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iv StructuringComputer Generated Proofs

Abstract

One of the main disadvantages of computer generated proofs of mathematical theorems is their
complexity and incomprehensibility. Proof transformation procedures have been designed in order
to state these proofs in a formalism that is more familiar to a human mathematician. But usually the
essential idea of a proof is still not easily visible. We describe a procedure to transform proofs
represented as abstract refutation graphs into natural deduction proofs. During this process
topological properties of the refutation graphs can be successfully exploited in order to obtain
structured proofs. It is also possible to remove trivial steps from the proof formulation .
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1 Introduction

A problem for the acceptance of Automated Deduction Systems has been the difficulty to
understand proofs that are automatically generated. If this has been an obstacle for mathematicians
to accept automatic help, when proving technical lemmata. or trying to find proofs interactively. it
has even more hindered the explanation of results in other knowledge based systems. The
transformation of these proofs into a natural deduction formulation has solved some of the
problems, see [An80], [Mi83], or [Li86], but by and large the increasing length and complexity of
the transformed proofs adds to their incomprehensibility rather than to reduce it. It is therefore
paramount to be able to state the proofs in a hierarchically structured way, as mathematicians do,
formulating subgoals and lemmata. It should also be avoided to overload the proofs with a large
number of trivial steps. thus hiding the interesting ideas in the proof.

We aim to simplify and transform proofs that are found automatically into that subset of natural
language a mathematician might use. This shall be done in several steps:

f mio natural language of

In a first step the automatically constructed proof is  transformed into a natural deduction proof.
which is  still formal but more human-oriented than most other formats. Then the proof lines are
structured in a graph representing their mutual dependencies, which allows grouping of the single
lines and a gradual linearization of the natural deduction proof. Finally this natural deduction proof
is transformed into an intermediate representation, upon which simplification, structural. and
stylistic procedures operate in order to find a “human like” proof style. This representation is then to
be transformed into mathematical natural language.
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2 Definitions

2.1 Signature and Forrnulae

This chapter contains the basic definitions of the underlying logic, where literals. clauses. and
our notion of unifiability are defined. There are no important differences to the usual way of
defining these concepts; similar definitions can for instance be found in [Lo78], and the same
definitions are also used in [Li86]. In chapter 7,  the symbols used are summarized in a table.

2 .  1 - 1 Definition: (signature, terms)

We define a signature IF as the union of the sets of constant symbols F0, and the sets F,. o f
n-ary function symbols (n = l ,  2, ...); all the E. are finite. Let V be a denumerable set of variable
symbols. Then the term set T is  the smallest set with

(a) V .  ]Fo g T
(b) i f  fe F„ and t1. tz, . . . ,  tne T,  then f t l tz . . . tneT

A term containing no variables is  called a ground term. Ty is the set of  all ground terms. V(o)
is an abbreviation for the set of variables occurring in an arbitrary object o, and the same convention
is similarly used for F... F ,  T, and T8,.

2 .  l - 2  Definition: (substitutions)

A substitution i s  a mapping c :  V-> T with finite domain V:={ve V I o(v)¢v}; 0(V) is called
the codomain of o .  A substitution 6 with domain {x1,xz,...,xn} and codomain {t1,t2....,tn} is
represented as [ l t1 , . . . , a tn} .  A substitution is  extended to a mapping T—tT by the usual
homomorphism on terms. The application of a substitution to any other object containing terms is
defined analogously.

A substitution 6 is idempotent, if 0°6=6. This is equivalent to the requirement that none of the
variables of  its domain occurs in any of  the terms of  its codomain, cf. [He87]. In this report all
substitutions will be idempotent. If a substitution maps into Ty, it is called a ground substitution.

Let s.te T. A matcher from s to t is a substitution p. with us=t. A unifier of s and t is a
substitution s with os=ot. If a unifier for s and t exists, then the two terms are said to be untfiable.

2 .  1 - 3  Definition: (literals, clauses)

We introduce the set 1P=Uo$n P., consisting of finite sets of n-ary predicate symbols
(n=0,l,...). There are two special zero—place predicate symbols, TRUE (written T)  and FALSE
(written J.). The objects of  the form Ptltz...tu with Pe P,. and t1‚t2,...‚t.‚e T constitute the set of
atoms A.  If  A is an atom, then +A and -—A are (complementary) literals. The set of  all literals i s  L.

A finite multiset of  literals i s  called a clause, C i s  the set of  all clauses. A clause with literals
Ll.....Ln is written as [Ll  Ln].

Two literals are unifiable. if their signs are equal and their atoms are unifiable. They are called
resolvable. whenever their signs are different and their atoms unifiable.
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2 .  l - 4  Definition: (formulae)

To construct the formulae of First Order Predicate Logic, we use the following additional signs:
(a) Unary connective —. negation sign
(b) Binary connectives A conjunction sign

v disjunction sign
=> implication sign

(c) Quantors V universal quantifier
3 existential quantifier

The set db of formulae of  First Order Predicate Logic is now defined as usual:
((1) A ; (lb '
(ß) If A,Be db, then AAB, AvB, and A=>B are all in db.
(7) If Ae db, then —lA, Vx A, and 3x A are all in db.
(8) All members of db can be described in this way.

Ac is  used as an abbreviation for (A=>B)A(B=>A). Furthermore we write Vx1.xz,. . „a as
an abbreviation for Vx1Vx2 . . .  Va  and similarly for the existential quantor. If
M={M1,M2, . . . ,M. . }  i s  a finite set of  formulae, we write AM or Als iSnMi instead of
M1AM2A...AMn and likewise VM or VISiSnMi instead of Mlsv . . .  vM...

Parentheses are used to indicate the range of the connectives, as in ((—-‚A)A(BvC)). The
outermost parentheses will be omitted most of the time, and we adopt the usual convention to define
a binding order of the connectives. We assume that —1 binds more strongly than A and v, these in
turn bind more strongly than => and =>, and the quantors V and 3 are the weakest. Parenthescs
may be omitted according to this binding hierarchy, so that the above formula could be written as
-IAA(BVC).

2.2 Clause Graphs

In the following subsections (2.2 through 2.4) the formats used for proof representation will be
defined. All these defmitions concerning the representation of proofs are identical to those used in
[Li86]. in particular the notions of clause graphs with clause nodes, literal nodes, and links, and of
natural deduction proofs defined in chapters 3 and 4.1 of [Li86]. Some further definitions are added
in this report, however. They are either stated in this chapter or introduced whenever they are
needed for the first time.

2 . 2 -  1 Definition: (clause graph)

A clause graph is  a quadruple F = (N,[N] ‚£, H), where

(a) N is a finite set. Its members are called the literal nodes of F.

(b) [N] c 2 N i s  a partition of the set of literal nodes. The members of  [N], which
are classes of  literal nodes are called the clause nodes of l". Contrary to the
standard definition of a partition. fie [N] is allowed. The clause node of  a literal
node L is denoted by [L].

(c) £: N—> L is a mapping, which labels the literal nodes with literals, such that if
L,Ke N belong to different clause nodes, then V(£L)nV(£K)=¢.
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(d) The set of polylinks Ill is a partition of a subset of N ,  such that for all Ae H the
following polylink condition holds:

(nl) All the literal nodes in one polylink are labelled with literals whose atoms are
unifiable.

(1:2) There must be at least one positive and one negative literal in a polylink.

Literal nodes belonging to no polylink at all are called pure, Np is the set of all pure literal '
nodes. Each polylink A has two opposite shores, a positive shore S+(A), and a negative shore
S'(A), constituted by the literal nodes with positive and negative literals, respectively.

These clause graphs, developed in [Ei88] are a generalization of Kowalski’s connection graphs.
[K075], and R. Shostak’s refutation graphs, [Sh76].

2 .2 -2  Example: (clause graph)

Here is  an example of a clause graph. Literal nodes are drawn as boxes with the appropriate
literals inside. It can be seen that the same literal may belong to several literal nodes. Therefore
literal nodes cannot be identified by their literals and the labelling outside of the boxes is for their
identification. The example contains seven clause nodes, built up by bordering literal nodes. There
are four polylinks. {L4, L10, L16, L11}, {L2, L3, L6. L9}, {L7, L8, L12}, and {L13, L15}.
Polylinks are drawn as lines with a little dot, which branch on each side to connect the different
literal nodes of the opposite shores. The literal nodes L1, LS, and L14 are pure.

. 13 1.9 L10

L12 -P
L13 +s —o—{-sl+Rr
1.14 -Q L15 L16

It is often necessary to change a given clause graph 1‘ by addingor removing any parts. Since
this involves several sets of nodes, one has to define carefully what the resulting graph will be.
Adding a polylink A to a clause graph F means to change H by adding to it a new set of literal nodes
of the previously pure literal nodes; the polylink conditions n ,  and 102 (cf. 2.2-1) must of course be
obeyed and at the same time the relation £ must be extended.

Adding a literal node, means to add a new pure literal node to one of the existing clause nodes.
And to add a clause node is to insert a new set of pure literal nodes to I‘ making up a new clause
node. Since there is  normally no ambiguity, all these operations are written using the same + sign.

Similarly, to remove a polylink A from a clause graph 1" means to make its literal nodes pure,
i.e. to add them to Np. Removing a literal node L from 1" is to remove it from its clause node and to
change its polylink, unless it is pure. L is simply removed from its shore and, if the shore becomes
empty. the whole polylink is removed. Note that, if L was the only literal node in a clause node,
then the empty clause remains in the graph.

A clause node is removed by removing it from [N] and all of its literal nodes from N. Removal
of any part of a clause graph is written using the — sign. We will now give a rigorous definition.
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2 .2 -3  Definition: (altering clause graphs)

Let I‘=(N,[N],£, n), and tet A; Np fulfil the polylink conditions 1:1 and 1:2. Let Le N,
De [N]. and CnN=¢. Then

l"+A :=  (N,[N]9£9 HU{A} )0

F.D+L := (NUILI. INND} u {D UIL}} .£ ' .  H).
where £'_is an extension of £ with £'Le L.

r+c := (Nu c, [N]u{C}‚£', n),
where £' is an extension of £ with £'Lie L for all Lie c.

Let r = (N,[N],£. ]l'li) with Le Ce [N] and Le Ae n.  Then
P—A := (N.[N]‚£‚ ll'NAl)

r.c-L := (N\{L}. [N]\{C} u {C\{L1}.£|mtt,,n')
' III, if  L was pure

with n :  { m'ut}, ifS+(A) ={L} or s '(A) {=L}
INA} u {A\{L}}‚ else .,

r—c =<N\c [NNCI £ | mc, n''),
where H" is constructed similar to II by removing all literal nodes of C.

2 .2 -4  Definition: (subgraphs)

l" is a subgraph of a clause graph P, if lt can be obtained from 1" by removing any number of
clause nodes and polylinks.

2 .2 -5  Definition: (separating links)

A walk in a clause graph F is an alternating sequence Col'llCI...C,,_ll'lnCn (n21) of clause
nodes and polylinks such that for every pair of clauses Cj, Cj+l one contains a literal node of the
positive shore of the connecting polylink I'Ij and the other contains a literal node of  its negative
shore. Seeing clauses and polylinks as sets of literal nodes this means for all it either
Cn,1ns+(l'ln)¢¢ and CnnS'(I‘In)¢¢ or Cn_1nS'(Hn)¢=¢ and CnnS+(l'In)¢¢.

A set of links or a link A is separating 1". if there exist two clause nodes C and D connected by a
walk in P, that are no longer connected in P—A.

2.2-6  Definition: (deduction and refutation graphs)

A trail in a clause graph 1" is a walk, where all the links used are distinct. A trail joins its start
and end clause nodes Co and C.,.

A cycle is a trail joining a clause node to itself. If a clause graph I‘ contains such a cycle it is
called cyclic. otherwise acyclic. It is called connected, if each pair of clause nodes is joined by a
trail.

A component of a clause graph 1" is a maximal connected subgraph of 1‘.

Let A and II be polylinks in a clause graph. A is less nested than H, A-cfl, if there exist clause
nodes C and D, containing literal nodes of the same shore of A, and joined by a trail using 11.
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A deduction graph is a non-empty, ground, and acyclic clause graph. A refittation graph is a
deduction graph without pure literal nodes. We sometimes speak of deduction or refutation graphs
even if they are not ground, but then the existence of a substitution is required that transforms them
into ground graphs.

A minimal deduction (refutation) graph is one containing no proper subgraph, which is itself a
deduction (refutation) graph.

2 .2 -7  Example:

|-Pl+T|—o—[-TI-s]—o-I+SI +PI+R
‚ n

In the above graph all the literal nodes belong to a link. Only A and 9 are separating the graph.
There is no cycle, since it is not allowed to use a link more than once in a trail, and when a link is
entered, it must be exited via the opposite shore. So the graph constitutes an example for a
(minimal) refutation graph.

deduction graph [- Q, S]

The subgraph marked in the second drawing, consisting of the clauses [+S +P +R]. [- R], and
[- Q - P +R]. as well as the links A and 9 .  is an example for a deduction graph; obviously there
can be no cycle, for there are no additional links, but the literal nodes marked--Q and +S are pure.
The subgraph is also connected; this property could be destroyed by further removing fl ,  then there
would no longer exist a trail between [+S +P +R] and [- Q-  P +R].

Below the subgraphs are drawn without specifying their internal clause nodes and links. We
_ will often do so, when the internal structure is unimportant. It is understood, however, that such

subgraphs are connected and that all the links having a shore outside are indicated in the drawing. In
the second case. there is  a special emphasis on the nature of the pure literal nodes of the subgraph.

2.3 Formula Occurrences

The task of an automated deduction system is normally described as proving that a given
formula (pe @ is a tautology. Most traditional automatic theorem proving systems take the formula
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(p, negate it, transform it into conjunctive normal form, and then prove its unsatisfiability. The proof
is then stated as a resolution proof or in form of a graph, [Sh79], or matrix, [An81] and [Bi8l], but
usually starts directly with the normalized set of formulae. As a human proof usually starts from the
formula as it was originally given, it is  necessary to be able to relate the parts of the refutation graph
to parts of the original formula.

In order to establish a well-defined connection between the original formula to be proved and
the literal and clause nodes in the proof (when it is represented as a refutation graph), we need a
relation between these literal nodes and the atoms occurring in the original formula. The following
definitions are made in order to formalize this correspondence.

2 .3  - 1 Definition: (subformulae, formula trees)

For any formula A, we define the set S(A) of subformulae of A as follows:

(a) if A6 A, then S(A)={A}.
(ß) If A is of  the form BAC, BVG, or B=>C‚ then S(A)={A}US(B)US(C).

B and C are called immediate subformulae of A.
(7) If A is of the form -—.B, Vx B,  or 3x  B ,  then S(A)={A}US(B).

In this case B is the only immediate subformulae of A.

A formula A can be written as a formula tree 1(A), where the leaf nodes are labeled with an
atom and the other nodes are labeled with a connective or quantor, in the following way:

(ct) if Ae  A,  then 1(A) is the one node tree labeled with A.
(ß) If A i s  of the form B*C, *e [A, v ,  =} ,  then the root of 't(A) is  labeled with *, and

its two successors are the roots of 1(B) and 1(C), respectively.
(7) If A is of the form *B, *e  {-1, Vx, 3x},  then the root of “:(A) is labeled with *, and

its only successor is  itself the root of 1:(B).

2 .3 -2  Definition: (formula occurrences)

A finite sequence a) = <(p1,q>2,...,tp,,> of formulae is called a formula occurrence of a formula
(pn within a formula (p16 0, i f

(et) (p1 is  the first element and % the last element of 0).
(B) Every element of 0) is an immediate subforrnula of its predecessor.

It is called an atom occurrence within (Pl, if the following additional property holds:

(7) The last element of a) is an atom.

{!(cp) and (Lap) denote the sets of formula occurrences and atom occurrences within (p. to; is a
Specialized formula occurrenCe of to; within a formula (p, (01 3 (02, if both are formula occurrences
within a common formula q), and a); is  a subsequence of  (01.

In most cases there will be no disambiguity as to the first formula of  a formula occurrence 0),
but when it is important to indicate this formula, it is done using a superscript, as in (0". Unlike
term access functions, formula occurrences don’t need to make a distinction between several
identical immediate subformulae, as the position in AAA, AVA, or A=>A is unimportant.
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2 .3 -3  Example: (formula occurrences)

Let (p=(VxvQx)=>(3xPx)v (3xQx)
¢1=VxvQx

¢l i=  PXVQX
(p2=(3x Px) v (3x Qx)

Q(q>)can be viewed as the set of partial paths through the formula tree of cp:

=>

/ \
V v

| /\
V 3 3

/ \ | |
PxQxPxQx

QM) = {<¢. <91. on. Px> «t. «h. on. Qx> «p. <92. 3xPx. Px> «v. <92. EXQx. QX>J
9 (to) = Imp) u («r. <91. <pu> <19. <p1> <<t>> «|» % 3xPx> <<p. <92. 5|v «I» (92>)

Note, that the same atom Px may be the last element of different atom occurrences.

2 .3  - 4  Definition: (anchored formulae)

Two formula occurrences (0° and (0" within formulae cp and w share a tail, if the two sequences
coincide in their last m elements, m2].

(0": «p, (p1. (p.. , m, ¢m> (oV= <'\y‚ w„" wk, ()1, ¢m>

A formula w is anchored in a formula (p, if all the atom occurrences within w share a tail with an
atom occurrence within (p. i.e. Vto‘Ve (2.0;!) 300% Q.(<p) such that (0" and (0° share a tail. An
anchorage is described as a function v :  Q.(w)—>fl.(tp).

2 .3 -5  Definition: (basis of a formula)

The set a(co)={ (0.6 Q.(q>) l 00.300} of atom occurrences under a common formula occurrence 0)
is called the atomic closure of (u.

A set {mut ton}  is said to span (p if 94¢) = ul, am). A spanning set is called a basis of
(9, if it contains no pair of formula occurrences mi, 0),- with (01 :> to,-.

2 .3 -6  Lemma: - (anchored if tails are shared for a basis)

Let (p and tube formulae and (a))", ..., :|:}; ()(w) a basis of \V. Then \y is anchored in cp, if
Vwr’aos,"’e (!(cp) which shares a tail with es)". ' '

ln the following we always assume that for a refutation graph F proving a formula (p we know
a relation Acfl.(<p) establishing a clear connection between the formula (p and the literal nodes of
the refutation graph. When the proof is automatically generated by a computer. this relation has to
be computed during the process of transforming (p into conjunctive normal form and must be
maintained throughout the search for the proof.
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2.3-3 Example: (formula occurrences)

Let <p=(VxvQx)=>(3xPx)v (3xQx)
¢1=VxvQx

<P11= PXVQX
¢2=(3x  Px) v (3x Qx)

9(tp) can be viewed as the set of partial paths through the formula tree of (9:

V 3 3

| |
Px Qx Px QX

Q.((p) = {<(P. ml!  (pH!  PX> <¢v  (p l !  (P l l ,  Qx> <q,» (pl! HXPX, PX> <(P‚ <P2! BXQX. QX>}

9 ((p) = am) u {<¢. o1. <Pu> <¢. <p1> «?> «9. <92. 3xPx> <<». <92. 3xQx> <q), (P2>l

Note, that the same atom Px may be the last element of different atom occurrences.

2 . 3  - 4 Definition: (anchored formulae)

Two formula occurrences (0° and 0)“ within formulae (p and \y share a tail, if the two sequences
coincide in their last m elements, mal .  .

(0°: <<P» (P l .  "u  (Pn . ° lp  nn  ¢m> (DV: (V)  VI ,  'n ,  Wk ,  $ ] ,  . . . ,  ¢m>

A formula \V is anchored in a formula (p, if all the atom occurrences within \v share a tail with an
atom occurrence within (p, i.e. VmVe fl.(\|t) 3w°e (Mo) such that to" and (9° share a tail. An
anchorage is described as a function v :  mom-mum.

2 .3 -5  Definition: (basis of a formula)

The set 0t(co)={ (0.6 Q.((p) I 00.30)} of atom occurrences under a common formula occurrence (0
is called the atomic closure of 0).

A set {031.....01..} is said to span (p if 9.((p) = Uli (moi). A spanning set is called a basis of
(p, if it contains no pair of formula occurrences (ni, (Dj with (oi :> (Dj.

2 .3 -6  Lemma: - (anchored if tails are shared for a basis)

Let (p and vbe  formulae and [(o‘l", . . . ,  (1):}: GW) a basis of tit. Then \v is anchored in (p, if
Vm‘fawfe fl((p) which shares a tail with m,“. ‘

In the following we always assume that for a refutation graph F proving a formula (9 we know
a relation AcQ.(<p) establishing a clear connection between the formula (p and the literal nodes of
the refutation graph. When the proof is automatically generated by a computer, this relation has to
be computed during the process of transforming (p into conjunctive normal form and must be
maintained throughout the search for the proof. '
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2.4 Natural Deduction Proofs

2 . 4  - 1 Definition: (Natural Deduction Proof)

A proof line of natural deduction consists of

(a) a finite, possibly empty set of formulae, called the assumptions,
(b) a single formula, called conclusion,
(c) a justification.

A proof line with assumptions fl ,  conclusion F and justification Rule X i s  written
fill—F Rule X. Sometimes comments are given to make the proof easier to read, these
comments are then written as if they were proof lines.

A finite sequence S of proof lines is a Natural Deduction Proof (NDP) of a formula P, if

(ct) F is  the conclusion of the last line of S .
(ß) the set of assumptions of this last line is empty,
(7) every line in S is justified by one of the rules below.

Hmthesiaßulsiflm); fl ,F |—-F

This rule introduces a new assumption. It replaces the axioms of other calculi.

1 ‚q,F|—-G
W """""_-“ fl|-—F=>G

__ _ ‚ i l—F  ...z|——F
W 4—1—n—lal.....anI—G

provided that Fl A. . .A F“ =>-G is tautologous.

_ :1 l— F
Wi._ ' a |-- G

where F equals —:(Vx H), —.(3x H), Vx -.H, or fix  —1H,
and G equals 3x —1H, Vx —.H‚ —.(3x H), or —.(Vx H), respectively.

_ a, —F |— .L
WW:— —A |-- F

a |-- FvG 1 ,  Fl—- H a ,  G |-- H
W A |—- H

. . . 2 |— GvFvH
llmmsalflsnetahzatmmx ___—

fll l— Gv(Vx  F)vH
provided that x is  not free in fit, G, or H.

_ _ _ . fl !— GtvH
WW _—

1 I— Gv(3x)vH
provided that g is not free in Ft.



l 0 Structuring Computer Generated Proofs

_ _ _ fl I—Vx  Fx
WW —_fll—-Ft

for arbitrary terms t.

_ . x l—Bx fl ‚Fc |—-G
W); ___—fl l—G

when ceFo is  not free in a or G .

BlEl l l 'C l  [ ]  I I I 'H IBZ '

This rule allows to change the names of bound variables.

The construction of  natural deduction proofs (NDPs), by humans and computers alike, is
conducted in single steps. To prove any valid formula F one always starts with a line I— F. Such
a line is obviously no proof, because it is not correctly justified. Now the proof is constructed by
deriving subgoals until the proof is  completed. In the intermediate states. called proof outlines by
Andrews in [An80], one may find completed subproofs, but also others that are not yet done. To
formalize the procedure of the search for such a natural deduction proof, we introduce the notion of
Generalized Natural Deduction Proofs.

2 .4 -2  Defini t ion:  (Generalized Natural Deduction Proof)

A finite sequence S of proof lines is called a Generalized Natural Deduction Proof (GNDP) of a
formula F, if

(a) F is the conclusion of the last line of S,
(b) the last line of S has no assumption,
(c) every line is either justified by a rule of the calculus (see 2.4-1), or it is justified

by a proof (possibly in a different calculus) of its conclusion from its premises.

This allows lines not correctly justified within the calculus, but it is assumed that these lines are
“correct", in the sense that a proof for (Apremises => conclusion) exists. Such lines are called
external lines, lines justified within the calculus are called internal. When no external lines are
present in a GNDP, it is a normal NDP.

A GNDP consisting of just one line, which is an external line without premises and with
conclusion F, is called the trivial GNDP for F.

In order to find a natural deduction proof for a formula F, for which a proof 1: has been found,
a finite sequence of generalized NDPs can be constructed, whose first element is the trivial GNDP,
and whose last element is an NDP for F. The transition between consecutive GNDPs is governed
by the set of rules described in [Li86]. As an example, here are three of the rules: ‘

2 .4 -3  Example:  (Transformation Rules)

In the description of the transformation rules, a is a list of assumption formulae, capital letters
indicate single formulae, small greek letters are used as labels for the lines, the justification Rule ER
stands for an arbitrary rule of the natural deduction calculus. and the justifications 1:, 1:1, and a;
represent proofs of the respective lines. In any case one must make sure that the proofs 1:1 and 152
can be constructed from it or are otherwise known.
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E-  : .
'(00 2 l— F m

(Y) 2 l- FAG 1C —-> * (ß) ß l— G 1:2

. (y) a l— FAG Taumß)

M—Cases: .
(a) fl! }— FvG RuleSR
We consider separately the cases of  (a)
Easel;

(OL) fll |— FvG Rule?  (B) 54, F |— F Hyp
_»  < (y) 2,  F |—- H 1:1

(C) 54 l- H 1‘ m2;
(ö) a. G l— G Hyp

(e) fll, G |— H 1:;
End of  cases (1, 2 )  of  (at)

NC) H I— H Casmdfi)

(a) Z |— Vx  Rule‘R
(a) fit I— Vx  RuleSR _)

(ß) 2 }— Fa wa)

The selection between different rules that might be applicable is guided by the refutation graphs
representing the proofs for the external lines in the GNDPs. The assumptions of such an external
line may then be treated as axioms for this particular proof. In a refutation graph there is a priori no
distinction between clause nodes representing axioms and others representing (negated) theorem
parts. In order to formalize such a distinction we define the notion of polarization of clause nodes,
such that clause nodes are positively polarized, if they stem from an axiom, and negatively
polarized, if they represent a part of the (negated) theorem.

2 .4 -4  Def in i t i on :  (Polar izat ion of C lause  Nodes)

Given a refutation graph F justifying an external line ((1) of  a GNDP with assumptions Ai. and
conclusion F, and a relation A, relating all the literal nodes of I‘ to atom occurrences within
(p :=  A1AA2A...AAn => F. Then a clause node i s  positively polarized, if  all o f  i ts  literal nodes are
related to atom occurrences which are specializations of <(p, A1AA2A. . .AA„>.
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3 The Structure of Proofs Inherent in Topological Properties of
Refutation Graphs '

3.1 Trivial Subproofs

In the following subsections 3.2 through 3.4, subgraphs of the orginal refutation graph will be
viewed as deduction graphs representing lemmata in a larger proof. Obviously, this only makes
sense. when the deduction graph in question is complex enough to warrant the introduction of a ‘
lemma. Otherwise it may be better to repeat a trivial argument instead of using a lemma. It is of
course not straightforward to decide which deduction graph is non-trivial. To make a decision we
use a heuristic approach taking into account several properties of the refutation graph and the
deduction graph.

It is indeed not easy to find objective criteria to decide when a proof is trivial. In [Da81] Martin
Davis proposes that “an inference is obvious, precisely when a Herbrand proof of its correctness
can be given involving no more than one substitution instance of each clause". Jeffrey Pelletier and
Piotr Rudnicki argue along the same line in [PR86], but point out that in general it may be difficult
to decide if any proof of a given fact is non-obvious because this requires to check a property of all
possible proofs. This doesn’t pertain to our case, however, since we are only concerned with the
question if a given proof is trivial as opposed to the question whether an obvious proof can be
found for a given theorem. .

So Davis’ approach seems to be a good starting point, however there is an additional
complication. We have to figure out whether a given proof (deduction graph) is a substantial part of
a larger proof. When this is the case. it is  normally desirable to use the subgraph as a lemma or as
an intermediate step in the overall proof. Therefore we must check, if the rest of the proof — after
removing the proof for the lemma — has become “easier". According to Davis this will be the case
when the subgraph contains an instance of a clause, of which a different instance appears
somewhere else in the rest of the proof. It may even be the case that both resulting proofs are
obvious although the total proof wasn’t. But that's what dividing large proofs into steps is all about.

Finally. when it comes to make someone understand a proof, other non-logical properties must
also be taken into consideration. For example its absolute length and the length in relation to the total
proof must be taken into account. When the subproof is relatively long, it will always pay to prove
it separately as a lemma. If this lemma is already known to the reader one may later dispense with its
proof altogether. Doing this intelligently requires a database of known lemmata and a model of the
reader's knowledge about the field of mathematics in case. When a freshman uses the system as an
explanation for a proof one may not omit arguments which a graduate student might consider trivial.
Conversely. it may obscure the idea of a complex proof to mention all the applications of lemmata
that have been thoroughly understood long before.

As one never knows, however, who will read the proof later, it is useful to postpone this
decision as long as possible. At this stage it is  not yet necessary to take a user model into account.
this will only be done when the natural deduction proof is brought into its final linear form, as
explained in chapter 4.
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3.2 Shared Subgraphs as Lemmata

Now we assume that a proof of a formula (9 has already been found by an automated deduction
system. We will further assume that this proof is represented as a refutation graph I‘; this repre-
sentation can easily be constructed from a given resolution proof, see [P085]. In addition to the
refutation graph, we need a correspondence between the literal nodes of 1“ and the atom occurrences
within (p. This correspondence is established by a relation Acfl.((p)‚ which must of course have
been maintained throughout the search for a proof, especially during the process of normalization of
the original formula.

An initial “trivial" generalized natural deduction proof (GNDP) can now be constructed to start
a transformation process as described in [Li86]. After each application of a transformation rule a
number of tasks need to be performed in order to guarantee a smooth transformation process.

1 .  Every proof line has a related formula occurrence (anchored in (p) so that the
corresponding literal nodes can be obtained using A.

2 .  The refutation graph is changed or divided according to the rule applied; this
happens in a way, such that justifications for external proof lines are always
minimal refutation graphs.

- 3 .  Additional parts of the refutation graph(s) may become positively polarized.
One has to understand, that positively polarized parts represent “axioms".
This neatly reflects the general idea of natural deduction proofs. where new
assumptions are introduced during the proof process.

Some of the transformation rules. BA for instance, lead to additional external lines. and as a
consequence to a division of the refutation graph. In the simplest case the refutation graph proving
FlAFz is  “cut” through the clause [—F1 —F2], such that the two resulting components are refutation
graphs for F1 and F2, respectively. In general, however. the two components may have a non-
empty intersection. and this is similarly the case for other rules leading to a division of the refutation
graph.

If this intersection is comparatively small. it may easily be duplicated and then used twice in the
two subproofs. If it is relatively large. however, it may be sensible to prove a lemma first and then
use it in both proofs. In order to formalize such a procedure, a new transformation rule E-Lemma is
introduced.

E-Lemma:

(I31) 1‘11 i- F1 1:1

(ßn) 1n l: Fn "n

(C!) mit l— G 1‘0

_) (Br) 511 I— F] 1:1'

(ßn) n.. i in .  n.:

_ This rule must of course be used with discretion, i.e. only when specifically called for by a
heuristic. In particular it may only be used, when all the literal nodes in the refutation graph no are

» positively polarized, so that it is possible to prove G from axioms and current assumptions only. lt
goes without saying, that no must be a common subgraph of all the graphs m. In constructing the
graphs it; one is entitled to use the formula G as an additional axiom. The case n=l may also be
meaningful, when a lemma is introduced as a subgoal, see section.3.3.

Let us consider for a moment what these shared subgraphs may look like. We always assume
that a cut is being made in order to apply EA. In the simplest case the lemma consists of just one
atom G. Then the graph has the form



l 4 _ Structuring Computer Generated Proofs

The case where G is a conjunction 61/62 is almost as simple. It only means that there are now
two independently shared parts, viz. »

When G is  a disjunction lGz ,  however, things are no longer as easy. At this point one
should recall, that a deduction graph constitutes a derivation of the disjunction of its pure literal
nodes from the set of clauses it contains, cf. [Ei88]. Therefore one might think that it suffices to
introduce a link between the subgraphs 3 and 4 of the previous case, combining them to a new
deduction graph. It is true that we then know a derivation for the disjunction lGz. but we have
also introduced a cycle into the graph. which therefore ceases to be a refutation graph. As a matter
of fact. a shared subgraph representing a disjunction can only happen, when the theorem Fs
appears more than once in the graph, as in the following example:

After cutting through both clauses [—F1 —F2] the graph divides into four components. only two
of which are needed. The components containing both clauses [—-F1] and [_l may be discarded.
The other two components represent proofs for F1 and F2, respectively. In both cases the proof can
be done by  cases after the lemma lGz has been introduced.

Already Shostak [Sh79] mentioned, that there are unsatisfiable ground clause sets, for which
every refutation graph contains at least one of its clauses twice. But in this case one can always
inhibit the duplication of any specific clause.

3 .2 -1  Lemma: (choose clause not to duplicate)

For every unsatisfiable ground clause set S containing a clause C, one can construct a refutation
graph 1‘ which contains C only once.

Bunt; Let C = [L] L2 L.,], and let S'=S\[C}. Then S i=S 'u [ [L i ] }  is  also
unsatisfiable. For this clause set there exists a refutation graph using [Li] only once, for otherwise
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the copics of [Li] could be combined using a branching link. This holds for all i. We now construct
a refutation graph for S by combining all the refutation graphs for Si so that all the single graphs are
only connected via C, which by construction appears only once. Cl

. If onechoses the theorem clause [-F1 —F2] to appear only once. the refutation graph of the last
example takes a form as shown below. Now the subgraph proving Gs  is no longer really
shared, but two copies of it exist in the refutation graph.

So in general one has to search for isomorphic subgraphs that are complex enough to warrant
the introduction of a lemma. In addition to an isomorphic graph structure all the literal nodes must
represent identical literals and they must be related to the same atom occurrences. This condition
may, however, be relaxed, “allowing the term arguments of the free (lemma) literal nodes to be
different. In this case these differences can be removed by inserting variables, so the lemma
becomes a quantified formula used more than once in different instantiations.

Such a lemma corresponds to a resolvent used more than once during the resolution proof.
Thus, if the refutation graph was originally constructed from a resolution proof. one should keep
this information in order to obviate the search for that kind of lemma. An example can easily be
constructed by slightly altering the above graph, where the atoms G and G' may differ in some of
their arguments.

m.:a - a «hm-F1
°F: 51.9 - ratsam

3.3 Separating Links that Define Subgoals

In the previous chapter, the main incentive for the introduction of a lemma was to avoid an
unnecessary duplication of parts of the proof. But this is not the only reason. why mathematicians
use lemmata. In many cases they are used purely to structure the proof, so that the idea behind a
proof becomes better visible.

In an automatic proof transformation the difficulty is obviously to find meaningful lemmata.
And it is here again that the topological structure of the refutation graph may successfully be
exploited. The task is to find pans of the refutation graph that are sufficiently complex in order to
justify the introduction of a lemma, while they should at the same time be easily separable from the
rest of  the graph. Besides, all the parts belonging to the proposed lemma must of course have been
positively polarized before.

If it were possible to find a link or a small set of links separating the refutation graph. and
fulfilling the above requirements. one might use the positively polarized part as a lemma. When no
more automatic external rules, nor Ev, or BEI can be applied, the search for such links is done using
the following algorithm:
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3 .3 -1  Algorithm: (find separating links to define lemmata)

1.
' candidates for a lemma. The process is initialized by setting ‘I’:={ }.

Starting with a non-trivial refutation graph I‘=(N,C,£,ll'l[), we want to compute a set ‘? of

Compute the set ‘I’min:={Ae H IA  is minimal w.r.t. the nesting order -< on H} .  These
are the links separating the graph. The removal of a given Ae ‘l’mgn from F results in two. + -deduction graphs I‘A and I‘A.

Compute ‘I’o:={Ae ‘Pmin | exactly one of FX or I“; is  trivial}. These are useless for lemma
purposes. since they can only lead to trivial lemmata.

Let ‘I’:=‘I’U(‘Pmin\‘l‘o).

For each Ae ‘I’o duplicate the trivial subgraph FK, if A is branching on the non-trivial
side. Note that I‘ is chan “ by this operation. Let Wm:={ee HX | 9 is minimal w.r.t.
the nesting order -< on A }. These are the links that additionally separate the graph after
the duplication of a subgraph.

If ‘Pmin is non-empty, go to 3, otherwise continue with 7.

. Now ‘i’ is the complete set of candidates for lemma purposes.

3 .3 -2  Example: (links defining a lemma)

A
- s .p¢  9 Pc

The set of  separating links in the example graph is  ‘Pmi„={A1‚ A7, Ag, A9}. All of  them
separate a trivial part from the rest of  the graph, though, therefore none of them is  among the
candidates for a lemma. Only A8 is branching on the non-trivial side, which means that the
appropriate trivial part has to be duplicated. This leads to the following refutation graph.

A2 As

Q —°—l-QIL -Ll-QI-°— QA A A
[ml—&& A “ A6-pb-o l{pb |

R 3 -R L -L-R R '
8 3

am ' "m -s  -Pc 9 Pc

Now A4 is an additional separating link, which divides the graph into two trivial parts. So
‘i’={A4} is the set of candidate links for a lemma.

Now the set ‘i’ of candidate links for the construction of a lemma has been computed, and
unless it is empty, we must define an actual lemma by choosing one or several of these links and
their related subgraphs. In order to do this, we must try to isolate parts of the graph containing only
positively polarized clause nodes, which are connected to the rest of the graph only via ‘P-links. The
following algorithm describes, how this is done.
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3.3-3 Definition: (maximal connected subgraphs)

Let F=(N,C,£,Ill) be a clause graph and let E(I‘)the set of all subgraphs of G. Let ‘I-‘Cll'll be a
set of links. Then for Ce C we can define MC) as the maximal connected subgraph of I‘. which
includes C but does not contain any Ae ‘l'.

3 .3 -4  Algorithm: (choose lemma from separating links)

I .  Let ‘I’ be the set of links obtained by algorithm 3.3-1. For all negatively polarized clause
nodes C' compute 214C"). These graphs are deduction graphs, whose pure literal nodes
were connected to the rest of P with ‘I‘-links.

2. For all positively polarized clause nodes €*, not belonging to any of the 2H1(C-), compute
214C“). Now the graph is divided into “positive” and “negative" subgraphs in one of
three basically different ways:

In all three cases, variations may occur due to separating links that are branching.

3.a) If there is only one MC), the set of links attached to its pure literal nodes in l‘ is used
to define the lemma. which can be derived from the rest of the graph. i.e. directly from
axiom formulae. In this case the lemma is  the conjunction of  the literal nodes in the
opposite shores of the pure literal nodes.

b) If two of the 214C") are adjacent, then the proof is separated into cases (see next
section).

c) If there is a 214C“) between two of the E.;(C'), then one has to check, if  the positive
part consists only of a trivial chain of til-links, in which case one proceeds as in b).
Otherwise the positive subgraph defines a disjunctive lemma. which will then be used
to perform a proof by case analysis.

3 .3 -5  Example: (choosing the actual lemma)

In the case of the previous example (33-2), the only link suggesting a lemma was A4. The
polarity of  the resulting parts now decides the actual form of the lemma. If, for instance, [Pb] is the
only negatively polarized clause node, then L is the lemma. If [Pa] and [Pb] are both negatively
polarized, it is best to conduct the proof by the cases L and -L.
)

3.4 Structuring Proofs by Case Analysis

One of  the transformation rules defined in [Li86], that is  called M-Cases, leads to a division of
the refutation graph. This rule can always be applied, when a disjunction has been derived earlier.
An application is undesirable, however, in most cases, as can be seen from the following examples:

(a) If only one of the resulting components contains negatively polarized literal nodes.
then an extra and unnecessary proof by contradiction must be performed.
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'fi negative($$$-A ' IE ' —B mm
Here the case B is straightforward, but A needs a proof by contradiction.

(b) Ifboth of the resulting parts overlap widely‚ including negatively polarized literal
nodes, then large parts of the proof will be duplicated in both cases.

A good case for the application of M-Cases appears. when both of the resulting components
contain parts of the theorem, and their overlap is either small or restricted to positively polarized
parts, in which case a lemma can be defined to avoid the duplication (cases 3b and 3c in the
previous section). "

The most important case for the rule M-Cases comes up, when an existentially quantified
formula cannot be proven constructively. In the refutation graph, this fact is reflected by the
existence of several copies of the theorem clauses. M-Cases can now be applied, if all the resulting
components contain just one of these copies.
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4 Linearization of Natural Deduction Proofs

After the transformation process from a refutation graph into a natural deduction formalism the
proof may now be represented as a directed acyclic graph (dag) in the following way. The nodes are
labelled with proof lines of the NDP, incoming edges represent the steps by which the proof line of
a node was derived, and outgoing edges represent steps, for which this line was needed itself. Thus
axioms (or lines justified by the Hypothesis Rule) have no incoming edges. and the only node with
no outgoing edge represents the theorem. In the following subsection this idea, first used by
Chester in [Ch75] is defined more exactly.

4.1 Definitions

4 .1 - l  Definition: (NDPs represented as dags)

A directed acyclic graph (dag) with a set of nodes N, a set of edges E C NxN and a reachability
relation 15‘: NxN, defined as the transitive closure of E, is  called a Natural Deduction Graph
(NDG). i f  there is

(a) a bijection between the set of nodes N and the set of proof lines of an NDP.
Therefore the nodes may be labelled with proof lines. and one may speak of the node
instead of  the proof line.

(ß) (n1, n2)e E" whenever the proof line 0n appears in the justification of that in n2.
If (nl, n2)e E, then the edge is labelled with the respective rule.

(Y) (n1, n2)e E‘, when
(71) both n; and n2 introduce new assumptions (by rule Hm), which are removed

(by Rules 12:41, IE, gas, or 851) in nodes m and ng, respectively.
(72) n3 is used in the derivation of m, i.e. there is a chain of edges from ng to n4.

(ö) (n1. n2)e E‘, in the case of rule Sel, when
m = 2 l— 3x Fx Rule 5R
n2= c l— Fc Hm
113 = are »— G Rule SR'
n4 = H I'— G 531011. na)

The reachability relation E‘ defines a partial order on the proof lines, which must always be
obeyed, when the proof is written down in a linear form. In the next step the proof lines will be
totally ordered. so that the proof can be stated in sequential form. This total order may be different
from the rather accidental order of the original NDP.

Both conditions (7) and (ö) ensure that new assumptions are not made before they are actually
needed, or that subproofs are'completely nested in the superior proof. This is sometimes even
enforced by natural deduction calculi such as Jaskowski’s box formalism [Ja33].

4.1-2 Definition: (Generalized NDGs)

A dag with nodes N‘ and edges E' C N'x N' is called a Generalized NDG (GNDG). if it is an
NDG orifitcanbederivedfrom anNDG withnodesNand edgesEasfollows:
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(a)  N' must be a partition of N.
(ß)  There must be an ordering E on the internal nodes Nie N' compatible with E‘, i.e.

(n1,112)e 5* implies (nl, n2)e Ei for all n1,nze Ni.
(y) E' = {(nl',n2’) | 3n1en1', me n,‘ with (n1,nz)e E} .

The size of a node n' is the number of original proof lines appearing in it, its rank is the number
of its immediate predecessors {n I (n,n')e E}.

4 .2  Chester’s Method

In order to linearize natural deduction proofs, Chester [Ch75] starts with an NDG and
constructs a sequence of GNDGs until the graph is (almost) linear. A new element in this sequence
is  obtained by application of  one of the following rules. If both rules can be applied. rule 1 is
always preferred.

Rule}; Combine nodes nl and n2, if  (n1,n2)e E,  and if for all ne N (n1,n)e E implies
n=n2 and (n,nz)e E implies n=n1. The nodes from nl will be smaller in the
internal order than those from n2.

RM Combine nodes n1 and ng, if (n1‚nz)e E,  if for all ne N (n1‚n)e E implies
n=n2, size(n1) $ maxsize, and n1 containsno D_e_d line. In doing so, use
nodes with least rank first. Again the nodes from m will be smaller in the
internal order than those from m.

The following two drawings illustrate the situations of the two rules above. In rule 1 the first
node is the only direct reason for the second node, which itself is the only immediate successor of
the first node. This is  the case, when the first line of n2 follows directly from the last line of nl. The
second rule applies, when all the reasons for n; are only used in this instance, no assumption is
removed (by Rules Desi. IE, gas, or fiel), and n1 is not too large. Otherwise the last line of  nl is
considered a lemma. "

331112.;
rank(nl) $ rank (n'l )
size(n1) S maxsize .

4.3 Using Information from Refutation Graphs and/or Transformation Processes

Chester [Ch75] lstarts his transformation process from a given natural deduction proof having
no information of  how the proof was found. However, if the NDP was constructed as described in
[Li86] and in this report, we already know about lemmata, either from the process of finding the
proof or they are defined from the topological structure of the refutation graph as described before in
chapter 3.

As an example we start with a refutation graph, and show the graph and the generalized natural
deduction proof at the point where the lemma i s  detected. Finally we give the natural deduction
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proof, its natural deduction graph, and its final generalized natural deduction graph. The theorem in
the example is  a pan of the subgroup criterion. cf. [De71]:

Let G be a group, and let S be a subset of G. If for all elements x and y in S xoy'l
is also in S, then for every x in S its inverse xl is also in S.

4 .3 -  1 Example :  (Natural Deduction Graph)

Ihm (Vu Puiue) A (Vw Peww) A (nz Sx A Sy A Pxiyz = Sz) = (Vx Sx = Six)

Here nz  means xoy=z in a group, Sx  means xe S ,  a subset of the group. and the
function i calculates the inverse of the group elements.

Refinatinnfiranh;
The following refutation graph was automatically generated by our theorem prover MKRP,
cf. [EO86]. For the purpose of this report, we assume. that it is just given.

Elm--

n 1'7 i n Pr

(1) l }— (VuPuiue) A (VwPeww) A (nz Sx  A Sy A Pxiyz = Sz) Hyp
Let a be an arbitrary constant

(2) 2 I— Sa  . Hyp
(13) l ,  2 I— Sia I“,
(14) l }— Sa  = Sia Ded(l3)
(15) 1 }— Vx Sx  = Six VG(14)
(16) }— (VuPuiue) A (VwPeww) A (nz Sx A Sy A Pxiyz = 82)

= (Vx Sx = Six) Ded(15)

Up to here only automatic transformation rules were‘applied. As this is no longer possible at
this stage. we try to detect separating links applying algorithms 3.3-1 and 3.3-4. The actual
refutation graph 1'} looks like this.

gramm
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The clause node [—Sia] in double bars is the only negatively polarized one. All the links except
9 are separating a trivial part from the rest of the graph. According to algorithm 3.3-1, H is broken
up and the clause [Sa] is triplicated. viz.

[+stl—o-l -Sa [-Sa l-Paiae [+Se]
fl

Now 9 is separating, one part is completely positive, and both parts are trivial in itself. Using
Davis' definition of obviousness, one has to check that the literal nodes of all clause nodes
correspond to different atom occurrences of the original formula. In the complete graph the two
clauses {-Sa -Sa -Paiae Se] and {-Se -Sa -Paiae Sia] are different instances of the same formula
occurrence in the original fornula. Thus 9 represents a lemma, namely Se. The two graphs below
result from cutting the graph at fl ,  representing proofs for Se and Sia (using Se) respectively.

Now one proceeds as follows using the new transformation rule E-Lemma:

( l )  l |— (VuPuiue) A (VwPeww) A (nz Sx A Sy A Pxiyz = Sz) Hyp
Let a be an arbitrary constant ‘

(2) 2 F— Sa Hyp

(8) l ,  2 [- Se [‘2
(13) l .  2 |— Sia F3
(14) l |— Sa = Sia Ded(l3)
(15) l |— Vx Sx = Six VG(l4)
(16) [— (VuPuiue) A (VwPeww) A (nz Sx A Sy A Pxiyz = Sz)

= (Vx Sx = Six) Ded(15)

In order to prove Se we first work on F2. This finally leads to the following natural deduction
proof. ‘



Linearizatt'on of Natural Deduction Proofs

W

(1) l |— (VuPuiue) A (VwPeww) A (nz Sx A Sy A Pxiyz => Sz)
Let a be an arbitrary constant

(2) 2 }— Sa
(3) l ‘ ' I— nz Sx A Sy A Pxiyz => Sz
(4) l }— SaAPaiae=Se
(5) l }— VuPuiue
(6) 1 |— *Paiae
(7) 1 ,2  I— SaAPaiae
(8) 1, 2 }— Se
(9) 1 l— SeASaAPeiaia=>Sia

(10) 1 |—- VwPeww
(11) 1 |— Peiaia
(12) 1,  2 }— SeASaAPeiaia
(l3) 1, 2 |— Sia '
(14) l |— Sa  => Sia
(15) 1 I— Vx Sx => Six
(16) |— (VuPuiue) A (VwPeww) A (nz Sx A Sy A Pxiyz = Sz)

=> (Vx Sx  => Six)

NamLDeductinnfimnh;

This graph represents the dependency relation between the lines of the natural deduction proof.
In line (2) a new (arbitrary) constant is introduced, so all the lines using it actually depend on line 2.
The link between (1) and (2) has been introduced in order to fulfill property (7) of definition 4.1-1.
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Hyp

Hyp

Tau(l)
Vl(3)
Tau(l)
v1(5)
Tau(2,6)
Tau(4,7)
VI(3)
Tau(l)
vum)
Tau(2,8‚1 1)
Tau(9‚12)
Ded(13)
vc(14)

Ded(15)

We can start the process of  linearization with a prestructured natural deduction proof, where
only the lemmata have to be arranged in a linear order, and of course, their internal structure must be
linearized. Using this information, our starting point is the following NDG:

“\ 9 _5_6_7/ 8 104142 13-14—15-16

One possible linearized form is shown below. If Chester’s algorithm is directly applied to the
original NDP, there is no guarantee that the proof of Se (8) is executed before any of the lines 9—11
are introduced.
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1,2,5.6.7,3,4,8 10,11,12‚9‚l3,14‚15‚l6

At this point we have to tackle the problem of different users also, i.e. it is here that a user
model about the potential mathematical competence of the reader has to come into play.

4.4 Further Processing

Now that the natural deduction graph has been linearized, some further steps are required in
order to make the proof really understandable. The main drawback of natural deduction proofs is
their length and the difficulty in seeing the important steps. One has to distinguish therefore between
trivial proof steps and more important steps, which is not straightforward, as the answer depends
on the context of the proof as well as on the intended reader. After all, a mathematician will consider
a lot of proof steps as trivial, that inexperienced readers might not find easy at all. This raises, the
question how this distinction can be made automatically.

A first approach will group several steps, especially when only propositional reasoning» is
involved. But it may also be indicated to combine propositional steps with an instantiation. If this is
done for the proof in example 4.3-1, the NDP will be the following:

4 .4-  l Example: (Abridged NDP)

(1) l |— (VuPuiue) A (VwPeww) A (nz Sx A Sy A Pxiyz = Sz) Hyp
Let a be an arbitrary constant

(2) 2 |— Sa “W
(4) l }— Sa A Paiae = Se Tau+VI(l)
(6) l |— Paiae Tau+VI(l)
(8) l ,  2 )— Sc Tau(2‚4,6)
(9) l |— Se A Sa A Peiaia = Sia Tau+VI(l)

(11) l |— Peiaia Tau+VI(l)
(13) l .  2 l— Sia Tau(2,8.9,l l )
(14) 1 |— Sa  = Sia Ded(l3)
(15) 1 l- Vx Sx  = Six . VG(14)
(16) }— (VuPuiue) A (VwPeww) A (nz Sx  A Sy A Pxiyz = Sz)

= (Vx Sx = Six) Ded(15)

This is as much as can be done without knowing the intended reader. If it is known, however,
that the proof shall be read by the above mentioned mathematician, or that it will appear in a text
book immediately after a proof of Se, then it suffices to state line (8) as a lemma without further
proving it.
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4 .4 -2  Example: (Abridged NDP with lemma)

( l )  1 |— (VuPuiuc) A (Vcww) A (nz Sx A Sy A Pxiyz => Sz) Hyp
Let a be an arbitrary constant

(2) 2 I- Sa Hyp

(8) 1, 2 )— Se _ _ Lemma
(9) 1 . }- Se A Sa A Peiaia => Sia ' rau+v1(1)

(11 )  1 |— Peiaia 'Tau+v1(1)
(13 )  1, 2 1-— Sia .Tau(2,8,9,l 1)
(14 )  1 |— Sa => Sia , Ded(13),
(15 )  1 I— vx Sx = Six VG(14)
(16) }— (VuPuiue) A (VwPeww) A (nz Sx A Sy A Pxiyz => Sz)

= (vx Sx => Six) Ded(15)

In order to achieve this sort of reader dependent simplification of the proof it will be necessary
however to have a model. The development of user models is a well known research problem in Al.
especially in  the field of  natural language processing and computer interfaces. For an overview see
[Ko85]. How such user models might help with an understandable presentation of mathematical
proofs has not been elaborated on, yet, this will be the topic of further research.
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5 Summary

In this report we have shown, that we can exploit the information of how a proof was found, in
order to break it up into smaller lemmata. In particular this may avoid the need to prove a
subformula more than once; when it is shared by different branches of the proof. In addition the
information implicit in the topological properties of refutation graphs is used to structure the proof.
This is done by dividing the graph into disjoint parts to be proved separately. either sequentially, as
a lemma cited later in the proof. or as a proof by case analysis. In order to do this the algorithm for
the transformation of refutation graphs into NDPs had to be extended.

The same information also facilitates the process of linearizing the natural deduction proof. The
parts to be linearized (lemmata) are much smaller, thus reducing the number of arbitrary decisions
that have to be made in order to choose an actual sequence of proof lines. In fact one has to solve
several smaller linearization problems instead of a single large one; of course one also has to
linearize the sequence of lemmata in the end.

The linearized version of the natural deduction proof is then used as a starting point for
removing trivial steps from the proof. In general this can only be done with the help of a user
model. When all of this is done one can tackle the problem to state this formal proof in mathematical
natural language. which is the topic of our current research interest.
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7.1 Signature and Elementary Sets of Symbols

1% constant symbols, a, b, c
F.„ IF n-ary function symbols, function symbols f. g, h
V variable symbols u ,  v, w ,  x .  y ,  z
T,  'll‘8r terms, ground terms s ,  t
2 ,  Es ,  substitutions, ground substitutions r ,  s ,  t :  3. d
]Pn, P n-ary predicate symbols, predicate symbols P, Q, R
A, A„ atoms, ground atoms A, B
1L, Lg: literals, ground literals K, L, M, N
C,  C, r  clauses, ground clauses C,  D ,  E
@, aus, formulae, ground formulae F, G, H
l" clause graphs G, D
N nodes of a clause graph K. L.  M.  N
H links of a clause graph Q, L,  F,  P

7.2 Objects denoted by Single Letters:

A, B e A atoms
C, D, E e C clauses or clause nodes
F,  G ,  H e db formulae
K,  L, M, N e N,  L literals or literal nodes
P ,  Q ,  R e P predicates
S ,  T (; C sets of clauses
U, V ,  W, X, Y ,  Z ; V sets of variables

a, b,  c ,  d ,  e e ]Fo constant symbols
f, g ,  h 6 No function symbols
i ,  j ,  k, l ,  m ,  n indices
s ,  t „ e T terms
u,  v ,  w ,  x, y ,  z e V variables

I‘, A e 11" clause graphs
6 ,  A,  I'I e 11']! links of a clause graph
(D ; ® set of formulae
(! set of formula occurrences
}: ; 2 set of  substitutions
E ,  ‘I‘ ; H sets of  links



3° W
y, 8 e E., ground substitutions
e e E the empty substitution
C, 11. 6 walks in a clause graph
u e 2 watcher
1t proof
P.  0,  1 , ' € X “WNW

9» \F e Q imma!»
a) e fl formula occurrences

7.3 Combinations of Letters and Special Symbols

[L. M. N] clause<node>comainingmeuml (nodcs)L.M...-.N
b—(K link containigL and KmOPpOsneshoms




