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Abstract:

The use of COBOL for program verification leads to some special problems
enforcing the restriction of a verification system to a small subset of the
language. This report describes the language Ass Cobol. a subset of the
COBOL standard from 1974. The semantic of this language is given by
translations of the language constructs into PASCAL statements. Based on
this semantic, a system of Haare-style inference rules is  constructed and its
correctness is shown.
Two examples demonstrate the complexity of the correctness proofs even
of small Ass Cobol programs.
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in  this paper we will describe a method for the Haare-style verification of
formally specified COBOL programs. The language being accepted by the
system is a subset of the ANSI standard from 1974, enriched with an
assertion language and a structuring concept. We will call this language -
Asserted Cobol (Ass Cobol). The use of COBOL as input language should be
justified by its wide application and high standardization, but it implies also- --
some peculiarities enforcing the restriction of the accepted language to a
subset of COBOL.

One of the characteristics of COBOL is  its large size making it impossible to
verify all COBOL constructs. The language design is  organized into a kernel; ‘
the so called nucleus and some extensions. We restricted the input language
Ass  Cobol to an essential subset  of the nucleus, which contains the most
important features of the language.

Another feature of COBOL are some ‘dirty’ language constructs-Which Would
render verification very difficult. These are eg. uncontrolled jtimps.
dynamic alteration of program code and implicit type transfermations.
These constructs are not allowed in Ass Cobol. -

The language COBOL was designed primary for commercial use. Hence some
of the main issues of COBOL are input/output and string manipulation. But
the very power of . Haare—style program: verifiCation: lies: . in? the
representation of the logic structure of; computer programs. Hence the
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questions of formatting, input/output and string manipulation are not
completely treated by our COBOL verifier. Perhaps problems of this Kind
could be solved in a more elegant (and cheaper) way by code inspection and
testing than by program verification.

So why then should we be interested in the verification of COBOL programs
anyway? The answer is somehow similar to the "apologia" in the FORTRAN
Verification report [BM 80]. where the authors spend considerable effort on
the justification of the choice of such a "dirty” language. The same-
arguments apply here: COBOL is certainly a language that does not live up to
present day software engineering standards, it is even less suited for formal
verification and in fact should have been replaced by more advanced
programming languages years ago. But it was not! A lot of business
applications are still programmed in COBOL and they will also be in the next
future. Another argument for the use of COBOL are some important security
issues in the area. where COBOL is mostly used. like access rights on data
bases.

The semantics of COBOL is nowhere formally defined. For our purposes we
have transformed the informal semantics description of the ANSI report
into equivalent WP or PASCAL constructs. WP (While Programs) is a
programming language defined in [Ba 80], which consists of some of the
most common programming language constructs (see 2.). The axiomatic
semantics of PASCAL is described in [HW 73].

t'on=

N is the set of natural numbers
x,y,z integer variables
a.b,c string variables
Li index variables
all] is the'i—th element of the array a (array selection)
r.b is the record selector b of the record r
r record variables
k.m.n constants
L labels
t terms
My) length of the integer variable x (Le. number of digits)
ula) length of the string variable a

- 2 . . .



};(x) upper bound or the array 1.
varlp) Is the set or all variables occurlng in p (a var-table ! does not.

occur in the term Mill.)
freelp) is the set of all variables occuring free in p
pit/x] is the result. of substituting in p all occurences of x by t

WP is a programming language with the constructs:
y===x assignment
31;.32. concatenation
if ' b then 51 else S2 f i alteration
while b do S 06- while
These constructs have the follwing axiomatic def  mim-ns;

{DIY/11} W? {p} .

(p A b} S1 {q}; {p  A ab} 32 {q}  "

{9} if b then sI else 32 fi {q}

{p A b} S {p}

{p} “While b do 3 od [p „. „|_—‚}.

3 ,  Syntax 0! Ass-Coho]

The language Ass Cobol consists of the language Cobol and the assertion
language Ass.

3.1. The Language 2912 91

The language Cobol is a sub-set of the standard version of the ANSI from
1974  [ANSI 74] .  An ANSI-COBOL implementation consists of modules of the
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following list:
— Nucleus
— Table Handling
- Sequential I/O
— Relative 1 /0
— Indexed l /O
- Sort—Merge
— Report Writer
— Segmentation
- Library
— Debug
- Inter-Program Communication
— Communication
From this list all modules except the first three are optional. These modules
all  have up  to  two levels.

3.1.1 The Block Structure

Ass Cobol has a block structuring concept to facilitate verification. This
concept provides the following features [Flo 74]:
A COBOL program consists of units, the so called program components which
have the structure

{Component name SECTION}
sequence of statements
EXIT (PROGRAM) resp. STOP RUN.
sequence of paragraphs describing so called elementary components

Hence the possible components are
- the main program which is terminated by STOP RUN. Formally it is a

section or a sequence of paragraphs.

- a procedure which may be called by CALL. Such a procedure is
terminated by EXIT PROGRAM. I t  is a nonrecursive procedure with
call-by-reference parameters. Global variables are not allowed within this
kind of procedure. These procedures are compiled separately from the
main program. They have the same formal structure as a main program
except the USING clause and the LINKAGE SECTION. We name this kind of
procedure call—procedure.

- a procedure which is  called by PERFORM. This kind of nonrecursive
procedure has no parameters and communicates with the main program

-4 . . .



Formally it is a section wnlcn ls terminated by EXIT.

— an elementary component. This is  a single paragraph. which may be
called by PERFORM. A single paragraph is terminated by the following
paragraph name.

The two last kinds of procedures are called perform—procedures.

We have added to ANSI COBOL the following restrictions concerning the-
block structure:
- A component always has a main part which comprises the beginning of

the component up to STOP RUN resp. EXIT PROGRAM or EXIT. This STOP
RUN/EXIT PROGRAM/EXIT is the only one in the component.

—-— jumps may not lead out from a component. hence they are. not allowed at
all in elementary components.

In the following we describe the most important syntactic differences
between Ass Cobol and the kernel of ANSI COBOL.

ln  Identification division and environment division the-re are no restrictions.

. 3 I ' 2 ' ID  D'“

Following clauses are not allowed:
- USAGE IS
— SIGN IS
— SYNCHRONIZED
— jUSTIFIED
- BLANK WHEN ZERO
—- the RENAMES clause on level 6-6

Following modifications are made
— a conditional variable may not refer to a data item. which is declared as

FILLER.
- two variables covering the same storage area by a REDEFINES clause must

be of type string (arrays of type string and records having only
components of type string are considered as strings}.

The most substantial restrictions imposed on ANSI COBOL in the data
division relate to the picture clause, which is the syntactic conStruct to define

„ s . .



the type of the variables. ANSI COBOL provides five base types: alphabetic,
alphanumeric, numeric, numeric edited, alphanumeric edited. Ass Cabot
allows only the type alphanu meric, which is called in the following 'string’
and the type numeric. which contains the subtypes ’nat’ and 'int' (real is
excluded). Hence only three kinds of picture declarations are allowed:
PIC (18} X...X (type string). PIC (18) 9...9 (type natural) and
PIC {IS} S 9...9 (type integer).

3.1.22.1 Conditions

Here We have the following restrictions:
- due to syntactic reasons the operands of relations may not be  arithmetic

expressions '
- implicit type conversions are not allowed in relations. i.e. both operands

must  be  either of type numeric or of type string, in which case only the
equality relation is  admitted.

- the class condition (IS NUMERIC/ALPHABETIC) and also
- the Switch Status Condition is  not allowed.

3.1 ‚2.2.2 Statements

The following statements are not allowed:
-— ACCEPT ][ FROM DATE/DAY/TIME
— ALTER
-— ENTER
- INSPECT
- STRING
— UNSTRING
On the other statements we have the restrictions:
Implicit type conversion is not allowed in Ass Cobol. Therefore assignments
may occur only between variables of the same type.
— The ROUNDED clause for arithmetic statements is omitted, because there

is  no type real.
- The CORRESPONDING clause for add and subtract statements is net

admitted.
- The SIZE ERROR clause is unnecessary due to the overflow checks and

therefore omitted.
- Multiple. results in arithmetic set and move statements are not allowed

(eg. ADD X TO Y, Z, ...).



nonele mentary moves are move statements. where sending or receiving
data item are not of a base type. These moves are not allowed, because
they can lead to implicit type transformations. But the base type string in
Ass Cobol is defined as the type alphanumeric together with all group
items (Le. records), all components of which are of type string. Therefore
some kind of nonelementary moves in the sense of ANS-COBOL are
elementary moves in the sense of Ass Cobol. Two data items in a MOVE
CORR statement correspond only. if they are both elementary items

—- PERFORM
In the variant
PERFORM procl [THRU procZ] VARYING i FROM i BY k UNTIL b
of the PERFORM statement the appendix AFTER m FROM is omitted.

- STOP
the variant STOP literal is excluded. STOP RUN may appear only once in a
main program. '

an  I l l  H II' M::llll'i

With the exception of the multiple assignment to index variables (SET LL... TO
n) level 1 of ANS is fully realized. Additionally there is included the SEARCH
statement from level 2.

.1 ' ' io
Variable array bounds are not admitted in the OCCURS clause and also the
ASCENDING/DESCENDING KEY variant is excluded.
The USAGE IS INDEX clause is not allowed. hence there are no so called index
data items.

3 | 3 2 E | D” .

— SEARCH Statement
The SEARCH ALL format is. excluded and the WHEN condition clause may
not be  repeated.

—- SET Statement
Multiple assignments are not admitted (SET 1 J TO M).

3 .115  I'IIEQ' l l

Here we have three restrictions to level 1 of ANS (the USE statement, the
CODE SET clause and the 1 /0  files).



3 I I . IE  II""

Following clause is not allOwed in the file description:
» CODE SET

EL IZE  | D'“

- OPEN
I /O  file is excluded

- REWRITB
relates to 1 /0  files and is therefore omitted

-— USE
this statement (declaration of an error procedure) is not admitted.

A33 is the language of the assertions. I t  is a first order predicate logic
language admitting quantifiers. I t s  syntax is the syntax of COBOL conditions
enriched with the keywords assert. invariant. entry. exit. precondition.
postcondition. let and initial. I t  additionally includes:
— undefined functions and predicates and
- predefined functions and predicates leg. the predicates true, false,

opened and the functions first, rest).

The language ASS is not a subset of COBOL, whence the assertions must be
read over by the ANS-COBOL compiler. Therefore they are formally
comments.

The language ASS has the following clauses:

'- assert

An assert clause must be added to each paragraph, to which a GOTO
statement in the program text jumps. Assert clauses may occur
additionally everywhere in the program text, where COBOL statements
might occur.

— invariant
Each 100p must contain an invariant. L00ps can be constructed with the
following statements:
PERFORM TIMES, PERFORM UNTIL, PERFORM VARYING UNTIL.

- entry und exit



These clauses are optional. They denote precondition res-p. postcondition
for a perform—procedure.

—- precondition und postcondition
These clauses denote precondition resp. postcondition for a main program

or a call-procedure

-—- let
The let statement is the assignment to logic variable (Le. a variable not
occuring in the COBOL program but only in assertions).

initial
This is also an assignment to “a logic variable. It defines initial values for
procedure parameters ( in the case of call-procedures) and for global
variables (in the case of perform-procedures).
The let and the initial statement have a special syntax:-
let x' = x bzw. initial )( =- I .

Syntax: Declaration of the index variable i within the array declaration
OCCURS 11 TIMES INDEXED BY i.

Variables of type index obey the axioms of the natural numbers.

Syntax:
x PIC 8901.) for int and

x PIC 9(n) for nat.
x is a variable with at most 11 decimal digits; in the following the upper
bound of the variable x is denoted by Ms) i.e. Ms) == 10’“n—1. The axioms of
natural (reSp. integer) numbers are valid for numeric variables. Additionally
we have a function out = N 'XN _» N', together with the definitions

Plunder) a false for every predicate P(x) admissible in ASS
cut (Kn) = if xsn then ][ else undef.

Hence
P(cut(x.n)) a if xsn then Pix) else false 2 lin. a Ph).



The type character does not exist in COBOL. Here it serves only for defining
the type string. The elements of type character are 26 letters. 10 digits, the
blank character (denoted by ' ' )  and possibly some other elements of the
ASCII character set.

Syntax: a PIC Xln)
where n is the length of a. which we denote by Ma).
The type string may be  defined as array of character with the length n. The
only relation on strings is the equality relation, which is defined in. the
following way: Let Malun. ttlbl=m and man. Then '

a = b e: Vi lsisn  e all) = bü)  A Vi n<jsm =; bmw" ' .

Additionally we have a substring selection [ . ], so that alj.kl is a string with
[ ali+k—ll if lsksi-ist

(altil) [kl == i
l ' ' otherwise

and a function < . , > : stringxmatxnatlxstring a string (which may be viewed
as a substring modification function) with

[ alkl if lskd or jdcsn
<a,(i,i).e>[kl - { e-[k~i+l] if isksi

l ' ' otherwise

These functions are useful to handle group ite ms which are strings and the
move statement for string variables.

Example:
01  a.
02' al PIC x(n)
02 a2 PIC x-(ml

Then the parser performs the following transformations:
a,  —> a[1‚n]
a2 ——> a[n+1,n+m]

l l l _ .

Syntax: x OCCURS 11 TIMES [INDEXED BY i]
The function < , . > = arrayxnatxexp ——> exp is introduced with the following
definition (exp is the set of COBOL arithmetic ex pressions):



. f s if i= i

<a,[il‚s> ti] = i
l ali) otherwise

We have used the same symbol as for the substring modification function;
there isno danger to confuse the two functions.

mm

Elements of this data type are called group items in ANS—COBOL.

Syntax: If a variable r is declared with a level number s 77 and no picture
clause, it i s  a record variable. The selectors belonging to r are the consecuting

variables with higher level numbers  than 1'.

In  an analogous way to arrays (and again with the same symbol)” the
function < . . > is defined by

[' 5 if i and 1 are syntactically equal-
<r,.i.s> .} = {

l. r.i otherwise

— the condition name clause
“The condition name clause defines a variable, which represents a
condition. The verification system substitutes every occurence of the
defined variable in the procedure division by the according condition.

- the value i s  clause

this clause is viewed as a assignment

- the redefines clause
this clause is admitted only for strings. since otherwise it would cause
implicit type transformations. The verification system substitutes every
occurence of the redefining variable in the procedure division by the
according redefined variable.

In  this section we define a semantics for Ass Cobol by giving to each Cobol
construct an equivalent WP or PASCAL construct. This semantic leads to a

.. “ i . .



system of inference rules for Cobol constructs. The rules DO until D14. D5 and
D6 of [Hoa 71] will serve as a basis for proving the soundness of our axiom
system (i.e. the axiom of assignment, the rules of consequence. composition,
iteration. alternation. substitution and adaptation). For the GOTO statement
we took the inference rule of [Ba 8-0].

simple MOVE (numeric)
Syntax: MOVE {x In} TO y.
Semantic: Let y be a numeric variable with length My). The value of y
is undefined after the assignment if mtv) (resp. nit)?” [ANS 74]. Hence
we have the following deduction rule:

{picut(x. AWN/y] } MOVE x. TO y in}

Due to 4.2 we have
[ plx/y] «as My) if yefreeip)

plcut(x. AWN/y] - {
l 9 otherwise

henoe {pix/y] A 115- My) '} MOVE 11. T0)! to] if Veit-ccm) and
{9} MOVE 1 T0 y {[1} if Wir-edv).

simple MOVE (alphanumeric)
Syuntax MOVE {aln} TO b.
Semantic: Let b be a string variable with the length nib). The above
statement assigns to b the value of a (resp. 11) cut to the length of b, i.e.
it is equivalent to the statement b== all. p(b)]. Hence we have the
following inf erenoe rule:

(p lan,  u(b))/b]} MOVE a T0 b {p}

MOVE for arrays (numeric).
Syntax: MOVE y TO x(i). '
Semantic: Let 1 be an array of length v and let each xii) have the length
1.1. in the case of i>v we define the meaning of the above statement as an
error statement with the inference rule

{true} error {false}
and in the case of isv we use the array modification <a.i.y> whence we
get the inference rule

{isv A p[<x.[i].cut(y,u)>/x]} MOVE y to xli] {p}
The move statement for arrays of strings may be treated analogously.

... 12....



non elementary MOVE

MOVE for group items:
Syntax: MOVE r, T0 r2.
This move statement is allowed only for variables of type string. which
are group items in the sense of ANS—COBOL. Assignments to variables,
which are not of a base type are not allowed.

MOVE CORR:
Syntax: MOVE CORR rI T0 r2.
r, and r2 are variables of type record. Let x be a record element of r„ y a
record element of r2. x and y are said to correSpond. ifl‘ both are of base
type and there exists a sequence sI ..... sn of record selectors, so that r,.s,.

.sn = x and r2.s,. .sn = y. To each pair of corresponding variables in 1'1
and r2 a move statement is performed when executing the above MOVE
CORR statement.
This assignment i s  transformed by the Ass  Cobol parser into a
sequence (MOVE I, TO y.) for each corresponding pair (1,31). '

SET
Syntax: SET i TO {iln}.
This is the assignment operation for variables of type index with the
inference rule

{pH/il} SET i T0 i {p}

S 'ZE ' I  . I'-

ADD. SUBTRACT. MULTIPLY, DIVIDE. COMPUTE
Syntax: ADD x TO y.

ADD 1 TO y GIVING z.
analogous for SUBTRACT und MULTIPLY.

DIVIDE x INTO y.
DlVIDE ! INTO y GIVING z (REMAINDER r).
DIVIDE 1 BY y.
DIVIDE 1 BY y GIVING z (REMAINDER r).
COMPUTE y - t.

Semantic: These statements are equivalent to respectively the following
ones:
COMPUTE y =- x+y.
COMPUTE z = x+y.

.-. 13 . .



COMPUTE y == yfx.
COMPUTE z = y/x . (COMPUTE r .., rem(y‚x).)
COMPUTE z = x/y.
COMPUTE z - x/y. (COMPUTE r - rem (w).)

For the COMPUTE statement we have the following inference rule:
{plcut(t. AWD/Y] } COMPUTE y = t {9}

SET UP BY . SET DOWN BY.
Syntax: SET i {UP I DOWN} BY 11.
Semantic: This state ment is equivalent to

SET i TO i+n resp SET i T0 i—n.

5,3 [3291591 stmct ures

IF ...THEN and IF THEN ELSE
Syntax: IF cond THEN S.

IF cond THEN S1 ELSE 82.
Semantic:
The same as the analogous construct in WP. Therefore we have the
inference rules: (conditional)

{nab} 3, {q}  ; {pmb} 52 {q}

{p} IF b THEN S ,  ELSE S: {q}
and

{pAbl S {q} a pA-nb => q

{9.} IF b THEN S {q}

the labelled state ment and the GO TO statement
Syntax: GO TO L.
Semantic: The same as the corresponding construct in PASCAL; see also
[Ba 80]. Let h a {pi} GO T0 L, {false} A A {pn} GO TO Ln {false}. Then the
inference rule for a labelled statement is:

h => {p,} A1 {s , h => {pn} A.„ {pm,}
{pl} L1. A, L“. A“ {Pu-+1}

.. 14...



GO TO DEPENDING ON
Syntax: GO TO L„  .Ln DEPENDING ON 1.
Se mantle: corresponds to the following PASCAL statement

if x- l  then goto L, else if x-2 then goto L2 else
if x-n goto Llm fi fi.

Inference rule:
p A(X'1)=> p„  ‚p A (x-n)=> pn, p A It {1.....n} =» €]

{9} GO T0 L,. ...‚L“ DEPENDING ON )( {q}

Proof:
We want to prove the correcmess of this rule, given the above semantic,

for n - l  =
Let p A x-l =» p, and p A n l  =9 q. From this we may deduce:

{p A x-1} GO TO L {q}  (goto & consequence)
{p} IF x- l  THBN GO TO L {q} (conditional)
{D}  GO T0 L DEPENDING ON }: (q) (definition of goto depending)

PERFORM (PERFORM THRU) .
Syntax: PERFORM PJ resp. PERFORM P, THRU P“.
P is a perform-procedure with the declaration PS (EXIT). P,...„PflI are

subsequent perform—procedures 'with the declarations P, .S ,  (EXIT).

...,P„.S„(EX1T). In the perform times, perform until. perform
varying statements (see below) we only treat the perform P variant, the
perform P1 thru Pfll variant can be treated analogously.
Semantic: PERFORM P is the (nonrecursive) call of a parameterless
perform procedure with global variables.

There are two possible inference rules for the perform statement.

The first one is  the replacement rule:

{p}  S {q}

{p} PERFORM P (q)

and analogously for the PERFROM THRU variant:

{9} Sp  ...;Sn {q}

{p} PERFORM P, THRU P„ {q}-

.. ‘5"



The second inference rule  is the rule of adaptation [Hoa71]. One

drawback of the the replacement rule, if it is used to generate a
verification condition for the procedure call. is the fact that the whole
procedure body has to be verified each time the procedure is called. To
apply the rule of adaptation, the procedure body is  verified only once

relative to its entry and exit condition. Therefore the rule of adaptation,
which uses the entry and exit  condition of the procedure definition,

seems to be  more appropriate to generate verification conditions, at least

in these cases, where a procedure is called more than once. But  in the

perform times, perform until. perform varying statements we give
only inference rules. which are based on the replacement rule.
Let a be  a list of all variables being set by S (Le. appearing on the left of

an assignment statement in S). if a list of all variables oocuring free in p

and r ,  but not in a or s. The rule of adaptation is:

{DI  PS (EXIT) {r}

{Eli (p A Va (rash) PERFORM P {s}

PERFORM TIMES.
Syntax: PERFORM P (x In} TIMES.
Semantic: Corresponds to the following WP statement:

i z -O .wh i l e  is): doS  , in M od.

with (i) 0 var (3.x) =- @,

Inference rule:

p => flit/i], {r} s {r'[i+1/i]}i fix/il ==; q
, if {i} n free (no.8) - O.

{p}  PERFORM P I TIMES {q}

Proof =
Let p => r[0-/i]. {r} S {r[i+1/i]} and fix/i] ==» q. Then we have the inferences—

{r A in) S.i:=-i+1 {r} (assignment, composition,
consequence)

{r} while in do S.i=-i+l od {r A i-x} (iteration)
{p} i=--O. while is: do S, i==i+1 od (q) (consequence)
{p}  PERFORM P 1: TIMES (q) (definition of perform times)

.. 1G-



PERFORM UNTIL.
Syntax: PERFORM P UNTIL cond.
Semantic: the same as the PASCAL construct. repeat S-until cond. whence
we have the inference rule [HW 73] :

{p}S {q} ; qmbe  p

{p} PERFORM p UNTIL b {qm}

PERFORM VARYING... UNTIL
Syntax: PERFORM P VARYING ): FROM {yln} BY {zl m} UNTIL cond.
Semantic: Corresponds to the following PASCAL statement

1 == y; repeat S; x:—-— 1m: untilcond;

Inference rule:
{P}  S {QIX‘fZ/Xl} l q In b :> p

{ply/xi} PERFORM P VARYING ! FROM y BY v UNTIL b {qAb}

Proof = ‘ ;
Let {p} S {ohm/1]) and q m b = p. Then

{9} Sac-1+2 {q}, q A -b => p (assignment & consequence)
{p ly /x1}  x==y, repeat San-1+2 until b {q ‚. b} (repeat & assignment

& consequence)
{ply/xi} PERFORM P VARYING x FROM y BY ?. UNTIL b {qAb}

(definition)

CALL USING
Syntax: CALL proc USING {x,} r,) ..... {In Irn}
Semantic: The call using statement is the (nonrecursive) call of a
procedure with call—by—reference parameters and without global
variables. Let 8 be  the body of the procedure proc and 1 the formal
parameter list. A premise of the following inference rules is the
prohibition of aliasing. i.e. the actual parameters must be syntactically
different and must also occupy different storage areas. Otherwise we
could construct for the the procedure pix y )  with the body
COMPUTE x - y+l the following inference:

{true} COMPUTE x =- y+1. {anvil} (assignment)
{true} CALL proc USING x y {Kev-ti } (1.)

-1'r-.~



{true} CALL proc USING a a {aw-will 2.)
which is a contradiction.

Analogous to the perform statement we have the choice between a
replacement rule and a ru le  of adaptation. ll“ we want to use the
replacement rule. we need additionally two substitution rules. a
parameter-substitution—rule and a variable-substitution-rtile:
1 .  Procedure-callerulm

{p}  S {q}

{9}  CALL .proc USING ; {q}

2 .  Parameter-substitution-rule
{9} CALL proc USING A {q}

{p[ 51/11} CALL proc US ING-3.1 {dbl/1]}
if nn  free (pn)  s 1

3. Vari-able—substitution—rule=
{p} CALL proc USING U. {(1}-

. if sat-J free (Sin/xi.) .
{Dis/all CALL proc USING midis/2]}-

The variable substitution rule may be necessary to solve name conflicts.
The rule of adaptation [Hoa 71]=
Analogous to the perform procedures we have the following rule. which
is, together with the parameter substitution rule, equivalent to the above
rules. Let p and r be the we resp. postcondition for the procedure P, a
be  the list of actual parameters of P subject to the restrictions mentioned
above (prohibition of aliasing). and let L be a list of all variables occuring
free in p and r, but  not in a or 5 (Le. the initial values of the parameters).

{9} CALL P USING a {r}

{31; (p A Va (ream CALL P USING a {s}

ENTRY USING EXIT PROCEDURE.
Syntax: ENTRY proc USING {all rl}‚.„,{an Ira}.
Semantio procedure declaration for a call procedure.
Inference rule: Let proc be a procedure with body S.
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(p }  S {q}

{p} ENTRY proc USING a. S EXIT PROCEDURE {q}

NEXT SENTENCE
Syntax: occurs in the following state ments=
IF cond THEN {S/NEXT SENTENCE} ELSE {S/NEXT SENTENCE}. and
SEARCH tab VARYING 1 WHEN cond {S/NEXT SENTENCE}.
Semantic: corresponds to the dummy statement
Inference rule:

P =} q

{p }  NEXT SENTENCE {q }

Procedure declaration EXIT
Declaration of a perform procedure
Syntax: P. S EXIT.
Inference rule:

{9} 8 {q }

{p) P. S EXIT {q}
where p and q are entry resp. exit condition for the procedure P.

Program declaration STOP RUN
Syntax: P. S STOP RUN.
Inference rule:

{p} 8 {q }

{p} P. S STOP RUN {q}.

SEARCH VARYING
Syntax: SEARCH tab {VARYING i} AT END 8 WHEN condi S, WHEN
condn Sn.
Tab designates an one dimensional array and i is the corresponding
index variable.
Se mantic= Let I be the length of the array tab. Then the following WP
statement is equivalent to the above search statement:
while (i 5 I A scond, A A ncondn) do i=- i+1 och
if i > l then S else if cond, then S1 else if condn then Sn fi fi;
Inference rule: (here for n- l  )

_19 . . .



( l )  {pAVK:i$KsI=>-.cond[K/i]Ai>I} SBTiTOi.S{q}
(2) { p A isisl A oondli/i] A VK=isx<i => wcondIK/il} SET i T0 i; 5, {q}

{9}  SEARCH tab AT END S WHEN cond S ,  {q}
where {i} n var(p,q‚S) = Q

Proof: We assume ( I )  and (2). First we show:

“(*) { p A VK=i$K<i => «condlxlil } while ( isl A woondli/i] )“ do i==i+1 od
{p A VK=iSK<i => wcondIK/i] A (M v oondli/im

We have
(p A Wiesn—<] =. acondlnli] A is] A 1condli/i1) =>
( p A VK=iSK< M = wondlK/il) ;

hence (from the assignment axiom)

{p A aism j => «condIK/i] A isI A «condlj/i] „'q
{ p A VK:i5K<i => "condIK/i] },

and from the while—rule follows (*).
Moreover we have

(**) p => p A Vmismi = «condIK/i].

From (1) and (2) we deduce with the conditional rule

(***){p A Vmism j => wcondIK/i] A (j >! v cond[j/i] )}
if j>I then i=-i‚S else if condli/i] then i==-i‚Sl fi fi. {q}

From (“)1") und (***) follows with the composition rule

{9}  i=-i;while (i s IA-sc'ondlj/il) do j:- i+l od.
if i>l then i=-i‚S else if condli/i] then i=-=-i‚S‚_ fi fi. {q}

which is equivalent to

{[3} while (i s IA-ucond) do i==i+1 od;
if M then S else if cond then S ,  fi fi. {q}

and from the definition of the search statement we get

{p}  SEARCH tab AT END S WHEN cond 8 ,  {q}.
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These formulae will become very complicated in the case of ml .
therefore a manageable verification system should allow only na l .

— ACCEPT/DISPLAY
Syntax: ACCEPT x .  and

DISPLAY x.
Semantic: input /Output  v ia  terminal.
We adopt the method of [Ma 75]. Each occurence of a statement ACCEPT :x
is followed by an annotation which designates to x an initial value x’, a so
called logical variable, which may occur only in the assertions.
Analogously each occurence of a statement DISPLAY x is preceeded by a
clause which asserts the current value of the output variable x in terms
of its initial value 1'.
Example:

ACCEPT x.
{ let x '  =- x}
ADD 2 TO I .
{assert x = 2+ 1'}
DISPLAY x.

inference rules:

{plx’lxll let x’ - I {p} and

pä fATäq

{p} assert r {q}

- sequential files
Syntax: There are two kinds of sequential files in COBOL: input—files,
Where only the operations OPEN INPUT file. CLOSE file and READ file AT
END 8 are allowed and output-files. where only OPEN OUTPUT file, CLOSE.
file and WRITE record are allowed.

Semantic: A sequential file is described as a sequence d l ,  ...‚fn> of data
records; 0- denotes the empty file ([AA 7-8],['HW 73]). The data records--
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are all of the same type T.

The input file f is given by a pair (fLIR) of type T" x T" (with the
intuitive meaning: fL is the sequence of all records which have been read,

fR is  the rest of the file) and a buffer variable fl of typ T. An output file is
given by a variable fL of type T*and a buffer variable ff of type T.
Besides we have the functions first, rest with their obvious meanings. the

predicate eof. which is defined by
eof(f) a [R = <)

and the predicate opened. The latter allows to detect programming errors

like multiple opening of files, access to files, which have not yet been
opened etc.
= denotes the concatenation of files. -
The standard procedures may be specified in the following manner:

The statement READ file {INTO 1} AT END S is transformed into
_ IF NOT eof(file) CALL read(file); {MOVE ff TO x} ELSE S.

with a procedure read which may be specified by:
entry condition: {opened(f ) A f'=f}
exit condition: {opened(f) A fT-firstlf’n) A fLaf'L-dirsflf'kb A fR-rest(f'R)}

The statement WRITE fT {FROM x} is transformed to
{MOVE x T0 fT ;} CALL write (file)

where the procedure write has the specification
entry condition: {opened(f) A f ' -f }
exit condition: {opened(f) A fL-f L" <f T:».

The open statement changes the opened-status of the file and assigns
initial values to the fL and fR variables. It  is specified by:
entry condition: {-1 opened(f) A f '=f }
exit condition: {opened(f)AfL=<> AfR=f'} (for input files)
exit condition: {openedlf} A fL-o } (for output files)

For the procedure close we have the specification
entry condition: {opened(f )}
exit condition: {w openedlfl}
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Some frequently oocuring ANS-COBOL constructs are not part of Ass Cobol.

because they violate rules of structured programming or they cannot be
verified within the Hoare calculus.

- ALTER
This is a construction. which alters dynamically program code. This
construct will not be part of the future ANS standard language and it can
not be recommended for a good programming style [Flo 74].

- STRING. UNSTRING. INSPECT;
These statements perhaps will be treated in future versions of the
verification system.

—- All operations. which would lead to assignments of variables of different
types:
MOVE for grOUp items (except strings)
REDEFINES for variables (except strings)

5.5‚2. Data structures.

- Real numbers
Until now the arithmetic of real numbers couid not be treated by a
program verification system.

- The numeric edited and alphanumeric edited type and some clauses
controlling ouput formats.
These are clauses like BLANK WHEN ZERO, JUSTIFIED etc. Since we
concentrate on the verification of the control structures we do not

consider these clauses.

553 :  d"

— The condition it IS (NUMERICI ALPHABETIC}. which giVe-s true, if the value
of x is numeric (alphabetic).
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58]  E II VCS

The following inference rules for COBOL constructs are formulated in such a
manner, that they generate subgoals from a—formula (p}S (q) unambigously.
This means. that no two conclusions may have common instances. For that
reason the. composition rule i s  not formulated explicitly. bu t  it i s  contained

implicitly in the other rules. From these rules a recursive procedure
generatingverification conditions may be constructed. Most of these rules
may be found in [ILL 73].

(C1) {9}  S {q l t / x ln  MMI-)} _ _ (simple assignment)
_ , if x e frech) . x numeric

{p} S; move t to x {q}

(Cl') . _ {p} S {q} _ > .. _ ’ (simple assignment)

. m . ., . if x 4 freelq) .; name-fie.“

{p}  S. move t to x ((1)

(Cl-”) (p) S {QI l t ( l . u (x ) ) /x ] )  ; ' ' ' . : ' (simple assignment)
.if-I € fresh) . 1 string _ _

{p}  S. move t to x (q)

(C2) {p} S {q[<x‚i‚t>/x]A iixüjnvtsflxfij . “ (array assignment)
_ _ . ‚ , i fxefree(q)

(p) S, move t to 1(1) {q}

((2') {p}  S {q A is‘5(x)} (array assignment)
._ ii[;1__:_„£fr?e(q;)„

(NS. movetto x(.i)(q}. l ; 1.?  
and analogous for strings; ; ,

{ . : :  '..5 »

(C3) has
(n) dummy {q} _ _ _ (consequence)

(c3‘) mm.}

{P}  S; (Il-if {f}

q-il‘ is an assertion
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(C3") (D} 3 {q}; q => r
q is an assertion

{P.} S; Cl {l‘}

(C4) (9} Sib-il‘;81{q}. {p} S;-1b-if;82{q} (conditional)

{p} S; if b then St else 82 {q}

(C5) {p} S {assertion at L}

{p} S= goto L {q} (goto)

(C6) {9 }  8 {JM ==»p1}....‚ {p} S {11-11 ==>pn'}; (3010 depending)
{P} S {Xtt{l...,n} =» q)

{p} 3; goto L1,...,Ln depending on x {q}
(pi is the assertion at Li)

"‘ C7 "““" C9 "“ P be a paragraph with declaration P.R and a_ a um of all
global variables of P. ,

(C7)? {p} s {r ‚um (s = q);

{9} S.. perform P {q}

{' r}. { s) is entry resp exitoondition for P

(C8) {9} S (rm/i1}; {mia}  R (did/ii}; r[x/i]=>q (performmtimes)

{p} 5, ri perform P 1 times {q}
i is a new Variable with {i}nvar(D.CI.S)-fi and r an assertion

(c9) {p}s, R {r a Valrab = q}: {rs-1b) R {r}; (perform...until)
. r is an invariant.

{p} S; r; perform P until b {9}

(Cl 0) (NS; move Y to I; R {r [x+z /x ]  Ax+zsk(x) } ;  (perform....varying)
{rmb} R {r[x+z/x] Ax+zsk(xl}; mb ==» q

{p }  S; r; perform P varying z from y by z until I) {Q.}-
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(C11) {9} S {(da/1] AV; (slit/1] =wahr,/al } (procedure call)

{9} S, call proc using a {q}

proc is a procedure with {entry r} profit) {exit 3} and all the actual
parameters ai are-pairwise different; =

(C12) {p}  S {q} (procedure

{p} entry proc using it. 8. return {q} declaration.)

We have the following modifications to [ILL .73 !=
The simple assignment rule has to consider the case of overflow;
the array assignment has to consider the violation of array bounds,
the goto depending statement. _
the perform t imes ,  perform varying and perform until statement.

The perform-until statement requires a word of explanation. We did not
choose the following more obvious rule:

{p} 33R {1‘} i {rmb} R {r} i rob =; q
(C9’) '

{p}  S ;. r . perform P until b {(1}

because this rule requires the invariant r together with b to contain all the
information, which is necessary to deduce q. But we want r to contain only
the information necessary to describe the loop invariant (see example i ) .

The rule C9 is an obvious application of the rule of adaptation. as it is
formulated in [0183]. -

limiting:

The first example shows the application of rule C9. For the sake of simplicity
we do not consider the overflow conditions. this will be made in detail in
example 2 .  '

Examplaji
Consider the verification task:
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{z-b A a>0}
move 0 to yr
move a to I .
perform P {invariant iHv—a} until x-O.
{y-a az=b }.

where P is defined by:
P. subtract 1 from I,

add 1 to y .

Obviously the invariant x+y~a describes the loop completely. But with rule

C9' we cannot deduce, that 2 be b after execution of the loop. So we had to

add z-b to the invariant. But if we use rule C9. we do not need the additional

clause z-=b:

We apply C9 to get

(1) {Z-b A sum
move 0 to y;
move a to x;
subtract 1 from it,
add 1 to y
{x+y-a AVI,}? (x+y-a Air-0 =} y-a «za-b)} and

(2) {'X+Y==a A ‘Ia=0}
subtract 1 from it;
add 1 t oy

{my—a}

(2) is proved by two applications of C1 and {1) yields (after some

applications of Cl and arithmetical simplifications):

(3) z=b Aa>0 => a—l +1==a Az=b A Vx.y (x+y=a a x=0 =$ yaa).
which can. be proved easily.

W2;

The following example program calculates quotient and remainder of two

integer numbers with the Euclidean algorithm. With this example we want to
demonstrate the complications which arise when the overflow checks have

to be  performed. This example is formulated a s  a procedure with formal

parameters a.b,q and r and local variables x and y .  Besides the conditions

which ensure the formal correctness of the algorithm we have tofind the
conditions, which ensure that no overflow will take place for any input
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variables a and b satisfying the entry condition. These conditions have to

relate the lengths of the.  program variables. If we take for example a

procedure, which exchanges the values of two variables x and y, we surely
would get the condition, that the lengths of x and y should be equal.
This example shows that in all assertions of the kind P(;) we have to add
the clause. 15  Au).

It also shows that the overflow checks make the generation and the
simplification of the verification conditions very complicated. Therefore a
practicable verification system should offer the option of suppressing the

overflow checks for a subset of the variables.

entry 'euclid" Using a b q r.
{ entry az!) A b>0 A asAla) A bsAlbD
move a to x.

- move 0 to y _

L1. {yb+; -  aA b>0 A 051 A mm A 5316:) A asA(a) A bsAlbl}
if 22b then subtract b from 1. add 1 to y. goto L1.
move y to q. '
move 1: to r.
return.
{ exit qb+r = a A Osr<b A q(q)  A rsA(r)l

First of all we can only apply C12 leading to the subgoal

( l )  {aaO A b>0 A a$A(a) A bsAl
move a to x.
move 0 to y .
L1. {vba—= a A b>0 A 053: A s(x)  A ysA(y) A asAla) A bsA(b) }.
1f._xzb then subtract b from 1. add 1 to ya goto L l .
move y to q.
move it to r.
{ qb+r =- a A Osr<b A q(q)  A rsA(r)}

Then we get:

(2) {2120. A b>0 A a.<.A(a) A bsAl‘bH _ . Cl / from (1)
move a to 1.
move 0 to y .
_Ll.{ yb+x=a A b>0 A 051 A s (x )  A ysAly) A asA(a )A bsAlb)}
if xzb then subtract b from 1; add 1 to yi goto L1.

.. 28. . . .



(3)

(4)

(5)

(6)

(7)

(8)

move v to q.
{ qb+x =- aA 0$x<b A qq)  A “Mr”

{ azo A b>0 A asMa) A bsMb) } C1 ! from (2)
move a to :.
move 0 to y.
L1.{ yb+x=a A b>0 A 051: A 15M!) A 37510?) A auf.-Ma )A bsl-(bl)
if 12b then subtract b from 11; add 1 to y; goto L1.
{_ yb+x = a A Osx<b A yq) A srJ}

{' 320 A b>0 A asMa) A bsMb) } C4 / from (3)
move a to I .

move 0 to y .
Ll. { vba-ra A b>0 A 05: A XSMI) A yfldy) A asMa )A b$A(b)}
xzb-if. subtract b from 1, add 1 to v. goto L1.
{yb+x - a A 0$x<b A yq)  A film}

{ 320 A b>0 A asMa) A bsMbH C4 / from (3)
move a to x. ' - (else miésing)
move 0 to y.
L1.{yb+x-a A b>0 A 051: A 151(1) A ys) A .asMa )A bsA(b)}
'I xzb-i f

{vba  - a A Osnb A v'q) A HMI-')}

{ 3120 A b>0 A asMa) A bsMb) ) CS / from ('4’)
move a to I.
move 0 to y.
L1.{ yb+x=a A b>0 A 051' A sx )  A yrs-My) A

agA(a )A 1351(1)”
xzb-if; subtract b from I; add 1 to y

{Yb+x=a A (DO A 051 A XSMX) A ysuy) A
asl(.a )A bsl(b))

{ az!) A b>0 A asMa) A bsMb) } C3" / from (5)
move a to 1.
move 0 to y. __
L1.{yb+x=a A b>0 A Osx A sx)  A 37-51(37) A

asMa )A bsA(b)}
{ -1 mb => yb+x = a A Osx<b A yq) A mun

{ aaO A b>0 A art-1(a) A bsMb) ) C3 ./ from (7)
move a to I.
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(13) {"2120 A b>0 A asMa) A bsMbl} Cl / from (12)
{ 0b+a=aA b>0 A 0521 A asMI) A DSM?) A“

asMä )A ballbl} ‘

(III) azo A b>0 A asxla) A bsMb) =, C3 /' from (1.3) .

0b+a=a A b>0 A 05a A 351(3 ) , .  (Isl-(y) „_ — .. ..

asMa "):-\ bsMb)

In our example VCG generates the verification conditions 1.11 and III.

' 'c  ' of t

(I) The first two clauses of" the conclusion follow from the premise With
the arithmetical transl‘or mation= ' ' " '
- (1537) =>. (m)
I t  remains to show:

( I )  375167) =. yq)  and,
('2) sx)  A x<b A bsMb) => nur)

With the transitivity of 5 and the formula
not A 155 => x—sminmm

we get from (2)
(3) 'xsmin(l(x).l(b)) =— sr')

We apply the formula
(*) (Vx (xsoc => Isa-l) => msi?!

and get from ( I )  and (3) _
(i) My) q )  and
(ii) min (A(x).l(b)) 5 Mr)

“('-"II) The simplification (a ==, (b => c)) «==> ab =; c yields the first four clauses
of the conclusion by simple multiplication and use of the transitivity
of s .  It remains to show wl s l l y )  in the conclusionThe equality in the
premise yields:

y - a—x/b s a—b/b - a/b - l  ‚he—nee
y+l s a/b s a s Ma)-

Therelore we have

( i )  y+l s Ma) => y+1 SMV), and with (*):
(iii) Ma?) 2.: My)

This condition is explained by the fact, that the maximal value 37- can
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obtain. is the value of a (Le. in the case that b - l  ).

(III) Arithmetical'simplifications like 0b=0 or 0+a=a and ordering of the

clauses yields the first three and the two last clauses of the conclusion.

Then we. apply (“*) and consider MX) 2 0 as an axiom so that the
following con‘ditic'm remains

(iv) Ma) 5 M1). .
because the mtaiimal’ value. which 1 can obtain. is the value of a.

c ' “ " fit: ‘ -
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