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Abstract

The remarkable properties of bio-inspired microstructures make them exten-

sively accessible for various applications, including industrial, medical, and space

applications. However, their implementation especially as grippers for pick-and-

place robotics can be compromised by multiple factors. The most common ones

are alignment imperfections with the target object, unbalanced stress distribu-

tion, contamination, defects, and roughness at the gripping interface.

In the present work, three different approaches to assess the contact phenom-

ena between patterned structures and the target object are presented. First, in-

situ observation and machine learning are combined to realize accurate real-time

predictions of adhesion performance. The trained supervised learning models

successfully predict the adhesion performance from the contact signature. Sec-

ond, two newly developed optical systems are compared to observe the correct

grasping of various target objects (rough or transparent) by looking through the

microstructures. And last, model experiments are provided for a direct compar-

ison with simulation efforts aiming at a prediction of the contact signature and

an analysis of the rate and preload-dependency of the adhesion strength of a soft

polymer film in contact with roughness-like surface topography. The results of

this thesis open new perspectives for improving the reliability of handling systems

using bioinspired microstructures.
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Kurzzusammenfasung

Durch die besonderen Eigenschaften bioinspirierter Mikrostrukturen können

diese für verschiedene Anwendungen genutzt werden, einschließlich industrieller,

medizinischer und Weltraumanwendungen. Ihre Implementierung, insbesondere

als Greifer für Pick-and-Place-Robotiker, kann jedoch durch mehrere Faktoren

beeinträchtigt werden. Am häufigsten sind Ausrichtungsmängel an das Zielob-

jekt, unausgeglichene Spannungsverteilungen, Defekte und Rauheit an der Greif-

schnittstelle.

Die vorliegende Arbeit zeigt drei verschiedene Ansätze, um den Kontakt zwis-

chen strukturierten Adhäsiven und Zielobjekten zu untersuchen. Zunächst wer-

den in-situ Beobachtungen und maschinelles Lernen kombiniert, um Echtzeitvorher-

sagen der Adhäsionsleistung zu ermöglichen. Die trainierten Modelle werden

verwendet, um die Haftungsleistung anhand der Kontaktsignatur des Pads erfol-

greich zu prognostizieren. Anschließend werden zwei neu entwickelte, optische

Systeme verglichen, mit denen das korrekte
”
Greifen“ von verschiedenen Objek-

ten (mit rauen oder undurchsichtigen Oberflächen) durch die Mikrostrukturen live

verfolgt werden kann. Zuletzt werden Modellexperimente durchgeführt, die mit

Simulationen der Signatur des Kontakts einer weichen Polymerschicht mit einer

idealisierten rauen Gegenfläche direkt verglichen werden können. Die Ergebnisse

dieser Arbeit eröffnen neue Perspektiven zur zuverlässigeren Verwendung von

Handhabungssystemen mit bioinspirierten Mikrostrukturen.
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‘And say, my Lord increase me in knowledge’

The Quran 20:114
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Abbreviations and symbols

Abbreviations and symbols used in the chapters similarly:

Materials and material properties:

E Elastic modulus

u Elongation

k Stiffness

ν Poisson’s ratio

PDMS Polydimethylsiloxane

Methods

SEM Scanning Electron Microscopy

JKR Johnson-Kendall-Roberts

GFMD Greens Function Molecular Dynamics

FEM Finite-Element Method

AFM Atomic force microscopy

FTIR Frustrated Total Internal Reflection

IRM Interference Reflection Microscop

ANOVA Analysis of variance

SSIM Structural similarity index measure
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Adhesion parameters:

Ekeesom Keesom energy

EDebye Debye energy

ELondon London energy

σ Pull-off stress

Fp Pull-off force

F Preload Force

fmax Pull-off force of an individual fibril

Gc Energy release rate

A Real contact area

Aa Apparent contact area

Na Number of attached fibrils

Nd Number of detached fibrils

Abbreviations and symbols used in the chapters differently:

Machine learning:

ML Machine Learning

AI Artificial Intelligence

PCA Principal Component Analysis

LnR Linear Regression

LR Logistic Regression

SVM Support Vector Machine

SVR Support Vector Regression

BT Boosted Tree

KNN K-Nearest Neighbor

10



AUC-ROC Area under the receiver operating characteristic curve

D Training data

G Information gain

Tp True Positive

Tn True Negative

Fp False Positive

Fn False Negative

P Precision

R Recall

F1 Score

R2 R Square

RMSE Root Mean Square Error

MAE Mean Absolute Error

yi The value of the i-th observation in the validation data

ŷi The predicted value

ȳi the mean of the observed data

n the number of observations

Nm Number of samples

H The chosen split criteria function

Q The data at node

m the nod

θ = (xm, tm) The feature and threshold being evaluated
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Fibrillar structure parameters:

N Total number of fibrils

h Fibril length

W Half the width of the array

a Mushroom tip radius

r Stalk radius

d Distance between adjacent fibrils

Weibull statistical parameters:

m Weibull modulus

u0 Reference elongation at detachment

f0 Reference force

Chapter 2:

C Contact compliance

d Contact diameter

Chapter 3:

θ Misalignment angle

M Peeling moment

v⃗ Misalignment vector

W − |v⃗| Length of the misalignment vector

A′ Normalized real contact area

N ′
a Normalized number of attached fibrils

(W − |v⃗|)′ Normalized length of the misalignment vector
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Chapter 4:

α Robot misalignment angle (rotation around x axe)

β Robot misalignment angle (rotation around y axe)

w Off-center object displacement

C Center of mass

|v⃗| Misalignment vector magnitude

θ Misalignment vector angle with respect to the x axis

Chapter5:

f Lens focal point

l Setup height

Da Setup aperture diameter

Rpad Pad radius

Rsph Curvature radius of the holder

t Backing layer thickness

µx The average of the image x

µy The average of the image y

σ2
x The variance of the image x

σ2
y The variance of the image y

σ2
xy The covariance of x and y

c1 and c2 Variables to stabilize the division

Cm Centre of the misaligned contact

RGB Color model: Red Green Blue

PADC Poly (allyl diglycol carbonate)

13



Chapter 6:

Fpl Preload

ρ Range of adhesion

q wavevectors

q Magnitude

γ Surface energy

γ̃ Dimensionless surface energy

a Punch radius

h Thickness of the PDMS film

ω Frequency

E(ω) Frequency-dependent Young’s modulus

E∗ The contact modulus

vfullela The areal elastic energy in full static contact

λ Wave vector

z(x, y) Single-wavelength corrugation

vext Velocity of the indenter

τ Relaxation time

t Displacement time

(Kn,ηn) Maxwell elements: stiffness and damping

(K0,η0) Kelvin-Voigt elements

N Number of Maxwell elements

m Inertia mass

ũ The spatial Fourier transform of the displacement field

f̃ The spatial Fourier transform of the external force

G̃ Green’s function
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Γ(g) The interaction potential

g(x, y) The gap

CZM Cohesive zone model

CPU Central Processing Unit

CG Conjugate gradient

BAMs Bearing-area models
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Chapter 1

Introduction

In this new era, biomimicry has been a source of transformation [1]. It has

greatly benefited the scientific and industrial revolutions. In contrast to humans,

nature does not produce waste nor consume energy to create. Therefore, rather

than only taking from nature, humans started learning from it.

“We must draw our standards from the natural world. We must honor with

the humility of the wise the bounds of that natural world and the mystery which

lies beyond them, admitting that there is something in the order of being which

evidently exceeds all our competence.”

-VACLAV HAVEL, president of the Czech Republic [2].

In the materials science world, the need to move away from energy- and

resource-intensive linear economy has pushed scientists to dig into the biology

of animals, insects, and plants to extract new insights and ideas [1, 3, 4]. After

years of research, the mystery of multiple abilities and functionalities of these

biological materials is finally pierced, paving the way for multiple technological

innovations and medical applications.

A remarkable characteristic of the biological materials is the resulting func-

tionalities such as adhesive properties, optical appearance, wettability, and self-

healing properties. These functions are the result of an optimization process of

the biological materials during evolution. The multiple functions of biological

materials are primarily expressed at the interfaces, to help maintain stable in-

ternal conditions despite a variable and hostile external environment. There are

three dimensions to understanding these functionalities: the chemical composi-

tion (molecular scale), the nano- or microstructuring (nano- and micrometric),

and the architecture of the surface (macroscopic). However, in many cases, this
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complexity often exceeds the three levels classification by the interweaving of

structures at all scales.

For adhesion properties in living materials, the most spectacular is the adhe-

sive system found on the gecko. The first scientific observation on this dates back

to Aristotle in the 4th century BC, where he noted: ”...run up and down a tree

in any way, even with the head downwards” [5]. Since then, geckos have never

ceased to arouse the curiosity of many scientists. In fact, the gecko can move at

speeds 20 times its length per second, climb smooth and rough surfaces, and even

walk on ceilings. The answer to the riddle behind these abilities resides in the

shape and architecture of its toe pads. A closer look at the gecko’s toes showed a

hierarchical fibrillar structure that allows the formation of intimate contact with

all types of surfaces, see Figure 1.1 a and b. As a result, a low-intensity electri-

cal dipole interaction occurs at short distances between atoms and/or molecules

corresponding to the van der Waals force.

Figure 1.1: Biomimicry: from gecko adhesive system to a functional
gripper for handling application. a) Image of a Gecko (Phlesuma nigristi-
ata). Reproduced from [6]. b) The hierarchical adhesive system on the gecko’s
toe. Reproduced from [7]. It consists of aligned lamellae; each lamella contains
microscopic hair-like fibrils (setae) which also split into smaller nanoscopic spat-
ulae. c) Gecko-inspired gripping system. d) Scanning electron image of the
synthetic fibrillar structure.

Inspired by gecko biology, a new generation of fibrillar dry adhesives has

been developed, Figure 1.1 d. Over the past two decades, the design of high-

performance fibrillar structures has come a long way. Scientists first focused
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on understanding the principles behind gecko-inspired adhesives [8–13], then on

optimizing the properties, geometry, and shape as well as developing new man-

ufacturing processes [14–17]. Eventually, it became evident that the switchable

and strong adhesion offered by these structures can open a wide range of appli-

cations such as robotics, handling systems (Figure 1.1 c), biomedical and space

applications [6].

The present thesis solves challenges to the use of gecko-inspired structures as

grippers for object handling. In fact, the nano and micropatterning of polymeric

materials has shown great potential as new gripping technology. With residue-

free, reversible adhesion, these structures can overcome various limitations of

traditional gripping systems. In addition, they can be used without an exter-

nal source of energy such as electricity or vacuum, showing an eco-friendly and

sustainable performance.

There are, however, several issues associated with using these structures as

grippers. Due to their short range, van der Waals forces can be adversely af-

fected by the loss of intimate contact with the target surface. This can be a

result of interfacial defects, roughness, or contamination in addition to alignment

imperfections. Thus, these inconveniences can compromise the adhesive strength

and lead to unwanted detachment, which makes it hard for the reliable handling

promise to come true.

As the industry moves further into the automation age, any failure in the

process can be costly. Therefore, finding a way to avoid or correct the above-cited

limitations is crucial for integrating these structures into an industrial application.

A first step towards improving the reliability of gecko-inspired gripping systems

is to monitor and predict the adhesion performance. Taking advantage of the

emerging capabilities from in-situ observation, machine learning, and simulation

techniques, this work introduces different approaches to predict the adhesion

performance from the contact signature.

This dissertation is divided into seven chapters. Chapter 2 is a review of

the theory and state of the art to provide the reader with the current knowledge

related to this project. Chapters 3 to 6 each represent a different approach to

monitoring and predicting the adhesion from the contact signature: Chapters 3

and 4 introduce a monitoring system using in-situ observation techniques, im-

age processing, and machine learning models. Chapter 5 is dedicated to the

development of new optical techniques that will allow the in-situ observation of

the contact and detachment of fibrillar adhesives with different types of surfaces.

Simulation is used in Chapter 6 to predict the contact signature of soft polymer

films in contact with roughness-like surface topography. A conclusion and an

outlook on further developments are offered in the final Chapter 7.
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Chapter 2

Literature Review

2.1 Adhesion and bioinspired adhesives

2.1.1 Adhesion mechanisms in nature

Adhesion is a physico-chemical phenomenon with great importance in differ-

ent engineering and research areas. It was defined by Kendall as the interaction

between two surfaces which leads to a finite separation force [18]. Theoretically

speaking, two surfaces in very close proximity (generally less than 1 nm) will at-

tract and adhere to one another due to chemical and/or physical interactions [19]

as shown in Figure 2.1. Nevertheless, not all surfaces in contact effectively ad-

here to each other, given that the real contact area between two surfaces is an

extremely small fraction of the apparent contact area [20].

Figure 2.1: Attachment mechanisms. a) van der Waals interactions, b)
chemical bonding, c) capillary interactions, d) mechanical interlocking, e) suc-
tion forces, f) diffusion of one surface material into the other, g) electrostatic
forces, and h) magnetic forces. Reproduced from [21].

Evolution has permitted the development of multiple effective and versatile

adhesive systems in numerous animals and insects to overcome the small contact

area limitations and adapt to their environments [1, 6]. The understanding of

these mechanisms and the attachment forces behind them was a crucial factor for

the upgrading to new generations of adhesives.
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For example, capillary forces were found to be the main mechanism that

allows spiders, many beetles, and ants to freely move on walls and ceilings, Fig-

ure 2.1 c. These insects are able to support their own weight, even when carrying

proportionally quite heavy objects. The attraction between two objects through

capillary forces is mainly due to the Laplace pressure and the surface tension

of the liquid. It is manifested when the liquid on the interface forms a capil-

lary bridge between the two surfaces [21]. Inspiration from insects such as the

leaf beetle, whose adhesive strength exceeds 100 times its body weight (circa 33

mN), led to the development of capillary-based switchable adhesives that can be

potentially integrated in different applications [22,23].

The suction mechanism employed by some underwater animals such as the

octopus [24, 25] can be considered one of the essential mechanisms adopted by

nature for reversible underwater adhesion, Figure 2.1 e. Octopus suckers gener-

ate a pressure difference in a few milliseconds which can produce a high adhesion

force [26]. This has inspired the development of different suction cup-based ad-

hesives for both in-air and underwater applications [27–30].

Similarly, snails and other mollusks have solved the adhesion problem by

generating a sticky mucus that allows them to maintain conformal contact with

the surfaces. Upon drying, an epiphragm is created where the shear modulus goes

from 100 Pa to 1 GPa, allowing a strong attachment to the target surface [31].

The impressive adhesion force in reptiles such as geckos was linked to van der

Waals interactions [8, 9], Figure 2.1 a. It is considered a short-range force that

can be very strong over small distances between atoms and molecules [32]. Van der

Waals force consist of three different types of interactions: dipole-dipole interac-

tion, i.e. Keesom energy (Ekeesom), with a typical bonding energy < 20 kJ mol−1;

dipole-induced dipole interaction, i.e. Debye energy (EDebye) < 2 kJ mol−1; and

dispersive interaction, i.e. London energy (ELondon) in the range 0.1−40 kJ mol−1

[19,32]. The total energy of the van der Waals forces is the sum of the energy of

these three interactions.

The attractive van der Waals energy between two atoms is inversely proportional

to the sixth power of their separation (1/r6), i.e., the shorter the distance between

the adherents’ molecules the stronger the energy and the higher the attraction

between them. However, if the distance between the two molecules is too small

that their atoms’ positive nuclei repel, a large repulsive force will be generated,

which will result in an equilibrium distance [32]. In the case of van der Waals

attraction between macroscopic bodies, other factors affect the total energy such

as the geometry of the objects [32].

28



2.1.2 Bioinspired fibrillar dry adhesives

Biomimetics has become an immensely powerful approach for the develop-

ment of new technologies. One of the many interesting biological systems that

intrigued scientists over the last decades is the ability of some insects and animals

to climb vertical walls with a fast attachment and detachment mechanism within

milliseconds on various types of surfaces, i.e., wet or dry, smooth or rough, hard

or soft. The understanding of the adhesion mechanisms in such animals led to the

development of a new generation of adhesives with exceptional new properties [5].

Figure 2.2: The complex hierarchical structure, of the gecko toe pads.
a) Macroscopic image of a gecko, b) shows the foot of the gecko. c) and d)
show Scanning Electron Microscopy (SEM) images of the hierarchical structure.
It consists of aligned lamellae; each lamella contains microscopic hair-like fibrils
(setae) which also split into smaller nanoscopic spatulae. Figure reproduced
from [11].

The most fascinating adhesive system is found on the gecko’s toe pads. Lizards

such as the geckos are the heaviest living objects on this planet that are able

to adhere to ceilings [20]. In fact, the gecko’s adhesive system operates under

the most severe conditions (rough, smooth, vertical, contaminated surfaces and

ceilings) due to its hierarchical structure. Gecko’s toe pads contain multiple

lamellae that are lined with small structures called setae, which are approximately

100 microns long and 5 to 10 microns wide. Each seta contains at its end hundreds

of even smaller structures called spatulae, with a diameter of about 200 nm
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[33], see Figure 2.2. The first theories to explain the binding forces behind

the gecko’s strong adhesion suggested that the hair-like fibrils attach through

capillary forces [34] and van der Waals forces [8]. However, investigations by

Autumn et al. [8,9] rejected the theories of wet adhesion by capillary forces. They

argued based on their studies on gecko hairs in contact with hydrophobic surfaces

that van der Waals interactions were solely responsible for adhesion. Later Atomic

force microscopy (AFM) experiments by Huber et al. [35] demonstrated that the

spatulae pull-off forces increase in the presence of humidity. They concluded that

in that case, capillarity can contribute equally to adhesion.

Adhesion tests on a single seta revealed that it can support a maximum load

of about 200 µN. Knowing that a gecko has between 6 and 7 million setae, means

that it could theoretically support a maximum load of 130 kg [8]. The shape and

orientation of the seta play a big role in the detachment mechanism for the geckos

as the adhesion ceases as soon as the seta is inclined with respect to the surface.

This mechanism was later exploited also in handling processes.

Figure 2.3: SEM images displaying the size variation of the fibrils
with the body mass of different animals illustrated above. The heavier
the animal, the finer the structures. Reproduced from [10].

Arzt et al. [10] found that the density of adhesive fibrils is correlated with

body mass in various insects and animals, such as beetles, flies, spiders, and

geckos. As one can see in Figure 2.3, the heavier the animal is the smaller its

fibrils are, and the higher the areal density is. Thus, the adhesive strength of

these structures increases when the size of their fibrils decreases and the number
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increases. This assumption was justified by contact mechanics theory and was

interpreted by the principle nowadays known as ‘contact splitting’ [10], which is

considered a governing mechanical principle behind the bioinspired microfibrillar

adhesives.

2.1.3 Factors influencing the adhesion of fibrillar struc-

tures

The adhesion strength of fibrillar structures can be influenced by various fac-

tors and the optimization of their performance can be linked to different param-

eters. The following sections will discuss the most important factors affecting

their efficiency.

2.1.3.1 Material and design effects

Since the first attempts to mimic fibrillar adhesives, it has been shown that

the shape, size, and aspect ratio have a big influence on the adhesion performance

of the patterned structure [1]. Several studies have shown that mushroom-like

fibrils exhibit improved performance when compared with flat punches, by more

than an order of magnitude [15,21,36,37]. Detailed numerical calculations showed

that, by adding a mushroom cap, the stress singularities at the edge are released

and transferred to the center of the fibril [17, 38, 39], see Figure 2.4 a and b.

As a result, this design can be more tolerant of interfacial defects. Besides the

shape of the fibrils, it was found that adhesion strength increased by decreasing

the aspect ratio of the fibril [40]. However, a reduced aspect ratio could lead to

an increase in stiffness, which negatively impacts the tolerance to misalignment

and surface roughness [6, 40,41].

Furthermore, the properties of the materials used in the fabrication have a

great impact on the adhesion behavior of these structures. The most commonly

used materials are elastomers with an elastic modulus lying between 1 and 100

MPa. A scaling relationship between the adhesion strength and the elastic mod-

ulus is predicted by fracture mechanics models [42] as presented in Eq.2.1

σ ≈
√

Gc

AC
≈
√

GcE

d
(2.1)

with σ the pull off stress, Gc the energy release rate, A the contact area, C the

contact compliance, E the elastic modulus, and d the contact diameter.

Using gradient structures in ladybugs as inspiration, scientists have developed

composite fibrils that combine soft and stiff materials to increase adhesion and

compliance to rough surfaces. [43–45], Figure 2.4 c.
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Overall, the choice of the different design parameters is dependent on the

working conditions of the adhesives. For this purpose, multiple studies have

been conducted to design a map for the prediction and optimization of these

parameters [16,46,47].

Figure 2.4: Illustration of the contact of the fibrillar micropatterned
surface. Figure reproduced from [48]. a-c) Schematic drawing show the
contact of single fibril with the target surface and the corresponding stress dis-
tribution for a) flat punch b) mushroom fibril c) composite fibril d) A realistic
image of the contact and the analogous drawing showing multiple interfacial
defects due to roughness/contamination.

2.1.3.2 Contact imperfections

Contact imperfections can adversely influence the adhesion strength of the

bioinspired structures either on the array or single fibril scales.

At the fibril level: Van der Waals forces, being short-range interactions,

decrease strongly with increasing distance to the target surface. Thus, the ge-

ometry of the contact surface and roughness drastically influence the strength of

these forces [49, 50]. Moreover, surface defects, dust, contamination, or trapped

air bubbles at the interface can lead to very weak or no adhesion at the fibril
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level. In fact, the small particles would limit proper contact formation between

the fibril and the target surface as can be seen in Figure 2.4 d, which would

weaken the intermolecular interactions [51, 52]. The random variation of the de-

fects’ size and position can also result in a variation of the pull-off strength across

the array [48].

At the array level: The alignment imperfections of the adhesive pad with

the target surface and the fabrication-induced defects such as waviness or non-

uniform height distribution of the fibrils can dramatically affect the adhesion

[53–55]. Due to the uneven load distribution caused by these problems, local

detachments occur at the defective area and propagate as a peeling effect. Ex-

periments conducted by Booth et al. [54] have confirmed that even a small mis-

alignment, of the order of 0.1°, will lead to peeling and to a significant drop in the

adhesion strength. The peeling effect due to misalignment is also dependent on

numerous adhesive design parameters such as the compliance and thickness of the

backing layer, the array size, the aspect ratio of the fibril, and the fibril-to-fibril

distance [53].

2.1.3.3 Environmental factors

Environmental conditions such as temperature or humidity can have an ef-

fect on the adhesion of fibrillar elastomers [1, 50, 56, 57]. Temperature can alter

the mechanical properties of materials, resulting in large variations in adhesion

strength [56]. The presence of humidity and water, on the other hand, weakens

van der Waals interactions. In contrast, suction and capillary forces may become

dominant [57].

2.1.3.4 Testing conditions

Testing the adhesion strength of bioinspired microstructures is crucial for

quantifying and predicting the quality of their performance [58]. In general, the

testing methods used fall under two categories, load-controlled measurements,

and displacement-controlled measurements, with the latter being the most com-

monly used. However, it has been shown that the testing conditions using

displacement-controlled measurements do not always correspond to real-world

circumstances as they can impose geometric deformations that would not be seen

in applications. These resulting deformations significantly affect adhesion prop-

erties in ways that are hard to predict [59].
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2.1.4 Statistical properties of the fibrillar structures

In the early studies of the bioinspired fibrillar structures, it was assumed that

the adhesive force of an array was the sum of the strength of individual fibrillar

contacts. However, fibrillar structures tend to exhibit inevitable fabrication or

contact defects as mentioned in section 2.1.3.2, causing an uneven distribution

of the adhesive strength across the array. To determine the adhesion strength

statistics, Porwal et al. [60] implemented Monte Carlo simulations. Using proba-

bility distributions for the fibrils length and attachment strength, they concluded

that increasing variations decreased the adhesive strength. McMeeking et al. [51]

hypothesized that the detachment is governed by defects in the fibrils, following

the statistical theory of fracture [61]. These ideas were later extended by Tin-

nemann et al. [62] and Booth et al. [48, 63], who developed a bimodal statistical

theory based on the Weibull distribution. The Weibull distribution was found to

be consistent with the empirical strength distribution obtained by correlating the

time of detachment to the elongation of the single fibrils.

The cumulative Weibull distribution function is given by Eq.2.2.

Nd

N
= 1− exp

{[
−
(

u

u0

)m]}
(2.2)

where N is the total number of fibrils, Nd the number of detached fibrils, u

the elongation, u0 the reference elongation at detachment, and m the Weibull

modulus. Thus, small Weibull moduli correspond to a large variation in adhesion

strength values and vice versa.

Hensel et al. [64] demonstrated the use of the statistical Weibull distribution

to characterize the fibrillar adhesives strength distribution, where the parameters

m and u0 can provide specific properties for each structure.

2.1.5 Fibrillar adhesives applications

In the last decades, we have gained a considerable amount of knowledge and

understanding of the bioinspired adhesives, which enabled their initial transfer to

different applications, see Figure 2.5. One of the first application that emerged

was the climbing and crawling robots that mimic the behavior of geckos [65,

68–75]. These robots can be used for different applications such as inspection

and maintenance of tall buildings, large ships, or even spacecrafts. Another

potential space application of the bioinspired adhesives is the grasping of the

rocket bodies and debris floating and orbiting the Earth [68,74]. The wide range

of materials used to fabricate the fibrillar adhesives structures has also facilitated

their integration into biomedical applications. As a result, various innovative
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Figure 2.5: Application of fibrillar adhesives. a) Stickybot, bioinspired
robot for climbing smooth surfaces [65]. b) Reversible pick-and-place handling
of fragile silicon wafers [6]. c) Soft adhesive gripping system holding 3D objects
[66] (A) round glass flask, (B) coffee cup . d) Schematic drawing of the film
terminated microfibrillar adhesive for eardrum-perforation repair [1, 67]. e)
An autonomous multi-unit gripper with gecko-inspired directional microwedge
adhesive anchoring to a carbon fiber panel in zero gravity [68].

applications have been developed, for instance, fibrillar adhesive-based wound

healing band-aids, see Figure 2.5 d, controlled drug release, or sensor attachment

to the human body [67,76,77].

Additionally, fibrillar adhesives can be integrated in the pick and place appli-

cation for object handling as an alternative to the traditional gripping systems.

The use of fibrillar structures as gripping devices demonstrated multiple advan-

tages for grasping flat and fragile objects of different sizes in both air and vacuum

conditions [6,78–80]. The release mechanism in the case of the pick and place ap-

plication is as important as the attachment. The established concept for release

is to use mechanical actuation. Compressive overloads, for instance, induce an

elastic instability due to the fibrils buckling, which initiates detachment [81–83].

Other concepts to switch adhesion is to use materials and components where

the bending of the structure is actuated by temperature, magnetic field, or UV

light [84–87].
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2.2 Adhesion to rough surface

The importance of adhesion in nature and technology is indisputable. As

mentioned in section 2.1.3.2, the presence of surface roughness weakens strongly

the adhesive bonds and in some cases leads to total suppression of adhesion due

to a reduced intimate contact [88]. Surface roughness exists on different length

scales, even on highly polished surfaces [89]. The first approach to study adhesion

to rough surface dates back to the 1970s with the classical paper by Fuller and

Tabor [88]. In their work, Fuller and Tabor provided an approximate solution

for the understanding of adhesion to rough surfaces. They developed a model

where surface roughness is presented as high asperities with the same radius

of curvature and height following the Gaussian distribution. By applying the

Johnson-Kendall-Roberts (JKR) contact theory to each asperity, they were able

to obtain the total contact force. Persson [89] argued that this simplistic model

works only for an exceedingly small real contact area and that the assumption of

roughness on single length scale does not represent the reality of rough surfaces.

Subsequently, Persson [89–92] proposed a model that considered the roughness

on different length scales and presented numerical results for multiple cases such

as self-affine fractal surfaces.

Load displacement curves obtained from indenting an elastomer show an ad-

hesion hysteresis i.e., work of adhesion. It results from the presence of the small

asperities that jump into or snap out of contact as the surface of the elastomer

becomes unstable [30]. Modeling this adhesion hysteresis in the presence of rough-

ness can certainly improve the optimization of adhesive structures and the pre-

diction of adhesion properties.

Different numerical strategies were adopted to tackle the adhesive contact

challenge [93]. In the context of this thesis, Greens Function Molecular Dynam-

ics (GFMD) was developed by Campañá et al. [94] where they implemented a

molecular dynamics methodology to model semi-infinite elastic solids and their

application to various contact mechanic problems based on a Green’s function.

In the first application of the GFMD they were able to model self-affine con-

tacts accurately following Perssons’s theory [94]. However, it was only used for

nonadhesive contact. Thereafter, Carbon et. al [95, 96] developed a numerical

procedure based on Greens function to analyze the adhesive contact between a

soft elastic layer and a rough rigid substrate. Müser et. al [30, 97–99] continued

the development and the extension of the GFMD. As a result of the further

developments, the thickness of the elastomer became explicitly included instead

of assuming semi-infinity [97]. Further extensions have been later developed to

account for the variation of the materials elasticity [99] and viscoelasticity [100].
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In this work, simulations by GFMD (performed by Christian Müller in his

thesis) will be compared with experimentally observed dependencies of the con-

tact between a viscoelastic film and a cylindrical punch with a single wavelength,

small-scale roughness.
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2.3 Adhesive fibrillar contacts: the concept of

“contact signature”

During the last century, scientist have developed high contrast observation

techniques for the inspection of the interface and the contact between two sur-

faces. These techniques allowed the extraction of the “contact signature”, which

delineates the contact from the non-contact regions and encompasses various fea-

tures of the contact.

The most used approach to extract the contact signature between surfaces

is the inverted optical microscope. The use of optical lenses allows a magnified

observation of the contact between the object and a transparent target [101,

102]. The resolution and contrasts obtained with optical lenses were however

found insufficient for different applications and studies, particularly for micro-

and nanoscale contact observation. The need for higher contrast between the

contact and non-contact areas for more precise results has pushed scientists to

develop and implement new techniques.

Phase contrast microscopy

One of the approaches used is the phase contrast microscopy developed by

physicist Frits Zernike [103]. This technique allowed the generation of high-

contrast images of transparent specimens. In fact, the phase contrast technique

converts phase variation into changes in brightness and amplitude, which are then

observed as differences in contrast. In order to intensify the contrast between con-

tact and non-contact areas, Dyson and Hirst used this technique for observing the

contact between a metallic sheet and a transparent glass [104]. The phase con-

trast microscope allowed them to visualize deformations at the glass surface with

a few Ångstroms in depth (when the lateral extension was above the resolution

limit of the microscope).

Frustrated total internal reflection, FTIR

Another technique used by Harrick [105] and McCutchen [106] for the obser-

vation of surface topography, is the frustrated total internal reflection (Frustrated

Total Internal Reflection (FTIR)). It is based on the principle of total internal

reflection, which occurs when an incident ray strikes an interface that separates

a more refractive medium and a less refractive medium at an angle greater than

the limit angle. The first experiments by Harrick [105] have shown that the pen-

etrating power can be absorbed or diverted if a contact of the absorbent with a

high index material occurs, i.e., the internal reflection is frustrated. FTIR has
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proved to be a reliable technique for contact observation. In the context of the

present thesis, it was used by Eason et al. for the estimation of the stress dis-

tribution on gecko’s toes [107]. They built an optical tactile sensor consisting of

a force transducer that transforms the measured stresses to images using FTIR.

Tinnemann et al. combined FTIR with an adhesion tester for in-situ observation

of contact formation and separation of micropatterned adhesives [62]. Using this

technique, they were able to investigate more closely the detachment behavior at

the array and single pillars scale under different conditions, see Figure 2.6.

Figure 2.6: Application of FTIR for contact observation. a) Schematic
illustration of the principle of FTIR for the use in in-situ observation of de-
tachment mechanisms in micropatterned structures. b) Image of the contact
between a micropatterned adhesive and a transparent substrate at the start of
detachment, the small images show the two types of crack initiation at the pil-
lars scale (center crack and edge crack). Reproduced from [62]

Interferometry

A third technique used for contact observation is interferometry. It is a family

of techniques in which waves of different phases are superimposed, producing the

phenomenon of interference. This interference is used in different fields of science

to extract information. The optical interference observed as Newton’s rings was

employed by McCutchen [106] for contact examination. Newton’s rings are a

phenomenon that occurs when a spherical surface is in contact with a flat one.

The interference pattern is created by the reflection of the light between two

surfaces. The constructive and destructive interferences appear as a series of

concentric alternating bright and dark rings around the point of contact. In fact,

a destructive fringe of the 0th order will be observed at the center of the contact

points between the two objects. When the objects are separated and the gap

between them increases, the fringe pattern will alternate from dark to light and

higher-order fringes will appear. This allows an observation of the contact and
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detachment between the two objects. Using the interferometric technique, Krick

et al. developed an in-situ optical micro tribometer to investigate the intimate

contact between solids during loading and sliding experiments [108]. Federle

employed Interference Reflection Microscop (IRM) to investigate the adhesive

contact mechanism in different biological organisms [109–111].

Coaxial illumination

Coaxial illumination is a method that was developed to enhance the contrast

by improving the illumination of the specimen. It consists of a beam splitter which

redirects light from the light source and projects it onto the object parallel to the

optical axes of the camera, as can be seen in Figure 2.7. This technique was

employed in different fields for process control and contact observation [112–114].

Figure 2.7: Schematic of the coaxial illumination principle [115]

In the present thesis, FTIR was employed in Chapter 3 and 4 for obtaining

the contact signature of fibrillar adhesives. Chapter 5 introduces new optical de-

vices to observe the contact of the fibrillar microstructures with opaque and rough

surfaces. The coaxial Illumination technique was used in Chapter 6 to enhance

the contrast of the contact signature of a cylindrical punch with roughness-like

surface and a viscoelastic film.
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2.4 Machine learning

2.4.1 Definition and categories

Machine Learning (ML), is a subset of Artificial Intelligence (AI), with the

first algorithm “the perceptron” created in the late 1950s [116]. It is a modern

science based on mathematical and statistical approaches, pattern recognition,

and predictive analyses. It gives the computers the ability to “learn” from the

data and give data-driven predictions, recommendations, and decisions without

being explicitly programmed [117]. Over the last few decades, ML has become a

powerful tool used in different scientific areas. It has proven to be more efficient

than traditional techniques for creating correlations in large sets of diverse and

changing data. Its powerful abilities have become a huge part of our daily life

and the areas of application are increasing remarkably, from web searches [118],

email/spam filtering [119], personalized advertising [120], image and speech recog-

nition [121] to self-driving cars [122]. Recently, materials science and engineering

has benefited greatly from the progress of ML algorithms for discovering new

materials, the prediction of materials properties and materials design optimiza-

tion [123–126].

Figure 2.8: Major categories of machine learning. Reproduced from
[124].
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ML approaches can be divided into different categories [117], Figure 2.8 [124]:

Supervised learning: A predictive model where the goal is to map the unknown

function that connects an input x to an output y, given patterns found in a labeled

set of input-output pairs, i.e., the training data. The used training data, D, for

supervised learning, is constructed from N input/output duos [117] such as:

D = (xi, yi)
N
i=1 (2.3)

Supervised learning problems fall into two categories:

• Regression: When the output to be predicted is a value in a continuous

set of reals y ∈ IR, we speak of a regression problem. It is mainly used for

predicting and determining cause-and-effect relationships between variables.

• Classification: The goal of the task in the classification approach is the

prediction of a discrete class label, i.e., the set of the output values is

finite y = {y1, y2, ..., yn}. The resulting prediction function is then called a

classifier. The simple cases are binary classifications with a yes/no answer,

[126].

Unsupervised learning: Unlike supervised learning, unsupervised learning is

based on finding natural patterns in unlabelled data (only from the inputs x)

[117,127]. D is composed from N input as follow:

D = (xi)
N
i=1 (2.4)

Multiple techniques are used for this purpose such as Principal Component Anal-

ysis (PCA) [128] and clustering methods [129].

Semi-supervised learning: Halfway between supervised and unsupervised learn-

ing, semi-supervised learning combines both labeled and unlabeled data with the

majority of the training data being unlabeled [130].

Reinforcement learning: Reinforcement learning relies on a reward system

without the need for prior data [131]. It is used when feedback about good and

bad choices is accessible for decision-making problems. Namely, the machine

learns from interactions. One of the most famous reinforcement learning models

is AlphaGo, in which the trained model was able to beat the world champion in

Go game [132].
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2.4.2 Models optimisation and evaluation

In this thesis supervised learning models will be used to create regression and

classification predictive models. Regardless of the goal of the supervised learning

task, it is usually recommended to follow specific processes in order to develop

effective models. The most important steps are the correct partitioning of the

data, model optimization, and evaluation. In this section, we present the different

optimization and evaluation approaches used for the models in this project. A

detailed description of the models will be given in section 2.4.3.

2.4.2.1 Data partitioning and cross-validation

In machine learning methodology, evaluating a trained model and testing it

on the same data is not advisable as it would lead to over-fitting problems. In

the case of over-fitting, the model will show correct predictions on the used data

but will fail to repeat the same high score on new unseen data. To avoid this,

two approaches can be taken [133,134]:

1. If the data is sufficient, a simple approach is to divide it into training, val-

idation, and testing sets [135], see Figure 2.9 a. The data split should

be defined randomly and without bias. The training set is used to define

the different parameters of the trained model, these parameters are then

compared to the ones obtained from the validation set. The parameters

selected at the end are the ones with the best predictive performance. The

model is finally tested and evaluated on the testing set as will be explained

in section 2.4.2.2.

2. When the data set available is limited, dividing it into three sets drastically

reduces the number of samples used for learning the model. In that case,

the resulting model would depend on the random choice of the training and

validation sets. Thus, a K-fold cross-validation approach can be used for

the training and the validation as illustrated in Figure 2.9 b [136]. In this

case, the training data is partitioned into k groups. In each run, K-1 groups

are used for training the model and 1 group is left for validation. In each

iteration, the held-out group is changed. The final performance is calculated

as the average of the K runs. The number of folds is chosen depending on

the amount of data available. If the data set is extremely small, a leave-

on-out technique can be used where K=N (with N the number of data).

However, increasing the number of folds can be computationally expensive.
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Figure 2.9: Data partitioning and cross-validation. a) Data partitioning
into training, validation, and testing sets. b) K-fold cross-validation, with K=4
in this example. In each run, one of the four groups is chosen for the validation
of the models parameters and the rest for training. A test set is left out for
testing the model [134].

2.4.2.2 Models evaluation

For the creation of reliable predictive models, evaluation can be a crucial step.

It helps in understanding and assessing the performance of the model, and can be

a way to compare and choose between different models. For supervised learning

models, various metrics can be used for evaluating the models depending on the

approach.

Regression models evaluation

For evaluating and reporting regression models performance, three error met-

rics are commonly used:

R Square (R2), calculated as:

R2 = 1−
∑

i (yi − ŷi)
2∑

i (yi − ȳi)2
(2.5)

For a perfect prediction, R2 = 1 (i.e., yi = ŷi) . If the regression line is worse

than when fitting the mean value, the calculated R2 is negative. Although R2 is

a good way to determine how well the model fits the dependent variables, it does
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not take the over-fitting problem into account.

Root Mean Square Error (RMSE) is the average magnitude of the error. It

describes how well the data is concentrated around the fitted regression line.

RMSE =

√∑n
i=1(ŷi − yi)2

n
(2.6)

RMSE values range from 0 to ∞. With 0 representing the case of the perfect

prediction. The units of the error score match the units of the predicted target

value.

Mean Absolute Error (MAE), measures the error between the predictions

and the real values such as:

MAE =

∑n
i=1 |ŷi − yi|

n
(2.7)

Similarly to the RMSE the lower the value of the MAE the better the predic-

tions. with yi the value of the i-th observation in the validation data, ŷi the

predicted value, ȳi the mean of the observed data, n the number of observations.

Classification models evaluation

Classification models’ performance is evaluated using various metrics calcu-

lated from:

• The True Positive (Tp) predictions, which represent the correct predictions

of what are considered positive values (for example: in a binary classification

of 1 and 0 classes, 1 is considered the positive class).

• True Negative (Tn), i.e. the correct prediction of the negative class (0).

• False Positive (Fp), i.e. the incorrect prediction of the positive class (the

class is 0 and the prediction is 1).

• False Negative (Fn), i.e. the incorrect prediction of the negative class (the

class is 1 and the prediction is 0).

The classification evaluation metrics used in this thesis are:

Accuracy: It represents the percentage of true results compared to the total

number of cases examined, such as :

Accuracy =
Tp+ Tn

Tp+ Fp+ Fn+ Tn
(2.8)

Even though the accuracy could inform about the quality of the predictions, it

can be misleading if there is an uneven class distribution in the data. Thus, other
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metrics should be also considered.

Precision (P ): The precision is the positive predictive value. It is calculated as

follows:

Precision =
Tp

Tp+ Fp
(2.9)

It is maximized when all the true positives are predicted correctly such as

Tp = Tp + Fp. This means that high precision is associated with a low false

positive rate.

Recall (R): also known as the sensitivity of the model. It calculates how many

positive values the model was able to predict correctly from all the positive data.

Recall =
Tp

Tp+ Fn
(2.10)

The Recall value is maximized when T = Tp+ Fn, i.e., the false negative values

are minimized.

Score (F1): The score takes into consideration both the precision and recall such

as:

F1 = 2 ∗ P ∗R
P +R

(2.11)

2.4.3 Supervised learning models

In supervised machine learning, various linear and non-linear algorithms and

computation techniques are used, whether for classification or regression tasks.

Listed below are the methods applied to this project in chapters 3 and 4.

2.4.3.1 Linear Regression

Linear Regression (LnR) is the best known and understood algorithm in statis-

tics and machine learning [133, 137]. The simplest linear regression type uses

traditional slope-intercept y = ax + b, with x the input variable, a and b the

coefficients that the algorithm will try to “learn” for an accurate prediction, and

y is the prediction.

In applications, the input variable is usually more than one. A multivariable

more complex equations can be then constructed such as:

y(x) =
D∑
j=1

wjxj + e (2.12)

where wj represents the j coefficients or weights, the model will try to learn and

e is the residual error between the linear prediction and the true response. The

goal of LnR is therefore to minimize the sum of the squares of the residuals to
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find the best fit to the training data.

LnR has different assumptions that should be taken into consideration before

use [117]:

• First, a continuous target variable (y ∈ IR).

• No collinearity between the different explanatory variables (xj).

• A linear relationship between target and explanatory variables.

• Gaussian or normal distribution of the residuals, e.

• A constant variance of the residuals (homoscedastic distribution) with no

autocorrelation. In the case of heteroscedasticity, a transformation of the

target variable is necessary. The common transformation used is to take

the logarithm of the target variable.

2.4.3.2 Logistic Regression

In spite of the name, Logistic Regression (LR) is a classification model. It is a

linear statistical model which is efficient for binary classification problems but can

be also extended to multi-class classification (called multinomial regression) [138].

In contrast to LnR, LR does not require linearity between the input and the

output. It models the probability of an event happening using a logistic function

rather than a straight line or hyperplane [139]. Moreover, the output range is

limited between 0 and 1. The logistic function has an S-shape as can be seen in

the example in Figure 2.10 and is defined as follow [139]:

S(z) =
1

1 + e−z
(2.13)

where z is the input to the function. In order to transform the S(z) probabilities

into discrete binary predictions, a threshold value is selected. Typically, the

threshold is set at 0.5. For example, the Class is 1 if S(z) > 0.5 and 0 otherwise.
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Figure 2.10: Example of logistic regression classification. The black line
represents the sigmoid or logistic function given in Eq.2.13. The red x’s rep-
resent the probability of getting class 1. The blue line is the decision boundary
based on a threshold of 0.5. The light green dots represent the data classified
as 1 and the dark ones classified as 0.

2.4.3.3 Support Vector Machine / Support Vector Regression

Support Vector Machine (SVM) is a kernel-based∗ supervised learning tech-

nique that was originally created for binary classification [117, 140, 141]. It was

later generalized to solve multi-class classification and regression problems. SVM

works by finding the best hyperplane that separates the different classes in the

data with the largest margin, see Figure 2.11. The decision function in SVM

is specified by a small subset of the data called the support vectors. In a two

dimensional space, the hyperplane is a line, see the example in Figure 2.11. In

this example, the two distinct classes (light and dark green) can be separated by

the created hyperplane.

Support Vector Regression (SVR), on the other hand, uses the same principle

for finding the best fit for the data. The best fit, in this case, is defined as the

hyperplane with the maximum number of points [142,143].

∗Kernel methods essentially allow the use of linear classifiers to non-linear problems. They
take the input vector in the original space and transform it into one point in the features
space [133].
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Figure 2.11: Example of Support Vector Machine. The SVM finds the
optimal hyperplane while maximizing the margin. The support vectors are the
points closest to the decision hyperplane.

2.4.3.4 Decision Trees and Boosting model

Decision trees were first introduced in 1986 [144]. They are among the most

widely used supervised learning models. The decision trees represent a recursive

splitting of the input space, which can be presented in the graphical form of a

tree, see the example in Figure 2.12. In this example the input x has two co-

ordinated i.e., features x1 and x2, and the output y contain two values (y1 and

y2) represented by the dark and light green circles. If the values of y are a finite

number as presented in this example, the task will be a classification. Otherwise,

if y ∈ IR, the problem will be solved as a regression task. The model in both

cases tries to learn the hyperplanes that separate the data classes/values, Fig-

ure 2.12 b. These hyperplanes correspond to each node in the decision tree.

The model determines at each node, the feature and split threshold (xm,tm) of

that feature which maximizes the information gain G, for the model. G is mea-

sured based on user-defined splitting criteria. It gives information on how well

the defined split is able to separate the data in order for the target values of the

data at each node to be homogeneous in the case of classification and close to

each other in the case of regression. The mathematical formula of G is given in

Eq.2.14 [145].

G(Q, θ) =
nleft

Nm

H(Qleft(θ) +
nright

Nm

H(Qright(θ) (2.14)

Nm is the number of samples, H is the chosen split criteria function, Q is the

data at node m, and θ = (xm, tm) is the feature and threshold being evaluated.
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Figure 2.12: Example of a binary decision tree a) Decision tree to sep-
arate two groups (dark green :y1 and light green y2). The first node asks if
x1 is smaller or larger than a threshold value (val1). Taking the response into
consideration it moves to the second layer and asks if the second input x2 is
smaller or larger than the second threshold (val2). This continues until reaching
a final decision. b) Partition of two predictor variables.

Decision trees are intuitive models, easy to explain and use. Moreover, the

training data does not require a lot of effort in the prepossessing as they are

relatively robust in the presence of noise and outliers [146]. However, they have

some disadvantages in comparison to other models. In fact, small changes in

the data can lead to a big variation in the structure of the decision tree [146].

They usually require longer time to train the model and the training can be

relatively expensive as the complexity of the model increases [117]. In order to

overcome these issues, multiple ensemble methods such as random forests, or

gradient boosting that consider many trees at the same time were developed.

Gradient boosting: Boosted Tree (BT)

Gradient boosting is an ensemble of weak prediction models. It is typically

used with decision trees as a way to reduce variance, bias, and over-fitting. Gra-

dian boosting originated from an observation by Breiman in 1997 [147] but was

explicitly developed by Friedman [148,149].
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2.4.3.5 K-Nearest Neighbor

K-Nearest Neighbor (KNN) is an instance-based supervised learning tech-

nique. This means that the learning does not create a general model, but stores

the data set instances for comparison during the training [150]. Thus, the classi-

fication of each new point is determined based on the vote of the nearest neigh-

bors [151]. The vote is done after calculating the euclidean distance as follows:

dEuclidean =
√
(x1.B − x1.A)2 + (x2.B − x2.A)2 (2.15)

KNN can be used for both classification and regression, problems. The k-

neighbor is determined by the user for the number of near neighbors to be con-

sidered. It is optimized based on the data. As the value of k increases, the effect

of the noise is decreased. However, it reduces the distinction of the boundaries

between the different classes.

Figure 2.13: Example of KNN classification. When the new data B is
brought for classification, the euclidean distance to the nearest neighbors A
(dark green class) and C (light green class) is calculated and compared in order
to make a decision.
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2.5 Scope of this work

As discussed in section 2.1.5, synthetic fibrillar adhesives may enable the

development of new innovative robotic gripping systems. However, for industrial

applications where failed gripping could have high costs, anticipating adhesion

performance and contact signature could be crucial. The present thesis comprises

four chapters with different approaches to monitor the contact and predict the

adhesion of the bioinspired structures.

The Chapters 3 and 4 present two in-line monitoring systems that com-

bine an in-situ observation technique, image processing, and machine learning.

With the goal to predict the adhesion performance, two solutions were proposed:

Supervised regression models were trained to predict the adhesion force of the

patterned structures to a stationary target surface. The models were compared

to a linear mathematical model and to an existing analytical model, see more

details in Chapter 3. In order to span the gap between laboratory adhesion

experiments and actual manipulation processes, Chapter 4 presents a classifi-

cation approach where data was collected in pick-and-place experiments. In this

case, various models were trained and compared to predict the successful and

unsuccessful grasping of a target object.

The following subsequent of this thesis, Chapter 5, introduces two newly

developed optical systems. The essential objective for these devices is to improve

the effectiveness of patterned adhesives as grippers by monitoring the contact

with various types of target surfaces.

Chapter 6 outlines a new approach to predict the contact signature of a soft

polymer film in contact with roughness-like surface topography using simulation.

The rate and preload-dependency of the adhesion strength were analyzed and the

results were compared to experimental data.
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Chapter 3

Predicting the adhesion strength

of micropatterned surfaces using

supervised machine learning∗

3.1 Abstract

Fibrillar dry adhesives have shown great potential in many applications thanks

to their tunable adhesion, notably for pick-and-place handling of fragile objects.

However, controlling and monitoring alignment with the target objects is manda-

tory to enable reliable handling. In this paper, we present an in-line monitoring

system that allows optical analysis of an array of individual fibrils (with a con-

tact radius of 350µm) in contact with a smooth glass substrate, followed by the

prediction of their adhesion performance. Images recorded at maximum compres-

sive preload represent characteristic contact signatures that were used to extract

visual features. These features, in turn, were used to create a linear model and

to train different linear and non-linear regression models for predicting adhe-

sion force depending on the misalignment angle. Support vector regression and

boosted tree models exhibited highest accuracies and outperformed an analytical

model reported in literature. Overall, this new approach enables predictions in

gripping objects by contact observations in near real-time, which likely improves

the reliability of handling operations.

∗This chapter is a published article in Materials Today.
The article is available under: https://doi.org/10.1016/j.mattod.2022.01.018
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3.2 Introduction

Over the last decade, the market of automated gripping devices has remark-

ably grown in the context of ongoing industrial digitalization [152,153]. Such de-

vices are used to grasp and handle delicate objects of diverse geometries and sizes.

A new concept for innovative grippers is the implementation of “hairy” or fibrillar

dry adhesives inspired from geckos and many insects [8,111,154]. Such adhesives

make use of molecular van der Waals interactions enhanced by surface fibrils and

function equally well in air and under vacuum conditions [1,62,78,155]. However,

their overall performance depends on a multiscale contact engagement that has

been subject of multiple studies [1, 6, 48, 156]. Briefly, the adhesion strength on

the fibrillar level strongly depends on the fibril size, geometric design and their

mechanical properties; these parameters are known to affect the stress distribu-

tion in the interface between the fibril tip and the target substrate [17, 38, 47].

On the array level, the performance depends on the load sharing efficiency and

statistical variations throughout the array [53,55,63,64]. Under non-ideal condi-

tions, arrays can exhibit adhesion strengths that are significantly reduced when

compared to the sum of all individual fibrils [48].

Despite numerous successful demonstrations of the benefits of fibrillar adhe-

sives in comparison to non-patterned adhesives and other gripping technologies,

their reliability in a specific gripping situation needs to be ensured. Van der Waals

interactions have short range and act appreciably only over a few nanometers.

Loss of intimate contact, caused by interfacial defects due to surface roughness or

contaminants or by insufficient alignment, can drastically reduce adhesion [54,56].

The effect of misalignment on the pull-off force was previously reported by Bacca

et al. [53,55] and Booth et al. [54]. They theoretically demonstrated that several

design parameters such as array size, fibril length, spacing between fibrils, and

compliance of the backing layer affect the sensitivity of adhesion to alignment

errors [53–55]. These results were experimentally validated and proved that even

a small misalignment, of order of 0.1°, will initiate detachment by peeling and,

thus, drastically decrease the adhesive force [54].

To predict the pull-off force, Fp, in terms of the misalignment angle, θ, Booth

et al. evolved an analytical model as follows:

Fp =

N fmax[1− π a2 E
2 fmax

(n− 1) tan θ d
h
, tan θ ⩽ fmax

π a2 E
h

d (n−1)

N fmax

2n
[1 + fmax

π a2 E
1

tan θ
h
d
], tan θ > fmax

π a2 E
h

d(n−1)

(3.1)

where N = n2 is the total number of fibrils in a square array, fmax the pull-

off force of an individual fibril, the elastic modulus E and a the radius of the
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fibril, h the length of the fibril, and d the center-to-center spacing. However, the

model is only valid in the limits of a rigid backing layer and complete contact of

all fibrils with the target surface, where all fibrils detach at the same maximum

force (fmax = const.). These conditions can barely be met in real applications,

since, for example, the fibril array is typically connected to an elastic foundation

instead of a rigid backing layer [54]. Depending on the size of the array and

the angle of misalignment, bringing all fibrils in contact with the object can be

difficult.

Moreover, recent in-situ observation techniques have enabled the determina-

tion of the adhesion strength of individual fibrils; the experiments showed that

the strength can vary by more than an order of magnitude between the weak-

est and strongest fibril, contradicting the tacit assumption of a constant pull-off

force [62]. In fact, the adhesion performance of an individual microscopic fibril

is mainly governed by critical interfacial defects, originating from surface rough-

ness, fabrication imperfections, contaminations or dust particles [51]. Defect sizes

and their locations can randomly vary in the adhesive contact, leading to a pull-

off force distribution across the array [60]. Recently, Booth et al. proposed a

statistical framework based on Weibull statistics to predict adhesion forces by

considering the Weibull modulus, m characterizing the width of the force distri-

bution, and the reference elongation at detachment, u0 [63]. Both parameters can

be determined experimentally, but remain specific to each adhesive contact of a

specimen adhering to a target surface [64, 157]. Overall, calculating the perfor-

mance of fibrillar adhesives is a multiscale contact mechanics problem that, for a

specific case, can potentially be solved by numerical methods. However, such an

approach would be too slow for an in-line monitoring of a dynamic pick-and-place

handling operation and, thus, cannot be implemented in robotics applications.

Toward this goal, the training of machine learning systems provides an alter-

native approach as a powerful tool for near real-time decision making. In the

present paper, we make use of the in-situ observation of fibrillar adhesive con-

tacts, providing characteristic contact signatures which delineate attached and

detached regions that can be readily recorded and analyzed in-line. Based on

these contact signatures we identified visual features that were used to train re-

gression models to predict the pull-off force in terms of the misalignment angle.

The models were compared to a feature-based linear model and to the analytical

model in Eq.3.1.
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3.3 Materials and methods

Figure 3.1: Design and fabrication of the microfibrillar adhesives. a)
Schematic of the fabrication process using replica molding. PDMS was mixed
with blue pigment, filled into an aluminum mold, and subsequently cured. b)
Optical image of a micropatterned adhesive specimen that typically consisted
of 241 fibrils. c) Scanning electron micrograph showing the mushroom-shaped
fibrils with a typical fibril length h = 160 µm, stalk radius r = 200 µm, and
mushroom tip radius a = 350 µm. The center-to-center distance between adja-
cent fibrils is d = 1350 µm. Half the width of the array is W = 11mm. d,e)
Confocal microscope images showing the range from defected (S5) to almost
perfect (S6) tip topography.

Ten micropatterned specimens (S1-S10) were fabricated from polydimethyl-

siloxane (PDMS, Sylgard 184, Dow, Midland, MI, USA) using replica molding as

illustrated in Figure 3.1 a and thoroughly described in previous reports [62,157].

The transparent PDMS was mixed in a ratio 10 : 1 of base and curing agent. To

enhance the optical contrast for the in situ observation, 10wt% blue pigment (PK

5091, Degussa, Essen Germany) was added to the pre-polymer mixture, which

was subsequently either cured at 95 °C for 1 h [157] or 75 °C for 2 h [62]. The

dimensions of the micropatterned specimens are summarized in Table A1 in the

Supporting Information (SI). Note that five specimens were previously employed

in recent studies: Specimens S4 and S5 were used to study local detachment

mechanisms and suction effects [62]; specimens S6 and S7 were used to inves-

tigate the contact aging [157]; and specimens S4-S8 were used for a statistical

analysis of the detachment instabilities [64]. Specimens S1, S2, S3, S9, and S10
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were made for the present study as described above. The thickness of the backing

layer was 3mm for S1-3 and 5mm for S4-10.

3.3.1 Adhesion measurement

Pull-off forces of the micropatterned adhesives were measured using a custom-

built tensile tester (Inspekt table BLUE, Hegewald&Peschke, Nossen, Germany)

equipped with a 50N load cell with a stiffness of k50 = 134.6Nmm−1. For adhesion

tests, the micropatterned specimens were brought in contact with the target

object, a smooth and transparent glass disc at a velocity of 1mm/min. Upon

first contact with the substrate, the specimen was compressed by 105 µm , then

immediately retracted at a rate of 1mm/min. The highest tensile force obtained

was defined as pull-off force, Fp. The stiffness, k of the fibrillar specimens was

determined from force-displacement curves in the compressive regime. To remove

dust and contaminants, the glass substrate was cleaned with isopropanol after

each test, i.e., every 55 cycles.

The alignment between the specimens and the substrate was varied between

0 and 1° in steps of 0.1°. The orientation of the adhesive array to the fixed

misalignment direction was further analyzed by repeating the measurements 4

times, where the specimen was rotated by 45° before each test. In addition to

misalignment, we enhanced the variations of the tests by emulating off-center

gripping. For this purpose, a device with an aluminum beam was added between

the specimen and the load cell (Figure 3.2 b). The beam was 10 cm long,

3mm thick, and 10mm wide, resulting in a stiffness of 6.73Nmm−1. The device

introduced a torque, which led to a peeling moment, M , at the contact. The

peeling moment superimposed onto the chosen misalignment angle. Therefore,

two cases were considered: (i) The peeling moment acted in the same direction

as the misalignment, referred to as +M ; or (ii) was opposite to it, referred to as

-M .

Experiments to determine the Weibull moduli, m, and the reference displace-

ments, u0, were conducted using a 200N load cell with k200 = 935Nmm−1 to

ensure stable detachment [64]. All experiments were performed in a laboratory

with regulated temperature and relative humidity at 21 ± 0.2 °C and 50 ± 5% .

3.3.2 Contact observation and image analysis for features

extraction

In order to investigate the contact between the adhesive and the counter sur-

face, the principle of frustrated total internal reflection was used as illustrated in

Figure 3.2 a. The internally reflected light in the transparent glass substrate
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scattered when a contact with the adhesive’s fibrils was formed. Thus, a high con-

trast between the fibrils in contact and the detached ones can be obtained [62,157].

Images of the contact at preload, i.e., the contact signatures, were extracted from

the recorded videos and analyzed using Computer Vision and Image Processing

toolboxes from MATLAB (MathWorks, MA, USA). To convert from pixel to mi-

crometer scale, the mean distance between fibril centroids, d = 1350 µm, was used.

The images were binarized by selecting a threshold gray value. Then, pixels with

gray values higher than the threshold were considered white and represented con-

tact (attachment) while pixels with lower gray values were considered black and

represented non-contact (detachment). The binarization is motived by its high

reproducibility when being transferred to another setup or the usage of other

specimens. Considering only a single image at max. compressive preload further

reduces the complexity of multiple frame analyses and potential delays during in-

line processing in robotic applications. From binarized images (Figure 3.2 d,e),

the number of attached fibrils, Na, the contact area, A, which is the sum of the

real contact areas of the individual fibrils (either at full or partial contact), and

the center position (x and y-coordinates) of each fibril were determined. From

the latter, the length of the misalignment vector, v⃗ was calculated, which is the

distance between the center of mass of a reference full contact and the center

of mass of the specimen in partial contact (Figure 3.2 f). The length of the

misalignment vector can range from 0 (full contact) to 11mm (i.e., the half-width

of the array, W , see Figure 3.1 b). Finally, the dimensionless number of fibrils

in contact with the substrate, Na, the length W − |v⃗|, and the real contact area,

A were used as visual features for training the machine learning algorithms (see

details below). Note that the pixel size of the contact signatures was about 50µm,

which is most likely too large to detect location and sizes of potentially critical

interfacial defects. Therefore, we limited our investigations to rather macroscopic

features.

For determining the statistical parameters of the Weibull distribution, m and

u0, of each specimen, the detachment videos were correlated with the force-

displacement measurements [48]. For synchronization, the frame showing the

detachment of the last fibril was attributed to the time when the tensile force

dropped to zero. The fraction of the detached fibrils in terms of the fibril elonga-

tion, u was then obtained and fitted by Eq.3.2 which represent the cumulative

Weibull distribution (see Figure 3.2 c):

Nd

N
= 1− exp

{(
−
[
u

u0

]m)}
, (3.2)

with Nd the number of the detached fibrils and N the total number of pillars in
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an array.

Figure 3.2: Adhesion testing and visual features. a) Schematic illustra-
tion of the adhesion measurement set-up. Frustrated total internal reflection
was used to enhance the contrast between Na attached and Nd detached fibrils.
Force, F was applied normally to the adhesive array. The angle of misalignment,
θ was introduced by tilting the substrate. b) Off-center loading was emulated
in two directions (left and right) in separate measurements using an aluminum
beam leading to a peeling moment -M or +M , for the left and right directions,
respectively. c) Fraction of detached fibrils versus the elongation of the fibrils,
u for specimens S1, S5 and S6. The red line is the fitted Weibull distribution
given by Eq.3.2. The reference elongation, u0 is attributed to Nd/N = 1− 1/e
(dashed line). d-f) Visual features extracted from contact signatures at maxi-
mum compression: d) Full (left) or partial (right) contact of individual fibrils,
where the sum of all fibrils provides the contact area. e) The number of attached
(number of green boxes) and detached (number of red boxes) fibrils. f) The
length of the misalignment vector (black arrow), corresponding to the distance
between the center of mass of the complete contact (θ = 0°) and the center of
mass of a partial contact (θ = 0.4°). Here, the black dots and the red contour
represent the centroids of the attached fibrils and the area for the calculation
of the center of mass, respectively.
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3.3.3 Machine learning

For creating predictive models, supervised learning algorithms were used by

the Statistics and Machine Learning toolbox from MATLAB (ver. R2019b). The

Regression Learner toolbox was used to train various regression models: Linear

Regression (LnR), Support Vector Regression (SVR), and Boosted tree (BT).

The LnR was chosen as a simple linear model, whereas SVR and BT were the

result of a pre-evaluation with the highest accuracy upon validation. Fully con-

nected neural networks were considered as an alternative but discarded as the

amount of training data was insufficient for an effective training. Avoiding the

manually defined features altogether and using convolutional neural networks on

a pixelates representation of the fibrils might seem an obvious alternative, but

the total number of fibrils would result in an input resolution below the receptive

field size of any reasonable network. The hyperparameters of the SVR and BT

were optimized directly through the Regression Learner toolbox. The experimen-

tal data of 10 specimens was divided into training, validation and testing data

on the specimen level with ratio 6:2:2, respectively. Specimens S1 to S8 were

used for training and validation. To avoid overfitting during training, a four-

fold cross-validation, again at the specimen level, was performed. Therefore, 6

specimens of S1 to S8 were randomly picked and validated by the remaining 2

specimens. Trained models were tested using 2 new specimens S9 and S10, which

were fabricated once all models were trained and validated.

Before training, the extracted features A, Na, and W − |v⃗| were normalized

by min-max scaling such as A′ = (A−min(A))/(max(A)−min(A)) by using the

training data. Normalization parameters obtained were then used to normalize

the testing data.

To evaluate the models, three metrics were calculated as follows: the R-

squared, R2 = 1−
∑

i (yi−ŷi)
2∑

i (yi−ȳi)2
, the root mean square error, RMSE =

√∑n
i=1(ŷi−yi)2

n
,

and the mean absolute error, MAE =
∑n

i=1 |ŷi−yi|
n

, where yi is the value of the

i-th observation in the validation data, ŷi the predicted value, ȳi the mean of

the observed data, and n the number of observations. Note that for the LnR

model, the features A, Na, and W − |v⃗| were transformed logarithmically before

normalization to maintain a homoscedastic distribution of the data with similar

variances (Figure A1 in the Supporting Information (SI)) as a prerequisite for

the linear regression approach.
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3.4 Results and discussion

3.4.1 Variations of the specimens

Micropatterned adhesives with mushroom-shaped fibrils were successfully fab-

ricated from PDMS using replica molding (Figure 3.1). The tips of the fibrils

were replicated from different PET films that were used to close the bottom of

the mold (Figure 3.1 a). The film topography was then transferred to the fibril

tips, which in turn, caused a distribution of the fibril adhesion strength across the

array, as described in earlier reports [62–64,157]; see Figure 3.1 d,e. The fibril

dimensions, as determined by optical microscopy, are summarized in Table A1

in the SI. To quantify these strength distributions, the maximum elongation, u

of each fibril was determined from in-situ observations of the fibril detachment

events. Following Weibull statistics, the ratio of the Nd to the total number of

fibrils, N is assumed to be given by Eq.3.2. Figure 3.2 c displays exemplar-

ily the fit of Eq.3.2 to the experimental data for three specimens S1, S5, and

S6. The characteristic statistical values m and u0 for each specimen are summa-

rized in Table 3.1. Considering the stiffness of the specimens, k (obtained from

load-displacement curves), the reference force, f0 = ku0/N could be estimated

by ignoring the backing layer deformation. Weibull moduli ranged from 2.0 to

13.9, u0 from 0.28 to 0.79mm, k from 38.4 to 56.8 kN/m, and f0 from 47.8 to

141.5mN, which all together represent statistical variations of the specimens used

in the present work.

Table 3.1: Variations of the specimens in terms of Weibull moduli, m,
reference elongation, u0, stiffness of the specimen, k, and the reference force, f0.

specimen m u0 (mm) k (kN/m) f0 (mN)

S1 3.8 0.49 42.5 86.4
S2 6.5 0.40 39.1 64.9
S3 9.0 0.38 38.4 60.5
S4 5.1 0.38 56.8 91.5
S5 3.3 0.28 40.5 47.8
S6 4.4 0.79 42.8 141.5
S7 2.0 0.32 44.6 59.2
S8 3.6 0.29 45.3 54.5
S9 13.1 0.28 50.2 58.3
S0 13.9 0.32 47.4 63.5
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Figure 3.3: Adhesion results. a) Pull-off force versus misalignment angle
for all specimens including variations of the specimen rotation and the peeling
moment induced by the beam. Symbols represent the mean value of 15 mea-
surements and the bars the standard deviation. The lines highlight the weakest
and strongest specimens. b) Pull-off force variations as a function of the in-
duced peeling moment +M and -M for two specimens S5 and S6. c) Box plot
showing the one-way ANOVA analysis of the pull-off force in terms of misalign-
ment angles. The top and bottom of each box are the 25th and 75th percentiles,
respectively. The line in each box is the median and the square represents the
mean value. Lines extending above and below each box represent 1.5 times
the interquartile range. The solid diamonds correspond to outliers according
to this analysis. d-f) Features in terms of the misalignment angle of all tests
conducted: d) Contact area, A e) number of attached fibrils, Na and f) the
length of the misalignment vector, v⃗. All features were extracted from contact
signatures at max. preload. The lines highlight the weakest and strongest spec-
imens S5 and S6.
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3.4.2 Adhesion analysis results

Adhesion tests comprised 1635 measurements in total, where the misalign-

ment angle, the orientation of the specimen to the misalignment axis, and the

peeling moment induced by a lever were varied. Figure 3.3 a depicts the pull-

off force versus misalignment angle of all measurements conducted, exhibiting a

large variation of the pull-off force over different specimens. For the aligned case

(θ = 0°), the adhesion force ranged from 3.2 ± 0.23N for the weakest specimen

(S5) to 13.2 ± 0.8N for the strongest specimen (S6, see solid lines to guide the

eye). As a general trend, the pull-off force decreased with increasing misalignment

angle and forces dropped below 1N for all specimens at θ = 1°.

Figure 3.3 b depicts the effect of the peeling moment on the results for

the strongest (S6) and the weakest (S5) specimen. For S6, the peeling moment

led to a reduction of the pull-off force by 10 to 20% between 0.2 and 0.5° of

misalignment, whereas the impact of the peeling moment decreased considerably

as the misalignment angle was larger than 0.5°. The pull-off force of specimen S5

decreased by 15–35% over the entire range of θ. For both specimens, the direction

of the beam compared to the misalignment direction (see Figure 3.2 b) made

no significant difference to the pull-off forces. Overall, the introduction of the

peeling moment increased the variation of the resulting pull-off force; however,

the direction of the applied peeling moment did not significantly affect the results.

Figure 3.3 c presents the results of the one-way analysis of variance (ANOVA,

OriginLab, Northampton, MA, USA) including all experimental data. Mean and

median values decreased with increasing misalignment. Similarly, the box size

(i.e., the interquartile range from 25 to 75% ) decreased. Thus, also the variation

of the pull-off force decreased as misalignment increased. Note that multiple data

points belonging to specimen S6 were considered as outliers (diamonds) as they

are outside the interquartile range, multiplied by 1.5, due to their comparably

high pull-off forces.

The contact area, A, represents one of the three visual features obtained

from the in-situ observations at maximum compressive preload. Figure 3.3 d

displays the contact area versus the angle of misalignment. The contact area

varied at θ = 0° for the various specimens with a minimum of 75.5 ± 1.5mm2

(S5) and maximum of 111.7 ± 0.2mm2 (S6). This variation is caused by slightly

different sizes of the mushroom tips, interfacial defects and missing fibrils, see

Figure 3.1 d,e and Table A1 in the SI. At the smallest misalignment θ = 0.1°,
full contact upon preloading was still achieved but a small drop of the pull-off

force can be observed for the different specimens. This can possibly be explained

by the unequal load-sharing between the different pillars resulting from a small
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misalignment [53]. For θ ≥ 0.2° , the contact area dropped considerably for

all specimens. Here, only partial contact was achieved at the fixed compressive

displacement of 105 µm upon first contact. Despite the fact that the contact area

for S6 fell more drastically with increasing θ than for the other specimens, the

specimen with the highest adhesive force was still stronger, as the reference pull-

off force, f0 was the highest for S6 (Table 3.1). In Figure 3.3 e,f, the number

of attached fibrils, Na and the length of the misalignment vector, v⃗ are shown in

terms of the misalignment angle. For θ = 0.1°, both values were similar to the

aligned case for most specimens due to full contact. For θ ≥ 0.2°, Na decreased

monotonically, whereas v⃗ increased up to 10mm.

Figure 3.4 presents the variation of the pull-off force in terms of the three

different visual features for the training data, i.e. specimens S1 to S8. As ex-

pected, the pull-off force increased linearly with a larger contact area, a higher

number of attached fibrils, and a larger value of W − |v⃗|. Despite the approx-

imately linear relationships, significant variation was observed when comparing

the different specimens; the solid lines linking the lowest (S5) and highest (S6)

values were drawn to guide the eye. Linear fits for these limiting cases result in

similar slopes of 3.64 ± 0.06 and 12.24 ± 1.2N (see Figure 3.4 a), 2.25 ± 0.05

and 12.52 ± 0.2N (see Figure 3.4 b), and 2.3 ± 0.01 and 12.3 ± 0.5N (see

Figure 3.4 c). From the linear trends observed in Figure 3.4 , we created

a linear model to predict the pull-off force, Fp based on the normalized visual

features, as follows

Fp = C̄ · A′N ′
a (W − |v⃗|)′ , (3.3)

where A′, N ′
a, and (W − |v⃗|)′ are normalized contact area, number of fibrils in

contact, and length of the misalignment vector. The constant C̄ = 5.56N is the

mean slope of all linear fits for each specimen. Figure 3.5 a,b show the calculated

pull-off force using the mathematical model, Eq.3.3, versus the testing data,

i.e. specimens S9 and S10. For both specimens, the model was able to predict

accurately pull-off forces for small misalignments of θ ≤ 0.2°. However, larger

misalignment angles led to underestimated forces up to 78% for some cases. To

overcome this limitation, we trained several regression models.
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Figure 3.4: Pull-off force versus visual features for the training data.
a) the normalized contact area, A′; b) the normalized number of fibrils in con-
tact, N ′

a; and c) the normalized length of the misalignment vector, (W − |v⃗|)′.

Figure 3.5: Calculated pull-off forces using the mathematical linear
model Eq.3.3 (green hexagons) in comparison to the test specimens
a) S9 and b) S10 (black squares).

3.4.3 Supervised machine learning

A linear regression model (LnR) and two non-linear models, the support vector

regression (SVR) and the boosted tree (BT) were used. To avoid misspecification

of the LnR model (which assumes homogeneous variance of the residuals), the

data were logarithmically transformed before normalization, see Figure A1 in

the SI. Figure 3.6 depicts the predicted versus the experimental pull-off forces

for all models. The LnR model drastically underestimated the pull-off forces, i.e.

similar trends obtained for the linear mathematical model. The SVR and BT

model showed better predictions, since predicted pull-off forces scatter closely

to the red line, corresponding to perfect prediction. The highest accuracy was
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obtained for the SVR with the highest R2 = 0.84 and lowest root mean square

error, RMSE = 0.72 and mean absolute error, MAE = 0.46.

Figure 3.6: Regression results. Predicted versus experimental pull-off forces
Fp, of the testing data (blue squares) for a) linear regression (LnR), b) support
vector regression (SVR), and c) boosted tree (BT) models. Measures of accu-
racy are R2, the root mean square error RMSE, and the mean absolute error
MAE. The red solid lines represent perfect prediction.

Finally, the trained regression models were tested and compared to the limit-

ing case (stiff backing layer and full contact of all fibrils with the target surface)

using the analytical mechanical model (Eq.3.1) and the mathematical model

based on the visual features (Eq.3.3). Figure 3.7 displays the pull-off force

versus the angle of misalignment for the test specimens S9 and S10. For θ = 0°,
the experimental pull-off force was used to calibrate the analytical model adjust-

ing fmax = Fp/Na (see Eq.3.1). However, the analytical model (red solid line)

strongly underestimated the pull-off forces for 0.1° ≤ θ ≤ 0.8°, even though the

model assumes full contact between the fibrillar array and the target surface.Note

that the analytical model assumes a rigid backing layer and full contact for all θ.

Thus, the model ignores the benefit of the compliant backing layer and only rep-

resents a limiting case [54]. The mathematical model agrees with the experiments

for small misalignment angles (θ ≤ 0.2°), but underestimates pull-off forces for

larger misalignment degrees. This discrepancy has been overcome by the SVR

and BT model, which both provided accurate fits to the experiments by replicat-

ing the entire S-shape of the curves. The LnR model drastically underestimated

the pull-off forces, similarly to the linear mathematical model. Table 3.2 sum-

marizes the fitting parameters of all models for the two test specimens which

again highlights the good agreement of the SVR and BT model.

Overall, predicting the force using the analytical model is limited to the prior

knowledge of the misalignment angle, the specimen’s maximum adhesion force,

and ignoring the backing layer compliance. Therefore, the analytical model only

serves as a limiting case. In contrast, the machine learning approach provides
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a more suited way to predict unwanted detachment failures and, in combina-

tion with an in-line image analysis, to monitor pick-and-place devices. Since we

have focused on selecting features from binarized frames acquired at compressed

preload, the in-line processing should be fast and realistic to be applied to real

robotic systems. However, there exists other factors that could still limit their

integration. Force-controlled object handling by robotic grippers could alter the

adhesion performance and detachment compared to a displacement-controlled

setup used in the present experiments [64]. Furthermore, other parameters such

as velocity and acceleration of the gripper or larger peeling moments due to

object rotations possibly reduce the predictive power of the machine learning al-

gorithms. Finally, the techniques as presented is applicable only to transparent or

translucent objects. However, further improvements and model optimization are

possible and will allow to significantly enhance the reliability of the predictions

in realistic pick-and-place processes.

Figure 3.7: Model testing. Pull-off forces versus misalignment angle com-
paring experiments of specimens a) S9 and b) S10 (black squares) with the
LnR, BT, and SVR regression models, the analytical model (red line) given by
Eq.3.1, and the mathematical model (green hexagons) given by Eq.3.3.
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Table 3.2: Accuracies obtained from fitting the experimental results
obtained from specimens S9 and S10 using the different models as shown in
Figure 3.7.

specimen model R2 RMSE MAE

S9

SVR model 0.80 0.87 0.59
BT model 0.76 0.93 0.6
LnR model -0.006 1.94 1.48

Analytical model 0.34 1.56 1.11
Mathematical model 0.5 1.37 1.18

S10

SVR model 0.90 0.53 0.33
BT model 0.77 0.83 0.51
LnR model 0.29 1.46 1.24

Analytical model 0.23 1.52 1.15
Mathematical model 0.56 1.14 1.00

3.5 Conclusions

We explored supervised learning algorithms for predicting the adhesion per-

formance of micropatterned dry adhesives by optical observation. The variation

of the pull-off forces was determined as a function of the misalignment angle

between specimens and the nominally flat glass substrate, the statistical distri-

bution of the adhesion force of the individual fibrils, and center and simulated

off-center gripping. Predictions rely on the contact signatures, i.e. the visual fea-

tures extracted from optical images, that were taken from the contact at preload.

Frustrated total internal reflection in the transparent substrates was utilized to

enhance the contrast. Adhesion prediction was approached by regression models

and the following conclusions can be drawn:

• Feasibility demonstration: Supervised learning algorithms and in-situ ob-

servation techniques have been demonstrated to successfully predict the

adhesion performance with high accuracy. In fact, this new approach not

only overcomes the limited accuracy of a linear mathematical model and an

existing analytical model but also time-consuming numerical simulations

and facilitates near real-time predictions during the handling process.

• From the regression algorithms tested, the SVR model has the most pre-

dictive power with the highest R2 and lowest root mean square and mean

absolute errors. Comparison with experiments confirmed this result and

showed higher accuracy than the mathematical and analytical model.
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Supporting information: chapter 3

Table A1: Dimensions of the micropatterned specimens. Data repre-
sent mean values and standard deviations of 10 randomly selected fibrils.

specimen Stalk radius, r
(µm)

Tip radius,a
(µm)

Fibril length, h
(µm)

Total
Number of
fibrils, N

S1 203.31± 2.98 360.040± 2.05 1550.11± 10.34 241
S2 205.48± 1.46 353.941± 2.31 1563.19± 15.42 241
S3 206.26± 2.23 360.126± 11.52 1587.43± 13.11 241
S4 204.26± 4.19 350.672± 11.75 1580.16± 11.53 236
S5 202.83± 2.45 319.775± 34.88 1516.85± 18.17 237
S6 208.98± 0.96 364.778± 2.70 1578.31± 8.13 239
S7 205.03± 2.90 353.461± 3.79 1577.56± 11.44 241
S8 209.71± 1.35 350.270± 7.87 1559.15± 10.64 241
S9 208.22± 1.58 353.559± 1.77 1556.37± 9.10 241
S10 207.56± 0.80 352.287± 1.64 1563.17± 3.47 239

Figure A1: Logarithmic transformation of data presented in 3.4 for
training the linear regression model. Pull-off force, Fp versus a) contact area,
A; b) number of fibrils in contact, Na; and c) the difference of half of the width
of the array and the length of the misalignment vector, W − |v⃗|.
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Chapter 4

Application of machine learning

to object manipulation with

bioinspired microstructures

4.1 Abstract

Bioinspired fibrillar adhesives have been proposed for novel gripping systems

with enhanced scalability and resource efficiency. Here, we propose an in-situ op-

tical monitoring system of the contact signatures, coupled with image processing

and machine learning. Visual features were extracted from the contact signa-

ture images recorded at maximum compressive preload and after lifting a glass

object. The algorithm was trained to cope with several degrees of misalignment

and with unbalanced weight distributions by off-center gripping. The system al-

lowed an assessment of the picking process for objects of various masses (200, 300,

and 400 g). Several classifiers showed a high accuracy of about 90% for success-

ful prediction of attachment, depending on the mass of the object. The results

promise improved reliability of handling objects, even in difficult situations.
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4.2 Introduction

We are right on the edge of the fourth industrial revolution. As industries

are transitioning towards automation and digitalization of their production lines,

the need for smart grippers has grown rapidly. The goal for this transformation

is to increase efficiency, speed, and quality of objects manipulation [158, 159].

For nearly half a century, robotic grippers have relied on various technologies,

such as suction and vacuum, electrostatic and magnetic attraction, and, most

widespread, mechanical gripping [152]. Since the development of gecko-inspired

fibrillar polymer surfaces [5,8,14,21,160–165], a new gripping principle is now in

the process of entering the market [71, 74, 166–170]: manipulation of objects by

microfibrillar elastomer surfaces, whose adhesion can be switched on and off. Such

surfaces achieve, after application of small compressive preloads, strong adhesion

by van der Waals interaction and allow residue-free and silent handling, effective

in both air and vacuum conditions [9,78,155]. These properties promise significant

benefits over conventional gripping technologies, especially in manipulation of

delicate and fragile objects of diverse sizes and geometries.

Object manipulation has to also work under non-ideal conditions. It has to tol-

erate loss of the intimate contact with the target object due to interfacial defects

or due to inevitable alignment inaccuracies [53, 54, 56]. As opposed to previous

assumptions, it has been proven by Tinnemann et al. [62] that the different fib-

rils behave largely independent from each other and can have widely distributed

individual adhesion strengths [48, 62]. This variation comes from the different

types of interfacial defects, i.e., manufacturing imperfections, surface roughness

or dust and contaminations, which can lead to an unbalanced strength distri-

bution within the fibrillar array [48]. Moreover, misalignment or unintentional

off-center gripping can lead to unreliable gripping of the target object. Thus, it

is crucial to monitor the correct grasping to avoid unintended loss of the object.

Microfibrillar grippers are amenable to optical observation of contact forma-

tion and breakage. In previous studies [62, 107, 157, 166], vision based tactile

sensors were used to analyze the contact of fibrillar adhesives with counter sur-

faces. Eason et al. [107] used frustrated total internal reflection to characterize

the stress distribution on gecko toes. This technique was later adopted by Tin-

nemann et al. [62] to investigate in detail the detachment behavior of artificial

single fibrils and fibrillar arrays. Pang et al. [166] developed and integrated a

vision-based tactile sensor for a shear-induced gecko gripper to obtain real-time

measurements of contact area and shear force. In our recent work [171], in-situ

observation coupled with supervised learning regression models was successfully

used to predict the adhesion force of microfibrillar surfaces from visual features
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extracted from contact images (the “contact signature”).

In the present paper, we propose an in-line monitoring system to detect the

presence and correct grasping of a glass object using frustrated total internal re-

flection, FTIR, and supervised learning classification models. These models will

be trained on data collected directly using a pick-and-place robotic arm. In this

way, we bridge the gap from laboratory adhesion experiments to actual manipu-

lation processes using bioinspired microstructures with improved reliability.

4.3 Materials and methods

Figure 4.1: Experimental set-up for data collection. a) Schematic illus-
tration of the micropatterned adhesive attaching to a smooth glass substrate.
Frustrated total internal reflection enhances the contrast for Na attached and
Nd detached fibrils. Misorientation between the adhesive and the glass surface
is introduced by robotic actuation: rotation along x and y axes, resulting in
misalignment angles α and β. b) Schematic illustration of the off-center grip-
ping where the glass object was moved in one direction with w ≈ 3mm. c)
Robotic arm equipped with microfibrillar surface adhering to the glass. LEDs
are used for the frustrated total internal reflection. A mirror reflects the contact
signature to the camera. d) Image of the micropatterned specimen that typi-
cally consisted of N = 844 fibrils. The inset shows the hexagonal arrangement.
e) SEM of the mushroom-shaped fibrils.

4.3.1 Preparation of fibrillar arrays

In the present study, eight specimens (S1-S8) of micropatterned polydimethyl-

siloxane (PDMS, Sylgard 184, Dow, Midland, MI, USA) with 844 mushroom-

shaped fibrils were fabricated using replica molding as described in earlier publi-
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cations [62, 157]. The fibrils had a length of h = 1600 µm, a stalk radius or r =

200µm and a mushroom tip radius of a ≈ 300 µm. The center-to-center distance

between neighboring fibrils was d = 800 µm. A polished brass disc was used

to seal the bottom of the mold, which replicated the smooth topography of the

brass to the fibril tips. Blue pigments (PK 5091, Degussa, Essen, Germany) were

added to the transparent PDMS in order to enhance the optical contrast for the

in situ imaging. Exact dimensions of the micropatterned specimens are given in

Table 4.1.

4.3.2 Robot experimental steps

Experimental data was collected using a pick-and-place robotic arm (Cobot

UR5, Universal Robots, Odense, Denmark), see Figure 4.1 c. A transparent

glass plate was used as the target object. An aluminum ring was attached on

top of the object to achieve a total mass of 200, 300, and 400 g. For contact

observation, the object holder was equipped with LEDs and a camera in order

to implement the principle of frustrated total internal reflection as illustrated in

Figure 4.1 a and c. Light coupled in the transparent glass object was scattered

after contacting the object with the fibrillar array, strongly improving the contrast

between attached and detached fibrils [62, 157]. For each specimen, 50 pick-and-

place cycles were performed by picking the object from the center; in another

50 cycles, the object was grasped off-center with w ≈ 3mm as can be seen in

Figure 4.1 b. After each cycle a random rotation of the robotic arm along the x

and y axes was introduced, resulting in the misalignment angles α and β, which

ranged between −2 and 2°. The glass object was cleaned with isopropanol and/or

acetone after every 100 cycles to remove dust and contamination.

Before each experiment, the fibrillar adhesive was mounted on the robotic arm

and aligned manually with the target object. Since the robot is not equipped

with a force sensor, the preload for the different specimens was chosen manually

as the first full contact (position 0). Position 0 was fixed by establishing contact

through visual inspection, without applying any additional load. However, a

slight variation of the preload could result from handling errors. Positions 1 and

2 corresponded to lifting by 2 and 20mm above contact, see Figure 4.2 a. At the

start, the robot recorded first two reference images of the contact signature, Ref

0 and Ref 2 at positions 0 and 2 for subsequent analysis. The robot arm moved

at a velocity of 10mm/s, and an acceleration of 40mm/s2. For detachment, the

arm rotated at a rotation velocity of 25 mm/s, and an acceleration of 240mm/s2.

In order to synchronize robot, camera, and image analysis, 1 to 2 s waiting time

was added between the essential steps. A successful “pick” event was defined
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after a hold time of 10 s after moving into position 2. The robot was controlled

using the UR5 control interface along with a program created using MATLAB

(MathWorks, MA, USA). Figure 4.2 b presents the flow chart to collect the

necessary data.

Figure 4.2: Data collection steps and flow chart. a) Schematic illus-
tration of the three different positions for data collection. Position 0: Upon
contact between array and object, a first set of visual features is extracted from
the captured image (Ref-0). The robot lifts the object to position 1 and a sec-
ond set of features is extracted. The object is then moved to position 2 where
image capture after a hold time of 10 s decides upon a successful pick event. b)
Flow chart of the experimental steps to collect data using the robot. The home
position is the starting position of the robotic arm.

4.3.2.1 Image analysis and features extraction

The images collected at positions 0, 1, and 2 were analyzed using Computer

Vision and Image Processing toolboxes from MATLAB as described in detail in

our previous report [171]. Binary images were created by selecting a threshold

gray value. Pixels with values above the threshold were defined as white and were

attributed to fibrils in contact, whereas pixels with smaller values were considered

black, indicating non-contact regions. The mean distance between fibrils centroids
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d = 800µm, was used to convert from the pixel to the micrometric scale. Multiple

inputs were extracted from the binarized contact signature images obtained at

positions 0 and 1. The contact area A (A0 at position 0 and A1 at position 1) was

obtained by calculating the number of white pixels at full or partial contact, see

Figure 4.3 a. The number of centroids in contact acquired by computer vision

represented the number of attached fibrils, Na, Figure 4.3 b.For misaligned

grasping, the position of the centroids is used to procure the misalignment vector,

i.e. the vector linking the center of mass, C, of the array in full contact in Ref-0

to that in partial contact. The misalignment vector can be represented in polar

coordinates by (|v⃗|,θ) with |v⃗| its magnitude and θ its angle with respect to the

x axis, see Figure 4.3 c. Observations of successful or unsuccessful attachment

i.e., out-puts, were obtained by comparing the captured images at position 2 with

Ref-2.

Since direct use of the captured images or the pixelated representation of the

fibrillar contacts for a deep learning approach was limited by multiple factors (e.g.

insufficient amount of data or input resolution below the receptive field size for

training convolutional neural networks), the extracted visual features A0, Na,0,

|v⃗|0, and θ0 at position 0, and A1, Na,1, |v⃗|1, and θ1 at position 1 were used to

train supervised learning models as will be presented in the next section.

4.3.2.2 Machine learning

For creating predictive models, we utilized supervised learning algorithms

from the Statistics and Machine Learning toolbox in MATLAB (ver. R2019b).

From the visual features obtained, various models were trained using MATLAB’s

classification learner toolbox. We focused on three models: linear Logistic Re-

gression (LR), non-linear models Support Vector Machines (SVM), and K-Nearest

Neighbors (KNN). The experimental data for the three different classifiers was

divided randomly into training and testing data at a ratio of 75 to 25 (6 spec-

imens for training and 2 for testing). In addition, six-fold cross-validation was

used to optimize the performance of the models and to avoid overfitting during

training; for each iteration, 5 specimens were used for training and one for val-

idation. A min-max normalization was used on the extracted features A0, Na,0

,|v⃗|0,A1, Na,1,and |v⃗|1, as follows: A′ = (A−min(A))/(max(A)−min(A)). The

features θ0 and θ1 were normalized by 2π such as: θ′ = θ/2π.

For each of the chosen models, 3 classifiers were created. The first was trained

using features extracted only from position 0 (A′
0, N

′
a,0 ,|v⃗|′0, θ′0), the second

using the features from the image at position 1 (A′
1, N

′
a,1, |v⃗|′1, θ′1,), and the

final one using all the features.

The trained classifiers were evaluated by the validation accuracy calculated by
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Figure 4.3: Capture of visual features corresponding to contacting
fibrillar arrays. a) Full (left)/partial (right) contact of individual fibrils. The
sum of the contact areas of all attached fibrils provides the total contact area,
A. b) Full (left) /partial (right) contact of the array, where green corresponds
to Na attached, red to Nd non-attached fibrils. c) Misalignment vector (black
arrow), v⃗, pointing from the centroid of complete contact to that of partial
contact, and θ1 its angle with respect to the x-axis.

(Tp+ Tn)/(Tp+ Tn+Fp+Fn), and by plotting the confusion matrices for the

test data, which included the values for true-positive Tp (True predicted attach-

ment), true-negative Tn (True predicted detachment), false-positive Fp (False

predicted attachment), and false-negative Fn (False predicted detachment). For

these values, the precision, P , recall, R ,and score, F1, can be calculated by

P = Tp/(Tp+ Fp), R = Tp/(Tp+ Fn), F1 = 2PR/(P +R).

4.3.3 Adhesion properties of the specimens

To characterize the quality of the 8 specimens, pull-off forces and statisti-

cal properties of the fibrillar adhesives were measured using a customized tensile

tester (Inspekt table BLUE, Hegewald & Peschke, Nossen, Germany) equipped

with a 50N load cell, a camera, and the FTIR system for in-situ observation. The

array was brought into contact with the target object (a smooth glass substrate),

at a velocity of 1mm/min until a prescribed compressive load of 1N, was reached.

The array was then instantly retracted at the same velocity. The highest tensile

force was reported as the pull-off force, Fp. The stiffness, k, of the fibrillar surface

was obtained from force-displacement curves in the compressive regime after de-
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ducing the load cell stiffness: k50 = 134.6Nmm−1 (from 1/k = 1/kslope − 1/k50).

Videos of the tests were recorded and correlated with the force-displacement

measurement. To characterize the spread of the distribution of individual fibril

pull-off forces, a cumulative Weibull distribution was fitted (Eq.2.2 in section

2.1.4, see also [63, 64]). The Weibull moduli, m, and the reference elongations,

u0, of the arrays are reported in Table 4.1.

4.4 Results and discussion

4.4.1 Distributions of fibril and of array strengths

The pull-off force measured for the different specimens ranged between 14N

for the weakest array S4 and 22N for the strongest array S3, see Table 4.1.

As the glass surface was free of contaminants, the likely reason for this distri-

bution lies in the limitations of the replica molding process: surface defects and

deviations in fibril radius induced a spread in pull-off strength across each ar-

ray. These variations were quantified by fitting Weibull distributions (Eq.2.2

in section 2.1.4) and extracting characteristic values as explained in previous

reports [48, 63,64], and presented in Table 4.1.

Table 4.1: Dimensions and quality variations of the specimens in terms
of the pull-off force, Fp, the pull-off stress,σ, the stiffness of the specimen, k,
the Weibull moduli, m, and the reference elongation, u0. Data for the diameter
represent mean values and standard deviations of 10 randomly selected fibrils.

Specimen a (µm) N σ Fp (N) k (kN/m) m u0

S1 284.4±16.7 842 78.4 16.79 68.9 2.8 0.6
S2 278.9± 8.5 841 89.5 18.4 105.58 3.6 0.51
S3 264± 5.5 842 119.4 22.01 78.65 5.4 0.72
S4 264.3± 6.9 837 77.4 14.22 78.96 4.7 0.58
S5 257.3± 6.1 841 86.4 15.12 87.24 3.7 0.51
S6 249.6± 8.1 811 112.1 17.78 94.9 5 0.5
S7 247.7± 9.2 844 93.8 15.27 86.8 4 0.41
S8 256.3± 9.9 844 87.4 15.22 81.7 5.9 0.33

4.4.2 Contact signatures for misaligned gripping

Figure 4.4 a, b, and c show the random distribution of the misalignment

angles β and α chosen during data collection for different object masses. Fig-

ure 4.4 d displays contact signatures at preload for specimens S1 (i and ii) and

specimens S2 (iii) divulging the variation of the number of attached pillars Na

for similar misalignment angles (α ∼ 0.6° and β ∼ 0.02°). This variation is a

result of the slight preload variation from the manual definition of position 0 for
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Figure 4.4: Variation of the misorientation. a-c) Rotation angles of the
robotic arm β versus α, both ranging between -2 and 2°. Misorientation data for
the different objects with mass a) 200 g, b) 300 g, and c) 400 g. d) Exemplary
images of the contact at preload for specimens S1 (i and ii) and S2 (iii) with
similar rotation angles, showing a variation in the number of fibrils in contact,
Na.

the different specimens. Moreover, the robot arm has a repeatability error of 100

µm when reaching a preset position. This can explain the significant difference

in number of attached fibrils, Na, for a similar preset values of α and β between

different specimens (Na,S1 = 566 and Na,S2 = 482) and for two cycles of the same

specimen (Na,S1(i) = 566 and Na,S1(ii) = 601) .

The patterned adhesives were successfully used to train the pick-and-place

handling of glass objects with a mass of 200, 300, and 400 g. The data set obtained

comprised 800 data points for each of the objects. This data included intentional

variations such as the preset degrees of misalignment or balanced/unbalanced

gripping due to variations of the gripping position and unpremeditated variations

attributed to specimens’ quality variations, inaccuracies in robot arm movements,

or slight preload variations.

4.4.3 Effect of misalignment and off-center gripping

Figure 4.5 shows the combined effect of misaligned contact and off-center

gripping after lifting the object to position 1. The unbalanced attachment induces

a moment, M, leading to a rotation of the glass object. In Figure 4.5 a, the
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Figure 4.5: Rotation of the object during off-center attachment. a)
The object rotates anti-clockwise similar to the rotation of the robotic arm,
which potentially leads to the attachment of previously detached fibrils. This
is shown in the images below taken at preload (position 0) and after lifting
(position 1). b) The object rotates oppositely to the rotation of the robotic
arm, which potentially leads to peeling. This is again shown by the images
below.

rotation of the glass is similar to the rotation of the robotic arm (anti-clockwise)

around the x-axes, which leads to the attachment of additional fibrils and counters

the detachment, as can be seen on the image (a.1) at position 1. In contrast,

when the rotation of the object is in the opposite direction to the robot arm

rotation, a peeling moment is created and fast detachment can be observed, see

Figure 4.5 b, image (b.1). The aim of the machine learning process is to

anticipate these processes and thereby increase the reliability of handling.

Figure 4.6 depicts the misalignment vector v⃗ (|v⃗|,θ) in the polar coordi-

nate system, grouped by the output results for the different object masses. The

distance of each dot to the center corresponds to the length of the vector, |v⃗|,
ranging between 0 and 10mm. The angle of the misalignment vector, θ, is des-

ignated by the position of the dots in the polar plot and ranges between 0 and

2π.The blue dots represent successful attachment, while the red dots correspond

to detachment (unsuccessful attachment). Figure 4.6 a, c, and e correspond to

data collected at position 0, i.e., at maximum preload. The fraction of successful

attachments decreased with increasing object mass: for the lighter (200 g) object,

71.4% of the manipulations were successfully attached while only 38.1% of the
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Figure 4.6: Misalignment vector, v⃗ in polar coordinate grouped by
the output results attached (blue) and detached (red). Upper row
(a,c,e) corresponds to contact images collected at preload (position 0), whereas
the lower row (b,d,f) corresponds to contact images collected upon lifting at
position 1. Columns correspond to the masses of the object of 200, 300, and
400 g. Each dot represents the length of the vector, |v⃗| ranging between 0 and
10mm and the misalignment angle, θ.

trials were successful with the 400 g object. For the 300 g object, the attachment

to detachment ratio was about 1:1, see Table B1 in SI. Figure 4.6 b, d, and f

correspond to data collected at position 1.

The misalignment vector data collected at position 0 appears to be condensed

around the center. After lifting the object to position 1 some of the data signify-

ing detachment (red dots) expand in the y direction as the misalignment vector

elongates. This can be related to the off-center gripping shown in Figure 4.5 b,

where the peeling moment leads to the detachment of some fibrils after lifting

and causes detachment of the object. The blue dots (attachments) on the other

hand congregate around the center because in some cases the off-center gripping

improves the contact during lifting as can be seen in Figure 4.5 a. The effect of

off-center gripping on the misalignment vector after lifting increases as the mass

of the glass object increases (the expansion and congregation of the data for the

400 g object is more pronounced than for the 200 g).
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4.4.4 Supervised machine learning

Figure 4.7: Classification results of three classifiers. a) The validation
accuracy (training) and b) the score (testing) of the support vector machines
(SVM), logistic regression (LR), and k nearest neighbors (KNN) trained by the
three objects.

The normalized features, collected from the contact images at position 0 (A′
0,

N ′
a,0 ,|v⃗|′0, θ′0), and position 1 (A′

1, N
′
a,1, |v⃗|′1, θ′1,), were implemented into

supervised machine learning models to train and compare multiple classifiers. The

classification models enable the prediction of attachment/detachment depending

on the mass of the object. Figure 4.7 a depicts the accuracy of the training

data as a function of the object mass for three different classifiers: support vector

machines (SVM), logistic regression (LR), and the k-nearest neighbor (KNN).For

all trained classifiers the accuracies obtained were always higher than 90%, with

KNN exhibiting an 100% validation accuracy and LR showing the lowest accuracy

(∼ 90%).However, this trend changes when testing the models with the remaining

testing data. Figure 4.7 b shows the score of the testing data for the different

trained classifiers. LRscores highest for the 200 g object at 95% and for the 300 g

object at 90%. SVM has the highest score for the 400 g and comes in second for

the other classifiers. The testing of KNN reveals the incapability of the model to

adapt to new data as the score of the KNN comes in the third position for the

three different object masses.

The confusion matrices in Figure 4.8 and the column graphics in Fig-

ure 4.9 depict the comparison ofLR trained first with features extracted at

position 0,P0(A
′
0, N

′
a,0 ,|v⃗|′0, θ′0) (Figure 4.8 a) , at position 1 P1(A

′
1, N

′
a,1,

|v⃗|′1, θ′1,) (Figure 4.8 b) , and the combined features from position 0 and 1,

P0,1(Figure 4.8 c). The number of false positives, Fp, and false negatives, Fn,

diminished when features obtained at lifting position were included in the train-
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ing. For the 200 g object, for example, 21 data points out of 40 true detachments

were falsely predicted as attached when using only features from position 0, 16

when using features from position 1, and only 4 when using all features. The

effect of the unbalanced distribution of the two result groups in the collected

data is shown in the confusion matrices for the 200 and 400 g objects by the large

variation between the true positives and true negatives.

As can be seen in Figure 4.9, the classifier P0 has the lowest score with a

maximum of ∼ 90% for the 200 g object and only 71% for the 400 g object. This

drop can be explained by the lack of information in the data at position 0 about

the off-center gripping, where the influence is more pronounced for the heavier

objects. The score for the 400 g increases to 84% for the classifier P1, as more

information is included. Combining the features in both positions (position 0 and

1) resulted in an increase of the accuracy and score for all the classifiers P0,1 to

more than 90%. The remaining 5 to 9% for perfect prediction could be attributed

to the unbalanced distribution of the two result groups (attached/detached) in the

collected data, see Table B1 in SI, and to the undesirable variations that are not

fully shown in the obtained features, which may induce the wrong classification.

The confusion matrices and classifiers comparisons of the SVM, and KNN models

are shown in Figure B2 and B3 in the SI. The accuracy, precision, recall, and

score of all the models are presented in Tables B2 to B10 in SI.

Overall, the high prediction accuracies demonstrated in this paper as a result

of in-situ observation at two positions are encouraging as the method can there-

fore significantly increase the reliability of object handling with micropatterned

adhesives. In particular, the inclusion of data from the lift position to train the

classification models will allow an impending peeling to be readily anticipated;

dramatic detachments and loss of objects could hence be avoided. Also, the re-

liability of handling asymmetric objects with various geometries and forms can

profit. More specifically, the data collected directly using the robotic arm bridge

the gap between laboratory adhesion experiments in displacement-control and

the actual pick and place application under force-controlled loading [59,64]. Cer-

tain limitations of the present approach should be noted. The trained models are

highly related to the relevant application circumstances, such as object weight,

the trajectory of the robot arm, and waiting times between different steps. More-

over, possible effects of additional parameters such as velocity and acceleration

of the robot arm were not taken into consideration. Optimization of the experi-

mental training data and development of new optical techniques compatible with

opaque and rough objects bear great potential to significantly improve in-line

control of handling processes even in demanding conditions.
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Figure 4.8: Confusion matrices of the different classifiers trained with
the logistic regression (LR) model. Each matrix represents the total num-
ber of true negative (Tn), true positive (Tp), false negative (Fn) and false
positive (Fp). Columns correspond to the masses of the object of 200, 300, and
400 g. a) Classifiers trained using data at preload (position 0). b) Classifiers
trained using data upon lifting (position 1). c) Classifiers trained using data
from positions 0 and 1.

Figure 4.9: Comparing input data for the logistic regression (LR)
model. a) The validation accuracy (training) and b) the score (testing) of
three objects with the mass 200, 300, and 400 g when trained by data from
position 0, P0, position 1, P1, and position 0 and 1, P0&1.
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4.5 Conclusions

In this work, we present an in-line monitoring system using supervised learning

classification models, optical observation, and image processing. Three classifi-

cation models were trained and tested using visual features obtained from the

contact signature at preload and after lifting the glass object. Successful and

unsuccessful attachment of the object was demonstrated in a pick and place ap-

plication. The following conclusions can be drawn:

• The performance of micropatterned adhesives can be affected by intentional

or unintentional variations, notably, prescribed misalignment and off-center

gripping or quality of the adhesive and preload/displacement variations

attributed to the limited robot arm accuracy.

• All tested classifiers showed accuracies higher than ∼ 90% for predicting

impending attachment or detachment as a function of the objects mass.

The highest testing score was obtained for logistic regression.

• Observation of the contact signature at compressive preload alone, i.e. be-

fore lifting of the object, resulted in a high predictive capability (between 70

and 90%). Including data from the lifting position significantly increased

the accuracy and score of the different trained models (to more than 90%).

The present machine learning process is proposed as a means of enhancing the

reliability of handling with micropatterned adhesives. It can furthermore be used

to identify the degradation and wear of the polymeric micropatterns.
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Supporting information: chapter 4

Figure B1: Fraction of detached fibrils in terms of the fibril elonga-
tion, u, for the used specimens. The red line on S8 is the fitted Weibull
distribution given by Eq.2.2 in section 2.1.4. The reference elongation u0 is
assigned to Nd/N = 1− 1/e (represented by the dashed line)

Table B1: Ratio of attachment and detachment results for the differ-
ent object masses.

Object Attached (%) Detached (%)

200 g 71.37 28.63
300 g 55.12 44.88
400 g 38.06 61.94
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Table B2: Validation accuracy, and the testing precision, recall, and
score for the 200 g classifier trained on data obtained for the image at
preload.

Model Validation
accuracy (%)

Precision (%) Recall (%) Score (%)

LR 89 87.79 94.38 90.96
SVM 90.5 87.86 95 91.29
KNN 100 87.43 91.25 89.3

Table B3: Validation accuracy, and the testing precision, recall, and
score for the 200 g classifier trained on data obtained for the image at
the first pick-up position.

Model Validation
accuracy (%)

Precision (%) Recall (%) Score (%)

LR 90.83 90.48 95 92.68
SVM 93 90.48 95 92.68
KNN 100 89.76 93.13 91.41

Table B4: Validation accuracy, and the testing precision, recall, and
score for the 200 g classifier trained on data obtained for the image at
preload plus the first pick-up position.

Model Validation
accuracy (%)

Precision (%) Recall (%) Score (%)

LR 91.67 97.42 94.38 95.87
SVM 94.33 94.38 94.38 94.38
KNN 100 91.82 91.25 91.54

Table B5: Validation accuracy, and the testing precision, recall, and
score for the 300 g classifier trained on data obtained for the image at
preload.

Model Validation
accuracy (%)

Precision (%) Recall (%) Score (%)

LR 87.17 96.34 69.3 80.61
SVM 88.83 95.35 71.93 82
KNN 100 90.43 74.56 81.73
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Table B6: Validation accuracy, and the testing precision, recall, and
score for the 300 g classifier trained on data obtained for the image at
the first pick-up position.

Model Validation
accuracy (%)

Precision (%) Recall (%) Score (%)

LR 91.83 97.8 78.07 86.83
SVM 94.17 95.79 79.82 87.08
KNN 100 93.00 81.58 86.92

Table B7: Validation accuracy, and the testing precision, recall, and
score for the 300 g classifier trained on data obtained for the image at
preload plus the first pick-up position.

Model Validation
accuracy (%)

Precision (%) Recall (%) Score (%)

LR 92.83 92.59 87.72 90.09
SVM 95.33 90.83 86.84 88.79
KNN 100 90.74 85.96 88.29

Table B8: Validation accuracy, and the testing precision, recall, and
score for the 400 g classifier trained on data obtained for the image at
preload.

Model Validation
accuracy (%)

Precision (%) Recall (%) Score (%)

LR 82.95 75.38 68.06 71.53
SVM 84.44 75.38 68.06 71.53
KNN 100 70.79 87.5 78.26

Table B9: Validation accuracy, and the testing precision, recall, and
score for the 400 g classifier trained on data obtained for the image at
the first pick-up position.

Model Validation
accuracy (%)

Precision (%) Recall (%) Score (%)

LR 88.85 90.48 79.17 84.44
SVM 89.9 84.51 83.33 83.92
KNN 100 85.92 84.72 85.31
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Table B10: Validation accuracy, and the testing precision, recall, and
score for the 400 g classifier trained on data obtained for the image at
preload plus the first pick-up position.

Model Validation
accuracy (%)

Precision (%) Recall (%) Score (%)

LR 90.56 88.16 93.06 90.54
SVM 92.05 89.47 94.44 91.89
KNN 100 85.90 93.06 89.33

Figure B2: Classification results for the trained models. a-b) Accuracy
and score for the trained classifiers for the three objects with the mass 200, 300,
and 200 g using SVM. c-d) using KNN.
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Figure B3: Confusion matrices for the different trained classifiers.
a, b, c) using SVM. d, e, f) using KNN.
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Chapter 5

Novel optical system for

observing the contact signature

of bio-inspired fibrillar structures

by looking through the fibrils.

5.1 Abstract

Bioinspired fibrillar microstructures are in the process of revolutionizing grip-

ping processes. Besides the inherent resource-efficiency and sustainability, a deci-

sive advantage would be the ability of observing the microfibrillar contacts with a

target object during gripping and detachment. We propose two newly developed

optical systems that allow direct observation of the interfacial contrast, termed

the ‘contact signature’. The proposed tools can detect and quantify contact

with various types of surfaces and objects (smooth, rough, and opaque) during

pick-and-place processes. By improving the reliability of handling, they will also

improve the acceptance of the new handling concept.
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5.2 Introduction

In the last few years, a new generation of grippers has been developed based

on gecko-inspired fibrillar structures [1, 6]. With switchable and residue-free ad-

hesion, these fibrillar grippers are gradually making their way to the market.

Based on molecular van der Waals interactions, the new technology has the po-

tential to overcome the limitations of conventional grippers [9, 10, 162, 165, 172].

Fibrillar microstructures can be designed to exert small compressive preloads for

handling fragile objects, and they work effectively in both air and vacuum condi-

tions [1,78,155]. However, failure of the fibrillar gripper to correctly pick and place

an object can have serious consequences in application (causing the destruction

of the picked object or slowing the production line). Adhesion failure of these

structures can come from various factors that affect the intimate contact with

the target surface, such as interfacial defects at the fibrillar scale [48, 51, 63, 64],

roughness of the target’s surface [44, 56], or inaccuracies in the alignment with

the object [53, 54]. Therefore, monitoring the effectiveness of gripping is crucial

for a reliable function [152]. It can improve the gripping quality by detecting

anomalies in the contact [171]. Optical inspection of contact formation and de-

tachment could provide valuable information. In fact, contact observation has

great importance in both scientific research for understanding different physical

mechanisms such as adhesion and tribological processes [62,106–108,173–175] and

for monitoring industrial applications [166,176].

Observing the contact between two surfaces is a classical technique: Newton

attributed the emergence of rings to the interference of light paths, a technique

that was exploited by McCutchen for contact examination [106]. Using the in-

terferometric technique, Krick et al. [108] developed an in-situ optical micro tri-

bometer to investigate the intimate contact between solids during loading and

sliding experiments. Another technique that proved to be efficient in enhancing

contrast is coaxial illumination. It was used in different fields for process con-

trol and contact observation [112–114]. In order to observe surface topography,

frustrated total internal reflection has been used since the 1960s [105, 106] and

was later adopted, e.g., for the estimation of the stress distribution on gecko’s

toes [107]. The present authors used the technique for in-situ observation of con-

tact formation and separation of micropatterned adhesives in contact with a glass

surface [48,62,64,157,171,175]. This enabled the understanding of the statistical

behaviour of detachment in these structures [48, 64]. When combined with ma-

chine learning and image processing, this technique allowed us to monitor and

predict the adhesion performance of the fibrillar structures [171].

Although these techniques have been successfully used for multiple applica-
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tions, they rely on observing the contact with transparent smooth objects. As a

result, contact monitoring is limited or not possible in the case of rough surfaces

and/or opaque objects. In order to solve this limitation, we present two new

optical systems. Placed in the back of the transparent fibrillar structure, the

optical instruments allow contact observation with various types of objects by

looking through the fibrils. We present a comparison of the two devices and the

resulting contrast variations using an image quality assessment technique [177],

and discuss their strengths and limitations.
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5.3 Materials and methods

5.3.1 Description of the in-situ optical systems

Two approaches for contact observation, with different aspects and require-

ment profiles, were developed. The principles are illustrated in Figure 5.1.

Figure 5.1: Schematic and images of the two setups for the observa-
tion of gecko-inspired gripper contact signature. . a,b) The “precision
setup” composed of a receiver (camera), a light source (LED ring), a polarizer,
an achromatic doublet lens with a focal point f = 15 cm , and a quarter wave
plate. The fibrillar structure is fixed on a transparent glass holder. c,d) The
“compact setup” consist of a camera, a light source (LED strip) covered with
a diffusor film. The fibrillar structure is fixed on an anti-reflective glass. Total
height l = 8.8 cm. In both setups the intensity of the multicolor LED light
sources could be varied in four steps referred to as intensity levels 1 through
4 later on, corresponding to approximately 25% / 50% / 75% / 100% of the
maximum brightness, respectively.

The first setup, called “precision setup”, attempts to maximize the homogene-
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ity of observation conditions over the area of the gripper. This is accomplished

using a lens (an achromatic doublet to reduce aberrations) such that the tips

of the fibrils are in the focal plane, whilst the receiver and the light source are

located in the back focal plane. The receiver is simply a camera with an objective

lens focused to infinity, and the light source is a ring of RGB LEDs (red, green,

blue) around the camera lens. This setup ensures equal angular distributions

of the incident light for all fibrils, and each fibril is observed exactly from the

top. Note that this is a dark field configuration, as the reflection from a flat

surface perpendicular to the axis of the setup will not hit the camera. Any edges,

scattering centers, and curved surfaces will thus be highlighted, leading to high

contrast.

To block unwanted reflections that may arise from the surfaces of the lens,

polarized light with orthogonal polarization directions for light source and receiver

is used. A quarter wave plate above the microstructure provides the rotation of

the polarization direction required for observation. As this first setup is rather

complex and bulky, a second “compact setup” using a more minimalistic approach

was also tested. The light source is here composed of an LED stripe (with 78

LEDs) curled up inside a 3D printed tube. The LEDs are covered with a diffusor

film to increase the homogeneity of the illumination. The camera observes the

fibrillar structure directly through a small aperture in the top of the tube with

a diameter Da = 3mm. The fibrillar structure is mounted on a transparent

CR-39 glass holder (Poly (allyl diglycol carbonate), PADC) as will be explained

in section 5.3.2. The curvature of the glass with a radius Rsph = 112mm is

chosen such that reflections from the back side into the camera are minimized.

An antireflection coating on the glass helps to reduce the influence of unwanted

reflections even further.

5.3.2 Microfibrillar adhesives and target surface fabrica-

tion

Mushroom-shaped fibrillar structures were fabricated using a replica molding

technique, as described in earlier reports [62, 157]. The pre-polymer mixture of

polydimethylsiloxane (PDMS) was prepared from the transparent SYLGARD 184

silicone elastomer kit (DOW Corning Corporation, Midland, USA) in a 10:1 ratio

of the base and the curing agent. The PDMS pre-polymer was thoroughly mixed

using a speedmixer and cross-linked in an oven at 95 °C for 1 h. The specimen

used for the precision setup was bonded to the glass holder by activating both

the surface of the backing layer of the specimen and the glass using plasma

treatment in air for 1min. The plasma treatment modified the surface chemicals
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Figure 5.2: Mushroom-shaped fibrillar structures used with the opti-
cal devices. a) Specimen used for the precision setup, the inset c) shows the
hexagonal arrangement. b) specimen used for the compact setup. The backing
layer thicknesses are t1 = 1.5mm and t2 = 6.4mm for the two setups, the pad
radii were Rpad1 = 10mm and Rpad2 = 12.5mm. d) SEM of the mushroom-
shaped fibrils. Typical fibril length is h = 1600 µm, stalk radius r = 200 µm,
and mushroom tip radius a ≈ 300 µm. The center-to-center distance between
adjacent fibrils is d = 800 µm.

and allowed the PDMS to stick to the glass substrate. For the compact setup, the

CR-39 curved holder was used to close the mold during the fabrication process.

The cured PDMS bonded with the holder directly. The specimen for the precision

setup was placed at the center of the holder. In the case of the compact setup,

the curved holder moved slightly during curing resulting in a calculated 1mm

off-center position.

Flat aluminum surfaces were used as a target counter surface. The color and

roughness of the target surface were varied by using different types of powder

paints. The resulting surfaces in blue, red, and green had a smooth texture. In

contrast, surfaces red.R, and blue.R were rough. Roughness measurements are

presented in Figure C1 and Table C1 in the supporting information, SI.
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5.3.3 Contact observation and image analysis

In order to apprehend the effect of light and camera settings on the contrast of

the obtained contact signature, images before and in contact between the fibrillar

structure and the target surface were captured and analyzed. For the light settings

five different light colors were tested (blue, red, green, white, and yellow) and four

light intensity levels (noted as INT1 to INT4, with 4 the highest intensity). For

the camera settings, three levels of exposure and two of the gain were analyzed.

As the two setups require different parameters to function properly, light intensity

levels and camera settings were chosen differently (in a range going from very dark

to very bright images).

Figure 5.3: Image processing steps. First, the background was removed
from the original images (lower row). Then, a local structural similarity index
(SSIM) map (right) was obtained comparing pixel by pixel between the image
in contact and before contact (The presented images were obtained using the
precision setup).

The collected images were analyzed using the Image processing toolbox from

MATLAB (MathWorks, MA, USA). The background of the images was removed

to reduce the noise and allow a comparison based only on the contact regions.

For this purpose, a mask was created from one image in the same batch and

subtracted from the rest of the images. The images before contact and in contact

were then compared using the structural similarity index measure, SSIM [177].

Initially developed to assess perceptual image quality, it can be used as a metric

to measure the similarity between two given images. The SSIM of two given
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images x and y, is given by Eq.5.1:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(5.1)

with µx the average of x, µy the average of y, σ
2
x the variance of x, σ2

y the variance

of y, and σ2
xy the covariance of x and y. c1 and c2 are two variables to stabilize

the division with weak denominator (i.e. If either the averages or the variances

of both x and y were zero, the division would fail).

Global and local SSIM values were calculated for the image and for each pixel.

The latter was used to create an SSIM map, see the example in Figure 5.3. SSIM

values varied between -1 and 1: the value was 1 when the two pixels or images

compared before and in contact were identical, and -1 when they were completely

different. Small values of the local SSIM appear as dark pixels in the SSIM map

and large values as bright pixels.

Visual features: number of fibrils in contact, Na, and misalignment vector, v⃗

(i.e., the difference between the center of mass of the full contact and the center

of mass of the partial contact in the case of misalignment) were extracted from

the image of the contact signature using Computer Vision and Image Processing

toolboxes from MATLAB as was previously reported in [171].

5.4 Results and discussion

The two optical devices were successfully used to collect images of the con-

tact signature of the micropatterned structures on different target surfaces under

various light and camera settings.

For illustration, Figure 5.4 shows images of the fibrillar structure in contact

with a rough blue surface under red illumination as an example (a comparison

of all the light settings used is going to be presented further in Figure 5.8). A

close-up of the structure in each case is also shown before contact for comparison.

The precision setup offers a perpendicular view from the top on each fibril

even at off-center positions, whereas the simpler design of the compact setup

leads to an oblique angle of incidence, such that parts of the side wall can be seen

as well. Note that there is some reflection from the tips of the fibrils as well as

from the base plane (i.e. the bottom plane of the fibrils), Figure 5.4 b. The

reflections from the side wall are less visible in the upper region of the contact

image (see Figure C2 in SI for a close-up look of this region). In the compact

setup, this can be readily explained by the light incident from many different

directions, such that there will always be some light paths leading to the camera.

The difference between the contrast in the upper and bottom region could be
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Figure 5.4: Example contact images of the fibrillar array in contact
with a rough blue surface. The insets are zoomed-in images of the selected
area for a) the precision setup and b) the compact setup. The close-up images in
both case present also images before contact for comparison. Red illumination
was used for these images.

related to the position of the specimen in comparison to the concave glass holder

(i.e., the specimen is positioned at ≈ 1mm off-center). In contrast, precision

setup is a dark field optical system, so the observed reflections can be related to

the unevenness of the micropatterned structure surfaces (i.e., the tip of the fibrils

and the base plane). The granular appearance of the reflections supports that

assumption. Moreover, the distribution of the light reflected from the tips of the

fibrils changes drastically upon contact in the precision setup, which indicates a

deformation by the rough surface of the target. This is less visible in the compact

setup. The main change from the before-contact to the contact state, however,

is a significant reduction of the light reflected from the tips of the fibrils. This is

due to frustration of the Fresnel reflection upon contact, and absorption of the

light in the colored target surface.

The observation of the interface through the whole cross-section of the fibril

in the precision setup maximizes the contrast variation between fibrils before and

in contact. The compact setup also achieves a significant contrast variation even

under oblique observation, most likely because the light reaching the camera from

the side wall of the fibril has also gone through a reflection at the tip before.
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Figure 5.5: Images and the corresponding gray value histogram for a
red surface with green light and intensity 4. a,b) using precision setup.
c,d) using the compact setup.

Figure 5.5 presents images before and after contact for the precision and

compact setups (after background removal) and the corresponding gray value

histogram using green light. The first peaks from 0 to 25 correspond to the dark

background. For both setups, the second peaks shift to a darker tone as the

fibrillar structure goes into contact. The highest peak for set-up 1 is about 150

before contact and about 60 in contact, Figure 5.5 a. For the compact setup,

the peak changes from around 100 to two peaks between 25 and 50, Figure 5.5 c.

Note that some fibrils in the contact signature obtained using the precision setup

appear to be brighter than the rest of the fibrils, Figure 5.5 b. These fibrils are

either defected, slightly tilted, or partially in contact. The defected areas lead

to the scattering of the light and to a brighter contrast as explained previously

in section 2.1. For the compact setup, one can distinguish two levels of the gray

values on the same fibril for some fibrils, see the dashed area in Figure 5.5 d.

This effect is due to reflections from the side wall of the fibrils in the compact

setup that interfered with the mask creation for background removal.

Figure 5.6 a shows contact signature images collected using the precision

setup of the patterned structure in contact with a red surface illuminated using

green light for this example. Figure 5.6 b present the corresponding SSIM

map and SSIM value depending on the variation of the camera settings. Similar

analysis for images obtained using the compact setup is presented in Figure C3
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Figure 5.6: Camera setting variations in terms of the exposure time
and the gain for the precision setup. a) The original images and b) the
SSIM map and the SSIM global value (in the box). A red surface as a target
surface was illuminated with green light at intensity level 4.

in SI. Looking at the original images it is easier to detect the contact signature

of the fibrils as the exposure time or the gain is increased, for both setups. This

is due to the change in the brightness of the background pixels. However, after

removing the background and comparing the before and in-contact images, the

SSIM values and SSIM map show a negligible difference between the various

camera settings.

Figure 5.7 displays SSIM maps and global values as a function of 4 different

light intensities (INT1- INT4). Original images used to calculate the SSIM map

and global values are presented in Figure C4 in the SI. For the precision setup

increasing the light intensity decreased the SSIM value and increased the obtained

contrast until saturation. For the compact setup, the variation of the SSIM values

and contrast with the increase of the intensity is small. In theory, the light

intensity is just a scaling factor for the information contained in the images, i.e.,

the increase of the intensity should increase the brightness of all pixels equally.

Thus, it should not affect the extracted data (as can be seen for the compact

setup, Figure 5.7 b). However, random fluctuations, quantization noise, and the

saturation of bright pixels can be the reason for the higher variability observed in

the precision setup, Figure 5.7 a. The smaller variation in the compact setup

101



Figure 5.7: SSIM map and SSIM global value depending on the light
intensity for a red target surface using green light for a) the precision
setup and b) the compact setup

can be attributed to its lower dynamic range, which makes it less sensitive to light

intensity and exposure. In contrast, the dynamic range of the precision setup is

too high, resulting in a dependence on the light intensity.

A particular effect of this intensity dependence can be seen in the darker

fibrils in the SSIM map observed for INT1. These present fibrils that either have

a defect, are slightly tilted or are partially in contact. When the light intensity

is increased, the difference in the local SSIM values between these fibrils and the

rest of the pad is less pronounced. As mentioned before, these fibrils result in

bright pixels in the original images due to the scattering of the light. The bright

pixels in this example are observed in images before contact. As the fibrils go

into contact the scattering is slightly reduced. Hence, for INT1 as the brightness

is low in the image before contact, the difference between these fibrils and the

rest of the pad is quite prominent. As we increase the intensity, the brightness of

the pixels of all fibrils before contact increases and reaches saturation for INT4.

In this case, the difference between the defected fibrils and the rest of the pad is

less noticeable.

Figure 5.8 represents values of the global SSIM in the form of a heat map

where bright colors present a low contrast, i.e., high SSIM values and dark colors

present higher contrast, i.e., low SSIM values. SSIM global values for the precision

setup range between 0.59 and 1 depending on the light color and intensity, while
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Figure 5.8: SSIM heat map showing the contrast variation between
the precision setup and the compact setup for the different target surface
colors, light colors (B: blue, G: green, R: Red, W: white, Y: yellow light) and
light intensity (level 1, 2, 3, and 4). A dark blue-green field in the map (low
SSIM value) indicates that the respective combination of colors and light inten-
sity produces high contrast between the images before and in contact. These
conditions are more suitable for detecting the contact than the low contrast
(high SSIM) combinations marked in the map by bright reddish hues.

for the compact setup it ranges between 0.785 and 1. The ability of the precision

setup to reach lower SSIM values shows that the contrast in the precision setup

with the proper light parameters can be better than the compact setup. This can

be due to the inhomogeneity and the scattering of the light in the compact setup

which reduces the contrast in different areas of the fibrillar structure.

As mentioned before, the intensity of the light has a higher effect on the

precision setup. As can be seen in Figure 5.8 for the precision setup, intensity

level 4 generates the best contrast when green or red light is used whereas the

contrast deteriorates when using white, yellow, and blue light. However, in all

cases, intensity level 1 exhibits the highest SSIM values and therefore the lowest

contrast. We can deduce that the saturation of the pixels is dependent on the

color of light used.

For both devices, target surfaces with the same color as the light used result in
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higher SSIM values and therefore a lower contrast, for example, the blue light with

a blue surface (SSIM=0.91 for the precision setup intensity 4). Whereas when

choosing a different color of the light the contrast is enhanced, for example blue

surface with red light (SSIM=0.62 for the precision setup intensity 4). Overall,

the contrast for both setups is dependent on the right choice of the light color with

the corresponding color of the target surface. In fact, if the light color is similar

to the target surface color, the reflections from the target surface in contact may

just replace the reflection from the fibril tip out of contact. Thus, the difference

in the contrast, in this case, is very minimal.

Figure 5.9: Contact signature (unprocessed images) of the fibrillar
structure showing full contact (ii), misalignment of the fibrillar array with the
target surface (iii) and defects in the contact interface (i) at the fibrils level for
a) the precision setup and b) the compact setup, respectively.

Figure 5.9 highlights conceivable applications of the novel setups to detect

anomalies in the contact. Using these new optical devices, some defects at fibrils

interface (Figure 5.9 a.i and b.i) or even roughness (Figure 5.4 a and b) are

also visible for both setups. Based on statistical evaluation, it should be possible

to distinguish between roughness affecting all fibrils in contact in a similar way

and defects present in a small proportion of fibrils only. However, it should be

mentioned that it is not always easy to characterize the type of a defect. Com-
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paring the two setups, the task of analyzing the contact at the level of individual

fibrils is probably simpler in the precision setup, since all fibrils are seen from the

same perpendicular angle of incidence.

Furthermore, we are able to detect alignment imperfections with both setups,

as can be seen in Figure 5.9 a.iii and b.iii. Without any image processing, the

fibrils that are in contact (black for the precision setup and dark gray for setup2)

are clearly distinguishable from the ones that are detached due to misalignment.

Further image processing allows the extraction of visual features that can be used

for different applications. Figure 5.10 presents examples of the visual features

that can be extracted from the contact signature. Although the number of fibrils

and the misalignment vector can be extracted accurately, the real contact is still

difficult to obtain due to the different reflections at the fibrils scale.

Figure 5.10: Extracted visual features. a) Number attached, Na, and
detached fibrils, Nd. b) Misalignment vector, v⃗, the vector between the center
of the full contact, C and the centre of the misaligned contact, Cm.
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5.5 Conclusions

For the observation of the contacts between fibrillar structures and target

surfaces, novel optical systems were presented. The optical system should allow

for a clear distinction between fibrils in contact with the target surface and fibrils

out of contact. Ideally, the distinction should not depend on the position of the

fibril in the array, i.e., the image quality should be the same for fibrils in the

center region or at the edge of the array. Furthermore, the compactness of the

device is an asset for practical applicability. In summary, the two setups met

these requirements to different extents:

• The precision setup showed high contrast between before and in-contact.

It allowed the detection of single fibril contact, roughness, and other possi-

ble contact imperfections such as misalignment and defects in the contact

interface. However, this device is bulky with a total length of 40 cm.

• To reduce the size, a different approach was taken to build the compact

setup. This setup is also cost-saving avoiding the use of expensive optics.

However, the homogeneity of the light and the reflections are still a problem

for this device.

• Light intensity had more effect on the precision setup. However, both de-

vices were not affected by the camera settings.

• For both setups, the choice of the light color depending on the object can

enhance the contrast of the obtained image.

The two setups open a wide range of applications for monitoring the correct

attachment, the deterioration of the quality of the fibrillar structures as well as the

detection of contamination at the interface. Nevertheless, further improvements

on both devices to avoid reflections and enhance the homogeneity of the lighting

would increase the imaging quality and pave the way for new applications.
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Supporting information: chapter 5

Figure C1: Confocal microscope topography images for a) Blue and b)
Blue.R surfaces. The dashed lines represent the extracted profiles. c) The two
extracted profiles.
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Table C1: Roughness of the target surfaces

Surface Rz (µm)

Red 0.43
Red.R 1.92
Blue 0.615
Blue.R 2.07
green 0.44

Figure C2: Original images before and in contact of the fibrillar array
with a rough blue surface. The insets are zoomed in images of the selected
area for a) setup 1 and b) setup 2. red illumination was used for these images.
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Figure C3: Camera setting variations in terms of the exposure time
and the gain for setup 2. a) the original images and b) the SSIM map and
SSIM global value. A red surface was used as a target surface with a green light
and an intensity level 4.
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Figure C4: Original images with removed background before and in
contact used to calculate SSIM values and SSIM map depending on the light
intensity (in Figure 5.7) for a) the precision setup and b) the compact setup
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Chapter 6

Adhesion hysteresis of a
nominally flat punch with
small-scale, single-wavelength
roughness: A combined numerical

and experimental study∗

6.1 Abstract

Viscoelasticity is well known to cause a significant hysteresis of crack closure

and opening when an elastomer is brought in and out of contact with a flat, rigid

counterface. In contrast, the idea that adhesive hysteresis can also result under

quasi-static driving due to small-scale, elastic multistability is relatively new.

Here, we study a system in which both mechanisms act concurrently. Specifically,

we compare the simulated and experimentally measured time evolution of the

interfacial force and the real contact area between a soft elastomer and a rigid,

flat punch, to which small-scale, single-sinusoidal roughness is added. To this end,

we further the Green’s function molecular dynamics method and extend recently

developed imaging techniques to elucidate the rate- and preload-dependence of

the pull-off process. Our results reveal that hysteresis is much enhanced when the

saddle points of the topography come into contact, which, however, is impeded

by viscoelastic forces. A similar interplay of viscous- and multistability effects

is expected to occur in macroscopic polymer contacts and be relevant, e.g., for

pressure-sensitive adhesives and modern adhesive gripping devices.

∗This chapter is a planned publication.
Authors: Müller, C., Samri, M., Hensel, R., Arzt, E., & Müser, M.
See more information in the “Contribution of co-authors”
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6.2 Introduction

Bringing two surfaces into contact and separating them again is generally

associated with a net, rate-dependent energy loss. Several processes can cause

this hysteresis, in particular, physicochemical interfacial aging [178,179], such as

chain interdigitation in polymer-polymer contacts [180], viscoelastic relaxation in

the vicinity of and far from true contact [181–184], and the formation of cap-

illaries [185–187], to name a few. Recently, elastic multistability [188] has also

received increased attention as a potential adhesive dissipation mechanism occur-

ring during the relative motion of nominally flat surfaces, i.e., the discontinuous

jump of small-scale asperities in and out of contact [30, 189–193] during quasi-

static motion, or the discontinuous motion of a contact line during approach and

retraction resulting from chemical or structural surface heterogeneity [194].

Ascertaining what adhesion-hysteresis mechanism dominates under what cir-

cumstances is a difficult task, because analytical solutions for the rate- and/or

the preload dependence of the pull-off force scarcely exist, even when only one

relaxation process dominates. Moreover, it is certainly conceivable that compet-

ing mechanisms, e.g., contact aging and contact growth, lead to a similar, for

example, logarithmic time dependence of waiting time on the pull-off force. The

validity of models and theories, irrespective of whether they are solved analyt-

ically or numerically, should therefore be tested against information additional

to load-displacement relations and their dependence on rate, waiting time, and

preload. A central quantity to be known is the time evolution of true contact,

including its size and shape.

While small-scale features of adhesive experimental and in-silico contacts have

been successfully compared in the recent past, such as in the contact-mechanics

challenge [195, 196] or to demonstrate the breakdown of Amontons’ law at the

small scale in soft-matter contacts [197], we are not aware of related studies

involving time-dependent phenomena as they occur during adhesion hysteresis.

The central difficulty for simulators lies in the short-range nature of adhe-

sion, whose range of interaction ρ critically affects not only the viscoelastic losses

caused by propagating cracks [198] but also the energy hysteresis induced by

elastic instabilities [30, 199]. Unfortunately, using realistically small values for ρ

requires extremely fine discretization to be used so that lattice instabilities are

avoided [30]. The latter would lead to Coulomb friction for propagating cracks

rather than to the more realistic polynomial crack-speed dependence [200, 201].

As of now, it does not seem to be clear how to reproduce reliably realistic dy-

namics of viscoelastic adhesion theory with continuum-theory based simulations.

In this work, we study the contact between a viscoelastic film and a nominally
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flat, cylindrical punch to which single-wavelength, small-scale roughness is added.

Depending on the relative orientation of different wavevectors q, which all have

the same magnitude q, different patterns can be produced for which the local

height maxima form either a hexagonal or a triangular lattice. The questions to be

addressed in this study are manifold. Can simulations reproduce experimentally

observed dependencies, such as the normal force as a function of time and the

concomitant contact-area evolution? How does the unit of time, or retraction

velocity, have to be renormalized for a successful comparison between simulation

and experiment when it is computationally unfeasible to work with realistically

small values of ρ? Is it possible to clearly discriminate between dissipation due

to elastic instabilities and viscoelastic crack propagation? And last but not least,

can visualizing the contact area aid the prediction of pull-off forces?

6.3 Models and methods

6.3.1 Reference model

In this work, we compare simulations and experiments mimicking an ideal

(mathematical) reference model, which is sketched in Figure 6.1. It consists of

a flat, cylindrical, perfectly rigid punch of radius a to which single-wavelength

corrugation z(x, y) is added. The punch is indented into a homogeneous, isotropic,

and elastomeric film with linear viscoelasticity. Inspired by the experimental

realization, we will call this material PDMS, although the theoretical model does

not necessarily imply a specific polymer compound. It has a finite height h,

infinite in-plane dimension with a frequency-dependent Young’s modulus E(ω)

and a constant Poisson’s ratio ν. Film and punch interact through a cohesive-

zone model, which is characterized by a surface energy per unit area γ and a small

but finite interaction range ρ. Punch and elastomer are frictionless and cannot

interpenetrate.

Numerical values of the reference model are a = 375 µm, h = 2mm, E(0) =

2MPa, E(∞) = 2GPa, ν = 0.495, and γ = 50mJ/m2, which are admittedly our

best guesses for the values of the laboratory version of the reference model. The

precise frequency dependence of E(ω) as well as the interaction range cannot be

well matched between the laboratory and the in-silico realization of the reference

model, which is why we abstain from defining reference values here. The exper-

imental range of adhesion can certainly be classified as short-ranged, while that

used in the simulations is merely as short-ranged as computationally feasible.

Two different height topographies are added to the punch, a triangular (tri)

and a hexagonal (hex) one. Redefining prefactors compared to previous work [202],
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Figure 6.1: Illustration of the reference system. Dimensions are not to
scale. However, u(x, y) and the indenter shape represent data obtained from the
simulation during compression and also the thermal shrinkage occurring after
3D printing.

they are given by
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=
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)
+ cos (qy)

}
(6.1a)

ztri(x, y)

z0(tri)
= 2− zhex(x, y)

z0(hex)
, (6.1b)

where q = 2π/λ is the wave vector and λ = 150 µm. The amplitude of the

undulations—defined as half the difference between maximum and minimum—

are set to z0(hex) = 9.2 µm and z0(tri) = 4 µm.

Resulting punch profiles are shown in Figure 6.2. Different amplitudes were

chosen, because the jump into contact of saddle points occurs much earlier for

hexagonal than for triangular corrugations [202]. Moreover, the dimensionless

surface energy γ̃ ≡ γ/vfullela , where vfullela is the areal elastic energy in full static

contact, are approximately γ̃(tri) ≈ 0.32 and γ̃(hex) ≈ 0.065. These values

are less than 1/2, which has been identified as the (approximate) dividing line

between sticky and non-sticky for many surfaces with a symmetric height distri-

bution [203].

Figure 6.2: Top view of the flat indenter with a) triangular and b)
hexagonal waviness.
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The indenter is moved from non-contact at different constant velocities vext

ranging from 0.5 to 25 µms−1 into the elastomer until a target preload, Fpl, is

reached. The velocity is then reverted quasi-instantaneously to initiate detach-

ment. The preload is varied between 1 and 10mN for the hexagonal and between

10 and 80mN for the triangular surface.

A brief note on the choice of the frequency- and wavenumber-independent

Poisson’s ratio is in order. Real elastomers deviate from ideal incompressibility

at high frequency much more than at low frequency, i.e., their Poisson’s ratio

falls from just below 0.5 at ω → 0 to typically around 0.3 for large ω [204, 205].

In the present study, we can ignore this effect, because the film thickness clearly

exceeds the punch radius, which means that all relevant modes, other than the

center-of-mass mode, can be treated as if the film was semi-infinite. In this case,

the contact modulus, E∗(ω) = E(ω)/{1− ν2(ω)}, which is not very sensitive

to the frequency dependence of the Poisson’s ratio, becomes the central elastic

parameter determining the viscoelastic response.

6.3.2 Numerical model and methods

The solution of the dynamics defined implicitly in section 6.3.1 requires some

idealizations to be given up, while other specifications can be perfectly realized, at

least to numerical precision. The latter include linear elasticity, the topographies,

velocities, loads, and any other specified number. Compromises are related to

the numerical solution of the problem, which includes the necessity to discretize

space and time as well as the use of periodic boundary conditions for reasons of

efficiency.

6.3.2.1 Reproducing viscoelastic properties using GFMD

The time evolution of the elastic bottom layer can be cast as

ũ(q, t) =

t∫
−∞

dt′ G̃(q, t− t′) f̃(q, t′), (6.2)

where ũ(q, t) is the spatial Fourier transform of the displacement field as a function

of time t, f̃(q, t) is the spatial Fourier transform of the external force per unit

area acting on the elastomer, and G̃(q, t − t′) is the Green’s function conveying

the effect that this force, or stress, at time t′ ≤ t has on the displacement at time
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t. Formally, G̃(q, t) is given by

G̃(q, t) =
2

q

∞∫
−∞

dω
1

E∗(ω)
eiωt. (6.3)

The time dependence of the Green’s functions G̃(q, t) or the response functions

they produce can be represented via Prony series, which in turn can be realized

through rheological models, as that depicted in Figure 6.3, where stiffness (kn)

and damping (ηn) terms are introduced. An appropriate choice of weights κn =

kn/k0 and relaxation times τn = ηn/kn allow the target frequency dependence

κ(ω) = E(ω)/E(0) to be approximated through

κ(ω) = 1 +
N∑

n=1

κn

{
ω2τ 2n

1 + ω2τ 2n
+ i

ωτn
1 + ω2τ 2n

}
. (6.4)

An example of a system producing such a target dependence is shown in Fig-

ure 6.4 a.

Figure 6.3: Illustration of the rheological model employed, which con-
sists of one Kelvin-Voigt element (K0,η0) and N Maxwell elements (Kn,ηn) in
parallel plus an inertial mass m. In GFMD, each mode ũ(q)=̂u0 is represented
with such a model.

An inertia m and damping η0 were added to the rheological elements, which

allowed us to implement the final rheological model into a Green’s function molec-

ular dynamics (GFMD) [94] based code. The two added elements alter the fre-

quency dependence to

κGMFD(ω) = κ(ω)− ω2m

k0
+ iω

η0
k0

. (6.5)

By replacing k0 with k0(q) = qE∗/2 for each ũ(q, t), all kn and ηn turn into kn(q)

and ηn(q), with the exception of η0(q), whose parametrization will be discussed

separately.
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Figure 6.4: a) Frequency-dependent target stiffness k(ω) as a function of
frequency ω using kn+1 = 60.8kn, τn+1 = τn/6, and N = 5. Dotted lines show
the relaxation process of individual Maxwell elements and the gray line a ω0.8

power law. b) Associated response function u(t) to a point force f(t) = f0Θ(t)
using different auxiliary masses leading to different eigenfrequencies ωGFMD =√
k∞/m. In each case, the auxiliary damping was chosen to satisfy the condition

for critical damping η0 = 2ωGFMDm.

The resulting equations of motion for each mode and its associated extra
degrees of freedom un(q, t) read:

m(q)¨̃u(q, t) + η0(q) ˙̃u(q, t) + k∞(q)ũ(q, t) = f̃(q, t) +

N∑
n=1

kn(q)un(q, t), (6.6a)

ηn(q)u̇n(q, t) = kn(q){ũ(q, t)− un(q, t)}, n ∈ 1...N, (6.6b)

with k∞(q) ≡∑N
n=0 kn(q), which is nothing but k∞(q) = E(∞)k0(q)/E(0), where

only one of the two “arrays” k0(q) and k∞(q) needs to be stored in memory. Even

for a single Maxwell element, the solution of the equations of motion turned out

simpler and more stable (but not necessarily faster) than our previous extension

to GFMD [100], which was similar in spirit as that proposed by van Dokkum

and Nicola [206] in that the first-order time derivatives of the external forces

were needed. Our current approach rather resembles that pursued by Bugnicourt

et al. [207], who used Zener instead of Maxwell models and a conjugate gradient

(CG) minimization method for the solution of the instantaneous or high-frequency

response instead of the auxiliary masses.

Before proceeding, a few additional notes of clarification might be in order.

First, tildes on the un(q, t) are omitted, as they are not subjected to an inverse

Fourier transform. Second, the equations of motion solved in conventional GFMD

are recuperated by setting N = 0, while the standard linear solid is obtained when

using N = 1 and (infinitesimally) small values for m and η0. Third, the presented

methodology is readily extended to more general situations, even if the above

treatment merely targets the specialized problem defined in section 6.3. For

example, if the elastic properties were anisotropic in the xy-plane, as they would
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be if the elastomer were prestrained in x but not in y direction, the coefficients

k0(q) and thereby kn(q) and ηn(q) would be functions of the vector q and not

merely of its amplitude. Similarly, if the elastic properties changed with depth, as

is the case when the crosslinking and thus the stiffness depends on the depth [208],

but similarly when the elastomer is confined by a hard wall [95, 96], the term

k0(q) = qE∗/2 would have to be replaced or multiplied with an appropriate q-

dependent function. Last but not least, using N Maxwell elements does not imply

a single time step to take N times longer than a conventional GFMD time step,

because the most demanding operation is the fast Fourier transform. For example,

using N = 5 Maxwell elements per mode only increases the CPU time per time

step by roughly 50%, compared to a regular GFMD time step for a discretization

of 2, 048×2, 048. Relative costs on memory are clearly larger. The reason why we

do not go beyond five Maxwell elements in this study is that almost four decades

of relaxation times can be covered when choosing τn+1 = τn/6, which requires the

time step to be reduced dramatically assuming τ1 to remain fixed. Going to even

more decades would make us have to reduce the time step—as measured in real

time.

While the values of k0(q) as well as of kn(q) and ηn(q) for n ≥ 1 are prede-

termined by κn, τn, and E∗, the remaining parameters m(q) and η0(q) should be

chosen such that they provide a compromise between accuracy and efficiency. The

goal must be to find the high-frequency elastic response as quickly as possible,

albeit without making it necessary to dramatically reduce the used time step ∆t.

Under the made assumption that E(ω) does not depend on q, each free surface

mode must have the same response function. This implies m(q) ∝ k0(q), which

is the choice made in so-called mass-weighted GFMD [99]. The period associated

with the resulting frequency ωGFMD =
√

k∞(q)/m(q) is best chosen such that it

is not much less than τmin = τN = min(τn). We found the “aggressive” choice of

ωGFMDτmin = 2π to be sufficient.

If, however, the pulling velocity is so large that the time step ∆t is no longer

limited by τmin but by a large pulling velocity, e.g., by the ratio of a characteristic

height amplitude and the pulling velocity, we recommend to set m such that

ωGFMD∆t ≈ π/10 as to achieve a numerically stable but fast relaxation of the

high-frequency response to its exact solution. After realizing that the left-hand

side of Eq.6.6a represents a damped harmonic oscillator, η0(q) is set to satisfy

the condition for critical damping, i.e., η0(q) = 2ωGFMDm(q).

As a consequence of the just-made choices, the target visco-elastic response,

for example, to an indenter, exerting a force on a single (grid) point starting at

time t0, is mimicked quite accurately at times satisfying t > t0 + τmin, which can

be achieved within one or two dozen time steps. The validity of this claim is
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demonstrated in Figure 6.4 b for our default N = 5 Maxwell models containing

default model. It can be seen that even ωGFMDτmin = 2π leads to quite satisfactory

results, although the time step, ∆t was set by default to ∆t = τmin/20.

A final note related to the modeling of viscoelastic properties pertains to our

simulations based on N = 5 Maxwell elements, which are shown in Figure 6.4 b.

The rationale for why the ratio k∞/k0 was reduced from its reference value of

1,000 to 250 will be detailed in the results section. At this point it shall suffice

to say that five Maxwell elements, in addition to the k0 spring, can produce a

response function E ′(ω) that roughly scales proportional to ωβ with β ≈ 0.8 at

an intermediate frequency ωint defined through E ′(ωint) =
√
E ′(0)E ′(∞), where

E ′(ω) is the storage modulus, i.e., the real part of the complex function E(ω). A

single element yields β ≈ 2, while experimental systems are close to β ≈ 0.5.

6.3.2.2 Modeling adhesion

The adhesive and repulsive interaction between elastomer and indenter is mod-

eled by the cohesive zone model (CZM) proposed in Ref. [30]. Assuming their

two surfaces with nominal surface energy γ to have a gap g(x, y), the interaction

potential Γ(g) is given by

Γ(g) = −γ ·


{1 + cos(πg/ρ)}/2 for 0 ≤ g < ρ

{1− (πg/ρ)2/4} for g < 0

0 else

, (6.7)

where ρ is the range of adhesion.

Our CZM allows two surfaces to overlap marginally but penalizes the overlap

with a harmonic function. Enforcing a strict non-overlap constraint might be

possible, albeit, only at a much enhanced numerical cost, since this would cer-

tainly require all internal modes un(q) to be Fourier transformed. Moreover, the

quadratic dependence of the potentials implies an upper bound for the stiffness

of the equation to be solved, thereby ensuring stable integration with an appro-

priately chosen time step. The maximum adhesive stress σth = max(dΓ/dg) that

can locally occur using this model is γπ/2ρ.

The range of adhesion is generally chosen such that it is as small as possible

for a given discretization but not so small that lattice pinning and subsequent

instabilities of the grid points near a propagating crack would occur. This can be

achieved when the maximum curvature of the potential is set to approximately

0.2qrefE
∗, where qref ≡ 2πn/L, n being the number of discretization points parallel

to one spatial direction and L the linear dimension of the periodically repeated

simulation cell [30]. Given a default choice of L = 1.5mm and discretizations of
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the elastomer surface into grid points whose number ranged from 2, 048×2, 048 to

4, 096×4, 096, ρ turned out to lie in between 0.187 to 0.264 µm, which is not only

much more than typical Lennard-Jones interaction ranges of 3 Å but also exceeds

recent estimates [209], which were obtained from experimentally measured pull-off

forces between ruby and diamond, by a little more than a factor of ten.

To meaningfully compare simulations and experiments, it is necessary to assess

whether the adhesive interactions used in the model are short- or long-ranged.

This can be done using a (generalized) Tabor parameter, which is defined as the

ratio µT = ρc/ρ, where ρc is a characteristic interaction range at which the cross-

over from short- to long-ranged adhesion takes place. Assuming that γ/E∗ and

a characteristic radius Rc are the only two independent length scales that can

be constructed from the model, the only possible dependence of µT on the two

length scales is

µT =
1

ρ
Rβ

c

( γ

E∗

)1−β

, (6.8)

assuming either a flat punch with radius Rc or an indenter whose shape is a power

law in the radius, i.e., h(r) = Rc(r/Rc)
n/n. It will be shown in a separate work

that the exponent β turns out to be β = (n − 1)/(2n − 1) so that β = 1/3 for

a parabolic (n = 2) and β = 1/2 a flat-punch (n → ∞) indenter. These two

limiting cases agree with the definition of the conventional Tabor parameter for

a parabolic indenter [210] and for the parameter allowing one to assess if the

high-velocity retraction of a flat-punch indenter fails through crack propagation

or through uniform bond breaking. They happen in the limits of µT ≫ 1 and

µT ≪ 1, where the high-frequency rather than the small-frequency modulus is

used in the calculation of the Tabor parameter [211].

The numerical Tabor parameters at the scale of local parameters turns out to

be µT ≈ 1.55 for either profile when using the default discretization of 4, 096 ×
4, 096 and thus ρ = 0.187 to 0.264 µm, because the peaks in the (ideal) profile

have a local radius of curvature of R = 190±20 µm. The range of values originates

from different curvatures in x and y direction rather than from differences between

hexagonal and triangular patterns. Thus, while µT ≈ 1.55 produces (quasi-

static) load-displacement curves similar to short-range adhesion [212], it must be

considered long-ranged on approach [199]. Consequently, a perfect match between

simulations and experiment cannot be expected to reproduce experimental results

with close-to-perfect precision, at least not using currently available methods and

computers. If surfaces were not corrugated, the generalized Tabor parameter for

the flat punch would be reasonably large, i.e., µT ≈ 10 for the 2, 048 × 2, 048

resolution and µT ≈ 14 for 4, 096× 4, 096.
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6.3.2.3 Refinements and corrections

A few adjustments were made to the numerical model in order to facilitate the

comparison between simulations and experiments. Firstly, the velocity inversion

was not abrupt but happened over a few but sufficiently many time steps to yield

a smooth force-distance relation. Secondly, the 3D printing process introduces

deviations from the ideal reference model, most notably an undesired macroscopic

curvature induced by thermal shrinkage, which was reflected in the numerical

model. In selected simulations, we also accounted for the quasi-discrete height

steps of ∆z = 0.2 µm, which result from the layer-by-layer nature of the printing

process. Final results were only marginally affected by this since ∆z is of similar

order of magnitude as our interaction ranges ρ = 0.187 to 0.264 µm and the steps

in the topography are not very sharp.

A final technical aspect deserves mentioning. For reasons of computational

efficiency, the buffer between the indenter and its periodic image should be made

as small as possible but large enough so that the stress field on the indenter is

not significantly affected by periodic images. This is achieved quite well with our

choice of L = 4a. However, the center-of-mass ũ(q = 0) of a periodically repeated

surface deviates from u∞ = u(r ≫ a) that would be obtained in a real system

without periodic boundary conditions (PBC). An example of this difference is

depicted in the form of the dashed and solid red lines in Figure 6.5 a. Given that

a/h = 5 yields a contact stiffness 20% in excess of the semi-infinite case [213,214],

the system can be approximately treated as semi-infinite so that the correction

u∞ ≈ 6u(Lx/2, Ly/2)− 5u(Lx/2, 0) (6.9)

can be used, which was originally identified for sharp indenters in square simula-

tion cells [212]. The described adjustment can also be thought of as a correction

u(x,y, 0)

uind(t)

u(x,y, t)
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Figure 6.5: a) Illustration of the different displacements considered for com-
pliance correction. b) Linear fit of u∞ for stiffness evaluation.

of unwanted compliance in the system, which does not always require a change of

121



the experimental/numerical procedure. If the mismatch between ideal and mea-

sured displacement is caused by a quasi-static elastic stiffness kcc, it can usually be

accounted for by either adding or subtracting its contribution via post-processing

of the data:

uideal(t) ≈ uind(t)± F (t)/kcc. (6.10)

One thing to keep in mind with this method is that the occurrence of local insta-

bilities, e.g. pull-off events, generally depends on the mechanical stability of the

system. The effect of kcc on these phenomena cannot be eliminated afterward.

For a viscoelastic system, it may also be detrimental that a measurement per-

formed at constant speed uind = vextt implies that duideal(t)/dt varies over time

as (1/kcc)dF (t)/dt. Consequently, this alternative compliance correction can be

useful to approximately extract the correct slope dF (t)/duideal(t) from both ex-

perimental and numerical data, but leaves other systematic errors in the curve

unaltered.

Strictly speaking, the difference between u∞ and ũ(q = 0) in simulations is

of viscoelastic rather than quasi-static nature. However, especially for a small

driving velocity, the macroscopic displacement changes very slowly compared to

local displacements, so that it can be approximated as quasi-static and we can

determine the associated stiffness kcc from a linear fit. From Figure 6.5 b, we

find that

uideal(t)− uind(t) = u∞(t) = ±F (t)/kcc (6.11)

is almost perfectly fulfilled across the whole load-displacement curve for vext =

1 µms−1 with kcc = 3.862mN µm−1. For larger values of vext, viscoelastic effects

become non-negligible and the data points extracted from simulations form a

hysteresis around the linear fit.

6.3.3 Experimental methods

The computer-generated topographies shown in Figure 6.2 were converted

to STL file format and 3D printed using a two-photon lithography direct laser

writing device (Photonic Professional GT2, Nanoscribe, Karlsruhe, Germany).

The resulting 3D model was vertically sliced into slabs with a thickness of 0.2 to

1.0 µm and laterally hatched with a fixed width of 0.5 µm.

During the vertical slicing, an adaptive option was enabled to achieve better

accuracy in the complex curved shapes near the surface. For the printing process,

a commercial photoresist (Nanoscribe, Karlsruhe, Germany) IP-S with an elastic

modulus, EIP-S = 1.34GPa, was used in dip-in mode. A 25x objective, writing

speed of 100mms−1, and a laser power of 40mW were adopted. The surface
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topography of the indenters was measured using a confocal microscope (MarSurf

CM expert, Mahr, Göttingen, Germany).

The substrate was fabricated from PDMS (Sylgard 184, Dow, Midland, MI,

USA) by mixing the base and the curing agent in a ratio of 10:1. The prepoly-

mer was mixed and degassed using a Speed-Mixer (DAC600.2 VAC-P, Hauschild

Engineering, Hamm, Germany) with 2350 rpm at 1mbar for 3min and then

cured at 95 °C for 1 h. Tack tests were performed using a custom-made ten-

Figure 6.6: Schematic representation of the experimental setup. It
consists of a “coaxial illumination” based optical setup for contact observation,
a hexapod for displacement control, and a load cell for force measurement.

sile tester equipped with a 2N load cell as illustrated in Figure 6.6. The testing

setup in this configuration was measured to have an effective machine stiffness of

kM = 38.1 kNm−1. A hexapod (SMARPOD) and a modular positioning system

with six degrees of freedom (SmarAct, Oldenbug Germany) were used for high-

resolution displacement and alignment. The PDMS substrate was fixed on the

modular positioning system using a holder equipped with a mirror.

The development of optical observation techniques has benefited a wide range

of applications, notably for assessing the true contact area between solids. Frus-

trated total internal reflection started to be applied to image the contact in the

1960s [105, 106]. Similar set-ups are routinely employed nowadays to measure

stress distributions [107], contact area of rough surfaces [215], or to visualize the

contact formation and separation of fibrillar microstructures [48,62,157,171,175].

Despite the successful use of this technique to determine multiple contact prop-

erties, obtaining high contrasts is limited to observing the contact of an opaque

specimen through a transparent target surface. Another technique that was em-

ployed for contact measurement is the optical interference observed as Newton’s

rings [106, 216, 217]. The relevance of this technique in contact mechanics and

tribology was boosted after Krick et al. [108] employed it to develop an in-situ

optical micro tribometer, which allowed them to visualize the intimate contact
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between solids during loading and sliding experiments. In this work we present

a new approach for contact observation based on the coaxial lighting princi-

ple. Through this approach, we enhanced the contrast between the contact and

non-contact areas. Using light from a collimated light source (collimated LED,

Thorlabs, New Jersey, USA), a parallel light beam was created for homogenous

lighting. The parallel beam scatters at the contact points between the indenter

and the substrate which appears darker in the camera.

Videos of the contact were recorded at 50 frames per second using a digital

camera (DFK 33UX273, Imaging Source Europe GmbH, Bremen, Germany).

Two extra side views cameras were used to help with the alignment. For the

adhesion measurement the indenter was brought into contact with the substrate

until reaching the defined compressive preload.

All experiments were performed in a laboratory with regulated temperature

of 21.0± 0.2 °C and relative humidity at 50± 5%.

6.4 Results

6.4.1 3D printing

We first analyze optical images of the experimental topographies obtained by

the 3D printing process. Figure 6.7 a shows the difference between targeted and

measured height profiles exemplarily for the triangular surface. Artifacts from

the optical measurements were corrected during numerical post-processing and

validated against selected tactile line scans. The main deviation between ideal

and real topographies is a mean curvature, which is supposedly due to thermal

shrinkage of the resin after deposition.

Curvature effects were included in the topographies used in the simulations.

Differences between the ideal and simulated height profiles are depicted in Fig-

ure 6.7 b. We note in passing that ignoring the curvature effects substantially

reduces the agreement between simulations and experiment, the most important

post-correction being the reduction of height near the rim of the indenter, where

the flat-punch solution produces stress singularities.

6.4.2 Tack tests for the triangular surface

Figure 6.8 shows the measured and simulated load-displacement curves ob-

tained for the triangular surface. For tidiness, only the detachment parts of the

curves are highlighted in color, since the loading process, shown in a gray dashed

line, is smooth and rather insensitive to the approach velocity. Experiments and
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Figure 6.7: Line profiles extracted from a 2D confocal microscope
image for a) the triangular and b) the hexagonal surface compared to the
digital model.

simulations show similar trends: Two bulges occur at small velocity vext and

small preload Fpl. A bulge located at slightly compressive force is related to the

detachment of saddle points—as revealed in more detail further below—while the

bulge at tensile force relates to the final pull-off process. Their locations approach

each other when either vext and/or Fpl is increased. Ultimately, they merge into

a single minimum, whose value corresponds to the (negative) pull-off force. Al-

though experimental and simulated curves agree only semi-quantitatively, the

tensile pull-off force is increased from about Fp = 2.5 ± 0.5mN for a preload

force of F = 40mN to Fp = 14 ± 1mN for F = 80mN in both simulations and

experiments.

To match the pull-off force satisfactorily not only for the preloads F = 40mN

and F = 80mN but also for F = 60mN, the relaxation time for the intermediate

preload was adjusted from τ = 3.16ms to τ = 1.26ms, while keeping E∞/E0 =

250 constant. The need for different relaxation times for the three preloads—in

fact, the numerically produced F = 40mN and 80mN unloading curves could

have been further improved by choosing individual relaxation times for them—

indicates that the numerical approach to the viscoelasticity is not yet ideal. We

believe the two main deficiencies to be the relatively large range of adhesion used

in the simulations, see also the discussion at the end of section 6.3.2.2, and

the approximation of a quite complex Prony series representing the frequency-

dependent viscoelastic modulus with a single Maxwell element. We were thus

surprised that minor tweaking of one parameter for one preload and one pattern

was sufficient to achieve the given level of semi-quantitative agreement, the more

so as minor changes to the viscoelastic properties of the indenter turn out to have

large effects.

The sensitivity of the load-displacement curves w.r.t. range of adhesion

and the viscoelastic model will be scrutinized, after establishing that the semi-
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Figure 6.8: Load-displacement curves recorded during the detach-
ment of the Tri surface at different velocities. The left column (a, c,
and e) always shows experimental results, while the right column (b, d, and
f) shows single-relaxation time simulations. From the first to the last row, the
preload is increased from 40 to 60 and then 80mN. The compliance has been
adjusted using kcc as explained in section 6.3.2.3.
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quantitative agreement between experimental and simulated load-displacement

curves is not fortuitous: experimental and simulated contact topographies evolve

in concert, as is revealed exemplarily in Figure 6.9 for the preload of F = 40mN

and the retraction velocity of vext = 1 µms−1. However, before getting to these

two points in more detail, we first explain the used gray scales: in the simulations

representing two differently parametrized single-relaxation time models, dark gray

means contact (negative gap), medium gray adhesive contact (0 ≤ g < ρ), while

light gray is non-contact and very light gray the background color. The gray

shades in the real-laboratory, optical images do not allow us to determine the

true interfacial separation to a high precision. Yet, very dark pixels indicate con-

tact, while less dark and bright pixels indicate non-contact. Given that the range

of adhesion used in the simulations is about a factor two to four smaller than the

wavelength of light, we expect that the simulated “adhesive non-contact” prob-

ably still appear quite dark in the optical images. Thus, the somewhat darker

nature of the experimental images is in part due to color coding. Improving this

would have been possible, but it would have taken us the possibility to visual-

ize the non-contact zones of high adhesion. Experiments and simulations have

similar characteristics.

At the point of maximum preload, contact occurs in all peaks but only if

saddle points if they are close to the outer rim, despite the curvature correction.

The detachment process evolves first most notably near the saddle points (from

the inner to the outer parts of the contact) and contact exists only in the peak

of asperities at a load, at which the load-displacement relation is between the

two bulges upon separation. Similar qualitative agreement was found between

real-laboratory and in-silico movies for all load-displacement curves shown in

this study. For the given “movie”, we could establish that the bulge in the force-

displacement curve near 6 µm is due to saddle-point detachment at the outer rim

of the corrugated punch.

Despite qualitative agreement, quantitative differences can be observed be-

tween experiments and simulations. While the initial experimental and simulated

frames at the maximum preload in the left column of Figure 6.9 look astound-

ingly similar, given that the simulations must be seen as long-range adhesion on

approach, the experimental contact barely changes to the next shown image. In

contrast, the in-silico contact reveals a noticeable retardation or aftereffect from

the moments of high compression during the initial decompression in that the

contact keeps growing slightly. We attribute this to the necessity of large vis-

coelastic relaxation times for a proper reproduction of the dissipation caused by

moving cracks. This makes the response to simple indentation be too sluggish so

that aftereffects of the compression branch are noticeable shortly after inverting
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Figure 6.9: Contact observation during a tack test of the Tri surface
at 1 µms−1 and a maximum compressive load of 40mN. The upper row shows
experimental data, while the bottom two rows represent simulations using dif-
ferent relaxation time τ and range of adhesion ρ. The darker areas represent
contact, while the lighter areas represent non-contact. For simulations, medium
and dark gray indicate attractive and repulsive contact, respectively. tpl de-
notes the time between first contact and preload for the respective row. The
times for the last two columns are located just before and past the bulge in
the force-displacement curve on the compressive part of the unloading curve.
Similar features are observed in all cases, e.g., the loss of contacts in the sad-
dle points starts from the center and moves outward and contact exists in all
asperities but in no saddle point before the maximum tensile force is reached
upon detachment, i.e., at a displacement near 2 µm.
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the direction of motion. Upon further decompression, the trend reverses and the

contact evolves slightly more slowly in the experiments than in the simulations:

the destruction of contact at the saddle points, which occurs between the last

two columns of Figure 6.9 and which correlates with a shallow minimum in the

(compressive) force on retraction, happens earlier in the simulations than in the

experiments.

To elucidate the role of the range of adhesion on the dynamics, we contrast the

contact formation obtained in two simulations based on slightly different models,

which both assume a single relaxation time and the same E∞/E0 ratio. The

second model uses a range of adhesion that is reduced by a factor of 1/
√
2 w.r.t.

the first model while the relaxation time was halved to achieve close agreement

between the dynamics of the two models. A slightly different redefinition of the

relaxation time might have led to even better agreement. However, even with the

made choice, the second and the third row of Figure 6.9, representing the first

and second single-relaxation time model, respectively, barely allows the naked eye

to distinguish the contact break-up between the two models. Only the second

contact images, taken at a time 1.125 tpl, where tpl is the time elapsed between

initial contact and maximum compressive load, differ slightly: the simulation with

a larger range of adhesion generally produces larger zones of noticeable adhesive

tension indicated by medium gray.

The reason why changing the viscoelastic relaxation time can be “compen-

sated” by a change in the range of adhesion ρ during the retraction process is

an interplay between the range of adhesion and the viscoelastic properties of the

elastomer [198, 200]. The dissipation caused by the propagating opening cracks

must be reproduced in simulations in order to yield accurate load-displacement

curves. Since steeper slopes at the contact edge imply larger (relative) velocities

in a moving crack and thus enhanced dissipation, a shorter range of adhesion

leading to steeper slopes can be compensated by shorter relaxation times used in

the viscoelastic model.

To elucidate the role of viscoelasticity, three different viscoelastic models were

considered in addition to the purely elastic model reflecting the quasi-static limit.

Their frequency-dependent contact moduli are depicted in Figure 6.10 a with

model 1 having a single relaxation time of τ = 6.32ms and E∞/E0 = 250, while

model 2 and 3 contain five relaxation times—with ratios and weight chosen as

described in section 6.3.2 and τmin = 0.6ms. Moreover, E∞/E0 = 8 in model 2

and E∞/E0 = 250 in model 3. Panels b through d of Figure 6.10 reveal that

all three viscoelastic models increase the adhesion hysteresis with respect to the

quasi-static model, which is the only one to show no preload dependence of the

pull-off force. While the effect is relatively minor for model 2 with its relatively
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Figure 6.10: a) Frequency-dependent contact moduli for different rheological
models. b, c, and d) load-displacement curves obtained for a preload of b)
40mN, c) 60mN and d) 80mN using the different rheological models. The
detachment speed is 1 µms−1 in all cases.

small E∞/E0 ratio, the preload sensitivity is largest for model 3 with a large

E∞/E0 ratio and a tail of the “excess”-E(ω) extending to small frequencies. For

the intermediate preload of 60mN, the minimum force and thus maximum tensile

force even occurs at negative displacement and is thus clearly associated with the

detachment of saddle points rather than with that of asperity peaks.

6.4.3 Tack tests for the hexagonal surface

The tack tests on the hexagonal surface were carried out in an analogous

fashion to the triangular surface, except with smaller preloads than before. The

resulting load-displacement curves are shown in Figure 6.11, this time, for only

two different velocities but including the loading part. The vext = 1 µms−1 contact

evolution is depicted in Figure 6.12 with an emphasis on the loading rather than

the detachment process.

The force-displacement curves contain only one minimum at all velocities

for the hexagonal surface. The bulge related to the saddle-point detachment in

the triangular surface has disappeared for the hexagonal pattern because their

detachment coincided in all investigated cases with that of the asperity peaks.

This is because saddle points are almost as high as the peaks in the hexagonal

lattice. In fact, they are so high that contact formation of saddle points between

two asperities is instantaneous in the quasi-static limit, which in turn is due to the

fact that the height of contact line of a zero-load isolated asperity (in the Hertzian,
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Figure 6.11: Load-displacement curves obtained during detachment
of the Hex surface at different velocities. The left column (a, c, and
e) shows experimental results, while the right (b, d, and f) column shows
single-relaxation time simulations. From the first to the last row, the preload is
increased from 1 to 5 and then 10mN. The compliance has been adjusted using
kcc as explained in section 6.3.2.3.

i.e., parabolic approximation) extends down to a height where the corrugated

profile crosses over from convex to concave. Due to the large dissipation of a

propagating closing crack, viscoelastic saddle-point contact formation is far from

being instantaneous.

While the detachment curve shows more features for the triangular than for

the hexagonal pattern, the opposite is true for the contact formation, at least as

far as the in-silico realization of the default model is concerned. First, strong af-

tereffects occur in the simulations for small preloads right after velocity inversion

for vext = 25 µms−1. They result in what could be called an “anti-hysteresis”—

though the ordinary hysteresis that occurs during the later portion of the de-

tachment process will always ensure that a closed loop dissipates and does not

produce energy. We thus abstain from postulating that design principles for

energy-harvesting nano-scale machines could be deduced, just because “negative

friction” appears to show up for a brief moment of time. Instead, we relate the
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Figure 6.12: Contact observation during a tack test of the Hex surface
at 1 µms−1 and a maximum compressive load of 10mN. The upper row is taken
from the experiment, the middle row from a simulation with a single relaxation
time (τ = 3.16ms and ρ = 2.642 µm) and the bottom row from a quasi-static
simulation with the same range of adhesion ρ. Gray scales as in Figure 6.9.
Frames are taken from the approach part of the tack test, except for the last
one at the point of maximum tensile force. In real-laboratory and in-silico
contacts, all maxima are always in contact while saddle points close to the rim
only come into contact with increasing load. The attachment of saddle points
and asperities is clearly separated on approach, but their detachment occurs
quasi-simultaneously.

strong retardation effects during compression once more to the large relaxation

times, which are needed to better match the dissipation of propagating cracks

in the experiments. Second, once the saddle points have made contact, the in-

terfacial stiffness, defined as the slope of the force-displacement curve, is much

enhanced once the saddle points have made contact. This is best revealed in

the vext = 1 µms−1 curve of the largest investigated preload in panel f of Fig-

ure 6.11 near a compressive load of F = 5mN. In fact, the contact image reveals

saddle-point formation in the lower row of Figure 6.12 near that load.

Increasing the preload past the point of saddle point formation changes the

load-displacement relation for the hexagonal pattern only moderately, particu-
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larly little between panels c and e of Figure 6.11, revealing that the experi-

mental unloading curve are virtually identical for F = 5 and 10mN. This can

be rationalized by the contact image obtained at the maximum tensile force in

the last column of Figure 6.12, where most saddle points are still in contact.

Those panels also corroborate the statement made at the beginning of the results

section that correcting for the “macroscopic” surface curvature induced during

cooling of the printing process was needed to achieve reasonable or, depending

on viewpoint, good agreement between the laboratory and in-silico samples: the

contact area close to the rim of the punch is noticeably reduced by the “macro-

scopic” curvature correction, which became necessary after the resin had cooled

off.

6.5 Discussion and conclusions

This work addressed the competition between viscoelastic hysteresis in contact

mechanics and the hysteresis due to elastic multistability being responsible for the

quasi-discontinuous snap-in and snap-out-of individual contact patches. To this

end, we studied numerically and experimentally a flat punch to which small-scale

corrugation—in the form of either a hexagonal or a triangular height profile—was

added. The two height spectra are identical although the profiles are their mutual

inverses, i.e., the phases of the height Fourier coefficients are shifted by π. This

makes the saddle points, which are located between two maxima and which turn

out crucial for the contact mechanics, be higher for the hexagonal than for the

triangular lattice.

Contact of an ideal flat punch forms quasi-instantaneously so that both vis-

coelastic losses due to closing cracks and multi-stability effects are negligible on

approach. Consequently, preload effects of ideal-punch detachment are minor.

However, the detachment requires a crack to propagate from the rim to the cen-

ter, which leads to a viscoelasticity-enhanced work of separation at intermediate

pull-off velocities [198,218]. (The work of separation approches 2γA at very small

and very large velocities, assuming well-defined, finite high- and low-frequency

contact moduli.)

After small-scale roughness was added to the flat punch, the wavelength of

the pattern being one fifth of the punch diameter, strong preload effects occurred

at intermediate operating velocities but not under quasi-static driving. Thus,

preload and multi-stability effects are intertwined in our corrugated punch. The

preload effects were distinctly larger for the triangular than for the hexagonal

pattern.

Specifically, the pull-off force for the hexagonal lattice saturated at roughly
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6 (experiment) and 7mN (simulation) once the preload had reached 5 to 10mN

at an operating velocity of 25 µms−1, while these two forces where roughly twice

and ten times larger, respectively, for the used triangular pattern. Despite these

quantitative differences, pull-off forces saturated in both cases once the preload

had been large enough to induce contact at the saddle points and retraction was

fast enough so that saddle points were still in contact at the point of maximum

tensile force. Since the saddle-point heights are rather close to (far from) the

height maxima in the hexagonal (triangular) lattice, preload effects saturated

earlier in the hexagonal than in the triangular system, although the hexagonal

amplitude was chosen more than twice that of the triangular corrugation.

A purely spectral approach to our system, assuming random phases as done

in Persson’s contact mechanics theory, would not be in a position to reproduce

or to predict these trends, which persist if both patterns have identical height

amplitudes and thus identical height spectra. However, phase-correlation effects

can be included into the theory so that approaches in the spirit of Persson theory

might still be applicable. For the investigated set-up, a naive interpretation of

Persson’s theory would at least predict correctly the trend that the pull-off force

is smaller for the punch with the larger spectral density, i.e., for the hexagonal

lattice.

Can our results be rationalized with bearing-area models (BAMs), such as the

popular approach by Fuller and Tabor [88] for nominally flat, adhesive contacts?

BAMs assume the highest asperity to come into contact first and out of contact

last, the second-highest peak to come into contact second and out of contact sec-

ond last, and so on and so forth. The load-displacement laws of the individual

peaks, whose shapes are approximated as paraboloids, are then added up to yield

a global load-displacement curve. While BAMs are commonly done for quasi-

static contact loading, generalization to dynamics seems to be straightforward,

e.g., by “feeding” the time-dependent force-displacement relation of an isolated

asperity contact at the given operating velocity into the model. For our system,

the radii of curvature of the hexagonal and the triangular lattice were virtually

identical, because different amplitudes had been used for both profiles making iso-

lated asperities similar. (The minor curvature correction w.r.t. the ideal model

changes things quantitatively but not qualitatively.) Thus, the depinning force of

a corrugated (ideal) punch would be expected to scale linearly with the number

of maxima given fixed heights and fixed radii of curvature. Since the number

density of maxima in the hexagonal lattice is twice that of the triangular lattice,

BAMs predict roughly twice the adhesion force for our hexagonal than for our

triangular patterned punch. Finite-size effects and cut-off asperities at the rim

of the punch renormalize that ratio but do not affect the trend. Unfortunately,
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things turn out the other way around, i.e., the triangular surface with fewer peaks

has clearly greater (viscoelastic) pull-off forces, due to the pivotal role of saddle

points. Obviously, BAMs approximating each peak as parabolic intrinsically fail

to account for saddle points, which is why we are beyond skeptical of studies

reporting models in the spirit of Fuller and Tabor to be quantitative for nomi-

nally flat contacts, even if agreement can be fudged during the post-diction of

experimental data.

This leaves numerical approaches, such as the here-reported number-crunching

exercise, as the least problematic non-experimental tool to tackle adhesive prob-

lems similar to that investigated here. Nonetheless, number-crunching is not

entirely unproblematic either. We also gauged the model parameters on the ex-

periments that were reproduced, even if the few adjustable parameters were kept

constant and not readjusted when preloads, patterns, and operating velocities

were changed—except for one set of experiments, specifically those using a 60mN

preload on the triangular pattern, for which the relaxation time was changed by

a factor of 2.5. One challenge in the attempt to make quantitative description

is the multi-scale nature of the dissipation during viscoelastic crack propagation.

The range of adhesion critically affects the dissipation of moving cracks, which

must be reproduced correctly, to model the formation and the failure of adhesive

contacts reliably. This means that the vicinity of the crack must be resolved with

a computationally unfeasible large resolution or the viscoelastic properties of the

elastomer relaxation times must be rescaled, which, however, implies that the

time-dependent response of the elastomer to a point indenter would no longer be

correct.

Despite all difficulties related to the numerical modeling, we would argue

that the simulations matched the experiments not only qualitatively but almost

quantitatively and that this was not for fortuitous reasons but because the sim-

ulations captured the essence of the experiments. We come to this conclusion

because the comparison between simulation and experiment went beyond that

of contrasting force-displacement curves and included the in-situ visualization of

the contact dynamics. For this reason, we are confident that any (qualitative)

conclusion drawn in this work is on solid grounds. This makes us hopeful that

simulations like the ones presented here will soon be in a position to address sys-

tems beyond the demonstrator model considered here, such as pressure-sensitive

adhesives or hydraulic seals in contact with surfaces having complex and not only

single-sinusoidal micro-scale roughness.
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Chapter 7

Conclusion

Gecko-inspired structures can be used in a wide range of emerging applica-

tions, providing a strong, switchable, and residue-free adhesion. Over the last

few years, several key advantages have stirred the interest of many industries

in these structures particularly as gripping systems for object handling (see sec-

tion 2.1.5). However, despite considerable progress in the understanding of the

physics behind fibrillar microstructures and the countless efforts for optimizing

their design and quality, there are still questions about their reliability as gripping

systems. In this regard, we address in the present work this problem from various

directions. The approaches presented in this thesis allow the creation of in-line

monitoring systems by detecting the contact signature of the fibrillar structures

and the prediction of adhesion properties. This research will contribute to the

improvement of bio-inspired handling systems. Moreover, it can pave the way

for automatic monitoring of the gripping quality, which can ensure reliable use of

these structures.

7.1 Summary

The main aspects of this work are summarized in the following:

In Chapter 3, supervised learning algorithms and FTIR for in-situ observa-

tion have been combined for the first time to predict the adhesion performance of

fibrillar microstructures. Depending on multiple variations in the possible contact

imperfections (such as misalignment and off-center gripping), data was collected

in terms of visual features at preload. Three different supervised regression mod-

els were trained and compared to a linear mathematical model and an existing

analytical model [54]. The comparison revealed that supervised learning could

be a fast substitute for expensive models. In contrast to the existing analytical

model, supervised machine learning especially SVR and BT, could provide direct

predictions of new specimens’ adhesion force without the prior knowledge of its
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maximum pull-off force, nor the exact values of the misalignment angles. It can

also capture deterioration of the quality of the specimens in case of missing or

deformed fibrils. Moreover, the analytical model only presented a limiting case,

where the back layer of the adhesive is stiff, which is rarely the case in real ap-

plications. On the other hand, the linearity of the mathematical model or the

linear regression was not able to capture the outliers in the data. Thus, the SVR

and BT overcame the limited accuracy of the mathematical and analytical model

and proved that it can facilitate near real-time predictions.

However, the data collected in this chapter was in form of a displacement-

controlled pull-off test. Transferring these trained models to a force-controlled

pick and place application would introduce other variations and reduce the accu-

racy of the models.

In order to minimize this mismatch between laboratory experiments and real

handling applications, Chapter 4 presents a classification approach to predict

the gripping performance from data collected directly using a pick and place

robot. In this section, classification models were combined with FTIR and image

processing to predict the successful and unsuccessful gripping of a glass object. 3

classifiers were trained depending on the object mass. The tested models for the

different classifiers showed high scores of more than 90%. Including more visual

features at a lifting position increased this accuracy as it captured the rotation

of the object in the case of off-center gripping, i.e., the object either goes back

into contact or a peeling moment is created depending on the direction of the

misalignment.

The FTIR technique employed in these two chapters enabled the distinction

of fibrils in contact from those that are not. It also showed sufficient contrast for

observing array scale defects such as misalignment, missing pillars, and relatively

significant defects at the fibrils scale. However, this technique can only be used

when the target object is transparent and smooth. The limitation to using this

optical technique with opaque and rough surfaces would constrain the integration

of the predictive system in the pick-and-place application. Hence the need for a

new approach to expand the possibilities of observing contact with different types

of objects.

Toward this end, two new optical systems were developed in Chapter 5.

The optical devices look through the fibrils, into contact with the target surface

from the back side of the fibrillar microstructures. The first device a ”precision

setup” produced images with high contrast to detect the contact signature of the

fibrils. It also allowed the detection of contact imperfections such as misalign-

ment, defected fibrils, and the presence of roughness. There are, however, some

disadvantages of this device, including its size, expensive optics, and dependency
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on light intensity. A second approach was taken to develop the second device

which is a ”compact setup”. This setup is inexpensive and much smaller. It

produced however an inhomogeneous light distribution and reflections that are

tough to avoid. Despite this, the device is able to detect the contact signature of

the structured pad and the contact imperfections with high contrast. Although

both devices are able to detect the presence of roughness in the contact signature

of the fibrillar structures – which is a first for an in-situ observation technique

– it does not capture the small-scale roughness and it is difficult to extract real

contact area from the images.

In an attempt to capture the contact signature of rough surfaces, Chapter 6

of this thesis presents a quantitative comparison between experimental and sim-

ulated contact signature and force measurement. Contact signature of fibrillar

structures in contact with real multiscale roughness is very hard to obtain with

high details using optical systems. Nevertheless, a first approximation could allow

us to understand adhesion dependencies and bring us a step closer to predicting

adhesion in various scenarios. Therefore, in this project two single wavelength

patterns (roughness-like surfaces) were generated and 3D printed as stiff cylindri-

cal indenters. The contact signature of the indenter with a PDMS film was then

obtained (instead of fibrillar structures) using coaxial illumination technique to

enhance the contrast of the asperities in and out of contact. Using GFMD, we

were able to replicate experimentally obtained contact signatures, and provide

new insight into the effect of the viscoelastic properties of PDMS, preload and

retraction rate on the pull-off force and the microscopic detachment mechanism.

In fact, the dissipation of the viscoelastic energy –when the preload or the

retraction velocity is high, or when the topographical saddle points are shallow–

leads to an increase in the force needed to separate the surfaces. This can be

observed when detachment of the saddle points and asperities of the indenter

occurs simultaneously. In contrast, when the velocity is lower than the charac-

teristic viscoelastic relaxation times, and the asperities significantly surpass the

saddle points, the saddle points detach before the asperities and the pull-off force

is not affected. This case only approximates the behavior of the quasi-static

elastic model which is commonly used in literature.

7.2 Outlook

In this work, we have shown different approaches to detect the contact signa-

ture, and predict the adhesion performance of micropatterned structures. There

are considerable opportunities for further research in this area. This thesis con-

sists of three main parts and therefore opens three different research paths:
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Including machine learning to monitor the gripping performance of the bioin-

spired structures from the contact signature has proved to be efficient. The ability

to achieve high accuracy with artificial intelligence can reduce human error and

increases the chances of reliable handling. However, it is critical that all the

real-world variations are reflected in the data collected for training and testing

these models. While some major problems –such as misalignment and off-center

gripping– were taken into consideration in this study, more variation of the data

would increase the accuracy under different circumstances. In fact, the accelera-

tion and velocity of the robotic arm and the holding times between the different

attachments/detachments could alter the behavior of the fibrillar structure and

therefore the accuracy of the prediction. It is also possible to extend the use of

ML and in-situ observation to correct these possible variations, notably misalign-

ment and off-center gripping. Since these two problems can cancel each other as

can be seen in Figure 4.5, programming the robot to use one to correct the other

could be possible if they are predicted before detachment without the need for

human intervention. Likewise, it can be used for quality control and suggesting

the replacement of damaged adhesive pads.

Integrating the newly developed optical systems and combining them with

ML could also open up more possibilities for monitoring the correct grasping

of various opaque and rough objects. These devices can also pave the way to

other applications such as the detection of defected objects or the observation of

the object environment. However, towards more scientific-oriented applications,

further improvement of the two setups is still needed.

Simulating macroscopic systems accurately would need an exact definition of

the range of adhesion and the different experimental challenges in more detail.

Moreover, the need for extremely precise surface topographies complicate the

use of simulation to predict real-world conditions. In fact, it is still difficult to

detect very small features on natural rough surfaces using optical techniques or

macroscopic simulations. Improvements in these areas will bring us closer to

address systems exceeding the considered model.

In the long run, detecting the contact signature and predicting adhesion per-

formance in-line will promote the integration of fibrillar microstructures not only

as reliable gripping devices but could also set the stage for other smart and con-

trolled applications.

140



List of Figures

1.1 Biomimicry: from gecko adhesive system to a functional gripper

for handling application . . . . . . . . . . . . . . . . . . . . . . . 24

2.1 Attachment mechanisms. . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 The complex hierarchical structure of the gecko toe pads. . . . . . 29

2.3 SEM images displaying the size variation of the fibrils with the

body mass of different animals . . . . . . . . . . . . . . . . . . . . 30

2.4 Illustrations of the contact of the fibrillar micropatterned surface. 32

2.5 Application of fibrillar adhesives. . . . . . . . . . . . . . . . . . . 35

2.6 Application of FTIR for contact observation . . . . . . . . . . . . 39

2.7 Schematic of the coaxial illumination principle . . . . . . . . . . . 40

2.8 Major categories of machine learning. . . . . . . . . . . . . . . . . 41

2.9 Data partitioning and cross-validation . . . . . . . . . . . . . . . . 44

2.10 Example of Logistic Regression classification . . . . . . . . . . . . 48

2.11 Example of Support Vector Machine . . . . . . . . . . . . . . . . 49

2.12 Example of a binary decision tree . . . . . . . . . . . . . . . . . . 50

2.13 Example of KNN classification . . . . . . . . . . . . . . . . . . . . 51

3.1 Design and fabrication of the microfibrillar adhesives. . . . . . . . 56

3.2 Adhesion testing and visual features. . . . . . . . . . . . . . . . . 59

3.3 Adhesion results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Pull-off force versus visual features for the training data. . . . . . 65

3.5 Calculated pull-off forces using the mathematical linear model . . 65

3.6 Regression results. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7 Model testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A1 Logarithmic transformation of data . . . . . . . . . . . . . . . . . 69

4.1 Experimental set-up for data collection. . . . . . . . . . . . . . . . 73

4.2 Data collection steps and flow chart. . . . . . . . . . . . . . . . . 75

4.3 Capture of visual features corresponding to contacting fibrillar ar-

rays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Variation of the misorientation. . . . . . . . . . . . . . . . . . . . 79

141



4.5 Rotation of the object during off-center attachment. . . . . . . . . 80

4.6 Misalignment vector, v⃗ in polar coordinate . . . . . . . . . . . . . 81

4.7 Classification results of three classifiers. . . . . . . . . . . . . . . . 82

4.8 Confusion matrices of the different classifiers trained with the lo-

gistic regression (LR) model . . . . . . . . . . . . . . . . . . . . . 84

4.9 Comparing input data for the logistic regression (LR) model. . . . 84

B1 Fraction of detached fibrils in terms of the fibril elongation, u, for

the used specimens. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B2 Classification results for the trained models. . . . . . . . . . . . . 89

B3 Confusion matrices for the different trained classifiers. . . . . . . . 90

5.1 Schematic and images of the two setups for the observation of

gecko-inspired gripper contact signature. . . . . . . . . . . . . . . 94

5.2 Mushroom-shaped fibrillar structures used with the optical devices. 96

5.3 Image processing steps. . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4 Example contact images of the fibrillar array in contact with a

rough blue surface. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Images and the corresponding gray value histogram for a red sur-

face with green light and intensity 4. . . . . . . . . . . . . . . . . 100

5.6 Camera setting variations in terms of the exposure time and the

gain for the precision setup. . . . . . . . . . . . . . . . . . . . . . 101

5.7 SSIM map and SSIM global value depending on the light intensity

for a red target surface using green light . . . . . . . . . . . . . . 102

5.8 SSIM heat map showing the contrast variation between the preci-

sion setup and the compact setup . . . . . . . . . . . . . . . . . . 103

5.9 Contact signature (unprocessed images) of the fibrillar structure . 104

5.10 Contact signature (unprocessed images) of the fibrillar structure . 105

C1 Confocal microscope topography images . . . . . . . . . . . . . . 107

C2 Original images before and in contact of the fibrillar array with a

rough blue surface . . . . . . . . . . . . . . . . . . . . . . . . . . 108

C3 Camera setting variations in terms of the exposure time and the

gain for setup 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

C4 Original images with removed background before and in contact . 110

6.1 Illustration of the reference system. . . . . . . . . . . . . . . . . . 114

6.2 Top view of the flat indenter . . . . . . . . . . . . . . . . . . . . . 114

6.3 Illustration of the rheological model employed . . . . . . . . . . . 116

6.4 Frequency-dependent target stiffness and the associated response

function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.5 Illustration of the different displacements . . . . . . . . . . . . . . 121

142



6.6 Schematic representation of the experimental setup. . . . . . . . . 123

6.7 Line profiles extracted from a 2D confocal microscope image. . . . 125

6.8 Load-displacement curves recorded during the detachment of the

Tri surface at different velocities. . . . . . . . . . . . . . . . . . . 126

6.9 Contact observation during a tack test of the Tri surface . . . . . 128

6.10 Load-displacement curves obtained using different rheological models130

6.11 Load-displacement curves obtained during detachment of the Hex

surface at different velocities. . . . . . . . . . . . . . . . . . . . . 131

6.12 Contact observation during a tack test of the Hex surface . . . . . 132

143





List of Tables

3.1 Variations of the specimens . . . . . . . . . . . . . . . . . . . . . 61

3.2 Accuracies obtained from fitting the experimental results . . . . . 68

A1 Dimensions of the micropatterned specimens. . . . . . . . . . . . 69

4.1 Dimensions and quality variations of the specimens. . . . . . . . . 78

B1 Ratio of attachment and detachment results for the different object

masses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

B2 Validation accuracy, and the testing precision, recall, and score for

the 200 g classifier trained on data obtained for the image at preload. 87

B3 Validation accuracy, and the testing precision, recall, and score for

the 200 g classifier trained on data obtained for the image at the

first pick-up position. . . . . . . . . . . . . . . . . . . . . . . . . 87

B4 Validation accuracy, and the testing precision, recall, and score

for the 200 g classifier trained on data obtained for the image at

preload plus the first pick-up position. . . . . . . . . . . . . . . . 87

B5 Validation accuracy, and the testing precision, recall, and score for

the 300 g classifier trained on data obtained for the image at preload. 87

B6 Validation accuracy, and the testing precision, recall, and score for

the 300 g classifier trained on data obtained for the image at the

first pick-up position. . . . . . . . . . . . . . . . . . . . . . . . . . 88

B7 Validation accuracy, and the testing precision, recall, and score

for the 300 g classifier trained on data obtained for the image at

preload plus the first pick-up position. . . . . . . . . . . . . . . . 88

B8 Validation accuracy, and the testing precision, recall, and score

for the 400 g classifier trained on data obtained for the image at

preload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

B9 Validation accuracy, and the testing precision, recall, and score for

the 400 g classifier trained on data obtained for the image at the

first pick-up position. . . . . . . . . . . . . . . . . . . . . . . . . . 88

145



B10 Validation accuracy, and the testing precision, recall, and score

for the 400 g classifier trained on data obtained for the image at

preload plus the first pick-up position. . . . . . . . . . . . . . . . 89

C1 Roughness of the target surfaces . . . . . . . . . . . . . . . . . . . 108

146



Bibliography

[1] E. Arzt, H. Quan, R. M. McMeeking, and R. Hensel, “Functional surface

microstructures inspired by nature – from adhesion and wetting princi-

ples to sustainable new devices,” Progress in Materials Science, vol. 120,

p. 100823, 7 2021.

[2] J. M. Benyus, “Biomimicry: Innovation inspired by nature,” 1997.

[3] K. Koch, B. Bhushan, and W. Barthlott, “Multifunctional surface struc-

tures of plants: An inspiration for biomimetics,” Progress in Materials Sci-

ence, vol. 54, pp. 137–178, 2 2009.

[4] T. B. Schroeder, J. Houghtaling, B. D. Wilts, and M. Mayer, “It’s not a

bug, it’s a feature: functional materials in insects,” Advanced Materials,

vol. 30, no. 19, p. 1705322, 2018.

[5] K. Autumn and J. Puthoff, “Properties, principles, and parameters of the

gecko adhesive system,” Biological Adhesives, pp. 245–280, 2016.

[6] R. Hensel, K. Moh, and E. Arzt, “Engineering micropatterned dry adhe-

sives: From contact theory to handling applications,” Advanced Functional

Materials, vol. 28, p. 1800865, 7 2018.

[7] H. Gao, X. Wang, H. Yao, S. Gorb, and E. Arzt, “Mechanics of hierarchical

adhesion structures of geckos,” Mechanics of materials, vol. 37, no. 2-3,

pp. 275–285, 2005.

[8] K. Autumn, Y. A. Liang, S. T. Hsieh, W. Zesch, W. P. Chan, T. W. Kenny,

R. Fearing, and R. J. Full, “Adhesive force of a single gecko foot-hair,”

Nature, vol. 405, pp. 681–685, 6 2000.

[9] K. Autumn, M. Sitti, Y. A. Liang, A. M. Peattie, W. R. Hansen, S. Spon-

berg, T. W. Kenny, R. Fearing, J. N. Israelachvili, and R. J. Full, “Evidence

for van der waals adhesion in gecko setae,” Proceedings of the National

Academy of Sciences, vol. 99, pp. 12252–12256, 9 2002.

147



[10] E. Arzt, S. Gorb, and R. Spolenak, “From micro to nano contacts in biolog-

ical attachment devices,” Proceedings of the National Academy of Sciences,

vol. 100, pp. 10603–10606, 9 2003.

[11] K. Autumn, “How gecko toes stick,” American Scientist, vol. 94, p. 124,

2006.

[12] C. Y. Hui, N. J. Glassmaker, T. Tang, and A. Jagota, “Design of biomimetic

fibrillar interfaces: 2. mechanics of enhanced adhesion,” Journal of the

Royal Society Interface, 2004.

[13] A. Jagota, “Mechanics of adhesion through a fibrillar microstructure,” In-

tegrative and Comparative Biology, vol. 42, pp. 1140–1145, 12 2002.

[14] H. Lee, B. P. Lee, and P. B. Messersmith, “A reversible wet/dry adhesive

inspired by mussels and geckos,” Nature, 2007.

[15] A. del Campo, C. Greiner, and E. Arzt, “Contact shape controls adhesion of

bioinspired fibrillar surfaces,” Langmuir, vol. 23, pp. 10235–10243, 9 2007.

[16] R. Spolenak, S. Gorb, and E. Arzt, “Adhesion design maps for bio-inspired

attachment systems,” Acta Biomaterialia, vol. 1, pp. 5–13, 1 2005.

[17] A. V. Spuskanyuk, R. M. McMeeking, V. S. Deshpande, and E. Arzt, “The

effect of shape on the adhesion of fibrillar surfaces,” Acta Biomaterialia,

vol. 4, pp. 1669–1676, 11 2008.

[18] K. Kendall, “The adhesion and surface energy of elastic solids,” Journal of

Physics D: Applied Physics, vol. 4, p. 320, 8 1971.

[19] W. Brockmann, P. L. Geiß, J. Klingen, and K. B. Schröder, Adhesive bond-
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[87] D. M. Drotlef, P. Blümler, and A. D. Campo, “Magnetically actuated pat-

terns for bioinspired reversible adhesion (dry and wet),” Advanced Materi-

als, vol. 26, pp. 775–779, 2 2014.

[88] K. Fuller and D. Tabor, “The effect of surface roughness on the adhesion of

elastic solids,” Proceedings of the Royal Society of London. A. Mathematical

and Physical Sciences, vol. 345, pp. 327–342, 9 1975.

[89] B. N. Persson, “Theory of rubber friction and contact mechanics,” J. Chem.

Phys., vol. 115, no. 8, pp. 3840–3861, 2001.

[90] B. N. Persson, “Adhesion between an elastic body and a randomly rough

hard surface,” European Physical Journal E, vol. 8, pp. 385–401, 2002.

[91] B. N. Persson and S. Gorb, “The effect of surface roughness on the adhesion

of elastic plates with application to biological systems,” Journal of Chemical

Physics, vol. 119, pp. 11437–11444, 12 2003.

[92] B. N. Persson, “Contact mechanics for randomly rough surfaces,” Surface

Science Reports, vol. 61, pp. 201–227, 6 2006.
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