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Abstract 

PATDEX is an expert system which carries out case-based reasoning for the fault di­
agnosis of complex machines. It is integrated in the MOLTKE workbench for technical 
diagnosis, which was developed at the university of Kaiserslautern over the past years, 
MOLTKE contains other parts as well, in particular a model-based approach; in PATDEX 

where essentially the heuristic features are located. The use of cases also plays an impor­
tant role for knowledge acquisition. In this paper we describe PATDEX from a principal 
point of view and embed its main concepts into a theoretical framework 

General Considerations 

PATDEX1 is an expert system which carries out case-based reasoning for the fault diagnosis of 
complex machines. It is integrated in the MOLTKE workbench2 for technical diagnosis, which 
was developed at the university of Kaiserslautern over the past years (cf. e.g. [4, 5, 23]), 
MOLTKE contains other parts as well (cf. e.g. [16]), in particular a model-based approach 
(cf. [21, 22])jin PATDEX [3] where essentially the heuristic features are located. The use of 
cases also plays an important role for knowledge acquisition. In this paper we describe PAT­

DEX from a principal point of view and embed its main concepts into a theoretical framework. 

This research has a number of mainly indirect connections to the work of Woody Bledsoe. 
We mention his interest in analogy, his early connectionist work and his in:O.uence in merging 
mathematics and artificial intelligence. For the first author the main point was that Woody 
Bledsoe brought him in contact with AI at an early stage. More than twenty years ago we 
started a lively discussion which still goes on and will hopefully last for many more years. 

-The work presented herein was partially supported by the Deutsche Forschungsgemeinschaft,SFB 314:" 
Artificial Intelligence - Knowledge-Based Systems", projects X6 and X9. 
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1.1 Similarity 

Similarity and uncertainty have in common that both can be described by measures of values 
e.g. in the real interval (0,1.]. At first glance it seems that here the analogy between these 
concepts comes to an end; we will, however, discuss some more connections later on. 

A similarity measure sim(x, y) can be defined on arbitrary objects of interest as physical 
objects, situations, problems or formulae; let U be the (finite) universe of these objects. 

The basic axioms for sim are: 

1. sim(x,x) =1 (reflexivity) 

2. sim(x, y) = sim(y, x) (symmetry) 

The dual notion is that of a distance measure d(x, y) which may attain arbitrary nonnegative 
values. In the corresponding axioms reflexivity reads as d( x, x) = O. One does not require, 
however, the triangle inequality and allow d(x, y) = 0 for x =P -y which means that d is 
neither a metric nor even a pseudo-metric. 

One says that d and sim correspond to each other iff there is an order reversing one-one 
mapping 

I : range(d) - range(sim) 

such that 1(0) = 1 and sim(x, y) = I(d(x, y)); we denote this by d =/ sim. 

Popular candidates for I are: I(z) = 1 - l~z for unbounded range(d) or/(z) = 1 - m:x' if 
range(d) has a greatest element max. 

Usually individual values of sim or d are not so much of interest as certain relations between 
them. For the use in analogical reasoning the following relations are basic. IT d is a distance 
measure and sim a similarity measure then we define 

Rd(X, y, u, v) : <=> d(x, y) $ d( u, v) (1) 

Raim(X, y, u, v) : <=> sim(x, y) ~ sim(u, v) (2) 

and 

Sd(X,y,Z) : <=> Rd(X, y, x, z) (3) 

SJlim(X, y, z) : <=> Raim(x, y, x, z) (4) 

It is very often easier to determine the relation Sd(X, y, z) than the distance measure d itself 
and it is also sufficient for many applications. 
We say that d and sim are compatible, iff 

Rd(X, y, u, v) <=> Raim(X, y, u, v) (5) 

compatibility is ensured by d =/ sim for some I. 

For some set M ~ U some y E M is called most similar to x with respect to M iff 
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Similarity and uncertainty have in common that both can be described by measures of values
e.g. in the real interval [0,1]. At first glance it seems that here the analogy between these
concepts comes to an end; we will, however, discuss some more connections later on.

A similarity measure sim(z,  y )  can be defined on arbitrary objects of interest as physical
objects, situations, problems or formulae; let U be the (finite) universe of these objects.
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Vz EM: Sd(X,y,Z) 

holds. As usual in topology the measures also define a neighborhood concept. For E > 0 we 
put 

and analogously V.imAx) is definedj if d is a metric then these sets are ordinary closed neigh­
borhoods. Sd(X, y, z) expresses the fact that each neighborhood of x which contains z also 
contains y. 

There are two uses of similarity which we have in mind which are related to each other and 
play a role in PATDEX. In both cases we regard the objects x as incomplete descriptions of 
other unknown objects Xo in which we are really interested. 

In the first case sim(x, y) is simply interpreted as the degree of certainty that Xo = Yo 
holds. For the other extended intention we regard the objects as problems where some 
problems are associated witd solutions. Then sim(x, y) shall express the degree of certainty 
that the solution for x is also a solution for y (or, more sophisticated, can easily be modified 
to a solution of y). 

We will generally assume that objects are described by attributes which may take on 
certain values. There is a fixed number of attributes but the objects of the universe U are 
identified with tuples of attribute values for some set A of attributes where certain attributes 
may be missing. This gives rise to many similarity measures and we will discuss one in section 
1.3. 

1.2 Uncertainty 

When dealing with incomplete information a certainty measure or factor p(x) expresses the de­
gree of certainty that the event x has taken place. Here p(x) is w.l.o.g. a real number in [0, 1]; 
it may be interpreted in various ways, e.g. as a probability or some kind of evidence. When 
dealing with problems and solutions uncertainty applies to two kinds of objects. One was 
mentioned above, namely the uncertaintyof two descriptions describing the same problem. In 
addition we have the uncertainty of having the correct solution. In case-based reasoning (see 
1.4 below) both aspects are intimately connected. The problem that in the presence of in­
complete information different objects sometimes cannot be distinguished with certainty was 
treated in the investigations on rough sets and we will introduce the basic notions of this field. 

The approach introduced in [17] defines rough sets as pairs (U,~) where ~ is a binary relation 
on the universe U called the indiscemability relation. If x ~ y holds then x and y are called 
indistinguishable. With each subset M ~ U two approximations are associated: 

Mt .- {x E Uly E M for all y with x ~ y} is the lower approximation 

Mu .- {x E Uly E M for some y with x ~ y} is the upper approximation 

The difference aM = Mu/Mt is called the boundary of M. If x E Mt, then. x certainly belongs 
to M, if x EMu, then x is surely not in Mj BM is the area of uncertainty. The uncertainty 
of M ~ U can be measured by the correlated accuracy measure 
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card(M,)
J.L~(M) := card(M ); clearly 0 ~ J.L~(M) ~ 1 holds. 

u 

Rough sets occur in various ways. There are essentially two different types which are both. 
connected with diagnostic problems: . 

• The indiscernability relation is transitive 

• The indiscernability relation is not transitive 

In the first case ~ defines a partition ofU into blocks of indistinguishable elements. The 
typical example for this arises as above when the objects in U are described by attributes 
which may take on certain values. Each set A of attributes defines an indiscernability relation 
~A, where x ~A y holds iff the values of all attributes in A for x and y are identical. 

Because of the finiteness of the universe U the upper and lower approximations of sets as 
well as the correlated accuracy measure can in principal be computed. In [17] it is shown how 
this can be expressed in terms of rules and how one can apply it to classification problems; 
an extension to a decision logic is presented in [18]. For larger numbers these computations 
become very time-consuming, however. 

A prototype for the second case arises from a distance measure d. For each € > 0 there is an 
indiscernabilityrela.tion ~d.( defined by 

In case d is a metric ~d.( is transitive and the blocks are of the form Vd,O(X). The intention 
is of course, that elements in these blocks are·in some sense absolutely indistinguishable, Le. 
there is no further information available to separate these elements. 

1.3 Diagnosis 

Our area of interest is fault diagnosis and we need to introduce the basic notions. 
We assume a fixed number N of symptoms SI, ... , SN. With each symptom Si a range 

Ri is associated; in principal symptoms are nothing than attributes. Typically Ri is either a 
real interval [a, b] or the boolean domain 0,1 or some other finite set. Symptoms may take 
on values in their range and these values are assumed to be the only source of information. 

Values of symptoms are obtained by carrying out a test. A test can be an observation, a 
measurement or simply the answer to a question. In some situations certain tests may not be 
allowed. 

The information at some stage of the diagnostic process is usually incomplete and is 
expressed in the form of an information vector or a situation. A situation is a vector Sit = 
(ail"" aik), 1 ~ i,j ~ N such that each aij E Rij. The components of Sit are the known 
symptom values whereas the values ·of the remaining symptoms are nnknown. A situation is 
complete, if every symptom has a value. 

Situations are arranged in the information graph. Its nodes are labelled with situations 
and an edge goes from Sitl to Sit2 if Sit2 has one more component then Sitl and there is a 
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this can be expressed in terms of rules and how one can apply it to classification problems;
an extension to a decision logic is presented in [18]. For larger numbers these computations
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In case (1 is  a metric zum is transitive and the blocks are of the form V,“;(z). The intention
is of course, that elements in these blocks arein some sense absolutely indistinguishable, i.e.
there is no further information available to separate these elements.

1 .3  Diagnosis

Our area of interest is fault diagnosis and we need to introduce the basic notions.
We assume a fixed number N of symptoms 51, . . . , SN. With each symptom S.- a range

R,.- is associated; in principal symptoms are nothing than attributes. Typically R,- is either a
real interval [a, b] or the boolean domain 0, 1 or some other finite set. Symptoms may take
on values in their range and these values are assumed to be the only source of information.

Values of symptoms are obtained by carrying out a test. A test can be an observation, a
measurement or simply the answer to a. question. In some situations certain tests may not be
allowed.

The information at some stage of the diagnostic process is usually incomplete and is
expressed in the form of an information vector or a situation. A situation is a vector S it  =
(a,-1 . . „am) ,  1 5 i ,  j 5 N such that each et.-‚' € 12,3. The components of Sit are the known
symptom values whereas the values 'of the remaining symptoms are unknown. A situation is
complete, if every symptom has a value.

Situations are arranged in the information graph. Its nodes are labelled with situations
and an edge goes from Sit;  to Sitz if Sitz has one more component then Sit; and there is a



test tj available which can provide the value necessary to extend Sitl to Sit2; in this case tj 
is	 a label of the edge. 

A	 diagnosis (or fault description) is a formula of the first order predicate calculus using 
constants and relations over the ranges Ri; the precise form of these formulae is not of interest 
here. To avoid technical difficulties we assume always a single fault. This means that the 
set of complete situations is partitioned into sets representing these faults; a special set is 
"no fault" and, if wanted, another one is "unknown fault". The applicability of this approach 
relies on the fact that at least the "interesting" faults can be fully described. ID. the diagnosis 
of even complex machines this assumption is usually satisfied; in medical diagnostics this 
sometimes may be doubtful. 

In a diagnostic problem some complete situations have occurred but are only partially known, 
i.e. one is confronted with some incomplete situation Sit. The task is to determine the 
diagnosis of the unknown complete situation (at least with some certainty). At first glance 
this seems to be a pure classification problem. For each set A of symptoms and each fault 
diagnosis </J we can compute the accuracy introduced above as 

Jl(</J) = p.~( {SitlSit a complete situation that satisfies</J}) 

where ~=~A as introduced in section 1.2. IT p.(</J) = 1, then </J is decided by the symptoms 
in	 A and the symptoms not in A are redundant. To recognize redundant sYmptoms some of 
the computations mentioned in 1.2 are useful; in PATDEX they are complemented using the 
case-base. 

With equal right, one can say however, that the real problem is to .find an optimal way to 
complete incomplete situations sufficiently enough so that a diagnosis with a high degree of 
certainty can be established. This task has been attacked less successful in the literature. 

Hence, when given a situation Sit one may proceed in two ways: 

1.	 Select a test tic in order to reach a node in the information graph which allows a better 
diagnosis than in Sit. 

2. Present candidates for a diagnosis, possibly accompanied by a certainty factor. 

In PATDEX (as well as in the general MOLTKE approach) these two steps play the central role. 
The second step contains mainly a classification problem. The first step is more complex and 
can be discussed from different points of views. Above we said that we want an optimal way 
to complete the information; the term optimal is not clearly defined here, however. The main 
point is that. we want an optimization with respect to an unknown target, namely the true 
diagnosis. We believe that purely information theoretic based approaches like the Top~Down­
Inductive-Decision-Trees (ID3, cf.[20]) are insufficient for our purposes so PATDEX chooses 
another way. 

1.4 Case-Based Reasoning 

'In case-based reasoning (cf. e.g. [14, 13,25,8]) one has a base of cases where a case is an 
ordered pair c = (problem, solution). The cases are stored in a case base. Instead of solving a 
new problem directly the case base is employed in order to use solutions from earlier problems. 
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Hence the heart of case-based reasoning is analogical reasoning (cf. e.g. [11, 9, 10, 12, 27]). 
The various definitions of case-based reasoning differ in the way how the case-base is involved, 
see e.g. [28]. All descriptions have in common that the case base has a structure which enables 
the system to find suitable cases that help solving an actual problem. This structure plays 
an important role and therefore case base reasoning has two ingredients: 

•	 Use analogy to infer solutions from solved problems for an actual problem. 

•	 Add each new case to the case base and update its internal structure. 

We will first concentrate on analogy. Given an actual problem p two steps have to be carried 
out: 

1.	 Select a suitable case c' = (p', s') in the case base. 

2. Transfer the solution s' of c' in order to get a solution s of p. 

The selection of a suitable case uses a similarity measure. Given p one selects c' = (p', s') 
such that p' is most similar to p with respect to the case base. In our diagnostic context the 
problem is a situation and the solution is the diagnosis, hence a case has the syntactic form 
c = (Sit, </J). We assume that the diagnosis was correct for the recorded case. There are three 
basic possibilities for this: 

1.	 Sit did not have sufficiently many symptom values to determine </J but one had a good 
guess. 

2.	 Sit did determine <p but contained redundant information, Le. unnecessary symptom 
values. 

3.	 Sit did determine </J and no smaller situation would do so. 

Since one does not know which possibility has occurred one has to take care of all of them3 
• 

This is a requirement not only for the structure of the case base but also for the similarity 
measure. A very general type of appropriate similarity measures for situations which are also 
used in PATDEX is of the form (cf. (3,2]): 

. (S· S·)- er card(E)+f3card(C) +1]card(UI )+icard(U2 ) (6)stm ttt, tt2 - . d(E C U U ) car U U I U 2 

where er, f3, i and "1 are real numbers and 

•	 E:= set of attributes with the same values for Sit I and Sit2 

•	 C := set of attributes with different values for Sitl and Sit2 

•	 UI := set of attributes which values for Sitl but not for Sit2 

•	 U2 := set of attributes which values for Sit2 but not for Sitl 

When a new problem was solved successfully then this gives rise to a new .case which is added 
to the case base. The experience gained in the solution process can, however, also be used 
to eliminate cases. The situations of the cases are organized in the information graph; in 
PATDEX this graph will be labelled in a particular way in order to use it for test selection. 

3Especially we point out here, tha.t the occurrence of incompleteness (1) and redundancy (2) is independent 
of one a.nother. 
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3. Sit did determine & and no smaller situation would do so.

Since one does' not know which possibility has occurred one has to take care of all of thema.
This is  a requirement not only for the structure of the case base but also for the similarity
measure. A very general type of appropriate similarity measures for situations which are also
used in PATDEX is of the form (cf. [3, 2]):

a card(E) + ‚ß card(C) + n card(U1) + 7 card(U2)szm(-S'¢t1, Sitz)  = - card(E U C U U1 U U?) (6)
where a ,  ß ,  7 and 11 are real numbers and

0 E :=  set of attributes with the same values for Sit ;  and S it;

o C :=  set of attributes with different values for Sit l  and Sit;

UI :=  set of attributes which values for Sit; but not for Sit;

o U2 :=  set of attributes which values for S it; but not for Sit;

When a new problem was solved successfully then this gives rise to a new ‚case which is added
to  the case base. The experience gained in the  solution process can, however, also be used
to eliminate cases. The situations of the cases are organized in the information graph; in
PATDEx this graph will be labelled in a particular way in order to  use it  for test selection.

3Especially we point out here, that the occurrence of incompleteness (1) and redundancy (2) is independent
of one another.



2 The PATDEX-System 

2.1 Motivation and Overview 

PATDEX 4 is a part of the MOLTKE-System which was developed in the past years at the 
University of Kaiserslautern. The starting point of PATDEX are the above considerati0I!~. 

PATDEX employs the techniques developed in these contexts both in an explicit or implicit 
way; we will not discuss these details here. 

Instead we are interested in some shortcomings ofthese approaches in real world applica­
tions which we will point out next. 

•	 The problem in the use of rough sets based on the relations ~A for sets A of symptoms 
consists mainly in the fact that the diagnosis problem is considered only as a classifica­
tion problem, in particular the indiscernability relations ~A for different A are totally 
unrelated to each other. If A ~ B then ~B is finer and therefore more informative than 
~A; this should be reflected in the system. Also, one would like to get hints which B 
for a given A provides the most suitable new information. 

•	 The difficulty with the similarity measure is that its quality is related to the final success 
of the whole reasoning procedure; this is an a posteriori criterion. A priori it is not 
clear what the criteria for similarity of objects should be; they do not only depend on 
the objects themselves but also on the pragmatics of reasoning. In case-based reasoning 
it is usually clear whether a solution for a given problem is correct but is far from clear 
what it means that two problems are similar enough that the solution for one problem 
also works for the other one. An even more serious difficulty arises when the world of 
problems is continuously changing. 

All this suggests that the similarity should not be defined in some fixed way but instead be 
the result of an adaptive learning process. This will be carried out later on. 

2.2 The PATDEX/l prototype 

The first version of PATDEX is PATDEX/l. This prototype contains the basic structures which 
have been extended later on as described in section 2.3. 

In this section we will briefly describe this prototype. As basic techniques, PATDEX/l 
applies learning by memory adaptation and analogical reasoning. The system has capabilities 
to memorize and utilize both its individual experiences and its statistical information. The 
reasoning process that uses this experience knowledge is combined with another one that 
focuses on similarities. The overall process of diagnosis is based on the analogical problem 
solving algorithm (APS) proposed by [11]. The process is started by the user giving some 
observed symptom values as input to the system. 

4 Actually, there are two systems, PATDEX/l and PATDEX/2. By PATDEX (or the PATDEX approach) we 
denote all the information which relates to both systems. 
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The toplevel algorithm of PATDEX reads as follows: 

Input : The actual situation Sit 
Output: diagnosis </> or failure 

1.	 Find a case in the case base with a situation Sit' most similar to Sit. If there is no caSe
 
with a situation at least "minimally similar" to Sit then stop with failure.
 

2.	 If Sit and Sit' are "sufficiently similar" then accept the diagnosis </> of Sit' also for Sit
 
and goto 4).
 

3. Otherwise select a test in order to obtain an improved situation and goto 1). 

4.	 If the diagnosis is correct then add the case (Sit,</» to the case base and stop with
 
success.
 

5.	 If the diagnosis is not correct then cancel temporarly (Le. for the actual problem) all
 
cases with diagnosis </> and goto 3).
 

Here we need an external teacher who says whether a diagnosis is correct or not. We also 
have to explain "minimally similar" and "sufficiently similar". For this we need a partition 
of the case base which is given after the introduction of the similarity measure. Finally, we 
have to describe the selection of the next test. 

,,:i:-:
Therefore PATDEX has two main features, similarity and the experience net. Both make 

use of the case base but are independent and could work in parallel. 
For situations PATDEX uses as a first proposal the similarity measure from equation 6 

with parameters et = 1,fJ =-2,1 = TJ = -1/2. It should be remarked that this measure is 
normalized to [-2,1.] and reads as 

.	 (S't S') card(E)-2card(C)-1/2(card(Ut )+card(U2» 
s~m ~ t, ~t2 = --"---'----~7':::'::~~---'::-=-~:=-::"-----'---'-'- (7) 

.. card(EUCUUt UU2) 

This special choice of the parameters is at the moment mainly motivated by experimental 
results. It has a defensive, pessimistic character. A high negative contribution to the measure 
is given for conflicting symptom values, Le. we strongly wish to avoid false diagnoses. 

If the value assigned to a given case by the similarity measure exceeds a lower bound E 

(hypothesis-threshold), this case is said to be qualified for further processing. If the value 
exceeds an upper bound 0 it is even qualified as diagnosis (diagnosis-threshold). Both thresh­
olds are locally defined for each case of the case base. If, for a given case, the similarity value 
equals 1 this case is said to be proven. 

A case becomes disqualified for further use in a particular diagnosis session as soon as all 
symptoms contained in that case do not hold, given a situation encountered during diagnosis, 
or if there are no unknown symptom values any more and the specified case does not exceed 
the diagnosis-threshold. Another reason for disqualification is given if the case the system 
chooses as its hypothesis is refused by the user. For the use of cases in the top-level algorithm 
we will define different similarity classes. For this we choose real numbers E and 0 such that 
o< E < 0 < 1 and define: 
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results. It has a defensive, pessimistic character. A high negative contribution to the measure
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If the value assigned to a given case by the similarity measure exceeds a lower bound e
(hypothesis-threshold), this case is said to be qualified for’further processing. If the value
exceeds an upper bound 6 it is even qualified as diagnosis (diagnosis-threshold). Both thresh-
olds are locally defined for each case of the case base. If, for a. given case, the similarity value
equals 1 this case is said to be proVen. ’

A case becomes disqualified for further use in a. particular diagnosis session as soon as all
symptoms contained in that case do not hold, given a situation encountered during diagnosis,
or if there are no unknown symptom values any more and the specified case does not exceed
the diagnosis-threshold. Another reason for disqualification is given if the case the system
chooses as its hypothesis is refused by the user. For the use of cases in the top—level algorithm
we will define different similarity classes. For this we choose real numbers 6 and 6 such that
0<e<6<landdefinez

s im(Si t1  , S i tz)  :

dk
.



Sit t and Sit2 are called 

indistinguishable -sim(Sit}, Sit2) = 1
 
sufficiently similar 6 ~ sim(Sit}, Sit2) < 1
 
probably similar E ~ sim(Sit1l Sit2) < 6
 
at least minimally similar 0 ~ sim(Sit1l Sit2) < E
 

not minimally similar sim(Sit1l Sit2) < 0
 

We note that we here have the possibility to make the numbers E and 6 dependent on the 
respective ccu;es. 

2.2.1 Test Selection - the Planning of the Diagnostic Process 

The analogical problem solving mechanisms of PATDEX/l are adjusted to the needs of the 
given domain within the field of technical diagnosis. The basic hypothesis is that the observ­
able similarities concerning the fault behavior of the technical system under consideration 
normally have similar causes. Therefore the description of the situation of the known ccu;e 
serves as a guideline for the completion of the given partial description of the target case. 
Thus, analogical transfer for technical diagnosis in PATDEXl means: eventually completing 
this partial description using the respective most similar case and the experience graph for 
the guidance of this process, Le. the target situation is completed upon suspicion, so to speak, 
and then evaluated with respect to new ascertained symptoms and to the relation between 

- the similarity value of the target situation arid the given thresholds of the actual most similar 
ccu;e. Successes and failures of this process have their effect in an improvement of the underly­
ing thresholds, wherecu; the typicalness or frequency of cases has its effect in an improvement 
of the weights in the experience graph (cf. Fig. 3). 
With each situation Sit we can cu;sociate the set 

G(Sit) = {Sit'ISit' a complete extension of Sit}. 

When Sit is presented in principal every element of G(Sit) could have occurred. One can 
take advantage of the fact that not ill these elements are equally likely. The experience net 
will record the information for this purpose. 

The information net is an information graph (see 1.3) where the nodes represent situations 
from the ccu;e bcu;e only: A directed edge leads from Sitl to Sit2 iff Sit2 contains one more 
symptom value than Sit t • In addition, the edges are labelled with determination factors. 

Let G be the ccu;e bcu;e. The determination factor 6.(Sit2' Sitl) is the estimated conditional 
probability of Sit2 given Sit t , i.e. 

6.(S"t S·t) _ card({c E Glc = (Sit, tf», Sit extendsSit2}) (8) 
'& 11 '& 2 - card({c E Glc = (Sit, tf», Sit extends Sitl}) 

The quality of the determination factor is a function of the quality of the ccu;e bcu;e and it is 
clear that the determination factors should be adapted continuously. 

2.2.2 Evaluation of PATDEX/l 

PATDEX/l is a stand-alone protoype which hcu; been completely implemented before the 
completion of the MOLTKE workbench. It served for modeling the given facts of ccu;e- bcu;ed 
knowledge processing using the diagnostic problem solving of an expert service technician 
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C(Sit) = {Sit’|Sit’ a complete extension of Sit}.

When Sit is presented in principal every element of C(Sit) could have occurred. One can
take advantage of the fact that not all these elements are equally likely. The experience net
will record the information for this purpose.

The information net is an information graph (see 1.3) where the nodes represent situations
from the case base only.“ A directed edgei'leads from Sitl to Sit; iff Sit;  contains one more
symptom value than Sitl .  In addition, the edges are labelled with determination factors.

Let C be the case base. The determination factor A(Sit;,  Sitl) is the estimated conditional
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The quality of the determination factor is a function of the quality of the case base and it is
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A(Sit1, 551,) =

2.2.2 Evaluation of PATDEX/l

PATDEX/ 1 is a. stand—alone protoype which has been completely implemented before the
completion of the MOLTKE workbench. It served for modeling the given facts of case- based
knowledge processing using the diagnostic problem solving of an expert service technician
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as a guideline. Important features of this approach are the combination of similarity and 
experience for the diagnosis of technical systems and the differentiation between classification 
and test selection. This has to be seen as the fulfillment of a requirement of the underlying 
real world application. Particularly derivational analogy [10] can be elegantly applied to the 
field of technical diagnosis. Compared with a human engineer PATDEX/l came off very well, 
in particular with respect to the similarity measure which has been defined in equation 7. .' 

Shortcomings of PATDEX/l are the difficulty to generalize the similarity measure and 
the fact that the case-focussing test selection is not necessarily globally optimal. Usually the 
complexity of handling the experience graph is super-exponential complexity concerning space 
and time because in the worst case all sequences of symptom values have to be represented. 
Furthermore, PATDEX/l takes no advantage of causal or functional background knowledge. 
This increases the possibilities of faulty diagnoses when too many redundant symptom values 
are presented or some relevant ones are missing. 

2.3 PATDEX/2 

PATDEX/2 (cf. [6, 28]) is an integral part of the MOLTKE workbench which allows the 
utilization of all its qualities (proposed in [26]). Therefore it is possible to switch between case­
based reasoning and the interpretation of a MOLTKE knowledge base during problem solving. 
The use of causal knowledge enables PATDEX/2 to identify pathologic symptom values. Thus, 
redundant information can be filtered off and cannot be the cause for a false diagnosis any 

.more. By the exploitation of functional. background knowledge additional. symptom values 
.,-~ 

can be derived from the known ones. In this manner the selection of the respective most 
similar case is considerably speeded up. The overall case-based reasoning approach which 
is used by PATDEX/2 is comparable to the memory-based reasoning approach proposed by. 
Stanfill and Waltz in [25]. 

An important aspect of our PATDEX/2 approach is to view the relevances of certain 
symptom values for special situations as a part of the empirical knowledge which shall be 
learned. In PATDEX/2 we combine the case-based reasoning approach for diagnosis with a 
connectionist approach for learning t.his empirical knowledge.These relevances Wij E [0,1] are 
represented by means of a relevance matrix R= [wij] where the symptoms Si and diagnoses 
</>j occur as inscriptions of the rows and columns, respectively. In course of time the weights 
of the symptoms, i.e. the elements of the relevance matrix, are learned by PATDEX/2. The 
strategy for learning the entries of the relevance matrix is similar to the competitive learning 
mechanism proposed in [24]. The matrix R reads as follows: 

4>t 4J-J <Pm 

SI Wll W12 Wlm 

82 W21 W22 W2mR= 

8n Wnl Wn2 'Wnm 

For the degree of relevance of a certain symptom value it is important whether it is a con­
sequence of the normal functioning of the technical system or of a fault. E.g. relais 21K3 
svitched is of the first kind while voltage 214 too high is a pathological symptom value. 
To identify certain pathological symptom values PATDEX/2 can use the functional background 
knowledge which is represented in the MOLTKE workbench. 
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Since PATDEX/l uses its similarity measure sim only for the ~omparison of two cases, it 
is not necessary to define relations between symptom values. PATDEX/2 extends this view 
of similarity by the additional use of local similarity measures Wi(aik, ail) which determine 
the similarity between possible symptom values aik, ail, E Ri of a symptom Si. IT one of the 
symptom values is unknown then the similarity Wi evaluates to zero. 

The introduction of R and Wi leads to the definition of a new similarity measure which "IS 
normalized to [0,1] and matches the definition made in section 1.1: 

. (S' S') etE (9)s~m ltt, It2 = (E PC U U ) - et + +'7 t+1 2 

The new attribute sets (b-ased on the sets defined in section 1.4) are defined by multiplying 
the rele~ce of a specific symptom Si (represented by the relevance matrix R) with the 
similarity of the observed symptom value aik in Sit t and the defined symptom value ail in 
the actual case c = (Sit2, <Pj): 

E .- E WijWi(aik, ail) (10) 
S,EE 

C .- L wij(l- wi(aik,ail)) (11) 
S,EC 

Ut .- E vij(l- wi(aik,ai/J )) = card(Ut} (12) 
S,EUl 

U2 .- E wij(l-wi(aik,ail)) = E Wij (13) 
SiEU2 SiEU2 

We point out here that Wi is zero for symptoms Si which belong to one of the attribute sets 
Ut or U2 , because the corresponding symptom values are unknown (cf. section 1.4). 

Additionally, we restrict the representation of redundant symptoms (Le. Si E Ut) to 
pathological ones. Thus, observed redundant symptom values representing the normal be­
havior of the underlying technical system cannot decrease the value of sim any more. Since 
PATDEX/2 focusses on the learning of symptom relevances only for the respective diagnosis no 
entries for redundant symptoms Si can be created. Here we need an alternative weighting Vij. 

In PATDEX/2 we define Vi,j : Vij = 1, which is motivated by the above mentioned restriction 
of Ut. 

By the use of these definitions we get a similarity measure sim which is depending on the 
values represented in the relevance matrix. After each erroneous diagnosis the weights of the 
relevance matrix are changed. Thus, the similarity measure sim is the result of an adaptive 
learning process. 

2.3.1 Test Selection 

As opposed to other known case-based systems which concentrate on the aspect of classifi­
cation PATDEX/2 uses case-based mechanisms for c~assification as well as for test selection. 
In PATDEX/2 the case-focussing test selection procedure is extended by a case- based one 5. 

llThis subcomponent of PATDEX/2 is a case-based reasoning system of its own where strategy cases are 
used which can be automatically generated out of the known diagnostic cases. As it is an improvement of 
the experience graph and, beyond that, the cost estimation procedure can be viewed as a kind oC graph 
interpretation, we maintain the denotation experience graph for PATDEX/2 for reasons of simplicity. 
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This is globally optimal as compared with the already known (strategy) cases. In PATDEX/2 
a fixed limit exists concerning the number of representable strategy cases. This helps to deal 
with the exponential complexity of the procedure (for the worst case all possible subsets of 
symptom values have to be represented)6. If th~ limit is reached the more typical cases will 
displace the less typical ones. PATDEX/2 uses an A*-like cost estimation algorithm for solying 
the conflict to choose from among several comparably similar startegy cases. If PATDEX/2 
cannot find' a sufficiently similar case, a case-focusing test selection procedure, such as in 
PATDEX!l, will be applied. 

3 Discussion and Evaluation 

Well-known case-based reasoning approaches which can be compared to PATDEX are, among 
others, the PROTOS ([19, 7, 8)), CASEY [15], CREEK [1] and memory-based reasoning, 
e.g. MBRTALK [25], approaches. In applying case- and analogy-based reasoning techniques to 
the problematic nature of test selection and in intergrating connectionist methods for adaptive 
learning, PATDEX goes beyond the state of the art defined by these (and similar) systems, 
respectively. 

PATDEX is similar to the memory-based reasoning approach but, it combines it with 
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