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Topics firm (Completion Theorem Proving

Jürgen Müller
Rolf Socher-Ambrosi us

Fachbereich Informatik, Universität Kaiserslautern
Posgfach 3049, 6750 Kaiserslautern

Abstract: Completion Theorem Proving is  based on the observation that proving a formula is

equivalent to solving a system of equations over a boolean polynomial ring. The latter can be

accomplished by means of the completion of a set of rewrite rules Obtained from the equational

system. This report deals with three problems concerning Completion Theorem Provers

' (CT Ps): '
- Are multiple overlaps necessary for the completeness of CT Ps?

 -  How can simplification be interpreted in terms of resolutiOn inference rules ?
- How can polynomials efficiently be represented?
The answer to the first question is  “no”. Even more it is shown in this report that the removal

of multiple overlap steps does not increase the length of completion refutations. This amounts

to an extension of Dieuich’s (1986) result concerning the correspondence of completion proofs

without simplification for Horn Logic to resolution proofs.

Concerning the second question we show that simplification in general cannot be translated

into resolution reduction rules. However, two special cases of reduction can be interpreted as
subsumption deletion and replacement resolution, respectively. Changing the point of view,

we can also identify resolution reduction rules, such as tautology elimination, merging and

subsumption deletion, as part of CTPs without being explicitly defined as inference rules.

The last section deals with the technical question of choosing a datastructure well suited for an

efficient implementation of CTPs. '

l .  Introduct ion

The basic idea of completion theorem proving, as it was first proposed by Hsiang (1982), is
. the equivalence of the validity of a first order formula and the solvability Of a System of

equations over a boolean polynomial ring. Several methods to solve such systems have been

deve10ped, the one used in connection with completion theorem proving is the completion

procedure of Knuth & Bendix (1970).
The completion method proceeds in the following way: Given a first order formula 9" which is

to be proved valid, transform 9’ into a system Ef{ pl=0,...,pn=O]of equations over first order

polynomials. The polynomials represent the formula T in terms of the connectives “XOR” and
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the logical “AND”, which are the + and the * of the boolean ring, respectively. Hsiang (1985)
presents a canonical rewrite system, which accomplishes the transformation of a first order
formula into a set of polynomials. Thefomula 9" is valid, iff the system Ey i s  unsolvable. In
order to prove the unsolvability of such an equational system, it is  subjected to the
Knuth-Bendix completion procedure. If the equality [=0 can be derived from the system Ey
then E9. is unsolvable.
The completion process is founded on two mechanisms: The formation of critical pairs to
generate new rules and the reduction (simplification) of existing rules. In some sense the
respective analogues in resolution theorem proving are the resolution rule and the well-knoWn
reduction rules like subsumption deletion.
In analogy to resolution theorem proving, the greatest obstacle on the way to find a completiOn
refutation is the extent of the search space for generating critical pairs. Several strategies to
restrict this search space have been proposed and the various completion provers (for instance
the systems of Hsiang (1985), Kapur & Narendran (1985), Bachmair & Dershowitz (1987)
and Müller (1987) (1988)) differ mainly in the choice of the strategy. In this report we

consider mainly the N-strategy as it is described in Hsiang (1985). This strategy requires one
partner of a superposition step to be an N-rule (i.e. a rule m-—>0, where m is a product of
atoms), which cuts down the number of possible superpositions.
The objective of the first part of this paper is to show that this number can be further decreased

significantly without any prolongation of the whole refutation. The following example
illustrates this reduction of the search space: '

1.1 Example:
Let r1 = a*Qby*n —90 and
r2 = Paz*s*Rab + Paz*s + Paz*Rab + Paz —> 0.
If we let ml,.„m4 denote the mononrials of r2 and m the monomial of rl ,  we have to compute

all possible overlaps between m and the mi. For instance, the monomials a*Qby and

_ Paz*s are unifiablc with unifier 9 = {xe—a, z<—a, y<—a}. This yields an overlap

Paa*Qba*Raa*Rab between m and m1 resulting in the critical pair (Paa*Qba*Raa +
Paa*Rab*Raa + Paa*Raa, O ). We call this overlap a multiple overlap, since it was

accomplished by the unification of monomials that are not single atoms. In contrast to the?

. multiple overlap, the. overlap Paa*Qby*Ray between m and m4 forinstance is'a single'overlap, .

resulting fromu'nification of PM and Paz. ' ' " "

We will show that it is sufficient to take into account only the single overlaps,- provided the

completion refutation follows the N—strategy. This yields a drastical reduction in the number of

possible critical pairs and we will show that the removed critical pairs represent “blind alleys”
of the wholerefutation. This shows that the restriction to single overlaps improves the search

for a proof by cutting down a lot of redundant steps. _

This result implies a generalization of Dietrich’s (1986) result on Hsiang’s system: He showed
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that the superposition step of two Horn clause rules can be translated into a resolution step
between C and D.  We showthat a single overlap superposition of two arbitrary clause rules
corre5ponds to a resolution step of the two corresponding clauses. Together with our result on
the unnecessity of multiple overlaps this yields a translation from N-refutations without
reductions into resolution refutations.
This result holds for systems without simplification. Being the most important inference rule
for any Knuth-Bendix like procedure, simplification also plays a significant part in CI‘Ps. In
the first place, simplifying rules with other rules yields a kind of minimal representation of the
underlying problem. Second, rewriting alone can be sufficient to solve problems (see example
4.8) This arises the question, whether simplification can be interpreted in terms of resolution
reduction rules. It will turn out that in general such a translation does not exist. However, we
‚will show that a clausal rule, which can be removed by a simplification step, corresponds to a _
subsumedclause; that is, simplification steps removingrules correspond to the deletion of
subsumed clauses. We also obtain the followingresult: If the result of reducing a clausal rule
is again a clausal rule, then this reduction corresponds to a special resolution step, called
“replacement resolution” by Markgraf ( l984).‘ _
Changing the point of ‘view,  in section 5 we consider the translation of inference and reduction
rules from resolution based theorem provers into the CTP paradigm. This extends the work of
Kapur and Narendran (1985) Who proved, that resolution and factoring can be simulated by
the completion method, provided that no simplification takes place. We show that tautology
elimination, merging, and subsumption deletion are automatically performed within CTPs.
The last section is reserved for a technical contribution. One problem with CTPs is the
representation of the - usually very large - polynomials. So  arised the question for a
datastructure representing efficently polynomials and minimizing the time complexity of the
search for possible inference and reduction steps. The solution presented here consists of a
structure sharing approach and a graph concept similar to the one used by Kowalski (1975) in
his Connection Graph Procedure. . '
Before starting a detailed discussion, we will give a short introduction to the completion
method.

2. The Completion Method

This section gives a short overview on the completion procedure as it is proposed by Hsiang.
We present a slightly modified version: First, superpositions are made “parallel” on one
polynomial, which abbreviates a sequence of inference steps. Second, as superposition alone
does not guarantee completeness, factoring is considered as an additional inference rule (cf.
Müller (1988), see also appendix).



The structure (A, A, v,  —., l ,  0), where A is the set of first order atoms and A, v, "—1 are the

logical connectives is a boolean algebra. Then the structure (A‚+,*,_0,1) defined by
x+y=(x1\—1y)v(—1xAy) x*y=xAy

is a boolean ring. Let TBR be the set of all terms over (A,+,*,0,1‘). Boolean rings have the
property that each te TBR can be written as a sum of products of different atoms. This form is
unique up to commutativity of + and *. We call this form the normal form of t, nfBR(t).
The mapping (p: (A,A‚v,-1,0‚1)-> (A,+,*,0,1) transforming terms of a boolean algebra into
terms of a boolean ring,is defined by

“(P =. a
(s A D‘? = SCP t(P

(svt)<p=scp+tcp+sq>tcp
(—.s)<p = 1 + so

for ae A and boolean algebra terms s and t.
A predicate logic formula fin clausal form, which is essentially a boolean algebra term, is

represented by the equality nfBRU'cp) = 1 or equivalently nfBR(—1:flp) = 0 . In order to prove the
unsolvability of a set of boolean equalities, each equality of the form t=0 is transformed into a

rewrite rule t—>0. Then a special Knuth-Bendix completion procedure is  applied to the

resulting set of rules. The procedure is  special in the sense that not all possible critical pairs are

generated, only overlaps where one partner is a so called N-term are considered.

2 1 l; fi . . _

A boolean ring term t is called an N-term (sometimes also called a monomial), if it is a

product of atoms. A rewrite rule t—90 where t is a boolean term in normal form is called a
boolean rule. A boolean rule t—>0 is called an N-rule, if t is  an N-term. .

2.1mm (Reduction relation) . , _

Let t,t'e ']I‘BR and let ER be a set of rewrite rules. We say I reduces to t' with respect to SR and
u, iff there is a rewrite rule l——>r in SR and a substitution [1 such that t=t[lu] and t'=nfBR(t[r|.L]).

This is denoted by t—nfl'utl. The reflexive, transitive closure of H is denoted by H *-

2 1 ' ' n"
Let ml and m2 be N—terms. ,
(i) m1 and m2 are BN-unifiable under 0 iff o i s  a most general unifier (see e.g.  Herold

1983) for ml and m2 under the boolean ring theory of * .
(ii) Let m1 = ulsl and m2 = uzsz. Then (s1m2)o is an overlap of ml and m2 iff ul and uz

are BN—unifiable under 0. We say that the overlap is on the pair (u1,u2) in this case. If 0
is the identity, then u1=u2 and we say the overlap is on ul. (This is of interest in
connection with propositional logic.) The overlap is called a multiple overlap, iff the

monomial ul (and hence also uz) is a product of more than one atom. Otherwise it is
called a single overlap. . . ' '



(iii) Let s—->0 be an N—rulc, s=sls2, and m1+m2+...+mil —> 0 a boolean rule.
((szm2+...+s2mn)o,0) is called an N-critical pair of the two rules iff s has an overlap
(52mm with ml .  It is called divergent, if nfBR((s2m2+...+s2mn)o) at 0.

Note that we may, without loss of generality, always choose the first element of the sum

ml+m2+...+mn for overlapping with s, due to the commutativity 'of “+”. .
Now we are ready to define the basic inference rule of the completion algorithm.

2.4 mfinitign: , .
Let s—>O be an N—rule and r->O a boolean rule. We say that the rule t—)0 results from

superposition of the two rules iff these two rules determine a divergent N-critical pair (t',0),

and t =nfBR(t').

The above proof strategy is called N—strategy by Hsiang. It is shown to be sound and complete
(see remarks in the appendix):

2,; 111991“; (Bsiag):  _
given a set qf cfauses 5 in first-order predicate calcufus, 5 is inconsistent af and onfy ij
1—-)0 can 5e produced usirg tfie SAC-s trategy. ‘ ' I

The transformation of first order formulae into boolean rules can be done in two different
ways: According to the first method the formulae first are transformed in clausal normal form
in the same way as it is done for classical resolution proofs. Then all clauses separately are
transformed into rewrite rules. This method is called the clausal strategy. According to the
other method, the nonclausal strategy, the formulae are directly transformed into boolean rules.
The N—strategy, however, cannot be applied with the nonclausal strategy, because the
existence of N—terms is  only guaranteed, if the set of boolean rules corresponds to an
unsatisfiable set of clauses. For this reason we only consider the clausal strategy.
As Hsiang’s original procedure is very rough, we adopt two ideas from the THEOPOGLES
system (cf. Müller (1987) and (1988)), namely the ideas of “parallel superpositions“ and the
incorporation of “factorization”.
Suppose that we have two rules pt1+...+ptn+r1+...+rm—->O and qs—>0 where the monomial p

does not occur  in  the t].I and rj and o i s  a unificr of p and q.  Then
((pt2s+...+ptns+rls+...+rms)o, 0) is an N—critical pair of the two rules. But the left hand term
can be reduced to (rls+...+rms)o with the rule qs—>(). Since Hsiang’s strategy requires critical
pairs to be reduced with respect to the rules of boolean rings and the current rewrite system,
we can compute the rule resulting from superposition also in the following “parallel” way (cf.
Miiller 1987)): transform the rule pt1+...+ptn+r1+...+rm—>O into p(t1+...+tn) +r1+...+rm—->O

and then compute the critical pair. Especially overlaps between a rule t—->0 and an N-rule m—>O
on a monomial }‚L that divides t (i.e. that occurs in each monomial of I) do not yield divergent
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critical pairs, sinCe this is the case where rl+...+rm=0.
Furthermore we introduce the notion of I-critical pairs, which can be seen as a kind of explicit
“factoring” of monomials.

Let r be the N-rule m—>0 with m==pqm', where p and q are unifiable atoms. lf Ge mgu(p,q),
then ((pm’)6,0) is called an I-critical pair of r.

We just resume the sligthly modified N-strategy the next section is based on:
' The formula 9" which is to be proved valid first is transformed into a set EK of rewrite rules.
Then (N- and I-)critical pairs of rules of SR are formed with parallel superposition and the rules
resulting from divergent critical pairs are added to SR until the rule 1—)0 is deduced. There are
no reduction steps w.r.t. the current rewrite rule system SR.

3. Removing Multiple Overlaps From Completion Proofs

Clauses can be transformed into boolean rules in the following way:
If C is a clause of the form fiplv...v—.pn v qlv...vqm then 'fiC = p1 A...ApnA-rq1A.../\qm.
Therefore C can be transformed (using the mapping (p) into the boolean rule

p l . . . pn (1+q l ) . . . (1+qm)—)0 .  We say that the rule r—>0 is  a clause rule ,  i f  i t  can be

represented in this way. Especially N-rules are clause rules. Furthermore we say that the pi

occur positively in p1...pn( l +q1)...(l+qm), and the qj occur nega t ive ly  in
p1...pn(l+ql)...(1+qm).

Let t be a term and let M be a set of monomials.
(i) We write t ll—M s iff there is some me M, such that 3—90 is the result of a superpositiOn

of t-—>O and m—->0. . . ' .
(ii) We write “'M s iff t ll-M s and the superposition results from a single overlap. _ _
(iii) Let -P C A and let m=p1...pn be a monomial such that pie P for each ie  { l , . . ,n  }. Then

we call m a monomial in P .  We call  m P-l‘ree, iff m is‘ a monomial in A\P. The.

P-part (P-free part) of a monomial m is the maximal monomial in P (.P-free monomial)

dividing m.
If M={m} , we write tI—m s and analogously for the other relations.

The proof of our main result will be accomplished in a way analogous to completeness proofs:

First it is  proved for propositional logicand then the lifting lemma is used to transfer the result

to full first order logic. Therefore in the following (lemmata 3.2”- 3.6) all terms are ground

terms. ' ' ' ' '



3 2 | Qmm'r

Let t—) 0 6e a ßoolean rufe and m—ä 0 fie an M—mle and [at the rufe s-—> 0 result from

superposition of H0  and tit—>0. ‘Ifien eacfi divisor of t is a divisor of s.

Proof: .

Let nfBR(t) = m1t1-_l-..+mltn+r1+..+rk and m=mlm2, such that s=r1m2+..+_rkm2. A divisor of

t divides all ri, hence also s.

' I

Let t0= (1+p1)...(1+p,). fissume there is a set g=@1'—+0‚.‚.‚ 3,7) 0} of N—ntfes, ‚such tfiat

t0 n- " 'n— . . .  Ir— =181 t l  32  Sn n

(i) ‘Eacligi is a monomiaf in {191‚..‚pJ
(ii) 'Eacfi superposition tr) 0, i—>0 is made on Hr

(iii) If m is a monomial of t, then uff divisor; of m are monomiaß of t, too.

Proof:
(i) Let k be the smallest number, such that gk is not in {p1,..,pr}. Then there is some atom q¢1

with qe {p1,..,pr} such that gk=qg'. We have tk_1||-gktk. Since q does not occur in t0 nor in

any of the g1‚..,gk_1, it cannot occur in Im, too. Hence the overlap of tk_1 and gk must be on a

divisor g" of g'. Let gk=g”'y, which implies that q is a divisor of 7 and let t “ :  g”t1 + tz,

where g" does not occur in t1 and tz. The resulting critical pair is  (75,0) and tf-‘Ytg- Now q

divides 7 and hence also tk. Then according to 3.2 q must divide all ti with i.>.k, and especially

tn. But tn=1, which implies q=1, a contradiction.
“(ii) Suppose the superposition of tk_1——>0, gk—>O is made on a divisor 7 of gk. Let gkwg'.

Then it is easy to see that g' divides tk and with the same argument as in (i) we obtain g'=1.

(iii) Suppose u is a divisor of m and u is no monomial of t. Then it must have been deleted

from to in a superposition step. Since according to (ii) superposition steps have the effect of

removing a monomial together with all its multiples, m must have been deleted, too, which is a

contradiction.

In the special situation of lemma 3.3 each superposition step tut—giti is a step of removing in

ti_l those monomials that have gi as a divisor. As a consequence, a deduction as in 3.3 must
contain all superposition steps with the minimal divisors pi and these steps “subsume” all other

superposition steps.



wanna;
Let to: {1+p1}...(1+p‚). fissume tfiere is a set g=@1—-)0,..., 511—) 0} of {NZ-mics, sucfi tfiat

t n— tI t— ...n— t=10811 .82  sun

tfien there is a subset fl=lflI'—)0‚.„‚fin—>0} of (} such tfiat

l t l t— ...+— tv= lto " h2 h,,h

Proof:
The (boolean ring) normal form of t0 is t0 = (1+ Zi pi + Ekj pipj + ...+ H i  pi ).
Let ke { l,..,n] and suppose that gk is a product of more than one atom.
Then tk+1 is the result of deleting in tk all monomials u that have gk as a divisor. Let q be a
proper divisor of gk. Then, according to lemma 3.3(iii), q is a monomial of t. Since q cannot
be deleted in the step tkt—gktk+1, it is a monornial of tk+1,  too.
In order to reduce tk+1 to 1, there must be a subsequent superposition step deleting q.

. Obviously, this superposition results from a single overlap. But then the step tlg—gktk+1 can be
canceled from the whole deduction, since the subsequent step, which deletes q, in fact
removes all monomials that have q as adivisor and especially those monomials having gk as a
divisor, i.e. those monomials that are removed by tkt-gktk+1 .  It remains a deduction with the

desired properties.
I

Let t 6e a ground term and suppose t = ml}; wfiere f is a_ term in !? am! m1 is fl’free

monomiai. furtfiermore [ct m lie a mnomiaf witfi fP-free part u .  Let (s,0) 59 a nontrivial
criticalpair ty‘tfie tzuo rules t—>0 (mint—)0.
‘Dim tfte T-free part ofs is mlu.

Proof:
Let t==m1f1+...+m1fn and m=k1k2 and let the overlap be on k1. From 3.2 follows that ml

- divides s. _
Let q be an atom dividing p., which implies that q is P—free. If q divides kl ,  then q must divide

a monomial of t, say mlfl. Since fl i sa  monomial in P, we obtain that q divides ml and hence
q divides s. If q divides k2, then q divides s, since k2 is a divisOr of s. Hence mltt-‘is'P—free
and divides s. It is easy to see, that each. P-free divisor of 5 either divides ml" or p.. .

I



Let to fie a dans; term. If tfierz is a set Cj=@1—)0,..., art-)0} qffM-rules, sac/i tfiat

I- Il-81 t l l  
32  gu t “

to II—

amf tn is a manamiaf, tfwn tfiere are t1'‚..‚t„' armr a sußset .‘H'={fiI—) 0,..., fin—> 0} of g

sucfi tfiat

to i—hl t l l -hz . . . I -h  t

am! ‘n. is a monomdsufisummg tn.

Proof: We have tO = q]...qu(.1+p1)...(l+pr). Let P:={p1,..,pr}.

First we transform the deduction

tu— " u“—II-
to 811  82  _gntn

into a_deducti_on

s=1+  ...1+_ u- S"— „ | |— s=10(P1)  (13971172  
1‚un

Each tk can be written in the form ukfk with a P—free monomial uk and a polynomial fk in P." In
the same way we can decompose gk in a p-part nk and a rest gk', such that gk= nk gk'.
According to lemma 3.5 we have uk „ = ukgk+1' for each ke {1,..,n-1}. Furthermore
u0=-q1...qu. Hence un = ql...qugl'...gn'.
Now let sk:= fk and 7k = uk. Hence we have the following situation:

tk = l‘kk . % t k  +1 :: pk+ l  l‘l1:+l

"kgk'
l - l
5k = fk } Sk+1 : fl<+l

7'5 k
It. i s  obvious, that so = (1+p1). . . ( l+pr) ,  We only have to show, that s]n = 1 holds: The

construction above shows, that sk is a term of the form 1+ Z i  mi, where each m].l is a
monomial in {p1,.., p1 }. Furthermore skuk = tk. Since [in and tn are monomials, sn=1 must
hold. Now we have a deduction ‘

s0 = (1+p1) (1+pr) ”—71 sl u—YZ ”—7,, s n=1

According to 3.4 there is  a subset {n1,...,nv} of {VP-"711} such that

50 = (1+p1) (1+pr) +— n,  s "  l—nz i— 11vsv '=  1

This deduction is transformed back in the following way:
Let to' = ql....qu (1+p-1)...(1+pr) and if 7k = nj, then let hk = ujmj'. Now it is easy to see, that
there must be elements gl",..,gv" of {g1',..,gn'} such that tv' = ql..qug1”..gv". Now

un=q1...qug1'...gn' is  a divisor of tn, which implies that tv' is also a divisor of tn.



The following example shows, that the generation of I—critical pairs, i.e. the factorization of
N-terms, is an esssential condition for the generalization of lemma 3.6 to full first order logic.

3.7 Example: _
Let 9? be the system {t—->0, ml—>O,...,m4-)0} of rules, where

' t= 1+Pax+Pyb+Qxy+PaxPyb+PaxQxy+Pbxy+ PaxPbxy
m1=PaxPyb, m2: Pbxy,
m3=Paba, m4: Qxy.

We have the following deduction:

t u -ml t1  n—mztzn—m3 [3 ||- m4 t4 =1

with tl = 1+Pax+Pyb+Qxy+PaxQxy+Pbxy
t2 = 1+Pax+Pyb+Qxy+PaxQxy
t3 = 1+Qba

The multiple overlap of t2 ll-m3 t3 cannot be removed, since the most general unifier {x<—a,
y<—b}of this step is also responsible for the factorization of tz.
With factorization of monomials the following deduction with single overlaps IS possible.

m1 "ml ml  '(with an I critical pair)

t lmrn l ' t l  ‚ _ml ' IZ 'F  m4t4=1

with m1' = Pab, t1' = 1+Pyb+Qxy+Pbxy, t2' = 1+Qxy

In order to generalize lemma 3.6 to full first order logic, we have to-prove the following I

W (Lifting lemma for N-superpositions)
Let {'‚y' 6e cfause terms and [et m' 6e a nwnomiaf suefi tfiat if II—m. y'  fiofifs. Suppose
tfiat :( and m' are instances of dense terms :( and m, respectivefy. ‘Ifien tfiere is a clause

tern: y sacfi tfiat y' is an instance ofy andxlt—my fiofiis.

Proof: .
Analogous to the proof of the lifting lemma for resolution, cf. e. g. Chang & Lee (1973).

Let ‘0 lie a first order clause term. If tfiere is a set Cj=(g1—>0,..., g„—)0} qffM-rufes, suefi tfiat

{DIP-1%. . . . " -
81132  Sa t“

and tn is a inonomiaf, tfien tfiere are tI',..,tn' and a sufiset 9f={fi1——)0,..., fin?) 0} of g

sucfi tfiat '

[ 0 | -  h l  t l  l -hz . . .  l-

and t"I is a morwmiaI sufisuming tn.

10



Proof:

The lifting lemma is used to generalizc the proposition of lemma 3.6 to arbitrary "terms. I

Let C _Ee a set of clause rules and D 5e an ill-completion refutation, Le. a completion
deduction of tfie equation 1=0 following tfie Mstrategy. ‘ITten tfiere is an fill-refutation
D'  sac/t that each ®'-step is a D-step and all superpositions result from single overlaps.

Proof: _ . € _ . ._ .

. we show that a N-completi_on refutation can be decomposed completely into chains that satisfy
the assumptions of 3.9. '
a) is an N-refutation, hence one partner of each superposition is a monomial. If t is a non
N—term occurring in the deduction, then t can only overlap with N—tetms. Let

tII—t1 ll— u— t1n .
be the chain of all superpositions starting with t occurring in CD. If tn #1, then the whole chain
is redundant. Hence assume trl = 1. Let tk be the first monomial in this chain, which exists,

' since th is  a monomial. Then, obviously, the chain tll— t1 ll- ||— tk satisfies the assumptions of
lemma 3.9 and we can delete all multiple—atom superpositions from this chain With resulting
term tk' subsuming tk. Since 9) is completely composed of these chains, we obtain an
N-refutation fl. I

I fling rule afitainecl Ey supcrposing two rules Eelonging to clauses C and D, respectively,
Ey means qf a single overlap is a clause rule anal tlte clause Eelonging to tltis rule is a
resolvent of C and Q).

Proof:
Let m—>O be an N—rule and t-)0 a clause rule, such that there is  a single overlap of m and some
monomial of t.

The N-rule is of the form ql...qn—>0 corresponding to the clause C=—-Q1v...v—.Qnand the
other rule can be written as (1+r1). . .(1+rm)sl. . .sk—>0 corresponding to the  c lause

D=R1V...VRmVfiSI...VfiSk.
a) If the overlap is on a pair (qi, sj) then no divergent critical pair is possible.
b) Now suppose the overlap is on some pair (qi, rj) with mgu 6. W.l.o.g let i=j=l. Then the
rule .

(1+r1) . . .  (1+rm)s1...sk-—>0 can be written in the form r l f  + f ——>O where f= (1+r2)...
(1+rm)s1...sk. The only resulting N-critical pair is

((fq2”'qn)990)9

which results in the rule
((l+r2)... (1+rm)s1'...skq2...qn)0 —-> 0.

l l



This rule corresponds to the clause
( s . . . vv—uSl . „v—‘Skv  -1Q2v . . . v—1Qn)6 ,

with Ge mgu(Q1,R1), and this clause is a resolvent of C and D. I

3.12 Corollary:
Suppose D satisfies tlie conditions of 3.10. Then the M-refutation rD corresponds to a
resolution refutation Ey removing multipfe overIaps.

I

4. Reduction in Terms of Resolution Inferences

In the previous section we proved that each N-completion refutation can be simulated by a
resolution refutation. So we analysed the superposition process of the N—strategy (and
THEOPOGLES of course) in terms of binary resolution without considering simplification.
But the process of rewriting (simplification, normalization) is the most important inference rule
of any Knuth-Bendix like algorithm. While the completion process adds new rules to the
system, normalization simplifies rules and removes redundant rules. So simplification

' guarantees a minimal representation of the problem.
This section concerns the question how the rewriting mechanism can be translated into rules
known from resolution based theorem proving. We first provide the basic definitions, and then

we analyse the reduction steps locally.
In 2.1 and 2.2 we gave a rough definition of rewrite rules and the reduction relation. Now a '
refined definition is given. ' ‘

41  ' ' W
a) Let p=hd(p)+tl(p)=() be a polynomial equation. hd(p)—9 tl(p) is a rewrite rule w.r. t .
p=0, iff hd(p) i s  a monomial and each atom occurring in tl(p) also occurs in hd(p)..

b) Let p,p' be polynomials and Si be a set of rewrite rules. The rewrite relation :9, is defined
by; p :9, p' iff there is a rewrite rule hd—) tl in 9? and a substitution u, such that

P H‚km-m,“  P ' -

=>} denotes the reflexive and transitive closure of :9, . .
c) A polynomial p is called irreducible (w.r.t. ER) , if there is no p', s.th. p :“ p'.
p' is called a normalform of p, iff p =:f"SR p' holds and p' is irreducible.

Our notion of rewrite mles covers the rewrite rules defined by Hsiang (m—>O , L—->l) as well

as those of THEOPOGLES (m—>O, L—>1, L*m—->m ). Kapur & Narendran (1985) additionally

use an ordering on the set of atoms, which renders their system more complex. Our notion can

be seen as a specialization of Kapur & Narendrans’, using a simplification ordering. The
notion of parallel reduction is taken from the THEOPOGLES system. The common definition

12



provides a rewriting-of only one monomial in a given polynomial. Thus the reduction relation
above can easily be seen as a multiple application of the usual one. Note also that this system
allows equations that are not transformed into rules.

' mfrnitign 4,2: ‘ _

a) Let G={pi=0} be a set of polynomial equations.
The pair (R,E) of rules and equations is  a KB-system w.r.t. G,  if

R={hd(p)—)tl(p) / hd(p)—>tl(p) is a rewrite rule w.r.t. p=0 in G}  and

E={p=OEG/there 1s no rewrite rulew.r..t p=0} , -
b) A KB--sytem (R,E) rs interreduced, if p is irreducible w.r t R for every equation p=Oe E
and hd+tl rs irreducible w.r. t. R\{hd—)t1} for every rule hd—>tle R.

An interreduced KB-system can be obtained from a system (R,E) by applying successively the
rules in R to the polynomials of the system. The interreduction steps together with the
completion steps discussed in section 3 define a complete proof procedure (cf. Müller (1988)).
Now we try to interpret reduction steps in terms of resolution inference steps. First an example
is given showing that not each reduction of a clause polynomial by a clause rule results in a
clause polynomial. Then the following lemma gives an idea what we can expect in reducing a
clause polynomial by a clause polynomial rewrite rule. Afterwards an example is given, where
a clause polynomial is transformed into a clause polynomial by a sequence of reduction steps,
but there cannot be any direct simulation in the resolution calculus.
Sometimes the resulting polynomial corresponds to a resolvent of the two clause rules. In
many cases the result is  not a clause polynomial, but a polynomial representing important
information, which cannot be achieved by any resolution steps.

4.3 Example:
Consider the clauses C 1' = —\P v Q and C2 = P v —.Q. Possible resolvents are _.P v P and
Q v —Q, which are tautological and thus usually eliminated (see sec. 5). The corresponding
rewrite rules are P * Q —-> P and P * Q «) Q, respectively, and here interreduction will delete
P * Q —> P and create the new equation P + Q = 0. Now P + Q is neither a clause polynomial
nor is it tautological. Moreover P + Q = 0 provides the explicit information, that P and Q must
be equal under all possible interpretations. Since in the KN-method an ordering on the atoms is
used, the rule P -—> Q is generated, which has the effect that all P’s are replaced by Q’s.

4.4 nrnitjgn: _
Let p and q be clause’polynomials corresponding to clauses C and D, respectively. We define
the relation S by

q,  iff C is a subset of D.

13



imam;
Let p‚q 5e clause polynomials amllicl-étlfie a rewrite rule w.r.t. q=0. p =>[hd—nl]  p' holds,
tfien p '  = QMQH u.(q)"r, for some clause polynomial r witli r.<.p and some sufistitution p .

Proof:
Let u be the substitution used to rewrite p into p'. Let m be the monomial ”(hd). Then all
atoms of m occur in p .  Let p = Pl" 'Pn (1+Ql )“ ' ( 1+Qm)  and let w.l.o.g. m= P1..PiQ1..QJ-.
Then

p = P1...Pi(1+Q1)...(1+Qj) (Pi+1...Pn(1+Qj+1)...(1+Qm)).
Let r be the clause polynomial Pi +1. . .Pn(1+Qj +1) . . . ( 1+Qm) .  Then we have

p = (Pl..Pi..Qj + s) * r = (m+s)*r = m*r+s*r,
where m does not occur in s*r. Replacing m in all monomials of p by u(tl) yields

p' = BNF(u(tl) *r+s*r )= BNF(p + m*r + u(tl) *r) = BNF(p + (p.(hd)+p.(tl))*r) =

BNF<p+ u(q)*r).

&.filammm .
Let 13,41 6: cümse polynomials wit/t equal sets of atoms. If p+q is a clause polynomial, tfwn
tfierc is an atom ‘.P und a clause polynomials, sucfi tfiat p=’.Ps aml q=(1+’_P)s.

Proof:
Let A be the atom set of p. Let r=p+q. If each Pe A occurs in p with the same sign as in (the
clause represented by) q, then p=q and r=p+q is no clause polynomial. Hence there must be
Pe A occurring with different sign in p and q, say p=Ps and q=(1+P)t, where P does not

' occur in t nor in s. Then we have r = p+q= t+Ps+Pt. If P occurs positively in r, then Pu = r =
. t+Ps+Pt, hence t = Ps+Pt+Pu and P occurs in t, which is a contradiction. In the same way we

Obtain a contradiction, if P occurs negatively in r. Hence P does not occur in r, hence neither in
r+t. But from r+t = Ps+Pt now follows that Ps+Pt=0. This implies P(s+t)=0, and since P does
not occur in 8 nor in t we obtain s=t and p=Ps and q=(l+P)s .  ,

I

iiyama; ' - _ _ -_
Let p‚q 6e clause WW corresponding to tfie clause C, 1), respectively aml let lid —-> tl 53'
a rewrite rule w. r. t. q=0.
Iftfis reüm'onp =>{M—) if]? fiolils, t/ien

i) p = 0, tficnsußsumesC.
ii) I f ’p is a clause polynomial witfi clause RC, tlien RC is a resolvent of C and D aml XC

. sufisumes C.. _

14



Proof: -
.Let 11 be the substitution used to rewrite p into p' and let m be the monomial u(hd). Then all

' atoms of m occur in p.
i) According to 4.5 we have p' = p+|‚1(q)*r = 0 with a clause polynomial r, hence p = u(q)*r.
From this follows that MD) is  a subset of C, i.e. D subsumes C. _

ii) According to 4.5 we have p' = p+u(q)*r, where the atom sets of p and tt(q)*r are equal.
Hence the conditions of lemma 4.6 are satisfied for p and u(q)*r. From 4.6 now follows that
there is exactly one atom P occurring with different signs in p and u(q)*r, say p = P*s and
u(q)*r = (1+P)*s. Furthermore 4.6 implies rSp, hence (1+P) cannot occur in r. Thus
u(q)=(1+P)s_' with s'Sp. From p'=s now follows. that the clause XC belonging to p' is the
resolvent of C and D on the literal P, and sSp implies that RC. subsumes C. _ . I

Lemma 4.7 charaCterizes the rule p' resulting from interreducin g a clause rule p with another
claUse rule: Either p' is a clause rule, and in this case it represents a resol'vent of the two
clauses, which subsumes one parent clause. This combined resolution and subsumption
deletion step is called “replacement resolution” (K. Markgraf 1984). If r is not clausal, then
either r=0, which corresponds to a subsumption deletion step or otherwise there is no
correspondence on the “resolution side”.
However, as the following example points out, interreduction behaves very differently from
N—superpositions: In section 3 it was shown, that sequences of N—superpositions can be
translated to resolution steps. This is  in general not possible for interreduction, which allows
rules other than N-rules.

4.8 Example
LetS=  {PVfiQVR,—|PVQV-1R,-1PV- |Q,QVR,PV-1R}.
This clause set corresponds to the following set of rewrite rules _

IE=  {PQR—> PQ+RQ+Q, PQR——>PR, PQ—>0, 'QR—>Q+R+ 1, PR—>R}.
_ With interreduction steps only we obtain a deduction of 1:

PQR+PQ+RQ+Q =>tPQR—»PR}  PR+PQ+RQ+Q

=>{PQ_,0] PR + RQ + Q

=>{PR_,R}R+RQ +Q
=°{QR -»Q+R+ '11

However, S does not admit any resolution refutation consisting of four steps only. Hence, this
deduction cannot be translated into a resolution deduction.
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5. Resolution Inferences in  CTPs

Kapur and Narendran (1985) showed that each resolvent of two clauses C1 and C2 can be
generated as a clause polynomial from the corresponding clause polynomials pcl , PC2 of C1,
C2 by a completion step in the KN-method. The same is true with factors. If C is a clause and
FC is a (binary) factor of C, then the corresponding factorpolynomial can be generated with an
I-critical pair of PC and x*x—)x. Their results can easily be stated in our framework, provided
that the generated resolvents are not tautologies nor mergeclauses. The reason is  that merging
and tautology elimination are performed in all CTPs implicitely. So  we first consider the
computation with the axioms of the underlying boolean algebra, i.e. the computation of the

BNF of polynomials. Then we will give the results analogous to the KN-method. Finally we
show that the subsumption rule can be simulated by interreduction.

1 mm °
} If C is a tautological clause tfien tlie corresponding polynomial pc in ‘BM is 0.

Proof: ”
Le tC=L1vL2v . . . a .
Since C is tautological, there are complementary literals in C,  i.e. Li = L and Lj = —L.
W.].o.g. let i -—-_ l ,  j = 2.
Then (C.)(p (L)(p *(—-.L)tp *(L3 v v Ln)(p

= (L+1)*L*(L3v . . . a ) t p

= (L*L + L) * (L3 v v Ln)(p

= (L+L)* (L3v . . . a ) t p  by x*x=x
= 0*(L3v . . . a )q>  by x + x = 0
= 0 by x * 0 =0

According to the definition of 3R and the critical pairs, the derived polynomials are in BNF.
Thus, whenever a polynomial p is generated, which corresponds to a tautological clause it has

to be 0. So the inference rule of tautology elimination in resolution ATP’s is part of CT P.

If clauses are not taken as sets in a resolUtion system, there may be multiple occurrences of

literals in the generated resolvents. Those clauses are called merge clauses and are replaced by
the clauses where multiple literals are deleted. This inference rule iscalled merging and is also

part of CTP in a natural way. .

5.2 Emma:
Let C1 fie a merge clause and C2 tfie clause derivedfrom C1 5y deletion of multiple occurrences

of literals. ’Ifien die compomfing polynomial Pc w.r. t. C1 is :5: same as for CZ.
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Proof.
Let C1 «"-“LI VLZV a .
Since C1 is a merge clause there must be multiple occurrences of literals.‘W.l.o.g. let L ]  = L2
be the only one. Then C2 = L] v L3 v... v Ln.

(Cm <p * (L2)q> * (L3 v ..; v L„)<p

(LIN) * (L3 V V Ln)(p by x*x = x and (L1) (p  = (L2)(p

.(C2)‘P I
II

. .

Since derived polynomials are in BNF, no multiple occurrences of literals'are possible and
hence the merging inference rule is implicitly in the CTP.

Let C1 , C"2 5e two chases, suefi that C1 only contains negative [itemis and m——>0 and Huf—uf 6e
the con-espomfirg rewrite rules for Cr , C2 respectivefy. If RC is a Binary resofvent for C1 , C2
1111c is not a tautology nor a merge clause , tfien tire rewrite rufe &“p Mp“) for ERC

mufts from a superposition from rn—>0 amf Hai—> t[.

4 ll
1 Let C 6e a-cfause containing only nagative [iteraLs and [et m—-)0 [va die corresponding rewrite

rufe. If TC is a Binary factor of C and ‚TC is not a tautofogie nor a merge douse, tfien the
rewrite rufe mYC—cßr TC resuftsfrom a I-criticalpair rim—)0.

Whereas tautology elimination and merging ignore the context of other clauses, the
subsumption rule is context sensitive. It says, that a clause C can be deleted from a set of
clauses S,  if there is another clause D in S and a substitution u, s.t. MD) ; C. _
We now show, that deletion of subsumed clauses is also accomplished by the interreduction
rule.

5.5 Emma:
' Let C1, C2 5e two chases, neitfier tautofogicaf nor merge chases, s.t. C1 sufisumes C2 .

If p 1’ p2 are tät corresponding douse pofynomiais w.r.t. CI'CZ t/ien the rufe. M(p?}—> day?)
is efiminated Ey interreduction.

Proof: .

Let NCl  = {L1,...,Li}, NC2a = {L1',...,Li'}, NC2b = {L'n+1,...,L'n+j] and
NC2 = NC2a U NC2b be the sets of negative literals in C1,C2, respectively.
Further, let PC1 = {Li+1,. . . ,Ln}, PC2a = {L'i+1,..„L'n}, PC2b = {L'n+j+1, .„‚L'm} and

PC2 = PC2a U PC2b be the sets of positive literals in C2 and
u(NCl U PC1) = (NC2a U PC2a) for some substitution 1.1, which implies MCI)  ; C2".
The corresponding clause polynomials are:
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pl=Hx * Z Hy
sCl acPCI yea.

=Hx * Hz+Hx*ZHy
xaNCl zePCl . sCl otcPCl yea

Then hd(p1) —> tl(p1) is:

HX *nsny
xeNCluPCl xeNCl acPCl yea

pz=Hx*  ZHY
xeNCz acPCZ yea

=Hx*Hy*XHz*ZHu
sCZa yENCZb a: PCZazea. flEPCZb usß

=HX*HY*2H“+
xeNC2auPC2a yeNC2b flcPCZb ueB

Hx*ZHz*Hy*Z Hu
xeNCZa acPCZa 2w yeNC2b ßGPCZb ueß

Since p(NC1 U PC1) = (NCZa U PC2a), we have p2 =*=> { hd(p1) _, t1 (P1)  p2'‚ where

pawl—Ix? Z Hy) * Hy * Z H“ '
xeNCl a=PC1 yea yaNCZb flEPCZb ueß

HX*ZHZ*HY*ZHU
x£NC2a acpcza m _yczb fl§PC2b usß

=H#*'2Hz*Hy*ZHu +
sCZa a=PC2a zent yENCZb BEPCZb ueB

Hx*ZHz*Hy*Z Hu
xeca acpcza zeu. .yeNC2b nczb ueß

by |.1(NC1)=NC23 and p(PCl)=PCZa
=0 by x + x = 0 .

So p2' is 0 and according to the interreduction rule, the rule hd(p2)'—> tl(p2) will be deleted.
I

And

Since interreduction is performed on the set of rewrite rules until all rewrite rules are
"irreducible", a CT P will eliminate all those Clause polynomials whose corresponding clauses

' are deleted due to subsumption in a resolution ATP. '
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6. A well-suited Datastructure for Implementing CTPs -

In implementing CI‘P’s various problems concerning efficency in time and space arrive. One
problem is to "find a good representation for the polynomials and the second point is to

'minimize the time complexity for the search of possible reduction and completion Steps.
Further, it should be easy to incorporate modifications of the inference mechanisms and to
adopt heuristics and control strategies. The Solutions presented here consist of a structure
sharing approach and a graph concept in analogy of Kowalski’s Connection Graph Procedure
(Kowalski 75). '

A D' s ctur for P t Pol n mials
Datastructures for atoms are discussed by Boyer & Moore (1972),  _Paterson & Wegman
(1978) and Corbin & Bidoit (1983). As unification i s  the basic operation for the generation of
critical pairs, the datastructure for the atoms basically depends on the unification algorithm to
be used. Full structure sharing with dags (directed acyclic graphs), as it is proposed by
Paterson and Wegman, or partial structure sharing with dags (Corbin and Bidoit,) seem to be
best. It is well known that the algorithm of Peterson and Wageman is of linear complexity but
because of the big overhead only practical when large atoms are to be unified. On the other
side Bidoit and Corbin’s approach is quadratic in general but the overhead is acceptable. So we
will use only partial Structure sharing, that is atoms are represented as a dag, where each
variable and each constant is only represented once.
W The atomP(a . f (a ,g (x .b ) ) . g (x  ‚g(x y) )) f(y a))  lsrepresented as

%
/ \  ./°\ / \A‘s

Constructing partial dags is straightforward, especially when LISP is used as implemen-
tation language, because then constants and literals are stored only once and the pointers are
constructed by the interpreter.
Polynomials are defined as the sum of destinct monomials, but usually atoms have multiple
occurences in a polynomial. For example in the polynomial
P l ( x1 , f ( c l , c  l ) ,  f(x1,x2)) * P2(a,g(x2,cz,x3)) * P3(x3,x4,g(f(x4,x1),c1,c3)) +
P (x1,f(cl,cl), f(x1,x2)) * P2(a,g(x2,cz,x3)) +
P2(a,g(x2,cz,x3)) * P3(x3,x4,g(f(x4,xl),cl,c3)) +
P3(x3,x4,g(f(x4,x1),cl,c3))
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one atom occurs two times and the others occur three times. In using the structure sharing idea
from above, we represent each atom only once and use pointers to the skeleton of the
polynomial to mark their place. In detail we will represent the polynomial as in the following
diagram:

W-—_——+-— +-
P"  ‚"

_1=3_111i n

E......— Er '—-—-—'

Each atom in the polynomial is represented in a atom list only once and there are pointers from
each atom to the occurenccs in the polynomial and vice versa. The stoned squares stand for
terms and the sharing of common variables and constants is extended, s.t. even different atoms
may share the same elements. Since polynomials may be used as rewrite rules or as equations,
there is a block with specific information (INFO) about the polynomials. There we may give a
number to the polynomial, specify whether the polynomial is treated as an equation or as a
rewrite rule, and if it i s  a rule, where the left hand side is.  In the diagram above the first

monomial is selected by the link from INFO to be the left hand side of the rewrite rule
corresponding to the polynomial. The backward pointers from the skeleton to the atom list
mark the atoms of the left hand side. Instances of these atoms have to be found to perform
reduction steps and to generate critical pairs. How this problem ls solved will be shown in
following paragraph.

Th P 1 mi 1 r h
As in all Theorem Provers, the search for the objects to apply a given inference rule at is very
time consuming in C'I'P’s. In the Resolution context Kowalski (1975) proposed a clause graph
where complementary literals are connected by an link and so all possible resolution steps were
made explicit. When a resolvent is generated the link between the literals resolved upon is

”deleted and the resolvent is incorporated in the graph by inheriting the links of the father
clauses. ‘
In CTP’s we would have to connect all atoms which are unifiable 1n all polynomials to get the -
desired informations. With the datastructure from above only the atoms in the atom lists of the -
polynomials have to be connected and since we want to avoidunnecessary computation bf
unifierers and matchers, all atoms with the .same predicat symbol have to be connected by an

(initial) link. This a graph as illustrated below is constructed.
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The next step to improve the Structure depends heavily on the special method to be used. To be

more preCise, applying a rule, means, that only the left hand side atoms have to be matched

against all otheratoma performing superpositions only the left hand side atoms have to be

unified (as singletons or as sets) with all other atoms or with only those which are also left

hand side atoms. Thus we give the idea of the improvement which has to be adopted to the

special procedure. _
Links spreading from the list of  left hand side atoms can be splitted into U-links (unification)

and M-links (match) depending on whether the corresponding atom is also a left hand side

atom or not. For example in the approach of Kapur and Narendran all overlaps of only left

hand side atoms are generated. Hence the initial links between lhs atoms are splitted into U-

and M-links, those between lhs atoms and others are changed into M-links and all others

remain as initial links. In the case of Hsiang only overlaps between rules of the form m->O

(N-rules) and all other polynomials have to be considered, hence only U—links from the atoms

of N—rules have to be created to all other atom lists. . '

The following sequence of diagrams will demonstrate how to work with the links. Figure a)

shows the graph from above when the initial links are splitted into U-links (dark) and M-links

(light). So each potential reduction and overlap situation is explicitely represented.

Figure a) Links after. splitting

When U-link 2 is checked for unification it is noticed that there is no unifier of Rcy and Rba

and thus the U-link is deleted. Further, since the atoms cannot be unified they cannot be

matched either, and the M-link is  also deleted. Checking M-link 1 for matching, results in

deleting it because of unmatchability. The resulting graph after these two checks is figure b).
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Figure b) Graph after deleting redundant links

Now considering U-link 3, there is the possibility for critical pair generation. Suppose that no
atom with P as predicate symbol occurs in the generated polynomial (atoms are Rcw and Qb).
U-link 3 is  deleted, which means that the corresponding overlap is performed, and three new
initial links have to be created. Link 6 and 7 are the links between the ancester atoms of the
original atoms and their instances. Link 8 is the inherited from link _5.
A datastructure has been described that reduces the space for representing first-order
polynomials drastically without increasing the overhead of management. The datastructure is
further used to define a polynomial graph that makes searching for potential reductions and
overlaps superfluous. By deleting and inheriting links the graph allWays represents all possible
occurences of inference rule applications in a CT P that have not been considered yet. The

Figure c) Graph after completion step on U-link 3

proposed datastructure together with the polynomial graph is  implemented in the CTP
THEOPOGLES, described by Miiller (1987) and is  used there to realize various proof
strategies by ordering the list of U—links in different ways.

'6. Conclusion

We investigated several open-problems in the framework of Completion Theorem Proving, i.e.

the unnecessity of multiple overlaps, the relation of completion and simplification. in terms of
resolution inferences and vice versa and the tractability of polynomials in CT Ps. It has been
shown, that multiple overlaps are not necessary for the completeness of 'CTPs and moreover,

that they may lead to longer refutation proofs. Simplification of rewrite rules by interreduction
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was partially identified as simple resolution steps or subsumption deletion steps. However, as
non-Clausal rukles may be generated in the interreduction process, there is no one—to-one
correspondence between interreduction and. deduction.(or reduction) rules known from
resolution based theorem proving. But ignoring those intermediate nonclausal rules results in a
transformation of CTP refutations to resolution refutations. The difficulties of managing
polynomials in an implementation of CTPs were solved in introducing .a well-suited
datastructure that supports a fast application of the CT P inference rules.
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Appendix:

This appendix contains some remarks concerning the completeness of Hsiang’s N-strategy and
especially the BN—unification (cf. [Hs 85b]). In [BD87] Bachmair remarks, that the
completeness of the N-strategy is still an open problem. The reason is, that Hsiang’s proof
applies only to the propositional case (without reduction); he suggested that the first order case
could easily be deduced with a lifting lemma based on BN-unification. However, the
N-strategy using BN-unification is not complete as the following example shows.
Consider the clause set S={Pax a,  —-Pay -ta}.  The corresponding set of rules is
R={Pax*'a + Pax +_ a + l —> 0 , Pay*Pya->O]. Now the simplification of the first
polynomial with the second rule gives R: {Pax + a + 1 -> 0 , Pay*Pya->0}.
BN-unification yields three different critical pairs, all of which are trivial. We have.
( Paa*Paa + Paa , 0 ) from the unification of a and Pay (Pax , Pya resp.)
( Pay*Pay + Pay , 0 ) from the unification of a and Pya
(Pya*Pya + Pya , O ) from the unification of Pax and Pay.
According to the (normalizing) rules of BN the equation X*X+X=0 holds and thus the critical

pairs are trivial (ite. they reduce to ( O , 0 ) ) and the N-strategy stops with “consistent”. But S
(E reSp.) are obviously inconsistent.
Well, one might argue, that simplification and normalization should not be done in such
rigorous a way to preserve the completeness of the strategy. Yet, the problem is a deeper one.
Hsiang defines BN—unification in the following way:

Two monomials m and m’  are BN-unifiable, iff there are monomials u,v and a substitution
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u, s.th. |.L(u*m) = u(v*m').

This problem is properly treated by his BN—unification algorithm. The point is, that we have to
work with the theory introduced by the BN rule system and therefore we have to take “=” not
as the syntactical equality, but as equality modulo the boolean ring theoryff'his gives:

Two monomials m and m’ are BN-unifiable, iff there are monomials u,v and a substitution

u, s th „(um =BN u(v*m').
Or equivalently: '

Two monomials m and m are BN-unifiable, iff there are monomials u,v and a substitution

ll, 5 th u(u*m) = *_>BN W BN<* = u(v*m )
That 13, either we may treat the atoms in m and m’ as sets and perform unification of atom sets,
as it is defined in the early Robinson unification algorithm T or we have to perform an explicit
factoring, that is unification of atoms within a monomial, as it is done later in Resolution
theorem provers. The BN—unification algorithm only finds parts of all possible factoring
substitutions. In Kapur and Narendran’s approach the factoring process is captured by the
overlap of monomials with the BN—rule x*x->x. In [Mii88] we show that in the final version
of THEOPOGLES explicit factoring is also necessary and that factoring the N-rules is
sufficient to guarantee completeness.

T J.A. Robinson, A Machine—Oriented Logic Based on the Resolution Principle, JACM 12 ( l ) ,  Jan.1965, also

in Automation of Reasoning Vol.1, (Eds.: J. Siekmann, G. Wrightson), Springer, Berlin 1983.

Note, that Robinsons first versiOn of the paper was rejected in 1963 essentially for the same reasons discussed
above.
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