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Abstract

English: The motivation of this work is to present an energy cost reduction concept
in a home area power network (HAPN) with intelligent generation and flexible load
demands. This study endeavors to address the energy management system (EMS)
and layout-design challenges faced by HAPN through a systematic design approach.
The growing demand for electricity has become a significant burden on traditional
power networks, prompting power engineers to seek ways to improve their efficiency.
One such solution is to integrate dispersed generation sources, such as photovoltaic
(PV) and storage systems, with an appropriate control mechanism at the distribu-
tion level. In recent years, there has been a significant increase in interest in the
installation of PV-Battery systems, due to their potential to reduce carbon emissions
and lower energy costs. This research proposes an optimal economic power dispatch
strategy using Model Predictive Control (MPC) to enhance the overall performance
of HAPN. A hybrid AC/DC microgrid concept is proposed to address the control
choices made by the appliance scheduling and hybrid switching approaches based
on a linear programming optimization framework. The suggested optimization cri-
teria improve consumer satisfaction, minimize grid disconnections, and lower overall
energy costs by deploying inexpensive clean energy generation and control. Various
examples from actual case study demonstrate the use of the established EMS and
design methodology.

German: Die Motivation dieser Arbeit besteht darin, ein Konzept zur Senkung
der Energiekosten in einem Heimnetzwerk (HAPN) mit intelligenter Erzeugung und
flexiblen Lastanforderungen vorzustellen. Im Rahmen dieser Forschungsarbeit wird
ein Entwurf für ein HAPN entwickelt, indem das Energiemanagementsystem (EMS)
und der Entwurf des Layouts auf der Grundlage des Systemmodells und der be-
trieblichen Anforderungen gelöst werden. Die steigende Nachfrage nach Elektrizität
ist für traditionelle Stromnetze kostspielig und infrastrukturintensiv. Daher konzen-
trieren sich Energietechniker darauf, die Effizienz der derzeitigen Netze zu erhöhen.
Dies kann durch die Integration verteilter Erzeugungsanlagen (z. B. Photovoltaik
(PV), Speicher) mit einem geeigneten Kontrollmechanismus für das Energieman-
agement auf der Verteilungsseite erreicht werden. Darüber hinaus hat das Interesse
an der Installation von PV-Batterie-basierten Systemen aufgrund der Reduzierung
der CO2-Emissionen und der Senkung der Energiekosten erheblich zugenommen.
Es wird eine optimale wirtschaftliche Strategie für den Energieeinsatz unter Ver-
wendung einer modellprädiktiven Steuerung (MPC) entwickelt. Es wird zudem ein
hybrides AC/DC-Microgrid-Konzept vorgeschlagen, um die Steuerungsentscheidun-
gen, die von den Ansätzen der Geräteplanung und der hybriden Umschaltung getrof-
fen werden, auf der Grundlage eines linearen Programmierungsoptimierungsrah-
mens zu berücksichtigen. Die vorgeschlagenen Optimierungskriterien verbessern
die Zufriedenheit der Verbraucher, minimieren Netzabschaltungen und senken die
Gesamtenergiekosten durch den Einsatz von kostengünstiger und sauberer Energieerzeu-
gung. Verschiedene Beispiele aus einer Fallstudie demonstrieren den Einsatz des
entwickelten EMS und der Entwurfsmethodik.
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Nomenclature

Abbreviations:

DE Diesel engine generator.

PV Photovoltaic generator.

ESEs Energy supply entities.

DSM Demand side management.

RTP Real time price.

NGs Nanogrids.

EEs Energy entities.

EV s Electric vehicles.

OM Operations and management.

ESSs Energy storage systems.

DGs Distributed generations.

RESs Renewable energy sources.

PV 2V PV to vehicle power transfer.

V 2H Vehicle to home.

iEMS Intelligent energy management system.

UF Utilization factor.

PL Penetration level.

AWGN Additive white guassian noise.

DERs Distributed energy resources.

ESDs Energy storage devices.

GAS Grid auxiliary storage.

HAPN Home area power network.

HEMS Home energy management system.

HBS Home battery storage.

IEDs Intelligent energy devices.
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Nomenclature

MPC Model predictive control.

MPPT Maximum power point tracking.

MILP Mixed integer linear programming.

QAM Quadrature amplitude modulation.

SNR Signal to noise ratio.

V SI Voltage source inverter.

MP − iEMS Model predictive intelligent energy management system.

SOC State of charge.

DOD Depth of discharge.

WLAN PV to vehicle power transfer.

MIMO Multiple input and multiple output.

EV S Electric vehicle storage.

TA Traditional appliances.

CE Consumer electronics.

CR Cooking ranges.

WH Water heater.

SA Smart appliances.

PE Power elastic appliances.

TE Time elastic appliances.

TS Time shiftable devices.

DT Delay tolerant devices.

ECL Electric controlled loads.

TCL Thermal controllable loads.

WM Washing machines.

CD Clothes dryers.

WP Water pumps.

AC Air conditioners.

WC Water coolers.

RF Refrigerators.
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Nomenclature

DR Demand response.

ToU Time of use pricing.

DAP Day-ahead pricing.

CCP Critical peak pricing.

IBR Inclined block rates.

EEs Energy entities.

IoE Internet of energy.

DEs Diesel engines.

SLDs Smart load demands.

SGR Self generation ratio.

NOCT Nominal operative cell temperature.

Sets and Indices:

ATA Set of traditional appliances.

ASA Set of smart appliances.

APE Set of power elastic appliances.

ATS Set of time shiftable appliances.

AECL Set of electric controllable loads.

ATCL Set of thermal controllable loads.

ADT Set of delay tolerant loads.

G Set of total generators attached to HAPN.

D Set of total demands attached to HAPN.

AEEs Set of all electric entities in HAPN.

t Index of low resolution time steps, t ∈ {1, ..., T}.

k Index of high resolution time steps, k ∈ {1, ..., K}.

a Index of power elastic loads, a ∈ {1, ..., A}.

b Index of ECL devices, b ∈ {1, ..., B}.

c Index of TCL devices, c ∈ {1, ..., C}.

d Index of power phase of ECL demand, d ∈ {1, ..., D}.

e Index of DT loads, e ∈ {1, ..., E}.
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Nomenclature

f Index of traditional devices, f ∈ {1, ..., F}.

s Index of energy storage devices, s ∈ {1, ..., S}.

U Index of User’s occupancy, U ∈ {1, ..., nu}.

M Index of diesel generating units, M ∈ {1, ...,m}.

U Index of PV sub-arrays, J ∈ {1, ..., j}.

Microgrid parameters:

Pg.ac(t) Grid supply power at the AC bus at anytime t.

Pg.av(t) Available grid power at anytime t.

xg.ac(t) Grid Boolean operator at anytime t.

Pg.disp(t) Dispatchable grid power at anytime t.

Pac.load(t) Desired load demands at anytime t.

Ppv.ac(t) Power provided by solar panels at AC bus at anytime t.

Ppv.disp(t) Dispatchable PV power at anytime t.

Pac.b(t) Power utilized to to charge the storage devices using AC bus at anytime
t.

xpv.ac(t) PV Boolean operator for supplying to AC bus at anytime t.

ηpv.con PV converter efficiency.

Pb.av(t) Available supply from storage device at anytime t.

Pb.ac(t) Power supply from storage device to AC bus at anytime t.

Pac.b(t) Power utilized to to charge the storage devices using AC bus at anytime
t.

xb.ac(t) Storage device Boolean operator for supply power to AC bus at anytime
t.

xac.b(t) Storage device Boolean operator for supply power from AC bus to stor-
age device at anytime t.

Sinv.ac inverter’s maximum power handling capacity.

ηinv Inverter efficiency.

Pdc.inv(t) Power transfer from DC bus to inverter at anytime t.

Pinv.ac(t) Power transfer from inverter to AC bus at anytime t.

Pinv.loss(t) Inverter losses at anytime t.

Sg.disp(t) Dispatchable apparent power from utility grid at anytime t.
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Nomenclature

Sg.av(t) Available apparent power from grid at anytime t.

Sg Upper threshold of apparent power obtained from grid.

Sg.ac(t) Apparent power supplied by the utility company to the AC sub-grid at
anytime t.

xg.dc(t) Boolean operator for supply energy from Grid to DC sub-grid at anytime
t.

Pg.dc(t) Power transfer from grid to DC sub-grid at anytime t.

xpv.dc(t) Boolean operator for supply energy from PV to DC sub-grid at anytime
t.

Ppv.dc(t) Power transfer from PV to DC bus at anytime t.

Pb.dc(t) Power supply from storage to DC sub-grid at anytime t.

xb.dc(t) Boolean operator for supply energy from storage to DC sub-grid at any-
time t.

Pdc.b(t) Power supply from DC sub-grid to storage at anytime t.

Pdc(t) Power available at DC sub-grid at anytime t.

Pdc.inv(t) Power transfer from DC bus to inverter at anytime t.

xdc.b(t) Boolean operator for supply energy from DC sub-grid to storage at any-
time t.

xdc.inv(t) Boolean operator for supply energy from DC sub-grid towards inverter
at anytime t.

Sinv.ac(t) Apparent power supply from inverter to AC sub-grid at anytime t.

Sreq.load(t) Apparent power required by the home appliances at anytime t.

Sac.load(t) Apparent power supplied to the home appliances at anytime t.

ugas(k) Control signal used to activate the auxiliary storage power at anytime
k.

Pgas(k) Grid auxiliary storage power exchange at anytime k.

xgas(k) Boolean operator to activate the auxiliary storage power at anytime k.

Pde.ac(t) Power supply from diesel generator to AC bus at anytime t.

xde.ac(t) On-off status of DE unit (0/1).

zde(t) Start-up status of DE unit (0/1).

vde(t) Shut-down status of DE unit (0/1).

xHBSb.dc (t) Home battery storage discharging indicator at any time t.
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Nomenclature

xHBSdc.b (t) Home battery storage charging indicator at any time t.

xEV Sb.dc (t) Electric vehicle storage discharging indicator at any time t.

xEV Sdc.b (t) Electric vehicle storage discharging indicator at any time t.

TPEV S
b.dc/dc.b(t) User time preference for EVS charging/discharging at any time (t).

TPECL
b,d (t) User time preference for supplying power to ECL load demand at any

time (t).

P peak
ac.load(t) Demand response peak signal.

P g.ac Minimum grid supply power limit.

P g.ac Maximum grid supply power limit.

P pv.dc Maximum PV supply power limit.

P de.ac Minimum diesel generator supply power limit.

P de.ac Maximum diesel generator supply power limit.

ηde(t) electrical efficiency of a diesel generator at anytime t.

Pde.disp(t) Dispatchable power by the diesel generator at anytime t.

P
PE−

a Maximum power requirement of a device of PE load demands.

P
ECL

b,d Maximum power dissipated by ECL unit b.

PECL
b,d Minimum power dissipated by ECL unit b.

xECLb,d (t) Status of device b for its specific energy phase d of ECL load demands
(0/1).

τECLb,d Minimum time bound for each phase d of ECL loads to run (0/1).

τECLb,d Maximum time bound for each phase d of ECL loads to run (0/1).

sECLb,d (t) Power phase finishing indicator (0/1).

dECLb,d (t) Inter-phase delay indicator (0/1).

Db,d/Db,d Upper and lower limits of inter-phase delay (t).

xTCLc (t) Status of unit c of TCL load demands (0/1).

P TCL
c Minimum power usage by the TCL unit.

P
TCL

c Maximum power usage by the TCL unit.

T
TCL

c User’s set maximum temperature.

T TCLc User’s set minimum temperature.
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Nomenclature

T TCLc (t) User’s set temperature.

T room(t) Room temperature.

RTCL
c Equivalent thermal resistance.

CTCL
c Equivalent heat rate.

P
DT

e Maximum power dissipation by DT device.

PDT
e Minimum power dissipation by DT device.

LPEa (t) Estimated power elastic load demand.

QDT
e (t) Load demands in a queue.

xDTe (t) Status of unit e of DT load demands (0/1).

LDTe (t) Load demands entering the queue.

Solar generation parameters:

Ppv.av(t) Available energy from PV at anytime t.

P pv(t) Maximum power produced by the photovoltaic array at anytime t.

Psa.j(t) PV jth subarray power.

Pm(t) Power generated by a single PV module.

Nm Number of PV modules.

Fsa.j Electrical loss factor of PV sub-array j (%).

Lm.j Mismatch loss index of PV subarray j.

Ldc.j DC wiring loss index in PV subarray j.

Pm Maximum power output of a PV module.

GSTC Standard irradiance value (W/m2).

GT (t) Predicted irradiance (W/m2).

α Temperature coefficient.

TC(t) Ambient temperature ◦C.

FF (t) Fill factor (%)

V pvcell
oc Open circuit voltage of PV cell (V ).

Ipvcellsc Short circuit current in PV cell (A).

Isc.stc(t) Normalized short circuit current of a PV module.

FF0 Nominal fill factor of a PV module.
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Nomenclature

rs(t) Normalized series resistance of a PV module.

voc.stc(t) Normalized open circuit voltage of a PV module.

Rs Series resistance of PV module.

Vt(t) Thermal voltage of a PV-cell.

nd Diode ideality factor.

kB Boltzmann’s constant, equal to 1 : 38× 10-23.

Ta.k(t) Ambient temperature in Kelvin.

e Charge of electron, i.e. 1 : 602× 10-19.

Ki Temperature coefficient of the short circuit current of a PV module.

Kv Temperature coefficient of the short circuit current of a PV modeule.

GB(t) Direct beam irradiance (W/m2).

GD(t) Diffuse irradiance (W/m2).

GR(t) Reflected irradiance (W/m2).

Energy storage devices parameters:

Eb Maximum state of energy of the storage device.

ηb.con Battery and converter efficiency.

Pb.dch(t) Storage device discharge rate at anytime t.

Pb.ch(t) Storage device charge rate at anytime t.

Eb Minimum state of energy of the storage device.

Eb State of energy of the storage device.

P b.ch Minimum Storage device charge rate at anytime t.

P b.ch Maximum Storage device charge rate at anytime t.

P b.dch Minimum Storage device discharge rate at anytime t.

P b.dch Maximum Storage device discharge rate at anytime t.

QSEI(t) Capacity loss of the storage device due to solid electrolyte interface (SEI)
layer growth.

QAM(t) Capacity loss of the storage device due to active material (AM) loss.

M Ideal gas constant.

N Cell temperature.
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Nomenclature

SOC(t) State of charge of storage device at anytime t.

θ Function of SOC.

kSEI Storage constant parameters.

ESEI Storage constant parameters.

λ Storage constant parameters.

kAM Storage constant parameters.

EAM Storage constant parameters.

Pb.loss(t) Storage power losses at anytime t.

ηb Storage efficiency.

ηcon Converter efficiency.

Pb.self (t) Self discharge power at anytime t.

Lf (t) Life reduction for a storage device at anytime t.

Ac Effective consumed power of a storage device at anytime t.

Atotal Total effective capacity of the storage device.

A
′
c(t) Actual consumed power from the storage at anytime t.

λSOC(t) Storage’s operational state of charge at anytime t.

Egas(k) Available energy in grid auxiliary storage at anytime k.

Egas Upper threshold for energy stored in grid auxiliary storage.

Egas Lower threshold for energy stored in grid auxiliary storage.

Pgas.dch(k) Grid auxiliary battery discharge rate at anytime k.

Pgas.ch(k) Grid auxiliary battery charge rate at anytime k.

Eav.b Available capacity of the storage unit.

V oc
b Open circuit voltage of battery cell.

Ib Short circuit current in battery cell.

Rb Internal resistance of a battery.

Pb Battery output power.

ηbcell Battery cell dis(charging) efficiency’s.

ηchbcell Battery cell charging efficiency’s.

ηdchbcell Battery cell discharging efficiency’s.
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Nomenclature

Pcell Battery cell power.

Pb.loss(t) Power loss in battery at any time t.

ηb Overall battery efficiency.

Ncycle.b(t) Number of (dis)charging cycles of ESD at any time t.

Optimal operations parameters:

Cb.l(t) Storage state’s lifetime loss cost at anytime t.

Cb,ivt Investment cost of the storage bank.

Cg(t) Dynamic grid pricing at anytime t.

Cinv.ac(t) Inverter power cost at anytime t.

ϕ Per power unit operating cost of the battery at anytime t.

φ Per power unit operating cost of the photovoltaic system at anytime t.

KPV.UF PV utilization factor.

KPV.PL PV penetration level.

KPV.LF PV loss factor.

KG.UF Grid utilization factor.

KG.PL Grid penetration level.

KG.LF Grid loss factor.

KEV.UF EV storage utilization factor.

CG(t) Cost of energy obtained from Grid at time t.

KEV.PL EV storage penetration level.

%t Per unit grid electricity price at anytime t.

KEV.LF EV storage loss factor.

KI.LF Inverter loss factor.

KSS Degree of self-sufficiency.

CDE(t) Cost for producing energy using Diesel generator.

ade.ac/bde.ac Diesel engine fuel coefficients.

σf Price for the fossil fuel.

Csu
DE(t)/σsu Start-up cost of diesel engine.

Csd
DE(t)/σsd Shut-down cost of diesel engine.
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Nomenclature

Com
DE(t)/σom Operation and maintenance cost of DE.

CCO2
DE Cost for producing CO2 by the DE.

ξ Panelty price for CO2.

Cb(t) Price per (dis)charging power unit from ESDs.

ICb Investment cost of a storage device.

Cpen
PE (t) Penalty cost for curtailable PE loads.

ζ Penalty rate for PE load curtailment.

Cdel
DT (t) Cost associated with the loads in the queue.

δ Penalty rate for DT loads in the queue.

Power electronics parameters:

Qgas Reactive power exchanged by the grid auxiliary storage

ω Reference frequency for d-q reference frame transition.

L Inductance.

R Resistance.

Power load demands parameters:

P TA−

f (t) Power dissipated by TA unit f .

ETA Energy requirement for TA load.

EPE
a Energy requirement of a PE unit a.

P PE−
a (t) Power dissipated by PE unit a.

EECL
b,d Energy requirement of a ECL device b.

PECL−

b,d (t) Power dissipated by ECL unit b.

ETCL
c Energy requirement of a TCl device c.

P TCL−
c (t) Power dissipated by TCL unit c.

EDT Energy requirement of DT load demands.

PDT−
e (t) Power dissipated by DT unit e.
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1 Introduction

Electricity consumption has risen dramatically in recent years all around the world.
This rise is attributed to the growth of the digital economy based on modern civiliza-
tions and robust industrialization. The present fossil fuel-based energy generating
infrastructure may also be expanded to meet this need, so the increase in environ-
mental pollution is inevitable. However, for environmental and economic reasons,
it is critical to create hybrid energy systems that combine renewable energy sources
(RESs) with conventional fossil fuels. To accomplish a successful energy transition,
practical and low-cost solutions that permit socioeconomic growth in energy pol-
icy are required. These solutions can only be possible by revisiting the concept of
modern energy grids, also known as “Smart Grids.” Which can generate and supply
practically cheap, efficient, and clean electricity.

1.1 Background

Electric energy is now an essential home requirement and plays a significant part
in driving one’s daily life. However, there are various issues that modern civiliza-
tions face regarding energy creation, supply, and consumption [23]. Existing elec-
trical facilities, in particular, are ill-equipped to handle the energy supply volume.
Long-distance transmission lines transporting power from major energy stations to
clients incur significant line losses and impair grid efficiency. Similarly, environmen-
tal factors (e.g., heavy rain or wind) and equipment malfunctioning (e.g., equipment
breakdown due to age) can significantly influence power outages and costly grid op-
erations. Furthermore, as a result of coal and oil scarcity and the growing prevalence
of pollution problems, energy regulations and consumer habits are being reviewed,
particularly regarding sustainable power usage. Massive central power producers
commonly employ fossil fuels, resulting in annual CO2 emissions of 30.8 billion tons
[93]. It must be handled for the sake of future generations.

Furthermore, governments and large utilities in developing countries continue to
overestimate the impact of power failures. In particular, long-term power outages
are caused by inefficient and outdated electrification and a lack of local energy
supplies. As a result, industrialists and local investors established small-scale local
backup systems to meet their energy needs during grid outages [122]. However, these
systems frequently rely on expensive and environmentally hazardous diesel and gas
generators. Again, there is a significant environmental worry with using such a large
number of fossil fuel generators, with each litre of diesel fuel emitting 2.6 kg of CO2

[59]. As a result, for a 5-hour daily power outage, a primary residential structure
may require up to 5,000 gallons of fuel, which is a significant worry.

Another important aspect is that an estimated 1.2 billion people live without
energy [7]. Most of these people live in rural or isolated places where power from
the central grid is too expensive. Distributed generation (DG), however, is one
method currently being investigated to alleviate the issues of supplying power to
remote populations. However, DG comprises renewable energy sources (RESs) and
has two key drawbacks that preclude extensive residential/commercial integration.
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1 . Introduction

The first is its irregular power production considering photovoltaic modules, whose
output power varies with the amount of irradiation coming from the sun throughout
the day. This intermittent behaviour of RES might prevent customers from investing
in new energy technologies since they anticipate immediate power. The second is
the upfront cost of installing RESs and the long payback period [112].

Despite the current challenges, there is an increased need for clean and inex-
pensive energy that originates a new terminology of hybrid energy systems. The
German Federal Government, for example, recognizes the importance of renewable
energy by setting an expected goal of 2.5 GW of PV system deployments promot-
ing the motto “Energiewende.” [33]. Renewable energy sources should be used to
minimize the reliance on oil and reduce greenhouse gas emissions. An efficient en-
ergy management system (EMS) must be developed to maximize the output from
RESs, reduce the energy loss during operations, and reduce the overall operational
and maintenance costs [131]. As a result, efficient EMSs may provide inexpensive
energy by increasing the system efficiency and lowering the system’s effective price.
With RESs and battery costs steadily falling, societies will soon be supplied by the
energy obtained from these sources in collaboration with old conventional energy
generators, i.e., diesel generators or the central grid [122].

A complicated energy management situation arises from the necessity to in-
vestigate new ways of efficiently dispatching and distributing energy from various
components depending on their availability and prices. For this purpose, the dif-
ferent energy supply and demand control strategies need to be investigated [62].
As energy suppliers, fossil fuel-based energy generators may be partly or entirely
replaced by renewables and energy storage. Load control may help accomplish this
aim at the energy receiver end. It will provide flexibility and influence consump-
tion by reducing unneeded loads or changing its operations to a cheaper time of
day. It may be possible to move some load demands from the time slot of high
energy prices to alternative excessive energy production time slots with low prices.
However, actual situations and operational settings must be utilized to assess the
solutions’ practicality and efficacy [125].

The advent of cutting-edge advancements, including renewable energy gener-
ation, imaginative storage solutions, demand-side management, and demand re-
sponse, is disrupting conventional modes of energy consumption and production.
Consequently, it is possible to attain more energy-efficient electrical supply chains
by optimizing energy supplies and consumption, reducing greenhouse gas emissions,
and enhancing system stability [9]. At present, the crucial issue in power networks
is their efficiency and the cost associated with electricity consumption.

The energy crises of the 1970s and 1980s served as a wake-up call to the world,
highlighting the importance of energy optimization. The emergence of renewable
energy production with varying time characteristics ushers in a new era of energy
management research [53]. However, the traditional power grid struggles to ac-
commodate the increasing load demands and the integration of renewable energy
sources. Moreover, the expanding energy-producing capacity comes at a steep cost.
To address this challenge, the concept of a smart grid has been proposed as a solu-
tion. It makes the power systems more sophisticated and facilitates the integration
of renewable energy resources into the grid [131].

A novel hybrid AC/DC micro-grid design is presented in [123] within the context
of an innovative grid platform that integrates the advantages of both AC and DC
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1.2. Motivation

grids, connected by multi-directional converters. The hybrid micro-grid optimizes
load demands and generation through the evaluation of available renewable energy
sources and conversion efficiencies, while operating within the constraints of power
quality considerations [135].

In conclusion, consumers desire a consistent, cost-effective power supply with
exceptional service quality, which can only be achieved through the reliance on re-
newable energy sources and the implementation of delay-tolerant load demands [115].
Figure 1.1 provides an initial outlook on the expected operational areas within this
field, showcasing the central idea of a sophisticated grid that accommodates micro-
generations, grid configurations, utility applications, and consumer load demands.

Figure 1.1: Futuristic power network.

1.2 Motivation

As a natural response to the renewable energy revolution, considerable changes are
required in the existing power infrastructure. Smooth integration of RESs into the
present electricity infrastructure requires overcoming many physical and computa-
tional constraints. Creative and comprehensive energy flow techniques are required
to get an actual potential out of these newly integrated electrifying technologies.

The concept of “Microgrids” (MGs) is illustrated at the dawn of the twenty-
first century to address the above challenges of integrating new technologies in old
power networks. It has a promising solution for the upcoming challenges of energy
transition from conventional to renewable sources idealizing the cost-efficient future
power systems. MGs are small power distribution hubs with variable supply and
controllable load demands. Besides, it has the advantage of generating electricity
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1 . Introduction

near the point of consumption and can address the existing power system inefficien-
cies. The small distance transmission lines are therefore more efficient, and a micro
power system is more reliable.

Smaller in power capacity than a central power generator, MGs are much more
flexible in operating. Even though a regular power user may generate electricity
from its own home or business, this makes it a viable option for customers in rural
or remote areas. It may also minimize global carbon emissions by using renewable,
carbon-neutral energy sources (e.g., wind and solar). The computational architec-
tural modelling of microgrids is the fundamental motivation for this work. The prior
research in this area falls into two categories: 1) Microgrid layout-design (compo-
nent size) issue. 2) Design of customized energy management systems. Neither of
these concerns can be fully addressed in isolation since each directly influences the
other.

To the author’s knowledge, no complete studies cover the above difficulties sys-
tematically. First, beginning with the basic system needs, providing in-depth en-
ergy management strategies. Then, demonstrating the optimal system operations
to maximize the usage of the installed RESs and lessen the impact on environmental
degradation by reducing the usage of diesel generators.

This thesis’ study addresses the challenges associated with achieving the above
motivations from a technological standpoint. A regulated power structure may
strengthen the connection between power generation and consumption, reducing
intermittency and increasing PV’s financial viability. Hence, this work presents
the different grid typologies, their layout designs, and most importantly, the con-
trol system strategies controlling the whole grid. A simple and appropriate energy
management system (EMS) is a solution to these sophisticated, intelligent power
networks. So that these can be controlled effectively and efficiently to achieve high
sustainability, reliability, and dependability.

Unlike other previous works on microgrids, this work not only presents the de-
tailed mathematical modelling of the main components of the systems but also
provides case study-based solutions involving various grid typologies and architec-
tural configurations. However, it also demonstrates different control scenarios and
strategies for the energy flows in the power network. Nevertheless, further chapters
discuss the relevant case studies where such growing concerns are worth exploring.

1.3 Problem Definition

This thesis is concerned with the notion of a smart grid, which consists of intelligent
energy components and an optimum device control framework. As a result, this
endeavour aims to create an efficient, independent, self-sufficient, and cost-effective
micro-energy network.

The actual problems that need to be addressed while constructing an optimal
solution for intelligent grids are as follows:

• Optimize generation operating cost at generation end.

• Reduce carbon emissions at generation end.

• Optimize power efficiency at generation end.
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• Optimize production from renewable energy resources.

• Optimize the utilization of energy storage devices.

• Maximize grid utility profit.

• Optimize power flow in power network.

• Optimize energy utilization cost at consumer end.

• Coordinate demand side management and demand response.

• Increase Social welfare at consumer end by saving extra energy.

• Improve energy consumer experience by enhancing energy management system

Consequently, this book presents a concept of economical power operation through
the implementation of a hybrid dual AC/DC micro-grid, aimed at reducing accu-
mulated electricity costs. The concept is based on the modeling and scheduling of
energy entities (EEs). It offers an innovative approach to automation, highlighting
energy management and load balancing techniques. In this study, customer demands
are differentiated under the category of AC and DC appliances. These demands are
validated based on appliance scheduling problems with worst-case delay constraints.
In addition, various cost regimes are introduced to differentiate the electricity cost
for energy obtained from AC and DC power lines. To make the problem formulation
more realistic, the micro-grid model with all of its parameters and a realistic pricing
function model is introduced.

In this research work, optimal algorithms have been proposed to manage the
sudden switching between AC-DC buses during load schedules. These proposed
schemes offer an efficient strategy for switching between AC-DC buses. Additionally,
the concept of creating queues to regulate demand buffers when electricity prices
are high is also introduced. This approach results in optimal electricity pricing
and system efficiency, and it has the potential to enhance grid sustainability while
fostering high customer satisfaction. The algorithm operates in a highly dynamic
environment, where renewable resources are uncertain, and load demands are highly
diverse. The advanced control strategies proposed in this research work make the
current power grid more intelligent.

1.4 Research Objectives

Small-scale renewable energy sources may reduce carbon emissions while relieving
the strain on inefficient centralized electricity infrastructures. Despite these advan-
tages, the intermittent nature and high cost of renewable energy make it difficult
for individuals and small communities to embrace them. However, an EMS strategy
to control a microgrid can minimize intermittency, making small-scale renewable
energy more accessible to individuals and small communities. We will see whether
combining many small grids into a microgrid further reduces intermittency’s conse-
quences.
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This study focuses on system-level modelling, critical for effective EMS develop-
ment. This study does not investigate the power electronics concept’s grid opera-
tions. However, it targets the empirical-based scheduling problems with a discrete-
time step of more than a minute. It saves excessive computing time, but complicated
planning and operating scenarios are of no concern at the moment. The modelling
method used here is unconcerned with precise modelling. Hence, this study does
not examine voltage stability, power quality, or quick responsiveness problems.

Therefore, model-based development is employed here to characterize the pro-
gressive performance of each particular element of the power grid. In addition, a
portion of this study illustrates a unique power management system (e.g., a rule-
based) as a preliminary management approach already discussed in many research
titles throughout the literature. But, eventually the author identifies the shortcom-
ings that may be corrected to enhance the system’s capability.

For this purpose, the following study goals were set:

1. The current literature has a flaw: it does not explicitly describe a microgrid as a
power structure for residential power networks. Furthermore, how component-
based modelling may enhance the energy management of microgrids and their
different topologies must be compared to improve the outcomes.

2. There are numerous power grid configurations in the energy networks. The
most well-known is a microgrid configuration, which integrates multiple small-
scale power systems to form a community-level energy sharing grid. However,
relatively little research has been conducted on small-scale power networks,
often known as nanogrids or picogrids. In contrast to microgrids, a nanogrid
provides a low-cost power arrangement. Because a nanogrid is limited to
a single house, its technological goals, hardware, and software are usually
different from those of a microgrid.

3. A nanogrid control technology that mitigates the adverse effects of solar inter-
mittency shall be developed. The strategy should reduces the electricity used
by users, boosting small-scale PV installations. A less expensive alternative
to storage methods (for example, battery banks) should be found. The grid
power consumption of the managed nanogrid should be reduced as compared
to the uncontrolled nanogrid under various load and solar irradiance scenarios.

4. To illustrate the actual cost-saving and the natural power flow balancing in the
nanogrid, the model should incorporate real-world data sets and operational
constraints for conventional and renewable energy power sources. Further-
more, it should model the working behaviour of the load appliances to have
further control over intelligent load demands.

5. Moreover, component-based empirical models of various energy entities could
be an outstanding achievement of this work. It may reflect the energy losses
in overall power flow calculations. In addition, the concept of hybrid AC/DC
nanogrid is another advantage where this study addresses the efficiencies of
both the grid and the energy entities. It may involve the inefficiency criteria
of power converters. Besides, a set of controlled flexible energy supply sources
and load demands are employed to increase system flexibility.
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1.4.1 Benefits to The Society

This research work will significantly impact society through environmental and fi-
nancial effects. Moreover, some countries face the challenging problem of power
shortages due to inadequate power distribution management. It reflects a poor
power quality issue due to old infrastructure resulting in high losses, resulting in
deregulation of power delivery and the influx of high electricity prices. This work
will help the Government authorities to make energy policies more effective.

Environmental Analysis

By supporting scheduling tactics and integrating enormous data centres, this re-
search will assist in enhancing the efficiency of power transmission and minimising
power consumption at the consumer end. Similarly, instead of using coal and ther-
mal power stations, we can build distributed generation infrastructure to reduce
massive carbon emissions from conventional power stations. Furthermore, most of
the World’s population is in a power emergency codition, which is the short-term
planning of installing coal and diesel power stations in large numbers. It negatively
affects the environment. Instead of using a short-term policy of installing these
power stations, the situation can be countered by improving our system efficiencies
and reducing the losses through various energy control policies.

Market Analysis

Moreover, the World market is wide open in the energy field for foreign and lo-
cal investors. Especially in the sector of distributed generations and the demand
side management. There is much potential to work for implementing distributed
resources to improve efficiencies and effectively use renewable generations. The fol-
lowing agendas are in the fact sheet of the work plan of any country:

• Reduce carbon emissions.

• Save excess energy for an emergency.

• Restore and upgrade thermal and hydroelectric power plants.

• Encourage targeted public and private investments.

• Improve the energy industry’s policies, governance, performance, and effi-
ciency.

• Promote the sector’s financial self-sufficiency through full-cost-based tariffs
and other tools.

• Encourage energy-saving activities.

• Enhance electricity distribution businesses’ performance.

• Providing funds to the government sector to close its environmentally con-
cerned energy generation initiatives.
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1.5 Research Strategy

This thesis investigates the home power network architecture, control, and connec-
tion to promote residential PV and electric vehicle-based storage adoption. The
following research strategy is planned to establish the desired goals of this work.

• An initial literature review is necessary to develop the research within the
home area power network (HAPN) domain and obtain information on this
subject matter. It may aid in identifying the effective nanogrid power flow
scheme, optimal control strategies, and gaps in the literature, allowing for im-
provements. Furthermore, because nanogrid research is constantly changing,
it is vital to maintain the literature review up to date. Different modelling
designs and control algorithms related to system optimization and stability
problems have been studied as design and research problems. Various design
algorithms for the same problem have been searched out. Most of the liter-
ature survey regarding basic applications of Smart Grid has been completed,
which is more specified towards cost optimization problem and load balancing
in smart grid.

• Early solution thoughts are mind mapped after identifying research gaps and
understanding the problem. Then data related to the problem definition is
collected and verified throughout various platforms. The required literature is
collected mainly from different Journals (e.g., Springer, Elsevier, Wiley, etc.),
Control Conferences and IEEE transactions. However, priority has been given
to the IEEE transaction on Smart Grid to gather quality work in the field of
Smart Grid. Information related to different mathematical models proposed
by numerous researchers in the area of interest has been gathered. A few jour-
nals with good impact factors have been targeted for research publications. A
comprehensive study of various tools/software, especially MATLAB for system
modelling, algorithm designing, and the PYTHON for forecasting models, has
been done. Furthermore, real-time data sets of energy generations and utiliza-
tion are collected from various international energy databases, referred to in
the literature in the following Chapters.

• Further, the concepts for developing effective and efficient nanogrid topology
are investigated, and the model of the home power flow network is finalized.
Then the problems of cost minimization and load balancing are investigated
and refined into a pseudo-algorithm that tackles the critical solution. Finally,
the pseudo algorithm is theoretically modelled before coding and simulating.
Sufficient data has been analyzed before working on the solution strategy.
The work has been divided into two main domains. One is cost optimization,
and the other is system balancing (a stability problem). These two domains
could merge at the end, but initially, these are analyzed at different paces.
A study of dynamic local and global optimization algorithms is carried out
for cost optimization problems. While for power network balancing, a model
predictive control scheme is suggested. These algorithms have been chosen
based on their applications in this research area. The application of some
working algorithms has been discussed in the literature review in the coming
chapter.
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• A simulated comparative case study is conducted to evaluate the solution’s
impact. The study evaluates a household’s grid power usage with and without
the proposed solution. The outcome’s success is judged by the household’s
reduced grid electricity consumption. In addition, various house appliance
demands are simulated using temporal data. Weekly data for summer and
winter is used to ensure that the predicted household load curve is not dis-
torted. The optimal solution is developed through non-linear, dynamic, and
intelligent algorithms and is compared with the traditional optimization solu-
tions for performance analysis. The mathematical models of various elements
are redesigned following the problem configuration and simulated on defined
software to solve the problems discussed above. This work is incredibly advan-
tageous to a complex problem-solving approach through empirical methods.
Expected results are in favour of the social welfare program for energy con-
sumers. It includes electricity cost minimization and quality of service on the
consumer side. At the same time, profit maximization and power network
stabilization are achieved on the generation and distribution side. Mainly, the
utility or aggregator make such control decisions to handle both sides (gener-
ation and utilization) for optimization.

• Following the creation of the simulated test situations, an iterative approach
of outcome analysis, reflection, and progression is developed. Although the
analysis is satisfactory, there is always some space for improvement. The most
effective ways for addressing the solution’s flaws are chosen. After which, the
solution is re-simulated and re-analyzed.

1.6 Thesis Contribution

This thesis develops a model-based energy optimum power grid design and a frame-
work for controlling PV-based home area power network (HAPN). It considers dy-
namic real-time grid prices, battery lifespan degradation, and grid blackout models.
This research focuses on creating an accurate nanogrid model that considers each
component’s practical limits. Moreover, various case studies are employed depending
on the problem definition. A cost-effective model predictive controller is developed
to enhance HAPN functioning. The load’s reactive power usage is also included in
the nanogrid operations to establish an actual cost saving. Finally, it estimates the
natural line losses among different grid topologies.

Moreover, an excellent nanogrid design is necessary to enhance PV-system energy
consumption and lower the grid’s power generating costs. The developed technique
employs an accurate model for battery longevity. A forecasting model is also used
to assess the unpredictability of solar power generation. Finally, in addition to grid
outages and real-time utility pricing signals, an accurate estimate of the Levelized
cost of energy (LCOE) and a robust nanogrid architecture are considered. As a
consequence, the following are the contributions of this thesis:

• This work examines the literature’s broad energy nanogrid and microgrid def-
initions, addressing their strengths and faults, before defining a home power
network structure.

20



1 . Introduction

• Most importantly, this book highlights distributed and uncertain flexibilities’
in supply-side and demand-side management. It utilizes real-life yearly data
sets of household demands, EV driving patterns, and EV battery (dis)charging
patterns. It demonstrates the proposed system model’s actual energy manage-
ment capabilities.

• A detailed converter-based nanogrid model is presented. This model incor-
porates real-world data sets and operational constraints for conventional and
renewable energy power sources. The model also takes into account the lifes-
pan depreciation of the EV storage capacity.

• Analyze detailed PV and energy storage devices (ESDs) models to identify
component inefficiencies and energy losses. ESDs model also gives the outlook
of the storage device life cycle.

• The probability distribution approach is applied to model uncertainty in so-
lar energy generation, users’ load demands, and the commencement of grid
outages.

• A better technique for calculating the LOCE considers the battery’s state of
charge, discharging current, and number of cycles.

• It incorporates a constraint-based mathematical model for different flexible
smart load demands (SLDs) attributing the demand side management strate-
gies.

• A substantially realistic PV-battery nanogrid model is utilized by including
the actual functioning constraints of the grid components.

• A unique operating approach based on the cost-efficient model predictive con-
trol is presented to reduce overall nanogrid operating costs and properly bal-
ance power flow.

• Adding a reward and penalty component allows cheap activation of power
elastic and delay-tolerant loads while considering user comfort.

• This thesis develops a novel nanogrid control method that employs conven-
tional storage and adjustable load needs, such as thermostatically regulated
loads. In addition, it tackles the challenge of cost reduction and handling
power variations generated by integrated PV panels.

• A novel two-stage “min-max co-scheduling (MMCS)” optimization technique
is proposed. It successfully handles the cost reduction and customer satis-
faction optimization problems inside a single optimization framework. The
models are solved using a mixed-integer linear programming (MILP) branch
and bound approach and a computationally efficient mixed-integer rule-based
sliding horizon dynamical method.

• A complex hybrid AC/DC nanogrid model is presented that incorporates real-
world operational constraints for conventional and renewable energy sources.
It also accounts for battery life loss and component-based power losses during
DC-AC sub-grid energy exchange.
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• A proportional power-sharing and a two-stage co-simulation framework is pre-
sented to build a multi-time scale energy management and control approach.
On the other hand, the AC/DC hybrid nanogrid’s dispatch may be optimized
offline to lower total energy expenditures. Lastly, a real-time synchronized
power sharing strategy is used to balance the power network.

• To lower the total operating expenses of the nanogrid, a MPC-based reactive
optimum energy allocation approach is recommended. In addition, a unique
approach is also adopted for supplying reactive energy from storage banks and
photovoltaics.

• A robust local controller utilizes time-triggered communication to monitor the
ideal data acquired from the scheduler. Nevertheless, a lossless connection
between device-level control and actuators is envisioned.

• The suggested design includes secondary predictive control and main dis-
tributed robust control layers. It increases system predictability, redundancy
and facilitates HAPN plug-and-play. The secondary control layer implements
the HAPN analytical model, whereas the main control layer implements the
HAPN physical model.

• A performance comparison is made with some previous works based on the
inclusion of various types of losses and system topologies. Furthermore, the
influence of the hierarchical control framework on the AC/DC hybrid HAPN’s
stability and economic operation is fully examined.

• A signal house simulation model is adopted to validate the optimal scheduling
problem, utilizing real-time/day-ahead electricity price information for realis-
tic outcomes.

1.7 Outline of The Book

The research work is classified into seven chapters, beginning with the introduction
of the work stated in this chapter. This chapter outlines the background, motivation
of the work, problem definition, research objectives, research strategy, and thesis
organization. The remainder of the book is structured as follows:

• Chapter 2: Small-scale intelligent power networks are the center of discus-
sion in this book. A comprehensive discussion on the formation of intelligent
power networks is presented in this chapter. It begins with an overview of the
evolution of intelligent grids providing insight into how the grids are trans-
forming from traditional systems to intelligent smart grids. It also gives an
insight into various grid topologies and configurations. Further, this chapter
discusses the microgrid’s main components and control architectures. In addi-
tion, a communication layer that helps in making the microgrid intelligent is
also discussed in this chapter. In the end, some forecasting and optimization
strategies are reviewed in the state of art literature work.

• Chapter 3: This chapter discusses in detail the analysis of various grid compo-
nent models and proposes new analytical thinking regarding system modeling.
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These components are divided into five main parts discussing energy sup-
ply entities, energy storage devices, energy consuming devices, energy pricing
schemes, and grid optimization models. The analytical models of various grid
components are integrated into a single control entity to form an intelligent
energy management system for a small home area power network. Hence, this
chapter presents an optimum design strategy for PV-storage-based microgrids.
Which also introduces generic models for PV forecasting and solar generators,
grid-tie lines, and fossil fuel generators. It also presents the models for evaluat-
ing the battery lifespan and classification of various load demands depending
on their working phenomenon.

• Chapter 4: This chapter presents an introductory model of a small-scale home
area power network (HAPN). It integrates an empirical battery degradation
model into the power flow model of a nanogrid to demonstrate the actual be-
havior of storage devices in power networks. Cost optimal energy management
system, is derived by introducing specific optimization algorithms. The pro-
posed approach leverages a case study of real-life yearly data sets of household
energy demands, EV driving patterns, and EV battery (dis)charging patterns
to demonstrate the precise energy management capabilities of the suggested
model and to illustrate the actual phenomenon of the scheduling algorithms.
Simulation findings compare energy suppliers’ penetration levels and usage
factors on daily, monthly, and yearly basis. In addition, a daily, monthly,
and annual capacity loss percentage is calculated with the system’s battery
life-cycle degradation model. Also, the algorithms match the power demands
with the cheapest energy sources, ensuring customer comfort and reasonable
expenses.

• Chapter 5: This chapter extends the work in previous module, where the
nanogrid model is expanded to integrate the reactive power with active power
model. Moreover, the model has been altered to explore more possibilities to
work as a hybrid AC/DC nanaogrid. Here the DC and AC power flow can
be controlled separately, and the grid efficiency parameters are explained in
detail by introducing the inverter efficiency model. Besides, a new battery
lifetime loss model is incorporated, which reflects its importance in the cost
minimization operation of the energy management system. Furthermore, this
chapter presents a co-simulated intelligent home energy management system
(iHEMS) that integrates the robust rolling horizon-based predictive schedul-
ing framework with the real-time power electronics-based control mechanism.
Furthermore, this chapter also introduces a communication model using which
the central scheduler sends time-triggered low-jitter wireless signals to the
distributed device level local controller to execute the control law. Further-
more, a real-time, distributed, and robust control strategy is established by
implementing a coordinated energy sharing mechanism that incorporates an
auxiliary power source. Finally, the proposed model is evaluated through a
comparison of various AC/DC models for home area power networks (HAPN).

• Chapter 6: This chapter emphasizes the power load demands extensively. It
explains the component-based modeling of various home appliances and de-
rives their energy requirement patterns. This chapter proposes a linearized
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component-based model that incorporates energy inefficiencies, power phase
modes of intelligent demands, and the energy storage deterioration phenomenon.
It adopts a co-scheduling strategy in a small-scale energy nanogrid combining
roof-top photovoltaics panels, backup diesel engine generators, energy storage
devices, and intelligent load demands with grid electricity. The scheduling
model uses mixed-integer linear programming (MILP) and a min-max opti-
mization technique to lower daily energy expenses, maintain high consumer
comfort, and promote home energy self-sufficiency. A numerical case study
validates the suggested HAPN model. The applied technique leverages a cost-
effective optimum balance of diverse energy entities in a HAPN showing real-
world potential.

• Chapter 7: This final chapter provides a quick summary of the thesis’s signif-
icant contributions and summarizes the study’s primary views.
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2 State of the Art Work

Smart grids are gaining popularity because of the integration of new technologies
like electric automobiles and renewables into conventional power systems. These
technologies enhance the power network’s efficiency, environmental impact, and eco-
nomic growth of the sector. Aware of the ecological consequences of carbon-intensive
conventional energy sources, authorities are progressively moving toward a more
sustainable energy future. Furthermore, developing new technologies has prompted
countries to seek more ecologically-friendly energy sources. Using sustainable energy
resources (e.g., wind and solar) has replaced traditional carbon fuels that address
the environmental challenges and the depletion of fossil fuel reserves. Furthermore,
renewables cannot be regulated, and their unpredictability makes them difficult to
incorporate. It makes it more challenging to balance energy production and con-
sumption. These issues may be addressed by deploying power electronics devices,
adopting the correct power network design, and controlling microgrids. Hence, co-
ordination of sustainable energy resources and storage mechanisms is critical in this
case.

2.1 Evolution of Smart Grid

2.1.1 Traditional Power System

Traditional power systems are divided into generation, transmission, and delivery.
Traditionally, electricity flows from generators to end-users. Large conventional gen-
erators like thermal power plants produce electricity transmitted to medium voltage
substations through high voltage transmission lines. Finally, the distribution net-
work delivers power to end-users. Transformers of various sizes are positioned be-
tween generators and transmission lines and between transmission and distribution
regions to step voltage levels up or down. Traditional power systems are vertically
integrated [62].

Power is generated centrally at enormous power facilities located far from end-
users, as shown in Figure 2.1. This renders power systems subject to unforeseen oc-
currences like bad weather, accidents, and component failures, causing power outages
when the system is not resilient enough. Demand is also not flexible in conventional
power networks. In other words, centrally controlled power plants are solely account-
able for balancing production and demand. This raises power prices, particularly
during peak hours. Renewable energy sources, including wind and solar, have been
distributively installed throughout the last decade. However, conventional power
systems were not built to accommodate highly variable renewable energy sources,
posing enormous hurdles [23]. For example, introducing dispersed generation at the
distribution level may cause voltage changes and harmonic issues. In addition, the
production of active power in the downstream network may significantly impact
power flow in the upper network. Unlike existing power systems, where electricity
flows in one direction from generation to distribution, future power systems may
become bidirectional. Because the installed equipment was not intended for such
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Figure 2.1: Conventional grid.

bidirectional flows, the upstream power flow might create protection and stability
issues [126].

2.1.2 The Intelligent Power Grids

The term “intelligent grids” has been used by various research institutes, compa-
nies, and institutions. For example, the European Technology Platform for smart
grids promotes intelligent integration, sustainability, low cost, and supply security
[51]. Furthermore, these grids are power infrastructures that can automatically de-
tect energy flow and respond to shortages and surpluses. Intelligent grids, when
integrated with intelligent metering, may provide real-time user statistics for con-
sumers and providers. As a result, customers may reduce their energy costs by using
more energy during low-cost hours. An illustration of an intelligent grid is shown in
Figure 2.2.

The intelligent grid may also sometimes be called a smart grid that helps inte-
grate renewable energy in the conventional power network [183]. Both the sun and
the wind do not always shine and blow. Grid managers can improve renewable en-
ergy integration while preserving power balance by combining energy demand data
and weather forecasts. Smart grids include automation, monitoring, and more re-
newable energy integration. A bottom-up approach might help pave the way for
efficient, intelligent grid implementation [137]. To construct efficient smart grids,
one must ensure that each component is adaptive, reliable, and stable. This kind
of network cell is called a microgrid, and is the domain of power systems where the
efforts in this thesis are made.

2.1.3 The Term “Microgrid”

Energy production, transmission, and distribution occur at the “power grid” layer.
Large-scale power facilities or renewable energy farms like wind or solar farms of-
ten produce electricity. The produced electricity is then sent to the loads through
transmission lines. The second tier of the distribution network is the “utility service
area,” which includes residential, industrial, and commercial areas. This second
layer may consist of several microgrids. A microgrid is a remote system of feeders or
electrical components. There may be a supervisory control system and distributed
generating units, as shown in Figure 2.3. Demand side management schemes may
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Figure 2.2: Smart grid.

be added to the primary control system. In the figure Nanogrids are coupled via a
DC backbone. HOwever it is not a necessary feature of Microgrids.

Figure 2.3: Microgrid illustration.

A microgrid is defined differently in various literature. However, the idea dates
back over a decade. As per the U.S. Department of Energy, a microgrid is a collec-
tion of electrical loads, generators, and storage devices linked together by a single
connection point to the main supply grid [184]. Whereas the four essential qualities
that the microgrids should have include:

• A microgrid connects local generation, storage, and demand to a local distri-
bution system. Local generation occurs at low voltages and is called micro-
generation due to its small size.

• Second, a microgrid should have two modes of operation: grid-connected and
emergency or islanded.

• Third, microgrids allow active distribution network operation. This architec-
ture’s management and coordination allow for micro-source integration.

• Fourth, microgrids may be multi-scale. A small microgrid is a dwelling with
PV panels, power converters, and loads. A factory-sized microgrid can be a
university campus or a neighborhood.
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A microgrid is linked to the upstream primary power grid at a “point of common
coupling.” This point serves as a link between a microgrid and an upstream grid. Mi-
crogrids outperform passive distribution networks in many ways. A battery storage
mechanism makes them more resistant to failures, disruptions, and defects. They
are more efficient since the electricity is produced at the point of usage. They are
more eco-friendly because they enable more significant quantities of clean, renew-
able energy. Microgrids may also reduce the demand for polluting power facilities
like coal-fired ones. Microgrids may give more flexibility due to better storage inte-
gration and supervisory control. Greater flexibility allows for additional renewable
energy sources to be integrated. Microgrids are also less susceptible to disruptions
or faults. They can do this because they are island capable. Control and protection
schemes may activate this mode. Microgrids, unlike traditional power plants, have
built-in modules. So they can be managed and maintained separately. Also, elec-
trical components may be readily changed, improved, and standardized. Microgrids
may be islanded during upstream electrical network outages. This action improves
supply dependability and continuity. A robust energy management system keeps
the microgrid from failing or going dark. Likewise, demand-side management aims
to promote customer comfort and involvement in decision-making.

2.1.4 Distributed Smart Power Systems

In the subsequent decades, the passive distribution power network will transform
into a more intelligent and controlled active distribution network. As a result,
distribution networks will soon play a more significant part in electrical network
operation, administration, and monitoring. The Independent Electricity System
Operator (IESO) defines an active distribution network as a “control platform for
shared energy resources including distributed generators, loads, and storage [77].
Using a flexible network structure, distribution system operators may control power
flows. One of the essential features of such networks is bidirectional power flow.
Decentralized decision-making and control replace centralized authority. The active
management of the distribution network will allow power to flow bidirectionally from
upstream to downstream and vice versa. Furthermore, voltage and frequency will be
monitored by the generation or transmission side and the distribution network op-
erators. Finally, there will be an increase in efficiency due to the active management
[63, 124].

As previously stated, active networks may include tools for managing dispersed
energy sources. Operators of distribution and transmission systems will need to
work together to achieve this. New commercial auxiliary services and grid codes
will also be required for distribution system operators. The lack of communication
between transmission system operators and distributed generator owners or distri-
bution system operators is now a concern in passive networks. Online and real-time
information sharing is required for active networks to function effectively. A brief
illustration of an operational power network is depicted in Figure 2.2

Active distribution networks may provide significant potential advantages when
information sharing is allowed. First, their greater flexibility may enable incor-
porating distributed generation, demand side control, and energy storage. Second,
changing the distribution network structure and management may allow new service
options. Another possible advantage is that it can effectively match electricity pro-
duction with customer demand. For example, demand-side management techniques
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and forecasting methodologies may help accomplish this [39]. Furthermore, unlike
passive networks, active networks may sustain stand-alone functioning due to decen-
tralized creation and storage. The closeness of dispersed generators to demand sites
also reduces transit losses. Finally, active networks may help the network by easing
congestion and restoring service after faults, among other things [62, 127, 132].

Due to the significant unpredictability associated with renewable energy sources,
rapid management and operation strategies must be adapted. In such harsh situ-
ations, power storage automation may aid system stabilization. Depending on the
design scheme, these can store a lot of energy, which may be used for many hours
or days. Power control and conversion devices link dispersed energy entities to the
electricity grid. Electrical entities will also help stabilize the system. Active and
reactive power can be controlled quickly, effectively addressing rapid phenomena like
frequency and voltage variations.

2.2 Components and Microgrid Layouts

On the one hand, renewables like solar and wind have seen remarkable increases in
their penetration rates. However, on the other hand, worldwide population expan-
sion, industrialization, and other factors have increased overall energy consumption.
In addition, new power grid-connected technology like electric automobiles may also
increase the power demand. Energy storage technologies are also being incorporated
into electrical networks to address the generation-consumption mismatch [93].

2.2.1 Technologies for Renewable and Non-Renewable Distributed Gen-
eration

The reciprocating engine, gas turbine, and microturbine are three frequently utilized
distributed generations (DGs) based on non-renewable resources [110]. The recip-
rocating engine, which uses fuels such as diesel and gas, was one of the nineteenth
century’s most significant technological breakthroughs. These engines range from
very small to quite big, for example, from 3 kW to 6 MW [5]. While gas turbine
technology is one of the most advanced and mature. A gas turbine can be as large
as a few megawatts. Whereas non-renewable DG is a micro turbine, a growing and
promising technology that uses non-renewable resources such as natural gas [6].

The benefits of a reciprocating engine are low prices and flexible control over the
input mechanical power. The negative is that they are ecologically unfavorable owing
to emissions [162]. Furthermore, as previously stated, gas turbines have the potential
to achieve high efficiency in combined heat and power (CHP) applications, making
them more cost-effective. They have strong ramp-up capabilities, making them
essential for black start applications and covering the picked load [50]. However, gas
turbines are often too massive for tiny customers. Alternately, microturbines have
the benefit of being compact and light. They feature an easy start-up and shutdown
procedure and affordable maintenance expenses. The micro-turbine is currently in
the early stages of development and is somewhat pricey. They are also ecologically
friendly [150].

Wind turbines, solar photovoltaics, biomass power plants, hydro units, geother-
mal, ocean energy, and solar-thermal plants, on the other hand, may be used as
microgrid distributed generators [55]. The geothermal and solar-thermal plants use
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Table 2.1: Comparison of conventional and renewable technologies.

Technologies
Primary
source

Output
voltage

Installed
capacity (kW)

Efficiency
(%)

Pros Cons

Non-renewables
Diesel/Gas AC 3-6000 28-33

Inexpensive installation
Flexible mechanical control

Produce high emmisons.

Gas AC 0.5-30000 21-35
It has high efficiency in combined heat and power (CHP) applications.
They have excellent ramp-up capabilities, making them indispensable for
black start operations and compensate for the load spikes.

Too large for
small consumers.

Natural gas AC 30-1000 20-30
Compact and light.
Simple start-up and shutdown procedures
Low maintenance costs

Development stage.
Pricey.

Renewables

Wind AC 0.1-9000 40-59
Many sites have wind availability.
Power generation at all hours of the day and night
Mature technology

Still pricey.
Stochasticity is high.

Sun DC 0.01-5000 40-60
Capacity for flexible installation.
Suitability for a variety of applications.

Storage mechanism is needed.

Biomass AC 100-20000 45-70

Low environmental impact.
High availability.
Alcohol as well as other fuels generated by
Biofuels are cost-effective and environmentally friendly.

Still costly.
A total waste of energy on a
rational level.

Water AC 5-1000000 66-95
Environmentally and economically favorable.
Low initial investment and ongoing maintenance expenses.
It helps supply peak power and spin reserves.

Energy expension is difficult.
Impact on the environment.

Hot water AC 5000-100000 12-18
Environmentally friendly on the outside.
Low operating expenses.

Geo thermal locations are not
available in the area of interest.

Tidal waves AC 10-1000 n.a.
Low operating expenses.
Grater concentration.
More consistent than PV and wind power.

Lack of commercial projects.
Uncertain operating and
maintenance expenses.

Sun & Water AC 1000-80000 17-25
Simple and low-maintenance.
The operation costs almost nothing.
Advanced technology.

Low energy density.
Limited scalability.

hot water to generate electricity. Concerning the installed capacity, over the last
year, large-scale wind turbines up to 9 MW have been installed, and there is a con-
tinuing upscaling to reduce the cost. Wind turbines are also a developed technology
that can generate power throughout the day. Also, the largest installed capacity
of hydro units is now over 1 GW [18]. Hydro units can provide peak power and
spinning reserve. Wind and solar photovoltaics have a theoretical efficiency of 40%
depending on technology and operating point. On the other side, Geothermal and
solar-thermal units have relatively low efficiency, for instance, between 10% and
20%. The critical advantage of wind and solar is that they are abundant in many
locations. The output voltage of all these technologies except the solar photovoltaic
is AC. Solar photovoltaic units have a flexible installed capacity and may be used
for various applications, including off-grid and pumping [28].

2.2.2 Technologies for Energy Storage

There are several energy storage systems available today. In general, energy storage
methods are divided into two types based on the form of the stored energy: direct
energy storage and indirect energy storage [46]. The former store energy as electrical
energy and do not need to be converted to another form. In contrast, indirect
energy storage solutions need the conversion of electrical energy from/to mechanical
or chemical energy. Table 2.2 depicts technologies of each kind.

Other than batteries, there are eight regularly used energy storage technologies:
thermal energy storage, pumped hydro storage, compressed air energy storage, fly-
wheel, fuel-cells, capacitors, supercapacitors, and superconducting magnetic energy
storage. An overview of the properties of various energy storage systems is provided
below, including electrical efficiency, installed capacity, energy density, capital ex-
penses, life duration, and maturity [178, 193].

Superconducting magnetic energy storage (SMES) and ultra-capacitor energy
storage (UCES) are two forms of electrical energy storage systems that are advanced
variants of basic electrical components such as inductors and capacitors. These
systems possess the capability to rapidly discharge substantial amounts of power,
making them well-suited for power quality applications. Mechanical energy storage
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Table 2.2: Comparison of energy storage technologies [47, 191]

Storage
technology

Efficiency
(%)

Capacity
(MW)

Energy
Density
(Wh/kg)

Capital
(\euro/kW)

Lifetime
(Years)

Maturity

Thermal energy storage 35-65 0-300 80-250 140-220 5-40 Developed
Pumped hydro storage 75-80 100-6000 0.5-1.5 400-1500 40-60 Mature
Compressed air storage 50-89 3-800 30-60 250-1500 20-60 Developed
Flywheel 93-95 0-25 10-30 250 ∼15 Demonstration
Fuel-cells 20-50 0-50 800-10000 350-1100 5-15 Developing
Capacitors 60-65 9-0.05 0.05-5 250 >5 Developed
Super capacitor 90-95 0-0.3 2.5-15 200 >20 Developing
Superconducting magnetic 95-98 0.1-10 0.5-5 200 >20 Demonstration

Table 2.3: Comparison of battery energy storage technologies [47]

Battery Storage
technology

Efficiency
(%)

Capacity
(MW)

Energy
Density
(Wh/kg)

Capital
(\euro/kW)

Lifetime
(Years)

Maturity

Lead acid 70-90 0-40 30-50 200 5-15 Mature
Nickel cadmium 60-65 0-40 50-75 250-900 10-20 Commercial
Sodium sulphur 80-90 0.05-8 150-240 400-1200 10-15 Commercial
Lithium ion 85-90 0-1 75-200 250-500 5-15 Demonstration
Flow batteries 75-85 0.3-15 10-50 400-1100 5-15 Developing

technologies, on the other hand, store energy in the form of kinetic or potential
energy. Examples of such systems include pumped hydro energy storage (PHES),
compressed air energy storage (CAES), and flywheel energy storage (FES).

Thermal energy storage has an electrical efficiency ranging from 35% to 65%,
whereas compressed air energy storage has an electrical efficiency ranging from 75%
to 80%. A flywheel’s electrical efficiency ranges between 93% and 95%. The effi-
ciency of a fuel cell is between 20% and 50%. Capacitors have an efficiency of roughly
60%, but supercapacitors and superconducting magnetic energy storage have more
than 90% electrical efficiency [47, 60]. Pumped hydro storage has the highest in-
stalled capacity of up to 6 GW, while compressed air energy storage has a capacity
of hundreds of MW. Thermal units with installed capacities of up to 300 MW are
possible. The rest of the storage technologies would have a smaller installed ca-
pacity, according to [47, 60]. Except for thermal storage, fuel cells, and batteries,
most energy storage methods would have a poor energy density. With high capital
expenditures, fuel cells are one of the most costly methods of storage. Energy stor-
age using pumped hydro and compressed air has the most extended lifetimes (up
to 60 years), whereas capacitors have a lifespan of about five years. Pumped hydro
is the most developed of these technologies in terms of maturity [180]. Flywheels
and superconducting magnetic energy storage are being tested. In addition, thermal
energy storage, compressed air energy storage, capacitors, fuel cells and supercapac-
itors are all being developed. Battery energy storage is better suited for microgrids
and balancing solar energy. A comparison of various battery technologies is shown in
Table 2.3. In comparison, it is helpful to understand the features of battery energy
storage methods. Nickel-cadmium and lead-acid batteries have the lowest efficiency,
but lithium-ion and sodium-sulfur batteries offer excellent round-trip electrical effi-
ciency of up to 90 %. For large-scale grid applications, lead-acid and flow batteries
are viable possibilities [163]. Many projects based on lithium-ion batteries have re-
cently been completed, with installed capacities exceeding 1 MW [47]. Lead-acid
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and nickel-cadmium batteries have a modest energy density, but sodium-sulfur and
lithium-ion batteries have a high energy density of up to 240 Wh/kg. The energy
density of flow batteries ranges from 10 Wh/kg to 50 Wh/kg. In general, bat-
tery technology capital costs are rapidly declining. The life of these batteries, of
course, depends on the sort of services they give, which can range from 5 to 15
years depending on the number of cycles, depth of discharge, and a variety of other
characteristics such as charge and discharge rate, and temperature [47, 163]. The
most mature technology is the lead-acid battery. While the Li-ion battery is rapidly
evolving and maturing, the flow battery is still in the works. So, the table above,
has summarized the features, benefits, and drawbacks of several energy storage tech-
nologies such as batteries in terms of round-trip electrical efficiency, capacity, energy
density, capital expenses, lifetime, and maturity.

Undoubtedly, electrical vehicle (EV) storage gives the most flexible (dis)charging
power [17, 185]. Thus, the goal of this study is to show the flexibility of power
consumers by employing energy storage systems (ESSs) as EV batteries. Most EVs
are parked practically constantly. To cope with the large penetration of inconsistent
RESs, the vehicle to grid (V2G) approach may be considered [4]. The concept of an
EV aggregator has been employed in a multi-microgrid system to distribute energy
in the event of an emergency, with an emphasis on thermal safety and lithium-
ion battery deterioration [194]. Another form of uncertainty might develop during
EV scheduling. To decrease the impact on earnings, the energy management of
EV parking areas use day-ahead planning, which incorporates a cancelling fee for
customers when users modify their original arrival or departure times [87].

Li et al. [96] claims that storage deterioration and battery inefficiencies are
vulnerable to battery operating limitations and energy trading demands. To maxi-
mize battery life, keep the battery’s operating temperature within acceptable limits
[168]. The battery’s useable capacity and future power costs are affected by the
grid’s condition and execution time [205]. The anticipated Newton technique dis-
covers optimum (dis)charging operations [214]. The general battery model by Hao et
al. [67] also shows the scalability of building energy demand and storage capacity.
An internal short circuit diagnosis approach with high resilience to measurement
perturbations and capacity fading was also provided in [75].

Energy density versus power density It is critical to recognize that power and
energy are both essential aspects of storage. This section shows the energy density
against power density for several storage devices. High power density but low energy
content are common characteristics of capacitors and supercapacitors. These storage
units are ideal for reasonably quick power-based services such as transient voltage
stability [142, 211].

Batteries and flywheels have adequate power and energy densities. Tesla auto-
mobiles, for example, have an energy capacity of 85 kWh to 100 kWh, which is
pretty significant, and the power is also not awful, at approximately 50 kW [64].
The power is determined by how the batteries are connected. These battery cells
may be linked in parallel or series. If the cells are connected in parallel, one gets
greater power since one can draw a larger current. When connected them in series,
one gets a high voltage but a low power. A mix of batteries and capacitors would
be ideal; this combination of diverse storage technologies is referred to as hybrid
energy storage [216].
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Because of the usage of liquid fuels, fuel cells have a poor power density with
high energy content. Because of the restricted power density, it cannot be given
if a significant quantity of power is required. Another essential feature of storage
systems is the discharge time, defined as the time necessary to transition from wholly
charged to fully discharged. Supercapacitors and superconducting magnetic energy
storage typically have a short discharge time of around seconds [215].

The discharge period of a flywheel and most battery technologies (excluding
sodium-sulfur and flow batteries) ranges from one minute to tens of minutes. The
discharge period of sodium-sulfur and flow batteries, ideal for stationary applica-
tions, can be many hours. However, the optimal size of each storage technology will
be determined by the individual needs of microgrids. Therefore, it is necessary to
know how many microgrid storage technologies are charged or discharged to deter-
mine the appropriate size. The Figure 2.4 compares several energy storage methods
based on power and energy densities [47].

Figure 2.4: Comparison of energy storage technologies based on power and energy
densities [47].

2.2.3 Types of Microgrids

A unified power network incorporates various intelligent energy devices including
energy supply entities and as well as energy storage devices [115, 116]. A point of
common connection (PCC) connects the microgrid to the upstream network. There-
fore, the choice of microgrid design is crucial and must be done carefully to ensure
the project’s economic feasibility. Among other things, the type of power demands,
current and proposed distributed generators, storage devices capacity, difficulties in-
stalling additional electrical lines, and existing communication technologiess must be
considered. In addition, it is vital to comprehend the advantages and disadvantages
of various microgrid topologies, layouts, and architectures. An alternative current
(AC) microgrid is usually the best solution for existing facilities with AC loads since
it requires minor adjustments to the current systems. However, a higher-performing
direct current (DC) microgrid might be considered for new installations. Various
electrical components link the microgrid to the upstream network. The most com-
mon element is an AC or DC circuit breaker. A general illustration of a microgrid
layout is shown in Figure 2.5.
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Figure 2.5: Microgrid layout.

AC microgrid

The typical grid operating configuration is grid-connected AC configuration [123].
AC configuration is widely adoptable because of the nature of installed conventional
power generating units and the users’ load demands. AC microgrids consist of a
transformer, a static switch, and several converters for loads, generation, and stor-
age. In a grid-connected AC microgrid, electricity comes straight from the grid,
eliminating the need for a series-connected converter. Load demands, power gener-
ators, and energy storage devices must all be grid supported [152]. More microgrids
feeders may be linked simultaneously while power quality management for voltage
and frequency is simple. Static compensators using capacitors and inverters are used
to maintain the power quality. The fundamental downside of this arrangement is
that it necessitates a high number of sophisticated power converters, which results
in more significant power losses and decreased dependability. Nevertheless, the AC
microgrid is exceptionally well-suited for integrating the microgrid idea into existing
facilities. However, islanded DC distribution systems are becoming popular with the
introduction of next-generation efficient renewable energy producers and DC power
load components.

DC microgrid

The utility grid is connected to the Direct current (DC) microgrid through an
AC/DC converter. It is hoped that the microgrid will be able to export extra
electricity generated by its bidirectional converters. DC microgrids have a relatively
higher efficiency if the AC or DC conversion steps can be skipped.

DC microgrid is increasingly gaining more attention due to its many distinct
advantages. First, renewable energy sources can be operated on a direct current
from the component level’s point of view. On top of this, new emerging technologies
like electric vehicles are also DC. DC electrical networks may assist in integrating
components like renewable energy sources and storage more efficiently. The DC
technology is used in various electrical loads such as LED lights, laptops, and in-
verters for AC motor drives. A microgrid might be a very low-power microgrid,
or even a nanogrid if we use our prior definition of microgrids. Apple and Google,
among others, agreed that the USB Type-C connection with 100 W is sufficient to
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power all DC equipment. Soon, 100 W DC USB type-C outputs will be available
for these DC loads [47].

Most distributed generators require an AC/DC electromechanical interface to
connect to the DC microgrid bus. To change the bus voltage for the AC loads,
a DC/AC converter is required. DC loads can be directly connected or require a
DC/DC converter depending on the bus voltage [151]. Without making any elec-
trical contact, capacitors can be added to the bus. The central AC/DC converter
controls the voltage on the DC bus. If the distribution grid fails, the microgrid must
manage the DC bus voltage without the primary AC/DC converter. DC microgrids
have various benefits over AC microgrids, including the use of fewer converters,
the ability to adapt DC link voltage to grid demands, and good quality DC link
voltage which permits direct connection of some DC loads. In contrast, the series-
connected reversible AC/DC inverter regulates the whole flow of power to and from
the distribution system, lowering dependability.

The DC connection voltage is independent of battery charge, and no circulating
currents are formed, making this DC microgrid easily scalable. The DC/DC con-
verters between the battery and the DC bus may also manage the power flow and
hence the system is much controlled. However, despite the apparent benefits, such
a system is less stable and more susceptible to DC connection problems. Aside from
that, DC/DC converters between the battery and DC connection include power
losses, making the system less efficient than a directly linked system.

Multiple AC/DC conversion stages are necessary between the intrinsically DC
components and the AC connection. But in an all-DC home, these AC/DC conver-
sion stages may be removed, resulting in the following benefits: First, eliminating
AC/DC conversions minimizes the number of power converters required, possibly
lowering investment costs. Second, avoiding power losses related with AC/DC con-
versions increases electrical efficiency. A DC home is more reliable due to the reduced
number of power converters that can cause failure in network. Finally, a DC home
is easier to govern.

Hybrid AC/DC microgrid

Because it is difficult and costly to convert the whole power supply from AC to
DC and operate in islanded mode. In [158, 208] recently have proposed a hybrid
AC/DC nanogrid topology that combines the benefits of both AC and DC topologies.
This architecture minimizes power conversion steps and integrates dispersed energy
resources (DERs) efficiently [111]. Nevertheless, this current scheme has significant
hurdles regarding reliability and control. Because the control entity is in charge
of achieving dispatched grid power flow and balancing the AC and DC subgrids
simultaneously. By intelligently controlling the interlink converter (IC), a smooth
transition between AC and DC subgrids may be achieved. Furthermore, the IC must
provide grid power flow management and grid-forming performance capabilities.
An appropriate control approach is required to coordinate the functioning of the
microgrid and maximize the flow of power throughout the AC and DC subgrids.

An asynchronous AC/DC converter connects an AC microgrid to a DC sub-grid
in an AC-DC hybrid microgrid. The distributed generators may provide either AC
or DC electricity. The AC feeder links the alternating current loads. In contrast,
the DC feeder connects the direct current loads with a power converter to modify
the voltage level. Depending on the power balance of the DC feeder, the DC sub-
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grid may connect or disconnect the AC microgrid. This approach combines AC and
DC microgrids to balance its feeders. Existing households mostly using AC supply
but the future smart devices can be linked using more straightforward converters
through DC feeder. Therefore, it is critical to establish an infrastructure where a
direct current load may be connected directly to the DC feeder [151]. This microgrid
design is ideal for installations with critical (DC feeder) and resilient loads (at the AC
feeder). Solid-state transformers (SSTs) might be employed in a hybrid microgrid
instead of conventional ones. Because it can through both AC and DC energy.
Multiple AC/DC conversion stages are eliminated with the Solid State Transformer.
On the other hand, the SSTs is serially coupled via DC/DC and AC/DC converters,
reducing dependability.

Some standard voltage ratings of different typologies of the microgrid are de-
scribed here. 12 V and 24 V are considered for lights. 48 V is used in telecommu-
nications, rural PV installations, and vehicles. Power over Ethernet uses 50 V . DC
voltages exceeding 100 V have a wide variety of uses. Extra low voltage is defined as
less than 120 V . 230 V is used for pure resistive and thermal loads. The modulation
voltage for a rectifier’s DC input is 325 V [47]. 380 V is recommended for DC data
centers. And electric cars need 400 V DC. 565 V is believed to directly connect
to the three-phase AC grid at low voltage. Trams use 750 V power systems. High
DC voltage is desirable for high-power DC applications to decrease power losses.
At the same time, in some instances, it is prohibited for safety reasons. However,
the maximum low voltage DC is 1500 V , which is used for big solar PV farms and
traction systems.

2.2.4 Microgrid Configurations

A microgrid combines renewable energy sources and regulated loads as a small-
scale power network. Electric vehicles and batteries are essential components of
these networks to stabilize the power flow. The commonly known configurations are
based on the size and the power capacity of the network and are described as;

Picogrid

Picogrids are often called “low-power microgrids.” A house, for example, shown in
Figure 2.6 is a picogrid. A picogrid typically consists of a few residential appliances,
tiny uninterruptible power sources, and photovoltaic (PV) devices. Picogrids may
be used to build nanogrids. Their output power varies from hundreds to kilowatts.

Nanogrid

A nanogrid is a self-contained network of dwellings, photovoltaics, and micro-energy
storage devices. Sometimes it consists of several neighboring picogrids as shown in
Figure 2.7. Its power output varies from tens to hundreds of kilowatts. Although
pico and nanogrids are commonly used interchangeably, it is often essential to de-
scribe them individually to illustrate their differences.

Microgrid

In many cases, the term microgrid also encompasses the concepts of picogrids and
nanogrids. However, sometimes it is helpful to classify them this way to accentuate
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Figure 2.6: Picogrid layout.

their differences. A microgrid comprises many nanogrids with medium-scale compo-
nents such as tiny wind turbines, industrial loads, combined heat and power units,
and diesel engines. The size in this scenario ranges from a few hundred kW to a few
MW . Figure 2.8 describes a detailed layout of a microgrid.

2.3 Microgrid Control Architecture

This work is motivated by the notion of a smart home, integrating customer flexibil-
ity and clean energy sources. Power related entities play an essential part in a smart
home’s power network. It is also known as home area power network (HAPN) and is
concerned with intelligent energy generation and utilization within the home. This
smart home concept has already been described in [8, 76, 85, 147, 153, 159, 161,
170]. Self-sufficiency of the HAPN, integration of new appliances, and communica-
tion among various energy agencies are critical components [160]. HAPN also has
scheduling or managing policies for energy generators, and load needs citing [173].
Control is vital in microgrids because it keeps the system steady. Control optimizes
electricity output and consumption while taking market pricing into account.

The control architecture used in conventional power systems to govern the active
power output of generators is also known as Automatic Generation Control. In elec-
trical power systems, the instantaneous active balance of power between the genera-
tor and the electric demand must be continually maintained [175]. This requirement
must be met during either regular or emergency operations. Power variations arise
in normal operation due to either intermittent renewable electricity generation or
continuous load fluctuations. These aberrations occur during an emergency owing
to abrupt failures of generating units, transmission links, or loads. When there is an
imbalance, the system frequency deviates from its nominal value. Primary control
is engaged automatically and locally to maintain the system’s power balance. This
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Figure 2.7: Nanogrid layout.

balance is done immediately following a contingency event, and it is accomplished
decentralized. Following a contingency occurrence, secondary control is in charge
of returning the frequency to its nominal value. Load frequency control is another
name for secondary control. After that, tertiary control is engaged for times ranging
from minutes to hours to replenish the secondary control reserves [68].

Likewise, a hierarchical control shown in Figure 2.9 can also be implemented
in microgrids, with some differences. A microgrid is controlled in several ways;
grid forming and grid feeding strategies are of primary concern. Grid formation
methods are classified as communication-based or non-communication-based. Gen-
erally speaking, the structure of a microgrid is made up of four different layers; at
the lowest level, this layer has physical infrastructure and local sources, then comes
communication layer; above this, there is control and protection layer, and finally on
top, the layer on business models and regulatory framework as shown in Figure 2.9.

Whereas, a microgrid’s control layer is focused on the lowest layer of microgrid
control. Moreover, a microgrid’s control architecture may be separated into three
layers: microgrid upstream network control, internal microgrid control, and local
control, as shown in Figure 2.10.

2.3.1 Microgrid Local Control

At the lowest level, where physical components of the power network are present,
Local control is responsible for the inner and outer loops, as well as droop control,
where dispersed generation, storage, and loads exist. This control is used in power
converters that connect various components to the distribution grid. The microgrid
local control layer controls a single unit, such as a distributed generator, a storage
unit, or a controlled load. Some of the actions performed by this controller are,
protection, primary frequency control, primary voltage control, primary active and
reactive power control and storage management [44].

Local control is implemented decentralized controlling distributed actuators at
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Figure 2.8: Microgrid layout.

the lowest level. In microgrids, active and reactive power is controlled locally. The
controller receives three-phase current and voltage values from the grid. A dis-
tributed generating unit may also help the microgrid provide ancillary services,
including inertia simulation, power oscillation damping, islanding assistance, and
power quality concerns. Hence, primary local control restores a power system’s
active power balance. Where control inputs to generators, loads, or batteries are
controlled locally. A voltage or current as a control input governs the DC and AC
power converters.

Decentralized architecture of local control in microgrid

In a decentralized control strategy, each controllable unit in the microgrid controls
itself. Negotiation among the many actors may occur, particularly if they all have
distinct aims. However, it is still possible to centralize standard computations like
load forecasting. Four factors determine the performance of control algorithms.
First is the energy node count, e.g., the number of dispersed generators and ad-
justable loads affects complexity and computational time. The second is the mes-
sage exchange rate. Microgrids frequently include dispersed generators and loads
and low-voltage communication networks with limited bandwidth. In some cases,
the number of messages required to execute a task is crucial. Third, decentralized
control decreases the number of communications, and only a tiny portion of the
information is sent up the control hierarchy. Fourth, solution precision and optimal-
ity. Finally, the results’ convergence and correctness depend on the input data and
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Figure 2.9: Microgrid layers [47].

Figure 2.10: Microgrid control architecture.

methods.
Thus, decentralized control has several benefits as they are plug-and-play and

suited for rapidly changing infrastructures. They are also quite reliable. At the
same time, the fundamental drawback of decentralized control is the complexity of
multi-ownership and rivalry among the numerous players or agents. It is because
each RES’s owner strives to maximize its own earnings.

2.3.2 Microgrid Internal Control

The internal micro-grid layer executes microgrid activities that need the participa-
tion of more than two players. Load and renewable energy source forecasting, load
shedding and management, unit commitment economic dispatch, secondary voltage
and frequency control, secondary active and reactive power control, security moni-
toring, black start, and restoration control are some functions [108]. The microgrid
central controller has control over the internal control at this level. The primary
purpose is to change distributed generator reference points in a microgrid. The
internal control maintains synchronization when the microgrid is linked to the ex-
ternal grid. In addition, internal microgrid control modifies the active and reactive
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power setpoints. This precise control detects and counteracts grid instabilities.

Centralized architecture of internal control in microgrid

Depending on the control levels’ obligations, a microgrid may be run centrally or de-
centralized. The central controller connects to the microgrid’s feeds. This includes
power market pricing, grid security, and local production capacities. In a centralized
control system, the microgrid central controller is responsible for maximizing value
and optimizing operation. The microgrid’s central controller decides how much elec-
tricity to import from the upstream distribution system, maximizing local output
and minimizing consumption. The distribution system operates based on market
rates for energy, grid security concerns, and ancillary service requirements. The dis-
tribution management system monitors and controls the whole distribution network
at the upstream network control layer. It can access real-time data and organize the
information. It supplies the energy unit with active and reactive power setpoints
based on signals from the transmission system operator or distributors. Control
ensures proper power flow in the microgrid. For example, it may be determined if
selling electricity to the grid is cheaper than storing it.

When internal microgrid control is centralized, a single unit is in charge of mak-
ing decisions. This design works well when all microgrid actors have the same aims.
For example, transmission system operators (TSOs) usually conduct centralized con-
trol in traditional power networks. Similarly, a single entity handles a microgrid’s
economic dispatch and unit commitment calculations using centralized control. The
distribution system operator or a microgrid central controller provides the setpoints
while calculating the aggregated load demands, distributed generation, and storage
systems. Hence, centralized control gives excellent operational knowledge with well-
defined and accomplished targets. So they can deliver the best solutions worldwide
for online operation and easily synchronize with the primary grid. But, central-
ized control systems are computationally costly and time intensive. The central
controller must optimize many dispersed generating, load, and storage units. This
central controller also has significant communication needs, which increases the grid
maintainence expenses.

2.3.3 Microgrid Upstream Control

On the upstream side is top control level also known as tertiary control. The dis-
tribution management system, which manages power transfer in between microgrid
and the external power network while taking into account market and regulatory
signals, is in charge of this control [57]. Based on market and pricing signals received
directly from the distribution system operator or transmission system operator, the
upstream control feeds the unit active and reactive power setpoints. Control is in
charge of ensuring that electricity flows across power lines at this level. For instance,
it is possible to decide which option is most cost-effective; storing the electricity or
selling it to the main grid.

The upstream network control layer executes decisions for islanded and intercon-
nected modes of operation, enables market participation, and carries out upstream
coordination. It provides an interface for multiple microgrids at medium and low
voltage levels. It also enables the provision of ancillary services and carries out
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upstream coordination. The upstream network control layer’s distribution manage-
ment system is responsible for monitoring and controlling the entire distribution
network. It can access real-time data and gather all the information in a centralized
manner.

2.3.4 Master Slave Control

The master-slave control approach is an established method of microgrid control
for running several distributed generators in parallel. A grid-forming type repre-
sents the master unit, which regulates the voltage and frequency of a microgrid.
Slave grid feeding units follow the voltage and frequency imposed by the master
unit while attempting to maintain their active and reactive power setpoints. Fur-
thermore, grid-supporting equipment may be quickly connected to such a micro-
grid. In any scenario, supervisory control is required to distribute power correctly
across all units. The key advantages of the master-slave control approach are its
simplicity, ease of implementation, and resilience. However, the system cannot be
readily extended, and supervisory management is required to ensure power is con-
stantly shared appropriately. In addition, this control technique is based on power
electronics technologies, which provide reduced dependability owing to unreliable
communication channels. Therefore, a multi-master control method is frequently
advocated for addressing these issues.

2.3.5 Centralized Control

In a centralized system, the primary control is local, but the secondary control is
centralized. The microgrid central controller collects data from dispersed generat-
ing units, such as active and reactive power. The microgrid then provides updated
active and reactive power set-points to all local controllers over the communica-
tion channel, such as distributed generators and energy storage units. The internal
microgrid control decides how to operate the distributed generators. In addition,
the microgrid controller has optimization and scheduling methods. The goal is to
optimize the functioning of distributed generating units to meet the microgrid’s
needs while maximizing revenues. The microgrid central controller notifies users
about external market pricing like day-ahead, real-time, or auxiliary service rates.
The upstream network interface sends the pricing signals to the central controller.
Users may submit their preferred bids to the controller every hour using those price
signals. So the microgrid central controller optimizes and distributes the modified
set-points to the distributed generators, storage units, and loads. Microgrids may
submit hourly supply and demand bids in the centralized control architecture. The
market operator aggregates all bids and develops a supply-demand curve depending
on demand and supply power. The intersection of the aggregate demand and supply
curves determines the unified marginal price.

Also, since low voltage microgrids are linked to the upstream medium voltage
network through a transformer, this interconnection must not be overloaded, as
this might trigger the transformer’s over-current relay. In conclusion, the microgrid
should exhibit a smooth transition between linked and isolated modes. Microgrids
can be connected to the grid, operate in an isolated manner, or be shut down.
The intentional or unintentional disconnection from the main grid of a microgrid
connected to the grid may occur. The deliberate disconnection usually occurs dur-
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ing maintenance of the primary network, where the switch from grid-connected to
isolated mode is deliberately managed.

2.4 Microgrid Communication Network

The microgrid communication infrastructure must be highly reliable, with a bidirec-
tional and extensible connection between microgrid resources. The communication
network of a microgrid may be thought of as a link between its physical infras-
tructure and its control and protection operations. This may be compared to the
conventional power grid topology, designed to work as a centralized unidirectional
system and hence lacks the interconnectedness described above.

A smart residential nanogrid comprises of intelligent energy devices (IEDs) based
home area power network (HAPN) [189]. Most IEDs can be operated and moni-
tored remotely (e.g., internet of things devices). For HAPN to work efficiently,
controllers and IEDs must communicate data in real time. This information sharing
approach is best implemented by wireless sensor and actuator networks [213]. The
communication layer is responsible for alerting the control and protection layers
about the condition of the physical layer. This phenomenon enables the intelligence
layer, the control and protection layer, to function correctly. For example, the size
of an electrical grid determines the optimal communication network [21]. Finally,
the foregoing techniques need data sharing between energy entities such as irradi-
ation sensors, residential appliances, and grid energy management systems. Given
the wide range of devices in HAPN, a standardized communication system network
strategy is critical for success [185].

Energy and data transmission bandwidth restrictions frequently limit distributed
power systems [92]. It is also advantageous to utilize communication networks effi-
ciently. A resilient distributed control method based on communication was devel-
oped to restore voltage and frequency under fixed time delay communication [155].
In [103], a discrete-time distributed communication strategy governs power flow and
voltage/frequency restoration during plug-and-play device operations. Continuous
information sharing across dispersed DERs is inefficient and might cause congestion
[102]. The data exchange between controllers and IEDs causes frequent packet losses
and increasing delays [91].

Time-triggered and event-triggered communication techniques may minimize
communication traffic. In addition, because event-triggered controls need minor
control updating, they demand less data transfer and computation power [92]. It
also supports additional configurations without requiring a new system architecture
[90]. For example, main local voltage control [199], frequency control [36, 100, 106],
and optimal power flow control [54] are all event-based control methods. However,
controlling additional DERs increases latency and jitter [188]. Problems emerge
while servicing many control loops. Lowering one control loop’s latency might influ-
ence another’s control signal quality. The time-variant controller can rectify jitter.
However, it complicates the method and incorporates system functions like as time
stamps [98].

Time-triggered approaches, on the other hand, enhance predictability and per-
formance [187]. These have higher latency than event-triggered designs but no jitter
if all contributing nodes are aligned to a global time [213]. During periodic services,
the time-triggered transmission is controlled by predetermined time frames using
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time division multiple access. A control network’s offline job scheduling may use
time-triggered communication. In this work a time-triggered simplex communica-
tion is used to convey decision signals from the scheduler to the device-level robust
controller.

Thus, it is essential, practical, and more realistic to investigate the distributed
secondary control issue for autonomous microgrids while considering both noise
and constrained bandwidth [61]. However, due to the limited capacity of actual
network transmission, communication delays are unavoidable, resulting in time-
synchronization-loss of energy factors, which affects dynamic response or even causes
the microgrid management system to become unstable [202]. Regretfully, limited
progress has been made for distributed energy sharing control for enormous dis-
tributed generators (e.g., PVs and ESSs) in a microgrid while concurrently address-
ing communication time delays and constrained bandwidth [54, 169].

Real-time and accurate information exchange among various components of the
smart grid is needed for efficient grid operations. The best candidate to implement
such an information sharing mechanism would be the wireless sensor and actuator
networks (WSANs) [14]. These networks incorporate a large number of low-power,
low-cost rapidly deployable sensing and actuating nodes. These networks join sev-
eral low-power, easily deployable sensing, and actuating hubs. The IEDs (i.e., ac-
tuators, sensors ) usually communicating with the controlling hub through relays
and switches. The task of sensors is to monitor and collect nodes’ data in the form
of power frequency, voltages, currents, etc,. Whereas, the actuators perform power
controlling tasks at power lines by switching the loads on/off [10].

2.4.1 Microgrid Communication Layers and Technologies

A further insight to the applicable communication networks in the power system net-
work is discussed as: The wide area network (WAN) is used for large electrical grids
and long-distance data transmission [176, 179]. In addition, this high-bandwidth
network supports bidirectional connection for monitoring and automation. The
field area network (FAN) links the client and the secondary power substation The
near-me area network (NAN) is a collection of smaller power networks that assist the
home energy management systems [34]. Furthermore, these power networks com-
prise multiple home area power networks (HAPN) from various dwellings or flats. It
maintains communication inside each building, gathers renewable energy source gen-
eration data within a building, collects data on each apartment’s usage, and controls
intelligent equipment within each apartment [31]. This is frequently accomplished
through home energy management systems (HEMS). HEMS include graphical user
interfaces for tracking usage and SCADA systems for data storage. Similarly, indus-
trial area networks (IAN) create a communication link between industrial equipment
utilized for automation. The lowest stages of the communication architecture are
the IAN, and HAPN. Wi-Fi, HomePlug, DSL, ZigBee, ZigBee Smart Energy, and
other protocols are commonly utilized in these systems [16]. The ZigBee is based on
the IEEE 802.15.4 standard. However, to accommodate the most widely used pro-
tocol, TCP/IP, the IP protocol is included in their network layer. A NAN might be
used for communications inside a microgrid at a higher level. A FAN may be located
at the distribution level, in charge of communications between the substations and
the microgrid. These sectors are home to substation and automation standards like
IEC 61850. Before each Nanogrid’s consumption and production data is transferred

45



2.5. Optimal Design and Operations Strategies for Microgrids

to the distribution system operator, each microgrid has a NAN with a central data
hub in charge of collecting and storing data packets [26].

Energy management systems aim to optimize energy use by gathering power
consumption and power generation data from various microgrids. The consumption
data of houses and industries in each microgrid is shared through intelligent meters
to the WAN [123]. A central controller will be present at the WAN, which might be
the distribution system operator or any other operator transmitting parameters to
the microgrid operator. Current communication drivers in these networks include 3G
and 4G LTE, cellular communications, WiMAX or optical fiber, and satellite [47].
For various reasons, several standards are available and applicable to microgrids
operations. IEEE 1547 specifies the criteria and standards for connecting dispersed
energy resources [174]. Figure 2.11 gives a glimpse over multiple techniques being
used as communication standards in microgrid.

Figure 2.11: Microgrid communication Standards and Technologies [47].

2.5 Optimal Design and Operations Strategies for

Microgrids

This section introduces microgrid forecasting methods and optimization strategies
for centralized control [123]. Load consumption curves change based on the day,
workday, weekend, or holiday. They may also change by season. Similarly, the
generation curves of renewable energy sources, which are highly dependent on mete-
orological conditions, show much higher daily variations [128]. Therefore, microgrids
need accurate forecasting of electricity usage and generation. Proper forecasting im-
proves the performance of a microgrid. However, uncertainty in demand and supply
causes forecasting mistakes. The power reserve from the generators often compen-
sates for this [126].

2.5.1 Importance of Forecasting in Microgrids

Forecasting approaches are characterized as quantitative or qualitative. When his-
torical data for the units is available, quantitative approaches are used. For example,
a numerical time series can be created from data. The process’s future behavior is
comparable to how it was observed in the past in quantitative methodologies. This
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assumption, however, does not hold when significant changes occur in affecting vari-
ables such as climate, customer behavior, and electrical market structures. Quali-
tative approaches are applied when there is little or no quantitative data available.
These strategies rely heavily on professional knowledge.

In [12], the management system of the suggested model uses hidden Markov
modeling to determine occupant energy use using aggregated power load data and
pre-built models. It captures the differences in energy consumption behaviors as
part of everyday life. After training the data, the model identified the best fit model
and approximated the occupant’s current condition. Similarly, [201] introduces an
optimum control-based EMS for various storage capacity. It has reduced compensa-
tion costs for intra-switching storage and transmission losses. Meanwhile, it kept an
eye on each storage component’s charge level to maintain supply-demand balance.

2.5.2 Stochastic Optimization Strategies

The proposed energy management system attempted to lower energy expenditures
by intelligently coordinating household devices and boosting the usage of alterna-
tive energy sources [95]. Most energy optimization problems aim to reduce costs,
as addressed in [8, 76, 85, 86]. While most research looked at the connection be-
tween power rates and customer dissatisfaction [86, 149, 159], others investigated
the link between lowering costs and peak-to-average (PAR) power consumption ratio
[85]. Getting peaks at off-peak periods is a major drawback when using day-ahead
determined dynamic pricing signals [79].

To avoid a large portion of customer load requests favoring the lowest energy price
slots, greater extra costs are imposed when the load needs of the user surpass the
proposed power limit [79]. Because it may result in a loss of power network diversity
and system failure. To avoid fresh power peaks, day-ahead dynamic pricing with
additive peak power limiting limits are established. A bi-level model of an energy
management system is investigated in [212] to re-examine the PV utilization strategy
and ESD capacity estimate to regulate peak power in a smart home.

In microgrids, several optimization strategies may be used. Some of these ap-
proaches, such as linear and nonlinear programming, mixed integer programming,
stochastic programming, and dynamic programming, have been applied in micro-
grids to solve multi-objective functions that balance low operating costs and good
energy services. The primary goal function of such multi-objective optimization
problems is based on a mix of environmental costs such as carbon emissions, capital
and operating expenses, power storage expenses such as battery and hydrogen fuel
storage, and other costs. Energy or load management is a term used to describe the
use of demand-side strategies to electrical loads [205]. Several energy management
designs have been presented. One of them is the home energy management system
(HEMS) [86, 212]. HEMS incorporates smart energy supply entities (ESEs), such as
diesel generator, photovoltaic, etc., and several types of smart load devices (SLDs),
such as power flexible and time flexible controlled loads, as well as external grid
energy [210]. The ultimate benefit of HEMS is lower power costs for customers.
This is only achievable by maximizing the use of inexpensive energy sources, using
ESDs, activating low-cost electrical equipment, and limiting network power losses.

To reduce user discomfort when applying DSM techniques is a key job [76, 85,
101, 205]. Ran et al. [160] introduces mathematical models for RES, ESDs, and
SLDs, and schedules these entities depending on user happiness. Liu et al. [101]
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develops various goals to create a cost-effective residential operation schedule for a
smart house while considering inhabitants’ desired comfort alternatives. Further-
more, consumers want greater comfort and pleasure by adding a response fatigue
index [170], particularly for heat discomfort [198].

The HAPN uses complex optimization methods to operate efficiently. Diverse
optimization methods have distinct computational complexity. Among the most
often used techniques is MILP, which combines linear models and constraints with a
linear objective function [8, 20, 42, 74, 81, 101, 140, 147, 153, 208]. Others focused on
heuristic algorithms [76, 85], such as population-based particle swarm optimization
(PSO) [79, 160, 161] and genetic algorithms (GA) [86, 95, 212]. Aside from that,
some researchers employed stochastic programming [12, 170], while others focused
on decision tree algorithms [24, 109]. In [107], a stochastic network calculus theory
is used to answer long-term supply and demand uncertainties while meeting energy
balancing requirements. Real-time binary backtracking search algorithm (BBSA) is
used to optimize home device scheduling to minimize energy consumption without
compromising comfort [11]. Xie et al. [198] and Yang et al. [203] discussed model
predictive control to deal with unpredictable generation and demand. Moreover,
if the constraints or the objective function are nonlinear equations, a nonlinear
method, MINLP, may be used [133]. Another real-time SLD operation option ignores
uncertainty and uses the Lyapunov optimization method [46, 96, 205].

High load demands, particularly during peak hours, raise power bills. Low gen-
eration for plentiful Photovoltaic (PV) electricity results in expensive energy opera-
tions [109]. The well-known demand-side management (DSM) or demand response
(DR) techniques may be used to solve these issues. DSM can maximize energy out-
put and consumption, lowering power costs and CO2 emissions [20]. Efficient DR
scheduling algorithms are required to enable users to shift loads intelligently during
low-cost operating times of the day source [170].

There are also countless alternative solutions to the difficulties listed above.
Among them include electric grid, PV, diesel engine generator (DE), and energy
storage devices (ESDs) [109, 208]. PV is the cheapest method of power generation,
however, it is unreliable [153]. Javaid et al. and Yang et al. [79, 203] says that it is
dependent on the sun’s irradiation, which is only accessible during the day. Variable
PV energy may be compensated in several ways. For example, the PV output could
be smoothed using ESDs [95, 107], or the grid energy could be used, or the DE
power might be used [24, 81]. If PV power is plentiful, it may be restricted to
maintain power flow balance and voltage levels [185]. However, thermal generators
and pumped hydro stations may be used extensively to address power generation
uncertainties [8, 74]. However, there is a cost trade-off owing to thermal generator
starting and shutdown activities [208].

The third approach is to utilize controlled flexible smart load devices (SLDs),
which may be operated based on energy availability [46]. There are two kinds of
SLDs: power flexible and time flexible (time shiftable and delay-tolerant devices
[79, 101, 133]). Some studies exclusively consider HVAC loads as flexible loads
[46, 198]. Unlikely, [147] defined electric cars as a new sort of household electricity
load. The aggregated power load is a flexible, controllable load, and most researchers
distinguish between time shiftable and non-shiftable power loads [20, 76, 85, 160,
205].

Load management may also help shift load, reducing the EV fleet’s impact on

48



2 . State of the Art Work

the grid [141]. General demand-side management (DSM) or demand response (DR)
strategies might be utilized to address smart grid features. As a result, DSM may
reduce electricity costs, and CO2 emissions [20]. Other research has built proba-
bilistic models that may better capture the charging load profile than deterministic
charging patterns [166]. Due to minimal energy price slots, Javaid et al. [79] im-
posed higher extra costs when customer load needs exceeding the proposed power
limit. To regulate the peak power in an intelligent home, Zhou et al. [212].

The best flexible load is electric vehicle storage (EVS), which offers a wide range
of dynamic charging power [185]. Ahmadi et al. and Dong et al. [8, 42] exam-
ine the long-term consequences of varied short-term operations and battery storage
component life. Aggregated battery storage systems that operate as energy sup-
pliers or dissipaters reduce ramping while balancing demand with low-cost energy
supply. Moreover, [109, 153, 170] offers a pseudo cost function for battery storage
degradation, whereas [24, 208] examines storage loss cost.

Battery operating restrictions and energy trading needs also apply to storage
degradation and battery inefficiency during operation [96]. To prolong the battery’s
life, maintain the operating cycle in its safe zone. Because energy prices and user load
needs change, the system’s worth capacity and future power costs are dependent on
the system’s condition and operating period [205]. The optimal (dis)charging actions
are detected by the predicted Newton approach [214]. Moreover, [67] presents a
generalized battery model to depict the flexibility of building energy demand and
storage capacity.

In following chapters this book will describe various model predictive iEMS ap-
proaches for optimizing energy flow inside HAPN. These concepts of power flow
from grid to a vehicle (G2V), PV to a vehicle (PV2V), and vehicle to home (V2H)
are believed to be a modernistic alternative to traditional static battery system
[17, 97]. As a result, storing energy decreases total power costs, flattens the load
curve, and minimizes CO2 emissions. The moving sliding-window strategy is used to
schedule the energy supply entities (ESEs) regularly based on real-time information.
Scheduling optimization considers EV (dis)charging phenomena to improve overall
operational benefits. The acquired scheduling signals are also supplied to the device
level local control for further operations.

A predictive control-based algorithm illustrated in [38] that deals with the fore-
casting errors of load demands. The provision of real-time ancillary services to the
utility grid was demonstrated by integrating vehicle-to-grid technology in [27]. While
[83] proposed an energy management technique that designed the sub-problem for-
mulation to introduce different time-slots for appliance scheduling and reduced the
load fluctuations to guarantee stability. Moreover, [206] proposed a local control
for a house that iteratively interacted with the central control unit and received the
information of the planned outage, solving a social warfare optimization problem.

Wang et al. and Minhas et al. [116, 190] created a two-layered power manage-
ment system, where the top layer depicts the stochastic nature of charging places
and time utilizing traffic survey data. The second layer examines the impact of EV
penetration on the distribution system’s dependability using Monte Carlo simula-
tion [30]. Some research, citing [145, 207], employ time series to assess the effect
of EVs in deterministic or stochastic settings, modeling multiple charging scenarios
that include start time, residual SOC, and final SOC. These programs were used to
regulate the charging and discharging power of the storage batteries [172]. Minhas
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et al. [114] uses a multi-objective approach to reduce the cost of EV charging and
discharging while also addressing the user’s preferences. To improve the flexibility
of scheduling algorithms, Abdalla et al. and Trinh et al. used RESs-integrated
iEMS [4, 182] adopting the concept of moving sliding window receding horizon. A
innovative machine learning-based energy management strategy for a hybrid electric
bus is also introduced by Wu et al. [195].

To best of our knowledge, there are just a few HAPN-based studies, and many
of the significant research concerns at the microgrid level are identified previously.
These studies also did not address optimum cost reduction and energy sharing prob-
lems together in both AC and DC sub-grids. Furthermore intensive component
based modelling is missing in the previous literature which has a huge impact in de-
cision making for optimal energy solutions. However, it is a great challenge integrat-
ing bottom up approach in designing a microgrid with various energy components.
Most publications treated grid power as a single entity. However, this study provides
a distributed concept of two-staged scheduling and control phenomenon that reduces
energy cost and power losses during power distribution in AC/DC home area power
network. This thesis carefully investigated the aforementioned constraints in the
literature review in order to establish improved operation and design approaches
for grid-connected microgrids while taking battery longevity and the grid outage
challenge into account.

2.6 Conclusion

This chapter provides a detailed overview of the components of the power grid. It
describes the evolution process of the intelligent power networks in the context of
smart grids. It gives an overview on the history of the power networks revealing
how grids are evolving from traditional systems to intelligent smart grids. It also
provides information on various grid topologies and setups. This chapter also illus-
trates a brief literature survey about control and optimization strategies integrating
microgrid’s primary components and control structures, and discusses a communi-
cation network essential for making the microgrid smarter. Finally, several design
and operational methodologies are explored in the current academic studies.
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This chapter presents the mathematical modeling of several innovative home com-
ponents. Among the components are the energy supply entities (ESEs) such as;
photovoltaic (PV) arrays, diesel generators, microgrid structures, and energy stor-
age systems (ESSs). It also includes home energy appliances such as; traditional
base load demands and smart load demands (SLDs). Furthermore, energy com-
ponents, operational costs, and an energy management system are also a part of
next-generation perfect power systems. In this chapter, the suggested mathematical
modeling of each component provides a complete analysis of the systems’ character-
istics, performance, and dynamic behavior. It illustrates a predictive model of PV
generation, a universal linear diesel generator model, a dynamical working and cost
model for the storage batteries, and an approach that accounts for the stochastic
characteristics of the individual power appliances’ start times and working cycles.
Besides, it shows a glimpse of an optimization model that could offer insight into
the decision makers’ energy policy challenges.

3.1 Modelling Energy Supply Entities (ESEs)

3.1.1 Solar Energy

The sun is the primary energy source, and the World has enormous potential for
harnessing its energy through solar radiation. The availability of desirable solar
radiations on the surface is determined by various climatic factors such as sky clear-
ness index, sky brightness pattern, and reflected and diffuse radiations. These are
used to create solar generation models for predicting system capacity, planning op-
erations, and reliably dispatching solar energy. However, these parameters exhibit
highly nonlinear features because of the varying atmospheric conditions. These can
lead to variations in utility grid power, voltage instability, and frequency deviation
at the point of common connection, which is a significant issue with power quality
[58]. In order to operate a standalone microgrid, PV generation must be projected.
The size, location, and installation angle of PV plants are essential. As a result, its
power generation significantly depends on atmospheric conditions, especially solar
radiation.

The sun’s position and the local meteorological conditions determine the amount
and quality of solar energy received at a location. The sun’s location is expressed in
solar height and azimuth, which may be calculated using solar geometry, as shown
in Figure 3.1. Although climatic conditions are challenging to forecast, they may
be classified into several sky types. An example of a sky condition is shown in
Figure 3.2, where daily sunshine is influenced by the factor of sunny, partly cloudy
and cloudy for the whole year. It shows the summer season is less cloudy and more
sunny as compared to the winters.

This book emphasizes factors characterizing both the radiation and daylight cli-
mate, which are presented in instances with their definition using measured data ac-
quired and is illustrated in Figure 3.3. Data were collected from records of frequent

51



3.1. Modelling Energy Supply Entities (ESEs)

Figure 3.1: The solar height and azimuth [25].

Figure 3.2: Sky conditions.

long-term measurements of the most significant parameters taken at 5-min inter-
vals by the Metronome software station in Saarbrücken, Germany (49.217◦N and
7.117◦E). Ground-level solar irradiation is closely related to PV power generation.
Consequently, predicting solar irradiance serves as the fundamental principle for
forecasting solar energy generation. Predicting global horizontal irradiance (GHI),
the total sum of irradiance descending on an area parallel to the Earth’s surface,
is an important stage in most solar power prediction systems. Cumulative solar
irradiance GT described in Equation 3.1 is defined as the sum of diffused GD(t, β),
reflected GR(t, β), and direct beam GB(t, β) solar irradiance reaching the solar cells,
and is illustrated in Figure 3.4.

GT (t) = GB(t, β) +GD(t, β) +GR(t, β), (3.1)

where β is the pitching angle of the solar panel. The orientation of a photovoltaic
(PV) module at an angled slope is intended to increase its overall yearly energy out-
put. As discussed in this book, the isotropic model is employed to assess the amount
of solar radiation received by a PV module that is positioned at an inclination [19].
Beam irradiance is the direct irradiance coming from Sun without dispersing, ab-
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Figure 3.3: Weather measuring location [1] .

sorbing, or scattering. It is possible to compute this irradiance using observed solar
irradiation on a horizontal surface by GB(t, β) = RBGB(t). Where GB(t) is the
beam irradiance determined at ground level on a horizontal surface, and RB is the
ratio of beam irradiance occurring on a heliostat to that received on a horizontal
surface. The importance of beam irradiations is shown in Figure 3.5a in the form of
a correlation graph between PV production and the GB. Further, the distribution
of GB is shown in Figure 3.5b, showing that it is right skewed and the mean of the
distribution is around 130.

Similarly, diffuse solar irradiance does not directly reach a Solar panel but is
diffused due to clouds or dust in the air on its way from the sun to the Solar panel.
On a slanted surface, diffuse irradiance may be represented as GD(t, β) = RDDD(t).
Where RD is the ratio of diffuse irradiance occurring on a heliostat to that reaching

Figure 3.4: Solar radiation components falling on a slanted PV-module [19].
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(a) Correlation of beam irradiance with PV
generation.

(b) Beam irradiance histogram and boxplot.

Figure 3.5: Correlations and histograms of solar beam irradiation patterns.

on a horizontal plane, and GD(t) is the diffuse irradiance measured at ground level
on a horizontal surface. The significance of diffuse irradiance is shown in Figure 3.6a
in the form of a correlation graph between PV production and the GD. Further, the
distribution of GD is shown in Figure 3.6b, showing that it is right skewed and the
mean of the distribution is around 130.

(a) Correlation of diffuse irradiance with PV
generation.

(b) Diffuse irradiance histogram and box-
plot.

Figure 3.6: Correlations and histograms of solar diffuse irradiation patterns.

In addition, reflected irradiance is mirrored by the earth and projected back to
the Solar panel, which may be calculated as GR(t, β) = G(t)ρ1−cosβ

2
. The value

of ρ represents the fraction of diffusely reflected light from the ground, and GR(t)
represents the measured global sun irradiance on a horizontal plane at the ground
level. The significance of diffuse irradiance is shown in Figure 3.7a in the form of
a correlation graph between PV production and the GR. Further, the distribution
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of GR is shown in Figure 3.7b, showing that it is right skewed and the mean of the
distribution is around 130.

(a) Correlation of reflected irradiance with
PV generation.

(b) Reflected irradiance histogram and box-
plot.

Figure 3.7: Correlations and histograms of solar reflected irradiation patterns.

To achieve the performance, the solar cell must be exposed to light. Various
weather agencies provide global radiation statistics. These data must be used to
compute the incidence of radiation on the slanted solar module surface. The inci-
dence angle may be calculated using the Sun’s location, engine tilt, and orientation.
The Sun’s position is determined by the current date, time, and geographical loca-
tion of the PV system.

3.1.2 PV Panel Analytical Model

(a) (b)

Figure 3.8: (a) PV array structure. (b) PV schematic model.

In the proposed HAPN model, a photovoltaic array, as seen in Figur 3.8a, is
built on the rooftop, serving as a low-cost and environmentally friendly source of
electricity. The available output power of a photovoltaic array (Ppv.av(t)) is the total
power generated by all photovoltaic subarrays j ∈ [1, 2, . . . , J ] mounted on the roof
and the distribution of the obtained PV power on daily, hourly and monthly basis
is illustrated in Figure 3.9[66];
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Figure 3.9: PV distribution on daily, weekly, and monthly basis.

Ppv.av(t) = ηpv.con

J∑
j=1

Psa.j(t), ∀t (3.2)

where ηpv.con denotes the efficiency of a DC-DC maximum power point tracking
(MPPT) converter that is connected to the photovoltaic array. The power output of
each subarray (Psa.j(t)) is computed using the power provided by each PV module
(Pm(t)), the number of modules (Nm) installed in the subarray, and the electrical
loss factor (Fsa.j) associated with it [156].

Psa.j(t) = (Pm(t)Nm)Fsa.j. ∀t, j (3.3)

While, Fsa.j is established on the loss percentage of arrays mismatch loss (Lm.j)
and dc wire loss (Ldc.j).

Fsa.j =

(
1− Lm.j

100

)(
1− Ldc.j

100

)
. ∀j (3.4)

Assume that each photovoltaic module produces the power Pm(t) at its maximum
output (Pm), taking into account predicted solar irradiance (GT (t)) and ambient
temperature (TC(t)).

Pm(t) = Pm
GT (t)

GSTC

(1 + α (TC(t)− 25◦C)) . ∀t (3.5)

Where GSTC stands for standard solar irradiance factor and α for temperature
coefficient. Additionally, Pm is reliant on a parameter called the fill factor (FF ),
which is used to determine the maximum power output of a photovoltaic cell, as
seen in Figure 3.8b.

Pm = FF (t)× V pvcell
oc Ipvcellsc . (3.6)

The short-circuit current (Ipvcellsc ) and open-circuit voltage (V pvcell
oc ) of a photo-

voltaic cell are the maximum current and voltage, respectively and can be calculates
as;

V pvcell
oc = Voc,stc +Kv (TC(t)− 25◦C) . (3.7)

Ipvcellsc = (Isc,stc +Ki(TC(t)− 25◦C))
GT (t)

GSTC

. (3.8)
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The thermal factors of the short circuit current and open circuit voltage of a photo-
voltaic (PV) module are represented by Ki and Kv, respectively. Additionally, the
Fill Factor is a parameter that characterizes the relationship between the voltage
and current at the highest power point and the open circuit voltage and current in a
short circuit. The Fill Factor in Equation 3.9 represents the ratio of the maximum
output power of a PV-cell to the product of the PV-open-circuit cell’s voltage and
short-circuit current. The fill factor is calculated as;

FF (t) = FF0(t)(1− rs(t)). (3.9)

where FF0(t) is the standard nominal PV-cell fill factor, and it is provided by

FF0(t) =
voc.stc(t)− ln(voc(t) + 0.72)

voc(t) + 1
. (3.10)

Additionally, the normalized series resistance, rs(t), and open-circuit voltage, voc(t),
of the PV cell are calculated as follows;

rs(t) = Rs
Ipvcellsc (t)

V pvcell
oc (t)

(3.11)

voc(t) =
V pvcell
oc (t)

Vt(t)
(3.12)

Vt(t) =
ndkBTa.k(t)

e
(3.13)

The magnitude of the photovoltaic cell’s series resistance, Rs, is influenced by the
material of the photovoltaic cell and can be altered by its operating conditions.
Nevertheless, these effects might be insignificant or trivial. To calculate the value of
Rs, the relevant information in the photovoltaic module’s datasheet can be utilized.
The fill factor indicates how closely the actual operating circumstances match the
potential power of Ipvcellsc V pvcell

oc . However, a fill factor of one is not achievable.

In this study, a prediction model was employed to estimate the photovoltaic
(PV) production on both daily and monthly scales. This was accomplished by
utilizing standard PV panel parameters and utilizing historical solar irradiance data
at the microgrid’s location. The model employed linear models that consider various
atmospheric and irradiance parameters to make its predictions. To fit the model,
historical irradiance data is a requirement. Thus, this approach is particularly well-
suited for remote microgrids that lack access to communication infrastructure or
real-time weather data.

Various prediction algorithms have been analyzed, and eventually, the ensemble
decision tree algorithm was considered best for the PV values. A comparison of daily
measured and predicted PV power for any random day is shown in Figure 3.10a,
and the error in the values can be assumed in Figure 3.10c, showing high errors
during daytime when the irradiation is high. Similarly, the monthly comparison of
PV values is shown in Figure 3.10b, and the error rates distribution is illustrated in
Figure 3.10d.
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(a) Hourly measured and predicted PV power. (b) Monthly measured and predicted PV power.

(c) Hourly forecasting errors. (d) Monthly forecasting errors.

Figure 3.10: PV predicted values and forecasting error rates.

3.1.3 Grid Tie-line Model

In the context of microgrids, it is possible for them to function both in a grid-
connected mode and an off-grid mode. When operating in an off-grid mode, the
microgrid is more vulnerable to variations in energy generation and consumption
demand. To maintain grid stability in this scenario, grid-forming components such
as diesel generators and energy storage systems are necessary. On the other hand,
when operating in a grid-connected mode, the microgrid can rely on the assistance
of the primary grid, which acts as a grid-forming component, for frequency stability.

The microgrid’s stability is not assured despite its link to the primary grid. It is
due to grid blackouts or the primary grid load shedding schedule throughout the day
when the grid does not have enough generation. This issue occurs in many nations
because electricity cannot cover all connected loads to the primary grid [71, 115,
138]. The electricity distribution firms sometimes publicize the grid disconnection
timing and duration ahead of time. In contrast, other times, it is uninformed and
unplanned, posing a significant challenge to the microgrid operating phenomenon.

In this study the grid’s available energy (Pav.g(t)) can be defined as:

Pg.av(t) ≤ xg.ac(t)P g.ac, ∀t (3.14)

where

xg.ac(t) =

{
0, if grid is disconnected

1, otherwise
, ∀t (3.15)

In this scenario, the variable xg.ac(t) ∈ 0/1, which is defined as a binary value, serves
as an indicator of the state of the grid-tie power bus. If xg.ac(t) = 1, it implies that
the grid line is available and the flow of power from the grid is active. Conversely, if
xg.ac(t) = 0, the grid line is inaccessible, and the power flow from the grid is inactive.
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Figure 3.11: Diesel generator efficiency characteristics.

It is important to note that while the microgrid is in the grid-connected mode, the
dispatched power (Pg.disp(t)) from the main grid is limited by the capacity of the
grid-tie line (Pg.av(t)).

Pg.disp(t) ≤ Pg.av(t), ∀t (3.16)

3.1.4 Diesel Generator Model

Although the prevalence of renewable energy sources (RES) has increased, the incor-
poration of traditional diesel generators (DGs) remains necessary in the system. This
is due to the substantial uncertainty associated with the generation of RES, which
is susceptible to abrupt fluctuations in meteorological conditions. Consequently, the
energy yield from RES-based microgrids is limited by their unpredictable nature.

Despite worries that DGs operations are the most expensive and that DGs have
significant operating constraints, such as ramp-up/down thresholds for their power
production, it is necessary for the microgrid to have secure and reliable options.
Consequently, the aggregated power output dispatched from the group of diesel
generators (Pde.disp(t)) with m ∈ {1, 2, . . . ,M} generating units attached to the grid
is expressed as;

Pde.disp(t) =
M∑
1

ηm,dg(t)Pm,de.ac(t), ∀t (3.17)

The electrical efficiency of DG (ηm,dg(t)) is determined by the diesel fuel’s charac-
teristics and is proportional to the output power of generator [70, 134], and can be
seen in figure 3.11.

DG Operational Cost

The major aspects to consider while looking for the appropriate dispatch method
for a microgrid with diesel generators are utilization and fuel economy character-
istics. The fuel usage ratios are often indicated on the machine data sheet. The
significant running expense of the diesel generator is the engine’s fuel utilization for
the alternator’s active-reactive power production [70]. Furthermore, the startup and
shutdown expenses of each DG can also be included in the overall cost formulation
associated with the DGs [157]. The cost of power generation (Cm,DE(t)) for m diesel
generator (DG) units is computed based on the fuel price (σf ) which is $/l, and the
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total amount of fuel used (Fm,de.ac(t)) by m generators at any time t and is given as;

Cm,DE(t) =
M∑
1

(σfFm,de.ac(t)), ∀t (3.18)

where, Cm,DE(t) is the cost of power produced by the m generator Pm,de.ac(t) at any
time t. Furthermore, the amount of fuel required (Fm,de.ac(t)) to generate specific
amount of power at particular time t is illustrated as;

Fm,de.ac(t) = am,de.acxm,de.ac(t) + bm,de.acPm,de.ac(t)xm,de.ac(t) + cm,de.acP
2
m,de.ac(t)xm,de.ac(t). ∀t

(3.19)

where, am,de.ac, bm,de.ac, and cm,de.ac are the price variables of generator unit m
at any time t. xm,de.ac(t) is the on/off status of the mth DG. The fuel cost can be
simply linearized by dropping the quadratic term in Equation such that;

Fm,de.ac(t) = am,de.acxm,de.ac(t) + bm,de.acPm,de.ac(t)xm,de.ac(t). ∀t (3.20)

The manufacturer’s data sheet may calculate the fuel curve coefficients. Barley
et al. [29, 70] offered generic values of am,de.ac = 0.246 L/kWh and bm,de.ac = 0.08415 L/kWh.
Diesel generator manufacturers suggest using generators at or above 30% of their
rated capacity. Operating a diesel generator at a reduced output power level can
result in decreased efficiency and may increase the frequency of required maintenance
due to adverse impacts on the diesel engine [134].

In addition, there are other costs exits which reflects the cold start operational
cost Csu

m,DE(t) and the shut down operational cost Csd
m,DE(t) of the DG. In this

analysis, these costs are modeled in a very simplified way just by using an indicator
that when the generator starts or stops and are modelled as [136, 167]; .

Csu
m,DE(t) = σsuzm,de(t), ∀m, t (3.21)

Csd
m,DE(t) = σsdvm,de(t), ∀m, t (3.22)

while the binary variables zm,de(t) and vm,de(t) represent the start-up and shut-
down conditions, respectively, of the mth diesel generator. The start-up indicator is
working under the following constraint:

xm,de.ac(t)− xm,de.ac(t− 1)− zm,de(t) ≤ 0, ∀m, t (3.23)

whereas the shut-down indicator is activated using following strategy;

− xm,de.ac(t) + xm,de.ac(t− 1)− vm,de(t) ≤ 0, ∀m, t (3.24)

DG Operation Constraints

Lowering the power output of the DG harms the performance of the Diesel engine:
poor combustor pressure, cold temperatures, activation problems, poor burns, car-
bon formation, and cylindrical agglomeration of unburned fuel. As a result, the
maximum and lower limitations for gasoline engine power density may be calculated
as follows:

Pm,de.ac ≤ Pm,de.ac(t)xm,de.ac(t) ≤ Pm,de.ac, ∀m, t (3.25)

where, xm,de.ac(t) = (0/1) is the binary on-off status of an individual diesel generator
m. Pm,de.ac and Pm,de.ac are the minimum and maximum bounds of the power,
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respectively. In this work minimum DG power is maintained to 30% of the generator
rated output power [136].

Repeated starts and pauses of the DGs wear down the diesel generator. As a
result, restricting the generator’s minimum up and down duration helps to save
maintenance expenses. The following are examples of minimum up and minimum
down time constraints:

zm,de(t)−
t+πm,de−1∑

t̂=t

(
xm,de.ac(t̂)⌈

t̂
⌉ )

≤ 0, if t ≤ T − πm,de ∀m

zm,de(t)−
T∑
t̂=t

(
xm,de.ac(t̂)⌈

t̂
⌉ )

≤ 0, if t > T − πm,de ∀m

(3.26)

Where πm,de represents the minimum time the DG must be operational and zm,de(t)
is a binary status variable indicating the start-up status of generator m at time t.

Similarly, the DGs off-time constraint is stated as:

zm,de(t) +
t−1∑
t̂=1

(
xm,de.ac(t̂)⌈

t̂
⌉ )

− 1 ≤ 0, if t ≤ σm,de ∀m

zm,de(t) +
t−1∑

t̂=t−σm,de

(
vm,de(t̂)⌈

t̂
⌉ )

− 1 ≤ 0, if t > σm,de ∀m
(3.27)

The minimum down time for the diesel generator (DG) is represented by σm,de while
vm,de(t) = (0/1) denotes the shut-down status of the mth generator.

Furthermore, the big generating units may also have ramp up and ramp down
constraints during variations in load demands and generation requirements. This is
due to the limitations in the mechanical operations of the DGs [144]. The ramp up
(Rum,de(t)) rate capacity of diesel generator m is given as:

Pm,de.ac(t)− Pm,de.ac(t− 1) ≤
Rum,de(t− 1) +max(Pm,de.ac−

Rum,de(t− 1), 0)zm,de(t), ∀m, t
(3.28)

Similarly, the ramp down (Rdm,de(t)) rate capacity of diesel generator m is;

Pm,de.ac(t− 1)− Pm,de.ac(t) ≤
max(Pm,de.ac, Rdm,de(t))−

max(Pm,de.ac −Rdm,de(t− 1), 0)xm,de.ac(t). ∀m, t
(3.29)

3.2 Modelling Energy Storage devices (ESDs)

The fundamental rationale for installing and using ESDs is to ensure that energy
must be available at any time of the day. It is critical when renewable energy sources
are not providing enough electricity or when the cost of delivering energy from the
grid is too high. ESDs can serve as a load-matching solution in small systems
along with solar modules. Alternatively, in solar systems with a load that requires
a substantial initial current demand (such as an inductive load represented by a
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motor), the storage can be employed to supply the initial start-up current. It may
also be utilized for peak shifting in grid-connected systems, where the electricity
generated by the sun is stored during day during excess energy generation and is
used during peak hours at night. In this study, two forms of Energy Storage Devices
(ESDs) are considered for utilization in Home Area Power Networks (HAPN). These
ESDs are Home Battery Storage (HBS) and Electric Vehicle Storage (EVS) which
are chemically similar and hence, have identical operating principles.

The voltage and capacity ratings of the battery are the first critical criteria to
consider. Every battery has a specific voltage and capacity rating. The voltage
level is formed by cells inside each battery. In this context, the nominal voltage at
which the battery is designed to operate is referred to as the battery-rated voltage.
The capacity of a battery refers to the quantity of charge it can supply at the rated
voltage. The ampere-hour is the unit of measurement for battery capacity (Ah).
The battery’s energy capacity can also be expressed as a function of its voltage
and capacity in amp-hours. The product of these two values results in the total
energy capacity of the battery, expressed in watt-hours (Wh). However, the actual
energy storage capacities of the battery might differ significantly from the nominal
quoted capacity, as the battery capacity is heavily dependent on the battery’s age
and historical history, charging or discharging regimens, and temperature.

The storage’s nominal capacity (Eb) is defined as;

Eb = Ib4t× V oc
b , (3.30)

which is always limited to it’s maximum value Eb such that; (Eb ≤ Eb). Where, Ib
and V oc

b denotes short-circuit current and open-circuit voltage, respectively. How-
ever, due to storage internal losses, the available energy capacity (Eav.b) that can be
extracted from storage devices is often less than the Eb.

Eav.b ≤ Eb. (3.31)

The restriction on the maximum permissible discharge of the battery is known as
the Depth of Discharge (DoD) and is calculated as follows; DoD = 1− Eav.b

Eb
, which

is the counterpart to the state of charge (SoC) of the storage [214].

Figure 3.12: ESDs model.

Additionally, storage efficiency is a critical factor affecting battery capacity and
is reliant on the internal resistance (Rb) and the Battery power (Pb) may defined as
follows [56];

Pb = V oc
b Ib −RbIb2 . (3.32)

The efficiency during discharging, when Ib ≥ 0 is;

ηdchbcell =
Pb
Pcell

=
V oc
b Ib −RbIb2

V oc
b Ib

= 1− RbIb
V oc
b

, (3.33)
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where, Pcell represents the power input to the battery circuit.

Remark 1. ηchbcell ≈ ηdchbcell ≈ ηbcell = 1−
∣∣∣RbIb
V oc
b

∣∣∣ .
This efficiency is affected by the charging and discharging currents where in-

creasing heat losses may results in reducing overall efficiency. Therefore, in order
to determine the economically viable strategy for a storage system, it is imperative
to formulate a model that precisely portrays the efficiency of the storage unit by
evaluating both the battery and converter losses. Figure 3.12 illustrates a battery
storage system’s block diagram. It demonstrates two efficiency parameters, one for
storage itself (ηb) and the other one for the converter (ηcon) attached next to it.

The charging and discharging rates have an impact on the rated battery capacity.
For example, when a battery is depleted rapidly (i.e., the discharge current is strong),
the quantity of energy that can be taken from it is reduced, and the battery capacity
is lowered. Alternatively, suppose the battery is drained slowly with a low current.
In that case, more energy may be taken, and the battery capacity is increased.
As a result, the charging/discharging rate should be included when measuring the
battery capacity. A popular method of specifying battery capacity is to describe the
capacity as a function of the time required to fully drain the battery (note that in
practice, the battery often cannot be fully discharged).

The overall power loss associated with the battery and the converter is illustrated
as [56];

Pb.loss(t) =


(η−1b η−1con − 1)Pb.dch = (η−1b.con − 1)Pb.dch

(ηbηcon − 1)Pb.ch = (ηb.con − 1)Pb.ch

Pb.self (t), if Pb.dch(t) | Pb.ch(t) = 0.

(3.34)

where, Pb.dch is established when Ib ≥ 0, and Pb.ch is established when Ib < 0. Lead
acid batteries, on the other hand, often have coulombic efficiencies of 85% and energy
efficiencies of 70% [115].

3.2.1 Battery Dynamics

In any PV power generating infrastructure that includes storage devices espacially
batteries, these are a critical component of the overall installation, influencing the
economics, maintenance requirements, reliability, and layout of the solar array sig-
nificantly. Because of the tremendous effect of batteries in a stand-alone solar mod-
ule, knowing the properties of batteries is critical in understanding the operation
of PV technologies. The battery maintenance needs, battery longevity, available
power, and efficiency are all key battery characteristics that determine solar system
operation and performance. A perfect battery would be capable of charging and
discharging indefinitely despite unpredictable discharging and charging cycles. Fur-
thermore, it is efficient, has a higher power density, has less self-discharge, and is
affordable. Such factors are determined not only by the battery’s initial choice, yet
also by its usage scenarios in the installed power network. For example, what are
its charging and discharging rates and what is the operating temperatures.

While in smart power network the switching between intermediate devices is
adverse and autonomous and so a storage is critical. It may operate as a buffer,
dampening variations caused by fluctuating load demands and the intermittent na-
ture of renewable producers. Additionally, it may be utilized as a backup source
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during power outages, periods of low solar energy production or when the grid prices
are too high.

The dynamic behavior of an energy storage system can be expressed as the
variation in the energy levels, represented by Eb(4t), across different time intervals
(4t = t−(t−1)). This behavior is influenced by various factors, such as the charging
and discharging rates of the storage, the (dis)charging efficiency factor (ηb.con), and
the self-discharge of the battery (Pb.self (t)).

Eb(4t) =
(
ηb.conPb.ch(t)− η−1b.conPb.dch(t)− Pb.self (t)×4t

)
. ∀t ∈ {2 · · ·T} (3.35)

Whereas, the battery SoC is limited to its maximum SoC and the minimum SoC
threshold:

SoC ≤ SoC(t) ≤ SoC. ∀t (3.36)

Furthermore, the minimum capacity (Eb) of the storage can be calculated as;

Eb = (1−DoDb)Eb (3.37)

where, Eb and DoDb represents the maximum capacity and maximum depth of
discharge of the storage, respectively. Furthermore, Pb.ch(t) and Pb.dch(t) are also
bounded by the maximum and minimum values at any time t, such as;

P b.ch ≤ Pb.ch(t) ≤ P b.ch, ∀t (3.38)

P b.dch ≤ Pb.dch(t) ≤ P b.dch, ∀t (3.39)

3.2.2 Battery Operation and Degradation Cost Model

The usage of batteries in photovoltaic-based power systems is distinct from other
conventional battery uses. The critical technological concerns for photovoltaic sys-
tems are the battery’s extended endurance at virtually complete depletion circum-
stances. It is preferable to assess the health state of critical equipment credibly in
applications where dependability is vital. The critical example of a RES-based au-
tonomous telecommunications infrastructure is significant because it is employed
to achieve equilibrium between the demand and the RES supply. Any devia-
tion from power homeostasis is represented in its SoC, which undergoes repetitive
charge/discharge operations of varying intensities.

Ongoing battery deterioration research includes the creation of mathematical
aging models. In microgrids, minimizing battery deterioration has been an element
of the economic optimization function of the cost minimization issue. To decrease
the impact of deterioration, the operation of an energy storage system should be
managed in order to maximize its utility at the lowest possible cost. In energy man-
agement applications, for example, where the discharged energy dictates the lifespan,
the energy storage may be prohibited from discharging over a specific amount of its
energy capacity. There are two forms of degradation: a loss in energy delivery ca-
pacity and a drop in energy storage capacity. Battery cyclic aging is accelerated by
high temperatures, rapid charge and discharge rates, and large Depth of Discharge
[43].

The deterioration of battery capacity is most heavily influenced by the interde-
pendence of the following parameters; 1) the storage calendar lifespan, 2) maximum
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number of charging/discharging cycles, 3) the battery’s charging/discharging regime,
4) the battery’s DoD over its life, 5) the average temperature of the battery during
its lifespan, 6) the efficiency of the battery, 7) how deep cycling and protracted peri-
ods of low charge effect battery capacity and lifetime, 8) the original and continuing
battery expenses, 9) and the battery’s maintenance needs.

Frequent intense cycling reduces battery capacity by significantly lowering usable
energy, as seen in Figure 3.13a. The greater the depth of the discharges, the greater
the loss of cumulative capacity. Given the more significant capital outlay and shorter
operational lifespan of the battery storage compared to the other energy entities in
the power network, the cost associated with ESDs degradation is a crucial function
value. As shown in Equation 3.40, the loss penalty (Cb) per kWh of ESDs (dis)charge
is determine by state of discharge (DoDb), storage investment cost (ICb), number
of charging/discharging cycles Ncycle.b [208]. Figure 3.13b shows the degradation
cost induced as a function of DoD. Whereas Nb is showing an exponential functions
depends on DOD.

Cb =
ICb

Ncycle.b(1−DoDb)Eb

(3.40)

Ncycle.b = α exp−β(DoD) +γ (3.41)

where Cb is the cost associated to the capacity loss and is a function of DoD,
while Ncycle.b is the total number of cycles required to bring a battery to its total
capacity loss when it is periodically discharged at a particular DoD.

The graphs shown in Figure 3.13a depicts a development of battery function as
a function of cycle number and depth of discharge for a shallow-cycled lead acid
battery. Even with DoD more than 50%, a deep-cycle lead acid battery should be
able to retain a cycle life of more than 1,000 cycles. Furthermore, in Figure 3.13b
the expected battery operating and maintaining cost is shown as a function of DoD.
It shows the cost of storage increases with frequently deep discharges.

(a) Storage life cycle vs DoD. (b) Cost of (dis)charge vs DoD.

Figure 3.13: Storage life cycle degration and the induced cost with the increasing
DoD.
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3.3 Modelling Home Energy Appliances

One of the work’s primary accomplishments is the introduction of the autonomous
functioning of smart home appliances. For this purpose, the notion of smart home
appliances (a new generation of power appliances that are self-intelligent and energy
efficient) has been introduced. An energy management system (EMS) for microgrids
can integrate flexible and delay-tolerant smart appliances to operate the grid cost-
effectively. Appliances can be classified into two broad groups in the examined
innovative home model depending on their technologies. There are two types of
appliances; traditional appliances (TA) and smart appliances (SA) [20, 133].

Figure 3.14: Home electrical appliances classification.

3.3.1 Traditional Appliances

This kind of device is sometimes referred to as a critical load. Because these are
manually controlled devices with little or limited intelligence, they should be served
quickly. These loads are often referred to as a home’s base load. These include
consumer electronics (CE), cooking range (CR), and instantaneous water heater
(WH). As these loads are uncontrolled, this study does not attempt to model these
in detail.

Remark 2. ATA = {CE ∪ CR ∪WH}.

This work considers these loads as deterministic loads that can be anticipated a
day in advance. The total energy needed for these loads is modeled as ETA:

ETA =
T∑
t=1

F∑
f=1

P TA−

f (t), (3.42)

where, f ∈ [1, 2, . . . , F ] is the index of the appliance and P TA−

f (t) is the power
consumed by a device ‘f’ at any instant of time t.
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3.3.2 Smart Appliances

Typically, this category of the appliance is comprised of energy-efficient and self-
aware appliances. These are capable of adjusting their energy consumption and
work routines. For example, the scheduling unit may determine how these loads
use energy. These devices are assumed to be linked to the central control unit
through personal area wireless communication technology (i.e., Zig-bee or WiFi).
Additionally, these appliances are categorized into two groups. For example, 1)
power elastic appliances (PE) and b) time elastic appliances (TE).

Remark 3. ASA = {PE ∪ TE}.

Power Elastic Appliances

This category of appliances comprises devices with variable power outputs that may
change their output magnitudes. Additionally, the power used by these devices can
be subject to the consumers’ comfort. These appliances might be lights or fans, for
example.

Remark 4. APE = {lights ∪ fans}

The energy demand EPE
a for a single PE load ‘a’ is shown as follows:

EPE
a =

T∑
t=1

P PE−

a (t), ∀a ∈ APE (3.43)

where P PE−
a (t) denotes the amount of energy consumed by the device a at any time

t. In this study, these loads may be considered as predictable loads.

Time Elastic Appliances

Time elastic (TE) appliances are classified into two types; 1) time shiftable (TS)
devices, and 2) delay tolerant (DT) devices. According to optimal choices, TS
loads may be planned anywhere on the time scale t. However, DT loads can only
experience delays. TS loads are regarded as dynamic and non-deterministic in this
context. The users entrust the home energy management system (HEMS) with the
time preference for activating these loads. DT loads, however, are static, predictable,
and known in advance. Further, TS loads are classified into electrically controlled
loads (ECL) and thermal controllable loads (TCL).

Remark 5. ATS = {ECL ∪ TCL}.

ECL These are fixed energy loads, and the magnitudes of their power can only
be adjusted during a single-phase period. The working schedule of these devices
may include the alteration in device working phases d ∈ [1, 2, . . . , D]. Devices can
also postpone activation within a user-defined time preference interval (TPECL

b,d (t).
These appliances cannot be turned off once turned on. However, their various opera-
tional stages can be delayed based on current power prices and customer satisfaction
preferences. This includes, but is not limited to, washing machines (WM), clothes
dryers (CD), and water pumps (WP).
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Remark 6. AECL ∈ {WM ∪ CD ∪WP}.

The total energy requirement EECL
b,d of different phases d of device b is illustrated

as:

EECL
b,d =

T∑
t=1

PECL−

b,d (t), ∀d, b ∈ AECL (3.44)

where, PECL−

b,d (t) denotes the power used by a specific phase d of device b at any
time t.

TCL The Thermal Controllable Loads (TCL), which usually comprise heating
and cooling devices, are greatly influenced by fluctuations in ambient temperature
[196]. It is, therefore, crucial to accurately model the heat transfer process of these
loads. An equivalent Thermal Parameters (ETP) model has been introduced in
order to model the electricity consumption of refrigerators and freezers, which is
depicted in Figure 3.15. Where, Ca represents air heat capacity (J/◦C); Cm depicts

(a) (b)

Figure 3.15: ETP model and thermal behaviour of a TCL device

mass heat capacity (J/◦C); Q is heat rate for thermal unit (W ); UA is standby
heat loss coefficient (W/◦C); R1 is 1/UA; R2 is 1/UAmass; To describes ambient
environmental temperature (◦C); Tin represents thermal cabin temperature (◦C);
Tm is mass temperature inside thermal cabin (◦C).

TCL are fixed power appliances [196]. However, the activation of such devices
is conditional on the scheduling unit’s temperature-dependent optimum decision
values. It takes into account the device’s thermal restrictions as well as the ambient
environmental temperatures. These energy loads may include but are not limited
to air conditioners (AC), water coolers (WC), and refrigerators (RF).

Remark 7. ATCL ∈ {AC ∪WC ∪RF}

The energy needed for a particular TCL load ETCL
c is shown as follows:

ETCL
c =

T∑
t=1

P TCL−

c (t), ∀c ∈ ATCL (3.45)

where, P TCL−
c (t) is the power required by the particular device c at any time t.
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DT loads These constant power demands cannot be reduced or stopped through-
out their operating cycles. Additionally, they cannot be modified in time prior to
their activation period. These, on the other hand, maybe postponed from the mo-
ment they are initiated until their activation time reaches a specified device starting
threshold. Therefore, a notion of a loading queue is developed to regulate their time
delays. These queues are formed over time to account for the electricity required to
delay and service the loads. With this queue terminology, one may determine the
size of the queue and the length of time a given device has been waiting in it. Load
delay times can be managed by imposing a limit on queue size and can impose a
delay fee on these growing queues. These power load types may include but are not
limited to a kettle and an iron.

Remark 8. ADT ∈ {kettle ∪ iron}

The total energy requirement EDT for these loads is expressed as:

EDT =
T∑
t=1

E∑
e=1

PDT−

e (t), (3.46)

where e ∈ [1, 2, . . . , E] denotes the power load index and PDT−
e (t) is the power

utilized by a specific device e at any moment t.
Thus, given a single residence, it may have some random inhabitants U, who

occupy the home randomly during the day as U ∈ {1, 2, ...nu}. Let Pac.load(t) be the
established total demand for HAPN at any time t, which is expressed as:

Pac.load(t) =
∑
f∈ATA

P TA−

f (t) +
∑
a∈APE

P PE−

a (t) +
∑

b∈AECL

D∑
d=1

PECL−

b,d (t)

+
∑

c∈ATCL

P TCL−

c (t) +
∑
e∈ADT

PDT−

e (t), ∀t
(3.47)

3.3.3 Case Study Example

It is critical to obtain device power consumption statistics and a home’s load profile
information in order to execute load management and schedule loads appropriately.
Because physical modeling of individual appliances is outside the scope of this study,
the author has designed the loads for our energy demand model using a data-driven
method. This research uses a model from [165] to analyze the daily energy con-
sumption profile of a single medium-size residence.

The load profiles of practically all common household appliances are derived at
one-second intervals. The Center for Renewable Energy System Technology created
this model (CREST). It records the number of inhabitants, their actions, and the
activation of desired equipment in the past. Because the energy pattern generated by
an individual local home is highly dependent on the residents’ activities and their use
of electrical appliances. The methodology described below uses historical data from
the “UK time use survey” to generate time for residential consumers using statistical
models, giving information on occupants’ activities and their length. Additionally,
it depicts how an actual appliance operates for a certain activity performed by
an inhabitant in a house. The occupancy model is developed using a transition
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Figure 3.16: Electricity demand model architecture [165].

probability matrix for occupants, which yields the precise number of occupants
[165].

The activities of each person and the corresponding appliance are determined
using historical data. After identifying the appliance, a typical day profile for the
appliance is established, and by aggregating the profiles of all the appliances, a load
profile for the house is derived. The data obtained includes the average power con-
sumption of each device as well as the operating modes or cycles of each appliance.
The model encompasses almost every kind of electrical gadget seen in a domestic
environment. It makes use of these gadgets as the fundamental building blocks,
with each item representing a particular home power demand, such as a television,
clothes dryer, or vacuum cleaner. As a result, it is also referred to as a bottom-up
model [12].

As seen in Figure 3.16, the demand model architecture consists of active occu-
pancy, a daily activity profile, and installed devices. The active occupancy approach
utilizes randomly allocated inhabitants (one to five). Whereas the time of power
usage is predicted based on the individual inhabitants’ activity. The resulting ac-
tivity profiles accurately represent the tenants’ actual activities at a given moment.
For instance, the most typical activity at dinner is cooking. Similarly, the activ-
ity of viewing television is often decided in the evening. Similarly, each occupant’s
behavior has a daily profile.

Additionally, these activity profiles are associated with a certain appliance.
Kitchen, for example, requires the use of an oven, microwave, or other tiny cook-
ing equipment. While viewing the television requires the television to be seen.
Thus, rather than calculating specific appliance use data, an activity profile model
is utilised to ensure that the appliance is active throughout the intended period of
usage [165]. This activity profiling is critical for demand side management because
it creates a connection between energy use and occupant activity. This implies that
in order to meet variable needs, a user’s activity profile must likewise be adaptive.
The suggested model of SLDs follows the same technique.
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Table 3.1: Home appliances activities and classification.

Activity Appliance type
Mean cycle
power (W)

Appliance
class

Cooling
Fridge freezer 190 TE (TCL)
Refrigertaor 110 TE (TCL)

Consumer
electronics

Answer machine 0 TA
Cassette / CD-player 15 TA
Clock 0 TA
Telephone 0 TA
Hi-Fi 100 TA
Iron 1000 TE (DT)
Personal computer 141 TA
Printer 335 TA
TV 1 124 TA
TV 2 124 TA
VCR / DVD 34 TA
TV receiver box 27 TA

Cooking Oven 2125 TA
Microwave 1250 TA
Kettel 2000 TE (DT)
Small cooking 1000 TA

Wet
Dish wascher 1131 TE (ECL)
Washing machine 406 TE (ECL)

Water heating Electric shower 9000 TA
Lighting Bulbs 190 PE

The author has identified six distinct activities for the case study example using
an existing energy demand model for a house with five residents. Table 3.1 details 22
appliances, including their average power usage and appliance class. The author has
categorized these appliances into five distinct types, which were previously explored
in Section 3.3.

The often utilized parameter for assessment or control purposes in the aforemen-
tioned paradigm is the power value of any device. However, in certain circumstances,
more than one parameter may be required to operate the device. For example, as
shown in Table 3.2 & Table 3.2, ECL devices (i.e., washing machine and dishwasher)
have a distinct number of operating cycles, and each cycle has its own energy con-
sumption and time length constraints [177]. The author re-models these devices’
load profiles by including power and time limitations discussed in Section 6.2.2. A
similar situation exists with TCL devices (i.e., refrigerator and freezer). In Wu et al.
[196], an equivalent thermal parameter (ETP) model is proposed that incorporates
both interior and outdoor temperatures as well as the thermal flow mechanism of
TCL devices.
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Table 3.2: Dish washer parameters.

Energy phase Energy Min power Max power Op.time

Wash 838 Wh 1000 W 1500 W 45 min
Drain & dry 261 Wh 1000 W 2500 W 15 min

Table 3.3: Washing machine parameters.

Energy phase Energy Min power Max power Op.time

Movement 9.7 Wh 16 W 42 W 15 min
Heating 720 Wh 32 W 3084 W 15 min
Wash 77 Wh 5 W 100 W 60 min
Rinse 70 Wh 17 W 170 W 30 min

Drain & dry 66 Wh 203 W 1500 W 15 min

3.4 Modelling ESEs Energy Pricing Scheme

To achieve the best results, the cost of various ESEs is assessed throughout the
scheduling phase. Fixed operating and maintenance costs are associated with PV
operations and EV storage use. While grid prices are changeable, they are deter-
mined by open market energy pricing.

3.4.1 Utility Grid Energy Price

The demand side management technique (DSM) in scheduling user’s load demands
may employ standard energy pricing regimes such as; time-of-use pricing (TOU),
critical peak pricing (CPP), and real-time pricing (RTP) to minimize peak load
and save money. According to recent research, RTP schemes are more adaptable
than CPP and TOU price regimes in DSM programs when it comes to expressing
dynamic supply-demand connections and influencing consumers’ power consumption
behavior [181]. However, the provided analysis concentrates on the economic impact
of the RTP on the energy consumer or power supplier while ignoring the total power
peak to average ratio (PAR) [22], which may result in a situation in which the
energy consumer or provider may profit from the pricing model while the power
PAR remains unchanged.

In some tasks mentioned in this book use real-time pricing (RTP) data to de-
scribe the efficacy of flexible grid pricing strategies for demand side management
strategies in the HAPN, which are obtained from Neon et al. [139]. Furthermore,
the findings in [84] demonstrated that the RTP could be effectively influenced by the
inclining block rate (IBR) method. As a result, in compliance with [22], this work
develops a microgrid integrated real-time pricing system that incorporates power
resources mismatch and IBR to achieve cost reductions and power demand pattern
management.

A hybrid pricing model is devised to coordinate microgrid activities in order
to create a cost-effective supply-demand balance. It proposes an inclination block
rate-based real-time pricing (IBR-RTP) scheme by merging previously established
common tariffs such as real-time pricing (RTP), critical peak pricing (CPP), and
time-of-use pricing (TOU) [203][105]. Whereas the RTP price ρ(t) define for the net
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load (L(t)) is;
ρ(t) = a(t)L(t)2 + b(t)L(t) + c(t) (3.48)

L(t) = PLoad.ac(t) + Pdc.b(t)− Pb.dc(t),∀t (3.49)

where L(t) denotes the net load at any point in time t; a(t), b(t), and c(t) denote the
coefficients, which may be varied according to the real load requirement at different
time increments. The IBR pricing at any instantaneous time t could be calculated
using the system’s net load L(t) and expressed as.

IBR(t) =


σ1(t), 0 < L(t) < δ1,

σ2(t), δ1 < L(t) < δ2,

σ3(t), L(t) > δ2.

(3.50)

Coupling the previously specified common RTP with the IBR pricing technique, the
new pricing scheme ρ(L(t)) can be formulated as;

ρ(L(t)) =


ρ(t)× σ1(t), 0 < L(t) < δ1,

ρ(t)× σ2(t), δ1 < L(t) < δ2,

ρ(t)× σ3(t), L(t) > δ2,

(3.51)

where δ1 and δ2 are the defined net load thresholds for load demand L(t) at time
step t; σ1(t), σ2(t) and σ3(t) are three IBR price values combined with RTP (ρ(t))
to produce the real price ρ(L(t)) of energy providing loads at any time t. As seen
in Figure 3.17, the price varies according on the net load at various time steps.

Figure 3.17: Energy pricing scheme model.

3.4.2 Inverter’s Distributed Energy Cost

Inverter power is the power from the battery, PV, and some induced losses due to
the DC/AC power conversion inside the inverter. The losses are normally compen-
sated by the power obtained from the source. Hence, in this case the inverter power
cost (Cinv.ac(t)) would be the operating cost of the battery (ϕ) and PV (φ) and is
illustrated in equation below. The cost per watt for PV and battery operations is
obtained from [41]. This operating cost per watt is a function of aggregated invest-
ment cost to the working cycle of the component. These operational costs depend
on the installation, operation, and management (O&M) costs. These expense cate-
gories include inverter replacement, operations administration, module replacement,
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component replacement, system inspection and monitoring, module cleaning, land
lease, property tax, and insurance, as well as asset management and security.

Cinv.ac(t) = ϕPb.dc(t) + φPpv.dc(t) (3.52)

3.5 Modelling Optimization Problem

PV storage systems are a popular research topic and are classified as; a) stand-alone
systems, b) grid-connected systems. Stand-alone systems off-grid power networks
comprises of energy storage systems (ESS) and PV modules which are the mandatory
components. At the same time, diesel gensets are commonly used in these systems
to meet energy needs when it is impossible to rely on PV and ESS [88]. Whereas,
grid-connected PV systems consists at least of a PV systems and an invertor, which
enables the connection of the PV modules to the grid [171]. Load and PV genera-
tion forecasting are critical inputs for any predictive control approach. While PV
prediction is doable given a credible weather forecast, predicting the desired load is
a complex problem. Despite technological advancement, vast amounts of electrical
energy may not be saved in electrical form. As a result, an optimization method
is applied to make the best use of that energy. The consumer-oriented aims are to
maximize self-sufficiency and system profitability, and minimize operating expenses,
whereas the utility aims to reduce grid congestion and CO2 emissions. These goals
are frequently at odds with one another. As a result, if the control system has to
consider more than one target, it is critical to determine the appropriate weighting
factors for each objective. A summary of the aims is provided below.

1. Self sufficiency / RE utilization factor indicator: It is defined as the ratio of
non-grid-supplied household load to total domestic load. This is accomplished
by integrating the battery into the system, allowing surplus PV energy to be
used.

2. Components efficiency / Power loss indicator: It illustrates the power losses
during energy conversion within the system and calculates the cost of energy
wastage due to components’ inefficiency rank.

3. Energy storage SoC / Storage device indicator: It demonstrates whether en-
ergy storage is cost-efficient at any particular time t. Alternatively, it costs
more by operating unnecessarily, which involves storage degradation costs.

4. Load curtailment / User comfort indicator / Flexible load control indicator:
It indicates the priority of user comfort against power load shedding. Flex-
ible loads, however, improve the energy consumers’ experiences by adjusting
and tolerating themselves according to the situation, which is preferable while
handling power cuts and minimizing the energy cost for the consumer.

5. System Return on Investment: It is defined as the ratio of money saved with an
investment to the cost of installing and purchasing PV modules and batteries.
This aim should be considered at the system design stage by decreasing the
system size while achieving system objectives.
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6. Operation costs: It relates to reducing the running costs of a certain system
with defined capacities. For example, using PV battery systems, one can
reduce the power expenses for energy obtained from grid and limits the battery
aging phenomenon.

7. Grid congestion: Increasing solar installations’ integration into electrical grids
causes peak power feed-in congestion. To overcome this issue, peak-shaving
algorithms that smoothed out the feed-in power or prohibit feed-in power
during peak periods might be introduced to the goal functions.

8. CO2 emissions: This goal is discussed in systems with a diesel generator and
may be reached by reducing the fuel contribution to power generation. Re-
ducing CO2 emissions is analogous to self-sufficiency in other systems.

3.5.1 Model Predictive Control

Model predictive control (MPC) is a time-ahead optimization approach having many
parameters as inputs, outputs, and system limitations. It comprises of two working
time horizons, one is known as control and and the other is prediction horizon, and
are depicted in Figure 3.18. The prediction horizon is for non-deterministic polyno-
mial (NP) problem, whereas the control horizon is “Nick’s Class” (NC). First, the
system model calculates a set of NP expected outputs. Then, the MPC performs
the optimization process and calculates a set of NC control values based on this
sequence and current system data. The significant benefit of MPC is that it opti-
mizes for the current time slot while considering future time slots within a restricted
time horizon. However, the value obtained by optimization is merely implemented
for the time being. The exact process should be performed for the next time slot
(anticipating future values and the optimization). MPC optimization strategy dif-
fers based on the target function and restrictions. The approaches often utilized in
MPC-based energy management systems are outlined below.

Figure 3.18: Predictive control strategy.

3.5.2 Microgrid optimal operation

Many technological and economic issues must be managed during the microgrid
(MG) operation to produce steady, dependable, and inexpensive electricity. To
meet these needs, the MG control system uses a multi-level and multi-layer archi-
tecture to govern the power flow in microgrid, as illustrated in Figure 3.19 [116], with
operational (Real-time control), supervisory (scheduling), and planning (scheduling
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Figure 3.19: Illustration of a hierarchical multi-layer structure for MGs control
system.

and forecasting) levels. From right to left, each level is distinguished by its con-
trol parameters and execution speed resolution. Real-time controllers attached to
the significant elements of the microgrid at the functional level are responsible for
observing and controlling the voltage and frequency within milliseconds. The su-
pervisory layer comes next, with a time window ranging from seconds to minutes.
The scheduler at this layer assures steady functioning of the MG components based
on the set points provided by the management layer. The planning layer is at the
topmost level, in which the controller operates in increments of few minutes to many
hours while keeping costs to a minimum given their technological and operational
limits. It is responsible for predicting load needs dependably and cost-effectively.

3.5.3 Optimzation Algorithms

The MATLAB Optimization Toolbox is utilized to find the optimal solution to most
of the problems discussed in this publication. This toolbox comprises functions
that facilitate the identification of parameters that minimize or maximize objec-
tives while satisfying constraints imposed by the system. The optimization problem
can be defined with functions and matrices, resulting in faster and more accurate
solutions, and automatic differentiation of objective and constraint functions can
be leveraged. The toolbox’s solvers can be utilized to determine optimal solutions
to both continuous and discrete problems, evaluate trade-offs, and incorporate opti-
mization techniques into algorithms and applications. Furthermore, the toolbox can
be employed to carry out design optimization tasks such as parameter estimation,
component selection, and parameter adjustment [113].

Because of complex mathematical models and to reduce the time of getting
results from optimization algorithms, the objective functions and the system con-
straints are designed as linear equations. Hence a linear programming strategy is
implemented to deal with these linear equations. Mixed-integer linear programming
(MILP) optimizes linear objective functions for a given set of linear equations and
inequalities. Unlike linear programming, the variables in integer optimization can
only take integer values rather than arbitrary fundamental values. Despite its abil-
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ity to handle problems with many variables and constraints, adding integers to the
issue raises the processing cost compared to only linear programming. The following
mathematical illustrations show the function implemented as MILP syntax:

min
x

f(x1, x2, . . . , xn) =
T∑
t=0

ctxt, (3.53)

subject to the linear conditions as follows:

x(intcon) are integers

Aeqx = beq

Ax ≤ b

lb ≤ x ≤ ub

(3.54)

In general, f(x) is a scalar function
whereas ct is constant parameter,
xt are the set of control variables,
A and Aeq are system input matrices,
b, beq, lb, and ub are constraint vectors, and
The parameter “intcon” is a vector of positive integers containing the integer-

valued controlled components. Optimization approaches are used to identify a com-
bination of design variables, (x = x1, x2, . . . , xn), that may be described as optimal
in some sense. In the most basic scenario, this process may be the minimization
or maximizing of some system feature that is dependent on x. In a more sophis-
ticated formulation, the objective function f(x) to be reduced or maximized may
be constrained in one or more of the following ways; a) constraints on equality, b)
inequality constraints, and c) parameter’s lower and upper bounds [2].

A problem-based rational functions technique is employed for creating an op-
timization strategy that employs optimization variables to describe goals and con-
straints. Variables and expressions in the problem reflect an operating system model.
The procedures outlined below are suggested for implementing an optimization ex-
pression.

1. Get a broader overview of the issue.

2. Determine the goal (maximizing or minimizing).

3. Determine the variables names.

4. Determine the constraints and limitations.

5. Identify the control variables.

6. Use mathematical terminology to specify all quantities.

7. Examine the model for reliability and consistency.

8. For each problem variable, construct an optimization variable.

9. Make a container for optimization problems. Include the problem’s objective
function.
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10. Create and incorporate linear constraints such as; linear equalities/inequalities
and boundary conditions.

11. After finishing the problem formulation, use an optimization solver (in this
thesis, “linprob” with the “dual-simplex” or “interior-point” method is used)
to solve the problem.

Solvers, in general, return a local minimum (or optimum). The outcome may be
a global minimum (or optimal), but this is not guaranteed. A local minimum of a
function is a position where the function value is less than that of adjacent points
but may be larger than that of a distant point.

3.6 Conclusion

This chapter delves into the examination of several grid component models and
presents novel analytical approaches to system modeling. Among the components
are the energy supply entities (ESEs) such as; photovoltaic (PV) arrays, diesel gen-
erators, and energy storage devices (ESDs). Because in further chapters, the concept
of demand-side management is also introduced. So the modeling of home energy
appliances (i.e., traditional base load demands and smart load demands (SLDs)) is
also critical to be described here. The recommended mathematical modeling of each
component in this chapter comprehensively examines the system’s attributes, per-
formance, and dynamic behavior. In addition, various components of cost models
are also explained, with the help of which an optimization model could offer insight
into the decision makers’ energy policy challenges.
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4 Home Area Power Network Design Frame-
work and Power Scheduling Algorithms

As the world endeavors to produce cost-effective and environmentally friendly elec-
tricity, the use of photovoltaic (PV) and electric vehicle (EV) systems has gained
substantial attention. However, the fluctuating nature of PV power generation, the
variability of energy consumers’ load demands, and the restrictions of EV storage
capacity can result in instability in the power grid. To examine these challenges, a
behavior of a small scale home area power network (HAPN) is studied by incorpo-
rating a intelligent energy management system (iEMS). This chapter focuses on the
grid connected HAPN framework integrating photovoltaic modules, electric vehicle
storage, residential households, and the power scheduling algorithms. Two different
techniques have been investigated for energy management. The first technique is
fixed horizon based day-ahead rule-based energy management system, whereas the
second one is rolling horizon based optimal energy management system.

The methodology put forth in this study employs a real-life case study of yearly
datasets relating to household energy demands, electric vehicle driving patterns,
and battery charging and discharging patterns. The purpose of this demonstration
is to showcase the actual capabilities of energy management. The simulation results
present a comparative analysis of various energy sources in terms of their monthly
and yearly evaluation indices, such as penetration levels and utilization factors.
A battery storage capacity loss percentage is determined on daily, monthly and
yearly basis by integrating a battery life-cycle degradation model in the system.
Additionally, consumers’ comfort and low energy costs are ensured by balancing
their power needs with the least expensive energy supply sources.

4.1 Critical Analysis of Optimization Strategies

The main problem of the modern power network is that the RESs are exceptionally
intermittent. Intermittence is induced by varying wind speeds and time-limited sun
irradiation [117]. Incorporating RESs into the traditional grid is also challenging due
to the inherent unpredictability of RESs. The inadequacy of measuring technology
to monitor grid status adequately cites [114]. Due to the low system inertia, a grid
with significant RESs uptake may experience frequency and voltage instability. The
intermittent nature of dispersed energy supplies further complicates system stability
[166].

To solve this issue, Li et al. [96] proposes a distributed grid design. It connects
RESs to regular power grids by storing and controlling energy. Decentralized gen-
eration re-imagines the existing electrical network. Using energy storage systems
(ESSs) like batteries is a simple solution to the issue cited by [123]. This work
uses the ESSs to optimize PV and EV serving capacity in grid-connected nanogrids
(NGs). It helps managing nanogrid energy by storing energy to EV battery, when
RESs production exceeds load needs (i.e., PV to vehicle (PV2V)) and returning
energy to the home (i.e., vehicle to home (V2H)) when energy demands are high.
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Table 4.1: Objectives, limitations, and critical analysis of the past literature.

Ref #. Objectives Technique(s)
Scheduling entities Dynamic EV

Charging
Battery

degradation
Cost

reduction
Energy

balancing
Limitation(s)

Grid PV EV

[166]
According to this study, using battery storage for PV and
EV hosting capacity optimization as well as grid voltage
maintenance was critical.

Model Predictive
Control

3 3 3 7 7 3 7

The case study is fictitious. It was confirmed that the
generation of DG and PVs exceeds the consumption
of the load and EV charging and that the ESS
maintains all BUS voltages within the permitted limit.

[145]

The purpose of this study is to propose a methodology
for simulating plug-in electric vehicle charging in order
to quantify the impact of this type of load on
power systems.

Monte Carlo
Simulation

3 3 3 7 7 7 3

The proposed technique focused on transmission
networks and provides a deterministic representation
of the EV charge distribution across the network.
It made no reference to any real-world data collection.

[214]
Dynamic programming is used to govern the charging and
discharging of the storage device in order to extend the life
of the battery.

Adaptive Dynamic
Programming

3 3 7 7 7 3 7

The model was confined to battery storage alone and
did not include specific information about load
needs. Additionally, constraint functions that does not
have an exact model of the device were estimated.

[205]

The author discussed the challenge of minimizing the total of
energy and thermal discomfort costs. The suggested system
stabilized developing queues for indoor temperature
control, electric car charging, and energy storage.

Lyapunov
Optimization

3 3 3 7 7 3 3

The energy demand model was limited in scope since
it examines only thermal loads. Additionally, the
algorithm was incapable of addressing the issue of
peak forms.

[133]

Maximizing the utility sums of residential customers while
keeping energy consumption costs in check is explored in
this article. It is decentralized, but it protected the
residents’ private information at the same time.

Generalized Benders
Decomposition algorithm

3 3 7 7 7 3 7

The technique might not operate successfully
if the homes’ demand information is inaccurate.
It also didn’t address the peak-to-average
power demand ratio (PAR).

[20]

A two-stage optimization approach is devised, in which
peak reduction signals are discovered and their flexibility
provision determined by aggregating individual users’
energy use histories.

Mixed Integer Linear
Programming

3 3 7 7 3 3 7

This study made no allowance for incentives for
postponing loading or for the penalty cost
associated with reducing customer suffering.

[172]

The control method outlined in this work is intended
to address power factor concerns associated with
EV charging stations while still allowing
for full PV generation.

Optimal Dynamic
Programming

3 3 3 7 7 3 7

The effort was done to boost the power factor.
The battery management system was designed to
adjust only the power factor, ignoring the demand-
supply balance and ignoring real-world data.

[35]

This research provided a model for optimizing the operation
of storage batteries and appliance usage for each consumer,
as well as the operation of a photovoltaic plant within a
community to maximize load factor increase.

Mixed Integter Linear
Programming

3 3 3 7 7 3 7

The battery deterioration model outlined in this
study is critical to the model’s success. Realistic
information about the actions of prosumers
was also not included.

[4]

The suggested technique uses time-of-use pricing,
time-varying residential power demand, solar generating
profiles, and EV specifications to reduce electricity
prices and flatten the load curve.

Rule Bbased
Optimization

3 3 3 7 7 7 3

The battery degradation model is an important
factor in this study’s model. But,
realistic data sets on prosumer
actions were not included in the investigation.

[15]

The PV produced more energy than needed to meet load
demands and charge the batteries. Battery discharge
happens when PV panel output falls short of
load needs. The controller prevented over(dis)charging.

Fuzzy Logic
Design

3 3 7 7 7 7 3

The focus of this paper was solely on the
supply and demand for energy. Cost reduction
and customer satisfaction were not
adequately addressed.

Thus, EVs may act as prosumers for NGs, reducing the need for separate residential
batteries [30]. A homeowner, for example, may utilize the EV’s storage to power
several residences at peak periods and high energy costs while charging it later in the
night when energy costs are lower [48]. Also, enabling their EVs to act as dispersed
energy supplies may earn them rewards [204].

Moreover, the concept of a regulated home area power network (HAPN) makes
it simple to cope with power production and consumption uncertainties [115]. Self-
reliability and resilience are essential HAPN traits. Other qualities like self-sufficiency,
integrating appliances, and coordination among multiple energy devices are also vital
[160]. To optimize the HAPN’s cost-effectiveness, an intelligent energy management
system (iEMS) using advanced optimization techniques may be used. A nanogrid
management system can better regulate the unpredictable and intermittent nature
of RESs and load demands.

A critical analysis of prior research on energy sources, EV charging behavior,
storage life cycle deterioration, cost reduction, and scheduling strategies is shown in
Table 5.1.

In comparison to past studies, this study adds the following noteworthy contri-
butions:

1. This chapter is a response to the special issue of Energies on “Demand Side
Management of Distributed and Uncertain Flexibilities”. It presents a novel
approach to demonstrate the practical capabilities of an energy management
system (iEMS) using real-life yearly datasets of household energy demands,
electric vehicle (EV) driving patterns, and EV battery charging and discharg-
ing patterns. To the author’s knowledge, this is the first study that employs
such explicit data sets in the development of an iEMS methodology.

2. A detailed converter-based nanogrid model is presented. This model incorpo-
rates real-world data sets as well as operational constraints for conventional
and renewable energy power sources. The proposed model takes into consider-
ation the gradual decrease in storage capacity over time of the electric vehicle.
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The data utilized in MATLAB undergoes pre-processing before being utilized
in the analysis.

3. A two-stage co-simulation framework was implemented to construct a multi-
time scale Integrated Energy Management System (iEMS) and control ap-
proach. A reliable decision-based operating method is proposed to use the
least expensive energy supply sources while maximizing consumer satisfaction.

4. To address forecast errors and create cost-effective scheduling decisions for
supply sources, we propose a computationally efficient mixed integer rule-based
sliding horizon dynamical method. Furthermore, the first step compares daily
and seasonal scheduling selections for diverse supply sources.

4.2 Home Area Power Network Design and Schedul-

ing Strategies

The dynamical scheme represented in Figure 4.1, includes daily load curves for
household appliances, solar power curves from PV systems, grid electricity pricing
signals, EV loading, charging, and driving indications. The smart meter includes a
home energy management system (HEMS) that allows for cost-effective day-ahead
scheduling and real-time power flow control in HAPN gathers the above signals for
further processing. The built architecture can accommodate plug-and-play energy
sources, such as electric automobiles.

Figure 4.1: Proposed dynamic scheduling scheme.

The suggested framework’s energy management tactics are divided into two sub-
problems and solved in two ways. A cost-effective approach to acquiring schedule
control signals for different energy supply entities (ESEs) is discussed initially. The
signals are repeatedly tuned with a year-ahead temporal resolution of 15 minutes.
It anticipates solar energy and residential load demand uncertainty. The second
component deals with energy balance and user satisfaction, using the first section’s
data as reference signals for real-time electrical device performance. Each energy
device has a powerful controller that follows the planned signal during its operating
time. A device-level robust control mechanism continually monitors the power levels
and regulates the device’s activation depending on the received reference signal. The
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proposed strategy works for any home with solar panels and an electric car as a
storage entity. With increased energy costs and extra solar electricity, it helps the
homeowner financially to act optimally and reduce its energy costs.

4.2.1 Home Area Power Network Architecture

Figure 4.2 shows the HAPN architecture in question. The Utility grid (discussed in
Section 3.1.3) is attached directly to the home’s AC bus. However, the PV array
(model stated in Section 3.1.2) and EV storage (as stated in Section 3.2) are linked to
the grid AC bus through inverters and converters. The system includes controllable
switches for the nanogrid’s binary operations.

Figure 4.2: HAPN architecture.

As shown in the figure, the grid supply power at the AC bus (Pg.ac(t)) is;

Pg.ac(t) ≤ min [xg.ac(t)Pg.disp(t), Pac.load(t)] , ∀t (4.1)

where xg.ac(t) ∈ {0, 1} represents the grid Boolean operator, Pg.disp(t) represents
the controlled dispatchable grid power, and Pac.load(t) represents the desired load
demands. The power provided by solar panels Ppv.ac(t) on the AC bus, on the other
hand, is restricted to;

Ppv.ac(t) ≤ min [Ppv.disp(t), Pac.load(t) + Pac.b(t)]xpv.ac(t)ηpv.con, ∀t (4.2)

where, Ppv.disp(t) represents the controlled dispatchable photovoltaic power, Pac.b(t)
represents the power utilized to charge the EV battery, and ηpv.con represents the
inverter efficiency, and xpv.ac(t) ∈ {0, 1} represents the PV Boolean operator.

Additionally, the HAPN incorporates a battery in the form of an electric car
that acts as a storage entity with instantaneous available power (Pb.av(t)) that is
restricted by the EV battery’s maximum capacity (Eb), such as

Pb.av(t) ≤
(
Eb/4t

)
. ∀t (4.3)

The instantaneous power transfer from attached EV to AC bus (Pb.ac(t)) during
discharging is:

Pb.ac(t) = min [ηb.conPb.dch(t), ηb.conPb.av(t), Pac.load(t)]xb.ac(t), ∀t (4.4)
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where, xb.ac(t) ∈ {0, 1}, Pb.dch(t) is the battery discharge rate, and ηb.con denote
the battery converter efficiency. However, the instantaneous power necessary to
recharge the EV battery (Pac.b(t)) is illustrated in Equation 4.5, coupled with a
Boolean operation of xac.b(t) ∈ {0, 1}.

Pac.b(t) = min
[
Ppv.ac(t) + Pg.ac(t)− Pac.load(t), η−1b.conPb.ch(t), . . .(

Eb/4t
)
−
(
η−1b.conPb.av(t)

)
xac.b(t), ∀t

(4.5)

where, Pb.ch(t) denotes the battery’s charge rate. Additionally, Eb(t) represents the
capacity of energy in the battery influenced by the capacity degradation QAM/SEI(t),
which is restricted by its maximum Eb and the minimum Eb threshold;

Eb ≤ Eb(t)− (QAM(t) +QSEI(t)) ≤ Eb. ∀t (4.6)

Further, Pb.ch(t) and Pb.dch(t) are constrained by a maximum (P b.ch|P b.dch) and lowest
(P b.ch|P b.dch) value at any point in time, including the following:

P b.ch ≤ Pb.ch(t) ≤ P b.ch, ∀t (4.7)

P b.dch ≤ Pb.dch(t) ≤ P b.dch, ∀t (4.8)

besides, the AC bus exchanges power transfer as;

xpv.ac(t)Ppv.ac(t) + xb.ac(t)Pb.ac(t) + xg.ac(t)Pg.ac(t) . . .

= xac.b(t)Pac.b(t) + Pac.load(t). ∀t
(4.9)

Additionally, one constraint on battery functioning is that charging and draining
cannot occur simultaneously.

xb.ac(t) + xac.b(t) ≤ 1. ∀t (4.10)

Additionally, the battery’s immediate state of energy (Eb(t)) may be computed as
follows:

Eb(t) = Eb(t−1)+

∫ t

t−1

(
(ηb.conPac.b(t)×4t)−

(
η−1b.conPb.ac(t)×4t

))
dt. ∀t (4.11)

4.2.2 Battery Capacity Loss Model

A typical characteristic of battery ageing or deterioration is noticed during battery
operation. There are two distinct forms of deterioration that are often investigated:
1) the diminishment of a battery’s ability to provide energy; 2) and the reduction of
its capacity for storage. According to [192], the aforesaid degrading event is char-
acterized by high temperatures, high charge and discharge rates, and a substantial
depth of discharge (DOD).

Jin et al. [82] developed a reduced-order physical model to anticipate the de-
graded state of lithium-ion phosphate cathode and graphite anode battery cells.
Individual storage cells with a capacity of 2.3 Ah are being investigated, which will
be combined in series and parallel to form a battery pack with a given capacity
power. At each time step t, the capacity loss owing to solid electrolyte interface
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(SEI) layer development (QSEI(t)) and active material (AM) loss (QAM(t)) at any
time t are calculated using Equation 4.12 and 4.13, respectively.

QSEI(t) =

∫ t

t−1
−
kSEI exp

(
−ESEI

RT

)
2(1 + λθ)

√
t

dt, (4.12)

QAM(t) =

∫ t

t−1
kAM exp

(
−EAM

MN

)
· SOC(t) · |Ib.dch(t)− Ib.ch(t)| dt, (4.13)

A detailed description of the model is given in [130].

4.2.3 Energy Supply Entities Cost Modeling

For demand side management (DSM) strategies in the HAPN, the usefulness of
dynamic grid pricing methods (θ(t)) is highlighted by obtaining real-time pricing
(RTP) data from [3, 139]. Whereas the cost per watt for solar photovoltaic (φ) and
battery storage (ϕ) operations is derived from [41]. These operating expenses are
proportional to the costs of installation, operation, and management (O&M). Addi-
tionally, O&M expenditure categories include inverter replacement, operations ad-
ministration, module replacement, component replacement, system inspection and
monitoring, module cleaning, land leasing, property taxes, and insurance, as well as
asset management and security [41].

4.3 Rule-based Energy Scheduling Scheme

The Home Area Power Network (HAPN) is a single-phase power network that re-
ceives energy from the utility grid, solar panels, and electric vehicle batteries, and
distributes it to individual residences at a predetermined voltage level. This is a
novel solution to the problem of providing energy to residential areas, as it allows
for efficient and reliable energy distribution. Additionally, the HAPN provides a
cost-effective alternative to traditional power networks, making it an attractive op-
tion for many residential areas. The article demonstrates energy allocation from
various energy sources via the use of a cost-effective energy management technique.
This technique is utilized at the secondary level scheduling stage to generate set
points for charging and discharging electric cars, solar power feed-in, and grid power
consumption. Additionally, a limit on satisfying users’ load requirements is imposed.
It ensures that energy supply is always equal to or greater than energy consumption.
Additionally, cost reductions are realized by employing readily accessible, inexpen-
sive energy sources at any time t. The next part discusses the proposed method,
which provides a practical strategy for scheduling available power sources.

The operational aim of the energy management phase is to boost customer sat-
isfaction and EV charging while maintaining HAPN’s operating expenses as low as
possible. This implies that preference should always be given to energy sources that
produce relatively inexpensive power and that, if required, a part of the EV charging
load may be served as another source of energy to balance the power demands. At
each time t, the EMS collects data on solar energy, the status of electric vehicle
storage, and user load needs.

The purpose is to build a scheduling mechanism u(t) ∈ {ux(t),up(t)}, that bal-
ances power from the grid, photovoltaics, and a battery for an electric car. Whereas
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ux(t) = [xpv.ac(t), xb.ac(t), xg.ac(t), xac.b(t)] denotes Boolean decision variables. The
variables listed in the previous section represent the availability of various energy
sources at the start of each iteration of the algorithm, and are denoted as follows:

xg.ac(t) =

{
1 if Pg.av(t) > Pg.disp(t)

0 otherwise
, xpv.ac(t) =

{
1 if Ppv.av(t) > Ppv.disp(t)

0 otherwise
,

xb.ac(t) =

{
1 if Pb.av(t) > Eb(t)

0 otherwise
, xac.b(t) =

{
1 if Pb.av(t) < Eb(t)

0 otherwise
.

(4.14)
Thus, the aforementioned discrete variables contribute to the reduction of computa-
tion complexity by allowing for an earlier determination of whether or not to activate
a specific energy supply entity. Additionally, up(t) = [ppv.ac(t), pb.ac(t), pac.b(t), pg.ac(t)]
denotes a vector of continuous power control variables applicable to a variety of en-
ergy sources. The aforementioned management approach is designed to establish
a load and supply balance while accounting for the cost of operating HAPN. As a
result, we identify two unique formulations of the issue.

P = min
u(t)

T∑
t=1

{θ(t)×xg.ac(t)Pg.ac(t)+φ×xpv.ac(t)Ppv.ac(t)+ϕ×xb.ac(t)Pb.ac(t)} (4.15)

s.t. ref, eq. (1-2),(4-14),(16-17)

The first one is the cost minimization issue shown in Equation 4.15, and the second
one is the energy balancing problem depicted in Equation 4.17, in which the house’s
load needs (as defined in Equation 4.16) must be met with the least amount of
electricity possible. This issue can be rectified by enforcing some of the security
constraints stated above. On the other hand, the power needs (Pac.load(t)) for each
time slot t must be met by a combination of power provided by various sources. As a
consequence, the following principles outline the inherent energy balance restriction
associated with achieving the aforementioned objective. As a result, the target
power that must be attained is as follows:

Pac.load(t) =

{
max(0, Pac.load + xac.b(t)Pac.b), if xpv.ac(t) | xb.ac(t) | xg.ac(t) = 1
0, otherwise

. ∀t

(4.16)
The EMS places a premium on the usage of solar energy, and battery power is used
if solar is insufficient to fulfill load requirements. If required, energy may also be
drawn from the grid. The net power that will be allocated at every time slot t will
be as follows:

Ppv.ac(t) + Pb.ac(t) + Pg.ac(t) ≥ Pac.load(t). ∀t (4.17)

4.3.1 Algorithms and Implementation

We have demonstrated three unique operating techniques for supply-side manage-
ment that may be compared to achieve the best results. Among them are the fol-
lowing:

1. Scheme 1: Conventional rule-based strategy involves only EV storage and grid
energy supply (Conv-EG).

85



4.3. Rule-based Energy Scheduling Scheme

2. Scheme 2: Conventional rule-based strategy involves PV supply along with
EV storage and grid energy supply (Conv-PEG).

3. Scheme 3: Proposed model predictive intelligent energy management system
(MP-iEMS).

For all three optimization schemes, the system model is identical to that pre-
sented in Section 4.2, except that the PV is missing in Scheme 1.

To address the problems expressed in Equation (4.15 & 4.17), we suggest a set
of establishing priorities for acquiring power values from the absolute cheapest and
most dependable source of energy. This set includes two continuous power indicators
and three binary indicators. One of the power indicators cover both the actual load
and storage charging requirements (Pac.load) and the other is EV consumption when
driving (Pdrv(t)). While binary indicators such as drive bool (EVdrv(t) ∈ {0, 1}),
electric vehicle charging Bool (EVch(t) ∈ {0, 1}), and electric vehicle loading Bool
(EVload(t) ∈ {0, 1}) are also accessible. The feasible solution set is composed of 16
distinct conditions based on these four indicators. Only six of them are plausible,
and we used a rule-based expert system to apply them over the operating window.
The remaining 10 candidate sets are not feasibly operational and so cannot be
adopted. Considering the above binary loading signals the author has developed
the control policy u(t).

Scheme 1: Conv-EG

The scheduling strategy (Conv-EG) is a priority-based decision algorithm as shown
in Figure 4.3. We assume that the system model used to apply this algorithm
only contains a supply from the grid and EV storage. In this algorithm, the EV
storage has priority over the grid to supply power to the load demands. It is due
to the assumption that the EV storage might be charged at low peak hours at
comparatively lower rates. Hence, at the initial stage, EV storage is analyzed to
determine whether it can fulfill the load demands completely by itself or not. If
the EV is parked at home and the loading Boolean is enabled, it will automatically
discharge. Additionally, if the charging Boolean is active, then it is capable of
charging as well. However, if the EV drive Boolean is set to true, the EV will drive
on the road and will charge itself via charging stations, while the home loads will be
enternained by grid electricity. The detailed workflow of the algorithms is illustrated
in Figure 4.3.

Scheme 2: Conv-PEG

The scheduling method (Conv-PEG) incorporates a rooftop photovoltaic system
along with EV storage and grid power adding another low-cost source of power. In
the algorithm shown in Figure 4.4, the PV source is considered to be the cheapest
source of energy, as it requires only solar energy to generate freely available power.
The Conv-PEG is initiated by initializing the decision window’s system variables and
anticipating new values for PV in-feed and load demands. Additionally, it updates
the battery’s state of charge (SOC), charging power rate, and battery capacity.

Thus, the first stage of the algorithm assesses if there is enough solar power avail-
able to suit the demands of the clients. If the answer is “yes,” the PV immediately
satisfies all of the load requirements for the time period t. Then it comes to the
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Figure 4.3: Flowchart of the conventional rule-based scheduling scheme (Conv-
EG).

Figure 4.4: Flowchart of the conventional rule-based scheduling scheme (Conv-
PEG).

binary indicators, and analyses if the electric cars can be charged at home or on
the road. It is essential to note that the grid is disconnected while the battery is
being charged with the unused photovoltaic (PV) energy generated at home. The
battery would be charged up to its fullest capacity or until it is able to absorb as
much energy from the PV as possible. This process of charging the battery with
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the unused PV power generated at home provides a viable way of meeting the load
needs. However, if the car is on the road, there are two possibilities. It may be able
to charge itself while on the road if it comes across a charging station. Otherwise,
it will continue until it runs out of charge.

In comparison to the previous choice, if the available PV capacity is less than
the load demand, and the needs are partially met by the PV power, using EV
storage becomes a secondary consideration if it is available for discharging as shown
in Figure 4.4. While, in the worst-case scenario, the remaining unsatisfied loads are
fulfilled by the grid. The grid will deliver power on a demand basis and charges
according to the market price of energy. Similarly, while the EV is at home and
linked to the HAPN, the EV acts as temporary storage. The home will benefit
from this EV storage by balancing and providing low-cost electricity during periods
of poor solar production and high grid costs. Additionally, during periods of high
solar energy output, this EV may charge itself using the HAPN battery charging
system.

Scheme 3: MP-iEMS

Furthermore, the author suggests a model predictive iEMS framework with a hier-
archical structure, as seen in Figure 4.1. The first step entails the development of an
energy scheduler that will ensure that the net cost of energy produced is maintained
as low as possible. It combines a predictive sliding window module with a rule-based
decision algorithm that operates at a 15 minute sample rate, i.e., t ∈ [1, 2, . . . , T ].
While the sliding window maintains a 24-hour temporal resolution, i.e., T , (t+24).
The proposed MP-iEMS is shown schematically in Figure 4.5, which illustrates the
rolling horizon rule-based decision technique.

Observing the system architecture in Figure 4.5, the system parameters are set,
the input data is loaded, and rolling horizon control variables are defined. The rolling
horizon’s current time t is then determined, and the sliding window’s parameters
are established. The MP-iEMS algorithm begins at each instantaneous time step
by initializing the decision window’s system variables and expecting fresh values for
solar in-feed and load needs. Additionally, it keeps track of the battery’s state of
charge SOC, charging power, and capacity. The operational window is implemented
using a receding horizon approach, with the next step t sliding over every 15 minutes.
By using this method, it is possible to obtain the decision values for the control
variables for the next whole year.

The rolling window technique has the benefit of accounting for uncertainty in
PV production, EV charging connections, and changing load requirements every 15
minutes. Furthermore, the HAPN operations are optimized using the time-varying
day-ahead grid power pricing. At each time step, the MP-iEMS technique resolves
the scheduling issue for the whole operating window and stores the results in the
database. It does, however, communicate only real-time data to the device’s primary
controller, which operates the device at the designated power set point. For example,
in the case of a real-time disconnect between the secondary level scheduling stage
and the main level device controller, the saved 24-hour window choice values may
be utilized to assure HAPN functionality by using previously recorded set points in
the database.

To solve the problem described in Equation 4.15, the priority criteria for getting
power values from the least expensive and most dependable energy source choice is
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Figure 4.5: Flowchart of the mixed integer rule-based scheduling scheme.

introduced. The algorithm suggests alternative cases that are defined in accordance
with the scenarios produced using the data set’s system input parameters.

1. Case 1: EVdrv(t) = 0 & Pac.load(t) > 0 & EVload(t) = 1 & EVch(t) = 0:

2. Case 2: EVdrv(t) = 0 & Pac.load(t) > 0 & EVload(t) = 1 & EVch(t) = 1:

3. Case 3: EVdrv(t) = 1 & Pac.load(t) > 0 & EVload(t) = 0 & EVch(t) = 0:

4. Case 4: EVdrv(t) = 0 & Pac.load(t) > 0 & EVload(t) = 0 & EVch(t) = 0:

5. Case 5: EVdrv(t) = 0 & Pac.load(t) = 0 & EVload(t) = 1 & EVch(t) = 1:

6. Case 6: EVdrv(t) = 1 & Pac.load(t) = 0 & EVload(t) = 0 & EVch(t) = 0:
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Case I

Figure 4.6: Case I flow chart.

This scenario is shown in Figure 4.6, which demonstrates that the EV is parked
at home and is connected to HAPN to power the household appliances. Nonetheless,
the charging function of the EV is disabled and it cannot be charged in any way;
however, it may be discharged to meet load needs. Additionally, PV and grid
electricity may be used to meet load needs. To determine the lowest source of energy
to provide, per unit energy costs are first compared between photovoltaic (PV),
electric vehicle (EV) battery, and grid power sources (i.e., guaranteeing Equation
4.15). If the cost of PV energy is the lowest, electricity is pulled from the PV
source until demand is fulfilled or there is no more PV energy available. If demand
continues to be high, the next power source is chosen based on its low unit cost. If
the power from the battery is inexpensive and the battery’s state of charge is more
than the threshold, the power is received from the battery. Otherwise, in the worst-
case situation, the loads are matched by grid electricity. It’s important mentioning
here that grid pricing are dynamic, and the cost per unit of energy might be cheaper
in certain situations than the cost of PV or battery energy.

Case II

The flow chart for the case II approach shown in Figure 4.7 illustrates that the
case II strategy operates in a manner remarkably similar to case I when it comes
to meeting load needs. The only difference is that the EV battery gets charged
at the HAPN. As a result, the battery may be charged using photovoltaic or grid
electricity. According to the flow chart, if the user’s load demand is totally met by
the PV power, the leftover PV power may be utilized to charge the EV until the
battery is fully charged or until the PV production capacity is reached. However, if
the PV power generated does not meet the battery charging needs, the grid steps
in and charges the battery until it reaches its maximum capacity.
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Figure 4.7: Case II flow chart.

Case III

It illustrates the EV’s drive Boolean here. This signifies that the car may drive away
from the residence. As a result, it is also obvious that the EV storage would be uti-
lized only for driving reasons. However, HAPN must first meet the household’s load
requirements. Thus, the choices for meeting demand include the use of photovoltaic
(PV) and grid electricity. Again, depending on the cost comparison, a scheduling
choice is made on whether PV or grid electricity should be used (i.e., guaranteeing
Equation 4.15). Because the EV is not connected to the HAPN, there is no pos-
sibility of charging or discharging the EV storage in this circumstance. Case III’s
flow chart is shown in Figure 4.8.

Figure 4.8: Case III flow chart.
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Figure 4.9: Case IV flow chart.

Case IV

As seen in Figure 4.9, the car is parked at home but not participating in the demand
response program. This implies that the EV storage will neither charge or discharge
in order to meet the HAPN’s load demand needs. Thus, the EV user foregoes the
option of accessing EV storage in order to meet the extra limits, i.e., to save battery
life. In this situation, the user’s energy demand is met by PV and grid electricity,
using the least expensive scenario feasible (i.e., guaranteeing Equation 4.15).

Case V

Figure 4.10: Case V flow chart.

The electric car parked at the residence is connected to the home power grid and
participates in a demand response program for a HAPN in this scenario. However,
as seen in Figure 4.10, there are now no user power demands to be met. However,
the EV has the option of capitalizing on the scenario and charging through a low-
cost power source (i.e., assuring Equation 4.15). Thus, if the cost of electricity sent
from PV is cheaper and the storage is self-charging, the EV battery will be charged
by the PV source until it reaches 100% capacity or the PV source is exhausted. In
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the worst-case scenario, the battery may be charged completely with grid electricity
at any cost.

Case VI

Case VI in Figure 4.11 demonstrates that the EV is on the road and is solely reliant
on its storage for driving. Additionally, there are no power requirements at home.
As a result, if any PV power is available, it is curtailed and no grid power is required
at this time.

Figure 4.11: Case VI flow chart.

During the scheduling process, the internal nanogrid control assumes the respon-
sibility of adjusting the active power set-points for various energy supply compo-
nents. This information is passed on to the local controller of the device through
a communication channel. Subsequently, the specified set-point signal is utilized as
a reference signal for the device’s real-time controller. The device level controller
applies a robust control mechanism to continually monitor the reference signal and,
based on the monitored power levels, controls the activation of the device.

4.3.2 Evaluation Indices

The following critical performance criteria are created to assess the system’s perfor-
mance and to identify the optimal mix of different energy resources:

PV utilization factor (KPV.UF ) It is the ratio of the total PV power used to
meet load needs to the total PV power available. The preceding section established
that the real PV power usage is always less than the available power, which is caused
by converter losses. It may be expressed as follows:

KPV.UF =

∑
Ppv.ac(t)∑
Ppv.av(t)

. (4.18)

PV penetration level (KPV.PL) It is the ratio of total photovoltaic electricity
utilized to meet the percentage of load demands that comprise a home’s total power
requirement. This may be expanded as follows:

KPV.PL =

∑
Ppv.ac(t)∑

(Pac.load(t) + Pac.b(t))
. (4.19)

Grid utilization factor (KG.UF ) It is the ratio of the total grid power used to
meet load demands to the total grid power available. The preceding section revealed
that real grid power use may be less than what is available, owing to HAPN’s request.
It may be expressed as follows:

KG.UF =

∑
Pg.ac(t)∑
Pg.av(t)

. (4.20)
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Grid penetration level (KG.PL) It is the ratio of total grid power utilized to
meet the fraction of load needs that are smaller than the total power demands of a
residence due to the usage of solar and electric vehicle batteries. This is stated as
follows:

KG.PL =

∑
Pg.ac(t)∑

(Pac.load(t) + Pac.b(t)
. (4.21)

EV storage utilization factor (KEV.UF ) The ratio of the total energy discharged
from an electric vehicle’s storage system to satisfy household energy needs in relation
to the entire storage capacity and the power charged in the battery is quantified. The
preceding section established that the actual storage power use in HAPN is always
smaller than the available storage power. This is because of the losses incurred as a
result of conversion losses. Additionally, the majority of energy is used for driving
purposes. It may be expressed as follows:

KEV.UF =

∑
η−1b.conPb.ac(t)∑

(Pb.av(t) + ηb.conPac.b(t))
. (4.22)

EV storage penetration level (KEV.PL) It is the ratio of the total discharge
power from the EV storage to the fraction of load demands met by the EV storage.
This may be expanded as follows:

KEV.PL =

∑
η−1b.conPb.ac(t)∑
Pac.load(t)

. (4.23)

Degree of self-sufficiency (KSS) The percentage of total energy demand met
by PV and EV storage is described as the degree of self-sufficiency and is expressed
as;

KSS =

∑
(Pload(t)− Pg.ac(t))∑

Pac.load(t)
. (4.24)

4.4 A Case Study

A simple HAPN is utilized to show the true potential of the suggested MP-iEMS
approach. According to [164], the algorithm is given input data from a real-world
yearly data set of (dis)charging of EV storage, solar power, and grid energy pricing.
It then calculates the actual output power of each energy source entity. Addition-
ally, scheduling decisions are determined by the use of a mixed-integer rule-based
decision-making technique. The following Table 4.2 highlights the parametric values
associated with the different power entities in our system model.

Table 4.2: System parameters.

Parameters Value Parameters Value Parameters Value

Pg.disp 20 kW ηb.con 0.98 4t 15 min
Eb,0 110 kWh ηpv.con 0.98 4k 1 s
Eb 120 kWh φ 130 $/MWh P b.ch Dynamic [72]
Eb 1 kWh ϕ 201 $/MWh P b.dch Dynamic [72]
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While scheduling, the cost of different ESEs is taken into account for the best
output. The cost parameter that is most essential is the dynamical grid energy cost,
which fluctuates with time t. Additionally, the characteristic parameters affecting
the deterioration of the EV battery bank as modelled in Section 4.2.2 are listed in
Table 4.3.

Table 4.3: The simplified reduced-order battery model’s coefficients.

Parameters Value Unit Parameters Value Unit

kSEI 6684.8
√

1
s

ESEI 39,146 J/mol

kAM 1.368 1/Ah EAM 39,500 J/mol
R 8.314 J/K·mol λ 5.5× 10−5 -
F 96,485.3 C/mol UOCP

s 0.4 -

The proposed MP-iEMS is meant to illustrate the scheduling framework’s reac-
tion across a time horizon of 15min for 24 hours. The algorithm that optimizes
for cost also optimizes for self-consumption and self-sufficiency of a HAPN. PV and
user load demand forecasting are critical components of the overall process. Addi-
tionally, minimum and maximum energy restrictions are defined to create a realistic
operating range for energy supply and demand entities.

4.4.1 Data Preparation

Rheinberger et al. [164] has provided the whole dataset for one year utilized in the
simulations. It is subdivided into the following subsets:

• Day-ahead energy market prices for the bidding zone
Germany-Austria-Luxembourg [49]

• Photovoltaic production in a localized place in Germany [139]

• Photovoltaic production prediction [52]

• Electric vehicle usage from UK [45]

• Household demand from Ireland [40]

4.4.2 Comparative Analysis of Power Scheduling Scenarios

The author has investigated the performance of the suggested scheduling method
over a variety of time domains. It examines daily, monthly, and year scenarios, not-
ing how scheduling choices are made and their effect on aggregated cost projection.

The system model is similar to that provided in Section 4.2 , except that the PV
is connected with HAPN, which operates as a very inexpensive source of energy and
is therefore prioritized for energy distribution. However, in rare circumstances when
the cost of electricity from the grid is less than the cost of operating the photovoltaic
system, the photovoltaic system will be unplugged. Similarly, while the EV is at
home and linked to the HAPN, it acts as a temporary store for the HAPN. This EV
storage will aid HAPN in balancing and delivering inexpensive power during times
of low solar production and high grid prices. If there is surplus power generated
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after the solar array has met the demand, it will be utilized to charge the battery
bank.

Daily analysis

Author chooses two random days throughout the year to demonstrate the suggested
scheduling strategy in this case. A time step of 15 min is chosen, which means that
the scheduling analysis is conducted for each 15 min. At each time step, a fresh
forecasting is made for the next complete day, and the results for the next 24 hours
are stored in the database. Unless the algorithm fails or the secondary HEMS is
detached from the main device level control, a day-ahead decision values are used
in HAPN for different control entities.

Additionally, a predictive energy demand model is integrated that calculates
the correct amount of energy necessary for a household’s energy use. Figure 4.12
illustrates the total energy consumption with a temporal granularity of 15 min. It
displays how drastically energy needs shift during the day. It considerably rises just
before and throughout the day, as a result of the activation of high-power loads.
The energy demand model is based on aggregated data from all loads engaged at
any point in time t, and it scales up to about 1.5 kW .

Figure 4.12: Predicted load demands.

Additionally, the availability of photovoltaic energy is represented in Figure 6.9,
which shows a daily peak around midday. The greatest photovoltaic power generated
is around 0.8 kW . Notably, the actual output power of the photovoltaic module may

Figure 4.13: Predicted PV power.

be less than the rated power.
Additionally, Figure 4.14 depicts the varying SOC of the EV storage in green

during a two-day period. The blue and red lines illustrate the dynamics of storage’s
charging and discharging power rates. Additionally, discharge may occur as a result
of power dissipation during vehicle driving on the road or during the transmission
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Figure 4.14: EV (dis)charge rates and SOC.

of energy to a dwelling. The initial level of charge indicates that the EV’s stor-
age capacity is roughly 80 %, which begins to deplete after 06:00 due to battery
drain. This discharge occurs when the vehicle’s storage is utilized for road travel, as
demonstrated in Figure 4.15. The green driving indication on the car comes from
the data set [45, 164], which also includes deterministic power levels utilized by the
vehicle throughout the voyage. The vehicle usage indication, as seen in the image,
is distributed throughout the day and represents the vehicle’s activity from dawn
to night, although morning seems to be busier. The EV’s power consumption is
determined by the driver’s behavior. The greatest amount of electricity used by the
car while draining its battery is around 5 kW , as specified in the suggested dataset
[45]. During driving intervals, the vehicle’s indicator often indicates that it is in

Figure 4.15: Driving indicator and EV power dissipation.

a stationary position. The length of this position fluctuates, suggesting that the
car is sometimes parked at home and sometimes outdoors. However, if it is parked
at home, there is a greater likelihood that it is connected to the HAPN. Thus, it
may charge or discharge itself through the HAPN by employing its access power
to meet home load needs or by charging itself during periods of high or low grid
energy costs, respectively. Again, the (dis)charging status is determined using the
previously gathered information, which includes the time and length of the EV’s
connection to the grid. The EV loading indicator in Figure 4.16 reveals if the EV
storage is sufficiently charged to meet the household’s needs. Thus, our system deter-
mines whether or not to drain the battery depending on certain pre-defined criteria
and indicators. According to the data obtained after executing the algorithm, the
battery is preferably to drain during sometimes in the day and later at night when
grid energy costs are high, as seen in Figure 4.14, and Figure 4.16. However, the
next day, there is no discharge for homes since the battery loading status is inactive,
indicating that the vehicle has been out of use for the whole day, as verified by the
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Figure 4.16: Discharging indicator and EV discharge rates.

signs in Figure 4.15. The highest discharge rate required to power the residences
shown in the illustration is around 1kW . This indicates that the home load needs
are much lower than the vehicle’s power consumption when traveling.

Additionally, there is another method of charging the battery while the car is
parked at home and the charging state for the EV storage is active. The pace at
which the EV storage is charged is shown in Figure 4.17, assuming the car is parked
at home and connected to the HAPN. The charging indication provided by [45, 164]
is depicted in Figure 4.17, which indicates the time and duration of the EV’s self-
charging using solar or grid electricity. Due to the restricted capacity of the storage,
the charge and discharge rates are relatively limited. Additionally, a pre-condition
for utilizing EV storage at home is set at 50 % of SOC. This ensures that there is
sufficient storage for the EV to be driven on the road. When connected to the grid,

Figure 4.17: Charging indicator and EV charge rates.

the EV storage may charge itself instantly upon receipt of the charging signal. This
is due to the low SOC, which occurs around midday and in the evening on the first
day, as already seen in Figure 4.14. However, since the car is not at home on the
second day, there is no charge sign for that day. The maximum power available to
charge the battery is about 20 kW , which is the maximum amount of grid electricity
available at any moment t. Before the next day, when the car is scheduled to travel
for the whole day, the battery’s state of charge is fully established over 90 %.

Additionally, a conceptual model of battery degradation created in Section 4.2
illustrates the percentage capacity deterioration during time of use and is shown
in Figure 4.18. Additionally, Figure 4.19 depicts the two-day power pricing data
obtained from [49, 164]. Energy companies often determine these prices for their
customers. So that customers may take advantage of the shifting energy prices
and buy energy when it is most convenient for them. Additionally, the same pic-
ture demonstrates the activation of numerous ESEs. The recommended scheduling
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Figure 4.18: EV battery capacity loss.

strategy determines the activation mechanism to use. A decision-based cost mini-
mization problem is devised that takes into account changing energy grid prices and
a range of system constraints, including capacity limitations on power sources. Our
scheduling algorithm assessed the lowest practical power cost and made the greatest
use of available energy resources by using the different planned scenarios. It lets one
to use the ideal combination of ESEs at any moment in time t.

As seen in this illustration, the grid supplies electricity, especially in the afternoon
and evening. This is because the PV system is currently unable to satisfy energy
needs, and the EV battery is being charged to guarantee that adequate power is
available to run the vehicle. When the EV storage is quite fully charged and grid
energy prices are fairly high, however, the EV storage is also utilized in combination
with the grid (i.e., around 12:00 and between 09:00 and 23:00 on the first day).
Furthermore, photovoltaic energy is entirely used throughout the day. The high
grid power input is used to charge electric car storage, which costs around 20 kW .

Figure 4.19: a) Electricity prices. b) Power mix by various ESEs.

Similarly, Figure 4.20 depicts the utilization factor (UF), penetration level (PL),
and cumulative energy shares of several ESEs integrated into HAPN.

Additionally, as seen in Figure 4.21, the scheduling strategy balanced the re-
quired and generated energy in the manner specified in Equation 4.17. All loads are
met adequately using an intelligent power mix. The scheduling of different ESEs
is performed via the development of a cost-cutting plan. The scheduling system
activates energy sources that are economically equal at any point t in time.

Monthly analysis

To illustrate the seasonal fluctuations in the given dataset of the load profile, PV-
system, and the consequence of our proposed algorithm, one month from each season
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Parameters Value

KPV.UF 0.6990
KG.UF 0.0300
KEV.UF 0.0693
KPV.PL 0.1644
KG.PL 0.7559
KEV.PL 0..0801
KSS 0.2441

Figure 4.20: a) ESEs utilization factor (UF). b) Energy shares.

Figure 4.21: Total load demands and the scheduling power.

of a year is chosen. In this scenario, the system model stays constant as discussed
before in the daily analysis.

(a) PV energy for the May (Spring). (b) PV energy for the June (Summer).

(c) PV energy for the November (Autumn). (d) PV energy for the December (Winter).

Figure 4.22: Seasonal comparison of PV power generation.

The Figure 4.22 compares the monthly PV estimated power output for four
distinct seasons. It demonstrates that throughout the summer, solar power peaks
at 1 kW . Then comes Spring and Autumn. Finally, winter is the poorest season for
solar energy production, with the lowest peaks.

The Figure 4.23 depicts an average household’s expected seasonal load require-
ments. In contrast to PV production, load demand is strong in the summer as well
as the winter, with peaks above 8 kW and significant month-to-month volatility in
load. Whereas the first half of Winter has a steady load curve, the second half has
greater dynamic loads. Then comes Autumn and Spring, with peaks of up to 5 kW
and a very steady pattern throughout the month.
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(a) Load demands for the May (Spring). (b) Load demands for the June (Summer).

(c) Load demands for the November (Autumn). (d) Load demands for the December (Winter).

Figure 4.23: Seasonal comparison of users’ load demands.
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(a) Driving indicator and power dissipation for
the month of May (Spring).
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(b) Driving indicator and power dissipation for
the month of June (Summer).
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(c) Driving indicator and power dissipation for
the month of November (Autumn).
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(d) Driving indicator and power dissipation for
the month of December (Winter).

Figure 4.24: Seasonal comparison of driving indicator and EV power dissipation.

The Figure 4.24 illustrates the behavior of an EV driver throughout each of the
four seasons. Additionally, it specifies the quantity of energy expended throughout
each journey. Autumn and Winter seem to have a higher number of driving ex-
cursions, with peak dissipated power exceeding 10 kW . In comparison to Spring
and Summer, these seasons provide a greater number of high-peak road excursions.
Summer is the least-utilized season for EVs, with the highest power dissipation from
the EV battery hardly exceeding 5 kW . However, in the spring, power dissipation
is consistent for virtually all excursions except those above 10 kW . Thus, as seen
in the image, Autumn and Winter are extremely variable seasons for using EVs for
road trips, requiring higher EV power for driving.

Additionally, Figure 4.25 illustrates the EV power discharge indicators and the
home power rates. Autumn and Winter continue to have a high number of dis-
charging power. This indicates that EV storage has been heavily used during the
last months. One cause for this might be the lack of surplus photovoltaic electricity
during these seasons, as opposed to the Spring and Summer seasons. However, the
power dissipated by EV storage is relatively low in Autumn and Winter, when peak
power consumption reaches 500 W and 1000 W , respectively. Whereas in the spring
and summer, peak power is 8 kW and 4 kW , respectively. Thus, it is obvious from
the comparison that in Autumn and Winter, the EV store is discharged more often

101



4.4. A Case Study

0 5 10 15 20 25 31

Days

0
5

10
15
20

P
o

w
e
r 

(k
W

)

0

1

S
ta

tu
s

EV battery power dissipation

for house load demands

Discharging indicator
15 20

0
1
2

0
1

(a) Discharging indicator and rates for the
month of May (Spring).
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(b) Discharging indicator and rates for the
month of June (Summer).
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(c) Discharging indicator and rates for the
month of November (Autumn).
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(d) Discharging indicator and rates for the
month of December (Winter).

Figure 4.25: Seasonal comparison of EV battery discharge indicator and their
power rates.

with lower power peaks than in Spring and Summer, when the storage is discharged
less frequently but with higher peaks.
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(a) Charging rates and indicator for the month
of May (Spring).
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(b) Charging rates and indicator for the month
of June (Summer).
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(c) Charging rates and indicator for the month
of November (Autumn).
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(d) Charging indicator and rates for the month
of December (Winter).

Figure 4.26: Seasonal comparison of EV battery charging rates and the indicators.

The Figure 4.26 compares the charging indicators and charging power rates for
each of the four seasons. As is the case with discharge signs, charging states are
also elevated in Autumn and Winter. Clearly, the number of discharges was large
throughout these seasons, and the number of charges should have been as high
to compensate. However, in virtually all circumstances, the EV storage must be
charged using grid power, and grid in-feed is capped at 20kW for a home. Thus,
the maximum power output is restricted to a maximum of 20 kW for each charge.
The Figure 4.27 compares the state of charge (SOC) of an EV battery over all four
seasons. Winter and Autumn have more volatile SOC changes owing to the increased
frequency of charging and discharging cycles, as seen in previous figures. Generally,
the depth of discharge reaches 50 % of the capacity, except in the Autumn, when
the battery discharges to its full capacity owing to prolonged high discharge while
road driving. Summer’s SOC stays at 60 % for an extended period of time because
to the absence of charging, discharging, and driving signs during this time period.
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(a) EV (dis)charge rates and SOC for the month
of May (Spring).
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(b) EV (dis)charge rates and SOC for the month
of June (Summer).

0 5 10 15 20 25 30

Days

-20
-10

0
10
20

P
o

w
e
r 

(k
W

)

0
25
50
75
100

S
O

C
(%

)

Discharging rate

Charging rate

SOC20 25
-5
0
5

50

100

(c) EV (dis)charge rates and SOC for the month
of November (Autumn).
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(d) EV (dis)charge rates and SOC for the month
of December (Winter).

Figure 4.27: Seasonal comparison of EV (dis)charge rates and their SOC.

Perhaps it refers to certain holiday seasons. The Figure 4.28 provides a comparison
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(a) Power mix for the month of May (Spring).
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(b) Power mix for the month of June (Summer).
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(c) Power mix for the month of November (Au-
tumn).
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(d) Power mix for the month of December (Win-
ter).

Figure 4.28: Seasonal comparison of power mix.

of the various power sources used to meet a household’s load needs. Additionally,
grid energy price indications are shown here. Prices fluctuate continually during
the season, although the fluctuating behavior is almost consistent throughout all
seasons. The average price stays about 0.05 cents/Wh throughout the year, with
the exception of Spring, which has a negative high. Perhaps this is owing to the high
level of renewable energy output at the moment. In Autumn, around the 20th day,
and in Winter, around the 25th day, a somewhat tiny negative surge may also be
noted. One may see more grid activity on this day of Winter as a result of low-cost
power availability, which is also contingent upon load needs, and as previously said,
load demands are quite high in the second half of Winter.

Additionally, by zooming into the figures’ magnified window, one can view the
power mix of PV, grid, and EV batteries used to meet the load needs of a dwelling.
This combination is derived by the suggested MP-iEMS, which takes into account
the cost of various energy sources. This figure makes the most sense when seen in
conjunction with Figure 4.29, which depicts the energy shares of different sources
for a given season.
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(a) Energy shares for the month of May
(Spring).

(b) Energy shares for the month of June
(Summer).

(c) Energy shares for the month of Novem-
ber (Autumn).

(d) Energy shares for the month of De-
cember (Winter).

Figure 4.29: Seasonal comparison of energy shares.

The Figure 4.30 compares the proportion of battery loss by season. This implies
that the EV storage suffers the greatest loss percentage in December, when the
battery is most often used for driving the vehicle and hence charged most frequently.
As a consequence of the high consumption of battery cycles, the SEI layer grows
rapidly in storage, resulting in rapid capacity loss. Then come Spring and Autumn,
and finally Summer, when EV storage use is at its lowest. The battery’s overall
capacity loss is more than 2% during the Winter season, 2% during the Spring and
Autumn seasons, and 1.65% during the Summer season.

While looking at Table 4.4, one can notice that Winter has the highest PV usage
factor, followed by Autumn, Spring, and Summer. This is because PV power output
is lower in the winter and autumn, and the PV system is more heavily used during
these seasons. Winter, on the other hand, has the highest grid use, followed by
Autumn, Spring, and Summer. Due to the limited amount of solar energy generated,
grid electricity is in great demand throughout the winter and autumn. Additionally,
Summer has the highest EV use factor, followed by Spring, Winter, and Autumn.

Additionally, PV penetration is highest in the summer and lowest in the winter
owing to seasonal fluctuations in PV production. Additionally, the degree of grid
penetration is greatest in the winter and lowest in the summer. This is because in
the summer, the majority of loads are provided by RESs, whilst in the winter, the
reverse is true. Similarly, EV penetration is highest in the summer and lowest in
the winter. Additionally, the HAPN is most self-sufficient in the Summer, followed
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(a) Battery capacity loss for the month of May
(Spring).

(b) Battery capacity loss for the month of June
(Summer).

(c) Battery capacity loss for the month of
November (Autumn).

(d) Battery capacity loss for the month of De-
cember (Winter).

Figure 4.30: Seasonal comparison of battery capacity loss.

Table 4.4: Seasonal comparison of ESEs utilization factor (UF) and penetration
level (PL).

Parameters
Spring
Values

Summer
Values

Autumn
Values

Winter
Values

KPV.UF 0.6017 0.6619 0.7919 0.7942
KG.UF 0.8622 0.7527 0.9928 1.0578
KEV.UF 0.1969 0.2337 0.1383 0.1422
KPV.PL 0.1460 0.1579 0.0580 0.0451
KG.PL 0.7600 0.7445 0.8710 0.8726
KEV.PL 0.0947 0.0983 0.0716 0.0830
KSS 0.2400 0.2555 0.1290 0.1274

by the Spring. While Winter is the coldest season, Autumn is the warmest. This
is because RESs are used at a higher rate during the summer and at a lower rate
during the winter.

Yearly analysis

A annual study is performed to determine the total power mix from all power sources
and the algorithm’s ability to handle massive amounts of data. The utilization and
penetration levels of the various energy sources, as well as their respective energy
shares, are shown in Figure 4.31 for the whole year. Similarly, an investigation of
EV storage capacity loss reveals a total loss of capacity of 14 % over a one-year
period, as seen in Figure 4.32. This loss study is performed physically using the
battery model data provided from [82].

Within the scope of supply side management, we have examined and compared
the operating expenses of various energy supply entities. We chose three distinct
operating strategies to compare for the best outcomes. Among these are: (1) Scheme
1: Conv-EG, (2) Scheme 2: Conv-PEG, and (3) Scheme 3: MP-iEMS.

Schemes 1 and 2 represent greedy priority-based algorithms. In which attention
is given to a low-cost energy source such as PV and EV storage. Scheme 3, on the
other hand, makes use of intelligence by anticipating future changing grid energy
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Parameters Value

KPV.UF 0.7124
KG.UF 0.9163
KEV.UF 0.1777
KPV.PL 0.1017
KG.PL 0.8120
KEV.PL 0.0869
KSS 0.1880

Figure 4.31: a) ESEs utilization factor (UF) and penetration level. b) Energy
shares for whole year.

Figure 4.32: Yearly battery capacity loss.

costs and optimizing the capacity usage of EV storage and the PV source. All of
these techniques provide for the required power to be accessible from any supply
entity at the lowest feasible cost, while also ensuring maximum comfort for energy
users by meeting their demands with their immediate energy requests, as indicated
in Equation 4.17.

Initially, an examination of several performance measures is presented that are
previously mentioned in Section 4.3.2. Table 4.5 compares the indices for various
ESEs among various optimum schemes.

Table 4.5: Comparison of ESEs utilization factor (UF) and penetration level (PL)
for various schemes.

Scheme / Parameters KPV.UF KG.UF KEV.UF KPV.PL KG.PL KEV.PL KSS

Scheme 1: (Conv-EG) 0 0.0307 0.9597 0 0.8598 0.4198 0.1402

Scheme 2: (Conv-PEG) 0.6634 0.0268 0.9598 0.1129 0.7639 0.4098 0.2361

Scheme 3: (MP-iEMS) 0.6272 0.0269 0.9579 0.1175 0.8447 0.3533 0.1553

It shows that the typical optimum scheme that does not incorporate PV has a
high grid utilization factor (KG,UF ) and penetration level (KG,PL) when compared
to other schemes, which is understandable. Nevertheless, the grid usage factor for
Schemes 2 and 3 is nearly the same. However, the grid penetration level in Scheme
2 is high, indicating that Scheme 3 uses grid electricity a slightly less than Scheme
2. Furthermore, the PV usage factor (KPV,UF ) in Scheme 2 is high, even though the
penetration level (KPV,PL) in both schemes is very similar. It demonstrates that in
Scheme 3, when grid prices are negative, as shown in Figure 4.28a, the MP-iEMS
algorithm disconnects the PV and instead obtains energy from the grid. This would
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also reduce energy conversion losses from DC to AC, thereby increasing the shelf life
of PV modules. Furthermore, the EV usage factor (KEV,UF ) is about identical for
Schemes 1 and 2, while it is somewhat lower in Scheme 3. Similarly, the penetration
level of the EV storage (KEV,PL) is also lower in Scheme 3, which indicates that
the MP-iEMS algorithm engages the EV operations sporadically in comparison to
Scheme 2. In this way, the storage has been utilized more efficiently. In comparison,
the self-sufficiency indicator (KSS) is high in Scheme 2, where the operations of PV
and EV storage are involved more often. However, due to the optimal and efficient
utilization of PV and EV storage, this factor is less in Scheme 3 while it is at its
lowest in Scheme 1 due to the absence of the PV energy source.

In addition, Figure 4.33 depicts the comparative contribution of various ESEs
in various energy optimal schemes. Where Scheme 3 uses less energy overall due to
lower energy losses incurred during battery and PV operations.

Figure 4.33: Comparative power utilization.

We also investigate the yearly accumulative price of the energy associated with
grid power utilization, PV usage, and EV storage utilization as shown in following
figures. Figure 4.34 demonstrates that Scheme 3 has overall exhibited a lower energy
cost, followed by Schemes 1 and 2, respectively. Scheme 1 exhibits high costs due
to the absence of a cheap energy source, i.e., PV, as shown in Figure 4.33. The load
demands are satisfied exclusively by grid power, where the grid power is also used
for charging the EV storage when needed.

Figure 4.34: Total energy cost.

Figure 4.35 and 4.36 refer to the high grid cost and storage operating cost for
Scheme 1, respectively. It may be due to the high charge and discharge rates asso-
ciated with high grid energy prices.
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Figure 4.35: Total grid energy cost.

Figure 4.36: Total EV storage utilization cost.

On the other hand, in Scheme 2, the PV source is added. It is then utilized to
satisfy the loads along with charging the EV storage when the grid energy prices
are high and extra power is available from the PV source. However, both of these
schemes opt for the same price for the EV operational costs, and so the storage
utilization is almost the same.

Furthermore, in Scheme 3 the system model is similar to that of Scheme 2 where
the cheap PV source is included, however in this scheme, an extra intelligence is
placed to look into the cheapest option of energy available at any instance of time.
As seen in Figure 4.19, sometimes the grid energy prices become negative or gaining
energy from the grid is sometimes cheaper as compared to the energy obtained from
the PV (i.e., due to operational and maintenance costs). Hence, our proposed MP-
iEMS algorithm used in scheme 3 can have this intelligence about when to use PV
or when it is cheap to utilize grid power both for satisfying user load demands and
charging the EV. One can see in Figure 4.33 that the PV utilization is lower in
Scheme 3 in comparison to Scheme 2. It takes more energy from the grid at the
lowest possible price and still exhibits a quite lower grid energy price when looking
into the zoom window of Figure 4.35. However, on the other hand, this scheme also
utilizes EV storage quite efficiently and achieves the lowest battery operational costs
as compared to other schemes as shown in Figure 4.36.

Moreover, if we want to know the difference in the behavior of utilizing EV
storage especially for Scheme 2 and Scheme 3, a histogram of state of charge (SOC)
in Figure 4.37 shows that Scheme 2 maintains a quit low range of SOC in between
25% to 75%. While Scheme 3 maintains this SOC approximately in between 55%
to 75%. It indicates that Scheme 2 experiences deep discharges and high battery
utilization as compared to Scheme 3.
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Figure 4.37: Histogram of EV storage SOC.

Similarly, if we look into Figure 4.38, Schemes 1 and 2 opt for normally high
charge rates around 23 kW, while Scheme 3 experiences low charge rates in compar-
ison to other schemes around 12 kW.

Figure 4.38: Histogram of EV storage charge rates.

Another comparison in terms of yearly accumulative charge and discharge energy
for various schemes is shown in Figure 4.39. It demonstrates that Scheme 1 encoun-
ters a significant amount of energy exchange throughout the battery’s charge and
discharge cycles. It is due to the absence of a third source of energy when compared
to Scheme 2, where these values are comparatively low around 2.6 MWh, and it is
due to the induction of the PV source. Which takes over some of the supply from
EV storage. However, Scheme 3 experiences the lowest charge and discharge energy
exchange of around 2 MWh, and it is due to the intelligence of utilizing the optimum
share of energy from each source at a very optimal price.

Figure 4.39: Annual accumulative charge and discharge energy for EV storage.

Moreover, Figure 4.40 demonstrates the accumulative EV storage losses. These
losses are evident during the charge and discharge of EV storage and are due to the
inefficiency of the conversion (i.e., AC-DC or DC-AC). As illustrated above, Scheme
3 experiences less EV storage utilization, so it also exhibits less storage loss as
compared to Scheme 2 and 3. It is worth mentioning that the driving behavior and
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EV consumption on the road are the same for all the study schemes. However, there
are differences in the number of times the EV battery is charged and discharged

Figure 4.40: Total EV storage loss.

Figure 4.41: Comparison of total capacity loss.

Figure 4.42: Comparison of various capacity losses among different schemes.

Furthermore, EV storage capacity loss analysis is carried out to demonstrate
the effects of dynamic storage SOC and (dis)charge rates. This loss analysis is done
using the battery model data available from [82]. The battery SOC, charge/discharge
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power, and the elapsed lifespan are all inputs into the storage degradation model,
which then determines the percentage capacity loss. Degradation models are usually
complex and non-linear.

Figure 4.41 shows the variations in the accumulative capacity loss of the storage
for the whole year. While Figure 4.42 illustrates individual scheme-based capacity
losses induced due to charge, discharge, and the SOC of the storage. Moreover, two
types of losses (e.g., SEI and AM capacity loss) are shown individually for every
scheme.

All three systems have active material (AM) losses greater than solid electrolyte
interface (SEI) losses, as seen in the figure. The charging and discharging rates affect
the AM losses, hence higher rates result in higher losses. With increasing SOC, such
as Scheme, the AM capacity loss grows in a monotone pattern. The AM variation
pattern is time-invariant since it is unaffected by the amount of time the battery
has been in use. Due to high charge rates, AM charge losses are larger than AM
discharge losses, especially when the car charges itself using the charging station’s
high charge power option. SEI losses are reliant on the storage’s SOC, whereas SOC
losses are independent. With increasing net discharge power, the SEI capacity loss
reduces in a linear fashion. The battery run duration has an adverse effect on the
SEI capacity decrease rate.

Compared to the other three schemes, the overall AM losses in Scheme 3 are
lower. Scheme 2 and 3 have very little difference, on the other hand. However,
there is not a significant difference in overall SEI losses between these schemes. This
may be because there are not as many changes in SOC between them, and that the
battery runs for a long time i.e., the whole year. In addition, a heat map can provide
another perspective to analyze the losses during the hour of the day and the month
of the year. Figure 4.43–4.45 show the heat maps for Schemes 1–3, respectively.
In all these schemes it is evident that the storage capacity losses are high in winter,
especially during 3:00 p.m. to 8:00 p.m. It is due to higher driving utilization of
battery during the winter season.

Figure 4.43: Hourly mean total loss increment for Scheme 1 (Conv-EG).

111



4.5. Conclusion

Figure 4.44: Hourly mean total loss increment for Scheme 2 (Conv-PEG).

Figure 4.45: Hourly mean total loss increment for Scheme 3 (MP-iEMS).

4.5 Conclusion

This chapter presents an overview of the basic principles of a small-scale home area
power network (HAPN). It includes an empirical battery degradation model in the
analysis of the behavior of storage devices in power networks. The aim is to develop a
cost-effective energy management system by incorporating optimization techniques.
The proposed energy management system uses a mixed integer dynamic algorithm
based on a receding horizon rule to make time-ahead scheduling decisions. The
objective is to enhance the self-sufficiency of the HAPN and reduce the energy costs
for consumers by utilizing the most cost-efficient energy source available at any given
time. A case study is conducted using real-life yearly data sets of household energy
demands, EV driving patterns, and EV battery charging/discharging patterns to
demonstrate the capability of the proposed model for precise energy management
and to illustrate the scheduling algorithms in action. The simulation results analyze
the impact of energy suppliers’ penetration levels and utilization variables on a daily,
monthly, and annual basis.
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5 Time-Triggered Model Predictive Op-
timal Distributed Control for AC/DC
HAPN

This chapter is an extension to the previous one integrating mixed integer linear pro-
gramming (MILP) based optimization strategy for further analysis of energy cost
minimization and power balancing in a HAPN. Furthermore a reactive power con-
trol is rolled out in addition to previously established active power control for the
energy supply entities. Moreover, this chapter presents a co-simulated intelligent
home energy management system (CO-iHEMS) that integrates the robust rolling
horizon-based predictive scheduling framework with the real-time power electronics-
based control mechanism. A time-ahead scheduler incorporating an ideal method for
predicting cost-optimal decision signals for various Energy Supply Entities (ESEs)
can be utilized to optimize load following. This approach is beneficial in ensuring
that optimal decisions are taken with respect to the cost associated with running
different ESEs. Also, a real-time distributed robust control technique involving an
auxiliary power source is devised. The central scheduler sends time-triggered low-
jitter wireless signals to the distributed device level local controller to execute the
control law. The development of a real-time distributed robust control strategy
is achieved by implementing a coordinated energy sharing mechanism that incor-
porates an auxiliary power source. The proposed model is assessed by comparing
several AC/DC microgrid models for home area power network (HAPN).

5.1 Communication Based Scheduling Policy for

HAPN

For an intelligent grid, smart nanogrid (NG) is a crucial component. A unified
power network includes energy supply entities, energy storage devices, and intelligent
energy devices [115, 116]. Qiu et al. and Zhao et al. [158, 208] have recently
proposed a hybrid AC/DC nanogrid topology that combines the benefits of both
AC and DC topologies. Since the standard grid topology is a grid-connected AC
configuration. The AC configuration is widely adaptable because of installed AC
conventional power generating units and the users’ load demands. However, the
islanded DC distribution system is emerging with the advent of next-generation
efficient renewable energy generators and DC power load components. Therefore, it
is difficult and cost-inefficient to migrate the whole power system from AC to DC
and operate in islanded mode.

The hybrid AC/DC nanogrid architecture minimizes power conversion steps and
integrates dispersed energy resources (DERs) efficiently [111]. However, this new
system has enormous challenges regarding stability and control, since the control
entity is responsible for achieving a dispatched grid power flow and balances both
AC and DC subgrids simultaneously. A smart residential NG is an intelligent energy
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devices (IEDs) based home area power network (HAPN). Most IEDs can be oper-
ated and monitored remotely (e.g., internet of things devices). However, for HAPN
to work efficiently, controllers and IEDs must communicate data in real-time. The
wireless sensor and actuator networks best implement this information-sharing ap-
proach [213].

However, in wireless architecture, data transmission bandwidth restrictions fre-
quently limits the working of power systems [92]. Therefore, it is also advantageous
to utilize communication networks efficiently. A resilient distributed control method
based on communication was developed to restore voltage and frequency under the
condition of fixed time delay communication [155]. In [103], a discrete-time dis-
tributed communication strategy governs power flow and voltage/frequency restora-
tion during plug-and-play device operations. Continuous information sharing across
dispersed DERs is inefficient and might cause congestion [102]. The data exchange
between controllers and IEDs causes frequent packet losses and increasing delays
[91].

Event-triggered communication techniques may minimize communication traf-
fic. In addition, because event-triggered controls need minor control updating, they
demand less data transfer and computation power [92]. It also supports additional
configurations without requiring a new system architecture [90]. Time-triggered ap-
proaches, on the other hand, enhance predictability and performance [187]. These
have higher latency than event-triggered designs but no jitter if all contributing
nodes are aligned to a global time [213]. The time-triggered transmission is con-
trolled by predetermined time frames using time division multiple access during
periodic services. A control network’s offline job scheduling may use time-triggered
communication. In this chapter, the time-triggered simplex communication ap-
proach is employed to transmit decision signals from the scheduler to the robust
controller at the device level.

This work’s primary goal is to show cost-optimal power-sharing phenomena.
This chapter presents a new approach to optimizing power flow in a Home Area
Power Network (HAPN) with a hierarchical control architecture, as illustrated in
Figure 5.1. This control hierarchy comprises two main control frameworks: Stage
1: Secondary control rolling horizon-based scheduler; Stage 2: Primary distributed
real-time controller. Moreover, a wireless communication infrastructure connects
both of these two stages.

The first stage discusses the optimization challenge of obtaining cost-effective
scheduling signals for various ESEs. Initially, the parameters connected with the
optimization algorithm are featured, which then executes a forecasting algorithm to
estimate future load needs and electricity pricing information, [129]. This chapter
presents analytical models for the solar power generation, storage, and HAPN archi-
tecture. These models specify the operating rules and system restrictions in more
detail, thus increasing the complexity of the investigated power system. Addition-
ally, it identifies the convergence difficulties associated with the suggested optimum
method. Scheduling choices are optimized repeatedly for a 24-hour receding hori-
zon. The scheduler’s optimal signals are then wirelessly delivered to numerous IEDs
located around the residence. The model includes a packet-based transmitter and
receiver to exhibit genuine communication phenomena. A multi-path fading channel
is introduced, coupled with additive white Gaussian noise (AWGN) to improve the
practicality of the model.
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In the second step, a robust control approach is used to trace down the signals
received at the targeted IED. It guarantees that the device operates according to the
scheduler’s optimum decision values. As a result, it always maintains the previously
acquired values until the controller receives a new signal. Additionally, a distributed
power-sharing phenomenon can be observed at this stage by implementing a propor-
tional energy sharing strategy. It includes energy reserves (e.g., fuel cells, capacitors,
or battery storage) for auxiliary operations during grid failure, demand uncertainty,
and scheduler signal loss.

Figure 5.1: Proposed control strategy and system model.

Furthermore, the literature mentioned in Table 5.1 shows that most critical re-
search concerns at the microgrid level, and there are just a few HAPN-based studies
to our knowledge. Furthermore, the previous research did not address solution tech-
niques for hybrid AC/DC systems in HAPN that incorporate system losses. As a
result, they did not accomplish optimal cost reduction in AC and DC subgrids while
sharing comparable energy. Furthermore, to simplify the complexity of the energy
flow, the energy scheduling across interconnected microgrids was accomplished us-
ing a DC or AC network. Most papers treated grid power flow as if it were a single
entity with a single controller. This chapter provides a two-staged scheduling and
control framework as a distributive optimization technique for reducing power losses
during power distribution.

This chapter optimizes the total cost of energy and more effectively distributes
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Table 5.1: Critical analysis of past work. (Con, converter; P, active power; Q,
reactive power; RT, real-time; DA, day-ahead.)

Ref #. Domain Topology Technique(s)
Energy supply entities Entity losses Power supply Battery

deg-model
Communication

topology
Time

horizon
cost

reduction
Energy

balancingGrid PV HBS Con PV HBS P Q
[83] Microgrid AC Heuristic algo 3 3 3 7 7 7 3 7 7 7 RT 7 3

[73] Microgrid AC MILP\fuzzy 3 3 3 7 7 7 3 7 3 7 DA\RT 3 7

[38] Microgrid AC Pareto Optimal 3 3 3 7 7 7 3 7 7 7 DA 3 7

[78] Nanogrid AC fuzzy 3 3 3 7 7 3 3 7 7 7 RT 7 3

[69] Microgrid AC\DC Droop control 3 3 3 7 7 7 3 7 7 7 RT 7 3

[187] Nanogrid AC\DC Droop control 3 3 3 7 7 7 3 3 7 7 RT 7 3

[206] Microgrid AC Heuristic algo 3 3 3 7 7 7 3 7 7 7 DA 3 3

[154] Nanogrid AC Lyapunov-opt 3 3 3 7 7 7 3 7 7 7 RT 3 7

[37] Microgrid AC\DC PSO\GA 3 3 3 7 7 7 3 7 7 7 DA 3 7

[27] Microgrid AC\DC Droop 3 3 3 7 7 7 3 3 7 7 RT 7 3

it across numerous IEDs by considering an efficient low-latency communication con-
nection and system inefficiency. When compared to prior efforts, this study makes
the following significant contributions:

1. A complex hybrid AC/DC nano-grid model for a HAPN is presented. This
model incorporates real-world operational constraints for conventional and re-
newable energy sources. It also accounts the cost for battery life loss and
component-based power losses during DC/AC sub-grid energy exchange. Pre-
viously, as cited in [69, 89, 200], AC/DC power models for higher-level dis-
tributed microgrids were constructed neglecting significant component power
losses.

2. This work introduces a two-stage co-simulation framework to construct a
multi-time scale energy management and control solution, which differs from
the Specifically Proportional Power-Sharing (SPPS) approach presented in
[32, 69, 94]. Moreover, the AC/DC hybrid nanogrid’s dispatch can be opti-
mized offline to reduce total energy costs. Furthermore, a real-time coordi-
nated power sharing scheme is utilized to balance the power network.

3. The previously proposed distributed event-triggering communication in [36, 89,
90] is entirely dependent on local control data and settings. While in this work,
a robust local controller utilizes time-triggered communication to monitor the
ideal data acquired from the scheduler. Nevertheless, a lossless connection
between device-level control and actuators is envisioned. Furthermore, this
work dramatically minimizes the transmission latency, jitter, and computation
power associated with the communication between the offline scheduler and
the local controller using the time stamp feature.

4. Unlike the typical hierarchical control structure of microgrids [32, 69, 89,
200], the suggested design includes secondary predictive control and main dis-
tributed robust control layers. It increases system predictability, redundancy
and facilitates HAPN plug-and-play. The secondary control layer implements
the HAPN analytical model, whereas the main control layer implements the
HAPN physical model.

5. A performance comparison is made with some previous works (i.e., [158, 200,
208]) based on the inclusion of various types of losses and system topologies.
Moreover, the impact of the hierarchical control framework on the stability
and economic operation of the AC/DC hybrid HAPN is thoroughly analyzed.
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5.2 Hybrid AC/DC Home Area Power Network

The present study proposes a three-layer system design for hybrid AC/DC HAPN,
as illustrated in Figure 5.1. This system comprises of an optimized scheduling
layer, a cyber communication layer, and an electrical physical layer. The physical
layer consists of necessary power electronics and the robust coordinated device level
controllers. A physical device is linked to the scheduler through a cyber network,
from where it receives a reference power signal for the actuators. The cyber layer
enables the scheduler’s data to be exchanged with various power electronics con-
verters. Additionally, a local energy sharing controller coordinates the functioning
of an additional energy reserve device (for emergency operations). This coordinated
control is connected to the physical network through sensors and actuators.

5.2.1 HAPN Architecture

Figure 5.2: HAPN architecture (Scheduler perspective).

Figure 5.2 illustrates the HAPN architecture under discussion. The service grid
line is directly linked to the HAPN’s AC sub-grid and to the DC sub-grid through
an AC/DC converter. The photovoltaic array and Home Battery Storage (HBS) are
coupled together through the incorporation of DC/DC converters, thus allowing for
direct connection to the DC line. To further facilitate the connection between the
DC sub-grid and the primary grid, a DC/AC converter is employed. Controllable
switches are included in the system to implement the nanogrid’s binary operating
restrictions.

Grid-tie line

Grid connection model is taken from Section 3.1.3, transforming the exact model
using apparent energy transmitted from the utility grid (Sg.disp(t)) is always less
than the power available (Sg.av(t)). Whereas the electrical grid is restricted to its
top limit by its maximum threshold Sg.

Sg.disp(t) ≤ Sg.av(t) ≤ Sg. ∀t (5.1)
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The electricity supplied by the utility company to the AC sub-grid (Sg.ac(t)) is;

Sg.ac(t) = Sg.disp(t)− xg.dc(t)
(
η−1conPg.dc(t)

)
, ∀t (5.2)

where, xg.dc(t) ∈ {0, 1} and ηcon denote the efficiency of the converter. The available
power from the utility grid at the DC sub-grid (Pg.dc(t)) is shown in Equation 5.3;
given that, xg.ac(t) ∈ {0, 1}.

Pg.dc(t) = ηcon (Sg.disp(t)− xg.ac(t)Sg.ac(t)) . ∀t (5.3)

PV-array Connection

The dispatched power (Ppv.disp(t)) from the photovoltaic array is constrained by
the availability power (Ppv.av(t)), and it is always less than that of the maximum
power produced by the photovoltaic array (P pv(t)), since some of it is lost during
the maximum power point tracking (MPPT) algorithm processing.

Ppv.disp(t) ≤ Ppv.av(t) ≤ P pv(t), ∀t (5.4)

given xpv.dc(t) ∈ {0, 1}. The power available from PV at DC sub-grid is;

Ppv.dc(t) = xpv.dc(t)Ppv.disp(t), ∀t (5.5)

Battery Storage Connection

The nanogrid incorporates a battery that serves as both a storage and a buffer, with
available power (Pb.av(t)) restricted by the battery’s capacity (Eb) such as;

Pb.av(t) ≤
(
Eb/4t

)
. ∀t (5.6)

During discharging, the battery’s available power at DC sub-grid (Pb.dc(t)) during
discharging is;

Pb.dc(t) = min [Pb.dch(t), Pb.av(t)]xb.dc(t), ∀t (5.7)

where, xb.dc(t) ∈ {0, 1}. The power available from DC line to battery (Pdc.b(t)) is
shown in Equation 5.8, given that xdc.b(t) ∈ {0, 1}.

Pdc.b(t) = min
[
Pdc(t), Pb.ch(t),

(
Eb/4t

)
− Pb.av(t)

]
, ∀t (5.8)

where (Pdc(t)) is the power available at DC sub-grid.

Remark 9. In order to prevent battery overheating, the maximum (dis)charging
current should be restricted as; P b.ch(t) ≈ P b.dch(t) ≤ γVb(t)Ib(t). Where γ serves as
a limit on the current charging rate.

DC Sub-grid Connection

The power exchanged at DC bus is

xg.dc(t)Pg.dc(t) + xb.dc(t)Pb.dc(t) + . . .

xpv.dc(t)Ppv.dc(t) = xdc.b(t)Pdc.b(t) . . .

+xdc.inv(t)Pdc.inv(t), ∀t
(5.9)
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where, xdc.inv(t) ∈ {0, 1}. Whereas, additional limits are enforced at the DC sub-
grid level, including the following: The charging and discharging of a battery cannot
occur concurrently:

xb.dc(t) + xdc.b(t) ≤ 1. ∀t (5.10)

DC sub-grids cannot draw electricity from the grid while transferring power to the
AC sub-grid through the inverter:

xg.dc(t) + xdc.inv(t) ≤ 1, ∀t (5.11)

The battery discharge and the utility grid electricity cannot be enabled concurrently:

xb.dc(t) + xg.dc(t) ≤ 1, ∀t (5.12)

AC Sub-grid Connection

The power exchanges at AC sub-grid is;

xg.ac(t)Sg.ac(t) + xdc.inv(t)Sinv.ac(t) = Sac.load(t), ∀t (5.13)

where,
Sinv.ac(t) = Pdc.inv(t)− Pinv.loss (5.14)

Remark 10. Additionally, the passengers’ comfort is ensured by ensuring that the
supply power is always higher than the load needs i.e., Sreq.load(t) ≤ Sac.load(t).

5.2.2 Model Dynamics for Energy Entities

PV Array Dynamics

To illustrate a PV array power output to be used for a standalone home grid, a
model obtained from Section 3.1.2 is used showing available power Ppv.av(t).

Battery Storage Dynamics

To show a storage system’s cost-optimal solution, a model obtained from Section 3.2
describing the real power losses (Pb.loss(t)) connected with the storage system is used
[115].

Inverter Efficiency Model

The inverter acts as a conduit, facilitating the transformation of electrical energy
from the DC to AC sub-system. This transformation process is not without a
certain degree of energy loss, which is manifested as heat. Furthermore, the inverter
is responsible for establishing the phase angle of the current that is injected into
the AC line. Moreover, the AC sub-grid is subjected to both active and reactive
power due to the reactive load demands. The current transmitted to the AC line is
restricted to the inverter’s maximum apparent power handling capacity (Sinv.ac).

The phenomenon of self-consumption is augmented due to the reactive power
flow originating from the inverter. It is considered to be the additional losses having
an additional impact on the operational costs. As a result, it is demonstrated that
an inverter may suffer power loss due to power flow. However, the losses induced
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by the reactive power supply can be compensated with the help of an additional
active power supply. This energy might come from solar panels or a battery. If this
is not practicable, electricity may be obtained from the primary grid. The inverter’s
consumption is derived by the efficiency figures supplied in the datasheets or by
ηinv = Pinv.ac/Pdc.inv, where Pdc.inv(t) = Pinv.ac(t) + Pinv.loss(t).

Energy Demands Model

This chapter utilizes a daily energy demand profile for a single residence that was
previously established in [115]. This model is being developed by the center for
renewable energy system technologies (CREST). This model collects data on the
amount of energy used by a certain number of inhabitants. In addition, it contains
their daily activities at home and the likelihood of activating a particular device
weekly for the whole year [65]. Hence, it is assumed that a single home may have
maximum occupants u ∈ [1, 2, · · · , U ] utilizing various AC load devices. These
devices are activated randomly throughout the day. The device randomness is in-
corporated using the load prediction strategy. The user energy demands (Sreq.load(t))
may further categorize as active (Preq.load) and reactive power (Qreq.load) demands
depending on the house power factor as:

Sreq.load(t) =
√
P 2
req.load(t) +Q2

req.load(t) (5.15)

5.2.3 Entities Operating Cost Model

Battery Lifetime Loss Cost

Battery life is often represented in terms of the manufacturer-specified number of
storage life cycles. A generalized ampere-hour (Ah) life-cycle storage model is uti-
lized to assess the storage life loss. At each step, the loss in storage life (Lf (t)) is
the ratio of effective consumed power (Ac = SOC(t)× A′c(t)) to the total effective
capacity (Atotal = ηb.con × Eb) [209] and is shown as;

Lf (t) = Ac/Atotal. ∀t (5.16)

The battery bank’s effective used power is dependent on both the actual con-
sumed power (A

′
c(t)) and the storage’s operational state of charge (SOC(t)) as seen

in [209]. Whereas the average productive capacity of a lead-acid battery is derived
using data from the producer of deep-cycle lead-acid batteries [80]. Moreover, dis-
charging the battery at a high state of charge increases its lifespan. The calculated
value of Lf (t) in Equation 5.16 can be utilized to determine the cost associated with
the reduction in battery life, which is represented as;

Cb.l(t) = Lf (t)Cb,ivt, ∀t (5.17)

where Cb.ivt is the investment cost of the battery bank.

Grid Energy Pricing

This chapter employs a unique hybrid pricing approach for utility grid active and
reactive electricity. This scheme will help reduce grid power input and encourage
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RES use of RESs. A real-time pricing (RTP) scheme based on inclined blocked rate
(IBR) is developed, taking into account RTP (θ(t)) for active power utilization [203]
and IBR (ϑ(t)) for reactive power usage [105]. The dynamic grid pricing scheme
Cg(t), previously discussed in Section 3.4.1, is a preliminary step for this chapter’s
energy cost optimization problem.

Inverter Power Cost

As discussed in Section 3.4.2, inverter power combines a battery power, photovoltaic
power, and inverter-induced power losses. Thus, the inverter power cost (Cinv.ac(t))
is equal to the operating costs of the battery (φ) and the photovoltaic system (ϕ),
as demonstrated in Equation 5.18. This operational cost per watt is a function of
the component’s total investment cost throughout its useful life.

Cinv.ac(t) = ϕPpv.dc(t) + φPb.dc(t). ∀t (5.18)

5.3 Multi-Stage Power Scheduling and Energy

Sharing Control

The HAPN is a single energy network that integrates grid-connected power, solar
arrays, and household energy storage. Additionally, it supplies electricity to house-
hold appliances at a set voltage standard [13]. The energy allocation tactics and
robust real-time power sharing mechanism described in this article are shown via the
implementation of a home energy management system (HEMS) that incorporates
power scheduling and control algorithms. Where a main control unit decodes the
scheduler’s reference signals and activates the devices appropriately. Additionally,
it adjusts for voltage fluctuations that occur as a result of load uncertainty or grid
disconnection. It initiates distributed coordinated control for the energy balanc-
ing mechanism, which in this instance is the grid auxiliary storage (GAS). GAS
with an energy status of (Egas(k)), is responsible for providing ancillary services to
HAPN (i.e., support with island operation and power quality issues) citing [143].
GAS power management monitors the disparity in the power network through its
dispersed organized control unit, which consists of a proportional and integral con-
trol system. It utilizes the network’s excess capacity and supplies electricity during
blackouts.

In Figure 5.3, a two-staged model predictive control (MPC) scheduler and control
infrastructure are provided. The first stage is to establish an energy scheduler at the
secondary control level, which minimizes the net cost of produced energy. It includes
a prediction module and an optimization algorithm to forecast the production of
time-ahead photovoltaic energy and the customer’s load needs. Alternatively, an
ideal algorithm optimizes ESE scheduling and produces optimal decision signals
in the form of device power set-points. These set-points are sent to the system’s
principal controller through a communication channel.

Furthermore, a forecasting and scheduling strategy that uses rolling time horizons
is presented to reduce forecasting errors. This strategy operates at a minute-level
time scale, i.e. t ∈ [1, 2, . . . , T ]. Meanwhile, the second level implements a robust
control approach for power allocation that operates at a second-level time scale, i.e.
k ∈ [1, 2, . . . , k], and is based on a coordinated energy sharing strategy. The robust
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control mechanism of the system controller continuously evaluates the received refer-
ence signal and adjusts the device activation and power levels accordingly [95, 116].

Figure 5.3: Energy management system Architecture.

The following algorithm demonstrates an energy management method that is
based on a two-stage scheduling and regulating mechanism. The scheduling strategy
is operated using a linear programming method that considers the length of the
whole day and analyzes future knowledge of the resources and load needs. The
best control variable values are determined using mixed integer linear programming
(MILP), which minimizes the objective function shown in Equation 5.19. As a result,
the statistical horizon is shifted to the subsequent time period, and the procedure
is repeated. The sample period is set to t = 15 minutes, and the prediction horizon
is set to T = 24 hours.

5.3.1 Rolling-Horizon Based Optimal Power Scheduling

The goal is to reduce the overall cost of energy provided by ESEs as much as feasible.
This conundrum is regarded as a problem of energy scheduling on a time-dependent
basis, such as:

P1 = min
uGP (t),uGx (t)

T∑
t=1

{Cg(t)(Sg.ac(t) + Pg.dc(t)) + Cb.l(t) + Cinv.ac(t)}.

s.t. (5.1)− (5.14).

(5.19)

Our management technique places a premium on the usage of photovoltaic energy.
As a result, if the load conditions are not met, battery power is used. If necessary,
power can be taken from the grid. For every time period t, the energy requirements
(Sreq.load(t)) must be met by any type of the ESEs.

Considering a HAPN, which necessitates the association of a collection of energy
dispatchable entities G = {1, 2, . . . , nG} with a single operational domain (Home).
Let uGP ∈ R+ denote the power shared throughout the time-slot t ∈ T = {τ, . . . , τ +
T − 1} represents the individual energy entity, and uGx ∈ R+ represents the entity’s
binary activation set. A subset of entities (i.e., grid power, load needs) is connected
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Algorithm 1 Algorithm for Power Cost/Balance Reciprocity
procedure Dynamic Scheduling & Control algorithm

System Initialization
Set parameter values
Set system bounds
Determine control variables initial values
for (t ≤ T − 1) do

Executing PV and load demand prediction strategy
Initialize system constraints
Initialize components constraints
while P1 6= min(Cost) do

Executing optimal scheduling algorithm

Store scheduling variables set (uDx (1) & uDP (1))
Transmit decision signal to the device level controller through WLAN.
Initializing distributed robust control
for (k ≤ K − 1) do

Executing robust control scheme on received signals
Tracking and applying signals decisions set (uDx (k) & uDP (k))
while P2 6= max(Balance) do

Executing coordinated control strategy for auxiliary power sharing
Integrate real-time control variable set (uch(k) & udch(k))

k ← k + 1

t← t+ 1

Conclude total energy utilization cost
Conclude real-time balancing phenomenon
Conclude ESEs utilization factor and penetration level
Conclude EEs loss factor and loss cost

to the HAPN AC line through GAC , while a tuple of generators (i.e., PV, HBS)
is connected to the DC line via GDC . HEMS evaluates the objective functions set
Pt : R+ 7→ R+, determines the cost of electricity supply for households at time-slot
t, and balances the power network at time-slot k.

Time-Triggered Communication Strategy

A model of HAPN is constructed in this chapter by combining a time-triggered
WLAN 802.11ac high-throughput communication connection [14]. Additionally, it
incorporates an AWGN fading channel [10] to highlight the noise disturbances that
occur in the channel during transmission. Because the scheduler and the IEDs are
located close together inside a home, there should be less noise and ambiguity in the
communication channel. Author assumes that the IEDs are immobile and that com-
munication between the HEMS and the IEDs takes place in a low-bandwidth sim-
plex mode. This is a straightforward unidirectional time-triggered communication
approach that dramatically eliminates needless transmissions and bandwidth usage
while optimizing communication connection use. Author establishes that signals
transfer frequently at equidistant sampling instants. Because the off-line scheduling
pre-defines the time slots for all activities, the result is a time system with constant
latencies and no jittering. Because the delays are consistent, global synchronization
is achieved with no jitter. Whatever the number of IEDs running, each one has its
own allocated time slot for communication with the scheduler, and time invariant
techniques are employed. For data transfer, the MATLAB communication toolbox
is used to perform TCP/IP-specific identification, retransmission, as well as man-
agement of the router’s queue length using the random early detection method and
congestion avoidance. The communication model has three main parts components:
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Transmitter It consists of two primary levels of communication networks: the
data connection layer and the physical layer. The data connection layer creates
signals carrying data and control information. It facilitates the communication of
protocol and service information between the peer levels of communicating IEDs.
A transmitter generates a physical layer convergence method service data unit and
compresses the bits into a single packet waveform. Additionally, data is sent using
a quadrature amplitude modulation (QAM) technology.

Channel The suggested WLAN model works on the unlicensed 2.4GHz radio fre-
quency band, with a bandwidth of 20MHz and a maximum throughput of 800Mbps.
The bandwidth of a WLAN channel is specified as 5MHz.

Receiver A receiver’s basic operation is to retrieve a message from a sent packet.
There are two components to the receiver: packet detection and packet recovery.
The receiver must perform a variety of tasks, including packet identification, time
and frequency synchronization, carrier frequency offset correction, MIMO channel
estimation, received packet demodulation, and data decoding.

5.3.2 Distributed Coordinated Control for Energy Balancing

Due to pre-planned or unanticipated disturbances, the nanogrid may operate in an
off-grid mode. As a result, backup energy sources must be employed in voltage/current-
controlled inverter (VSI) mode in order to offer rapid voltage/frequency support. By
compensating for a part of the power needed for voltage and frequency reconstruc-
tion, VSI may offer active and reactive power assistance for HAPN. The goal here
is to create a balance of supply and demand inside the HAPN. The problem is then
rewritten as a real-time energy balancing problem, as seen below:

P2 = min
ugas(k)

{Sg.ac(k) + Pg.dc(k) + Ppv.dc(k) + Pb.dc(k)

+ ugas(k)− Sac.load(k)− Pdc.b(k)},∀k
s.t.

Egas ≤ Egas(k) ≤ Egas, ∀k
P gas.ch ≤ ugas(k) ≤ P gas.dch, ∀k

(5.20)

where, ugas(k) = [xgas(k)Pgas(k)] is the control signal used to activate the auxiliary
storage power (Pgas(k)) with xgas(k) as a binary activation variable. The available
energy in grid auxiliary storage (GAS) is constrained by higher (Egas) and lower
energy thresholds (Egas). Although the charging and discharging rates of the stor-

age are regulated by the maximum P gas.dch and lowest values P gas.ch specified in
Equation 5.20.

5.3.3 Robust Power Tracking Control

ESDs converter control

Typically, the DC buck/boost converter connected to the ESDs supports voltage lev-
els on both the storage and DC sub-grid sides. Figure 5.4a illustrates the schematic
of a converter and the related control framework. The converter’s essential control
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(a) Storage buck/boost
converter.

(b) PV MPPT controller. (c) Inverter Control.

Figure 5.4: HAPN components architecture (Primary robust control perspective).

parameters are the output voltage on the DC sub-grid side (Vbus), the output volt-
age on the storage side (Vs), and the current flowing through the converter (Is).
Furthermore, the control strategy for the energy storage system is based on a con-
ventional robust control method that encompasses an external voltage control loop
and an internal current control loop. Both loops employ Proportional and Integral
(PI) controllers to regulate the reference voltage and current values, respectively
[197]. The reference input voltage (Vs.ref ) is the voltage at which the DC sub-grid
operates.

PV power support control

Figure 5.4b illustrates the structure of the photovoltaic power converter and the
control method used to facilitate the flow of energy from the photovoltaic generator.
Through the use of an MPPT converter, the solar panels are connected to the DC
sub-grid. The voltage between the terminals of the photovoltaic panel is denoted by
the symbol Vpv. Where Vbus is the output voltage and Ipv is the solar panel’s output
current.

In practice, the PV panel’s voltage and current data are sent into the MPPT
controller, which outputs the reference voltage value for control by the main con-
troller coupled to the converter. The MPPT controller employs the perturbation
and observation approach described in [197]. While the basic control method uti-
lizes a PI controller in conjunction with two-staged control loops, such as the outer
voltage loop and the inner current loop. The PV voltage (Vpv) is pushed to follow
the reference voltage value (Vref ) acquired via MPPT through a PI-based voltage
controller.

Voltage source inverter control

This section illustrates the inverter’s structure and control schematic. The power
load is connected to the AC sub-grid in this chapter, and the DC supply is prioritized
above the AC grid supply to meet load needs. To enable optimal power transmis-
sion from the DC sub-grid to the AC sub-grid, the DC sub-voltages grid’s must be
constant. As a result, the inverter is constantly stressed. A voltage-controlled VSI is
used to regulate the unexpected behavior of renewable energy sources. Figure 5.4c
illustrates the grid-connected VSI and its control framework schematically. The out-
side voltage control loop, as depicted, determines the DC sub-grid voltages applied
to the inverter input. The voltage regulator is basically responsible for determining
the quantity of current injected into the AC bus. While maintaining a steady DC
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bus voltage. In general, proportional and integral (PI) controllers are utilized to
update the voltage regulator. [186].

The power shared by the GAS through VSI can be described as [89];

Pgas = vgdigd + vgqigq, Qgas = vgqigd − vgdigq, (5.21)

where igd and igq represent the direct and quadrature components of the AC bus
current (Iac), respectively, and vgd and vgq represent the direct and quadrature com-
ponents of the AC bus voltage (Vac), respectively. VSI control is used to implement a
direct and quadrature (d-q) reference frame transition that rotates with the common
reference frequency (ω). The objective is to replicate the operation of synchronous
generators by modulating the input power as a function of power, frequency, and
voltage. The phase-locked loop (PLL) is used to synchronize the phase angle of the
system. Additionally, L and R indicate the inductance and resistance between the
VSI and the feeder bus, which together create an output filter. The fact that the
local power control is always compatible with the bus voltage (i.e. vgd = Vac and
vgq = 0).

5.4 A Case Study Based Performance Validation

To test the scheduling algorithm’s and real-time control strategy’s performance,
an AC/DC HAPN architecture similar to that depicted in Figure 5.2 is employed,
along with suggested energy allocation scenarios. A modified case study from [115]
is used to include electricity pricing data, load profiles, and solar radiation profiles.
Table 5.2 illustrates the parametric values for the different power entities employed.

Table 5.2: System parameters

Par: Value Par: Value Par: Value

Sg.av 5 kV A P pv.ac 1.05 kW Eb/gas 5 kWh
P b.dch 1.28 kW P b.ch 0.8 kW Pb.self 2KW
SoEinitial 2 kWh ηb.con 0.95 δ 0.8
Eb/gas 2 KWh ηinv/ηdc/ac 0.95 ηac/dc 0.95

Cb.ivt 2000 φ 0.001 ϕ 0.0012
t 15 min k 1 sec

Additionally, a quantitative energy demand model is created that accurately
estimates the amount of energy required for a particular household’s energy use.
The estimated number of active residents in a home and their associated energy
consumption are shown in Figure 5.5a with a temporal resolution of 1min. Whereas,
Table 5.3 contains a list of frequently used power devices.

5.4.1 Comparison Study for Power Scheduling Scenarios

Utilizing the “MATLAB” optimization toolbox, the mixed-integer linear program-
ming (MILP) optimization approach is employed to find the best solution. The
MILP solver “intlinprog” is used to find a plausible solution (the minimal need for
convergence guarantee). The proposed problem is bit computationally expensive
implying;
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(a) House occupants and their energy demands.

(b) PV power in-feed.

(c) Grid AC power in-feed.

(d) Grid DC power in-feed.

(e) HBS power exchange.

(f) HBS state of energy.

Figure 5.5: AC/DC bus (w/o losses) Vs AC/DC bus (with losses).
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(a) PV power and losses.

(b) Grid DC power and losses.

(c) HBS power exchange and losses.

Figure 5.6: Hybrid AC/DC bus with losses.

• It has total of 12 binary and continuous optimization variables.

• It has 3 linear equality constraints.

• It uses 3 linear inequality constraints.

• It uses 12 bounding condition constraints.

Each iteration takes 3 seconds to get an integer solution to the required optimality
level. The required degree of optimality in this issue is a “integer viable solution”
and a relative gap of 0. The preceding analysis demonstrates that implementing the
recommended approach is feasible in the offline scheduling of home appliances.

In the first section of discussing findings, the author has generated four distinct
HAPN architecture scenarios to compare the scheduler’s output. These situations
are as follows:

• A: AC bus without losses [116].

• B: Hybrid AC/DC bus with PV losses [158].

• C: Hybrid AC/DC bus with PV and HBS losses [115].

• D: All in Scenario C with additional converter losses.

On the basis of cost estimation for consuming energy from different ESEs, a
link is established. Additionally, author has monitored the utilization factors and
penetration levels of different power sources inside a HAPN. Table 5.4 and Table 5.5
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Table 5.3: Home appliances activities and classification.

Activity Appliance type
Mean cycle
power (W)

Cooling Refrigertaor 110

Consumer
electronics

Cassette / CD-player 15
Hi-Fi 100
Iron 1000
Personal computer 141
Printer 335
TV 124
VCR / DVD 34
TV receiver box 27

Cooking

Oven 2125
Microwave 1250
Kettel 2000
Small cooking 1000

Wet
Dish wascher 1131
Washing machine 406

Lighting Bulbs 190

Table 5.4: ESEs utilization factor and penetration level.

Parameters Scenario A Scenario B Scenario C Scenario D

PV ulitization factor (PVuf ) 0.80 0.74 0.60 0.80
PV loss factor (PVlf ) – 0.05 0.05 0.05
PV penetration level (PVpl) 0.46 0.43 0.35 0.46
HBS ulitization factor (HBSuf ) 0.80 0.82 0.63 0.73
HBS loss factor (HBSlf ) – – 1.5 2.5
HBS penetration level (HBSpl) 0.17 0.20 0.09 0.16
Grid ulitization factor (Guf ) 0.04 0.04 0.045 0.04
Grid loss factor (Glf ) – – – 0.005
Grid penetration level (Gpl) 0.52 0.55 0.64 0.6
Inverter loss factor (Ilf ) – – – 0.00018

compare the previously indicated scenarios A, B, C, and D using performance in-
dexes.

Specifically, while examining Table 5.4, the maximum PV usage factor is found
in scenario D. This is because, in comparison to other circumstances, surplus
energy is used to compensate for converter losses. The DC sub-grid compensates for
the majority of the system’s power losses. In comparison to energy acquired from
the AC sub-grid, it is less expensive to deliver electricity using photovoltaic and
battery technology. While the cost is quite high owing to utility grid interconnection,
particularly for power loss compensation. However, it is the cheapest in scenario C
since there is no converter loss and getting power from the DC bus is not cheap.
Additionally, it utilizes an alternating current bus when utility grid energy rates are
quite cheap. Additionally, the PV loss factor is almost same in all circumstances
since the efficiency factor is constant for every given power amount. Whereas the
PV penetration level is maximum in scenarios A and scenario D, it is lowest in
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Table 5.5: Estimated aggregated energy cost for one day.

Parameters (“cents”) Scenario A Scenario B Scenario C Scenario D

PV energy cost (Cpv) 31 29 24 31
HBS energy cost (CB) 14 16 7 13
HBS lifecyle loss cost (Cb,l) 2.7 2.8 2.7 2.5
Grid energy cost (CG) 202 204 240 221
Total energy cost (Ctotal) 250 252 274 268

scenario C.

Additionally, as indicated in Table 5.4, the HBS utilization factor is highest in
scenario B, followed by scenario A. One explanation is that these scenarios did
not account for battery losses, making it more effective to utilize the full amount
of battery to power the loads in these situations. In comparison, it is the smallest
in scenario C because to the battery losses. Additionally, in scenario D, battery
losses increase again due to the low cost of using the battery to compensate for
converter losses. Thus, if the usage factor for HBS grows, the loss factor increases
proportionately. Whereas the amount of HBS penetration is greatest in scenario B
and is least in scenario C. This might be the case with the usage aspect as well.

Additionally, the grid usage factor is high in scenario C since utility electricity
is inexpensive to utilize and also serves to charge the battery linked to the DC bus.
A portion of which is utilized to compensate for the losses of the AC-DC converter.
It is, however, smaller in other circumstances since the HBS and converter losses are
ignored. As seen in scenario D, the grid loss factor is raised by adding converter
losses. The usage factor also increases the penetration level.

The cost analysis of ESEs is mostly determined by the usage factor. As a result,
if one examine Table 5.5, it can be observed that the operating cost of a photovoltaic
source is highest in scenario D and scenario A and lowest in scenario C. Similarly,
the operating cost of the HBS is higher in scenario B than in scenario C. Addi-
tionally, the cost of battery life-cycle loss is greatest in scenario B since the battery
is fully charged, and according to Equation 5.14 battery deterioration plays a signif-
icant role in this scenario. While it is the lowest in scenario D, which involves less
alterations in the battery’s level of energy, it is the highest in scenario E. Power
from the grid is more expensive in scenatio C, where grid penetration is somewhat
greater than in the other situations. Finally, after examining the HAPN’s total
operating expenses and component loss factors, author proposes that the optimal
architectural scenario to operate with is scenario D.

Additionally, Figure 5.5 illustrates the graphical comparison of two extreme cir-
cumstances. It compares two AC/DC topologies for a HAPN in terms of lossless
and lossy power networks. Scenario A has no losses, but scenario D contains all
losses. As seen in Figure 5.5b, the PV in-feed in both cases follows a similar pattern
throughout the day with little fluctuations. However, in scenario A, the PV in-feed
is more volatile than in scenario D. This is because more power is necessary to
compensate for losses. Additionally, the grid’s AC in-feed is much greater through-
out the network without incurring losses, as seen in Figure 5.5c. Due to the fact
that the combined in-feed from batteries and PV is less expensive than the network
with losses. However, as seen in Figure 5.5d, the grid DC in-feed is in the other
direction. This is due to the DC bus compensating for power loss. As a result,
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there is always the option of charging the battery using an AC-DC converter. The
battery power exchange rates shown in Figure 5.5e are relatively comparable and
follow the same trend. However, electricity rates are more volatile in scenario A.
Additionally, when losses are included, the state of energy (SoE) of the battery is
often lower, suggesting high use for power loss compensations.

The further analysis for scenario D is presented in Figure 5.6, which shows
the power consumption and converter losses. This scenario is more realistic and
practical in nature since it illustrates the actual system losses caused by the power
flowing via multiple converters. In illustration, as depicted in Figure 5.6a, the power
actually delivered by the photovoltaic module is consistently lower than the power
obtained from the photovoltaic array. This is a result of the losses brought about by
the DC/DC converter that is linked to the photovoltaic array for maximum power
point tracking operations. The efficiency of the converter has been estimated to be
around 95 percent, as reported in [115]. The zoomed-in graphic clearly illustrates
the losses associated with the actual power generated by the photovoltaic module.

Furthermore, Figure 5.6b demonstrates the utility grid’s contribution to the DC
bus voltage. As demonstrated in Figure 5.2, the AC source is connected to the DC
bus through an AC/DC converter that exhibits inefficiencies. As a result, these
power losses are visible during power transmission. This power transfer is often
initiated when the utility grid’s energy price is relatively low and the batteries are
charged during off-peak hours.

Furthermore, as shown in Figure 5.6c, the simulation of power transfer via the
battery is depicted. The battery’s charging and discharging cycles are cyclically
activated according to Equations 5.7 and 5.8, which take into consideration the
combined losses from both the battery and the converter. Both charging and drain-
ing processes might result in battery capacity losses. These losses are seen more
clearly in the figure’s magnified pane. Additionally, an inverter is installed between
the DC and AC buses to connect the DC energy sources (i.e., battery and photo-
voltaic array) to the AC loads. This inverter has the ability to provide electricity to
the load side. As mentioned in Section 5.2.2, the inverter incurs considerable power
losses during power transmission, which may be dissipated as heat.

5.4.2 Communication Link Performance Parameters and Experimental
Setup

The parameters of the communication system under investigation are given in Ta-
ble 5.6. Additionally, the signal-to-noise ratio is used to determine the signal in-

Table 5.6: Communication system parameters

Model Parameters Channel Parameters
Distance within Tx & Rx 3 m Breakpoint distance 10 m
Carrier frequency 5.25e9 Hz RMS delay spread 50 ns
Channel bandwidth 20 MHz Maximum delay 390 ns
Modulation 16-QAM Rician K-factor 3 dB
Noise model AWGN Number of clusters 3
SNR 28 dB Number of taps 18

tensity (SNR). It has an effect on the output of the system (e.g., signal intensity
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decreases as SNR decreases with rising bit error rate (BER)) and decreases sensi-
tivity. Figure 5.7a displays the difference in signal strength between the broadcast
and received signals, or may be interpreted as a route loss that accounts for about
50 to 60 dB of segregation between the waveforms before and after they transit
through the communication channel. This route loss is caused by the 3 meter dis-
tance between the transmitter and receiver, which includes shadowing effects and
AWGN noise. The variances in the received signal level represent the channel delay
profile’s frequency selectivity over the frequency spectrum. The author computes
the SNR ratio required for effective communication to be 28 dB. The likelihood of
inaccuracy increases as the SNR value decreases.

Additionally, Figure 5.7b displays the equalized data symbols for each packet
analyzed. The picture depicts the output constellation of equalized symbols. It
demonstrates that the middle of each quadrature amplitude modulation (QAM)
constellation is almost perfect, but the red dots around the midway represent the
analytical location of each data point with noise. The fact that these data points
are less spaced out (have a smaller range of constellation spread) implies that they
have low bit error rates. By increasing the channel noise, the different constellation
points may spread, leading in an increase in error rates. A total of 1.416 × 1009

packets are created and transferred in this job throughout a 24-hour period. In

(a) 20 MHz waveform before transmitting and after receiv-
ing through AWGN channel.

(b) Frequency spectrum and data
symbols output.

Figure 5.7: Frequency spectrum and data symbols output

the present architecture, author has employed one of the raspberry pi as master
(secondary controller) and one as slave (primary controller) nodes, with a commu-
nication link between them as shown in Figure 5.8. The raspberry pi which serves
as a slave, gathering data from devices/sensors (i.e., internet of things) and acting
as a main controller for those devices. The other one is a scheduler that generates
optimum control signals. For connectivity, Linux operating system of the raspberry
pi built-in network stack is utilized. In this scenario, TCP is utilized as the network
layer, with IP as the underlying protocol. The choice is taken on the basis of data
integrity taking precedence above speed. Additionally, author wants to use current
internet infrastructure. TCP/IP is utilized to communicate between the master and
slave nodes for these reasons. Additionally, Figure 5.9 illustrates the master-slave
communication between these two nodes. TCP/IP is also justified in this case since
no packet is lost and all packets that are dropped are retransmitted. The data
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Figure 5.8: Master slave communication experimental setup.

Figure 5.9: Time-triggered communication setup between nodes.

transferred from the secondary controller and received at the main controller are
accurately analyzed.

5.4.3 Power Sharing During Communication Failure and Load Uncer-
tainties

The Simulink model of a nanogrid shown in Figure 5.1 is used to evaluate the real-
time control strategy for scenario D. To handle the dynamic nature of load demand,
an unforeseen volatile load demand model composition is assimilated into the real-
time power system, as shown in Figure 5.10a. To maintain the energy network’s
power balance, auxiliary storage is connected, which compensates for any system
imbalance caused by unplanned changes in solar power production, load demands,
or scheduling signal loss. Finally, a load interruption model is merged into the
previously anticipated load demand model. For example, the predicted power load
is disengaged for 3600 seconds at 20h of the day, presumably as a result of the
communication breakdown. This phenomena simulates an uncertain circumstance
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(a) Load demand uncertainty.

(b) Grid auxiliary storage power exchange.

(c) System balancing.

Figure 5.10: Real-time HAPN operation.

that a main controller must respond to immediately. The grid auxiliary storage
(GAS) is capable of handling both load increase and load discontinuities. As seen
in Figure 5.10b, it functions as a buffer, absorbing excess energy in the system and
adding energy when the system is at a low energy level.

Figure 5.10c illustrates the onset of power network imbalance. The auxiliary
storage system corrects the irregularity quickly by providing more power throughout
the night when the load is disconnected. Even in the event of a load interruption or
ambiguity, the ESEs are designed to deliver energy in accordance with the scheduling
management decision. As a result, the GAS compensates for the projected imbalance
energy. It is worth noting here that the grid might directly balance the HAPN.
However, large on-demand energy costs may result in a rise in the customer’s cost.
The insignificant variations in the magnified pane of Figure 5.10c demonstrate the
chattering effect caused by the controller’s activity.

5.5 Conclusion

This chapter elaborates on an AC/DC hybrid home area power network with rolling
horizon-based time-trigged scheduling and distributed coordinated control. The
chapter introduces the innovative multi-time scale co-simulated intelligent home
energy management system where the energy entities are scheduled and controlled
on two separate time resolutions. The recommended secondary control scheduler
delivers the optimised cost scheduling decision vector for various dispatchable energy
supply entities. It is transferred wirelessly to the primary local control, where the
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reference signals are tracked systematically. The effects of amplification of additive
noise and bandwidth constraints on decision vectors during wireless communication
are analysed. The robust control method at the local control uses proportional
and integral control that ensures the reference signal tracking. Moreover, when a
signal is lost or a power imbalance occurs, a distributed coordinated control balances
that intermittency using auxiliary grid power served by local storage. The influence
of energy losses due to the components’ inefficiencies on the total energy costs is
illustrated in several HAPN architectural scenarios incorporating active and reactive
powers of various energy entities. The suggested control strategy’s output is also
verified using the MATLAB/SimPowerSystems toolbox.
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6 Co-scheduling of Energy Supply Enti-
ties with Flexible Smart Load Demands:
A Case Study of Demand Side Man-
agement

One significant critical characteristic of the current power system paradigm is the
capacity to regulate load demand rather than just expanding generation to meet
ever-rising consumption. Demand-side management may be described simply as
any measures that impact the energy consumer’s consumption efficiency. This only
sometimes implies that consumption should be decreased but somewhat optimized.
This study presents a framework for the component-based modeling of various En-
ergy Supply Entities (ESEs) and Smart Load Demands (SLDs). It implements a
co-scheduling strategy between ESEs and SLDs within the small-scale energy nano
grid referred to as the Home Area Power Network (HAPN). The HAPN integrates
roof-top Photovoltaic (PV) panels, backup Diesel Engine (DE) generators, Energy
Storage Devices (ESDs), and smart load demands with grid electricity. The schedul-
ing model utilizes a mixed-integer linear programming (MILP) based min-max op-
timization technique to minimize daily energy expenses, ensure high consumer com-
fort, and advance home energy self-sufficiency. Incorporating various energy entities
(EEs) in an established optimization framework may help make day-ahead cost-
optimal scheduling choices using dynamic energy price signals and SLDs of different
kinds. This chapter proposes a linearized component-based model that incorporates
energy inefficiencies, power phase modes of smart demands, and the deterioration
phenomenon of Energy Storage Devices (ESDs). The validity of the proposed Home
Area Power Network (HAPN) model is verified through a numerical case study. The
implemented technique optimizes the cost-effective balance of various energy entities
in the HAPN, demonstrating practical potential in real-world applications.

6.1 Critical Analysis of Demand Side Manage-

ment Techniques

Confronting the problem of uncertainty in energy demands and and PV generation,
a decentralized smart grid, also known as distributed grids (DGs), is designed. With
energy storage and control techniques, it better integrates RESs with the traditional
electricity network [96]. Intelligent, self-contained and robust, the smart grid rein-
vents the classical electricity network. It also promotes the internet of energy idea.
[185]. It encourages customer energy savings and trading via demand-side manage-
ment (DSM) and demand response (DR) techniques. DR or DSM programs may
help minimize RESs intermittency by assuming the load demands flexible [12].

The smart grid’s DSM and DR features encourage energy customers to utilize
energy effectively and cheaply. It helps design strategies for flexible energy entity
(EE) operations that maintain the electricity grid stable [20]. It also incorporates
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Table 6.1: Objectives and limitations in state of the art work.

Techniques Domain Objectives Limitations

Adaptive dynamic
programming
[214]

Adaptive dynamic programming for
multi-battery energy storage systems

Due to the efficient control capabilities of dynamic
programming, it is used to optimally control the
charging and discharging of the storage device
and make its life prolonged.

The model is limited to only battery storage and
the detailed information about load demands is missing.
Moreover, the constraint functions are approximated
which lack the accurate model of the device.

Lyapunov optimization
[205]

Energy management for a sustainable
smart home with an HVAC Load and
Random Occupancy

The study examines the reduction of the combined
cost of energy and thermal discomfort and proposes
stabilizing queue development for indoor temperature
, electric vehicle charging, and energy storage
to minimize the cost and improve efficiency and comfort.

The energy demand model is narrow as
it only considers thermal loads. Moreover,
the algorithm is unable to address the
problem of peak formations.

Mixed integer linear
programming
[210]

Optimal Demand Side Response in
Hybrid AC/DC Systems

This study presents a simplified mathematical repres-
entation of a hybrid AC/DC energy system to reduce variables
and constraints, improve efficiency and modeling
accuracy, and increase search effectiveness. The simplified
model can improve understanding and performance of the energy systems.

Piecewise linear function is computationally
expensive and is not suitable if the number of
decision variables increases.

Dynamic optimization
[203]

Demand Side Management for a
Microgrid Considering Uncertainties

A two-stage optimization method using model
predictive control with dual-time scale is introduced
to balance supply and demand, reduce operational costs,
and manage uncertainty. The method considers both short-
and long-term objectives for an efficient solution.

Aggregated load demand is utilized and it does
not show the insight of component level based
device behaviour which is crucial for device level
energy management system.

Stochastic programming
[149]

Demand Response
Technique for Peak Load Reduction

A heuristic approach optimizes household
appliance scheduling to reduce power consumption’s
PAR and maintains consumer appliance information
confidentiality.

A probalistic model for supply and demand is
presented which is prone to forecasting errors.
Moreover the model complexity is not discussed
in detail.

Generalized Benders
Decomposition algorithm
[133]

Multi-Residential Demand Response
Scheduling with Multi-Class
Appliances

The optimization problem balances
energy consumption cost and residential
customer utility while being executed in
a secure, distributed manner.

The strategy may not work well if there is an error
in the demand information provided by the residences.
Moreover, it does not address the problem of a
peak to average ratio (PAR) of the power demand.

Metahuristic algorithm
[104]

Home Energy Management System
with Demand Charge Tariff and
Appliance Operational Dependencies

A demand charge pricing scheme is instituted
with the objective of minimizing the community’s
daily electricity cost while considering
the monthly peak power consumption penalty.

The concept of demand charge tariff is usually
proposed for a community or large-scaled industrial loads.
However, a single residential unit’s power capacity
would be too small to implement the proposed strategy.

Lyapunov optimization
[96]

Residential Energy Storage
Management with Bidirectional
Energy Control

A real-time bidirectional energy control algorithm
is proposed to minimize the net energy cost.
It also includes battery deterioration and storage
inefficiency in its system model.

The constraint of electric line power flow
has not been adequately addressed in the current
discourse. Furthermore, there is a lack of information
provided regarding the setting of selling and purchasing
prices, as well as the impact of battery inefficiency
on storage behavior.

Coordination algorithm
[67]

Optimal Coordination of Building
Loads and Energy Storage

An optimized coordination algorithm has
been implemented to deliver power grid and
end-user services, including energy arbitrage,
frequency regulation, spinning reserve,
cost reduction, and demand charge reduction.

Need to investigate further about scalable and distributed
coordination strategies for building
loads and energy storage systems to
provide services to the grid and end-users.

Mixed integer linear
programming
[20]

Flexibility of Residential
Loads for Demand
Response Provisions

A two-stage optimization framework is developed,
where the peak reduction signals are identified by
aggregating individual users energy consumption
patterns, and determines their flexibility provision.

This work does not consider the incentives that may be
provided for delaying the loads and the penalty cost
for lowering the discomfort of the consumers.

financial incentives like variable energy pricing and low energy use prizes. This is
realized by postponing, transferring, or limiting non-priority load needs [79]. These
tactics include peak clipping, valley filling, and critical load management. In order
to aid in demand response programs, a variety of energy pricing schemes have been
devised, including time-of-use pricing (ToU), day-ahead pricing (DAP), real-time
pricing (RTP), critical-peak pricing (CCP), and inclined-block rate pricing (IBR).
These tariffs aim to incentivize customers to shift their energy usage to off-peak
periods, thereby reducing overall demand on the energy grid and improving its
reliability [86]. Table 6.1 and Table 6.2 demonstrates the limitation of previous
work in the context of above mentioned next generation power system.

The cost-effective functioning of various energy entities (EEs) in a home is the
focus of this Chapter. EEs consist of both energy generators and electrical appli-
ances. So far, most pieces of literature have only studied the energy generating side
for cost-optimal operations (i.e., scheduling of energy supply entities (ESEs)) [121].
But in this work, the DSM techniques are also explored along with supply-side man-
agement. Thus the author recreates the cost reduction and customer satisfaction
problem using the concept of the internet of energy (IoE), where every energy en-
tity is carefully regulated using an intelligent energy management system (iEMS).
The ultimate goal is to combine supply and demand management of cheap, clean,
and uncertain EEs. The benefit of adding energy storage devices (ESDs) and diesel
engines (DEs) in reducing power costs throughout the day is also studied, consid-
ering grid outages and thermal device temperature requirements. The optimization
problem formulated in this Chapter is challenging because of the large number of
EEs and their temporal coupling limitations.

This proposed work’s notable features include:

1. Analyze detailed PV and ESDs models to identify component inefficiencies
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Table 6.2: Critical analysis of past work. (PE, power elastic loads; ECL, electric
controllable loads; TCL, thermal controllable loads; DT, delay tolerant load de-
mands; Occ, occupancy behaviour; Ss, Self-sufficiency; Ps, pricing scheme; Cr, cost
reduction; DA, day-ahead; Roll, rolling time horizon.)

Ref. Domain Technique(s)
Scheduling ESEs Scheduling SLDs

Occ Ss Ps Cr
Time

horizonGrid PV DE ESDs PE ECL TCL DT
[8] Micro-grid MILP 7 7 3 3 7 7 7 7 7 7 Fixed 3 24h-DA
[208] Micro-grid MILP 7 3 3 3 7 7 7 7 7 7 Fixed 3 24h-DA
[46] Micro-grid Lyapnov-opt 7 3 7 7 7 7 3 7 7 7 RTP 3 24h-Roll
[95] Nano-grid GA 3 3 7 3 7 7 7 3 7 7 RTP 3 24h-Roll
[147] Nano-grid MILP 3 7 7 3 7 7 7 3 3 7 Dynamic 3 24h-DA
[153] Nano-grid MILP 3 3 7 3 3 7 3 7 7 7 Fixed 3 24h-DA
[170] Nano-grid Stochastic 3 3 7 3 7 3 7 3 3 3 F/D 3 24h-DA
[161] Nano-grid PSO 3 3 3 3 7 3 3 7 3 3 TOU 3 24h
[85] Nano-grid Heuristic 3 3 7 7 7 3 3 7 7 7 TOU 3 24h-DA
[101] Nano-grid MILP 3 3 7 3 3 7 3 7 3 3 RTP 3 24h-DA
[107] Nano-grid MILP 3 3 7 3 7 7 7 7 7 7 Fixed 3 24h-DA
[160] Nano-grid Stochastic 3 3 3 3 7 3 3 7 7 7 Fixed 3 24h-DA
[79] Micro-grid Meta-Heuristic 3 3 7 3 7 3 3 7 7 7 Dynamic 3 24h-DA
[86] Nano-grid Heuristic 3 7 7 7 3 3 7 7 7 7 F/D 3 24h-D/R
[212] Nano-grid GA 3 3 7 3 7 7 7 7 7 7 F/D 3 24h-DA
[201] Micro-grid Opt-Algo 3 7 7 3 7 7 7 7 7 7 TOU 3 24h

and energy losses. ESDs model also gives the outlook of the storage device life
cycle.

2. Incorporate a constraint-based mathematical model for different flexible smart
load demands (SLDs) attributing the DSM strategies.

3. Add a reward and penalty component allows cheap activation of power elastic
and delay-tolerant loads while considering user comfort.

4. A novel “min-max co-scheduling (MMCS)” optimization technique is pro-
posed. It successfully handles the cost reduction and customer satisfaction
optimization problems inside a single optimization framework. The resolu-
tion of the model is achieved through the application of a branch and bound
approach based on mixed-integer linear programming (MILP).

5. Validate the optimum scheduling issue using a signal house simulation, and
use auctioned electricity price information [3] for realistic numerical analysis.

6.2 Analytical Modeling of Home Area Power Net-

work and the Attached Power Devices

The suggested operational nanogrid model for scheduling EEs optimally is a small-
scaled HAPN. The HAPN operates autonomously as a nanogrid, balancing supply
and demand while maximizing energy efficiency. It functions as a low voltage dis-
tribution nanogrid, enabling ESDs, integrating energy from RESs, and delivering
energy to (in)flexible household smart appliances. A smart meter that links a resi-
dence to the external grid serves as the doorway to this HAPN.

The suggested structure of a nanogrid is shown in Figure 6.1. Where, power
loads (Pac.load(t)), diesel power generator (Pde.ac(t)) and grid power (Pg.ac(t)) share
alternative current (AC) line. While, direct current (DC) line is shared by the power
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Figure 6.1: Home area power network system model

obtained from PV (Ppv.dc(t)) and the ESDs (Pb.dc(t)). To create a plausible scenario
for off-grid operation, a nanogrid is assumed to be situated in a rural region where
grid power is more often disconnected. As a result, a backup diesel generator is
included to assure an uninterrupted power supply for the whole day. The hybrid
AC/DC grid exchanges power using a bidirectional converter that supplies power
to both the DC and AC lines [210]. Normally, it is assumed that the nanogrid
distributes electricity over DC lines to avoid line losses. However, most electrical
appliances run on AC power and, thus, transforming electricity from DC to AC at
the appliance level is not a cost-effective option. In comparison, a one-time DC to
AC conversion is less expensive and results in fewer conversion losses.

Furthermore, a PV power model assumed in Section 3.1.2 is introduced in this
chapter to reflect the inherit problem of inflexibilities in PV generation. The day-
ahead solar irradiations are calculated and the PV power is forecasted using a pre-
diction algorithm incorporating solar irradiance model. In addition, a battery as
an energy storage device (ESD) already described in Section 3.2 is introduced in
this work. ESDs can act as an energy buffer and storage device in a smart power
networks.

6.2.1 Energy Usage Cost Formulations

Establishing an ideal and efficient system is crucial in minimizing the daily electricity
costs within an intelligent home area power network (HAPN). This strategy may
integrate a variety of EEs (i.e., energy sources and electrical appliances) in a cost-
efficient way so that only sufficient energy is drawn for the appliance from the
cheapest energy source at any instantaneous time t. While scheduling various EEs
it is necessary to guarantee that energy supply and demand are balanced and that
customer satisfaction is met.

Additionally, to execute such a scheduling model, a problem formulation is stan-
dardized to a specified cost function. For example, both the quantity of energy used
and the degree of customer satisfaction are expressed as cost parameters. The cost
formulation of various EEs is illustrated as follows:

1. Grid energy delivery cost: The cost per unit of energy obtained from the
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grid (%(t)) at any time t is derived from [3] and is illustrated as:

Cg(t) = (Pg.ac(t)xg.ac(t))%(t), ∀t (6.1)

where Pg.ac(t) represents the grid’s power input to the AC line of the home,
and xg.ac(t) ∈ [0/1] indicates the grid’s on/off state.

2. PV operating cost: Theoretically, PV has no operating costs since it gen-
erates power using plentiful, free solar energy. It does, however, incur certain
fixed operating and maintenance expenses ϕ. This covers the cost of the pho-
tovoltaic equipment’s replacement as described in [41]. The per unit energy
cost insured by the PV is calculated as;

CPV (t) = (Ppv.dc(t)xpv.dc(t))ϕ, ∀t (6.2)

where ϕ is the fixed cost derived from disaggregating the installation and
maintenance cost over the period of some years. Whereas, xpv.dc(t) ∈ [0/1]
denotes the on/off status of the PV array.

3. Diesel engine operating cost: The time intensive operating and running
cost of a diesel engine (DE) unit is dependent on the quantity of fuel used
to produce the desired amount of electricity at any given time t of the day.
However, the fuel consumption model for a diesel engine is often represented
by a quadratic function as described in Section 3.1.4 [29, 74]. Hence, the power
cost is established as;

CDE(t) = (adexde.ac(t) + bdePde.ac(t)xde.ac(t)), ∀t (6.3)

Additionally, each time the generator starts or stops, it incurs charges, which
are denoted by start-up (σsu) and shutdown costs (σsd), respectively. These
expenditures are incurred as a result of staff costs, pre-heating, and idle cir-
cumstances of the generator and is discussed in Section 3.1.4, [208]. In the case
of steam power plants, this cost is often exponential, however in our instance,
the cost is constant due to the presence of a tiny diesel unit. These expenses
are shown as follows:

Csu
DE(t) = zde(t)σ

su, ∀t (6.4)

Csd
DE(t) = vde(t)σ

sd, ∀t (6.5)

where zde(t) ∈ [0/1] and vde(t) ∈ [0/1] denote the start-up and shutdown state
of diesel engine, respectively.

Furthermore, there are certain operating and maintenance expenditures σom

associated with filter or oil changes, as well as the replacement of some com-
ponents of the DE unit. These expenses are depicted for any time t as follows:

Com
DE(t) = xde.ac(t)σ

om. ∀t (6.6)

Besides, DE causes harmful CO2 emissions. As a result, there is a penalty
cost of ξ associated with the production of a mass of carbon element. This
amount of carbon grows as the generator’s output increases [148]. The total
cost of emitting CO2 at any point in time t is defined as

Cco2
DE(t) = (CO2 × Pde.ac(t)xde.ac(t))ξ, ∀t (6.7)
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4. Energy storage devices operating cost: The running cost of a storage
component is the most critical metric in an energy management system and is
indirectly refers to the maintenance cost of the storage. The expense of storage
deterioration is not insignificant. There are two methods for extending the life
of a storage battery. One approach is to restrict the depth of discharge (DoD)
of storage to a specific value at which the battery performs optimally well while
disregarding the number of cycles Ncycle.b(t) in a day. The cost of the battery
is fixed in this case, reflecting the cost of replacing the battery after a certain
length. The second is to define a cost function that estimates the deterioration
of storage capacity in terms of cycles and DoD which is already discussed in
Section 3.2.2. In this chapter the later approach is used to calculate a variable
cost operator Cb(t), which is the ratio of the battery’s total investment cost
(ICb) to its total energy throughput [8].

Cb(t) =
ICb

Ncycle.b(t)(1−DoD(t))Eb

, ∀t. (6.8)

This implies that if the battery is cycled at a high DoD for an extended period
of time, a relatively large cost is imposed. Hence the cost of power obtained
from the storage is dependent on the battery deterioration and replacement
cost and is determined as;

Cb.deg(t) = (Pb.dc(t)xb.dc(t) + Pdc.b(t)xdc.b(t))Cb(t), ∀t (6.9)

where, Pdc.b(t) and Pb.dc(t) shows the battery’s charging and discharging power
rates along with charging and discharging status xac.b(t) ∈ [0/1] and xb.dc(t) ∈
[0/1], respectively.

5. User discomfort penalty for power elastic (PE) load demands: PE
loads discussed in Section 3.3 may be interrupted and their power can be
reduced to save energy consumption. However, this occurrence will exacerbate
the consumers’ discomfort. As a result, a discomfort penalty is introduced
that an optimization strategy takes into account while constructing different
scheduling schemes. The penalty rate ζ is proportional to the amount of the
curtailed power, and the total penalty cost at any time t is as follows:

Cpen
PE (t) =

∑
a∈APE

(LPEa (t)− P PE−

a (t)xPEa (t))ζ, ∀t (6.10)

where, LPEa (t) is the required energy for PE load and (LPEa (t) − P PE−
a (t))

reflects the quantity of curtailed demand given xPEa (t) ∈ [0/1] on/off status of
the appliance.

6. Delay tolerant (DT) demands Queue costs: DT loads discussed in Sec-
tion 3.3 may be delayed up to a certain time interval till the grid prices become
lower in order to reduce the overall cost of power used by these devices. In-
tegrating DT queues enables the delayed activation of DT loads. However,
there is a cost associated with building these queues and maintaining them
for an extended period of time. This cost increases with the waiting time
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representing the users’ growing displeasure [119]. This delay cost is illustrated
as;

Cdel
DT (t) =

∑
e∈ADT

QDT
e (t)δ, ∀t (6.11)

where, δ is the fixed delay penalty rate for putting the loads in the queue and
QDT
e (t) represents the queue length.

6.2.2 HAPN Component Level Constraints

Grid constraints

• Incoming power from the utility grid: It is possible to receive a wide range of
electricity from grid at any one moment using the following equation t.

P g.ac ≤ Pg.ac(t)xg.ac(t) ≤ P g.ac. ∀t (6.12)

PV array constraints

• Power in-feed from PV panel: The following limitation dictates the maximum
amount of PV power that may be derived from the PV array at any given
moment t.

Ppv.dc(t)xpv.dc(t) ≤ P pv.dc. ∀t (6.13)

Diesel engine (DE) constraints

• DE power capacity: In order for a diesel engine generator to provide power in
the range of lowest to maximum, this limitation must be met.

P de.ac ≤ Pde.ac(t)xde.ac(t) ≤ P de.ac. ∀t (6.14)

• DE start-up indicator: The indication zde(t) changes to 1 whenever the gen-
erator moves from a static to a dynamic mode.

− xde.ac(t− 1) + xde.ac(t)− zde(t) ≤ 0. ∀t (6.15)

But we think that shutting off the DE will cost nothing, thus we don’t utilize
any signal for that.

ESDs constraints

• Evolution of ESDs’ energy states The difference in energy levels between the
ESDs for various time slots (4t = t−(t−1)) is shown in the following equation.
Charge and discharge rates and efficiency variables cause this disparity in
energy levels.

ηb.conPac.b(t)×4t− η−1b.conPb.ac(t)×4t
= Eb(t)− Eb(t− 1). ∀t ∈ [2 · · ·T − 1]

(6.16)

Remark 11. ESDs are expected to have the same initial and final SoC, such
that the storage must have the same value of SoC starting the following day;
Eb(1) ' Eb(T ) ' ε.
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• Actual capacity of the ESDs: The maximum and lowest values of the ESDs
limit the available storage capacity.

Eb ≤ Eb ≤ Eb. ∀t (6.17)

• Maximum (dis)charge rates for ESDs: The ESDs’ charging and discharging
rates are limited by the specified restrictions.

P ac.b ≤ Pac.b(t)xac.b(t) ≤ P ac.b, ∀t (6.18)

P b.ac ≤ Pb.ac(t)xb.ac(t) ≤ P b.ac. ∀t (6.19)

Power elastic (PE) demands constraints

The greatest amount of energy required to meet these needs is stated as follows:

P PE−

a (t)xPEa (t) ≤ P
PE−

a . ∀a, t (6.20)

Time elastic electrical controllable load (ECL) demands constraints

Energy constraints

• Appliance phase energy specification: Each device’s b phase d has a certain
amount of energy it needs. Total power for one phase must meet these limits
in order to satisfy the stated demand.

T∑
t=1

PECL−

b,d (t)− EECL
b,d ≤ 0. ∀b, d (6.21)

• Appliance phase power limits: There is a maximum amount of power that can
be fed into a device during any phase of operation. In the following constraint,
we provide this upper limit as;

PECL
b,d ≤ PECL−

b,d (t)xEClb,d (t) ≤ P
ECL

b,d . ∀b, d, t (6.22)

Time constraints

• Appliance phase time bounds: There is a time restriction for each phase of a
gadget to be used. This time-bound is shown in the form of;

τECLb,d ≤
T∑
t=1

xECLb,d (t) ≤ τECLb,d . ∀b, d (6.23)

• Appliance intra-phase operations: Every stage must be completed in its en-
tirety, without interruption. Cycles are completed via an auxiliary variable
sECLb,d (t) that is set to 1 when a given phase has been completed [177]. Then it
must stay constant for the duration of the device’s operation.

xECLb,d (t) + sECLb,d (t) ≤ 1, ∀b, d, t (6.24)

xEClb,d (t− 1)− xECLb,d (t)− sECLb,d (t) ≤ 0, ∀b, d, ∀t = 2, 3, ..., T (6.25)

sECLb,d (t− 1)− sECLb,d (t) ≤ 0. ∀b, d, ∀t = 2, 3, ..., T (6.26)
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• Appliance inter-phase operation: To begin the following step, a device must
have completed the previous phase first;

xECLb,d (t)− sECLb,(d−1)(t) ≤ 0. ∀b, t, ∀d = 2, 3, ..., D (6.27)

• Appliance inter-phase delay: The following delay limitation guarantees that
the start time of the next phase may be flexible.

dECLb,d (t) = sECLb,(d−1)(t)− (xECLb,d (t) + sECLb,d (t)), ∀b, t, ∀d = 2, 3, ..., D (6.28)

As a result of the trade-off between cost and comfort, the delay dECLb,d (t) is
customizable.

Db,d ≤
T∑
t=1

db,d(t) ≤ Db,d, ∀t, b. ∀d = 2, 3, ..., T (6.29)

Time elastic thermal controllable load (TCL) demands constraints

• Appliance power limits: The operational device’s power range is limited to a
certain phase;

P TCL
c ≤ P TCL−

c (t)xTCLc (t) ≤ P
TCL

c , ∀c, t (6.30)

• Appliance temperature limits: The user determines the device’s operating
temperature range, and the permissible fluctuations are constrained by the
following restrictions.

T TCLc ≤ T TCLc (t) ≤ T
TCL

c , ∀c, t (6.31)

• Temperature variations in thermal devices: The changing temperature situa-
tion inside a thermal chamber (i.e., refrigerate, freeze) is shown as [46, 205];

T TCLc (t) = T room(t)− P TCL−

c (t)RTCL
c

−(T room(t)− P TCL−

c (t)RTCL
c − T TCLc (t− 1)e−4t/R

TCL
c CTCL

c ,

∀c,∀t = 2, 3, ..., T

(6.32)

where, T TCLc (t) represents inside temperature; RTCL
c depicts equivalent ther-

mal resistance; CTCL
c represents equivalent heat rate; P TCL−

c (t) is equivalent
heat capacity. The model is already explained in Section 3.3.2.

Time elastic DT demands constraints

• Appliance power limitation: The amount of energy dissipated by these de-
mands is limited by their maximum energy need, which is specified as;

PDT
e ≤ PDT−

e (t)xDTe (t) ≤ P
DT

e . ∀e, t (6.33)
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• Load queue: A demand queue is constructed, which enforces the DT load
scheduling architecture [119]. At every point in time t, the cumulative load
demands in a queue are denoted by the symbol QDT

e (t) and are summarized
as;

QDT
e (t) = max[QDT

e (t− 1)− PDT−

e (t)xDTe (t), 0] + LDTe (t), ∀e, t (6.34)

where, Loads entering the queue are referred to as LDTe (t), while those leaving
the queue are referred to as PDT−

e (t). This queue emptying rule must be
enforced in order to maintain the above queue steady.

Remark 12. PDT−
e (t) ≥ LDTe (t).

6.2.3 HAPN System Level Constraints

• Power balancing constraints: The following equation assures supply and de-
mand equilibrium to keep the power network stable and to minimize the power
losses.

Pg.ac(t) + Ppv.ac(t) + Pde.ac(t) + Pb.ac(t)

= Pac.load(t) + Pac.b(t). ∀t
(6.35)

• Operations of ESDs: The following limitations prohibit concurrent charging
xac.b(t) ∈ [0/1] and discharging xb.ac(t) ∈ [0/1] operations of ESDs at any time
t.

xac.b(t) + xb.ac(t) ≤ 1. ∀t (6.36)

• Prohibition of charging ESDs from grid power: ESDs cannot be charged from
the grid beacuse of the following restrictions;

xac.b(t) + xg.ac(t) ≤ 1. ∀t (6.37)

• Prohibiting inter-ESDs energy sharing: With the following limitations, one
may deny the inefficient charging of ESDs from each other.

xHBSb.ac (t) + xEV Sac.b (t) ≤ 1, ∀t (6.38)

• Prohibiting energy export: The following restrictions specifies the HAPN’s
no-export guidlines.

Pde.ac(t) + Ppv.ac(t) + Pb.ac(t)

−Pac.load(t)− Pac.b(t) ≤ 0. ∀t
(6.39)

• Time preferences for (dis)charging of EV storage: The following limitations
illustrate the time restrictions requirement for charging and discharging EV
batteries.

xEV Sb.ac (t)− TPEV S
b.ac (t) ≤ 0, ∀t (6.40)

xEV Sac.b (t)− TPEV S
ac.b (t) ≤ 0. ∀t (6.41)

The user time preference for discharging and charging of of EV storage are
expressed in terms of TPEV S

b.ac/ac.b(t).
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• ECL user time preference: The ECL demands requirements are flexible and
may be changed at any point in time t. A user’s preferred time zone (TPECL

b,d (t))
may be customized for a specific phase of a particular device.

xECLb,d (t)− TPECL
b,d (t) ≤ 0. ∀b, d, t (6.42)

• Demand response signal: Security constraints on the maximum amount of
electricity that may be provided to the whole load of a smart home. As a
precaution, the utility is sending out a warning signal to prevent overloading
in the power grid.

Pac.load(t)− P peak
ac.load(t) ≤ 0. ∀t (6.43)

6.3 Demand Side Management Problem Formu-

lation and Optimization Strategy

This section provides a mathematical treatment of the evaluation issue. The objec-
tive is to reduce the total cost of electricity, to alleviate inhabitants’ discomfort, and
to maximize the self-sufficiency of local energy generation.

Consider a HAPN that has a collection of generators G = {1, 2, . . . , nG} and a
set of demands D = {1, 2, . . . , nD}. The model is made up of a collection of energy
entities AEEs ∈ [G∪D] that are all connected in a single operational domain (Home).

Let P Gt ∈ R+ be the power given by the individual power source at time-slot
t ∈ T = {τ, . . . , τ + T − 1} and xGt ∈ R+ is the sources binary activation set.
Similarly, PDt ∈ R+ be the power demand of each kind of load connected to the
HAPN, xDt ∈ R+ is the appliances’ on/off set. A subset GAC of generators (i.e.,
Grid, DE) are connected to the HAPN’s AC line, while a subset GDC of generators
(i.e., PV, ESDs) are connected to the DC line. The requests, on the other hand, are
presumed to be AC and are connected only to the AC line.

The HEMS performs an evaluation of a collection of cost functions Ct : R+ 7→ R+,
defining the cost of delivering energy to houses, the operation and maintenance of
ESEs, and the penalty costs related with user discomfort during time-slot t.

Remark 13. Given the HAPN’s power sources feasible binary schedule sets X G =
[xGt , . . . , x

G
τ+T−1] and their activation profile will be xG ∈ X G.

Remark 14. Given the HAPN’s generators feasible power schedule sets PG =
[P Gt , . . . , P

G
τ+T−1] and their power supply profile will be PG ∈ PG.

Remark 15. Given the HAPN’s load demands feasible binary schedule sets XD =
[xDt , . . . , x

D
τ+T−1] and their activation profile will be xD ∈ XD.

Remark 16. Given the HAPN’s load demands feasible power dissipation schedule
sets PD = [PDt , . . . , P

D
τ+T−1] and their power demand profile will be PD ∈ PD.

By adopting the general issue formulation as follows, the HEMS may minimize
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the overall cost of power required per scheduling horizon T .

min
u(t)

T∑
t=0

C(t)(u(t)),

s.t. Aequ = beq

Au ≤ b

lb ≤ u ≤ ub

(6.44)

where, ut ∈ [(xG ∈ XG) ∪ (PG ∈ PG) ∪ (xD ∈ XD) ∪ (PD ∈ PD)], Aeq & A
are coupling constraint matrix, and lb & ub represents lower and upper bound,
respectively.

Additionally, a modeling system is implemented to maximize the variability in
the operating expenses of HAPN’s numerous components (e.g., variable prices of grid
energy, fuel and maintenance costs of DE, operational costs of DE, PV, and ESDs).
The suggested supply and demand “min-max” co-scheduling system (MMCS) inte-
grates the scheduling mechanisms of energy supply sources and energy-consuming
devices. It optimizes the supply and load profiles of a HAPN by combining source-
controlled loads (i.e., SLDs, ESDs) and load-driven energy sources (i.e., grid, DE,
ESDs), despite the fact that the PV source is often uncontrolled. As a result, the
issue is a MILP problem, which falls into the group of NP-hard problems, which are
notorious for becoming unmanageable as they grow in size. The accumulative cost
reduction issue for the day ahead is mathematically stated as follows:

C1 = min
u(t)

T∑
t=0

{Cg(t) + Cpv(t) + CDE(t) + Csu
DE(t) + Csd

DE(t)

+ Com
DE(t) + Cco2

DE(t) + Cb.deg(t) + Cpen
PE (t) + Cdel

DT (t)}.
s.t. (1), (13− 54)

(6.45)

The objective of increasing customer satisfaction is expressed indirectly by lowering
the penalty cost associated with reduced load requests and the queue evolution cost
associated with delayed load demands. Additionally, the author stresses the self-
sufficiency of the HAPN in this article by optimizing the self-generation ratio (SGR).
This ratio typically refers to the maximal usage of the photovoltaic source, and the
ESDs linked to the HAPN and is calculated as follows:

C2 = max
u(t)

T∑
t=0

{−Pac.load(t) + Pb.ac(t)xb.ac(t) + Ppv.ac(t)xpv.ac(t)},

s.t. (1), (13− 54)

(6.46)

The suggested HEMS is shown in Figure 6.2. Solar irradiance, price signals, and
power use are determined using historical and climatic data. The issue is defined in
conjunction with the time horizon t.

6.3.1 Co-scheduling Optimization Algorithm

The objective is to develop a scheduling strategy for u(t) that regulates the in-feed
from the grid, PV, and DE, as well as the out-feed to the smart load devices (SLDs).
The policy is based on the following criteria:
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Figure 6.2: The multi-objective optimization problem for HEMS.

1. Minimize the overall cost of energy used.

2. Maximize customer satisfaction.

3. Maximizing the consumption of photovoltaic energy.

4. Optimum operating of ESDs.

Similarly, it is implemented within the limits imposed by different system and
component-level constraints. These restrictions contribute to system stability by
imposing lower and upper boundaries on supply and demand, hence imposing phys-
ical restraints on the nanogrid’s important energy entities.

When the HEMS is activated, it takes into account the prices associated with
various energy sources (including forecasted grid price signals, degradation costs of
the storage devices, and DE operating costs). Additionally, it included information
on proposed penalty or award values for SLDs (curtailed and delayed loads). Addi-
tionally, HEMS incorporates pre-configured information about appliance operation
circumstances, including consumer settings, time preferences for activation loads,
device type of usage, load power profile, achieving precise energy requirements, and
optimum cooling temperature for TCLs. While it also incorporates anticipated
inside temperature data over the following 24 hours in order to generate a TCL
activation profile. The optimal scheduling sequence for both ESEs and SLDs is de-
termined using an optimization technique. These scheduling sequences ensure that
a residential user pays the least amount of power possible while maintaining a high
degree of satisfaction across the time horizon T . It consists of the following workload
model:

• The optimal time slots and cost for grid energy use.

• The ideal charging and discharging arrangement of ESDs to maximize energy
savings.
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• The diesel engine’s shut-down time.

• The power that is restricted for power elastic loads.

• The maximum delay time that should be used for queuing loads.

• The time at which time elastic ECL loads begin to act.

• The trade-off between temperature and load activation for TCL devices.

The optimization algorithm mentioned below encompasses the optimization for-
mulation’s iterative process.

Algorithm 2 Algorithm for Cost-Comfort Reciprocity

1: procedure MILP(System& cost parameters)
2: System Initialization
3: Set parameter values
4: Set consumer preferences
5: Set system bounds
6: while C1 6= min(Cost) & C1 6= max(SGR) do
7: for (t ≤ T − 1) do
8: Initialize system constraints
9: Initialize components constraints

10: Implementing Branch & Bound algorithm
11: Store scheduling variables set (ut)
12: t← t+ 1

13: Execute problem set: C1 & C2
14: ut → [xG,PG,xD,PD] . ut ∈ [u1,u2, . . .uT−1]

15: Conclude day-ahead total electricity cost
16: Conclude day-ahead self-sufficiency
17: Conclude SLDs satisfaction level (SL)
18: Conclude ESEs utilization factor (UF)

Laptop with Intel Core i7 CPU and 20GB of RAM is used for the simulation of
the suggested optimization model. “MATLAB” toolkit for optimization is used to
calculate the results. A linear objective function is given that can solve the linear
programming problem using the intlinprog solver. Nonetheless, “primal-simplex” is
a linear programming algorithm used to solve this problem, and the search strategy
is “Branch and bound” to find the best answer. Energy supply entities (ESEs) costs
and the 24-hour day-ahead power profile of several SLDs were calculated using a
time slot resolution (4t) of 15 minutes.

Thus, our scheduling problem is a mixed-integer linear problem that traces pre-
viously predicted values of day-ahead photovoltaic supply and user load demand and
generates a cost-optimal decision vector for obtaining energy from multiple supply
sources and intelligently activating various types of user load demand. To demon-
strate how to construct the appliance scheduler framework, the next part presents
a case study using several kinds of household appliances with variable energy usage
patterns.
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6.4 Numerical Analysis of DSM Technique

The study illustrates power allocation techniques via the use of an optimum schedul-
ing algorithm. The scheduling choices are made using a MILP-based optimization
approach. Consider a smart house that operates autonomously as a nano-grid. To
demonstrate the energy network model for a single house with a variable number of
occupants. The author has coined the acronym home area power network (HAPN).
Table 6.3 summarizes the parametric values for the different power entities included
in the system model:

Table 6.3: System parameters. (pred, predicted)

Parameters Value (Watts) Parameters Value

PGR/P
GR

1/5000 PDE/P
DE

1000/3500

P
PV

max[0, pred] ε 0.5× Ebat

k

CHB 5120Wh Ebat
HB 0.8× CHB

CEV 22000Wh Ebat
EV 0.7× CEV

Ebat
HB/E

bat

HB 800/4900 ηHB 0.96

Ebat
EV /E

bat

EV 4400/19800 ηEV 0.96

P
B

(ch/dch),HB 800/1280 P
B

(ch/dch),EV 7000/14000

TPEV −
t 18:00→09:00 4t 15 min

While the cost parameters associated with various EEs are given as:

Table 6.4: Cost parameters (cents/Watt). (pred, predicted)

Parameters Value Parameters Value
%t max[0, pred] ς 0.01
β/γ 0/1 ξ 5.45
σf 0.3 σsd/σsu 200
σom 100 πk,t 0.5
ζ 3× 10−3 δ 2× 10−5

The suggested HEMS is intended to demonstrate the scheduling framework’s
response to a dynamic goal function. The optimization method that seeks the lowest
cost also has the goal of increasing a HAPN’s self-sufficiency. The procedure as a
whole involves predicting grid energy costs, solar irradiance, and room temperature,
as well as addressing the optimization issue. The impact of the price signal being
indirectly linked to a peak power indication is also discussed in terms of daily peak
demand. Additionally, minimum and maximum energy constraints are established
for each energy supply and demand entity to ensure a realistic range of activities.
Finally, the proposed home energy management system (HEMS) is evaluated for
five distinct ESEs profiles and two different SLDs profiles. From Section 3.3 the
realistically generated SLDs profiles are utilized to illustrate the scheduling scheme’s
success in reducing energy costs and peak load demands.
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6.4.1 Load Demand Prediction Module

The author has implemented the predicted energy demand model from Section 3.3,
determining the precise amount of electricity required by activating actual household
appliances [165]. This model incorporates active inhabitants, who have an effect on
the energy demand pattern. The maximum number of occupants is assumed to be 5.
A probabilistic strategy is used to account for the activation of various appliances in
a residence. Table 6.5 illustrates the characteristic values associated with different
home appliances.

Table 6.5: Energy demands parameters. (pred, predicted)

Parameters Value Parameters Value
LPEa,t max[0, pred] LDTe,t max[0, pred]

P
PE

a max[0, LPEa,t ] P
DT

e max[0, LDTe,t ]

(P/P )TCLR 100/105 (T/T )TCLR 0/4
(P/P )TCLF 160/170 (T/T )TCLF −20/− 16

PECL
W [16, 32, 5, 17, 66] P

ECL

W [42, 3084, 100, 170, 203]

PECL
D [1500, 1000] P

ECL

D [2500, 1000]
τECLW [15, 15, 60, 30, 15] τECLW [15, 15, 60, 30, 15]

τECLD [45, 15] τECLD [45, 15]
(D/D)W,d [0, 0, 0, 0, 0] (D/D)D,d [0, 0]
RTCL
R 0.408 CTCL

R 2599
RTCL
F 0.608 CTCL

F 2599

T roomt max[0, pred] Q
DT

e,t 10000

TPECL
b,d,t 24 hr PL,peak

t 5000

As previously stated, the load demands taken are alternating current (AC) loads.
Thus, AC power flow is often described in terms of nonlinear and complicated equa-
tions that are incompatible with the suggested scheduling problem describes in [99].
As a result, the equations are approximated as linear real power equations by sub-
stituting the power factor nomenclature for the power load needs and neglecting the
actual characteristics of the power lines. This approximation has no effect on the
investigated scheduling model’s solution.

Whereas, in the proposed model, the average number of active inhabitants in a
home on any given day of the week and their total energy consumption at any time
instant t are illustrated in Figure 6.3. It demonstrates that the highest number of
inhabitants is often activated in the afternoon and evening, at an average number of 3
occupants for the whole day in a dwelling. While energy needs fluctuate significantly
during the day. The demand spikes dramatically at night owing to the activation
of a large power load, which is most likely the heating load. As seen in the graph
below, the average energy consumption forecast is around 1 kWh for each given day.

Similarly, the author has included a predictive PV energy model in [120] that
anticipates the precise PV power output based on expected solar irradiance, ambient
temperature, and day of the week data. Thus, the entire production of photovoltaic
energy may be determined by assessing Section 3.1.1. Solar irradiance data is derived
using the “Meteonorm Irradiation Data” program for any given location of the
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Figure 6.3: House occupants and their energy demands.

United Kingdom [1]. This anticipated photovoltaic energy is used to improve the
planning of energy storage and load scheduling activities at a specific area.

Additionally, because pricing markets are frequently characterized by non-linearity
and inconstancy, price prediction can assist energy producers and purchasers in opti-
mizing their respective scheduling techniques, thereby increasing their profit margins
and lowering electricity prices, respectively [118]. This day-ahead energy price may
be set by a power company. It may have its own renewable energy sources and
may also import electricity from the power grids as needed. The price of electric-
ity varies during the day, based on the state of accessible renewable energy sources
and the cost of import from the power grid. The advantage of a utility setting the
electricity cost is that it may adjust the cost of power for each energy consumer
required to participate in DSM plans. Figure 6.4 displays daily power prices. In
this scenario, the author uses a day-ahead price from [3] to analyze the scheduling
challenge, ensuring that energy loads are scheduled at low rates.

Figure 6.4: Day-ahead predicted price.

Additionally, to meet the TCL requirements described in Equation 6.30-6.32,
they must work in accordance to the ambient temperature. Thus, for the proposed
TCL device, a day-ahead room temperature is anticipated based on previously ac-
cessible data, such as the dimensions of the home, the thermal conductivity of the
house, the season, the month, the day of the week, and the time of day [146]. The
expected indoor temperature for a typical house is shown in Figure 6.5.

6.4.2 Energy Supply Entities Utilization

As described earlier in Section 6.2, the model can run without electricity from the
main grid. A grid shutdown signal, as seen in Figure 6.6 is included to demonstrate
HAPN’s off-grid behavior. The grid’s actual power output is shown in Figure 6.7.
Here, a high-power load of 3kW is serviced in the early morning about 04:00. At this
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Figure 6.5: Predicted room temperature.

Figure 6.6: Electric grid power outage signal.

time of year, power prices are at their lowest, and when examining the anticipated
load needs in Figure 6.3, it is clear that the forecasted loads are little. As a result,
it’s clear that a shiftable load is being utilized at this moment. Similarly, at the
night after 21:00 and before midnight users consume the most energy on average.
This is owing to the average low cost of power and the fact that the day is ending.
Or, it is the only affordable source of energy available to meet the remaining load
needs in any form.

Figure 6.7: Grid power utilization.

Additionally, the power generated by the diesel generator is shown in Figure 6.8.
One of the reasons DE power was activated was due to a grid failure. If no other
alternative is available during a grid outage, the DE will run. While it can also be
run if the cost of producing electricity is quite cheap in comparison to other energy
sources.

Similarly, the power generated by the photovoltaic arrays is shown in Figure 6.9.
PV energy is intended to power only domestic appliances, and export to the grid
is not permitted in this example. In addition, surplus energy may be utilized for
recharging energy storage batteries. The only component accessible to store this
inexpensive energy is a home battery storage system, which also boosts the HAPN’s
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Figure 6.8: Diesel generator power production.

self-sufficiency. When looking to the Figure 6.9, about 08:00, it is clear that the
actual use of the photovoltaic source is less than the available. The reason for this
is that all loads have been met and charging the home battery storage at this time
is not the most cost-effective choice. While the extra PV generation is lost in this
situation.

Figure 6.9: Power procured from the PV.

6.4.3 Activation of Smart Load Devices

Power elastic (PE) demands

Figure 6.10 depicts planned and reduced load requirements. The PE load in this
example is mostly comprised of light bulbs that are often triggered at night. As
a result, one may see a sizable load being supplied by ESEs throughout the night.
Around 14:30, one detects a little load execution, and around 19:45, one witnesses
a significant load curtailment. Of course, there is a cost associated with this load
reduction step, but it is relatively manageable given our cost function. The greatest
load that may be supplied, however, is restricted to Equation 6.43.

Electrical controllable load (ECL) demands

Additionally, the estimated number of operational dishwashers and washing ma-
chines is described in the load prediction module. These appliances need only to
be scheduled once every day and are constrained in two ways (energy and time). A
minimum energy level for each operating phase of the device is estimated, as seen
in Equation 6.21. While the phase-by-phase power limiter is established in Equa-
tion 6.22. Additionally, the phase time constraints are established in accordance
with Equation 6.23. As seen in Figure 6.11a, the washing machine is operational
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Figure 6.10: Power elastic load demands.

from 04:00 to 06:00. The peak power consumption of the washing machine reaches
3kW owing to the heating element that heats the water to the proper temperature
prior to cleaning the garments. As mentioned in Table 3.3, there are a total of five
stages of WM operations. There is no delay between the device’s various phase
actions. While the phase indicator, as illustrated in Figure 6.11b, shows that all of
the appliance’s operational stages have been completed successfully.

Figure 6.11: a) Power profile of WM. b) Phase indicator.

Similarly, the dishwasher begins operation immediately after the washing ma-
chine at 06:00, as seen in Figure 6.12a. The rationale for this is because relatively
low-cost grid electricity is available at that time. Additionally, the average power
is near 1kW , indicating that each of the two phases requires a distinct amount of
energy to operate the gadget. Table 3.2 discusses these phases. As with a washing
machine, there is no delay between the various phases of the dish washer’s operation.
The phase indications, as illustrated in Figure 6.12b, indicate that the appliance has
successfully completed all of its operational stages. By concluding, the ECL requests
are the only non-deterministic loads that may be completed on demand.

TCL demands

In this investigation, just one form of TCL load requirement is considered, and that
is the cooling load. However, two distinct types of cooling loads are presented for
illustration purposes, namely refrigerators and freezers.

Both of these appliances operate in the same manner. The only distinction
is that the working temperatures are different. The temperature is set through
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Figure 6.12: a) Power profile of DW. b) Phase indicator.

Figure 6.13: a) Temperature profile and on/off status of a refrigerator. b) Power
profile of a refrigerator.

Equation 6.31, which is about 0 → 4◦C for refrigerator and −16 → −20◦C for
freezer. The refrigerator’s activation state is shown in Figure 6.13a, along with
its interior temperature profile moving ideally between its lower and higher limits.
Additionally, the power profile is presented in Figure 6.13b, which shows almost
constant operational power for all of its phases throughout the course of a day.

Similarly, the freezer exhibits the same phenomena as the aforementioned device.
The power constraints are represented in Equation 6.30, and the device’s tempera-
ture changes are regulated through Equation 6.32. Figure 6.14a depicts the freezer’s
activation and temperature profiles. While Figure 6.14b depicts the daily power
profile dispersion.

DT demands

DT loads are day-ahead deterministic power requirements projected by the pre-
diction module. Equation 6.33 illustrates the power constraints of DT loads, and
Equation 6.34 establishes the cumulative load demands. Figure 6.15a depicts the
expected rate of real DT demands, while Figure 6.15b depicts the precise quantity
of load demands satisfied at any moment t. Additionally, Figure 6.15c shows the
pace at which DT demands enter and exit the load queue. As seen in the image,
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Figure 6.14: a) Temperature profile and on/off status of a freezer. b) Power profile
of a freezer.

loads are met at the end of the day, but the distinct disparity between projected
and planned load needs illustrates the queue’s operation.

Figure 6.15: a) Predicted DT demands. b) Scheduled DT demands. c) DT
demands queue backlog.

6.4.4 Incorporation of Energy Storage Devices

The rate at which the ESDs are charged and discharged is shown in Figure 6.16a.
Due to the restricted capacity of the storage, the charge and discharge rates are simi-
larly limited, which are determined according to the manufacturer’s data. An initial
and ultimate SoC(ε) for ESDs is specified in order to get the necessary quantity of
energy in the storage at the end of each day, as seen in Figure 6.16b&c. Setting SoC
may also assist in limiting the amount of discharge cycles performed on the storage,
which has a significant effect on battery life. When one employ deep cycle discharge
(e.g., 80% of DoD), the battery life drops significantly in comparison to 20% DoD.
As seen in Figure 6.16b, the house battery is charged throughout the day with extra
solar energy. It charges itself in the morning using DE power. Additionally, it is
released at a time when energy prices are rising and photovoltaic (PV) power is
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diminishing. Similarly, EV storage is charged throughout the day someplace else
(often at the office), and a part of it is used at home at times of high grid energy
prices, as seen in Figure 6.16c. Due to the capacity restrictions of these ESDs, one
can only use them for a short period of time.

Figure 6.16: a) ESDs (dis)charging rates. b) SoCs of HB and EV storages.

6.4.5 Power Mix in a Single HAPN

Figure 6.17 illustrates the day-ahead power auction price. Typically, energy providers
set these pricing for their clients. So that clients may take advantage of these fluctu-
ating energy rates and buy energy at their convenience. Additionally, one can notice
the activation of other ESEs in the same picture. This activation choice is made
by the suggested scheduling mechanism. The cost reduction challenge has been
framed in light of the changing energy grid pricing and other system restrictions.
The scheduler determines the lowest feasible power cost for employing the optimal
mix of accessible ESEs at any given moment, t. As seen in this picture, power is
supplied by the grid throughout the night (21:00 to 24:00) and early morning (04:00
to 06:30), when electricity prices are comparatively cheap. While, about 06:30 a.m.,
the grid’s energy costs are raised and the home battery storage is activated. As soon
as the sun rises, energy is obtained from the photovoltaic source. Around midday,
energy is redistributed between grid, home battery storage, diesel generator, and
photovoltaic sources. However, when the PV power diminishes in the evening, the
home battery storage compensates. The storage SoC is still sufficient for discharge.
Thus, when PV and diesel generator energy are available, the battery charges itself
and discharges itself in the evening when no other source of inexpensive energy is
available. Soon after 06:30, the charge in home battery becomes depleted, and an-
other storage electric vehicle becomes accessible. As a result, it is favoured above
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all other energy sources until grid electricity prices fall again.

Figure 6.17: a) Changing electricity prices. b) Scheduling various ESEs.

Similarly, Figure 6.18 demonstrates the utilization factors and cumulative energy
shares of several ESEs incorporated into HAPN. Additionally, it illustrates that the
average daily aggregated cost of energy is roughly 310 cents. Whereas the total
power used by household appliances over the previous 24-hours is around 73 kW .

Parameters Value

PV (UF) 0.9837

Diesel engine (UF) 0.0300

Home battery (UF) 0.2470

EV storage (UF) 0.0325

Grid (UF) 0.0548

Figure 6.18: a) ESEs utilization factor (UF). b) Energy shares.

Similarly, Fig. 6.19, illustrates the satisfaction level and the accumulated load
demand shares of various SLDs integrated into HAPN.

Parameters Value

PE demands (SL) 0.9313

ECL demands battery (SL) 1

TCL demands (SL) 1

DT demands (SL) 1

Figure 6.19: a) SLDs satisfaction level (SL). b) Load shares.

Additionally, as indicated in Figure 6.20, the scheduling approach properly bal-
ance the required and generated energy as in Equation 6.35. There is a distinct dis-
tinction between typical baseload requirements and SLDs. With an optimal power
mix, all loads are fulfilled satisfactorily. Scheduling several ESEs is accomplished
by the formulation of a cost minimization and user satisfaction maximization issue.
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Figure 6.20: Total load demands and the scheduling power.

Our scheduling algorithm activates energy sources that are equivalent in price at
any given moment t.

Finally, as seen in Figure 6.21, one can notice a clear difference in load demands
before to and after the establishment of a scheduling system. A significant amount
of peak load demand is transferred to off-peak times, primarily in the early morning
when power prices are lowest. As a result, the peak load is now restricted to 3kW ,
down from 3.5kW earlier. Similarly, between 00:00 and 09:00 in the morning, the
averager anticipated a load demand of less than 500W , which has now increased
to approximately 1kW . As a result, onr can infer that by implementing the sug-

Figure 6.21: Pre and post scheduling load demands.

gested HAPN model and optimizing the HEMS, it reduces the cost of power used.
Additionally, the peak clipping, valley filling, and load shifting phenomena in the
day-ahead EEs scheduling data are also noticred.

6.4.6 Computational Results

The results are generated using the “MATLAB” optimization toolset. The opti-
mization issue is solved using the mixed-integer linear programming (MILP) ap-
proach. The MILP solver “intlinprog” is utilized to discover a plausible solution in
the preceding analysis (the minimum requirement of supply and demand scheduling
problem). This solver is capable of abruptly terminating the practice of looking for
an optimum solution. It might be halted if it discovers a realistic solution. Addi-
tionally, regardless of whether a viable solution is discovered, the “intlinprog” allows
the operator to specify a time limit beyond which the solving must be completed.

The suggested problem resolution is quite huge, means;

• It has 40 optimization variables that take integer values.
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• It has 9 linear equality constraints.

• It uses 17 linear inequality constraints.

• It uses 20 bounding condition constraints.

As a result, it is recommended that the sub-optimal energy profiles acquired
by the early halted solver are sufficient replacements for the true perfect profiles,
which are substantially more time consuming to locate. It takes 21 seconds in this
scenario to optimize an integer answer to the desired degree of optimality. The
needed degree of optimality in this issue is a “integer viable solution” with a 360
percent relative gap. Thus, it is shown that a fair approximation may be obtained
in a reasonable period of calculation time (e.g., around 30 seconds). The preceding
analysis demonstrates that it is feasible to implement the suggested framework in
the real-time scheduling of home appliances. The amount of time required to make
scheduling choices is dependent on the number of decision factors.

6.5 Conclusion

A concept of demand side management (DSM) integrated smart home area power
network (HAPN) is presented in this chapter. It combines time-varying photovoltaic
(PV) energy with two forms of storage (home battery and electric car), and a diesel
engine generator (DE) for backup is added. It also includes baseload and smart load
devices (SLDs), i.e., power and time elastic appliances. “min-max co-scheduling”
home energy management system (HEMS) is introduced, that forces the HAPN’s
energy entities (EEs) to coordinate and creates a cost-optimal scheduling frame-
work for powering SLDs. The suggested system also optimizes customer satisfaction
factor and CO2 footprints. The suggested “min-max” multi-objective optimization
problem seeks to maximize self-sufficiency and customer satisfaction while reducing
cumulative power costs. in addition, a storage degradation model and efficiency
metrics of energy storage devices (ESDs) are introduced to calculate storage capaci-
ties and prices of the storage devices. The simulation results show the efficacy of the
operational approach for scheduling ESEs and SLDs. It also assures the maximum
use of locally installed PV energy and high energy consumer satisfaction.
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This study conceptualizes the future of smart homes and introduces a new termi-
nology for Intelligent Home Area Power Networks (HAPN). The work leverages the
capabilities of innovative energy generation and flexible load demands through a
home communication network, serving as a showcase of the Internet of Things (IoT)
within the domain of HAPN. A model-based optimal operation and design algorithm
for Photovoltaic (PV) based Microgrids (MGs) is developed, taking into account crit-
ical factors such as battery lifetime and grid blackout concerns. A comprehensive
generic model for the proposed MGs is introduced, encompassing all operational
constraints of MG components. This work highlights the key intelligent features of
smart homes that incorporate smart energy generation with flexible load demands
and emphasizes the efficacy of power flow strategies in Home Area Power Networks
by integrating cost-effective hybrid AC/DC grid configurations and energy storage
components.”

The widespread adoption of new technologies and the growing use of electrical
appliances in daily life have resulted in a significant surge in energy consumption
across all sectors. Currently, conventional power sources such as fossil fuels or coal-
fired power plants dominate energy production. However, due to the escalating costs
of fuel and the pressing issue of pollution, there is a growing global trend towards
cleaner, more affordable, and readily available natural renewable energy sources such
as solar and wind. The increasing demand for energy and the desire for cost-effective
and clean electricity have fueled the popularity of Photovoltaic (PV) and Electric
Vehicle (EV) systems. However, the inconsistent PV power output, the variability of
consumer load demands, and the limitations of EV storage pose significant challenges
to the stability of power networks. To overcome the issues, a predictive intelligent
energy management system (iEMS) is presented in this book. It forecasts seasonal
PV power and utilizes real-life consumer load needs while observing the limitations
of EV storage and the utility grid. The iEMS uses a day-ahead linear programming
based mixed-integer expert system to schedule multiple power sources connected to
HAPN. One essential element of the current power system paradigm is the capacity
to regulate load demand rather than just increasing generation to meet ever-rising
consumption. Hence the scheduling phenomenon of iEMS also includes control of
several load demands, such as smart load devices, which are power elastic and time
elastic appliances.

In this thesis, the work is divided into two main parts. One part deals with
the modelling of various components of the power systems. It includes the detailed
mathematical modelling of solar energy generation, diesel engine power produc-
tion, efficient grid topology, energy storage devices, various energy-hungry devices,
grid price modelling, and cost-optimal optimization problems. Whereas, the other
part illustrates the case-studies examples of various optimization problems. These
problems include the multi-time study of energy distribution by diverse energy re-
sources in a HAPN. The Integrated Energy Management System (iEMS) employs
a rule-based mixed-integer dynamic algorithm with a receding horizon approach to
determine cost-effective scheduling decisions in advance. As a result, it decreases
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spontaneous consumer energy expenditures by employing the cheapest available en-
ergy source at any given instant while ensuring high customer comfort and boosting
HAPN self-sufficiency. As an illustration, this study describes a rolling horizon-
based time-triggered scheduling and distributed coordinated control approach for
power sharing in a Hybrid AC/DC Home Area Power Network (HAPN). A unique
three-layered multi-time scale Home Energy Management System (HEMS) is pro-
posed, which includes a secondary scheduler that delivers optimal cost scheduling
decisions for various dispatchable energy supply entities through a Mixed Integer
Linear Programming (MILP) based technique.

While in the last example, the author explored the flexibilities in the consumers’
energy demands and optimized the functionalities of home appliances to reduce the
overall cost of utilized energy. The goal of all the above examples was to find the
most cost-effective optimal decision vectors for home integrated energy supply enti-
ties and smart load devices throughout the day. Furthermore, to establish a realistic
outcome of the results, this work includes the efficiency parameters of various en-
ergy components, including HAPN grid topologies and the energy storage device
(ESDs) degradation models. The phenomena of storage life-cycle degradation were
also seen to boost the battery’s total practical utility. Whereas, the comparison of
several HAPN architectural scenarios demonstrated the influence of losses on overall
energy costs. Furthermore, the proposed framework was expanded to include opti-
mization of consumer satisfaction and CO2 footprints. The suggested ”min-max”
multi-objective optimization problem was based on an optimal approach to reduc-
ing cumulative power costs, maximizing self-sufficiency, and increasing consumer
happiness.

In general this thesis utilizes a hierarchical control framework for optimal cost
scheduling and real-time control of energy entities. Where, the authors have demon-
strated that the signals were transferred to the device level controller using a wireless
communication strategy after the scheduling. The signals receive at the local cen-
tral controller are utilized as a reference value for the power electronics operation of
the target physical device. Additive noise and limited bandwidth restrictions affect
wirelessly disseminate decision signals to local device level management. However,
the robust control technique, which employes proportional and integral control, en-
sure that those reference signals are tracked well. Furthermore, whenever signal loss
or power imbalance exists, a distributed coordinated control successfully perform
power-sharing by autonomously balancing the imbalance using an auxiliary grid re-
serve power source. The proposed model’s predictive (MP-iEMS) capabilities are
proven by incorporating real-life yearly data sets for households, EV driving pat-
terns, and EV battery (dis)charging patterns. Furthermore, the MP-iEMS Scheme
shows that by adding dynamic energy pricing, overall energy demands are entirely
supplied by energy from the cheapest power source.

The simulation results from the case-study examples demonstrate the success of
the proposed operational approach for scheduling Energy Supply Entities (ESEs)
and Smart Load Devices (SLDs) based on the lowest cost option. It also assures
a high use of locally installed PV energy and a high level of satisfaction among
energy consumers. The simulation results compare energy suppliers’ penetration
levels and utilization variables on a daily, monthly, and annual basis. In addition, the
system’s battery life-cycle degradation model calculates a daily, monthly, and yearly
capacity loss percentage. It shows that by using the proposed MP-iEMS technique,
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one reduces the cost of energy up to 13% as compared to conventional optimal
techniques for the whole year. The total energy utilization is also less because of the
reduced losses during energy transformation from DC to AC and vice versa. Using
MP-iEMS, the utilization of optimal storage capacity of the EV battery is achieved
with around 23% reduced (dis)charging rates, and with battery deep discharges up
to 50% of capacity. While the conventional algorithms maintains the battery deep
discharge at up to 73%, which reduces the shelf life of the storage. Similarly, as
compared to standard rule-based optimization procedures, the proposed MP-iEMS
lowers annual storage capacity loss owing to material deterioration by 0.013%.

7.1 Future Prospective

While this thesis has addressed various issues in the realm of smart power networks,
further research is necessary to enhance the design and operation of Home Area
Power Networks (HAPNs). The following constitutes the potential avenues for future
investigation in this field:

• This work has the potential to be advanced towards a multi-agent control
system at the microgrid level, wherein a consortium of Home Area Power Net-
works (HAPNs) collectively make decisions aimed at optimizing cost efficiency.

• The communication model could be altered to provide hybrid time/event-
triggered communication systems for offline scheduling and online robust con-
trol mechanisms.

• The existing HAPN model might be improved to accommodate a range of
energy storage devices such as super capacitors and the innovative batteries.

• Further research into the ageing mechanisms of the storage units might benefit
intricate methods with dynamic load behaviour.

• Estimated energy storage system parameters can be incorporated into the op-
erational plan to appropriately estimate the energy storage system’s lifespan.

• The suggested operation strategy can be expanded to account for voltage and
frequency limits at the primary grid connection point. Furthermore power
electronics based control can be enhanced and modified for hybrid control
operations under grid stress mode.

• The proposed operating system can be modified for implementation on embed-
ded devices such as Internet of Things (IoT) and microcontrollers. Addition-
ally, the optimal design approach may be adapted to incorporate a graphical
user interface for ease of use and operation.
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quency control studies: A review of power system, conventional and renewable
generation unit modeling. Electric Power Systems Research, 211:108191, 2022.

[56] P. Fortenbacher, J. L. Mathieu, and G. Andersson. Modeling and optimal op-
eration of distributed battery storage in low voltage grids. IEEE Transactions
on Power Systems, 32(6):4340–4350, Nov 2017.

[57] Maria C. Fotopoulou, Panagiotis Drosatos, Stefanos Petridis, Dimitrios
Rakopoulos, Fotis Stergiopoulos, and Nikolaos Nikolopoulos. Model predic-
tive control for the energy management in a district of buildings equipped
with building integrated photovoltaic systems and batteries. Energies, 14(12),
2021.

[58] Cornelia A Fjelkestam Frederiksen and Zuansi Cai. Novel machine learning
approach for solar photovoltaic energy output forecast using extra-terrestrial
solar irradiance. Applied Energy, 306:118152, 2022.

[59] Vasilis M Fthenakis and Paul A Lynn. Electricity from sunlight: photovoltaic-
systems integration and sustainability. John Wiley & Sons, 2018.

[60] A Gayathri, V Rukkumani, V Manimegalai, and P Pandiyan. A comprehensive
review on energy storage systems. Smart Electrical Grid System, pages 211–
251.

[61] Xiaohua Ge, Qing-Long Han, Lei Ding, Yu-Long Wang, and Xian-Ming Zhang.
Dynamic event-triggered distributed coordination control and its applications:
A survey of trends and techniques. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 50(9):3112–3125, sep 2020.

[62] Clark W Gellings. The smart grid: enabling energy efficiency and demand
response. River Publishers, 2020.

[63] Mohammad Gholami, Sajjad Fattaheian-Dehkordi, Hesam Mazaheri, and
Ali Abbaspour Tehrani-Fard. Active Distribution Management System, chap-
ter 7, pages 125–143. John Wiley Sons, Ltd, 2021.

169



Bibliography

[64] Vivien Glönkler, Benedikt Reick, Ralf Stetter, Markus Till, and Markus Pfeil.
A contribution to sustainable product development using the example of bat-
tery electric vehicles. Sustainability, 14(7):3729, 2022.

[65] C. Gray, R. Ayre, K. Hinton, and L. Campbell. Smart is not free: Energy
consumption of consumer home automation systems. IEEE Transactions on
Consumer Electronics, 66(1):87–95, Feb 2020.

[66] Clifford Hansen, Daniel Riley, Chris Deline, Fatima Toor, and Joshua Stein.
A detailed performance model for bifacial pv modules. Technical report, 2017.

[67] H. Hao, D. Wu, J. Lian, and T. Yang. Optimal coordination of building loads
and energy storage for power grid and end user services. IEEE Transactions
on Smart Grid, 9(5):4335–4345, Sep. 2018.

[68] P. J. Hart, R. H. Lasseter, and T. M. Jahns. Coherency identification and
aggregation in grid-forming droop-controlled inverter networks. IEEE Trans-
actions on Industry Applications, 55(3):2219–2231, May 2019.

[69] Li He, Yong Li, Josep M. Guerrero, and Yijia Cao. A comprehensive inertial
control strategy for hybrid AC/DC microgrid with distributed generations.
IEEE Transactions on Smart Grid, 11(2):1737–1747, mar 2020.

[70] M. Hijjo and G. Frey. Stochastic optimization framework for scheduling iso-
lated microgrids. In 2018 19th IEEE Mediterranean Electrotechnical Confer-
ence (MELECON), pages 149–154, May 2018.

[71] Ali Hooshmand, Babak Asghari, and Ratnesh Sharma. A power management
system for planned & unplanned grid electricity outages. In 2015 IEEE PES
Innovative Smart Grid Technologies Latin America (ISGT LATAM), pages
382–386. IEEE, 2015.
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