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VERIFICATION OF COBOL PROGRAMS
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F.R. Germany

Abstract:

The use of COBOL for program verification leads to some special problems
enforcing the restriction of a verification system to a small subset of the
language. This report describes the language Ass Cobol, a subset of the
COBOL standard from 1974. The semantic of this language is given by
translations of the language constructs into PASCAL statements. Based on
this semantic, a system of Hoare-style inference rules is constructed and its
correctness is shown.

Two examples demonstrate the complexity of the correctness proofs even
of small Ass Cobol programs.
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1. Introduction

In this paper we will describe a method for the Hoare-style verification of
formally specified COBOL programs. The language being accepted by the
system is a subset of the ANSI standard from 1974, enriched with an
assertion language and a structuring concept. We will call this language
Asserted Cobol (Ass Cobol). The use of COBOL as input language should be
justified by its wide application and high standardization, but it implies also -
some peculiarities enforcing the restriction of the accepied language 1o a
subset of COBOL.

One of the characteristics of COBOL is its large size making it impossible to
verify all COBOL constructs. The language design is organized into a kernel,
the so called nucleus and some extensions. We restricted the input language

Ass Cobol to an essential subset of the nucleus, which contains the most
important features of the language.

Another feature of COBOL are some 'dirly” language constructs which would
render verification very difficult. These are eg. uncontrolied jumps,
dynamic alteration of program code and implicit type transformations.
These constructs are not allowed in Ass Cobol. :

The language COBOL was designed primary for commercial use. Hence some
of the main issues of COBOL are input/output and string manipulation. But
the very power of Hoare-style program verification lies in the
representation of the logic siructure of computer programs. Hence the
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questions of formatting, input/output and string manipulation are not
completely treated by our COBOL verifier. Perhaps problems of this Kind
could be solved in a more elegant (and cheaper) way by code inspection and
testing than by program verification.

S0 why then should we be interested in the verification of COBOL programs
anyway? The answer is somehow similar to the "apologia" in the FORTRAN
Verification report [BM 80}, where the authors spend considerable effort on
the justification of the choice of such a “dirty" language. The same
arguments apply here: COBOL is certainly a language that does not live up to
present day software engineering standards, it is even less suited for formal
verification and in fact should have been replaced by more advanced
programming languages years ago. But it was not! A lot of business
applications are still programmed in COBOL and they will also be in the next
future. Another argument for the use of COBOL are some important security

issues in the area, where COBOL is mostly used, like access rights on data
bases.

The semantics of COBOL is nowhere formally defined. For our purposes we
have transformed the informal semantics description of the ANSI report
into equivalent WP or PASCAL constructs. WP (While Programs) is a
programming language defined in [Ba 80], which consists of some of the

most common programming language constructs (see 2.). The axiomatic
semantics of PASCAL is described in [HW 73].

2. Notatijon:

N is the set of natural numbers

Xy.Z integer variables

ab.c string variables

i index variables

ali] is the'i-th element of the array a (array selection)
r.b is the record selector b of the record r

r  record variables

k.mn constants

L labels

t terms

Aly) length of the integer variable x (i.e. number of digits)
ula) length of the string variable a
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3(x) upper bound of the array x

var(p) 1s the set ol all variables occuring In p (a variable x does not
occur in the term A(x).)

free(p) is the set of all variables occuring free in p

plt/x] is the result of substituting in p all occurences of x by t

WP is a programming language with the constructs:

y:=X assignment
NPIND) concatenation
if b then §, else S, fi alteration
while b do S od while

These constructs have the follwing axiomatic definitons:

{ply/x]} x~-y {p}

{p} §; (e} {r) §, (@}

{p} $,:S, (@}

(pab}5; {gk (paab) 5, {a}

{p} it b then S, else S, fi {(q)

{(pab)S {p}

{p} while b do S od {p A b}

3. Syntax of Ass-Cobol

The language Ass Cobol consists of the language Cobol and the assertion
language Ass.

1. The Language Cobol

The language Cobol is a subset of the standard version of the ANSI from
1974 [ANSI 74). An ANSI-COBOL implementation consists of modules of the



following list:

- Nucleus

- Table Handling
- Sequential 170
- Relative 1/0

- Indexed 1/0

- Sort-Merge

- Report Writer

- Segmentation

- Library

- Debug

- Inter-Program Communication
- Communication

From this list all modules except the first three are optional. These modules
all have up to two levels.

3.1.1 The Block Structure

Ass Cobol has a block structuring concept to facilitate verification. This
concept provides the following features [Flo 74}

A COBOL program consists of units, the so called program components which
have the structure

{Component name SECTION.)

sequence of statements

EXIT (PROGRAM) resp. STOP RUN.

sequence of paragraphs describing so called elementary components

Hence the possible components are

- the main program which is terminated by STOP RUN. Formally it is a
section or a sequence of paragraphs.

- a procedure which may be called by CALL. Such a procedure is
terminated by EXIT PROGRAM. It is a nonrecursive procedure with
call-by-reference parameters, Global variables are not allowed within this
kind of procedure. These procedures are compiled separately from the
main program. They have the same formal structure as a main program

except the USING clause and the LINKAGE SECTION. We name this kind of
procedure call-procedure.

- a procedure which is called by PERFORM. This kind of nonrecursive
procedure has no parameters and communicates with the main program
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Formally it is a section which is terminated by EXIT.

- an elementary component. This is a single paragraph, which may be
called by PERFORM. A single paragraph is terminated by the following
paragraph name.

The two last kinds of procedures are called perform-procedures.

We have added to ANSI COBOL the following restrictions concerning the

block structure:

- A component always has a main part which comprises the beginning of
the component up to STOP RUN resp. EXIT PROGRAM or EXIT. This STOP
RUN/EXIT PROGRAM/EXIT is the only one in the component.

- Jumps may not lead out from a component, hence they are not allowed at
all in elementary components.

In the following we describe the most important syntactic differences
between Ass Cobol and the kernel of ANSI COBOL.

3.1.2 Nucleus
In Identification division and environment division there are no restrictions.
3 1.2.1 Divisi

Foliowing clauses are not allowed:

- USAGE IS

- SIGN IS

- SYNCHRONIZED

- JUSTIFIED

- BLANK WHEN ZERO

- the RENAMES clause on level 66

Following modifications are made
a conditional variable may not refer to a data item, which is declared as
FILLER.

- two variables covering the same storage area by a REDEFINES clause must
be of type string (arrays of type siring and records having only
components of type string are considered as sirings).

The inost substantial restrictions imposed on ANSI COBOL in the data

division reiaie 1o the picture clause, which is the svatactic consiruci 10 define
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the type of the variables. ANSI COBOL provides five base types: alphabetic,
alphanumeric, numeric, numeric edited, alphanumeric edlied. Ass Cobol
allows only the type alphanumeric, which is called in the following “string’
and the type numeric, which contains the subtypes nat’ and ‘int" (real is
excluded). Hence only three kinds of picture declarations are allowed:

PIC (IS} X..X (type string), PIC {IS} 9..9 (type natural) and

PIC {IS} S 9..9 (type integer).

3.1.2.2 Procedure Division
3.1.2.2.1 Conditions

Here we have the following restrictions:

- due to syntactic reasons the operands of relations may not be arithmetic
expressions '

- implicit type conversions are not allowed in relations, i.e. both operands

must be either of type numeric or of type string, in which case only the
equality relation is admitied.

- the class condition (IS NUMERIC/ALPHABETIC) and also
- the Switch Status Condition is not aliowed.,

3.1.2.2.2 Statements

The following statements are not allowed:

- ACCEPT x FROM DATE/DAY/TIME

- ALTER

- ENTER

- INSPECT

- STRING

- UNSTRING

On the other statements we have the restrictions:

Implicit type conversion is not allowed in Ass Cobol. Therefore assignments

may occur only between variables of the same type.

- The ROUNDED clause for arithmetic statements is omitted, because there
1s no type real.

- The CORRESPONDING clause for add and subtract statements is not
admitted.

- The SIZE ERROR clause is unnecessary due to the overflow checks and
therefore omitted.

- Multiple results in arithmetic set and move statements are not allowed
(eg. ADDXTOY,Z, ..).



nonelementary moves are move statements, where sending or receiving
data item are not of a base type. These moves are not allowed, because
they can lead to implicit type transformations. But the base type string in
Ass Cobol is defined as the type alphanumeric together with all group
items (i.e. records), all components of which are of type string. Therefore
some kind of nonelementary moves in the sense of ANS-COBOL are
elementary moves in the sense of Ass Cobol. Two data items in a MOVE

CORR statement correspond only, if they are both elementary items
- PERFORM

In the variant
PERFORM proct [THRU proc2] VARYING i FROM j BY k UNTIL b

of the PERFORM statement the appendix AFTER m FROM ... is omitted.
- STOP

the variant STOP literal is excluded; STOP RUN may appear only once in a
main program.

With the exception of the multiple assignment to index variables (SET ij,... TO

n) level 1 of ANS is fully realized. Additionally there is included the SEARCH
statement {rom level 2.

3.1.3.1 Data Division

Variable array bounds are not admitted in the OCCURS clause and also the
ASCENDING/DESCENDING KEY variant is excluded.

The USAGE IS INDEX clause is not allowed, hence there are no so called index
data items.

m&mm
SEARCH Statement

The SEARCH ALL format is excluded and the WHEN condition clause may
not be repeated.

- SET Statement
Muitiple assignments are not admitted (SET [,],. 70 M).

3.1.4 Sequential 1/0 module

Here we have three restriciions to level 1 of ANS (the USE statement, the
CODE 3ET clause and the 1/0 files).



3.1.4.1 Data Division

Following clause is not allowed in ihe file description:
CODE SET

3.1.4.2 Procedure Division

- OPEN
170 file is excluded
REWRITE

relates to 1/0 files and is therefore omiited
- USE

this statement (declaration of an error procedure) is not admitted.

3.2. The Language ASS

ASS is the language of the assertions. It is a first order predicate logic

language admitting quantifiers. Its syntax is the syntax of COBOL conditions

enriched with the keywords assert, invariant, entry, exil, precondition,

postcondition, let and initial. It additionally includes:

- undefined functions and predicates and

- predefined functions and predicates (e.g. the predicates true, false,
opened and the functions first, rest).

The language ASS is not a subset of COBOL, whence the assertions must be

read over by the ANS-COBOL compiler. Therefore they are formally
comments.

The language ASS has the following clauses:

- assert

An assert clause must be added 1o each paragraph, to which a GOTO
statement in the program text jumps. Assert clauses may occur

additionally everywhere in the program text, where COBOL statements
might occur.

invariant

Each loop must contain an invariant. Loops can be constructed with the
following statements:

PERFORM ... TIMES, PERFORM ... UNTIL, PERFORM ... VARYING ... UNTIL.

- entry und exit



These clauses are optional. They denote precondition resp. postcondition
for a perform-procedure.

precondition und posicondition

These clauses denote precondition resp. postcondition for a main program
or a call-procedure

let

The let statement is the assignment to logic variable {i.e. a variable not
occuring in the COBOL program but only in assertions).

initial

This is also an assignment to a logic variable. It defines initial values for
procedure parameters (in the case of call-procedures) and for global
variables (in the case of perform-procedures).

The let and the initial statement have a special syntax:

letx'=x bzw. initial X" = x.

4. Data Structures

4.1 Index

Syntax: Declaration of the index variable i within the array declaration
OCCURS n TIMES INDEXED BY i.

Variables of type index obey the axioms of the natural numbers.

4.2 Numeric (nat and int)

Syntax:

x  PICS9(n) for int and

x PIC 9(n) for nat.

X is a variable with at most n decimal digiis; in the following the upper
bound of the variable x is denoted by A(z) i.e. A(x)=10""n-1. The axioms of
natural (resp. integer) numbers are valid for numeric variables. Additionally
we have a function cut : N XN - N', together with the definitions

P(undef) = false for every predicate P(x) admissible in ASS

cut (x,n) = if xsn then x else undef.
Hence

P(cut(x.n)) = if x<n then P(x) else false = 1<n » P(x).



4.3 Character

The type character does not exist in COBOL. Here it serves only for defining
the type string. The elements of type character are 26 letters, 10 digits, the

blank character (denoted by ') and possibly some other elements of the
ASCII character set.

4.4 Strings

Syntax: a PIC X(n)
where n is the length of a, which we denote by p(a).
The type string may be defined as array of character with the length n. The
only relation on strings is the equality relation, which is defined in the
following way: Let p(a)=n, u(b)=m and mzn. Then

a=be Vilsisn= ali) = bli) A Vj ngsm = bij)="".

Additionally we have a substring selection [ , ], so that alj k] is a string with
[ alitk-1] if 1sksj-i+1
(ali,j]) [k] = {
L otherwise
and a function <, , > : stringx(natxnat hxstring - string (which may be viewed
as a substring modification function) with

[ alkl if 1skd or j<ksn
@lijelk] = { elk-i+1] if isksj
L otherwise

These functions are useful to handie group items which are strings and the
move statement for string variables.

Example:
01 a.
02 a, PICx(n)
02 a, PICx(m)..
Then the parser performs the following transformations:
a, ~alln]
a, - aln+1n+m] ..

4.4 Arrays
Syntax: X .. OCCURS n TIMES [INDEXED BY i]

The function < , , » : arrayxnatxexp - exp is introduced with the following
definition (exp is the set of COBOL arithmetic expressions):



| [ s ifis
alils [j1= 4

L a(j) otherwise

We have used the same symbol as for the substring modification function,
there is no danger to confuse the two functions.

4.5 Records

Elements of this data type are called group items in ANS-COBOL.

Syntax: If a variable r is declared with a level number + 77 and no picture
clause, it is a record variable. The selectors belonging to r are the consecuting
variables with higher level numbers than r.

In an analogous way to arrays (and again with the same symbol) the
function ¢, , > is defined by
[ s if i and j are syntactically equal '
«,i.80 =4
L

r. otherwise

4.6 Ot Clauses i e Data Divisj

- the condition name clause
The condition name clause defines a variable, which represents a
condition. The verification system substitutes every occurence of the
defined variable in the procedure division by ihe according condition.

- the value is clause
this clause is viewed as a assignment

the redefines clause

this clause is admitted only for strings, since otherwise 1t would cause
implicit type transformations. The verification system substitutes every
occurence of the redefining variable in the procedure division by the
according redefined variable.

S. An Axiom System for Programming Language Constructs

in this section we define a semantics for Ass Cobol by giving to each Cobol
construct an equivalent WP or PASCAL construci. This semantic leads 10 a
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system of inference rules for Cobol constructs. The rules DO until D4, DS and
D6 of [Hoa 71] will serve as a basis for proving the soundness of our axiom
system (i.e. the axiom of assignment, the rules of consequence, composition,
iteration, alternation, substilution and adapiation). For the GOTQ statement
we took the inference rule of [Ba 801).

5.1.Assignment Operations

- simple MOVE (numeric)
Syntax:  MOVE {x|n} TOvy.
Semantic: Let y be a numeric variable with length Aly). The value of y
is undefined after the assignment if x>A(y) {resp. n>A(y)) [ANS 74]. Hence
we have the following deduction rule:
{plcut(x, A(y)/yl} MOVExTOy  {p}

Due 10 4.2 we have
[ plx/ylaxsAMy)  if yefree(p)
pleut(x, Aly)/yl - 4
Lp otherwise
hence {plx/ylaxsAly}) } MOVExTOv {p} if yefree(p) and
{p} MOVExTOvy{p} if y¢free(p).

- simple MOVE (alphanumeric)
Syntax:  MOVE{a|n)} TOb.
Semantic: Let b be a string variable with the length ;,l(b) The above
statement assigns to b the value of a (resp. n) cut to the length of b, i.e.
it is equivalent to the statement b:= a1, p(b)]. Hence we have the
following inference ruie:
{plal(1, p(b))/b]} MOVE a TO b {p}

- MOVE for arrays (numeric).
Syntax:  MOVEy TO x(i).
Semantic: Let x be an array of length v and let each x(i) have the length
J. In the case of i»y we define the meaning of the above statement as an
error statement with the inference rule
{true) error {false}
and in the case of isy we use the array modification <a,iy> whence we
get the inference rule
(isv a plalil.cut(y.p)>/x]} MOVE y to xlil {p}
The move statement for arrays of strings may be treated analogously.
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- non elementary MOVE

MOVE for group items:

Syntax:  MOVEr, TOr,.

This move statement is allowed only for variables of type string, which
are group items in the sense of ANS-COBOL. Assignments 1o variables,
which are not of a base type are not allowed.

MOVE CORR:

Syntax:  MOVECORR r{ TO r,.

ry and r, are variables of type record. Let x be a record element of r,ya
record element of r,. x and y are said to correspond, iff both are of base
type and there exists a sequence s....s, of record selectors, so that r.s,.
- SpmYandrys,. .. .s, =y. To each pair of corresponding variables in r,
and r, a move statement is performed when executing the above MOVE
CORR statement.

This assignment is transformed by the Ass Cobol parser into a
sequence (MOVE x; TO y,) for each corresponding pair (x,,y,).

- SET
Syntax:  SET iTO {j|n}.
This is the assignment operation for variables of type index with the
inference rule
{plj/i) SETiTO j {p)

S.2. Arithmeti .

- ADD, SUBTRACT, MULTIPLY, DIVIDE, COMPUTE

Syntax: ADDxTOvy.
ADDx TO y GIVING z.

analogous for SUBTRACT und MULTIPLY.
DIVIDE x INTO y.
DIVIDE x INTO y GIVING z (REMAINDER r).
DIVIDEx BY y.
DIVIDE x BY y GIVING z (REMAINDER r).
COMPUTEy = t.

Semantic: These statements are equivalent to respectively the following
ones:
COMPUTE y = x+y.
COMPUTE z = x+y.
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COMPUTE y = v/x.
COMPUTE z = y/x . (COMPUTE r = rem(y.x).)
COMPUTE z = x/y.
COMPUTE z = x/y. (COMPUTE r ~ rem (x,y).)

For the COMPUTE statement we have the following inference rule:
{plcut(t, A(y))/y]} COMPUTEy =t {p}

- SET .. UP BY, SET .. DOWN BY.
Syntax: SET i {UP | DOWN) BY n.
Semantic: This statement is equivalent to
SET i TO i+n resp SET i TO i-n.

5.3 Control structures

- IF..THEN and IF .. THEN ... ELSE
Syntax: IF cond THEN 8.
IF cond THEN §, ELSE §,.
Semantic:
The same as the analogous construct in WP. Therefore we have the
inference rules: {(conditional)

{pab} 8, {q} s {pa-b)} S, {q}

{p} IF b THEN S, ELSE S, {q}
and

{pab}S{q} . pab=gq

{p} IF b THEN S {q}

- the labelled statement and the GO TO statement
Syntax: GOTOL.
Semantic: The same as the corresponding construct in PASCAL, see also
[Ba 80]. Let h = {p,} GO TO L, {false} ... » {p,} GO TO L_ {false}. Then the
inference rule for a labelled statement is:

= {pi} A1 {pz}, % G h = {pn} Aﬂ {pn,l}

{pi} Ll' A% g"n' An {pmi)

= e



GO TO DEPENDING ON

Syatax: GO TOL,, .. L, DEPENDING ON x.

Semantic: corresponds to the following PASCAL statement
if x-1 then goto L, else if x~2 then goto L, else ...
.. if x=ngotoL fi..[fL

Inference rule:

pa(x=1)=py, ... pA(x=n)=p, paxé¢{l,.n}=gq

{p) GO TOL,, ...,.L, DEPENDING ON x {q}

Proof:
We want to prove the correciness of this rule, given the above semantic,
for n=1:
Let pax=1= p; and p A x¥1 = q. From this we may deduce:
{pax-1} GOTOL {g} (goto & consequence)
{p) IFx=-1 THEN GO TO L. {q} (conditional)
{p) GOTOL DEPENDINGONx {q} (definition of goto depending)

PERFORM (PERFORM .. THRU )

Syntax: PERFORM P. resp. PERFORM P, THRU P,

P is a perform-procedure with the declaration P§ (EXIT), P,.. P, are
subsequent perform-procedures with the declarations PS5, (EXIT),
..P S (EXIT). In the perform .. times, perform .. until, perform ..
varying statements (see below) we only treat the perform P variant, the
perform Py thru P, variant can be treated anaic;ously.

Semantic: PERFORM P is the (nonrecursive) call of a parameterless
perform procedure with global variables.

There are two possible inference rules for the perform statement.
The first one is the replacement rule:

{p} S {q}

{p) PERFORM P {q}
and analogously for the PERFROM THRU variant:

{p) Sy .S, {q}

{p} PERFORM P, THRU ¥ {g}
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The second inference rule is the rule of adaptation [Hoa71]. One
drawback of the the replacement rule, if it is used to generate a
verification condition for the procedure call, is the fact that the whole
procedure body has to be verified each time the procedure is called. To
apply the rule of adaptation, the procedure body is verified only once
relative to its entry and exit condition. Therefore the rule of adaptation,
which uses the entry and exit condition of the procedure definition,
seems to be more appropriate to generate verification conditions, at least
in these cases, where a procedure is called more than once. But in the
perform ... times, perform ... until, perform ... varying statements we give
only inference rules, which are based on the replacement rule.

Let a be a list of all variables being set by S (i.e. appearing on the left of
an assignment statement in 8), k a list of all variables occuring free in p
and r, but not in 2 or s. The rule of adaptation is:

{p} PS (EXIT) {r}

{3k (p A Va (r=s))} PERFORM P {s}

PERFORM ... TIMES.
Syntax: PERFORM P {(x|n) TIMES.
Semantic: Corresponds to the following WP statement:

=0, while i#x do S ; == 1+1 od.
with (i} nvar (Sx) = 9.

Inference rule:

p=e[0/i] {r) § {eli=1/i]} rlx/il = q

, if {i} n free (p,q.8) - 9.
{p} PERFORM P x TIMES {q}

Proof:
Let p=rl0/i], {r} S {rli+1/i]} and r[x/i] = q. Then we have the inferences

{raisx} Sii=i+l {r} (assignment, composition,
consequence)

{r} while i#x do S,i:=i+1 od {rni=-x} (iteration)

{p}i:=0; while i#x do§; i:=i+1 od {q} (consequence)

{p} PERFORM P x TIMES {g) (definition of perform ... times)
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PERFORM ... UNTIL.
Syntax: PERFORM P UNTIL cond.

Semantic: the same as the PASCAL construct repeat S until cond, whence
we have the inference rule [HW 73] :

{(p}S{q};:qmb=p

{p} PERFORM P UNTIL b {gab}
PERFORM ... VARYING... UNTIL
Syntax: PERFORM P VARYING x FROM {y{n} BY {z| m) UNTIL cond.
Semantic: Corresponds to the following PASCAL statement

X =y, repeat S; x:= x+z until cond;

Inference rule:
{p) S{glx+z/x]}) i gqaab=p

{ply/x]} PERFORM P VARYING x FROM y BY v UNTIL b {gab)

Proof:
Let {p}S{qglx+z/xl}and qa~b = p. Then
{p} Sx:=x+z{qliqanb=p (assignment & consequence)
{ply/x]} 3:=y, repeat S;x:=x+z until b {q » b} (repeat & assignment
& consequence)
{ply/x]} PERFORM P VARYING x FROM y 5% z UNTIL b {gab}
(definition)

CALL .. USING

Syntax:  CALL proc USING {x,] rJ,..{x, |r,}

Semantic: The call ... using statement is the {(nonrecursive) call of a
procedure with call-by-reference parameters znd without global
variables. Let S be the body of the procedure proc and x the formal
parameter list. A premise of the following inference rules is the
prohibition of aliasing, i.e. the actual parameters must be syntactically
different and must also occupy different storage areas. Otherwise we
could construct for the the procedure plx y) with the body
COMPUTE x = y+1 the following inference:

{true} COMPUTE x = y+1. fy=y+1} (assignment)
{true) CALL proc USINGx vy {z=y+1} (1)



{true) CALL proc USING a a fa=a+1)3(2.)
which is a coniradiciion.

Analogous to the perform statemeni we have the choice between a
replacement rule and a rule of adaptation. If we want to use the
replacement rule, we need additionally two substitution rules, a
parameter-substitution-rule and a variable-substitution-rule:
1. Procedure-call-rule:

{p} S {q}

{p} CALL proc USING x {q)

2. Parameter-substitution-rule
{p} CALL proc USING x {q}

{plu/x]} CALL proc USING u {alu/x])
if unfree(p.glsx

3. Variable-substitution-rule:
{p} CALL proc USING u {q}

if s.z4 free (S[u/x]) .
{pls/z]} CALL proc USING u {gls/z])

The variable substitution rule may be necessary to solve name conflicts.
The rule of adaptation [Hoa 71]:

Analogous to the perform procedures we have the following rule, which
is, together with the parameter substitution rule, equivalent to the above
rules. Let p and r be the pre- resp. postcondition for the procedure P, a
be the list of actual parameters of P subject to the restirictions mentioned
above (prohibition of aliasing), and let k be a list of all variables occuring
free in p and r, but not in g or s (Le. the initial values of the parameters).

{p) CALL P USING a {r}

{3k (p A Va (r=s))} CALL P USING a (s}

ENTRY ... USING ... EXIT PROCEDURE.

Syntax: ENTRY proc USING {(a,| r}...{a, |r,}.
Semantic: procedure declaration for a call procedure.
Inference rule: Let proc be a procedure with body S.
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{p} S (q}

{p} ENTRY proc USING a. S EXIT PROCEDURE {q}

NEXT SENTENCE

Syntax: occurs in the following statements:

IF cond THEN {S/NEXT SENTENCE} ELSE {S/NEXT SENTENCE} . and
SEARCH tab VARYING i WHEN cond {S/NEXT SENTENCE}.

Semantic: corresponds 10 the dummy statement

Inference rule:

P=9

{p} NEXT SENTENCE {q)

Procedure declaration ... EXIT
Declaration of a perform procedure
Syntax: P.S EXIT.

Inference rule:

{p} S {q}

{p} P. S EXIT {q}
where p and g are entry resp. exit condition for the procedure P.

Program declaration ... STOP RUN
Syntax: P.S STOP RUN.
Inference rule:

{p} S {q}

{p} P. S STOP RUN {q}

SEARCH ... VARYING

Syntax: SEARCH tab {VARYING i} AT END S WHEN cond, S, .. WHEN
cond, S,.

Tab designates an one dimensional array and i is the corresponding
index variable.

Semantic: Let I be the length of the array tab. Then the following WP
statement is equivalent 1o the above search statement:

while (i s I a ~cond, A .. A acond ) do i= i+1 od;

if i > I then S else if cond, then §, else ... if cond then S, fi ... fi;
Inference rule: (here for n=1)
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(1) {paVK:isKks I=-condlk/ila j>I} SETiTO |, S {q}
(2) {p  isjs] A cond[j/i] A Vk:isk<j = acond[k/il} SET i TO j; S, {q}

{p)} SEARCH tab AT END S WHEN cond S, {q}
where {j} n var(p,q,S) =9

Proof: We assume (1) and (2). First we show:
(%) { p A VK:isk<j = ~cond[k/i] } while ( j<I a ~cond{j/i] ) do j:=j+1 od

{p A VK:isk<j = ~cond[k/i] A (j>I v cond[j/i]}}
We have

(p A Vk:isk¢j = acond[k/i] A jsI A acondlj/i]) =
( p A Vkiisk<j+1 = acondlk/i]) ,

hence (from the assignment axiom)

(p A Vkisk<j = acond[k/i] a jsI a ~cond[j/i] } j:=j+1
{ p A VKk:isk<j = ~cond[k/i] },

and from the while-rule follows (*).
Moreover we have

(**) p=paA Vkisk<i = ~condlk/i].
From (1) and (2) we deduce with the conditional rule

(™*}p A Vk:isk<j = ~condlk/i] a (j>I v cond[j/i] )}
if j>1 then i:=j;S else if condlj/i] then i=}:S, fifi. {q)

From (*),(**) und (***) follows with the composition rule

{p} j:=i , while (j < T o ~condl[j/i]) do j:= j+1 od;
if o1 then i:=j;S else if condlj/il then i:=j;S, fifi, {q}

which is equivalent to

{p} while (i < I »=cond) do i:=i+1 od,
if ibI then S else if cond then S, fifi; {q)

and from the definition of the search statement we get
{p} SEARCH tab AT END S WHEN cond S, {q}.
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These formulae will become very complicated in the case of ml,
therefore a manageable verification system should allow oniy n=1.

5.4 1/0-Operations:

ACCEPT/DISPLAY
Syntax: ACCEPT x. and

DISPLAY x.
Semantic: Input/Output via terminal.
We adopt the method of [Ma 75]. Each occurence of a statement ACCEPT x
is followed by an annotation which designaies to x an initial value x', a so
called logical variable, which may occur only in the assertions.
Analogously each occurence of a statement DISPLAY x is preceeded by a
clause which asserts the current value of the output variable x in terms
of its initial value x'.
Example:

ACCEPT z.
{letx =x)

ADD 2 TO x.
{assertx =2+ x'})
DISPLAY x.
Inference rules:

{plx/xl}letx - x {p} and

p=rar=q

{p} assert r {q}

sequential files
Syntax: There are two kinds of sequential files in COBOL: input-files,
where only the operations OPEN INPUT file, CLOSE file and READ file AT

END S are allowed and output-files, where only OPEN OUTPUT file, CLOSE
file and WRITE record are allowed.

Semantic: A sezquential file is described as a sequence «,, ..f > of data
records, < denotes the empty file ({AA 78] IHW 731). The data records
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are all of the same type T.

The input file f is given by a pair (f; fg) of type T* x T* (with the
intuitive meaning: f| is the sequence of all records which have been read,
I is the rest of the file) and a buffer variable {1 of typ T. An output file is
given by a variable f; of type T* and a buffer variable fT of type T.
Besides we have the functions first, rest with their obvious meanings, the
predicate eof, which is defined by
eof(f)=fy = o
and the predicate opened. The latter allows to detect programming errors

like multiple opening of files, access to files, which have not yet been
opened etc.

- denotes the concatenation of files.
The standard procedures may be specified in the following manner:

The statement READ file {INTO x} AT END S is transformed into
IF NOT eof(file) CALL read(file), {MOVE f? TO x} ELSE 5.
with a procedure read which may be specified by:
entry condition: {opened(f) a f'=f}
exit condition: {opened(f) A fT=first (f'g) A =" - first{f'g)> a fp=rest (')

The statement WRITE fT {FROM x} is transformed to
{MOVE x TO 7 ;} CALL write (file)

where the procedure write has the specification

entry condition: {opened(f) A [*-f)

exit condition: {opened(f) A f =f"| -1,

The open statement changes the opened-status of the file and assigns
initial values to the f; and f variables. It is specified by:

entry condition: {~ opened(f) » {'=f}

exit condition: {opened(f) A f; =o A fp=["} (for input files)

exit condition: {opened(f) A f; =< } (for output files)

For the procedure close we have the specification

entry condition: {opened(f))
exit condition:  {-~ opened(f)}
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Some frequently occuring ANS-COBOL constructs are not part of Ass Cobol,
because they violate rules of structured programming or they cannot be
verified within the Hoare calculus.

1 .Statements

ALTER

This is a construction, which alters dynamically program code. This
construct will not be part of the future ANS standard language and it can
not be recommended for a good programming style [Flo 74].

STRING, UNSTRING, INSPECT;

These statements perhaps will be treated in future versions of the
verification system.

All operations, which would lead to assignments of variables of different
types:

MOVE for group items (except strings)

REDEFINES for variables (except strings)

5.5.2, Data structures

Real numbers

Untif now the arithmetic of real numbers couid not be treated by a
program verification system.

The numeric edited and alphanumeric edited type and some clauses
controlling ouput formats.

These are clauses like BLANK WHEN ZERO, JUSTIFIED etc. Since we
concentrate on the verification of the conmtrol structures we do not
consider these clauses.

5.5.3.Conditions

The condition 1 IS (NUMERIC|ALPHABETIC), which gives true, if the value
of x is numeric (alphabetic).



6. Rules for the VCG

The following inference rules for COBOL constructs are formulated in such a
manner, that they generate subgoals from a formula {p}$ (g} unambigously.
This means, that no two conclusions may have common instances. For that
reason the composition rule is not formulated explicitly, but it is contained
implicitly in the other rules. From these rules a recursive procedure
generating verification conditions may be constructed. Most of these rules
may be found in [ILL 73].

(C1)  {p} S {qlt/x] A tsA(x)} (simple assignment)
,if x € free(q) , x numeric

{p}S; move t tox {q}

(C1) {p} S {q} (simple assignment)
, if x ¢ free(q) , x numeric

‘{b} S; move t to x {q}

(C17) | 7{1[)} S {Q[t(l.p(x))/x]} | : | (simple assignment)
if x ¢ free(q) . x string

{p} S; move t to x {q)

(C2) {prS{glaxits/x]a izy(x)a tsk(x)}u (array assignment)
,if x € free(q)

{p} S, move t to x(i) {q}

(C2°) {p)} S {q A isy(x)) (array assignment)
,if x ¢ free(q)

{p) S; move t to x(i) {q)
and analogous for strings.

(C3) P =9

{p} dummy {q} _ (consequence)
(C3) {p)S {g=r}

{P} S; Q"lf {r}
g-if is an assertion
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(C37) (p}S{ahg=>r
q is an assertion

[p}S.qir)

(C4)  {p) S:b-if;S1{q); {p} Sb-if;S2(q) (conditional)

{p} S, if b then S1 else S2 {q)

(C5)  {p} S {assertion at L}

{p) S: goto L {q} (goto)

(C6)  {p)S{x=1=pi1}.;{p}S {x=n=pn); (goto depending)
{p}S{xd¢{1,.n}=q)

{p} S; goto Li,..,.Ln depending on x {q)
(pi is the assertion at Li)

in C7 until C9 let P be a paragraph with declaration P.R and a a list of all
global variables of P.

(C7) {p)S{raVal(s=q))

{p} S; perform P {q}
{ r}, { s} is entry resp exitcondition for P

(C8)  {p) S (rl0/il}; (raicx} R {rli+1/il}, rlx/il=q (perform..times)

{p) Sir; perform P x times {q}
i is a new variable with {i}rvar(p,q,S)=@ and r an assertion

(C9)  {p)SiRiraValrab = g}, {ra<b)} R {r) {perform...until)
T i3 an invariant,

{p} S; r; perform P until b {q)

(C10) {p)S, move y to x; R {r{x+z/x] ax+z<h(x)}, (perform..varying)
{ramb} R {r[x+2/x] Ax+25A(x)); rab = g

{p}S;r; perform P varying ¥ from v by z until b {gq}

e



(C11) (p)S{(rla/x)avz (slz/x]=qlz/al} (procedure call)

{p) S, call proc using a {q}

proc is a procedure with {entry r} proc(x) {exit s} and all the actual
parameters a, are pairwise different.

(C12) {p}S{q} (procedure

{p) entry proc using x, S, return {q} declaration)

We have the following modifications to [ILL 731]:

The simple assignment rule has to consider the case of overflow;

the array assignment has to consider the violation of array bounds;

the goto depending statement,

the perform times, perform varying and perform until statement.

The perform-until statement requires a word of explanation. We did not
choose the following more obvious rule:

{p} SR{r}, {ramb}R{r} ,rab=gq
(C9)

{p} S, r, perform P until b {q}

because this rule requires the invariant r together with b to contain all the
information, which is necessary to deduce q. But we want r to contain only
the information necessary to describe the loop invariant (see example 1).

The rule C9 is an obvious application of the rule of adaptation, as it is
formulated in [O1 83].

7.E es

The first example shows the application of rule C9. For the sake of simplicity

we do not consider the overflow conditions, this will be made in detail in
example 2.

Example 1:
Consider the verification task:
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{z=b A 2>0}
move 0 Lo Y;
move a to X;
perform P {invariant x+y-a} until x-0.
{y=a az=b}.
where P is defined by:
P. subtract 1 from x,
add 1 toy.

Obviously the invariant x+y=-a describes the loop completely. But with rule
C9° we cannot deduce, that z be b after execution of the loop. So we had to
add z=b to the invariant. But if we use rule C9, we do not need the additional
clause z=b:

We apply €9 to get
(1) {z=b » a0}
move 0 toy;
move a to X;
subtract 1 from x;
add1toy
{(x+y=a AVXY (x+y=a Ax=0 = y=-a az=b)}  and

(2) {x+y=aa-a=0}
subtract 1 from x,
add 1 toy
{x+y=a}

(2) is proved by two applications of C1 and (1) yields (after some
applications of C1 and arithmetical simplifications):

(3) z=b a0 =a-1+1=aaz=ba Vxy (X+y=aa x=0 2 y=2),
which can be proved easily.

Example 2:

The following example program calculates quotient and remainder of two
integer numbers with the Euclidean algorithm. With this example we want to
demonstrate the complications which arise when the overflow checks have
to be performed. This example is formulated as a procedure with formal
parameters ab,q and r and local variables x and y. Besides the conditions
which ensure the formal correctness of the algorithm we have to find the
conditions, which ensure that no overflow wiil take place for any input



variables a and b satisfying the entry condition. These conditions have to
relate the lengths of the program variables. If we take for example a
procedure, which exchanges the values of two variables x and y, we surely
would get the condition, that the lengths of x and y should be equal.

This example shows that in all assertions of the kind P(x) we have to add
the clause x < A(Z).

It also shows that the overflow checks make the generation and the
simplification of the verification conditions very complicated. Therefore a
practicable verification system should offer the option of suppressing the
overflow checks for a subset of the variables.

entry ‘euclid” usingab qr.

{ entry a20 A b>0 A asA(a) A bsA(b))

move a to x.

move 0 toy. e _ _
L1. {yb+x=aab>0 A 0sx A xsA(x) A ysA(y) a ash(a) a bsA(b) )

if x2b then subtract b from x, add 1 to y, goto L 1.

move y to q.

move X tor.

return.

{ exit gb+r = a A Ogr<b A gsA(q) A r=A(r)}

First of all we can only apply C12 leading to the subgoal

(1) (a20ab>0aasA(a)a bsA(b) }
move a to x.
move 0 toy.
L1.{yb+x =aab>0 A 0sx A xsA(x) A ysA(y) o asA(a) a bsA(b) }
if x2b then subtract b from x; add 1 toy; goto L1.
move y o q.
move x tor.
{ gqb+r = aa Osr<b a qsA(q) A rsA(r)}

Then we get:

(2) {a20ab>0aasi(a) A bsi(b)) | C1 / from (1)
move a to X.
move 0 toy.
L1.{ yb+x=aa b>0 A 0<x A xsA(x) A ysA(y) a a<A(a )a bsA(b))
if x2b then subtract b from x; add 1 toy,; goto L1.
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(3)

(4)

(6)

(8}

move y to q.
{ gb+x =~ aa 0sx<b a gsA(q) A xsA(r)}

{ 220 A b>0 A asA(a) A bsA(b) } C1 / from (2)
move a to x.

move 0 toy.

L1.{yb+x=aa b>0a 0sx A xsA(X) A ysA(y) A asi(a Ja bsA(b)}

if xzb then subtract b from x; add 1 to y; goto L1.

{ yb+x = aa 0sx<b A y<A(qg) A x2A(r)}

{ a20 A b>0 A ask(a) a b=A(b) ) C4 / from (3)
move a o X.

move Q0 oy,

Li.{yb+x=aab>0a 0sx 4 xsA(x) A ysA(y) a ash(a )a b<A(b)}
xzb-if, subtract b from x; add 1 to y; goto L1.

{ yb+x - aa 0sxb A ysi(q) A xsA(r)}

{ az0 A b>0 A asi(a) A bsA(b) } C4 / from (3)
move a to . (else missing)
move 0 toy.

L1. {yb+x=aa b>0 a 0sx A xsA(x) A ysA(y) 2 asi(a )a bsi(b))
a xzb-if
{ yb+x = aa 05x<b A ysA(q) A xsA(r))

{ a20 a b>0 A asA{a) a bsA(b) ) CS / from (4)
move a 1o x.
move 0 toy.
Li.{yb+x=aab>0 A 0<x r X<A(X) A ysAly) A
asA(a )a bsA(b)}
x2b-if; subtract b from x;add 1 toy
{ yb+x=aa b>0 A 0<x A X3A(X) A ysA(y) A
asA(a )a bsA(b)}

{ a20 A b>0 » asA{a)a bsA(b) } €3/ from (5)
move a 1o x.
move 0 toy. _
L1.{yb+x=aab>0 a 0sx A x<sA(x) A ysA(y) a
ashla j» beA (b))
{7 x2b = yb+x = aa 0sxh » ysilg) a xsh(r))

{ az0 A b0 ~ gsh(a) a bsA(b) ) C3 / from (7)
move a to 1.

N
. ,::}



move 0 toy.
{ yb+x=a b>0 A 0sx A X<A(x) A ysA(y) A
asi(a )a bsA(b)} '

(I)  yb+x=aab>0a 0sx A xsA(x) A ysA(y) a C3 / from (7)
ash(a a bsA(b) A~ x2b =
yb+x = aa 0sx<b A ysA(q) » x<A(r)

(9) {az0ab>0 ask(a) s bsA(b) )} : C1 / from (6)
move a 1o X.
move 0 toy.
L1.{ yb+x=aa b>0 a 0sx A XsA(x) A ysA(y) A
ash(a )a bsA(b)}
xzb-if; subtract b from x
{{y+1)b+x=a A b>0 A 05X A XsA(X) A y+13Aly) A
ash(a )a b<A(b)}

(10) { a20 A b>0 A asA(a) A b<A(b) } C1 / from (9)
move a to X.
move 0 toy.
L1.{ yb+x=aa b>0 A 0sx A XsA(X) A ysAly)
ash(a )a bsA(b)}
xzb-if
{ (y+1)b+x-b=aa b>0 A 0sx-b a X-bsA(x) A y+1Aly) A
asA(a )a bsA(b)}

(11) { a20 A b>0 A asA(a) A bsA(b) } C3" / from (10)
move a to x.
move 0 toy.
{ yb+x=a A b>0 A 0sx A XsA(X) A ysk(’y)-f\‘
“asA(a )a bsk(b)}
{x2b = (y+1)b+x-b=aa b>0 A 0sx-b A X-bsA(x) A y+15A(y)
asi(a )a b=A(b)}

(11) yb+x=aa b>0 A 0sx A X<A(X) A ysA(y) A C3" /from (11)
a<i(a )a bzA(b) =
1>b = (y+1)b+x-b=a4 b>0 A 05X-b A X-b<A(x) A y+1A(y) A
asA(a )a bsA(b)

(12) { az0 A b>0 A asA(a) A bsA(b) } C1 / from (8)
move a to x1.

{ Ob+x=a A b>0 A 05X A X<A(x) A 0sA(y) A ash(a )a bsA(b)}
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(13) { a20 A b>0 A asA(a) » bsA(b) ) C1 / from (12)

{ Ob+a=a A b>0 A 0sa a asA(x) A 0gA(y) A

a<A(a )a b<A(b)}

(I11) a20 A b>0 A asi(a) A bsA(b) = C3 / from (13)

Ob+a=aA b>0 A 0sa a asA(x) A OsA(y) A

asi(a )a bsi(b)

In our example VCG generates the verification conditions 1,11 and III.

Simplification of the VC's

(I

(1)
(2)

(3)
*)

(i)
(ii)

(1)

(iii)

The first two clauses of the conclusion follow from the premise with
the arithmetical transfor mation: :
1 (xsy) = (1>y)
It remains to show:
ysh(y) = ysh(g) and
xsA(x) A X<b A bsA(b) = x2A(r)
With the transitivity of < and the formula
250 A X3P = x<min(c )
we get from (2)
xsmin(A(x)A(b)) = xsA(r)
We apply the formula
(Vx (xsa = 1sB)) = asp
and get from (1) and (3)
Aly)sA(q) and
min (A(x)A(b)) < Alr)

The simplification (a= (b = c}) & asb = ¢ yields the first four clauses
of the conclusion by simpie multiplication and use of the transitivity

of 5. It remains to show y+1<k(y) in the conclusion.The equality in the
premise yields:

y - a-x/bsa-b/b-a/b -1, hence
y+1 s a/b s a < A(a)
Therefore we have

y+1 s AMa) = y+1 < A(y), and with (*):
Ala) s Aly)

This condition is explained by the fact, thal the maximal value y can



obtain, is the value of a (i.e. in the case that b=1 ).

(111) Arithmetical simplifications like Ob=0 or O+a=a and ordering of the
clauses yields the first three and the two last clauses of the conclusion.

Then we apply (*) and consider A(x) z 0 as an axiom so that the
following condition remains

(iv) Ala) s A(x),
because the maximal value, which x can obtain, is the value of a.
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