof of example 4.6 was hand

simulated, but in its origination we employed an approach of Xiaorong Huang, cf.

[Hu89a] and [Hu89b], to combine several applications of inference rules so that the

reasoning is raised to a "conceptual" level. In the later stages of the transfonnation

one has to apply methods of natural language processing. For every single argument

one has to decide how it should be presented. Is it necessary to repeat all or some of

the premise fonnulae? Should the rule itself be mentioned or is it self-evident in the

context?

A focus mechanism can be used to minimize the need for repetition of fonnulae.

If at all possible one should try to construct a chain of arguments, so that the result of

one step is a direct prerequisite of the next one. These are techniques well-known

from natural language processing, cf. for example [McK85], that can be used for the

purpose of proof presentation as well as in the context of speech planning.

Finally one must take into account the prospective reader of the proof. After all, a

mathematician will consider a lot of proof steps trivial, that inexperienced readers

might not find easy at all. This raises the question how this distinction can be made

automatically. For one thing a (knowledge-)base of previously proved theorems is of

8 6 Transformation and Structuring of Computer Generated Proofs

.

Parallel to the development of the theory we implemented a proof transformation
system to check many of the ideas and heuristics, which made it possible to evaluate
the additional transformation rules and the lemma mechanism. In a large number of
examples the resulting lemmata actually made sense semantically.

An open question with respect to the structuring of proofs is the presentation of
equality proofs, regardless whether they were found by rewriting techniques or by
paramodulation. The representation of pure unconditioned equality proofs in equality
graphs, as in Karl-Hans Blasius’ dissertation, [B186], seems to be a promising
starting point to construct a procedure analogous to the algorithm developed in this
thesis.

Also the extension of the proof transformation process to resolution with
paramodulation and to theory resolution in general remains to be dealt with, but this
appears to be a straightforward affair. The main problem will be to extract the
necessary information. Theory resolution was invented to incorporate the use of
algorithmic lmowledge for decidable subproblems; therefore not all the proof steps
are made explicit and a more or less important part of the proof will be hidden by the
algorithm.

The most important future research topic is, of course, the further transformation
into natural language. The final natural language proof of example 4.6 was hand-
simulated, but in its origination we employed an approach of Xiaorong Huang, cf.
[Hu89a] and [Hu89b], to combine several applications of inference rules so that the
reasoning is raised to a “conceptual” level. In the later stages of the transformation
one has to apply methods of natural language processing. For every single argument
one has to decide how it should be presented. Is it necessary to repeat all or some of
the premise formulae? Should the rule itself be mentioned or i s it self-evident in the
context?

A focus mechanism can be used to minimize the need for repetition of formulae.
If at all possible one should try to construct a chain of arguments, so that the result of
one step is a direct prerequisite of the next one. These are techniques well-known
from natural language processing, cf. for example [McK85], that can be used for the
purpose of proof presentation as well as in the context of speech planning.

Finally one must take into account the prospective reader of the proof. After all, a
mathematician will consider a lot of proof steps trivial, that inexperienced readers
might not find easy at all. This raises the question how this distinction can be made
automatically. For one thing a (knowledge-)base of previously proved theorems is of

87 Conclusions and Open Problems

the essence, allowing simply to cite a lemma and doing away with the respective part

of the proof altogether. But in general this can only be done with the help of a user

model. So it turns out that proof transformation is not purely a question of logic after

all, but that methods of different fields of Artificial Intelligence are required to come

up with a really satisfying result.

Conclusions and Open Problems 8 7

the essence, allowing simply to cite a lemma and doing away with the respective part
of the proof altogether. But in general this can only be done with the help of a user
model. So it turns out that proof transformation i s not purely a question of logic after
all, but that methods of different fields of Artificial Intelligence are required to come
up with a really satisfying result.

89 Literature

[An76] Peter B. Andrews

[An80] Peter B. Andrews

[An81] Peter B. Andrews

[Bi8l] Wolfgang Bibel

[Bi82] Wolfgang Bibel

[BI86] Karl-Hans BHisius

[Ch75] David Chester

[Da81] Martin Davis

[De71] Peter Deussen

[Ga86] Jean H. Gallier

[Ge35] Gerhard Gentzen

[Ei88] Norbert Eisinger

A Literature

Refutations by Matings

JACM 15, 3 (1983)

Transforming Matings into Natural Deduction

Proofs

Lecture Notes in Comp. Sci. 87 (CADE 1980),

281-292

Theorem Proving via General Matings

Journal of the ACM 28, (1981),193-214

-On Matrices with Connections

Journal of the ACM 28, (1981), 633-645

Automated Theorem Proving

vieweg, Braunschweig, Wiesbaden (1982)

Equality Reasoning Based on Graphs

PhD Thesis, Universitat Kaiserslautern, 1986

SEKI Report SR-87-01

The Translation ofFormal Proofs into English

Artificial Intelligence 7 (1976), 261-278

Obvious Logical Inferences

Proe. of the 7th ilCAI, Vancouver 1981

Halbgruppen und Automaten

Heidelberger Tasehenbtieher 99, Springer 1971

Logicfor Computer Science

- Foundations ofAutomatic Theorem Proving

Harper & Row, Publishers, New York 1986

Untersuchungen uber das logische SchliejJen I

Mathematisehe Zeitsehrift 39, pp.176-21O, 1935

Completeness, Confluence, and Related

Properties ofClause Graph Resolution

PhD Thesis, Universitat Kaiserslautern, 1988

SEKI Report SR-88-07

Literamre

[An76]

[An80]

[An81]

[Bi81]

[Bi82]

[B186]

[Ch75]

[Da81]

[De71]

[Ga86]

[Ge35]

[E188]

Peter B . Andrews

Peter B . Andrews

Peter B . Andrews

Wolfgang Bibel

Wolfgang Bibel

Karl-Hans Bläsius

David Chester

Martin Davis

Peter Deussen

Jean H. Gallier

Gerhard Gentzen

Norbert Eisinger

89

A Literature

Refutations by Matings
JACM 15, 3 (1983)

Transfomu'ng Matings into Natural Deduction
Proofs
Lecture Notes in Comp. Sci. 87 (CADE 1980),
281-292

Theorem Proving via General Mazings
Journal of the ACM 28, (1981), 193-214

On Matrices with Connections

Journal of the ACM 28, (1981), 633—645

Automated Theorem Proving
vieweg, Braunschweig, Wiesbaden (1982)

Equality Reasoning Based on Graphs
PhD Thesis, Universität Kaiserslautern, 1986
SEKI Report SR-87-01

The Translation of Formal Proofs into English
Artificial Intelligence 7 (1976), 261-278

Obvious Logical Inferences
Proc. of the 7th IJCAI, Vancouver 1981

Halbgruppen und Automaten
Heidelberger Taschenbücher 99, Springer 1971

Logic for Computer Science
— Foundations of Automatic Theorem Proving

. Harper & Row, Publishers, New York 1986

Untersuchungen über das logische Schließen I
Mathematische Zeitschrift 39, pp.176—210, 1935

Completeness, Confluence, and Related
Properties of Clause Graph Resolution
PhD Thesis, Universität Kaiserslautern, 1988
SEKI Report SR—88—O7

9 0	 Transfonnation and Structuring of Computer Generated Proofs

[E088] Norbert Eisinger, Hans J. Ohlbach
The MarkgrafKarl Refutation Procedure

Lecture Notes in Comp. Sci. 230 (CADE 86),

682-683

[Fe86] Amy P. Felty	 Using Extended Tactics to do Proof

Transformations

Master's Thesis, University of Pennsylvania,

Philadelphia, MS-CIS-86-89, 1986

[He87] Alexander Herold	 Combination ofUnification Algorithms in

Equational Theories

PhD Thesis, UniversiHit Kaiserslautern, 1987

SEKI Report SR-87-05

[Hu89a] Xiaorong Huang	 A Human Oriented ProofPresentation Model

SEKI Report SR-89-11,

UniversiHit Kaiserslautem, 1989

[Hu89b] Xiaorong Huang	 ProofTransformation Towards Human

Reasoning Style

Proc. of the 13th GWAI,

Informatik Fachberichte 216, 1989

[Ja33] Stanislaw Jaskowski	 On the Rules ofSuppositions in Formal Logic

Studia Logica, no. 1. Warsaw 1934

[Ko75] Robert Kowalski	 A ProofProcedure Using Connection Graphs

JACM 22, No. 4 (1975), 572-595

[KH69] R. Kowalski, P. Hayes	 Semantic Trees in Automatic Theorem Proving

Machine Intelligence 4, American Elsevier,

New York, 1979

[KK71] R. Kowalski, D. Kuehner Linear Resolution with Selection Function

Artificial Intelligence 2, pp. 227-260, 1971

[Le88] Siegfried Lehr	 Transformation von Resolutionsbeweisen des

MKRP

Studienarbeit, UniversiHit Kaiserslautern 1988

9 0 Transformation and Structuring of Computer Generated Proofs

[E088] Norbert Eisinger, Hans J. Ohlbach

[Fe86] Amy P. Felty

[He87] Alexander Herold

[Hu89a] Xiaoron g Huang

[Hu89b] Xiaorong Huang

[Ja33] Stanislaw Jaskowski

[K075] Robert Kowalski

[KH69] R . Kowalski, P . Hayes

The Markgraf Karl Rq‘utatian Procedure
Lecture Notes in Comp. Sci. 230 (CADE 86),
682-683

Using Extended Tactics to do Proof
Transfomtations
Master’s Thesis, University of Pennsylvania,
Philadelphia, MS-CIS-86-89, 1986

Combination of Unification Algorithms in
Equational Theories
PhD Thesis, Universität Kaiserslautern, 1987
SEKI Report SR-87-05

A Human Oriented Proof Presentation Model
SEKI Report SR—89—1 1,
Universität Kaiserslautern, 1989

Proof Transformation Towards Human
Reasoning Style
Proc. of the 13th GWAI,
Informatik Fachberichte 216, 1989

On the Rules of Suppositions in Formal Logic
Studia Logica, no. 1. Warsaw 1934

A Proof Procedure Using Connection Graphs
JACM 22, No. 4 (1975), 572-595

Semantic Trees in Automatic Theorem Proving
Machine Intelligence 4 , American Elsevier,

New York, 1979

[KK71] R . Kowalski, D . Kuehner Linear Resolution with Selection Function

[Le88] Siegfried Lehr
Artificial Intelligence 2, pp. 227-260, 1971
Transformation von Resolutionsbeweisen des

MKRP
Studienarbeit, Universität Kaiserslautern 1988

Literature	 91

[Li86] Christoph Lingenfelder	 Transformation ofRefutation Graphs into

Natural Deduction Proofs

SEKI-Report SR-86-1O, Universitat

Kaiserslautern 1986

[Li88] Christoph Lingenfe1der	 Structuring Computer Generated Proofs

SEKI-Report SR-88-19, Universitat

Kaiserslautern 1988

[Li89] Christoph Lingenfelder	 Structuring Computer Generated Proofs

Proc. of 11th IJCAI, Detroit, 1989

[Lo78] Donald W. Loveland Automated Theorem Proving: A Logical Basis

.North Holland, 1978

[McC88] William McCune	 Otter User's Manual

Argonne Report ANL 88-44, 1988

[McK85] K. R. McKeown	 Text Generation

Cambridge University Press, 1985

[Mi83] Dale Miller	 Proofs in Higher Order Logic

Ph.D. Thesis, Carnegie Mellon University

(1983),

Tech Report MS-CIS-83-87, University of

Pennsylvania, Philadelphia

[Pf87] Frank Pfenning	 ProofTransformations in Higher-Order Logic

Ph.D. Thesis, Carnegie Mellon University

(1987)

[MKRP84] Karl Mark GRaph	 The MarkgrafKarl Refutation Procedure

Memo-SEKI-Mk-84-01,

UniversWit Kaiserslautem 1984

[OS89] Hans J. Ohlbach, JOrg H. Siekmann

The MarkgrafKarl Refutation Procedure

SEKI-Report SR-89-19,

Universitat Kaiserslautem 1989

Literature

[Li86] Christoph Lingenfelder

[Li88] Christoph Lingenfelder

[Li89] Christoph Lingenfelder

[Lo78] Donald W. Loveland

91

Transformation of Refutation Graphs into
Natural Deduction Proofs
SEKI-Report SR-86— 10 , Universität

Kaiserslautern 1986

Structuring Computer Generated Proofs
SEKI-Report SR-88-19 , Universität

Kaiserslautern 1988

Structuring Computer Generated Proofs
Proc. of 11th IJCAI, Detroit, 1989

Automated Theorem Proving: A Logical Basis
‘North Holland, 1978

[McC8 8] William McCune

[McK85] K. R. McKeown

[Mi83] Dale Miller

[Pf87] Frank Pfenning

[MKRP84] Karl Mark G Raph

[OS89] Hans J. Ohlbach, Jörg H .

Otter User’s Manual

Argonne Report ANL 88-44, 1988

Text Generation
Cambridge University Press, 1985

Proofs in Higher Order Logic
Ph.D. Thesis, Carnegie Mellon University
(1983),
Tech Report MS-CIS-83-87, University of
Pennsylvania, Philadelphia

Proof Transformations in Higher-Order Logic
Ph.D. Thesis, Carnegie Mellon University
(1987)

The Markgraf Karl Refutation Procedure
Memo-SEKI—Mk-84—01,

Universität Kaiserslautern 1984

Siekmann
The Markgraf Karl Refiaation Procedure
SEKI—Report SR—89-19,
Universität Kaiserslautern 1989

9 2 Transfonnation and Structuring of Computer Generated Proofs

[PN90] Frank Pfenning, Daniel Nesmith
Presenting Intuitive Deductions via Symmetric

Simplification

to appear in Proc. of 10th CADE, 1990

[P085] Joaehim Posegga Using Deduction Graphs as a Representationfor

Resolution Proofs

Diploma Thesis, Universitat Kaiserslautern 1986

[Pr65] Dag Prawitz Natural Deduction A ProofTheoretical Study·

Almqvist & Wiksell, Stockholm, 1965

[PR86] Francis Jeffrey Pelletier, Fiotr Rudnieki

Non-Obviousness, AAR Newsletter 6,

September 1986

[Ro65] J. A. Robinson A Machine Oriented Logic Based on the

Resolution Principle

JACM 12, No.l (1965), pp. 23-41

[Sh76] Robert E. Shostak Refutation Graphs

Artificial Intelligence 7 (1976), pp. 51-64

[Sh79] Robert E. Shostak A Graph Theoretic View ofResolution Theorem

Proving

Report SRI International, Menlo Park, CA
(1979)

[Sm68] Raymund Smullyan First Order Logic

Springer-Verlag, New York, 1968

[St86] Mark Stiekel Schubert's Steamroller Problem:

Formulations and Solutions

JAR, Vo1.2, No.l, 1968

[WCR64] L.T. Wos, D.F. Carson, a.A. Robinson

The Unit Preference Strategy in Theorem Proving

Pree. FlCC, Thompson Book Co.,

New York, 1964

9 2 Transformation and Structm'ing of Computer Generated Proofs

[PN90] Frank Pfenning, Daniel Nesmith
Presenting Intuitive Deductions via Symmetric
Simplification
to appear in Proc. of 10‘ll CADE, 1990

[Po85] Joachim Posegga Using Deduction Graphs as a Representation for
Resolution Proofs
Diploma Thesis, Universität Kaiserslautern 1986

[Pr65] Dag Prawitz Natural Deduction — A Proof Theoretical Study '
Almqvist & Wiksell, Stockholm, 1965

[PR86] Francis Jeffrey Pelletier, Piotr Rudnicki
Non-Obviousness, AAR Newsletter 6 ,
September 1986

[R065] J. A . Robinson A Machine Oriented Logic Based on the
Resolution Principle
JACM 12, No.1 (1965), pp. 23-41

[Sh76] Robert E. Shostak Refutation Graphs
Artificial Intelligence 7 (1976), pp. 51-64

[Sh7 9] Robert E. Shostak A Graph Theoretic View of Resolution Theorem-
Proving
Report SRI International, Menlo Park, CA
(1979)

[Sm68] Raymund Smullyan First Order Logic
Springer-Verlag, New York, 1968

[St86] Mark Stickel Schubert” s Steamroller Problem:
Formulations and Solutions
JAR, Vol.2, No .1 , 1968

[WCR64] L.T. Wos, D.F. Carson, G.A. Robinson
The Unit Preference Strategy in Theorem Proving
Proc. FJCC, Thompson Book Co.,

New York, 1964

Literature 93

[WCR65] L.T. Wos, D.F. Carson, G.A. Robinson

Efficiency and Completeness of the Set-af

Support Strategy in Theorem Proving

JACM 12, 4 (1965)

Literature 9 3

[WCR65] L.T. Wos, D.F. Carson, G.A. Robinson
Efi‘iciency and Completeness of the Set-of-
Support Strategy in Theorem Proving
JACM 12, 4 (1965)

95 Table of Transformation Rules

B Table of Transformation Rules

B.I External Rules

B.l-l Automatic External Rules

El\.:
.9l l- F 1[1{ (a),

(y) .9l I- FAG 1[(~) .9l I- G 1t2
(y) .9l I- FAG Al(a,~)

E:::::> :
.9l,F l- F Ass{ (a)

(y) .9l I- F=>G 1[(~) .9l,F I- G 1t'
(y) .9l I- F=>G =>l(~)

EV:
{ Let c be an arbittary object

(~) .9l I- 'v'xFx 1[(a).9l I- Fe 1['

(~).9l I- 'v'xFx \il(a)

E-,-,:
.9l -l- F 1['ca)

(~) .9l I-,....,F 1[

(~) .9l I-,....,F Tau(a)

E-,I\.:
.9l I-,Fv....,G 1['ca)

(~) .9l I-,(FAG) 1[

(~) .9l I-,(FAG) Tau(a)

E-,v:
.9l I-,FA....,G 1['ca)

(~) .9l I-,(FvG) 1[

(~) .9l I-,(FvG) Tau(a)

E-,~:
.9l I- FA....,G 1['ca)

(~) .9l I-,(F=>G) 1[

(~) .9l I-,(F=>G) Tau(a)

E-,3 :
.9l I- 'v'x....,Fx 1['ca)

(~) .9l I-,::3xFx 1[

(~) .9l I-,::3xFx Tau(a)

Table of Transfomlation Rules 9 5

B Table of Transformation Rules

B. 1 External Rules

B. 1-1 Automatic External Rules

EA:
(on) :1 +- F 751

(y) 521 }— FAG 1r _» { (ß) 51 l- G 1:2
(y) z }- FAG AI(a,ß)

E:):
(a) 5LF I— F Ass

(7) fl }- F=>G 1t —+ { (B) AF l- G 1c'
' (y) 51 !- F=>G =>I(B)

EV:
Letc be anarbilrary object

(B) A l- Vx 1: _» { (0a) fl +- Fc n '
(B) fl IL- Vx V101)

E—I—1:
(a) ‚1 + F 1t'

(ß) Ä l- “"I—IF 1|? -l> {
(ß) 3 |- fi—IF Tau(oc)

E_I/\
(a) Ä |— —IFV—|G ’1"

(B) fll I- -—.(FAG) 1: —o {
(B) a !- —|(FAG) Tau((x)

E—IV
(a) Ä |- —IFA—IG 75'

(B) 34 |- —-.(FvG) 1t _»

(B) 54 |- —.(FvG) Tau(a)

E—I=>
(a) fl I- FA—IG 1t'

(B) ‚q l- ——.(F=>G) n _»

(B) 1 |- -.(F=>G) Tau(a)

E—El:
(a) A |— Vx—q 1t'

(B) Ill l- —-.EIx 11: —+> {
(B) A |- —-3x Tau(a)

96 Transformation and Structuring of Computer Generated Proofs

B.1-2 Proof-Driven Rules

E-,:

(r) J'l t ...,F 1t
ca)

(/3)
(r)

J'l,F
J'l,F
J'l

l-
I
I

F
oL
...,F

Ass
1t'

...,1(/3)

Evleft:

(/3) .9l I- FvG 1t -f>

{(a)
(/3)

J'l

J'l

I

I

F

FvG

1t'

vE(a)

Evright:

(/3) J'l I- FvG

Evl:
(0) .9l I- FvG

1t

1t

{(a)
(/3) ra

)(/3)
(r
()

J'l

J'l

51, ...,F
51, ...,F
J'l
J'l

I

I

I
I
I
I

0

FvG

...,F
G
...,F=>G
FvG

1t'

vE(a)

Ass
1t'

=>1(/3)
Tau(r)

Ev2:
(0) .9l t- FvG 1t ra

)
(/3)

(r
()

51, ...,G
51, ...,0

.9l
J'l

I
l-

I
I

...,G
F

...,O=>F
FvG

Ass
1t'

=>1(/3)
Tau(r)

E:3-constructive:
(/3) .9l I ::lxFx 1t

ca)
(/3)

51

.9l

I

I-

Ft

3xFx

1t'

3I(a)

/

E:3:

(/3) 51 t-

E-,'\I:
(r) J'l I

::lxFx

...,'ixFx

1t

1t

ca)
(/3)

{(a)
(/3)
(r)

J'l

.9l

.91.
51
.91.

I

I

I
I
I

...,V'x...,Fx

3xFx

...,Ft
::lx...,Fx
...,V'xFx

1t'

Neg(a)

1t'
::lI(a)

Neg(l3)

E-Lemma:

(131) J'l1 I- F 1

(I3n) .9I.n I- Fn

1t1

1tn

ca)
(/31)

(/3n)

(l.9li

J'll

.9ln

I

I-

t-

G

F1

Fn

1to

1ti

1t'n

9 6 Transformation and Structuring of Computer Generated Proofs

3 .1 -2 Proof-Driven Rules

13—1:
(00 ÄF I- F Ass

(7) ‚q [— -.F 1c —> { (ß) AF I- J. 1t'
('Y) Ä |— —1F —|I(ß)

Evleft:
' ' " (a) x [- F 1:

([3) ‚at |— FvG 1: _» {
(ß) ß [- FvG vE(a)

Evnght:
((x) fll |— G 1t

(B) 54 [- FvG 1r _» {
(ß) ß: [- FvG vE(oc)

Ev l : (a) 31,-1F l- —.F Ass
(ß) Ä , —1F l- G ‘n',

(6) ‚q [- FvG 1t _» (g) 1 |- —1F=>G =I(ß)
() A I- FvG Tau(7)

Ev2: ((x) ‚q,-„G I- ——.G Ass
(B) 54, —16 l- F 1!

(8) 91 +— FvG 1c _»

(g) ‚q [- —.G==F =>I(ß)
() 521 I- FvG Tau(y)

ES-constructlve:
(a) :4 |— Ft n

(ß) 2 |— 51x 1t _» {
' (ß) 2 f- 3x am)

E3:
(a) fl I- —1VX—IFX R'

(B) fll [— 33x n —-» {
(ß) 54 [- Ex Neg(oc)

E—IVI
(on) fl [- -1Ft 1:

(y) fl [- qFx n —> (ß) 2 |- BxfiFx 31(a)
(Y) 2 !- —.\7’x Neg(ß)

E-Lemma:
(cc) Mai |- G 160

(B1) 541 Ir-F) 1:1
—° (B1) 311 *- F1 7‘1

(BH) fin I 'Fn TC‘n
(ßn) fin *- F11 TC

97 ITable of Transformation Rules ‚Table of Transformation Rules 9 7

B.2 Mixed Rules

M-Cases: F (a) ‚q ;- FvG RuleSR
We consider separately the cases of (a)
(ge 1 ;
(B) AF i- F Ass

(a) fl! |- FvG RuleS? (7) AF +- H n l
-> < Case 2 :

(C) 2 +- H 1!: (ö) AG +- G Ass
(e) AG I- H 1:2
End of cases (1, 2) of (a)

. (C) 2 r- H vE(a‚Y‚e)

M—D1v1de: ' (a) A n- G v—.G Axiom
. We consider separaw the cases of (on)

Case 1:
(3) AG I- G Ass

(C) fl I- F 1: —» 1 (y) AG I- F 1:1
m
(8) A-10 I- —.G Ass
(e) A —:G +- 1:2
End of cases (1, 2) of (0c)

. (€) A *- vE(a‚7‚e)

M—Choose: ,
(a) 521 I— Ex RuleSR

(oz) K +- 51x Rule?‘ } (ß) AFC l- Fc Ass
_.p <

(5) fl I- G 1: (g) AFc l- G 1t’
. () :1 l- G EIE(a,y)

c may not occur in A Fx, or G .

M-Inf:
(on) fll |— F=G RuleSK (a) fi »- F=>G RuleSR

_» (ß) 2 1- F 1t'
(7) fl l- G 1: (y) 2 +- G Tau(a‚ß)

M-Unless:
‘ (on) 54 I- F v G Rule SK

(0:) 2 I- FvG RuleSK } (ß) AF I- F Ass
_» (7) AF |- G 1l:'

(C) 2 I— G 1: (e) 541 l- F=G :>I(y)
(C) J! l- G Tau(a,8)

98 Transfonnation and Structuring of Computer Generated Proofs

B.3 Internal Rules

LL.:

--i>

(a)

(~)

(y)

51

'13

51,'13

f

f

f-

F

-,F

.L

Rule 9t

Rule 9t'

Contra(a,~)

B.3-1 Analytic Rules

IAleft:
--i>

(a)

(~)

51

51

f

f-

FAG

F

Rule9t

AE(a)

IAright:
--i>

(a)

(~)

51

51

f

f-

FAG

G

Rule 9t

AE(a)

1-,-,:
--i>

(a)

(~)

51

51

f

f

-,(-,F)

F

Rule 9t

-,E(a)

I'd:

for an arbitrary tenn t.

--i>

(a)

(~)

51

51

f

f-

VxFx

Ft

Rule 9t

VE(a)

B.3-2 Synthetic Rules

ISA:

--i>

(a)

(~)

(y)

51

'13

51,'13

f

f

f-

F

G

FAG

Rule Xl

RuleX2

Tau(a, ~)

Isvl:
--i>

(a)

(~)

51

51

f

f-

F
FvG

Rule 9t

Tau(a)

Isv2:
--i>

(a)

(~)

51

51

f

f-

G

FvG

Rule 9t

Tau(a)

Is:::::> :
--i>

(a)

(~)

51

51

f

f-

G

F=:>G

Rule 9t

Tau(a)

Is-,-,:
--i>

(a)

(~)

51

51

f

f-

F
-,(-,F)

Rule 9t

Tau(a)

98

B .3 Internal Rules

LL:

Transformation and Structuring of Computer Generated Pmofs

(a)
(B)

-° (7)

B.3-1 Analytic Rules

IAleft: (a)
. —> (B)

IAright: (a)

-> (B)

I—I—I (OL)

—> (B)

LY; (on)
—+> (B)

for an arbitrary term t.

B.3-2 Synthetic Rules

ISA: (a)
(B)

-—*> (Y)

I sv l : (a)
—*> (B)

Is v2: (a)
-° (B)

Is=>z (a)
~> (B)

Is—m (a)
—+ (B)

T —:F

FAG

FAG

—-:(—:F)

Vx
Ft

FAG

FvG

FvG

F=>G

—|(fiF)

Rule EK
Rule 93.

Contra(a‚ß)

Rule St
AE(0(.)

Rule SR
AE(a)

Rule EK
_IE (a)

Rule 5R
VE((X)

Rule X1
Rule X2

Tau(a. B)

Rule 9?
Tau (a)

Rule ER
Tau(0L)

Rule SK
Tau(a)

Rule 9?
Tau(a)

Table of Transformation Rules 99

B.3-3 Converting Rules

I==>: (a) Jl I F=>G Rule 9t
~ (13) Jl I -,F v G Tau(a)

1-,1\.: (a) Jl I -,(F A G) Rule 9\
~ (13) Jl I -,F v -,G Tau(a)

I-,v: (a) Jl I -,(F v G) Rule 9t
~ (13) Jl I -,F A -,G Tau(a)

I-,==>: (a) Jl I -,(F => G) Rule 9t
~ (13) Jl l- F A-,G Tau(a)

I-,V': (a) Jl I -,('ixFx) Rule 9\
~ (13) Jl I- 3x(-,Fx) Neg(a)

1-,3: (a) Jl I -,(3xFx) Rule 9t
~ (13) Jl I 'ix(-,Fx) Neg(a)

Icv1: (a) Jl I- FvG Rule 9t
~ (13) Jl I -,F => G Tau(a)

Icv2: (a) Jl I- FvG Rule 9t
~ (13) Jl I -,G => F Tau(a)

Icv1\.: (a) Jl I Ev(FAG) Rule 9t
~ (13) Jl I (EvF)A(EvG) Tau(a)

ICl\.V: (a) Jl I EA(FvG) Rule 9t
~ (13) Jl I (EAF)v(EAG) Tau(a)

Table of Transformation Rules

3.3-3 Converting Rules

a
T >
I.

.

Icv2:

ICVA:

ICs

((1)
(B)

(a)
(B)

(a)
(B)

(a)
(B)

(a)
(B)

(a)
(B)

(a)
(B)

(a)
(B)

(a)
(B)

(a)
(B)

ha
ha

&
»

ha
ha

F=>G

—IFVG

—IF V ~1G

—IF A —|G

FA—1G

—. (Vx)
3x(——.Fx)

fiGXFX)

VX(—1FX)

FVG

FVG

EV(FAG)

(EVF)A(EVG)

EA(FVG)

(EAF)V(EAG)

99

Rule 9i
Tau(0c)

Rule SK
Tau(0()

Rule 9i
Tau(0t)

Rule 9?
Tau(oc)

Rule 9?
Negüx}

Rule 5X
Neg(oc)

Rule SK
Tau((x)

Rule 9%
Tau(oc)

Rule SK
Tau(0()

Rule ER
Tau(a)

101Example of Unstructured Linearization

C Example of the
Unstructured

Linearization Process

In this part of the appendix we want to go through the linearization process of the

dependency graph for the "steamroller" example of section 4.6 without the benefit 0;'

a structured natural deduction proof. It turns out that it is difficult to extract the

internal proof structure purely from the natural deduction proof if it has not been

structured during the process of its generation.

For easy reference the original natural deduction proof is repeated below. The

numbers in the natural deduction graphs represent the conclusion formulae of the

corresponding proof lines.

(1) I I- T:fa (T:fp Eap) v (T:fa' Ma'a /\ 3p' Ea'p' y=> Eaa') Ass

(2) 2 I- V'c,s,b,f,w Mcb /\ Msb /\ Mbf /\ Mfw Ass
(3) 3 I- V'w,f,g -,Ewf /\ -,Ewg Ass
(4) 4 I- V'b,c,s -,Ebs /\ Ebc Ass
(S) S t- V'c3p Ecp /\ T:fs~Esp' Ass

(6) 2 I- Msb V/\E(2)
(7) 5 I- 3p'Esp' /\VE(S)
(8) 4 I- -,Ebs V/\E(4)
(9) 2,4,5 I- -, (Msb /\ 3p' Esp' => Ebs) Tau(6,7,8)

(10) 2,4,5 I- 3a' -, (Ma'b /\ 3p' Ea'p' => Eba') 31(9)
(11) 2,4,5 I- -, V' a' (Ma'b /\ 3p' Ea'p' => Eba') Neg(lO)
(12) 1 I- Vp Ebp v (Va' Ma'b /\ 3p' Ea'p' => Eba') VE(l)
(13) 1,2,4,5 I- T:fp Ebp Tau(11,12)

(14) 1.2.4.5 t- Ebg VECI3)

(15) 2 I- Mbf V/\E(2)
(16) 1,2,4,5 I- 3p' Ebp' 31(14)
(17) 1 I- (T:fp Efp) v (T:fa'Ma'f /\ 3p' Ea'p' => Efa') VE(I)

(18) 1 I- (T:fp Efp) v (Mbf /\ 3p' Ebp' => Efb) vVE(17)

(19) 1,2,4,5 I- (T:fP Efp) v Efb Tau(1S,16,18)
(20) 1.2.4.5 I- Efg v Efb VECI9)

Example of Unstructured Linearization 101

C Example of the
Unstructured

Linearization Process

In this part of the appendix we want to go through the linearization process of the
dependency graph for the “Steamroller” example of section 4.6 without the benefit of
a structured natural deduction proof. It turns out that i t is difficult to extract the
internal proof structure purely from the natural deduction proof if i t has not been
structured during the process of its generation.

For easy reference the original natural deduction proof is repeated below. The
numbers in the natural deduction graphs represent the conclusion formulae of the
corresponding proof lines.

(1) 1 |- Va (Vp Bap) v (Va' Ma'a A Elp' Ea'p' y=> Eaa') Ass
(2) 2 I- Vc,s,b,f ,w Mcb A Msb A b A Mfw Ass
(3) 3 I— Vw,f,g -.w A —1Ewg Ass
(4) 4 |— Vb,c,s —1Ebs A Ebc Ass
(5) 5 }; Vgäp Egg A Vgäplfisp' As_s_

(6) 2 +- Msb VAE(2)
(7) 5 |— 3p 'Esp ' AVE(5)
(8) 4 I- fiEbS VAE(4)
(9) 2,4‚5 }— _! (Msb A Ep'Esp' => Ebs) Tau(6,7‚8)

(10) 2,4,5 !— Ela' "'l (Ma'b A 3p'Ea'p' => Eba') 31(9)
(11) 2,4,5 I.- —. Va' (Ma'b A Sp'Ea'p ' => Eba') Neg(10)
(12) 1 +- Vp Ebp v (Va‘ Ma‘b A 3p' Ea'p' => Eba’) VE(1)
(13) 1,2‚4,5 I— Vp Ebp Tau(11,12)
14 1 2 4 Eb VE(13)

(15) 2 - |— b VAE(2)
(16) 1,2,4,5 +— 3p' Ebp' 3I(14)
(17) 1 |— (Vp Efp) v (Va’Ma’f A Ep' Ea'p' => Efa’) VE(1)
(18) 1 }— (Vp Efp) v (b A 3p' Ebp' => Efb) vVE(17)
(19) 1,2,4,5 |— (Vp Efp) v Efb Tau(15,16,1 8)
(20) 1.2.4.5 t- E fzv Efb VE(191

102 Transfonnation and Structuring of Computer Generated Proofs

We consider separately the cases of (20)
Case 1:

(21) 1,2,4,5,20 ~ Efg Ass

(22) 3 ~ -,Ewg VI\E(3)

(23) 1 ~ (\fpEwp) v (\fa'Ma'w 1\ 3p' Ea'p' => Ewa') \fE(l)

(24) 1 ~ Ewg v (Va' Ma'w 1\ 3p' Ea'p' => Ewa') vVE(23)

(25) 1,3 ~ \fa' Ma'w 1\ 3p' Ea'p' => Ewa' Tau(22,24)

(26) 1,3 ~ Mfw 1\ 3p' Efp' => Ewf VE(25)
(27) 2 ~ Mfw VI\E(2)

(28) 1,2,4,5,20 ~ 3p' Efp' 31(21)

(29) 1-5,20 ~ Ewf Tau(26,27,28)
(30) 1-5,20 ~ Ewf 1\ Efg 1\1(29)
(31) 1-5,20 ~ 3a,a',p Eaa' 1\ Ea'p 31(30)

Case 2:
(32) 1,2,4,5,30 ~ Efb Ass

(33) 1,2,4,5,30 ~ Efb 1\ Ebg 1\1(14,32)

(34) 1,2,4,5,30 ~ 3a,a',p Eaa' 1\ Ea'p 31(33)

End of Cases (23.34)

(35) 1-5 ~ 3a,a',p Eaa' 1\ Ea'p vE(20,31,34)

The dependency relation between the proof lines is represented in the initial
natural deduction graph shown below,

l 0 2 Transformation and Structuring of Computer Generated Proofs

We consider separately the cases of (20)
Case 1 ;

(21) 1,2‚4,5,20 |— Ef g Ass
(22) 3 +- -—.Ewg VAE(3)
(23) 1 |- (Vp Ewp) v (Va' Ma'w A Ep' Ea'p' => Ewa') VE(1)
(24) 1 !- Ewg v (Va' Ma'w A Elp' Ea'p' => Ewa') VVE(23)
(25) 1,3 t— Va' Ma'w A 3p' Ea'p' = Ewa‘ Tau(22‚24)
(26) 1,3 I- Mfw A Elp' Efp‘ => w VE(25)
(27) 2 »- Mfw WEG)
(28) 1,2,4‚5‚20 I- Elp' Efp' 31(21)
(29) 1-5‚20 I— w Tau(26,27,28)
(30) 1-5,20 !- w A Efg AI(29)

1 1- El ' E ' A ' 31130)

Case 2 ;
(32) 1,2,4,5,30 +- E fb Ass
(33) 1,2,4,5,30 |— Efb A Ebg AI(14,32)
(34) 1,2,4,5,30 +- 3a,a‘,p Eaa' A Ea'p 31(33)

End of Cases (23,34)
(35) 1 -5 t— 3a , a ' , p Eaa ' A Ea‘p vE(20,31,34)

The dependency relation between the proof lines i s represented in the initial
natural deduction graph shown below.

103Example of Unstructured Linearization

At fIrst rule 1 of defInition 4.1-2 is applied to several of the nodes in the natu:-a~

deduction graph. The resulting graph shown below is still very complicated and rdc

1 cannot be applied again.

Now rule 2 is used for applicable nodes with least rank, Le. with the smallest

number of immediate predecessors. In this case there are several nodes with no

predecessor at all, which correspond to lines where an assumption is introduced. This

rule ensures that any new assumptions are mentioned immediately before they are

needed for the first time. The next graph results from applying rule 2 to all applicable

nodes of rank 0, viz.

)2~V---""i 3-22-25-26)----=:::::::l.2~~~~}.)

F-----------------(15

)--1~-----------(.2127::.-1~8>;----""j19-20 1------(

J-------------{ 32-33-34

In the next step several nodes of rank 1 can be joined with their unique immediate

successors. At this point one must decide the value of maxsize. Remember that a

node can only be added to its successor node if its size is smaller than maxsize. There

Example of Unstructured Linearization l 0 3

At first rule 1 of definition 4.1-2 is applied to several of the nodes in the natural

deduction graph. The resulting graph shown below i s still very complicated and rule
1 cannot be applied again.

Now rule 2 is used for applicable nodes with least rank, i.e. with the smallest
number of immediate predecessors. In this case there are several nodes with no
predecessor at all, which correspond to lines where an assumption is introduced This
rule ensures that any new assumptions are mentioned immediately before they are
needed for the first time. The next graph results from applying rule 2 to all applicable
nodes of rank O, viz.

23-24 3—22—25—26 21—28—29—30—31

2 1

1 fi’ 17—18 ‘—‚ 19—20 35

@
4—8—5—7—@ 9_10_1 1

\19 32—33—34

In the next step several nodes of rank 1 can be joined with their unique immediate
successors. At this point one must decide the value of maxsize. Remember that a
node can only be added to its successor node if its size is smaller than maxsize. There

104 Transfonnation and Structuring of Computer Generated Proofs

is nothing to guide us here, and we arbitrarily choose five proof lines as this maximal

number. Note that this choice prohibits the combination of the two nodes on top of

the next graph.

23-24-3
22-25-26

Now only one further combination for a node of rank 2 is possible without

violating the maximality condition, and the final generalized natural deduction graph

has the following form.

23-24-3
22-25-26

27-21-28
29-30-31

For better comparison with the earlier result (section 4.6), we repeat below the

graph which was arrived at by starting with a natUral deduction proof that had already

been structured during the process of its generation.

22-25-26,

6,
27-29-30-31

21-28 ;I

7 - 9-10-11-13-14
8;1 12;1

32 - 33 - 34

23-24;1

l 0 4 Transformation and Structuring of Computer Generated Proofs

is nothing to guide us here, and we arbitrarily choose five proof lines as this maximal
number. Note that this choice prohibits the combination of the two nodes on top of
the next graph.

23—24—3—
22—25—25

27—21—28—
29—30—31

6—4-8—5— 17-18—15-
7—9—10—11 16—19—20

Now only one further combination for a node of rank 2 is possible without
violating the maximality condition, and the final generalized natural deduction graph
has the following form.

23—24—3— 27—21—28—
22—25—26 29—30—31

12—13—14—
17—18—15—
16—19—20

6—4—8—5—
7_9_1o_1 1

For better comparison with the earlier result (section 4.6) , we repeat below the

graph which was arrived at by starting with a natural deduction proof that had already
been structured during the process of its generation.

a \7 - 9-1o_11_13_14 17—18-19—20
s / 12 / 16 /

22—25—26\
23—24/ 27—29—30—31

21—28

32—33—34

105Example of Unstructured Linearization

While the second graph reflects a meaningful internal structure of the proof,

deriving line 14 first (birds eat grain) and then doing a case analysis with respect to

line 20 (foxes eat grain or birds), the unstructured version fails to come up with a

well-structured result. The subgoals 11 and 26 proposed are merely intermediate

results of low-level calculations, which happen to be part of an argument using more

than one fonnula.

Choosing a larger value for maxsize would avoid these meaningless subgoals,

but at the same time line 31 would be lost as a distinct subgoal, and possibly line 20

as well. In no way could one come up with the lemma "birds eat grain" of line 14.
This example shows that there is more in the structuring of proofs than a mere size

argument.

It has become apparent that making visible the internal proof structure during the

proof transformation process by exploiting topological properties of the refutation

graph is superior to the attempt to find such a structure afterwards.

Example of Unstructured Linearization l 0 5

While the second graph reflects a meaningful internal structure of the proof,
deriving line 14 first (birds eat grain) and then doing a case analysis with respect to
line 20 (foxes eat grain or birds), the unstructured version fails to come up with a
well—structured result. The subgoals 11 and 26 proposed are merely intermediate
results of low-level calculations, which happen to be part of an argument using more
than one formula.

Choosing a larger value for maxsize would avoid these meaningless subgoals,
but at the same time line 31 would be lost as a distinct subgoal, and possibly line 20
as well. In no way could one come up with the lemma “birds eat grain” of line 14.
This example shows that there i s more in the structuring of proofs than a mere size
argument.

It has become apparent that making visible the internal proof structure during the
proof transformation process by exploiting topological properties of the refutation
graph is superior to the attempt to find such a structure afterwards.

107Table of Definitions, Examples, and Lemmata

D Table of Definitions,
Examples, and Lemmata

2.1 General Definitions
 5

2.1-1 Definition: (signature, terms)	 5

2.1-2 Definition: (substitutions)	 .5

2.1-3 Definition: (formulae)	 6

2.1-4 Definition: (rank of formulae)	 7

2.1-5 Definition: (interpretations)	 7

2.2	 Formula Occurrences 8

2.2-1 Definition: (subformulae, formula trees) 8

2.2-2 Definition: (formula occurrences) 9

2.2-3 Example: (formula occurrences) 9

2.3	 Resolution 10

2.3-1 Definition: (literals, clauses) 10

2.3-2 Definition: (normal forms) 10

2.3-3 Definition: (resolution 11

2.4	 Clause Graphs and Refutation Graphs 12

2.4-1 Definition: (clause graph) 12

2.4-2 Definition: (interpretation of clause

graphs) 13

2.4-3 Example: (clause graph) 13

2.4-4 Definition: (subgraphs) 15

2.4-5 Definition: (separating links) 15

2.4-6 Definition: (deduction and refutation

graphs) 16

2.4-7 Example: (deduction graphs) 16

2.5	 Properties of Deduction and Refutation Graphs 18

2.5-1 Lemmata: (N. Eisinger) 18

2.5-2 Definition: (graph splitting) 19

2.5-3 Lemma: (graph splitting) 19

2.5-4 Definition: (clause graph relation) 21

2.5-5 Example: (refutation graph for

subgroup criterion) 21

2.5-6 Lemma: (literal removal) 22

2.5-7 Lemma: (choose clause not to

duplicate) 24

2.6 Natural Deduction Proofs
 24

2.6-1 Definition: (Natural Deduction Proof) 25

2.6-2 Rules of the Natural Deduction System: 25

Table of Definitions, Examples, and Lemmata l 0 7

D Table of Definitions,
Examples, and Lemmata

2 .1 General Defini t ions . 5
21-1 Definition: (signature, terms)5
2 .1 -2 Definition: (subs t i tu t ions) . 5
2.1-3 Definition: (formulae) . 6
21-4 Definition: (rank of formulae) .7
2.1-5 Definition: (interpretations) .7

2 .2 Formula Occurrences . 8
2.2-1 Definition: (subforrnulae, formula trees) 8
2.2-2 Definition: (formula occurrences)9
2.2-3 Example: - (formula occurrences)9

2 .3 Resolution . 10
2 .3 -1 Definition: (l i terals, c lauses) 10
2 .3-2 Definition: (normal forms) 10
2.3-3 Definition: (resolution . 11

2 .4 Clause Graphs and Refutation Graphs 12
2.4—1 Definition: (clause graph) . 12
2.4—2 Definition: (interpretation of clause

graphs) . 13
2.4-3 Example: (clause graph) . 13
2.4-4 Definition: (subgraphs) . 15
2 .4-5 Definition: (separating links) 15
2.4-6 Definition: (deduction and refutation

graphs) . 16
2.4-7 Example: (deduction graphs) 16

2.5 Properties of Deduction and Refutation Graphs . 18
25-1 Lemmata: (N. Eisinger) . 18
2.5-2 Definition: (graph splitting) 19
25-3 Lemma: (graph splitting) 19
25-4 Definition: (clause graph relation) 21
25—5 Example; (refutation graph for

subgroup criterion) 21
25-6 Lemma: (literal removal) . 22
25-7 Lemma: (choose clause not to

duplicate) . 24

2 .6 Natural Deduction Proofs . 24
2.6-1 Definition: (Natural Deduction Proof) 25
2.6-2 Rules of the Natural Deduction System: 25

108 Tmnsfonnation and Structuring of Computer Generated Proofs

2.6-3 Example: (Natural Deduction Proof) 27

2.7	 Derived Natural Deduction Rules
 28

2.7-1 Example: (Rule of Propositional

Calculus)
 28

3.1	 DefInitions
 31

3.1-1 Definition: (Generalized Natural

Deduction Proof) 31

3.1-2 Example: (Generalized NDP) 31

3.1-3 Definition: (anchored formulae) 32

3.1-4 Definition: (basis of a formula) 33

3.1-5 Lemma: (anchored if tails are shared

for a basis) 33

3.1-6 Definition: (Polarization of Clause

Nodes) 33

3.2	 Basic Set of Transformation Rules 33

3.2-1 Example: (Proof Transformation) 34

3.2-2 External Rules 36

3.2-3 Mixed Rules 37

3.2-4 Internal Rules 38

3.2-5 Lemma: (Completeness of the

Rule System) 39

3.2-6 Corollary: (Completeness of the

Rule System) 40

3.3	 Additional Transformation Rules 40

3.4	 A Semiautomatic Proof System _ 44

3.4-1 Defmition: (integral formulae) 45

3.4-2 Algorithm: (basic proof transformation) 46

3.5	 The Automatic Transformation Procedure 46

3.5-1 Example Graph: (disjunctive theorem) 47

3.5-2 Example Graphs: (existentiaL 48

3.5-3 Example Graphs: (graph condition for M-Inf) 49

3.5-4 Example Graphs: (graph condition for M-Inf) 49

3.5-5 Example Graphs: (graph condition for M-Inf) 50

3.5-6 Example Graphs: (graph condition for M-Inf) 50

3.5-7 Lemma: (Graph Condition ~or M-Inf) 51

3.6	 Updating the Refutation Graph
 53

3.6-1 Example: (anchorage) 54

3.6-2 Example Graph 56

3.6-3 Example Graph 56

3.6-4 Example Graphs: (M-Cases, M-Divide) 57

l 0 8 Transformation and Structuring of Computer Generated Proofs

2.6-3 Example: (Natural Deduction Proof) 27

2.7 Derived Natural Deduction Rules . 28
2.7-1 Example: (Rule of Propositional

Calcu lus) . 28

3 .1 Definitions . 31
3 . 1 -1 Definition: (Generalized Natural

Deduction Proof) 31
3.1-2 Example: (Generalized NDP)........: 31
3.1-3 Definition: (anchored formulae) 32
3.1-4 Definition: (basis of a formula) 33
3.1—5 Lemma: (anchored if tails are shared

for a basis) 33
3.1-6 Definition: (Polarization of Clause

Nodes) . 33

3 .2 Basic Set of Transformation Rules 33
3.2—1 Example: (Proof Transformation) 34
3.2-2 External Rules . 36
3.2-3 Mixed Rules . 37
3.2-4 Internal Rules 38
3.2—5 Lemma: (Completeness of the

Rule System) . 39
3.2-6 Corollary: (Completeness of the

Rule System) . 40

3.3 Additional Transformation Rules 40

3 .4 A Semiautomatic Proof System . 44
3.4-1 Definition: (integral formulae) 45
34-2 Algorithm: (basic proof transformation) 46

3.5 The Automatic Transformation Procedure . 46
35-1 Example Graph: (disjunctive theorem) 47
35-2 Example Graphs: (existential 48
3.5—3 Example Graphs: (graph condition for M-Inf) 49
35-4 Example Graphs: (graph condition for M-Inf) 49
35—5 Example Graphs: (graph condition for M—Inf) 50
35-6 Example Graphs: (graph condition for M—Inf) 50
35-7 Lemma: (Graph Condition for M-Inf) 51

3.6 Updating the Refutation Graph . 53
3.6—1 Example: (anchorage) . 54
3.6—2 Example Graph 56
3.6-3 Example Graph . 56
3.6-4 Example Graphs: (M-Cases, M-Divide) 57

109 Table of Definitions, Examples, and Lemmata

3.6-5 Lemma: (Splitting the graph) 57

3.6-6 Corollary: (Splitting Theorem) 58

3.6-7 Definition: (Distributed Formulae) 58

3.6-8 Lemma: (Graph Condition for

M-Cases)
 58

3.7	 Example (Subgroup criterion)
 59

4.1	 Ordering Natural Deduction Proofs
 63

4.1-1 Definition: (NDPs represented as dags) 63

4.1-2 Definition: (Generalized NDGs) 64

4.1-3 Example: (Natural Deduction Graph) 65

4.2 Trivial Subproofs	 67

4.3 Shared Subgraphs as Lemmata	 69

4.4	 Subgoals defined by separating links 72

4.4-1 Algorithm: (fmd separating 73

4.4-2 Example: (links defining a lemma) 74

4.4-3 Definition: (maximal connected

subgraphs) 74

4.4-4 Algorithm: (choose lemma from

separating links) 75

4.4-5 Example: (choosing the actual lemma) 75

4.5 Structuring Proofs Using Proof by Case Analysis	 76

4.6 Example & Further Processing "	 77

B.1 External Rules 95

B.1-1 Automatic External Rules 95

B.1-2 Proof-Driven Rules 96

B.2 Mixed Rules	 97

B.3 Internal Rules 98

B.3-1 Analytic Rules 98

B.3-2 Synthetic Rules 98

B.3-3 Converting Rules 99

E.1 Signature and Elementary Sets of Symbols	 111

E.2	 Objects Denoted by Single Letters l11

E.3	 Combinations of Letters and Special Symbols
 112

Table of Definitions, Examples, and Lemmata l 0 9

3.6—5 Lemma: (Splitting the graph) 57
3.6-6 Corollary: (Splitting Theorem) 58
3.6-7 Definition: (Distributed Formulae) 58
36-8 Lemma: (Graph Condition for

M-Cases) 58

3.7 Example (Subgroup criterion) . 59

4 .1 Ordering Natural Deduction Proofs . 63
4.1-1 Definition: (NDPs represented as dags) 63
4.1-2 Definition: (Generalized NDGs) 64
41—3 Example: (Natural Deduction Graph) 65

4 .2 Trivial Subproofs .. 67

4 .3 Shared Subgraphs as Lemmata . 69

4.4 Subgoals defined by separating links 72
4.4-1 Algorithm: (find separating 73
4.4-2 Example: (links defining a lemma) 74
4.4—3 Definition: (maximal connected

subgraphs) . 74
4.4-4 Algorithm: (choose lemma from

separating links) 75
4.4-5 Example: (choosing the actual lemma) 75

4 .5 Structuring Proofs Using Proof by Case Analysis 76

4 .6 Example & Further Processing . 77

B.1 External Rules . 95
B.1~1 Automatic External Rules 95
B. 1 -2 Proof-Driven Rules . 96

B .2 Mixed Ru les .. 97

B .3 Internal Rules . 98
B.3—1 Analytic Rules . 98
B.3-2 Synthetic Rules . 98
B.3-3 Converting Rules . 99

El Signature and Elementary Sets of Symbols . 111

EZ Objects Denoted by Single Letters 111

E.?! Combinations of Letters and Special Symbols 112

Table of Symbols 11 1

E Table of Symbols

E.l Signature and Elementary Sets of Symbols

JFo constant symbols, a, b, c

JFn,JF n-ary function symbols, function symbols f, g, h

V variable symbols u, v, w, x, y, z

'Jr, 'Jrgr terms, ground terms s, t

:E, :Egr substitutions; ground substitutions p, cr, 't; y, 0

l?n,l? n-ary predicate symbols, predicate symbols P,Q,R
A 1 A gr atoms, ground atoms A,B

lL, lLgr literals, ground literals K, L, M, N

C, Cgr clauses, ground clauses C,D,E
~, $Jgr formulae, ground formulae cp,'I',F,G,H
f' clause graphs r,,1.

N nodes of a clause graph K, L, M, N

n links of a clause graph e,A,<p,rr

E.2 Objects Denoted by Single Letters

A,B eA atoms
C,D,E eC clauses or clause nodes

cp, '1', F, G, H e$J formulae

K, L, M, N eN, lL literals or literal nodes

P,Q,R El? predicates

S, T cC sets of clauses

U, V, W, X, Y, Z c;;;,.V sets of variables

a, b, c, d, e e JFo constant symbols

f, g, h e JF\lFo function symbols
i, j, k, 1, rn, n indices

s, t eT terms

u, v, w, x, y, z eV variables

Table of Symbols

F0

a , IF
V

']I‘, Tar

z, 2g,
]P’n,]?

A, Ag,

1L, Lg,
c, cg,
@, «ng,
I‘

N

H

111

E Table of Symbols

constant symbols,
n-aIy function symbols, function symbols
variable symbols
terms, ground terms
substitutions; ground substitutions
n-ary predicate symbols, predicate symbols
atoms, ground atoms
literals, ground literals
clauses, ground clauses

formulae, ground formulae
clause graphs
nodes of a clause graph
links of a clause graph

A,B EA
C,D,E EC
<p , \ | f ,F ,G ,H ed»
K,L ,M,N eN, lL

P ,Q ,R EP

S ,T gC
U‚V,W,X,Y‚Z gV

a‚b , c ‚d , e 51120

f , g ,h 6N0

i , j , k , 1 ,m ,n
s , t 611‘

u , v , w, x , y, 2 EV

E.1 Signature and Elementary Sets of Symbols

a, b , c
f, g ,h
u , v , w, x , y , z

s , t
p, o, r ; 7 ,6
P, Q ,R
A,B
K, L, M,N
C, D ,E
(p,\|/‚ F , G ,H
I ‘ ,A
K, L, M,N
@, A, <D,H

E.2 Objects Denoted by Single Letters

atoms

clauses or clause nodes
formulae
literals or literal nodes
predicates
sets of clauses
sets of variables

constant symbols
function symbols
indices
terms

variables

112 Transfonnation and Structuring of Computer Generated Proofs

r,A El[' clause graphs

e,A,n en links of a clause graph

<1> e~ set of formulae
.Q set of formula occurrences

L cI. set of substitutions

E, '¥ en sets of links

y,o e .Egr ground substitutions

€ e.E the empty substitution

~, 11, t'} walks in a clause graph

e.E matcher~

1t proof

p, 0', 't e.E substitutions

cp, 'I' e@J formulae

ro en formula occurrences

E.3 Combinations of Letters and Special Symbols

[L, M, ... , N] clause (node) containing the literal (nodes) L, M,... , N

L>-<K link containing Land K in opposite shores

112

I‘,A
9,A,I ' I

„m
e

we

v, 8

(f
)

CAM}

p, 0 ,1
(PHI!

Transformation and Structuring of Computer Generated Proofs

6]?

EH
gab

g2

;]ÜI

e ig ,
EZ

GE

EZ

em
EQ

clause graphs
links of a clause graph
set of formulae
set of formula occurrences
set of substitutions
sets of links

ground substitutions
the empty substitution
walks in a clause graph
matcher
proof
substitutions
formulae
formula occurrences

E.3 Combinations of Letters and Special Symbols

[L, M,.. . , N]
L>—<K

clause (node) containing the literal (nodes) L, M,. . . , N
link containing L and K in opposite shores

mrex

anchorage 32; 54

assumption 24; 25; 26; 27; 31; 33;
36; 39;45;46;48;51;53;55;
57;58;60;63;70;75;78; 103

atom 6; 8; 10; 11; 13; 39; 70; 72

atom occurrence 9; 11; 20; 21; 22; 32;
33;47;51;54;69;71

atomic closure 33

basis 33; 54

clause 10; 11; 23; 47; 49; 68; 71; 76

empty clause 10; 11; 14

parent clause 13; 23; 51; 71

clause form -7 normal form

clause graph 12; 13; 14; 15; 16; 18;
21;22;51;58;74

component 16; 18; 19;52; 56;57;
58; 69; 71; 76

connected 16; 17; 18

splitting 19

subgraph 15; 17; 23; 50; 56; 67;
69; 72

maximal connected 16; 74

clause graph relation 21; 22; 32; 33;
51;57;58;59;69;85

clause node 12; 13; 14; 15; 17; 18;
19;20;22;33;46;51;53;56;
61;71;74;75;78

clause set 10; 11;13; 20; 21; 22; 23;
70

codomain 5

component -7 clause graph

113

F Index

conclusion 25; 27; 31; 33; 35; 44; 45;
47;53;54;60;61;70

conjunction 6; 23; 29; 39; 40; 49; 70;
75

connective 7; 8; 10; 25; 28

binary 6

unary 6

constant 21; 37; 60; 65;77

constant syrnbol 5; 31;72

cross-product 10; 23

cycle 16; 18; 19;49;51;56;70

deduction graph 16; 17; 18; 19; 20;
47;51;67;68;70;71;73;78

minimal 16; 18; 19; 57

disjunction 6; 7; 23; 29; 39; 41; 43;
47;49;50;52;56;58;70;76

disjunction, 85

domain 5

FALSE 6; 40

falsify 7; 10

formula 6; 8; 9; 10; 11; 20; 21; 22;
25;31;32;33;45;47;48;58;
59;69;78

anchored 32; 53; 54

distributed 58; 76

integral 45; 46; 53; 55; 60

strongly 45; 46; 53
weakly 45; 46; 53

tree 8; 9; 54

formula occurrence 9; 21; 32; 33; 54

specialized 9

anchorage 32; 54

assumption 24; 25; 26; 27; 31; 33;
36; 39; 45; 46; 48; 51; 53; 55;
57; 58; 60; 63; 70; 75; 78; 103

atom 6; 8; 10; 11; 13; 39; 70; 72

atom occurrence 9; 11; 20; 21; 22; 32;
33; 47; 51; 54; 69; 71

atomic closure 33

basis 33; 54

clause 10; 11; 23; 47; 49; 68; 71; 76
empty clause 10; 11; 14

parent clause 13; 23; 51; 71

clause form —> normal form

clause graph 12; 13; 14; 15; 16; 18;
21; 22; 51; 58; 74

component 16; 18; 19; 52; 56; 57;
58; 69; 71; 76

connected 16; 17; 18
splitting 19
subgraph 15; 17; 23; 50; 56; 67;

69; 72
maximal connected 16; 74

clause graph relation 21; 22; 32; 33;
51; 57; 58; 59; 69; 85

clause node 12; 13; 14; 15; 17; 18;
19; 20; 22; 33; 46; 51; 53; 56;
61; 71; 74; 75 ; 78

clause set 10; 11;-13; 20; 21; 22; 23;
70

codomain 5

component —> clause graph

113

F Index

conclusion 25; 27; 31; 33; 35; 44; 45;
47; 53; 54; 60; 61; 70

conjunction 6; 23; 29; 39; 40; 49; 70;
75

connective 7; 8; 10; 25; 28
binary 6
unary 6

constant 21; 37; 60; 65; 77

constant symbol 5; 31; 72

cross—product 10; 23

cycle 16; 18; 19; 49; 51; 56; 70

deduction graph 16; 17; 18; 19; 20;
47; 51; 67; 68; 70; 71; 73; 78

minimal 16; 18; 19; 57

disjunction 6; 7 ; 23; 29; 39; 41; 43 ;
47; 49; 50; 52; 56; 58; 70; 76

disjunction, 85

domain 5

FALSE 6; 40

falsify 7; 10

formula 6; 8 ; 9; 10; 11; 20; 21; 22;
25; 31 ; 32; 33; 45; 47; 48; 58;
59; 69; 78

anchored 32; 53; 54

distributed 58; 76

integral 45; 46; 53; 55; 60
strongly 45; 46; 53
weakly 45; 46; 53

tree 8; 9; 54

formula occurrence 9; 21; 32; 33; 54

specialized 9

114 Transfonnation and Structuring of Computer Generated Proofs

function symbol 5; 10; 31

generalized lllitural deduction graph
64; 66; 81; 104

generalized natural deduction proof
31;33;36;39;44;45;47;51;
58

trivial 31; 33; 59; 69

graph --t clause graph

implication 6; 7; 10; 34; 39; 45; 49

interpretation 7; 13; 20

justification 25; 27; 35; 63

line --t proof line

link --t polylink

literal 10; 13; 23

literal node 12; 13; 14; 16; 17; 22; 32;
47;53;69

pure 13; 17; 20; 70; 75

matcher6

matrix 10

natural deduction calculus 25; 38; 43;
47;64

natural deduction derivation 25; 39

natural deduction graph 63; 65; 82;
102; 103

natural deduction proof --t proof

NDP --t proof

negation 6; 12; 29; 40

nesting relation 16; 22; 73

normal form

clause form 21

clause form C(F) 10; 20; 32; 51;
52

negation (NNF) 10
prenex (PNF) 10
Skolem (SNF) 10; 21; 22; 54

polarization 46; 78

negative 33; 75

positive 33; 53; 55; 57; 70; 75

polylink 13; 14; 16

maximal 22

separating 16; 18; 73; 78

polylink condition 13; 15; 16; 72; 78

predicate symbol 6

prefix 10

proof

matrix 8; 12

natural deduction 25; 27; 29; 31;
33;35;40;44;47;54;55;
59;62;63;64;65;67;80;
101

resolution 5; 8; 11; 69; 72

tableau 40

trivial 67

proof line 25; 27; 63

external 31; 35

internal 31; 36

quantifier 7; 8; 10;29

existential 6; 48; 72; 76

universal 6; 29; 34; 72

rank

of a formula 7; 39

of a node 64; 103

of the formula 23

refutation graph 8; 16; 20; 21; 22; 23;
32;33;51;53;56;59;67;73;
78

l 1 4 Transformation and Structuring of Computer Generated Proofs

function symbol 5; 10; 31

generalized natural deduction graph
64; 66; 81; 104

generalized natural deduction proof
31; 33; 36; 39; 44; 45; 47; 51;
58

trivial 31; 33; 59; 69

graph —> clause graph

implication 6 ; 7; 10; 34; 39; 45; 49

interpretation 7; 13; 20

justification 25; 27; 35; 63

line —> proof line

link —> polylink

literal 10; 13; 23

literal node 12; 13; 14; 16; 17; 22; 32;
47; 53; 69

pure 13; 17; 20; 70; 75

matcher 6

matrix 10

natural deduction calculus 25; 38 ; 43;
47; 64

natural deduction derivation 25; 39

natural deduction graph 63; 65; 82;
102; 103

natural deduction proof —> proof

NDP —> proof

negation 6; 12; 29; 40

nesting relation 16; 22; 73

normal form

clause form 21

clause form C(F) 10; 20; 32; 51;
52

negation (NNF) 10
prenex (PNF) 10
Skolem (SNF) 10; 21 ; 22; 54

polarization 46; 78
negative 3.3; 75
positive 33; 53; 55; 57; 70; 75

polylink 13; 14; 16

maximal 22
separating 16; 18; 73; 78

polylink condition 13; 15; 16; 72; 78

predicate symbol 6

prefix 10

proof
matrix 8; 12

natural deduction 25; 27; 29; 31;
33; 35; 40; 44; 47; 54; 55;
59; 62; 63 ; 64; 65; 67; 80;
101

resolution 5; 8; l l ; 69; 72
tableau 40

trivial 67

proof line 25; 27; 63
external 31; 35

internal 31; 36

quantifier 7; 8; 10; 29
existential 6; 48; 72; 76
universal 6 ; 29; 34; 72

rank
of a formula 7; 39
of a node 64; 103
of the formula 23

refutation graph 8; 16; 20; 21; 22; 23;
32; 33; 51; 53; 56; 59; 67; 73;
78

115 Index

minimal 16; 18; 51; 58

renaming 6; 11

resolution 11

resolution derivation 11; 20

resolution proof 11; 22

resolution refutation 11; 20

resolvable 10; 11

resolvent 11; 72; 85

satisfiable 7

satisfy 7; 10; 13; 20

self-resolvable 11

share a tail 32; 33; 54

shore 13; 14; 17; 47; 51; 75

signature 5

size of a node 64; 103

Skolem constant 54

Skolem function 10; 54

Skolem Normal Form (SNF)
~ normal form

split 19; 56; 57; 58; 69; 76

subformula 8; 34; 39; 44; 45; 53

immediate 8; 9; 54

substitution 5; 16; 53; 54; 78

ground 6; 13; 47; 59; 71

idempotent 6

tautology 7; 8; 28

tenn 5; 38; 42

ground 5; 52; 54; 72

trail 16; 17; 19; 49

transformation rule 35; 39; 40; 46; 69

analytic 43; 54; 98

automatic 42; 61; 73; 95

converting 43; 54

external 35; 36;41;45; 54;95

internal 36; 38; 45; 53; 98

mixed 36; 37; 45; 48; 53; 97

proof-driven 42; 52; 96

synthetic 43; 54; 98

TRUE 6

unifiable 6; 10; 13

unifier 6; 48

unsatisfiable 7; 11; 13; 20; 24

valid 7; 11; 20; 31; 33; 40; 43

variable 5; 10;48;52;60;71;78

variable assignment 7

walk 15; 16

minimal 16; 18; 51; 58

renaming 6; 11

resolution l l
resolution derivation l l ; 20
resolution proof 11; 22
resolution refutation 11; 20

resolvable 10; 11

resolvent 11; 72; 85

satisfiable 7

satisfy 7; 10; 13; 20

self-resolvable 11

share a tail 32; 33; 54

shore 13; 14; 17; 47; 51 ; 75

signature 5

size of a node 64; 103

Skolem constant 54

Skolem function 10; 54

Skolem Normal Form (SNF)
-> normal form

split 19; 56; 57; 58; 69; 76

subformula 8; 34; 39; 44; 45; 53
immediate 8; 9 ; 54

substitution 5; 16; 53; 54; 78
ground 6; 13; 47; 59; 71
idempotent 6

tautology 7; 8; 28

term 5; 38; 42

ground 5; 52; 54; 72

trail 16; 17; 19; 49

transformation rule 35; 39; 40; 46; 69
analytic 43; 54; 98

115

automatic 42; 61; 73; 95
converting 43; 54

external 35; 36; 41; 45; 54; 95

internal 36; 38; 45; 53; 98
mixed 36; 37; 45; 48; 53; 97
proof—driven 42; 52; 96

synthetic 43; 54; 98

TRUE 6

unifiable 6; 10; 13

unifier 6; 48

unsatisfiable 7; 11; 13; 20; 24

valid 7; l l ; 20; 31; 33; 40; 43

variable 5; 10; 48; 52; 60; 71; 78

variable assignment 7

walk 15; 16

15. August 1956

1.4.1963 - 30.11.1966

1.12.1966 - 31.7.1967

1.8.1967 - 31.7.1968

1.8.1968 - 27.5.1975

27. Mai 1975

1.7.1975 - 30.9.1976

1.10.1976 - 30.9.1979

1.10.1979 - 30.9.1980

1.10.1980 - 15.11.1982

1.10.1981 - 28.2.1983

13. August 1982

15. November 1982

1.3.1983 - 31.7.1984

6. Oktober 1986

18. lull 1988

seit 1.8.1984

Lebenslauf

geboren in Kiinzelsau, Hohen1ohekreis
Eltern: Karl und Ingeborg Lingenfelder,
Gesehwister: Beate (* 1958), Matthias (* 1959)

Grundsehule Kiinzelsau

Gymnasium Kiinzelsau

SehloBgymnasium Kirehheim unter Teck

Ludwig-Uhland-Gymnasium
Kirehheim unter Teek

Abitur ~ Ludwig-Uhland-Gymnasium
Kirehheim unter Teck

Grundwehrdienst

Studium der Physik und Mathematik an der
Universitat "Fridericiana" in Karlsruhe

Studium der Physik und Mathematik an der
University of Maryland, College Park, Md., USA

Studium der Physik und Mathematik an der
Universitat "Fridericiana" in Karlsruhe

Tutor am Mathematischen Institut I und am Institut
fUr Theorie der Kondensierten Materie (Physik) der
Universitat Karlsruhe

Hochzeit mit Andrea RothfuB

AbschluB des Studiums mit dem 1. Staatsexamen
fUr das Lehramt an Gymnasien

wissenschaftlieher Mitarbeiter am Institut fUr Informatik I
der Universitat Karlsruhe in der Arbeitsgruppe von Prof.
Deussen, Forsehungs- und Entwieklungsaufgaben auf
dem Gebiet des ProgrammverifIkationssystems SEKI

Geburt der Tochter Annik

Geburt des Sohnes Mauriee

wissenschaftlieher Mitarbeiter am Fachbereieh Informatik
der Universitat Kaiserslautern in der Arbeitsgruppe von
Prof. Siekmann, Mitarbeit in Projekten aus dem Bereich
"Automatisches Beweisen", insbesondere im SFB 314
,,Klinstliche Intelligenz - wissensbasierte Systeme"

15. August 1956

1.4.1963 - 30.11.1966

1.12.1966 — 31.7.1967

1.8.1967 - 31.7.1968

1.8.1968 - 27.5.1975

27. Mai 1975

1.7.1975 — 30.9.1976

1.10.1976 - 30.9.1979

1.10.1979 - 30.9.1980

1.10.1980 - 15.11.1982

1.10.1981 — 28.2.1983

13. August 1982

15. November 1982

1.3.1983 - 31.7.1984

6. Oktober 1986

18. Juli 1988

seit 1.8.1984

Lebenslauf

geboren in Künzelsau, Hohenlohekreis
Eltern: Karl und Ingeborg Lingenfelder,
Geschwister: Beate (* 1958), Matthias (* 1959)

Grundschule Künzelsau

Gymnasium Künzelsau

Schloßgymnasium Kirchheim unter Teck

Ludwig—Uhland-Gymnasium
Kirchheim unter Teck

Abitur am Ludwig-Uhland—Gymnasium
Kirchheim unter Teck

Grundwehrdienst

Studium der Physik und Mathematik an der
Universität „Fridericiana“ in Karlsruhe

Studium der Physik und Mathematik an der
University of Maryland, College Park, Md., USA

Studium der Physik und Mathematik an der
Universität „Fridericiana“ in Karlsruhe

Tutor am Mathematischen Institut I und am Institut
für Theorie der Kondensierten Materie (Physik) der
Universität Karlsruhe

Hochzeit mit Andrea Rothfuß

Abschluß des Studiums mit dem 1 . Staatsexamen
für das Lehramt an Gymnasien

wissenschaftlicher Mitarbeiter am Institut für Informatik I
der Universität Karlsruhe in der Arbeitsgruppe von Prof.
Deussen, Forschungs— und Entwicklungsaufgaben auf
dem Gebiet des Programmverifikationssystems SEKI

Geburt der Tochter Annik

Geburt des Sohnes Maurice

wissenschaftlicher Mitarbeiter am Fachbereich Informatik
der Universität Kaiserslautern in der Arbeitsgruppe von
Prof. Siekmann, Mitarbeit in Projekten aus dem Bereich
„Automatisches Beweisen“, insbesondere im SFB 314
„Künstliche Intelligenz — wissensbasierte Systeme“

	1990-1.pdf
	1990-2

